ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
(Generate patch)

Comparing jsr166/src/jsr166e/ConcurrentHashMapV8.java (file contents):
Revision 1.13 by jsr166, Wed Aug 31 00:22:11 2011 UTC vs.
Revision 1.82 by dl, Thu Dec 13 20:34:00 2012 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166e;
8 < import jsr166e.LongAdder;
8 >
9 > import java.util.Comparator;
10 > import java.util.Arrays;
11   import java.util.Map;
12   import java.util.Set;
13   import java.util.Collection;
# Line 19 | Line 21 | import java.util.Enumeration;
21   import java.util.ConcurrentModificationException;
22   import java.util.NoSuchElementException;
23   import java.util.concurrent.ConcurrentMap;
24 + import java.util.concurrent.locks.AbstractQueuedSynchronizer;
25 + import java.util.concurrent.atomic.AtomicInteger;
26 + import java.util.concurrent.atomic.AtomicReference;
27   import java.io.Serializable;
28  
29   /**
# Line 33 | Line 38 | import java.io.Serializable;
38   * interoperable with {@code Hashtable} in programs that rely on its
39   * thread safety but not on its synchronization details.
40   *
41 < * <p> Retrieval operations (including {@code get}) generally do not
41 > * <p>Retrieval operations (including {@code get}) generally do not
42   * block, so may overlap with update operations (including {@code put}
43   * and {@code remove}). Retrievals reflect the results of the most
44   * recently <em>completed</em> update operations holding upon their
45 < * onset.  For aggregate operations such as {@code putAll} and {@code
46 < * clear}, concurrent retrievals may reflect insertion or removal of
47 < * only some entries.  Similarly, Iterators and Enumerations return
48 < * elements reflecting the state of the hash table at some point at or
49 < * since the creation of the iterator/enumeration.  They do
50 < * <em>not</em> throw {@link ConcurrentModificationException}.
51 < * However, iterators are designed to be used by only one thread at a
52 < * time.  Bear in mind that the results of aggregate status methods
53 < * including {@code size}, {@code isEmpty}, and {@code containsValue}
54 < * are typically useful only when a map is not undergoing concurrent
55 < * updates in other threads.  Otherwise the results of these methods
56 < * reflect transient states that may be adequate for monitoring
57 < * purposes, but not for program control.
58 < *
59 < * <p> Resizing this or any other kind of hash table is a relatively
60 < * slow operation, so, when possible, it is a good idea to provide
61 < * estimates of expected table sizes in constructors. Also, for
62 < * compatibility with previous versions of this class, constructors
63 < * may optionally specify an expected {@code concurrencyLevel} as an
64 < * additional hint for internal sizing.
45 > * onset. (More formally, an update operation for a given key bears a
46 > * <em>happens-before</em> relation with any (non-null) retrieval for
47 > * that key reporting the updated value.)  For aggregate operations
48 > * such as {@code putAll} and {@code clear}, concurrent retrievals may
49 > * reflect insertion or removal of only some entries.  Similarly,
50 > * Iterators and Enumerations return elements reflecting the state of
51 > * the hash table at some point at or since the creation of the
52 > * iterator/enumeration.  They do <em>not</em> throw {@link
53 > * ConcurrentModificationException}.  However, iterators are designed
54 > * to be used by only one thread at a time.  Bear in mind that the
55 > * results of aggregate status methods including {@code size}, {@code
56 > * isEmpty}, and {@code containsValue} are typically useful only when
57 > * a map is not undergoing concurrent updates in other threads.
58 > * Otherwise the results of these methods reflect transient states
59 > * that may be adequate for monitoring or estimation purposes, but not
60 > * for program control.
61 > *
62 > * <p>The table is dynamically expanded when there are too many
63 > * collisions (i.e., keys that have distinct hash codes but fall into
64 > * the same slot modulo the table size), with the expected average
65 > * effect of maintaining roughly two bins per mapping (corresponding
66 > * to a 0.75 load factor threshold for resizing). There may be much
67 > * variance around this average as mappings are added and removed, but
68 > * overall, this maintains a commonly accepted time/space tradeoff for
69 > * hash tables.  However, resizing this or any other kind of hash
70 > * table may be a relatively slow operation. When possible, it is a
71 > * good idea to provide a size estimate as an optional {@code
72 > * initialCapacity} constructor argument. An additional optional
73 > * {@code loadFactor} constructor argument provides a further means of
74 > * customizing initial table capacity by specifying the table density
75 > * to be used in calculating the amount of space to allocate for the
76 > * given number of elements.  Also, for compatibility with previous
77 > * versions of this class, constructors may optionally specify an
78 > * expected {@code concurrencyLevel} as an additional hint for
79 > * internal sizing.  Note that using many keys with exactly the same
80 > * {@code hashCode()} is a sure way to slow down performance of any
81 > * hash table.
82 > *
83 > * <p>A {@link Set} projection of a ConcurrentHashMapV8 may be created
84 > * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
85 > * (using {@link #keySet(Object)} when only keys are of interest, and the
86 > * mapped values are (perhaps transiently) not used or all take the
87 > * same mapping value.
88 > *
89 > * <p>A ConcurrentHashMapV8 can be used as scalable frequency map (a
90 > * form of histogram or multiset) by using {@link LongAdder} values
91 > * and initializing via {@link #computeIfAbsent}. For example, to add
92 > * a count to a {@code ConcurrentHashMapV8<String,LongAdder> freqs}, you
93 > * can use {@code freqs.computeIfAbsent(k -> new
94 > * LongAdder()).increment();}
95   *
96   * <p>This class and its views and iterators implement all of the
97   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
98   * interfaces.
99   *
100 < * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
100 > * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
101   * does <em>not</em> allow {@code null} to be used as a key or value.
102   *
103 + * <p>ConcurrentHashMapV8s support parallel operations using the {@link
104 + * ForkJoinPool#commonPool}. (Tasks that may be used in other contexts
105 + * are available in class {@link ForkJoinTasks}). These operations are
106 + * designed to be safely, and often sensibly, applied even with maps
107 + * that are being concurrently updated by other threads; for example,
108 + * when computing a snapshot summary of the values in a shared
109 + * registry.  There are three kinds of operation, each with four
110 + * forms, accepting functions with Keys, Values, Entries, and (Key,
111 + * Value) arguments and/or return values. (The first three forms are
112 + * also available via the {@link #keySet()}, {@link #values()} and
113 + * {@link #entrySet()} views). Because the elements of a
114 + * ConcurrentHashMapV8 are not ordered in any particular way, and may be
115 + * processed in different orders in different parallel executions, the
116 + * correctness of supplied functions should not depend on any
117 + * ordering, or on any other objects or values that may transiently
118 + * change while computation is in progress; and except for forEach
119 + * actions, should ideally be side-effect-free.
120 + *
121 + * <ul>
122 + * <li> forEach: Perform a given action on each element.
123 + * A variant form applies a given transformation on each element
124 + * before performing the action.</li>
125 + *
126 + * <li> search: Return the first available non-null result of
127 + * applying a given function on each element; skipping further
128 + * search when a result is found.</li>
129 + *
130 + * <li> reduce: Accumulate each element.  The supplied reduction
131 + * function cannot rely on ordering (more formally, it should be
132 + * both associative and commutative).  There are five variants:
133 + *
134 + * <ul>
135 + *
136 + * <li> Plain reductions. (There is not a form of this method for
137 + * (key, value) function arguments since there is no corresponding
138 + * return type.)</li>
139 + *
140 + * <li> Mapped reductions that accumulate the results of a given
141 + * function applied to each element.</li>
142 + *
143 + * <li> Reductions to scalar doubles, longs, and ints, using a
144 + * given basis value.</li>
145 + *
146 + * </li>
147 + * </ul>
148 + * </ul>
149 + *
150 + * <p>The concurrency properties of bulk operations follow
151 + * from those of ConcurrentHashMapV8: Any non-null result returned
152 + * from {@code get(key)} and related access methods bears a
153 + * happens-before relation with the associated insertion or
154 + * update.  The result of any bulk operation reflects the
155 + * composition of these per-element relations (but is not
156 + * necessarily atomic with respect to the map as a whole unless it
157 + * is somehow known to be quiescent).  Conversely, because keys
158 + * and values in the map are never null, null serves as a reliable
159 + * atomic indicator of the current lack of any result.  To
160 + * maintain this property, null serves as an implicit basis for
161 + * all non-scalar reduction operations. For the double, long, and
162 + * int versions, the basis should be one that, when combined with
163 + * any other value, returns that other value (more formally, it
164 + * should be the identity element for the reduction). Most common
165 + * reductions have these properties; for example, computing a sum
166 + * with basis 0 or a minimum with basis MAX_VALUE.
167 + *
168 + * <p>Search and transformation functions provided as arguments
169 + * should similarly return null to indicate the lack of any result
170 + * (in which case it is not used). In the case of mapped
171 + * reductions, this also enables transformations to serve as
172 + * filters, returning null (or, in the case of primitive
173 + * specializations, the identity basis) if the element should not
174 + * be combined. You can create compound transformations and
175 + * filterings by composing them yourself under this "null means
176 + * there is nothing there now" rule before using them in search or
177 + * reduce operations.
178 + *
179 + * <p>Methods accepting and/or returning Entry arguments maintain
180 + * key-value associations. They may be useful for example when
181 + * finding the key for the greatest value. Note that "plain" Entry
182 + * arguments can be supplied using {@code new
183 + * AbstractMap.SimpleEntry(k,v)}.
184 + *
185 + * <p>Bulk operations may complete abruptly, throwing an
186 + * exception encountered in the application of a supplied
187 + * function. Bear in mind when handling such exceptions that other
188 + * concurrently executing functions could also have thrown
189 + * exceptions, or would have done so if the first exception had
190 + * not occurred.
191 + *
192 + * <p>Parallel speedups for bulk operations compared to sequential
193 + * processing are common but not guaranteed.  Operations involving
194 + * brief functions on small maps may execute more slowly than
195 + * sequential loops if the underlying work to parallelize the
196 + * computation is more expensive than the computation itself.
197 + * Similarly, parallelization may not lead to much actual parallelism
198 + * if all processors are busy performing unrelated tasks.
199 + *
200 + * <p>All arguments to all task methods must be non-null.
201 + *
202 + * <p><em>jsr166e note: During transition, this class
203 + * uses nested functional interfaces with different names but the
204 + * same forms as those expected for JDK8.</em>
205 + *
206   * <p>This class is a member of the
207   * <a href="{@docRoot}/../technotes/guides/collections/index.html">
208   * Java Collections Framework</a>.
209   *
72 * <p><em>jsr166e note: This class is a candidate replacement for
73 * java.util.concurrent.ConcurrentHashMap.<em>
74 *
210   * @since 1.5
211   * @author Doug Lea
212   * @param <K> the type of keys maintained by this map
213   * @param <V> the type of mapped values
214   */
215   public class ConcurrentHashMapV8<K, V>
216 <        implements ConcurrentMap<K, V>, Serializable {
216 >    implements ConcurrentMap<K, V>, Serializable {
217      private static final long serialVersionUID = 7249069246763182397L;
218  
219      /**
220 <     * A function computing a mapping from the given key to a value,
221 <     * or {@code null} if there is no mapping. This is a place-holder
222 <     * for an upcoming JDK8 interface.
223 <     */
224 <    public static interface MappingFunction<K, V> {
225 <        /**
226 <         * Returns a value for the given key, or null if there is no
227 <         * mapping. If this function throws an (unchecked) exception,
228 <         * the exception is rethrown to its caller, and no mapping is
229 <         * recorded.  Because this function is invoked within
230 <         * atomicity control, the computation should be short and
231 <         * simple. The most common usage is to construct a new object
232 <         * serving as an initial mapped value.
220 >     * A partitionable iterator. A Spliterator can be traversed
221 >     * directly, but can also be partitioned (before traversal) by
222 >     * creating another Spliterator that covers a non-overlapping
223 >     * portion of the elements, and so may be amenable to parallel
224 >     * execution.
225 >     *
226 >     * <p>This interface exports a subset of expected JDK8
227 >     * functionality.
228 >     *
229 >     * <p>Sample usage: Here is one (of the several) ways to compute
230 >     * the sum of the values held in a map using the ForkJoin
231 >     * framework. As illustrated here, Spliterators are well suited to
232 >     * designs in which a task repeatedly splits off half its work
233 >     * into forked subtasks until small enough to process directly,
234 >     * and then joins these subtasks. Variants of this style can also
235 >     * be used in completion-based designs.
236 >     *
237 >     * <pre>
238 >     * {@code ConcurrentHashMapV8<String, Long> m = ...
239 >     * // split as if have 8 * parallelism, for load balance
240 >     * int n = m.size();
241 >     * int p = aForkJoinPool.getParallelism() * 8;
242 >     * int split = (n < p)? n : p;
243 >     * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
244 >     * // ...
245 >     * static class SumValues extends RecursiveTask<Long> {
246 >     *   final Spliterator<Long> s;
247 >     *   final int split;             // split while > 1
248 >     *   final SumValues nextJoin;    // records forked subtasks to join
249 >     *   SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
250 >     *     this.s = s; this.depth = depth; this.nextJoin = nextJoin;
251 >     *   }
252 >     *   public Long compute() {
253 >     *     long sum = 0;
254 >     *     SumValues subtasks = null; // fork subtasks
255 >     *     for (int s = split >>> 1; s > 0; s >>>= 1)
256 >     *       (subtasks = new SumValues(s.split(), s, subtasks)).fork();
257 >     *     while (s.hasNext())        // directly process remaining elements
258 >     *       sum += s.next();
259 >     *     for (SumValues t = subtasks; t != null; t = t.nextJoin)
260 >     *       sum += t.join();         // collect subtask results
261 >     *     return sum;
262 >     *   }
263 >     * }
264 >     * }</pre>
265 >     */
266 >    public static interface Spliterator<T> extends Iterator<T> {
267 >        /**
268 >         * Returns a Spliterator covering approximately half of the
269 >         * elements, guaranteed not to overlap with those subsequently
270 >         * returned by this Spliterator.  After invoking this method,
271 >         * the current Spliterator will <em>not</em> produce any of
272 >         * the elements of the returned Spliterator, but the two
273 >         * Spliterators together will produce all of the elements that
274 >         * would have been produced by this Spliterator had this
275 >         * method not been called. The exact number of elements
276 >         * produced by the returned Spliterator is not guaranteed, and
277 >         * may be zero (i.e., with {@code hasNext()} reporting {@code
278 >         * false}) if this Spliterator cannot be further split.
279           *
280 <         * @param key the (non-null) key
281 <         * @return a value, or null if none
280 >         * @return a Spliterator covering approximately half of the
281 >         * elements
282 >         * @throws IllegalStateException if this Spliterator has
283 >         * already commenced traversing elements
284           */
285 <        V map(K key);
285 >        Spliterator<T> split();
286      }
287  
288      /*
# Line 108 | Line 291 | public class ConcurrentHashMapV8<K, V>
291       * The primary design goal of this hash table is to maintain
292       * concurrent readability (typically method get(), but also
293       * iterators and related methods) while minimizing update
294 <     * contention.
294 >     * contention. Secondary goals are to keep space consumption about
295 >     * the same or better than java.util.HashMap, and to support high
296 >     * initial insertion rates on an empty table by many threads.
297       *
298       * Each key-value mapping is held in a Node.  Because Node fields
299       * can contain special values, they are defined using plain Object
300       * types. Similarly in turn, all internal methods that use them
301 <     * work off Object types. All public generic-typed methods relay
302 <     * in/out of these internal methods, supplying casts as needed.
301 >     * work off Object types. And similarly, so do the internal
302 >     * methods of auxiliary iterator and view classes. This also
303 >     * allows many of the public methods to be factored into a smaller
304 >     * number of internal methods (although sadly not so for the five
305 >     * variants of put-related operations). The validation-based
306 >     * approach explained below leads to a lot of code sprawl because
307 >     * retry-control precludes factoring into smaller methods.
308       *
309       * The table is lazily initialized to a power-of-two size upon the
310 <     * first insertion.  Each bin in the table contains a (typically
311 <     * short) list of Nodes.  Table accesses require volatile/atomic
312 <     * reads, writes, and CASes.  Because there is no other way to
313 <     * arrange this without adding further indirections, we use
314 <     * intrinsics (sun.misc.Unsafe) operations.  The lists of nodes
315 <     * within bins are always accurately traversable under volatile
316 <     * reads, so long as lookups check hash code and non-nullness of
317 <     * key and value before checking key equality. (All valid hash
318 <     * codes are nonnegative. Negative values are reserved for special
319 <     * forwarding nodes; see below.)
320 <     *
321 <     * A bin may be locked during update (insert, delete, and replace)
322 <     * operations.  We do not want to waste the space required to
323 <     * associate a distinct lock object with each bin, so instead use
324 <     * the first node of a bin list itself as a lock, using builtin
325 <     * "synchronized" locks. These save space and we can live with
326 <     * only plain block-structured lock/unlock operations. Using the
327 <     * first node of a list as a lock does not by itself suffice
328 <     * though: When a node is locked, any update must first validate
329 <     * that it is still the first node, and retry if not. (Because new
330 <     * nodes are always appended to lists, once a node is first in a
331 <     * bin, it remains first until deleted or the bin becomes
332 <     * invalidated.)  However, update operations can and sometimes do
333 <     * still traverse the bin until the point of update, which helps
334 <     * reduce cache misses on retries.  This is a converse of sorts to
335 <     * the lazy locking technique described by Herlihy & Shavit. If
336 <     * there is no existing node during a put operation, then one can
337 <     * be CAS'ed in (without need for lock except in computeIfAbsent);
338 <     * the CAS serves as validation. This is on average the most
339 <     * common case for put operations -- under random hash codes, the
340 <     * distribution of nodes in bins follows a Poisson distribution
341 <     * (see http://en.wikipedia.org/wiki/Poisson_distribution) with a
342 <     * parameter of 0.5 on average under the default loadFactor of
343 <     * 0.75.  The expected number of locks covering different elements
344 <     * (i.e., bins with 2 or more nodes) is approximately 10% at
345 <     * steady state under default settings.  Lock contention
346 <     * probability for two threads accessing arbitrary distinct
347 <     * elements is, roughly, 1 / (8 * #elements).
348 <     *
349 <     * The table is resized when occupancy exceeds a threshold.  Only
350 <     * a single thread performs the resize (using field "resizing", to
351 <     * arrange exclusion), but the table otherwise remains usable for
352 <     * both reads and updates. Resizing proceeds by transferring bins,
353 <     * one by one, from the table to the next table.  Upon transfer,
354 <     * the old table bin contains only a special forwarding node (with
355 <     * negative hash code ("MOVED")) that contains the next table as
356 <     * its key. On encountering a forwarding node, access and update
357 <     * operations restart, using the new table. To ensure concurrent
358 <     * readability of traversals, transfers must proceed from the last
359 <     * bin (table.length - 1) up towards the first.  Any traversal
360 <     * starting from the first bin can then arrange to move to the new
361 <     * table for the rest of the traversal without revisiting nodes.
362 <     * This constrains bin transfers to a particular order, and so can
363 <     * block indefinitely waiting for the next lock, and other threads
364 <     * cannot help with the transfer. However, expected stalls are
365 <     * infrequent enough to not warrant the additional overhead and
366 <     * complexity of access and iteration schemes that could admit
367 <     * out-of-order or concurrent bin transfers.
368 <     *
369 <     * A similar traversal scheme (not yet implemented) can apply to
370 <     * partial traversals during partitioned aggregate operations.
371 <     * Also, read-only operations give up if ever forwarded to a null
372 <     * table, which provides support for shutdown-style clearing,
373 <     * which is also not currently implemented.
374 <     *
375 <     * The element count is maintained using a LongAdder, which avoids
376 <     * contention on updates but can encounter cache thrashing if read
377 <     * too frequently during concurrent updates. To avoid reading so
378 <     * often, resizing is normally attempted only upon adding to a bin
379 <     * already holding two or more nodes. Under the default threshold
380 <     * (0.75), and uniform hash distributions, the probability of this
381 <     * occurring at threshold is around 13%, meaning that only about 1
382 <     * in 8 puts check threshold (and after resizing, many fewer do
383 <     * so). But this approximation has high variance for small table
384 <     * sizes, so we check on any collision for sizes <= 64.  Further,
385 <     * to increase the probability that a resize occurs soon enough, we
386 <     * offset the threshold (see THRESHOLD_OFFSET) by the expected
387 <     * number of puts between checks. This is currently set to 8, in
388 <     * accord with the default load factor. In practice, this is
389 <     * rarely overridden, and in any case is close enough to other
390 <     * plausible values not to waste dynamic probability computation
391 <     * for more precision.
310 >     * first insertion.  Each bin in the table normally contains a
311 >     * list of Nodes (most often, the list has only zero or one Node).
312 >     * Table accesses require volatile/atomic reads, writes, and
313 >     * CASes.  Because there is no other way to arrange this without
314 >     * adding further indirections, we use intrinsics
315 >     * (sun.misc.Unsafe) operations.  The lists of nodes within bins
316 >     * are always accurately traversable under volatile reads, so long
317 >     * as lookups check hash code and non-nullness of value before
318 >     * checking key equality.
319 >     *
320 >     * We use the top (sign) bit of Node hash fields for control
321 >     * purposes -- it is available anyway because of addressing
322 >     * constraints.  Nodes with negative hash fields are forwarding
323 >     * nodes to either TreeBins or resized tables.  The lower 31 bits
324 >     * of each normal Node's hash field contain a transformation of
325 >     * the key's hash code.
326 >     *
327 >     * Insertion (via put or its variants) of the first node in an
328 >     * empty bin is performed by just CASing it to the bin.  This is
329 >     * by far the most common case for put operations under most
330 >     * key/hash distributions.  Other update operations (insert,
331 >     * delete, and replace) require locks.  We do not want to waste
332 >     * the space required to associate a distinct lock object with
333 >     * each bin, so instead use the first node of a bin list itself as
334 >     * a lock. Locking support for these locks relies on builtin
335 >     * "synchronized" monitors.
336 >     *
337 >     * Using the first node of a list as a lock does not by itself
338 >     * suffice though: When a node is locked, any update must first
339 >     * validate that it is still the first node after locking it, and
340 >     * retry if not. Because new nodes are always appended to lists,
341 >     * once a node is first in a bin, it remains first until deleted
342 >     * or the bin becomes invalidated (upon resizing).  However,
343 >     * operations that only conditionally update may inspect nodes
344 >     * until the point of update. This is a converse of sorts to the
345 >     * lazy locking technique described by Herlihy & Shavit.
346 >     *
347 >     * The main disadvantage of per-bin locks is that other update
348 >     * operations on other nodes in a bin list protected by the same
349 >     * lock can stall, for example when user equals() or mapping
350 >     * functions take a long time.  However, statistically, under
351 >     * random hash codes, this is not a common problem.  Ideally, the
352 >     * frequency of nodes in bins follows a Poisson distribution
353 >     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
354 >     * parameter of about 0.5 on average, given the resizing threshold
355 >     * of 0.75, although with a large variance because of resizing
356 >     * granularity. Ignoring variance, the expected occurrences of
357 >     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
358 >     * first values are:
359 >     *
360 >     * 0:    0.60653066
361 >     * 1:    0.30326533
362 >     * 2:    0.07581633
363 >     * 3:    0.01263606
364 >     * 4:    0.00157952
365 >     * 5:    0.00015795
366 >     * 6:    0.00001316
367 >     * 7:    0.00000094
368 >     * 8:    0.00000006
369 >     * more: less than 1 in ten million
370 >     *
371 >     * Lock contention probability for two threads accessing distinct
372 >     * elements is roughly 1 / (8 * #elements) under random hashes.
373 >     *
374 >     * Actual hash code distributions encountered in practice
375 >     * sometimes deviate significantly from uniform randomness.  This
376 >     * includes the case when N > (1<<30), so some keys MUST collide.
377 >     * Similarly for dumb or hostile usages in which multiple keys are
378 >     * designed to have identical hash codes. Also, although we guard
379 >     * against the worst effects of this (see method spread), sets of
380 >     * hashes may differ only in bits that do not impact their bin
381 >     * index for a given power-of-two mask.  So we use a secondary
382 >     * strategy that applies when the number of nodes in a bin exceeds
383 >     * a threshold, and at least one of the keys implements
384 >     * Comparable.  These TreeBins use a balanced tree to hold nodes
385 >     * (a specialized form of red-black trees), bounding search time
386 >     * to O(log N).  Each search step in a TreeBin is around twice as
387 >     * slow as in a regular list, but given that N cannot exceed
388 >     * (1<<64) (before running out of addresses) this bounds search
389 >     * steps, lock hold times, etc, to reasonable constants (roughly
390 >     * 100 nodes inspected per operation worst case) so long as keys
391 >     * are Comparable (which is very common -- String, Long, etc).
392 >     * TreeBin nodes (TreeNodes) also maintain the same "next"
393 >     * traversal pointers as regular nodes, so can be traversed in
394 >     * iterators in the same way.
395 >     *
396 >     * The table is resized when occupancy exceeds a percentage
397 >     * threshold (nominally, 0.75, but see below).  Any thread
398 >     * noticing an overfull bin may assist in resizing after the
399 >     * initiating thread allocates and sets up the replacement
400 >     * array. However, rather than stalling, these other threads may
401 >     * proceed with insertions etc.  The use of TreeBins shields us
402 >     * from the worst case effects of overfilling while resizes are in
403 >     * progress.  Resizing proceeds by transferring bins, one by one,
404 >     * from the table to the next table. To enable concurrency, the
405 >     * next table must be (incrementally) prefilled with place-holders
406 >     * serving as reverse forwarders to the old table.  Because we are
407 >     * using power-of-two expansion, the elements from each bin must
408 >     * either stay at same index, or move with a power of two
409 >     * offset. We eliminate unnecessary node creation by catching
410 >     * cases where old nodes can be reused because their next fields
411 >     * won't change.  On average, only about one-sixth of them need
412 >     * cloning when a table doubles. The nodes they replace will be
413 >     * garbage collectable as soon as they are no longer referenced by
414 >     * any reader thread that may be in the midst of concurrently
415 >     * traversing table.  Upon transfer, the old table bin contains
416 >     * only a special forwarding node (with hash field "MOVED") that
417 >     * contains the next table as its key. On encountering a
418 >     * forwarding node, access and update operations restart, using
419 >     * the new table.
420 >     *
421 >     * Each bin transfer requires its bin lock, which can stall
422 >     * waiting for locks while resizing. However, because other
423 >     * threads can join in and help resize rather than contend for
424 >     * locks, average aggregate waits become shorter as resizing
425 >     * progresses.  The transfer operation must also ensure that all
426 >     * accessible bins in both the old and new table are usable by any
427 >     * traversal.  This is arranged by proceeding from the last bin
428 >     * (table.length - 1) up towards the first.  Upon seeing a
429 >     * forwarding node, traversals (see class Traverser) arrange to
430 >     * move to the new table without revisiting nodes.  However, to
431 >     * ensure that no intervening nodes are skipped, bin splitting can
432 >     * only begin after the associated reverse-forwarders are in
433 >     * place.
434 >     *
435 >     * The traversal scheme also applies to partial traversals of
436 >     * ranges of bins (via an alternate Traverser constructor)
437 >     * to support partitioned aggregate operations.  Also, read-only
438 >     * operations give up if ever forwarded to a null table, which
439 >     * provides support for shutdown-style clearing, which is also not
440 >     * currently implemented.
441 >     *
442 >     * Lazy table initialization minimizes footprint until first use,
443 >     * and also avoids resizings when the first operation is from a
444 >     * putAll, constructor with map argument, or deserialization.
445 >     * These cases attempt to override the initial capacity settings,
446 >     * but harmlessly fail to take effect in cases of races.
447 >     *
448 >     * The element count is maintained using a specialization of
449 >     * LongAdder. We need to incorporate a specialization rather than
450 >     * just use a LongAdder in order to access implicit
451 >     * contention-sensing that leads to creation of multiple
452 >     * CounterCells.  The counter mechanics avoid contention on
453 >     * updates but can encounter cache thrashing if read too
454 >     * frequently during concurrent access. To avoid reading so often,
455 >     * resizing under contention is attempted only upon adding to a
456 >     * bin already holding two or more nodes. Under uniform hash
457 >     * distributions, the probability of this occurring at threshold
458 >     * is around 13%, meaning that only about 1 in 8 puts check
459 >     * threshold (and after resizing, many fewer do so). The bulk
460 >     * putAll operation further reduces contention by only committing
461 >     * count updates upon these size checks.
462 >     *
463 >     * Maintaining API and serialization compatibility with previous
464 >     * versions of this class introduces several oddities. Mainly: We
465 >     * leave untouched but unused constructor arguments refering to
466 >     * concurrencyLevel. We accept a loadFactor constructor argument,
467 >     * but apply it only to initial table capacity (which is the only
468 >     * time that we can guarantee to honor it.) We also declare an
469 >     * unused "Segment" class that is instantiated in minimal form
470 >     * only when serializing.
471       */
472  
473      /* ---------------- Constants -------------- */
474  
475      /**
476 <     * The smallest allowed table capacity.  Must be a power of 2, at
477 <     * least 2.
476 >     * The largest possible table capacity.  This value must be
477 >     * exactly 1<<30 to stay within Java array allocation and indexing
478 >     * bounds for power of two table sizes, and is further required
479 >     * because the top two bits of 32bit hash fields are used for
480 >     * control purposes.
481       */
482 <    static final int MINIMUM_CAPACITY = 2;
482 >    private static final int MAXIMUM_CAPACITY = 1 << 30;
483  
484      /**
485 <     * The largest allowed table capacity.  Must be a power of 2, at
486 <     * most 1<<30.
485 >     * The default initial table capacity.  Must be a power of 2
486 >     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
487       */
488 <    static final int MAXIMUM_CAPACITY = 1 << 30;
488 >    private static final int DEFAULT_CAPACITY = 16;
489  
490      /**
491 <     * The default initial table capacity.  Must be a power of 2, at
492 <     * least MINIMUM_CAPACITY and at most MAXIMUM_CAPACITY.
491 >     * The largest possible (non-power of two) array size.
492 >     * Needed by toArray and related methods.
493       */
494 <    static final int DEFAULT_CAPACITY = 16;
494 >    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
495  
496      /**
497 <     * The default load factor for this table, used when not otherwise
498 <     * specified in a constructor.
497 >     * The default concurrency level for this table. Unused but
498 >     * defined for compatibility with previous versions of this class.
499       */
500 <    static final float DEFAULT_LOAD_FACTOR = 0.75f;
500 >    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
501  
502      /**
503 <     * The default concurrency level for this table. Unused, but
504 <     * defined for compatibility with previous versions of this class.
503 >     * The load factor for this table. Overrides of this value in
504 >     * constructors affect only the initial table capacity.  The
505 >     * actual floating point value isn't normally used -- it is
506 >     * simpler to use expressions such as {@code n - (n >>> 2)} for
507 >     * the associated resizing threshold.
508 >     */
509 >    private static final float LOAD_FACTOR = 0.75f;
510 >
511 >    /**
512 >     * The bin count threshold for using a tree rather than list for a
513 >     * bin.  The value reflects the approximate break-even point for
514 >     * using tree-based operations.
515 >     */
516 >    private static final int TREE_THRESHOLD = 8;
517 >
518 >    /**
519 >     * Minimum number of rebinnings per transfer step. Ranges are
520 >     * subdivided to allow multiple resizer threads.  This value
521 >     * serves as a lower bound to avoid resizers encountering
522 >     * excessive memory contention.  The value should be at least
523 >     * DEFAULT_CAPACITY.
524 >     */
525 >    private static final int MIN_TRANSFER_STRIDE = 16;
526 >
527 >    /*
528 >     * Encodings for Node hash fields. See above for explanation.
529 >     */
530 >    static final int MOVED     = 0x80000000; // hash field for forwarding nodes
531 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
532 >
533 >    /** Number of CPUS, to place bounds on some sizings */
534 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
535 >
536 >    /* ---------------- Counters -------------- */
537 >
538 >    // Adapted from LongAdder and Striped64.
539 >    // See their internal docs for explanation.
540 >
541 >    // A padded cell for distributing counts
542 >    static final class CounterCell {
543 >        volatile long p0, p1, p2, p3, p4, p5, p6;
544 >        volatile long value;
545 >        volatile long q0, q1, q2, q3, q4, q5, q6;
546 >        CounterCell(long x) { value = x; }
547 >    }
548 >
549 >    /**
550 >     * Holder for the thread-local hash code determining which
551 >     * CounterCell to use. The code is initialized via the
552 >     * counterHashCodeGenerator, but may be moved upon collisions.
553 >     */
554 >    static final class CounterHashCode {
555 >        int code;
556 >    }
557 >
558 >    /**
559 >     * Generates initial value for per-thread CounterHashCodes
560       */
561 <    static final int DEFAULT_CONCURRENCY_LEVEL = 16;
561 >    static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
562  
563      /**
564 <     * The count value to offset thresholds to compensate for checking
565 <     * for resizing only when inserting into bins with two or more
239 <     * elements. See above for explanation.
564 >     * Increment for counterHashCodeGenerator. See class ThreadLocal
565 >     * for explanation.
566       */
567 <    static final int THRESHOLD_OFFSET = 8;
567 >    static final int SEED_INCREMENT = 0x61c88647;
568  
569      /**
570 <     * Special node hash value indicating to use table in node.key
245 <     * Must be negative.
570 >     * Per-thread counter hash codes. Shared across all instances
571       */
572 <    static final int MOVED = -1;
572 >    static final ThreadLocal<CounterHashCode> threadCounterHashCode =
573 >        new ThreadLocal<CounterHashCode>();
574  
575      /* ---------------- Fields -------------- */
576  
577      /**
578       * The array of bins. Lazily initialized upon first insertion.
579 <     * Size is always a power of two. Accessed directly by inner
254 <     * classes.
579 >     * Size is always a power of two. Accessed directly by iterators.
580       */
581      transient volatile Node[] table;
582  
583 <    /** The counter maintaining number of elements. */
584 <    private transient final LongAdder counter;
585 <    /** Nonzero when table is being initialized or resized. Updated via CAS. */
586 <    private transient volatile int resizing;
587 <    /** The target load factor for the table. */
588 <    private transient float loadFactor;
589 <    /** The next element count value upon which to resize the table. */
590 <    private transient int threshold;
591 <    /** The initial capacity of the table. */
592 <    private transient int initCap;
583 >    /**
584 >     * The next table to use; non-null only while resizing.
585 >     */
586 >    private transient volatile Node[] nextTable;
587 >
588 >    /**
589 >     * Base counter value, used mainly when there is no contention,
590 >     * but also as a fallback during table initialization
591 >     * races. Updated via CAS.
592 >     */
593 >    private transient volatile long baseCount;
594 >
595 >    /**
596 >     * Table initialization and resizing control.  When negative, the
597 >     * table is being initialized or resized: -1 for initialization,
598 >     * else -(1 + the number of active resizing threads).  Otherwise,
599 >     * when table is null, holds the initial table size to use upon
600 >     * creation, or 0 for default. After initialization, holds the
601 >     * next element count value upon which to resize the table.
602 >     */
603 >    private transient volatile int sizeCtl;
604 >
605 >    /**
606 >     * The next table index (plus one) to split while resizing.
607 >     */
608 >    private transient volatile int transferIndex;
609 >
610 >    /**
611 >     * The least available table index to split while resizing.
612 >     */
613 >    private transient volatile int transferOrigin;
614 >
615 >    /**
616 >     * Spinlock (locked via CAS) used when resizing and/or creating Cells.
617 >     */
618 >    private transient volatile int counterBusy;
619 >
620 >    /**
621 >     * Table of counter cells. When non-null, size is a power of 2.
622 >     */
623 >    private transient volatile CounterCell[] counterCells;
624  
625      // views
626 <    transient Set<K> keySet;
627 <    transient Set<Map.Entry<K,V>> entrySet;
628 <    transient Collection<V> values;
626 >    private transient KeySetView<K,V> keySet;
627 >    private transient ValuesView<K,V> values;
628 >    private transient EntrySetView<K,V> entrySet;
629  
630      /** For serialization compatibility. Null unless serialized; see below */
631 <    Segment<K,V>[] segments;
631 >    private Segment<K,V>[] segments;
632  
633 <    /**
634 <     * Applies a supplemental hash function to a given hashCode, which
635 <     * defends against poor quality hash functions.  The result must
636 <     * be non-negative, and for reasonable performance must have good
637 <     * avalanche properties; i.e., that each bit of the argument
638 <     * affects each bit (except sign bit) of the result.
633 >    /* ---------------- Table element access -------------- */
634 >
635 >    /*
636 >     * Volatile access methods are used for table elements as well as
637 >     * elements of in-progress next table while resizing.  Uses are
638 >     * null checked by callers, and implicitly bounds-checked, relying
639 >     * on the invariants that tab arrays have non-zero size, and all
640 >     * indices are masked with (tab.length - 1) which is never
641 >     * negative and always less than length. Note that, to be correct
642 >     * wrt arbitrary concurrency errors by users, bounds checks must
643 >     * operate on local variables, which accounts for some odd-looking
644 >     * inline assignments below.
645       */
646 <    private static final int spread(int h) {
647 <        // Apply base step of MurmurHash; see http://code.google.com/p/smhasher/
648 <        h ^= h >>> 16;
649 <        h *= 0x85ebca6b;
650 <        h ^= h >>> 13;
651 <        h *= 0xc2b2ae35;
652 <        return (h >>> 16) ^ (h & 0x7fffffff); // mask out sign bit
646 >
647 >    static final Node tabAt(Node[] tab, int i) { // used by Traverser
648 >        return (Node)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
649 >    }
650 >
651 >    private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
652 >        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
653 >    }
654 >
655 >    private static final void setTabAt(Node[] tab, int i, Node v) {
656 >        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
657      }
658  
659 +    /* ---------------- Nodes -------------- */
660 +
661      /**
662       * Key-value entry. Note that this is never exported out as a
663 <     * user-visible Map.Entry.
663 >     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
664 >     * field of MOVED are special, and do not contain user keys or
665 >     * values.  Otherwise, keys are never null, and null val fields
666 >     * indicate that a node is in the process of being deleted or
667 >     * created. For purposes of read-only access, a key may be read
668 >     * before a val, but can only be used after checking val to be
669 >     * non-null.
670       */
671 <    static final class Node {
671 >    static class Node {
672          final int hash;
673          final Object key;
674          volatile Object val;
# Line 308 | Line 682 | public class ConcurrentHashMapV8<K, V>
682          }
683      }
684  
685 <    /*
312 <     * Volatile access methods are used for table elements as well as
313 <     * elements of in-progress next table while resizing.  Uses in
314 <     * access and update methods are null checked by callers, and
315 <     * implicitly bounds-checked, relying on the invariants that tab
316 <     * arrays have non-zero size, and all indices are masked with
317 <     * (tab.length - 1) which is never negative and always less than
318 <     * length. The "relaxed" non-volatile forms are used only during
319 <     * table initialization. The only other usage is in
320 <     * HashIterator.advance, which performs explicit checks.
321 <     */
322 <
323 <    static final Node tabAt(Node[] tab, int i) { // used in HashIterator
324 <        return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
325 <    }
685 >    /* ---------------- TreeBins -------------- */
686  
687 <    private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
688 <        return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
687 >    /**
688 >     * Nodes for use in TreeBins
689 >     */
690 >    static final class TreeNode extends Node {
691 >        TreeNode parent;  // red-black tree links
692 >        TreeNode left;
693 >        TreeNode right;
694 >        TreeNode prev;    // needed to unlink next upon deletion
695 >        boolean red;
696 >
697 >        TreeNode(int hash, Object key, Object val, Node next, TreeNode parent) {
698 >            super(hash, key, val, next);
699 >            this.parent = parent;
700 >        }
701      }
702  
703 <    private static final void setTabAt(Node[] tab, int i, Node v) {
704 <        UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
705 <    }
703 >    /**
704 >     * A specialized form of red-black tree for use in bins
705 >     * whose size exceeds a threshold.
706 >     *
707 >     * TreeBins use a special form of comparison for search and
708 >     * related operations (which is the main reason we cannot use
709 >     * existing collections such as TreeMaps). TreeBins contain
710 >     * Comparable elements, but may contain others, as well as
711 >     * elements that are Comparable but not necessarily Comparable<T>
712 >     * for the same T, so we cannot invoke compareTo among them. To
713 >     * handle this, the tree is ordered primarily by hash value, then
714 >     * by getClass().getName() order, and then by Comparator order
715 >     * among elements of the same class.  On lookup at a node, if
716 >     * elements are not comparable or compare as 0, both left and
717 >     * right children may need to be searched in the case of tied hash
718 >     * values. (This corresponds to the full list search that would be
719 >     * necessary if all elements were non-Comparable and had tied
720 >     * hashes.)  The red-black balancing code is updated from
721 >     * pre-jdk-collections
722 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
723 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
724 >     * Algorithms" (CLR).
725 >     *
726 >     * TreeBins also maintain a separate locking discipline than
727 >     * regular bins. Because they are forwarded via special MOVED
728 >     * nodes at bin heads (which can never change once established),
729 >     * we cannot use those nodes as locks. Instead, TreeBin
730 >     * extends AbstractQueuedSynchronizer to support a simple form of
731 >     * read-write lock. For update operations and table validation,
732 >     * the exclusive form of lock behaves in the same way as bin-head
733 >     * locks. However, lookups use shared read-lock mechanics to allow
734 >     * multiple readers in the absence of writers.  Additionally,
735 >     * these lookups do not ever block: While the lock is not
736 >     * available, they proceed along the slow traversal path (via
737 >     * next-pointers) until the lock becomes available or the list is
738 >     * exhausted, whichever comes first. (These cases are not fast,
739 >     * but maximize aggregate expected throughput.)  The AQS mechanics
740 >     * for doing this are straightforward.  The lock state is held as
741 >     * AQS getState().  Read counts are negative; the write count (1)
742 >     * is positive.  There are no signalling preferences among readers
743 >     * and writers. Since we don't need to export full Lock API, we
744 >     * just override the minimal AQS methods and use them directly.
745 >     */
746 >    static final class TreeBin extends AbstractQueuedSynchronizer {
747 >        private static final long serialVersionUID = 2249069246763182397L;
748 >        transient TreeNode root;  // root of tree
749 >        transient TreeNode first; // head of next-pointer list
750  
751 <    private static final Node relaxedTabAt(Node[] tab, int i) {
752 <        return (Node)UNSAFE.getObject(tab, ((long)i<<ASHIFT)+ABASE);
753 <    }
751 >        /* AQS overrides */
752 >        public final boolean isHeldExclusively() { return getState() > 0; }
753 >        public final boolean tryAcquire(int ignore) {
754 >            if (compareAndSetState(0, 1)) {
755 >                setExclusiveOwnerThread(Thread.currentThread());
756 >                return true;
757 >            }
758 >            return false;
759 >        }
760 >        public final boolean tryRelease(int ignore) {
761 >            setExclusiveOwnerThread(null);
762 >            setState(0);
763 >            return true;
764 >        }
765 >        public final int tryAcquireShared(int ignore) {
766 >            for (int c;;) {
767 >                if ((c = getState()) > 0)
768 >                    return -1;
769 >                if (compareAndSetState(c, c -1))
770 >                    return 1;
771 >            }
772 >        }
773 >        public final boolean tryReleaseShared(int ignore) {
774 >            int c;
775 >            do {} while (!compareAndSetState(c = getState(), c + 1));
776 >            return c == -1;
777 >        }
778 >
779 >        /** From CLR */
780 >        private void rotateLeft(TreeNode p) {
781 >            if (p != null) {
782 >                TreeNode r = p.right, pp, rl;
783 >                if ((rl = p.right = r.left) != null)
784 >                    rl.parent = p;
785 >                if ((pp = r.parent = p.parent) == null)
786 >                    root = r;
787 >                else if (pp.left == p)
788 >                    pp.left = r;
789 >                else
790 >                    pp.right = r;
791 >                r.left = p;
792 >                p.parent = r;
793 >            }
794 >        }
795  
796 <    private static final void relaxedSetTabAt(Node[] tab, int i, Node v) {
797 <        UNSAFE.putObject(tab, ((long)i<<ASHIFT)+ABASE, v);
798 <    }
796 >        /** From CLR */
797 >        private void rotateRight(TreeNode p) {
798 >            if (p != null) {
799 >                TreeNode l = p.left, pp, lr;
800 >                if ((lr = p.left = l.right) != null)
801 >                    lr.parent = p;
802 >                if ((pp = l.parent = p.parent) == null)
803 >                    root = l;
804 >                else if (pp.right == p)
805 >                    pp.right = l;
806 >                else
807 >                    pp.left = l;
808 >                l.right = p;
809 >                p.parent = l;
810 >            }
811 >        }
812  
813 <    /* ---------------- Access and update operations -------------- */
813 >        /**
814 >         * Returns the TreeNode (or null if not found) for the given key
815 >         * starting at given root.
816 >         */
817 >        @SuppressWarnings("unchecked") final TreeNode getTreeNode
818 >            (int h, Object k, TreeNode p) {
819 >            Class<?> c = k.getClass();
820 >            while (p != null) {
821 >                int dir, ph;  Object pk; Class<?> pc;
822 >                if ((ph = p.hash) == h) {
823 >                    if ((pk = p.key) == k || k.equals(pk))
824 >                        return p;
825 >                    if (c != (pc = pk.getClass()) ||
826 >                        !(k instanceof Comparable) ||
827 >                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
828 >                        if ((dir = (c == pc) ? 0 :
829 >                             c.getName().compareTo(pc.getName())) == 0) {
830 >                            TreeNode r = null, pl, pr; // check both sides
831 >                            if ((pr = p.right) != null && h >= pr.hash &&
832 >                                (r = getTreeNode(h, k, pr)) != null)
833 >                                return r;
834 >                            else if ((pl = p.left) != null && h <= pl.hash)
835 >                                dir = -1;
836 >                            else // nothing there
837 >                                return null;
838 >                        }
839 >                    }
840 >                }
841 >                else
842 >                    dir = (h < ph) ? -1 : 1;
843 >                p = (dir > 0) ? p.right : p.left;
844 >            }
845 >            return null;
846 >        }
847  
848 <   /** Implementation for get and containsKey */
849 <    private final Object internalGet(Object k) {
850 <        int h = spread(k.hashCode());
851 <        Node[] tab = table;
852 <        retry: while (tab != null) {
853 <            Node e = tabAt(tab, (tab.length - 1) & h);
854 <            while (e != null) {
855 <                int eh = e.hash;
856 <                if (eh == h) {
857 <                    Object ek = e.key, ev = e.val;
858 <                    if (ev != null && ek != null && (k == ek || k.equals(ek)))
859 <                        return ev;
860 <                }
861 <                else if (eh < 0) { // bin was moved during resize
862 <                    tab = (Node[])e.key;
863 <                    continue retry;
848 >        /**
849 >         * Wrapper for getTreeNode used by CHM.get. Tries to obtain
850 >         * read-lock to call getTreeNode, but during failure to get
851 >         * lock, searches along next links.
852 >         */
853 >        final Object getValue(int h, Object k) {
854 >            Node r = null;
855 >            int c = getState(); // Must read lock state first
856 >            for (Node e = first; e != null; e = e.next) {
857 >                if (c <= 0 && compareAndSetState(c, c - 1)) {
858 >                    try {
859 >                        r = getTreeNode(h, k, root);
860 >                    } finally {
861 >                        releaseShared(0);
862 >                    }
863 >                    break;
864                  }
865 <                e = e.next;
865 >                else if (e.hash == h && k.equals(e.key)) {
866 >                    r = e;
867 >                    break;
868 >                }
869 >                else
870 >                    c = getState();
871              }
872 <            break;
872 >            return r == null ? null : r.val;
873          }
366        return null;
367    }
874  
875 +        /**
876 +         * Finds or adds a node.
877 +         * @return null if added
878 +         */
879 +        @SuppressWarnings("unchecked") final TreeNode putTreeNode
880 +            (int h, Object k, Object v) {
881 +            Class<?> c = k.getClass();
882 +            TreeNode pp = root, p = null;
883 +            int dir = 0;
884 +            while (pp != null) { // find existing node or leaf to insert at
885 +                int ph;  Object pk; Class<?> pc;
886 +                p = pp;
887 +                if ((ph = p.hash) == h) {
888 +                    if ((pk = p.key) == k || k.equals(pk))
889 +                        return p;
890 +                    if (c != (pc = pk.getClass()) ||
891 +                        !(k instanceof Comparable) ||
892 +                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
893 +                        TreeNode s = null, r = null, pr;
894 +                        if ((dir = (c == pc) ? 0 :
895 +                             c.getName().compareTo(pc.getName())) == 0) {
896 +                            if ((pr = p.right) != null && h >= pr.hash &&
897 +                                (r = getTreeNode(h, k, pr)) != null)
898 +                                return r;
899 +                            else // continue left
900 +                                dir = -1;
901 +                        }
902 +                        else if ((pr = p.right) != null && h >= pr.hash)
903 +                            s = pr;
904 +                        if (s != null && (r = getTreeNode(h, k, s)) != null)
905 +                            return r;
906 +                    }
907 +                }
908 +                else
909 +                    dir = (h < ph) ? -1 : 1;
910 +                pp = (dir > 0) ? p.right : p.left;
911 +            }
912  
913 <    /** Implementation for put and putIfAbsent */
914 <    private final Object internalPut(Object k, Object v, boolean replace) {
915 <        int h = spread(k.hashCode());
916 <        Object oldVal = null;  // the previous value or null if none
917 <        Node[] tab = table;
918 <        for (;;) {
919 <            Node e; int i;
920 <            if (tab == null)
921 <                tab = grow(0);
922 <            else if ((e = tabAt(tab, i = (tab.length - 1) & h)) == null) {
923 <                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
924 <                    break;
913 >            TreeNode f = first;
914 >            TreeNode x = first = new TreeNode(h, k, v, f, p);
915 >            if (p == null)
916 >                root = x;
917 >            else { // attach and rebalance; adapted from CLR
918 >                TreeNode xp, xpp;
919 >                if (f != null)
920 >                    f.prev = x;
921 >                if (dir <= 0)
922 >                    p.left = x;
923 >                else
924 >                    p.right = x;
925 >                x.red = true;
926 >                while (x != null && (xp = x.parent) != null && xp.red &&
927 >                       (xpp = xp.parent) != null) {
928 >                    TreeNode xppl = xpp.left;
929 >                    if (xp == xppl) {
930 >                        TreeNode y = xpp.right;
931 >                        if (y != null && y.red) {
932 >                            y.red = false;
933 >                            xp.red = false;
934 >                            xpp.red = true;
935 >                            x = xpp;
936 >                        }
937 >                        else {
938 >                            if (x == xp.right) {
939 >                                rotateLeft(x = xp);
940 >                                xpp = (xp = x.parent) == null ? null : xp.parent;
941 >                            }
942 >                            if (xp != null) {
943 >                                xp.red = false;
944 >                                if (xpp != null) {
945 >                                    xpp.red = true;
946 >                                    rotateRight(xpp);
947 >                                }
948 >                            }
949 >                        }
950 >                    }
951 >                    else {
952 >                        TreeNode y = xppl;
953 >                        if (y != null && y.red) {
954 >                            y.red = false;
955 >                            xp.red = false;
956 >                            xpp.red = true;
957 >                            x = xpp;
958 >                        }
959 >                        else {
960 >                            if (x == xp.left) {
961 >                                rotateRight(x = xp);
962 >                                xpp = (xp = x.parent) == null ? null : xp.parent;
963 >                            }
964 >                            if (xp != null) {
965 >                                xp.red = false;
966 >                                if (xpp != null) {
967 >                                    xpp.red = true;
968 >                                    rotateLeft(xpp);
969 >                                }
970 >                            }
971 >                        }
972 >                    }
973 >                }
974 >                TreeNode r = root;
975 >                if (r != null && r.red)
976 >                    r.red = false;
977 >            }
978 >            return null;
979 >        }
980 >
981 >        /**
982 >         * Removes the given node, that must be present before this
983 >         * call.  This is messier than typical red-black deletion code
984 >         * because we cannot swap the contents of an interior node
985 >         * with a leaf successor that is pinned by "next" pointers
986 >         * that are accessible independently of lock. So instead we
987 >         * swap the tree linkages.
988 >         */
989 >        final void deleteTreeNode(TreeNode p) {
990 >            TreeNode next = (TreeNode)p.next; // unlink traversal pointers
991 >            TreeNode pred = p.prev;
992 >            if (pred == null)
993 >                first = next;
994 >            else
995 >                pred.next = next;
996 >            if (next != null)
997 >                next.prev = pred;
998 >            TreeNode replacement;
999 >            TreeNode pl = p.left;
1000 >            TreeNode pr = p.right;
1001 >            if (pl != null && pr != null) {
1002 >                TreeNode s = pr, sl;
1003 >                while ((sl = s.left) != null) // find successor
1004 >                    s = sl;
1005 >                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
1006 >                TreeNode sr = s.right;
1007 >                TreeNode pp = p.parent;
1008 >                if (s == pr) { // p was s's direct parent
1009 >                    p.parent = s;
1010 >                    s.right = p;
1011 >                }
1012 >                else {
1013 >                    TreeNode sp = s.parent;
1014 >                    if ((p.parent = sp) != null) {
1015 >                        if (s == sp.left)
1016 >                            sp.left = p;
1017 >                        else
1018 >                            sp.right = p;
1019 >                    }
1020 >                    if ((s.right = pr) != null)
1021 >                        pr.parent = s;
1022 >                }
1023 >                p.left = null;
1024 >                if ((p.right = sr) != null)
1025 >                    sr.parent = p;
1026 >                if ((s.left = pl) != null)
1027 >                    pl.parent = s;
1028 >                if ((s.parent = pp) == null)
1029 >                    root = s;
1030 >                else if (p == pp.left)
1031 >                    pp.left = s;
1032 >                else
1033 >                    pp.right = s;
1034 >                replacement = sr;
1035 >            }
1036 >            else
1037 >                replacement = (pl != null) ? pl : pr;
1038 >            TreeNode pp = p.parent;
1039 >            if (replacement == null) {
1040 >                if (pp == null) {
1041 >                    root = null;
1042 >                    return;
1043 >                }
1044 >                replacement = p;
1045              }
383            else if (e.hash < 0)
384                tab = (Node[])e.key;
1046              else {
1047 <                boolean validated = false;
1048 <                boolean checkSize = false;
1049 <                synchronized (e) {
1050 <                    if (tabAt(tab, i) == e) {
1051 <                        validated = true;
1052 <                        for (Node first = e;;) {
1053 <                            Object ek, ev;
1054 <                            if (e.hash == h &&
1055 <                                (ek = e.key) != null &&
1056 <                                (ev = e.val) != null &&
1057 <                                (k == ek || k.equals(ek))) {
1058 <                                oldVal = ev;
1059 <                                if (replace)
1060 <                                    e.val = v;
1061 <                                break;
1047 >                replacement.parent = pp;
1048 >                if (pp == null)
1049 >                    root = replacement;
1050 >                else if (p == pp.left)
1051 >                    pp.left = replacement;
1052 >                else
1053 >                    pp.right = replacement;
1054 >                p.left = p.right = p.parent = null;
1055 >            }
1056 >            if (!p.red) { // rebalance, from CLR
1057 >                TreeNode x = replacement;
1058 >                while (x != null) {
1059 >                    TreeNode xp, xpl;
1060 >                    if (x.red || (xp = x.parent) == null) {
1061 >                        x.red = false;
1062 >                        break;
1063 >                    }
1064 >                    if (x == (xpl = xp.left)) {
1065 >                        TreeNode sib = xp.right;
1066 >                        if (sib != null && sib.red) {
1067 >                            sib.red = false;
1068 >                            xp.red = true;
1069 >                            rotateLeft(xp);
1070 >                            sib = (xp = x.parent) == null ? null : xp.right;
1071 >                        }
1072 >                        if (sib == null)
1073 >                            x = xp;
1074 >                        else {
1075 >                            TreeNode sl = sib.left, sr = sib.right;
1076 >                            if ((sr == null || !sr.red) &&
1077 >                                (sl == null || !sl.red)) {
1078 >                                sib.red = true;
1079 >                                x = xp;
1080                              }
1081 <                            Node last = e;
1082 <                            if ((e = e.next) == null) {
1083 <                                last.next = new Node(h, k, v, null);
1084 <                                if (last != first || tab.length <= 64)
1085 <                                    checkSize = true;
1086 <                                break;
1081 >                            else {
1082 >                                if (sr == null || !sr.red) {
1083 >                                    if (sl != null)
1084 >                                        sl.red = false;
1085 >                                    sib.red = true;
1086 >                                    rotateRight(sib);
1087 >                                    sib = (xp = x.parent) == null ?
1088 >                                        null : xp.right;
1089 >                                }
1090 >                                if (sib != null) {
1091 >                                    sib.red = (xp == null) ? false : xp.red;
1092 >                                    if ((sr = sib.right) != null)
1093 >                                        sr.red = false;
1094 >                                }
1095 >                                if (xp != null) {
1096 >                                    xp.red = false;
1097 >                                    rotateLeft(xp);
1098 >                                }
1099 >                                x = root;
1100 >                            }
1101 >                        }
1102 >                    }
1103 >                    else { // symmetric
1104 >                        TreeNode sib = xpl;
1105 >                        if (sib != null && sib.red) {
1106 >                            sib.red = false;
1107 >                            xp.red = true;
1108 >                            rotateRight(xp);
1109 >                            sib = (xp = x.parent) == null ? null : xp.left;
1110 >                        }
1111 >                        if (sib == null)
1112 >                            x = xp;
1113 >                        else {
1114 >                            TreeNode sl = sib.left, sr = sib.right;
1115 >                            if ((sl == null || !sl.red) &&
1116 >                                (sr == null || !sr.red)) {
1117 >                                sib.red = true;
1118 >                                x = xp;
1119 >                            }
1120 >                            else {
1121 >                                if (sl == null || !sl.red) {
1122 >                                    if (sr != null)
1123 >                                        sr.red = false;
1124 >                                    sib.red = true;
1125 >                                    rotateLeft(sib);
1126 >                                    sib = (xp = x.parent) == null ?
1127 >                                        null : xp.left;
1128 >                                }
1129 >                                if (sib != null) {
1130 >                                    sib.red = (xp == null) ? false : xp.red;
1131 >                                    if ((sl = sib.left) != null)
1132 >                                        sl.red = false;
1133 >                                }
1134 >                                if (xp != null) {
1135 >                                    xp.red = false;
1136 >                                    rotateRight(xp);
1137 >                                }
1138 >                                x = root;
1139                              }
1140                          }
1141                      }
1142                  }
1143 <                if (validated) {
1144 <                    if (checkSize && tab.length < MAXIMUM_CAPACITY &&
1145 <                        resizing == 0 && counter.sum() >= threshold)
1146 <                        grow(0);
1147 <                    break;
1143 >            }
1144 >            if (p == replacement && (pp = p.parent) != null) {
1145 >                if (p == pp.left) // detach pointers
1146 >                    pp.left = null;
1147 >                else if (p == pp.right)
1148 >                    pp.right = null;
1149 >                p.parent = null;
1150 >            }
1151 >        }
1152 >    }
1153 >
1154 >    /* ---------------- Collision reduction methods -------------- */
1155 >
1156 >    /**
1157 >     * Spreads higher bits to lower, and also forces top bit to 0.
1158 >     * Because the table uses power-of-two masking, sets of hashes
1159 >     * that vary only in bits above the current mask will always
1160 >     * collide. (Among known examples are sets of Float keys holding
1161 >     * consecutive whole numbers in small tables.)  To counter this,
1162 >     * we apply a transform that spreads the impact of higher bits
1163 >     * downward. There is a tradeoff between speed, utility, and
1164 >     * quality of bit-spreading. Because many common sets of hashes
1165 >     * are already reasonably distributed across bits (so don't benefit
1166 >     * from spreading), and because we use trees to handle large sets
1167 >     * of collisions in bins, we don't need excessively high quality.
1168 >     */
1169 >    private static final int spread(int h) {
1170 >        h ^= (h >>> 18) ^ (h >>> 12);
1171 >        return (h ^ (h >>> 10)) & HASH_BITS;
1172 >    }
1173 >
1174 >    /**
1175 >     * Replaces a list bin with a tree bin if key is comparable.  Call
1176 >     * only when locked.
1177 >     */
1178 >    private final void replaceWithTreeBin(Node[] tab, int index, Object key) {
1179 >        if (key instanceof Comparable) {
1180 >            TreeBin t = new TreeBin();
1181 >            for (Node e = tabAt(tab, index); e != null; e = e.next)
1182 >                t.putTreeNode(e.hash, e.key, e.val);
1183 >            setTabAt(tab, index, new Node(MOVED, t, null, null));
1184 >        }
1185 >    }
1186 >
1187 >    /* ---------------- Internal access and update methods -------------- */
1188 >
1189 >    /** Implementation for get and containsKey */
1190 >    @SuppressWarnings("unchecked") private final V internalGet(Object k) {
1191 >        int h = spread(k.hashCode());
1192 >        retry: for (Node[] tab = table; tab != null;) {
1193 >            Node e; Object ek, ev; int eh;      // locals to read fields once
1194 >            for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1195 >                if ((eh = e.hash) < 0) {
1196 >                    if ((ek = e.key) instanceof TreeBin)  // search TreeBin
1197 >                        return (V)((TreeBin)ek).getValue(h, k);
1198 >                    else {                        // restart with new table
1199 >                        tab = (Node[])ek;
1200 >                        continue retry;
1201 >                    }
1202                  }
1203 +                else if (eh == h && (ev = e.val) != null &&
1204 +                         ((ek = e.key) == k || k.equals(ek)))
1205 +                    return (V)ev;
1206              }
1207 +            break;
1208          }
1209 <        if (oldVal == null)
421 <            counter.increment();
422 <        return oldVal;
1209 >        return null;
1210      }
1211  
1212      /**
# Line 427 | Line 1214 | public class ConcurrentHashMapV8<K, V>
1214       * Replaces node value with v, conditional upon match of cv if
1215       * non-null.  If resulting value is null, delete.
1216       */
1217 <    private final Object internalReplace(Object k, Object v, Object cv) {
1217 >    @SuppressWarnings("unchecked") private final V internalReplace
1218 >        (Object k, V v, Object cv) {
1219          int h = spread(k.hashCode());
1220          Object oldVal = null;
1221 <        Node e; int i;
1222 <        Node[] tab = table;
1223 <        while (tab != null &&
1224 <               (e = tabAt(tab, i = (tab.length - 1) & h)) != null) {
1225 <            if (e.hash < 0)
1226 <                tab = (Node[])e.key;
1221 >        for (Node[] tab = table;;) {
1222 >            Node f; int i, fh; Object fk;
1223 >            if (tab == null ||
1224 >                (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1225 >                break;
1226 >            else if ((fh = f.hash) < 0) {
1227 >                if ((fk = f.key) instanceof TreeBin) {
1228 >                    TreeBin t = (TreeBin)fk;
1229 >                    boolean validated = false;
1230 >                    boolean deleted = false;
1231 >                    t.acquire(0);
1232 >                    try {
1233 >                        if (tabAt(tab, i) == f) {
1234 >                            validated = true;
1235 >                            TreeNode p = t.getTreeNode(h, k, t.root);
1236 >                            if (p != null) {
1237 >                                Object pv = p.val;
1238 >                                if (cv == null || cv == pv || cv.equals(pv)) {
1239 >                                    oldVal = pv;
1240 >                                    if ((p.val = v) == null) {
1241 >                                        deleted = true;
1242 >                                        t.deleteTreeNode(p);
1243 >                                    }
1244 >                                }
1245 >                            }
1246 >                        }
1247 >                    } finally {
1248 >                        t.release(0);
1249 >                    }
1250 >                    if (validated) {
1251 >                        if (deleted)
1252 >                            addCount(-1L, -1);
1253 >                        break;
1254 >                    }
1255 >                }
1256 >                else
1257 >                    tab = (Node[])fk;
1258 >            }
1259 >            else if (fh != h && f.next == null) // precheck
1260 >                break;                          // rules out possible existence
1261              else {
1262                  boolean validated = false;
1263                  boolean deleted = false;
1264 <                synchronized (e) {
1265 <                    if (tabAt(tab, i) == e) {
1264 >                synchronized(f) {
1265 >                    if (tabAt(tab, i) == f) {
1266                          validated = true;
1267 <                        Node pred = null;
446 <                        do {
1267 >                        for (Node e = f, pred = null;;) {
1268                              Object ek, ev;
1269                              if (e.hash == h &&
1270 <                                (ek = e.key) != null &&
1271 <                                (ev = e.val) != null &&
451 <                                (k == ek || k.equals(ek))) {
1270 >                                ((ev = e.val) != null) &&
1271 >                                ((ek = e.key) == k || k.equals(ek))) {
1272                                  if (cv == null || cv == ev || cv.equals(ev)) {
1273                                      oldVal = ev;
1274                                      if ((e.val = v) == null) {
# Line 463 | Line 1283 | public class ConcurrentHashMapV8<K, V>
1283                                  break;
1284                              }
1285                              pred = e;
1286 <                        } while ((e = e.next) != null);
1286 >                            if ((e = e.next) == null)
1287 >                                break;
1288 >                        }
1289                      }
1290                  }
1291                  if (validated) {
1292                      if (deleted)
1293 <                        counter.decrement();
1293 >                        addCount(-1L, -1);
1294                      break;
1295                  }
1296              }
1297          }
1298 <        return oldVal;
1298 >        return (V)oldVal;
1299      }
1300  
1301 <    /** Implementation for computeIfAbsent and compute */
1302 <    @SuppressWarnings("unchecked")
1303 <    private final V internalCompute(K k,
1304 <                                    MappingFunction<? super K, ? extends V> f,
1305 <                                    boolean replace) {
1301 >    /*
1302 >     * Internal versions of insertion methods
1303 >     * All have the same basic structure as the first (internalPut):
1304 >     *  1. If table uninitialized, create
1305 >     *  2. If bin empty, try to CAS new node
1306 >     *  3. If bin stale, use new table
1307 >     *  4. if bin converted to TreeBin, validate and relay to TreeBin methods
1308 >     *  5. Lock and validate; if valid, scan and add or update
1309 >     *
1310 >     * The putAll method differs mainly in attempting to pre-allocate
1311 >     * enough table space, and also more lazily performs count updates
1312 >     * and checks.
1313 >     *
1314 >     * Most of the function-accepting methods can't be factored nicely
1315 >     * because they require different functional forms, so instead
1316 >     * sprawl out similar mechanics.
1317 >     */
1318 >
1319 >    /** Implementation for put and putIfAbsent */
1320 >    @SuppressWarnings("unchecked") private final V internalPut
1321 >        (K k, V v, boolean onlyIfAbsent) {
1322 >        if (k == null || v == null) throw new NullPointerException();
1323          int h = spread(k.hashCode());
1324 <        V val = null;
1325 <        boolean added = false;
1326 <        Node[] tab = table;
1327 <        for (;;) {
1328 <            Node e; int i;
1324 >        int len = 0;
1325 >        for (Node[] tab = table;;) {
1326 >            int i, fh; Node f; Object fk, fv;
1327 >            if (tab == null)
1328 >                tab = initTable();
1329 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1330 >                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1331 >                    break;                   // no lock when adding to empty bin
1332 >            }
1333 >            else if ((fh = f.hash) < 0) {
1334 >                if ((fk = f.key) instanceof TreeBin) {
1335 >                    TreeBin t = (TreeBin)fk;
1336 >                    Object oldVal = null;
1337 >                    t.acquire(0);
1338 >                    try {
1339 >                        if (tabAt(tab, i) == f) {
1340 >                            len = 2;
1341 >                            TreeNode p = t.putTreeNode(h, k, v);
1342 >                            if (p != null) {
1343 >                                oldVal = p.val;
1344 >                                if (!onlyIfAbsent)
1345 >                                    p.val = v;
1346 >                            }
1347 >                        }
1348 >                    } finally {
1349 >                        t.release(0);
1350 >                    }
1351 >                    if (len != 0) {
1352 >                        if (oldVal != null)
1353 >                            return (V)oldVal;
1354 >                        break;
1355 >                    }
1356 >                }
1357 >                else
1358 >                    tab = (Node[])fk;
1359 >            }
1360 >            else if (onlyIfAbsent && fh == h && (fv = f.val) != null &&
1361 >                     ((fk = f.key) == k || k.equals(fk))) // peek while nearby
1362 >                return (V)fv;
1363 >            else {
1364 >                Object oldVal = null;
1365 >                synchronized(f) {
1366 >                    if (tabAt(tab, i) == f) {
1367 >                        len = 1;
1368 >                        for (Node e = f;; ++len) {
1369 >                            Object ek, ev;
1370 >                            if (e.hash == h &&
1371 >                                (ev = e.val) != null &&
1372 >                                ((ek = e.key) == k || k.equals(ek))) {
1373 >                                oldVal = ev;
1374 >                                if (!onlyIfAbsent)
1375 >                                    e.val = v;
1376 >                                break;
1377 >                            }
1378 >                            Node last = e;
1379 >                            if ((e = e.next) == null) {
1380 >                                last.next = new Node(h, k, v, null);
1381 >                                if (len >= TREE_THRESHOLD)
1382 >                                    replaceWithTreeBin(tab, i, k);
1383 >                                break;
1384 >                            }
1385 >                        }
1386 >                    }
1387 >                }
1388 >                if (len != 0) {
1389 >                    if (oldVal != null)
1390 >                        return (V)oldVal;
1391 >                    break;
1392 >                }
1393 >            }
1394 >        }
1395 >        addCount(1L, len);
1396 >        return null;
1397 >    }
1398 >
1399 >    /** Implementation for computeIfAbsent */
1400 >    @SuppressWarnings("unchecked") private final V internalComputeIfAbsent
1401 >        (K k, Fun<? super K, ?> mf) {
1402 >        if (k == null || mf == null)
1403 >            throw new NullPointerException();
1404 >        int h = spread(k.hashCode());
1405 >        Object val = null;
1406 >        int len = 0;
1407 >        for (Node[] tab = table;;) {
1408 >            Node f; int i; Object fk;
1409              if (tab == null)
1410 <                tab = grow(0);
1411 <            else if ((e = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1410 >                tab = initTable();
1411 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1412                  Node node = new Node(h, k, null, null);
1413 <                boolean validated = false;
495 <                synchronized (node) {
1413 >                synchronized(node) {
1414                      if (casTabAt(tab, i, null, node)) {
1415 <                        validated = true;
1415 >                        len = 1;
1416                          try {
1417 <                            val = f.map(k);
500 <                            if (val != null) {
1417 >                            if ((val = mf.apply(k)) != null)
1418                                  node.val = val;
502                                added = true;
503                            }
1419                          } finally {
1420 <                            if (!added)
1420 >                            if (val == null)
1421                                  setTabAt(tab, i, null);
1422                          }
1423                      }
1424                  }
1425 <                if (validated)
1425 >                if (len != 0)
1426                      break;
1427              }
1428 <            else if (e.hash < 0)
1429 <                tab = (Node[])e.key;
1430 <            else if (Thread.holdsLock(e))
1431 <                throw new IllegalStateException("Recursive map computation");
1428 >            else if (f.hash < 0) {
1429 >                if ((fk = f.key) instanceof TreeBin) {
1430 >                    TreeBin t = (TreeBin)fk;
1431 >                    boolean added = false;
1432 >                    t.acquire(0);
1433 >                    try {
1434 >                        if (tabAt(tab, i) == f) {
1435 >                            len = 1;
1436 >                            TreeNode p = t.getTreeNode(h, k, t.root);
1437 >                            if (p != null)
1438 >                                val = p.val;
1439 >                            else if ((val = mf.apply(k)) != null) {
1440 >                                added = true;
1441 >                                len = 2;
1442 >                                t.putTreeNode(h, k, val);
1443 >                            }
1444 >                        }
1445 >                    } finally {
1446 >                        t.release(0);
1447 >                    }
1448 >                    if (len != 0) {
1449 >                        if (!added)
1450 >                            return (V)val;
1451 >                        break;
1452 >                    }
1453 >                }
1454 >                else
1455 >                    tab = (Node[])fk;
1456 >            }
1457              else {
1458 <                boolean validated = false;
1459 <                boolean checkSize = false;
1460 <                synchronized (e) {
1461 <                    if (tabAt(tab, i) == e) {
1462 <                        validated = true;
1463 <                        for (Node first = e;;) {
1464 <                            Object ek, ev, fv;
1458 >                for (Node e = f; e != null; e = e.next) { // prescan
1459 >                    Object ek, ev;
1460 >                    if (e.hash == h && (ev = e.val) != null &&
1461 >                        ((ek = e.key) == k || k.equals(ek)))
1462 >                        return (V)ev;
1463 >                }
1464 >                boolean added = false;
1465 >                synchronized(f) {
1466 >                    if (tabAt(tab, i) == f) {
1467 >                        len = 1;
1468 >                        for (Node e = f;; ++len) {
1469 >                            Object ek, ev;
1470                              if (e.hash == h &&
526                                (ek = e.key) != null &&
1471                                  (ev = e.val) != null &&
1472 <                                (k == ek || k.equals(ek))) {
1473 <                                if (replace && (fv = f.map(k)) != null)
530 <                                    ev = e.val = fv;
531 <                                val = (V)ev;
1472 >                                ((ek = e.key) == k || k.equals(ek))) {
1473 >                                val = ev;
1474                                  break;
1475                              }
1476                              Node last = e;
1477                              if ((e = e.next) == null) {
1478 <                                if ((val = f.map(k)) != null) {
537 <                                    last.next = new Node(h, k, val, null);
1478 >                                if ((val = mf.apply(k)) != null) {
1479                                      added = true;
1480 <                                    if (last != first || tab.length <= 64)
1481 <                                        checkSize = true;
1480 >                                    last.next = new Node(h, k, val, null);
1481 >                                    if (len >= TREE_THRESHOLD)
1482 >                                        replaceWithTreeBin(tab, i, k);
1483                                  }
1484                                  break;
1485                              }
1486                          }
1487                      }
1488                  }
1489 <                if (validated) {
1490 <                    if (checkSize && tab.length < MAXIMUM_CAPACITY &&
1491 <                        resizing == 0 && counter.sum() >= threshold)
550 <                        grow(0);
1489 >                if (len != 0) {
1490 >                    if (!added)
1491 >                        return (V)val;
1492                      break;
1493                  }
1494              }
1495          }
1496 <        if (added)
1497 <            counter.increment();
1498 <        return val;
1496 >        if (val != null)
1497 >            addCount(1L, len);
1498 >        return (V)val;
1499      }
1500  
1501 <    /*
1502 <     * Reclassifies nodes in each bin to new table.  Because we are
1503 <     * using power-of-two expansion, the elements from each bin must
1504 <     * either stay at same index, or move with a power of two
1505 <     * offset. We eliminate unnecessary node creation by catching
1506 <     * cases where old nodes can be reused because their next fields
1507 <     * won't change.  Statistically, at the default threshold, only
1508 <     * about one-sixth of them need cloning when a table doubles. The
1509 <     * nodes they replace will be garbage collectable as soon as they
1510 <     * are no longer referenced by any reader thread that may be in
1511 <     * the midst of concurrently traversing table.
1512 <     *
1513 <     * Transfers are done from the bottom up to preserve iterator
1514 <     * traversability. On each step, the old bin is locked,
1515 <     * moved/copied, and then replaced with a forwarding node.
1516 <     */
1517 <    private static final void transfer(Node[] tab, Node[] nextTab) {
1518 <        int n = tab.length;
1519 <        int mask = nextTab.length - 1;
1520 <        Node fwd = new Node(MOVED, nextTab, null, null);
1521 <        for (int i = n - 1; i >= 0; --i) {
1522 <            for (Node e;;) {
1523 <                if ((e = tabAt(tab, i)) == null) {
1524 <                    if (casTabAt(tab, i, e, fwd))
1525 <                        break;
1501 >    /** Implementation for compute */
1502 >    @SuppressWarnings("unchecked") private final V internalCompute
1503 >        (K k, boolean onlyIfPresent,
1504 >         BiFun<? super K, ? super V, ? extends V> mf) {
1505 >        if (k == null || mf == null)
1506 >            throw new NullPointerException();
1507 >        int h = spread(k.hashCode());
1508 >        Object val = null;
1509 >        int delta = 0;
1510 >        int len = 0;
1511 >        for (Node[] tab = table;;) {
1512 >            Node f; int i, fh; Object fk;
1513 >            if (tab == null)
1514 >                tab = initTable();
1515 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1516 >                if (onlyIfPresent)
1517 >                    break;
1518 >                Node node = new Node(h, k, null, null);
1519 >                synchronized(node) {
1520 >                    if (casTabAt(tab, i, null, node)) {
1521 >                        try {
1522 >                            len = 1;
1523 >                            if ((val = mf.apply(k, null)) != null) {
1524 >                                node.val = val;
1525 >                                delta = 1;
1526 >                            }
1527 >                        } finally {
1528 >                            if (delta == 0)
1529 >                                setTabAt(tab, i, null);
1530 >                        }
1531 >                    }
1532                  }
1533 <                else {
1534 <                    int idx = e.hash & mask;
1535 <                    boolean validated = false;
1536 <                    synchronized (e) {
1537 <                        if (tabAt(tab, i) == e) {
1538 <                            validated = true;
1539 <                            Node lastRun = e;
1540 <                            for (Node p = e.next; p != null; p = p.next) {
1541 <                                int j = p.hash & mask;
1542 <                                if (j != idx) {
1543 <                                    idx = j;
1544 <                                    lastRun = p;
1533 >                if (len != 0)
1534 >                    break;
1535 >            }
1536 >            else if ((fh = f.hash) < 0) {
1537 >                if ((fk = f.key) instanceof TreeBin) {
1538 >                    TreeBin t = (TreeBin)fk;
1539 >                    t.acquire(0);
1540 >                    try {
1541 >                        if (tabAt(tab, i) == f) {
1542 >                            len = 1;
1543 >                            TreeNode p = t.getTreeNode(h, k, t.root);
1544 >                            if (p == null && onlyIfPresent)
1545 >                                break;
1546 >                            Object pv = (p == null) ? null : p.val;
1547 >                            if ((val = mf.apply(k, (V)pv)) != null) {
1548 >                                if (p != null)
1549 >                                    p.val = val;
1550 >                                else {
1551 >                                    len = 2;
1552 >                                    delta = 1;
1553 >                                    t.putTreeNode(h, k, val);
1554                                  }
1555                              }
1556 <                            relaxedSetTabAt(nextTab, idx, lastRun);
1557 <                            for (Node p = e; p != lastRun; p = p.next) {
1558 <                                int h = p.hash;
603 <                                int j = h & mask;
604 <                                Node r = relaxedTabAt(nextTab, j);
605 <                                relaxedSetTabAt(nextTab, j,
606 <                                                new Node(h, p.key, p.val, r));
1556 >                            else if (p != null) {
1557 >                                delta = -1;
1558 >                                t.deleteTreeNode(p);
1559                              }
608                            setTabAt(tab, i, fwd);
1560                          }
1561 +                    } finally {
1562 +                        t.release(0);
1563                      }
1564 <                    if (validated)
1564 >                    if (len != 0)
1565                          break;
1566                  }
1567 +                else
1568 +                    tab = (Node[])fk;
1569 +            }
1570 +            else {
1571 +                synchronized(f) {
1572 +                    if (tabAt(tab, i) == f) {
1573 +                        len = 1;
1574 +                        for (Node e = f, pred = null;; ++len) {
1575 +                            Object ek, ev;
1576 +                            if (e.hash == h &&
1577 +                                (ev = e.val) != null &&
1578 +                                ((ek = e.key) == k || k.equals(ek))) {
1579 +                                val = mf.apply(k, (V)ev);
1580 +                                if (val != null)
1581 +                                    e.val = val;
1582 +                                else {
1583 +                                    delta = -1;
1584 +                                    Node en = e.next;
1585 +                                    if (pred != null)
1586 +                                        pred.next = en;
1587 +                                    else
1588 +                                        setTabAt(tab, i, en);
1589 +                                }
1590 +                                break;
1591 +                            }
1592 +                            pred = e;
1593 +                            if ((e = e.next) == null) {
1594 +                                if (!onlyIfPresent &&
1595 +                                    (val = mf.apply(k, null)) != null) {
1596 +                                    pred.next = new Node(h, k, val, null);
1597 +                                    delta = 1;
1598 +                                    if (len >= TREE_THRESHOLD)
1599 +                                        replaceWithTreeBin(tab, i, k);
1600 +                                }
1601 +                                break;
1602 +                            }
1603 +                        }
1604 +                    }
1605 +                }
1606 +                if (len != 0)
1607 +                    break;
1608              }
1609          }
1610 +        if (delta != 0)
1611 +            addCount((long)delta, len);
1612 +        return (V)val;
1613      }
1614  
1615 <    /**
1616 <     * If not already resizing, initializes or creates next table and
1617 <     * transfers bins. Rechecks occupancy after a transfer to see if
1618 <     * another resize is already needed because resizings are lagging
1619 <     * additions.
1620 <     *
1621 <     * @param sizeHint overridden capacity target (nonzero only from putAll)
1622 <     * @return current table
1623 <     */
1624 <    private final Node[] grow(int sizeHint) {
1625 <        if (resizing == 0 &&
1626 <            UNSAFE.compareAndSwapInt(this, resizingOffset, 0, 1)) {
1627 <            try {
1628 <                for (;;) {
1629 <                    int cap, n;
1630 <                    Node[] tab = table;
1631 <                    if (tab == null) {
1632 <                        int c = initCap;
1633 <                        if (c < sizeHint)
1634 <                            c = sizeHint;
1635 <                        if (c == DEFAULT_CAPACITY)
1636 <                            cap = c;
1637 <                        else if (c >= MAXIMUM_CAPACITY)
1638 <                            cap = MAXIMUM_CAPACITY;
1639 <                        else {
1640 <                            cap = MINIMUM_CAPACITY;
1641 <                            while (cap < c)
1642 <                                cap <<= 1;
1615 >    /** Implementation for merge */
1616 >    @SuppressWarnings("unchecked") private final V internalMerge
1617 >        (K k, V v, BiFun<? super V, ? super V, ? extends V> mf) {
1618 >        if (k == null || v == null || mf == null)
1619 >            throw new NullPointerException();
1620 >        int h = spread(k.hashCode());
1621 >        Object val = null;
1622 >        int delta = 0;
1623 >        int len = 0;
1624 >        for (Node[] tab = table;;) {
1625 >            int i; Node f; Object fk, fv;
1626 >            if (tab == null)
1627 >                tab = initTable();
1628 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1629 >                if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1630 >                    delta = 1;
1631 >                    val = v;
1632 >                    break;
1633 >                }
1634 >            }
1635 >            else if (f.hash < 0) {
1636 >                if ((fk = f.key) instanceof TreeBin) {
1637 >                    TreeBin t = (TreeBin)fk;
1638 >                    t.acquire(0);
1639 >                    try {
1640 >                        if (tabAt(tab, i) == f) {
1641 >                            len = 1;
1642 >                            TreeNode p = t.getTreeNode(h, k, t.root);
1643 >                            val = (p == null) ? v : mf.apply((V)p.val, v);
1644 >                            if (val != null) {
1645 >                                if (p != null)
1646 >                                    p.val = val;
1647 >                                else {
1648 >                                    len = 2;
1649 >                                    delta = 1;
1650 >                                    t.putTreeNode(h, k, val);
1651 >                                }
1652 >                            }
1653 >                            else if (p != null) {
1654 >                                delta = -1;
1655 >                                t.deleteTreeNode(p);
1656 >                            }
1657                          }
1658 +                    } finally {
1659 +                        t.release(0);
1660                      }
1661 <                    else if ((n = tab.length) < MAXIMUM_CAPACITY &&
649 <                             (sizeHint <= 0 || n < sizeHint))
650 <                        cap = n << 1;
651 <                    else
652 <                        break;
653 <                    threshold = (int)(cap * loadFactor) - THRESHOLD_OFFSET;
654 <                    Node[] nextTab = new Node[cap];
655 <                    if (tab != null)
656 <                        transfer(tab, nextTab);
657 <                    table = nextTab;
658 <                    if (tab == null || cap >= MAXIMUM_CAPACITY ||
659 <                        ((sizeHint > 0) ? cap >= sizeHint :
660 <                         counter.sum() < threshold))
1661 >                    if (len != 0)
1662                          break;
1663                  }
1664 <            } finally {
1665 <                resizing = 0;
1664 >                else
1665 >                    tab = (Node[])fk;
1666 >            }
1667 >            else {
1668 >                synchronized(f) {
1669 >                    if (tabAt(tab, i) == f) {
1670 >                        len = 1;
1671 >                        for (Node e = f, pred = null;; ++len) {
1672 >                            Object ek, ev;
1673 >                            if (e.hash == h &&
1674 >                                (ev = e.val) != null &&
1675 >                                ((ek = e.key) == k || k.equals(ek))) {
1676 >                                val = mf.apply((V)ev, v);
1677 >                                if (val != null)
1678 >                                    e.val = val;
1679 >                                else {
1680 >                                    delta = -1;
1681 >                                    Node en = e.next;
1682 >                                    if (pred != null)
1683 >                                        pred.next = en;
1684 >                                    else
1685 >                                        setTabAt(tab, i, en);
1686 >                                }
1687 >                                break;
1688 >                            }
1689 >                            pred = e;
1690 >                            if ((e = e.next) == null) {
1691 >                                val = v;
1692 >                                pred.next = new Node(h, k, val, null);
1693 >                                delta = 1;
1694 >                                if (len >= TREE_THRESHOLD)
1695 >                                    replaceWithTreeBin(tab, i, k);
1696 >                                break;
1697 >                            }
1698 >                        }
1699 >                    }
1700 >                }
1701 >                if (len != 0)
1702 >                    break;
1703              }
1704          }
1705 <        else if (table == null)
1706 <            Thread.yield(); // lost initialization race; just spin
1707 <        return table;
1708 <    }
1709 <
1710 <    /**
1711 <     * Implementation for putAll and constructor with Map
1712 <     * argument. Tries to first override initial capacity or grow
1713 <     * based on map size to pre-allocate table space.
1714 <     */
1715 <    private final void internalPutAll(Map<? extends K, ? extends V> m) {
1716 <        int s = m.size();
1717 <        grow((s >= (MAXIMUM_CAPACITY >>> 1)) ? s : s + (s >>> 1));
1718 <        for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
1719 <            Object k = e.getKey();
1720 <            Object v = e.getValue();
1721 <            if (k == null || v == null)
1722 <                throw new NullPointerException();
1723 <            internalPut(k, v, true);
1705 >        if (delta != 0)
1706 >            addCount((long)delta, len);
1707 >        return (V)val;
1708 >    }
1709 >
1710 >    /** Implementation for putAll */
1711 >    private final void internalPutAll(Map<?, ?> m) {
1712 >        tryPresize(m.size());
1713 >        long delta = 0L;     // number of uncommitted additions
1714 >        boolean npe = false; // to throw exception on exit for nulls
1715 >        try {                // to clean up counts on other exceptions
1716 >            for (Map.Entry<?, ?> entry : m.entrySet()) {
1717 >                Object k, v;
1718 >                if (entry == null || (k = entry.getKey()) == null ||
1719 >                    (v = entry.getValue()) == null) {
1720 >                    npe = true;
1721 >                    break;
1722 >                }
1723 >                int h = spread(k.hashCode());
1724 >                for (Node[] tab = table;;) {
1725 >                    int i; Node f; int fh; Object fk;
1726 >                    if (tab == null)
1727 >                        tab = initTable();
1728 >                    else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1729 >                        if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1730 >                            ++delta;
1731 >                            break;
1732 >                        }
1733 >                    }
1734 >                    else if ((fh = f.hash) < 0) {
1735 >                        if ((fk = f.key) instanceof TreeBin) {
1736 >                            TreeBin t = (TreeBin)fk;
1737 >                            boolean validated = false;
1738 >                            t.acquire(0);
1739 >                            try {
1740 >                                if (tabAt(tab, i) == f) {
1741 >                                    validated = true;
1742 >                                    TreeNode p = t.getTreeNode(h, k, t.root);
1743 >                                    if (p != null)
1744 >                                        p.val = v;
1745 >                                    else {
1746 >                                        t.putTreeNode(h, k, v);
1747 >                                        ++delta;
1748 >                                    }
1749 >                                }
1750 >                            } finally {
1751 >                                t.release(0);
1752 >                            }
1753 >                            if (validated)
1754 >                                break;
1755 >                        }
1756 >                        else
1757 >                            tab = (Node[])fk;
1758 >                    }
1759 >                    else {
1760 >                        int len = 0;
1761 >                        synchronized(f) {
1762 >                            if (tabAt(tab, i) == f) {
1763 >                                len = 1;
1764 >                                for (Node e = f;; ++len) {
1765 >                                    Object ek, ev;
1766 >                                    if (e.hash == h &&
1767 >                                        (ev = e.val) != null &&
1768 >                                        ((ek = e.key) == k || k.equals(ek))) {
1769 >                                        e.val = v;
1770 >                                        break;
1771 >                                    }
1772 >                                    Node last = e;
1773 >                                    if ((e = e.next) == null) {
1774 >                                        ++delta;
1775 >                                        last.next = new Node(h, k, v, null);
1776 >                                        if (len >= TREE_THRESHOLD)
1777 >                                            replaceWithTreeBin(tab, i, k);
1778 >                                        break;
1779 >                                    }
1780 >                                }
1781 >                            }
1782 >                        }
1783 >                        if (len != 0) {
1784 >                            if (len > 1)
1785 >                                addCount(delta, len);
1786 >                            break;
1787 >                        }
1788 >                    }
1789 >                }
1790 >            }
1791 >        } finally {
1792 >            if (delta != 0L)
1793 >                addCount(delta, 2);
1794          }
1795 +        if (npe)
1796 +            throw new NullPointerException();
1797      }
1798  
1799      /**
1800 <     * Implementation for clear. Steps through each bin, removing all nodes.
1800 >     * Implementation for clear. Steps through each bin, removing all
1801 >     * nodes.
1802       */
1803      private final void internalClear() {
1804 <        long deletions = 0L;
1804 >        long delta = 0L; // negative number of deletions
1805          int i = 0;
1806          Node[] tab = table;
1807          while (tab != null && i < tab.length) {
1808 <            Node e = tabAt(tab, i);
1809 <            if (e == null)
1808 >            Node f = tabAt(tab, i);
1809 >            if (f == null)
1810                  ++i;
1811 <            else if (e.hash < 0)
1812 <                tab = (Node[])e.key;
1811 >            else if (f.hash < 0) {
1812 >                Object fk;
1813 >                if ((fk = f.key) instanceof TreeBin) {
1814 >                    TreeBin t = (TreeBin)fk;
1815 >                    t.acquire(0);
1816 >                    try {
1817 >                        if (tabAt(tab, i) == f) {
1818 >                            for (Node p = t.first; p != null; p = p.next) {
1819 >                                if (p.val != null) { // (currently always true)
1820 >                                    p.val = null;
1821 >                                    --delta;
1822 >                                }
1823 >                            }
1824 >                            t.first = null;
1825 >                            t.root = null;
1826 >                            ++i;
1827 >                        }
1828 >                    } finally {
1829 >                        t.release(0);
1830 >                    }
1831 >                }
1832 >                else
1833 >                    tab = (Node[])fk;
1834 >            }
1835              else {
1836 <                boolean validated = false;
1837 <                synchronized (e) {
1838 <                    if (tabAt(tab, i) == e) {
1839 <                        validated = true;
707 <                        do {
708 <                            if (e.val != null) {
1836 >                synchronized(f) {
1837 >                    if (tabAt(tab, i) == f) {
1838 >                        for (Node e = f; e != null; e = e.next) {
1839 >                            if (e.val != null) {  // (currently always true)
1840                                  e.val = null;
1841 <                                ++deletions;
1841 >                                --delta;
1842                              }
1843 <                        } while ((e = e.next) != null);
1843 >                        }
1844                          setTabAt(tab, i, null);
1845 +                        ++i;
1846                      }
1847                  }
1848 <                if (validated) {
1849 <                    ++i;
1850 <                    if (deletions > THRESHOLD_OFFSET) { // bound lag in counts
1851 <                        counter.add(-deletions);
1852 <                        deletions = 0L;
1848 >            }
1849 >        }
1850 >        if (delta != 0L)
1851 >            addCount(delta, -1);
1852 >    }
1853 >
1854 >    /* ---------------- Table Initialization and Resizing -------------- */
1855 >
1856 >    /**
1857 >     * Returns a power of two table size for the given desired capacity.
1858 >     * See Hackers Delight, sec 3.2
1859 >     */
1860 >    private static final int tableSizeFor(int c) {
1861 >        int n = c - 1;
1862 >        n |= n >>> 1;
1863 >        n |= n >>> 2;
1864 >        n |= n >>> 4;
1865 >        n |= n >>> 8;
1866 >        n |= n >>> 16;
1867 >        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1868 >    }
1869 >
1870 >    /**
1871 >     * Initializes table, using the size recorded in sizeCtl.
1872 >     */
1873 >    private final Node[] initTable() {
1874 >        Node[] tab; int sc;
1875 >        while ((tab = table) == null) {
1876 >            if ((sc = sizeCtl) < 0)
1877 >                Thread.yield(); // lost initialization race; just spin
1878 >            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1879 >                try {
1880 >                    if ((tab = table) == null) {
1881 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1882 >                        tab = table = new Node[n];
1883 >                        sc = n - (n >>> 2);
1884                      }
1885 +                } finally {
1886 +                    sizeCtl = sc;
1887 +                }
1888 +                break;
1889 +            }
1890 +        }
1891 +        return tab;
1892 +    }
1893 +
1894 +    /**
1895 +     * Adds to count, and if table is too small and not already
1896 +     * resizing, initiates transfer. If already resizing, helps
1897 +     * perform transfer if work is available.  Rechecks occupancy
1898 +     * after a transfer to see if another resize is already needed
1899 +     * because resizings are lagging additions.
1900 +     *
1901 +     * @param x the count to add
1902 +     * @param check if <0, don't check resize, if <= 1 only check if uncontended
1903 +     */
1904 +    private final void addCount(long x, int check) {
1905 +        CounterCell[] as; long b, s;
1906 +        if ((as = counterCells) != null ||
1907 +            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1908 +            CounterHashCode hc; CounterCell a; long v; int m;
1909 +            boolean uncontended = true;
1910 +            if ((hc = threadCounterHashCode.get()) == null ||
1911 +                as == null || (m = as.length - 1) < 0 ||
1912 +                (a = as[m & hc.code]) == null ||
1913 +                !(uncontended =
1914 +                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1915 +                fullAddCount(x, hc, uncontended);
1916 +                return;
1917 +            }
1918 +            if (check <= 1)
1919 +                return;
1920 +            s = sumCount();
1921 +        }
1922 +        if (check >= 0) {
1923 +            Node[] tab, nt; int sc;
1924 +            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1925 +                   tab.length < MAXIMUM_CAPACITY) {
1926 +                if (sc < 0) {
1927 +                    if (sc == -1 || transferIndex <= transferOrigin ||
1928 +                        (nt = nextTable) == null)
1929 +                        break;
1930 +                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1931 +                        transfer(tab, nt);
1932                  }
1933 +                else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1934 +                    transfer(tab, null);
1935 +                s = sumCount();
1936              }
1937          }
725        if (deletions != 0L)
726            counter.add(-deletions);
1938      }
1939  
1940      /**
1941 <     * Base class for key, value, and entry iterators, plus internal
1942 <     * implementations of public traversal-based methods, to avoid
1943 <     * duplicating traversal code.
1941 >     * Tries to presize table to accommodate the given number of elements.
1942 >     *
1943 >     * @param size number of elements (doesn't need to be perfectly accurate)
1944       */
1945 <    class HashIterator {
1946 <        private Node next;          // the next entry to return
1947 <        private Node[] tab;         // current table; updated if resized
1948 <        private Node lastReturned;  // the last entry returned, for remove
1949 <        private Object nextVal;     // cached value of next
1950 <        private int index;          // index of bin to use next
1951 <        private int baseIndex;      // current index of initial table
1952 <        private final int baseSize; // initial table size
1945 >    private final void tryPresize(int size) {
1946 >        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1947 >            tableSizeFor(size + (size >>> 1) + 1);
1948 >        int sc;
1949 >        while ((sc = sizeCtl) >= 0) {
1950 >            Node[] tab = table; int n;
1951 >            if (tab == null || (n = tab.length) == 0) {
1952 >                n = (sc > c) ? sc : c;
1953 >                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1954 >                    try {
1955 >                        if (table == tab) {
1956 >                            table = new Node[n];
1957 >                            sc = n - (n >>> 2);
1958 >                        }
1959 >                    } finally {
1960 >                        sizeCtl = sc;
1961 >                    }
1962 >                }
1963 >            }
1964 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
1965 >                break;
1966 >            else if (tab == table &&
1967 >                     U.compareAndSwapInt(this, SIZECTL, sc, -2))
1968 >                transfer(tab, null);
1969 >        }
1970 >    }
1971  
1972 <        HashIterator() {
1973 <            Node[] t = tab = table;
1974 <            if (t == null)
1975 <                baseSize = 0;
1976 <            else {
1977 <                baseSize = t.length;
1978 <                advance(null);
1972 >    /*
1973 >     * Moves and/or copies the nodes in each bin to new table. See
1974 >     * above for explanation.
1975 >     */
1976 >    private final void transfer(Node[] tab, Node[] nextTab) {
1977 >        int n = tab.length, stride;
1978 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1979 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
1980 >        if (nextTab == null) {            // initiating
1981 >            try {
1982 >                nextTab = new Node[n << 1];
1983 >            } catch(Throwable ex) {       // try to cope with OOME
1984 >                sizeCtl = Integer.MAX_VALUE;
1985 >                return;
1986 >            }
1987 >            nextTable = nextTab;
1988 >            transferOrigin = n;
1989 >            transferIndex = n;
1990 >            Node rev = new Node(MOVED, tab, null, null);
1991 >            for (int k = n; k > 0;) {    // progressively reveal ready slots
1992 >                int nextk = k > stride? k - stride : 0;
1993 >                for (int m = nextk; m < k; ++m)
1994 >                    nextTab[m] = rev;
1995 >                for (int m = n + nextk; m < n + k; ++m)
1996 >                    nextTab[m] = rev;
1997 >                U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
1998 >            }
1999 >        }
2000 >        int nextn = nextTab.length;
2001 >        Node fwd = new Node(MOVED, nextTab, null, null);
2002 >        boolean advance = true;
2003 >        for (int i = 0, bound = 0;;) {
2004 >            int nextIndex, nextBound; Node f; Object fk;
2005 >            while (advance) {
2006 >                if (--i >= bound)
2007 >                    advance = false;
2008 >                else if ((nextIndex = transferIndex) <= transferOrigin) {
2009 >                    i = -1;
2010 >                    advance = false;
2011 >                }
2012 >                else if (U.compareAndSwapInt
2013 >                         (this, TRANSFERINDEX, nextIndex,
2014 >                          nextBound = (nextIndex > stride?
2015 >                                       nextIndex - stride : 0))) {
2016 >                    bound = nextBound;
2017 >                    i = nextIndex - 1;
2018 >                    advance = false;
2019 >                }
2020 >            }
2021 >            if (i < 0 || i >= n || i + n >= nextn) {
2022 >                for (int sc;;) {
2023 >                    if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2024 >                        if (sc == -1) {
2025 >                            nextTable = null;
2026 >                            table = nextTab;
2027 >                            sizeCtl = (n << 1) - (n >>> 1);
2028 >                        }
2029 >                        return;
2030 >                    }
2031 >                }
2032 >            }
2033 >            else if ((f = tabAt(tab, i)) == null) {
2034 >                if (casTabAt(tab, i, null, fwd)) {
2035 >                    setTabAt(nextTab, i, null);
2036 >                    setTabAt(nextTab, i + n, null);
2037 >                    advance = true;
2038 >                }
2039 >            }
2040 >            else if (f.hash >= 0) {
2041 >                synchronized(f) {
2042 >                    if (tabAt(tab, i) == f) {
2043 >                        int runBit = f.hash & n;
2044 >                        Node lastRun = f, lo = null, hi = null;
2045 >                        for (Node p = f.next; p != null; p = p.next) {
2046 >                            int b = p.hash & n;
2047 >                            if (b != runBit) {
2048 >                                runBit = b;
2049 >                                lastRun = p;
2050 >                            }
2051 >                        }
2052 >                        if (runBit == 0)
2053 >                            lo = lastRun;
2054 >                        else
2055 >                            hi = lastRun;
2056 >                        for (Node p = f; p != lastRun; p = p.next) {
2057 >                            int ph = p.hash;
2058 >                            Object pk = p.key, pv = p.val;
2059 >                            if ((ph & n) == 0)
2060 >                                lo = new Node(ph, pk, pv, lo);
2061 >                            else
2062 >                                hi = new Node(ph, pk, pv, hi);
2063 >                        }
2064 >                        setTabAt(nextTab, i, lo);
2065 >                        setTabAt(nextTab, i + n, hi);
2066 >                        setTabAt(tab, i, fwd);
2067 >                        advance = true;
2068 >                    }
2069 >                }
2070 >            }
2071 >            else if ((fk = f.key) instanceof TreeBin) {
2072 >                TreeBin t = (TreeBin)fk;
2073 >                t.acquire(0);
2074 >                try {
2075 >                    if (tabAt(tab, i) == f) {
2076 >                        TreeBin lt = new TreeBin();
2077 >                        TreeBin ht = new TreeBin();
2078 >                        int lc = 0, hc = 0;
2079 >                        for (Node e = t.first; e != null; e = e.next) {
2080 >                            int h = e.hash;
2081 >                            Object k = e.key, v = e.val;
2082 >                            if ((h & n) == 0) {
2083 >                                ++lc;
2084 >                                lt.putTreeNode(h, k, v);
2085 >                            }
2086 >                            else {
2087 >                                ++hc;
2088 >                                ht.putTreeNode(h, k, v);
2089 >                            }
2090 >                        }
2091 >                        Node ln, hn; // throw away trees if too small
2092 >                        if (lc < TREE_THRESHOLD) {
2093 >                            ln = null;
2094 >                            for (Node p = lt.first; p != null; p = p.next)
2095 >                                ln = new Node(p.hash, p.key, p.val, ln);
2096 >                        }
2097 >                        else
2098 >                            ln = new Node(MOVED, lt, null, null);
2099 >                        setTabAt(nextTab, i, ln);
2100 >                        if (hc < TREE_THRESHOLD) {
2101 >                            hn = null;
2102 >                            for (Node p = ht.first; p != null; p = p.next)
2103 >                                hn = new Node(p.hash, p.key, p.val, hn);
2104 >                        }
2105 >                        else
2106 >                            hn = new Node(MOVED, ht, null, null);
2107 >                        setTabAt(nextTab, i + n, hn);
2108 >                        setTabAt(tab, i, fwd);
2109 >                        advance = true;
2110 >                    }
2111 >                } finally {
2112 >                    t.release(0);
2113 >                }
2114              }
2115 +            else
2116 +                advance = true; // already processed
2117          }
2118 +    }
2119  
2120 <        public final boolean hasNext()         { return next != null; }
754 <        public final boolean hasMoreElements() { return next != null; }
2120 >    /* ---------------- Counter support -------------- */
2121  
2122 <        /**
2123 <         * Advances next.  Normally, iteration proceeds bin-by-bin
2124 <         * traversing lists.  However, if the table has been resized,
2125 <         * then all future steps must traverse both the bin at the
2126 <         * current index as well as at (index + baseSize); and so on
2127 <         * for further resizings. To paranoically cope with potential
2128 <         * (improper) sharing of iterators across threads, table reads
2129 <         * are bounds-checked.
2130 <         */
2131 <        final void advance(Node e) {
2132 <            for (;;) {
2133 <                Node[] t; int i; // for bounds checks
2134 <                if (e != null) {
2135 <                    Object ek = e.key, ev = e.val;
2136 <                    if (ev != null && ek != null) {
2137 <                        nextVal = ev;
2138 <                        next = e;
2139 <                        break;
2122 >    final long sumCount() {
2123 >        CounterCell[] as = counterCells; CounterCell a;
2124 >        long sum = baseCount;
2125 >        if (as != null) {
2126 >            for (int i = 0; i < as.length; ++i) {
2127 >                if ((a = as[i]) != null)
2128 >                    sum += a.value;
2129 >            }
2130 >        }
2131 >        return sum;
2132 >    }
2133 >
2134 >    // See LongAdder version for explanation
2135 >    private final void fullAddCount(long x, CounterHashCode hc,
2136 >                                    boolean wasUncontended) {
2137 >        int h;
2138 >        if (hc == null) {
2139 >            hc = new CounterHashCode();
2140 >            int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
2141 >            h = hc.code = (s == 0) ? 1 : s; // Avoid zero
2142 >            threadCounterHashCode.set(hc);
2143 >        }
2144 >        else
2145 >            h = hc.code;
2146 >        boolean collide = false;                // True if last slot nonempty
2147 >        for (;;) {
2148 >            CounterCell[] as; CounterCell a; int n; long v;
2149 >            if ((as = counterCells) != null && (n = as.length) > 0) {
2150 >                if ((a = as[(n - 1) & h]) == null) {
2151 >                    if (counterBusy == 0) {            // Try to attach new Cell
2152 >                        CounterCell r = new CounterCell(x); // Optimistic create
2153 >                        if (counterBusy == 0 &&
2154 >                            U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2155 >                            boolean created = false;
2156 >                            try {               // Recheck under lock
2157 >                                CounterCell[] rs; int m, j;
2158 >                                if ((rs = counterCells) != null &&
2159 >                                    (m = rs.length) > 0 &&
2160 >                                    rs[j = (m - 1) & h] == null) {
2161 >                                    rs[j] = r;
2162 >                                    created = true;
2163 >                                }
2164 >                            } finally {
2165 >                                counterBusy = 0;
2166 >                            }
2167 >                            if (created)
2168 >                                break;
2169 >                            continue;           // Slot is now non-empty
2170 >                        }
2171                      }
2172 <                    e = e.next;
2172 >                    collide = false;
2173                  }
2174 <                else if (baseIndex < baseSize && (t = tab) != null &&
2175 <                         t.length > (i = index) && i >= 0) {
2176 <                    if ((e = tabAt(t, i)) != null && e.hash < 0) {
2177 <                        tab = (Node[])e.key;
2178 <                        e = null;
2174 >                else if (!wasUncontended)       // CAS already known to fail
2175 >                    wasUncontended = true;      // Continue after rehash
2176 >                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2177 >                    break;
2178 >                else if (counterCells != as || n >= NCPU)
2179 >                    collide = false;            // At max size or stale
2180 >                else if (!collide)
2181 >                    collide = true;
2182 >                else if (counterBusy == 0 &&
2183 >                         U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2184 >                    try {
2185 >                        if (counterCells == as) {// Expand table unless stale
2186 >                            CounterCell[] rs = new CounterCell[n << 1];
2187 >                            for (int i = 0; i < n; ++i)
2188 >                                rs[i] = as[i];
2189 >                            counterCells = rs;
2190 >                        }
2191 >                    } finally {
2192 >                        counterBusy = 0;
2193                      }
2194 <                    else if (i + baseSize < t.length)
2195 <                        index += baseSize;    // visit forwarded upper slots
785 <                    else
786 <                        index = ++baseIndex;
2194 >                    collide = false;
2195 >                    continue;                   // Retry with expanded table
2196                  }
2197 <                else {
2198 <                    next = null;
2199 <                    break;
2197 >                h ^= h << 13;                   // Rehash
2198 >                h ^= h >>> 17;
2199 >                h ^= h << 5;
2200 >            }
2201 >            else if (counterBusy == 0 && counterCells == as &&
2202 >                     U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2203 >                boolean init = false;
2204 >                try {                           // Initialize table
2205 >                    if (counterCells == as) {
2206 >                        CounterCell[] rs = new CounterCell[2];
2207 >                        rs[h & 1] = new CounterCell(x);
2208 >                        counterCells = rs;
2209 >                        init = true;
2210 >                    }
2211 >                } finally {
2212 >                    counterBusy = 0;
2213                  }
2214 +                if (init)
2215 +                    break;
2216              }
2217 +            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2218 +                break;                          // Fall back on using base
2219          }
2220 +        hc.code = h;                            // Record index for next time
2221 +    }
2222  
2223 <        final Object nextKey() {
796 <            Node e = next;
797 <            if (e == null)
798 <                throw new NoSuchElementException();
799 <            Object k = e.key;
800 <            advance((lastReturned = e).next);
801 <            return k;
802 <        }
2223 >    /* ----------------Table Traversal -------------- */
2224  
2225 <        final Object nextValue() {
2226 <            Node e = next;
2227 <            if (e == null)
2228 <                throw new NoSuchElementException();
2229 <            Object v = nextVal;
2230 <            advance((lastReturned = e).next);
2231 <            return v;
2225 >    /**
2226 >     * Encapsulates traversal for methods such as containsValue; also
2227 >     * serves as a base class for other iterators and bulk tasks.
2228 >     *
2229 >     * At each step, the iterator snapshots the key ("nextKey") and
2230 >     * value ("nextVal") of a valid node (i.e., one that, at point of
2231 >     * snapshot, has a non-null user value). Because val fields can
2232 >     * change (including to null, indicating deletion), field nextVal
2233 >     * might not be accurate at point of use, but still maintains the
2234 >     * weak consistency property of holding a value that was once
2235 >     * valid. To support iterator.remove, the nextKey field is not
2236 >     * updated (nulled out) when the iterator cannot advance.
2237 >     *
2238 >     * Internal traversals directly access these fields, as in:
2239 >     * {@code while (it.advance() != null) { process(it.nextKey); }}
2240 >     *
2241 >     * Exported iterators must track whether the iterator has advanced
2242 >     * (in hasNext vs next) (by setting/checking/nulling field
2243 >     * nextVal), and then extract key, value, or key-value pairs as
2244 >     * return values of next().
2245 >     *
2246 >     * The iterator visits once each still-valid node that was
2247 >     * reachable upon iterator construction. It might miss some that
2248 >     * were added to a bin after the bin was visited, which is OK wrt
2249 >     * consistency guarantees. Maintaining this property in the face
2250 >     * of possible ongoing resizes requires a fair amount of
2251 >     * bookkeeping state that is difficult to optimize away amidst
2252 >     * volatile accesses.  Even so, traversal maintains reasonable
2253 >     * throughput.
2254 >     *
2255 >     * Normally, iteration proceeds bin-by-bin traversing lists.
2256 >     * However, if the table has been resized, then all future steps
2257 >     * must traverse both the bin at the current index as well as at
2258 >     * (index + baseSize); and so on for further resizings. To
2259 >     * paranoically cope with potential sharing by users of iterators
2260 >     * across threads, iteration terminates if a bounds checks fails
2261 >     * for a table read.
2262 >     *
2263 >     * This class extends CountedCompleter to streamline parallel
2264 >     * iteration in bulk operations. This adds only a few fields of
2265 >     * space overhead, which is small enough in cases where it is not
2266 >     * needed to not worry about it.  Because CountedCompleter is
2267 >     * Serializable, but iterators need not be, we need to add warning
2268 >     * suppressions.
2269 >     */
2270 >    @SuppressWarnings("serial") static class Traverser<K,V,R>
2271 >        extends CountedCompleter<R> {
2272 >        final ConcurrentHashMapV8<K, V> map;
2273 >        Node next;           // the next entry to use
2274 >        Object nextKey;      // cached key field of next
2275 >        Object nextVal;      // cached val field of next
2276 >        Node[] tab;          // current table; updated if resized
2277 >        int index;           // index of bin to use next
2278 >        int baseIndex;       // current index of initial table
2279 >        int baseLimit;       // index bound for initial table
2280 >        int baseSize;        // initial table size
2281 >        int batch;           // split control
2282 >
2283 >        /** Creates iterator for all entries in the table. */
2284 >        Traverser(ConcurrentHashMapV8<K, V> map) {
2285 >            this.map = map;
2286 >        }
2287 >
2288 >        /** Creates iterator for split() methods and task constructors */
2289 >        Traverser(ConcurrentHashMapV8<K,V> map, Traverser<K,V,?> it, int batch) {
2290 >            super(it);
2291 >            this.batch = batch;
2292 >            if ((this.map = map) != null && it != null) { // split parent
2293 >                Node[] t;
2294 >                if ((t = it.tab) == null &&
2295 >                    (t = it.tab = map.table) != null)
2296 >                    it.baseLimit = it.baseSize = t.length;
2297 >                this.tab = t;
2298 >                this.baseSize = it.baseSize;
2299 >                int hi = this.baseLimit = it.baseLimit;
2300 >                it.baseLimit = this.index = this.baseIndex =
2301 >                    (hi + it.baseIndex + 1) >>> 1;
2302 >            }
2303          }
2304  
2305 <        final WriteThroughEntry nextEntry() {
2305 >        /**
2306 >         * Advances next; returns nextVal or null if terminated.
2307 >         * See above for explanation.
2308 >         */
2309 >        final Object advance() {
2310              Node e = next;
2311 <            if (e == null)
2312 <                throw new NoSuchElementException();
2313 <            WriteThroughEntry entry =
2314 <                new WriteThroughEntry(e.key, nextVal);
2315 <            advance((lastReturned = e).next);
2316 <            return entry;
2311 >            Object ev = null;
2312 >            outer: do {
2313 >                if (e != null)                  // advance past used/skipped node
2314 >                    e = e.next;
2315 >                while (e == null) {             // get to next non-null bin
2316 >                    ConcurrentHashMapV8<K, V> m;
2317 >                    Node[] t; int b, i, n; Object ek; // checks must use locals
2318 >                    if ((t = tab) != null)
2319 >                        n = t.length;
2320 >                    else if ((m = map) != null && (t = tab = m.table) != null)
2321 >                        n = baseLimit = baseSize = t.length;
2322 >                    else
2323 >                        break outer;
2324 >                    if ((b = baseIndex) >= baseLimit ||
2325 >                        (i = index) < 0 || i >= n)
2326 >                        break outer;
2327 >                    if ((e = tabAt(t, i)) != null && e.hash < 0) {
2328 >                        if ((ek = e.key) instanceof TreeBin)
2329 >                            e = ((TreeBin)ek).first;
2330 >                        else {
2331 >                            tab = (Node[])ek;
2332 >                            continue;           // restarts due to null val
2333 >                        }
2334 >                    }                           // visit upper slots if present
2335 >                    index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2336 >                }
2337 >                nextKey = e.key;
2338 >            } while ((ev = e.val) == null);    // skip deleted or special nodes
2339 >            next = e;
2340 >            return nextVal = ev;
2341          }
2342  
2343          public final void remove() {
2344 <            if (lastReturned == null)
2344 >            Object k = nextKey;
2345 >            if (k == null && (advance() == null || (k = nextKey) == null))
2346                  throw new IllegalStateException();
2347 <            ConcurrentHashMapV8.this.remove(lastReturned.key);
827 <            lastReturned = null;
2347 >            map.internalReplace(k, null, null);
2348          }
2349  
2350 <        /** Helper for serialization */
2351 <        final void writeEntries(java.io.ObjectOutputStream s)
832 <            throws java.io.IOException {
833 <            Node e;
834 <            while ((e = next) != null) {
835 <                s.writeObject(e.key);
836 <                s.writeObject(nextVal);
837 <                advance(e.next);
838 <            }
2350 >        public final boolean hasNext() {
2351 >            return nextVal != null || advance() != null;
2352          }
2353  
2354 <        /** Helper for containsValue */
842 <        final boolean containsVal(Object value) {
843 <            if (value != null) {
844 <                Node e;
845 <                while ((e = next) != null) {
846 <                    Object v = nextVal;
847 <                    if (value == v || value.equals(v))
848 <                        return true;
849 <                    advance(e.next);
850 <                }
851 <            }
852 <            return false;
853 <        }
2354 >        public final boolean hasMoreElements() { return hasNext(); }
2355  
2356 <        /** Helper for Map.hashCode */
856 <        final int mapHashCode() {
857 <            int h = 0;
858 <            Node e;
859 <            while ((e = next) != null) {
860 <                h += e.key.hashCode() ^ nextVal.hashCode();
861 <                advance(e.next);
862 <            }
863 <            return h;
864 <        }
2356 >        public void compute() { } // default no-op CountedCompleter body
2357  
2358 <        /** Helper for Map.toString */
2359 <        final String mapToString() {
2360 <            Node e = next;
2361 <            if (e == null)
2362 <                return "{}";
2363 <            StringBuilder sb = new StringBuilder();
2364 <            sb.append('{');
2365 <            for (;;) {
2366 <                sb.append(e.key   == this ? "(this Map)" : e.key);
2367 <                sb.append('=');
2368 <                sb.append(nextVal == this ? "(this Map)" : nextVal);
2369 <                advance(e.next);
2370 <                if ((e = next) != null)
2371 <                    sb.append(',').append(' ');
2372 <                else
2373 <                    return sb.append('}').toString();
2358 >        /**
2359 >         * Returns a batch value > 0 if this task should (and must) be
2360 >         * split, if so, adding to pending count, and in any case
2361 >         * updating batch value. The initial batch value is approx
2362 >         * exp2 of the number of times (minus one) to split task by
2363 >         * two before executing leaf action. This value is faster to
2364 >         * compute and more convenient to use as a guide to splitting
2365 >         * than is the depth, since it is used while dividing by two
2366 >         * anyway.
2367 >         */
2368 >        final int preSplit() {
2369 >            ConcurrentHashMapV8<K, V> m; int b; Node[] t;  ForkJoinPool pool;
2370 >            if ((b = batch) < 0 && (m = map) != null) { // force initialization
2371 >                if ((t = tab) == null && (t = tab = m.table) != null)
2372 >                    baseLimit = baseSize = t.length;
2373 >                if (t != null) {
2374 >                    long n = m.sumCount();
2375 >                    int par = ((pool = getPool()) == null) ?
2376 >                        ForkJoinPool.getCommonPoolParallelism() :
2377 >                        pool.getParallelism();
2378 >                    int sp = par << 3; // slack of 8
2379 >                    b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2380 >                }
2381              }
2382 +            b = (b <= 1 || baseIndex == baseLimit) ? 0 : (b >>> 1);
2383 +            if ((batch = b) > 0)
2384 +                addToPendingCount(1);
2385 +            return b;
2386          }
2387 +
2388      }
2389  
2390      /* ---------------- Public operations -------------- */
2391  
2392      /**
2393 <     * Creates a new, empty map with the specified initial
890 <     * capacity, load factor and concurrency level.
891 <     *
892 <     * @param initialCapacity the initial capacity. The implementation
893 <     * performs internal sizing to accommodate this many elements.
894 <     * @param loadFactor  the load factor threshold, used to control resizing.
895 <     * Resizing may be performed when the average number of elements per
896 <     * bin exceeds this threshold.
897 <     * @param concurrencyLevel the estimated number of concurrently
898 <     * updating threads. The implementation may use this value as
899 <     * a sizing hint.
900 <     * @throws IllegalArgumentException if the initial capacity is
901 <     * negative or the load factor or concurrencyLevel are
902 <     * nonpositive.
2393 >     * Creates a new, empty map with the default initial table size (16).
2394       */
2395 <    public ConcurrentHashMapV8(int initialCapacity,
905 <                               float loadFactor, int concurrencyLevel) {
906 <        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
907 <            throw new IllegalArgumentException();
908 <        this.initCap = initialCapacity;
909 <        this.loadFactor = loadFactor;
910 <        this.counter = new LongAdder();
2395 >    public ConcurrentHashMapV8() {
2396      }
2397  
2398      /**
2399 <     * Creates a new, empty map with the specified initial capacity
2400 <     * and load factor and with the default concurrencyLevel (16).
2399 >     * Creates a new, empty map with an initial table size
2400 >     * accommodating the specified number of elements without the need
2401 >     * to dynamically resize.
2402       *
2403       * @param initialCapacity The implementation performs internal
2404       * sizing to accommodate this many elements.
2405 <     * @param loadFactor  the load factor threshold, used to control resizing.
2406 <     * Resizing may be performed when the average number of elements per
2407 <     * bin exceeds this threshold.
2405 >     * @throws IllegalArgumentException if the initial capacity of
2406 >     * elements is negative
2407 >     */
2408 >    public ConcurrentHashMapV8(int initialCapacity) {
2409 >        if (initialCapacity < 0)
2410 >            throw new IllegalArgumentException();
2411 >        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2412 >                   MAXIMUM_CAPACITY :
2413 >                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2414 >        this.sizeCtl = cap;
2415 >    }
2416 >
2417 >    /**
2418 >     * Creates a new map with the same mappings as the given map.
2419 >     *
2420 >     * @param m the map
2421 >     */
2422 >    public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
2423 >        this.sizeCtl = DEFAULT_CAPACITY;
2424 >        internalPutAll(m);
2425 >    }
2426 >
2427 >    /**
2428 >     * Creates a new, empty map with an initial table size based on
2429 >     * the given number of elements ({@code initialCapacity}) and
2430 >     * initial table density ({@code loadFactor}).
2431 >     *
2432 >     * @param initialCapacity the initial capacity. The implementation
2433 >     * performs internal sizing to accommodate this many elements,
2434 >     * given the specified load factor.
2435 >     * @param loadFactor the load factor (table density) for
2436 >     * establishing the initial table size
2437       * @throws IllegalArgumentException if the initial capacity of
2438       * elements is negative or the load factor is nonpositive
2439       *
2440       * @since 1.6
2441       */
2442      public ConcurrentHashMapV8(int initialCapacity, float loadFactor) {
2443 <        this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
2443 >        this(initialCapacity, loadFactor, 1);
2444      }
2445  
2446      /**
2447 <     * Creates a new, empty map with the specified initial capacity,
2448 <     * and with default load factor (0.75) and concurrencyLevel (16).
2447 >     * Creates a new, empty map with an initial table size based on
2448 >     * the given number of elements ({@code initialCapacity}), table
2449 >     * density ({@code loadFactor}), and number of concurrently
2450 >     * updating threads ({@code concurrencyLevel}).
2451       *
2452       * @param initialCapacity the initial capacity. The implementation
2453 <     * performs internal sizing to accommodate this many elements.
2454 <     * @throws IllegalArgumentException if the initial capacity of
2455 <     * elements is negative.
2453 >     * performs internal sizing to accommodate this many elements,
2454 >     * given the specified load factor.
2455 >     * @param loadFactor the load factor (table density) for
2456 >     * establishing the initial table size
2457 >     * @param concurrencyLevel the estimated number of concurrently
2458 >     * updating threads. The implementation may use this value as
2459 >     * a sizing hint.
2460 >     * @throws IllegalArgumentException if the initial capacity is
2461 >     * negative or the load factor or concurrencyLevel are
2462 >     * nonpositive
2463       */
2464 <    public ConcurrentHashMapV8(int initialCapacity) {
2465 <        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
2464 >    public ConcurrentHashMapV8(int initialCapacity,
2465 >                               float loadFactor, int concurrencyLevel) {
2466 >        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2467 >            throw new IllegalArgumentException();
2468 >        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
2469 >            initialCapacity = concurrencyLevel;   // as estimated threads
2470 >        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2471 >        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2472 >            MAXIMUM_CAPACITY : tableSizeFor((int)size);
2473 >        this.sizeCtl = cap;
2474      }
2475  
2476      /**
2477 <     * Creates a new, empty map with a default initial capacity (16),
2478 <     * load factor (0.75) and concurrencyLevel (16).
2477 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2478 >     * from the given type to {@code Boolean.TRUE}.
2479 >     *
2480 >     * @return the new set
2481       */
2482 <    public ConcurrentHashMapV8() {
2483 <        this(DEFAULT_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
2482 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2483 >        return new KeySetView<K,Boolean>(new ConcurrentHashMapV8<K,Boolean>(),
2484 >                                      Boolean.TRUE);
2485      }
2486  
2487      /**
2488 <     * Creates a new map with the same mappings as the given map.
2489 <     * The map is created with a capacity of 1.5 times the number
955 <     * of mappings in the given map or 16 (whichever is greater),
956 <     * and a default load factor (0.75) and concurrencyLevel (16).
2488 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2489 >     * from the given type to {@code Boolean.TRUE}.
2490       *
2491 <     * @param m the map
2491 >     * @param initialCapacity The implementation performs internal
2492 >     * sizing to accommodate this many elements.
2493 >     * @throws IllegalArgumentException if the initial capacity of
2494 >     * elements is negative
2495 >     * @return the new set
2496       */
2497 <    public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
2498 <        this(DEFAULT_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
2499 <        if (m == null)
963 <            throw new NullPointerException();
964 <        internalPutAll(m);
2497 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2498 >        return new KeySetView<K,Boolean>
2499 >            (new ConcurrentHashMapV8<K,Boolean>(initialCapacity), Boolean.TRUE);
2500      }
2501  
2502      /**
2503 <     * Returns {@code true} if this map contains no key-value mappings.
969 <     *
970 <     * @return {@code true} if this map contains no key-value mappings
2503 >     * {@inheritDoc}
2504       */
2505      public boolean isEmpty() {
2506 <        return counter.sum() <= 0L; // ignore transient negative values
2506 >        return sumCount() <= 0L; // ignore transient negative values
2507      }
2508  
2509      /**
2510 <     * Returns the number of key-value mappings in this map.  If the
978 <     * map contains more than {@code Integer.MAX_VALUE} elements, returns
979 <     * {@code Integer.MAX_VALUE}.
980 <     *
981 <     * @return the number of key-value mappings in this map
2510 >     * {@inheritDoc}
2511       */
2512      public int size() {
2513 <        long n = counter.sum();
2514 <        return ((n >>> 31) == 0) ? (int)n : (n < 0L) ? 0 : Integer.MAX_VALUE;
2513 >        long n = sumCount();
2514 >        return ((n < 0L) ? 0 :
2515 >                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2516 >                (int)n);
2517 >    }
2518 >
2519 >    /**
2520 >     * Returns the number of mappings. This method should be used
2521 >     * instead of {@link #size} because a ConcurrentHashMapV8 may
2522 >     * contain more mappings than can be represented as an int. The
2523 >     * value returned is an estimate; the actual count may differ if
2524 >     * there are concurrent insertions or removals.
2525 >     *
2526 >     * @return the number of mappings
2527 >     */
2528 >    public long mappingCount() {
2529 >        long n = sumCount();
2530 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2531      }
2532  
2533      /**
# Line 996 | Line 2541 | public class ConcurrentHashMapV8<K, V>
2541       *
2542       * @throws NullPointerException if the specified key is null
2543       */
999    @SuppressWarnings("unchecked")
2544      public V get(Object key) {
2545 <        if (key == null)
2546 <            throw new NullPointerException();
2547 <        return (V)internalGet(key);
2545 >        return internalGet(key);
2546 >    }
2547 >
2548 >    /**
2549 >     * Returns the value to which the specified key is mapped,
2550 >     * or the given defaultValue if this map contains no mapping for the key.
2551 >     *
2552 >     * @param key the key
2553 >     * @param defaultValue the value to return if this map contains
2554 >     * no mapping for the given key
2555 >     * @return the mapping for the key, if present; else the defaultValue
2556 >     * @throws NullPointerException if the specified key is null
2557 >     */
2558 >    public V getValueOrDefault(Object key, V defaultValue) {
2559 >        V v;
2560 >        return (v = internalGet(key)) == null ? defaultValue : v;
2561      }
2562  
2563      /**
# Line 1009 | Line 2566 | public class ConcurrentHashMapV8<K, V>
2566       * @param  key   possible key
2567       * @return {@code true} if and only if the specified object
2568       *         is a key in this table, as determined by the
2569 <     *         {@code equals} method; {@code false} otherwise.
2569 >     *         {@code equals} method; {@code false} otherwise
2570       * @throws NullPointerException if the specified key is null
2571       */
2572      public boolean containsKey(Object key) {
1016        if (key == null)
1017            throw new NullPointerException();
2573          return internalGet(key) != null;
2574      }
2575  
2576      /**
2577       * Returns {@code true} if this map maps one or more keys to the
2578 <     * specified value. Note: This method requires a full internal
2579 <     * traversal of the hash table, and so is much slower than
1025 <     * method {@code containsKey}.
2578 >     * specified value. Note: This method may require a full traversal
2579 >     * of the map, and is much slower than method {@code containsKey}.
2580       *
2581       * @param value value whose presence in this map is to be tested
2582       * @return {@code true} if this map maps one or more keys to the
# Line 1032 | Line 2586 | public class ConcurrentHashMapV8<K, V>
2586      public boolean containsValue(Object value) {
2587          if (value == null)
2588              throw new NullPointerException();
2589 <        return new HashIterator().containsVal(value);
2589 >        Object v;
2590 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2591 >        while ((v = it.advance()) != null) {
2592 >            if (v == value || value.equals(v))
2593 >                return true;
2594 >        }
2595 >        return false;
2596      }
2597  
2598      /**
# Line 1058 | Line 2618 | public class ConcurrentHashMapV8<K, V>
2618       * Maps the specified key to the specified value in this table.
2619       * Neither the key nor the value can be null.
2620       *
2621 <     * <p> The value can be retrieved by calling the {@code get} method
2621 >     * <p>The value can be retrieved by calling the {@code get} method
2622       * with a key that is equal to the original key.
2623       *
2624       * @param key key with which the specified value is to be associated
# Line 1067 | Line 2627 | public class ConcurrentHashMapV8<K, V>
2627       *         {@code null} if there was no mapping for {@code key}
2628       * @throws NullPointerException if the specified key or value is null
2629       */
1070    @SuppressWarnings("unchecked")
2630      public V put(K key, V value) {
2631 <        if (key == null || value == null)
1073 <            throw new NullPointerException();
1074 <        return (V)internalPut(key, value, true);
2631 >        return internalPut(key, value, false);
2632      }
2633  
2634      /**
# Line 1081 | Line 2638 | public class ConcurrentHashMapV8<K, V>
2638       *         or {@code null} if there was no mapping for the key
2639       * @throws NullPointerException if the specified key or value is null
2640       */
1084    @SuppressWarnings("unchecked")
2641      public V putIfAbsent(K key, V value) {
2642 <        if (key == null || value == null)
1087 <            throw new NullPointerException();
1088 <        return (V)internalPut(key, value, false);
2642 >        return internalPut(key, value, true);
2643      }
2644  
2645      /**
# Line 1096 | Line 2650 | public class ConcurrentHashMapV8<K, V>
2650       * @param m mappings to be stored in this map
2651       */
2652      public void putAll(Map<? extends K, ? extends V> m) {
1099        if (m == null)
1100            throw new NullPointerException();
2653          internalPutAll(m);
2654      }
2655  
2656      /**
2657       * If the specified key is not already associated with a value,
2658 <     * computes its value using the given mappingFunction, and if
2659 <     * non-null, enters it into the map.  This is equivalent to
2660 <     *  <pre> {@code
2658 >     * computes its value using the given mappingFunction and enters
2659 >     * it into the map unless null.  This is equivalent to
2660 >     * <pre> {@code
2661       * if (map.containsKey(key))
2662       *   return map.get(key);
2663 <     * value = mappingFunction.map(key);
2663 >     * value = mappingFunction.apply(key);
2664       * if (value != null)
2665       *   map.put(key, value);
2666       * return value;}</pre>
2667       *
2668 <     * except that the action is performed atomically.  Some attempted
2669 <     * update operations on this map by other threads may be blocked
2670 <     * while computation is in progress, so the computation should be
2671 <     * short and simple, and must not attempt to update any other
2672 <     * mappings of this Map. The most appropriate usage is to
2668 >     * except that the action is performed atomically.  If the
2669 >     * function returns {@code null} no mapping is recorded. If the
2670 >     * function itself throws an (unchecked) exception, the exception
2671 >     * is rethrown to its caller, and no mapping is recorded.  Some
2672 >     * attempted update operations on this map by other threads may be
2673 >     * blocked while computation is in progress, so the computation
2674 >     * should be short and simple, and must not attempt to update any
2675 >     * other mappings of this Map. The most appropriate usage is to
2676       * construct a new object serving as an initial mapped value, or
2677       * memoized result, as in:
2678 +     *
2679       *  <pre> {@code
2680 <     * map.computeIfAbsent(key, new MappingFunction<K, V>() {
2680 >     * map.computeIfAbsent(key, new Fun<K, V>() {
2681       *   public V map(K k) { return new Value(f(k)); }});}</pre>
2682       *
2683       * @param key key with which the specified value is to be associated
2684       * @param mappingFunction the function to compute a value
2685       * @return the current (existing or computed) value associated with
2686 <     *         the specified key, or {@code null} if the computation
1131 <     *         returned {@code null}.
2686 >     *         the specified key, or null if the computed value is null
2687       * @throws NullPointerException if the specified key or mappingFunction
2688 <     *         is null,
2688 >     *         is null
2689       * @throws IllegalStateException if the computation detectably
2690       *         attempts a recursive update to this map that would
2691 <     *         otherwise never complete.
2691 >     *         otherwise never complete
2692       * @throws RuntimeException or Error if the mappingFunction does so,
2693 <     *         in which case the mapping is left unestablished.
2693 >     *         in which case the mapping is left unestablished
2694       */
2695 <    public V computeIfAbsent(K key, MappingFunction<? super K, ? extends V> mappingFunction) {
2696 <        if (key == null || mappingFunction == null)
2697 <            throw new NullPointerException();
1143 <        return internalCompute(key, mappingFunction, false);
2695 >    public V computeIfAbsent
2696 >        (K key, Fun<? super K, ? extends V> mappingFunction) {
2697 >        return internalComputeIfAbsent(key, mappingFunction);
2698      }
2699  
2700      /**
2701 <     * Computes the value associated with the given key using the given
2702 <     * mappingFunction, and if non-null, enters it into the map.  This
1149 <     * is equivalent to
2701 >     * If the given key is present, computes a new mapping value given a key and
2702 >     * its current mapped value. This is equivalent to
2703       *  <pre> {@code
2704 <     * value = mappingFunction.map(key);
2705 <     * if (value != null)
2706 <     *   map.put(key, value);
2707 <     * else
2708 <     *   value = map.get(key);
2709 <     * return value;}</pre>
2704 >     *   if (map.containsKey(key)) {
2705 >     *     value = remappingFunction.apply(key, map.get(key));
2706 >     *     if (value != null)
2707 >     *       map.put(key, value);
2708 >     *     else
2709 >     *       map.remove(key);
2710 >     *   }
2711 >     * }</pre>
2712 >     *
2713 >     * except that the action is performed atomically.  If the
2714 >     * function returns {@code null}, the mapping is removed.  If the
2715 >     * function itself throws an (unchecked) exception, the exception
2716 >     * is rethrown to its caller, and the current mapping is left
2717 >     * unchanged.  Some attempted update operations on this map by
2718 >     * other threads may be blocked while computation is in progress,
2719 >     * so the computation should be short and simple, and must not
2720 >     * attempt to update any other mappings of this Map. For example,
2721 >     * to either create or append new messages to a value mapping:
2722       *
2723 <     * except that the action is performed atomically.  Some attempted
2724 <     * update operations on this map by other threads may be blocked
2725 <     * while computation is in progress, so the computation should be
2726 <     * short and simple, and must not attempt to update any other
2727 <     * mappings of this Map.
2723 >     * @param key key with which the specified value is to be associated
2724 >     * @param remappingFunction the function to compute a value
2725 >     * @return the new value associated with the specified key, or null if none
2726 >     * @throws NullPointerException if the specified key or remappingFunction
2727 >     *         is null
2728 >     * @throws IllegalStateException if the computation detectably
2729 >     *         attempts a recursive update to this map that would
2730 >     *         otherwise never complete
2731 >     * @throws RuntimeException or Error if the remappingFunction does so,
2732 >     *         in which case the mapping is unchanged
2733 >     */
2734 >    public V computeIfPresent
2735 >        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2736 >        return internalCompute(key, true, remappingFunction);
2737 >    }
2738 >
2739 >    /**
2740 >     * Computes a new mapping value given a key and
2741 >     * its current mapped value (or {@code null} if there is no current
2742 >     * mapping). This is equivalent to
2743 >     *  <pre> {@code
2744 >     *   value = remappingFunction.apply(key, map.get(key));
2745 >     *   if (value != null)
2746 >     *     map.put(key, value);
2747 >     *   else
2748 >     *     map.remove(key);
2749 >     * }</pre>
2750 >     *
2751 >     * except that the action is performed atomically.  If the
2752 >     * function returns {@code null}, the mapping is removed.  If the
2753 >     * function itself throws an (unchecked) exception, the exception
2754 >     * is rethrown to its caller, and the current mapping is left
2755 >     * unchanged.  Some attempted update operations on this map by
2756 >     * other threads may be blocked while computation is in progress,
2757 >     * so the computation should be short and simple, and must not
2758 >     * attempt to update any other mappings of this Map. For example,
2759 >     * to either create or append new messages to a value mapping:
2760 >     *
2761 >     * <pre> {@code
2762 >     * Map<Key, String> map = ...;
2763 >     * final String msg = ...;
2764 >     * map.compute(key, new BiFun<Key, String, String>() {
2765 >     *   public String apply(Key k, String v) {
2766 >     *    return (v == null) ? msg : v + msg;});}}</pre>
2767       *
2768       * @param key key with which the specified value is to be associated
2769 <     * @param mappingFunction the function to compute a value
2770 <     * @return the current value associated with
2771 <     *         the specified key, or {@code null} if the computation
2772 <     *         returned {@code null} and the value was not otherwise present.
1169 <     * @throws NullPointerException if the specified key or mappingFunction
1170 <     *         is null,
2769 >     * @param remappingFunction the function to compute a value
2770 >     * @return the new value associated with the specified key, or null if none
2771 >     * @throws NullPointerException if the specified key or remappingFunction
2772 >     *         is null
2773       * @throws IllegalStateException if the computation detectably
2774       *         attempts a recursive update to this map that would
2775 <     *         otherwise never complete.
2776 <     * @throws RuntimeException or Error if the mappingFunction does so,
2777 <     *         in which case the mapping is unchanged.
2775 >     *         otherwise never complete
2776 >     * @throws RuntimeException or Error if the remappingFunction does so,
2777 >     *         in which case the mapping is unchanged
2778       */
2779 <    public V compute(K key, MappingFunction<? super K, ? extends V> mappingFunction) {
2780 <        if (key == null || mappingFunction == null)
2781 <            throw new NullPointerException();
2782 <        return internalCompute(key, mappingFunction, true);
2779 >    public V compute
2780 >        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2781 >        return internalCompute(key, false, remappingFunction);
2782 >    }
2783 >
2784 >    /**
2785 >     * If the specified key is not already associated
2786 >     * with a value, associate it with the given value.
2787 >     * Otherwise, replace the value with the results of
2788 >     * the given remapping function. This is equivalent to:
2789 >     *  <pre> {@code
2790 >     *   if (!map.containsKey(key))
2791 >     *     map.put(value);
2792 >     *   else {
2793 >     *     newValue = remappingFunction.apply(map.get(key), value);
2794 >     *     if (value != null)
2795 >     *       map.put(key, value);
2796 >     *     else
2797 >     *       map.remove(key);
2798 >     *   }
2799 >     * }</pre>
2800 >     * except that the action is performed atomically.  If the
2801 >     * function returns {@code null}, the mapping is removed.  If the
2802 >     * function itself throws an (unchecked) exception, the exception
2803 >     * is rethrown to its caller, and the current mapping is left
2804 >     * unchanged.  Some attempted update operations on this map by
2805 >     * other threads may be blocked while computation is in progress,
2806 >     * so the computation should be short and simple, and must not
2807 >     * attempt to update any other mappings of this Map.
2808 >     */
2809 >    public V merge
2810 >        (K key, V value,
2811 >         BiFun<? super V, ? super V, ? extends V> remappingFunction) {
2812 >        return internalMerge(key, value, remappingFunction);
2813      }
2814  
2815      /**
# Line 1189 | Line 2821 | public class ConcurrentHashMapV8<K, V>
2821       *         {@code null} if there was no mapping for {@code key}
2822       * @throws NullPointerException if the specified key is null
2823       */
1192    @SuppressWarnings("unchecked")
2824      public V remove(Object key) {
2825 <        if (key == null)
1195 <            throw new NullPointerException();
1196 <        return (V)internalReplace(key, null, null);
2825 >        return internalReplace(key, null, null);
2826      }
2827  
2828      /**
# Line 1202 | Line 2831 | public class ConcurrentHashMapV8<K, V>
2831       * @throws NullPointerException if the specified key is null
2832       */
2833      public boolean remove(Object key, Object value) {
2834 <        if (key == null)
1206 <            throw new NullPointerException();
1207 <        if (value == null)
1208 <            return false;
1209 <        return internalReplace(key, null, value) != null;
2834 >        return value != null && internalReplace(key, null, value) != null;
2835      }
2836  
2837      /**
# Line 1227 | Line 2852 | public class ConcurrentHashMapV8<K, V>
2852       *         or {@code null} if there was no mapping for the key
2853       * @throws NullPointerException if the specified key or value is null
2854       */
1230    @SuppressWarnings("unchecked")
2855      public V replace(K key, V value) {
2856          if (key == null || value == null)
2857              throw new NullPointerException();
2858 <        return (V)internalReplace(key, value, null);
2858 >        return internalReplace(key, value, null);
2859      }
2860  
2861      /**
# Line 1244 | Line 2868 | public class ConcurrentHashMapV8<K, V>
2868      /**
2869       * Returns a {@link Set} view of the keys contained in this map.
2870       * The set is backed by the map, so changes to the map are
2871 <     * reflected in the set, and vice-versa.  The set supports element
1248 <     * removal, which removes the corresponding mapping from this map,
1249 <     * via the {@code Iterator.remove}, {@code Set.remove},
1250 <     * {@code removeAll}, {@code retainAll}, and {@code clear}
1251 <     * operations.  It does not support the {@code add} or
1252 <     * {@code addAll} operations.
2871 >     * reflected in the set, and vice-versa.
2872       *
2873 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2874 <     * that will never throw {@link ConcurrentModificationException},
2875 <     * and guarantees to traverse elements as they existed upon
2876 <     * construction of the iterator, and may (but is not guaranteed to)
2877 <     * reflect any modifications subsequent to construction.
2873 >     * @return the set view
2874 >     */
2875 >    public KeySetView<K,V> keySet() {
2876 >        KeySetView<K,V> ks = keySet;
2877 >        return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2878 >    }
2879 >
2880 >    /**
2881 >     * Returns a {@link Set} view of the keys in this map, using the
2882 >     * given common mapped value for any additions (i.e., {@link
2883 >     * Collection#add} and {@link Collection#addAll}). This is of
2884 >     * course only appropriate if it is acceptable to use the same
2885 >     * value for all additions from this view.
2886 >     *
2887 >     * @param mappedValue the mapped value to use for any
2888 >     * additions.
2889 >     * @return the set view
2890 >     * @throws NullPointerException if the mappedValue is null
2891       */
2892 <    public Set<K> keySet() {
2893 <        Set<K> ks = keySet;
2894 <        return (ks != null) ? ks : (keySet = new KeySet());
2892 >    public KeySetView<K,V> keySet(V mappedValue) {
2893 >        if (mappedValue == null)
2894 >            throw new NullPointerException();
2895 >        return new KeySetView<K,V>(this, mappedValue);
2896      }
2897  
2898      /**
2899       * Returns a {@link Collection} view of the values contained in this map.
2900       * The collection is backed by the map, so changes to the map are
2901 <     * reflected in the collection, and vice-versa.  The collection
1269 <     * supports element removal, which removes the corresponding
1270 <     * mapping from this map, via the {@code Iterator.remove},
1271 <     * {@code Collection.remove}, {@code removeAll},
1272 <     * {@code retainAll}, and {@code clear} operations.  It does not
1273 <     * support the {@code add} or {@code addAll} operations.
1274 <     *
1275 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1276 <     * that will never throw {@link ConcurrentModificationException},
1277 <     * and guarantees to traverse elements as they existed upon
1278 <     * construction of the iterator, and may (but is not guaranteed to)
1279 <     * reflect any modifications subsequent to construction.
2901 >     * reflected in the collection, and vice-versa.
2902       */
2903 <    public Collection<V> values() {
2904 <        Collection<V> vs = values;
2905 <        return (vs != null) ? vs : (values = new Values());
2903 >    public ValuesView<K,V> values() {
2904 >        ValuesView<K,V> vs = values;
2905 >        return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2906      }
2907  
2908      /**
# Line 1300 | Line 2922 | public class ConcurrentHashMapV8<K, V>
2922       * reflect any modifications subsequent to construction.
2923       */
2924      public Set<Map.Entry<K,V>> entrySet() {
2925 <        Set<Map.Entry<K,V>> es = entrySet;
2926 <        return (es != null) ? es : (entrySet = new EntrySet());
2925 >        EntrySetView<K,V> es = entrySet;
2926 >        return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2927      }
2928  
2929      /**
# Line 1311 | Line 2933 | public class ConcurrentHashMapV8<K, V>
2933       * @see #keySet()
2934       */
2935      public Enumeration<K> keys() {
2936 <        return new KeyIterator();
2936 >        return new KeyIterator<K,V>(this);
2937      }
2938  
2939      /**
# Line 1321 | Line 2943 | public class ConcurrentHashMapV8<K, V>
2943       * @see #values()
2944       */
2945      public Enumeration<V> elements() {
2946 <        return new ValueIterator();
2946 >        return new ValueIterator<K,V>(this);
2947 >    }
2948 >
2949 >    /**
2950 >     * Returns a partitionable iterator of the keys in this map.
2951 >     *
2952 >     * @return a partitionable iterator of the keys in this map
2953 >     */
2954 >    public Spliterator<K> keySpliterator() {
2955 >        return new KeyIterator<K,V>(this);
2956 >    }
2957 >
2958 >    /**
2959 >     * Returns a partitionable iterator of the values in this map.
2960 >     *
2961 >     * @return a partitionable iterator of the values in this map
2962 >     */
2963 >    public Spliterator<V> valueSpliterator() {
2964 >        return new ValueIterator<K,V>(this);
2965 >    }
2966 >
2967 >    /**
2968 >     * Returns a partitionable iterator of the entries in this map.
2969 >     *
2970 >     * @return a partitionable iterator of the entries in this map
2971 >     */
2972 >    public Spliterator<Map.Entry<K,V>> entrySpliterator() {
2973 >        return new EntryIterator<K,V>(this);
2974      }
2975  
2976      /**
# Line 1332 | Line 2981 | public class ConcurrentHashMapV8<K, V>
2981       * @return the hash code value for this map
2982       */
2983      public int hashCode() {
2984 <        return new HashIterator().mapHashCode();
2984 >        int h = 0;
2985 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2986 >        Object v;
2987 >        while ((v = it.advance()) != null) {
2988 >            h += it.nextKey.hashCode() ^ v.hashCode();
2989 >        }
2990 >        return h;
2991      }
2992  
2993      /**
# Line 1347 | Line 3002 | public class ConcurrentHashMapV8<K, V>
3002       * @return a string representation of this map
3003       */
3004      public String toString() {
3005 <        return new HashIterator().mapToString();
3005 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3006 >        StringBuilder sb = new StringBuilder();
3007 >        sb.append('{');
3008 >        Object v;
3009 >        if ((v = it.advance()) != null) {
3010 >            for (;;) {
3011 >                Object k = it.nextKey;
3012 >                sb.append(k == this ? "(this Map)" : k);
3013 >                sb.append('=');
3014 >                sb.append(v == this ? "(this Map)" : v);
3015 >                if ((v = it.advance()) == null)
3016 >                    break;
3017 >                sb.append(',').append(' ');
3018 >            }
3019 >        }
3020 >        return sb.append('}').toString();
3021      }
3022  
3023      /**
# Line 1361 | Line 3031 | public class ConcurrentHashMapV8<K, V>
3031       * @return {@code true} if the specified object is equal to this map
3032       */
3033      public boolean equals(Object o) {
3034 <        if (o == this)
3035 <            return true;
3036 <        if (!(o instanceof Map))
3037 <            return false;
3038 <        Map<?,?> m = (Map<?,?>) o;
3039 <        try {
3040 <            for (Map.Entry<K,V> e : this.entrySet())
3041 <                if (! e.getValue().equals(m.get(e.getKey())))
3034 >        if (o != this) {
3035 >            if (!(o instanceof Map))
3036 >                return false;
3037 >            Map<?,?> m = (Map<?,?>) o;
3038 >            Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3039 >            Object val;
3040 >            while ((val = it.advance()) != null) {
3041 >                Object v = m.get(it.nextKey);
3042 >                if (v == null || (v != val && !v.equals(val)))
3043                      return false;
3044 +            }
3045              for (Map.Entry<?,?> e : m.entrySet()) {
3046 <                Object k = e.getKey();
3047 <                Object v = e.getValue();
3048 <                if (k == null || v == null || !v.equals(get(k)))
3046 >                Object mk, mv, v;
3047 >                if ((mk = e.getKey()) == null ||
3048 >                    (mv = e.getValue()) == null ||
3049 >                    (v = internalGet(mk)) == null ||
3050 >                    (mv != v && !mv.equals(v)))
3051                      return false;
3052              }
1379            return true;
1380        } catch (ClassCastException unused) {
1381            return false;
1382        } catch (NullPointerException unused) {
1383            return false;
3053          }
3054 +        return true;
3055      }
3056  
3057 <    /**
1388 <     * Custom Entry class used by EntryIterator.next(), that relays
1389 <     * setValue changes to the underlying map.
1390 <     */
1391 <    final class WriteThroughEntry extends AbstractMap.SimpleEntry<K,V> {
1392 <        @SuppressWarnings("unchecked")
1393 <        WriteThroughEntry(Object k, Object v) {
1394 <            super((K)k, (V)v);
1395 <        }
3057 >    /* ----------------Iterators -------------- */
3058  
3059 <        /**
3060 <         * Sets our entry's value and writes through to the map. The
3061 <         * value to return is somewhat arbitrary here. Since a
3062 <         * WriteThroughEntry does not necessarily track asynchronous
3063 <         * changes, the most recent "previous" value could be
3064 <         * different from what we return (or could even have been
3065 <         * removed in which case the put will re-establish). We do not
3066 <         * and cannot guarantee more.
3067 <         */
3068 <        public V setValue(V value) {
3069 <            if (value == null) throw new NullPointerException();
3070 <            V v = super.setValue(value);
3071 <            ConcurrentHashMapV8.this.put(getKey(), value);
3072 <            return v;
3059 >    @SuppressWarnings("serial") static final class KeyIterator<K,V>
3060 >        extends Traverser<K,V,Object>
3061 >        implements Spliterator<K>, Enumeration<K> {
3062 >        KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3063 >        KeyIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3064 >            super(map, it, -1);
3065 >        }
3066 >        public KeyIterator<K,V> split() {
3067 >            if (nextKey != null)
3068 >                throw new IllegalStateException();
3069 >            return new KeyIterator<K,V>(map, this);
3070 >        }
3071 >        @SuppressWarnings("unchecked") public final K next() {
3072 >            if (nextVal == null && advance() == null)
3073 >                throw new NoSuchElementException();
3074 >            Object k = nextKey;
3075 >            nextVal = null;
3076 >            return (K) k;
3077          }
1412    }
1413
1414    final class KeyIterator extends HashIterator
1415        implements Iterator<K>, Enumeration<K> {
1416        @SuppressWarnings("unchecked")
1417        public final K next()        { return (K)super.nextKey(); }
1418        @SuppressWarnings("unchecked")
1419        public final K nextElement() { return (K)super.nextKey(); }
1420    }
1421
1422    final class ValueIterator extends HashIterator
1423        implements Iterator<V>, Enumeration<V> {
1424        @SuppressWarnings("unchecked")
1425        public final V next()        { return (V)super.nextValue(); }
1426        @SuppressWarnings("unchecked")
1427        public final V nextElement() { return (V)super.nextValue(); }
1428    }
3078  
3079 <    final class EntryIterator extends HashIterator
1431 <        implements Iterator<Entry<K,V>> {
1432 <        public final Map.Entry<K,V> next() { return super.nextEntry(); }
3079 >        public final K nextElement() { return next(); }
3080      }
3081  
3082 <    final class KeySet extends AbstractSet<K> {
3083 <        public int size() {
3084 <            return ConcurrentHashMapV8.this.size();
3082 >    @SuppressWarnings("serial") static final class ValueIterator<K,V>
3083 >        extends Traverser<K,V,Object>
3084 >        implements Spliterator<V>, Enumeration<V> {
3085 >        ValueIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3086 >        ValueIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3087 >            super(map, it, -1);
3088          }
3089 <        public boolean isEmpty() {
3090 <            return ConcurrentHashMapV8.this.isEmpty();
3091 <        }
3092 <        public void clear() {
1443 <            ConcurrentHashMapV8.this.clear();
1444 <        }
1445 <        public Iterator<K> iterator() {
1446 <            return new KeyIterator();
1447 <        }
1448 <        public boolean contains(Object o) {
1449 <            return ConcurrentHashMapV8.this.containsKey(o);
3089 >        public ValueIterator<K,V> split() {
3090 >            if (nextKey != null)
3091 >                throw new IllegalStateException();
3092 >            return new ValueIterator<K,V>(map, this);
3093          }
3094 <        public boolean remove(Object o) {
3095 <            return ConcurrentHashMapV8.this.remove(o) != null;
3094 >
3095 >        @SuppressWarnings("unchecked") public final V next() {
3096 >            Object v;
3097 >            if ((v = nextVal) == null && (v = advance()) == null)
3098 >                throw new NoSuchElementException();
3099 >            nextVal = null;
3100 >            return (V) v;
3101          }
3102 +
3103 +        public final V nextElement() { return next(); }
3104      }
3105  
3106 <    final class Values extends AbstractCollection<V> {
3107 <        public int size() {
3108 <            return ConcurrentHashMapV8.this.size();
3109 <        }
3110 <        public boolean isEmpty() {
3111 <            return ConcurrentHashMapV8.this.isEmpty();
1462 <        }
1463 <        public void clear() {
1464 <            ConcurrentHashMapV8.this.clear();
3106 >    @SuppressWarnings("serial") static final class EntryIterator<K,V>
3107 >        extends Traverser<K,V,Object>
3108 >        implements Spliterator<Map.Entry<K,V>> {
3109 >        EntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3110 >        EntryIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3111 >            super(map, it, -1);
3112          }
3113 <        public Iterator<V> iterator() {
3114 <            return new ValueIterator();
3113 >        public EntryIterator<K,V> split() {
3114 >            if (nextKey != null)
3115 >                throw new IllegalStateException();
3116 >            return new EntryIterator<K,V>(map, this);
3117          }
3118 <        public boolean contains(Object o) {
3119 <            return ConcurrentHashMapV8.this.containsValue(o);
3118 >
3119 >        @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3120 >            Object v;
3121 >            if ((v = nextVal) == null && (v = advance()) == null)
3122 >                throw new NoSuchElementException();
3123 >            Object k = nextKey;
3124 >            nextVal = null;
3125 >            return new MapEntry<K,V>((K)k, (V)v, map);
3126          }
3127      }
3128  
3129 <    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
3130 <        public int size() {
3131 <            return ConcurrentHashMapV8.this.size();
3132 <        }
3133 <        public boolean isEmpty() {
3134 <            return ConcurrentHashMapV8.this.isEmpty();
3135 <        }
3136 <        public void clear() {
3137 <            ConcurrentHashMapV8.this.clear();
3138 <        }
3139 <        public Iterator<Map.Entry<K,V>> iterator() {
1485 <            return new EntryIterator();
3129 >    /**
3130 >     * Exported Entry for iterators
3131 >     */
3132 >    static final class MapEntry<K,V> implements Map.Entry<K, V> {
3133 >        final K key; // non-null
3134 >        V val;       // non-null
3135 >        final ConcurrentHashMapV8<K, V> map;
3136 >        MapEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
3137 >            this.key = key;
3138 >            this.val = val;
3139 >            this.map = map;
3140          }
3141 <        public boolean contains(Object o) {
3142 <            if (!(o instanceof Map.Entry))
3143 <                return false;
3144 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
3145 <            V v = ConcurrentHashMapV8.this.get(e.getKey());
3146 <            return v != null && v.equals(e.getValue());
3141 >        public final K getKey()       { return key; }
3142 >        public final V getValue()     { return val; }
3143 >        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
3144 >        public final String toString(){ return key + "=" + val; }
3145 >
3146 >        public final boolean equals(Object o) {
3147 >            Object k, v; Map.Entry<?,?> e;
3148 >            return ((o instanceof Map.Entry) &&
3149 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3150 >                    (v = e.getValue()) != null &&
3151 >                    (k == key || k.equals(key)) &&
3152 >                    (v == val || v.equals(val)));
3153          }
3154 <        public boolean remove(Object o) {
3155 <            if (!(o instanceof Map.Entry))
3156 <                return false;
3157 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
3158 <            return ConcurrentHashMapV8.this.remove(e.getKey(), e.getValue());
3154 >
3155 >        /**
3156 >         * Sets our entry's value and writes through to the map. The
3157 >         * value to return is somewhat arbitrary here. Since we do not
3158 >         * necessarily track asynchronous changes, the most recent
3159 >         * "previous" value could be different from what we return (or
3160 >         * could even have been removed in which case the put will
3161 >         * re-establish). We do not and cannot guarantee more.
3162 >         */
3163 >        public final V setValue(V value) {
3164 >            if (value == null) throw new NullPointerException();
3165 >            V v = val;
3166 >            val = value;
3167 >            map.put(key, value);
3168 >            return v;
3169          }
3170      }
3171  
3172 +    /**
3173 +     * Returns exportable snapshot entry for the given key and value
3174 +     * when write-through can't or shouldn't be used.
3175 +     */
3176 +    static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3177 +        return new AbstractMap.SimpleEntry<K,V>(k, v);
3178 +    }
3179 +
3180      /* ---------------- Serialization Support -------------- */
3181  
3182      /**
3183 <     * Helper class used in previous version, declared for the sake of
3184 <     * serialization compatibility
3183 >     * Stripped-down version of helper class used in previous version,
3184 >     * declared for the sake of serialization compatibility
3185       */
3186 <    static class Segment<K,V> extends java.util.concurrent.locks.ReentrantLock
1509 <        implements Serializable {
3186 >    static class Segment<K,V> implements Serializable {
3187          private static final long serialVersionUID = 2249069246763182397L;
3188          final float loadFactor;
3189          Segment(float lf) { this.loadFactor = lf; }
# Line 1521 | Line 3198 | public class ConcurrentHashMapV8<K, V>
3198       * for each key-value mapping, followed by a null pair.
3199       * The key-value mappings are emitted in no particular order.
3200       */
3201 <    @SuppressWarnings("unchecked")
3202 <    private void writeObject(java.io.ObjectOutputStream s)
3203 <            throws java.io.IOException {
3201 >    @SuppressWarnings("unchecked") private void writeObject
3202 >        (java.io.ObjectOutputStream s)
3203 >        throws java.io.IOException {
3204          if (segments == null) { // for serialization compatibility
3205              segments = (Segment<K,V>[])
3206                  new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3207              for (int i = 0; i < segments.length; ++i)
3208 <                segments[i] = new Segment<K,V>(loadFactor);
3208 >                segments[i] = new Segment<K,V>(LOAD_FACTOR);
3209          }
3210          s.defaultWriteObject();
3211 <        new HashIterator().writeEntries(s);
3211 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3212 >        Object v;
3213 >        while ((v = it.advance()) != null) {
3214 >            s.writeObject(it.nextKey);
3215 >            s.writeObject(v);
3216 >        }
3217          s.writeObject(null);
3218          s.writeObject(null);
3219          segments = null; // throw away
# Line 1541 | Line 3223 | public class ConcurrentHashMapV8<K, V>
3223       * Reconstitutes the instance from a stream (that is, deserializes it).
3224       * @param s the stream
3225       */
3226 <    @SuppressWarnings("unchecked")
3227 <    private void readObject(java.io.ObjectInputStream s)
3228 <            throws java.io.IOException, ClassNotFoundException {
3226 >    @SuppressWarnings("unchecked") private void readObject
3227 >        (java.io.ObjectInputStream s)
3228 >        throws java.io.IOException, ClassNotFoundException {
3229          s.defaultReadObject();
1548        // find load factor in a segment, if one exists
1549        if (segments != null && segments.length != 0)
1550            this.loadFactor = segments[0].loadFactor;
1551        else
1552            this.loadFactor = DEFAULT_LOAD_FACTOR;
1553        this.initCap = DEFAULT_CAPACITY;
1554        LongAdder ct = new LongAdder(); // force final field write
1555        UNSAFE.putObjectVolatile(this, counterOffset, ct);
3230          this.segments = null; // unneeded
3231  
3232 <        // Read the keys and values, and put the mappings in the table
3232 >        // Create all nodes, then place in table once size is known
3233 >        long size = 0L;
3234 >        Node p = null;
3235          for (;;) {
3236 <            K key = (K) s.readObject();
3237 <            V value = (V) s.readObject();
3238 <            if (key == null)
3236 >            K k = (K) s.readObject();
3237 >            V v = (V) s.readObject();
3238 >            if (k != null && v != null) {
3239 >                int h = spread(k.hashCode());
3240 >                p = new Node(h, k, v, p);
3241 >                ++size;
3242 >            }
3243 >            else
3244                  break;
3245 <            put(key, value);
3245 >        }
3246 >        if (p != null) {
3247 >            boolean init = false;
3248 >            int n;
3249 >            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3250 >                n = MAXIMUM_CAPACITY;
3251 >            else {
3252 >                int sz = (int)size;
3253 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
3254 >            }
3255 >            int sc = sizeCtl;
3256 >            boolean collide = false;
3257 >            if (n > sc &&
3258 >                U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3259 >                try {
3260 >                    if (table == null) {
3261 >                        init = true;
3262 >                        Node[] tab = new Node[n];
3263 >                        int mask = n - 1;
3264 >                        while (p != null) {
3265 >                            int j = p.hash & mask;
3266 >                            Node next = p.next;
3267 >                            Node q = p.next = tabAt(tab, j);
3268 >                            setTabAt(tab, j, p);
3269 >                            if (!collide && q != null && q.hash == p.hash)
3270 >                                collide = true;
3271 >                            p = next;
3272 >                        }
3273 >                        table = tab;
3274 >                        addCount(size, -1);
3275 >                        sc = n - (n >>> 2);
3276 >                    }
3277 >                } finally {
3278 >                    sizeCtl = sc;
3279 >                }
3280 >                if (collide) { // rescan and convert to TreeBins
3281 >                    Node[] tab = table;
3282 >                    for (int i = 0; i < tab.length; ++i) {
3283 >                        int c = 0;
3284 >                        for (Node e = tabAt(tab, i); e != null; e = e.next) {
3285 >                            if (++c > TREE_THRESHOLD &&
3286 >                                (e.key instanceof Comparable)) {
3287 >                                replaceWithTreeBin(tab, i, e.key);
3288 >                                break;
3289 >                            }
3290 >                        }
3291 >                    }
3292 >                }
3293 >            }
3294 >            if (!init) { // Can only happen if unsafely published.
3295 >                while (p != null) {
3296 >                    internalPut((K)p.key, (V)p.val, false);
3297 >                    p = p.next;
3298 >                }
3299 >            }
3300 >        }
3301 >    }
3302 >
3303 >    // -------------------------------------------------------
3304 >
3305 >    // Sams
3306 >    /** Interface describing a void action of one argument */
3307 >    public interface Action<A> { void apply(A a); }
3308 >    /** Interface describing a void action of two arguments */
3309 >    public interface BiAction<A,B> { void apply(A a, B b); }
3310 >    /** Interface describing a function of one argument */
3311 >    public interface Fun<A,T> { T apply(A a); }
3312 >    /** Interface describing a function of two arguments */
3313 >    public interface BiFun<A,B,T> { T apply(A a, B b); }
3314 >    /** Interface describing a function of no arguments */
3315 >    public interface Generator<T> { T apply(); }
3316 >    /** Interface describing a function mapping its argument to a double */
3317 >    public interface ObjectToDouble<A> { double apply(A a); }
3318 >    /** Interface describing a function mapping its argument to a long */
3319 >    public interface ObjectToLong<A> { long apply(A a); }
3320 >    /** Interface describing a function mapping its argument to an int */
3321 >    public interface ObjectToInt<A> {int apply(A a); }
3322 >    /** Interface describing a function mapping two arguments to a double */
3323 >    public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3324 >    /** Interface describing a function mapping two arguments to a long */
3325 >    public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3326 >    /** Interface describing a function mapping two arguments to an int */
3327 >    public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3328 >    /** Interface describing a function mapping a double to a double */
3329 >    public interface DoubleToDouble { double apply(double a); }
3330 >    /** Interface describing a function mapping a long to a long */
3331 >    public interface LongToLong { long apply(long a); }
3332 >    /** Interface describing a function mapping an int to an int */
3333 >    public interface IntToInt { int apply(int a); }
3334 >    /** Interface describing a function mapping two doubles to a double */
3335 >    public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3336 >    /** Interface describing a function mapping two longs to a long */
3337 >    public interface LongByLongToLong { long apply(long a, long b); }
3338 >    /** Interface describing a function mapping two ints to an int */
3339 >    public interface IntByIntToInt { int apply(int a, int b); }
3340 >
3341 >
3342 >    // -------------------------------------------------------
3343 >
3344 >    /**
3345 >     * Performs the given action for each (key, value).
3346 >     *
3347 >     * @param action the action
3348 >     */
3349 >    public void forEach(BiAction<K,V> action) {
3350 >        ForkJoinTasks.forEach
3351 >            (this, action).invoke();
3352 >    }
3353 >
3354 >    /**
3355 >     * Performs the given action for each non-null transformation
3356 >     * of each (key, value).
3357 >     *
3358 >     * @param transformer a function returning the transformation
3359 >     * for an element, or null of there is no transformation (in
3360 >     * which case the action is not applied).
3361 >     * @param action the action
3362 >     */
3363 >    public <U> void forEach(BiFun<? super K, ? super V, ? extends U> transformer,
3364 >                            Action<U> action) {
3365 >        ForkJoinTasks.forEach
3366 >            (this, transformer, action).invoke();
3367 >    }
3368 >
3369 >    /**
3370 >     * Returns a non-null result from applying the given search
3371 >     * function on each (key, value), or null if none.  Upon
3372 >     * success, further element processing is suppressed and the
3373 >     * results of any other parallel invocations of the search
3374 >     * function are ignored.
3375 >     *
3376 >     * @param searchFunction a function returning a non-null
3377 >     * result on success, else null
3378 >     * @return a non-null result from applying the given search
3379 >     * function on each (key, value), or null if none
3380 >     */
3381 >    public <U> U search(BiFun<? super K, ? super V, ? extends U> searchFunction) {
3382 >        return ForkJoinTasks.search
3383 >            (this, searchFunction).invoke();
3384 >    }
3385 >
3386 >    /**
3387 >     * Returns the result of accumulating the given transformation
3388 >     * of all (key, value) pairs using the given reducer to
3389 >     * combine values, or null if none.
3390 >     *
3391 >     * @param transformer a function returning the transformation
3392 >     * for an element, or null of there is no transformation (in
3393 >     * which case it is not combined).
3394 >     * @param reducer a commutative associative combining function
3395 >     * @return the result of accumulating the given transformation
3396 >     * of all (key, value) pairs
3397 >     */
3398 >    public <U> U reduce(BiFun<? super K, ? super V, ? extends U> transformer,
3399 >                        BiFun<? super U, ? super U, ? extends U> reducer) {
3400 >        return ForkJoinTasks.reduce
3401 >            (this, transformer, reducer).invoke();
3402 >    }
3403 >
3404 >    /**
3405 >     * Returns the result of accumulating the given transformation
3406 >     * of all (key, value) pairs using the given reducer to
3407 >     * combine values, and the given basis as an identity value.
3408 >     *
3409 >     * @param transformer a function returning the transformation
3410 >     * for an element
3411 >     * @param basis the identity (initial default value) for the reduction
3412 >     * @param reducer a commutative associative combining function
3413 >     * @return the result of accumulating the given transformation
3414 >     * of all (key, value) pairs
3415 >     */
3416 >    public double reduceToDouble(ObjectByObjectToDouble<? super K, ? super V> transformer,
3417 >                                 double basis,
3418 >                                 DoubleByDoubleToDouble reducer) {
3419 >        return ForkJoinTasks.reduceToDouble
3420 >            (this, transformer, basis, reducer).invoke();
3421 >    }
3422 >
3423 >    /**
3424 >     * Returns the result of accumulating the given transformation
3425 >     * of all (key, value) pairs using the given reducer to
3426 >     * combine values, and the given basis as an identity value.
3427 >     *
3428 >     * @param transformer a function returning the transformation
3429 >     * for an element
3430 >     * @param basis the identity (initial default value) for the reduction
3431 >     * @param reducer a commutative associative combining function
3432 >     * @return the result of accumulating the given transformation
3433 >     * of all (key, value) pairs
3434 >     */
3435 >    public long reduceToLong(ObjectByObjectToLong<? super K, ? super V> transformer,
3436 >                             long basis,
3437 >                             LongByLongToLong reducer) {
3438 >        return ForkJoinTasks.reduceToLong
3439 >            (this, transformer, basis, reducer).invoke();
3440 >    }
3441 >
3442 >    /**
3443 >     * Returns the result of accumulating the given transformation
3444 >     * of all (key, value) pairs using the given reducer to
3445 >     * combine values, and the given basis as an identity value.
3446 >     *
3447 >     * @param transformer a function returning the transformation
3448 >     * for an element
3449 >     * @param basis the identity (initial default value) for the reduction
3450 >     * @param reducer a commutative associative combining function
3451 >     * @return the result of accumulating the given transformation
3452 >     * of all (key, value) pairs
3453 >     */
3454 >    public int reduceToInt(ObjectByObjectToInt<? super K, ? super V> transformer,
3455 >                           int basis,
3456 >                           IntByIntToInt reducer) {
3457 >        return ForkJoinTasks.reduceToInt
3458 >            (this, transformer, basis, reducer).invoke();
3459 >    }
3460 >
3461 >    /**
3462 >     * Performs the given action for each key.
3463 >     *
3464 >     * @param action the action
3465 >     */
3466 >    public void forEachKey(Action<K> action) {
3467 >        ForkJoinTasks.forEachKey
3468 >            (this, action).invoke();
3469 >    }
3470 >
3471 >    /**
3472 >     * Performs the given action for each non-null transformation
3473 >     * of each key.
3474 >     *
3475 >     * @param transformer a function returning the transformation
3476 >     * for an element, or null of there is no transformation (in
3477 >     * which case the action is not applied).
3478 >     * @param action the action
3479 >     */
3480 >    public <U> void forEachKey(Fun<? super K, ? extends U> transformer,
3481 >                               Action<U> action) {
3482 >        ForkJoinTasks.forEachKey
3483 >            (this, transformer, action).invoke();
3484 >    }
3485 >
3486 >    /**
3487 >     * Returns a non-null result from applying the given search
3488 >     * function on each key, or null if none. Upon success,
3489 >     * further element processing is suppressed and the results of
3490 >     * any other parallel invocations of the search function are
3491 >     * ignored.
3492 >     *
3493 >     * @param searchFunction a function returning a non-null
3494 >     * result on success, else null
3495 >     * @return a non-null result from applying the given search
3496 >     * function on each key, or null if none
3497 >     */
3498 >    public <U> U searchKeys(Fun<? super K, ? extends U> searchFunction) {
3499 >        return ForkJoinTasks.searchKeys
3500 >            (this, searchFunction).invoke();
3501 >    }
3502 >
3503 >    /**
3504 >     * Returns the result of accumulating all keys using the given
3505 >     * reducer to combine values, or null if none.
3506 >     *
3507 >     * @param reducer a commutative associative combining function
3508 >     * @return the result of accumulating all keys using the given
3509 >     * reducer to combine values, or null if none
3510 >     */
3511 >    public K reduceKeys(BiFun<? super K, ? super K, ? extends K> reducer) {
3512 >        return ForkJoinTasks.reduceKeys
3513 >            (this, reducer).invoke();
3514 >    }
3515 >
3516 >    /**
3517 >     * Returns the result of accumulating the given transformation
3518 >     * of all keys using the given reducer to combine values, or
3519 >     * null if none.
3520 >     *
3521 >     * @param transformer a function returning the transformation
3522 >     * for an element, or null of there is no transformation (in
3523 >     * which case it is not combined).
3524 >     * @param reducer a commutative associative combining function
3525 >     * @return the result of accumulating the given transformation
3526 >     * of all keys
3527 >     */
3528 >    public <U> U reduceKeys(Fun<? super K, ? extends U> transformer,
3529 >                            BiFun<? super U, ? super U, ? extends U> reducer) {
3530 >        return ForkJoinTasks.reduceKeys
3531 >            (this, transformer, reducer).invoke();
3532 >    }
3533 >
3534 >    /**
3535 >     * Returns the result of accumulating the given transformation
3536 >     * of all keys using the given reducer to combine values, and
3537 >     * the given basis as an identity value.
3538 >     *
3539 >     * @param transformer a function returning the transformation
3540 >     * for an element
3541 >     * @param basis the identity (initial default value) for the reduction
3542 >     * @param reducer a commutative associative combining function
3543 >     * @return  the result of accumulating the given transformation
3544 >     * of all keys
3545 >     */
3546 >    public double reduceKeysToDouble(ObjectToDouble<? super K> transformer,
3547 >                                     double basis,
3548 >                                     DoubleByDoubleToDouble reducer) {
3549 >        return ForkJoinTasks.reduceKeysToDouble
3550 >            (this, transformer, basis, reducer).invoke();
3551 >    }
3552 >
3553 >    /**
3554 >     * Returns the result of accumulating the given transformation
3555 >     * of all keys using the given reducer to combine values, and
3556 >     * the given basis as an identity value.
3557 >     *
3558 >     * @param transformer a function returning the transformation
3559 >     * for an element
3560 >     * @param basis the identity (initial default value) for the reduction
3561 >     * @param reducer a commutative associative combining function
3562 >     * @return the result of accumulating the given transformation
3563 >     * of all keys
3564 >     */
3565 >    public long reduceKeysToLong(ObjectToLong<? super K> transformer,
3566 >                                 long basis,
3567 >                                 LongByLongToLong reducer) {
3568 >        return ForkJoinTasks.reduceKeysToLong
3569 >            (this, transformer, basis, reducer).invoke();
3570 >    }
3571 >
3572 >    /**
3573 >     * Returns the result of accumulating the given transformation
3574 >     * of all keys using the given reducer to combine values, and
3575 >     * the given basis as an identity value.
3576 >     *
3577 >     * @param transformer a function returning the transformation
3578 >     * for an element
3579 >     * @param basis the identity (initial default value) for the reduction
3580 >     * @param reducer a commutative associative combining function
3581 >     * @return the result of accumulating the given transformation
3582 >     * of all keys
3583 >     */
3584 >    public int reduceKeysToInt(ObjectToInt<? super K> transformer,
3585 >                               int basis,
3586 >                               IntByIntToInt reducer) {
3587 >        return ForkJoinTasks.reduceKeysToInt
3588 >            (this, transformer, basis, reducer).invoke();
3589 >    }
3590 >
3591 >    /**
3592 >     * Performs the given action for each value.
3593 >     *
3594 >     * @param action the action
3595 >     */
3596 >    public void forEachValue(Action<V> action) {
3597 >        ForkJoinTasks.forEachValue
3598 >            (this, action).invoke();
3599 >    }
3600 >
3601 >    /**
3602 >     * Performs the given action for each non-null transformation
3603 >     * of each value.
3604 >     *
3605 >     * @param transformer a function returning the transformation
3606 >     * for an element, or null of there is no transformation (in
3607 >     * which case the action is not applied).
3608 >     */
3609 >    public <U> void forEachValue(Fun<? super V, ? extends U> transformer,
3610 >                                 Action<U> action) {
3611 >        ForkJoinTasks.forEachValue
3612 >            (this, transformer, action).invoke();
3613 >    }
3614 >
3615 >    /**
3616 >     * Returns a non-null result from applying the given search
3617 >     * function on each value, or null if none.  Upon success,
3618 >     * further element processing is suppressed and the results of
3619 >     * any other parallel invocations of the search function are
3620 >     * ignored.
3621 >     *
3622 >     * @param searchFunction a function returning a non-null
3623 >     * result on success, else null
3624 >     * @return a non-null result from applying the given search
3625 >     * function on each value, or null if none
3626 >     *
3627 >     */
3628 >    public <U> U searchValues(Fun<? super V, ? extends U> searchFunction) {
3629 >        return ForkJoinTasks.searchValues
3630 >            (this, searchFunction).invoke();
3631 >    }
3632 >
3633 >    /**
3634 >     * Returns the result of accumulating all values using the
3635 >     * given reducer to combine values, or null if none.
3636 >     *
3637 >     * @param reducer a commutative associative combining function
3638 >     * @return  the result of accumulating all values
3639 >     */
3640 >    public V reduceValues(BiFun<? super V, ? super V, ? extends V> reducer) {
3641 >        return ForkJoinTasks.reduceValues
3642 >            (this, reducer).invoke();
3643 >    }
3644 >
3645 >    /**
3646 >     * Returns the result of accumulating the given transformation
3647 >     * of all values using the given reducer to combine values, or
3648 >     * null if none.
3649 >     *
3650 >     * @param transformer a function returning the transformation
3651 >     * for an element, or null of there is no transformation (in
3652 >     * which case it is not combined).
3653 >     * @param reducer a commutative associative combining function
3654 >     * @return the result of accumulating the given transformation
3655 >     * of all values
3656 >     */
3657 >    public <U> U reduceValues(Fun<? super V, ? extends U> transformer,
3658 >                              BiFun<? super U, ? super U, ? extends U> reducer) {
3659 >        return ForkJoinTasks.reduceValues
3660 >            (this, transformer, reducer).invoke();
3661 >    }
3662 >
3663 >    /**
3664 >     * Returns the result of accumulating the given transformation
3665 >     * of all values using the given reducer to combine values,
3666 >     * and the given basis as an identity value.
3667 >     *
3668 >     * @param transformer a function returning the transformation
3669 >     * for an element
3670 >     * @param basis the identity (initial default value) for the reduction
3671 >     * @param reducer a commutative associative combining function
3672 >     * @return the result of accumulating the given transformation
3673 >     * of all values
3674 >     */
3675 >    public double reduceValuesToDouble(ObjectToDouble<? super V> transformer,
3676 >                                       double basis,
3677 >                                       DoubleByDoubleToDouble reducer) {
3678 >        return ForkJoinTasks.reduceValuesToDouble
3679 >            (this, transformer, basis, reducer).invoke();
3680 >    }
3681 >
3682 >    /**
3683 >     * Returns the result of accumulating the given transformation
3684 >     * of all values using the given reducer to combine values,
3685 >     * and the given basis as an identity value.
3686 >     *
3687 >     * @param transformer a function returning the transformation
3688 >     * for an element
3689 >     * @param basis the identity (initial default value) for the reduction
3690 >     * @param reducer a commutative associative combining function
3691 >     * @return the result of accumulating the given transformation
3692 >     * of all values
3693 >     */
3694 >    public long reduceValuesToLong(ObjectToLong<? super V> transformer,
3695 >                                   long basis,
3696 >                                   LongByLongToLong reducer) {
3697 >        return ForkJoinTasks.reduceValuesToLong
3698 >            (this, transformer, basis, reducer).invoke();
3699 >    }
3700 >
3701 >    /**
3702 >     * Returns the result of accumulating the given transformation
3703 >     * of all values using the given reducer to combine values,
3704 >     * and the given basis as an identity value.
3705 >     *
3706 >     * @param transformer a function returning the transformation
3707 >     * for an element
3708 >     * @param basis the identity (initial default value) for the reduction
3709 >     * @param reducer a commutative associative combining function
3710 >     * @return the result of accumulating the given transformation
3711 >     * of all values
3712 >     */
3713 >    public int reduceValuesToInt(ObjectToInt<? super V> transformer,
3714 >                                 int basis,
3715 >                                 IntByIntToInt reducer) {
3716 >        return ForkJoinTasks.reduceValuesToInt
3717 >            (this, transformer, basis, reducer).invoke();
3718 >    }
3719 >
3720 >    /**
3721 >     * Performs the given action for each entry.
3722 >     *
3723 >     * @param action the action
3724 >     */
3725 >    public void forEachEntry(Action<Map.Entry<K,V>> action) {
3726 >        ForkJoinTasks.forEachEntry
3727 >            (this, action).invoke();
3728 >    }
3729 >
3730 >    /**
3731 >     * Performs the given action for each non-null transformation
3732 >     * of each entry.
3733 >     *
3734 >     * @param transformer a function returning the transformation
3735 >     * for an element, or null of there is no transformation (in
3736 >     * which case the action is not applied).
3737 >     * @param action the action
3738 >     */
3739 >    public <U> void forEachEntry(Fun<Map.Entry<K,V>, ? extends U> transformer,
3740 >                                 Action<U> action) {
3741 >        ForkJoinTasks.forEachEntry
3742 >            (this, transformer, action).invoke();
3743 >    }
3744 >
3745 >    /**
3746 >     * Returns a non-null result from applying the given search
3747 >     * function on each entry, or null if none.  Upon success,
3748 >     * further element processing is suppressed and the results of
3749 >     * any other parallel invocations of the search function are
3750 >     * ignored.
3751 >     *
3752 >     * @param searchFunction a function returning a non-null
3753 >     * result on success, else null
3754 >     * @return a non-null result from applying the given search
3755 >     * function on each entry, or null if none
3756 >     */
3757 >    public <U> U searchEntries(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
3758 >        return ForkJoinTasks.searchEntries
3759 >            (this, searchFunction).invoke();
3760 >    }
3761 >
3762 >    /**
3763 >     * Returns the result of accumulating all entries using the
3764 >     * given reducer to combine values, or null if none.
3765 >     *
3766 >     * @param reducer a commutative associative combining function
3767 >     * @return the result of accumulating all entries
3768 >     */
3769 >    public Map.Entry<K,V> reduceEntries(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3770 >        return ForkJoinTasks.reduceEntries
3771 >            (this, reducer).invoke();
3772 >    }
3773 >
3774 >    /**
3775 >     * Returns the result of accumulating the given transformation
3776 >     * of all entries using the given reducer to combine values,
3777 >     * or null if none.
3778 >     *
3779 >     * @param transformer a function returning the transformation
3780 >     * for an element, or null of there is no transformation (in
3781 >     * which case it is not combined).
3782 >     * @param reducer a commutative associative combining function
3783 >     * @return the result of accumulating the given transformation
3784 >     * of all entries
3785 >     */
3786 >    public <U> U reduceEntries(Fun<Map.Entry<K,V>, ? extends U> transformer,
3787 >                               BiFun<? super U, ? super U, ? extends U> reducer) {
3788 >        return ForkJoinTasks.reduceEntries
3789 >            (this, transformer, reducer).invoke();
3790 >    }
3791 >
3792 >    /**
3793 >     * Returns the result of accumulating the given transformation
3794 >     * of all entries using the given reducer to combine values,
3795 >     * and the given basis as an identity value.
3796 >     *
3797 >     * @param transformer a function returning the transformation
3798 >     * for an element
3799 >     * @param basis the identity (initial default value) for the reduction
3800 >     * @param reducer a commutative associative combining function
3801 >     * @return the result of accumulating the given transformation
3802 >     * of all entries
3803 >     */
3804 >    public double reduceEntriesToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
3805 >                                        double basis,
3806 >                                        DoubleByDoubleToDouble reducer) {
3807 >        return ForkJoinTasks.reduceEntriesToDouble
3808 >            (this, transformer, basis, reducer).invoke();
3809 >    }
3810 >
3811 >    /**
3812 >     * Returns the result of accumulating the given transformation
3813 >     * of all entries using the given reducer to combine values,
3814 >     * and the given basis as an identity value.
3815 >     *
3816 >     * @param transformer a function returning the transformation
3817 >     * for an element
3818 >     * @param basis the identity (initial default value) for the reduction
3819 >     * @param reducer a commutative associative combining function
3820 >     * @return  the result of accumulating the given transformation
3821 >     * of all entries
3822 >     */
3823 >    public long reduceEntriesToLong(ObjectToLong<Map.Entry<K,V>> transformer,
3824 >                                    long basis,
3825 >                                    LongByLongToLong reducer) {
3826 >        return ForkJoinTasks.reduceEntriesToLong
3827 >            (this, transformer, basis, reducer).invoke();
3828 >    }
3829 >
3830 >    /**
3831 >     * Returns the result of accumulating the given transformation
3832 >     * of all entries using the given reducer to combine values,
3833 >     * and the given basis as an identity value.
3834 >     *
3835 >     * @param transformer a function returning the transformation
3836 >     * for an element
3837 >     * @param basis the identity (initial default value) for the reduction
3838 >     * @param reducer a commutative associative combining function
3839 >     * @return the result of accumulating the given transformation
3840 >     * of all entries
3841 >     */
3842 >    public int reduceEntriesToInt(ObjectToInt<Map.Entry<K,V>> transformer,
3843 >                                  int basis,
3844 >                                  IntByIntToInt reducer) {
3845 >        return ForkJoinTasks.reduceEntriesToInt
3846 >            (this, transformer, basis, reducer).invoke();
3847 >    }
3848 >
3849 >    /* ----------------Views -------------- */
3850 >
3851 >    /**
3852 >     * Base class for views.
3853 >     */
3854 >    static abstract class CHMView<K, V> {
3855 >        final ConcurrentHashMapV8<K, V> map;
3856 >        CHMView(ConcurrentHashMapV8<K, V> map)  { this.map = map; }
3857 >
3858 >        /**
3859 >         * Returns the map backing this view.
3860 >         *
3861 >         * @return the map backing this view
3862 >         */
3863 >        public ConcurrentHashMapV8<K,V> getMap() { return map; }
3864 >
3865 >        public final int size()                 { return map.size(); }
3866 >        public final boolean isEmpty()          { return map.isEmpty(); }
3867 >        public final void clear()               { map.clear(); }
3868 >
3869 >        // implementations below rely on concrete classes supplying these
3870 >        abstract public Iterator<?> iterator();
3871 >        abstract public boolean contains(Object o);
3872 >        abstract public boolean remove(Object o);
3873 >
3874 >        private static final String oomeMsg = "Required array size too large";
3875 >
3876 >        public final Object[] toArray() {
3877 >            long sz = map.mappingCount();
3878 >            if (sz > (long)(MAX_ARRAY_SIZE))
3879 >                throw new OutOfMemoryError(oomeMsg);
3880 >            int n = (int)sz;
3881 >            Object[] r = new Object[n];
3882 >            int i = 0;
3883 >            Iterator<?> it = iterator();
3884 >            while (it.hasNext()) {
3885 >                if (i == n) {
3886 >                    if (n >= MAX_ARRAY_SIZE)
3887 >                        throw new OutOfMemoryError(oomeMsg);
3888 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
3889 >                        n = MAX_ARRAY_SIZE;
3890 >                    else
3891 >                        n += (n >>> 1) + 1;
3892 >                    r = Arrays.copyOf(r, n);
3893 >                }
3894 >                r[i++] = it.next();
3895 >            }
3896 >            return (i == n) ? r : Arrays.copyOf(r, i);
3897 >        }
3898 >
3899 >        @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
3900 >            long sz = map.mappingCount();
3901 >            if (sz > (long)(MAX_ARRAY_SIZE))
3902 >                throw new OutOfMemoryError(oomeMsg);
3903 >            int m = (int)sz;
3904 >            T[] r = (a.length >= m) ? a :
3905 >                (T[])java.lang.reflect.Array
3906 >                .newInstance(a.getClass().getComponentType(), m);
3907 >            int n = r.length;
3908 >            int i = 0;
3909 >            Iterator<?> it = iterator();
3910 >            while (it.hasNext()) {
3911 >                if (i == n) {
3912 >                    if (n >= MAX_ARRAY_SIZE)
3913 >                        throw new OutOfMemoryError(oomeMsg);
3914 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
3915 >                        n = MAX_ARRAY_SIZE;
3916 >                    else
3917 >                        n += (n >>> 1) + 1;
3918 >                    r = Arrays.copyOf(r, n);
3919 >                }
3920 >                r[i++] = (T)it.next();
3921 >            }
3922 >            if (a == r && i < n) {
3923 >                r[i] = null; // null-terminate
3924 >                return r;
3925 >            }
3926 >            return (i == n) ? r : Arrays.copyOf(r, i);
3927 >        }
3928 >
3929 >        public final int hashCode() {
3930 >            int h = 0;
3931 >            for (Iterator<?> it = iterator(); it.hasNext();)
3932 >                h += it.next().hashCode();
3933 >            return h;
3934 >        }
3935 >
3936 >        public final String toString() {
3937 >            StringBuilder sb = new StringBuilder();
3938 >            sb.append('[');
3939 >            Iterator<?> it = iterator();
3940 >            if (it.hasNext()) {
3941 >                for (;;) {
3942 >                    Object e = it.next();
3943 >                    sb.append(e == this ? "(this Collection)" : e);
3944 >                    if (!it.hasNext())
3945 >                        break;
3946 >                    sb.append(',').append(' ');
3947 >                }
3948 >            }
3949 >            return sb.append(']').toString();
3950 >        }
3951 >
3952 >        public final boolean containsAll(Collection<?> c) {
3953 >            if (c != this) {
3954 >                for (Iterator<?> it = c.iterator(); it.hasNext();) {
3955 >                    Object e = it.next();
3956 >                    if (e == null || !contains(e))
3957 >                        return false;
3958 >                }
3959 >            }
3960 >            return true;
3961 >        }
3962 >
3963 >        public final boolean removeAll(Collection<?> c) {
3964 >            boolean modified = false;
3965 >            for (Iterator<?> it = iterator(); it.hasNext();) {
3966 >                if (c.contains(it.next())) {
3967 >                    it.remove();
3968 >                    modified = true;
3969 >                }
3970 >            }
3971 >            return modified;
3972 >        }
3973 >
3974 >        public final boolean retainAll(Collection<?> c) {
3975 >            boolean modified = false;
3976 >            for (Iterator<?> it = iterator(); it.hasNext();) {
3977 >                if (!c.contains(it.next())) {
3978 >                    it.remove();
3979 >                    modified = true;
3980 >                }
3981 >            }
3982 >            return modified;
3983 >        }
3984 >
3985 >    }
3986 >
3987 >    /**
3988 >     * A view of a ConcurrentHashMapV8 as a {@link Set} of keys, in
3989 >     * which additions may optionally be enabled by mapping to a
3990 >     * common value.  This class cannot be directly instantiated. See
3991 >     * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
3992 >     * {@link #newKeySet(int)}.
3993 >     */
3994 >    public static class KeySetView<K,V> extends CHMView<K,V>
3995 >        implements Set<K>, java.io.Serializable {
3996 >        private static final long serialVersionUID = 7249069246763182397L;
3997 >        private final V value;
3998 >        KeySetView(ConcurrentHashMapV8<K, V> map, V value) {  // non-public
3999 >            super(map);
4000 >            this.value = value;
4001 >        }
4002 >
4003 >        /**
4004 >         * Returns the default mapped value for additions,
4005 >         * or {@code null} if additions are not supported.
4006 >         *
4007 >         * @return the default mapped value for additions, or {@code null}
4008 >         * if not supported.
4009 >         */
4010 >        public V getMappedValue() { return value; }
4011 >
4012 >        // implement Set API
4013 >
4014 >        public boolean contains(Object o) { return map.containsKey(o); }
4015 >        public boolean remove(Object o)   { return map.remove(o) != null; }
4016 >
4017 >        /**
4018 >         * Returns a "weakly consistent" iterator that will never
4019 >         * throw {@link ConcurrentModificationException}, and
4020 >         * guarantees to traverse elements as they existed upon
4021 >         * construction of the iterator, and may (but is not
4022 >         * guaranteed to) reflect any modifications subsequent to
4023 >         * construction.
4024 >         *
4025 >         * @return an iterator over the keys of this map
4026 >         */
4027 >        public Iterator<K> iterator()     { return new KeyIterator<K,V>(map); }
4028 >        public boolean add(K e) {
4029 >            V v;
4030 >            if ((v = value) == null)
4031 >                throw new UnsupportedOperationException();
4032 >            if (e == null)
4033 >                throw new NullPointerException();
4034 >            return map.internalPut(e, v, true) == null;
4035 >        }
4036 >        public boolean addAll(Collection<? extends K> c) {
4037 >            boolean added = false;
4038 >            V v;
4039 >            if ((v = value) == null)
4040 >                throw new UnsupportedOperationException();
4041 >            for (K e : c) {
4042 >                if (e == null)
4043 >                    throw new NullPointerException();
4044 >                if (map.internalPut(e, v, true) == null)
4045 >                    added = true;
4046 >            }
4047 >            return added;
4048 >        }
4049 >        public boolean equals(Object o) {
4050 >            Set<?> c;
4051 >            return ((o instanceof Set) &&
4052 >                    ((c = (Set<?>)o) == this ||
4053 >                     (containsAll(c) && c.containsAll(this))));
4054 >        }
4055 >
4056 >        /**
4057 >         * Performs the given action for each key.
4058 >         *
4059 >         * @param action the action
4060 >         */
4061 >        public void forEach(Action<K> action) {
4062 >            ForkJoinTasks.forEachKey
4063 >                (map, action).invoke();
4064 >        }
4065 >
4066 >        /**
4067 >         * Performs the given action for each non-null transformation
4068 >         * of each key.
4069 >         *
4070 >         * @param transformer a function returning the transformation
4071 >         * for an element, or null of there is no transformation (in
4072 >         * which case the action is not applied).
4073 >         * @param action the action
4074 >         */
4075 >        public <U> void forEach(Fun<? super K, ? extends U> transformer,
4076 >                                Action<U> action) {
4077 >            ForkJoinTasks.forEachKey
4078 >                (map, transformer, action).invoke();
4079 >        }
4080 >
4081 >        /**
4082 >         * Returns a non-null result from applying the given search
4083 >         * function on each key, or null if none. Upon success,
4084 >         * further element processing is suppressed and the results of
4085 >         * any other parallel invocations of the search function are
4086 >         * ignored.
4087 >         *
4088 >         * @param searchFunction a function returning a non-null
4089 >         * result on success, else null
4090 >         * @return a non-null result from applying the given search
4091 >         * function on each key, or null if none
4092 >         */
4093 >        public <U> U search(Fun<? super K, ? extends U> searchFunction) {
4094 >            return ForkJoinTasks.searchKeys
4095 >                (map, searchFunction).invoke();
4096 >        }
4097 >
4098 >        /**
4099 >         * Returns the result of accumulating all keys using the given
4100 >         * reducer to combine values, or null if none.
4101 >         *
4102 >         * @param reducer a commutative associative combining function
4103 >         * @return the result of accumulating all keys using the given
4104 >         * reducer to combine values, or null if none
4105 >         */
4106 >        public K reduce(BiFun<? super K, ? super K, ? extends K> reducer) {
4107 >            return ForkJoinTasks.reduceKeys
4108 >                (map, reducer).invoke();
4109 >        }
4110 >
4111 >        /**
4112 >         * Returns the result of accumulating the given transformation
4113 >         * of all keys using the given reducer to combine values, and
4114 >         * the given basis as an identity value.
4115 >         *
4116 >         * @param transformer a function returning the transformation
4117 >         * for an element
4118 >         * @param basis the identity (initial default value) for the reduction
4119 >         * @param reducer a commutative associative combining function
4120 >         * @return  the result of accumulating the given transformation
4121 >         * of all keys
4122 >         */
4123 >        public double reduceToDouble(ObjectToDouble<? super K> transformer,
4124 >                                     double basis,
4125 >                                     DoubleByDoubleToDouble reducer) {
4126 >            return ForkJoinTasks.reduceKeysToDouble
4127 >                (map, transformer, basis, reducer).invoke();
4128 >        }
4129 >
4130 >        /**
4131 >         * Returns the result of accumulating the given transformation
4132 >         * of all keys using the given reducer to combine values, and
4133 >         * the given basis as an identity value.
4134 >         *
4135 >         * @param transformer a function returning the transformation
4136 >         * for an element
4137 >         * @param basis the identity (initial default value) for the reduction
4138 >         * @param reducer a commutative associative combining function
4139 >         * @return the result of accumulating the given transformation
4140 >         * of all keys
4141 >         */
4142 >        public long reduceToLong(ObjectToLong<? super K> transformer,
4143 >                                 long basis,
4144 >                                 LongByLongToLong reducer) {
4145 >            return ForkJoinTasks.reduceKeysToLong
4146 >                (map, transformer, basis, reducer).invoke();
4147 >        }
4148 >
4149 >        /**
4150 >         * Returns the result of accumulating the given transformation
4151 >         * of all keys using the given reducer to combine values, and
4152 >         * the given basis as an identity value.
4153 >         *
4154 >         * @param transformer a function returning the transformation
4155 >         * for an element
4156 >         * @param basis the identity (initial default value) for the reduction
4157 >         * @param reducer a commutative associative combining function
4158 >         * @return the result of accumulating the given transformation
4159 >         * of all keys
4160 >         */
4161 >        public int reduceToInt(ObjectToInt<? super K> transformer,
4162 >                               int basis,
4163 >                               IntByIntToInt reducer) {
4164 >            return ForkJoinTasks.reduceKeysToInt
4165 >                (map, transformer, basis, reducer).invoke();
4166 >        }
4167 >
4168 >    }
4169 >
4170 >    /**
4171 >     * A view of a ConcurrentHashMapV8 as a {@link Collection} of
4172 >     * values, in which additions are disabled. This class cannot be
4173 >     * directly instantiated. See {@link #values},
4174 >     *
4175 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4176 >     * that will never throw {@link ConcurrentModificationException},
4177 >     * and guarantees to traverse elements as they existed upon
4178 >     * construction of the iterator, and may (but is not guaranteed to)
4179 >     * reflect any modifications subsequent to construction.
4180 >     */
4181 >    public static final class ValuesView<K,V> extends CHMView<K,V>
4182 >        implements Collection<V> {
4183 >        ValuesView(ConcurrentHashMapV8<K, V> map)   { super(map); }
4184 >        public final boolean contains(Object o) { return map.containsValue(o); }
4185 >        public final boolean remove(Object o) {
4186 >            if (o != null) {
4187 >                Iterator<V> it = new ValueIterator<K,V>(map);
4188 >                while (it.hasNext()) {
4189 >                    if (o.equals(it.next())) {
4190 >                        it.remove();
4191 >                        return true;
4192 >                    }
4193 >                }
4194 >            }
4195 >            return false;
4196 >        }
4197 >
4198 >        /**
4199 >         * Returns a "weakly consistent" iterator that will never
4200 >         * throw {@link ConcurrentModificationException}, and
4201 >         * guarantees to traverse elements as they existed upon
4202 >         * construction of the iterator, and may (but is not
4203 >         * guaranteed to) reflect any modifications subsequent to
4204 >         * construction.
4205 >         *
4206 >         * @return an iterator over the values of this map
4207 >         */
4208 >        public final Iterator<V> iterator() {
4209 >            return new ValueIterator<K,V>(map);
4210 >        }
4211 >        public final boolean add(V e) {
4212 >            throw new UnsupportedOperationException();
4213 >        }
4214 >        public final boolean addAll(Collection<? extends V> c) {
4215 >            throw new UnsupportedOperationException();
4216 >        }
4217 >
4218 >        /**
4219 >         * Performs the given action for each value.
4220 >         *
4221 >         * @param action the action
4222 >         */
4223 >        public void forEach(Action<V> action) {
4224 >            ForkJoinTasks.forEachValue
4225 >                (map, action).invoke();
4226 >        }
4227 >
4228 >        /**
4229 >         * Performs the given action for each non-null transformation
4230 >         * of each value.
4231 >         *
4232 >         * @param transformer a function returning the transformation
4233 >         * for an element, or null of there is no transformation (in
4234 >         * which case the action is not applied).
4235 >         */
4236 >        public <U> void forEach(Fun<? super V, ? extends U> transformer,
4237 >                                     Action<U> action) {
4238 >            ForkJoinTasks.forEachValue
4239 >                (map, transformer, action).invoke();
4240 >        }
4241 >
4242 >        /**
4243 >         * Returns a non-null result from applying the given search
4244 >         * function on each value, or null if none.  Upon success,
4245 >         * further element processing is suppressed and the results of
4246 >         * any other parallel invocations of the search function are
4247 >         * ignored.
4248 >         *
4249 >         * @param searchFunction a function returning a non-null
4250 >         * result on success, else null
4251 >         * @return a non-null result from applying the given search
4252 >         * function on each value, or null if none
4253 >         *
4254 >         */
4255 >        public <U> U search(Fun<? super V, ? extends U> searchFunction) {
4256 >            return ForkJoinTasks.searchValues
4257 >                (map, searchFunction).invoke();
4258 >        }
4259 >
4260 >        /**
4261 >         * Returns the result of accumulating all values using the
4262 >         * given reducer to combine values, or null if none.
4263 >         *
4264 >         * @param reducer a commutative associative combining function
4265 >         * @return  the result of accumulating all values
4266 >         */
4267 >        public V reduce(BiFun<? super V, ? super V, ? extends V> reducer) {
4268 >            return ForkJoinTasks.reduceValues
4269 >                (map, reducer).invoke();
4270 >        }
4271 >
4272 >        /**
4273 >         * Returns the result of accumulating the given transformation
4274 >         * of all values using the given reducer to combine values, or
4275 >         * null if none.
4276 >         *
4277 >         * @param transformer a function returning the transformation
4278 >         * for an element, or null of there is no transformation (in
4279 >         * which case it is not combined).
4280 >         * @param reducer a commutative associative combining function
4281 >         * @return the result of accumulating the given transformation
4282 >         * of all values
4283 >         */
4284 >        public <U> U reduce(Fun<? super V, ? extends U> transformer,
4285 >                            BiFun<? super U, ? super U, ? extends U> reducer) {
4286 >            return ForkJoinTasks.reduceValues
4287 >                (map, transformer, reducer).invoke();
4288 >        }
4289 >
4290 >        /**
4291 >         * Returns the result of accumulating the given transformation
4292 >         * of all values using the given reducer to combine values,
4293 >         * and the given basis as an identity value.
4294 >         *
4295 >         * @param transformer a function returning the transformation
4296 >         * for an element
4297 >         * @param basis the identity (initial default value) for the reduction
4298 >         * @param reducer a commutative associative combining function
4299 >         * @return the result of accumulating the given transformation
4300 >         * of all values
4301 >         */
4302 >        public double reduceToDouble(ObjectToDouble<? super V> transformer,
4303 >                                     double basis,
4304 >                                     DoubleByDoubleToDouble reducer) {
4305 >            return ForkJoinTasks.reduceValuesToDouble
4306 >                (map, transformer, basis, reducer).invoke();
4307 >        }
4308 >
4309 >        /**
4310 >         * Returns the result of accumulating the given transformation
4311 >         * of all values using the given reducer to combine values,
4312 >         * and the given basis as an identity value.
4313 >         *
4314 >         * @param transformer a function returning the transformation
4315 >         * for an element
4316 >         * @param basis the identity (initial default value) for the reduction
4317 >         * @param reducer a commutative associative combining function
4318 >         * @return the result of accumulating the given transformation
4319 >         * of all values
4320 >         */
4321 >        public long reduceToLong(ObjectToLong<? super V> transformer,
4322 >                                 long basis,
4323 >                                 LongByLongToLong reducer) {
4324 >            return ForkJoinTasks.reduceValuesToLong
4325 >                (map, transformer, basis, reducer).invoke();
4326 >        }
4327 >
4328 >        /**
4329 >         * Returns the result of accumulating the given transformation
4330 >         * of all values using the given reducer to combine values,
4331 >         * and the given basis as an identity value.
4332 >         *
4333 >         * @param transformer a function returning the transformation
4334 >         * for an element
4335 >         * @param basis the identity (initial default value) for the reduction
4336 >         * @param reducer a commutative associative combining function
4337 >         * @return the result of accumulating the given transformation
4338 >         * of all values
4339 >         */
4340 >        public int reduceToInt(ObjectToInt<? super V> transformer,
4341 >                               int basis,
4342 >                               IntByIntToInt reducer) {
4343 >            return ForkJoinTasks.reduceValuesToInt
4344 >                (map, transformer, basis, reducer).invoke();
4345 >        }
4346 >
4347 >    }
4348 >
4349 >    /**
4350 >     * A view of a ConcurrentHashMapV8 as a {@link Set} of (key, value)
4351 >     * entries.  This class cannot be directly instantiated. See
4352 >     * {@link #entrySet}.
4353 >     */
4354 >    public static final class EntrySetView<K,V> extends CHMView<K,V>
4355 >        implements Set<Map.Entry<K,V>> {
4356 >        EntrySetView(ConcurrentHashMapV8<K, V> map) { super(map); }
4357 >        public final boolean contains(Object o) {
4358 >            Object k, v, r; Map.Entry<?,?> e;
4359 >            return ((o instanceof Map.Entry) &&
4360 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4361 >                    (r = map.get(k)) != null &&
4362 >                    (v = e.getValue()) != null &&
4363 >                    (v == r || v.equals(r)));
4364 >        }
4365 >        public final boolean remove(Object o) {
4366 >            Object k, v; Map.Entry<?,?> e;
4367 >            return ((o instanceof Map.Entry) &&
4368 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4369 >                    (v = e.getValue()) != null &&
4370 >                    map.remove(k, v));
4371 >        }
4372 >
4373 >        /**
4374 >         * Returns a "weakly consistent" iterator that will never
4375 >         * throw {@link ConcurrentModificationException}, and
4376 >         * guarantees to traverse elements as they existed upon
4377 >         * construction of the iterator, and may (but is not
4378 >         * guaranteed to) reflect any modifications subsequent to
4379 >         * construction.
4380 >         *
4381 >         * @return an iterator over the entries of this map
4382 >         */
4383 >        public final Iterator<Map.Entry<K,V>> iterator() {
4384 >            return new EntryIterator<K,V>(map);
4385 >        }
4386 >
4387 >        public final boolean add(Entry<K,V> e) {
4388 >            K key = e.getKey();
4389 >            V value = e.getValue();
4390 >            if (key == null || value == null)
4391 >                throw new NullPointerException();
4392 >            return map.internalPut(key, value, false) == null;
4393 >        }
4394 >        public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4395 >            boolean added = false;
4396 >            for (Entry<K,V> e : c) {
4397 >                if (add(e))
4398 >                    added = true;
4399 >            }
4400 >            return added;
4401 >        }
4402 >        public boolean equals(Object o) {
4403 >            Set<?> c;
4404 >            return ((o instanceof Set) &&
4405 >                    ((c = (Set<?>)o) == this ||
4406 >                     (containsAll(c) && c.containsAll(this))));
4407 >        }
4408 >
4409 >        /**
4410 >         * Performs the given action for each entry.
4411 >         *
4412 >         * @param action the action
4413 >         */
4414 >        public void forEach(Action<Map.Entry<K,V>> action) {
4415 >            ForkJoinTasks.forEachEntry
4416 >                (map, action).invoke();
4417 >        }
4418 >
4419 >        /**
4420 >         * Performs the given action for each non-null transformation
4421 >         * of each entry.
4422 >         *
4423 >         * @param transformer a function returning the transformation
4424 >         * for an element, or null of there is no transformation (in
4425 >         * which case the action is not applied).
4426 >         * @param action the action
4427 >         */
4428 >        public <U> void forEach(Fun<Map.Entry<K,V>, ? extends U> transformer,
4429 >                                Action<U> action) {
4430 >            ForkJoinTasks.forEachEntry
4431 >                (map, transformer, action).invoke();
4432 >        }
4433 >
4434 >        /**
4435 >         * Returns a non-null result from applying the given search
4436 >         * function on each entry, or null if none.  Upon success,
4437 >         * further element processing is suppressed and the results of
4438 >         * any other parallel invocations of the search function are
4439 >         * ignored.
4440 >         *
4441 >         * @param searchFunction a function returning a non-null
4442 >         * result on success, else null
4443 >         * @return a non-null result from applying the given search
4444 >         * function on each entry, or null if none
4445 >         */
4446 >        public <U> U search(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4447 >            return ForkJoinTasks.searchEntries
4448 >                (map, searchFunction).invoke();
4449 >        }
4450 >
4451 >        /**
4452 >         * Returns the result of accumulating all entries using the
4453 >         * given reducer to combine values, or null if none.
4454 >         *
4455 >         * @param reducer a commutative associative combining function
4456 >         * @return the result of accumulating all entries
4457 >         */
4458 >        public Map.Entry<K,V> reduce(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4459 >            return ForkJoinTasks.reduceEntries
4460 >                (map, reducer).invoke();
4461 >        }
4462 >
4463 >        /**
4464 >         * Returns the result of accumulating the given transformation
4465 >         * of all entries using the given reducer to combine values,
4466 >         * or null if none.
4467 >         *
4468 >         * @param transformer a function returning the transformation
4469 >         * for an element, or null of there is no transformation (in
4470 >         * which case it is not combined).
4471 >         * @param reducer a commutative associative combining function
4472 >         * @return the result of accumulating the given transformation
4473 >         * of all entries
4474 >         */
4475 >        public <U> U reduce(Fun<Map.Entry<K,V>, ? extends U> transformer,
4476 >                            BiFun<? super U, ? super U, ? extends U> reducer) {
4477 >            return ForkJoinTasks.reduceEntries
4478 >                (map, transformer, reducer).invoke();
4479 >        }
4480 >
4481 >        /**
4482 >         * Returns the result of accumulating the given transformation
4483 >         * of all entries using the given reducer to combine values,
4484 >         * and the given basis as an identity value.
4485 >         *
4486 >         * @param transformer a function returning the transformation
4487 >         * for an element
4488 >         * @param basis the identity (initial default value) for the reduction
4489 >         * @param reducer a commutative associative combining function
4490 >         * @return the result of accumulating the given transformation
4491 >         * of all entries
4492 >         */
4493 >        public double reduceToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4494 >                                     double basis,
4495 >                                     DoubleByDoubleToDouble reducer) {
4496 >            return ForkJoinTasks.reduceEntriesToDouble
4497 >                (map, transformer, basis, reducer).invoke();
4498 >        }
4499 >
4500 >        /**
4501 >         * Returns the result of accumulating the given transformation
4502 >         * of all entries using the given reducer to combine values,
4503 >         * and the given basis as an identity value.
4504 >         *
4505 >         * @param transformer a function returning the transformation
4506 >         * for an element
4507 >         * @param basis the identity (initial default value) for the reduction
4508 >         * @param reducer a commutative associative combining function
4509 >         * @return  the result of accumulating the given transformation
4510 >         * of all entries
4511 >         */
4512 >        public long reduceToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4513 >                                 long basis,
4514 >                                 LongByLongToLong reducer) {
4515 >            return ForkJoinTasks.reduceEntriesToLong
4516 >                (map, transformer, basis, reducer).invoke();
4517 >        }
4518 >
4519 >        /**
4520 >         * Returns the result of accumulating the given transformation
4521 >         * of all entries using the given reducer to combine values,
4522 >         * and the given basis as an identity value.
4523 >         *
4524 >         * @param transformer a function returning the transformation
4525 >         * for an element
4526 >         * @param basis the identity (initial default value) for the reduction
4527 >         * @param reducer a commutative associative combining function
4528 >         * @return the result of accumulating the given transformation
4529 >         * of all entries
4530 >         */
4531 >        public int reduceToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4532 >                               int basis,
4533 >                               IntByIntToInt reducer) {
4534 >            return ForkJoinTasks.reduceEntriesToInt
4535 >                (map, transformer, basis, reducer).invoke();
4536 >        }
4537 >
4538 >    }
4539 >
4540 >    // ---------------------------------------------------------------------
4541 >
4542 >    /**
4543 >     * Predefined tasks for performing bulk parallel operations on
4544 >     * ConcurrentHashMapV8s. These tasks follow the forms and rules used
4545 >     * for bulk operations. Each method has the same name, but returns
4546 >     * a task rather than invoking it. These methods may be useful in
4547 >     * custom applications such as submitting a task without waiting
4548 >     * for completion, using a custom pool, or combining with other
4549 >     * tasks.
4550 >     */
4551 >    public static class ForkJoinTasks {
4552 >        private ForkJoinTasks() {}
4553 >
4554 >        /**
4555 >         * Returns a task that when invoked, performs the given
4556 >         * action for each (key, value)
4557 >         *
4558 >         * @param map the map
4559 >         * @param action the action
4560 >         * @return the task
4561 >         */
4562 >        public static <K,V> ForkJoinTask<Void> forEach
4563 >            (ConcurrentHashMapV8<K,V> map,
4564 >             BiAction<K,V> action) {
4565 >            if (action == null) throw new NullPointerException();
4566 >            return new ForEachMappingTask<K,V>(map, null, -1, action);
4567 >        }
4568 >
4569 >        /**
4570 >         * Returns a task that when invoked, performs the given
4571 >         * action for each non-null transformation of each (key, value)
4572 >         *
4573 >         * @param map the map
4574 >         * @param transformer a function returning the transformation
4575 >         * for an element, or null if there is no transformation (in
4576 >         * which case the action is not applied)
4577 >         * @param action the action
4578 >         * @return the task
4579 >         */
4580 >        public static <K,V,U> ForkJoinTask<Void> forEach
4581 >            (ConcurrentHashMapV8<K,V> map,
4582 >             BiFun<? super K, ? super V, ? extends U> transformer,
4583 >             Action<U> action) {
4584 >            if (transformer == null || action == null)
4585 >                throw new NullPointerException();
4586 >            return new ForEachTransformedMappingTask<K,V,U>
4587 >                (map, null, -1, transformer, action);
4588 >        }
4589 >
4590 >        /**
4591 >         * Returns a task that when invoked, returns a non-null result
4592 >         * from applying the given search function on each (key,
4593 >         * value), or null if none. Upon success, further element
4594 >         * processing is suppressed and the results of any other
4595 >         * parallel invocations of the search function are ignored.
4596 >         *
4597 >         * @param map the map
4598 >         * @param searchFunction a function returning a non-null
4599 >         * result on success, else null
4600 >         * @return the task
4601 >         */
4602 >        public static <K,V,U> ForkJoinTask<U> search
4603 >            (ConcurrentHashMapV8<K,V> map,
4604 >             BiFun<? super K, ? super V, ? extends U> searchFunction) {
4605 >            if (searchFunction == null) throw new NullPointerException();
4606 >            return new SearchMappingsTask<K,V,U>
4607 >                (map, null, -1, searchFunction,
4608 >                 new AtomicReference<U>());
4609 >        }
4610 >
4611 >        /**
4612 >         * Returns a task that when invoked, returns the result of
4613 >         * accumulating the given transformation of all (key, value) pairs
4614 >         * using the given reducer to combine values, or null if none.
4615 >         *
4616 >         * @param map the map
4617 >         * @param transformer a function returning the transformation
4618 >         * for an element, or null if there is no transformation (in
4619 >         * which case it is not combined).
4620 >         * @param reducer a commutative associative combining function
4621 >         * @return the task
4622 >         */
4623 >        public static <K,V,U> ForkJoinTask<U> reduce
4624 >            (ConcurrentHashMapV8<K,V> map,
4625 >             BiFun<? super K, ? super V, ? extends U> transformer,
4626 >             BiFun<? super U, ? super U, ? extends U> reducer) {
4627 >            if (transformer == null || reducer == null)
4628 >                throw new NullPointerException();
4629 >            return new MapReduceMappingsTask<K,V,U>
4630 >                (map, null, -1, null, transformer, reducer);
4631 >        }
4632 >
4633 >        /**
4634 >         * Returns a task that when invoked, returns the result of
4635 >         * accumulating the given transformation of all (key, value) pairs
4636 >         * using the given reducer to combine values, and the given
4637 >         * basis as an identity value.
4638 >         *
4639 >         * @param map the map
4640 >         * @param transformer a function returning the transformation
4641 >         * for an element
4642 >         * @param basis the identity (initial default value) for the reduction
4643 >         * @param reducer a commutative associative combining function
4644 >         * @return the task
4645 >         */
4646 >        public static <K,V> ForkJoinTask<Double> reduceToDouble
4647 >            (ConcurrentHashMapV8<K,V> map,
4648 >             ObjectByObjectToDouble<? super K, ? super V> transformer,
4649 >             double basis,
4650 >             DoubleByDoubleToDouble reducer) {
4651 >            if (transformer == null || reducer == null)
4652 >                throw new NullPointerException();
4653 >            return new MapReduceMappingsToDoubleTask<K,V>
4654 >                (map, null, -1, null, transformer, basis, reducer);
4655 >        }
4656 >
4657 >        /**
4658 >         * Returns a task that when invoked, returns the result of
4659 >         * accumulating the given transformation of all (key, value) pairs
4660 >         * using the given reducer to combine values, and the given
4661 >         * basis as an identity value.
4662 >         *
4663 >         * @param map the map
4664 >         * @param transformer a function returning the transformation
4665 >         * for an element
4666 >         * @param basis the identity (initial default value) for the reduction
4667 >         * @param reducer a commutative associative combining function
4668 >         * @return the task
4669 >         */
4670 >        public static <K,V> ForkJoinTask<Long> reduceToLong
4671 >            (ConcurrentHashMapV8<K,V> map,
4672 >             ObjectByObjectToLong<? super K, ? super V> transformer,
4673 >             long basis,
4674 >             LongByLongToLong reducer) {
4675 >            if (transformer == null || reducer == null)
4676 >                throw new NullPointerException();
4677 >            return new MapReduceMappingsToLongTask<K,V>
4678 >                (map, null, -1, null, transformer, basis, reducer);
4679 >        }
4680 >
4681 >        /**
4682 >         * Returns a task that when invoked, returns the result of
4683 >         * accumulating the given transformation of all (key, value) pairs
4684 >         * using the given reducer to combine values, and the given
4685 >         * basis as an identity value.
4686 >         *
4687 >         * @param transformer a function returning the transformation
4688 >         * for an element
4689 >         * @param basis the identity (initial default value) for the reduction
4690 >         * @param reducer a commutative associative combining function
4691 >         * @return the task
4692 >         */
4693 >        public static <K,V> ForkJoinTask<Integer> reduceToInt
4694 >            (ConcurrentHashMapV8<K,V> map,
4695 >             ObjectByObjectToInt<? super K, ? super V> transformer,
4696 >             int basis,
4697 >             IntByIntToInt reducer) {
4698 >            if (transformer == null || reducer == null)
4699 >                throw new NullPointerException();
4700 >            return new MapReduceMappingsToIntTask<K,V>
4701 >                (map, null, -1, null, transformer, basis, reducer);
4702 >        }
4703 >
4704 >        /**
4705 >         * Returns a task that when invoked, performs the given action
4706 >         * for each key.
4707 >         *
4708 >         * @param map the map
4709 >         * @param action the action
4710 >         * @return the task
4711 >         */
4712 >        public static <K,V> ForkJoinTask<Void> forEachKey
4713 >            (ConcurrentHashMapV8<K,V> map,
4714 >             Action<K> action) {
4715 >            if (action == null) throw new NullPointerException();
4716 >            return new ForEachKeyTask<K,V>(map, null, -1, action);
4717 >        }
4718 >
4719 >        /**
4720 >         * Returns a task that when invoked, performs the given action
4721 >         * for each non-null transformation of each key.
4722 >         *
4723 >         * @param map the map
4724 >         * @param transformer a function returning the transformation
4725 >         * for an element, or null if there is no transformation (in
4726 >         * which case the action is not applied)
4727 >         * @param action the action
4728 >         * @return the task
4729 >         */
4730 >        public static <K,V,U> ForkJoinTask<Void> forEachKey
4731 >            (ConcurrentHashMapV8<K,V> map,
4732 >             Fun<? super K, ? extends U> transformer,
4733 >             Action<U> action) {
4734 >            if (transformer == null || action == null)
4735 >                throw new NullPointerException();
4736 >            return new ForEachTransformedKeyTask<K,V,U>
4737 >                (map, null, -1, transformer, action);
4738 >        }
4739 >
4740 >        /**
4741 >         * Returns a task that when invoked, returns a non-null result
4742 >         * from applying the given search function on each key, or
4743 >         * null if none.  Upon success, further element processing is
4744 >         * suppressed and the results of any other parallel
4745 >         * invocations of the search function are ignored.
4746 >         *
4747 >         * @param map the map
4748 >         * @param searchFunction a function returning a non-null
4749 >         * result on success, else null
4750 >         * @return the task
4751 >         */
4752 >        public static <K,V,U> ForkJoinTask<U> searchKeys
4753 >            (ConcurrentHashMapV8<K,V> map,
4754 >             Fun<? super K, ? extends U> searchFunction) {
4755 >            if (searchFunction == null) throw new NullPointerException();
4756 >            return new SearchKeysTask<K,V,U>
4757 >                (map, null, -1, searchFunction,
4758 >                 new AtomicReference<U>());
4759 >        }
4760 >
4761 >        /**
4762 >         * Returns a task that when invoked, returns the result of
4763 >         * accumulating all keys using the given reducer to combine
4764 >         * values, or null if none.
4765 >         *
4766 >         * @param map the map
4767 >         * @param reducer a commutative associative combining function
4768 >         * @return the task
4769 >         */
4770 >        public static <K,V> ForkJoinTask<K> reduceKeys
4771 >            (ConcurrentHashMapV8<K,V> map,
4772 >             BiFun<? super K, ? super K, ? extends K> reducer) {
4773 >            if (reducer == null) throw new NullPointerException();
4774 >            return new ReduceKeysTask<K,V>
4775 >                (map, null, -1, null, reducer);
4776 >        }
4777 >
4778 >        /**
4779 >         * Returns a task that when invoked, returns the result of
4780 >         * accumulating the given transformation of all keys using the given
4781 >         * reducer to combine values, or null if none.
4782 >         *
4783 >         * @param map the map
4784 >         * @param transformer a function returning the transformation
4785 >         * for an element, or null if there is no transformation (in
4786 >         * which case it is not combined).
4787 >         * @param reducer a commutative associative combining function
4788 >         * @return the task
4789 >         */
4790 >        public static <K,V,U> ForkJoinTask<U> reduceKeys
4791 >            (ConcurrentHashMapV8<K,V> map,
4792 >             Fun<? super K, ? extends U> transformer,
4793 >             BiFun<? super U, ? super U, ? extends U> reducer) {
4794 >            if (transformer == null || reducer == null)
4795 >                throw new NullPointerException();
4796 >            return new MapReduceKeysTask<K,V,U>
4797 >                (map, null, -1, null, transformer, reducer);
4798 >        }
4799 >
4800 >        /**
4801 >         * Returns a task that when invoked, returns the result of
4802 >         * accumulating the given transformation of all keys using the given
4803 >         * reducer to combine values, and the given basis as an
4804 >         * identity value.
4805 >         *
4806 >         * @param map the map
4807 >         * @param transformer a function returning the transformation
4808 >         * for an element
4809 >         * @param basis the identity (initial default value) for the reduction
4810 >         * @param reducer a commutative associative combining function
4811 >         * @return the task
4812 >         */
4813 >        public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
4814 >            (ConcurrentHashMapV8<K,V> map,
4815 >             ObjectToDouble<? super K> transformer,
4816 >             double basis,
4817 >             DoubleByDoubleToDouble reducer) {
4818 >            if (transformer == null || reducer == null)
4819 >                throw new NullPointerException();
4820 >            return new MapReduceKeysToDoubleTask<K,V>
4821 >                (map, null, -1, null, transformer, basis, reducer);
4822 >        }
4823 >
4824 >        /**
4825 >         * Returns a task that when invoked, returns the result of
4826 >         * accumulating the given transformation of all keys using the given
4827 >         * reducer to combine values, and the given basis as an
4828 >         * identity value.
4829 >         *
4830 >         * @param map the map
4831 >         * @param transformer a function returning the transformation
4832 >         * for an element
4833 >         * @param basis the identity (initial default value) for the reduction
4834 >         * @param reducer a commutative associative combining function
4835 >         * @return the task
4836 >         */
4837 >        public static <K,V> ForkJoinTask<Long> reduceKeysToLong
4838 >            (ConcurrentHashMapV8<K,V> map,
4839 >             ObjectToLong<? super K> transformer,
4840 >             long basis,
4841 >             LongByLongToLong reducer) {
4842 >            if (transformer == null || reducer == null)
4843 >                throw new NullPointerException();
4844 >            return new MapReduceKeysToLongTask<K,V>
4845 >                (map, null, -1, null, transformer, basis, reducer);
4846 >        }
4847 >
4848 >        /**
4849 >         * Returns a task that when invoked, returns the result of
4850 >         * accumulating the given transformation of all keys using the given
4851 >         * reducer to combine values, and the given basis as an
4852 >         * identity value.
4853 >         *
4854 >         * @param map the map
4855 >         * @param transformer a function returning the transformation
4856 >         * for an element
4857 >         * @param basis the identity (initial default value) for the reduction
4858 >         * @param reducer a commutative associative combining function
4859 >         * @return the task
4860 >         */
4861 >        public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
4862 >            (ConcurrentHashMapV8<K,V> map,
4863 >             ObjectToInt<? super K> transformer,
4864 >             int basis,
4865 >             IntByIntToInt reducer) {
4866 >            if (transformer == null || reducer == null)
4867 >                throw new NullPointerException();
4868 >            return new MapReduceKeysToIntTask<K,V>
4869 >                (map, null, -1, null, transformer, basis, reducer);
4870 >        }
4871 >
4872 >        /**
4873 >         * Returns a task that when invoked, performs the given action
4874 >         * for each value.
4875 >         *
4876 >         * @param map the map
4877 >         * @param action the action
4878 >         */
4879 >        public static <K,V> ForkJoinTask<Void> forEachValue
4880 >            (ConcurrentHashMapV8<K,V> map,
4881 >             Action<V> action) {
4882 >            if (action == null) throw new NullPointerException();
4883 >            return new ForEachValueTask<K,V>(map, null, -1, action);
4884 >        }
4885 >
4886 >        /**
4887 >         * Returns a task that when invoked, performs the given action
4888 >         * for each non-null transformation of each value.
4889 >         *
4890 >         * @param map the map
4891 >         * @param transformer a function returning the transformation
4892 >         * for an element, or null if there is no transformation (in
4893 >         * which case the action is not applied)
4894 >         * @param action the action
4895 >         */
4896 >        public static <K,V,U> ForkJoinTask<Void> forEachValue
4897 >            (ConcurrentHashMapV8<K,V> map,
4898 >             Fun<? super V, ? extends U> transformer,
4899 >             Action<U> action) {
4900 >            if (transformer == null || action == null)
4901 >                throw new NullPointerException();
4902 >            return new ForEachTransformedValueTask<K,V,U>
4903 >                (map, null, -1, transformer, action);
4904 >        }
4905 >
4906 >        /**
4907 >         * Returns a task that when invoked, returns a non-null result
4908 >         * from applying the given search function on each value, or
4909 >         * null if none.  Upon success, further element processing is
4910 >         * suppressed and the results of any other parallel
4911 >         * invocations of the search function are ignored.
4912 >         *
4913 >         * @param map the map
4914 >         * @param searchFunction a function returning a non-null
4915 >         * result on success, else null
4916 >         * @return the task
4917 >         */
4918 >        public static <K,V,U> ForkJoinTask<U> searchValues
4919 >            (ConcurrentHashMapV8<K,V> map,
4920 >             Fun<? super V, ? extends U> searchFunction) {
4921 >            if (searchFunction == null) throw new NullPointerException();
4922 >            return new SearchValuesTask<K,V,U>
4923 >                (map, null, -1, searchFunction,
4924 >                 new AtomicReference<U>());
4925 >        }
4926 >
4927 >        /**
4928 >         * Returns a task that when invoked, returns the result of
4929 >         * accumulating all values using the given reducer to combine
4930 >         * values, or null if none.
4931 >         *
4932 >         * @param map the map
4933 >         * @param reducer a commutative associative combining function
4934 >         * @return the task
4935 >         */
4936 >        public static <K,V> ForkJoinTask<V> reduceValues
4937 >            (ConcurrentHashMapV8<K,V> map,
4938 >             BiFun<? super V, ? super V, ? extends V> reducer) {
4939 >            if (reducer == null) throw new NullPointerException();
4940 >            return new ReduceValuesTask<K,V>
4941 >                (map, null, -1, null, reducer);
4942 >        }
4943 >
4944 >        /**
4945 >         * Returns a task that when invoked, returns the result of
4946 >         * accumulating the given transformation of all values using the
4947 >         * given reducer to combine values, or null if none.
4948 >         *
4949 >         * @param map the map
4950 >         * @param transformer a function returning the transformation
4951 >         * for an element, or null if there is no transformation (in
4952 >         * which case it is not combined).
4953 >         * @param reducer a commutative associative combining function
4954 >         * @return the task
4955 >         */
4956 >        public static <K,V,U> ForkJoinTask<U> reduceValues
4957 >            (ConcurrentHashMapV8<K,V> map,
4958 >             Fun<? super V, ? extends U> transformer,
4959 >             BiFun<? super U, ? super U, ? extends U> reducer) {
4960 >            if (transformer == null || reducer == null)
4961 >                throw new NullPointerException();
4962 >            return new MapReduceValuesTask<K,V,U>
4963 >                (map, null, -1, null, transformer, reducer);
4964 >        }
4965 >
4966 >        /**
4967 >         * Returns a task that when invoked, returns the result of
4968 >         * accumulating the given transformation of all values using the
4969 >         * given reducer to combine values, and the given basis as an
4970 >         * identity value.
4971 >         *
4972 >         * @param map the map
4973 >         * @param transformer a function returning the transformation
4974 >         * for an element
4975 >         * @param basis the identity (initial default value) for the reduction
4976 >         * @param reducer a commutative associative combining function
4977 >         * @return the task
4978 >         */
4979 >        public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
4980 >            (ConcurrentHashMapV8<K,V> map,
4981 >             ObjectToDouble<? super V> transformer,
4982 >             double basis,
4983 >             DoubleByDoubleToDouble reducer) {
4984 >            if (transformer == null || reducer == null)
4985 >                throw new NullPointerException();
4986 >            return new MapReduceValuesToDoubleTask<K,V>
4987 >                (map, null, -1, null, transformer, basis, reducer);
4988 >        }
4989 >
4990 >        /**
4991 >         * Returns a task that when invoked, returns the result of
4992 >         * accumulating the given transformation of all values using the
4993 >         * given reducer to combine values, and the given basis as an
4994 >         * identity value.
4995 >         *
4996 >         * @param map the map
4997 >         * @param transformer a function returning the transformation
4998 >         * for an element
4999 >         * @param basis the identity (initial default value) for the reduction
5000 >         * @param reducer a commutative associative combining function
5001 >         * @return the task
5002 >         */
5003 >        public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5004 >            (ConcurrentHashMapV8<K,V> map,
5005 >             ObjectToLong<? super V> transformer,
5006 >             long basis,
5007 >             LongByLongToLong reducer) {
5008 >            if (transformer == null || reducer == null)
5009 >                throw new NullPointerException();
5010 >            return new MapReduceValuesToLongTask<K,V>
5011 >                (map, null, -1, null, transformer, basis, reducer);
5012 >        }
5013 >
5014 >        /**
5015 >         * Returns a task that when invoked, returns the result of
5016 >         * accumulating the given transformation of all values using the
5017 >         * given reducer to combine values, and the given basis as an
5018 >         * identity value.
5019 >         *
5020 >         * @param map the map
5021 >         * @param transformer a function returning the transformation
5022 >         * for an element
5023 >         * @param basis the identity (initial default value) for the reduction
5024 >         * @param reducer a commutative associative combining function
5025 >         * @return the task
5026 >         */
5027 >        public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5028 >            (ConcurrentHashMapV8<K,V> map,
5029 >             ObjectToInt<? super V> transformer,
5030 >             int basis,
5031 >             IntByIntToInt reducer) {
5032 >            if (transformer == null || reducer == null)
5033 >                throw new NullPointerException();
5034 >            return new MapReduceValuesToIntTask<K,V>
5035 >                (map, null, -1, null, transformer, basis, reducer);
5036 >        }
5037 >
5038 >        /**
5039 >         * Returns a task that when invoked, perform the given action
5040 >         * for each entry.
5041 >         *
5042 >         * @param map the map
5043 >         * @param action the action
5044 >         */
5045 >        public static <K,V> ForkJoinTask<Void> forEachEntry
5046 >            (ConcurrentHashMapV8<K,V> map,
5047 >             Action<Map.Entry<K,V>> action) {
5048 >            if (action == null) throw new NullPointerException();
5049 >            return new ForEachEntryTask<K,V>(map, null, -1, action);
5050 >        }
5051 >
5052 >        /**
5053 >         * Returns a task that when invoked, perform the given action
5054 >         * for each non-null transformation of each entry.
5055 >         *
5056 >         * @param map the map
5057 >         * @param transformer a function returning the transformation
5058 >         * for an element, or null if there is no transformation (in
5059 >         * which case the action is not applied)
5060 >         * @param action the action
5061 >         */
5062 >        public static <K,V,U> ForkJoinTask<Void> forEachEntry
5063 >            (ConcurrentHashMapV8<K,V> map,
5064 >             Fun<Map.Entry<K,V>, ? extends U> transformer,
5065 >             Action<U> action) {
5066 >            if (transformer == null || action == null)
5067 >                throw new NullPointerException();
5068 >            return new ForEachTransformedEntryTask<K,V,U>
5069 >                (map, null, -1, transformer, action);
5070 >        }
5071 >
5072 >        /**
5073 >         * Returns a task that when invoked, returns a non-null result
5074 >         * from applying the given search function on each entry, or
5075 >         * null if none.  Upon success, further element processing is
5076 >         * suppressed and the results of any other parallel
5077 >         * invocations of the search function are ignored.
5078 >         *
5079 >         * @param map the map
5080 >         * @param searchFunction a function returning a non-null
5081 >         * result on success, else null
5082 >         * @return the task
5083 >         */
5084 >        public static <K,V,U> ForkJoinTask<U> searchEntries
5085 >            (ConcurrentHashMapV8<K,V> map,
5086 >             Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
5087 >            if (searchFunction == null) throw new NullPointerException();
5088 >            return new SearchEntriesTask<K,V,U>
5089 >                (map, null, -1, searchFunction,
5090 >                 new AtomicReference<U>());
5091 >        }
5092 >
5093 >        /**
5094 >         * Returns a task that when invoked, returns the result of
5095 >         * accumulating all entries using the given reducer to combine
5096 >         * values, or null if none.
5097 >         *
5098 >         * @param map the map
5099 >         * @param reducer a commutative associative combining function
5100 >         * @return the task
5101 >         */
5102 >        public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5103 >            (ConcurrentHashMapV8<K,V> map,
5104 >             BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5105 >            if (reducer == null) throw new NullPointerException();
5106 >            return new ReduceEntriesTask<K,V>
5107 >                (map, null, -1, null, reducer);
5108 >        }
5109 >
5110 >        /**
5111 >         * Returns a task that when invoked, returns the result of
5112 >         * accumulating the given transformation of all entries using the
5113 >         * given reducer to combine values, or null if none.
5114 >         *
5115 >         * @param map the map
5116 >         * @param transformer a function returning the transformation
5117 >         * for an element, or null if there is no transformation (in
5118 >         * which case it is not combined).
5119 >         * @param reducer a commutative associative combining function
5120 >         * @return the task
5121 >         */
5122 >        public static <K,V,U> ForkJoinTask<U> reduceEntries
5123 >            (ConcurrentHashMapV8<K,V> map,
5124 >             Fun<Map.Entry<K,V>, ? extends U> transformer,
5125 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5126 >            if (transformer == null || reducer == null)
5127 >                throw new NullPointerException();
5128 >            return new MapReduceEntriesTask<K,V,U>
5129 >                (map, null, -1, null, transformer, reducer);
5130 >        }
5131 >
5132 >        /**
5133 >         * Returns a task that when invoked, returns the result of
5134 >         * accumulating the given transformation of all entries using the
5135 >         * given reducer to combine values, and the given basis as an
5136 >         * identity value.
5137 >         *
5138 >         * @param map the map
5139 >         * @param transformer a function returning the transformation
5140 >         * for an element
5141 >         * @param basis the identity (initial default value) for the reduction
5142 >         * @param reducer a commutative associative combining function
5143 >         * @return the task
5144 >         */
5145 >        public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5146 >            (ConcurrentHashMapV8<K,V> map,
5147 >             ObjectToDouble<Map.Entry<K,V>> transformer,
5148 >             double basis,
5149 >             DoubleByDoubleToDouble reducer) {
5150 >            if (transformer == null || reducer == null)
5151 >                throw new NullPointerException();
5152 >            return new MapReduceEntriesToDoubleTask<K,V>
5153 >                (map, null, -1, null, transformer, basis, reducer);
5154 >        }
5155 >
5156 >        /**
5157 >         * Returns a task that when invoked, returns the result of
5158 >         * accumulating the given transformation of all entries using the
5159 >         * given reducer to combine values, and the given basis as an
5160 >         * identity value.
5161 >         *
5162 >         * @param map the map
5163 >         * @param transformer a function returning the transformation
5164 >         * for an element
5165 >         * @param basis the identity (initial default value) for the reduction
5166 >         * @param reducer a commutative associative combining function
5167 >         * @return the task
5168 >         */
5169 >        public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5170 >            (ConcurrentHashMapV8<K,V> map,
5171 >             ObjectToLong<Map.Entry<K,V>> transformer,
5172 >             long basis,
5173 >             LongByLongToLong reducer) {
5174 >            if (transformer == null || reducer == null)
5175 >                throw new NullPointerException();
5176 >            return new MapReduceEntriesToLongTask<K,V>
5177 >                (map, null, -1, null, transformer, basis, reducer);
5178 >        }
5179 >
5180 >        /**
5181 >         * Returns a task that when invoked, returns the result of
5182 >         * accumulating the given transformation of all entries using the
5183 >         * given reducer to combine values, and the given basis as an
5184 >         * identity value.
5185 >         *
5186 >         * @param map the map
5187 >         * @param transformer a function returning the transformation
5188 >         * for an element
5189 >         * @param basis the identity (initial default value) for the reduction
5190 >         * @param reducer a commutative associative combining function
5191 >         * @return the task
5192 >         */
5193 >        public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5194 >            (ConcurrentHashMapV8<K,V> map,
5195 >             ObjectToInt<Map.Entry<K,V>> transformer,
5196 >             int basis,
5197 >             IntByIntToInt reducer) {
5198 >            if (transformer == null || reducer == null)
5199 >                throw new NullPointerException();
5200 >            return new MapReduceEntriesToIntTask<K,V>
5201 >                (map, null, -1, null, transformer, basis, reducer);
5202 >        }
5203 >    }
5204 >
5205 >    // -------------------------------------------------------
5206 >
5207 >    /*
5208 >     * Task classes. Coded in a regular but ugly format/style to
5209 >     * simplify checks that each variant differs in the right way from
5210 >     * others. The null screenings exist because compilers cannot tell
5211 >     * that we've already null-checked task arguments, so we force
5212 >     * simplest hoisted bypass to help avoid convoluted traps.
5213 >     */
5214 >
5215 >    @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5216 >        extends Traverser<K,V,Void> {
5217 >        final Action<K> action;
5218 >        ForEachKeyTask
5219 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5220 >             Action<K> action) {
5221 >            super(m, p, b);
5222 >            this.action = action;
5223 >        }
5224 >        @SuppressWarnings("unchecked") public final void compute() {
5225 >            final Action<K> action;
5226 >            if ((action = this.action) != null) {
5227 >                for (int b; (b = preSplit()) > 0;)
5228 >                    new ForEachKeyTask<K,V>(map, this, b, action).fork();
5229 >                while (advance() != null)
5230 >                    action.apply((K)nextKey);
5231 >                propagateCompletion();
5232 >            }
5233 >        }
5234 >    }
5235 >
5236 >    @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5237 >        extends Traverser<K,V,Void> {
5238 >        final Action<V> action;
5239 >        ForEachValueTask
5240 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5241 >             Action<V> action) {
5242 >            super(m, p, b);
5243 >            this.action = action;
5244 >        }
5245 >        @SuppressWarnings("unchecked") public final void compute() {
5246 >            final Action<V> action;
5247 >            if ((action = this.action) != null) {
5248 >                for (int b; (b = preSplit()) > 0;)
5249 >                    new ForEachValueTask<K,V>(map, this, b, action).fork();
5250 >                Object v;
5251 >                while ((v = advance()) != null)
5252 >                    action.apply((V)v);
5253 >                propagateCompletion();
5254 >            }
5255 >        }
5256 >    }
5257 >
5258 >    @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5259 >        extends Traverser<K,V,Void> {
5260 >        final Action<Entry<K,V>> action;
5261 >        ForEachEntryTask
5262 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5263 >             Action<Entry<K,V>> action) {
5264 >            super(m, p, b);
5265 >            this.action = action;
5266 >        }
5267 >        @SuppressWarnings("unchecked") public final void compute() {
5268 >            final Action<Entry<K,V>> action;
5269 >            if ((action = this.action) != null) {
5270 >                for (int b; (b = preSplit()) > 0;)
5271 >                    new ForEachEntryTask<K,V>(map, this, b, action).fork();
5272 >                Object v;
5273 >                while ((v = advance()) != null)
5274 >                    action.apply(entryFor((K)nextKey, (V)v));
5275 >                propagateCompletion();
5276 >            }
5277 >        }
5278 >    }
5279 >
5280 >    @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5281 >        extends Traverser<K,V,Void> {
5282 >        final BiAction<K,V> action;
5283 >        ForEachMappingTask
5284 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5285 >             BiAction<K,V> action) {
5286 >            super(m, p, b);
5287 >            this.action = action;
5288 >        }
5289 >        @SuppressWarnings("unchecked") public final void compute() {
5290 >            final BiAction<K,V> action;
5291 >            if ((action = this.action) != null) {
5292 >                for (int b; (b = preSplit()) > 0;)
5293 >                    new ForEachMappingTask<K,V>(map, this, b, action).fork();
5294 >                Object v;
5295 >                while ((v = advance()) != null)
5296 >                    action.apply((K)nextKey, (V)v);
5297 >                propagateCompletion();
5298 >            }
5299 >        }
5300 >    }
5301 >
5302 >    @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5303 >        extends Traverser<K,V,Void> {
5304 >        final Fun<? super K, ? extends U> transformer;
5305 >        final Action<U> action;
5306 >        ForEachTransformedKeyTask
5307 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5308 >             Fun<? super K, ? extends U> transformer, Action<U> action) {
5309 >            super(m, p, b);
5310 >            this.transformer = transformer; this.action = action;
5311 >        }
5312 >        @SuppressWarnings("unchecked") public final void compute() {
5313 >            final Fun<? super K, ? extends U> transformer;
5314 >            final Action<U> action;
5315 >            if ((transformer = this.transformer) != null &&
5316 >                (action = this.action) != null) {
5317 >                for (int b; (b = preSplit()) > 0;)
5318 >                    new ForEachTransformedKeyTask<K,V,U>
5319 >                        (map, this, b, transformer, action).fork();
5320 >                U u;
5321 >                while (advance() != null) {
5322 >                    if ((u = transformer.apply((K)nextKey)) != null)
5323 >                        action.apply(u);
5324 >                }
5325 >                propagateCompletion();
5326 >            }
5327 >        }
5328 >    }
5329 >
5330 >    @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5331 >        extends Traverser<K,V,Void> {
5332 >        final Fun<? super V, ? extends U> transformer;
5333 >        final Action<U> action;
5334 >        ForEachTransformedValueTask
5335 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5336 >             Fun<? super V, ? extends U> transformer, Action<U> action) {
5337 >            super(m, p, b);
5338 >            this.transformer = transformer; this.action = action;
5339 >        }
5340 >        @SuppressWarnings("unchecked") public final void compute() {
5341 >            final Fun<? super V, ? extends U> transformer;
5342 >            final Action<U> action;
5343 >            if ((transformer = this.transformer) != null &&
5344 >                (action = this.action) != null) {
5345 >                for (int b; (b = preSplit()) > 0;)
5346 >                    new ForEachTransformedValueTask<K,V,U>
5347 >                        (map, this, b, transformer, action).fork();
5348 >                Object v; U u;
5349 >                while ((v = advance()) != null) {
5350 >                    if ((u = transformer.apply((V)v)) != null)
5351 >                        action.apply(u);
5352 >                }
5353 >                propagateCompletion();
5354 >            }
5355 >        }
5356 >    }
5357 >
5358 >    @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5359 >        extends Traverser<K,V,Void> {
5360 >        final Fun<Map.Entry<K,V>, ? extends U> transformer;
5361 >        final Action<U> action;
5362 >        ForEachTransformedEntryTask
5363 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5364 >             Fun<Map.Entry<K,V>, ? extends U> transformer, Action<U> action) {
5365 >            super(m, p, b);
5366 >            this.transformer = transformer; this.action = action;
5367 >        }
5368 >        @SuppressWarnings("unchecked") public final void compute() {
5369 >            final Fun<Map.Entry<K,V>, ? extends U> transformer;
5370 >            final Action<U> action;
5371 >            if ((transformer = this.transformer) != null &&
5372 >                (action = this.action) != null) {
5373 >                for (int b; (b = preSplit()) > 0;)
5374 >                    new ForEachTransformedEntryTask<K,V,U>
5375 >                        (map, this, b, transformer, action).fork();
5376 >                Object v; U u;
5377 >                while ((v = advance()) != null) {
5378 >                    if ((u = transformer.apply(entryFor((K)nextKey,
5379 >                                                        (V)v))) != null)
5380 >                        action.apply(u);
5381 >                }
5382 >                propagateCompletion();
5383 >            }
5384 >        }
5385 >    }
5386 >
5387 >    @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5388 >        extends Traverser<K,V,Void> {
5389 >        final BiFun<? super K, ? super V, ? extends U> transformer;
5390 >        final Action<U> action;
5391 >        ForEachTransformedMappingTask
5392 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5393 >             BiFun<? super K, ? super V, ? extends U> transformer,
5394 >             Action<U> action) {
5395 >            super(m, p, b);
5396 >            this.transformer = transformer; this.action = action;
5397 >        }
5398 >        @SuppressWarnings("unchecked") public final void compute() {
5399 >            final BiFun<? super K, ? super V, ? extends U> transformer;
5400 >            final Action<U> action;
5401 >            if ((transformer = this.transformer) != null &&
5402 >                (action = this.action) != null) {
5403 >                for (int b; (b = preSplit()) > 0;)
5404 >                    new ForEachTransformedMappingTask<K,V,U>
5405 >                        (map, this, b, transformer, action).fork();
5406 >                Object v; U u;
5407 >                while ((v = advance()) != null) {
5408 >                    if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5409 >                        action.apply(u);
5410 >                }
5411 >                propagateCompletion();
5412 >            }
5413 >        }
5414 >    }
5415 >
5416 >    @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5417 >        extends Traverser<K,V,U> {
5418 >        final Fun<? super K, ? extends U> searchFunction;
5419 >        final AtomicReference<U> result;
5420 >        SearchKeysTask
5421 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5422 >             Fun<? super K, ? extends U> searchFunction,
5423 >             AtomicReference<U> result) {
5424 >            super(m, p, b);
5425 >            this.searchFunction = searchFunction; this.result = result;
5426 >        }
5427 >        public final U getRawResult() { return result.get(); }
5428 >        @SuppressWarnings("unchecked") public final void compute() {
5429 >            final Fun<? super K, ? extends U> searchFunction;
5430 >            final AtomicReference<U> result;
5431 >            if ((searchFunction = this.searchFunction) != null &&
5432 >                (result = this.result) != null) {
5433 >                for (int b;;) {
5434 >                    if (result.get() != null)
5435 >                        return;
5436 >                    if ((b = preSplit()) <= 0)
5437 >                        break;
5438 >                    new SearchKeysTask<K,V,U>
5439 >                        (map, this, b, searchFunction, result).fork();
5440 >                }
5441 >                while (result.get() == null) {
5442 >                    U u;
5443 >                    if (advance() == null) {
5444 >                        propagateCompletion();
5445 >                        break;
5446 >                    }
5447 >                    if ((u = searchFunction.apply((K)nextKey)) != null) {
5448 >                        if (result.compareAndSet(null, u))
5449 >                            quietlyCompleteRoot();
5450 >                        break;
5451 >                    }
5452 >                }
5453 >            }
5454 >        }
5455 >    }
5456 >
5457 >    @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5458 >        extends Traverser<K,V,U> {
5459 >        final Fun<? super V, ? extends U> searchFunction;
5460 >        final AtomicReference<U> result;
5461 >        SearchValuesTask
5462 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5463 >             Fun<? super V, ? extends U> searchFunction,
5464 >             AtomicReference<U> result) {
5465 >            super(m, p, b);
5466 >            this.searchFunction = searchFunction; this.result = result;
5467 >        }
5468 >        public final U getRawResult() { return result.get(); }
5469 >        @SuppressWarnings("unchecked") public final void compute() {
5470 >            final Fun<? super V, ? extends U> searchFunction;
5471 >            final AtomicReference<U> result;
5472 >            if ((searchFunction = this.searchFunction) != null &&
5473 >                (result = this.result) != null) {
5474 >                for (int b;;) {
5475 >                    if (result.get() != null)
5476 >                        return;
5477 >                    if ((b = preSplit()) <= 0)
5478 >                        break;
5479 >                    new SearchValuesTask<K,V,U>
5480 >                        (map, this, b, searchFunction, result).fork();
5481 >                }
5482 >                while (result.get() == null) {
5483 >                    Object v; U u;
5484 >                    if ((v = advance()) == null) {
5485 >                        propagateCompletion();
5486 >                        break;
5487 >                    }
5488 >                    if ((u = searchFunction.apply((V)v)) != null) {
5489 >                        if (result.compareAndSet(null, u))
5490 >                            quietlyCompleteRoot();
5491 >                        break;
5492 >                    }
5493 >                }
5494 >            }
5495 >        }
5496 >    }
5497 >
5498 >    @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5499 >        extends Traverser<K,V,U> {
5500 >        final Fun<Entry<K,V>, ? extends U> searchFunction;
5501 >        final AtomicReference<U> result;
5502 >        SearchEntriesTask
5503 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5504 >             Fun<Entry<K,V>, ? extends U> searchFunction,
5505 >             AtomicReference<U> result) {
5506 >            super(m, p, b);
5507 >            this.searchFunction = searchFunction; this.result = result;
5508 >        }
5509 >        public final U getRawResult() { return result.get(); }
5510 >        @SuppressWarnings("unchecked") public final void compute() {
5511 >            final Fun<Entry<K,V>, ? extends U> searchFunction;
5512 >            final AtomicReference<U> result;
5513 >            if ((searchFunction = this.searchFunction) != null &&
5514 >                (result = this.result) != null) {
5515 >                for (int b;;) {
5516 >                    if (result.get() != null)
5517 >                        return;
5518 >                    if ((b = preSplit()) <= 0)
5519 >                        break;
5520 >                    new SearchEntriesTask<K,V,U>
5521 >                        (map, this, b, searchFunction, result).fork();
5522 >                }
5523 >                while (result.get() == null) {
5524 >                    Object v; U u;
5525 >                    if ((v = advance()) == null) {
5526 >                        propagateCompletion();
5527 >                        break;
5528 >                    }
5529 >                    if ((u = searchFunction.apply(entryFor((K)nextKey,
5530 >                                                           (V)v))) != null) {
5531 >                        if (result.compareAndSet(null, u))
5532 >                            quietlyCompleteRoot();
5533 >                        return;
5534 >                    }
5535 >                }
5536 >            }
5537 >        }
5538 >    }
5539 >
5540 >    @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5541 >        extends Traverser<K,V,U> {
5542 >        final BiFun<? super K, ? super V, ? extends U> searchFunction;
5543 >        final AtomicReference<U> result;
5544 >        SearchMappingsTask
5545 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5546 >             BiFun<? super K, ? super V, ? extends U> searchFunction,
5547 >             AtomicReference<U> result) {
5548 >            super(m, p, b);
5549 >            this.searchFunction = searchFunction; this.result = result;
5550 >        }
5551 >        public final U getRawResult() { return result.get(); }
5552 >        @SuppressWarnings("unchecked") public final void compute() {
5553 >            final BiFun<? super K, ? super V, ? extends U> searchFunction;
5554 >            final AtomicReference<U> result;
5555 >            if ((searchFunction = this.searchFunction) != null &&
5556 >                (result = this.result) != null) {
5557 >                for (int b;;) {
5558 >                    if (result.get() != null)
5559 >                        return;
5560 >                    if ((b = preSplit()) <= 0)
5561 >                        break;
5562 >                    new SearchMappingsTask<K,V,U>
5563 >                        (map, this, b, searchFunction, result).fork();
5564 >                }
5565 >                while (result.get() == null) {
5566 >                    Object v; U u;
5567 >                    if ((v = advance()) == null) {
5568 >                        propagateCompletion();
5569 >                        break;
5570 >                    }
5571 >                    if ((u = searchFunction.apply((K)nextKey, (V)v)) != null) {
5572 >                        if (result.compareAndSet(null, u))
5573 >                            quietlyCompleteRoot();
5574 >                        break;
5575 >                    }
5576 >                }
5577 >            }
5578 >        }
5579 >    }
5580 >
5581 >    @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5582 >        extends Traverser<K,V,K> {
5583 >        final BiFun<? super K, ? super K, ? extends K> reducer;
5584 >        K result;
5585 >        ReduceKeysTask<K,V> rights, nextRight;
5586 >        ReduceKeysTask
5587 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5588 >             ReduceKeysTask<K,V> nextRight,
5589 >             BiFun<? super K, ? super K, ? extends K> reducer) {
5590 >            super(m, p, b); this.nextRight = nextRight;
5591 >            this.reducer = reducer;
5592 >        }
5593 >        public final K getRawResult() { return result; }
5594 >        @SuppressWarnings("unchecked") public final void compute() {
5595 >            final BiFun<? super K, ? super K, ? extends K> reducer;
5596 >            if ((reducer = this.reducer) != null) {
5597 >                for (int b; (b = preSplit()) > 0;)
5598 >                    (rights = new ReduceKeysTask<K,V>
5599 >                     (map, this, b, rights, reducer)).fork();
5600 >                K r = null;
5601 >                while (advance() != null) {
5602 >                    K u = (K)nextKey;
5603 >                    r = (r == null) ? u : reducer.apply(r, u);
5604 >                }
5605 >                result = r;
5606 >                CountedCompleter<?> c;
5607 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5608 >                    ReduceKeysTask<K,V>
5609 >                        t = (ReduceKeysTask<K,V>)c,
5610 >                        s = t.rights;
5611 >                    while (s != null) {
5612 >                        K tr, sr;
5613 >                        if ((sr = s.result) != null)
5614 >                            t.result = (((tr = t.result) == null) ? sr :
5615 >                                        reducer.apply(tr, sr));
5616 >                        s = t.rights = s.nextRight;
5617 >                    }
5618 >                }
5619 >            }
5620 >        }
5621 >    }
5622 >
5623 >    @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5624 >        extends Traverser<K,V,V> {
5625 >        final BiFun<? super V, ? super V, ? extends V> reducer;
5626 >        V result;
5627 >        ReduceValuesTask<K,V> rights, nextRight;
5628 >        ReduceValuesTask
5629 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5630 >             ReduceValuesTask<K,V> nextRight,
5631 >             BiFun<? super V, ? super V, ? extends V> reducer) {
5632 >            super(m, p, b); this.nextRight = nextRight;
5633 >            this.reducer = reducer;
5634 >        }
5635 >        public final V getRawResult() { return result; }
5636 >        @SuppressWarnings("unchecked") public final void compute() {
5637 >            final BiFun<? super V, ? super V, ? extends V> reducer;
5638 >            if ((reducer = this.reducer) != null) {
5639 >                for (int b; (b = preSplit()) > 0;)
5640 >                    (rights = new ReduceValuesTask<K,V>
5641 >                     (map, this, b, rights, reducer)).fork();
5642 >                V r = null;
5643 >                Object v;
5644 >                while ((v = advance()) != null) {
5645 >                    V u = (V)v;
5646 >                    r = (r == null) ? u : reducer.apply(r, u);
5647 >                }
5648 >                result = r;
5649 >                CountedCompleter<?> c;
5650 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5651 >                    ReduceValuesTask<K,V>
5652 >                        t = (ReduceValuesTask<K,V>)c,
5653 >                        s = t.rights;
5654 >                    while (s != null) {
5655 >                        V tr, sr;
5656 >                        if ((sr = s.result) != null)
5657 >                            t.result = (((tr = t.result) == null) ? sr :
5658 >                                        reducer.apply(tr, sr));
5659 >                        s = t.rights = s.nextRight;
5660 >                    }
5661 >                }
5662 >            }
5663 >        }
5664 >    }
5665 >
5666 >    @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
5667 >        extends Traverser<K,V,Map.Entry<K,V>> {
5668 >        final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5669 >        Map.Entry<K,V> result;
5670 >        ReduceEntriesTask<K,V> rights, nextRight;
5671 >        ReduceEntriesTask
5672 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5673 >             ReduceEntriesTask<K,V> nextRight,
5674 >             BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5675 >            super(m, p, b); this.nextRight = nextRight;
5676 >            this.reducer = reducer;
5677 >        }
5678 >        public final Map.Entry<K,V> getRawResult() { return result; }
5679 >        @SuppressWarnings("unchecked") public final void compute() {
5680 >            final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5681 >            if ((reducer = this.reducer) != null) {
5682 >                for (int b; (b = preSplit()) > 0;)
5683 >                    (rights = new ReduceEntriesTask<K,V>
5684 >                     (map, this, b, rights, reducer)).fork();
5685 >                Map.Entry<K,V> r = null;
5686 >                Object v;
5687 >                while ((v = advance()) != null) {
5688 >                    Map.Entry<K,V> u = entryFor((K)nextKey, (V)v);
5689 >                    r = (r == null) ? u : reducer.apply(r, u);
5690 >                }
5691 >                result = r;
5692 >                CountedCompleter<?> c;
5693 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5694 >                    ReduceEntriesTask<K,V>
5695 >                        t = (ReduceEntriesTask<K,V>)c,
5696 >                        s = t.rights;
5697 >                    while (s != null) {
5698 >                        Map.Entry<K,V> tr, sr;
5699 >                        if ((sr = s.result) != null)
5700 >                            t.result = (((tr = t.result) == null) ? sr :
5701 >                                        reducer.apply(tr, sr));
5702 >                        s = t.rights = s.nextRight;
5703 >                    }
5704 >                }
5705 >            }
5706 >        }
5707 >    }
5708 >
5709 >    @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
5710 >        extends Traverser<K,V,U> {
5711 >        final Fun<? super K, ? extends U> transformer;
5712 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5713 >        U result;
5714 >        MapReduceKeysTask<K,V,U> rights, nextRight;
5715 >        MapReduceKeysTask
5716 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5717 >             MapReduceKeysTask<K,V,U> nextRight,
5718 >             Fun<? super K, ? extends U> transformer,
5719 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5720 >            super(m, p, b); this.nextRight = nextRight;
5721 >            this.transformer = transformer;
5722 >            this.reducer = reducer;
5723 >        }
5724 >        public final U getRawResult() { return result; }
5725 >        @SuppressWarnings("unchecked") public final void compute() {
5726 >            final Fun<? super K, ? extends U> transformer;
5727 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5728 >            if ((transformer = this.transformer) != null &&
5729 >                (reducer = this.reducer) != null) {
5730 >                for (int b; (b = preSplit()) > 0;)
5731 >                    (rights = new MapReduceKeysTask<K,V,U>
5732 >                     (map, this, b, rights, transformer, reducer)).fork();
5733 >                U r = null, u;
5734 >                while (advance() != null) {
5735 >                    if ((u = transformer.apply((K)nextKey)) != null)
5736 >                        r = (r == null) ? u : reducer.apply(r, u);
5737 >                }
5738 >                result = r;
5739 >                CountedCompleter<?> c;
5740 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5741 >                    MapReduceKeysTask<K,V,U>
5742 >                        t = (MapReduceKeysTask<K,V,U>)c,
5743 >                        s = t.rights;
5744 >                    while (s != null) {
5745 >                        U tr, sr;
5746 >                        if ((sr = s.result) != null)
5747 >                            t.result = (((tr = t.result) == null) ? sr :
5748 >                                        reducer.apply(tr, sr));
5749 >                        s = t.rights = s.nextRight;
5750 >                    }
5751 >                }
5752 >            }
5753 >        }
5754 >    }
5755 >
5756 >    @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
5757 >        extends Traverser<K,V,U> {
5758 >        final Fun<? super V, ? extends U> transformer;
5759 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5760 >        U result;
5761 >        MapReduceValuesTask<K,V,U> rights, nextRight;
5762 >        MapReduceValuesTask
5763 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5764 >             MapReduceValuesTask<K,V,U> nextRight,
5765 >             Fun<? super V, ? extends U> transformer,
5766 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5767 >            super(m, p, b); this.nextRight = nextRight;
5768 >            this.transformer = transformer;
5769 >            this.reducer = reducer;
5770 >        }
5771 >        public final U getRawResult() { return result; }
5772 >        @SuppressWarnings("unchecked") public final void compute() {
5773 >            final Fun<? super V, ? extends U> transformer;
5774 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5775 >            if ((transformer = this.transformer) != null &&
5776 >                (reducer = this.reducer) != null) {
5777 >                for (int b; (b = preSplit()) > 0;)
5778 >                    (rights = new MapReduceValuesTask<K,V,U>
5779 >                     (map, this, b, rights, transformer, reducer)).fork();
5780 >                U r = null, u;
5781 >                Object v;
5782 >                while ((v = advance()) != null) {
5783 >                    if ((u = transformer.apply((V)v)) != null)
5784 >                        r = (r == null) ? u : reducer.apply(r, u);
5785 >                }
5786 >                result = r;
5787 >                CountedCompleter<?> c;
5788 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5789 >                    MapReduceValuesTask<K,V,U>
5790 >                        t = (MapReduceValuesTask<K,V,U>)c,
5791 >                        s = t.rights;
5792 >                    while (s != null) {
5793 >                        U tr, sr;
5794 >                        if ((sr = s.result) != null)
5795 >                            t.result = (((tr = t.result) == null) ? sr :
5796 >                                        reducer.apply(tr, sr));
5797 >                        s = t.rights = s.nextRight;
5798 >                    }
5799 >                }
5800 >            }
5801 >        }
5802 >    }
5803 >
5804 >    @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
5805 >        extends Traverser<K,V,U> {
5806 >        final Fun<Map.Entry<K,V>, ? extends U> transformer;
5807 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5808 >        U result;
5809 >        MapReduceEntriesTask<K,V,U> rights, nextRight;
5810 >        MapReduceEntriesTask
5811 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5812 >             MapReduceEntriesTask<K,V,U> nextRight,
5813 >             Fun<Map.Entry<K,V>, ? extends U> transformer,
5814 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5815 >            super(m, p, b); this.nextRight = nextRight;
5816 >            this.transformer = transformer;
5817 >            this.reducer = reducer;
5818 >        }
5819 >        public final U getRawResult() { return result; }
5820 >        @SuppressWarnings("unchecked") public final void compute() {
5821 >            final Fun<Map.Entry<K,V>, ? extends U> transformer;
5822 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5823 >            if ((transformer = this.transformer) != null &&
5824 >                (reducer = this.reducer) != null) {
5825 >                for (int b; (b = preSplit()) > 0;)
5826 >                    (rights = new MapReduceEntriesTask<K,V,U>
5827 >                     (map, this, b, rights, transformer, reducer)).fork();
5828 >                U r = null, u;
5829 >                Object v;
5830 >                while ((v = advance()) != null) {
5831 >                    if ((u = transformer.apply(entryFor((K)nextKey,
5832 >                                                        (V)v))) != null)
5833 >                        r = (r == null) ? u : reducer.apply(r, u);
5834 >                }
5835 >                result = r;
5836 >                CountedCompleter<?> c;
5837 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5838 >                    MapReduceEntriesTask<K,V,U>
5839 >                        t = (MapReduceEntriesTask<K,V,U>)c,
5840 >                        s = t.rights;
5841 >                    while (s != null) {
5842 >                        U tr, sr;
5843 >                        if ((sr = s.result) != null)
5844 >                            t.result = (((tr = t.result) == null) ? sr :
5845 >                                        reducer.apply(tr, sr));
5846 >                        s = t.rights = s.nextRight;
5847 >                    }
5848 >                }
5849 >            }
5850 >        }
5851 >    }
5852 >
5853 >    @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
5854 >        extends Traverser<K,V,U> {
5855 >        final BiFun<? super K, ? super V, ? extends U> transformer;
5856 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5857 >        U result;
5858 >        MapReduceMappingsTask<K,V,U> rights, nextRight;
5859 >        MapReduceMappingsTask
5860 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5861 >             MapReduceMappingsTask<K,V,U> nextRight,
5862 >             BiFun<? super K, ? super V, ? extends U> transformer,
5863 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5864 >            super(m, p, b); this.nextRight = nextRight;
5865 >            this.transformer = transformer;
5866 >            this.reducer = reducer;
5867 >        }
5868 >        public final U getRawResult() { return result; }
5869 >        @SuppressWarnings("unchecked") public final void compute() {
5870 >            final BiFun<? super K, ? super V, ? extends U> transformer;
5871 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5872 >            if ((transformer = this.transformer) != null &&
5873 >                (reducer = this.reducer) != null) {
5874 >                for (int b; (b = preSplit()) > 0;)
5875 >                    (rights = new MapReduceMappingsTask<K,V,U>
5876 >                     (map, this, b, rights, transformer, reducer)).fork();
5877 >                U r = null, u;
5878 >                Object v;
5879 >                while ((v = advance()) != null) {
5880 >                    if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5881 >                        r = (r == null) ? u : reducer.apply(r, u);
5882 >                }
5883 >                result = r;
5884 >                CountedCompleter<?> c;
5885 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5886 >                    MapReduceMappingsTask<K,V,U>
5887 >                        t = (MapReduceMappingsTask<K,V,U>)c,
5888 >                        s = t.rights;
5889 >                    while (s != null) {
5890 >                        U tr, sr;
5891 >                        if ((sr = s.result) != null)
5892 >                            t.result = (((tr = t.result) == null) ? sr :
5893 >                                        reducer.apply(tr, sr));
5894 >                        s = t.rights = s.nextRight;
5895 >                    }
5896 >                }
5897 >            }
5898 >        }
5899 >    }
5900 >
5901 >    @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
5902 >        extends Traverser<K,V,Double> {
5903 >        final ObjectToDouble<? super K> transformer;
5904 >        final DoubleByDoubleToDouble reducer;
5905 >        final double basis;
5906 >        double result;
5907 >        MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5908 >        MapReduceKeysToDoubleTask
5909 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5910 >             MapReduceKeysToDoubleTask<K,V> nextRight,
5911 >             ObjectToDouble<? super K> transformer,
5912 >             double basis,
5913 >             DoubleByDoubleToDouble reducer) {
5914 >            super(m, p, b); this.nextRight = nextRight;
5915 >            this.transformer = transformer;
5916 >            this.basis = basis; this.reducer = reducer;
5917 >        }
5918 >        public final Double getRawResult() { return result; }
5919 >        @SuppressWarnings("unchecked") public final void compute() {
5920 >            final ObjectToDouble<? super K> transformer;
5921 >            final DoubleByDoubleToDouble reducer;
5922 >            if ((transformer = this.transformer) != null &&
5923 >                (reducer = this.reducer) != null) {
5924 >                double r = this.basis;
5925 >                for (int b; (b = preSplit()) > 0;)
5926 >                    (rights = new MapReduceKeysToDoubleTask<K,V>
5927 >                     (map, this, b, rights, transformer, r, reducer)).fork();
5928 >                while (advance() != null)
5929 >                    r = reducer.apply(r, transformer.apply((K)nextKey));
5930 >                result = r;
5931 >                CountedCompleter<?> c;
5932 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5933 >                    MapReduceKeysToDoubleTask<K,V>
5934 >                        t = (MapReduceKeysToDoubleTask<K,V>)c,
5935 >                        s = t.rights;
5936 >                    while (s != null) {
5937 >                        t.result = reducer.apply(t.result, s.result);
5938 >                        s = t.rights = s.nextRight;
5939 >                    }
5940 >                }
5941 >            }
5942 >        }
5943 >    }
5944 >
5945 >    @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
5946 >        extends Traverser<K,V,Double> {
5947 >        final ObjectToDouble<? super V> transformer;
5948 >        final DoubleByDoubleToDouble reducer;
5949 >        final double basis;
5950 >        double result;
5951 >        MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5952 >        MapReduceValuesToDoubleTask
5953 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5954 >             MapReduceValuesToDoubleTask<K,V> nextRight,
5955 >             ObjectToDouble<? super V> transformer,
5956 >             double basis,
5957 >             DoubleByDoubleToDouble reducer) {
5958 >            super(m, p, b); this.nextRight = nextRight;
5959 >            this.transformer = transformer;
5960 >            this.basis = basis; this.reducer = reducer;
5961 >        }
5962 >        public final Double getRawResult() { return result; }
5963 >        @SuppressWarnings("unchecked") public final void compute() {
5964 >            final ObjectToDouble<? super V> transformer;
5965 >            final DoubleByDoubleToDouble reducer;
5966 >            if ((transformer = this.transformer) != null &&
5967 >                (reducer = this.reducer) != null) {
5968 >                double r = this.basis;
5969 >                for (int b; (b = preSplit()) > 0;)
5970 >                    (rights = new MapReduceValuesToDoubleTask<K,V>
5971 >                     (map, this, b, rights, transformer, r, reducer)).fork();
5972 >                Object v;
5973 >                while ((v = advance()) != null)
5974 >                    r = reducer.apply(r, transformer.apply((V)v));
5975 >                result = r;
5976 >                CountedCompleter<?> c;
5977 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5978 >                    MapReduceValuesToDoubleTask<K,V>
5979 >                        t = (MapReduceValuesToDoubleTask<K,V>)c,
5980 >                        s = t.rights;
5981 >                    while (s != null) {
5982 >                        t.result = reducer.apply(t.result, s.result);
5983 >                        s = t.rights = s.nextRight;
5984 >                    }
5985 >                }
5986 >            }
5987 >        }
5988 >    }
5989 >
5990 >    @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
5991 >        extends Traverser<K,V,Double> {
5992 >        final ObjectToDouble<Map.Entry<K,V>> transformer;
5993 >        final DoubleByDoubleToDouble reducer;
5994 >        final double basis;
5995 >        double result;
5996 >        MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5997 >        MapReduceEntriesToDoubleTask
5998 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5999 >             MapReduceEntriesToDoubleTask<K,V> nextRight,
6000 >             ObjectToDouble<Map.Entry<K,V>> transformer,
6001 >             double basis,
6002 >             DoubleByDoubleToDouble reducer) {
6003 >            super(m, p, b); this.nextRight = nextRight;
6004 >            this.transformer = transformer;
6005 >            this.basis = basis; this.reducer = reducer;
6006 >        }
6007 >        public final Double getRawResult() { return result; }
6008 >        @SuppressWarnings("unchecked") public final void compute() {
6009 >            final ObjectToDouble<Map.Entry<K,V>> transformer;
6010 >            final DoubleByDoubleToDouble reducer;
6011 >            if ((transformer = this.transformer) != null &&
6012 >                (reducer = this.reducer) != null) {
6013 >                double r = this.basis;
6014 >                for (int b; (b = preSplit()) > 0;)
6015 >                    (rights = new MapReduceEntriesToDoubleTask<K,V>
6016 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6017 >                Object v;
6018 >                while ((v = advance()) != null)
6019 >                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
6020 >                                                                    (V)v)));
6021 >                result = r;
6022 >                CountedCompleter<?> c;
6023 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6024 >                    MapReduceEntriesToDoubleTask<K,V>
6025 >                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
6026 >                        s = t.rights;
6027 >                    while (s != null) {
6028 >                        t.result = reducer.apply(t.result, s.result);
6029 >                        s = t.rights = s.nextRight;
6030 >                    }
6031 >                }
6032 >            }
6033 >        }
6034 >    }
6035 >
6036 >    @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6037 >        extends Traverser<K,V,Double> {
6038 >        final ObjectByObjectToDouble<? super K, ? super V> transformer;
6039 >        final DoubleByDoubleToDouble reducer;
6040 >        final double basis;
6041 >        double result;
6042 >        MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6043 >        MapReduceMappingsToDoubleTask
6044 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6045 >             MapReduceMappingsToDoubleTask<K,V> nextRight,
6046 >             ObjectByObjectToDouble<? super K, ? super V> transformer,
6047 >             double basis,
6048 >             DoubleByDoubleToDouble reducer) {
6049 >            super(m, p, b); this.nextRight = nextRight;
6050 >            this.transformer = transformer;
6051 >            this.basis = basis; this.reducer = reducer;
6052 >        }
6053 >        public final Double getRawResult() { return result; }
6054 >        @SuppressWarnings("unchecked") public final void compute() {
6055 >            final ObjectByObjectToDouble<? super K, ? super V> transformer;
6056 >            final DoubleByDoubleToDouble reducer;
6057 >            if ((transformer = this.transformer) != null &&
6058 >                (reducer = this.reducer) != null) {
6059 >                double r = this.basis;
6060 >                for (int b; (b = preSplit()) > 0;)
6061 >                    (rights = new MapReduceMappingsToDoubleTask<K,V>
6062 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6063 >                Object v;
6064 >                while ((v = advance()) != null)
6065 >                    r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6066 >                result = r;
6067 >                CountedCompleter<?> c;
6068 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6069 >                    MapReduceMappingsToDoubleTask<K,V>
6070 >                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
6071 >                        s = t.rights;
6072 >                    while (s != null) {
6073 >                        t.result = reducer.apply(t.result, s.result);
6074 >                        s = t.rights = s.nextRight;
6075 >                    }
6076 >                }
6077 >            }
6078 >        }
6079 >    }
6080 >
6081 >    @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6082 >        extends Traverser<K,V,Long> {
6083 >        final ObjectToLong<? super K> transformer;
6084 >        final LongByLongToLong reducer;
6085 >        final long basis;
6086 >        long result;
6087 >        MapReduceKeysToLongTask<K,V> rights, nextRight;
6088 >        MapReduceKeysToLongTask
6089 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6090 >             MapReduceKeysToLongTask<K,V> nextRight,
6091 >             ObjectToLong<? super K> transformer,
6092 >             long basis,
6093 >             LongByLongToLong reducer) {
6094 >            super(m, p, b); this.nextRight = nextRight;
6095 >            this.transformer = transformer;
6096 >            this.basis = basis; this.reducer = reducer;
6097 >        }
6098 >        public final Long getRawResult() { return result; }
6099 >        @SuppressWarnings("unchecked") public final void compute() {
6100 >            final ObjectToLong<? super K> transformer;
6101 >            final LongByLongToLong reducer;
6102 >            if ((transformer = this.transformer) != null &&
6103 >                (reducer = this.reducer) != null) {
6104 >                long r = this.basis;
6105 >                for (int b; (b = preSplit()) > 0;)
6106 >                    (rights = new MapReduceKeysToLongTask<K,V>
6107 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6108 >                while (advance() != null)
6109 >                    r = reducer.apply(r, transformer.apply((K)nextKey));
6110 >                result = r;
6111 >                CountedCompleter<?> c;
6112 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6113 >                    MapReduceKeysToLongTask<K,V>
6114 >                        t = (MapReduceKeysToLongTask<K,V>)c,
6115 >                        s = t.rights;
6116 >                    while (s != null) {
6117 >                        t.result = reducer.apply(t.result, s.result);
6118 >                        s = t.rights = s.nextRight;
6119 >                    }
6120 >                }
6121 >            }
6122 >        }
6123 >    }
6124 >
6125 >    @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6126 >        extends Traverser<K,V,Long> {
6127 >        final ObjectToLong<? super V> transformer;
6128 >        final LongByLongToLong reducer;
6129 >        final long basis;
6130 >        long result;
6131 >        MapReduceValuesToLongTask<K,V> rights, nextRight;
6132 >        MapReduceValuesToLongTask
6133 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6134 >             MapReduceValuesToLongTask<K,V> nextRight,
6135 >             ObjectToLong<? super V> transformer,
6136 >             long basis,
6137 >             LongByLongToLong reducer) {
6138 >            super(m, p, b); this.nextRight = nextRight;
6139 >            this.transformer = transformer;
6140 >            this.basis = basis; this.reducer = reducer;
6141 >        }
6142 >        public final Long getRawResult() { return result; }
6143 >        @SuppressWarnings("unchecked") public final void compute() {
6144 >            final ObjectToLong<? super V> transformer;
6145 >            final LongByLongToLong reducer;
6146 >            if ((transformer = this.transformer) != null &&
6147 >                (reducer = this.reducer) != null) {
6148 >                long r = this.basis;
6149 >                for (int b; (b = preSplit()) > 0;)
6150 >                    (rights = new MapReduceValuesToLongTask<K,V>
6151 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6152 >                Object v;
6153 >                while ((v = advance()) != null)
6154 >                    r = reducer.apply(r, transformer.apply((V)v));
6155 >                result = r;
6156 >                CountedCompleter<?> c;
6157 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6158 >                    MapReduceValuesToLongTask<K,V>
6159 >                        t = (MapReduceValuesToLongTask<K,V>)c,
6160 >                        s = t.rights;
6161 >                    while (s != null) {
6162 >                        t.result = reducer.apply(t.result, s.result);
6163 >                        s = t.rights = s.nextRight;
6164 >                    }
6165 >                }
6166 >            }
6167 >        }
6168 >    }
6169 >
6170 >    @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6171 >        extends Traverser<K,V,Long> {
6172 >        final ObjectToLong<Map.Entry<K,V>> transformer;
6173 >        final LongByLongToLong reducer;
6174 >        final long basis;
6175 >        long result;
6176 >        MapReduceEntriesToLongTask<K,V> rights, nextRight;
6177 >        MapReduceEntriesToLongTask
6178 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6179 >             MapReduceEntriesToLongTask<K,V> nextRight,
6180 >             ObjectToLong<Map.Entry<K,V>> transformer,
6181 >             long basis,
6182 >             LongByLongToLong reducer) {
6183 >            super(m, p, b); this.nextRight = nextRight;
6184 >            this.transformer = transformer;
6185 >            this.basis = basis; this.reducer = reducer;
6186 >        }
6187 >        public final Long getRawResult() { return result; }
6188 >        @SuppressWarnings("unchecked") public final void compute() {
6189 >            final ObjectToLong<Map.Entry<K,V>> transformer;
6190 >            final LongByLongToLong reducer;
6191 >            if ((transformer = this.transformer) != null &&
6192 >                (reducer = this.reducer) != null) {
6193 >                long r = this.basis;
6194 >                for (int b; (b = preSplit()) > 0;)
6195 >                    (rights = new MapReduceEntriesToLongTask<K,V>
6196 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6197 >                Object v;
6198 >                while ((v = advance()) != null)
6199 >                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
6200 >                                                                    (V)v)));
6201 >                result = r;
6202 >                CountedCompleter<?> c;
6203 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6204 >                    MapReduceEntriesToLongTask<K,V>
6205 >                        t = (MapReduceEntriesToLongTask<K,V>)c,
6206 >                        s = t.rights;
6207 >                    while (s != null) {
6208 >                        t.result = reducer.apply(t.result, s.result);
6209 >                        s = t.rights = s.nextRight;
6210 >                    }
6211 >                }
6212 >            }
6213 >        }
6214 >    }
6215 >
6216 >    @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6217 >        extends Traverser<K,V,Long> {
6218 >        final ObjectByObjectToLong<? super K, ? super V> transformer;
6219 >        final LongByLongToLong reducer;
6220 >        final long basis;
6221 >        long result;
6222 >        MapReduceMappingsToLongTask<K,V> rights, nextRight;
6223 >        MapReduceMappingsToLongTask
6224 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6225 >             MapReduceMappingsToLongTask<K,V> nextRight,
6226 >             ObjectByObjectToLong<? super K, ? super V> transformer,
6227 >             long basis,
6228 >             LongByLongToLong reducer) {
6229 >            super(m, p, b); this.nextRight = nextRight;
6230 >            this.transformer = transformer;
6231 >            this.basis = basis; this.reducer = reducer;
6232 >        }
6233 >        public final Long getRawResult() { return result; }
6234 >        @SuppressWarnings("unchecked") public final void compute() {
6235 >            final ObjectByObjectToLong<? super K, ? super V> transformer;
6236 >            final LongByLongToLong reducer;
6237 >            if ((transformer = this.transformer) != null &&
6238 >                (reducer = this.reducer) != null) {
6239 >                long r = this.basis;
6240 >                for (int b; (b = preSplit()) > 0;)
6241 >                    (rights = new MapReduceMappingsToLongTask<K,V>
6242 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6243 >                Object v;
6244 >                while ((v = advance()) != null)
6245 >                    r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6246 >                result = r;
6247 >                CountedCompleter<?> c;
6248 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6249 >                    MapReduceMappingsToLongTask<K,V>
6250 >                        t = (MapReduceMappingsToLongTask<K,V>)c,
6251 >                        s = t.rights;
6252 >                    while (s != null) {
6253 >                        t.result = reducer.apply(t.result, s.result);
6254 >                        s = t.rights = s.nextRight;
6255 >                    }
6256 >                }
6257 >            }
6258 >        }
6259 >    }
6260 >
6261 >    @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6262 >        extends Traverser<K,V,Integer> {
6263 >        final ObjectToInt<? super K> transformer;
6264 >        final IntByIntToInt reducer;
6265 >        final int basis;
6266 >        int result;
6267 >        MapReduceKeysToIntTask<K,V> rights, nextRight;
6268 >        MapReduceKeysToIntTask
6269 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6270 >             MapReduceKeysToIntTask<K,V> nextRight,
6271 >             ObjectToInt<? super K> transformer,
6272 >             int basis,
6273 >             IntByIntToInt reducer) {
6274 >            super(m, p, b); this.nextRight = nextRight;
6275 >            this.transformer = transformer;
6276 >            this.basis = basis; this.reducer = reducer;
6277 >        }
6278 >        public final Integer getRawResult() { return result; }
6279 >        @SuppressWarnings("unchecked") public final void compute() {
6280 >            final ObjectToInt<? super K> transformer;
6281 >            final IntByIntToInt reducer;
6282 >            if ((transformer = this.transformer) != null &&
6283 >                (reducer = this.reducer) != null) {
6284 >                int r = this.basis;
6285 >                for (int b; (b = preSplit()) > 0;)
6286 >                    (rights = new MapReduceKeysToIntTask<K,V>
6287 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6288 >                while (advance() != null)
6289 >                    r = reducer.apply(r, transformer.apply((K)nextKey));
6290 >                result = r;
6291 >                CountedCompleter<?> c;
6292 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6293 >                    MapReduceKeysToIntTask<K,V>
6294 >                        t = (MapReduceKeysToIntTask<K,V>)c,
6295 >                        s = t.rights;
6296 >                    while (s != null) {
6297 >                        t.result = reducer.apply(t.result, s.result);
6298 >                        s = t.rights = s.nextRight;
6299 >                    }
6300 >                }
6301 >            }
6302 >        }
6303 >    }
6304 >
6305 >    @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6306 >        extends Traverser<K,V,Integer> {
6307 >        final ObjectToInt<? super V> transformer;
6308 >        final IntByIntToInt reducer;
6309 >        final int basis;
6310 >        int result;
6311 >        MapReduceValuesToIntTask<K,V> rights, nextRight;
6312 >        MapReduceValuesToIntTask
6313 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6314 >             MapReduceValuesToIntTask<K,V> nextRight,
6315 >             ObjectToInt<? super V> transformer,
6316 >             int basis,
6317 >             IntByIntToInt reducer) {
6318 >            super(m, p, b); this.nextRight = nextRight;
6319 >            this.transformer = transformer;
6320 >            this.basis = basis; this.reducer = reducer;
6321 >        }
6322 >        public final Integer getRawResult() { return result; }
6323 >        @SuppressWarnings("unchecked") public final void compute() {
6324 >            final ObjectToInt<? super V> transformer;
6325 >            final IntByIntToInt reducer;
6326 >            if ((transformer = this.transformer) != null &&
6327 >                (reducer = this.reducer) != null) {
6328 >                int r = this.basis;
6329 >                for (int b; (b = preSplit()) > 0;)
6330 >                    (rights = new MapReduceValuesToIntTask<K,V>
6331 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6332 >                Object v;
6333 >                while ((v = advance()) != null)
6334 >                    r = reducer.apply(r, transformer.apply((V)v));
6335 >                result = r;
6336 >                CountedCompleter<?> c;
6337 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6338 >                    MapReduceValuesToIntTask<K,V>
6339 >                        t = (MapReduceValuesToIntTask<K,V>)c,
6340 >                        s = t.rights;
6341 >                    while (s != null) {
6342 >                        t.result = reducer.apply(t.result, s.result);
6343 >                        s = t.rights = s.nextRight;
6344 >                    }
6345 >                }
6346 >            }
6347 >        }
6348 >    }
6349 >
6350 >    @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6351 >        extends Traverser<K,V,Integer> {
6352 >        final ObjectToInt<Map.Entry<K,V>> transformer;
6353 >        final IntByIntToInt reducer;
6354 >        final int basis;
6355 >        int result;
6356 >        MapReduceEntriesToIntTask<K,V> rights, nextRight;
6357 >        MapReduceEntriesToIntTask
6358 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6359 >             MapReduceEntriesToIntTask<K,V> nextRight,
6360 >             ObjectToInt<Map.Entry<K,V>> transformer,
6361 >             int basis,
6362 >             IntByIntToInt reducer) {
6363 >            super(m, p, b); this.nextRight = nextRight;
6364 >            this.transformer = transformer;
6365 >            this.basis = basis; this.reducer = reducer;
6366 >        }
6367 >        public final Integer getRawResult() { return result; }
6368 >        @SuppressWarnings("unchecked") public final void compute() {
6369 >            final ObjectToInt<Map.Entry<K,V>> transformer;
6370 >            final IntByIntToInt reducer;
6371 >            if ((transformer = this.transformer) != null &&
6372 >                (reducer = this.reducer) != null) {
6373 >                int r = this.basis;
6374 >                for (int b; (b = preSplit()) > 0;)
6375 >                    (rights = new MapReduceEntriesToIntTask<K,V>
6376 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6377 >                Object v;
6378 >                while ((v = advance()) != null)
6379 >                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
6380 >                                                                    (V)v)));
6381 >                result = r;
6382 >                CountedCompleter<?> c;
6383 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6384 >                    MapReduceEntriesToIntTask<K,V>
6385 >                        t = (MapReduceEntriesToIntTask<K,V>)c,
6386 >                        s = t.rights;
6387 >                    while (s != null) {
6388 >                        t.result = reducer.apply(t.result, s.result);
6389 >                        s = t.rights = s.nextRight;
6390 >                    }
6391 >                }
6392 >            }
6393 >        }
6394 >    }
6395 >
6396 >    @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6397 >        extends Traverser<K,V,Integer> {
6398 >        final ObjectByObjectToInt<? super K, ? super V> transformer;
6399 >        final IntByIntToInt reducer;
6400 >        final int basis;
6401 >        int result;
6402 >        MapReduceMappingsToIntTask<K,V> rights, nextRight;
6403 >        MapReduceMappingsToIntTask
6404 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6405 >             MapReduceMappingsToIntTask<K,V> nextRight,
6406 >             ObjectByObjectToInt<? super K, ? super V> transformer,
6407 >             int basis,
6408 >             IntByIntToInt reducer) {
6409 >            super(m, p, b); this.nextRight = nextRight;
6410 >            this.transformer = transformer;
6411 >            this.basis = basis; this.reducer = reducer;
6412 >        }
6413 >        public final Integer getRawResult() { return result; }
6414 >        @SuppressWarnings("unchecked") public final void compute() {
6415 >            final ObjectByObjectToInt<? super K, ? super V> transformer;
6416 >            final IntByIntToInt reducer;
6417 >            if ((transformer = this.transformer) != null &&
6418 >                (reducer = this.reducer) != null) {
6419 >                int r = this.basis;
6420 >                for (int b; (b = preSplit()) > 0;)
6421 >                    (rights = new MapReduceMappingsToIntTask<K,V>
6422 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6423 >                Object v;
6424 >                while ((v = advance()) != null)
6425 >                    r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6426 >                result = r;
6427 >                CountedCompleter<?> c;
6428 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6429 >                    MapReduceMappingsToIntTask<K,V>
6430 >                        t = (MapReduceMappingsToIntTask<K,V>)c,
6431 >                        s = t.rights;
6432 >                    while (s != null) {
6433 >                        t.result = reducer.apply(t.result, s.result);
6434 >                        s = t.rights = s.nextRight;
6435 >                    }
6436 >                }
6437 >            }
6438          }
6439      }
6440  
6441      // Unsafe mechanics
6442 <    private static final sun.misc.Unsafe UNSAFE;
6443 <    private static final long counterOffset;
6444 <    private static final long resizingOffset;
6442 >    private static final sun.misc.Unsafe U;
6443 >    private static final long SIZECTL;
6444 >    private static final long TRANSFERINDEX;
6445 >    private static final long TRANSFERORIGIN;
6446 >    private static final long BASECOUNT;
6447 >    private static final long COUNTERBUSY;
6448 >    private static final long CELLVALUE;
6449      private static final long ABASE;
6450      private static final int ASHIFT;
6451  
6452      static {
6453          int ss;
6454          try {
6455 <            UNSAFE = getUnsafe();
6455 >            U = getUnsafe();
6456              Class<?> k = ConcurrentHashMapV8.class;
6457 <            counterOffset = UNSAFE.objectFieldOffset
6458 <                (k.getDeclaredField("counter"));
6459 <            resizingOffset = UNSAFE.objectFieldOffset
6460 <                (k.getDeclaredField("resizing"));
6457 >            SIZECTL = U.objectFieldOffset
6458 >                (k.getDeclaredField("sizeCtl"));
6459 >            TRANSFERINDEX = U.objectFieldOffset
6460 >                (k.getDeclaredField("transferIndex"));
6461 >            TRANSFERORIGIN = U.objectFieldOffset
6462 >                (k.getDeclaredField("transferOrigin"));
6463 >            BASECOUNT = U.objectFieldOffset
6464 >                (k.getDeclaredField("baseCount"));
6465 >            COUNTERBUSY = U.objectFieldOffset
6466 >                (k.getDeclaredField("counterBusy"));
6467 >            Class<?> ck = CounterCell.class;
6468 >            CELLVALUE = U.objectFieldOffset
6469 >                (ck.getDeclaredField("value"));
6470              Class<?> sc = Node[].class;
6471 <            ABASE = UNSAFE.arrayBaseOffset(sc);
6472 <            ss = UNSAFE.arrayIndexScale(sc);
6471 >            ABASE = U.arrayBaseOffset(sc);
6472 >            ss = U.arrayIndexScale(sc);
6473 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6474          } catch (Exception e) {
6475              throw new Error(e);
6476          }
6477          if ((ss & (ss-1)) != 0)
6478              throw new Error("data type scale not a power of two");
1592        ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6479      }
6480  
6481      /**
# Line 1619 | Line 6505 | public class ConcurrentHashMapV8<K, V>
6505              }
6506          }
6507      }
1622
6508   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines