ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
(Generate patch)

Comparing jsr166/src/jsr166e/ConcurrentHashMapV8.java (file contents):
Revision 1.81 by dl, Sat Dec 8 14:10:38 2012 UTC vs.
Revision 1.108 by jsr166, Mon Jul 1 19:19:31 2013 UTC

# Line 6 | Line 6
6  
7   package jsr166e;
8  
9 < import java.util.Comparator;
10 < import java.util.Arrays;
11 < import java.util.Map;
12 < import java.util.Set;
13 < import java.util.Collection;
14 < import java.util.AbstractMap;
15 < import java.util.AbstractSet;
16 < import java.util.AbstractCollection;
17 < import java.util.Hashtable;
18 < import java.util.HashMap;
19 < import java.util.Iterator;
20 < import java.util.Enumeration;
21 < import java.util.ConcurrentModificationException;
22 < import java.util.NoSuchElementException;
23 < import java.util.concurrent.ConcurrentMap;
24 < import java.util.concurrent.ThreadLocalRandom;
25 < import java.util.concurrent.locks.LockSupport;
26 < import java.util.concurrent.locks.AbstractQueuedSynchronizer;
27 < import java.util.concurrent.atomic.AtomicReference;
9 > import jsr166e.ForkJoinPool;
10  
11 + import java.io.ObjectStreamField;
12   import java.io.Serializable;
13 <
14 < import java.util.Comparator;
13 > import java.lang.reflect.ParameterizedType;
14 > import java.lang.reflect.Type;
15   import java.util.Arrays;
33 import java.util.Map;
34 import java.util.Set;
16   import java.util.Collection;
17 < import java.util.AbstractMap;
18 < import java.util.AbstractSet;
19 < import java.util.AbstractCollection;
39 < import java.util.Hashtable;
17 > import java.util.Comparator;
18 > import java.util.ConcurrentModificationException;
19 > import java.util.Enumeration;
20   import java.util.HashMap;
21 + import java.util.Hashtable;
22   import java.util.Iterator;
23 < import java.util.Enumeration;
43 < import java.util.ConcurrentModificationException;
23 > import java.util.Map;
24   import java.util.NoSuchElementException;
25 + import java.util.Set;
26   import java.util.concurrent.ConcurrentMap;
46 import java.util.concurrent.ThreadLocalRandom;
47 import java.util.concurrent.locks.LockSupport;
48 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
27   import java.util.concurrent.atomic.AtomicReference;
28 <
29 < import java.io.Serializable;
28 > import java.util.concurrent.atomic.AtomicInteger;
29 > import java.util.concurrent.locks.LockSupport;
30 > import java.util.concurrent.locks.ReentrantLock;
31  
32   /**
33   * A hash table supporting full concurrency of retrievals and
# Line 102 | Line 81 | import java.io.Serializable;
81   * expected {@code concurrencyLevel} as an additional hint for
82   * internal sizing.  Note that using many keys with exactly the same
83   * {@code hashCode()} is a sure way to slow down performance of any
84 < * hash table.
84 > * hash table. To ameliorate impact, when keys are {@link Comparable},
85 > * this class may use comparison order among keys to help break ties.
86   *
87   * <p>A {@link Set} projection of a ConcurrentHashMapV8 may be created
88   * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
# Line 110 | Line 90 | import java.io.Serializable;
90   * mapped values are (perhaps transiently) not used or all take the
91   * same mapping value.
92   *
113 * <p>A ConcurrentHashMapV8 can be used as scalable frequency map (a
114 * form of histogram or multiset) by using {@link LongAdder} values
115 * and initializing via {@link #computeIfAbsent}. For example, to add
116 * a count to a {@code ConcurrentHashMapV8<String,LongAdder> freqs}, you
117 * can use {@code freqs.computeIfAbsent(k -> new
118 * LongAdder()).increment();}
119 *
93   * <p>This class and its views and iterators implement all of the
94   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
95   * interfaces.
# Line 124 | Line 97 | import java.io.Serializable;
97   * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
98   * does <em>not</em> allow {@code null} to be used as a key or value.
99   *
100 < * <p>ConcurrentHashMapV8s support parallel operations using the {@link
101 < * ForkJoinPool#commonPool}. (Tasks that may be used in other contexts
102 < * are available in class {@link ForkJoinTasks}). These operations are
103 < * designed to be safely, and often sensibly, applied even with maps
104 < * that are being concurrently updated by other threads; for example,
105 < * when computing a snapshot summary of the values in a shared
106 < * registry.  There are three kinds of operation, each with four
107 < * forms, accepting functions with Keys, Values, Entries, and (Key,
108 < * Value) arguments and/or return values. (The first three forms are
109 < * also available via the {@link #keySet()}, {@link #values()} and
110 < * {@link #entrySet()} views). Because the elements of a
111 < * ConcurrentHashMapV8 are not ordered in any particular way, and may be
112 < * processed in different orders in different parallel executions, the
113 < * correctness of supplied functions should not depend on any
114 < * ordering, or on any other objects or values that may transiently
142 < * change while computation is in progress; and except for forEach
143 < * actions, should ideally be side-effect-free.
100 > * <p>ConcurrentHashMapV8s support a set of sequential and parallel bulk
101 > * operations that are designed
102 > * to be safely, and often sensibly, applied even with maps that are
103 > * being concurrently updated by other threads; for example, when
104 > * computing a snapshot summary of the values in a shared registry.
105 > * There are three kinds of operation, each with four forms, accepting
106 > * functions with Keys, Values, Entries, and (Key, Value) arguments
107 > * and/or return values. Because the elements of a ConcurrentHashMapV8
108 > * are not ordered in any particular way, and may be processed in
109 > * different orders in different parallel executions, the correctness
110 > * of supplied functions should not depend on any ordering, or on any
111 > * other objects or values that may transiently change while
112 > * computation is in progress; and except for forEach actions, should
113 > * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
114 > * objects do not support method {@code setValue}.
115   *
116   * <ul>
117   * <li> forEach: Perform a given action on each element.
# Line 167 | Line 138 | import java.io.Serializable;
138   * <li> Reductions to scalar doubles, longs, and ints, using a
139   * given basis value.</li>
140   *
170 * </li>
141   * </ul>
142 + * </li>
143   * </ul>
144   *
145 + * <p>These bulk operations accept a {@code parallelismThreshold}
146 + * argument. Methods proceed sequentially if the current map size is
147 + * estimated to be less than the given threshold. Using a value of
148 + * {@code Long.MAX_VALUE} suppresses all parallelism.  Using a value
149 + * of {@code 1} results in maximal parallelism by partitioning into
150 + * enough subtasks to fully utilize the {@link
151 + * ForkJoinPool#commonPool()} that is used for all parallel
152 + * computations. Normally, you would initially choose one of these
153 + * extreme values, and then measure performance of using in-between
154 + * values that trade off overhead versus throughput.
155 + *
156   * <p>The concurrency properties of bulk operations follow
157   * from those of ConcurrentHashMapV8: Any non-null result returned
158   * from {@code get(key)} and related access methods bears a
# Line 213 | Line 195 | import java.io.Serializable;
195   * exceptions, or would have done so if the first exception had
196   * not occurred.
197   *
198 < * <p>Parallel speedups for bulk operations compared to sequential
199 < * processing are common but not guaranteed.  Operations involving
200 < * brief functions on small maps may execute more slowly than
201 < * sequential loops if the underlying work to parallelize the
202 < * computation is more expensive than the computation itself.
203 < * Similarly, parallelization may not lead to much actual parallelism
204 < * if all processors are busy performing unrelated tasks.
198 > * <p>Speedups for parallel compared to sequential forms are common
199 > * but not guaranteed.  Parallel operations involving brief functions
200 > * on small maps may execute more slowly than sequential forms if the
201 > * underlying work to parallelize the computation is more expensive
202 > * than the computation itself.  Similarly, parallelization may not
203 > * lead to much actual parallelism if all processors are busy
204 > * performing unrelated tasks.
205   *
206   * <p>All arguments to all task methods must be non-null.
207   *
# Line 236 | Line 218 | import java.io.Serializable;
218   * @param <K> the type of keys maintained by this map
219   * @param <V> the type of mapped values
220   */
221 < public class ConcurrentHashMapV8<K, V>
222 <    implements ConcurrentMap<K, V>, Serializable {
221 > public class ConcurrentHashMapV8<K,V>
222 >    implements ConcurrentMap<K,V>, Serializable {
223      private static final long serialVersionUID = 7249069246763182397L;
224  
225      /**
226 <     * A partitionable iterator. A Spliterator can be traversed
227 <     * directly, but can also be partitioned (before traversal) by
228 <     * creating another Spliterator that covers a non-overlapping
247 <     * portion of the elements, and so may be amenable to parallel
248 <     * execution.
249 <     *
250 <     * <p>This interface exports a subset of expected JDK8
251 <     * functionality.
252 <     *
253 <     * <p>Sample usage: Here is one (of the several) ways to compute
254 <     * the sum of the values held in a map using the ForkJoin
255 <     * framework. As illustrated here, Spliterators are well suited to
256 <     * designs in which a task repeatedly splits off half its work
257 <     * into forked subtasks until small enough to process directly,
258 <     * and then joins these subtasks. Variants of this style can also
259 <     * be used in completion-based designs.
260 <     *
261 <     * <pre>
262 <     * {@code ConcurrentHashMapV8<String, Long> m = ...
263 <     * // split as if have 8 * parallelism, for load balance
264 <     * int n = m.size();
265 <     * int p = aForkJoinPool.getParallelism() * 8;
266 <     * int split = (n < p)? n : p;
267 <     * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
268 <     * // ...
269 <     * static class SumValues extends RecursiveTask<Long> {
270 <     *   final Spliterator<Long> s;
271 <     *   final int split;             // split while > 1
272 <     *   final SumValues nextJoin;    // records forked subtasks to join
273 <     *   SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
274 <     *     this.s = s; this.depth = depth; this.nextJoin = nextJoin;
275 <     *   }
276 <     *   public Long compute() {
277 <     *     long sum = 0;
278 <     *     SumValues subtasks = null; // fork subtasks
279 <     *     for (int s = split >>> 1; s > 0; s >>>= 1)
280 <     *       (subtasks = new SumValues(s.split(), s, subtasks)).fork();
281 <     *     while (s.hasNext())        // directly process remaining elements
282 <     *       sum += s.next();
283 <     *     for (SumValues t = subtasks; t != null; t = t.nextJoin)
284 <     *       sum += t.join();         // collect subtask results
285 <     *     return sum;
286 <     *   }
287 <     * }
288 <     * }</pre>
226 >     * An object for traversing and partitioning elements of a source.
227 >     * This interface provides a subset of the functionality of JDK8
228 >     * java.util.Spliterator.
229       */
230 <    public static interface Spliterator<T> extends Iterator<T> {
230 >    public static interface ConcurrentHashMapSpliterator<T> {
231          /**
232 <         * Returns a Spliterator covering approximately half of the
233 <         * elements, guaranteed not to overlap with those subsequently
234 <         * returned by this Spliterator.  After invoking this method,
235 <         * the current Spliterator will <em>not</em> produce any of
296 <         * the elements of the returned Spliterator, but the two
297 <         * Spliterators together will produce all of the elements that
298 <         * would have been produced by this Spliterator had this
299 <         * method not been called. The exact number of elements
300 <         * produced by the returned Spliterator is not guaranteed, and
301 <         * may be zero (i.e., with {@code hasNext()} reporting {@code
302 <         * false}) if this Spliterator cannot be further split.
303 <         *
304 <         * @return a Spliterator covering approximately half of the
305 <         * elements
306 <         * @throws IllegalStateException if this Spliterator has
307 <         * already commenced traversing elements
232 >         * If possible, returns a new spliterator covering
233 >         * approximately one half of the elements, which will not be
234 >         * covered by this spliterator. Returns null if cannot be
235 >         * split.
236           */
237 <        Spliterator<T> split();
237 >        ConcurrentHashMapSpliterator<T> trySplit();
238 >        /**
239 >         * Returns an estimate of the number of elements covered by
240 >         * this Spliterator.
241 >         */
242 >        long estimateSize();
243 >
244 >        /** Applies the action to each untraversed element */
245 >        void forEachRemaining(Action<? super T> action);
246 >        /** If an element remains, applies the action and returns true. */
247 >        boolean tryAdvance(Action<? super T> action);
248      }
249  
250 +    // Sams
251 +    /** Interface describing a void action of one argument */
252 +    public interface Action<A> { void apply(A a); }
253 +    /** Interface describing a void action of two arguments */
254 +    public interface BiAction<A,B> { void apply(A a, B b); }
255 +    /** Interface describing a function of one argument */
256 +    public interface Fun<A,T> { T apply(A a); }
257 +    /** Interface describing a function of two arguments */
258 +    public interface BiFun<A,B,T> { T apply(A a, B b); }
259 +    /** Interface describing a function mapping its argument to a double */
260 +    public interface ObjectToDouble<A> { double apply(A a); }
261 +    /** Interface describing a function mapping its argument to a long */
262 +    public interface ObjectToLong<A> { long apply(A a); }
263 +    /** Interface describing a function mapping its argument to an int */
264 +    public interface ObjectToInt<A> {int apply(A a); }
265 +    /** Interface describing a function mapping two arguments to a double */
266 +    public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
267 +    /** Interface describing a function mapping two arguments to a long */
268 +    public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
269 +    /** Interface describing a function mapping two arguments to an int */
270 +    public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
271 +    /** Interface describing a function mapping two doubles to a double */
272 +    public interface DoubleByDoubleToDouble { double apply(double a, double b); }
273 +    /** Interface describing a function mapping two longs to a long */
274 +    public interface LongByLongToLong { long apply(long a, long b); }
275 +    /** Interface describing a function mapping two ints to an int */
276 +    public interface IntByIntToInt { int apply(int a, int b); }
277  
278      /*
279       * Overview:
# Line 320 | Line 285 | public class ConcurrentHashMapV8<K, V>
285       * the same or better than java.util.HashMap, and to support high
286       * initial insertion rates on an empty table by many threads.
287       *
288 <     * Each key-value mapping is held in a Node.  Because Node fields
289 <     * can contain special values, they are defined using plain Object
290 <     * types. Similarly in turn, all internal methods that use them
291 <     * work off Object types. And similarly, so do the internal
292 <     * methods of auxiliary iterator and view classes.  All public
293 <     * generic typed methods relay in/out of these internal methods,
294 <     * supplying null-checks and casts as needed. This also allows
295 <     * many of the public methods to be factored into a smaller number
296 <     * of internal methods (although sadly not so for the five
297 <     * variants of put-related operations). The validation-based
298 <     * approach explained below leads to a lot of code sprawl because
299 <     * retry-control precludes factoring into smaller methods.
288 >     * This map usually acts as a binned (bucketed) hash table.  Each
289 >     * key-value mapping is held in a Node.  Most nodes are instances
290 >     * of the basic Node class with hash, key, value, and next
291 >     * fields. However, various subclasses exist: TreeNodes are
292 >     * arranged in balanced trees, not lists.  TreeBins hold the roots
293 >     * of sets of TreeNodes. ForwardingNodes are placed at the heads
294 >     * of bins during resizing. ReservationNodes are used as
295 >     * placeholders while establishing values in computeIfAbsent and
296 >     * related methods.  The types TreeBin, ForwardingNode, and
297 >     * ReservationNode do not hold normal user keys, values, or
298 >     * hashes, and are readily distinguishable during search etc
299 >     * because they have negative hash fields and null key and value
300 >     * fields. (These special nodes are either uncommon or transient,
301 >     * so the impact of carrying around some unused fields is
302 >     * insignificant.)
303       *
304       * The table is lazily initialized to a power-of-two size upon the
305       * first insertion.  Each bin in the table normally contains a
# Line 339 | Line 307 | public class ConcurrentHashMapV8<K, V>
307       * Table accesses require volatile/atomic reads, writes, and
308       * CASes.  Because there is no other way to arrange this without
309       * adding further indirections, we use intrinsics
310 <     * (sun.misc.Unsafe) operations.  The lists of nodes within bins
311 <     * are always accurately traversable under volatile reads, so long
312 <     * as lookups check hash code and non-nullness of value before
313 <     * checking key equality.
314 <     *
315 <     * We use the top two bits of Node hash fields for control
348 <     * purposes -- they are available anyway because of addressing
349 <     * constraints.  As explained further below, these top bits are
350 <     * used as follows:
351 <     *  00 - Normal
352 <     *  01 - Locked
353 <     *  11 - Locked and may have a thread waiting for lock
354 <     *  10 - Node is a forwarding node
355 <     *
356 <     * The lower 30 bits of each Node's hash field contain a
357 <     * transformation of the key's hash code, except for forwarding
358 <     * nodes, for which the lower bits are zero (and so always have
359 <     * hash field == MOVED).
310 >     * (sun.misc.Unsafe) operations.
311 >     *
312 >     * We use the top (sign) bit of Node hash fields for control
313 >     * purposes -- it is available anyway because of addressing
314 >     * constraints.  Nodes with negative hash fields are specially
315 >     * handled or ignored in map methods.
316       *
317       * Insertion (via put or its variants) of the first node in an
318       * empty bin is performed by just CASing it to the bin.  This is
# Line 365 | Line 321 | public class ConcurrentHashMapV8<K, V>
321       * delete, and replace) require locks.  We do not want to waste
322       * the space required to associate a distinct lock object with
323       * each bin, so instead use the first node of a bin list itself as
324 <     * a lock. Blocking support for these locks relies on the builtin
325 <     * "synchronized" monitors.  However, we also need a tryLock
370 <     * construction, so we overlay these by using bits of the Node
371 <     * hash field for lock control (see above), and so normally use
372 <     * builtin monitors only for blocking and signalling using
373 <     * wait/notifyAll constructions. See Node.tryAwaitLock.
324 >     * a lock. Locking support for these locks relies on builtin
325 >     * "synchronized" monitors.
326       *
327       * Using the first node of a list as a lock does not by itself
328       * suffice though: When a node is locked, any update must first
329       * validate that it is still the first node after locking it, and
330       * retry if not. Because new nodes are always appended to lists,
331       * once a node is first in a bin, it remains first until deleted
332 <     * or the bin becomes invalidated (upon resizing).  However,
381 <     * operations that only conditionally update may inspect nodes
382 <     * until the point of update. This is a converse of sorts to the
383 <     * lazy locking technique described by Herlihy & Shavit.
332 >     * or the bin becomes invalidated (upon resizing).
333       *
334       * The main disadvantage of per-bin locks is that other update
335       * operations on other nodes in a bin list protected by the same
# Line 413 | Line 362 | public class ConcurrentHashMapV8<K, V>
362       * sometimes deviate significantly from uniform randomness.  This
363       * includes the case when N > (1<<30), so some keys MUST collide.
364       * Similarly for dumb or hostile usages in which multiple keys are
365 <     * designed to have identical hash codes. Also, although we guard
366 <     * against the worst effects of this (see method spread), sets of
367 <     * hashes may differ only in bits that do not impact their bin
368 <     * index for a given power-of-two mask.  So we use a secondary
369 <     * strategy that applies when the number of nodes in a bin exceeds
370 <     * a threshold, and at least one of the keys implements
422 <     * Comparable.  These TreeBins use a balanced tree to hold nodes
423 <     * (a specialized form of red-black trees), bounding search time
424 <     * to O(log N).  Each search step in a TreeBin is around twice as
365 >     * designed to have identical hash codes or ones that differs only
366 >     * in masked-out high bits. So we use a secondary strategy that
367 >     * applies when the number of nodes in a bin exceeds a
368 >     * threshold. These TreeBins use a balanced tree to hold nodes (a
369 >     * specialized form of red-black trees), bounding search time to
370 >     * O(log N).  Each search step in a TreeBin is at least twice as
371       * slow as in a regular list, but given that N cannot exceed
372       * (1<<64) (before running out of addresses) this bounds search
373       * steps, lock hold times, etc, to reasonable constants (roughly
# Line 432 | Line 378 | public class ConcurrentHashMapV8<K, V>
378       * iterators in the same way.
379       *
380       * The table is resized when occupancy exceeds a percentage
381 <     * threshold (nominally, 0.75, but see below).  Only a single
382 <     * thread performs the resize (using field "sizeCtl", to arrange
383 <     * exclusion), but the table otherwise remains usable for reads
384 <     * and updates. Resizing proceeds by transferring bins, one by
385 <     * one, from the table to the next table.  Because we are using
386 <     * power-of-two expansion, the elements from each bin must either
387 <     * stay at same index, or move with a power of two offset. We
388 <     * eliminate unnecessary node creation by catching cases where old
389 <     * nodes can be reused because their next fields won't change.  On
390 <     * average, only about one-sixth of them need cloning when a table
391 <     * doubles. The nodes they replace will be garbage collectable as
392 <     * soon as they are no longer referenced by any reader thread that
393 <     * may be in the midst of concurrently traversing table.  Upon
394 <     * transfer, the old table bin contains only a special forwarding
395 <     * node (with hash field "MOVED") that contains the next table as
396 <     * its key. On encountering a forwarding node, access and update
397 <     * operations restart, using the new table.
398 <     *
399 <     * Each bin transfer requires its bin lock. However, unlike other
400 <     * cases, a transfer can skip a bin if it fails to acquire its
401 <     * lock, and revisit it later (unless it is a TreeBin). Method
402 <     * rebuild maintains a buffer of TRANSFER_BUFFER_SIZE bins that
403 <     * have been skipped because of failure to acquire a lock, and
404 <     * blocks only if none are available (i.e., only very rarely).
405 <     * The transfer operation must also ensure that all accessible
406 <     * bins in both the old and new table are usable by any traversal.
407 <     * When there are no lock acquisition failures, this is arranged
408 <     * simply by proceeding from the last bin (table.length - 1) up
409 <     * towards the first.  Upon seeing a forwarding node, traversals
410 <     * (see class Iter) arrange to move to the new table
411 <     * without revisiting nodes.  However, when any node is skipped
412 <     * during a transfer, all earlier table bins may have become
413 <     * visible, so are initialized with a reverse-forwarding node back
414 <     * to the old table until the new ones are established. (This
415 <     * sometimes requires transiently locking a forwarding node, which
416 <     * is possible under the above encoding.) These more expensive
417 <     * mechanics trigger only when necessary.
381 >     * threshold (nominally, 0.75, but see below).  Any thread
382 >     * noticing an overfull bin may assist in resizing after the
383 >     * initiating thread allocates and sets up the replacement
384 >     * array. However, rather than stalling, these other threads may
385 >     * proceed with insertions etc.  The use of TreeBins shields us
386 >     * from the worst case effects of overfilling while resizes are in
387 >     * progress.  Resizing proceeds by transferring bins, one by one,
388 >     * from the table to the next table. To enable concurrency, the
389 >     * next table must be (incrementally) prefilled with place-holders
390 >     * serving as reverse forwarders to the old table.  Because we are
391 >     * using power-of-two expansion, the elements from each bin must
392 >     * either stay at same index, or move with a power of two
393 >     * offset. We eliminate unnecessary node creation by catching
394 >     * cases where old nodes can be reused because their next fields
395 >     * won't change.  On average, only about one-sixth of them need
396 >     * cloning when a table doubles. The nodes they replace will be
397 >     * garbage collectable as soon as they are no longer referenced by
398 >     * any reader thread that may be in the midst of concurrently
399 >     * traversing table.  Upon transfer, the old table bin contains
400 >     * only a special forwarding node (with hash field "MOVED") that
401 >     * contains the next table as its key. On encountering a
402 >     * forwarding node, access and update operations restart, using
403 >     * the new table.
404 >     *
405 >     * Each bin transfer requires its bin lock, which can stall
406 >     * waiting for locks while resizing. However, because other
407 >     * threads can join in and help resize rather than contend for
408 >     * locks, average aggregate waits become shorter as resizing
409 >     * progresses.  The transfer operation must also ensure that all
410 >     * accessible bins in both the old and new table are usable by any
411 >     * traversal.  This is arranged by proceeding from the last bin
412 >     * (table.length - 1) up towards the first.  Upon seeing a
413 >     * forwarding node, traversals (see class Traverser) arrange to
414 >     * move to the new table without revisiting nodes.  However, to
415 >     * ensure that no intervening nodes are skipped, bin splitting can
416 >     * only begin after the associated reverse-forwarders are in
417 >     * place.
418       *
419       * The traversal scheme also applies to partial traversals of
420       * ranges of bins (via an alternate Traverser constructor)
# Line 483 | Line 429 | public class ConcurrentHashMapV8<K, V>
429       * These cases attempt to override the initial capacity settings,
430       * but harmlessly fail to take effect in cases of races.
431       *
432 <     * The element count is maintained using a LongAdder, which avoids
433 <     * contention on updates but can encounter cache thrashing if read
434 <     * too frequently during concurrent access. To avoid reading so
435 <     * often, resizing is attempted either when a bin lock is
436 <     * contended, or upon adding to a bin already holding two or more
437 <     * nodes (checked before adding in the xIfAbsent methods, after
438 <     * adding in others). Under uniform hash distributions, the
439 <     * probability of this occurring at threshold is around 13%,
440 <     * meaning that only about 1 in 8 puts check threshold (and after
441 <     * resizing, many fewer do so). But this approximation has high
442 <     * variance for small table sizes, so we check on any collision
443 <     * for sizes <= 64. The bulk putAll operation further reduces
444 <     * contention by only committing count updates upon these size
445 <     * checks.
432 >     * The element count is maintained using a specialization of
433 >     * LongAdder. We need to incorporate a specialization rather than
434 >     * just use a LongAdder in order to access implicit
435 >     * contention-sensing that leads to creation of multiple
436 >     * CounterCells.  The counter mechanics avoid contention on
437 >     * updates but can encounter cache thrashing if read too
438 >     * frequently during concurrent access. To avoid reading so often,
439 >     * resizing under contention is attempted only upon adding to a
440 >     * bin already holding two or more nodes. Under uniform hash
441 >     * distributions, the probability of this occurring at threshold
442 >     * is around 13%, meaning that only about 1 in 8 puts check
443 >     * threshold (and after resizing, many fewer do so).
444 >     *
445 >     * TreeBins use a special form of comparison for search and
446 >     * related operations (which is the main reason we cannot use
447 >     * existing collections such as TreeMaps). TreeBins contain
448 >     * Comparable elements, but may contain others, as well as
449 >     * elements that are Comparable but not necessarily Comparable
450 >     * for the same T, so we cannot invoke compareTo among them. To
451 >     * handle this, the tree is ordered primarily by hash value, then
452 >     * by Comparable.compareTo order if applicable.  On lookup at a
453 >     * node, if elements are not comparable or compare as 0 then both
454 >     * left and right children may need to be searched in the case of
455 >     * tied hash values. (This corresponds to the full list search
456 >     * that would be necessary if all elements were non-Comparable and
457 >     * had tied hashes.)  The red-black balancing code is updated from
458 >     * pre-jdk-collections
459 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
460 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
461 >     * Algorithms" (CLR).
462 >     *
463 >     * TreeBins also require an additional locking mechanism.  While
464 >     * list traversal is always possible by readers even during
465 >     * updates, tree traversal is not, mainly because of tree-rotations
466 >     * that may change the root node and/or its linkages.  TreeBins
467 >     * include a simple read-write lock mechanism parasitic on the
468 >     * main bin-synchronization strategy: Structural adjustments
469 >     * associated with an insertion or removal are already bin-locked
470 >     * (and so cannot conflict with other writers) but must wait for
471 >     * ongoing readers to finish. Since there can be only one such
472 >     * waiter, we use a simple scheme using a single "waiter" field to
473 >     * block writers.  However, readers need never block.  If the root
474 >     * lock is held, they proceed along the slow traversal path (via
475 >     * next-pointers) until the lock becomes available or the list is
476 >     * exhausted, whichever comes first. These cases are not fast, but
477 >     * maximize aggregate expected throughput.
478       *
479       * Maintaining API and serialization compatibility with previous
480       * versions of this class introduces several oddities. Mainly: We
# Line 506 | Line 484 | public class ConcurrentHashMapV8<K, V>
484       * time that we can guarantee to honor it.) We also declare an
485       * unused "Segment" class that is instantiated in minimal form
486       * only when serializing.
487 +     *
488 +     * This file is organized to make things a little easier to follow
489 +     * while reading than they might otherwise: First the main static
490 +     * declarations and utilities, then fields, then main public
491 +     * methods (with a few factorings of multiple public methods into
492 +     * internal ones), then sizing methods, trees, traversers, and
493 +     * bulk operations.
494       */
495  
496      /* ---------------- Constants -------------- */
# Line 547 | Line 532 | public class ConcurrentHashMapV8<K, V>
532      private static final float LOAD_FACTOR = 0.75f;
533  
534      /**
550     * The buffer size for skipped bins during transfers. The
551     * value is arbitrary but should be large enough to avoid
552     * most locking stalls during resizes.
553     */
554    private static final int TRANSFER_BUFFER_SIZE = 32;
555
556    /**
535       * The bin count threshold for using a tree rather than list for a
536 <     * bin.  The value reflects the approximate break-even point for
537 <     * using tree-based operations.
538 <     */
539 <    private static final int TREE_THRESHOLD = 8;
540 <
563 <    /*
564 <     * Encodings for special uses of Node hash fields. See above for
565 <     * explanation.
536 >     * bin.  Bins are converted to trees when adding an element to a
537 >     * bin with at least this many nodes. The value must be greater
538 >     * than 2, and should be at least 8 to mesh with assumptions in
539 >     * tree removal about conversion back to plain bins upon
540 >     * shrinkage.
541       */
542 <    static final int MOVED     = 0x80000000; // hash field for forwarding nodes
568 <    static final int LOCKED    = 0x40000000; // set/tested only as a bit
569 <    static final int WAITING   = 0xc0000000; // both bits set/tested together
570 <    static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash
571 <
572 <    /* ---------------- Fields -------------- */
542 >    static final int TREEIFY_THRESHOLD = 8;
543  
544      /**
545 <     * The array of bins. Lazily initialized upon first insertion.
546 <     * Size is always a power of two. Accessed directly by iterators.
545 >     * The bin count threshold for untreeifying a (split) bin during a
546 >     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
547 >     * most 6 to mesh with shrinkage detection under removal.
548       */
549 <    transient volatile Node[] table;
549 >    static final int UNTREEIFY_THRESHOLD = 6;
550  
551      /**
552 <     * The counter maintaining number of elements.
552 >     * The smallest table capacity for which bins may be treeified.
553 >     * (Otherwise the table is resized if too many nodes in a bin.)
554 >     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
555 >     * conflicts between resizing and treeification thresholds.
556       */
557 <    private transient final LongAdder counter;
557 >    static final int MIN_TREEIFY_CAPACITY = 64;
558  
559      /**
560 <     * Table initialization and resizing control.  When negative, the
561 <     * table is being initialized or resized. Otherwise, when table is
562 <     * null, holds the initial table size to use upon creation, or 0
563 <     * for default. After initialization, holds the next element count
564 <     * value upon which to resize the table.
560 >     * Minimum number of rebinnings per transfer step. Ranges are
561 >     * subdivided to allow multiple resizer threads.  This value
562 >     * serves as a lower bound to avoid resizers encountering
563 >     * excessive memory contention.  The value should be at least
564 >     * DEFAULT_CAPACITY.
565       */
566 <    private transient volatile int sizeCtl;
593 <
594 <    // views
595 <    private transient KeySetView<K,V> keySet;
596 <    private transient ValuesView<K,V> values;
597 <    private transient EntrySetView<K,V> entrySet;
598 <
599 <    /** For serialization compatibility. Null unless serialized; see below */
600 <    private Segment<K,V>[] segments;
601 <
602 <    /* ---------------- Table element access -------------- */
566 >    private static final int MIN_TRANSFER_STRIDE = 16;
567  
568      /*
569 <     * Volatile access methods are used for table elements as well as
606 <     * elements of in-progress next table while resizing.  Uses are
607 <     * null checked by callers, and implicitly bounds-checked, relying
608 <     * on the invariants that tab arrays have non-zero size, and all
609 <     * indices are masked with (tab.length - 1) which is never
610 <     * negative and always less than length. Note that, to be correct
611 <     * wrt arbitrary concurrency errors by users, bounds checks must
612 <     * operate on local variables, which accounts for some odd-looking
613 <     * inline assignments below.
569 >     * Encodings for Node hash fields. See above for explanation.
570       */
571 <
572 <    static final Node tabAt(Node[] tab, int i) { // used by Iter
573 <        return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
574 <    }
575 <
576 <    private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
577 <        return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
578 <    }
579 <
580 <    private static final void setTabAt(Node[] tab, int i, Node v) {
581 <        UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
582 <    }
571 >    static final int MOVED     = 0x8fffffff; // (-1) hash for forwarding nodes
572 >    static final int TREEBIN   = 0x80000000; // hash for roots of trees
573 >    static final int RESERVED  = 0x80000001; // hash for transient reservations
574 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
575 >
576 >    /** Number of CPUS, to place bounds on some sizings */
577 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
578 >
579 >    /** For serialization compatibility. */
580 >    private static final ObjectStreamField[] serialPersistentFields = {
581 >        new ObjectStreamField("segments", Segment[].class),
582 >        new ObjectStreamField("segmentMask", Integer.TYPE),
583 >        new ObjectStreamField("segmentShift", Integer.TYPE)
584 >    };
585  
586      /* ---------------- Nodes -------------- */
587  
588      /**
589 <     * Key-value entry. Note that this is never exported out as a
590 <     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
591 <     * field of MOVED are special, and do not contain user keys or
592 <     * values.  Otherwise, keys are never null, and null val fields
593 <     * indicate that a node is in the process of being deleted or
594 <     * created. For purposes of read-only access, a key may be read
595 <     * before a val, but can only be used after checking val to be
596 <     * non-null.
597 <     */
598 <    static class Node {
599 <        volatile int hash;
600 <        final Object key;
643 <        volatile Object val;
644 <        volatile Node next;
589 >     * Key-value entry.  This class is never exported out as a
590 >     * user-mutable Map.Entry (i.e., one supporting setValue; see
591 >     * MapEntry below), but can be used for read-only traversals used
592 >     * in bulk tasks.  Subclasses of Node with a negative hash field
593 >     * are special, and contain null keys and values (but are never
594 >     * exported).  Otherwise, keys and vals are never null.
595 >     */
596 >    static class Node<K,V> implements Map.Entry<K,V> {
597 >        final int hash;
598 >        final K key;
599 >        volatile V val;
600 >        Node<K,V> next;
601  
602 <        Node(int hash, Object key, Object val, Node next) {
602 >        Node(int hash, K key, V val, Node<K,V> next) {
603              this.hash = hash;
604              this.key = key;
605              this.val = val;
606              this.next = next;
607          }
608  
609 <        /** CompareAndSet the hash field */
610 <        final boolean casHash(int cmp, int val) {
611 <            return UNSAFE.compareAndSwapInt(this, hashOffset, cmp, val);
612 <        }
613 <
614 <        /** The number of spins before blocking for a lock */
659 <        static final int MAX_SPINS =
660 <            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
661 <
662 <        /**
663 <         * Spins a while if LOCKED bit set and this node is the first
664 <         * of its bin, and then sets WAITING bits on hash field and
665 <         * blocks (once) if they are still set.  It is OK for this
666 <         * method to return even if lock is not available upon exit,
667 <         * which enables these simple single-wait mechanics.
668 <         *
669 <         * The corresponding signalling operation is performed within
670 <         * callers: Upon detecting that WAITING has been set when
671 <         * unlocking lock (via a failed CAS from non-waiting LOCKED
672 <         * state), unlockers acquire the sync lock and perform a
673 <         * notifyAll.
674 <         *
675 <         * The initial sanity check on tab and bounds is not currently
676 <         * necessary in the only usages of this method, but enables
677 <         * use in other future contexts.
678 <         */
679 <        final void tryAwaitLock(Node[] tab, int i) {
680 <            if (tab != null && i >= 0 && i < tab.length) { // sanity check
681 <                int r = ThreadLocalRandom.current().nextInt(); // randomize spins
682 <                int spins = MAX_SPINS, h;
683 <                while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) {
684 <                    if (spins >= 0) {
685 <                        r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
686 <                        if (r >= 0 && --spins == 0)
687 <                            Thread.yield();  // yield before block
688 <                    }
689 <                    else if (casHash(h, h | WAITING)) {
690 <                        synchronized (this) {
691 <                            if (tabAt(tab, i) == this &&
692 <                                (hash & WAITING) == WAITING) {
693 <                                try {
694 <                                    wait();
695 <                                } catch (InterruptedException ie) {
696 <                                    try {
697 <                                        Thread.currentThread().interrupt();
698 <                                    } catch (SecurityException ignore) {
699 <                                    }
700 <                                }
701 <                            }
702 <                            else
703 <                                notifyAll(); // possibly won race vs signaller
704 <                        }
705 <                        break;
706 <                    }
707 <                }
708 <            }
709 <        }
710 <
711 <        // Unsafe mechanics for casHash
712 <        private static final sun.misc.Unsafe UNSAFE;
713 <        private static final long hashOffset;
714 <
715 <        static {
716 <            try {
717 <                UNSAFE = getUnsafe();
718 <                Class<?> k = Node.class;
719 <                hashOffset = UNSAFE.objectFieldOffset
720 <                    (k.getDeclaredField("hash"));
721 <            } catch (Exception e) {
722 <                throw new Error(e);
723 <            }
724 <        }
725 <    }
726 <
727 <    /* ---------------- TreeBins -------------- */
728 <
729 <    /**
730 <     * Nodes for use in TreeBins
731 <     */
732 <    static final class TreeNode extends Node {
733 <        TreeNode parent;  // red-black tree links
734 <        TreeNode left;
735 <        TreeNode right;
736 <        TreeNode prev;    // needed to unlink next upon deletion
737 <        boolean red;
738 <
739 <        TreeNode(int hash, Object key, Object val, Node next, TreeNode parent) {
740 <            super(hash, key, val, next);
741 <            this.parent = parent;
742 <        }
743 <    }
744 <
745 <    /**
746 <     * A specialized form of red-black tree for use in bins
747 <     * whose size exceeds a threshold.
748 <     *
749 <     * TreeBins use a special form of comparison for search and
750 <     * related operations (which is the main reason we cannot use
751 <     * existing collections such as TreeMaps). TreeBins contain
752 <     * Comparable elements, but may contain others, as well as
753 <     * elements that are Comparable but not necessarily Comparable<T>
754 <     * for the same T, so we cannot invoke compareTo among them. To
755 <     * handle this, the tree is ordered primarily by hash value, then
756 <     * by getClass().getName() order, and then by Comparator order
757 <     * among elements of the same class.  On lookup at a node, if
758 <     * elements are not comparable or compare as 0, both left and
759 <     * right children may need to be searched in the case of tied hash
760 <     * values. (This corresponds to the full list search that would be
761 <     * necessary if all elements were non-Comparable and had tied
762 <     * hashes.)  The red-black balancing code is updated from
763 <     * pre-jdk-collections
764 <     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
765 <     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
766 <     * Algorithms" (CLR).
767 <     *
768 <     * TreeBins also maintain a separate locking discipline than
769 <     * regular bins. Because they are forwarded via special MOVED
770 <     * nodes at bin heads (which can never change once established),
771 <     * we cannot use those nodes as locks. Instead, TreeBin
772 <     * extends AbstractQueuedSynchronizer to support a simple form of
773 <     * read-write lock. For update operations and table validation,
774 <     * the exclusive form of lock behaves in the same way as bin-head
775 <     * locks. However, lookups use shared read-lock mechanics to allow
776 <     * multiple readers in the absence of writers.  Additionally,
777 <     * these lookups do not ever block: While the lock is not
778 <     * available, they proceed along the slow traversal path (via
779 <     * next-pointers) until the lock becomes available or the list is
780 <     * exhausted, whichever comes first. (These cases are not fast,
781 <     * but maximize aggregate expected throughput.)  The AQS mechanics
782 <     * for doing this are straightforward.  The lock state is held as
783 <     * AQS getState().  Read counts are negative; the write count (1)
784 <     * is positive.  There are no signalling preferences among readers
785 <     * and writers. Since we don't need to export full Lock API, we
786 <     * just override the minimal AQS methods and use them directly.
787 <     */
788 <    static final class TreeBin extends AbstractQueuedSynchronizer {
789 <        private static final long serialVersionUID = 2249069246763182397L;
790 <        transient TreeNode root;  // root of tree
791 <        transient TreeNode first; // head of next-pointer list
792 <
793 <        /* AQS overrides */
794 <        public final boolean isHeldExclusively() { return getState() > 0; }
795 <        public final boolean tryAcquire(int ignore) {
796 <            if (compareAndSetState(0, 1)) {
797 <                setExclusiveOwnerThread(Thread.currentThread());
798 <                return true;
799 <            }
800 <            return false;
801 <        }
802 <        public final boolean tryRelease(int ignore) {
803 <            setExclusiveOwnerThread(null);
804 <            setState(0);
805 <            return true;
806 <        }
807 <        public final int tryAcquireShared(int ignore) {
808 <            for (int c;;) {
809 <                if ((c = getState()) > 0)
810 <                    return -1;
811 <                if (compareAndSetState(c, c -1))
812 <                    return 1;
813 <            }
814 <        }
815 <        public final boolean tryReleaseShared(int ignore) {
816 <            int c;
817 <            do {} while (!compareAndSetState(c = getState(), c + 1));
818 <            return c == -1;
819 <        }
820 <
821 <        /** From CLR */
822 <        private void rotateLeft(TreeNode p) {
823 <            if (p != null) {
824 <                TreeNode r = p.right, pp, rl;
825 <                if ((rl = p.right = r.left) != null)
826 <                    rl.parent = p;
827 <                if ((pp = r.parent = p.parent) == null)
828 <                    root = r;
829 <                else if (pp.left == p)
830 <                    pp.left = r;
831 <                else
832 <                    pp.right = r;
833 <                r.left = p;
834 <                p.parent = r;
835 <            }
609 >        public final K getKey()       { return key; }
610 >        public final V getValue()     { return val; }
611 >        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
612 >        public final String toString(){ return key + "=" + val; }
613 >        public final V setValue(V value) {
614 >            throw new UnsupportedOperationException();
615          }
616  
617 <        /** From CLR */
618 <        private void rotateRight(TreeNode p) {
619 <            if (p != null) {
620 <                TreeNode l = p.left, pp, lr;
621 <                if ((lr = p.left = l.right) != null)
622 <                    lr.parent = p;
623 <                if ((pp = l.parent = p.parent) == null)
845 <                    root = l;
846 <                else if (pp.right == p)
847 <                    pp.right = l;
848 <                else
849 <                    pp.left = l;
850 <                l.right = p;
851 <                p.parent = l;
852 <            }
617 >        public final boolean equals(Object o) {
618 >            Object k, v, u; Map.Entry<?,?> e;
619 >            return ((o instanceof Map.Entry) &&
620 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
621 >                    (v = e.getValue()) != null &&
622 >                    (k == key || k.equals(key)) &&
623 >                    (v == (u = val) || v.equals(u)));
624          }
625  
626          /**
627 <         * Returns the TreeNode (or null if not found) for the given key
857 <         * starting at given root.
627 >         * Virtualized support for map.get(); overridden in subclasses.
628           */
629 <        @SuppressWarnings("unchecked") final TreeNode getTreeNode
630 <            (int h, Object k, TreeNode p) {
631 <            Class<?> c = k.getClass();
632 <            while (p != null) {
633 <                int dir, ph;  Object pk; Class<?> pc;
634 <                if ((ph = p.hash) == h) {
635 <                    if ((pk = p.key) == k || k.equals(pk))
636 <                        return p;
637 <                    if (c != (pc = pk.getClass()) ||
868 <                        !(k instanceof Comparable) ||
869 <                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
870 <                        if ((dir = (c == pc) ? 0 :
871 <                             c.getName().compareTo(pc.getName())) == 0) {
872 <                            TreeNode r = null, pl, pr; // check both sides
873 <                            if ((pr = p.right) != null && h >= pr.hash &&
874 <                                (r = getTreeNode(h, k, pr)) != null)
875 <                                return r;
876 <                            else if ((pl = p.left) != null && h <= pl.hash)
877 <                                dir = -1;
878 <                            else // nothing there
879 <                                return null;
880 <                        }
881 <                    }
882 <                }
883 <                else
884 <                    dir = (h < ph) ? -1 : 1;
885 <                p = (dir > 0) ? p.right : p.left;
629 >        Node<K,V> find(int h, Object k) {
630 >            Node<K,V> e = this;
631 >            if (k != null) {
632 >                do {
633 >                    K ek;
634 >                    if (e.hash == h &&
635 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
636 >                        return e;
637 >                } while ((e = e.next) != null);
638              }
639              return null;
640          }
889
890        /**
891         * Wrapper for getTreeNode used by CHM.get. Tries to obtain
892         * read-lock to call getTreeNode, but during failure to get
893         * lock, searches along next links.
894         */
895        final Object getValue(int h, Object k) {
896            Node r = null;
897            int c = getState(); // Must read lock state first
898            for (Node e = first; e != null; e = e.next) {
899                if (c <= 0 && compareAndSetState(c, c - 1)) {
900                    try {
901                        r = getTreeNode(h, k, root);
902                    } finally {
903                        releaseShared(0);
904                    }
905                    break;
906                }
907                else if ((e.hash & HASH_BITS) == h && k.equals(e.key)) {
908                    r = e;
909                    break;
910                }
911                else
912                    c = getState();
913            }
914            return r == null ? null : r.val;
915        }
916
917        /**
918         * Finds or adds a node.
919         * @return null if added
920         */
921        @SuppressWarnings("unchecked") final TreeNode putTreeNode
922            (int h, Object k, Object v) {
923            Class<?> c = k.getClass();
924            TreeNode pp = root, p = null;
925            int dir = 0;
926            while (pp != null) { // find existing node or leaf to insert at
927                int ph;  Object pk; Class<?> pc;
928                p = pp;
929                if ((ph = p.hash) == h) {
930                    if ((pk = p.key) == k || k.equals(pk))
931                        return p;
932                    if (c != (pc = pk.getClass()) ||
933                        !(k instanceof Comparable) ||
934                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
935                        TreeNode s = null, r = null, pr;
936                        if ((dir = (c == pc) ? 0 :
937                             c.getName().compareTo(pc.getName())) == 0) {
938                            if ((pr = p.right) != null && h >= pr.hash &&
939                                (r = getTreeNode(h, k, pr)) != null)
940                                return r;
941                            else // continue left
942                                dir = -1;
943                        }
944                        else if ((pr = p.right) != null && h >= pr.hash)
945                            s = pr;
946                        if (s != null && (r = getTreeNode(h, k, s)) != null)
947                            return r;
948                    }
949                }
950                else
951                    dir = (h < ph) ? -1 : 1;
952                pp = (dir > 0) ? p.right : p.left;
953            }
954
955            TreeNode f = first;
956            TreeNode x = first = new TreeNode(h, k, v, f, p);
957            if (p == null)
958                root = x;
959            else { // attach and rebalance; adapted from CLR
960                TreeNode xp, xpp;
961                if (f != null)
962                    f.prev = x;
963                if (dir <= 0)
964                    p.left = x;
965                else
966                    p.right = x;
967                x.red = true;
968                while (x != null && (xp = x.parent) != null && xp.red &&
969                       (xpp = xp.parent) != null) {
970                    TreeNode xppl = xpp.left;
971                    if (xp == xppl) {
972                        TreeNode y = xpp.right;
973                        if (y != null && y.red) {
974                            y.red = false;
975                            xp.red = false;
976                            xpp.red = true;
977                            x = xpp;
978                        }
979                        else {
980                            if (x == xp.right) {
981                                rotateLeft(x = xp);
982                                xpp = (xp = x.parent) == null ? null : xp.parent;
983                            }
984                            if (xp != null) {
985                                xp.red = false;
986                                if (xpp != null) {
987                                    xpp.red = true;
988                                    rotateRight(xpp);
989                                }
990                            }
991                        }
992                    }
993                    else {
994                        TreeNode y = xppl;
995                        if (y != null && y.red) {
996                            y.red = false;
997                            xp.red = false;
998                            xpp.red = true;
999                            x = xpp;
1000                        }
1001                        else {
1002                            if (x == xp.left) {
1003                                rotateRight(x = xp);
1004                                xpp = (xp = x.parent) == null ? null : xp.parent;
1005                            }
1006                            if (xp != null) {
1007                                xp.red = false;
1008                                if (xpp != null) {
1009                                    xpp.red = true;
1010                                    rotateLeft(xpp);
1011                                }
1012                            }
1013                        }
1014                    }
1015                }
1016                TreeNode r = root;
1017                if (r != null && r.red)
1018                    r.red = false;
1019            }
1020            return null;
1021        }
1022
1023        /**
1024         * Removes the given node, that must be present before this
1025         * call.  This is messier than typical red-black deletion code
1026         * because we cannot swap the contents of an interior node
1027         * with a leaf successor that is pinned by "next" pointers
1028         * that are accessible independently of lock. So instead we
1029         * swap the tree linkages.
1030         */
1031        final void deleteTreeNode(TreeNode p) {
1032            TreeNode next = (TreeNode)p.next; // unlink traversal pointers
1033            TreeNode pred = p.prev;
1034            if (pred == null)
1035                first = next;
1036            else
1037                pred.next = next;
1038            if (next != null)
1039                next.prev = pred;
1040            TreeNode replacement;
1041            TreeNode pl = p.left;
1042            TreeNode pr = p.right;
1043            if (pl != null && pr != null) {
1044                TreeNode s = pr, sl;
1045                while ((sl = s.left) != null) // find successor
1046                    s = sl;
1047                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
1048                TreeNode sr = s.right;
1049                TreeNode pp = p.parent;
1050                if (s == pr) { // p was s's direct parent
1051                    p.parent = s;
1052                    s.right = p;
1053                }
1054                else {
1055                    TreeNode sp = s.parent;
1056                    if ((p.parent = sp) != null) {
1057                        if (s == sp.left)
1058                            sp.left = p;
1059                        else
1060                            sp.right = p;
1061                    }
1062                    if ((s.right = pr) != null)
1063                        pr.parent = s;
1064                }
1065                p.left = null;
1066                if ((p.right = sr) != null)
1067                    sr.parent = p;
1068                if ((s.left = pl) != null)
1069                    pl.parent = s;
1070                if ((s.parent = pp) == null)
1071                    root = s;
1072                else if (p == pp.left)
1073                    pp.left = s;
1074                else
1075                    pp.right = s;
1076                replacement = sr;
1077            }
1078            else
1079                replacement = (pl != null) ? pl : pr;
1080            TreeNode pp = p.parent;
1081            if (replacement == null) {
1082                if (pp == null) {
1083                    root = null;
1084                    return;
1085                }
1086                replacement = p;
1087            }
1088            else {
1089                replacement.parent = pp;
1090                if (pp == null)
1091                    root = replacement;
1092                else if (p == pp.left)
1093                    pp.left = replacement;
1094                else
1095                    pp.right = replacement;
1096                p.left = p.right = p.parent = null;
1097            }
1098            if (!p.red) { // rebalance, from CLR
1099                TreeNode x = replacement;
1100                while (x != null) {
1101                    TreeNode xp, xpl;
1102                    if (x.red || (xp = x.parent) == null) {
1103                        x.red = false;
1104                        break;
1105                    }
1106                    if (x == (xpl = xp.left)) {
1107                        TreeNode sib = xp.right;
1108                        if (sib != null && sib.red) {
1109                            sib.red = false;
1110                            xp.red = true;
1111                            rotateLeft(xp);
1112                            sib = (xp = x.parent) == null ? null : xp.right;
1113                        }
1114                        if (sib == null)
1115                            x = xp;
1116                        else {
1117                            TreeNode sl = sib.left, sr = sib.right;
1118                            if ((sr == null || !sr.red) &&
1119                                (sl == null || !sl.red)) {
1120                                sib.red = true;
1121                                x = xp;
1122                            }
1123                            else {
1124                                if (sr == null || !sr.red) {
1125                                    if (sl != null)
1126                                        sl.red = false;
1127                                    sib.red = true;
1128                                    rotateRight(sib);
1129                                    sib = (xp = x.parent) == null ? null : xp.right;
1130                                }
1131                                if (sib != null) {
1132                                    sib.red = (xp == null) ? false : xp.red;
1133                                    if ((sr = sib.right) != null)
1134                                        sr.red = false;
1135                                }
1136                                if (xp != null) {
1137                                    xp.red = false;
1138                                    rotateLeft(xp);
1139                                }
1140                                x = root;
1141                            }
1142                        }
1143                    }
1144                    else { // symmetric
1145                        TreeNode sib = xpl;
1146                        if (sib != null && sib.red) {
1147                            sib.red = false;
1148                            xp.red = true;
1149                            rotateRight(xp);
1150                            sib = (xp = x.parent) == null ? null : xp.left;
1151                        }
1152                        if (sib == null)
1153                            x = xp;
1154                        else {
1155                            TreeNode sl = sib.left, sr = sib.right;
1156                            if ((sl == null || !sl.red) &&
1157                                (sr == null || !sr.red)) {
1158                                sib.red = true;
1159                                x = xp;
1160                            }
1161                            else {
1162                                if (sl == null || !sl.red) {
1163                                    if (sr != null)
1164                                        sr.red = false;
1165                                    sib.red = true;
1166                                    rotateLeft(sib);
1167                                    sib = (xp = x.parent) == null ? null : xp.left;
1168                                }
1169                                if (sib != null) {
1170                                    sib.red = (xp == null) ? false : xp.red;
1171                                    if ((sl = sib.left) != null)
1172                                        sl.red = false;
1173                                }
1174                                if (xp != null) {
1175                                    xp.red = false;
1176                                    rotateRight(xp);
1177                                }
1178                                x = root;
1179                            }
1180                        }
1181                    }
1182                }
1183            }
1184            if (p == replacement && (pp = p.parent) != null) {
1185                if (p == pp.left) // detach pointers
1186                    pp.left = null;
1187                else if (p == pp.right)
1188                    pp.right = null;
1189                p.parent = null;
1190            }
1191        }
641      }
642  
643 <    /* ---------------- Collision reduction methods -------------- */
643 >    /* ---------------- Static utilities -------------- */
644  
645      /**
646 <     * Spreads higher bits to lower, and also forces top 2 bits to 0.
647 <     * Because the table uses power-of-two masking, sets of hashes
648 <     * that vary only in bits above the current mask will always
649 <     * collide. (Among known examples are sets of Float keys holding
650 <     * consecutive whole numbers in small tables.)  To counter this,
651 <     * we apply a transform that spreads the impact of higher bits
646 >     * Spreads (XORs) higher bits of hash to lower and also forces top
647 >     * bit to 0. Because the table uses power-of-two masking, sets of
648 >     * hashes that vary only in bits above the current mask will
649 >     * always collide. (Among known examples are sets of Float keys
650 >     * holding consecutive whole numbers in small tables.)  So we
651 >     * apply a transform that spreads the impact of higher bits
652       * downward. There is a tradeoff between speed, utility, and
653       * quality of bit-spreading. Because many common sets of hashes
654 <     * are already reasonably distributed across bits (so don't benefit
655 <     * from spreading), and because we use trees to handle large sets
656 <     * of collisions in bins, we don't need excessively high quality.
654 >     * are already reasonably distributed (so don't benefit from
655 >     * spreading), and because we use trees to handle large sets of
656 >     * collisions in bins, we just XOR some shifted bits in the
657 >     * cheapest possible way to reduce systematic lossage, as well as
658 >     * to incorporate impact of the highest bits that would otherwise
659 >     * never be used in index calculations because of table bounds.
660       */
661 <    private static final int spread(int h) {
662 <        h ^= (h >>> 18) ^ (h >>> 12);
1211 <        return (h ^ (h >>> 10)) & HASH_BITS;
661 >    static final int spread(int h) {
662 >        return (h ^ (h >>> 16)) & HASH_BITS;
663      }
664  
665      /**
1215     * Replaces a list bin with a tree bin. Call only when locked.
1216     * Fails to replace if the given key is non-comparable or table
1217     * is, or needs, resizing.
1218     */
1219    private final void replaceWithTreeBin(Node[] tab, int index, Object key) {
1220        if ((key instanceof Comparable) &&
1221            (tab.length >= MAXIMUM_CAPACITY || counter.sum() < (long)sizeCtl)) {
1222            TreeBin t = new TreeBin();
1223            for (Node e = tabAt(tab, index); e != null; e = e.next)
1224                t.putTreeNode(e.hash & HASH_BITS, e.key, e.val);
1225            setTabAt(tab, index, new Node(MOVED, t, null, null));
1226        }
1227    }
1228
1229    /* ---------------- Internal access and update methods -------------- */
1230
1231    /** Implementation for get and containsKey */
1232    private final Object internalGet(Object k) {
1233        int h = spread(k.hashCode());
1234        retry: for (Node[] tab = table; tab != null;) {
1235            Node e, p; Object ek, ev; int eh;      // locals to read fields once
1236            for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1237                if ((eh = e.hash) == MOVED) {
1238                    if ((ek = e.key) instanceof TreeBin)  // search TreeBin
1239                        return ((TreeBin)ek).getValue(h, k);
1240                    else {                        // restart with new table
1241                        tab = (Node[])ek;
1242                        continue retry;
1243                    }
1244                }
1245                else if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
1246                         ((ek = e.key) == k || k.equals(ek)))
1247                    return ev;
1248            }
1249            break;
1250        }
1251        return null;
1252    }
1253
1254    /**
1255     * Implementation for the four public remove/replace methods:
1256     * Replaces node value with v, conditional upon match of cv if
1257     * non-null.  If resulting value is null, delete.
1258     */
1259    private final Object internalReplace(Object k, Object v, Object cv) {
1260        int h = spread(k.hashCode());
1261        Object oldVal = null;
1262        for (Node[] tab = table;;) {
1263            Node f; int i, fh; Object fk;
1264            if (tab == null ||
1265                (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1266                break;
1267            else if ((fh = f.hash) == MOVED) {
1268                if ((fk = f.key) instanceof TreeBin) {
1269                    TreeBin t = (TreeBin)fk;
1270                    boolean validated = false;
1271                    boolean deleted = false;
1272                    t.acquire(0);
1273                    try {
1274                        if (tabAt(tab, i) == f) {
1275                            validated = true;
1276                            TreeNode p = t.getTreeNode(h, k, t.root);
1277                            if (p != null) {
1278                                Object pv = p.val;
1279                                if (cv == null || cv == pv || cv.equals(pv)) {
1280                                    oldVal = pv;
1281                                    if ((p.val = v) == null) {
1282                                        deleted = true;
1283                                        t.deleteTreeNode(p);
1284                                    }
1285                                }
1286                            }
1287                        }
1288                    } finally {
1289                        t.release(0);
1290                    }
1291                    if (validated) {
1292                        if (deleted)
1293                            counter.add(-1L);
1294                        break;
1295                    }
1296                }
1297                else
1298                    tab = (Node[])fk;
1299            }
1300            else if ((fh & HASH_BITS) != h && f.next == null) // precheck
1301                break;                          // rules out possible existence
1302            else if ((fh & LOCKED) != 0) {
1303                checkForResize();               // try resizing if can't get lock
1304                f.tryAwaitLock(tab, i);
1305            }
1306            else if (f.casHash(fh, fh | LOCKED)) {
1307                boolean validated = false;
1308                boolean deleted = false;
1309                try {
1310                    if (tabAt(tab, i) == f) {
1311                        validated = true;
1312                        for (Node e = f, pred = null;;) {
1313                            Object ek, ev;
1314                            if ((e.hash & HASH_BITS) == h &&
1315                                ((ev = e.val) != null) &&
1316                                ((ek = e.key) == k || k.equals(ek))) {
1317                                if (cv == null || cv == ev || cv.equals(ev)) {
1318                                    oldVal = ev;
1319                                    if ((e.val = v) == null) {
1320                                        deleted = true;
1321                                        Node en = e.next;
1322                                        if (pred != null)
1323                                            pred.next = en;
1324                                        else
1325                                            setTabAt(tab, i, en);
1326                                    }
1327                                }
1328                                break;
1329                            }
1330                            pred = e;
1331                            if ((e = e.next) == null)
1332                                break;
1333                        }
1334                    }
1335                } finally {
1336                    if (!f.casHash(fh | LOCKED, fh)) {
1337                        f.hash = fh;
1338                        synchronized (f) { f.notifyAll(); };
1339                    }
1340                }
1341                if (validated) {
1342                    if (deleted)
1343                        counter.add(-1L);
1344                    break;
1345                }
1346            }
1347        }
1348        return oldVal;
1349    }
1350
1351    /*
1352     * Internal versions of the six insertion methods, each a
1353     * little more complicated than the last. All have
1354     * the same basic structure as the first (internalPut):
1355     *  1. If table uninitialized, create
1356     *  2. If bin empty, try to CAS new node
1357     *  3. If bin stale, use new table
1358     *  4. if bin converted to TreeBin, validate and relay to TreeBin methods
1359     *  5. Lock and validate; if valid, scan and add or update
1360     *
1361     * The others interweave other checks and/or alternative actions:
1362     *  * Plain put checks for and performs resize after insertion.
1363     *  * putIfAbsent prescans for mapping without lock (and fails to add
1364     *    if present), which also makes pre-emptive resize checks worthwhile.
1365     *  * computeIfAbsent extends form used in putIfAbsent with additional
1366     *    mechanics to deal with, calls, potential exceptions and null
1367     *    returns from function call.
1368     *  * compute uses the same function-call mechanics, but without
1369     *    the prescans
1370     *  * merge acts as putIfAbsent in the absent case, but invokes the
1371     *    update function if present
1372     *  * putAll attempts to pre-allocate enough table space
1373     *    and more lazily performs count updates and checks.
1374     *
1375     * Someday when details settle down a bit more, it might be worth
1376     * some factoring to reduce sprawl.
1377     */
1378
1379    /** Implementation for put */
1380    private final Object internalPut(Object k, Object v) {
1381        int h = spread(k.hashCode());
1382        int count = 0;
1383        for (Node[] tab = table;;) {
1384            int i; Node f; int fh; Object fk;
1385            if (tab == null)
1386                tab = initTable();
1387            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1388                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1389                    break;                   // no lock when adding to empty bin
1390            }
1391            else if ((fh = f.hash) == MOVED) {
1392                if ((fk = f.key) instanceof TreeBin) {
1393                    TreeBin t = (TreeBin)fk;
1394                    Object oldVal = null;
1395                    t.acquire(0);
1396                    try {
1397                        if (tabAt(tab, i) == f) {
1398                            count = 2;
1399                            TreeNode p = t.putTreeNode(h, k, v);
1400                            if (p != null) {
1401                                oldVal = p.val;
1402                                p.val = v;
1403                            }
1404                        }
1405                    } finally {
1406                        t.release(0);
1407                    }
1408                    if (count != 0) {
1409                        if (oldVal != null)
1410                            return oldVal;
1411                        break;
1412                    }
1413                }
1414                else
1415                    tab = (Node[])fk;
1416            }
1417            else if ((fh & LOCKED) != 0) {
1418                checkForResize();
1419                f.tryAwaitLock(tab, i);
1420            }
1421            else if (f.casHash(fh, fh | LOCKED)) {
1422                Object oldVal = null;
1423                try {                        // needed in case equals() throws
1424                    if (tabAt(tab, i) == f) {
1425                        count = 1;
1426                        for (Node e = f;; ++count) {
1427                            Object ek, ev;
1428                            if ((e.hash & HASH_BITS) == h &&
1429                                (ev = e.val) != null &&
1430                                ((ek = e.key) == k || k.equals(ek))) {
1431                                oldVal = ev;
1432                                e.val = v;
1433                                break;
1434                            }
1435                            Node last = e;
1436                            if ((e = e.next) == null) {
1437                                last.next = new Node(h, k, v, null);
1438                                if (count >= TREE_THRESHOLD)
1439                                    replaceWithTreeBin(tab, i, k);
1440                                break;
1441                            }
1442                        }
1443                    }
1444                } finally {                  // unlock and signal if needed
1445                    if (!f.casHash(fh | LOCKED, fh)) {
1446                        f.hash = fh;
1447                        synchronized (f) { f.notifyAll(); };
1448                    }
1449                }
1450                if (count != 0) {
1451                    if (oldVal != null)
1452                        return oldVal;
1453                    if (tab.length <= 64)
1454                        count = 2;
1455                    break;
1456                }
1457            }
1458        }
1459        counter.add(1L);
1460        if (count > 1)
1461            checkForResize();
1462        return null;
1463    }
1464
1465    /** Implementation for putIfAbsent */
1466    private final Object internalPutIfAbsent(Object k, Object v) {
1467        int h = spread(k.hashCode());
1468        int count = 0;
1469        for (Node[] tab = table;;) {
1470            int i; Node f; int fh; Object fk, fv;
1471            if (tab == null)
1472                tab = initTable();
1473            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1474                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1475                    break;
1476            }
1477            else if ((fh = f.hash) == MOVED) {
1478                if ((fk = f.key) instanceof TreeBin) {
1479                    TreeBin t = (TreeBin)fk;
1480                    Object oldVal = null;
1481                    t.acquire(0);
1482                    try {
1483                        if (tabAt(tab, i) == f) {
1484                            count = 2;
1485                            TreeNode p = t.putTreeNode(h, k, v);
1486                            if (p != null)
1487                                oldVal = p.val;
1488                        }
1489                    } finally {
1490                        t.release(0);
1491                    }
1492                    if (count != 0) {
1493                        if (oldVal != null)
1494                            return oldVal;
1495                        break;
1496                    }
1497                }
1498                else
1499                    tab = (Node[])fk;
1500            }
1501            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1502                     ((fk = f.key) == k || k.equals(fk)))
1503                return fv;
1504            else {
1505                Node g = f.next;
1506                if (g != null) { // at least 2 nodes -- search and maybe resize
1507                    for (Node e = g;;) {
1508                        Object ek, ev;
1509                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1510                            ((ek = e.key) == k || k.equals(ek)))
1511                            return ev;
1512                        if ((e = e.next) == null) {
1513                            checkForResize();
1514                            break;
1515                        }
1516                    }
1517                }
1518                if (((fh = f.hash) & LOCKED) != 0) {
1519                    checkForResize();
1520                    f.tryAwaitLock(tab, i);
1521                }
1522                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1523                    Object oldVal = null;
1524                    try {
1525                        if (tabAt(tab, i) == f) {
1526                            count = 1;
1527                            for (Node e = f;; ++count) {
1528                                Object ek, ev;
1529                                if ((e.hash & HASH_BITS) == h &&
1530                                    (ev = e.val) != null &&
1531                                    ((ek = e.key) == k || k.equals(ek))) {
1532                                    oldVal = ev;
1533                                    break;
1534                                }
1535                                Node last = e;
1536                                if ((e = e.next) == null) {
1537                                    last.next = new Node(h, k, v, null);
1538                                    if (count >= TREE_THRESHOLD)
1539                                        replaceWithTreeBin(tab, i, k);
1540                                    break;
1541                                }
1542                            }
1543                        }
1544                    } finally {
1545                        if (!f.casHash(fh | LOCKED, fh)) {
1546                            f.hash = fh;
1547                            synchronized (f) { f.notifyAll(); };
1548                        }
1549                    }
1550                    if (count != 0) {
1551                        if (oldVal != null)
1552                            return oldVal;
1553                        if (tab.length <= 64)
1554                            count = 2;
1555                        break;
1556                    }
1557                }
1558            }
1559        }
1560        counter.add(1L);
1561        if (count > 1)
1562            checkForResize();
1563        return null;
1564    }
1565
1566    /** Implementation for computeIfAbsent */
1567    private final Object internalComputeIfAbsent(K k,
1568                                                 Fun<? super K, ?> mf) {
1569        int h = spread(k.hashCode());
1570        Object val = null;
1571        int count = 0;
1572        for (Node[] tab = table;;) {
1573            Node f; int i, fh; Object fk, fv;
1574            if (tab == null)
1575                tab = initTable();
1576            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1577                Node node = new Node(fh = h | LOCKED, k, null, null);
1578                if (casTabAt(tab, i, null, node)) {
1579                    count = 1;
1580                    try {
1581                        if ((val = mf.apply(k)) != null)
1582                            node.val = val;
1583                    } finally {
1584                        if (val == null)
1585                            setTabAt(tab, i, null);
1586                        if (!node.casHash(fh, h)) {
1587                            node.hash = h;
1588                            synchronized (node) { node.notifyAll(); };
1589                        }
1590                    }
1591                }
1592                if (count != 0)
1593                    break;
1594            }
1595            else if ((fh = f.hash) == MOVED) {
1596                if ((fk = f.key) instanceof TreeBin) {
1597                    TreeBin t = (TreeBin)fk;
1598                    boolean added = false;
1599                    t.acquire(0);
1600                    try {
1601                        if (tabAt(tab, i) == f) {
1602                            count = 1;
1603                            TreeNode p = t.getTreeNode(h, k, t.root);
1604                            if (p != null)
1605                                val = p.val;
1606                            else if ((val = mf.apply(k)) != null) {
1607                                added = true;
1608                                count = 2;
1609                                t.putTreeNode(h, k, val);
1610                            }
1611                        }
1612                    } finally {
1613                        t.release(0);
1614                    }
1615                    if (count != 0) {
1616                        if (!added)
1617                            return val;
1618                        break;
1619                    }
1620                }
1621                else
1622                    tab = (Node[])fk;
1623            }
1624            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1625                     ((fk = f.key) == k || k.equals(fk)))
1626                return fv;
1627            else {
1628                Node g = f.next;
1629                if (g != null) {
1630                    for (Node e = g;;) {
1631                        Object ek, ev;
1632                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1633                            ((ek = e.key) == k || k.equals(ek)))
1634                            return ev;
1635                        if ((e = e.next) == null) {
1636                            checkForResize();
1637                            break;
1638                        }
1639                    }
1640                }
1641                if (((fh = f.hash) & LOCKED) != 0) {
1642                    checkForResize();
1643                    f.tryAwaitLock(tab, i);
1644                }
1645                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1646                    boolean added = false;
1647                    try {
1648                        if (tabAt(tab, i) == f) {
1649                            count = 1;
1650                            for (Node e = f;; ++count) {
1651                                Object ek, ev;
1652                                if ((e.hash & HASH_BITS) == h &&
1653                                    (ev = e.val) != null &&
1654                                    ((ek = e.key) == k || k.equals(ek))) {
1655                                    val = ev;
1656                                    break;
1657                                }
1658                                Node last = e;
1659                                if ((e = e.next) == null) {
1660                                    if ((val = mf.apply(k)) != null) {
1661                                        added = true;
1662                                        last.next = new Node(h, k, val, null);
1663                                        if (count >= TREE_THRESHOLD)
1664                                            replaceWithTreeBin(tab, i, k);
1665                                    }
1666                                    break;
1667                                }
1668                            }
1669                        }
1670                    } finally {
1671                        if (!f.casHash(fh | LOCKED, fh)) {
1672                            f.hash = fh;
1673                            synchronized (f) { f.notifyAll(); };
1674                        }
1675                    }
1676                    if (count != 0) {
1677                        if (!added)
1678                            return val;
1679                        if (tab.length <= 64)
1680                            count = 2;
1681                        break;
1682                    }
1683                }
1684            }
1685        }
1686        if (val != null) {
1687            counter.add(1L);
1688            if (count > 1)
1689                checkForResize();
1690        }
1691        return val;
1692    }
1693
1694    /** Implementation for compute */
1695    @SuppressWarnings("unchecked") private final Object internalCompute
1696        (K k, boolean onlyIfPresent, BiFun<? super K, ? super V, ? extends V> mf) {
1697        int h = spread(k.hashCode());
1698        Object val = null;
1699        int delta = 0;
1700        int count = 0;
1701        for (Node[] tab = table;;) {
1702            Node f; int i, fh; Object fk;
1703            if (tab == null)
1704                tab = initTable();
1705            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1706                if (onlyIfPresent)
1707                    break;
1708                Node node = new Node(fh = h | LOCKED, k, null, null);
1709                if (casTabAt(tab, i, null, node)) {
1710                    try {
1711                        count = 1;
1712                        if ((val = mf.apply(k, null)) != null) {
1713                            node.val = val;
1714                            delta = 1;
1715                        }
1716                    } finally {
1717                        if (delta == 0)
1718                            setTabAt(tab, i, null);
1719                        if (!node.casHash(fh, h)) {
1720                            node.hash = h;
1721                            synchronized (node) { node.notifyAll(); };
1722                        }
1723                    }
1724                }
1725                if (count != 0)
1726                    break;
1727            }
1728            else if ((fh = f.hash) == MOVED) {
1729                if ((fk = f.key) instanceof TreeBin) {
1730                    TreeBin t = (TreeBin)fk;
1731                    t.acquire(0);
1732                    try {
1733                        if (tabAt(tab, i) == f) {
1734                            count = 1;
1735                            TreeNode p = t.getTreeNode(h, k, t.root);
1736                            Object pv = (p == null) ? null : p.val;
1737                            if ((val = mf.apply(k, (V)pv)) != null) {
1738                                if (p != null)
1739                                    p.val = val;
1740                                else {
1741                                    count = 2;
1742                                    delta = 1;
1743                                    t.putTreeNode(h, k, val);
1744                                }
1745                            }
1746                            else if (p != null) {
1747                                delta = -1;
1748                                t.deleteTreeNode(p);
1749                            }
1750                        }
1751                    } finally {
1752                        t.release(0);
1753                    }
1754                    if (count != 0)
1755                        break;
1756                }
1757                else
1758                    tab = (Node[])fk;
1759            }
1760            else if ((fh & LOCKED) != 0) {
1761                checkForResize();
1762                f.tryAwaitLock(tab, i);
1763            }
1764            else if (f.casHash(fh, fh | LOCKED)) {
1765                try {
1766                    if (tabAt(tab, i) == f) {
1767                        count = 1;
1768                        for (Node e = f, pred = null;; ++count) {
1769                            Object ek, ev;
1770                            if ((e.hash & HASH_BITS) == h &&
1771                                (ev = e.val) != null &&
1772                                ((ek = e.key) == k || k.equals(ek))) {
1773                                val = mf.apply(k, (V)ev);
1774                                if (val != null)
1775                                    e.val = val;
1776                                else {
1777                                    delta = -1;
1778                                    Node en = e.next;
1779                                    if (pred != null)
1780                                        pred.next = en;
1781                                    else
1782                                        setTabAt(tab, i, en);
1783                                }
1784                                break;
1785                            }
1786                            pred = e;
1787                            if ((e = e.next) == null) {
1788                                if (!onlyIfPresent && (val = mf.apply(k, null)) != null) {
1789                                    pred.next = new Node(h, k, val, null);
1790                                    delta = 1;
1791                                    if (count >= TREE_THRESHOLD)
1792                                        replaceWithTreeBin(tab, i, k);
1793                                }
1794                                break;
1795                            }
1796                        }
1797                    }
1798                } finally {
1799                    if (!f.casHash(fh | LOCKED, fh)) {
1800                        f.hash = fh;
1801                        synchronized (f) { f.notifyAll(); };
1802                    }
1803                }
1804                if (count != 0) {
1805                    if (tab.length <= 64)
1806                        count = 2;
1807                    break;
1808                }
1809            }
1810        }
1811        if (delta != 0) {
1812            counter.add((long)delta);
1813            if (count > 1)
1814                checkForResize();
1815        }
1816        return val;
1817    }
1818
1819    /** Implementation for merge */
1820    @SuppressWarnings("unchecked") private final Object internalMerge
1821        (K k, V v, BiFun<? super V, ? super V, ? extends V> mf) {
1822        int h = spread(k.hashCode());
1823        Object val = null;
1824        int delta = 0;
1825        int count = 0;
1826        for (Node[] tab = table;;) {
1827            int i; Node f; int fh; Object fk, fv;
1828            if (tab == null)
1829                tab = initTable();
1830            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1831                if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1832                    delta = 1;
1833                    val = v;
1834                    break;
1835                }
1836            }
1837            else if ((fh = f.hash) == MOVED) {
1838                if ((fk = f.key) instanceof TreeBin) {
1839                    TreeBin t = (TreeBin)fk;
1840                    t.acquire(0);
1841                    try {
1842                        if (tabAt(tab, i) == f) {
1843                            count = 1;
1844                            TreeNode p = t.getTreeNode(h, k, t.root);
1845                            val = (p == null) ? v : mf.apply((V)p.val, v);
1846                            if (val != null) {
1847                                if (p != null)
1848                                    p.val = val;
1849                                else {
1850                                    count = 2;
1851                                    delta = 1;
1852                                    t.putTreeNode(h, k, val);
1853                                }
1854                            }
1855                            else if (p != null) {
1856                                delta = -1;
1857                                t.deleteTreeNode(p);
1858                            }
1859                        }
1860                    } finally {
1861                        t.release(0);
1862                    }
1863                    if (count != 0)
1864                        break;
1865                }
1866                else
1867                    tab = (Node[])fk;
1868            }
1869            else if ((fh & LOCKED) != 0) {
1870                checkForResize();
1871                f.tryAwaitLock(tab, i);
1872            }
1873            else if (f.casHash(fh, fh | LOCKED)) {
1874                try {
1875                    if (tabAt(tab, i) == f) {
1876                        count = 1;
1877                        for (Node e = f, pred = null;; ++count) {
1878                            Object ek, ev;
1879                            if ((e.hash & HASH_BITS) == h &&
1880                                (ev = e.val) != null &&
1881                                ((ek = e.key) == k || k.equals(ek))) {
1882                                val = mf.apply(v, (V)ev);
1883                                if (val != null)
1884                                    e.val = val;
1885                                else {
1886                                    delta = -1;
1887                                    Node en = e.next;
1888                                    if (pred != null)
1889                                        pred.next = en;
1890                                    else
1891                                        setTabAt(tab, i, en);
1892                                }
1893                                break;
1894                            }
1895                            pred = e;
1896                            if ((e = e.next) == null) {
1897                                val = v;
1898                                pred.next = new Node(h, k, val, null);
1899                                delta = 1;
1900                                if (count >= TREE_THRESHOLD)
1901                                    replaceWithTreeBin(tab, i, k);
1902                                break;
1903                            }
1904                        }
1905                    }
1906                } finally {
1907                    if (!f.casHash(fh | LOCKED, fh)) {
1908                        f.hash = fh;
1909                        synchronized (f) { f.notifyAll(); };
1910                    }
1911                }
1912                if (count != 0) {
1913                    if (tab.length <= 64)
1914                        count = 2;
1915                    break;
1916                }
1917            }
1918        }
1919        if (delta != 0) {
1920            counter.add((long)delta);
1921            if (count > 1)
1922                checkForResize();
1923        }
1924        return val;
1925    }
1926
1927    /** Implementation for putAll */
1928    private final void internalPutAll(Map<?, ?> m) {
1929        tryPresize(m.size());
1930        long delta = 0L;     // number of uncommitted additions
1931        boolean npe = false; // to throw exception on exit for nulls
1932        try {                // to clean up counts on other exceptions
1933            for (Map.Entry<?, ?> entry : m.entrySet()) {
1934                Object k, v;
1935                if (entry == null || (k = entry.getKey()) == null ||
1936                    (v = entry.getValue()) == null) {
1937                    npe = true;
1938                    break;
1939                }
1940                int h = spread(k.hashCode());
1941                for (Node[] tab = table;;) {
1942                    int i; Node f; int fh; Object fk;
1943                    if (tab == null)
1944                        tab = initTable();
1945                    else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1946                        if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1947                            ++delta;
1948                            break;
1949                        }
1950                    }
1951                    else if ((fh = f.hash) == MOVED) {
1952                        if ((fk = f.key) instanceof TreeBin) {
1953                            TreeBin t = (TreeBin)fk;
1954                            boolean validated = false;
1955                            t.acquire(0);
1956                            try {
1957                                if (tabAt(tab, i) == f) {
1958                                    validated = true;
1959                                    TreeNode p = t.getTreeNode(h, k, t.root);
1960                                    if (p != null)
1961                                        p.val = v;
1962                                    else {
1963                                        t.putTreeNode(h, k, v);
1964                                        ++delta;
1965                                    }
1966                                }
1967                            } finally {
1968                                t.release(0);
1969                            }
1970                            if (validated)
1971                                break;
1972                        }
1973                        else
1974                            tab = (Node[])fk;
1975                    }
1976                    else if ((fh & LOCKED) != 0) {
1977                        counter.add(delta);
1978                        delta = 0L;
1979                        checkForResize();
1980                        f.tryAwaitLock(tab, i);
1981                    }
1982                    else if (f.casHash(fh, fh | LOCKED)) {
1983                        int count = 0;
1984                        try {
1985                            if (tabAt(tab, i) == f) {
1986                                count = 1;
1987                                for (Node e = f;; ++count) {
1988                                    Object ek, ev;
1989                                    if ((e.hash & HASH_BITS) == h &&
1990                                        (ev = e.val) != null &&
1991                                        ((ek = e.key) == k || k.equals(ek))) {
1992                                        e.val = v;
1993                                        break;
1994                                    }
1995                                    Node last = e;
1996                                    if ((e = e.next) == null) {
1997                                        ++delta;
1998                                        last.next = new Node(h, k, v, null);
1999                                        if (count >= TREE_THRESHOLD)
2000                                            replaceWithTreeBin(tab, i, k);
2001                                        break;
2002                                    }
2003                                }
2004                            }
2005                        } finally {
2006                            if (!f.casHash(fh | LOCKED, fh)) {
2007                                f.hash = fh;
2008                                synchronized (f) { f.notifyAll(); };
2009                            }
2010                        }
2011                        if (count != 0) {
2012                            if (count > 1) {
2013                                counter.add(delta);
2014                                delta = 0L;
2015                                checkForResize();
2016                            }
2017                            break;
2018                        }
2019                    }
2020                }
2021            }
2022        } finally {
2023            if (delta != 0)
2024                counter.add(delta);
2025        }
2026        if (npe)
2027            throw new NullPointerException();
2028    }
2029
2030    /* ---------------- Table Initialization and Resizing -------------- */
2031
2032    /**
666       * Returns a power of two table size for the given desired capacity.
667       * See Hackers Delight, sec 3.2
668       */
# Line 2044 | Line 677 | public class ConcurrentHashMapV8<K, V>
677      }
678  
679      /**
680 <     * Initializes table, using the size recorded in sizeCtl.
680 >     * Returns x's Class if it is of the form "class C implements
681 >     * Comparable<C>", else null.
682       */
683 <    private final Node[] initTable() {
684 <        Node[] tab; int sc;
685 <        while ((tab = table) == null) {
686 <            if ((sc = sizeCtl) < 0)
687 <                Thread.yield(); // lost initialization race; just spin
688 <            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
689 <                try {
690 <                    if ((tab = table) == null) {
691 <                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
692 <                        tab = table = new Node[n];
693 <                        sc = n - (n >>> 2);
694 <                    }
695 <                } finally {
2062 <                    sizeCtl = sc;
683 >    static Class<?> comparableClassFor(Object x) {
684 >        if (x instanceof Comparable) {
685 >            Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
686 >            if ((c = x.getClass()) == String.class) // bypass checks
687 >                return c;
688 >            if ((ts = c.getGenericInterfaces()) != null) {
689 >                for (int i = 0; i < ts.length; ++i) {
690 >                    if (((t = ts[i]) instanceof ParameterizedType) &&
691 >                        ((p = (ParameterizedType)t).getRawType() ==
692 >                         Comparable.class) &&
693 >                        (as = p.getActualTypeArguments()) != null &&
694 >                        as.length == 1 && as[0] == c) // type arg is c
695 >                        return c;
696                  }
2064                break;
2065            }
2066        }
2067        return tab;
2068    }
2069
2070    /**
2071     * If table is too small and not already resizing, creates next
2072     * table and transfers bins.  Rechecks occupancy after a transfer
2073     * to see if another resize is already needed because resizings
2074     * are lagging additions.
2075     */
2076    private final void checkForResize() {
2077        Node[] tab; int n, sc;
2078        while ((tab = table) != null &&
2079               (n = tab.length) < MAXIMUM_CAPACITY &&
2080               (sc = sizeCtl) >= 0 && counter.sum() >= (long)sc &&
2081               UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2082            try {
2083                if (tab == table) {
2084                    table = rebuild(tab);
2085                    sc = (n << 1) - (n >>> 1);
2086                }
2087            } finally {
2088                sizeCtl = sc;
697              }
698          }
699 +        return null;
700      }
701  
702      /**
703 <     * Tries to presize table to accommodate the given number of elements.
704 <     *
2096 <     * @param size number of elements (doesn't need to be perfectly accurate)
703 >     * Returns k.compareTo(x) if x matches kc (k's screened comparable
704 >     * class), else 0.
705       */
706 <    private final void tryPresize(int size) {
707 <        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
708 <            tableSizeFor(size + (size >>> 1) + 1);
709 <        int sc;
2102 <        while ((sc = sizeCtl) >= 0) {
2103 <            Node[] tab = table; int n;
2104 <            if (tab == null || (n = tab.length) == 0) {
2105 <                n = (sc > c) ? sc : c;
2106 <                if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2107 <                    try {
2108 <                        if (table == tab) {
2109 <                            table = new Node[n];
2110 <                            sc = n - (n >>> 2);
2111 <                        }
2112 <                    } finally {
2113 <                        sizeCtl = sc;
2114 <                    }
2115 <                }
2116 <            }
2117 <            else if (c <= sc || n >= MAXIMUM_CAPACITY)
2118 <                break;
2119 <            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2120 <                try {
2121 <                    if (table == tab) {
2122 <                        table = rebuild(tab);
2123 <                        sc = (n << 1) - (n >>> 1);
2124 <                    }
2125 <                } finally {
2126 <                    sizeCtl = sc;
2127 <                }
2128 <            }
2129 <        }
706 >    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
707 >    static int compareComparables(Class<?> kc, Object k, Object x) {
708 >        return (x == null || x.getClass() != kc ? 0 :
709 >                ((Comparable)k).compareTo(x));
710      }
711  
712 +    /* ---------------- Table element access -------------- */
713 +
714      /*
715 <     * Moves and/or copies the nodes in each bin to new table. See
716 <     * above for explanation.
717 <     *
718 <     * @return the new table
719 <     */
720 <    private static final Node[] rebuild(Node[] tab) {
721 <        int n = tab.length;
722 <        Node[] nextTab = new Node[n << 1];
723 <        Node fwd = new Node(MOVED, nextTab, null, null);
724 <        int[] buffer = null;       // holds bins to revisit; null until needed
725 <        Node rev = null;           // reverse forwarder; null until needed
726 <        int nbuffered = 0;         // the number of bins in buffer list
727 <        int bufferIndex = 0;       // buffer index of current buffered bin
728 <        int bin = n - 1;           // current non-buffered bin or -1 if none
729 <
730 <        for (int i = bin;;) {      // start upwards sweep
731 <            int fh; Node f;
732 <            if ((f = tabAt(tab, i)) == null) {
733 <                if (bin >= 0) {    // Unbuffered; no lock needed (or available)
734 <                    if (!casTabAt(tab, i, f, fwd))
735 <                        continue;
736 <                }
2155 <                else {             // transiently use a locked forwarding node
2156 <                    Node g = new Node(MOVED|LOCKED, nextTab, null, null);
2157 <                    if (!casTabAt(tab, i, f, g))
2158 <                        continue;
2159 <                    setTabAt(nextTab, i, null);
2160 <                    setTabAt(nextTab, i + n, null);
2161 <                    setTabAt(tab, i, fwd);
2162 <                    if (!g.casHash(MOVED|LOCKED, MOVED)) {
2163 <                        g.hash = MOVED;
2164 <                        synchronized (g) { g.notifyAll(); }
2165 <                    }
2166 <                }
2167 <            }
2168 <            else if ((fh = f.hash) == MOVED) {
2169 <                Object fk = f.key;
2170 <                if (fk instanceof TreeBin) {
2171 <                    TreeBin t = (TreeBin)fk;
2172 <                    boolean validated = false;
2173 <                    t.acquire(0);
2174 <                    try {
2175 <                        if (tabAt(tab, i) == f) {
2176 <                            validated = true;
2177 <                            splitTreeBin(nextTab, i, t);
2178 <                            setTabAt(tab, i, fwd);
2179 <                        }
2180 <                    } finally {
2181 <                        t.release(0);
2182 <                    }
2183 <                    if (!validated)
2184 <                        continue;
2185 <                }
2186 <            }
2187 <            else if ((fh & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
2188 <                boolean validated = false;
2189 <                try {              // split to lo and hi lists; copying as needed
2190 <                    if (tabAt(tab, i) == f) {
2191 <                        validated = true;
2192 <                        splitBin(nextTab, i, f);
2193 <                        setTabAt(tab, i, fwd);
2194 <                    }
2195 <                } finally {
2196 <                    if (!f.casHash(fh | LOCKED, fh)) {
2197 <                        f.hash = fh;
2198 <                        synchronized (f) { f.notifyAll(); };
2199 <                    }
2200 <                }
2201 <                if (!validated)
2202 <                    continue;
2203 <            }
2204 <            else {
2205 <                if (buffer == null) // initialize buffer for revisits
2206 <                    buffer = new int[TRANSFER_BUFFER_SIZE];
2207 <                if (bin < 0 && bufferIndex > 0) {
2208 <                    int j = buffer[--bufferIndex];
2209 <                    buffer[bufferIndex] = i;
2210 <                    i = j;         // swap with another bin
2211 <                    continue;
2212 <                }
2213 <                if (bin < 0 || nbuffered >= TRANSFER_BUFFER_SIZE) {
2214 <                    f.tryAwaitLock(tab, i);
2215 <                    continue;      // no other options -- block
2216 <                }
2217 <                if (rev == null)   // initialize reverse-forwarder
2218 <                    rev = new Node(MOVED, tab, null, null);
2219 <                if (tabAt(tab, i) != f || (f.hash & LOCKED) == 0)
2220 <                    continue;      // recheck before adding to list
2221 <                buffer[nbuffered++] = i;
2222 <                setTabAt(nextTab, i, rev);     // install place-holders
2223 <                setTabAt(nextTab, i + n, rev);
2224 <            }
2225 <
2226 <            if (bin > 0)
2227 <                i = --bin;
2228 <            else if (buffer != null && nbuffered > 0) {
2229 <                bin = -1;
2230 <                i = buffer[bufferIndex = --nbuffered];
2231 <            }
2232 <            else
2233 <                return nextTab;
2234 <        }
715 >     * Volatile access methods are used for table elements as well as
716 >     * elements of in-progress next table while resizing.  All uses of
717 >     * the tab arguments must be null checked by callers.  All callers
718 >     * also paranoically precheck that tab's length is not zero (or an
719 >     * equivalent check), thus ensuring that any index argument taking
720 >     * the form of a hash value anded with (length - 1) is a valid
721 >     * index.  Note that, to be correct wrt arbitrary concurrency
722 >     * errors by users, these checks must operate on local variables,
723 >     * which accounts for some odd-looking inline assignments below.
724 >     * Note that calls to setTabAt always occur within locked regions,
725 >     * and so do not need full volatile semantics, but still require
726 >     * ordering to maintain concurrent readability.
727 >     */
728 >
729 >    @SuppressWarnings("unchecked")
730 >    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
731 >        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
732 >    }
733 >
734 >    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
735 >                                        Node<K,V> c, Node<K,V> v) {
736 >        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
737      }
738  
739 <    /**
740 <     * Splits a normal bin with list headed by e into lo and hi parts;
2239 <     * installs in given table.
2240 <     */
2241 <    private static void splitBin(Node[] nextTab, int i, Node e) {
2242 <        int bit = nextTab.length >>> 1; // bit to split on
2243 <        int runBit = e.hash & bit;
2244 <        Node lastRun = e, lo = null, hi = null;
2245 <        for (Node p = e.next; p != null; p = p.next) {
2246 <            int b = p.hash & bit;
2247 <            if (b != runBit) {
2248 <                runBit = b;
2249 <                lastRun = p;
2250 <            }
2251 <        }
2252 <        if (runBit == 0)
2253 <            lo = lastRun;
2254 <        else
2255 <            hi = lastRun;
2256 <        for (Node p = e; p != lastRun; p = p.next) {
2257 <            int ph = p.hash & HASH_BITS;
2258 <            Object pk = p.key, pv = p.val;
2259 <            if ((ph & bit) == 0)
2260 <                lo = new Node(ph, pk, pv, lo);
2261 <            else
2262 <                hi = new Node(ph, pk, pv, hi);
2263 <        }
2264 <        setTabAt(nextTab, i, lo);
2265 <        setTabAt(nextTab, i + bit, hi);
739 >    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
740 >        U.putOrderedObject(tab, ((long)i << ASHIFT) + ABASE, v);
741      }
742  
743 +    /* ---------------- Fields -------------- */
744 +
745      /**
746 <     * Splits a tree bin into lo and hi parts; installs in given table.
746 >     * The array of bins. Lazily initialized upon first insertion.
747 >     * Size is always a power of two. Accessed directly by iterators.
748       */
749 <    private static void splitTreeBin(Node[] nextTab, int i, TreeBin t) {
2272 <        int bit = nextTab.length >>> 1;
2273 <        TreeBin lt = new TreeBin();
2274 <        TreeBin ht = new TreeBin();
2275 <        int lc = 0, hc = 0;
2276 <        for (Node e = t.first; e != null; e = e.next) {
2277 <            int h = e.hash & HASH_BITS;
2278 <            Object k = e.key, v = e.val;
2279 <            if ((h & bit) == 0) {
2280 <                ++lc;
2281 <                lt.putTreeNode(h, k, v);
2282 <            }
2283 <            else {
2284 <                ++hc;
2285 <                ht.putTreeNode(h, k, v);
2286 <            }
2287 <        }
2288 <        Node ln, hn; // throw away trees if too small
2289 <        if (lc <= (TREE_THRESHOLD >>> 1)) {
2290 <            ln = null;
2291 <            for (Node p = lt.first; p != null; p = p.next)
2292 <                ln = new Node(p.hash, p.key, p.val, ln);
2293 <        }
2294 <        else
2295 <            ln = new Node(MOVED, lt, null, null);
2296 <        setTabAt(nextTab, i, ln);
2297 <        if (hc <= (TREE_THRESHOLD >>> 1)) {
2298 <            hn = null;
2299 <            for (Node p = ht.first; p != null; p = p.next)
2300 <                hn = new Node(p.hash, p.key, p.val, hn);
2301 <        }
2302 <        else
2303 <            hn = new Node(MOVED, ht, null, null);
2304 <        setTabAt(nextTab, i + bit, hn);
2305 <    }
749 >    transient volatile Node<K,V>[] table;
750  
751      /**
752 <     * Implementation for clear. Steps through each bin, removing all
2309 <     * nodes.
752 >     * The next table to use; non-null only while resizing.
753       */
754 <    private final void internalClear() {
2312 <        long delta = 0L; // negative number of deletions
2313 <        int i = 0;
2314 <        Node[] tab = table;
2315 <        while (tab != null && i < tab.length) {
2316 <            int fh; Object fk;
2317 <            Node f = tabAt(tab, i);
2318 <            if (f == null)
2319 <                ++i;
2320 <            else if ((fh = f.hash) == MOVED) {
2321 <                if ((fk = f.key) instanceof TreeBin) {
2322 <                    TreeBin t = (TreeBin)fk;
2323 <                    t.acquire(0);
2324 <                    try {
2325 <                        if (tabAt(tab, i) == f) {
2326 <                            for (Node p = t.first; p != null; p = p.next) {
2327 <                                if (p.val != null) { // (currently always true)
2328 <                                    p.val = null;
2329 <                                    --delta;
2330 <                                }
2331 <                            }
2332 <                            t.first = null;
2333 <                            t.root = null;
2334 <                            ++i;
2335 <                        }
2336 <                    } finally {
2337 <                        t.release(0);
2338 <                    }
2339 <                }
2340 <                else
2341 <                    tab = (Node[])fk;
2342 <            }
2343 <            else if ((fh & LOCKED) != 0) {
2344 <                counter.add(delta); // opportunistically update count
2345 <                delta = 0L;
2346 <                f.tryAwaitLock(tab, i);
2347 <            }
2348 <            else if (f.casHash(fh, fh | LOCKED)) {
2349 <                try {
2350 <                    if (tabAt(tab, i) == f) {
2351 <                        for (Node e = f; e != null; e = e.next) {
2352 <                            if (e.val != null) {  // (currently always true)
2353 <                                e.val = null;
2354 <                                --delta;
2355 <                            }
2356 <                        }
2357 <                        setTabAt(tab, i, null);
2358 <                        ++i;
2359 <                    }
2360 <                } finally {
2361 <                    if (!f.casHash(fh | LOCKED, fh)) {
2362 <                        f.hash = fh;
2363 <                        synchronized (f) { f.notifyAll(); };
2364 <                    }
2365 <                }
2366 <            }
2367 <        }
2368 <        if (delta != 0)
2369 <            counter.add(delta);
2370 <    }
2371 <
2372 <    /* ----------------Table Traversal -------------- */
754 >    private transient volatile Node<K,V>[] nextTable;
755  
756      /**
757 <     * Encapsulates traversal for methods such as containsValue; also
758 <     * serves as a base class for other iterators and bulk tasks.
759 <     *
760 <     * At each step, the iterator snapshots the key ("nextKey") and
761 <     * value ("nextVal") of a valid node (i.e., one that, at point of
2380 <     * snapshot, has a non-null user value). Because val fields can
2381 <     * change (including to null, indicating deletion), field nextVal
2382 <     * might not be accurate at point of use, but still maintains the
2383 <     * weak consistency property of holding a value that was once
2384 <     * valid. To support iterator.remove, the nextKey field is not
2385 <     * updated (nulled out) when the iterator cannot advance.
2386 <     *
2387 <     * Internal traversals directly access these fields, as in:
2388 <     * {@code while (it.advance() != null) { process(it.nextKey); }}
2389 <     *
2390 <     * Exported iterators must track whether the iterator has advanced
2391 <     * (in hasNext vs next) (by setting/checking/nulling field
2392 <     * nextVal), and then extract key, value, or key-value pairs as
2393 <     * return values of next().
2394 <     *
2395 <     * The iterator visits once each still-valid node that was
2396 <     * reachable upon iterator construction. It might miss some that
2397 <     * were added to a bin after the bin was visited, which is OK wrt
2398 <     * consistency guarantees. Maintaining this property in the face
2399 <     * of possible ongoing resizes requires a fair amount of
2400 <     * bookkeeping state that is difficult to optimize away amidst
2401 <     * volatile accesses.  Even so, traversal maintains reasonable
2402 <     * throughput.
2403 <     *
2404 <     * Normally, iteration proceeds bin-by-bin traversing lists.
2405 <     * However, if the table has been resized, then all future steps
2406 <     * must traverse both the bin at the current index as well as at
2407 <     * (index + baseSize); and so on for further resizings. To
2408 <     * paranoically cope with potential sharing by users of iterators
2409 <     * across threads, iteration terminates if a bounds checks fails
2410 <     * for a table read.
2411 <     *
2412 <     * This class extends CountedCompleter to streamline parallel
2413 <     * iteration in bulk operations. This adds only a few fields of
2414 <     * space overhead, which is small enough in cases where it is not
2415 <     * needed to not worry about it.  Because CountedCompleter is
2416 <     * Serializable, but iterators need not be, we need to add warning
2417 <     * suppressions.
2418 <     */
2419 <    @SuppressWarnings("serial") static class Traverser<K,V,R> extends CountedCompleter<R> {
2420 <        final ConcurrentHashMapV8<K, V> map;
2421 <        Node next;           // the next entry to use
2422 <        Object nextKey;      // cached key field of next
2423 <        Object nextVal;      // cached val field of next
2424 <        Node[] tab;          // current table; updated if resized
2425 <        int index;           // index of bin to use next
2426 <        int baseIndex;       // current index of initial table
2427 <        int baseLimit;       // index bound for initial table
2428 <        int baseSize;        // initial table size
2429 <        int batch;           // split control
2430 <
2431 <        /** Creates iterator for all entries in the table. */
2432 <        Traverser(ConcurrentHashMapV8<K, V> map) {
2433 <            this.map = map;
2434 <        }
2435 <
2436 <        /** Creates iterator for split() methods and task constructors */
2437 <        Traverser(ConcurrentHashMapV8<K,V> map, Traverser<K,V,?> it, int batch) {
2438 <            super(it);
2439 <            this.batch = batch;
2440 <            if ((this.map = map) != null && it != null) { // split parent
2441 <                Node[] t;
2442 <                if ((t = it.tab) == null &&
2443 <                    (t = it.tab = map.table) != null)
2444 <                    it.baseLimit = it.baseSize = t.length;
2445 <                this.tab = t;
2446 <                this.baseSize = it.baseSize;
2447 <                int hi = this.baseLimit = it.baseLimit;
2448 <                it.baseLimit = this.index = this.baseIndex =
2449 <                    (hi + it.baseIndex + 1) >>> 1;
2450 <            }
2451 <        }
757 >     * Base counter value, used mainly when there is no contention,
758 >     * but also as a fallback during table initialization
759 >     * races. Updated via CAS.
760 >     */
761 >    private transient volatile long baseCount;
762  
763 <        /**
764 <         * Advances next; returns nextVal or null if terminated.
765 <         * See above for explanation.
766 <         */
767 <        final Object advance() {
768 <            Node e = next;
769 <            Object ev = null;
770 <            outer: do {
771 <                if (e != null)                  // advance past used/skipped node
2462 <                    e = e.next;
2463 <                while (e == null) {             // get to next non-null bin
2464 <                    ConcurrentHashMapV8<K, V> m;
2465 <                    Node[] t; int b, i, n; Object ek; // checks must use locals
2466 <                    if ((t = tab) != null)
2467 <                        n = t.length;
2468 <                    else if ((m = map) != null && (t = tab = m.table) != null)
2469 <                        n = baseLimit = baseSize = t.length;
2470 <                    else
2471 <                        break outer;
2472 <                    if ((b = baseIndex) >= baseLimit ||
2473 <                        (i = index) < 0 || i >= n)
2474 <                        break outer;
2475 <                    if ((e = tabAt(t, i)) != null && e.hash == MOVED) {
2476 <                        if ((ek = e.key) instanceof TreeBin)
2477 <                            e = ((TreeBin)ek).first;
2478 <                        else {
2479 <                            tab = (Node[])ek;
2480 <                            continue;           // restarts due to null val
2481 <                        }
2482 <                    }                           // visit upper slots if present
2483 <                    index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2484 <                }
2485 <                nextKey = e.key;
2486 <            } while ((ev = e.val) == null);    // skip deleted or special nodes
2487 <            next = e;
2488 <            return nextVal = ev;
2489 <        }
763 >    /**
764 >     * Table initialization and resizing control.  When negative, the
765 >     * table is being initialized or resized: -1 for initialization,
766 >     * else -(1 + the number of active resizing threads).  Otherwise,
767 >     * when table is null, holds the initial table size to use upon
768 >     * creation, or 0 for default. After initialization, holds the
769 >     * next element count value upon which to resize the table.
770 >     */
771 >    private transient volatile int sizeCtl;
772  
773 <        public final void remove() {
774 <            Object k = nextKey;
775 <            if (k == null && (advance() == null || (k = nextKey) == null))
776 <                throw new IllegalStateException();
2495 <            map.internalReplace(k, null, null);
2496 <        }
773 >    /**
774 >     * The next table index (plus one) to split while resizing.
775 >     */
776 >    private transient volatile int transferIndex;
777  
778 <        public final boolean hasNext() {
779 <            return nextVal != null || advance() != null;
780 <        }
778 >    /**
779 >     * The least available table index to split while resizing.
780 >     */
781 >    private transient volatile int transferOrigin;
782  
783 <        public final boolean hasMoreElements() { return hasNext(); }
783 >    /**
784 >     * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
785 >     */
786 >    private transient volatile int cellsBusy;
787  
788 <        public void compute() { } // default no-op CountedCompleter body
788 >    /**
789 >     * Table of counter cells. When non-null, size is a power of 2.
790 >     */
791 >    private transient volatile CounterCell[] counterCells;
792  
793 <        /**
794 <         * Returns a batch value > 0 if this task should (and must) be
795 <         * split, if so, adding to pending count, and in any case
796 <         * updating batch value. The initial batch value is approx
2510 <         * exp2 of the number of times (minus one) to split task by
2511 <         * two before executing leaf action. This value is faster to
2512 <         * compute and more convenient to use as a guide to splitting
2513 <         * than is the depth, since it is used while dividing by two
2514 <         * anyway.
2515 <         */
2516 <        final int preSplit() {
2517 <            ConcurrentHashMapV8<K, V> m; int b; Node[] t;  ForkJoinPool pool;
2518 <            if ((b = batch) < 0 && (m = map) != null) { // force initialization
2519 <                if ((t = tab) == null && (t = tab = m.table) != null)
2520 <                    baseLimit = baseSize = t.length;
2521 <                if (t != null) {
2522 <                    long n = m.counter.sum();
2523 <                    int par = ((pool = getPool()) == null) ?
2524 <                        ForkJoinPool.getCommonPoolParallelism() :
2525 <                        pool.getParallelism();
2526 <                    int sp = par << 3; // slack of 8
2527 <                    b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2528 <                }
2529 <            }
2530 <            b = (b <= 1 || baseIndex == baseLimit) ? 0 : (b >>> 1);
2531 <            if ((batch = b) > 0)
2532 <                addToPendingCount(1);
2533 <            return b;
2534 <        }
793 >    // views
794 >    private transient KeySetView<K,V> keySet;
795 >    private transient ValuesView<K,V> values;
796 >    private transient EntrySetView<K,V> entrySet;
797  
2536    }
798  
799      /* ---------------- Public operations -------------- */
800  
# Line 2541 | Line 802 | public class ConcurrentHashMapV8<K, V>
802       * Creates a new, empty map with the default initial table size (16).
803       */
804      public ConcurrentHashMapV8() {
2544        this.counter = new LongAdder();
805      }
806  
807      /**
# Line 2560 | Line 820 | public class ConcurrentHashMapV8<K, V>
820          int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
821                     MAXIMUM_CAPACITY :
822                     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2563        this.counter = new LongAdder();
823          this.sizeCtl = cap;
824      }
825  
# Line 2570 | Line 829 | public class ConcurrentHashMapV8<K, V>
829       * @param m the map
830       */
831      public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
2573        this.counter = new LongAdder();
832          this.sizeCtl = DEFAULT_CAPACITY;
833 <        internalPutAll(m);
833 >        putAll(m);
834      }
835  
836      /**
# Line 2613 | Line 871 | public class ConcurrentHashMapV8<K, V>
871       * nonpositive
872       */
873      public ConcurrentHashMapV8(int initialCapacity,
874 <                               float loadFactor, int concurrencyLevel) {
874 >                             float loadFactor, int concurrencyLevel) {
875          if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
876              throw new IllegalArgumentException();
877          if (initialCapacity < concurrencyLevel)   // Use at least as many bins
# Line 2621 | Line 879 | public class ConcurrentHashMapV8<K, V>
879          long size = (long)(1.0 + (long)initialCapacity / loadFactor);
880          int cap = (size >= (long)MAXIMUM_CAPACITY) ?
881              MAXIMUM_CAPACITY : tableSizeFor((int)size);
2624        this.counter = new LongAdder();
882          this.sizeCtl = cap;
883      }
884  
885 <    /**
2629 <     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2630 <     * from the given type to {@code Boolean.TRUE}.
2631 <     *
2632 <     * @return the new set
2633 <     */
2634 <    public static <K> KeySetView<K,Boolean> newKeySet() {
2635 <        return new KeySetView<K,Boolean>(new ConcurrentHashMapV8<K,Boolean>(),
2636 <                                      Boolean.TRUE);
2637 <    }
2638 <
2639 <    /**
2640 <     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2641 <     * from the given type to {@code Boolean.TRUE}.
2642 <     *
2643 <     * @param initialCapacity The implementation performs internal
2644 <     * sizing to accommodate this many elements.
2645 <     * @throws IllegalArgumentException if the initial capacity of
2646 <     * elements is negative
2647 <     * @return the new set
2648 <     */
2649 <    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2650 <        return new KeySetView<K,Boolean>(new ConcurrentHashMapV8<K,Boolean>(initialCapacity),
2651 <                                      Boolean.TRUE);
2652 <    }
2653 <
2654 <    /**
2655 <     * {@inheritDoc}
2656 <     */
2657 <    public boolean isEmpty() {
2658 <        return counter.sum() <= 0L; // ignore transient negative values
2659 <    }
885 >    // Original (since JDK1.2) Map methods
886  
887      /**
888       * {@inheritDoc}
889       */
890      public int size() {
891 <        long n = counter.sum();
891 >        long n = sumCount();
892          return ((n < 0L) ? 0 :
893                  (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
894                  (int)n);
895      }
896  
897      /**
898 <     * Returns the number of mappings. This method should be used
2673 <     * instead of {@link #size} because a ConcurrentHashMapV8 may
2674 <     * contain more mappings than can be represented as an int. The
2675 <     * value returned is an estimate; the actual count may differ if
2676 <     * there are concurrent insertions or removals.
2677 <     *
2678 <     * @return the number of mappings
898 >     * {@inheritDoc}
899       */
900 <    public long mappingCount() {
901 <        long n = counter.sum();
2682 <        return (n < 0L) ? 0L : n; // ignore transient negative values
900 >    public boolean isEmpty() {
901 >        return sumCount() <= 0L; // ignore transient negative values
902      }
903  
904      /**
# Line 2693 | Line 912 | public class ConcurrentHashMapV8<K, V>
912       *
913       * @throws NullPointerException if the specified key is null
914       */
915 <    @SuppressWarnings("unchecked") public V get(Object key) {
916 <        if (key == null)
917 <            throw new NullPointerException();
918 <        return (V)internalGet(key);
919 <    }
920 <
921 <    /**
922 <     * Returns the value to which the specified key is mapped,
923 <     * or the given defaultValue if this map contains no mapping for the key.
924 <     *
925 <     * @param key the key
926 <     * @param defaultValue the value to return if this map contains
927 <     * no mapping for the given key
928 <     * @return the mapping for the key, if present; else the defaultValue
929 <     * @throws NullPointerException if the specified key is null
930 <     */
931 <    @SuppressWarnings("unchecked") public V getValueOrDefault(Object key, V defaultValue) {
932 <        if (key == null)
2714 <            throw new NullPointerException();
2715 <        V v = (V) internalGet(key);
2716 <        return v == null ? defaultValue : v;
915 >    public V get(Object key) {
916 >        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
917 >        int h = spread(key.hashCode());
918 >        if ((tab = table) != null && (n = tab.length) > 0 &&
919 >            (e = tabAt(tab, (n - 1) & h)) != null) {
920 >            if ((eh = e.hash) == h) {
921 >                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
922 >                    return e.val;
923 >            }
924 >            else if (eh < 0)
925 >                return (p = e.find(h, key)) != null ? p.val : null;
926 >            while ((e = e.next) != null) {
927 >                if (e.hash == h &&
928 >                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
929 >                    return e.val;
930 >            }
931 >        }
932 >        return null;
933      }
934  
935      /**
936       * Tests if the specified object is a key in this table.
937       *
938 <     * @param  key   possible key
938 >     * @param  key possible key
939       * @return {@code true} if and only if the specified object
940       *         is a key in this table, as determined by the
941       *         {@code equals} method; {@code false} otherwise
942       * @throws NullPointerException if the specified key is null
943       */
944      public boolean containsKey(Object key) {
945 <        if (key == null)
2730 <            throw new NullPointerException();
2731 <        return internalGet(key) != null;
945 >        return get(key) != null;
946      }
947  
948      /**
# Line 2744 | Line 958 | public class ConcurrentHashMapV8<K, V>
958      public boolean containsValue(Object value) {
959          if (value == null)
960              throw new NullPointerException();
961 <        Object v;
962 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
963 <        while ((v = it.advance()) != null) {
964 <            if (v == value || value.equals(v))
965 <                return true;
961 >        Node<K,V>[] t;
962 >        if ((t = table) != null) {
963 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
964 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
965 >                V v;
966 >                if ((v = p.val) == value || (v != null && value.equals(v)))
967 >                    return true;
968 >            }
969          }
970          return false;
971      }
972  
973      /**
2757     * Legacy method testing if some key maps into the specified value
2758     * in this table.  This method is identical in functionality to
2759     * {@link #containsValue}, and exists solely to ensure
2760     * full compatibility with class {@link java.util.Hashtable},
2761     * which supported this method prior to introduction of the
2762     * Java Collections framework.
2763     *
2764     * @param  value a value to search for
2765     * @return {@code true} if and only if some key maps to the
2766     *         {@code value} argument in this table as
2767     *         determined by the {@code equals} method;
2768     *         {@code false} otherwise
2769     * @throws NullPointerException if the specified value is null
2770     */
2771    public boolean contains(Object value) {
2772        return containsValue(value);
2773    }
2774
2775    /**
974       * Maps the specified key to the specified value in this table.
975       * Neither the key nor the value can be null.
976       *
# Line 2785 | Line 983 | public class ConcurrentHashMapV8<K, V>
983       *         {@code null} if there was no mapping for {@code key}
984       * @throws NullPointerException if the specified key or value is null
985       */
986 <    @SuppressWarnings("unchecked") public V put(K key, V value) {
987 <        if (key == null || value == null)
986 >    public V put(K key, V value) {
987 >        return putVal(key, value, false);
988 >    }
989 >
990 >    /** Implementation for put and putIfAbsent */
991 >    final V putVal(K key, V value, boolean onlyIfAbsent) {
992 >        if (key == null || value == null) throw new NullPointerException();
993 >        int hash = spread(key.hashCode());
994 >        int binCount = 0;
995 >        for (Node<K,V>[] tab = table;;) {
996 >            Node<K,V> f; int n, i, fh;
997 >            if (tab == null || (n = tab.length) == 0)
998 >                tab = initTable();
999 >            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
1000 >                if (casTabAt(tab, i, null,
1001 >                             new Node<K,V>(hash, key, value, null)))
1002 >                    break;                   // no lock when adding to empty bin
1003 >            }
1004 >            else if ((fh = f.hash) == MOVED)
1005 >                tab = helpTransfer(tab, f);
1006 >            else {
1007 >                V oldVal = null;
1008 >                synchronized (f) {
1009 >                    if (tabAt(tab, i) == f) {
1010 >                        if (fh >= 0) {
1011 >                            binCount = 1;
1012 >                            for (Node<K,V> e = f;; ++binCount) {
1013 >                                K ek;
1014 >                                if (e.hash == hash &&
1015 >                                    ((ek = e.key) == key ||
1016 >                                     (ek != null && key.equals(ek)))) {
1017 >                                    oldVal = e.val;
1018 >                                    if (!onlyIfAbsent)
1019 >                                        e.val = value;
1020 >                                    break;
1021 >                                }
1022 >                                Node<K,V> pred = e;
1023 >                                if ((e = e.next) == null) {
1024 >                                    pred.next = new Node<K,V>(hash, key,
1025 >                                                              value, null);
1026 >                                    break;
1027 >                                }
1028 >                            }
1029 >                        }
1030 >                        else if (f instanceof TreeBin) {
1031 >                            Node<K,V> p;
1032 >                            binCount = 2;
1033 >                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1034 >                                                           value)) != null) {
1035 >                                oldVal = p.val;
1036 >                                if (!onlyIfAbsent)
1037 >                                    p.val = value;
1038 >                            }
1039 >                        }
1040 >                    }
1041 >                }
1042 >                if (binCount != 0) {
1043 >                    if (binCount >= TREEIFY_THRESHOLD)
1044 >                        treeifyBin(tab, i);
1045 >                    if (oldVal != null)
1046 >                        return oldVal;
1047 >                    break;
1048 >                }
1049 >            }
1050 >        }
1051 >        addCount(1L, binCount);
1052 >        return null;
1053 >    }
1054 >
1055 >    /**
1056 >     * Copies all of the mappings from the specified map to this one.
1057 >     * These mappings replace any mappings that this map had for any of the
1058 >     * keys currently in the specified map.
1059 >     *
1060 >     * @param m mappings to be stored in this map
1061 >     */
1062 >    public void putAll(Map<? extends K, ? extends V> m) {
1063 >        tryPresize(m.size());
1064 >        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1065 >            putVal(e.getKey(), e.getValue(), false);
1066 >    }
1067 >
1068 >    /**
1069 >     * Removes the key (and its corresponding value) from this map.
1070 >     * This method does nothing if the key is not in the map.
1071 >     *
1072 >     * @param  key the key that needs to be removed
1073 >     * @return the previous value associated with {@code key}, or
1074 >     *         {@code null} if there was no mapping for {@code key}
1075 >     * @throws NullPointerException if the specified key is null
1076 >     */
1077 >    public V remove(Object key) {
1078 >        return replaceNode(key, null, null);
1079 >    }
1080 >
1081 >    /**
1082 >     * Implementation for the four public remove/replace methods:
1083 >     * Replaces node value with v, conditional upon match of cv if
1084 >     * non-null.  If resulting value is null, delete.
1085 >     */
1086 >    final V replaceNode(Object key, V value, Object cv) {
1087 >        int hash = spread(key.hashCode());
1088 >        for (Node<K,V>[] tab = table;;) {
1089 >            Node<K,V> f; int n, i, fh;
1090 >            if (tab == null || (n = tab.length) == 0 ||
1091 >                (f = tabAt(tab, i = (n - 1) & hash)) == null)
1092 >                break;
1093 >            else if ((fh = f.hash) == MOVED)
1094 >                tab = helpTransfer(tab, f);
1095 >            else {
1096 >                V oldVal = null;
1097 >                boolean validated = false;
1098 >                synchronized (f) {
1099 >                    if (tabAt(tab, i) == f) {
1100 >                        if (fh >= 0) {
1101 >                            validated = true;
1102 >                            for (Node<K,V> e = f, pred = null;;) {
1103 >                                K ek;
1104 >                                if (e.hash == hash &&
1105 >                                    ((ek = e.key) == key ||
1106 >                                     (ek != null && key.equals(ek)))) {
1107 >                                    V ev = e.val;
1108 >                                    if (cv == null || cv == ev ||
1109 >                                        (ev != null && cv.equals(ev))) {
1110 >                                        oldVal = ev;
1111 >                                        if (value != null)
1112 >                                            e.val = value;
1113 >                                        else if (pred != null)
1114 >                                            pred.next = e.next;
1115 >                                        else
1116 >                                            setTabAt(tab, i, e.next);
1117 >                                    }
1118 >                                    break;
1119 >                                }
1120 >                                pred = e;
1121 >                                if ((e = e.next) == null)
1122 >                                    break;
1123 >                            }
1124 >                        }
1125 >                        else if (f instanceof TreeBin) {
1126 >                            validated = true;
1127 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1128 >                            TreeNode<K,V> r, p;
1129 >                            if ((r = t.root) != null &&
1130 >                                (p = r.findTreeNode(hash, key, null)) != null) {
1131 >                                V pv = p.val;
1132 >                                if (cv == null || cv == pv ||
1133 >                                    (pv != null && cv.equals(pv))) {
1134 >                                    oldVal = pv;
1135 >                                    if (value != null)
1136 >                                        p.val = value;
1137 >                                    else if (t.removeTreeNode(p))
1138 >                                        setTabAt(tab, i, untreeify(t.first));
1139 >                                }
1140 >                            }
1141 >                        }
1142 >                    }
1143 >                }
1144 >                if (validated) {
1145 >                    if (oldVal != null) {
1146 >                        if (value == null)
1147 >                            addCount(-1L, -1);
1148 >                        return oldVal;
1149 >                    }
1150 >                    break;
1151 >                }
1152 >            }
1153 >        }
1154 >        return null;
1155 >    }
1156 >
1157 >    /**
1158 >     * Removes all of the mappings from this map.
1159 >     */
1160 >    public void clear() {
1161 >        long delta = 0L; // negative number of deletions
1162 >        int i = 0;
1163 >        Node<K,V>[] tab = table;
1164 >        while (tab != null && i < tab.length) {
1165 >            int fh;
1166 >            Node<K,V> f = tabAt(tab, i);
1167 >            if (f == null)
1168 >                ++i;
1169 >            else if ((fh = f.hash) == MOVED) {
1170 >                tab = helpTransfer(tab, f);
1171 >                i = 0; // restart
1172 >            }
1173 >            else {
1174 >                synchronized (f) {
1175 >                    if (tabAt(tab, i) == f) {
1176 >                        Node<K,V> p = (fh >= 0 ? f :
1177 >                                       (f instanceof TreeBin) ?
1178 >                                       ((TreeBin<K,V>)f).first : null);
1179 >                        while (p != null) {
1180 >                            --delta;
1181 >                            p = p.next;
1182 >                        }
1183 >                        setTabAt(tab, i++, null);
1184 >                    }
1185 >                }
1186 >            }
1187 >        }
1188 >        if (delta != 0L)
1189 >            addCount(delta, -1);
1190 >    }
1191 >
1192 >    /**
1193 >     * Returns a {@link Set} view of the keys contained in this map.
1194 >     * The set is backed by the map, so changes to the map are
1195 >     * reflected in the set, and vice-versa. The set supports element
1196 >     * removal, which removes the corresponding mapping from this map,
1197 >     * via the {@code Iterator.remove}, {@code Set.remove},
1198 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1199 >     * operations.  It does not support the {@code add} or
1200 >     * {@code addAll} operations.
1201 >     *
1202 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1203 >     * that will never throw {@link ConcurrentModificationException},
1204 >     * and guarantees to traverse elements as they existed upon
1205 >     * construction of the iterator, and may (but is not guaranteed to)
1206 >     * reflect any modifications subsequent to construction.
1207 >     *
1208 >     * @return the set view
1209 >     */
1210 >    public KeySetView<K,V> keySet() {
1211 >        KeySetView<K,V> ks;
1212 >        return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1213 >    }
1214 >
1215 >    /**
1216 >     * Returns a {@link Collection} view of the values contained in this map.
1217 >     * The collection is backed by the map, so changes to the map are
1218 >     * reflected in the collection, and vice-versa.  The collection
1219 >     * supports element removal, which removes the corresponding
1220 >     * mapping from this map, via the {@code Iterator.remove},
1221 >     * {@code Collection.remove}, {@code removeAll},
1222 >     * {@code retainAll}, and {@code clear} operations.  It does not
1223 >     * support the {@code add} or {@code addAll} operations.
1224 >     *
1225 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1226 >     * that will never throw {@link ConcurrentModificationException},
1227 >     * and guarantees to traverse elements as they existed upon
1228 >     * construction of the iterator, and may (but is not guaranteed to)
1229 >     * reflect any modifications subsequent to construction.
1230 >     *
1231 >     * @return the collection view
1232 >     */
1233 >    public Collection<V> values() {
1234 >        ValuesView<K,V> vs;
1235 >        return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1236 >    }
1237 >
1238 >    /**
1239 >     * Returns a {@link Set} view of the mappings contained in this map.
1240 >     * The set is backed by the map, so changes to the map are
1241 >     * reflected in the set, and vice-versa.  The set supports element
1242 >     * removal, which removes the corresponding mapping from the map,
1243 >     * via the {@code Iterator.remove}, {@code Set.remove},
1244 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1245 >     * operations.
1246 >     *
1247 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1248 >     * that will never throw {@link ConcurrentModificationException},
1249 >     * and guarantees to traverse elements as they existed upon
1250 >     * construction of the iterator, and may (but is not guaranteed to)
1251 >     * reflect any modifications subsequent to construction.
1252 >     *
1253 >     * @return the set view
1254 >     */
1255 >    public Set<Map.Entry<K,V>> entrySet() {
1256 >        EntrySetView<K,V> es;
1257 >        return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1258 >    }
1259 >
1260 >    /**
1261 >     * Returns the hash code value for this {@link Map}, i.e.,
1262 >     * the sum of, for each key-value pair in the map,
1263 >     * {@code key.hashCode() ^ value.hashCode()}.
1264 >     *
1265 >     * @return the hash code value for this map
1266 >     */
1267 >    public int hashCode() {
1268 >        int h = 0;
1269 >        Node<K,V>[] t;
1270 >        if ((t = table) != null) {
1271 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1272 >            for (Node<K,V> p; (p = it.advance()) != null; )
1273 >                h += p.key.hashCode() ^ p.val.hashCode();
1274 >        }
1275 >        return h;
1276 >    }
1277 >
1278 >    /**
1279 >     * Returns a string representation of this map.  The string
1280 >     * representation consists of a list of key-value mappings (in no
1281 >     * particular order) enclosed in braces ("{@code {}}").  Adjacent
1282 >     * mappings are separated by the characters {@code ", "} (comma
1283 >     * and space).  Each key-value mapping is rendered as the key
1284 >     * followed by an equals sign ("{@code =}") followed by the
1285 >     * associated value.
1286 >     *
1287 >     * @return a string representation of this map
1288 >     */
1289 >    public String toString() {
1290 >        Node<K,V>[] t;
1291 >        int f = (t = table) == null ? 0 : t.length;
1292 >        Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1293 >        StringBuilder sb = new StringBuilder();
1294 >        sb.append('{');
1295 >        Node<K,V> p;
1296 >        if ((p = it.advance()) != null) {
1297 >            for (;;) {
1298 >                K k = p.key;
1299 >                V v = p.val;
1300 >                sb.append(k == this ? "(this Map)" : k);
1301 >                sb.append('=');
1302 >                sb.append(v == this ? "(this Map)" : v);
1303 >                if ((p = it.advance()) == null)
1304 >                    break;
1305 >                sb.append(',').append(' ');
1306 >            }
1307 >        }
1308 >        return sb.append('}').toString();
1309 >    }
1310 >
1311 >    /**
1312 >     * Compares the specified object with this map for equality.
1313 >     * Returns {@code true} if the given object is a map with the same
1314 >     * mappings as this map.  This operation may return misleading
1315 >     * results if either map is concurrently modified during execution
1316 >     * of this method.
1317 >     *
1318 >     * @param o object to be compared for equality with this map
1319 >     * @return {@code true} if the specified object is equal to this map
1320 >     */
1321 >    public boolean equals(Object o) {
1322 >        if (o != this) {
1323 >            if (!(o instanceof Map))
1324 >                return false;
1325 >            Map<?,?> m = (Map<?,?>) o;
1326 >            Node<K,V>[] t;
1327 >            int f = (t = table) == null ? 0 : t.length;
1328 >            Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1329 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1330 >                V val = p.val;
1331 >                Object v = m.get(p.key);
1332 >                if (v == null || (v != val && !v.equals(val)))
1333 >                    return false;
1334 >            }
1335 >            for (Map.Entry<?,?> e : m.entrySet()) {
1336 >                Object mk, mv, v;
1337 >                if ((mk = e.getKey()) == null ||
1338 >                    (mv = e.getValue()) == null ||
1339 >                    (v = get(mk)) == null ||
1340 >                    (mv != v && !mv.equals(v)))
1341 >                    return false;
1342 >            }
1343 >        }
1344 >        return true;
1345 >    }
1346 >
1347 >    /**
1348 >     * Stripped-down version of helper class used in previous version,
1349 >     * declared for the sake of serialization compatibility
1350 >     */
1351 >    static class Segment<K,V> extends ReentrantLock implements Serializable {
1352 >        private static final long serialVersionUID = 2249069246763182397L;
1353 >        final float loadFactor;
1354 >        Segment(float lf) { this.loadFactor = lf; }
1355 >    }
1356 >
1357 >    /**
1358 >     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
1359 >     * stream (i.e., serializes it).
1360 >     * @param s the stream
1361 >     * @serialData
1362 >     * the key (Object) and value (Object)
1363 >     * for each key-value mapping, followed by a null pair.
1364 >     * The key-value mappings are emitted in no particular order.
1365 >     */
1366 >    private void writeObject(java.io.ObjectOutputStream s)
1367 >        throws java.io.IOException {
1368 >        // For serialization compatibility
1369 >        // Emulate segment calculation from previous version of this class
1370 >        int sshift = 0;
1371 >        int ssize = 1;
1372 >        while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1373 >            ++sshift;
1374 >            ssize <<= 1;
1375 >        }
1376 >        int segmentShift = 32 - sshift;
1377 >        int segmentMask = ssize - 1;
1378 >        @SuppressWarnings("unchecked") Segment<K,V>[] segments = (Segment<K,V>[])
1379 >            new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1380 >        for (int i = 0; i < segments.length; ++i)
1381 >            segments[i] = new Segment<K,V>(LOAD_FACTOR);
1382 >        s.putFields().put("segments", segments);
1383 >        s.putFields().put("segmentShift", segmentShift);
1384 >        s.putFields().put("segmentMask", segmentMask);
1385 >        s.writeFields();
1386 >
1387 >        Node<K,V>[] t;
1388 >        if ((t = table) != null) {
1389 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1390 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1391 >                s.writeObject(p.key);
1392 >                s.writeObject(p.val);
1393 >            }
1394 >        }
1395 >        s.writeObject(null);
1396 >        s.writeObject(null);
1397 >        segments = null; // throw away
1398 >    }
1399 >
1400 >    /**
1401 >     * Reconstitutes the instance from a stream (that is, deserializes it).
1402 >     * @param s the stream
1403 >     */
1404 >    private void readObject(java.io.ObjectInputStream s)
1405 >        throws java.io.IOException, ClassNotFoundException {
1406 >        /*
1407 >         * To improve performance in typical cases, we create nodes
1408 >         * while reading, then place in table once size is known.
1409 >         * However, we must also validate uniqueness and deal with
1410 >         * overpopulated bins while doing so, which requires
1411 >         * specialized versions of putVal mechanics.
1412 >         */
1413 >        sizeCtl = -1; // force exclusion for table construction
1414 >        s.defaultReadObject();
1415 >        long size = 0L;
1416 >        Node<K,V> p = null;
1417 >        for (;;) {
1418 >            @SuppressWarnings("unchecked") K k = (K) s.readObject();
1419 >            @SuppressWarnings("unchecked") V v = (V) s.readObject();
1420 >            if (k != null && v != null) {
1421 >                p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1422 >                ++size;
1423 >            }
1424 >            else
1425 >                break;
1426 >        }
1427 >        if (size == 0L)
1428 >            sizeCtl = 0;
1429 >        else {
1430 >            int n;
1431 >            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1432 >                n = MAXIMUM_CAPACITY;
1433 >            else {
1434 >                int sz = (int)size;
1435 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
1436 >            }
1437 >            @SuppressWarnings({"rawtypes","unchecked"})
1438 >                Node<K,V>[] tab = (Node<K,V>[])new Node[n];
1439 >            int mask = n - 1;
1440 >            long added = 0L;
1441 >            while (p != null) {
1442 >                boolean insertAtFront;
1443 >                Node<K,V> next = p.next, first;
1444 >                int h = p.hash, j = h & mask;
1445 >                if ((first = tabAt(tab, j)) == null)
1446 >                    insertAtFront = true;
1447 >                else {
1448 >                    K k = p.key;
1449 >                    if (first.hash < 0) {
1450 >                        TreeBin<K,V> t = (TreeBin<K,V>)first;
1451 >                        if (t.putTreeVal(h, k, p.val) == null)
1452 >                            ++added;
1453 >                        insertAtFront = false;
1454 >                    }
1455 >                    else {
1456 >                        int binCount = 0;
1457 >                        insertAtFront = true;
1458 >                        Node<K,V> q; K qk;
1459 >                        for (q = first; q != null; q = q.next) {
1460 >                            if (q.hash == h &&
1461 >                                ((qk = q.key) == k ||
1462 >                                 (qk != null && k.equals(qk)))) {
1463 >                                insertAtFront = false;
1464 >                                break;
1465 >                            }
1466 >                            ++binCount;
1467 >                        }
1468 >                        if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1469 >                            insertAtFront = false;
1470 >                            ++added;
1471 >                            p.next = first;
1472 >                            TreeNode<K,V> hd = null, tl = null;
1473 >                            for (q = p; q != null; q = q.next) {
1474 >                                TreeNode<K,V> t = new TreeNode<K,V>
1475 >                                    (q.hash, q.key, q.val, null, null);
1476 >                                if ((t.prev = tl) == null)
1477 >                                    hd = t;
1478 >                                else
1479 >                                    tl.next = t;
1480 >                                tl = t;
1481 >                            }
1482 >                            setTabAt(tab, j, new TreeBin<K,V>(hd));
1483 >                        }
1484 >                    }
1485 >                }
1486 >                if (insertAtFront) {
1487 >                    ++added;
1488 >                    p.next = first;
1489 >                    setTabAt(tab, j, p);
1490 >                }
1491 >                p = next;
1492 >            }
1493 >            table = tab;
1494 >            sizeCtl = n - (n >>> 2);
1495 >            baseCount = added;
1496 >        }
1497 >    }
1498 >
1499 >    // ConcurrentMap methods
1500 >
1501 >    /**
1502 >     * {@inheritDoc}
1503 >     *
1504 >     * @return the previous value associated with the specified key,
1505 >     *         or {@code null} if there was no mapping for the key
1506 >     * @throws NullPointerException if the specified key or value is null
1507 >     */
1508 >    public V putIfAbsent(K key, V value) {
1509 >        return putVal(key, value, true);
1510 >    }
1511 >
1512 >    /**
1513 >     * {@inheritDoc}
1514 >     *
1515 >     * @throws NullPointerException if the specified key is null
1516 >     */
1517 >    public boolean remove(Object key, Object value) {
1518 >        if (key == null)
1519 >            throw new NullPointerException();
1520 >        return value != null && replaceNode(key, null, value) != null;
1521 >    }
1522 >
1523 >    /**
1524 >     * {@inheritDoc}
1525 >     *
1526 >     * @throws NullPointerException if any of the arguments are null
1527 >     */
1528 >    public boolean replace(K key, V oldValue, V newValue) {
1529 >        if (key == null || oldValue == null || newValue == null)
1530              throw new NullPointerException();
1531 <        return (V)internalPut(key, value);
1531 >        return replaceNode(key, newValue, oldValue) != null;
1532      }
1533  
1534      /**
# Line 2798 | Line 1538 | public class ConcurrentHashMapV8<K, V>
1538       *         or {@code null} if there was no mapping for the key
1539       * @throws NullPointerException if the specified key or value is null
1540       */
1541 <    @SuppressWarnings("unchecked") public V putIfAbsent(K key, V value) {
1541 >    public V replace(K key, V value) {
1542          if (key == null || value == null)
1543              throw new NullPointerException();
1544 <        return (V)internalPutIfAbsent(key, value);
1544 >        return replaceNode(key, value, null);
1545      }
1546  
1547 +    // Overrides of JDK8+ Map extension method defaults
1548 +
1549      /**
1550 <     * Copies all of the mappings from the specified map to this one.
1551 <     * These mappings replace any mappings that this map had for any of the
1552 <     * keys currently in the specified map.
1550 >     * Returns the value to which the specified key is mapped, or the
1551 >     * given default value if this map contains no mapping for the
1552 >     * key.
1553       *
1554 <     * @param m mappings to be stored in this map
1554 >     * @param key the key whose associated value is to be returned
1555 >     * @param defaultValue the value to return if this map contains
1556 >     * no mapping for the given key
1557 >     * @return the mapping for the key, if present; else the default value
1558 >     * @throws NullPointerException if the specified key is null
1559       */
1560 <    public void putAll(Map<? extends K, ? extends V> m) {
1561 <        internalPutAll(m);
1560 >    public V getOrDefault(Object key, V defaultValue) {
1561 >        V v;
1562 >        return (v = get(key)) == null ? defaultValue : v;
1563 >    }
1564 >
1565 >    public void forEach(BiAction<? super K, ? super V> action) {
1566 >        if (action == null) throw new NullPointerException();
1567 >        Node<K,V>[] t;
1568 >        if ((t = table) != null) {
1569 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1570 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1571 >                action.apply(p.key, p.val);
1572 >            }
1573 >        }
1574 >    }
1575 >
1576 >    public void replaceAll(BiFun<? super K, ? super V, ? extends V> function) {
1577 >        if (function == null) throw new NullPointerException();
1578 >        Node<K,V>[] t;
1579 >        if ((t = table) != null) {
1580 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1581 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1582 >                V oldValue = p.val;
1583 >                for (K key = p.key;;) {
1584 >                    V newValue = function.apply(key, oldValue);
1585 >                    if (newValue == null)
1586 >                        throw new NullPointerException();
1587 >                    if (replaceNode(key, newValue, oldValue) != null ||
1588 >                        (oldValue = get(key)) == null)
1589 >                        break;
1590 >                }
1591 >            }
1592 >        }
1593      }
1594  
1595      /**
1596       * If the specified key is not already associated with a value,
1597 <     * computes its value using the given mappingFunction and enters
1598 <     * it into the map unless null.  This is equivalent to
1599 <     * <pre> {@code
1600 <     * if (map.containsKey(key))
1601 <     *   return map.get(key);
1602 <     * value = mappingFunction.apply(key);
1603 <     * if (value != null)
2827 <     *   map.put(key, value);
2828 <     * return value;}</pre>
2829 <     *
2830 <     * except that the action is performed atomically.  If the
2831 <     * function returns {@code null} no mapping is recorded. If the
2832 <     * function itself throws an (unchecked) exception, the exception
2833 <     * is rethrown to its caller, and no mapping is recorded.  Some
2834 <     * attempted update operations on this map by other threads may be
2835 <     * blocked while computation is in progress, so the computation
2836 <     * should be short and simple, and must not attempt to update any
2837 <     * other mappings of this Map. The most appropriate usage is to
2838 <     * construct a new object serving as an initial mapped value, or
2839 <     * memoized result, as in:
2840 <     *
2841 <     *  <pre> {@code
2842 <     * map.computeIfAbsent(key, new Fun<K, V>() {
2843 <     *   public V map(K k) { return new Value(f(k)); }});}</pre>
1597 >     * attempts to compute its value using the given mapping function
1598 >     * and enters it into this map unless {@code null}.  The entire
1599 >     * method invocation is performed atomically, so the function is
1600 >     * applied at most once per key.  Some attempted update operations
1601 >     * on this map by other threads may be blocked while computation
1602 >     * is in progress, so the computation should be short and simple,
1603 >     * and must not attempt to update any other mappings of this map.
1604       *
1605       * @param key key with which the specified value is to be associated
1606       * @param mappingFunction the function to compute a value
# Line 2854 | Line 1614 | public class ConcurrentHashMapV8<K, V>
1614       * @throws RuntimeException or Error if the mappingFunction does so,
1615       *         in which case the mapping is left unestablished
1616       */
1617 <    @SuppressWarnings("unchecked") public V computeIfAbsent
2858 <        (K key, Fun<? super K, ? extends V> mappingFunction) {
1617 >    public V computeIfAbsent(K key, Fun<? super K, ? extends V> mappingFunction) {
1618          if (key == null || mappingFunction == null)
1619              throw new NullPointerException();
1620 <        return (V)internalComputeIfAbsent(key, mappingFunction);
1620 >        int h = spread(key.hashCode());
1621 >        V val = null;
1622 >        int binCount = 0;
1623 >        for (Node<K,V>[] tab = table;;) {
1624 >            Node<K,V> f; int n, i, fh;
1625 >            if (tab == null || (n = tab.length) == 0)
1626 >                tab = initTable();
1627 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1628 >                Node<K,V> r = new ReservationNode<K,V>();
1629 >                synchronized (r) {
1630 >                    if (casTabAt(tab, i, null, r)) {
1631 >                        binCount = 1;
1632 >                        Node<K,V> node = null;
1633 >                        try {
1634 >                            if ((val = mappingFunction.apply(key)) != null)
1635 >                                node = new Node<K,V>(h, key, val, null);
1636 >                        } finally {
1637 >                            setTabAt(tab, i, node);
1638 >                        }
1639 >                    }
1640 >                }
1641 >                if (binCount != 0)
1642 >                    break;
1643 >            }
1644 >            else if ((fh = f.hash) == MOVED)
1645 >                tab = helpTransfer(tab, f);
1646 >            else {
1647 >                boolean added = false;
1648 >                synchronized (f) {
1649 >                    if (tabAt(tab, i) == f) {
1650 >                        if (fh >= 0) {
1651 >                            binCount = 1;
1652 >                            for (Node<K,V> e = f;; ++binCount) {
1653 >                                K ek; V ev;
1654 >                                if (e.hash == h &&
1655 >                                    ((ek = e.key) == key ||
1656 >                                     (ek != null && key.equals(ek)))) {
1657 >                                    val = e.val;
1658 >                                    break;
1659 >                                }
1660 >                                Node<K,V> pred = e;
1661 >                                if ((e = e.next) == null) {
1662 >                                    if ((val = mappingFunction.apply(key)) != null) {
1663 >                                        added = true;
1664 >                                        pred.next = new Node<K,V>(h, key, val, null);
1665 >                                    }
1666 >                                    break;
1667 >                                }
1668 >                            }
1669 >                        }
1670 >                        else if (f instanceof TreeBin) {
1671 >                            binCount = 2;
1672 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1673 >                            TreeNode<K,V> r, p;
1674 >                            if ((r = t.root) != null &&
1675 >                                (p = r.findTreeNode(h, key, null)) != null)
1676 >                                val = p.val;
1677 >                            else if ((val = mappingFunction.apply(key)) != null) {
1678 >                                added = true;
1679 >                                t.putTreeVal(h, key, val);
1680 >                            }
1681 >                        }
1682 >                    }
1683 >                }
1684 >                if (binCount != 0) {
1685 >                    if (binCount >= TREEIFY_THRESHOLD)
1686 >                        treeifyBin(tab, i);
1687 >                    if (!added)
1688 >                        return val;
1689 >                    break;
1690 >                }
1691 >            }
1692 >        }
1693 >        if (val != null)
1694 >            addCount(1L, binCount);
1695 >        return val;
1696      }
1697  
1698      /**
1699 <     * If the given key is present, computes a new mapping value given a key and
1700 <     * its current mapped value. This is equivalent to
1701 <     *  <pre> {@code
1702 <     *   if (map.containsKey(key)) {
1703 <     *     value = remappingFunction.apply(key, map.get(key));
1704 <     *     if (value != null)
1705 <     *       map.put(key, value);
2872 <     *     else
2873 <     *       map.remove(key);
2874 <     *   }
2875 <     * }</pre>
2876 <     *
2877 <     * except that the action is performed atomically.  If the
2878 <     * function returns {@code null}, the mapping is removed.  If the
2879 <     * function itself throws an (unchecked) exception, the exception
2880 <     * is rethrown to its caller, and the current mapping is left
2881 <     * unchanged.  Some attempted update operations on this map by
2882 <     * other threads may be blocked while computation is in progress,
2883 <     * so the computation should be short and simple, and must not
2884 <     * attempt to update any other mappings of this Map. For example,
2885 <     * to either create or append new messages to a value mapping:
1699 >     * If the value for the specified key is present, attempts to
1700 >     * compute a new mapping given the key and its current mapped
1701 >     * value.  The entire method invocation is performed atomically.
1702 >     * Some attempted update operations on this map by other threads
1703 >     * may be blocked while computation is in progress, so the
1704 >     * computation should be short and simple, and must not attempt to
1705 >     * update any other mappings of this map.
1706       *
1707 <     * @param key key with which the specified value is to be associated
1707 >     * @param key key with which a value may be associated
1708       * @param remappingFunction the function to compute a value
1709       * @return the new value associated with the specified key, or null if none
1710       * @throws NullPointerException if the specified key or remappingFunction
# Line 2895 | Line 1715 | public class ConcurrentHashMapV8<K, V>
1715       * @throws RuntimeException or Error if the remappingFunction does so,
1716       *         in which case the mapping is unchanged
1717       */
1718 <    @SuppressWarnings("unchecked") public V computeIfPresent
2899 <        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1718 >    public V computeIfPresent(K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1719          if (key == null || remappingFunction == null)
1720              throw new NullPointerException();
1721 <        return (V)internalCompute(key, true, remappingFunction);
1721 >        int h = spread(key.hashCode());
1722 >        V val = null;
1723 >        int delta = 0;
1724 >        int binCount = 0;
1725 >        for (Node<K,V>[] tab = table;;) {
1726 >            Node<K,V> f; int n, i, fh;
1727 >            if (tab == null || (n = tab.length) == 0)
1728 >                tab = initTable();
1729 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1730 >                break;
1731 >            else if ((fh = f.hash) == MOVED)
1732 >                tab = helpTransfer(tab, f);
1733 >            else {
1734 >                synchronized (f) {
1735 >                    if (tabAt(tab, i) == f) {
1736 >                        if (fh >= 0) {
1737 >                            binCount = 1;
1738 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1739 >                                K ek;
1740 >                                if (e.hash == h &&
1741 >                                    ((ek = e.key) == key ||
1742 >                                     (ek != null && key.equals(ek)))) {
1743 >                                    val = remappingFunction.apply(key, e.val);
1744 >                                    if (val != null)
1745 >                                        e.val = val;
1746 >                                    else {
1747 >                                        delta = -1;
1748 >                                        Node<K,V> en = e.next;
1749 >                                        if (pred != null)
1750 >                                            pred.next = en;
1751 >                                        else
1752 >                                            setTabAt(tab, i, en);
1753 >                                    }
1754 >                                    break;
1755 >                                }
1756 >                                pred = e;
1757 >                                if ((e = e.next) == null)
1758 >                                    break;
1759 >                            }
1760 >                        }
1761 >                        else if (f instanceof TreeBin) {
1762 >                            binCount = 2;
1763 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1764 >                            TreeNode<K,V> r, p;
1765 >                            if ((r = t.root) != null &&
1766 >                                (p = r.findTreeNode(h, key, null)) != null) {
1767 >                                val = remappingFunction.apply(key, p.val);
1768 >                                if (val != null)
1769 >                                    p.val = val;
1770 >                                else {
1771 >                                    delta = -1;
1772 >                                    if (t.removeTreeNode(p))
1773 >                                        setTabAt(tab, i, untreeify(t.first));
1774 >                                }
1775 >                            }
1776 >                        }
1777 >                    }
1778 >                }
1779 >                if (binCount != 0)
1780 >                    break;
1781 >            }
1782 >        }
1783 >        if (delta != 0)
1784 >            addCount((long)delta, binCount);
1785 >        return val;
1786      }
1787  
1788      /**
1789 <     * Computes a new mapping value given a key and
1790 <     * its current mapped value (or {@code null} if there is no current
1791 <     * mapping). This is equivalent to
1792 <     *  <pre> {@code
1793 <     *   value = remappingFunction.apply(key, map.get(key));
1794 <     *   if (value != null)
1795 <     *     map.put(key, value);
2913 <     *   else
2914 <     *     map.remove(key);
2915 <     * }</pre>
2916 <     *
2917 <     * except that the action is performed atomically.  If the
2918 <     * function returns {@code null}, the mapping is removed.  If the
2919 <     * function itself throws an (unchecked) exception, the exception
2920 <     * is rethrown to its caller, and the current mapping is left
2921 <     * unchanged.  Some attempted update operations on this map by
2922 <     * other threads may be blocked while computation is in progress,
2923 <     * so the computation should be short and simple, and must not
2924 <     * attempt to update any other mappings of this Map. For example,
2925 <     * to either create or append new messages to a value mapping:
2926 <     *
2927 <     * <pre> {@code
2928 <     * Map<Key, String> map = ...;
2929 <     * final String msg = ...;
2930 <     * map.compute(key, new BiFun<Key, String, String>() {
2931 <     *   public String apply(Key k, String v) {
2932 <     *    return (v == null) ? msg : v + msg;});}}</pre>
1789 >     * Attempts to compute a mapping for the specified key and its
1790 >     * current mapped value (or {@code null} if there is no current
1791 >     * mapping). The entire method invocation is performed atomically.
1792 >     * Some attempted update operations on this map by other threads
1793 >     * may be blocked while computation is in progress, so the
1794 >     * computation should be short and simple, and must not attempt to
1795 >     * update any other mappings of this Map.
1796       *
1797       * @param key key with which the specified value is to be associated
1798       * @param remappingFunction the function to compute a value
# Line 2942 | Line 1805 | public class ConcurrentHashMapV8<K, V>
1805       * @throws RuntimeException or Error if the remappingFunction does so,
1806       *         in which case the mapping is unchanged
1807       */
1808 <    @SuppressWarnings("unchecked") public V compute
1809 <        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1808 >    public V compute(K key,
1809 >                     BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1810          if (key == null || remappingFunction == null)
1811              throw new NullPointerException();
1812 <        return (V)internalCompute(key, false, remappingFunction);
1812 >        int h = spread(key.hashCode());
1813 >        V val = null;
1814 >        int delta = 0;
1815 >        int binCount = 0;
1816 >        for (Node<K,V>[] tab = table;;) {
1817 >            Node<K,V> f; int n, i, fh;
1818 >            if (tab == null || (n = tab.length) == 0)
1819 >                tab = initTable();
1820 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1821 >                Node<K,V> r = new ReservationNode<K,V>();
1822 >                synchronized (r) {
1823 >                    if (casTabAt(tab, i, null, r)) {
1824 >                        binCount = 1;
1825 >                        Node<K,V> node = null;
1826 >                        try {
1827 >                            if ((val = remappingFunction.apply(key, null)) != null) {
1828 >                                delta = 1;
1829 >                                node = new Node<K,V>(h, key, val, null);
1830 >                            }
1831 >                        } finally {
1832 >                            setTabAt(tab, i, node);
1833 >                        }
1834 >                    }
1835 >                }
1836 >                if (binCount != 0)
1837 >                    break;
1838 >            }
1839 >            else if ((fh = f.hash) == MOVED)
1840 >                tab = helpTransfer(tab, f);
1841 >            else {
1842 >                synchronized (f) {
1843 >                    if (tabAt(tab, i) == f) {
1844 >                        if (fh >= 0) {
1845 >                            binCount = 1;
1846 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1847 >                                K ek;
1848 >                                if (e.hash == h &&
1849 >                                    ((ek = e.key) == key ||
1850 >                                     (ek != null && key.equals(ek)))) {
1851 >                                    val = remappingFunction.apply(key, e.val);
1852 >                                    if (val != null)
1853 >                                        e.val = val;
1854 >                                    else {
1855 >                                        delta = -1;
1856 >                                        Node<K,V> en = e.next;
1857 >                                        if (pred != null)
1858 >                                            pred.next = en;
1859 >                                        else
1860 >                                            setTabAt(tab, i, en);
1861 >                                    }
1862 >                                    break;
1863 >                                }
1864 >                                pred = e;
1865 >                                if ((e = e.next) == null) {
1866 >                                    val = remappingFunction.apply(key, null);
1867 >                                    if (val != null) {
1868 >                                        delta = 1;
1869 >                                        pred.next =
1870 >                                            new Node<K,V>(h, key, val, null);
1871 >                                    }
1872 >                                    break;
1873 >                                }
1874 >                            }
1875 >                        }
1876 >                        else if (f instanceof TreeBin) {
1877 >                            binCount = 1;
1878 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1879 >                            TreeNode<K,V> r, p;
1880 >                            if ((r = t.root) != null)
1881 >                                p = r.findTreeNode(h, key, null);
1882 >                            else
1883 >                                p = null;
1884 >                            V pv = (p == null) ? null : p.val;
1885 >                            val = remappingFunction.apply(key, pv);
1886 >                            if (val != null) {
1887 >                                if (p != null)
1888 >                                    p.val = val;
1889 >                                else {
1890 >                                    delta = 1;
1891 >                                    t.putTreeVal(h, key, val);
1892 >                                }
1893 >                            }
1894 >                            else if (p != null) {
1895 >                                delta = -1;
1896 >                                if (t.removeTreeNode(p))
1897 >                                    setTabAt(tab, i, untreeify(t.first));
1898 >                            }
1899 >                        }
1900 >                    }
1901 >                }
1902 >                if (binCount != 0) {
1903 >                    if (binCount >= TREEIFY_THRESHOLD)
1904 >                        treeifyBin(tab, i);
1905 >                    break;
1906 >                }
1907 >            }
1908 >        }
1909 >        if (delta != 0)
1910 >            addCount((long)delta, binCount);
1911 >        return val;
1912      }
1913  
1914      /**
1915 <     * If the specified key is not already associated
1916 <     * with a value, associate it with the given value.
1917 <     * Otherwise, replace the value with the results of
1918 <     * the given remapping function. This is equivalent to:
1919 <     *  <pre> {@code
1920 <     *   if (!map.containsKey(key))
1921 <     *     map.put(value);
1922 <     *   else {
1923 <     *     newValue = remappingFunction.apply(map.get(key), value);
1924 <     *     if (value != null)
1925 <     *       map.put(key, value);
1926 <     *     else
1927 <     *       map.remove(key);
1928 <     *   }
1929 <     * }</pre>
1930 <     * except that the action is performed atomically.  If the
1931 <     * function returns {@code null}, the mapping is removed.  If the
1932 <     * function itself throws an (unchecked) exception, the exception
2971 <     * is rethrown to its caller, and the current mapping is left
2972 <     * unchanged.  Some attempted update operations on this map by
2973 <     * other threads may be blocked while computation is in progress,
2974 <     * so the computation should be short and simple, and must not
2975 <     * attempt to update any other mappings of this Map.
1915 >     * If the specified key is not already associated with a
1916 >     * (non-null) value, associates it with the given value.
1917 >     * Otherwise, replaces the value with the results of the given
1918 >     * remapping function, or removes if {@code null}. The entire
1919 >     * method invocation is performed atomically.  Some attempted
1920 >     * update operations on this map by other threads may be blocked
1921 >     * while computation is in progress, so the computation should be
1922 >     * short and simple, and must not attempt to update any other
1923 >     * mappings of this Map.
1924 >     *
1925 >     * @param key key with which the specified value is to be associated
1926 >     * @param value the value to use if absent
1927 >     * @param remappingFunction the function to recompute a value if present
1928 >     * @return the new value associated with the specified key, or null if none
1929 >     * @throws NullPointerException if the specified key or the
1930 >     *         remappingFunction is null
1931 >     * @throws RuntimeException or Error if the remappingFunction does so,
1932 >     *         in which case the mapping is unchanged
1933       */
1934 <    @SuppressWarnings("unchecked") public V merge
2978 <        (K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
1934 >    public V merge(K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
1935          if (key == null || value == null || remappingFunction == null)
1936              throw new NullPointerException();
1937 <        return (V)internalMerge(key, value, remappingFunction);
1937 >        int h = spread(key.hashCode());
1938 >        V val = null;
1939 >        int delta = 0;
1940 >        int binCount = 0;
1941 >        for (Node<K,V>[] tab = table;;) {
1942 >            Node<K,V> f; int n, i, fh;
1943 >            if (tab == null || (n = tab.length) == 0)
1944 >                tab = initTable();
1945 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1946 >                if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1947 >                    delta = 1;
1948 >                    val = value;
1949 >                    break;
1950 >                }
1951 >            }
1952 >            else if ((fh = f.hash) == MOVED)
1953 >                tab = helpTransfer(tab, f);
1954 >            else {
1955 >                synchronized (f) {
1956 >                    if (tabAt(tab, i) == f) {
1957 >                        if (fh >= 0) {
1958 >                            binCount = 1;
1959 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1960 >                                K ek;
1961 >                                if (e.hash == h &&
1962 >                                    ((ek = e.key) == key ||
1963 >                                     (ek != null && key.equals(ek)))) {
1964 >                                    val = remappingFunction.apply(e.val, value);
1965 >                                    if (val != null)
1966 >                                        e.val = val;
1967 >                                    else {
1968 >                                        delta = -1;
1969 >                                        Node<K,V> en = e.next;
1970 >                                        if (pred != null)
1971 >                                            pred.next = en;
1972 >                                        else
1973 >                                            setTabAt(tab, i, en);
1974 >                                    }
1975 >                                    break;
1976 >                                }
1977 >                                pred = e;
1978 >                                if ((e = e.next) == null) {
1979 >                                    delta = 1;
1980 >                                    val = value;
1981 >                                    pred.next =
1982 >                                        new Node<K,V>(h, key, val, null);
1983 >                                    break;
1984 >                                }
1985 >                            }
1986 >                        }
1987 >                        else if (f instanceof TreeBin) {
1988 >                            binCount = 2;
1989 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1990 >                            TreeNode<K,V> r = t.root;
1991 >                            TreeNode<K,V> p = (r == null) ? null :
1992 >                                r.findTreeNode(h, key, null);
1993 >                            val = (p == null) ? value :
1994 >                                remappingFunction.apply(p.val, value);
1995 >                            if (val != null) {
1996 >                                if (p != null)
1997 >                                    p.val = val;
1998 >                                else {
1999 >                                    delta = 1;
2000 >                                    t.putTreeVal(h, key, val);
2001 >                                }
2002 >                            }
2003 >                            else if (p != null) {
2004 >                                delta = -1;
2005 >                                if (t.removeTreeNode(p))
2006 >                                    setTabAt(tab, i, untreeify(t.first));
2007 >                            }
2008 >                        }
2009 >                    }
2010 >                }
2011 >                if (binCount != 0) {
2012 >                    if (binCount >= TREEIFY_THRESHOLD)
2013 >                        treeifyBin(tab, i);
2014 >                    break;
2015 >                }
2016 >            }
2017 >        }
2018 >        if (delta != 0)
2019 >            addCount((long)delta, binCount);
2020 >        return val;
2021      }
2022  
2023 +    // Hashtable legacy methods
2024 +
2025      /**
2026 <     * Removes the key (and its corresponding value) from this map.
2027 <     * This method does nothing if the key is not in the map.
2026 >     * Legacy method testing if some key maps into the specified value
2027 >     * in this table.  This method is identical in functionality to
2028 >     * {@link #containsValue(Object)}, and exists solely to ensure
2029 >     * full compatibility with class {@link java.util.Hashtable},
2030 >     * which supported this method prior to introduction of the
2031 >     * Java Collections framework.
2032       *
2033 <     * @param  key the key that needs to be removed
2034 <     * @return the previous value associated with {@code key}, or
2035 <     *         {@code null} if there was no mapping for {@code key}
2036 <     * @throws NullPointerException if the specified key is null
2033 >     * @param  value a value to search for
2034 >     * @return {@code true} if and only if some key maps to the
2035 >     *         {@code value} argument in this table as
2036 >     *         determined by the {@code equals} method;
2037 >     *         {@code false} otherwise
2038 >     * @throws NullPointerException if the specified value is null
2039       */
2040 <    @SuppressWarnings("unchecked") public V remove(Object key) {
2041 <        if (key == null)
2995 <            throw new NullPointerException();
2996 <        return (V)internalReplace(key, null, null);
2040 >    @Deprecated public boolean contains(Object value) {
2041 >        return containsValue(value);
2042      }
2043  
2044      /**
2045 <     * {@inheritDoc}
2045 >     * Returns an enumeration of the keys in this table.
2046       *
2047 <     * @throws NullPointerException if the specified key is null
2047 >     * @return an enumeration of the keys in this table
2048 >     * @see #keySet()
2049       */
2050 <    public boolean remove(Object key, Object value) {
2051 <        if (key == null)
2052 <            throw new NullPointerException();
2053 <        if (value == null)
3008 <            return false;
3009 <        return internalReplace(key, null, value) != null;
2050 >    public Enumeration<K> keys() {
2051 >        Node<K,V>[] t;
2052 >        int f = (t = table) == null ? 0 : t.length;
2053 >        return new KeyIterator<K,V>(t, f, 0, f, this);
2054      }
2055  
2056      /**
2057 <     * {@inheritDoc}
2057 >     * Returns an enumeration of the values in this table.
2058       *
2059 <     * @throws NullPointerException if any of the arguments are null
2059 >     * @return an enumeration of the values in this table
2060 >     * @see #values()
2061       */
2062 <    public boolean replace(K key, V oldValue, V newValue) {
2063 <        if (key == null || oldValue == null || newValue == null)
2064 <            throw new NullPointerException();
2065 <        return internalReplace(key, newValue, oldValue) != null;
2062 >    public Enumeration<V> elements() {
2063 >        Node<K,V>[] t;
2064 >        int f = (t = table) == null ? 0 : t.length;
2065 >        return new ValueIterator<K,V>(t, f, 0, f, this);
2066      }
2067  
2068 +    // ConcurrentHashMapV8-only methods
2069 +
2070      /**
2071 <     * {@inheritDoc}
2071 >     * Returns the number of mappings. This method should be used
2072 >     * instead of {@link #size} because a ConcurrentHashMapV8 may
2073 >     * contain more mappings than can be represented as an int. The
2074 >     * value returned is an estimate; the actual count may differ if
2075 >     * there are concurrent insertions or removals.
2076       *
2077 <     * @return the previous value associated with the specified key,
2078 <     *         or {@code null} if there was no mapping for the key
3028 <     * @throws NullPointerException if the specified key or value is null
2077 >     * @return the number of mappings
2078 >     * @since 1.8
2079       */
2080 <    @SuppressWarnings("unchecked") public V replace(K key, V value) {
2081 <        if (key == null || value == null)
2082 <            throw new NullPointerException();
3033 <        return (V)internalReplace(key, value, null);
2080 >    public long mappingCount() {
2081 >        long n = sumCount();
2082 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2083      }
2084  
2085      /**
2086 <     * Removes all of the mappings from this map.
2086 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2087 >     * from the given type to {@code Boolean.TRUE}.
2088 >     *
2089 >     * @return the new set
2090 >     * @since 1.8
2091       */
2092 <    public void clear() {
2093 <        internalClear();
2092 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2093 >        return new KeySetView<K,Boolean>
2094 >            (new ConcurrentHashMapV8<K,Boolean>(), Boolean.TRUE);
2095      }
2096  
2097      /**
2098 <     * Returns a {@link Set} view of the keys contained in this map.
2099 <     * The set is backed by the map, so changes to the map are
3046 <     * reflected in the set, and vice-versa.
2098 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2099 >     * from the given type to {@code Boolean.TRUE}.
2100       *
2101 <     * @return the set view
2101 >     * @param initialCapacity The implementation performs internal
2102 >     * sizing to accommodate this many elements.
2103 >     * @throws IllegalArgumentException if the initial capacity of
2104 >     * elements is negative
2105 >     * @return the new set
2106 >     * @since 1.8
2107       */
2108 <    public KeySetView<K,V> keySet() {
2109 <        KeySetView<K,V> ks = keySet;
2110 <        return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2108 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2109 >        return new KeySetView<K,Boolean>
2110 >            (new ConcurrentHashMapV8<K,Boolean>(initialCapacity), Boolean.TRUE);
2111      }
2112  
2113      /**
2114       * Returns a {@link Set} view of the keys in this map, using the
2115       * given common mapped value for any additions (i.e., {@link
2116 <     * Collection#add} and {@link Collection#addAll}). This is of
2117 <     * course only appropriate if it is acceptable to use the same
2118 <     * value for all additions from this view.
2116 >     * Collection#add} and {@link Collection#addAll(Collection)}).
2117 >     * This is of course only appropriate if it is acceptable to use
2118 >     * the same value for all additions from this view.
2119       *
2120 <     * @param mappedValue the mapped value to use for any
3063 <     * additions.
2120 >     * @param mappedValue the mapped value to use for any additions
2121       * @return the set view
2122       * @throws NullPointerException if the mappedValue is null
2123       */
# Line 3070 | Line 2127 | public class ConcurrentHashMapV8<K, V>
2127          return new KeySetView<K,V>(this, mappedValue);
2128      }
2129  
2130 +    /* ---------------- Special Nodes -------------- */
2131 +
2132      /**
2133 <     * Returns a {@link Collection} view of the values contained in this map.
3075 <     * The collection is backed by the map, so changes to the map are
3076 <     * reflected in the collection, and vice-versa.
2133 >     * A node inserted at head of bins during transfer operations.
2134       */
2135 <    public ValuesView<K,V> values() {
2136 <        ValuesView<K,V> vs = values;
2137 <        return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2135 >    static final class ForwardingNode<K,V> extends Node<K,V> {
2136 >        final Node<K,V>[] nextTable;
2137 >        ForwardingNode(Node<K,V>[] tab) {
2138 >            super(MOVED, null, null, null);
2139 >            this.nextTable = tab;
2140 >        }
2141 >
2142 >        Node<K,V> find(int h, Object k) {
2143 >            Node<K,V> e; int n;
2144 >            Node<K,V>[] tab = nextTable;
2145 >            if (k != null && tab != null && (n = tab.length) > 0 &&
2146 >                (e = tabAt(tab, (n - 1) & h)) != null) {
2147 >                do {
2148 >                    int eh; K ek;
2149 >                    if ((eh = e.hash) == h &&
2150 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
2151 >                        return e;
2152 >                    if (eh < 0)
2153 >                        return e.find(h, k);
2154 >                } while ((e = e.next) != null);
2155 >            }
2156 >            return null;
2157 >        }
2158      }
2159  
2160      /**
2161 <     * Returns a {@link Set} view of the mappings contained in this map.
3085 <     * The set is backed by the map, so changes to the map are
3086 <     * reflected in the set, and vice-versa.  The set supports element
3087 <     * removal, which removes the corresponding mapping from the map,
3088 <     * via the {@code Iterator.remove}, {@code Set.remove},
3089 <     * {@code removeAll}, {@code retainAll}, and {@code clear}
3090 <     * operations.  It does not support the {@code add} or
3091 <     * {@code addAll} operations.
3092 <     *
3093 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
3094 <     * that will never throw {@link ConcurrentModificationException},
3095 <     * and guarantees to traverse elements as they existed upon
3096 <     * construction of the iterator, and may (but is not guaranteed to)
3097 <     * reflect any modifications subsequent to construction.
2161 >     * A place-holder node used in computeIfAbsent and compute
2162       */
2163 <    public Set<Map.Entry<K,V>> entrySet() {
2164 <        EntrySetView<K,V> es = entrySet;
2165 <        return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2163 >    static final class ReservationNode<K,V> extends Node<K,V> {
2164 >        ReservationNode() {
2165 >            super(RESERVED, null, null, null);
2166 >        }
2167 >
2168 >        Node<K,V> find(int h, Object k) {
2169 >            return null;
2170 >        }
2171      }
2172  
2173 +    /* ---------------- Table Initialization and Resizing -------------- */
2174 +
2175      /**
2176 <     * Returns an enumeration of the keys in this table.
3106 <     *
3107 <     * @return an enumeration of the keys in this table
3108 <     * @see #keySet()
2176 >     * Initializes table, using the size recorded in sizeCtl.
2177       */
2178 <    public Enumeration<K> keys() {
2179 <        return new KeyIterator<K,V>(this);
2178 >    private final Node<K,V>[] initTable() {
2179 >        Node<K,V>[] tab; int sc;
2180 >        while ((tab = table) == null || tab.length == 0) {
2181 >            if ((sc = sizeCtl) < 0)
2182 >                Thread.yield(); // lost initialization race; just spin
2183 >            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2184 >                try {
2185 >                    if ((tab = table) == null || tab.length == 0) {
2186 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2187 >                        @SuppressWarnings({"rawtypes","unchecked"})
2188 >                            Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2189 >                        table = tab = nt;
2190 >                        sc = n - (n >>> 2);
2191 >                    }
2192 >                } finally {
2193 >                    sizeCtl = sc;
2194 >                }
2195 >                break;
2196 >            }
2197 >        }
2198 >        return tab;
2199      }
2200  
2201      /**
2202 <     * Returns an enumeration of the values in this table.
2203 <     *
2204 <     * @return an enumeration of the values in this table
2205 <     * @see #values()
2202 >     * Adds to count, and if table is too small and not already
2203 >     * resizing, initiates transfer. If already resizing, helps
2204 >     * perform transfer if work is available.  Rechecks occupancy
2205 >     * after a transfer to see if another resize is already needed
2206 >     * because resizings are lagging additions.
2207 >     *
2208 >     * @param x the count to add
2209 >     * @param check if <0, don't check resize, if <= 1 only check if uncontended
2210 >     */
2211 >    private final void addCount(long x, int check) {
2212 >        CounterCell[] as; long b, s;
2213 >        if ((as = counterCells) != null ||
2214 >            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2215 >            CounterHashCode hc; CounterCell a; long v; int m;
2216 >            boolean uncontended = true;
2217 >            if ((hc = threadCounterHashCode.get()) == null ||
2218 >                as == null || (m = as.length - 1) < 0 ||
2219 >                (a = as[m & hc.code]) == null ||
2220 >                !(uncontended =
2221 >                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2222 >                fullAddCount(x, hc, uncontended);
2223 >                return;
2224 >            }
2225 >            if (check <= 1)
2226 >                return;
2227 >            s = sumCount();
2228 >        }
2229 >        if (check >= 0) {
2230 >            Node<K,V>[] tab, nt; int sc;
2231 >            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2232 >                   tab.length < MAXIMUM_CAPACITY) {
2233 >                if (sc < 0) {
2234 >                    if (sc == -1 || transferIndex <= transferOrigin ||
2235 >                        (nt = nextTable) == null)
2236 >                        break;
2237 >                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2238 >                        transfer(tab, nt);
2239 >                }
2240 >                else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
2241 >                    transfer(tab, null);
2242 >                s = sumCount();
2243 >            }
2244 >        }
2245 >    }
2246 >
2247 >    /**
2248 >     * Helps transfer if a resize is in progress.
2249       */
2250 <    public Enumeration<V> elements() {
2251 <        return new ValueIterator<K,V>(this);
2250 >    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2251 >        Node<K,V>[] nextTab; int sc;
2252 >        if ((f instanceof ForwardingNode) &&
2253 >            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2254 >            if (nextTab == nextTable && tab == table &&
2255 >                transferIndex > transferOrigin && (sc = sizeCtl) < -1 &&
2256 >                U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2257 >                transfer(tab, nextTab);
2258 >            return nextTab;
2259 >        }
2260 >        return table;
2261      }
2262  
2263      /**
2264 <     * Returns a partitionable iterator of the keys in this map.
2264 >     * Tries to presize table to accommodate the given number of elements.
2265       *
2266 <     * @return a partitionable iterator of the keys in this map
2266 >     * @param size number of elements (doesn't need to be perfectly accurate)
2267       */
2268 <    public Spliterator<K> keySpliterator() {
2269 <        return new KeyIterator<K,V>(this);
2268 >    private final void tryPresize(int size) {
2269 >        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2270 >            tableSizeFor(size + (size >>> 1) + 1);
2271 >        int sc;
2272 >        while ((sc = sizeCtl) >= 0) {
2273 >            Node<K,V>[] tab = table; int n;
2274 >            if (tab == null || (n = tab.length) == 0) {
2275 >                n = (sc > c) ? sc : c;
2276 >                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2277 >                    try {
2278 >                        if (table == tab) {
2279 >                            @SuppressWarnings({"rawtypes","unchecked"})
2280 >                                Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2281 >                            table = nt;
2282 >                            sc = n - (n >>> 2);
2283 >                        }
2284 >                    } finally {
2285 >                        sizeCtl = sc;
2286 >                    }
2287 >                }
2288 >            }
2289 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
2290 >                break;
2291 >            else if (tab == table &&
2292 >                     U.compareAndSwapInt(this, SIZECTL, sc, -2))
2293 >                transfer(tab, null);
2294 >        }
2295      }
2296  
2297      /**
2298 <     * Returns a partitionable iterator of the values in this map.
2299 <     *
3136 <     * @return a partitionable iterator of the values in this map
2298 >     * Moves and/or copies the nodes in each bin to new table. See
2299 >     * above for explanation.
2300       */
2301 <    public Spliterator<V> valueSpliterator() {
2302 <        return new ValueIterator<K,V>(this);
2301 >    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2302 >        int n = tab.length, stride;
2303 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2304 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
2305 >        if (nextTab == null) {            // initiating
2306 >            try {
2307 >                @SuppressWarnings({"rawtypes","unchecked"})
2308 >                    Node<K,V>[] nt = (Node<K,V>[])new Node[n << 1];
2309 >                nextTab = nt;
2310 >            } catch (Throwable ex) {      // try to cope with OOME
2311 >                sizeCtl = Integer.MAX_VALUE;
2312 >                return;
2313 >            }
2314 >            nextTable = nextTab;
2315 >            transferOrigin = n;
2316 >            transferIndex = n;
2317 >            ForwardingNode<K,V> rev = new ForwardingNode<K,V>(tab);
2318 >            for (int k = n; k > 0;) {    // progressively reveal ready slots
2319 >                int nextk = (k > stride) ? k - stride : 0;
2320 >                for (int m = nextk; m < k; ++m)
2321 >                    nextTab[m] = rev;
2322 >                for (int m = n + nextk; m < n + k; ++m)
2323 >                    nextTab[m] = rev;
2324 >                U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
2325 >            }
2326 >        }
2327 >        int nextn = nextTab.length;
2328 >        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2329 >        boolean advance = true;
2330 >        for (int i = 0, bound = 0;;) {
2331 >            int nextIndex, nextBound, fh; Node<K,V> f;
2332 >            while (advance) {
2333 >                if (--i >= bound)
2334 >                    advance = false;
2335 >                else if ((nextIndex = transferIndex) <= transferOrigin) {
2336 >                    i = -1;
2337 >                    advance = false;
2338 >                }
2339 >                else if (U.compareAndSwapInt
2340 >                         (this, TRANSFERINDEX, nextIndex,
2341 >                          nextBound = (nextIndex > stride ?
2342 >                                       nextIndex - stride : 0))) {
2343 >                    bound = nextBound;
2344 >                    i = nextIndex - 1;
2345 >                    advance = false;
2346 >                }
2347 >            }
2348 >            if (i < 0 || i >= n || i + n >= nextn) {
2349 >                for (int sc;;) {
2350 >                    if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2351 >                        if (sc == -1) {
2352 >                            nextTable = null;
2353 >                            table = nextTab;
2354 >                            sizeCtl = (n << 1) - (n >>> 1);
2355 >                        }
2356 >                        return;
2357 >                    }
2358 >                }
2359 >            }
2360 >            else if ((f = tabAt(tab, i)) == null) {
2361 >                if (casTabAt(tab, i, null, fwd)) {
2362 >                    setTabAt(nextTab, i, null);
2363 >                    setTabAt(nextTab, i + n, null);
2364 >                    advance = true;
2365 >                }
2366 >            }
2367 >            else if ((fh = f.hash) == MOVED)
2368 >                advance = true; // already processed
2369 >            else {
2370 >                synchronized (f) {
2371 >                    if (tabAt(tab, i) == f) {
2372 >                        Node<K,V> ln, hn;
2373 >                        if (fh >= 0) {
2374 >                            int runBit = fh & n;
2375 >                            Node<K,V> lastRun = f;
2376 >                            for (Node<K,V> p = f.next; p != null; p = p.next) {
2377 >                                int b = p.hash & n;
2378 >                                if (b != runBit) {
2379 >                                    runBit = b;
2380 >                                    lastRun = p;
2381 >                                }
2382 >                            }
2383 >                            if (runBit == 0) {
2384 >                                ln = lastRun;
2385 >                                hn = null;
2386 >                            }
2387 >                            else {
2388 >                                hn = lastRun;
2389 >                                ln = null;
2390 >                            }
2391 >                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
2392 >                                int ph = p.hash; K pk = p.key; V pv = p.val;
2393 >                                if ((ph & n) == 0)
2394 >                                    ln = new Node<K,V>(ph, pk, pv, ln);
2395 >                                else
2396 >                                    hn = new Node<K,V>(ph, pk, pv, hn);
2397 >                            }
2398 >                        }
2399 >                        else if (f instanceof TreeBin) {
2400 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2401 >                            TreeNode<K,V> lo = null, loTail = null;
2402 >                            TreeNode<K,V> hi = null, hiTail = null;
2403 >                            int lc = 0, hc = 0;
2404 >                            for (Node<K,V> e = t.first; e != null; e = e.next) {
2405 >                                int h = e.hash;
2406 >                                TreeNode<K,V> p = new TreeNode<K,V>
2407 >                                    (h, e.key, e.val, null, null);
2408 >                                if ((h & n) == 0) {
2409 >                                    if ((p.prev = loTail) == null)
2410 >                                        lo = p;
2411 >                                    else
2412 >                                        loTail.next = p;
2413 >                                    loTail = p;
2414 >                                    ++lc;
2415 >                                }
2416 >                                else {
2417 >                                    if ((p.prev = hiTail) == null)
2418 >                                        hi = p;
2419 >                                    else
2420 >                                        hiTail.next = p;
2421 >                                    hiTail = p;
2422 >                                    ++hc;
2423 >                                }
2424 >                            }
2425 >                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2426 >                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
2427 >                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2428 >                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
2429 >                        }
2430 >                        else
2431 >                            ln = hn = null;
2432 >                        setTabAt(nextTab, i, ln);
2433 >                        setTabAt(nextTab, i + n, hn);
2434 >                        setTabAt(tab, i, fwd);
2435 >                        advance = true;
2436 >                    }
2437 >                }
2438 >            }
2439 >        }
2440      }
2441  
2442 +    /* ---------------- Conversion from/to TreeBins -------------- */
2443 +
2444      /**
2445 <     * Returns a partitionable iterator of the entries in this map.
2446 <     *
3145 <     * @return a partitionable iterator of the entries in this map
2445 >     * Replaces all linked nodes in bin at given index unless table is
2446 >     * too small, in which case resizes instead.
2447       */
2448 <    public Spliterator<Map.Entry<K,V>> entrySpliterator() {
2449 <        return new EntryIterator<K,V>(this);
2448 >    private final void treeifyBin(Node<K,V>[] tab, int index) {
2449 >        Node<K,V> b; int n, sc;
2450 >        if (tab != null) {
2451 >            if ((n = tab.length) < MIN_TREEIFY_CAPACITY) {
2452 >                if (tab == table && (sc = sizeCtl) >= 0 &&
2453 >                    U.compareAndSwapInt(this, SIZECTL, sc, -2))
2454 >                    transfer(tab, null);
2455 >            }
2456 >            else if ((b = tabAt(tab, index)) != null) {
2457 >                synchronized (b) {
2458 >                    if (tabAt(tab, index) == b) {
2459 >                        TreeNode<K,V> hd = null, tl = null;
2460 >                        for (Node<K,V> e = b; e != null; e = e.next) {
2461 >                            TreeNode<K,V> p =
2462 >                                new TreeNode<K,V>(e.hash, e.key, e.val,
2463 >                                                  null, null);
2464 >                            if ((p.prev = tl) == null)
2465 >                                hd = p;
2466 >                            else
2467 >                                tl.next = p;
2468 >                            tl = p;
2469 >                        }
2470 >                        setTabAt(tab, index, new TreeBin<K,V>(hd));
2471 >                    }
2472 >                }
2473 >            }
2474 >        }
2475      }
2476  
2477      /**
2478 <     * Returns the hash code value for this {@link Map}, i.e.,
3153 <     * the sum of, for each key-value pair in the map,
3154 <     * {@code key.hashCode() ^ value.hashCode()}.
3155 <     *
3156 <     * @return the hash code value for this map
2478 >     * Returns a list on non-TreeNodes replacing those in given list.
2479       */
2480 <    public int hashCode() {
2481 <        int h = 0;
2482 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2483 <        Object v;
2484 <        while ((v = it.advance()) != null) {
2485 <            h += it.nextKey.hashCode() ^ v.hashCode();
2480 >    static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2481 >        Node<K,V> hd = null, tl = null;
2482 >        for (Node<K,V> q = b; q != null; q = q.next) {
2483 >            Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2484 >            if (tl == null)
2485 >                hd = p;
2486 >            else
2487 >                tl.next = p;
2488 >            tl = p;
2489          }
2490 <        return h;
2490 >        return hd;
2491      }
2492  
2493 +    /* ---------------- TreeNodes -------------- */
2494 +
2495      /**
2496 <     * Returns a string representation of this map.  The string
3170 <     * representation consists of a list of key-value mappings (in no
3171 <     * particular order) enclosed in braces ("{@code {}}").  Adjacent
3172 <     * mappings are separated by the characters {@code ", "} (comma
3173 <     * and space).  Each key-value mapping is rendered as the key
3174 <     * followed by an equals sign ("{@code =}") followed by the
3175 <     * associated value.
3176 <     *
3177 <     * @return a string representation of this map
2496 >     * Nodes for use in TreeBins
2497       */
2498 <    public String toString() {
2499 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2500 <        StringBuilder sb = new StringBuilder();
2501 <        sb.append('{');
2502 <        Object v;
2503 <        if ((v = it.advance()) != null) {
2504 <            for (;;) {
2505 <                Object k = it.nextKey;
2506 <                sb.append(k == this ? "(this Map)" : k);
2507 <                sb.append('=');
2508 <                sb.append(v == this ? "(this Map)" : v);
2509 <                if ((v = it.advance()) == null)
2498 >    static final class TreeNode<K,V> extends Node<K,V> {
2499 >        TreeNode<K,V> parent;  // red-black tree links
2500 >        TreeNode<K,V> left;
2501 >        TreeNode<K,V> right;
2502 >        TreeNode<K,V> prev;    // needed to unlink next upon deletion
2503 >        boolean red;
2504 >
2505 >        TreeNode(int hash, K key, V val, Node<K,V> next,
2506 >                 TreeNode<K,V> parent) {
2507 >            super(hash, key, val, next);
2508 >            this.parent = parent;
2509 >        }
2510 >
2511 >        Node<K,V> find(int h, Object k) {
2512 >            return findTreeNode(h, k, null);
2513 >        }
2514 >
2515 >        /**
2516 >         * Returns the TreeNode (or null if not found) for the given key
2517 >         * starting at given root.
2518 >         */
2519 >        final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2520 >            if (k != null) {
2521 >                TreeNode<K,V> p = this;
2522 >                do  {
2523 >                    int ph, dir; K pk; TreeNode<K,V> q;
2524 >                    TreeNode<K,V> pl = p.left, pr = p.right;
2525 >                    if ((ph = p.hash) > h)
2526 >                        p = pl;
2527 >                    else if (ph < h)
2528 >                        p = pr;
2529 >                    else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2530 >                        return p;
2531 >                    else if (pl == null && pr == null)
2532 >                        break;
2533 >                    else if ((kc != null ||
2534 >                              (kc = comparableClassFor(k)) != null) &&
2535 >                             (dir = compareComparables(kc, k, pk)) != 0)
2536 >                        p = (dir < 0) ? pl : pr;
2537 >                    else if (pl == null)
2538 >                        p = pr;
2539 >                    else if (pr == null ||
2540 >                             (q = pr.findTreeNode(h, k, kc)) == null)
2541 >                        p = pl;
2542 >                    else
2543 >                        return q;
2544 >                } while (p != null);
2545 >            }
2546 >            return null;
2547 >        }
2548 >    }
2549 >
2550 >    /* ---------------- TreeBins -------------- */
2551 >
2552 >    /**
2553 >     * TreeNodes used at the heads of bins. TreeBins do not hold user
2554 >     * keys or values, but instead point to list of TreeNodes and
2555 >     * their root. They also maintain a parasitic read-write lock
2556 >     * forcing writers (who hold bin lock) to wait for readers (who do
2557 >     * not) to complete before tree restructuring operations.
2558 >     */
2559 >    static final class TreeBin<K,V> extends Node<K,V> {
2560 >        TreeNode<K,V> root;
2561 >        volatile TreeNode<K,V> first;
2562 >        volatile Thread waiter;
2563 >        volatile int lockState;
2564 >        // values for lockState
2565 >        static final int WRITER = 1; // set while holding write lock
2566 >        static final int WAITER = 2; // set when waiting for write lock
2567 >        static final int READER = 4; // increment value for setting read lock
2568 >
2569 >        /**
2570 >         * Creates bin with initial set of nodes headed by b.
2571 >         */
2572 >        TreeBin(TreeNode<K,V> b) {
2573 >            super(TREEBIN, null, null, null);
2574 >            this.first = b;
2575 >            TreeNode<K,V> r = null;
2576 >            for (TreeNode<K,V> x = b, next; x != null; x = next) {
2577 >                next = (TreeNode<K,V>)x.next;
2578 >                x.left = x.right = null;
2579 >                if (r == null) {
2580 >                    x.parent = null;
2581 >                    x.red = false;
2582 >                    r = x;
2583 >                }
2584 >                else {
2585 >                    Object key = x.key;
2586 >                    int hash = x.hash;
2587 >                    Class<?> kc = null;
2588 >                    for (TreeNode<K,V> p = r;;) {
2589 >                        int dir, ph;
2590 >                        if ((ph = p.hash) > hash)
2591 >                            dir = -1;
2592 >                        else if (ph < hash)
2593 >                            dir = 1;
2594 >                        else if ((kc != null ||
2595 >                                  (kc = comparableClassFor(key)) != null))
2596 >                            dir = compareComparables(kc, key, p.key);
2597 >                        else
2598 >                            dir = 0;
2599 >                        TreeNode<K,V> xp = p;
2600 >                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
2601 >                            x.parent = xp;
2602 >                            if (dir <= 0)
2603 >                                xp.left = x;
2604 >                            else
2605 >                                xp.right = x;
2606 >                            r = balanceInsertion(r, x);
2607 >                            break;
2608 >                        }
2609 >                    }
2610 >                }
2611 >            }
2612 >            this.root = r;
2613 >        }
2614 >
2615 >        /**
2616 >         * Acquires write lock for tree restructuring.
2617 >         */
2618 >        private final void lockRoot() {
2619 >            if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2620 >                contendedLock(); // offload to separate method
2621 >        }
2622 >
2623 >        /**
2624 >         * Releases write lock for tree restructuring.
2625 >         */
2626 >        private final void unlockRoot() {
2627 >            lockState = 0;
2628 >        }
2629 >
2630 >        /**
2631 >         * Possibly blocks awaiting root lock.
2632 >         */
2633 >        private final void contendedLock() {
2634 >            boolean waiting = false;
2635 >            for (int s;;) {
2636 >                if (((s = lockState) & WRITER) == 0) {
2637 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2638 >                        if (waiting)
2639 >                            waiter = null;
2640 >                        return;
2641 >                    }
2642 >                }
2643 >                else if ((s | WAITER) == 0) {
2644 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2645 >                        waiting = true;
2646 >                        waiter = Thread.currentThread();
2647 >                    }
2648 >                }
2649 >                else if (waiting)
2650 >                    LockSupport.park(this);
2651 >            }
2652 >        }
2653 >
2654 >        /**
2655 >         * Returns matching node or null if none. Tries to search
2656 >         * using tree comparisons from root, but continues linear
2657 >         * search when lock not available.
2658 >         */
2659 >        final Node<K,V> find(int h, Object k) {
2660 >            if (k != null) {
2661 >                for (Node<K,V> e = first; e != null; e = e.next) {
2662 >                    int s; K ek;
2663 >                    if (((s = lockState) & (WAITER|WRITER)) != 0) {
2664 >                        if (e.hash == h &&
2665 >                            ((ek = e.key) == k || (ek != null && k.equals(ek))))
2666 >                            return e;
2667 >                    }
2668 >                    else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2669 >                                                 s + READER)) {
2670 >                        TreeNode<K,V> r, p;
2671 >                        try {
2672 >                            p = ((r = root) == null ? null :
2673 >                                 r.findTreeNode(h, k, null));
2674 >                        } finally {
2675 >                            Thread w;
2676 >                            int ls;
2677 >                            do {} while (!U.compareAndSwapInt
2678 >                                         (this, LOCKSTATE,
2679 >                                          ls = lockState, ls - READER));
2680 >                            if (ls == (READER|WAITER) && (w = waiter) != null)
2681 >                                LockSupport.unpark(w);
2682 >                        }
2683 >                        return p;
2684 >                    }
2685 >                }
2686 >            }
2687 >            return null;
2688 >        }
2689 >
2690 >        /**
2691 >         * Finds or adds a node.
2692 >         * @return null if added
2693 >         */
2694 >        final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2695 >            Class<?> kc = null;
2696 >            for (TreeNode<K,V> p = root;;) {
2697 >                int dir, ph; K pk; TreeNode<K,V> q, pr;
2698 >                if (p == null) {
2699 >                    first = root = new TreeNode<K,V>(h, k, v, null, null);
2700                      break;
2701 <                sb.append(',').append(' ');
2701 >                }
2702 >                else if ((ph = p.hash) > h)
2703 >                    dir = -1;
2704 >                else if (ph < h)
2705 >                    dir = 1;
2706 >                else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2707 >                    return p;
2708 >                else if ((kc == null &&
2709 >                          (kc = comparableClassFor(k)) == null) ||
2710 >                         (dir = compareComparables(kc, k, pk)) == 0) {
2711 >                    if (p.left == null)
2712 >                        dir = 1;
2713 >                    else if ((pr = p.right) == null ||
2714 >                             (q = pr.findTreeNode(h, k, kc)) == null)
2715 >                        dir = -1;
2716 >                    else
2717 >                        return q;
2718 >                }
2719 >                TreeNode<K,V> xp = p;
2720 >                if ((p = (dir < 0) ? p.left : p.right) == null) {
2721 >                    TreeNode<K,V> x, f = first;
2722 >                    first = x = new TreeNode<K,V>(h, k, v, f, xp);
2723 >                    if (f != null)
2724 >                        f.prev = x;
2725 >                    if (dir < 0)
2726 >                        xp.left = x;
2727 >                    else
2728 >                        xp.right = x;
2729 >                    if (!xp.red)
2730 >                        x.red = true;
2731 >                    else {
2732 >                        lockRoot();
2733 >                        try {
2734 >                            root = balanceInsertion(root, x);
2735 >                        } finally {
2736 >                            unlockRoot();
2737 >                        }
2738 >                    }
2739 >                    break;
2740 >                }
2741 >            }
2742 >            assert checkInvariants(root);
2743 >            return null;
2744 >        }
2745 >
2746 >        /**
2747 >         * Removes the given node, that must be present before this
2748 >         * call.  This is messier than typical red-black deletion code
2749 >         * because we cannot swap the contents of an interior node
2750 >         * with a leaf successor that is pinned by "next" pointers
2751 >         * that are accessible independently of lock. So instead we
2752 >         * swap the tree linkages.
2753 >         *
2754 >         * @return true if now too small, so should be untreeified
2755 >         */
2756 >        final boolean removeTreeNode(TreeNode<K,V> p) {
2757 >            TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2758 >            TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
2759 >            TreeNode<K,V> r, rl;
2760 >            if (pred == null)
2761 >                first = next;
2762 >            else
2763 >                pred.next = next;
2764 >            if (next != null)
2765 >                next.prev = pred;
2766 >            if (first == null) {
2767 >                root = null;
2768 >                return true;
2769 >            }
2770 >            if ((r = root) == null || r.right == null || // too small
2771 >                (rl = r.left) == null || rl.left == null)
2772 >                return true;
2773 >            lockRoot();
2774 >            try {
2775 >                TreeNode<K,V> replacement;
2776 >                TreeNode<K,V> pl = p.left;
2777 >                TreeNode<K,V> pr = p.right;
2778 >                if (pl != null && pr != null) {
2779 >                    TreeNode<K,V> s = pr, sl;
2780 >                    while ((sl = s.left) != null) // find successor
2781 >                        s = sl;
2782 >                    boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2783 >                    TreeNode<K,V> sr = s.right;
2784 >                    TreeNode<K,V> pp = p.parent;
2785 >                    if (s == pr) { // p was s's direct parent
2786 >                        p.parent = s;
2787 >                        s.right = p;
2788 >                    }
2789 >                    else {
2790 >                        TreeNode<K,V> sp = s.parent;
2791 >                        if ((p.parent = sp) != null) {
2792 >                            if (s == sp.left)
2793 >                                sp.left = p;
2794 >                            else
2795 >                                sp.right = p;
2796 >                        }
2797 >                        if ((s.right = pr) != null)
2798 >                            pr.parent = s;
2799 >                    }
2800 >                    p.left = null;
2801 >                    if ((p.right = sr) != null)
2802 >                        sr.parent = p;
2803 >                    if ((s.left = pl) != null)
2804 >                        pl.parent = s;
2805 >                    if ((s.parent = pp) == null)
2806 >                        r = s;
2807 >                    else if (p == pp.left)
2808 >                        pp.left = s;
2809 >                    else
2810 >                        pp.right = s;
2811 >                    if (sr != null)
2812 >                        replacement = sr;
2813 >                    else
2814 >                        replacement = p;
2815 >                }
2816 >                else if (pl != null)
2817 >                    replacement = pl;
2818 >                else if (pr != null)
2819 >                    replacement = pr;
2820 >                else
2821 >                    replacement = p;
2822 >                if (replacement != p) {
2823 >                    TreeNode<K,V> pp = replacement.parent = p.parent;
2824 >                    if (pp == null)
2825 >                        r = replacement;
2826 >                    else if (p == pp.left)
2827 >                        pp.left = replacement;
2828 >                    else
2829 >                        pp.right = replacement;
2830 >                    p.left = p.right = p.parent = null;
2831 >                }
2832 >
2833 >                root = (p.red) ? r : balanceDeletion(r, replacement);
2834 >
2835 >                if (p == replacement) {  // detach pointers
2836 >                    TreeNode<K,V> pp;
2837 >                    if ((pp = p.parent) != null) {
2838 >                        if (p == pp.left)
2839 >                            pp.left = null;
2840 >                        else if (p == pp.right)
2841 >                            pp.right = null;
2842 >                        p.parent = null;
2843 >                    }
2844 >                }
2845 >            } finally {
2846 >                unlockRoot();
2847 >            }
2848 >            assert checkInvariants(root);
2849 >            return false;
2850 >        }
2851 >
2852 >        /* ------------------------------------------------------------ */
2853 >        // Red-black tree methods, all adapted from CLR
2854 >
2855 >        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2856 >                                              TreeNode<K,V> p) {
2857 >            TreeNode<K,V> r, pp, rl;
2858 >            if (p != null && (r = p.right) != null) {
2859 >                if ((rl = p.right = r.left) != null)
2860 >                    rl.parent = p;
2861 >                if ((pp = r.parent = p.parent) == null)
2862 >                    (root = r).red = false;
2863 >                else if (pp.left == p)
2864 >                    pp.left = r;
2865 >                else
2866 >                    pp.right = r;
2867 >                r.left = p;
2868 >                p.parent = r;
2869 >            }
2870 >            return root;
2871 >        }
2872 >
2873 >        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2874 >                                               TreeNode<K,V> p) {
2875 >            TreeNode<K,V> l, pp, lr;
2876 >            if (p != null && (l = p.left) != null) {
2877 >                if ((lr = p.left = l.right) != null)
2878 >                    lr.parent = p;
2879 >                if ((pp = l.parent = p.parent) == null)
2880 >                    (root = l).red = false;
2881 >                else if (pp.right == p)
2882 >                    pp.right = l;
2883 >                else
2884 >                    pp.left = l;
2885 >                l.right = p;
2886 >                p.parent = l;
2887 >            }
2888 >            return root;
2889 >        }
2890 >
2891 >        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2892 >                                                    TreeNode<K,V> x) {
2893 >            x.red = true;
2894 >            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2895 >                if ((xp = x.parent) == null) {
2896 >                    x.red = false;
2897 >                    return x;
2898 >                }
2899 >                else if (!xp.red || (xpp = xp.parent) == null)
2900 >                    return root;
2901 >                if (xp == (xppl = xpp.left)) {
2902 >                    if ((xppr = xpp.right) != null && xppr.red) {
2903 >                        xppr.red = false;
2904 >                        xp.red = false;
2905 >                        xpp.red = true;
2906 >                        x = xpp;
2907 >                    }
2908 >                    else {
2909 >                        if (x == xp.right) {
2910 >                            root = rotateLeft(root, x = xp);
2911 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
2912 >                        }
2913 >                        if (xp != null) {
2914 >                            xp.red = false;
2915 >                            if (xpp != null) {
2916 >                                xpp.red = true;
2917 >                                root = rotateRight(root, xpp);
2918 >                            }
2919 >                        }
2920 >                    }
2921 >                }
2922 >                else {
2923 >                    if (xppl != null && xppl.red) {
2924 >                        xppl.red = false;
2925 >                        xp.red = false;
2926 >                        xpp.red = true;
2927 >                        x = xpp;
2928 >                    }
2929 >                    else {
2930 >                        if (x == xp.left) {
2931 >                            root = rotateRight(root, x = xp);
2932 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
2933 >                        }
2934 >                        if (xp != null) {
2935 >                            xp.red = false;
2936 >                            if (xpp != null) {
2937 >                                xpp.red = true;
2938 >                                root = rotateLeft(root, xpp);
2939 >                            }
2940 >                        }
2941 >                    }
2942 >                }
2943 >            }
2944 >        }
2945 >
2946 >        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
2947 >                                                   TreeNode<K,V> x) {
2948 >            for (TreeNode<K,V> xp, xpl, xpr;;)  {
2949 >                if (x == null || x == root)
2950 >                    return root;
2951 >                else if ((xp = x.parent) == null) {
2952 >                    x.red = false;
2953 >                    return x;
2954 >                }
2955 >                else if (x.red) {
2956 >                    x.red = false;
2957 >                    return root;
2958 >                }
2959 >                else if ((xpl = xp.left) == x) {
2960 >                    if ((xpr = xp.right) != null && xpr.red) {
2961 >                        xpr.red = false;
2962 >                        xp.red = true;
2963 >                        root = rotateLeft(root, xp);
2964 >                        xpr = (xp = x.parent) == null ? null : xp.right;
2965 >                    }
2966 >                    if (xpr == null)
2967 >                        x = xp;
2968 >                    else {
2969 >                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;
2970 >                        if ((sr == null || !sr.red) &&
2971 >                            (sl == null || !sl.red)) {
2972 >                            xpr.red = true;
2973 >                            x = xp;
2974 >                        }
2975 >                        else {
2976 >                            if (sr == null || !sr.red) {
2977 >                                if (sl != null)
2978 >                                    sl.red = false;
2979 >                                xpr.red = true;
2980 >                                root = rotateRight(root, xpr);
2981 >                                xpr = (xp = x.parent) == null ?
2982 >                                    null : xp.right;
2983 >                            }
2984 >                            if (xpr != null) {
2985 >                                xpr.red = (xp == null) ? false : xp.red;
2986 >                                if ((sr = xpr.right) != null)
2987 >                                    sr.red = false;
2988 >                            }
2989 >                            if (xp != null) {
2990 >                                xp.red = false;
2991 >                                root = rotateLeft(root, xp);
2992 >                            }
2993 >                            x = root;
2994 >                        }
2995 >                    }
2996 >                }
2997 >                else { // symmetric
2998 >                    if (xpl != null && xpl.red) {
2999 >                        xpl.red = false;
3000 >                        xp.red = true;
3001 >                        root = rotateRight(root, xp);
3002 >                        xpl = (xp = x.parent) == null ? null : xp.left;
3003 >                    }
3004 >                    if (xpl == null)
3005 >                        x = xp;
3006 >                    else {
3007 >                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3008 >                        if ((sl == null || !sl.red) &&
3009 >                            (sr == null || !sr.red)) {
3010 >                            xpl.red = true;
3011 >                            x = xp;
3012 >                        }
3013 >                        else {
3014 >                            if (sl == null || !sl.red) {
3015 >                                if (sr != null)
3016 >                                    sr.red = false;
3017 >                                xpl.red = true;
3018 >                                root = rotateLeft(root, xpl);
3019 >                                xpl = (xp = x.parent) == null ?
3020 >                                    null : xp.left;
3021 >                            }
3022 >                            if (xpl != null) {
3023 >                                xpl.red = (xp == null) ? false : xp.red;
3024 >                                if ((sl = xpl.left) != null)
3025 >                                    sl.red = false;
3026 >                            }
3027 >                            if (xp != null) {
3028 >                                xp.red = false;
3029 >                                root = rotateRight(root, xp);
3030 >                            }
3031 >                            x = root;
3032 >                        }
3033 >                    }
3034 >                }
3035 >            }
3036 >        }
3037 >
3038 >        /**
3039 >         * Recursive invariant check
3040 >         */
3041 >        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3042 >            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3043 >                tb = t.prev, tn = (TreeNode<K,V>)t.next;
3044 >            if (tb != null && tb.next != t)
3045 >                return false;
3046 >            if (tn != null && tn.prev != t)
3047 >                return false;
3048 >            if (tp != null && t != tp.left && t != tp.right)
3049 >                return false;
3050 >            if (tl != null && (tl.parent != t || tl.hash > t.hash))
3051 >                return false;
3052 >            if (tr != null && (tr.parent != t || tr.hash < t.hash))
3053 >                return false;
3054 >            if (t.red && tl != null && tl.red && tr != null && tr.red)
3055 >                return false;
3056 >            if (tl != null && !checkInvariants(tl))
3057 >                return false;
3058 >            if (tr != null && !checkInvariants(tr))
3059 >                return false;
3060 >            return true;
3061 >        }
3062 >
3063 >        private static final sun.misc.Unsafe U;
3064 >        private static final long LOCKSTATE;
3065 >        static {
3066 >            try {
3067 >                U = getUnsafe();
3068 >                Class<?> k = TreeBin.class;
3069 >                LOCKSTATE = U.objectFieldOffset
3070 >                    (k.getDeclaredField("lockState"));
3071 >            } catch (Exception e) {
3072 >                throw new Error(e);
3073              }
3074          }
3195        return sb.append('}').toString();
3075      }
3076  
3077 +    /* ----------------Table Traversal -------------- */
3078 +
3079      /**
3080 <     * Compares the specified object with this map for equality.
3081 <     * Returns {@code true} if the given object is a map with the same
3201 <     * mappings as this map.  This operation may return misleading
3202 <     * results if either map is concurrently modified during execution
3203 <     * of this method.
3080 >     * Encapsulates traversal for methods such as containsValue; also
3081 >     * serves as a base class for other iterators and spliterators.
3082       *
3083 <     * @param o object to be compared for equality with this map
3084 <     * @return {@code true} if the specified object is equal to this map
3083 >     * Method advance visits once each still-valid node that was
3084 >     * reachable upon iterator construction. It might miss some that
3085 >     * were added to a bin after the bin was visited, which is OK wrt
3086 >     * consistency guarantees. Maintaining this property in the face
3087 >     * of possible ongoing resizes requires a fair amount of
3088 >     * bookkeeping state that is difficult to optimize away amidst
3089 >     * volatile accesses.  Even so, traversal maintains reasonable
3090 >     * throughput.
3091 >     *
3092 >     * Normally, iteration proceeds bin-by-bin traversing lists.
3093 >     * However, if the table has been resized, then all future steps
3094 >     * must traverse both the bin at the current index as well as at
3095 >     * (index + baseSize); and so on for further resizings. To
3096 >     * paranoically cope with potential sharing by users of iterators
3097 >     * across threads, iteration terminates if a bounds checks fails
3098 >     * for a table read.
3099       */
3100 <    public boolean equals(Object o) {
3101 <        if (o != this) {
3102 <            if (!(o instanceof Map))
3103 <                return false;
3104 <            Map<?,?> m = (Map<?,?>) o;
3105 <            Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3106 <            Object val;
3107 <            while ((val = it.advance()) != null) {
3108 <                Object v = m.get(it.nextKey);
3109 <                if (v == null || (v != val && !v.equals(val)))
3110 <                    return false;
3111 <            }
3112 <            for (Map.Entry<?,?> e : m.entrySet()) {
3113 <                Object mk, mv, v;
3114 <                if ((mk = e.getKey()) == null ||
3115 <                    (mv = e.getValue()) == null ||
3116 <                    (v = internalGet(mk)) == null ||
3117 <                    (mv != v && !mv.equals(v)))
3118 <                    return false;
3100 >    static class Traverser<K,V> {
3101 >        Node<K,V>[] tab;        // current table; updated if resized
3102 >        Node<K,V> next;         // the next entry to use
3103 >        int index;              // index of bin to use next
3104 >        int baseIndex;          // current index of initial table
3105 >        int baseLimit;          // index bound for initial table
3106 >        final int baseSize;     // initial table size
3107 >
3108 >        Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3109 >            this.tab = tab;
3110 >            this.baseSize = size;
3111 >            this.baseIndex = this.index = index;
3112 >            this.baseLimit = limit;
3113 >            this.next = null;
3114 >        }
3115 >
3116 >        /**
3117 >         * Advances if possible, returning next valid node, or null if none.
3118 >         */
3119 >        final Node<K,V> advance() {
3120 >            Node<K,V> e;
3121 >            if ((e = next) != null)
3122 >                e = e.next;
3123 >            for (;;) {
3124 >                Node<K,V>[] t; int i, n; K ek;  // must use locals in checks
3125 >                if (e != null)
3126 >                    return next = e;
3127 >                if (baseIndex >= baseLimit || (t = tab) == null ||
3128 >                    (n = t.length) <= (i = index) || i < 0)
3129 >                    return next = null;
3130 >                if ((e = tabAt(t, index)) != null && e.hash < 0) {
3131 >                    if (e instanceof ForwardingNode) {
3132 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
3133 >                        e = null;
3134 >                        continue;
3135 >                    }
3136 >                    else if (e instanceof TreeBin)
3137 >                        e = ((TreeBin<K,V>)e).first;
3138 >                    else
3139 >                        e = null;
3140 >                }
3141 >                if ((index += baseSize) >= n)
3142 >                    index = ++baseIndex;    // visit upper slots if present
3143              }
3144          }
3229        return true;
3145      }
3146  
3147 <    /* ----------------Iterators -------------- */
3148 <
3149 <    @SuppressWarnings("serial") static final class KeyIterator<K,V> extends Traverser<K,V,Object>
3150 <        implements Spliterator<K>, Enumeration<K> {
3151 <        KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3152 <        KeyIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3153 <            super(map, it, -1);
3147 >    /**
3148 >     * Base of key, value, and entry Iterators. Adds fields to
3149 >     * Traverser to support iterator.remove.
3150 >     */
3151 >    static class BaseIterator<K,V> extends Traverser<K,V> {
3152 >        final ConcurrentHashMapV8<K,V> map;
3153 >        Node<K,V> lastReturned;
3154 >        BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3155 >                    ConcurrentHashMapV8<K,V> map) {
3156 >            super(tab, size, index, limit);
3157 >            this.map = map;
3158 >            advance();
3159          }
3160 <        public KeyIterator<K,V> split() {
3161 <            if (nextKey != null)
3160 >
3161 >        public final boolean hasNext() { return next != null; }
3162 >        public final boolean hasMoreElements() { return next != null; }
3163 >
3164 >        public final void remove() {
3165 >            Node<K,V> p;
3166 >            if ((p = lastReturned) == null)
3167                  throw new IllegalStateException();
3168 <            return new KeyIterator<K,V>(map, this);
3168 >            lastReturned = null;
3169 >            map.replaceNode(p.key, null, null);
3170          }
3171 <        @SuppressWarnings("unchecked") public final K next() {
3172 <            if (nextVal == null && advance() == null)
3171 >    }
3172 >
3173 >    static final class KeyIterator<K,V> extends BaseIterator<K,V>
3174 >        implements Iterator<K>, Enumeration<K> {
3175 >        KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3176 >                    ConcurrentHashMapV8<K,V> map) {
3177 >            super(tab, index, size, limit, map);
3178 >        }
3179 >
3180 >        public final K next() {
3181 >            Node<K,V> p;
3182 >            if ((p = next) == null)
3183                  throw new NoSuchElementException();
3184 <            Object k = nextKey;
3185 <            nextVal = null;
3186 <            return (K) k;
3184 >            K k = p.key;
3185 >            lastReturned = p;
3186 >            advance();
3187 >            return k;
3188          }
3189  
3190          public final K nextElement() { return next(); }
3191      }
3192  
3193 <    @SuppressWarnings("serial") static final class ValueIterator<K,V> extends Traverser<K,V,Object>
3194 <        implements Spliterator<V>, Enumeration<V> {
3195 <        ValueIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3196 <        ValueIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3197 <            super(map, it, -1);
3261 <        }
3262 <        public ValueIterator<K,V> split() {
3263 <            if (nextKey != null)
3264 <                throw new IllegalStateException();
3265 <            return new ValueIterator<K,V>(map, this);
3193 >    static final class ValueIterator<K,V> extends BaseIterator<K,V>
3194 >        implements Iterator<V>, Enumeration<V> {
3195 >        ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3196 >                      ConcurrentHashMapV8<K,V> map) {
3197 >            super(tab, index, size, limit, map);
3198          }
3199  
3200 <        @SuppressWarnings("unchecked") public final V next() {
3201 <            Object v;
3202 <            if ((v = nextVal) == null && (v = advance()) == null)
3200 >        public final V next() {
3201 >            Node<K,V> p;
3202 >            if ((p = next) == null)
3203                  throw new NoSuchElementException();
3204 <            nextVal = null;
3205 <            return (V) v;
3204 >            V v = p.val;
3205 >            lastReturned = p;
3206 >            advance();
3207 >            return v;
3208          }
3209  
3210          public final V nextElement() { return next(); }
3211      }
3212  
3213 <    @SuppressWarnings("serial") static final class EntryIterator<K,V> extends Traverser<K,V,Object>
3214 <        implements Spliterator<Map.Entry<K,V>> {
3215 <        EntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3216 <        EntryIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3217 <            super(map, it, -1);
3284 <        }
3285 <        public EntryIterator<K,V> split() {
3286 <            if (nextKey != null)
3287 <                throw new IllegalStateException();
3288 <            return new EntryIterator<K,V>(map, this);
3213 >    static final class EntryIterator<K,V> extends BaseIterator<K,V>
3214 >        implements Iterator<Map.Entry<K,V>> {
3215 >        EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3216 >                      ConcurrentHashMapV8<K,V> map) {
3217 >            super(tab, index, size, limit, map);
3218          }
3219  
3220 <        @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3221 <            Object v;
3222 <            if ((v = nextVal) == null && (v = advance()) == null)
3220 >        public final Map.Entry<K,V> next() {
3221 >            Node<K,V> p;
3222 >            if ((p = next) == null)
3223                  throw new NoSuchElementException();
3224 <            Object k = nextKey;
3225 <            nextVal = null;
3226 <            return new MapEntry<K,V>((K)k, (V)v, map);
3224 >            K k = p.key;
3225 >            V v = p.val;
3226 >            lastReturned = p;
3227 >            advance();
3228 >            return new MapEntry<K,V>(k, v, map);
3229          }
3230      }
3231  
3232      /**
3233 <     * Exported Entry for iterators
3233 >     * Exported Entry for EntryIterator
3234       */
3235 <    static final class MapEntry<K,V> implements Map.Entry<K, V> {
3235 >    static final class MapEntry<K,V> implements Map.Entry<K,V> {
3236          final K key; // non-null
3237          V val;       // non-null
3238 <        final ConcurrentHashMapV8<K, V> map;
3239 <        MapEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
3238 >        final ConcurrentHashMapV8<K,V> map;
3239 >        MapEntry(K key, V val, ConcurrentHashMapV8<K,V> map) {
3240              this.key = key;
3241              this.val = val;
3242              this.map = map;
3243          }
3244 <        public final K getKey()       { return key; }
3245 <        public final V getValue()     { return val; }
3246 <        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
3247 <        public final String toString(){ return key + "=" + val; }
3244 >        public K getKey()        { return key; }
3245 >        public V getValue()      { return val; }
3246 >        public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
3247 >        public String toString() { return key + "=" + val; }
3248  
3249 <        public final boolean equals(Object o) {
3249 >        public boolean equals(Object o) {
3250              Object k, v; Map.Entry<?,?> e;
3251              return ((o instanceof Map.Entry) &&
3252                      (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
# Line 3329 | Line 3260 | public class ConcurrentHashMapV8<K, V>
3260           * value to return is somewhat arbitrary here. Since we do not
3261           * necessarily track asynchronous changes, the most recent
3262           * "previous" value could be different from what we return (or
3263 <         * could even have been removed in which case the put will
3263 >         * could even have been removed, in which case the put will
3264           * re-establish). We do not and cannot guarantee more.
3265           */
3266 <        public final V setValue(V value) {
3266 >        public V setValue(V value) {
3267              if (value == null) throw new NullPointerException();
3268              V v = val;
3269              val = value;
# Line 3341 | Line 3272 | public class ConcurrentHashMapV8<K, V>
3272          }
3273      }
3274  
3275 <    /**
3276 <     * Returns exportable snapshot entry for the given key and value
3277 <     * when write-through can't or shouldn't be used.
3278 <     */
3279 <    static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3280 <        return new AbstractMap.SimpleEntry<K,V>(k, v);
3281 <    }
3275 >    static final class KeySpliterator<K,V> extends Traverser<K,V>
3276 >        implements ConcurrentHashMapSpliterator<K> {
3277 >        long est;               // size estimate
3278 >        KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3279 >                       long est) {
3280 >            super(tab, size, index, limit);
3281 >            this.est = est;
3282 >        }
3283 >
3284 >        public ConcurrentHashMapSpliterator<K> trySplit() {
3285 >            int i, f, h;
3286 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3287 >                new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3288 >                                        f, est >>>= 1);
3289 >        }
3290  
3291 <    /* ---------------- Serialization Support -------------- */
3291 >        public void forEachRemaining(Action<? super K> action) {
3292 >            if (action == null) throw new NullPointerException();
3293 >            for (Node<K,V> p; (p = advance()) != null;)
3294 >                action.apply(p.key);
3295 >        }
3296 >
3297 >        public boolean tryAdvance(Action<? super K> action) {
3298 >            if (action == null) throw new NullPointerException();
3299 >            Node<K,V> p;
3300 >            if ((p = advance()) == null)
3301 >                return false;
3302 >            action.apply(p.key);
3303 >            return true;
3304 >        }
3305 >
3306 >        public long estimateSize() { return est; }
3307  
3354    /**
3355     * Stripped-down version of helper class used in previous version,
3356     * declared for the sake of serialization compatibility
3357     */
3358    static class Segment<K,V> implements Serializable {
3359        private static final long serialVersionUID = 2249069246763182397L;
3360        final float loadFactor;
3361        Segment(float lf) { this.loadFactor = lf; }
3308      }
3309  
3310 <    /**
3311 <     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
3312 <     * stream (i.e., serializes it).
3313 <     * @param s the stream
3314 <     * @serialData
3315 <     * the key (Object) and value (Object)
3316 <     * for each key-value mapping, followed by a null pair.
3371 <     * The key-value mappings are emitted in no particular order.
3372 <     */
3373 <    @SuppressWarnings("unchecked") private void writeObject(java.io.ObjectOutputStream s)
3374 <        throws java.io.IOException {
3375 <        if (segments == null) { // for serialization compatibility
3376 <            segments = (Segment<K,V>[])
3377 <                new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3378 <            for (int i = 0; i < segments.length; ++i)
3379 <                segments[i] = new Segment<K,V>(LOAD_FACTOR);
3380 <        }
3381 <        s.defaultWriteObject();
3382 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3383 <        Object v;
3384 <        while ((v = it.advance()) != null) {
3385 <            s.writeObject(it.nextKey);
3386 <            s.writeObject(v);
3310 >    static final class ValueSpliterator<K,V> extends Traverser<K,V>
3311 >        implements ConcurrentHashMapSpliterator<V> {
3312 >        long est;               // size estimate
3313 >        ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3314 >                         long est) {
3315 >            super(tab, size, index, limit);
3316 >            this.est = est;
3317          }
3388        s.writeObject(null);
3389        s.writeObject(null);
3390        segments = null; // throw away
3391    }
3318  
3319 <    /**
3320 <     * Reconstitutes the instance from a stream (that is, deserializes it).
3321 <     * @param s the stream
3322 <     */
3323 <    @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s)
3324 <        throws java.io.IOException, ClassNotFoundException {
3399 <        s.defaultReadObject();
3400 <        this.segments = null; // unneeded
3401 <        // initialize transient final field
3402 <        UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
3319 >        public ConcurrentHashMapSpliterator<V> trySplit() {
3320 >            int i, f, h;
3321 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3322 >                new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3323 >                                          f, est >>>= 1);
3324 >        }
3325  
3326 <        // Create all nodes, then place in table once size is known
3327 <        long size = 0L;
3328 <        Node p = null;
3329 <        for (;;) {
3408 <            K k = (K) s.readObject();
3409 <            V v = (V) s.readObject();
3410 <            if (k != null && v != null) {
3411 <                int h = spread(k.hashCode());
3412 <                p = new Node(h, k, v, p);
3413 <                ++size;
3414 <            }
3415 <            else
3416 <                break;
3326 >        public void forEachRemaining(Action<? super V> action) {
3327 >            if (action == null) throw new NullPointerException();
3328 >            for (Node<K,V> p; (p = advance()) != null;)
3329 >                action.apply(p.val);
3330          }
3331 <        if (p != null) {
3332 <            boolean init = false;
3333 <            int n;
3334 <            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3335 <                n = MAXIMUM_CAPACITY;
3336 <            else {
3337 <                int sz = (int)size;
3338 <                n = tableSizeFor(sz + (sz >>> 1) + 1);
3426 <            }
3427 <            int sc = sizeCtl;
3428 <            boolean collide = false;
3429 <            if (n > sc &&
3430 <                UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
3431 <                try {
3432 <                    if (table == null) {
3433 <                        init = true;
3434 <                        Node[] tab = new Node[n];
3435 <                        int mask = n - 1;
3436 <                        while (p != null) {
3437 <                            int j = p.hash & mask;
3438 <                            Node next = p.next;
3439 <                            Node q = p.next = tabAt(tab, j);
3440 <                            setTabAt(tab, j, p);
3441 <                            if (!collide && q != null && q.hash == p.hash)
3442 <                                collide = true;
3443 <                            p = next;
3444 <                        }
3445 <                        table = tab;
3446 <                        counter.add(size);
3447 <                        sc = n - (n >>> 2);
3448 <                    }
3449 <                } finally {
3450 <                    sizeCtl = sc;
3451 <                }
3452 <                if (collide) { // rescan and convert to TreeBins
3453 <                    Node[] tab = table;
3454 <                    for (int i = 0; i < tab.length; ++i) {
3455 <                        int c = 0;
3456 <                        for (Node e = tabAt(tab, i); e != null; e = e.next) {
3457 <                            if (++c > TREE_THRESHOLD &&
3458 <                                (e.key instanceof Comparable)) {
3459 <                                replaceWithTreeBin(tab, i, e.key);
3460 <                                break;
3461 <                            }
3462 <                        }
3463 <                    }
3464 <                }
3465 <            }
3466 <            if (!init) { // Can only happen if unsafely published.
3467 <                while (p != null) {
3468 <                    internalPut(p.key, p.val);
3469 <                    p = p.next;
3470 <                }
3471 <            }
3331 >
3332 >        public boolean tryAdvance(Action<? super V> action) {
3333 >            if (action == null) throw new NullPointerException();
3334 >            Node<K,V> p;
3335 >            if ((p = advance()) == null)
3336 >                return false;
3337 >            action.apply(p.val);
3338 >            return true;
3339          }
3340 +
3341 +        public long estimateSize() { return est; }
3342 +
3343      }
3344  
3345 +    static final class EntrySpliterator<K,V> extends Traverser<K,V>
3346 +        implements ConcurrentHashMapSpliterator<Map.Entry<K,V>> {
3347 +        final ConcurrentHashMapV8<K,V> map; // To export MapEntry
3348 +        long est;               // size estimate
3349 +        EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3350 +                         long est, ConcurrentHashMapV8<K,V> map) {
3351 +            super(tab, size, index, limit);
3352 +            this.map = map;
3353 +            this.est = est;
3354 +        }
3355  
3356 <    // -------------------------------------------------------
3356 >        public ConcurrentHashMapSpliterator<Map.Entry<K,V>> trySplit() {
3357 >            int i, f, h;
3358 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3359 >                new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3360 >                                          f, est >>>= 1, map);
3361 >        }
3362  
3363 <    // Sams
3364 <    /** Interface describing a void action of one argument */
3365 <    public interface Action<A> { void apply(A a); }
3366 <    /** Interface describing a void action of two arguments */
3367 <    public interface BiAction<A,B> { void apply(A a, B b); }
3483 <    /** Interface describing a function of one argument */
3484 <    public interface Fun<A,T> { T apply(A a); }
3485 <    /** Interface describing a function of two arguments */
3486 <    public interface BiFun<A,B,T> { T apply(A a, B b); }
3487 <    /** Interface describing a function of no arguments */
3488 <    public interface Generator<T> { T apply(); }
3489 <    /** Interface describing a function mapping its argument to a double */
3490 <    public interface ObjectToDouble<A> { double apply(A a); }
3491 <    /** Interface describing a function mapping its argument to a long */
3492 <    public interface ObjectToLong<A> { long apply(A a); }
3493 <    /** Interface describing a function mapping its argument to an int */
3494 <    public interface ObjectToInt<A> {int apply(A a); }
3495 <    /** Interface describing a function mapping two arguments to a double */
3496 <    public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3497 <    /** Interface describing a function mapping two arguments to a long */
3498 <    public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3499 <    /** Interface describing a function mapping two arguments to an int */
3500 <    public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3501 <    /** Interface describing a function mapping a double to a double */
3502 <    public interface DoubleToDouble { double apply(double a); }
3503 <    /** Interface describing a function mapping a long to a long */
3504 <    public interface LongToLong { long apply(long a); }
3505 <    /** Interface describing a function mapping an int to an int */
3506 <    public interface IntToInt { int apply(int a); }
3507 <    /** Interface describing a function mapping two doubles to a double */
3508 <    public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3509 <    /** Interface describing a function mapping two longs to a long */
3510 <    public interface LongByLongToLong { long apply(long a, long b); }
3511 <    /** Interface describing a function mapping two ints to an int */
3512 <    public interface IntByIntToInt { int apply(int a, int b); }
3363 >        public void forEachRemaining(Action<? super Map.Entry<K,V>> action) {
3364 >            if (action == null) throw new NullPointerException();
3365 >            for (Node<K,V> p; (p = advance()) != null; )
3366 >                action.apply(new MapEntry<K,V>(p.key, p.val, map));
3367 >        }
3368  
3369 +        public boolean tryAdvance(Action<? super Map.Entry<K,V>> action) {
3370 +            if (action == null) throw new NullPointerException();
3371 +            Node<K,V> p;
3372 +            if ((p = advance()) == null)
3373 +                return false;
3374 +            action.apply(new MapEntry<K,V>(p.key, p.val, map));
3375 +            return true;
3376 +        }
3377  
3378 <    // -------------------------------------------------------
3378 >        public long estimateSize() { return est; }
3379 >
3380 >    }
3381 >
3382 >    // Parallel bulk operations
3383 >
3384 >    /**
3385 >     * Computes initial batch value for bulk tasks. The returned value
3386 >     * is approximately exp2 of the number of times (minus one) to
3387 >     * split task by two before executing leaf action. This value is
3388 >     * faster to compute and more convenient to use as a guide to
3389 >     * splitting than is the depth, since it is used while dividing by
3390 >     * two anyway.
3391 >     */
3392 >    final int batchFor(long b) {
3393 >        long n;
3394 >        if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3395 >            return 0;
3396 >        int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3397 >        return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3398 >    }
3399  
3400      /**
3401       * Performs the given action for each (key, value).
3402       *
3403 +     * @param parallelismThreshold the (estimated) number of elements
3404 +     * needed for this operation to be executed in parallel
3405       * @param action the action
3406 +     * @since 1.8
3407       */
3408 <    public void forEach(BiAction<K,V> action) {
3409 <        ForkJoinTasks.forEach
3410 <            (this, action).invoke();
3408 >    public void forEach(long parallelismThreshold,
3409 >                        BiAction<? super K,? super V> action) {
3410 >        if (action == null) throw new NullPointerException();
3411 >        new ForEachMappingTask<K,V>
3412 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3413 >             action).invoke();
3414      }
3415  
3416      /**
3417       * Performs the given action for each non-null transformation
3418       * of each (key, value).
3419       *
3420 +     * @param parallelismThreshold the (estimated) number of elements
3421 +     * needed for this operation to be executed in parallel
3422       * @param transformer a function returning the transformation
3423 <     * for an element, or null of there is no transformation (in
3424 <     * which case the action is not applied).
3423 >     * for an element, or null if there is no transformation (in
3424 >     * which case the action is not applied)
3425       * @param action the action
3426 +     * @since 1.8
3427       */
3428 <    public <U> void forEach(BiFun<? super K, ? super V, ? extends U> transformer,
3429 <                            Action<U> action) {
3430 <        ForkJoinTasks.forEach
3431 <            (this, transformer, action).invoke();
3428 >    public <U> void forEach(long parallelismThreshold,
3429 >                            BiFun<? super K, ? super V, ? extends U> transformer,
3430 >                            Action<? super U> action) {
3431 >        if (transformer == null || action == null)
3432 >            throw new NullPointerException();
3433 >        new ForEachTransformedMappingTask<K,V,U>
3434 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3435 >             transformer, action).invoke();
3436      }
3437  
3438      /**
# Line 3546 | Line 3442 | public class ConcurrentHashMapV8<K, V>
3442       * results of any other parallel invocations of the search
3443       * function are ignored.
3444       *
3445 +     * @param parallelismThreshold the (estimated) number of elements
3446 +     * needed for this operation to be executed in parallel
3447       * @param searchFunction a function returning a non-null
3448       * result on success, else null
3449       * @return a non-null result from applying the given search
3450       * function on each (key, value), or null if none
3451 +     * @since 1.8
3452       */
3453 <    public <U> U search(BiFun<? super K, ? super V, ? extends U> searchFunction) {
3454 <        return ForkJoinTasks.search
3455 <            (this, searchFunction).invoke();
3453 >    public <U> U search(long parallelismThreshold,
3454 >                        BiFun<? super K, ? super V, ? extends U> searchFunction) {
3455 >        if (searchFunction == null) throw new NullPointerException();
3456 >        return new SearchMappingsTask<K,V,U>
3457 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3458 >             searchFunction, new AtomicReference<U>()).invoke();
3459      }
3460  
3461      /**
# Line 3561 | Line 3463 | public class ConcurrentHashMapV8<K, V>
3463       * of all (key, value) pairs using the given reducer to
3464       * combine values, or null if none.
3465       *
3466 +     * @param parallelismThreshold the (estimated) number of elements
3467 +     * needed for this operation to be executed in parallel
3468       * @param transformer a function returning the transformation
3469 <     * for an element, or null of there is no transformation (in
3470 <     * which case it is not combined).
3469 >     * for an element, or null if there is no transformation (in
3470 >     * which case it is not combined)
3471       * @param reducer a commutative associative combining function
3472       * @return the result of accumulating the given transformation
3473       * of all (key, value) pairs
3474 +     * @since 1.8
3475       */
3476 <    public <U> U reduce(BiFun<? super K, ? super V, ? extends U> transformer,
3476 >    public <U> U reduce(long parallelismThreshold,
3477 >                        BiFun<? super K, ? super V, ? extends U> transformer,
3478                          BiFun<? super U, ? super U, ? extends U> reducer) {
3479 <        return ForkJoinTasks.reduce
3480 <            (this, transformer, reducer).invoke();
3479 >        if (transformer == null || reducer == null)
3480 >            throw new NullPointerException();
3481 >        return new MapReduceMappingsTask<K,V,U>
3482 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3483 >             null, transformer, reducer).invoke();
3484      }
3485  
3486      /**
# Line 3579 | Line 3488 | public class ConcurrentHashMapV8<K, V>
3488       * of all (key, value) pairs using the given reducer to
3489       * combine values, and the given basis as an identity value.
3490       *
3491 +     * @param parallelismThreshold the (estimated) number of elements
3492 +     * needed for this operation to be executed in parallel
3493       * @param transformer a function returning the transformation
3494       * for an element
3495       * @param basis the identity (initial default value) for the reduction
3496       * @param reducer a commutative associative combining function
3497       * @return the result of accumulating the given transformation
3498       * of all (key, value) pairs
3499 +     * @since 1.8
3500       */
3501 <    public double reduceToDouble(ObjectByObjectToDouble<? super K, ? super V> transformer,
3501 >    public double reduceToDouble(long parallelismThreshold,
3502 >                                 ObjectByObjectToDouble<? super K, ? super V> transformer,
3503                                   double basis,
3504                                   DoubleByDoubleToDouble reducer) {
3505 <        return ForkJoinTasks.reduceToDouble
3506 <            (this, transformer, basis, reducer).invoke();
3505 >        if (transformer == null || reducer == null)
3506 >            throw new NullPointerException();
3507 >        return new MapReduceMappingsToDoubleTask<K,V>
3508 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3509 >             null, transformer, basis, reducer).invoke();
3510      }
3511  
3512      /**
# Line 3598 | Line 3514 | public class ConcurrentHashMapV8<K, V>
3514       * of all (key, value) pairs using the given reducer to
3515       * combine values, and the given basis as an identity value.
3516       *
3517 +     * @param parallelismThreshold the (estimated) number of elements
3518 +     * needed for this operation to be executed in parallel
3519       * @param transformer a function returning the transformation
3520       * for an element
3521       * @param basis the identity (initial default value) for the reduction
3522       * @param reducer a commutative associative combining function
3523       * @return the result of accumulating the given transformation
3524       * of all (key, value) pairs
3525 +     * @since 1.8
3526       */
3527 <    public long reduceToLong(ObjectByObjectToLong<? super K, ? super V> transformer,
3527 >    public long reduceToLong(long parallelismThreshold,
3528 >                             ObjectByObjectToLong<? super K, ? super V> transformer,
3529                               long basis,
3530                               LongByLongToLong reducer) {
3531 <        return ForkJoinTasks.reduceToLong
3532 <            (this, transformer, basis, reducer).invoke();
3531 >        if (transformer == null || reducer == null)
3532 >            throw new NullPointerException();
3533 >        return new MapReduceMappingsToLongTask<K,V>
3534 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3535 >             null, transformer, basis, reducer).invoke();
3536      }
3537  
3538      /**
# Line 3617 | Line 3540 | public class ConcurrentHashMapV8<K, V>
3540       * of all (key, value) pairs using the given reducer to
3541       * combine values, and the given basis as an identity value.
3542       *
3543 +     * @param parallelismThreshold the (estimated) number of elements
3544 +     * needed for this operation to be executed in parallel
3545       * @param transformer a function returning the transformation
3546       * for an element
3547       * @param basis the identity (initial default value) for the reduction
3548       * @param reducer a commutative associative combining function
3549       * @return the result of accumulating the given transformation
3550       * of all (key, value) pairs
3551 +     * @since 1.8
3552       */
3553 <    public int reduceToInt(ObjectByObjectToInt<? super K, ? super V> transformer,
3553 >    public int reduceToInt(long parallelismThreshold,
3554 >                           ObjectByObjectToInt<? super K, ? super V> transformer,
3555                             int basis,
3556                             IntByIntToInt reducer) {
3557 <        return ForkJoinTasks.reduceToInt
3558 <            (this, transformer, basis, reducer).invoke();
3557 >        if (transformer == null || reducer == null)
3558 >            throw new NullPointerException();
3559 >        return new MapReduceMappingsToIntTask<K,V>
3560 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3561 >             null, transformer, basis, reducer).invoke();
3562      }
3563  
3564      /**
3565       * Performs the given action for each key.
3566       *
3567 +     * @param parallelismThreshold the (estimated) number of elements
3568 +     * needed for this operation to be executed in parallel
3569       * @param action the action
3570 +     * @since 1.8
3571       */
3572 <    public void forEachKey(Action<K> action) {
3573 <        ForkJoinTasks.forEachKey
3574 <            (this, action).invoke();
3572 >    public void forEachKey(long parallelismThreshold,
3573 >                           Action<? super K> action) {
3574 >        if (action == null) throw new NullPointerException();
3575 >        new ForEachKeyTask<K,V>
3576 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3577 >             action).invoke();
3578      }
3579  
3580      /**
3581       * Performs the given action for each non-null transformation
3582       * of each key.
3583       *
3584 +     * @param parallelismThreshold the (estimated) number of elements
3585 +     * needed for this operation to be executed in parallel
3586       * @param transformer a function returning the transformation
3587 <     * for an element, or null of there is no transformation (in
3588 <     * which case the action is not applied).
3587 >     * for an element, or null if there is no transformation (in
3588 >     * which case the action is not applied)
3589       * @param action the action
3590 +     * @since 1.8
3591       */
3592 <    public <U> void forEachKey(Fun<? super K, ? extends U> transformer,
3593 <                               Action<U> action) {
3594 <        ForkJoinTasks.forEachKey
3595 <            (this, transformer, action).invoke();
3592 >    public <U> void forEachKey(long parallelismThreshold,
3593 >                               Fun<? super K, ? extends U> transformer,
3594 >                               Action<? super U> action) {
3595 >        if (transformer == null || action == null)
3596 >            throw new NullPointerException();
3597 >        new ForEachTransformedKeyTask<K,V,U>
3598 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3599 >             transformer, action).invoke();
3600      }
3601  
3602      /**
# Line 3663 | Line 3606 | public class ConcurrentHashMapV8<K, V>
3606       * any other parallel invocations of the search function are
3607       * ignored.
3608       *
3609 +     * @param parallelismThreshold the (estimated) number of elements
3610 +     * needed for this operation to be executed in parallel
3611       * @param searchFunction a function returning a non-null
3612       * result on success, else null
3613       * @return a non-null result from applying the given search
3614       * function on each key, or null if none
3615 +     * @since 1.8
3616       */
3617 <    public <U> U searchKeys(Fun<? super K, ? extends U> searchFunction) {
3618 <        return ForkJoinTasks.searchKeys
3619 <            (this, searchFunction).invoke();
3617 >    public <U> U searchKeys(long parallelismThreshold,
3618 >                            Fun<? super K, ? extends U> searchFunction) {
3619 >        if (searchFunction == null) throw new NullPointerException();
3620 >        return new SearchKeysTask<K,V,U>
3621 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3622 >             searchFunction, new AtomicReference<U>()).invoke();
3623      }
3624  
3625      /**
3626       * Returns the result of accumulating all keys using the given
3627       * reducer to combine values, or null if none.
3628       *
3629 +     * @param parallelismThreshold the (estimated) number of elements
3630 +     * needed for this operation to be executed in parallel
3631       * @param reducer a commutative associative combining function
3632       * @return the result of accumulating all keys using the given
3633       * reducer to combine values, or null if none
3634 +     * @since 1.8
3635       */
3636 <    public K reduceKeys(BiFun<? super K, ? super K, ? extends K> reducer) {
3637 <        return ForkJoinTasks.reduceKeys
3638 <            (this, reducer).invoke();
3636 >    public K reduceKeys(long parallelismThreshold,
3637 >                        BiFun<? super K, ? super K, ? extends K> reducer) {
3638 >        if (reducer == null) throw new NullPointerException();
3639 >        return new ReduceKeysTask<K,V>
3640 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3641 >             null, reducer).invoke();
3642      }
3643  
3644      /**
# Line 3691 | Line 3646 | public class ConcurrentHashMapV8<K, V>
3646       * of all keys using the given reducer to combine values, or
3647       * null if none.
3648       *
3649 +     * @param parallelismThreshold the (estimated) number of elements
3650 +     * needed for this operation to be executed in parallel
3651       * @param transformer a function returning the transformation
3652 <     * for an element, or null of there is no transformation (in
3653 <     * which case it is not combined).
3652 >     * for an element, or null if there is no transformation (in
3653 >     * which case it is not combined)
3654       * @param reducer a commutative associative combining function
3655       * @return the result of accumulating the given transformation
3656       * of all keys
3657 +     * @since 1.8
3658       */
3659 <    public <U> U reduceKeys(Fun<? super K, ? extends U> transformer,
3660 <                            BiFun<? super U, ? super U, ? extends U> reducer) {
3661 <        return ForkJoinTasks.reduceKeys
3662 <            (this, transformer, reducer).invoke();
3659 >    public <U> U reduceKeys(long parallelismThreshold,
3660 >                            Fun<? super K, ? extends U> transformer,
3661 >         BiFun<? super U, ? super U, ? extends U> reducer) {
3662 >        if (transformer == null || reducer == null)
3663 >            throw new NullPointerException();
3664 >        return new MapReduceKeysTask<K,V,U>
3665 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3666 >             null, transformer, reducer).invoke();
3667      }
3668  
3669      /**
# Line 3709 | Line 3671 | public class ConcurrentHashMapV8<K, V>
3671       * of all keys using the given reducer to combine values, and
3672       * the given basis as an identity value.
3673       *
3674 +     * @param parallelismThreshold the (estimated) number of elements
3675 +     * needed for this operation to be executed in parallel
3676       * @param transformer a function returning the transformation
3677       * for an element
3678       * @param basis the identity (initial default value) for the reduction
3679       * @param reducer a commutative associative combining function
3680 <     * @return  the result of accumulating the given transformation
3680 >     * @return the result of accumulating the given transformation
3681       * of all keys
3682 +     * @since 1.8
3683       */
3684 <    public double reduceKeysToDouble(ObjectToDouble<? super K> transformer,
3684 >    public double reduceKeysToDouble(long parallelismThreshold,
3685 >                                     ObjectToDouble<? super K> transformer,
3686                                       double basis,
3687                                       DoubleByDoubleToDouble reducer) {
3688 <        return ForkJoinTasks.reduceKeysToDouble
3689 <            (this, transformer, basis, reducer).invoke();
3688 >        if (transformer == null || reducer == null)
3689 >            throw new NullPointerException();
3690 >        return new MapReduceKeysToDoubleTask<K,V>
3691 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3692 >             null, transformer, basis, reducer).invoke();
3693      }
3694  
3695      /**
# Line 3728 | Line 3697 | public class ConcurrentHashMapV8<K, V>
3697       * of all keys using the given reducer to combine values, and
3698       * the given basis as an identity value.
3699       *
3700 +     * @param parallelismThreshold the (estimated) number of elements
3701 +     * needed for this operation to be executed in parallel
3702       * @param transformer a function returning the transformation
3703       * for an element
3704       * @param basis the identity (initial default value) for the reduction
3705       * @param reducer a commutative associative combining function
3706       * @return the result of accumulating the given transformation
3707       * of all keys
3708 +     * @since 1.8
3709       */
3710 <    public long reduceKeysToLong(ObjectToLong<? super K> transformer,
3710 >    public long reduceKeysToLong(long parallelismThreshold,
3711 >                                 ObjectToLong<? super K> transformer,
3712                                   long basis,
3713                                   LongByLongToLong reducer) {
3714 <        return ForkJoinTasks.reduceKeysToLong
3715 <            (this, transformer, basis, reducer).invoke();
3714 >        if (transformer == null || reducer == null)
3715 >            throw new NullPointerException();
3716 >        return new MapReduceKeysToLongTask<K,V>
3717 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3718 >             null, transformer, basis, reducer).invoke();
3719      }
3720  
3721      /**
# Line 3747 | Line 3723 | public class ConcurrentHashMapV8<K, V>
3723       * of all keys using the given reducer to combine values, and
3724       * the given basis as an identity value.
3725       *
3726 +     * @param parallelismThreshold the (estimated) number of elements
3727 +     * needed for this operation to be executed in parallel
3728       * @param transformer a function returning the transformation
3729       * for an element
3730       * @param basis the identity (initial default value) for the reduction
3731       * @param reducer a commutative associative combining function
3732       * @return the result of accumulating the given transformation
3733       * of all keys
3734 +     * @since 1.8
3735       */
3736 <    public int reduceKeysToInt(ObjectToInt<? super K> transformer,
3736 >    public int reduceKeysToInt(long parallelismThreshold,
3737 >                               ObjectToInt<? super K> transformer,
3738                                 int basis,
3739                                 IntByIntToInt reducer) {
3740 <        return ForkJoinTasks.reduceKeysToInt
3741 <            (this, transformer, basis, reducer).invoke();
3740 >        if (transformer == null || reducer == null)
3741 >            throw new NullPointerException();
3742 >        return new MapReduceKeysToIntTask<K,V>
3743 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3744 >             null, transformer, basis, reducer).invoke();
3745      }
3746  
3747      /**
3748       * Performs the given action for each value.
3749       *
3750 +     * @param parallelismThreshold the (estimated) number of elements
3751 +     * needed for this operation to be executed in parallel
3752       * @param action the action
3753 +     * @since 1.8
3754       */
3755 <    public void forEachValue(Action<V> action) {
3756 <        ForkJoinTasks.forEachValue
3757 <            (this, action).invoke();
3755 >    public void forEachValue(long parallelismThreshold,
3756 >                             Action<? super V> action) {
3757 >        if (action == null)
3758 >            throw new NullPointerException();
3759 >        new ForEachValueTask<K,V>
3760 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3761 >             action).invoke();
3762      }
3763  
3764      /**
3765       * Performs the given action for each non-null transformation
3766       * of each value.
3767       *
3768 +     * @param parallelismThreshold the (estimated) number of elements
3769 +     * needed for this operation to be executed in parallel
3770       * @param transformer a function returning the transformation
3771 <     * for an element, or null of there is no transformation (in
3772 <     * which case the action is not applied).
3771 >     * for an element, or null if there is no transformation (in
3772 >     * which case the action is not applied)
3773 >     * @param action the action
3774 >     * @since 1.8
3775       */
3776 <    public <U> void forEachValue(Fun<? super V, ? extends U> transformer,
3777 <                                 Action<U> action) {
3778 <        ForkJoinTasks.forEachValue
3779 <            (this, transformer, action).invoke();
3776 >    public <U> void forEachValue(long parallelismThreshold,
3777 >                                 Fun<? super V, ? extends U> transformer,
3778 >                                 Action<? super U> action) {
3779 >        if (transformer == null || action == null)
3780 >            throw new NullPointerException();
3781 >        new ForEachTransformedValueTask<K,V,U>
3782 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3783 >             transformer, action).invoke();
3784      }
3785  
3786      /**
# Line 3792 | Line 3790 | public class ConcurrentHashMapV8<K, V>
3790       * any other parallel invocations of the search function are
3791       * ignored.
3792       *
3793 +     * @param parallelismThreshold the (estimated) number of elements
3794 +     * needed for this operation to be executed in parallel
3795       * @param searchFunction a function returning a non-null
3796       * result on success, else null
3797       * @return a non-null result from applying the given search
3798       * function on each value, or null if none
3799 <     *
3799 >     * @since 1.8
3800       */
3801 <    public <U> U searchValues(Fun<? super V, ? extends U> searchFunction) {
3802 <        return ForkJoinTasks.searchValues
3803 <            (this, searchFunction).invoke();
3801 >    public <U> U searchValues(long parallelismThreshold,
3802 >                              Fun<? super V, ? extends U> searchFunction) {
3803 >        if (searchFunction == null) throw new NullPointerException();
3804 >        return new SearchValuesTask<K,V,U>
3805 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3806 >             searchFunction, new AtomicReference<U>()).invoke();
3807      }
3808  
3809      /**
3810       * Returns the result of accumulating all values using the
3811       * given reducer to combine values, or null if none.
3812       *
3813 +     * @param parallelismThreshold the (estimated) number of elements
3814 +     * needed for this operation to be executed in parallel
3815       * @param reducer a commutative associative combining function
3816 <     * @return  the result of accumulating all values
3816 >     * @return the result of accumulating all values
3817 >     * @since 1.8
3818       */
3819 <    public V reduceValues(BiFun<? super V, ? super V, ? extends V> reducer) {
3820 <        return ForkJoinTasks.reduceValues
3821 <            (this, reducer).invoke();
3819 >    public V reduceValues(long parallelismThreshold,
3820 >                          BiFun<? super V, ? super V, ? extends V> reducer) {
3821 >        if (reducer == null) throw new NullPointerException();
3822 >        return new ReduceValuesTask<K,V>
3823 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3824 >             null, reducer).invoke();
3825      }
3826  
3827      /**
# Line 3820 | Line 3829 | public class ConcurrentHashMapV8<K, V>
3829       * of all values using the given reducer to combine values, or
3830       * null if none.
3831       *
3832 +     * @param parallelismThreshold the (estimated) number of elements
3833 +     * needed for this operation to be executed in parallel
3834       * @param transformer a function returning the transformation
3835 <     * for an element, or null of there is no transformation (in
3836 <     * which case it is not combined).
3835 >     * for an element, or null if there is no transformation (in
3836 >     * which case it is not combined)
3837       * @param reducer a commutative associative combining function
3838       * @return the result of accumulating the given transformation
3839       * of all values
3840 +     * @since 1.8
3841       */
3842 <    public <U> U reduceValues(Fun<? super V, ? extends U> transformer,
3842 >    public <U> U reduceValues(long parallelismThreshold,
3843 >                              Fun<? super V, ? extends U> transformer,
3844                                BiFun<? super U, ? super U, ? extends U> reducer) {
3845 <        return ForkJoinTasks.reduceValues
3846 <            (this, transformer, reducer).invoke();
3845 >        if (transformer == null || reducer == null)
3846 >            throw new NullPointerException();
3847 >        return new MapReduceValuesTask<K,V,U>
3848 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3849 >             null, transformer, reducer).invoke();
3850      }
3851  
3852      /**
# Line 3838 | Line 3854 | public class ConcurrentHashMapV8<K, V>
3854       * of all values using the given reducer to combine values,
3855       * and the given basis as an identity value.
3856       *
3857 +     * @param parallelismThreshold the (estimated) number of elements
3858 +     * needed for this operation to be executed in parallel
3859       * @param transformer a function returning the transformation
3860       * for an element
3861       * @param basis the identity (initial default value) for the reduction
3862       * @param reducer a commutative associative combining function
3863       * @return the result of accumulating the given transformation
3864       * of all values
3865 +     * @since 1.8
3866       */
3867 <    public double reduceValuesToDouble(ObjectToDouble<? super V> transformer,
3867 >    public double reduceValuesToDouble(long parallelismThreshold,
3868 >                                       ObjectToDouble<? super V> transformer,
3869                                         double basis,
3870                                         DoubleByDoubleToDouble reducer) {
3871 <        return ForkJoinTasks.reduceValuesToDouble
3872 <            (this, transformer, basis, reducer).invoke();
3871 >        if (transformer == null || reducer == null)
3872 >            throw new NullPointerException();
3873 >        return new MapReduceValuesToDoubleTask<K,V>
3874 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3875 >             null, transformer, basis, reducer).invoke();
3876      }
3877  
3878      /**
# Line 3857 | Line 3880 | public class ConcurrentHashMapV8<K, V>
3880       * of all values using the given reducer to combine values,
3881       * and the given basis as an identity value.
3882       *
3883 +     * @param parallelismThreshold the (estimated) number of elements
3884 +     * needed for this operation to be executed in parallel
3885       * @param transformer a function returning the transformation
3886       * for an element
3887       * @param basis the identity (initial default value) for the reduction
3888       * @param reducer a commutative associative combining function
3889       * @return the result of accumulating the given transformation
3890       * of all values
3891 +     * @since 1.8
3892       */
3893 <    public long reduceValuesToLong(ObjectToLong<? super V> transformer,
3893 >    public long reduceValuesToLong(long parallelismThreshold,
3894 >                                   ObjectToLong<? super V> transformer,
3895                                     long basis,
3896                                     LongByLongToLong reducer) {
3897 <        return ForkJoinTasks.reduceValuesToLong
3898 <            (this, transformer, basis, reducer).invoke();
3897 >        if (transformer == null || reducer == null)
3898 >            throw new NullPointerException();
3899 >        return new MapReduceValuesToLongTask<K,V>
3900 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3901 >             null, transformer, basis, reducer).invoke();
3902      }
3903  
3904      /**
# Line 3876 | Line 3906 | public class ConcurrentHashMapV8<K, V>
3906       * of all values using the given reducer to combine values,
3907       * and the given basis as an identity value.
3908       *
3909 +     * @param parallelismThreshold the (estimated) number of elements
3910 +     * needed for this operation to be executed in parallel
3911       * @param transformer a function returning the transformation
3912       * for an element
3913       * @param basis the identity (initial default value) for the reduction
3914       * @param reducer a commutative associative combining function
3915       * @return the result of accumulating the given transformation
3916       * of all values
3917 +     * @since 1.8
3918       */
3919 <    public int reduceValuesToInt(ObjectToInt<? super V> transformer,
3919 >    public int reduceValuesToInt(long parallelismThreshold,
3920 >                                 ObjectToInt<? super V> transformer,
3921                                   int basis,
3922                                   IntByIntToInt reducer) {
3923 <        return ForkJoinTasks.reduceValuesToInt
3924 <            (this, transformer, basis, reducer).invoke();
3923 >        if (transformer == null || reducer == null)
3924 >            throw new NullPointerException();
3925 >        return new MapReduceValuesToIntTask<K,V>
3926 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3927 >             null, transformer, basis, reducer).invoke();
3928      }
3929  
3930      /**
3931       * Performs the given action for each entry.
3932       *
3933 +     * @param parallelismThreshold the (estimated) number of elements
3934 +     * needed for this operation to be executed in parallel
3935       * @param action the action
3936 +     * @since 1.8
3937       */
3938 <    public void forEachEntry(Action<Map.Entry<K,V>> action) {
3939 <        ForkJoinTasks.forEachEntry
3940 <            (this, action).invoke();
3938 >    public void forEachEntry(long parallelismThreshold,
3939 >                             Action<? super Map.Entry<K,V>> action) {
3940 >        if (action == null) throw new NullPointerException();
3941 >        new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
3942 >                                  action).invoke();
3943      }
3944  
3945      /**
3946       * Performs the given action for each non-null transformation
3947       * of each entry.
3948       *
3949 +     * @param parallelismThreshold the (estimated) number of elements
3950 +     * needed for this operation to be executed in parallel
3951       * @param transformer a function returning the transformation
3952 <     * for an element, or null of there is no transformation (in
3953 <     * which case the action is not applied).
3952 >     * for an element, or null if there is no transformation (in
3953 >     * which case the action is not applied)
3954       * @param action the action
3955 +     * @since 1.8
3956       */
3957 <    public <U> void forEachEntry(Fun<Map.Entry<K,V>, ? extends U> transformer,
3958 <                                 Action<U> action) {
3959 <        ForkJoinTasks.forEachEntry
3960 <            (this, transformer, action).invoke();
3957 >    public <U> void forEachEntry(long parallelismThreshold,
3958 >                                 Fun<Map.Entry<K,V>, ? extends U> transformer,
3959 >                                 Action<? super U> action) {
3960 >        if (transformer == null || action == null)
3961 >            throw new NullPointerException();
3962 >        new ForEachTransformedEntryTask<K,V,U>
3963 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3964 >             transformer, action).invoke();
3965      }
3966  
3967      /**
# Line 3922 | Line 3971 | public class ConcurrentHashMapV8<K, V>
3971       * any other parallel invocations of the search function are
3972       * ignored.
3973       *
3974 +     * @param parallelismThreshold the (estimated) number of elements
3975 +     * needed for this operation to be executed in parallel
3976       * @param searchFunction a function returning a non-null
3977       * result on success, else null
3978       * @return a non-null result from applying the given search
3979       * function on each entry, or null if none
3980 +     * @since 1.8
3981       */
3982 <    public <U> U searchEntries(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
3983 <        return ForkJoinTasks.searchEntries
3984 <            (this, searchFunction).invoke();
3982 >    public <U> U searchEntries(long parallelismThreshold,
3983 >                               Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
3984 >        if (searchFunction == null) throw new NullPointerException();
3985 >        return new SearchEntriesTask<K,V,U>
3986 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3987 >             searchFunction, new AtomicReference<U>()).invoke();
3988      }
3989  
3990      /**
3991       * Returns the result of accumulating all entries using the
3992       * given reducer to combine values, or null if none.
3993       *
3994 +     * @param parallelismThreshold the (estimated) number of elements
3995 +     * needed for this operation to be executed in parallel
3996       * @param reducer a commutative associative combining function
3997       * @return the result of accumulating all entries
3998 +     * @since 1.8
3999       */
4000 <    public Map.Entry<K,V> reduceEntries(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4001 <        return ForkJoinTasks.reduceEntries
4002 <            (this, reducer).invoke();
4000 >    public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4001 >                                        BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4002 >        if (reducer == null) throw new NullPointerException();
4003 >        return new ReduceEntriesTask<K,V>
4004 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4005 >             null, reducer).invoke();
4006      }
4007  
4008      /**
# Line 3949 | Line 4010 | public class ConcurrentHashMapV8<K, V>
4010       * of all entries using the given reducer to combine values,
4011       * or null if none.
4012       *
4013 +     * @param parallelismThreshold the (estimated) number of elements
4014 +     * needed for this operation to be executed in parallel
4015       * @param transformer a function returning the transformation
4016 <     * for an element, or null of there is no transformation (in
4017 <     * which case it is not combined).
4016 >     * for an element, or null if there is no transformation (in
4017 >     * which case it is not combined)
4018       * @param reducer a commutative associative combining function
4019       * @return the result of accumulating the given transformation
4020       * of all entries
4021 +     * @since 1.8
4022       */
4023 <    public <U> U reduceEntries(Fun<Map.Entry<K,V>, ? extends U> transformer,
4023 >    public <U> U reduceEntries(long parallelismThreshold,
4024 >                               Fun<Map.Entry<K,V>, ? extends U> transformer,
4025                                 BiFun<? super U, ? super U, ? extends U> reducer) {
4026 <        return ForkJoinTasks.reduceEntries
4027 <            (this, transformer, reducer).invoke();
4026 >        if (transformer == null || reducer == null)
4027 >            throw new NullPointerException();
4028 >        return new MapReduceEntriesTask<K,V,U>
4029 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4030 >             null, transformer, reducer).invoke();
4031      }
4032  
4033      /**
# Line 3967 | Line 4035 | public class ConcurrentHashMapV8<K, V>
4035       * of all entries using the given reducer to combine values,
4036       * and the given basis as an identity value.
4037       *
4038 +     * @param parallelismThreshold the (estimated) number of elements
4039 +     * needed for this operation to be executed in parallel
4040       * @param transformer a function returning the transformation
4041       * for an element
4042       * @param basis the identity (initial default value) for the reduction
4043       * @param reducer a commutative associative combining function
4044       * @return the result of accumulating the given transformation
4045       * of all entries
4046 +     * @since 1.8
4047       */
4048 <    public double reduceEntriesToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4048 >    public double reduceEntriesToDouble(long parallelismThreshold,
4049 >                                        ObjectToDouble<Map.Entry<K,V>> transformer,
4050                                          double basis,
4051                                          DoubleByDoubleToDouble reducer) {
4052 <        return ForkJoinTasks.reduceEntriesToDouble
4053 <            (this, transformer, basis, reducer).invoke();
4052 >        if (transformer == null || reducer == null)
4053 >            throw new NullPointerException();
4054 >        return new MapReduceEntriesToDoubleTask<K,V>
4055 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4056 >             null, transformer, basis, reducer).invoke();
4057      }
4058  
4059      /**
# Line 3986 | Line 4061 | public class ConcurrentHashMapV8<K, V>
4061       * of all entries using the given reducer to combine values,
4062       * and the given basis as an identity value.
4063       *
4064 +     * @param parallelismThreshold the (estimated) number of elements
4065 +     * needed for this operation to be executed in parallel
4066       * @param transformer a function returning the transformation
4067       * for an element
4068       * @param basis the identity (initial default value) for the reduction
4069       * @param reducer a commutative associative combining function
4070 <     * @return  the result of accumulating the given transformation
4070 >     * @return the result of accumulating the given transformation
4071       * of all entries
4072 +     * @since 1.8
4073       */
4074 <    public long reduceEntriesToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4074 >    public long reduceEntriesToLong(long parallelismThreshold,
4075 >                                    ObjectToLong<Map.Entry<K,V>> transformer,
4076                                      long basis,
4077                                      LongByLongToLong reducer) {
4078 <        return ForkJoinTasks.reduceEntriesToLong
4079 <            (this, transformer, basis, reducer).invoke();
4078 >        if (transformer == null || reducer == null)
4079 >            throw new NullPointerException();
4080 >        return new MapReduceEntriesToLongTask<K,V>
4081 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4082 >             null, transformer, basis, reducer).invoke();
4083      }
4084  
4085      /**
# Line 4005 | Line 4087 | public class ConcurrentHashMapV8<K, V>
4087       * of all entries using the given reducer to combine values,
4088       * and the given basis as an identity value.
4089       *
4090 +     * @param parallelismThreshold the (estimated) number of elements
4091 +     * needed for this operation to be executed in parallel
4092       * @param transformer a function returning the transformation
4093       * for an element
4094       * @param basis the identity (initial default value) for the reduction
4095       * @param reducer a commutative associative combining function
4096       * @return the result of accumulating the given transformation
4097       * of all entries
4098 +     * @since 1.8
4099       */
4100 <    public int reduceEntriesToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4100 >    public int reduceEntriesToInt(long parallelismThreshold,
4101 >                                  ObjectToInt<Map.Entry<K,V>> transformer,
4102                                    int basis,
4103                                    IntByIntToInt reducer) {
4104 <        return ForkJoinTasks.reduceEntriesToInt
4105 <            (this, transformer, basis, reducer).invoke();
4104 >        if (transformer == null || reducer == null)
4105 >            throw new NullPointerException();
4106 >        return new MapReduceEntriesToIntTask<K,V>
4107 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4108 >             null, transformer, basis, reducer).invoke();
4109      }
4110  
4111 +
4112      /* ----------------Views -------------- */
4113  
4114      /**
4115       * Base class for views.
4116       */
4117 <    static abstract class CHMView<K, V> {
4118 <        final ConcurrentHashMapV8<K, V> map;
4119 <        CHMView(ConcurrentHashMapV8<K, V> map)  { this.map = map; }
4117 >    abstract static class CollectionView<K,V,E>
4118 >        implements Collection<E>, java.io.Serializable {
4119 >        private static final long serialVersionUID = 7249069246763182397L;
4120 >        final ConcurrentHashMapV8<K,V> map;
4121 >        CollectionView(ConcurrentHashMapV8<K,V> map)  { this.map = map; }
4122  
4123          /**
4124           * Returns the map backing this view.
# Line 4035 | Line 4127 | public class ConcurrentHashMapV8<K, V>
4127           */
4128          public ConcurrentHashMapV8<K,V> getMap() { return map; }
4129  
4130 <        public final int size()                 { return map.size(); }
4131 <        public final boolean isEmpty()          { return map.isEmpty(); }
4132 <        public final void clear()               { map.clear(); }
4130 >        /**
4131 >         * Removes all of the elements from this view, by removing all
4132 >         * the mappings from the map backing this view.
4133 >         */
4134 >        public final void clear()      { map.clear(); }
4135 >        public final int size()        { return map.size(); }
4136 >        public final boolean isEmpty() { return map.isEmpty(); }
4137  
4138          // implementations below rely on concrete classes supplying these
4139 <        abstract public Iterator<?> iterator();
4140 <        abstract public boolean contains(Object o);
4141 <        abstract public boolean remove(Object o);
4139 >        // abstract methods
4140 >        /**
4141 >         * Returns a "weakly consistent" iterator that will never
4142 >         * throw {@link ConcurrentModificationException}, and
4143 >         * guarantees to traverse elements as they existed upon
4144 >         * construction of the iterator, and may (but is not
4145 >         * guaranteed to) reflect any modifications subsequent to
4146 >         * construction.
4147 >         */
4148 >        public abstract Iterator<E> iterator();
4149 >        public abstract boolean contains(Object o);
4150 >        public abstract boolean remove(Object o);
4151  
4152          private static final String oomeMsg = "Required array size too large";
4153  
4154          public final Object[] toArray() {
4155              long sz = map.mappingCount();
4156 <            if (sz > (long)(MAX_ARRAY_SIZE))
4156 >            if (sz > MAX_ARRAY_SIZE)
4157                  throw new OutOfMemoryError(oomeMsg);
4158              int n = (int)sz;
4159              Object[] r = new Object[n];
4160              int i = 0;
4161 <            Iterator<?> it = iterator();
4057 <            while (it.hasNext()) {
4161 >            for (E e : this) {
4162                  if (i == n) {
4163                      if (n >= MAX_ARRAY_SIZE)
4164                          throw new OutOfMemoryError(oomeMsg);
# Line 4064 | Line 4168 | public class ConcurrentHashMapV8<K, V>
4168                          n += (n >>> 1) + 1;
4169                      r = Arrays.copyOf(r, n);
4170                  }
4171 <                r[i++] = it.next();
4171 >                r[i++] = e;
4172              }
4173              return (i == n) ? r : Arrays.copyOf(r, i);
4174          }
4175  
4176 <        @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
4176 >        @SuppressWarnings("unchecked")
4177 >        public final <T> T[] toArray(T[] a) {
4178              long sz = map.mappingCount();
4179 <            if (sz > (long)(MAX_ARRAY_SIZE))
4179 >            if (sz > MAX_ARRAY_SIZE)
4180                  throw new OutOfMemoryError(oomeMsg);
4181              int m = (int)sz;
4182              T[] r = (a.length >= m) ? a :
# Line 4079 | Line 4184 | public class ConcurrentHashMapV8<K, V>
4184                  .newInstance(a.getClass().getComponentType(), m);
4185              int n = r.length;
4186              int i = 0;
4187 <            Iterator<?> it = iterator();
4083 <            while (it.hasNext()) {
4187 >            for (E e : this) {
4188                  if (i == n) {
4189                      if (n >= MAX_ARRAY_SIZE)
4190                          throw new OutOfMemoryError(oomeMsg);
# Line 4090 | Line 4194 | public class ConcurrentHashMapV8<K, V>
4194                          n += (n >>> 1) + 1;
4195                      r = Arrays.copyOf(r, n);
4196                  }
4197 <                r[i++] = (T)it.next();
4197 >                r[i++] = (T)e;
4198              }
4199              if (a == r && i < n) {
4200                  r[i] = null; // null-terminate
# Line 4099 | Line 4203 | public class ConcurrentHashMapV8<K, V>
4203              return (i == n) ? r : Arrays.copyOf(r, i);
4204          }
4205  
4206 <        public final int hashCode() {
4207 <            int h = 0;
4208 <            for (Iterator<?> it = iterator(); it.hasNext();)
4209 <                h += it.next().hashCode();
4210 <            return h;
4211 <        }
4212 <
4206 >        /**
4207 >         * Returns a string representation of this collection.
4208 >         * The string representation consists of the string representations
4209 >         * of the collection's elements in the order they are returned by
4210 >         * its iterator, enclosed in square brackets ({@code "[]"}).
4211 >         * Adjacent elements are separated by the characters {@code ", "}
4212 >         * (comma and space).  Elements are converted to strings as by
4213 >         * {@link String#valueOf(Object)}.
4214 >         *
4215 >         * @return a string representation of this collection
4216 >         */
4217          public final String toString() {
4218              StringBuilder sb = new StringBuilder();
4219              sb.append('[');
4220 <            Iterator<?> it = iterator();
4220 >            Iterator<E> it = iterator();
4221              if (it.hasNext()) {
4222                  for (;;) {
4223                      Object e = it.next();
# Line 4124 | Line 4232 | public class ConcurrentHashMapV8<K, V>
4232  
4233          public final boolean containsAll(Collection<?> c) {
4234              if (c != this) {
4235 <                for (Iterator<?> it = c.iterator(); it.hasNext();) {
4128 <                    Object e = it.next();
4235 >                for (Object e : c) {
4236                      if (e == null || !contains(e))
4237                          return false;
4238                  }
# Line 4135 | Line 4242 | public class ConcurrentHashMapV8<K, V>
4242  
4243          public final boolean removeAll(Collection<?> c) {
4244              boolean modified = false;
4245 <            for (Iterator<?> it = iterator(); it.hasNext();) {
4245 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4246                  if (c.contains(it.next())) {
4247                      it.remove();
4248                      modified = true;
# Line 4146 | Line 4253 | public class ConcurrentHashMapV8<K, V>
4253  
4254          public final boolean retainAll(Collection<?> c) {
4255              boolean modified = false;
4256 <            for (Iterator<?> it = iterator(); it.hasNext();) {
4256 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4257                  if (!c.contains(it.next())) {
4258                      it.remove();
4259                      modified = true;
# Line 4160 | Line 4267 | public class ConcurrentHashMapV8<K, V>
4267      /**
4268       * A view of a ConcurrentHashMapV8 as a {@link Set} of keys, in
4269       * which additions may optionally be enabled by mapping to a
4270 <     * common value.  This class cannot be directly instantiated. See
4271 <     * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
4272 <     * {@link #newKeySet(int)}.
4270 >     * common value.  This class cannot be directly instantiated.
4271 >     * See {@link #keySet() keySet()},
4272 >     * {@link #keySet(Object) keySet(V)},
4273 >     * {@link #newKeySet() newKeySet()},
4274 >     * {@link #newKeySet(int) newKeySet(int)}.
4275 >     *
4276 >     * @since 1.8
4277       */
4278 <    public static class KeySetView<K,V> extends CHMView<K,V> implements Set<K>, java.io.Serializable {
4278 >    public static class KeySetView<K,V> extends CollectionView<K,V,K>
4279 >        implements Set<K>, java.io.Serializable {
4280          private static final long serialVersionUID = 7249069246763182397L;
4281          private final V value;
4282 <        KeySetView(ConcurrentHashMapV8<K, V> map, V value) {  // non-public
4282 >        KeySetView(ConcurrentHashMapV8<K,V> map, V value) {  // non-public
4283              super(map);
4284              this.value = value;
4285          }
# Line 4177 | Line 4289 | public class ConcurrentHashMapV8<K, V>
4289           * or {@code null} if additions are not supported.
4290           *
4291           * @return the default mapped value for additions, or {@code null}
4292 <         * if not supported.
4292 >         * if not supported
4293           */
4294          public V getMappedValue() { return value; }
4295  
4296 <        // implement Set API
4297 <
4296 >        /**
4297 >         * {@inheritDoc}
4298 >         * @throws NullPointerException if the specified key is null
4299 >         */
4300          public boolean contains(Object o) { return map.containsKey(o); }
4187        public boolean remove(Object o)   { return map.remove(o) != null; }
4301  
4302          /**
4303 <         * Returns a "weakly consistent" iterator that will never
4304 <         * throw {@link ConcurrentModificationException}, and
4305 <         * guarantees to traverse elements as they existed upon
4306 <         * construction of the iterator, and may (but is not
4307 <         * guaranteed to) reflect any modifications subsequent to
4308 <         * construction.
4303 >         * Removes the key from this map view, by removing the key (and its
4304 >         * corresponding value) from the backing map.  This method does
4305 >         * nothing if the key is not in the map.
4306 >         *
4307 >         * @param  o the key to be removed from the backing map
4308 >         * @return {@code true} if the backing map contained the specified key
4309 >         * @throws NullPointerException if the specified key is null
4310 >         */
4311 >        public boolean remove(Object o) { return map.remove(o) != null; }
4312 >
4313 >        /**
4314 >         * @return an iterator over the keys of the backing map
4315 >         */
4316 >        public Iterator<K> iterator() {
4317 >            Node<K,V>[] t;
4318 >            ConcurrentHashMapV8<K,V> m = map;
4319 >            int f = (t = m.table) == null ? 0 : t.length;
4320 >            return new KeyIterator<K,V>(t, f, 0, f, m);
4321 >        }
4322 >
4323 >        /**
4324 >         * Adds the specified key to this set view by mapping the key to
4325 >         * the default mapped value in the backing map, if defined.
4326           *
4327 <         * @return an iterator over the keys of this map
4327 >         * @param e key to be added
4328 >         * @return {@code true} if this set changed as a result of the call
4329 >         * @throws NullPointerException if the specified key is null
4330 >         * @throws UnsupportedOperationException if no default mapped value
4331 >         * for additions was provided
4332           */
4199        public Iterator<K> iterator()     { return new KeyIterator<K,V>(map); }
4333          public boolean add(K e) {
4334              V v;
4335              if ((v = value) == null)
4336                  throw new UnsupportedOperationException();
4337 <            if (e == null)
4205 <                throw new NullPointerException();
4206 <            return map.internalPutIfAbsent(e, v) == null;
4337 >            return map.putVal(e, v, true) == null;
4338          }
4339 +
4340 +        /**
4341 +         * Adds all of the elements in the specified collection to this set,
4342 +         * as if by calling {@link #add} on each one.
4343 +         *
4344 +         * @param c the elements to be inserted into this set
4345 +         * @return {@code true} if this set changed as a result of the call
4346 +         * @throws NullPointerException if the collection or any of its
4347 +         * elements are {@code null}
4348 +         * @throws UnsupportedOperationException if no default mapped value
4349 +         * for additions was provided
4350 +         */
4351          public boolean addAll(Collection<? extends K> c) {
4352              boolean added = false;
4353              V v;
4354              if ((v = value) == null)
4355                  throw new UnsupportedOperationException();
4356              for (K e : c) {
4357 <                if (e == null)
4215 <                    throw new NullPointerException();
4216 <                if (map.internalPutIfAbsent(e, v) == null)
4357 >                if (map.putVal(e, v, true) == null)
4358                      added = true;
4359              }
4360              return added;
4361          }
4362 +
4363 +        public int hashCode() {
4364 +            int h = 0;
4365 +            for (K e : this)
4366 +                h += e.hashCode();
4367 +            return h;
4368 +        }
4369 +
4370          public boolean equals(Object o) {
4371              Set<?> c;
4372              return ((o instanceof Set) &&
# Line 4225 | Line 4374 | public class ConcurrentHashMapV8<K, V>
4374                       (containsAll(c) && c.containsAll(this))));
4375          }
4376  
4377 <        /**
4378 <         * Performs the given action for each key.
4379 <         *
4380 <         * @param action the action
4381 <         */
4382 <        public void forEach(Action<K> action) {
4234 <            ForkJoinTasks.forEachKey
4235 <                (map, action).invoke();
4236 <        }
4237 <
4238 <        /**
4239 <         * Performs the given action for each non-null transformation
4240 <         * of each key.
4241 <         *
4242 <         * @param transformer a function returning the transformation
4243 <         * for an element, or null of there is no transformation (in
4244 <         * which case the action is not applied).
4245 <         * @param action the action
4246 <         */
4247 <        public <U> void forEach(Fun<? super K, ? extends U> transformer,
4248 <                                Action<U> action) {
4249 <            ForkJoinTasks.forEachKey
4250 <                (map, transformer, action).invoke();
4251 <        }
4252 <
4253 <        /**
4254 <         * Returns a non-null result from applying the given search
4255 <         * function on each key, or null if none. Upon success,
4256 <         * further element processing is suppressed and the results of
4257 <         * any other parallel invocations of the search function are
4258 <         * ignored.
4259 <         *
4260 <         * @param searchFunction a function returning a non-null
4261 <         * result on success, else null
4262 <         * @return a non-null result from applying the given search
4263 <         * function on each key, or null if none
4264 <         */
4265 <        public <U> U search(Fun<? super K, ? extends U> searchFunction) {
4266 <            return ForkJoinTasks.searchKeys
4267 <                (map, searchFunction).invoke();
4268 <        }
4269 <
4270 <        /**
4271 <         * Returns the result of accumulating all keys using the given
4272 <         * reducer to combine values, or null if none.
4273 <         *
4274 <         * @param reducer a commutative associative combining function
4275 <         * @return the result of accumulating all keys using the given
4276 <         * reducer to combine values, or null if none
4277 <         */
4278 <        public K reduce(BiFun<? super K, ? super K, ? extends K> reducer) {
4279 <            return ForkJoinTasks.reduceKeys
4280 <                (map, reducer).invoke();
4281 <        }
4282 <
4283 <        /**
4284 <         * Returns the result of accumulating the given transformation
4285 <         * of all keys using the given reducer to combine values, and
4286 <         * the given basis as an identity value.
4287 <         *
4288 <         * @param transformer a function returning the transformation
4289 <         * for an element
4290 <         * @param basis the identity (initial default value) for the reduction
4291 <         * @param reducer a commutative associative combining function
4292 <         * @return  the result of accumulating the given transformation
4293 <         * of all keys
4294 <         */
4295 <        public double reduceToDouble(ObjectToDouble<? super K> transformer,
4296 <                                     double basis,
4297 <                                     DoubleByDoubleToDouble reducer) {
4298 <            return ForkJoinTasks.reduceKeysToDouble
4299 <                (map, transformer, basis, reducer).invoke();
4300 <        }
4301 <
4302 <
4303 <        /**
4304 <         * Returns the result of accumulating the given transformation
4305 <         * of all keys using the given reducer to combine values, and
4306 <         * the given basis as an identity value.
4307 <         *
4308 <         * @param transformer a function returning the transformation
4309 <         * for an element
4310 <         * @param basis the identity (initial default value) for the reduction
4311 <         * @param reducer a commutative associative combining function
4312 <         * @return the result of accumulating the given transformation
4313 <         * of all keys
4314 <         */
4315 <        public long reduceToLong(ObjectToLong<? super K> transformer,
4316 <                                 long basis,
4317 <                                 LongByLongToLong reducer) {
4318 <            return ForkJoinTasks.reduceKeysToLong
4319 <                (map, transformer, basis, reducer).invoke();
4377 >        public ConcurrentHashMapSpliterator<K> spliterator() {
4378 >            Node<K,V>[] t;
4379 >            ConcurrentHashMapV8<K,V> m = map;
4380 >            long n = m.sumCount();
4381 >            int f = (t = m.table) == null ? 0 : t.length;
4382 >            return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4383          }
4384  
4385 <        /**
4386 <         * Returns the result of accumulating the given transformation
4387 <         * of all keys using the given reducer to combine values, and
4388 <         * the given basis as an identity value.
4389 <         *
4390 <         * @param transformer a function returning the transformation
4391 <         * for an element
4392 <         * @param basis the identity (initial default value) for the reduction
4330 <         * @param reducer a commutative associative combining function
4331 <         * @return the result of accumulating the given transformation
4332 <         * of all keys
4333 <         */
4334 <        public int reduceToInt(ObjectToInt<? super K> transformer,
4335 <                               int basis,
4336 <                               IntByIntToInt reducer) {
4337 <            return ForkJoinTasks.reduceKeysToInt
4338 <                (map, transformer, basis, reducer).invoke();
4385 >        public void forEach(Action<? super K> action) {
4386 >            if (action == null) throw new NullPointerException();
4387 >            Node<K,V>[] t;
4388 >            if ((t = map.table) != null) {
4389 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4390 >                for (Node<K,V> p; (p = it.advance()) != null; )
4391 >                    action.apply(p.key);
4392 >            }
4393          }
4340
4394      }
4395  
4396      /**
4397       * A view of a ConcurrentHashMapV8 as a {@link Collection} of
4398       * values, in which additions are disabled. This class cannot be
4399 <     * directly instantiated. See {@link #values},
4347 <     *
4348 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4349 <     * that will never throw {@link ConcurrentModificationException},
4350 <     * and guarantees to traverse elements as they existed upon
4351 <     * construction of the iterator, and may (but is not guaranteed to)
4352 <     * reflect any modifications subsequent to construction.
4399 >     * directly instantiated. See {@link #values()}.
4400       */
4401 <    public static final class ValuesView<K,V> extends CHMView<K,V>
4402 <        implements Collection<V> {
4403 <        ValuesView(ConcurrentHashMapV8<K, V> map)   { super(map); }
4404 <        public final boolean contains(Object o) { return map.containsValue(o); }
4401 >    static final class ValuesView<K,V> extends CollectionView<K,V,V>
4402 >        implements Collection<V>, java.io.Serializable {
4403 >        private static final long serialVersionUID = 2249069246763182397L;
4404 >        ValuesView(ConcurrentHashMapV8<K,V> map) { super(map); }
4405 >        public final boolean contains(Object o) {
4406 >            return map.containsValue(o);
4407 >        }
4408 >
4409          public final boolean remove(Object o) {
4410              if (o != null) {
4411 <                Iterator<V> it = new ValueIterator<K,V>(map);
4361 <                while (it.hasNext()) {
4411 >                for (Iterator<V> it = iterator(); it.hasNext();) {
4412                      if (o.equals(it.next())) {
4413                          it.remove();
4414                          return true;
# Line 4368 | Line 4418 | public class ConcurrentHashMapV8<K, V>
4418              return false;
4419          }
4420  
4371        /**
4372         * Returns a "weakly consistent" iterator that will never
4373         * throw {@link ConcurrentModificationException}, and
4374         * guarantees to traverse elements as they existed upon
4375         * construction of the iterator, and may (but is not
4376         * guaranteed to) reflect any modifications subsequent to
4377         * construction.
4378         *
4379         * @return an iterator over the values of this map
4380         */
4421          public final Iterator<V> iterator() {
4422 <            return new ValueIterator<K,V>(map);
4422 >            ConcurrentHashMapV8<K,V> m = map;
4423 >            Node<K,V>[] t;
4424 >            int f = (t = m.table) == null ? 0 : t.length;
4425 >            return new ValueIterator<K,V>(t, f, 0, f, m);
4426          }
4427 +
4428          public final boolean add(V e) {
4429              throw new UnsupportedOperationException();
4430          }
# Line 4388 | Line 4432 | public class ConcurrentHashMapV8<K, V>
4432              throw new UnsupportedOperationException();
4433          }
4434  
4435 <        /**
4436 <         * Performs the given action for each value.
4437 <         *
4438 <         * @param action the action
4439 <         */
4440 <        public void forEach(Action<V> action) {
4397 <            ForkJoinTasks.forEachValue
4398 <                (map, action).invoke();
4399 <        }
4400 <
4401 <        /**
4402 <         * Performs the given action for each non-null transformation
4403 <         * of each value.
4404 <         *
4405 <         * @param transformer a function returning the transformation
4406 <         * for an element, or null of there is no transformation (in
4407 <         * which case the action is not applied).
4408 <         */
4409 <        public <U> void forEach(Fun<? super V, ? extends U> transformer,
4410 <                                     Action<U> action) {
4411 <            ForkJoinTasks.forEachValue
4412 <                (map, transformer, action).invoke();
4435 >        public ConcurrentHashMapSpliterator<V> spliterator() {
4436 >            Node<K,V>[] t;
4437 >            ConcurrentHashMapV8<K,V> m = map;
4438 >            long n = m.sumCount();
4439 >            int f = (t = m.table) == null ? 0 : t.length;
4440 >            return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4441          }
4442  
4443 <        /**
4444 <         * Returns a non-null result from applying the given search
4445 <         * function on each value, or null if none.  Upon success,
4446 <         * further element processing is suppressed and the results of
4447 <         * any other parallel invocations of the search function are
4448 <         * ignored.
4449 <         *
4450 <         * @param searchFunction a function returning a non-null
4423 <         * result on success, else null
4424 <         * @return a non-null result from applying the given search
4425 <         * function on each value, or null if none
4426 <         *
4427 <         */
4428 <        public <U> U search(Fun<? super V, ? extends U> searchFunction) {
4429 <            return ForkJoinTasks.searchValues
4430 <                (map, searchFunction).invoke();
4431 <        }
4432 <
4433 <        /**
4434 <         * Returns the result of accumulating all values using the
4435 <         * given reducer to combine values, or null if none.
4436 <         *
4437 <         * @param reducer a commutative associative combining function
4438 <         * @return  the result of accumulating all values
4439 <         */
4440 <        public V reduce(BiFun<? super V, ? super V, ? extends V> reducer) {
4441 <            return ForkJoinTasks.reduceValues
4442 <                (map, reducer).invoke();
4443 <        }
4444 <
4445 <        /**
4446 <         * Returns the result of accumulating the given transformation
4447 <         * of all values using the given reducer to combine values, or
4448 <         * null if none.
4449 <         *
4450 <         * @param transformer a function returning the transformation
4451 <         * for an element, or null of there is no transformation (in
4452 <         * which case it is not combined).
4453 <         * @param reducer a commutative associative combining function
4454 <         * @return the result of accumulating the given transformation
4455 <         * of all values
4456 <         */
4457 <        public <U> U reduce(Fun<? super V, ? extends U> transformer,
4458 <                            BiFun<? super U, ? super U, ? extends U> reducer) {
4459 <            return ForkJoinTasks.reduceValues
4460 <                (map, transformer, reducer).invoke();
4461 <        }
4462 <
4463 <        /**
4464 <         * Returns the result of accumulating the given transformation
4465 <         * of all values using the given reducer to combine values,
4466 <         * and the given basis as an identity value.
4467 <         *
4468 <         * @param transformer a function returning the transformation
4469 <         * for an element
4470 <         * @param basis the identity (initial default value) for the reduction
4471 <         * @param reducer a commutative associative combining function
4472 <         * @return the result of accumulating the given transformation
4473 <         * of all values
4474 <         */
4475 <        public double reduceToDouble(ObjectToDouble<? super V> transformer,
4476 <                                     double basis,
4477 <                                     DoubleByDoubleToDouble reducer) {
4478 <            return ForkJoinTasks.reduceValuesToDouble
4479 <                (map, transformer, basis, reducer).invoke();
4480 <        }
4481 <
4482 <        /**
4483 <         * Returns the result of accumulating the given transformation
4484 <         * of all values using the given reducer to combine values,
4485 <         * and the given basis as an identity value.
4486 <         *
4487 <         * @param transformer a function returning the transformation
4488 <         * for an element
4489 <         * @param basis the identity (initial default value) for the reduction
4490 <         * @param reducer a commutative associative combining function
4491 <         * @return the result of accumulating the given transformation
4492 <         * of all values
4493 <         */
4494 <        public long reduceToLong(ObjectToLong<? super V> transformer,
4495 <                                 long basis,
4496 <                                 LongByLongToLong reducer) {
4497 <            return ForkJoinTasks.reduceValuesToLong
4498 <                (map, transformer, basis, reducer).invoke();
4499 <        }
4500 <
4501 <        /**
4502 <         * Returns the result of accumulating the given transformation
4503 <         * of all values using the given reducer to combine values,
4504 <         * and the given basis as an identity value.
4505 <         *
4506 <         * @param transformer a function returning the transformation
4507 <         * for an element
4508 <         * @param basis the identity (initial default value) for the reduction
4509 <         * @param reducer a commutative associative combining function
4510 <         * @return the result of accumulating the given transformation
4511 <         * of all values
4512 <         */
4513 <        public int reduceToInt(ObjectToInt<? super V> transformer,
4514 <                               int basis,
4515 <                               IntByIntToInt reducer) {
4516 <            return ForkJoinTasks.reduceValuesToInt
4517 <                (map, transformer, basis, reducer).invoke();
4443 >        public void forEach(Action<? super V> action) {
4444 >            if (action == null) throw new NullPointerException();
4445 >            Node<K,V>[] t;
4446 >            if ((t = map.table) != null) {
4447 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4448 >                for (Node<K,V> p; (p = it.advance()) != null; )
4449 >                    action.apply(p.val);
4450 >            }
4451          }
4519
4452      }
4453  
4454      /**
4455       * A view of a ConcurrentHashMapV8 as a {@link Set} of (key, value)
4456       * entries.  This class cannot be directly instantiated. See
4457 <     * {@link #entrySet}.
4457 >     * {@link #entrySet()}.
4458       */
4459 <    public static final class EntrySetView<K,V> extends CHMView<K,V>
4460 <        implements Set<Map.Entry<K,V>> {
4461 <        EntrySetView(ConcurrentHashMapV8<K, V> map) { super(map); }
4462 <        public final boolean contains(Object o) {
4459 >    static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4460 >        implements Set<Map.Entry<K,V>>, java.io.Serializable {
4461 >        private static final long serialVersionUID = 2249069246763182397L;
4462 >        EntrySetView(ConcurrentHashMapV8<K,V> map) { super(map); }
4463 >
4464 >        public boolean contains(Object o) {
4465              Object k, v, r; Map.Entry<?,?> e;
4466              return ((o instanceof Map.Entry) &&
4467                      (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
# Line 4535 | Line 4469 | public class ConcurrentHashMapV8<K, V>
4469                      (v = e.getValue()) != null &&
4470                      (v == r || v.equals(r)));
4471          }
4472 <        public final boolean remove(Object o) {
4472 >
4473 >        public boolean remove(Object o) {
4474              Object k, v; Map.Entry<?,?> e;
4475              return ((o instanceof Map.Entry) &&
4476                      (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
# Line 4544 | Line 4479 | public class ConcurrentHashMapV8<K, V>
4479          }
4480  
4481          /**
4482 <         * Returns a "weakly consistent" iterator that will never
4548 <         * throw {@link ConcurrentModificationException}, and
4549 <         * guarantees to traverse elements as they existed upon
4550 <         * construction of the iterator, and may (but is not
4551 <         * guaranteed to) reflect any modifications subsequent to
4552 <         * construction.
4553 <         *
4554 <         * @return an iterator over the entries of this map
4482 >         * @return an iterator over the entries of the backing map
4483           */
4484 <        public final Iterator<Map.Entry<K,V>> iterator() {
4485 <            return new EntryIterator<K,V>(map);
4484 >        public Iterator<Map.Entry<K,V>> iterator() {
4485 >            ConcurrentHashMapV8<K,V> m = map;
4486 >            Node<K,V>[] t;
4487 >            int f = (t = m.table) == null ? 0 : t.length;
4488 >            return new EntryIterator<K,V>(t, f, 0, f, m);
4489          }
4490  
4491 <        public final boolean add(Entry<K,V> e) {
4492 <            K key = e.getKey();
4562 <            V value = e.getValue();
4563 <            if (key == null || value == null)
4564 <                throw new NullPointerException();
4565 <            return map.internalPut(key, value) == null;
4491 >        public boolean add(Entry<K,V> e) {
4492 >            return map.putVal(e.getKey(), e.getValue(), false) == null;
4493          }
4494 <        public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4494 >
4495 >        public boolean addAll(Collection<? extends Entry<K,V>> c) {
4496              boolean added = false;
4497              for (Entry<K,V> e : c) {
4498                  if (add(e))
# Line 4572 | Line 4500 | public class ConcurrentHashMapV8<K, V>
4500              }
4501              return added;
4502          }
4503 <        public boolean equals(Object o) {
4503 >
4504 >        public final int hashCode() {
4505 >            int h = 0;
4506 >            Node<K,V>[] t;
4507 >            if ((t = map.table) != null) {
4508 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4509 >                for (Node<K,V> p; (p = it.advance()) != null; ) {
4510 >                    h += p.hashCode();
4511 >                }
4512 >            }
4513 >            return h;
4514 >        }
4515 >
4516 >        public final boolean equals(Object o) {
4517              Set<?> c;
4518              return ((o instanceof Set) &&
4519                      ((c = (Set<?>)o) == this ||
4520                       (containsAll(c) && c.containsAll(this))));
4521          }
4522  
4523 <        /**
4524 <         * Performs the given action for each entry.
4525 <         *
4526 <         * @param action the action
4527 <         */
4528 <        public void forEach(Action<Map.Entry<K,V>> action) {
4588 <            ForkJoinTasks.forEachEntry
4589 <                (map, action).invoke();
4590 <        }
4591 <
4592 <        /**
4593 <         * Performs the given action for each non-null transformation
4594 <         * of each entry.
4595 <         *
4596 <         * @param transformer a function returning the transformation
4597 <         * for an element, or null of there is no transformation (in
4598 <         * which case the action is not applied).
4599 <         * @param action the action
4600 <         */
4601 <        public <U> void forEach(Fun<Map.Entry<K,V>, ? extends U> transformer,
4602 <                                Action<U> action) {
4603 <            ForkJoinTasks.forEachEntry
4604 <                (map, transformer, action).invoke();
4605 <        }
4606 <
4607 <        /**
4608 <         * Returns a non-null result from applying the given search
4609 <         * function on each entry, or null if none.  Upon success,
4610 <         * further element processing is suppressed and the results of
4611 <         * any other parallel invocations of the search function are
4612 <         * ignored.
4613 <         *
4614 <         * @param searchFunction a function returning a non-null
4615 <         * result on success, else null
4616 <         * @return a non-null result from applying the given search
4617 <         * function on each entry, or null if none
4618 <         */
4619 <        public <U> U search(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4620 <            return ForkJoinTasks.searchEntries
4621 <                (map, searchFunction).invoke();
4523 >        public ConcurrentHashMapSpliterator<Map.Entry<K,V>> spliterator() {
4524 >            Node<K,V>[] t;
4525 >            ConcurrentHashMapV8<K,V> m = map;
4526 >            long n = m.sumCount();
4527 >            int f = (t = m.table) == null ? 0 : t.length;
4528 >            return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4529          }
4530  
4531 <        /**
4532 <         * Returns the result of accumulating all entries using the
4533 <         * given reducer to combine values, or null if none.
4534 <         *
4535 <         * @param reducer a commutative associative combining function
4536 <         * @return the result of accumulating all entries
4537 <         */
4538 <        public Map.Entry<K,V> reduce(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4632 <            return ForkJoinTasks.reduceEntries
4633 <                (map, reducer).invoke();
4634 <        }
4635 <
4636 <        /**
4637 <         * Returns the result of accumulating the given transformation
4638 <         * of all entries using the given reducer to combine values,
4639 <         * or null if none.
4640 <         *
4641 <         * @param transformer a function returning the transformation
4642 <         * for an element, or null of there is no transformation (in
4643 <         * which case it is not combined).
4644 <         * @param reducer a commutative associative combining function
4645 <         * @return the result of accumulating the given transformation
4646 <         * of all entries
4647 <         */
4648 <        public <U> U reduce(Fun<Map.Entry<K,V>, ? extends U> transformer,
4649 <                            BiFun<? super U, ? super U, ? extends U> reducer) {
4650 <            return ForkJoinTasks.reduceEntries
4651 <                (map, transformer, reducer).invoke();
4652 <        }
4653 <
4654 <        /**
4655 <         * Returns the result of accumulating the given transformation
4656 <         * of all entries using the given reducer to combine values,
4657 <         * and the given basis as an identity value.
4658 <         *
4659 <         * @param transformer a function returning the transformation
4660 <         * for an element
4661 <         * @param basis the identity (initial default value) for the reduction
4662 <         * @param reducer a commutative associative combining function
4663 <         * @return the result of accumulating the given transformation
4664 <         * of all entries
4665 <         */
4666 <        public double reduceToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4667 <                                     double basis,
4668 <                                     DoubleByDoubleToDouble reducer) {
4669 <            return ForkJoinTasks.reduceEntriesToDouble
4670 <                (map, transformer, basis, reducer).invoke();
4671 <        }
4672 <
4673 <        /**
4674 <         * Returns the result of accumulating the given transformation
4675 <         * of all entries using the given reducer to combine values,
4676 <         * and the given basis as an identity value.
4677 <         *
4678 <         * @param transformer a function returning the transformation
4679 <         * for an element
4680 <         * @param basis the identity (initial default value) for the reduction
4681 <         * @param reducer a commutative associative combining function
4682 <         * @return  the result of accumulating the given transformation
4683 <         * of all entries
4684 <         */
4685 <        public long reduceToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4686 <                                 long basis,
4687 <                                 LongByLongToLong reducer) {
4688 <            return ForkJoinTasks.reduceEntriesToLong
4689 <                (map, transformer, basis, reducer).invoke();
4690 <        }
4691 <
4692 <        /**
4693 <         * Returns the result of accumulating the given transformation
4694 <         * of all entries using the given reducer to combine values,
4695 <         * and the given basis as an identity value.
4696 <         *
4697 <         * @param transformer a function returning the transformation
4698 <         * for an element
4699 <         * @param basis the identity (initial default value) for the reduction
4700 <         * @param reducer a commutative associative combining function
4701 <         * @return the result of accumulating the given transformation
4702 <         * of all entries
4703 <         */
4704 <        public int reduceToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4705 <                               int basis,
4706 <                               IntByIntToInt reducer) {
4707 <            return ForkJoinTasks.reduceEntriesToInt
4708 <                (map, transformer, basis, reducer).invoke();
4531 >        public void forEach(Action<? super Map.Entry<K,V>> action) {
4532 >            if (action == null) throw new NullPointerException();
4533 >            Node<K,V>[] t;
4534 >            if ((t = map.table) != null) {
4535 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4536 >                for (Node<K,V> p; (p = it.advance()) != null; )
4537 >                    action.apply(new MapEntry<K,V>(p.key, p.val, map));
4538 >            }
4539          }
4540  
4541      }
4542  
4543 <    // ---------------------------------------------------------------------
4543 >    // -------------------------------------------------------
4544  
4545      /**
4546 <     * Predefined tasks for performing bulk parallel operations on
4547 <     * ConcurrentHashMapV8s. These tasks follow the forms and rules used
4718 <     * for bulk operations. Each method has the same name, but returns
4719 <     * a task rather than invoking it. These methods may be useful in
4720 <     * custom applications such as submitting a task without waiting
4721 <     * for completion, using a custom pool, or combining with other
4722 <     * tasks.
4546 >     * Base class for bulk tasks. Repeats some fields and code from
4547 >     * class Traverser, because we need to subclass CountedCompleter.
4548       */
4549 <    public static class ForkJoinTasks {
4550 <        private ForkJoinTasks() {}
4551 <
4552 <        /**
4553 <         * Returns a task that when invoked, performs the given
4554 <         * action for each (key, value)
4555 <         *
4556 <         * @param map the map
4557 <         * @param action the action
4558 <         * @return the task
4559 <         */
4560 <        public static <K,V> ForkJoinTask<Void> forEach
4561 <            (ConcurrentHashMapV8<K,V> map,
4562 <             BiAction<K,V> action) {
4563 <            if (action == null) throw new NullPointerException();
4564 <            return new ForEachMappingTask<K,V>(map, null, -1, action);
4565 <        }
4566 <
4567 <        /**
4568 <         * Returns a task that when invoked, performs the given
4569 <         * action for each non-null transformation of each (key, value)
4745 <         *
4746 <         * @param map the map
4747 <         * @param transformer a function returning the transformation
4748 <         * for an element, or null if there is no transformation (in
4749 <         * which case the action is not applied)
4750 <         * @param action the action
4751 <         * @return the task
4752 <         */
4753 <        public static <K,V,U> ForkJoinTask<Void> forEach
4754 <            (ConcurrentHashMapV8<K,V> map,
4755 <             BiFun<? super K, ? super V, ? extends U> transformer,
4756 <             Action<U> action) {
4757 <            if (transformer == null || action == null)
4758 <                throw new NullPointerException();
4759 <            return new ForEachTransformedMappingTask<K,V,U>
4760 <                (map, null, -1, transformer, action);
4761 <        }
4762 <
4763 <        /**
4764 <         * Returns a task that when invoked, returns a non-null result
4765 <         * from applying the given search function on each (key,
4766 <         * value), or null if none. Upon success, further element
4767 <         * processing is suppressed and the results of any other
4768 <         * parallel invocations of the search function are ignored.
4769 <         *
4770 <         * @param map the map
4771 <         * @param searchFunction a function returning a non-null
4772 <         * result on success, else null
4773 <         * @return the task
4774 <         */
4775 <        public static <K,V,U> ForkJoinTask<U> search
4776 <            (ConcurrentHashMapV8<K,V> map,
4777 <             BiFun<? super K, ? super V, ? extends U> searchFunction) {
4778 <            if (searchFunction == null) throw new NullPointerException();
4779 <            return new SearchMappingsTask<K,V,U>
4780 <                (map, null, -1, searchFunction,
4781 <                 new AtomicReference<U>());
4782 <        }
4783 <
4784 <        /**
4785 <         * Returns a task that when invoked, returns the result of
4786 <         * accumulating the given transformation of all (key, value) pairs
4787 <         * using the given reducer to combine values, or null if none.
4788 <         *
4789 <         * @param map the map
4790 <         * @param transformer a function returning the transformation
4791 <         * for an element, or null if there is no transformation (in
4792 <         * which case it is not combined).
4793 <         * @param reducer a commutative associative combining function
4794 <         * @return the task
4795 <         */
4796 <        public static <K,V,U> ForkJoinTask<U> reduce
4797 <            (ConcurrentHashMapV8<K,V> map,
4798 <             BiFun<? super K, ? super V, ? extends U> transformer,
4799 <             BiFun<? super U, ? super U, ? extends U> reducer) {
4800 <            if (transformer == null || reducer == null)
4801 <                throw new NullPointerException();
4802 <            return new MapReduceMappingsTask<K,V,U>
4803 <                (map, null, -1, null, transformer, reducer);
4804 <        }
4805 <
4806 <        /**
4807 <         * Returns a task that when invoked, returns the result of
4808 <         * accumulating the given transformation of all (key, value) pairs
4809 <         * using the given reducer to combine values, and the given
4810 <         * basis as an identity value.
4811 <         *
4812 <         * @param map the map
4813 <         * @param transformer a function returning the transformation
4814 <         * for an element
4815 <         * @param basis the identity (initial default value) for the reduction
4816 <         * @param reducer a commutative associative combining function
4817 <         * @return the task
4818 <         */
4819 <        public static <K,V> ForkJoinTask<Double> reduceToDouble
4820 <            (ConcurrentHashMapV8<K,V> map,
4821 <             ObjectByObjectToDouble<? super K, ? super V> transformer,
4822 <             double basis,
4823 <             DoubleByDoubleToDouble reducer) {
4824 <            if (transformer == null || reducer == null)
4825 <                throw new NullPointerException();
4826 <            return new MapReduceMappingsToDoubleTask<K,V>
4827 <                (map, null, -1, null, transformer, basis, reducer);
4828 <        }
4829 <
4830 <        /**
4831 <         * Returns a task that when invoked, returns the result of
4832 <         * accumulating the given transformation of all (key, value) pairs
4833 <         * using the given reducer to combine values, and the given
4834 <         * basis as an identity value.
4835 <         *
4836 <         * @param map the map
4837 <         * @param transformer a function returning the transformation
4838 <         * for an element
4839 <         * @param basis the identity (initial default value) for the reduction
4840 <         * @param reducer a commutative associative combining function
4841 <         * @return the task
4842 <         */
4843 <        public static <K,V> ForkJoinTask<Long> reduceToLong
4844 <            (ConcurrentHashMapV8<K,V> map,
4845 <             ObjectByObjectToLong<? super K, ? super V> transformer,
4846 <             long basis,
4847 <             LongByLongToLong reducer) {
4848 <            if (transformer == null || reducer == null)
4849 <                throw new NullPointerException();
4850 <            return new MapReduceMappingsToLongTask<K,V>
4851 <                (map, null, -1, null, transformer, basis, reducer);
4852 <        }
4853 <
4854 <        /**
4855 <         * Returns a task that when invoked, returns the result of
4856 <         * accumulating the given transformation of all (key, value) pairs
4857 <         * using the given reducer to combine values, and the given
4858 <         * basis as an identity value.
4859 <         *
4860 <         * @param transformer a function returning the transformation
4861 <         * for an element
4862 <         * @param basis the identity (initial default value) for the reduction
4863 <         * @param reducer a commutative associative combining function
4864 <         * @return the task
4865 <         */
4866 <        public static <K,V> ForkJoinTask<Integer> reduceToInt
4867 <            (ConcurrentHashMapV8<K,V> map,
4868 <             ObjectByObjectToInt<? super K, ? super V> transformer,
4869 <             int basis,
4870 <             IntByIntToInt reducer) {
4871 <            if (transformer == null || reducer == null)
4872 <                throw new NullPointerException();
4873 <            return new MapReduceMappingsToIntTask<K,V>
4874 <                (map, null, -1, null, transformer, basis, reducer);
4875 <        }
4876 <
4877 <        /**
4878 <         * Returns a task that when invoked, performs the given action
4879 <         * for each key.
4880 <         *
4881 <         * @param map the map
4882 <         * @param action the action
4883 <         * @return the task
4884 <         */
4885 <        public static <K,V> ForkJoinTask<Void> forEachKey
4886 <            (ConcurrentHashMapV8<K,V> map,
4887 <             Action<K> action) {
4888 <            if (action == null) throw new NullPointerException();
4889 <            return new ForEachKeyTask<K,V>(map, null, -1, action);
4890 <        }
4891 <
4892 <        /**
4893 <         * Returns a task that when invoked, performs the given action
4894 <         * for each non-null transformation of each key.
4895 <         *
4896 <         * @param map the map
4897 <         * @param transformer a function returning the transformation
4898 <         * for an element, or null if there is no transformation (in
4899 <         * which case the action is not applied)
4900 <         * @param action the action
4901 <         * @return the task
4902 <         */
4903 <        public static <K,V,U> ForkJoinTask<Void> forEachKey
4904 <            (ConcurrentHashMapV8<K,V> map,
4905 <             Fun<? super K, ? extends U> transformer,
4906 <             Action<U> action) {
4907 <            if (transformer == null || action == null)
4908 <                throw new NullPointerException();
4909 <            return new ForEachTransformedKeyTask<K,V,U>
4910 <                (map, null, -1, transformer, action);
4911 <        }
4912 <
4913 <        /**
4914 <         * Returns a task that when invoked, returns a non-null result
4915 <         * from applying the given search function on each key, or
4916 <         * null if none.  Upon success, further element processing is
4917 <         * suppressed and the results of any other parallel
4918 <         * invocations of the search function are ignored.
4919 <         *
4920 <         * @param map the map
4921 <         * @param searchFunction a function returning a non-null
4922 <         * result on success, else null
4923 <         * @return the task
4924 <         */
4925 <        public static <K,V,U> ForkJoinTask<U> searchKeys
4926 <            (ConcurrentHashMapV8<K,V> map,
4927 <             Fun<? super K, ? extends U> searchFunction) {
4928 <            if (searchFunction == null) throw new NullPointerException();
4929 <            return new SearchKeysTask<K,V,U>
4930 <                (map, null, -1, searchFunction,
4931 <                 new AtomicReference<U>());
4932 <        }
4933 <
4934 <        /**
4935 <         * Returns a task that when invoked, returns the result of
4936 <         * accumulating all keys using the given reducer to combine
4937 <         * values, or null if none.
4938 <         *
4939 <         * @param map the map
4940 <         * @param reducer a commutative associative combining function
4941 <         * @return the task
4942 <         */
4943 <        public static <K,V> ForkJoinTask<K> reduceKeys
4944 <            (ConcurrentHashMapV8<K,V> map,
4945 <             BiFun<? super K, ? super K, ? extends K> reducer) {
4946 <            if (reducer == null) throw new NullPointerException();
4947 <            return new ReduceKeysTask<K,V>
4948 <                (map, null, -1, null, reducer);
4949 <        }
4950 <
4951 <        /**
4952 <         * Returns a task that when invoked, returns the result of
4953 <         * accumulating the given transformation of all keys using the given
4954 <         * reducer to combine values, or null if none.
4955 <         *
4956 <         * @param map the map
4957 <         * @param transformer a function returning the transformation
4958 <         * for an element, or null if there is no transformation (in
4959 <         * which case it is not combined).
4960 <         * @param reducer a commutative associative combining function
4961 <         * @return the task
4962 <         */
4963 <        public static <K,V,U> ForkJoinTask<U> reduceKeys
4964 <            (ConcurrentHashMapV8<K,V> map,
4965 <             Fun<? super K, ? extends U> transformer,
4966 <             BiFun<? super U, ? super U, ? extends U> reducer) {
4967 <            if (transformer == null || reducer == null)
4968 <                throw new NullPointerException();
4969 <            return new MapReduceKeysTask<K,V,U>
4970 <                (map, null, -1, null, transformer, reducer);
4971 <        }
4972 <
4973 <        /**
4974 <         * Returns a task that when invoked, returns the result of
4975 <         * accumulating the given transformation of all keys using the given
4976 <         * reducer to combine values, and the given basis as an
4977 <         * identity value.
4978 <         *
4979 <         * @param map the map
4980 <         * @param transformer a function returning the transformation
4981 <         * for an element
4982 <         * @param basis the identity (initial default value) for the reduction
4983 <         * @param reducer a commutative associative combining function
4984 <         * @return the task
4985 <         */
4986 <        public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
4987 <            (ConcurrentHashMapV8<K,V> map,
4988 <             ObjectToDouble<? super K> transformer,
4989 <             double basis,
4990 <             DoubleByDoubleToDouble reducer) {
4991 <            if (transformer == null || reducer == null)
4992 <                throw new NullPointerException();
4993 <            return new MapReduceKeysToDoubleTask<K,V>
4994 <                (map, null, -1, null, transformer, basis, reducer);
4995 <        }
4996 <
4997 <        /**
4998 <         * Returns a task that when invoked, returns the result of
4999 <         * accumulating the given transformation of all keys using the given
5000 <         * reducer to combine values, and the given basis as an
5001 <         * identity value.
5002 <         *
5003 <         * @param map the map
5004 <         * @param transformer a function returning the transformation
5005 <         * for an element
5006 <         * @param basis the identity (initial default value) for the reduction
5007 <         * @param reducer a commutative associative combining function
5008 <         * @return the task
5009 <         */
5010 <        public static <K,V> ForkJoinTask<Long> reduceKeysToLong
5011 <            (ConcurrentHashMapV8<K,V> map,
5012 <             ObjectToLong<? super K> transformer,
5013 <             long basis,
5014 <             LongByLongToLong reducer) {
5015 <            if (transformer == null || reducer == null)
5016 <                throw new NullPointerException();
5017 <            return new MapReduceKeysToLongTask<K,V>
5018 <                (map, null, -1, null, transformer, basis, reducer);
5019 <        }
5020 <
5021 <        /**
5022 <         * Returns a task that when invoked, returns the result of
5023 <         * accumulating the given transformation of all keys using the given
5024 <         * reducer to combine values, and the given basis as an
5025 <         * identity value.
5026 <         *
5027 <         * @param map the map
5028 <         * @param transformer a function returning the transformation
5029 <         * for an element
5030 <         * @param basis the identity (initial default value) for the reduction
5031 <         * @param reducer a commutative associative combining function
5032 <         * @return the task
5033 <         */
5034 <        public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5035 <            (ConcurrentHashMapV8<K,V> map,
5036 <             ObjectToInt<? super K> transformer,
5037 <             int basis,
5038 <             IntByIntToInt reducer) {
5039 <            if (transformer == null || reducer == null)
5040 <                throw new NullPointerException();
5041 <            return new MapReduceKeysToIntTask<K,V>
5042 <                (map, null, -1, null, transformer, basis, reducer);
5043 <        }
5044 <
5045 <        /**
5046 <         * Returns a task that when invoked, performs the given action
5047 <         * for each value.
5048 <         *
5049 <         * @param map the map
5050 <         * @param action the action
5051 <         */
5052 <        public static <K,V> ForkJoinTask<Void> forEachValue
5053 <            (ConcurrentHashMapV8<K,V> map,
5054 <             Action<V> action) {
5055 <            if (action == null) throw new NullPointerException();
5056 <            return new ForEachValueTask<K,V>(map, null, -1, action);
5057 <        }
5058 <
5059 <        /**
5060 <         * Returns a task that when invoked, performs the given action
5061 <         * for each non-null transformation of each value.
5062 <         *
5063 <         * @param map the map
5064 <         * @param transformer a function returning the transformation
5065 <         * for an element, or null if there is no transformation (in
5066 <         * which case the action is not applied)
5067 <         * @param action the action
5068 <         */
5069 <        public static <K,V,U> ForkJoinTask<Void> forEachValue
5070 <            (ConcurrentHashMapV8<K,V> map,
5071 <             Fun<? super V, ? extends U> transformer,
5072 <             Action<U> action) {
5073 <            if (transformer == null || action == null)
5074 <                throw new NullPointerException();
5075 <            return new ForEachTransformedValueTask<K,V,U>
5076 <                (map, null, -1, transformer, action);
5077 <        }
5078 <
5079 <        /**
5080 <         * Returns a task that when invoked, returns a non-null result
5081 <         * from applying the given search function on each value, or
5082 <         * null if none.  Upon success, further element processing is
5083 <         * suppressed and the results of any other parallel
5084 <         * invocations of the search function are ignored.
5085 <         *
5086 <         * @param map the map
5087 <         * @param searchFunction a function returning a non-null
5088 <         * result on success, else null
5089 <         * @return the task
5090 <         */
5091 <        public static <K,V,U> ForkJoinTask<U> searchValues
5092 <            (ConcurrentHashMapV8<K,V> map,
5093 <             Fun<? super V, ? extends U> searchFunction) {
5094 <            if (searchFunction == null) throw new NullPointerException();
5095 <            return new SearchValuesTask<K,V,U>
5096 <                (map, null, -1, searchFunction,
5097 <                 new AtomicReference<U>());
5098 <        }
5099 <
5100 <        /**
5101 <         * Returns a task that when invoked, returns the result of
5102 <         * accumulating all values using the given reducer to combine
5103 <         * values, or null if none.
5104 <         *
5105 <         * @param map the map
5106 <         * @param reducer a commutative associative combining function
5107 <         * @return the task
5108 <         */
5109 <        public static <K,V> ForkJoinTask<V> reduceValues
5110 <            (ConcurrentHashMapV8<K,V> map,
5111 <             BiFun<? super V, ? super V, ? extends V> reducer) {
5112 <            if (reducer == null) throw new NullPointerException();
5113 <            return new ReduceValuesTask<K,V>
5114 <                (map, null, -1, null, reducer);
5115 <        }
5116 <
5117 <        /**
5118 <         * Returns a task that when invoked, returns the result of
5119 <         * accumulating the given transformation of all values using the
5120 <         * given reducer to combine values, or null if none.
5121 <         *
5122 <         * @param map the map
5123 <         * @param transformer a function returning the transformation
5124 <         * for an element, or null if there is no transformation (in
5125 <         * which case it is not combined).
5126 <         * @param reducer a commutative associative combining function
5127 <         * @return the task
5128 <         */
5129 <        public static <K,V,U> ForkJoinTask<U> reduceValues
5130 <            (ConcurrentHashMapV8<K,V> map,
5131 <             Fun<? super V, ? extends U> transformer,
5132 <             BiFun<? super U, ? super U, ? extends U> reducer) {
5133 <            if (transformer == null || reducer == null)
5134 <                throw new NullPointerException();
5135 <            return new MapReduceValuesTask<K,V,U>
5136 <                (map, null, -1, null, transformer, reducer);
5137 <        }
5138 <
5139 <        /**
5140 <         * Returns a task that when invoked, returns the result of
5141 <         * accumulating the given transformation of all values using the
5142 <         * given reducer to combine values, and the given basis as an
5143 <         * identity value.
5144 <         *
5145 <         * @param map the map
5146 <         * @param transformer a function returning the transformation
5147 <         * for an element
5148 <         * @param basis the identity (initial default value) for the reduction
5149 <         * @param reducer a commutative associative combining function
5150 <         * @return the task
5151 <         */
5152 <        public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5153 <            (ConcurrentHashMapV8<K,V> map,
5154 <             ObjectToDouble<? super V> transformer,
5155 <             double basis,
5156 <             DoubleByDoubleToDouble reducer) {
5157 <            if (transformer == null || reducer == null)
5158 <                throw new NullPointerException();
5159 <            return new MapReduceValuesToDoubleTask<K,V>
5160 <                (map, null, -1, null, transformer, basis, reducer);
5161 <        }
5162 <
5163 <        /**
5164 <         * Returns a task that when invoked, returns the result of
5165 <         * accumulating the given transformation of all values using the
5166 <         * given reducer to combine values, and the given basis as an
5167 <         * identity value.
5168 <         *
5169 <         * @param map the map
5170 <         * @param transformer a function returning the transformation
5171 <         * for an element
5172 <         * @param basis the identity (initial default value) for the reduction
5173 <         * @param reducer a commutative associative combining function
5174 <         * @return the task
5175 <         */
5176 <        public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5177 <            (ConcurrentHashMapV8<K,V> map,
5178 <             ObjectToLong<? super V> transformer,
5179 <             long basis,
5180 <             LongByLongToLong reducer) {
5181 <            if (transformer == null || reducer == null)
5182 <                throw new NullPointerException();
5183 <            return new MapReduceValuesToLongTask<K,V>
5184 <                (map, null, -1, null, transformer, basis, reducer);
5185 <        }
5186 <
5187 <        /**
5188 <         * Returns a task that when invoked, returns the result of
5189 <         * accumulating the given transformation of all values using the
5190 <         * given reducer to combine values, and the given basis as an
5191 <         * identity value.
5192 <         *
5193 <         * @param map the map
5194 <         * @param transformer a function returning the transformation
5195 <         * for an element
5196 <         * @param basis the identity (initial default value) for the reduction
5197 <         * @param reducer a commutative associative combining function
5198 <         * @return the task
5199 <         */
5200 <        public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5201 <            (ConcurrentHashMapV8<K,V> map,
5202 <             ObjectToInt<? super V> transformer,
5203 <             int basis,
5204 <             IntByIntToInt reducer) {
5205 <            if (transformer == null || reducer == null)
5206 <                throw new NullPointerException();
5207 <            return new MapReduceValuesToIntTask<K,V>
5208 <                (map, null, -1, null, transformer, basis, reducer);
5209 <        }
5210 <
5211 <        /**
5212 <         * Returns a task that when invoked, perform the given action
5213 <         * for each entry.
5214 <         *
5215 <         * @param map the map
5216 <         * @param action the action
5217 <         */
5218 <        public static <K,V> ForkJoinTask<Void> forEachEntry
5219 <            (ConcurrentHashMapV8<K,V> map,
5220 <             Action<Map.Entry<K,V>> action) {
5221 <            if (action == null) throw new NullPointerException();
5222 <            return new ForEachEntryTask<K,V>(map, null, -1, action);
5223 <        }
5224 <
5225 <        /**
5226 <         * Returns a task that when invoked, perform the given action
5227 <         * for each non-null transformation of each entry.
5228 <         *
5229 <         * @param map the map
5230 <         * @param transformer a function returning the transformation
5231 <         * for an element, or null if there is no transformation (in
5232 <         * which case the action is not applied)
5233 <         * @param action the action
5234 <         */
5235 <        public static <K,V,U> ForkJoinTask<Void> forEachEntry
5236 <            (ConcurrentHashMapV8<K,V> map,
5237 <             Fun<Map.Entry<K,V>, ? extends U> transformer,
5238 <             Action<U> action) {
5239 <            if (transformer == null || action == null)
5240 <                throw new NullPointerException();
5241 <            return new ForEachTransformedEntryTask<K,V,U>
5242 <                (map, null, -1, transformer, action);
5243 <        }
5244 <
5245 <        /**
5246 <         * Returns a task that when invoked, returns a non-null result
5247 <         * from applying the given search function on each entry, or
5248 <         * null if none.  Upon success, further element processing is
5249 <         * suppressed and the results of any other parallel
5250 <         * invocations of the search function are ignored.
5251 <         *
5252 <         * @param map the map
5253 <         * @param searchFunction a function returning a non-null
5254 <         * result on success, else null
5255 <         * @return the task
5256 <         */
5257 <        public static <K,V,U> ForkJoinTask<U> searchEntries
5258 <            (ConcurrentHashMapV8<K,V> map,
5259 <             Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
5260 <            if (searchFunction == null) throw new NullPointerException();
5261 <            return new SearchEntriesTask<K,V,U>
5262 <                (map, null, -1, searchFunction,
5263 <                 new AtomicReference<U>());
5264 <        }
5265 <
5266 <        /**
5267 <         * Returns a task that when invoked, returns the result of
5268 <         * accumulating all entries using the given reducer to combine
5269 <         * values, or null if none.
5270 <         *
5271 <         * @param map the map
5272 <         * @param reducer a commutative associative combining function
5273 <         * @return the task
5274 <         */
5275 <        public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5276 <            (ConcurrentHashMapV8<K,V> map,
5277 <             BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5278 <            if (reducer == null) throw new NullPointerException();
5279 <            return new ReduceEntriesTask<K,V>
5280 <                (map, null, -1, null, reducer);
5281 <        }
5282 <
5283 <        /**
5284 <         * Returns a task that when invoked, returns the result of
5285 <         * accumulating the given transformation of all entries using the
5286 <         * given reducer to combine values, or null if none.
5287 <         *
5288 <         * @param map the map
5289 <         * @param transformer a function returning the transformation
5290 <         * for an element, or null if there is no transformation (in
5291 <         * which case it is not combined).
5292 <         * @param reducer a commutative associative combining function
5293 <         * @return the task
5294 <         */
5295 <        public static <K,V,U> ForkJoinTask<U> reduceEntries
5296 <            (ConcurrentHashMapV8<K,V> map,
5297 <             Fun<Map.Entry<K,V>, ? extends U> transformer,
5298 <             BiFun<? super U, ? super U, ? extends U> reducer) {
5299 <            if (transformer == null || reducer == null)
5300 <                throw new NullPointerException();
5301 <            return new MapReduceEntriesTask<K,V,U>
5302 <                (map, null, -1, null, transformer, reducer);
5303 <        }
5304 <
5305 <        /**
5306 <         * Returns a task that when invoked, returns the result of
5307 <         * accumulating the given transformation of all entries using the
5308 <         * given reducer to combine values, and the given basis as an
5309 <         * identity value.
5310 <         *
5311 <         * @param map the map
5312 <         * @param transformer a function returning the transformation
5313 <         * for an element
5314 <         * @param basis the identity (initial default value) for the reduction
5315 <         * @param reducer a commutative associative combining function
5316 <         * @return the task
5317 <         */
5318 <        public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5319 <            (ConcurrentHashMapV8<K,V> map,
5320 <             ObjectToDouble<Map.Entry<K,V>> transformer,
5321 <             double basis,
5322 <             DoubleByDoubleToDouble reducer) {
5323 <            if (transformer == null || reducer == null)
5324 <                throw new NullPointerException();
5325 <            return new MapReduceEntriesToDoubleTask<K,V>
5326 <                (map, null, -1, null, transformer, basis, reducer);
5327 <        }
5328 <
5329 <        /**
5330 <         * Returns a task that when invoked, returns the result of
5331 <         * accumulating the given transformation of all entries using the
5332 <         * given reducer to combine values, and the given basis as an
5333 <         * identity value.
5334 <         *
5335 <         * @param map the map
5336 <         * @param transformer a function returning the transformation
5337 <         * for an element
5338 <         * @param basis the identity (initial default value) for the reduction
5339 <         * @param reducer a commutative associative combining function
5340 <         * @return the task
5341 <         */
5342 <        public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5343 <            (ConcurrentHashMapV8<K,V> map,
5344 <             ObjectToLong<Map.Entry<K,V>> transformer,
5345 <             long basis,
5346 <             LongByLongToLong reducer) {
5347 <            if (transformer == null || reducer == null)
5348 <                throw new NullPointerException();
5349 <            return new MapReduceEntriesToLongTask<K,V>
5350 <                (map, null, -1, null, transformer, basis, reducer);
4549 >    abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4550 >        Node<K,V>[] tab;        // same as Traverser
4551 >        Node<K,V> next;
4552 >        int index;
4553 >        int baseIndex;
4554 >        int baseLimit;
4555 >        final int baseSize;
4556 >        int batch;              // split control
4557 >
4558 >        BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4559 >            super(par);
4560 >            this.batch = b;
4561 >            this.index = this.baseIndex = i;
4562 >            if ((this.tab = t) == null)
4563 >                this.baseSize = this.baseLimit = 0;
4564 >            else if (par == null)
4565 >                this.baseSize = this.baseLimit = t.length;
4566 >            else {
4567 >                this.baseLimit = f;
4568 >                this.baseSize = par.baseSize;
4569 >            }
4570          }
4571  
4572          /**
4573 <         * Returns a task that when invoked, returns the result of
5355 <         * accumulating the given transformation of all entries using the
5356 <         * given reducer to combine values, and the given basis as an
5357 <         * identity value.
5358 <         *
5359 <         * @param map the map
5360 <         * @param transformer a function returning the transformation
5361 <         * for an element
5362 <         * @param basis the identity (initial default value) for the reduction
5363 <         * @param reducer a commutative associative combining function
5364 <         * @return the task
4573 >         * Same as Traverser version
4574           */
4575 <        public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
4576 <            (ConcurrentHashMapV8<K,V> map,
4577 <             ObjectToInt<Map.Entry<K,V>> transformer,
4578 <             int basis,
4579 <             IntByIntToInt reducer) {
4580 <            if (transformer == null || reducer == null)
4581 <                throw new NullPointerException();
4582 <            return new MapReduceEntriesToIntTask<K,V>
4583 <                (map, null, -1, null, transformer, basis, reducer);
4575 >        final Node<K,V> advance() {
4576 >            Node<K,V> e;
4577 >            if ((e = next) != null)
4578 >                e = e.next;
4579 >            for (;;) {
4580 >                Node<K,V>[] t; int i, n; K ek;  // must use locals in checks
4581 >                if (e != null)
4582 >                    return next = e;
4583 >                if (baseIndex >= baseLimit || (t = tab) == null ||
4584 >                    (n = t.length) <= (i = index) || i < 0)
4585 >                    return next = null;
4586 >                if ((e = tabAt(t, index)) != null && e.hash < 0) {
4587 >                    if (e instanceof ForwardingNode) {
4588 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
4589 >                        e = null;
4590 >                        continue;
4591 >                    }
4592 >                    else if (e instanceof TreeBin)
4593 >                        e = ((TreeBin<K,V>)e).first;
4594 >                    else
4595 >                        e = null;
4596 >                }
4597 >                if ((index += baseSize) >= n)
4598 >                    index = ++baseIndex;    // visit upper slots if present
4599 >            }
4600          }
4601      }
4602  
5378    // -------------------------------------------------------
5379
4603      /*
4604       * Task classes. Coded in a regular but ugly format/style to
4605       * simplify checks that each variant differs in the right way from
4606 <     * others.
4607 <     */
4608 <
4609 <    @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
4610 <        extends Traverser<K,V,Void> {
4611 <        final Action<K> action;
4606 >     * others. The null screenings exist because compilers cannot tell
4607 >     * that we've already null-checked task arguments, so we force
4608 >     * simplest hoisted bypass to help avoid convoluted traps.
4609 >     */
4610 >    @SuppressWarnings("serial")
4611 >    static final class ForEachKeyTask<K,V>
4612 >        extends BulkTask<K,V,Void> {
4613 >        final Action<? super K> action;
4614          ForEachKeyTask
4615 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4616 <             Action<K> action) {
4617 <            super(m, p, b);
4615 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4616 >             Action<? super K> action) {
4617 >            super(p, b, i, f, t);
4618              this.action = action;
4619          }
4620 <        @SuppressWarnings("unchecked") public final void compute() {
4621 <            final Action<K> action;
4622 <            if ((action = this.action) == null)
4623 <                throw new NullPointerException();
4624 <            for (int b; (b = preSplit()) > 0;)
4625 <                new ForEachKeyTask<K,V>(map, this, b, action).fork();
4626 <            while (advance() != null)
4627 <                action.apply((K)nextKey);
4628 <            propagateCompletion();
4620 >        public final void compute() {
4621 >            final Action<? super K> action;
4622 >            if ((action = this.action) != null) {
4623 >                for (int i = baseIndex, f, h; batch > 0 &&
4624 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4625 >                    addToPendingCount(1);
4626 >                    new ForEachKeyTask<K,V>
4627 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4628 >                         action).fork();
4629 >                }
4630 >                for (Node<K,V> p; (p = advance()) != null;)
4631 >                    action.apply(p.key);
4632 >                propagateCompletion();
4633 >            }
4634          }
4635      }
4636  
4637 <    @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
4638 <        extends Traverser<K,V,Void> {
4639 <        final Action<V> action;
4637 >    @SuppressWarnings("serial")
4638 >    static final class ForEachValueTask<K,V>
4639 >        extends BulkTask<K,V,Void> {
4640 >        final Action<? super V> action;
4641          ForEachValueTask
4642 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4643 <             Action<V> action) {
4644 <            super(m, p, b);
4642 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4643 >             Action<? super V> action) {
4644 >            super(p, b, i, f, t);
4645              this.action = action;
4646          }
4647 <        @SuppressWarnings("unchecked") public final void compute() {
4648 <            final Action<V> action;
4649 <            if ((action = this.action) == null)
4650 <                throw new NullPointerException();
4651 <            for (int b; (b = preSplit()) > 0;)
4652 <                new ForEachValueTask<K,V>(map, this, b, action).fork();
4653 <            Object v;
4654 <            while ((v = advance()) != null)
4655 <                action.apply((V)v);
4656 <            propagateCompletion();
4647 >        public final void compute() {
4648 >            final Action<? super V> action;
4649 >            if ((action = this.action) != null) {
4650 >                for (int i = baseIndex, f, h; batch > 0 &&
4651 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4652 >                    addToPendingCount(1);
4653 >                    new ForEachValueTask<K,V>
4654 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4655 >                         action).fork();
4656 >                }
4657 >                for (Node<K,V> p; (p = advance()) != null;)
4658 >                    action.apply(p.val);
4659 >                propagateCompletion();
4660 >            }
4661          }
4662      }
4663  
4664 <    @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
4665 <        extends Traverser<K,V,Void> {
4666 <        final Action<Entry<K,V>> action;
4664 >    @SuppressWarnings("serial")
4665 >    static final class ForEachEntryTask<K,V>
4666 >        extends BulkTask<K,V,Void> {
4667 >        final Action<? super Entry<K,V>> action;
4668          ForEachEntryTask
4669 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4670 <             Action<Entry<K,V>> action) {
4671 <            super(m, p, b);
4669 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4670 >             Action<? super Entry<K,V>> action) {
4671 >            super(p, b, i, f, t);
4672              this.action = action;
4673          }
4674 <        @SuppressWarnings("unchecked") public final void compute() {
4675 <            final Action<Entry<K,V>> action;
4676 <            if ((action = this.action) == null)
4677 <                throw new NullPointerException();
4678 <            for (int b; (b = preSplit()) > 0;)
4679 <                new ForEachEntryTask<K,V>(map, this, b, action).fork();
4680 <            Object v;
4681 <            while ((v = advance()) != null)
4682 <                action.apply(entryFor((K)nextKey, (V)v));
4683 <            propagateCompletion();
4674 >        public final void compute() {
4675 >            final Action<? super Entry<K,V>> action;
4676 >            if ((action = this.action) != null) {
4677 >                for (int i = baseIndex, f, h; batch > 0 &&
4678 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4679 >                    addToPendingCount(1);
4680 >                    new ForEachEntryTask<K,V>
4681 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4682 >                         action).fork();
4683 >                }
4684 >                for (Node<K,V> p; (p = advance()) != null; )
4685 >                    action.apply(p);
4686 >                propagateCompletion();
4687 >            }
4688          }
4689      }
4690  
4691 <    @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
4692 <        extends Traverser<K,V,Void> {
4693 <        final BiAction<K,V> action;
4691 >    @SuppressWarnings("serial")
4692 >    static final class ForEachMappingTask<K,V>
4693 >        extends BulkTask<K,V,Void> {
4694 >        final BiAction<? super K, ? super V> action;
4695          ForEachMappingTask
4696 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4697 <             BiAction<K,V> action) {
4698 <            super(m, p, b);
4696 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4697 >             BiAction<? super K,? super V> action) {
4698 >            super(p, b, i, f, t);
4699              this.action = action;
4700          }
4701 <        @SuppressWarnings("unchecked") public final void compute() {
4702 <            final BiAction<K,V> action;
4703 <            if ((action = this.action) == null)
4704 <                throw new NullPointerException();
4705 <            for (int b; (b = preSplit()) > 0;)
4706 <                new ForEachMappingTask<K,V>(map, this, b, action).fork();
4707 <            Object v;
4708 <            while ((v = advance()) != null)
4709 <                action.apply((K)nextKey, (V)v);
4710 <            propagateCompletion();
4701 >        public final void compute() {
4702 >            final BiAction<? super K, ? super V> action;
4703 >            if ((action = this.action) != null) {
4704 >                for (int i = baseIndex, f, h; batch > 0 &&
4705 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4706 >                    addToPendingCount(1);
4707 >                    new ForEachMappingTask<K,V>
4708 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4709 >                         action).fork();
4710 >                }
4711 >                for (Node<K,V> p; (p = advance()) != null; )
4712 >                    action.apply(p.key, p.val);
4713 >                propagateCompletion();
4714 >            }
4715          }
4716      }
4717  
4718 <    @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
4719 <        extends Traverser<K,V,Void> {
4718 >    @SuppressWarnings("serial")
4719 >    static final class ForEachTransformedKeyTask<K,V,U>
4720 >        extends BulkTask<K,V,Void> {
4721          final Fun<? super K, ? extends U> transformer;
4722 <        final Action<U> action;
4722 >        final Action<? super U> action;
4723          ForEachTransformedKeyTask
4724 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4725 <             Fun<? super K, ? extends U> transformer, Action<U> action) {
4726 <            super(m, p, b);
4724 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4725 >             Fun<? super K, ? extends U> transformer, Action<? super U> action) {
4726 >            super(p, b, i, f, t);
4727              this.transformer = transformer; this.action = action;
4728          }
4729 <        @SuppressWarnings("unchecked") public final void compute() {
4729 >        public final void compute() {
4730              final Fun<? super K, ? extends U> transformer;
4731 <            final Action<U> action;
4732 <            if ((transformer = this.transformer) == null ||
4733 <                (action = this.action) == null)
4734 <                throw new NullPointerException();
4735 <            for (int b; (b = preSplit()) > 0;)
4736 <                new ForEachTransformedKeyTask<K,V,U>
4737 <                     (map, this, b, transformer, action).fork();
4738 <            U u;
4739 <            while (advance() != null) {
4740 <                if ((u = transformer.apply((K)nextKey)) != null)
4741 <                    action.apply(u);
4731 >            final Action<? super U> action;
4732 >            if ((transformer = this.transformer) != null &&
4733 >                (action = this.action) != null) {
4734 >                for (int i = baseIndex, f, h; batch > 0 &&
4735 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4736 >                    addToPendingCount(1);
4737 >                    new ForEachTransformedKeyTask<K,V,U>
4738 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4739 >                         transformer, action).fork();
4740 >                }
4741 >                for (Node<K,V> p; (p = advance()) != null; ) {
4742 >                    U u;
4743 >                    if ((u = transformer.apply(p.key)) != null)
4744 >                        action.apply(u);
4745 >                }
4746 >                propagateCompletion();
4747              }
5497            propagateCompletion();
4748          }
4749      }
4750  
4751 <    @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
4752 <        extends Traverser<K,V,Void> {
4751 >    @SuppressWarnings("serial")
4752 >    static final class ForEachTransformedValueTask<K,V,U>
4753 >        extends BulkTask<K,V,Void> {
4754          final Fun<? super V, ? extends U> transformer;
4755 <        final Action<U> action;
4755 >        final Action<? super U> action;
4756          ForEachTransformedValueTask
4757 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4758 <             Fun<? super V, ? extends U> transformer, Action<U> action) {
4759 <            super(m, p, b);
4757 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4758 >             Fun<? super V, ? extends U> transformer, Action<? super U> action) {
4759 >            super(p, b, i, f, t);
4760              this.transformer = transformer; this.action = action;
4761          }
4762 <        @SuppressWarnings("unchecked") public final void compute() {
4762 >        public final void compute() {
4763              final Fun<? super V, ? extends U> transformer;
4764 <            final Action<U> action;
4765 <            if ((transformer = this.transformer) == null ||
4766 <                (action = this.action) == null)
4767 <                throw new NullPointerException();
4768 <            for (int b; (b = preSplit()) > 0;)
4769 <                new ForEachTransformedValueTask<K,V,U>
4770 <                    (map, this, b, transformer, action).fork();
4771 <            Object v; U u;
4772 <            while ((v = advance()) != null) {
4773 <                if ((u = transformer.apply((V)v)) != null)
4774 <                    action.apply(u);
4764 >            final Action<? super U> action;
4765 >            if ((transformer = this.transformer) != null &&
4766 >                (action = this.action) != null) {
4767 >                for (int i = baseIndex, f, h; batch > 0 &&
4768 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4769 >                    addToPendingCount(1);
4770 >                    new ForEachTransformedValueTask<K,V,U>
4771 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4772 >                         transformer, action).fork();
4773 >                }
4774 >                for (Node<K,V> p; (p = advance()) != null; ) {
4775 >                    U u;
4776 >                    if ((u = transformer.apply(p.val)) != null)
4777 >                        action.apply(u);
4778 >                }
4779 >                propagateCompletion();
4780              }
5525            propagateCompletion();
4781          }
4782      }
4783  
4784 <    @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
4785 <        extends Traverser<K,V,Void> {
4784 >    @SuppressWarnings("serial")
4785 >    static final class ForEachTransformedEntryTask<K,V,U>
4786 >        extends BulkTask<K,V,Void> {
4787          final Fun<Map.Entry<K,V>, ? extends U> transformer;
4788 <        final Action<U> action;
4788 >        final Action<? super U> action;
4789          ForEachTransformedEntryTask
4790 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4791 <             Fun<Map.Entry<K,V>, ? extends U> transformer, Action<U> action) {
4792 <            super(m, p, b);
4790 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4791 >             Fun<Map.Entry<K,V>, ? extends U> transformer, Action<? super U> action) {
4792 >            super(p, b, i, f, t);
4793              this.transformer = transformer; this.action = action;
4794          }
4795 <        @SuppressWarnings("unchecked") public final void compute() {
4795 >        public final void compute() {
4796              final Fun<Map.Entry<K,V>, ? extends U> transformer;
4797 <            final Action<U> action;
4798 <            if ((transformer = this.transformer) == null ||
4799 <                (action = this.action) == null)
4800 <                throw new NullPointerException();
4801 <            for (int b; (b = preSplit()) > 0;)
4802 <                new ForEachTransformedEntryTask<K,V,U>
4803 <                    (map, this, b, transformer, action).fork();
4804 <            Object v; U u;
4805 <            while ((v = advance()) != null) {
4806 <                if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
4807 <                    action.apply(u);
4797 >            final Action<? super U> action;
4798 >            if ((transformer = this.transformer) != null &&
4799 >                (action = this.action) != null) {
4800 >                for (int i = baseIndex, f, h; batch > 0 &&
4801 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4802 >                    addToPendingCount(1);
4803 >                    new ForEachTransformedEntryTask<K,V,U>
4804 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4805 >                         transformer, action).fork();
4806 >                }
4807 >                for (Node<K,V> p; (p = advance()) != null; ) {
4808 >                    U u;
4809 >                    if ((u = transformer.apply(p)) != null)
4810 >                        action.apply(u);
4811 >                }
4812 >                propagateCompletion();
4813              }
5553            propagateCompletion();
4814          }
4815      }
4816  
4817 <    @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
4818 <        extends Traverser<K,V,Void> {
4817 >    @SuppressWarnings("serial")
4818 >    static final class ForEachTransformedMappingTask<K,V,U>
4819 >        extends BulkTask<K,V,Void> {
4820          final BiFun<? super K, ? super V, ? extends U> transformer;
4821 <        final Action<U> action;
4821 >        final Action<? super U> action;
4822          ForEachTransformedMappingTask
4823 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4823 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4824               BiFun<? super K, ? super V, ? extends U> transformer,
4825 <             Action<U> action) {
4826 <            super(m, p, b);
4825 >             Action<? super U> action) {
4826 >            super(p, b, i, f, t);
4827              this.transformer = transformer; this.action = action;
4828          }
4829 <        @SuppressWarnings("unchecked") public final void compute() {
4829 >        public final void compute() {
4830              final BiFun<? super K, ? super V, ? extends U> transformer;
4831 <            final Action<U> action;
4832 <            if ((transformer = this.transformer) == null ||
4833 <                (action = this.action) == null)
4834 <                throw new NullPointerException();
4835 <            for (int b; (b = preSplit()) > 0;)
4836 <                new ForEachTransformedMappingTask<K,V,U>
4837 <                    (map, this, b, transformer, action).fork();
4838 <            Object v; U u;
4839 <            while ((v = advance()) != null) {
4840 <                if ((u = transformer.apply((K)nextKey, (V)v)) != null)
4841 <                    action.apply(u);
4831 >            final Action<? super U> action;
4832 >            if ((transformer = this.transformer) != null &&
4833 >                (action = this.action) != null) {
4834 >                for (int i = baseIndex, f, h; batch > 0 &&
4835 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4836 >                    addToPendingCount(1);
4837 >                    new ForEachTransformedMappingTask<K,V,U>
4838 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4839 >                         transformer, action).fork();
4840 >                }
4841 >                for (Node<K,V> p; (p = advance()) != null; ) {
4842 >                    U u;
4843 >                    if ((u = transformer.apply(p.key, p.val)) != null)
4844 >                        action.apply(u);
4845 >                }
4846 >                propagateCompletion();
4847              }
5582            propagateCompletion();
4848          }
4849      }
4850  
4851 <    @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
4852 <        extends Traverser<K,V,U> {
4851 >    @SuppressWarnings("serial")
4852 >    static final class SearchKeysTask<K,V,U>
4853 >        extends BulkTask<K,V,U> {
4854          final Fun<? super K, ? extends U> searchFunction;
4855          final AtomicReference<U> result;
4856          SearchKeysTask
4857 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4857 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4858               Fun<? super K, ? extends U> searchFunction,
4859               AtomicReference<U> result) {
4860 <            super(m, p, b);
4860 >            super(p, b, i, f, t);
4861              this.searchFunction = searchFunction; this.result = result;
4862          }
4863          public final U getRawResult() { return result.get(); }
4864 <        @SuppressWarnings("unchecked") public final void compute() {
4864 >        public final void compute() {
4865              final Fun<? super K, ? extends U> searchFunction;
4866              final AtomicReference<U> result;
4867 <            if ((searchFunction = this.searchFunction) == null ||
4868 <                (result = this.result) == null)
4869 <                throw new NullPointerException();
4870 <            for (int b;;) {
4871 <                if (result.get() != null)
4872 <                    return;
4873 <                if ((b = preSplit()) <= 0)
4874 <                    break;
4875 <                new SearchKeysTask<K,V,U>
4876 <                    (map, this, b, searchFunction, result).fork();
4877 <            }
4878 <            while (result.get() == null) {
4879 <                U u;
4880 <                if (advance() == null) {
4881 <                    propagateCompletion();
4882 <                    break;
4883 <                }
4884 <                if ((u = searchFunction.apply((K)nextKey)) != null) {
4885 <                    if (result.compareAndSet(null, u))
4886 <                        quietlyCompleteRoot();
4887 <                    break;
4867 >            if ((searchFunction = this.searchFunction) != null &&
4868 >                (result = this.result) != null) {
4869 >                for (int i = baseIndex, f, h; batch > 0 &&
4870 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4871 >                    if (result.get() != null)
4872 >                        return;
4873 >                    addToPendingCount(1);
4874 >                    new SearchKeysTask<K,V,U>
4875 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4876 >                         searchFunction, result).fork();
4877 >                }
4878 >                while (result.get() == null) {
4879 >                    U u;
4880 >                    Node<K,V> p;
4881 >                    if ((p = advance()) == null) {
4882 >                        propagateCompletion();
4883 >                        break;
4884 >                    }
4885 >                    if ((u = searchFunction.apply(p.key)) != null) {
4886 >                        if (result.compareAndSet(null, u))
4887 >                            quietlyCompleteRoot();
4888 >                        break;
4889 >                    }
4890                  }
4891              }
4892          }
4893      }
4894  
4895 <    @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
4896 <        extends Traverser<K,V,U> {
4895 >    @SuppressWarnings("serial")
4896 >    static final class SearchValuesTask<K,V,U>
4897 >        extends BulkTask<K,V,U> {
4898          final Fun<? super V, ? extends U> searchFunction;
4899          final AtomicReference<U> result;
4900          SearchValuesTask
4901 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4901 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4902               Fun<? super V, ? extends U> searchFunction,
4903               AtomicReference<U> result) {
4904 <            super(m, p, b);
4904 >            super(p, b, i, f, t);
4905              this.searchFunction = searchFunction; this.result = result;
4906          }
4907          public final U getRawResult() { return result.get(); }
4908 <        @SuppressWarnings("unchecked") public final void compute() {
4908 >        public final void compute() {
4909              final Fun<? super V, ? extends U> searchFunction;
4910              final AtomicReference<U> result;
4911 <            if ((searchFunction = this.searchFunction) == null ||
4912 <                (result = this.result) == null)
4913 <                throw new NullPointerException();
4914 <            for (int b;;) {
4915 <                if (result.get() != null)
4916 <                    return;
4917 <                if ((b = preSplit()) <= 0)
4918 <                    break;
4919 <                new SearchValuesTask<K,V,U>
4920 <                    (map, this, b, searchFunction, result).fork();
4921 <            }
4922 <            while (result.get() == null) {
4923 <                Object v; U u;
4924 <                if ((v = advance()) == null) {
4925 <                    propagateCompletion();
4926 <                    break;
4927 <                }
4928 <                if ((u = searchFunction.apply((V)v)) != null) {
4929 <                    if (result.compareAndSet(null, u))
4930 <                        quietlyCompleteRoot();
4931 <                    break;
4911 >            if ((searchFunction = this.searchFunction) != null &&
4912 >                (result = this.result) != null) {
4913 >                for (int i = baseIndex, f, h; batch > 0 &&
4914 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4915 >                    if (result.get() != null)
4916 >                        return;
4917 >                    addToPendingCount(1);
4918 >                    new SearchValuesTask<K,V,U>
4919 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4920 >                         searchFunction, result).fork();
4921 >                }
4922 >                while (result.get() == null) {
4923 >                    U u;
4924 >                    Node<K,V> p;
4925 >                    if ((p = advance()) == null) {
4926 >                        propagateCompletion();
4927 >                        break;
4928 >                    }
4929 >                    if ((u = searchFunction.apply(p.val)) != null) {
4930 >                        if (result.compareAndSet(null, u))
4931 >                            quietlyCompleteRoot();
4932 >                        break;
4933 >                    }
4934                  }
4935              }
4936          }
4937      }
4938  
4939 <    @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
4940 <        extends Traverser<K,V,U> {
4939 >    @SuppressWarnings("serial")
4940 >    static final class SearchEntriesTask<K,V,U>
4941 >        extends BulkTask<K,V,U> {
4942          final Fun<Entry<K,V>, ? extends U> searchFunction;
4943          final AtomicReference<U> result;
4944          SearchEntriesTask
4945 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4945 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4946               Fun<Entry<K,V>, ? extends U> searchFunction,
4947               AtomicReference<U> result) {
4948 <            super(m, p, b);
4948 >            super(p, b, i, f, t);
4949              this.searchFunction = searchFunction; this.result = result;
4950          }
4951          public final U getRawResult() { return result.get(); }
4952 <        @SuppressWarnings("unchecked") public final void compute() {
4952 >        public final void compute() {
4953              final Fun<Entry<K,V>, ? extends U> searchFunction;
4954              final AtomicReference<U> result;
4955 <            if ((searchFunction = this.searchFunction) == null ||
4956 <                (result = this.result) == null)
4957 <                throw new NullPointerException();
4958 <            for (int b;;) {
4959 <                if (result.get() != null)
4960 <                    return;
4961 <                if ((b = preSplit()) <= 0)
4962 <                    break;
4963 <                new SearchEntriesTask<K,V,U>
4964 <                    (map, this, b, searchFunction, result).fork();
4965 <            }
4966 <            while (result.get() == null) {
4967 <                Object v; U u;
4968 <                if ((v = advance()) == null) {
4969 <                    propagateCompletion();
4970 <                    break;
4971 <                }
4972 <                if ((u = searchFunction.apply(entryFor((K)nextKey, (V)v))) != null) {
4973 <                    if (result.compareAndSet(null, u))
4974 <                        quietlyCompleteRoot();
4975 <                    return;
4955 >            if ((searchFunction = this.searchFunction) != null &&
4956 >                (result = this.result) != null) {
4957 >                for (int i = baseIndex, f, h; batch > 0 &&
4958 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4959 >                    if (result.get() != null)
4960 >                        return;
4961 >                    addToPendingCount(1);
4962 >                    new SearchEntriesTask<K,V,U>
4963 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4964 >                         searchFunction, result).fork();
4965 >                }
4966 >                while (result.get() == null) {
4967 >                    U u;
4968 >                    Node<K,V> p;
4969 >                    if ((p = advance()) == null) {
4970 >                        propagateCompletion();
4971 >                        break;
4972 >                    }
4973 >                    if ((u = searchFunction.apply(p)) != null) {
4974 >                        if (result.compareAndSet(null, u))
4975 >                            quietlyCompleteRoot();
4976 >                        return;
4977 >                    }
4978                  }
4979              }
4980          }
4981      }
4982  
4983 <    @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
4984 <        extends Traverser<K,V,U> {
4983 >    @SuppressWarnings("serial")
4984 >    static final class SearchMappingsTask<K,V,U>
4985 >        extends BulkTask<K,V,U> {
4986          final BiFun<? super K, ? super V, ? extends U> searchFunction;
4987          final AtomicReference<U> result;
4988          SearchMappingsTask
4989 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4989 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4990               BiFun<? super K, ? super V, ? extends U> searchFunction,
4991               AtomicReference<U> result) {
4992 <            super(m, p, b);
4992 >            super(p, b, i, f, t);
4993              this.searchFunction = searchFunction; this.result = result;
4994          }
4995          public final U getRawResult() { return result.get(); }
4996 <        @SuppressWarnings("unchecked") public final void compute() {
4996 >        public final void compute() {
4997              final BiFun<? super K, ? super V, ? extends U> searchFunction;
4998              final AtomicReference<U> result;
4999 <            if ((searchFunction = this.searchFunction) == null ||
5000 <                (result = this.result) == null)
5001 <                throw new NullPointerException();
5002 <            for (int b;;) {
5003 <                if (result.get() != null)
5004 <                    return;
5005 <                if ((b = preSplit()) <= 0)
5006 <                    break;
5007 <                new SearchMappingsTask<K,V,U>
5008 <                    (map, this, b, searchFunction, result).fork();
5009 <            }
5010 <            while (result.get() == null) {
5011 <                Object v; U u;
5012 <                if ((v = advance()) == null) {
5013 <                    propagateCompletion();
5014 <                    break;
5015 <                }
5016 <                if ((u = searchFunction.apply((K)nextKey, (V)v)) != null) {
5017 <                    if (result.compareAndSet(null, u))
5018 <                        quietlyCompleteRoot();
5019 <                    break;
4999 >            if ((searchFunction = this.searchFunction) != null &&
5000 >                (result = this.result) != null) {
5001 >                for (int i = baseIndex, f, h; batch > 0 &&
5002 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5003 >                    if (result.get() != null)
5004 >                        return;
5005 >                    addToPendingCount(1);
5006 >                    new SearchMappingsTask<K,V,U>
5007 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5008 >                         searchFunction, result).fork();
5009 >                }
5010 >                while (result.get() == null) {
5011 >                    U u;
5012 >                    Node<K,V> p;
5013 >                    if ((p = advance()) == null) {
5014 >                        propagateCompletion();
5015 >                        break;
5016 >                    }
5017 >                    if ((u = searchFunction.apply(p.key, p.val)) != null) {
5018 >                        if (result.compareAndSet(null, u))
5019 >                            quietlyCompleteRoot();
5020 >                        break;
5021 >                    }
5022                  }
5023              }
5024          }
5025      }
5026  
5027 <    @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5028 <        extends Traverser<K,V,K> {
5027 >    @SuppressWarnings("serial")
5028 >    static final class ReduceKeysTask<K,V>
5029 >        extends BulkTask<K,V,K> {
5030          final BiFun<? super K, ? super K, ? extends K> reducer;
5031          K result;
5032          ReduceKeysTask<K,V> rights, nextRight;
5033          ReduceKeysTask
5034 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5034 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5035               ReduceKeysTask<K,V> nextRight,
5036               BiFun<? super K, ? super K, ? extends K> reducer) {
5037 <            super(m, p, b); this.nextRight = nextRight;
5037 >            super(p, b, i, f, t); this.nextRight = nextRight;
5038              this.reducer = reducer;
5039          }
5040          public final K getRawResult() { return result; }
5041 <        @SuppressWarnings("unchecked") public final void compute() {
5042 <            final BiFun<? super K, ? super K, ? extends K> reducer =
5043 <                this.reducer;
5044 <            if (reducer == null)
5045 <                throw new NullPointerException();
5046 <            for (int b; (b = preSplit()) > 0;)
5047 <                (rights = new ReduceKeysTask<K,V>
5048 <                 (map, this, b, rights, reducer)).fork();
5049 <            K r = null;
5050 <            while (advance() != null) {
5051 <                K u = (K)nextKey;
5052 <                r = (r == null) ? u : reducer.apply(r, u);
5053 <            }
5054 <            result = r;
5055 <            CountedCompleter<?> c;
5056 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5057 <                ReduceKeysTask<K,V>
5058 <                    t = (ReduceKeysTask<K,V>)c,
5059 <                    s = t.rights;
5060 <                while (s != null) {
5061 <                    K tr, sr;
5062 <                    if ((sr = s.result) != null)
5063 <                        t.result = (((tr = t.result) == null) ? sr :
5064 <                                    reducer.apply(tr, sr));
5065 <                    s = t.rights = s.nextRight;
5041 >        public final void compute() {
5042 >            final BiFun<? super K, ? super K, ? extends K> reducer;
5043 >            if ((reducer = this.reducer) != null) {
5044 >                for (int i = baseIndex, f, h; batch > 0 &&
5045 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5046 >                    addToPendingCount(1);
5047 >                    (rights = new ReduceKeysTask<K,V>
5048 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5049 >                      rights, reducer)).fork();
5050 >                }
5051 >                K r = null;
5052 >                for (Node<K,V> p; (p = advance()) != null; ) {
5053 >                    K u = p.key;
5054 >                    r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5055 >                }
5056 >                result = r;
5057 >                CountedCompleter<?> c;
5058 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5059 >                    @SuppressWarnings("unchecked") ReduceKeysTask<K,V>
5060 >                        t = (ReduceKeysTask<K,V>)c,
5061 >                        s = t.rights;
5062 >                    while (s != null) {
5063 >                        K tr, sr;
5064 >                        if ((sr = s.result) != null)
5065 >                            t.result = (((tr = t.result) == null) ? sr :
5066 >                                        reducer.apply(tr, sr));
5067 >                        s = t.rights = s.nextRight;
5068 >                    }
5069                  }
5070              }
5071          }
5072      }
5073  
5074 <    @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5075 <        extends Traverser<K,V,V> {
5074 >    @SuppressWarnings("serial")
5075 >    static final class ReduceValuesTask<K,V>
5076 >        extends BulkTask<K,V,V> {
5077          final BiFun<? super V, ? super V, ? extends V> reducer;
5078          V result;
5079          ReduceValuesTask<K,V> rights, nextRight;
5080          ReduceValuesTask
5081 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5081 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5082               ReduceValuesTask<K,V> nextRight,
5083               BiFun<? super V, ? super V, ? extends V> reducer) {
5084 <            super(m, p, b); this.nextRight = nextRight;
5084 >            super(p, b, i, f, t); this.nextRight = nextRight;
5085              this.reducer = reducer;
5086          }
5087          public final V getRawResult() { return result; }
5088 <        @SuppressWarnings("unchecked") public final void compute() {
5089 <            final BiFun<? super V, ? super V, ? extends V> reducer =
5090 <                this.reducer;
5091 <            if (reducer == null)
5092 <                throw new NullPointerException();
5093 <            for (int b; (b = preSplit()) > 0;)
5094 <                (rights = new ReduceValuesTask<K,V>
5095 <                 (map, this, b, rights, reducer)).fork();
5096 <            V r = null;
5097 <            Object v;
5098 <            while ((v = advance()) != null) {
5099 <                V u = (V)v;
5100 <                r = (r == null) ? u : reducer.apply(r, u);
5101 <            }
5102 <            result = r;
5103 <            CountedCompleter<?> c;
5104 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5105 <                ReduceValuesTask<K,V>
5106 <                    t = (ReduceValuesTask<K,V>)c,
5107 <                    s = t.rights;
5108 <                while (s != null) {
5109 <                    V tr, sr;
5110 <                    if ((sr = s.result) != null)
5111 <                        t.result = (((tr = t.result) == null) ? sr :
5112 <                                    reducer.apply(tr, sr));
5113 <                    s = t.rights = s.nextRight;
5088 >        public final void compute() {
5089 >            final BiFun<? super V, ? super V, ? extends V> reducer;
5090 >            if ((reducer = this.reducer) != null) {
5091 >                for (int i = baseIndex, f, h; batch > 0 &&
5092 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5093 >                    addToPendingCount(1);
5094 >                    (rights = new ReduceValuesTask<K,V>
5095 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5096 >                      rights, reducer)).fork();
5097 >                }
5098 >                V r = null;
5099 >                for (Node<K,V> p; (p = advance()) != null; ) {
5100 >                    V v = p.val;
5101 >                    r = (r == null) ? v : reducer.apply(r, v);
5102 >                }
5103 >                result = r;
5104 >                CountedCompleter<?> c;
5105 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5106 >                    @SuppressWarnings("unchecked") ReduceValuesTask<K,V>
5107 >                        t = (ReduceValuesTask<K,V>)c,
5108 >                        s = t.rights;
5109 >                    while (s != null) {
5110 >                        V tr, sr;
5111 >                        if ((sr = s.result) != null)
5112 >                            t.result = (((tr = t.result) == null) ? sr :
5113 >                                        reducer.apply(tr, sr));
5114 >                        s = t.rights = s.nextRight;
5115 >                    }
5116                  }
5117              }
5118          }
5119      }
5120  
5121 <    @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
5122 <        extends Traverser<K,V,Map.Entry<K,V>> {
5121 >    @SuppressWarnings("serial")
5122 >    static final class ReduceEntriesTask<K,V>
5123 >        extends BulkTask<K,V,Map.Entry<K,V>> {
5124          final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5125          Map.Entry<K,V> result;
5126          ReduceEntriesTask<K,V> rights, nextRight;
5127          ReduceEntriesTask
5128 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5128 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5129               ReduceEntriesTask<K,V> nextRight,
5130               BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5131 <            super(m, p, b); this.nextRight = nextRight;
5131 >            super(p, b, i, f, t); this.nextRight = nextRight;
5132              this.reducer = reducer;
5133          }
5134          public final Map.Entry<K,V> getRawResult() { return result; }
5135 <        @SuppressWarnings("unchecked") public final void compute() {
5136 <            final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer =
5137 <                this.reducer;
5138 <            if (reducer == null)
5139 <                throw new NullPointerException();
5140 <            for (int b; (b = preSplit()) > 0;)
5141 <                (rights = new ReduceEntriesTask<K,V>
5142 <                 (map, this, b, rights, reducer)).fork();
5143 <            Map.Entry<K,V> r = null;
5144 <            Object v;
5145 <            while ((v = advance()) != null) {
5146 <                Map.Entry<K,V> u = entryFor((K)nextKey, (V)v);
5147 <                r = (r == null) ? u : reducer.apply(r, u);
5148 <            }
5149 <            result = r;
5150 <            CountedCompleter<?> c;
5151 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5152 <                ReduceEntriesTask<K,V>
5153 <                    t = (ReduceEntriesTask<K,V>)c,
5154 <                    s = t.rights;
5155 <                while (s != null) {
5156 <                    Map.Entry<K,V> tr, sr;
5157 <                    if ((sr = s.result) != null)
5158 <                        t.result = (((tr = t.result) == null) ? sr :
5159 <                                    reducer.apply(tr, sr));
5160 <                    s = t.rights = s.nextRight;
5135 >        public final void compute() {
5136 >            final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5137 >            if ((reducer = this.reducer) != null) {
5138 >                for (int i = baseIndex, f, h; batch > 0 &&
5139 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5140 >                    addToPendingCount(1);
5141 >                    (rights = new ReduceEntriesTask<K,V>
5142 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5143 >                      rights, reducer)).fork();
5144 >                }
5145 >                Map.Entry<K,V> r = null;
5146 >                for (Node<K,V> p; (p = advance()) != null; )
5147 >                    r = (r == null) ? p : reducer.apply(r, p);
5148 >                result = r;
5149 >                CountedCompleter<?> c;
5150 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5151 >                    @SuppressWarnings("unchecked") ReduceEntriesTask<K,V>
5152 >                        t = (ReduceEntriesTask<K,V>)c,
5153 >                        s = t.rights;
5154 >                    while (s != null) {
5155 >                        Map.Entry<K,V> tr, sr;
5156 >                        if ((sr = s.result) != null)
5157 >                            t.result = (((tr = t.result) == null) ? sr :
5158 >                                        reducer.apply(tr, sr));
5159 >                        s = t.rights = s.nextRight;
5160 >                    }
5161                  }
5162              }
5163          }
5164      }
5165  
5166 <    @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
5167 <        extends Traverser<K,V,U> {
5166 >    @SuppressWarnings("serial")
5167 >    static final class MapReduceKeysTask<K,V,U>
5168 >        extends BulkTask<K,V,U> {
5169          final Fun<? super K, ? extends U> transformer;
5170          final BiFun<? super U, ? super U, ? extends U> reducer;
5171          U result;
5172          MapReduceKeysTask<K,V,U> rights, nextRight;
5173          MapReduceKeysTask
5174 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5174 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5175               MapReduceKeysTask<K,V,U> nextRight,
5176               Fun<? super K, ? extends U> transformer,
5177               BiFun<? super U, ? super U, ? extends U> reducer) {
5178 <            super(m, p, b); this.nextRight = nextRight;
5178 >            super(p, b, i, f, t); this.nextRight = nextRight;
5179              this.transformer = transformer;
5180              this.reducer = reducer;
5181          }
5182          public final U getRawResult() { return result; }
5183 <        @SuppressWarnings("unchecked") public final void compute() {
5184 <            final Fun<? super K, ? extends U> transformer =
5185 <                this.transformer;
5186 <            final BiFun<? super U, ? super U, ? extends U> reducer =
5187 <                this.reducer;
5188 <            if (transformer == null || reducer == null)
5189 <                throw new NullPointerException();
5190 <            for (int b; (b = preSplit()) > 0;)
5191 <                (rights = new MapReduceKeysTask<K,V,U>
5192 <                 (map, this, b, rights, transformer, reducer)).fork();
5193 <            U r = null, u;
5194 <            while (advance() != null) {
5195 <                if ((u = transformer.apply((K)nextKey)) != null)
5196 <                    r = (r == null) ? u : reducer.apply(r, u);
5197 <            }
5198 <            result = r;
5199 <            CountedCompleter<?> c;
5200 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5201 <                MapReduceKeysTask<K,V,U>
5202 <                    t = (MapReduceKeysTask<K,V,U>)c,
5203 <                    s = t.rights;
5204 <                while (s != null) {
5205 <                    U tr, sr;
5206 <                    if ((sr = s.result) != null)
5207 <                        t.result = (((tr = t.result) == null) ? sr :
5208 <                                    reducer.apply(tr, sr));
5209 <                    s = t.rights = s.nextRight;
5183 >        public final void compute() {
5184 >            final Fun<? super K, ? extends U> transformer;
5185 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5186 >            if ((transformer = this.transformer) != null &&
5187 >                (reducer = this.reducer) != null) {
5188 >                for (int i = baseIndex, f, h; batch > 0 &&
5189 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5190 >                    addToPendingCount(1);
5191 >                    (rights = new MapReduceKeysTask<K,V,U>
5192 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5193 >                      rights, transformer, reducer)).fork();
5194 >                }
5195 >                U r = null;
5196 >                for (Node<K,V> p; (p = advance()) != null; ) {
5197 >                    U u;
5198 >                    if ((u = transformer.apply(p.key)) != null)
5199 >                        r = (r == null) ? u : reducer.apply(r, u);
5200 >                }
5201 >                result = r;
5202 >                CountedCompleter<?> c;
5203 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5204 >                    @SuppressWarnings("unchecked") MapReduceKeysTask<K,V,U>
5205 >                        t = (MapReduceKeysTask<K,V,U>)c,
5206 >                        s = t.rights;
5207 >                    while (s != null) {
5208 >                        U tr, sr;
5209 >                        if ((sr = s.result) != null)
5210 >                            t.result = (((tr = t.result) == null) ? sr :
5211 >                                        reducer.apply(tr, sr));
5212 >                        s = t.rights = s.nextRight;
5213 >                    }
5214                  }
5215              }
5216          }
5217      }
5218  
5219 <    @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
5220 <        extends Traverser<K,V,U> {
5219 >    @SuppressWarnings("serial")
5220 >    static final class MapReduceValuesTask<K,V,U>
5221 >        extends BulkTask<K,V,U> {
5222          final Fun<? super V, ? extends U> transformer;
5223          final BiFun<? super U, ? super U, ? extends U> reducer;
5224          U result;
5225          MapReduceValuesTask<K,V,U> rights, nextRight;
5226          MapReduceValuesTask
5227 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5227 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5228               MapReduceValuesTask<K,V,U> nextRight,
5229               Fun<? super V, ? extends U> transformer,
5230               BiFun<? super U, ? super U, ? extends U> reducer) {
5231 <            super(m, p, b); this.nextRight = nextRight;
5231 >            super(p, b, i, f, t); this.nextRight = nextRight;
5232              this.transformer = transformer;
5233              this.reducer = reducer;
5234          }
5235          public final U getRawResult() { return result; }
5236 <        @SuppressWarnings("unchecked") public final void compute() {
5237 <            final Fun<? super V, ? extends U> transformer =
5238 <                this.transformer;
5239 <            final BiFun<? super U, ? super U, ? extends U> reducer =
5240 <                this.reducer;
5241 <            if (transformer == null || reducer == null)
5242 <                throw new NullPointerException();
5243 <            for (int b; (b = preSplit()) > 0;)
5244 <                (rights = new MapReduceValuesTask<K,V,U>
5245 <                 (map, this, b, rights, transformer, reducer)).fork();
5246 <            U r = null, u;
5247 <            Object v;
5248 <            while ((v = advance()) != null) {
5249 <                if ((u = transformer.apply((V)v)) != null)
5250 <                    r = (r == null) ? u : reducer.apply(r, u);
5251 <            }
5252 <            result = r;
5253 <            CountedCompleter<?> c;
5254 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5255 <                MapReduceValuesTask<K,V,U>
5256 <                    t = (MapReduceValuesTask<K,V,U>)c,
5257 <                    s = t.rights;
5258 <                while (s != null) {
5259 <                    U tr, sr;
5260 <                    if ((sr = s.result) != null)
5261 <                        t.result = (((tr = t.result) == null) ? sr :
5262 <                                    reducer.apply(tr, sr));
5263 <                    s = t.rights = s.nextRight;
5236 >        public final void compute() {
5237 >            final Fun<? super V, ? extends U> transformer;
5238 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5239 >            if ((transformer = this.transformer) != null &&
5240 >                (reducer = this.reducer) != null) {
5241 >                for (int i = baseIndex, f, h; batch > 0 &&
5242 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5243 >                    addToPendingCount(1);
5244 >                    (rights = new MapReduceValuesTask<K,V,U>
5245 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5246 >                      rights, transformer, reducer)).fork();
5247 >                }
5248 >                U r = null;
5249 >                for (Node<K,V> p; (p = advance()) != null; ) {
5250 >                    U u;
5251 >                    if ((u = transformer.apply(p.val)) != null)
5252 >                        r = (r == null) ? u : reducer.apply(r, u);
5253 >                }
5254 >                result = r;
5255 >                CountedCompleter<?> c;
5256 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5257 >                    @SuppressWarnings("unchecked") MapReduceValuesTask<K,V,U>
5258 >                        t = (MapReduceValuesTask<K,V,U>)c,
5259 >                        s = t.rights;
5260 >                    while (s != null) {
5261 >                        U tr, sr;
5262 >                        if ((sr = s.result) != null)
5263 >                            t.result = (((tr = t.result) == null) ? sr :
5264 >                                        reducer.apply(tr, sr));
5265 >                        s = t.rights = s.nextRight;
5266 >                    }
5267                  }
5268              }
5269          }
5270      }
5271  
5272 <    @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
5273 <        extends Traverser<K,V,U> {
5272 >    @SuppressWarnings("serial")
5273 >    static final class MapReduceEntriesTask<K,V,U>
5274 >        extends BulkTask<K,V,U> {
5275          final Fun<Map.Entry<K,V>, ? extends U> transformer;
5276          final BiFun<? super U, ? super U, ? extends U> reducer;
5277          U result;
5278          MapReduceEntriesTask<K,V,U> rights, nextRight;
5279          MapReduceEntriesTask
5280 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5280 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5281               MapReduceEntriesTask<K,V,U> nextRight,
5282               Fun<Map.Entry<K,V>, ? extends U> transformer,
5283               BiFun<? super U, ? super U, ? extends U> reducer) {
5284 <            super(m, p, b); this.nextRight = nextRight;
5284 >            super(p, b, i, f, t); this.nextRight = nextRight;
5285              this.transformer = transformer;
5286              this.reducer = reducer;
5287          }
5288          public final U getRawResult() { return result; }
5289 <        @SuppressWarnings("unchecked") public final void compute() {
5290 <            final Fun<Map.Entry<K,V>, ? extends U> transformer =
5291 <                this.transformer;
5292 <            final BiFun<? super U, ? super U, ? extends U> reducer =
5293 <                this.reducer;
5294 <            if (transformer == null || reducer == null)
5295 <                throw new NullPointerException();
5296 <            for (int b; (b = preSplit()) > 0;)
5297 <                (rights = new MapReduceEntriesTask<K,V,U>
5298 <                 (map, this, b, rights, transformer, reducer)).fork();
5299 <            U r = null, u;
5300 <            Object v;
5301 <            while ((v = advance()) != null) {
5302 <                if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
5303 <                    r = (r == null) ? u : reducer.apply(r, u);
5304 <            }
5305 <            result = r;
5306 <            CountedCompleter<?> c;
5307 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5308 <                MapReduceEntriesTask<K,V,U>
5309 <                    t = (MapReduceEntriesTask<K,V,U>)c,
5310 <                    s = t.rights;
5311 <                while (s != null) {
5312 <                    U tr, sr;
5313 <                    if ((sr = s.result) != null)
5314 <                        t.result = (((tr = t.result) == null) ? sr :
5315 <                                    reducer.apply(tr, sr));
5316 <                    s = t.rights = s.nextRight;
5289 >        public final void compute() {
5290 >            final Fun<Map.Entry<K,V>, ? extends U> transformer;
5291 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5292 >            if ((transformer = this.transformer) != null &&
5293 >                (reducer = this.reducer) != null) {
5294 >                for (int i = baseIndex, f, h; batch > 0 &&
5295 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5296 >                    addToPendingCount(1);
5297 >                    (rights = new MapReduceEntriesTask<K,V,U>
5298 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5299 >                      rights, transformer, reducer)).fork();
5300 >                }
5301 >                U r = null;
5302 >                for (Node<K,V> p; (p = advance()) != null; ) {
5303 >                    U u;
5304 >                    if ((u = transformer.apply(p)) != null)
5305 >                        r = (r == null) ? u : reducer.apply(r, u);
5306 >                }
5307 >                result = r;
5308 >                CountedCompleter<?> c;
5309 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5310 >                    @SuppressWarnings("unchecked") MapReduceEntriesTask<K,V,U>
5311 >                        t = (MapReduceEntriesTask<K,V,U>)c,
5312 >                        s = t.rights;
5313 >                    while (s != null) {
5314 >                        U tr, sr;
5315 >                        if ((sr = s.result) != null)
5316 >                            t.result = (((tr = t.result) == null) ? sr :
5317 >                                        reducer.apply(tr, sr));
5318 >                        s = t.rights = s.nextRight;
5319 >                    }
5320                  }
5321              }
5322          }
5323      }
5324  
5325 <    @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
5326 <        extends Traverser<K,V,U> {
5325 >    @SuppressWarnings("serial")
5326 >    static final class MapReduceMappingsTask<K,V,U>
5327 >        extends BulkTask<K,V,U> {
5328          final BiFun<? super K, ? super V, ? extends U> transformer;
5329          final BiFun<? super U, ? super U, ? extends U> reducer;
5330          U result;
5331          MapReduceMappingsTask<K,V,U> rights, nextRight;
5332          MapReduceMappingsTask
5333 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5333 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5334               MapReduceMappingsTask<K,V,U> nextRight,
5335               BiFun<? super K, ? super V, ? extends U> transformer,
5336               BiFun<? super U, ? super U, ? extends U> reducer) {
5337 <            super(m, p, b); this.nextRight = nextRight;
5337 >            super(p, b, i, f, t); this.nextRight = nextRight;
5338              this.transformer = transformer;
5339              this.reducer = reducer;
5340          }
5341          public final U getRawResult() { return result; }
5342 <        @SuppressWarnings("unchecked") public final void compute() {
5343 <            final BiFun<? super K, ? super V, ? extends U> transformer =
5344 <                this.transformer;
5345 <            final BiFun<? super U, ? super U, ? extends U> reducer =
5346 <                this.reducer;
5347 <            if (transformer == null || reducer == null)
5348 <                throw new NullPointerException();
5349 <            for (int b; (b = preSplit()) > 0;)
5350 <                (rights = new MapReduceMappingsTask<K,V,U>
5351 <                 (map, this, b, rights, transformer, reducer)).fork();
5352 <            U r = null, u;
5353 <            Object v;
5354 <            while ((v = advance()) != null) {
5355 <                if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5356 <                    r = (r == null) ? u : reducer.apply(r, u);
5357 <            }
5358 <            result = r;
5359 <            CountedCompleter<?> c;
5360 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5361 <                MapReduceMappingsTask<K,V,U>
5362 <                    t = (MapReduceMappingsTask<K,V,U>)c,
5363 <                    s = t.rights;
5364 <                while (s != null) {
5365 <                    U tr, sr;
5366 <                    if ((sr = s.result) != null)
5367 <                        t.result = (((tr = t.result) == null) ? sr :
5368 <                                    reducer.apply(tr, sr));
5369 <                    s = t.rights = s.nextRight;
5342 >        public final void compute() {
5343 >            final BiFun<? super K, ? super V, ? extends U> transformer;
5344 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5345 >            if ((transformer = this.transformer) != null &&
5346 >                (reducer = this.reducer) != null) {
5347 >                for (int i = baseIndex, f, h; batch > 0 &&
5348 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5349 >                    addToPendingCount(1);
5350 >                    (rights = new MapReduceMappingsTask<K,V,U>
5351 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5352 >                      rights, transformer, reducer)).fork();
5353 >                }
5354 >                U r = null;
5355 >                for (Node<K,V> p; (p = advance()) != null; ) {
5356 >                    U u;
5357 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5358 >                        r = (r == null) ? u : reducer.apply(r, u);
5359 >                }
5360 >                result = r;
5361 >                CountedCompleter<?> c;
5362 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5363 >                    @SuppressWarnings("unchecked") MapReduceMappingsTask<K,V,U>
5364 >                        t = (MapReduceMappingsTask<K,V,U>)c,
5365 >                        s = t.rights;
5366 >                    while (s != null) {
5367 >                        U tr, sr;
5368 >                        if ((sr = s.result) != null)
5369 >                            t.result = (((tr = t.result) == null) ? sr :
5370 >                                        reducer.apply(tr, sr));
5371 >                        s = t.rights = s.nextRight;
5372 >                    }
5373                  }
5374              }
5375          }
5376      }
5377  
5378 <    @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
5379 <        extends Traverser<K,V,Double> {
5378 >    @SuppressWarnings("serial")
5379 >    static final class MapReduceKeysToDoubleTask<K,V>
5380 >        extends BulkTask<K,V,Double> {
5381          final ObjectToDouble<? super K> transformer;
5382          final DoubleByDoubleToDouble reducer;
5383          final double basis;
5384          double result;
5385          MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5386          MapReduceKeysToDoubleTask
5387 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5387 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5388               MapReduceKeysToDoubleTask<K,V> nextRight,
5389               ObjectToDouble<? super K> transformer,
5390               double basis,
5391               DoubleByDoubleToDouble reducer) {
5392 <            super(m, p, b); this.nextRight = nextRight;
5392 >            super(p, b, i, f, t); this.nextRight = nextRight;
5393              this.transformer = transformer;
5394              this.basis = basis; this.reducer = reducer;
5395          }
5396          public final Double getRawResult() { return result; }
5397 <        @SuppressWarnings("unchecked") public final void compute() {
5398 <            final ObjectToDouble<? super K> transformer =
5399 <                this.transformer;
5400 <            final DoubleByDoubleToDouble reducer = this.reducer;
5401 <            if (transformer == null || reducer == null)
5402 <                throw new NullPointerException();
5403 <            double r = this.basis;
5404 <            for (int b; (b = preSplit()) > 0;)
5405 <                (rights = new MapReduceKeysToDoubleTask<K,V>
5406 <                 (map, this, b, rights, transformer, r, reducer)).fork();
5407 <            while (advance() != null)
5408 <                r = reducer.apply(r, transformer.apply((K)nextKey));
5409 <            result = r;
5410 <            CountedCompleter<?> c;
5411 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5412 <                MapReduceKeysToDoubleTask<K,V>
5413 <                    t = (MapReduceKeysToDoubleTask<K,V>)c,
5414 <                    s = t.rights;
5415 <                while (s != null) {
5416 <                    t.result = reducer.apply(t.result, s.result);
5417 <                    s = t.rights = s.nextRight;
5397 >        public final void compute() {
5398 >            final ObjectToDouble<? super K> transformer;
5399 >            final DoubleByDoubleToDouble reducer;
5400 >            if ((transformer = this.transformer) != null &&
5401 >                (reducer = this.reducer) != null) {
5402 >                double r = this.basis;
5403 >                for (int i = baseIndex, f, h; batch > 0 &&
5404 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5405 >                    addToPendingCount(1);
5406 >                    (rights = new MapReduceKeysToDoubleTask<K,V>
5407 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5408 >                      rights, transformer, r, reducer)).fork();
5409 >                }
5410 >                for (Node<K,V> p; (p = advance()) != null; )
5411 >                    r = reducer.apply(r, transformer.apply(p.key));
5412 >                result = r;
5413 >                CountedCompleter<?> c;
5414 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5415 >                    @SuppressWarnings("unchecked") MapReduceKeysToDoubleTask<K,V>
5416 >                        t = (MapReduceKeysToDoubleTask<K,V>)c,
5417 >                        s = t.rights;
5418 >                    while (s != null) {
5419 >                        t.result = reducer.apply(t.result, s.result);
5420 >                        s = t.rights = s.nextRight;
5421 >                    }
5422                  }
5423              }
5424          }
5425      }
5426  
5427 <    @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
5428 <        extends Traverser<K,V,Double> {
5427 >    @SuppressWarnings("serial")
5428 >    static final class MapReduceValuesToDoubleTask<K,V>
5429 >        extends BulkTask<K,V,Double> {
5430          final ObjectToDouble<? super V> transformer;
5431          final DoubleByDoubleToDouble reducer;
5432          final double basis;
5433          double result;
5434          MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5435          MapReduceValuesToDoubleTask
5436 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5436 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5437               MapReduceValuesToDoubleTask<K,V> nextRight,
5438               ObjectToDouble<? super V> transformer,
5439               double basis,
5440               DoubleByDoubleToDouble reducer) {
5441 <            super(m, p, b); this.nextRight = nextRight;
5441 >            super(p, b, i, f, t); this.nextRight = nextRight;
5442              this.transformer = transformer;
5443              this.basis = basis; this.reducer = reducer;
5444          }
5445          public final Double getRawResult() { return result; }
5446 <        @SuppressWarnings("unchecked") public final void compute() {
5447 <            final ObjectToDouble<? super V> transformer =
5448 <                this.transformer;
5449 <            final DoubleByDoubleToDouble reducer = this.reducer;
5450 <            if (transformer == null || reducer == null)
5451 <                throw new NullPointerException();
5452 <            double r = this.basis;
5453 <            for (int b; (b = preSplit()) > 0;)
5454 <                (rights = new MapReduceValuesToDoubleTask<K,V>
5455 <                 (map, this, b, rights, transformer, r, reducer)).fork();
5456 <            Object v;
5457 <            while ((v = advance()) != null)
5458 <                r = reducer.apply(r, transformer.apply((V)v));
5459 <            result = r;
5460 <            CountedCompleter<?> c;
5461 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5462 <                MapReduceValuesToDoubleTask<K,V>
5463 <                    t = (MapReduceValuesToDoubleTask<K,V>)c,
5464 <                    s = t.rights;
5465 <                while (s != null) {
5466 <                    t.result = reducer.apply(t.result, s.result);
5467 <                    s = t.rights = s.nextRight;
5446 >        public final void compute() {
5447 >            final ObjectToDouble<? super V> transformer;
5448 >            final DoubleByDoubleToDouble reducer;
5449 >            if ((transformer = this.transformer) != null &&
5450 >                (reducer = this.reducer) != null) {
5451 >                double r = this.basis;
5452 >                for (int i = baseIndex, f, h; batch > 0 &&
5453 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5454 >                    addToPendingCount(1);
5455 >                    (rights = new MapReduceValuesToDoubleTask<K,V>
5456 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5457 >                      rights, transformer, r, reducer)).fork();
5458 >                }
5459 >                for (Node<K,V> p; (p = advance()) != null; )
5460 >                    r = reducer.apply(r, transformer.apply(p.val));
5461 >                result = r;
5462 >                CountedCompleter<?> c;
5463 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5464 >                    @SuppressWarnings("unchecked") MapReduceValuesToDoubleTask<K,V>
5465 >                        t = (MapReduceValuesToDoubleTask<K,V>)c,
5466 >                        s = t.rights;
5467 >                    while (s != null) {
5468 >                        t.result = reducer.apply(t.result, s.result);
5469 >                        s = t.rights = s.nextRight;
5470 >                    }
5471                  }
5472              }
5473          }
5474      }
5475  
5476 <    @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
5477 <        extends Traverser<K,V,Double> {
5476 >    @SuppressWarnings("serial")
5477 >    static final class MapReduceEntriesToDoubleTask<K,V>
5478 >        extends BulkTask<K,V,Double> {
5479          final ObjectToDouble<Map.Entry<K,V>> transformer;
5480          final DoubleByDoubleToDouble reducer;
5481          final double basis;
5482          double result;
5483          MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5484          MapReduceEntriesToDoubleTask
5485 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5485 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5486               MapReduceEntriesToDoubleTask<K,V> nextRight,
5487               ObjectToDouble<Map.Entry<K,V>> transformer,
5488               double basis,
5489               DoubleByDoubleToDouble reducer) {
5490 <            super(m, p, b); this.nextRight = nextRight;
5490 >            super(p, b, i, f, t); this.nextRight = nextRight;
5491              this.transformer = transformer;
5492              this.basis = basis; this.reducer = reducer;
5493          }
5494          public final Double getRawResult() { return result; }
5495 <        @SuppressWarnings("unchecked") public final void compute() {
5496 <            final ObjectToDouble<Map.Entry<K,V>> transformer =
5497 <                this.transformer;
5498 <            final DoubleByDoubleToDouble reducer = this.reducer;
5499 <            if (transformer == null || reducer == null)
5500 <                throw new NullPointerException();
5501 <            double r = this.basis;
5502 <            for (int b; (b = preSplit()) > 0;)
5503 <                (rights = new MapReduceEntriesToDoubleTask<K,V>
5504 <                 (map, this, b, rights, transformer, r, reducer)).fork();
5505 <            Object v;
5506 <            while ((v = advance()) != null)
5507 <                r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
5508 <            result = r;
5509 <            CountedCompleter<?> c;
5510 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5511 <                MapReduceEntriesToDoubleTask<K,V>
5512 <                    t = (MapReduceEntriesToDoubleTask<K,V>)c,
5513 <                    s = t.rights;
5514 <                while (s != null) {
5515 <                    t.result = reducer.apply(t.result, s.result);
5516 <                    s = t.rights = s.nextRight;
5495 >        public final void compute() {
5496 >            final ObjectToDouble<Map.Entry<K,V>> transformer;
5497 >            final DoubleByDoubleToDouble reducer;
5498 >            if ((transformer = this.transformer) != null &&
5499 >                (reducer = this.reducer) != null) {
5500 >                double r = this.basis;
5501 >                for (int i = baseIndex, f, h; batch > 0 &&
5502 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5503 >                    addToPendingCount(1);
5504 >                    (rights = new MapReduceEntriesToDoubleTask<K,V>
5505 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5506 >                      rights, transformer, r, reducer)).fork();
5507 >                }
5508 >                for (Node<K,V> p; (p = advance()) != null; )
5509 >                    r = reducer.apply(r, transformer.apply(p));
5510 >                result = r;
5511 >                CountedCompleter<?> c;
5512 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5513 >                    @SuppressWarnings("unchecked") MapReduceEntriesToDoubleTask<K,V>
5514 >                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
5515 >                        s = t.rights;
5516 >                    while (s != null) {
5517 >                        t.result = reducer.apply(t.result, s.result);
5518 >                        s = t.rights = s.nextRight;
5519 >                    }
5520                  }
5521              }
5522          }
5523      }
5524  
5525 <    @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
5526 <        extends Traverser<K,V,Double> {
5525 >    @SuppressWarnings("serial")
5526 >    static final class MapReduceMappingsToDoubleTask<K,V>
5527 >        extends BulkTask<K,V,Double> {
5528          final ObjectByObjectToDouble<? super K, ? super V> transformer;
5529          final DoubleByDoubleToDouble reducer;
5530          final double basis;
5531          double result;
5532          MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5533          MapReduceMappingsToDoubleTask
5534 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5534 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5535               MapReduceMappingsToDoubleTask<K,V> nextRight,
5536               ObjectByObjectToDouble<? super K, ? super V> transformer,
5537               double basis,
5538               DoubleByDoubleToDouble reducer) {
5539 <            super(m, p, b); this.nextRight = nextRight;
5539 >            super(p, b, i, f, t); this.nextRight = nextRight;
5540              this.transformer = transformer;
5541              this.basis = basis; this.reducer = reducer;
5542          }
5543          public final Double getRawResult() { return result; }
5544 <        @SuppressWarnings("unchecked") public final void compute() {
5545 <            final ObjectByObjectToDouble<? super K, ? super V> transformer =
5546 <                this.transformer;
5547 <            final DoubleByDoubleToDouble reducer = this.reducer;
5548 <            if (transformer == null || reducer == null)
5549 <                throw new NullPointerException();
5550 <            double r = this.basis;
5551 <            for (int b; (b = preSplit()) > 0;)
5552 <                (rights = new MapReduceMappingsToDoubleTask<K,V>
5553 <                 (map, this, b, rights, transformer, r, reducer)).fork();
5554 <            Object v;
5555 <            while ((v = advance()) != null)
5556 <                r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
5557 <            result = r;
5558 <            CountedCompleter<?> c;
5559 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5560 <                MapReduceMappingsToDoubleTask<K,V>
5561 <                    t = (MapReduceMappingsToDoubleTask<K,V>)c,
5562 <                    s = t.rights;
5563 <                while (s != null) {
5564 <                    t.result = reducer.apply(t.result, s.result);
5565 <                    s = t.rights = s.nextRight;
5544 >        public final void compute() {
5545 >            final ObjectByObjectToDouble<? super K, ? super V> transformer;
5546 >            final DoubleByDoubleToDouble reducer;
5547 >            if ((transformer = this.transformer) != null &&
5548 >                (reducer = this.reducer) != null) {
5549 >                double r = this.basis;
5550 >                for (int i = baseIndex, f, h; batch > 0 &&
5551 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5552 >                    addToPendingCount(1);
5553 >                    (rights = new MapReduceMappingsToDoubleTask<K,V>
5554 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5555 >                      rights, transformer, r, reducer)).fork();
5556 >                }
5557 >                for (Node<K,V> p; (p = advance()) != null; )
5558 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
5559 >                result = r;
5560 >                CountedCompleter<?> c;
5561 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5562 >                    @SuppressWarnings("unchecked") MapReduceMappingsToDoubleTask<K,V>
5563 >                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
5564 >                        s = t.rights;
5565 >                    while (s != null) {
5566 >                        t.result = reducer.apply(t.result, s.result);
5567 >                        s = t.rights = s.nextRight;
5568 >                    }
5569                  }
5570              }
5571          }
5572      }
5573  
5574 <    @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
5575 <        extends Traverser<K,V,Long> {
5574 >    @SuppressWarnings("serial")
5575 >    static final class MapReduceKeysToLongTask<K,V>
5576 >        extends BulkTask<K,V,Long> {
5577          final ObjectToLong<? super K> transformer;
5578          final LongByLongToLong reducer;
5579          final long basis;
5580          long result;
5581          MapReduceKeysToLongTask<K,V> rights, nextRight;
5582          MapReduceKeysToLongTask
5583 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5583 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5584               MapReduceKeysToLongTask<K,V> nextRight,
5585               ObjectToLong<? super K> transformer,
5586               long basis,
5587               LongByLongToLong reducer) {
5588 <            super(m, p, b); this.nextRight = nextRight;
5588 >            super(p, b, i, f, t); this.nextRight = nextRight;
5589              this.transformer = transformer;
5590              this.basis = basis; this.reducer = reducer;
5591          }
5592          public final Long getRawResult() { return result; }
5593 <        @SuppressWarnings("unchecked") public final void compute() {
5594 <            final ObjectToLong<? super K> transformer =
5595 <                this.transformer;
5596 <            final LongByLongToLong reducer = this.reducer;
5597 <            if (transformer == null || reducer == null)
5598 <                throw new NullPointerException();
5599 <            long r = this.basis;
5600 <            for (int b; (b = preSplit()) > 0;)
5601 <                (rights = new MapReduceKeysToLongTask<K,V>
5602 <                 (map, this, b, rights, transformer, r, reducer)).fork();
5603 <            while (advance() != null)
5604 <                r = reducer.apply(r, transformer.apply((K)nextKey));
5605 <            result = r;
5606 <            CountedCompleter<?> c;
5607 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5608 <                MapReduceKeysToLongTask<K,V>
5609 <                    t = (MapReduceKeysToLongTask<K,V>)c,
5610 <                    s = t.rights;
5611 <                while (s != null) {
5612 <                    t.result = reducer.apply(t.result, s.result);
5613 <                    s = t.rights = s.nextRight;
5593 >        public final void compute() {
5594 >            final ObjectToLong<? super K> transformer;
5595 >            final LongByLongToLong reducer;
5596 >            if ((transformer = this.transformer) != null &&
5597 >                (reducer = this.reducer) != null) {
5598 >                long r = this.basis;
5599 >                for (int i = baseIndex, f, h; batch > 0 &&
5600 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5601 >                    addToPendingCount(1);
5602 >                    (rights = new MapReduceKeysToLongTask<K,V>
5603 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5604 >                      rights, transformer, r, reducer)).fork();
5605 >                }
5606 >                for (Node<K,V> p; (p = advance()) != null; )
5607 >                    r = reducer.apply(r, transformer.apply(p.key));
5608 >                result = r;
5609 >                CountedCompleter<?> c;
5610 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5611 >                    @SuppressWarnings("unchecked") MapReduceKeysToLongTask<K,V>
5612 >                        t = (MapReduceKeysToLongTask<K,V>)c,
5613 >                        s = t.rights;
5614 >                    while (s != null) {
5615 >                        t.result = reducer.apply(t.result, s.result);
5616 >                        s = t.rights = s.nextRight;
5617 >                    }
5618                  }
5619              }
5620          }
5621      }
5622  
5623 <    @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
5624 <        extends Traverser<K,V,Long> {
5623 >    @SuppressWarnings("serial")
5624 >    static final class MapReduceValuesToLongTask<K,V>
5625 >        extends BulkTask<K,V,Long> {
5626          final ObjectToLong<? super V> transformer;
5627          final LongByLongToLong reducer;
5628          final long basis;
5629          long result;
5630          MapReduceValuesToLongTask<K,V> rights, nextRight;
5631          MapReduceValuesToLongTask
5632 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5632 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5633               MapReduceValuesToLongTask<K,V> nextRight,
5634               ObjectToLong<? super V> transformer,
5635               long basis,
5636               LongByLongToLong reducer) {
5637 <            super(m, p, b); this.nextRight = nextRight;
5637 >            super(p, b, i, f, t); this.nextRight = nextRight;
5638              this.transformer = transformer;
5639              this.basis = basis; this.reducer = reducer;
5640          }
5641          public final Long getRawResult() { return result; }
5642 <        @SuppressWarnings("unchecked") public final void compute() {
5643 <            final ObjectToLong<? super V> transformer =
5644 <                this.transformer;
5645 <            final LongByLongToLong reducer = this.reducer;
5646 <            if (transformer == null || reducer == null)
5647 <                throw new NullPointerException();
5648 <            long r = this.basis;
5649 <            for (int b; (b = preSplit()) > 0;)
5650 <                (rights = new MapReduceValuesToLongTask<K,V>
5651 <                 (map, this, b, rights, transformer, r, reducer)).fork();
5652 <            Object v;
5653 <            while ((v = advance()) != null)
5654 <                r = reducer.apply(r, transformer.apply((V)v));
5655 <            result = r;
5656 <            CountedCompleter<?> c;
5657 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5658 <                MapReduceValuesToLongTask<K,V>
5659 <                    t = (MapReduceValuesToLongTask<K,V>)c,
5660 <                    s = t.rights;
5661 <                while (s != null) {
5662 <                    t.result = reducer.apply(t.result, s.result);
5663 <                    s = t.rights = s.nextRight;
5642 >        public final void compute() {
5643 >            final ObjectToLong<? super V> transformer;
5644 >            final LongByLongToLong reducer;
5645 >            if ((transformer = this.transformer) != null &&
5646 >                (reducer = this.reducer) != null) {
5647 >                long r = this.basis;
5648 >                for (int i = baseIndex, f, h; batch > 0 &&
5649 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5650 >                    addToPendingCount(1);
5651 >                    (rights = new MapReduceValuesToLongTask<K,V>
5652 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5653 >                      rights, transformer, r, reducer)).fork();
5654 >                }
5655 >                for (Node<K,V> p; (p = advance()) != null; )
5656 >                    r = reducer.apply(r, transformer.apply(p.val));
5657 >                result = r;
5658 >                CountedCompleter<?> c;
5659 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5660 >                    @SuppressWarnings("unchecked") MapReduceValuesToLongTask<K,V>
5661 >                        t = (MapReduceValuesToLongTask<K,V>)c,
5662 >                        s = t.rights;
5663 >                    while (s != null) {
5664 >                        t.result = reducer.apply(t.result, s.result);
5665 >                        s = t.rights = s.nextRight;
5666 >                    }
5667                  }
5668              }
5669          }
5670      }
5671  
5672 <    @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
5673 <        extends Traverser<K,V,Long> {
5672 >    @SuppressWarnings("serial")
5673 >    static final class MapReduceEntriesToLongTask<K,V>
5674 >        extends BulkTask<K,V,Long> {
5675          final ObjectToLong<Map.Entry<K,V>> transformer;
5676          final LongByLongToLong reducer;
5677          final long basis;
5678          long result;
5679          MapReduceEntriesToLongTask<K,V> rights, nextRight;
5680          MapReduceEntriesToLongTask
5681 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5681 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5682               MapReduceEntriesToLongTask<K,V> nextRight,
5683               ObjectToLong<Map.Entry<K,V>> transformer,
5684               long basis,
5685               LongByLongToLong reducer) {
5686 <            super(m, p, b); this.nextRight = nextRight;
5686 >            super(p, b, i, f, t); this.nextRight = nextRight;
5687              this.transformer = transformer;
5688              this.basis = basis; this.reducer = reducer;
5689          }
5690          public final Long getRawResult() { return result; }
5691 <        @SuppressWarnings("unchecked") public final void compute() {
5692 <            final ObjectToLong<Map.Entry<K,V>> transformer =
5693 <                this.transformer;
5694 <            final LongByLongToLong reducer = this.reducer;
5695 <            if (transformer == null || reducer == null)
5696 <                throw new NullPointerException();
5697 <            long r = this.basis;
5698 <            for (int b; (b = preSplit()) > 0;)
5699 <                (rights = new MapReduceEntriesToLongTask<K,V>
5700 <                 (map, this, b, rights, transformer, r, reducer)).fork();
5701 <            Object v;
5702 <            while ((v = advance()) != null)
5703 <                r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
5704 <            result = r;
5705 <            CountedCompleter<?> c;
5706 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5707 <                MapReduceEntriesToLongTask<K,V>
5708 <                    t = (MapReduceEntriesToLongTask<K,V>)c,
5709 <                    s = t.rights;
5710 <                while (s != null) {
5711 <                    t.result = reducer.apply(t.result, s.result);
5712 <                    s = t.rights = s.nextRight;
5691 >        public final void compute() {
5692 >            final ObjectToLong<Map.Entry<K,V>> transformer;
5693 >            final LongByLongToLong reducer;
5694 >            if ((transformer = this.transformer) != null &&
5695 >                (reducer = this.reducer) != null) {
5696 >                long r = this.basis;
5697 >                for (int i = baseIndex, f, h; batch > 0 &&
5698 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5699 >                    addToPendingCount(1);
5700 >                    (rights = new MapReduceEntriesToLongTask<K,V>
5701 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5702 >                      rights, transformer, r, reducer)).fork();
5703 >                }
5704 >                for (Node<K,V> p; (p = advance()) != null; )
5705 >                    r = reducer.apply(r, transformer.apply(p));
5706 >                result = r;
5707 >                CountedCompleter<?> c;
5708 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5709 >                    @SuppressWarnings("unchecked") MapReduceEntriesToLongTask<K,V>
5710 >                        t = (MapReduceEntriesToLongTask<K,V>)c,
5711 >                        s = t.rights;
5712 >                    while (s != null) {
5713 >                        t.result = reducer.apply(t.result, s.result);
5714 >                        s = t.rights = s.nextRight;
5715 >                    }
5716                  }
5717              }
5718          }
5719      }
5720  
5721 <    @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
5722 <        extends Traverser<K,V,Long> {
5721 >    @SuppressWarnings("serial")
5722 >    static final class MapReduceMappingsToLongTask<K,V>
5723 >        extends BulkTask<K,V,Long> {
5724          final ObjectByObjectToLong<? super K, ? super V> transformer;
5725          final LongByLongToLong reducer;
5726          final long basis;
5727          long result;
5728          MapReduceMappingsToLongTask<K,V> rights, nextRight;
5729          MapReduceMappingsToLongTask
5730 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5730 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5731               MapReduceMappingsToLongTask<K,V> nextRight,
5732               ObjectByObjectToLong<? super K, ? super V> transformer,
5733               long basis,
5734               LongByLongToLong reducer) {
5735 <            super(m, p, b); this.nextRight = nextRight;
5735 >            super(p, b, i, f, t); this.nextRight = nextRight;
5736              this.transformer = transformer;
5737              this.basis = basis; this.reducer = reducer;
5738          }
5739          public final Long getRawResult() { return result; }
5740 <        @SuppressWarnings("unchecked") public final void compute() {
5741 <            final ObjectByObjectToLong<? super K, ? super V> transformer =
5742 <                this.transformer;
5743 <            final LongByLongToLong reducer = this.reducer;
5744 <            if (transformer == null || reducer == null)
5745 <                throw new NullPointerException();
5746 <            long r = this.basis;
5747 <            for (int b; (b = preSplit()) > 0;)
5748 <                (rights = new MapReduceMappingsToLongTask<K,V>
5749 <                 (map, this, b, rights, transformer, r, reducer)).fork();
5750 <            Object v;
5751 <            while ((v = advance()) != null)
5752 <                r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
5753 <            result = r;
5754 <            CountedCompleter<?> c;
5755 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5756 <                MapReduceMappingsToLongTask<K,V>
5757 <                    t = (MapReduceMappingsToLongTask<K,V>)c,
5758 <                    s = t.rights;
5759 <                while (s != null) {
5760 <                    t.result = reducer.apply(t.result, s.result);
5761 <                    s = t.rights = s.nextRight;
5740 >        public final void compute() {
5741 >            final ObjectByObjectToLong<? super K, ? super V> transformer;
5742 >            final LongByLongToLong reducer;
5743 >            if ((transformer = this.transformer) != null &&
5744 >                (reducer = this.reducer) != null) {
5745 >                long r = this.basis;
5746 >                for (int i = baseIndex, f, h; batch > 0 &&
5747 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5748 >                    addToPendingCount(1);
5749 >                    (rights = new MapReduceMappingsToLongTask<K,V>
5750 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5751 >                      rights, transformer, r, reducer)).fork();
5752 >                }
5753 >                for (Node<K,V> p; (p = advance()) != null; )
5754 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
5755 >                result = r;
5756 >                CountedCompleter<?> c;
5757 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5758 >                    @SuppressWarnings("unchecked") MapReduceMappingsToLongTask<K,V>
5759 >                        t = (MapReduceMappingsToLongTask<K,V>)c,
5760 >                        s = t.rights;
5761 >                    while (s != null) {
5762 >                        t.result = reducer.apply(t.result, s.result);
5763 >                        s = t.rights = s.nextRight;
5764 >                    }
5765                  }
5766              }
5767          }
5768      }
5769  
5770 <    @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
5771 <        extends Traverser<K,V,Integer> {
5770 >    @SuppressWarnings("serial")
5771 >    static final class MapReduceKeysToIntTask<K,V>
5772 >        extends BulkTask<K,V,Integer> {
5773          final ObjectToInt<? super K> transformer;
5774          final IntByIntToInt reducer;
5775          final int basis;
5776          int result;
5777          MapReduceKeysToIntTask<K,V> rights, nextRight;
5778          MapReduceKeysToIntTask
5779 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5779 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5780               MapReduceKeysToIntTask<K,V> nextRight,
5781               ObjectToInt<? super K> transformer,
5782               int basis,
5783               IntByIntToInt reducer) {
5784 <            super(m, p, b); this.nextRight = nextRight;
5784 >            super(p, b, i, f, t); this.nextRight = nextRight;
5785              this.transformer = transformer;
5786              this.basis = basis; this.reducer = reducer;
5787          }
5788          public final Integer getRawResult() { return result; }
5789 <        @SuppressWarnings("unchecked") public final void compute() {
5790 <            final ObjectToInt<? super K> transformer =
5791 <                this.transformer;
5792 <            final IntByIntToInt reducer = this.reducer;
5793 <            if (transformer == null || reducer == null)
5794 <                throw new NullPointerException();
5795 <            int r = this.basis;
5796 <            for (int b; (b = preSplit()) > 0;)
5797 <                (rights = new MapReduceKeysToIntTask<K,V>
5798 <                 (map, this, b, rights, transformer, r, reducer)).fork();
5799 <            while (advance() != null)
5800 <                r = reducer.apply(r, transformer.apply((K)nextKey));
5801 <            result = r;
5802 <            CountedCompleter<?> c;
5803 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5804 <                MapReduceKeysToIntTask<K,V>
5805 <                    t = (MapReduceKeysToIntTask<K,V>)c,
5806 <                    s = t.rights;
5807 <                while (s != null) {
5808 <                    t.result = reducer.apply(t.result, s.result);
5809 <                    s = t.rights = s.nextRight;
5789 >        public final void compute() {
5790 >            final ObjectToInt<? super K> transformer;
5791 >            final IntByIntToInt reducer;
5792 >            if ((transformer = this.transformer) != null &&
5793 >                (reducer = this.reducer) != null) {
5794 >                int r = this.basis;
5795 >                for (int i = baseIndex, f, h; batch > 0 &&
5796 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5797 >                    addToPendingCount(1);
5798 >                    (rights = new MapReduceKeysToIntTask<K,V>
5799 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5800 >                      rights, transformer, r, reducer)).fork();
5801 >                }
5802 >                for (Node<K,V> p; (p = advance()) != null; )
5803 >                    r = reducer.apply(r, transformer.apply(p.key));
5804 >                result = r;
5805 >                CountedCompleter<?> c;
5806 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5807 >                    @SuppressWarnings("unchecked") MapReduceKeysToIntTask<K,V>
5808 >                        t = (MapReduceKeysToIntTask<K,V>)c,
5809 >                        s = t.rights;
5810 >                    while (s != null) {
5811 >                        t.result = reducer.apply(t.result, s.result);
5812 >                        s = t.rights = s.nextRight;
5813 >                    }
5814                  }
5815              }
5816          }
5817      }
5818  
5819 <    @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
5820 <        extends Traverser<K,V,Integer> {
5819 >    @SuppressWarnings("serial")
5820 >    static final class MapReduceValuesToIntTask<K,V>
5821 >        extends BulkTask<K,V,Integer> {
5822          final ObjectToInt<? super V> transformer;
5823          final IntByIntToInt reducer;
5824          final int basis;
5825          int result;
5826          MapReduceValuesToIntTask<K,V> rights, nextRight;
5827          MapReduceValuesToIntTask
5828 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5828 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5829               MapReduceValuesToIntTask<K,V> nextRight,
5830               ObjectToInt<? super V> transformer,
5831               int basis,
5832               IntByIntToInt reducer) {
5833 <            super(m, p, b); this.nextRight = nextRight;
5833 >            super(p, b, i, f, t); this.nextRight = nextRight;
5834              this.transformer = transformer;
5835              this.basis = basis; this.reducer = reducer;
5836          }
5837          public final Integer getRawResult() { return result; }
5838 <        @SuppressWarnings("unchecked") public final void compute() {
5839 <            final ObjectToInt<? super V> transformer =
5840 <                this.transformer;
5841 <            final IntByIntToInt reducer = this.reducer;
5842 <            if (transformer == null || reducer == null)
5843 <                throw new NullPointerException();
5844 <            int r = this.basis;
5845 <            for (int b; (b = preSplit()) > 0;)
5846 <                (rights = new MapReduceValuesToIntTask<K,V>
5847 <                 (map, this, b, rights, transformer, r, reducer)).fork();
5848 <            Object v;
5849 <            while ((v = advance()) != null)
5850 <                r = reducer.apply(r, transformer.apply((V)v));
5851 <            result = r;
5852 <            CountedCompleter<?> c;
5853 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5854 <                MapReduceValuesToIntTask<K,V>
5855 <                    t = (MapReduceValuesToIntTask<K,V>)c,
5856 <                    s = t.rights;
5857 <                while (s != null) {
5858 <                    t.result = reducer.apply(t.result, s.result);
5859 <                    s = t.rights = s.nextRight;
5838 >        public final void compute() {
5839 >            final ObjectToInt<? super V> transformer;
5840 >            final IntByIntToInt reducer;
5841 >            if ((transformer = this.transformer) != null &&
5842 >                (reducer = this.reducer) != null) {
5843 >                int r = this.basis;
5844 >                for (int i = baseIndex, f, h; batch > 0 &&
5845 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5846 >                    addToPendingCount(1);
5847 >                    (rights = new MapReduceValuesToIntTask<K,V>
5848 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5849 >                      rights, transformer, r, reducer)).fork();
5850 >                }
5851 >                for (Node<K,V> p; (p = advance()) != null; )
5852 >                    r = reducer.apply(r, transformer.apply(p.val));
5853 >                result = r;
5854 >                CountedCompleter<?> c;
5855 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5856 >                    @SuppressWarnings("unchecked") MapReduceValuesToIntTask<K,V>
5857 >                        t = (MapReduceValuesToIntTask<K,V>)c,
5858 >                        s = t.rights;
5859 >                    while (s != null) {
5860 >                        t.result = reducer.apply(t.result, s.result);
5861 >                        s = t.rights = s.nextRight;
5862 >                    }
5863                  }
5864              }
5865          }
5866      }
5867  
5868 <    @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
5869 <        extends Traverser<K,V,Integer> {
5868 >    @SuppressWarnings("serial")
5869 >    static final class MapReduceEntriesToIntTask<K,V>
5870 >        extends BulkTask<K,V,Integer> {
5871          final ObjectToInt<Map.Entry<K,V>> transformer;
5872          final IntByIntToInt reducer;
5873          final int basis;
5874          int result;
5875          MapReduceEntriesToIntTask<K,V> rights, nextRight;
5876          MapReduceEntriesToIntTask
5877 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5877 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5878               MapReduceEntriesToIntTask<K,V> nextRight,
5879               ObjectToInt<Map.Entry<K,V>> transformer,
5880               int basis,
5881               IntByIntToInt reducer) {
5882 <            super(m, p, b); this.nextRight = nextRight;
5882 >            super(p, b, i, f, t); this.nextRight = nextRight;
5883              this.transformer = transformer;
5884              this.basis = basis; this.reducer = reducer;
5885          }
5886          public final Integer getRawResult() { return result; }
5887 <        @SuppressWarnings("unchecked") public final void compute() {
5888 <            final ObjectToInt<Map.Entry<K,V>> transformer =
5889 <                this.transformer;
5890 <            final IntByIntToInt reducer = this.reducer;
5891 <            if (transformer == null || reducer == null)
5892 <                throw new NullPointerException();
5893 <            int r = this.basis;
5894 <            for (int b; (b = preSplit()) > 0;)
5895 <                (rights = new MapReduceEntriesToIntTask<K,V>
5896 <                 (map, this, b, rights, transformer, r, reducer)).fork();
5897 <            Object v;
5898 <            while ((v = advance()) != null)
5899 <                r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
5900 <            result = r;
5901 <            CountedCompleter<?> c;
5902 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5903 <                MapReduceEntriesToIntTask<K,V>
5904 <                    t = (MapReduceEntriesToIntTask<K,V>)c,
5905 <                    s = t.rights;
5906 <                while (s != null) {
5907 <                    t.result = reducer.apply(t.result, s.result);
5908 <                    s = t.rights = s.nextRight;
5887 >        public final void compute() {
5888 >            final ObjectToInt<Map.Entry<K,V>> transformer;
5889 >            final IntByIntToInt reducer;
5890 >            if ((transformer = this.transformer) != null &&
5891 >                (reducer = this.reducer) != null) {
5892 >                int r = this.basis;
5893 >                for (int i = baseIndex, f, h; batch > 0 &&
5894 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5895 >                    addToPendingCount(1);
5896 >                    (rights = new MapReduceEntriesToIntTask<K,V>
5897 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5898 >                      rights, transformer, r, reducer)).fork();
5899 >                }
5900 >                for (Node<K,V> p; (p = advance()) != null; )
5901 >                    r = reducer.apply(r, transformer.apply(p));
5902 >                result = r;
5903 >                CountedCompleter<?> c;
5904 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5905 >                    @SuppressWarnings("unchecked") MapReduceEntriesToIntTask<K,V>
5906 >                        t = (MapReduceEntriesToIntTask<K,V>)c,
5907 >                        s = t.rights;
5908 >                    while (s != null) {
5909 >                        t.result = reducer.apply(t.result, s.result);
5910 >                        s = t.rights = s.nextRight;
5911 >                    }
5912                  }
5913              }
5914          }
5915      }
5916  
5917 <    @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
5918 <        extends Traverser<K,V,Integer> {
5917 >    @SuppressWarnings("serial")
5918 >    static final class MapReduceMappingsToIntTask<K,V>
5919 >        extends BulkTask<K,V,Integer> {
5920          final ObjectByObjectToInt<? super K, ? super V> transformer;
5921          final IntByIntToInt reducer;
5922          final int basis;
5923          int result;
5924          MapReduceMappingsToIntTask<K,V> rights, nextRight;
5925          MapReduceMappingsToIntTask
5926 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5926 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5927               MapReduceMappingsToIntTask<K,V> nextRight,
5928               ObjectByObjectToInt<? super K, ? super V> transformer,
5929               int basis,
5930               IntByIntToInt reducer) {
5931 <            super(m, p, b); this.nextRight = nextRight;
5931 >            super(p, b, i, f, t); this.nextRight = nextRight;
5932              this.transformer = transformer;
5933              this.basis = basis; this.reducer = reducer;
5934          }
5935          public final Integer getRawResult() { return result; }
5936 <        @SuppressWarnings("unchecked") public final void compute() {
5937 <            final ObjectByObjectToInt<? super K, ? super V> transformer =
5938 <                this.transformer;
5939 <            final IntByIntToInt reducer = this.reducer;
5940 <            if (transformer == null || reducer == null)
5941 <                throw new NullPointerException();
5942 <            int r = this.basis;
5943 <            for (int b; (b = preSplit()) > 0;)
5944 <                (rights = new MapReduceMappingsToIntTask<K,V>
5945 <                 (map, this, b, rights, transformer, r, reducer)).fork();
5946 <            Object v;
5947 <            while ((v = advance()) != null)
5948 <                r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
5949 <            result = r;
5950 <            CountedCompleter<?> c;
5951 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5952 <                MapReduceMappingsToIntTask<K,V>
5953 <                    t = (MapReduceMappingsToIntTask<K,V>)c,
5954 <                    s = t.rights;
5955 <                while (s != null) {
5956 <                    t.result = reducer.apply(t.result, s.result);
5957 <                    s = t.rights = s.nextRight;
5936 >        public final void compute() {
5937 >            final ObjectByObjectToInt<? super K, ? super V> transformer;
5938 >            final IntByIntToInt reducer;
5939 >            if ((transformer = this.transformer) != null &&
5940 >                (reducer = this.reducer) != null) {
5941 >                int r = this.basis;
5942 >                for (int i = baseIndex, f, h; batch > 0 &&
5943 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5944 >                    addToPendingCount(1);
5945 >                    (rights = new MapReduceMappingsToIntTask<K,V>
5946 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5947 >                      rights, transformer, r, reducer)).fork();
5948 >                }
5949 >                for (Node<K,V> p; (p = advance()) != null; )
5950 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
5951 >                result = r;
5952 >                CountedCompleter<?> c;
5953 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5954 >                    @SuppressWarnings("unchecked") MapReduceMappingsToIntTask<K,V>
5955 >                        t = (MapReduceMappingsToIntTask<K,V>)c,
5956 >                        s = t.rights;
5957 >                    while (s != null) {
5958 >                        t.result = reducer.apply(t.result, s.result);
5959 >                        s = t.rights = s.nextRight;
5960 >                    }
5961                  }
5962              }
5963          }
5964      }
5965  
5966 +    /* ---------------- Counters -------------- */
5967 +
5968 +    // Adapted from LongAdder and Striped64.
5969 +    // See their internal docs for explanation.
5970 +
5971 +    // A padded cell for distributing counts
5972 +    static final class CounterCell {
5973 +        volatile long p0, p1, p2, p3, p4, p5, p6;
5974 +        volatile long value;
5975 +        volatile long q0, q1, q2, q3, q4, q5, q6;
5976 +        CounterCell(long x) { value = x; }
5977 +    }
5978 +
5979 +    /**
5980 +     * Holder for the thread-local hash code determining which
5981 +     * CounterCell to use. The code is initialized via the
5982 +     * counterHashCodeGenerator, but may be moved upon collisions.
5983 +     */
5984 +    static final class CounterHashCode {
5985 +        int code;
5986 +    }
5987 +
5988 +    /**
5989 +     * Generates initial value for per-thread CounterHashCodes.
5990 +     */
5991 +    static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
5992 +
5993 +    /**
5994 +     * Increment for counterHashCodeGenerator. See class ThreadLocal
5995 +     * for explanation.
5996 +     */
5997 +    static final int SEED_INCREMENT = 0x61c88647;
5998 +
5999 +    /**
6000 +     * Per-thread counter hash codes. Shared across all instances.
6001 +     */
6002 +    static final ThreadLocal<CounterHashCode> threadCounterHashCode =
6003 +        new ThreadLocal<CounterHashCode>();
6004 +
6005 +
6006 +    final long sumCount() {
6007 +        CounterCell[] as = counterCells; CounterCell a;
6008 +        long sum = baseCount;
6009 +        if (as != null) {
6010 +            for (int i = 0; i < as.length; ++i) {
6011 +                if ((a = as[i]) != null)
6012 +                    sum += a.value;
6013 +            }
6014 +        }
6015 +        return sum;
6016 +    }
6017 +
6018 +    // See LongAdder version for explanation
6019 +    private final void fullAddCount(long x, CounterHashCode hc,
6020 +                                    boolean wasUncontended) {
6021 +        int h;
6022 +        if (hc == null) {
6023 +            hc = new CounterHashCode();
6024 +            int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
6025 +            h = hc.code = (s == 0) ? 1 : s; // Avoid zero
6026 +            threadCounterHashCode.set(hc);
6027 +        }
6028 +        else
6029 +            h = hc.code;
6030 +        boolean collide = false;                // True if last slot nonempty
6031 +        for (;;) {
6032 +            CounterCell[] as; CounterCell a; int n; long v;
6033 +            if ((as = counterCells) != null && (n = as.length) > 0) {
6034 +                if ((a = as[(n - 1) & h]) == null) {
6035 +                    if (cellsBusy == 0) {            // Try to attach new Cell
6036 +                        CounterCell r = new CounterCell(x); // Optimistic create
6037 +                        if (cellsBusy == 0 &&
6038 +                            U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6039 +                            boolean created = false;
6040 +                            try {               // Recheck under lock
6041 +                                CounterCell[] rs; int m, j;
6042 +                                if ((rs = counterCells) != null &&
6043 +                                    (m = rs.length) > 0 &&
6044 +                                    rs[j = (m - 1) & h] == null) {
6045 +                                    rs[j] = r;
6046 +                                    created = true;
6047 +                                }
6048 +                            } finally {
6049 +                                cellsBusy = 0;
6050 +                            }
6051 +                            if (created)
6052 +                                break;
6053 +                            continue;           // Slot is now non-empty
6054 +                        }
6055 +                    }
6056 +                    collide = false;
6057 +                }
6058 +                else if (!wasUncontended)       // CAS already known to fail
6059 +                    wasUncontended = true;      // Continue after rehash
6060 +                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
6061 +                    break;
6062 +                else if (counterCells != as || n >= NCPU)
6063 +                    collide = false;            // At max size or stale
6064 +                else if (!collide)
6065 +                    collide = true;
6066 +                else if (cellsBusy == 0 &&
6067 +                         U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6068 +                    try {
6069 +                        if (counterCells == as) {// Expand table unless stale
6070 +                            CounterCell[] rs = new CounterCell[n << 1];
6071 +                            for (int i = 0; i < n; ++i)
6072 +                                rs[i] = as[i];
6073 +                            counterCells = rs;
6074 +                        }
6075 +                    } finally {
6076 +                        cellsBusy = 0;
6077 +                    }
6078 +                    collide = false;
6079 +                    continue;                   // Retry with expanded table
6080 +                }
6081 +                h ^= h << 13;                   // Rehash
6082 +                h ^= h >>> 17;
6083 +                h ^= h << 5;
6084 +            }
6085 +            else if (cellsBusy == 0 && counterCells == as &&
6086 +                     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6087 +                boolean init = false;
6088 +                try {                           // Initialize table
6089 +                    if (counterCells == as) {
6090 +                        CounterCell[] rs = new CounterCell[2];
6091 +                        rs[h & 1] = new CounterCell(x);
6092 +                        counterCells = rs;
6093 +                        init = true;
6094 +                    }
6095 +                } finally {
6096 +                    cellsBusy = 0;
6097 +                }
6098 +                if (init)
6099 +                    break;
6100 +            }
6101 +            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
6102 +                break;                          // Fall back on using base
6103 +        }
6104 +        hc.code = h;                            // Record index for next time
6105 +    }
6106 +
6107      // Unsafe mechanics
6108 <    private static final sun.misc.Unsafe UNSAFE;
6109 <    private static final long counterOffset;
6110 <    private static final long sizeCtlOffset;
6108 >    private static final sun.misc.Unsafe U;
6109 >    private static final long SIZECTL;
6110 >    private static final long TRANSFERINDEX;
6111 >    private static final long TRANSFERORIGIN;
6112 >    private static final long BASECOUNT;
6113 >    private static final long CELLSBUSY;
6114 >    private static final long CELLVALUE;
6115      private static final long ABASE;
6116      private static final int ASHIFT;
6117  
6118      static {
6621        int ss;
6119          try {
6120 <            UNSAFE = getUnsafe();
6120 >            U = getUnsafe();
6121              Class<?> k = ConcurrentHashMapV8.class;
6122 <            counterOffset = UNSAFE.objectFieldOffset
6626 <                (k.getDeclaredField("counter"));
6627 <            sizeCtlOffset = UNSAFE.objectFieldOffset
6122 >            SIZECTL = U.objectFieldOffset
6123                  (k.getDeclaredField("sizeCtl"));
6124 <            Class<?> sc = Node[].class;
6125 <            ABASE = UNSAFE.arrayBaseOffset(sc);
6126 <            ss = UNSAFE.arrayIndexScale(sc);
6124 >            TRANSFERINDEX = U.objectFieldOffset
6125 >                (k.getDeclaredField("transferIndex"));
6126 >            TRANSFERORIGIN = U.objectFieldOffset
6127 >                (k.getDeclaredField("transferOrigin"));
6128 >            BASECOUNT = U.objectFieldOffset
6129 >                (k.getDeclaredField("baseCount"));
6130 >            CELLSBUSY = U.objectFieldOffset
6131 >                (k.getDeclaredField("cellsBusy"));
6132 >            Class<?> ck = CounterCell.class;
6133 >            CELLVALUE = U.objectFieldOffset
6134 >                (ck.getDeclaredField("value"));
6135 >            Class<?> ak = Node[].class;
6136 >            ABASE = U.arrayBaseOffset(ak);
6137 >            int scale = U.arrayIndexScale(ak);
6138 >            if ((scale & (scale - 1)) != 0)
6139 >                throw new Error("data type scale not a power of two");
6140 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6141          } catch (Exception e) {
6142              throw new Error(e);
6143          }
6635        if ((ss & (ss-1)) != 0)
6636            throw new Error("data type scale not a power of two");
6637        ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6144      }
6145  
6146      /**
# Line 6647 | Line 6153 | public class ConcurrentHashMapV8<K, V>
6153      private static sun.misc.Unsafe getUnsafe() {
6154          try {
6155              return sun.misc.Unsafe.getUnsafe();
6156 <        } catch (SecurityException se) {
6157 <            try {
6158 <                return java.security.AccessController.doPrivileged
6159 <                    (new java.security
6160 <                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
6161 <                        public sun.misc.Unsafe run() throws Exception {
6162 <                            java.lang.reflect.Field f = sun.misc
6163 <                                .Unsafe.class.getDeclaredField("theUnsafe");
6164 <                            f.setAccessible(true);
6165 <                            return (sun.misc.Unsafe) f.get(null);
6166 <                        }});
6167 <            } catch (java.security.PrivilegedActionException e) {
6168 <                throw new RuntimeException("Could not initialize intrinsics",
6169 <                                           e.getCause());
6170 <            }
6156 >        } catch (SecurityException tryReflectionInstead) {}
6157 >        try {
6158 >            return java.security.AccessController.doPrivileged
6159 >            (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
6160 >                public sun.misc.Unsafe run() throws Exception {
6161 >                    Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
6162 >                    for (java.lang.reflect.Field f : k.getDeclaredFields()) {
6163 >                        f.setAccessible(true);
6164 >                        Object x = f.get(null);
6165 >                        if (k.isInstance(x))
6166 >                            return k.cast(x);
6167 >                    }
6168 >                    throw new NoSuchFieldError("the Unsafe");
6169 >                }});
6170 >        } catch (java.security.PrivilegedActionException e) {
6171 >            throw new RuntimeException("Could not initialize intrinsics",
6172 >                                       e.getCause());
6173          }
6174      }
6175   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines