ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
(Generate patch)

Comparing jsr166/src/jsr166e/ConcurrentHashMapV8.java (file contents):
Revision 1.50 by jsr166, Sat Jul 7 13:01:53 2012 UTC vs.
Revision 1.83 by jsr166, Fri Dec 14 16:33:42 2012 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166e;
8 < import jsr166e.LongAdder;
8 >
9 > import java.util.Comparator;
10   import java.util.Arrays;
11   import java.util.Map;
12   import java.util.Set;
# Line 20 | Line 21 | import java.util.Enumeration;
21   import java.util.ConcurrentModificationException;
22   import java.util.NoSuchElementException;
23   import java.util.concurrent.ConcurrentMap;
23 import java.util.concurrent.ThreadLocalRandom;
24 import java.util.concurrent.locks.LockSupport;
24   import java.util.concurrent.locks.AbstractQueuedSynchronizer;
25 + import java.util.concurrent.atomic.AtomicInteger;
26 + import java.util.concurrent.atomic.AtomicReference;
27   import java.io.Serializable;
28  
29   /**
# Line 37 | Line 38 | import java.io.Serializable;
38   * interoperable with {@code Hashtable} in programs that rely on its
39   * thread safety but not on its synchronization details.
40   *
41 < * <p> Retrieval operations (including {@code get}) generally do not
41 > * <p>Retrieval operations (including {@code get}) generally do not
42   * block, so may overlap with update operations (including {@code put}
43   * and {@code remove}). Retrievals reflect the results of the most
44   * recently <em>completed</em> update operations holding upon their
45 < * onset.  For aggregate operations such as {@code putAll} and {@code
46 < * clear}, concurrent retrievals may reflect insertion or removal of
47 < * only some entries.  Similarly, Iterators and Enumerations return
48 < * elements reflecting the state of the hash table at some point at or
49 < * since the creation of the iterator/enumeration.  They do
50 < * <em>not</em> throw {@link ConcurrentModificationException}.
51 < * However, iterators are designed to be used by only one thread at a
52 < * time.  Bear in mind that the results of aggregate status methods
53 < * including {@code size}, {@code isEmpty}, and {@code containsValue}
54 < * are typically useful only when a map is not undergoing concurrent
55 < * updates in other threads.  Otherwise the results of these methods
56 < * reflect transient states that may be adequate for monitoring
57 < * or estimation purposes, but not for program control.
45 > * onset. (More formally, an update operation for a given key bears a
46 > * <em>happens-before</em> relation with any (non-null) retrieval for
47 > * that key reporting the updated value.)  For aggregate operations
48 > * such as {@code putAll} and {@code clear}, concurrent retrievals may
49 > * reflect insertion or removal of only some entries.  Similarly,
50 > * Iterators and Enumerations return elements reflecting the state of
51 > * the hash table at some point at or since the creation of the
52 > * iterator/enumeration.  They do <em>not</em> throw {@link
53 > * ConcurrentModificationException}.  However, iterators are designed
54 > * to be used by only one thread at a time.  Bear in mind that the
55 > * results of aggregate status methods including {@code size}, {@code
56 > * isEmpty}, and {@code containsValue} are typically useful only when
57 > * a map is not undergoing concurrent updates in other threads.
58 > * Otherwise the results of these methods reflect transient states
59 > * that may be adequate for monitoring or estimation purposes, but not
60 > * for program control.
61   *
62 < * <p> The table is dynamically expanded when there are too many
62 > * <p>The table is dynamically expanded when there are too many
63   * collisions (i.e., keys that have distinct hash codes but fall into
64   * the same slot modulo the table size), with the expected average
65   * effect of maintaining roughly two bins per mapping (corresponding
# Line 76 | Line 80 | import java.io.Serializable;
80   * {@code hashCode()} is a sure way to slow down performance of any
81   * hash table.
82   *
83 + * <p>A {@link Set} projection of a ConcurrentHashMapV8 may be created
84 + * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
85 + * (using {@link #keySet(Object)} when only keys are of interest, and the
86 + * mapped values are (perhaps transiently) not used or all take the
87 + * same mapping value.
88 + *
89 + * <p>A ConcurrentHashMapV8 can be used as scalable frequency map (a
90 + * form of histogram or multiset) by using {@link LongAdder} values
91 + * and initializing via {@link #computeIfAbsent}. For example, to add
92 + * a count to a {@code ConcurrentHashMapV8<String,LongAdder> freqs}, you
93 + * can use {@code freqs.computeIfAbsent(k -> new
94 + * LongAdder()).increment();}
95 + *
96   * <p>This class and its views and iterators implement all of the
97   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
98   * interfaces.
99   *
100 < * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
100 > * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
101   * does <em>not</em> allow {@code null} to be used as a key or value.
102   *
103 + * <p>ConcurrentHashMapV8s support parallel operations using the {@link
104 + * ForkJoinPool#commonPool}. (Tasks that may be used in other contexts
105 + * are available in class {@link ForkJoinTasks}). These operations are
106 + * designed to be safely, and often sensibly, applied even with maps
107 + * that are being concurrently updated by other threads; for example,
108 + * when computing a snapshot summary of the values in a shared
109 + * registry.  There are three kinds of operation, each with four
110 + * forms, accepting functions with Keys, Values, Entries, and (Key,
111 + * Value) arguments and/or return values. (The first three forms are
112 + * also available via the {@link #keySet()}, {@link #values()} and
113 + * {@link #entrySet()} views). Because the elements of a
114 + * ConcurrentHashMapV8 are not ordered in any particular way, and may be
115 + * processed in different orders in different parallel executions, the
116 + * correctness of supplied functions should not depend on any
117 + * ordering, or on any other objects or values that may transiently
118 + * change while computation is in progress; and except for forEach
119 + * actions, should ideally be side-effect-free.
120 + *
121 + * <ul>
122 + * <li> forEach: Perform a given action on each element.
123 + * A variant form applies a given transformation on each element
124 + * before performing the action.</li>
125 + *
126 + * <li> search: Return the first available non-null result of
127 + * applying a given function on each element; skipping further
128 + * search when a result is found.</li>
129 + *
130 + * <li> reduce: Accumulate each element.  The supplied reduction
131 + * function cannot rely on ordering (more formally, it should be
132 + * both associative and commutative).  There are five variants:
133 + *
134 + * <ul>
135 + *
136 + * <li> Plain reductions. (There is not a form of this method for
137 + * (key, value) function arguments since there is no corresponding
138 + * return type.)</li>
139 + *
140 + * <li> Mapped reductions that accumulate the results of a given
141 + * function applied to each element.</li>
142 + *
143 + * <li> Reductions to scalar doubles, longs, and ints, using a
144 + * given basis value.</li>
145 + *
146 + * </li>
147 + * </ul>
148 + * </ul>
149 + *
150 + * <p>The concurrency properties of bulk operations follow
151 + * from those of ConcurrentHashMapV8: Any non-null result returned
152 + * from {@code get(key)} and related access methods bears a
153 + * happens-before relation with the associated insertion or
154 + * update.  The result of any bulk operation reflects the
155 + * composition of these per-element relations (but is not
156 + * necessarily atomic with respect to the map as a whole unless it
157 + * is somehow known to be quiescent).  Conversely, because keys
158 + * and values in the map are never null, null serves as a reliable
159 + * atomic indicator of the current lack of any result.  To
160 + * maintain this property, null serves as an implicit basis for
161 + * all non-scalar reduction operations. For the double, long, and
162 + * int versions, the basis should be one that, when combined with
163 + * any other value, returns that other value (more formally, it
164 + * should be the identity element for the reduction). Most common
165 + * reductions have these properties; for example, computing a sum
166 + * with basis 0 or a minimum with basis MAX_VALUE.
167 + *
168 + * <p>Search and transformation functions provided as arguments
169 + * should similarly return null to indicate the lack of any result
170 + * (in which case it is not used). In the case of mapped
171 + * reductions, this also enables transformations to serve as
172 + * filters, returning null (or, in the case of primitive
173 + * specializations, the identity basis) if the element should not
174 + * be combined. You can create compound transformations and
175 + * filterings by composing them yourself under this "null means
176 + * there is nothing there now" rule before using them in search or
177 + * reduce operations.
178 + *
179 + * <p>Methods accepting and/or returning Entry arguments maintain
180 + * key-value associations. They may be useful for example when
181 + * finding the key for the greatest value. Note that "plain" Entry
182 + * arguments can be supplied using {@code new
183 + * AbstractMap.SimpleEntry(k,v)}.
184 + *
185 + * <p>Bulk operations may complete abruptly, throwing an
186 + * exception encountered in the application of a supplied
187 + * function. Bear in mind when handling such exceptions that other
188 + * concurrently executing functions could also have thrown
189 + * exceptions, or would have done so if the first exception had
190 + * not occurred.
191 + *
192 + * <p>Parallel speedups for bulk operations compared to sequential
193 + * processing are common but not guaranteed.  Operations involving
194 + * brief functions on small maps may execute more slowly than
195 + * sequential loops if the underlying work to parallelize the
196 + * computation is more expensive than the computation itself.
197 + * Similarly, parallelization may not lead to much actual parallelism
198 + * if all processors are busy performing unrelated tasks.
199 + *
200 + * <p>All arguments to all task methods must be non-null.
201 + *
202 + * <p><em>jsr166e note: During transition, this class
203 + * uses nested functional interfaces with different names but the
204 + * same forms as those expected for JDK8.</em>
205 + *
206   * <p>This class is a member of the
207   * <a href="{@docRoot}/../technotes/guides/collections/index.html">
208   * Java Collections Framework</a>.
209   *
90 * <p><em>jsr166e note: This class is a candidate replacement for
91 * java.util.concurrent.ConcurrentHashMap.<em>
92 *
210   * @since 1.5
211   * @author Doug Lea
212   * @param <K> the type of keys maintained by this map
213   * @param <V> the type of mapped values
214   */
215   public class ConcurrentHashMapV8<K, V>
216 <        implements ConcurrentMap<K, V>, Serializable {
216 >    implements ConcurrentMap<K, V>, Serializable {
217      private static final long serialVersionUID = 7249069246763182397L;
218  
219      /**
103     * A function computing a mapping from the given key to a value.
104     * This is a place-holder for an upcoming JDK8 interface.
105     */
106    public static interface MappingFunction<K, V> {
107        /**
108         * Returns a value for the given key, or null if there is no mapping.
109         *
110         * @param key the (non-null) key
111         * @return a value for the key, or null if none
112         */
113        V map(K key);
114    }
115
116    /**
117     * A function computing a new mapping given a key and its current
118     * mapped value (or {@code null} if there is no current
119     * mapping). This is a place-holder for an upcoming JDK8
120     * interface.
121     */
122    public static interface RemappingFunction<K, V> {
123        /**
124         * Returns a new value given a key and its current value.
125         *
126         * @param key the (non-null) key
127         * @param value the current value, or null if there is no mapping
128         * @return a value for the key, or null if none
129         */
130        V remap(K key, V value);
131    }
132
133    /**
220       * A partitionable iterator. A Spliterator can be traversed
221       * directly, but can also be partitioned (before traversal) by
222       * creating another Spliterator that covers a non-overlapping
223       * portion of the elements, and so may be amenable to parallel
224       * execution.
225       *
226 <     * <p> This interface exports a subset of expected JDK8
226 >     * <p>This interface exports a subset of expected JDK8
227       * functionality.
228       *
229       * <p>Sample usage: Here is one (of the several) ways to compute
# Line 150 | Line 236 | public class ConcurrentHashMapV8<K, V>
236       *
237       * <pre>
238       * {@code ConcurrentHashMapV8<String, Long> m = ...
239 <     * // Uses parallel depth of log2 of size / (parallelism * slack of 8).
240 <     * int depth = 32 - Integer.numberOfLeadingZeros(m.size() / (aForkJoinPool.getParallelism() * 8));
241 <     * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), depth, null));
239 >     * // split as if have 8 * parallelism, for load balance
240 >     * int n = m.size();
241 >     * int p = aForkJoinPool.getParallelism() * 8;
242 >     * int split = (n < p)? n : p;
243 >     * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
244       * // ...
245       * static class SumValues extends RecursiveTask<Long> {
246       *   final Spliterator<Long> s;
247 <     *   final int depth;             // number of splits before processing
247 >     *   final int split;             // split while > 1
248       *   final SumValues nextJoin;    // records forked subtasks to join
249       *   SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
250       *     this.s = s; this.depth = depth; this.nextJoin = nextJoin;
# Line 164 | Line 252 | public class ConcurrentHashMapV8<K, V>
252       *   public Long compute() {
253       *     long sum = 0;
254       *     SumValues subtasks = null; // fork subtasks
255 <     *     for (int d = depth - 1; d >= 0; --d)
256 <     *       (subtasks = new SumValues(s.split(), d, subtasks)).fork();
255 >     *     for (int s = split >>> 1; s > 0; s >>>= 1)
256 >     *       (subtasks = new SumValues(s.split(), s, subtasks)).fork();
257       *     while (s.hasNext())        // directly process remaining elements
258       *       sum += s.next();
259       *     for (SumValues t = subtasks; t != null; t = t.nextJoin)
# Line 211 | Line 299 | public class ConcurrentHashMapV8<K, V>
299       * can contain special values, they are defined using plain Object
300       * types. Similarly in turn, all internal methods that use them
301       * work off Object types. And similarly, so do the internal
302 <     * methods of auxiliary iterator and view classes.  All public
303 <     * generic typed methods relay in/out of these internal methods,
304 <     * supplying null-checks and casts as needed. This also allows
217 <     * many of the public methods to be factored into a smaller number
218 <     * of internal methods (although sadly not so for the five
302 >     * methods of auxiliary iterator and view classes. This also
303 >     * allows many of the public methods to be factored into a smaller
304 >     * number of internal methods (although sadly not so for the five
305       * variants of put-related operations). The validation-based
306       * approach explained below leads to a lot of code sprawl because
307       * retry-control precludes factoring into smaller methods.
# Line 231 | Line 317 | public class ConcurrentHashMapV8<K, V>
317       * as lookups check hash code and non-nullness of value before
318       * checking key equality.
319       *
320 <     * We use the top two bits of Node hash fields for control
321 <     * purposes -- they are available anyway because of addressing
322 <     * constraints.  As explained further below, these top bits are
323 <     * used as follows:
324 <     *  00 - Normal
325 <     *  01 - Locked
240 <     *  11 - Locked and may have a thread waiting for lock
241 <     *  10 - Node is a forwarding node
242 <     *
243 <     * The lower 30 bits of each Node's hash field contain a
244 <     * transformation of the key's hash code, except for forwarding
245 <     * nodes, for which the lower bits are zero (and so always have
246 <     * hash field == MOVED).
320 >     * We use the top (sign) bit of Node hash fields for control
321 >     * purposes -- it is available anyway because of addressing
322 >     * constraints.  Nodes with negative hash fields are forwarding
323 >     * nodes to either TreeBins or resized tables.  The lower 31 bits
324 >     * of each normal Node's hash field contain a transformation of
325 >     * the key's hash code.
326       *
327       * Insertion (via put or its variants) of the first node in an
328       * empty bin is performed by just CASing it to the bin.  This is
# Line 252 | Line 331 | public class ConcurrentHashMapV8<K, V>
331       * delete, and replace) require locks.  We do not want to waste
332       * the space required to associate a distinct lock object with
333       * each bin, so instead use the first node of a bin list itself as
334 <     * a lock. Blocking support for these locks relies on the builtin
335 <     * "synchronized" monitors.  However, we also need a tryLock
257 <     * construction, so we overlay these by using bits of the Node
258 <     * hash field for lock control (see above), and so normally use
259 <     * builtin monitors only for blocking and signalling using
260 <     * wait/notifyAll constructions. See Node.tryAwaitLock.
334 >     * a lock. Locking support for these locks relies on builtin
335 >     * "synchronized" monitors.
336       *
337       * Using the first node of a list as a lock does not by itself
338       * suffice though: When a node is locked, any update must first
# Line 319 | Line 394 | public class ConcurrentHashMapV8<K, V>
394       * iterators in the same way.
395       *
396       * The table is resized when occupancy exceeds a percentage
397 <     * threshold (nominally, 0.75, but see below).  Only a single
398 <     * thread performs the resize (using field "sizeCtl", to arrange
399 <     * exclusion), but the table otherwise remains usable for reads
400 <     * and updates. Resizing proceeds by transferring bins, one by
401 <     * one, from the table to the next table.  Because we are using
402 <     * power-of-two expansion, the elements from each bin must either
403 <     * stay at same index, or move with a power of two offset. We
404 <     * eliminate unnecessary node creation by catching cases where old
405 <     * nodes can be reused because their next fields won't change.  On
406 <     * average, only about one-sixth of them need cloning when a table
407 <     * doubles. The nodes they replace will be garbage collectable as
408 <     * soon as they are no longer referenced by any reader thread that
409 <     * may be in the midst of concurrently traversing table.  Upon
410 <     * transfer, the old table bin contains only a special forwarding
411 <     * node (with hash field "MOVED") that contains the next table as
412 <     * its key. On encountering a forwarding node, access and update
413 <     * operations restart, using the new table.
414 <     *
415 <     * Each bin transfer requires its bin lock. However, unlike other
416 <     * cases, a transfer can skip a bin if it fails to acquire its
417 <     * lock, and revisit it later (unless it is a TreeBin). Method
418 <     * rebuild maintains a buffer of TRANSFER_BUFFER_SIZE bins that
419 <     * have been skipped because of failure to acquire a lock, and
420 <     * blocks only if none are available (i.e., only very rarely).
421 <     * The transfer operation must also ensure that all accessible
422 <     * bins in both the old and new table are usable by any traversal.
423 <     * When there are no lock acquisition failures, this is arranged
424 <     * simply by proceeding from the last bin (table.length - 1) up
425 <     * towards the first.  Upon seeing a forwarding node, traversals
426 <     * (see class InternalIterator) arrange to move to the new table
427 <     * without revisiting nodes.  However, when any node is skipped
428 <     * during a transfer, all earlier table bins may have become
429 <     * visible, so are initialized with a reverse-forwarding node back
430 <     * to the old table until the new ones are established. (This
431 <     * sometimes requires transiently locking a forwarding node, which
432 <     * is possible under the above encoding.) These more expensive
433 <     * mechanics trigger only when necessary.
397 >     * threshold (nominally, 0.75, but see below).  Any thread
398 >     * noticing an overfull bin may assist in resizing after the
399 >     * initiating thread allocates and sets up the replacement
400 >     * array. However, rather than stalling, these other threads may
401 >     * proceed with insertions etc.  The use of TreeBins shields us
402 >     * from the worst case effects of overfilling while resizes are in
403 >     * progress.  Resizing proceeds by transferring bins, one by one,
404 >     * from the table to the next table. To enable concurrency, the
405 >     * next table must be (incrementally) prefilled with place-holders
406 >     * serving as reverse forwarders to the old table.  Because we are
407 >     * using power-of-two expansion, the elements from each bin must
408 >     * either stay at same index, or move with a power of two
409 >     * offset. We eliminate unnecessary node creation by catching
410 >     * cases where old nodes can be reused because their next fields
411 >     * won't change.  On average, only about one-sixth of them need
412 >     * cloning when a table doubles. The nodes they replace will be
413 >     * garbage collectable as soon as they are no longer referenced by
414 >     * any reader thread that may be in the midst of concurrently
415 >     * traversing table.  Upon transfer, the old table bin contains
416 >     * only a special forwarding node (with hash field "MOVED") that
417 >     * contains the next table as its key. On encountering a
418 >     * forwarding node, access and update operations restart, using
419 >     * the new table.
420 >     *
421 >     * Each bin transfer requires its bin lock, which can stall
422 >     * waiting for locks while resizing. However, because other
423 >     * threads can join in and help resize rather than contend for
424 >     * locks, average aggregate waits become shorter as resizing
425 >     * progresses.  The transfer operation must also ensure that all
426 >     * accessible bins in both the old and new table are usable by any
427 >     * traversal.  This is arranged by proceeding from the last bin
428 >     * (table.length - 1) up towards the first.  Upon seeing a
429 >     * forwarding node, traversals (see class Traverser) arrange to
430 >     * move to the new table without revisiting nodes.  However, to
431 >     * ensure that no intervening nodes are skipped, bin splitting can
432 >     * only begin after the associated reverse-forwarders are in
433 >     * place.
434       *
435       * The traversal scheme also applies to partial traversals of
436 <     * ranges of bins (via an alternate InternalIterator constructor)
436 >     * ranges of bins (via an alternate Traverser constructor)
437       * to support partitioned aggregate operations.  Also, read-only
438       * operations give up if ever forwarded to a null table, which
439       * provides support for shutdown-style clearing, which is also not
# Line 370 | Line 445 | public class ConcurrentHashMapV8<K, V>
445       * These cases attempt to override the initial capacity settings,
446       * but harmlessly fail to take effect in cases of races.
447       *
448 <     * The element count is maintained using a LongAdder, which avoids
449 <     * contention on updates but can encounter cache thrashing if read
450 <     * too frequently during concurrent access. To avoid reading so
451 <     * often, resizing is attempted either when a bin lock is
452 <     * contended, or upon adding to a bin already holding two or more
453 <     * nodes (checked before adding in the xIfAbsent methods, after
454 <     * adding in others). Under uniform hash distributions, the
455 <     * probability of this occurring at threshold is around 13%,
456 <     * meaning that only about 1 in 8 puts check threshold (and after
457 <     * resizing, many fewer do so). But this approximation has high
458 <     * variance for small table sizes, so we check on any collision
459 <     * for sizes <= 64. The bulk putAll operation further reduces
460 <     * contention by only committing count updates upon these size
461 <     * checks.
448 >     * The element count is maintained using a specialization of
449 >     * LongAdder. We need to incorporate a specialization rather than
450 >     * just use a LongAdder in order to access implicit
451 >     * contention-sensing that leads to creation of multiple
452 >     * CounterCells.  The counter mechanics avoid contention on
453 >     * updates but can encounter cache thrashing if read too
454 >     * frequently during concurrent access. To avoid reading so often,
455 >     * resizing under contention is attempted only upon adding to a
456 >     * bin already holding two or more nodes. Under uniform hash
457 >     * distributions, the probability of this occurring at threshold
458 >     * is around 13%, meaning that only about 1 in 8 puts check
459 >     * threshold (and after resizing, many fewer do so). The bulk
460 >     * putAll operation further reduces contention by only committing
461 >     * count updates upon these size checks.
462       *
463       * Maintaining API and serialization compatibility with previous
464       * versions of this class introduces several oddities. Mainly: We
# Line 434 | Line 509 | public class ConcurrentHashMapV8<K, V>
509      private static final float LOAD_FACTOR = 0.75f;
510  
511      /**
437     * The buffer size for skipped bins during transfers. The
438     * value is arbitrary but should be large enough to avoid
439     * most locking stalls during resizes.
440     */
441    private static final int TRANSFER_BUFFER_SIZE = 32;
442
443    /**
512       * The bin count threshold for using a tree rather than list for a
513       * bin.  The value reflects the approximate break-even point for
514       * using tree-based operations.
515       */
516      private static final int TREE_THRESHOLD = 8;
517  
518 +    /**
519 +     * Minimum number of rebinnings per transfer step. Ranges are
520 +     * subdivided to allow multiple resizer threads.  This value
521 +     * serves as a lower bound to avoid resizers encountering
522 +     * excessive memory contention.  The value should be at least
523 +     * DEFAULT_CAPACITY.
524 +     */
525 +    private static final int MIN_TRANSFER_STRIDE = 16;
526 +
527      /*
528 <     * Encodings for special uses of Node hash fields. See above for
452 <     * explanation.
528 >     * Encodings for Node hash fields. See above for explanation.
529       */
530      static final int MOVED     = 0x80000000; // hash field for forwarding nodes
531 <    static final int LOCKED    = 0x40000000; // set/tested only as a bit
532 <    static final int WAITING   = 0xc0000000; // both bits set/tested together
533 <    static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash
531 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
532 >
533 >    /** Number of CPUS, to place bounds on some sizings */
534 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
535 >
536 >    /* ---------------- Counters -------------- */
537 >
538 >    // Adapted from LongAdder and Striped64.
539 >    // See their internal docs for explanation.
540 >
541 >    // A padded cell for distributing counts
542 >    static final class CounterCell {
543 >        volatile long p0, p1, p2, p3, p4, p5, p6;
544 >        volatile long value;
545 >        volatile long q0, q1, q2, q3, q4, q5, q6;
546 >        CounterCell(long x) { value = x; }
547 >    }
548 >
549 >    /**
550 >     * Holder for the thread-local hash code determining which
551 >     * CounterCell to use. The code is initialized via the
552 >     * counterHashCodeGenerator, but may be moved upon collisions.
553 >     */
554 >    static final class CounterHashCode {
555 >        int code;
556 >    }
557 >
558 >    /**
559 >     * Generates initial value for per-thread CounterHashCodes
560 >     */
561 >    static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
562 >
563 >    /**
564 >     * Increment for counterHashCodeGenerator. See class ThreadLocal
565 >     * for explanation.
566 >     */
567 >    static final int SEED_INCREMENT = 0x61c88647;
568 >
569 >    /**
570 >     * Per-thread counter hash codes. Shared across all instances
571 >     */
572 >    static final ThreadLocal<CounterHashCode> threadCounterHashCode =
573 >        new ThreadLocal<CounterHashCode>();
574  
575      /* ---------------- Fields -------------- */
576  
# Line 465 | Line 581 | public class ConcurrentHashMapV8<K, V>
581      transient volatile Node[] table;
582  
583      /**
584 <     * The counter maintaining number of elements.
584 >     * The next table to use; non-null only while resizing.
585       */
586 <    private transient final LongAdder counter;
586 >    private transient volatile Node[] nextTable;
587 >
588 >    /**
589 >     * Base counter value, used mainly when there is no contention,
590 >     * but also as a fallback during table initialization
591 >     * races. Updated via CAS.
592 >     */
593 >    private transient volatile long baseCount;
594  
595      /**
596       * Table initialization and resizing control.  When negative, the
597 <     * table is being initialized or resized. Otherwise, when table is
598 <     * null, holds the initial table size to use upon creation, or 0
599 <     * for default. After initialization, holds the next element count
600 <     * value upon which to resize the table.
597 >     * table is being initialized or resized: -1 for initialization,
598 >     * else -(1 + the number of active resizing threads).  Otherwise,
599 >     * when table is null, holds the initial table size to use upon
600 >     * creation, or 0 for default. After initialization, holds the
601 >     * next element count value upon which to resize the table.
602       */
603      private transient volatile int sizeCtl;
604  
605 +    /**
606 +     * The next table index (plus one) to split while resizing.
607 +     */
608 +    private transient volatile int transferIndex;
609 +
610 +    /**
611 +     * The least available table index to split while resizing.
612 +     */
613 +    private transient volatile int transferOrigin;
614 +
615 +    /**
616 +     * Spinlock (locked via CAS) used when resizing and/or creating Cells.
617 +     */
618 +    private transient volatile int counterBusy;
619 +
620 +    /**
621 +     * Table of counter cells. When non-null, size is a power of 2.
622 +     */
623 +    private transient volatile CounterCell[] counterCells;
624 +
625      // views
626 <    private transient KeySet<K,V> keySet;
627 <    private transient Values<K,V> values;
628 <    private transient EntrySet<K,V> entrySet;
626 >    private transient KeySetView<K,V> keySet;
627 >    private transient ValuesView<K,V> values;
628 >    private transient EntrySetView<K,V> entrySet;
629  
630      /** For serialization compatibility. Null unless serialized; see below */
631      private Segment<K,V>[] segments;
# Line 500 | Line 644 | public class ConcurrentHashMapV8<K, V>
644       * inline assignments below.
645       */
646  
647 <    static final Node tabAt(Node[] tab, int i) { // used by InternalIterator
648 <        return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
647 >    static final Node tabAt(Node[] tab, int i) { // used by Traverser
648 >        return (Node)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
649      }
650  
651      private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
652 <        return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
652 >        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
653      }
654  
655      private static final void setTabAt(Node[] tab, int i, Node v) {
656 <        UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
656 >        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
657      }
658  
659      /* ---------------- Nodes -------------- */
# Line 525 | Line 669 | public class ConcurrentHashMapV8<K, V>
669       * non-null.
670       */
671      static class Node {
672 <        volatile int hash;
672 >        final int hash;
673          final Object key;
674          volatile Object val;
675          volatile Node next;
# Line 536 | Line 680 | public class ConcurrentHashMapV8<K, V>
680              this.val = val;
681              this.next = next;
682          }
539
540        /** CompareAndSet the hash field */
541        final boolean casHash(int cmp, int val) {
542            return UNSAFE.compareAndSwapInt(this, hashOffset, cmp, val);
543        }
544
545        /** The number of spins before blocking for a lock */
546        static final int MAX_SPINS =
547            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
548
549        /**
550         * Spins a while if LOCKED bit set and this node is the first
551         * of its bin, and then sets WAITING bits on hash field and
552         * blocks (once) if they are still set.  It is OK for this
553         * method to return even if lock is not available upon exit,
554         * which enables these simple single-wait mechanics.
555         *
556         * The corresponding signalling operation is performed within
557         * callers: Upon detecting that WAITING has been set when
558         * unlocking lock (via a failed CAS from non-waiting LOCKED
559         * state), unlockers acquire the sync lock and perform a
560         * notifyAll.
561         */
562        final void tryAwaitLock(Node[] tab, int i) {
563            if (tab != null && i >= 0 && i < tab.length) { // bounds check
564                int r = ThreadLocalRandom.current().nextInt(); // randomize spins
565                int spins = MAX_SPINS, h;
566                while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) {
567                    if (spins >= 0) {
568                        r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
569                        if (r >= 0 && --spins == 0)
570                            Thread.yield();  // yield before block
571                    }
572                    else if (casHash(h, h | WAITING)) {
573                        synchronized (this) {
574                            if (tabAt(tab, i) == this &&
575                                (hash & WAITING) == WAITING) {
576                                try {
577                                    wait();
578                                } catch (InterruptedException ie) {
579                                    Thread.currentThread().interrupt();
580                                }
581                            }
582                            else
583                                notifyAll(); // possibly won race vs signaller
584                        }
585                        break;
586                    }
587                }
588            }
589        }
590
591        // Unsafe mechanics for casHash
592        private static final sun.misc.Unsafe UNSAFE;
593        private static final long hashOffset;
594
595        static {
596            try {
597                UNSAFE = getUnsafe();
598                Class<?> k = Node.class;
599                hashOffset = UNSAFE.objectFieldOffset
600                    (k.getDeclaredField("hash"));
601            } catch (Exception e) {
602                throw new Error(e);
603            }
604        }
683      }
684  
685      /* ---------------- TreeBins -------------- */
# Line 648 | Line 726 | public class ConcurrentHashMapV8<K, V>
726       * TreeBins also maintain a separate locking discipline than
727       * regular bins. Because they are forwarded via special MOVED
728       * nodes at bin heads (which can never change once established),
729 <     * we cannot use use those nodes as locks. Instead, TreeBin
729 >     * we cannot use those nodes as locks. Instead, TreeBin
730       * extends AbstractQueuedSynchronizer to support a simple form of
731       * read-write lock. For update operations and table validation,
732       * the exclusive form of lock behaves in the same way as bin-head
# Line 733 | Line 811 | public class ConcurrentHashMapV8<K, V>
811          }
812  
813          /**
814 <         * Return the TreeNode (or null if not found) for the given key
814 >         * Returns the TreeNode (or null if not found) for the given key
815           * starting at given root.
816           */
817 <        @SuppressWarnings("unchecked") // suppress Comparable cast warning
818 <        final TreeNode getTreeNode(int h, Object k, TreeNode p) {
817 >        @SuppressWarnings("unchecked") final TreeNode getTreeNode
818 >            (int h, Object k, TreeNode p) {
819              Class<?> c = k.getClass();
820              while (p != null) {
821                  int dir, ph;  Object pk; Class<?> pc;
# Line 747 | Line 825 | public class ConcurrentHashMapV8<K, V>
825                      if (c != (pc = pk.getClass()) ||
826                          !(k instanceof Comparable) ||
827                          (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
828 <                        dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
829 <                        TreeNode r = null, s = null, pl, pr;
830 <                        if (dir >= 0) {
831 <                            if ((pl = p.left) != null && h <= pl.hash)
832 <                                s = pl;
828 >                        if ((dir = (c == pc) ? 0 :
829 >                             c.getName().compareTo(pc.getName())) == 0) {
830 >                            TreeNode r = null, pl, pr; // check both sides
831 >                            if ((pr = p.right) != null && h >= pr.hash &&
832 >                                (r = getTreeNode(h, k, pr)) != null)
833 >                                return r;
834 >                            else if ((pl = p.left) != null && h <= pl.hash)
835 >                                dir = -1;
836 >                            else // nothing there
837 >                                return null;
838                          }
756                        else if ((pr = p.right) != null && h >= pr.hash)
757                            s = pr;
758                        if (s != null && (r = getTreeNode(h, k, s)) != null)
759                            return r;
839                      }
840                  }
841                  else
# Line 783 | Line 862 | public class ConcurrentHashMapV8<K, V>
862                      }
863                      break;
864                  }
865 <                else if ((e.hash & HASH_BITS) == h && k.equals(e.key)) {
865 >                else if (e.hash == h && k.equals(e.key)) {
866                      r = e;
867                      break;
868                  }
# Line 797 | Line 876 | public class ConcurrentHashMapV8<K, V>
876           * Finds or adds a node.
877           * @return null if added
878           */
879 <        @SuppressWarnings("unchecked") // suppress Comparable cast warning
880 <        final TreeNode putTreeNode(int h, Object k, Object v) {
879 >        @SuppressWarnings("unchecked") final TreeNode putTreeNode
880 >            (int h, Object k, Object v) {
881              Class<?> c = k.getClass();
882              TreeNode pp = root, p = null;
883              int dir = 0;
# Line 811 | Line 890 | public class ConcurrentHashMapV8<K, V>
890                      if (c != (pc = pk.getClass()) ||
891                          !(k instanceof Comparable) ||
892                          (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
893 <                        dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
894 <                        TreeNode r = null, s = null, pl, pr;
895 <                        if (dir >= 0) {
896 <                            if ((pl = p.left) != null && h <= pl.hash)
897 <                                s = pl;
893 >                        TreeNode s = null, r = null, pr;
894 >                        if ((dir = (c == pc) ? 0 :
895 >                             c.getName().compareTo(pc.getName())) == 0) {
896 >                            if ((pr = p.right) != null && h >= pr.hash &&
897 >                                (r = getTreeNode(h, k, pr)) != null)
898 >                                return r;
899 >                            else // continue left
900 >                                dir = -1;
901                          }
902                          else if ((pr = p.right) != null && h >= pr.hash)
903                              s = pr;
# Line 1002 | Line 1084 | public class ConcurrentHashMapV8<K, V>
1084                                          sl.red = false;
1085                                      sib.red = true;
1086                                      rotateRight(sib);
1087 <                                    sib = (xp = x.parent) == null ? null : xp.right;
1087 >                                    sib = (xp = x.parent) == null ?
1088 >                                        null : xp.right;
1089                                  }
1090                                  if (sib != null) {
1091                                      sib.red = (xp == null) ? false : xp.red;
# Line 1040 | Line 1123 | public class ConcurrentHashMapV8<K, V>
1123                                          sr.red = false;
1124                                      sib.red = true;
1125                                      rotateLeft(sib);
1126 <                                    sib = (xp = x.parent) == null ? null : xp.left;
1126 >                                    sib = (xp = x.parent) == null ?
1127 >                                        null : xp.left;
1128                                  }
1129                                  if (sib != null) {
1130                                      sib.red = (xp == null) ? false : xp.red;
# Line 1070 | Line 1154 | public class ConcurrentHashMapV8<K, V>
1154      /* ---------------- Collision reduction methods -------------- */
1155  
1156      /**
1157 <     * Spreads higher bits to lower, and also forces top 2 bits to 0.
1157 >     * Spreads higher bits to lower, and also forces top bit to 0.
1158       * Because the table uses power-of-two masking, sets of hashes
1159       * that vary only in bits above the current mask will always
1160       * collide. (Among known examples are sets of Float keys holding
# Line 1088 | Line 1172 | public class ConcurrentHashMapV8<K, V>
1172      }
1173  
1174      /**
1175 <     * Replaces a list bin with a tree bin. Call only when locked.
1176 <     * Fails to replace if the given key is non-comparable or table
1093 <     * is, or needs, resizing.
1175 >     * Replaces a list bin with a tree bin if key is comparable.  Call
1176 >     * only when locked.
1177       */
1178      private final void replaceWithTreeBin(Node[] tab, int index, Object key) {
1179 <        if ((key instanceof Comparable) &&
1097 <            (tab.length >= MAXIMUM_CAPACITY || counter.sum() < (long)sizeCtl)) {
1179 >        if (key instanceof Comparable) {
1180              TreeBin t = new TreeBin();
1181              for (Node e = tabAt(tab, index); e != null; e = e.next)
1182 <                t.putTreeNode(e.hash & HASH_BITS, e.key, e.val);
1182 >                t.putTreeNode(e.hash, e.key, e.val);
1183              setTabAt(tab, index, new Node(MOVED, t, null, null));
1184          }
1185      }
# Line 1105 | Line 1187 | public class ConcurrentHashMapV8<K, V>
1187      /* ---------------- Internal access and update methods -------------- */
1188  
1189      /** Implementation for get and containsKey */
1190 <    private final Object internalGet(Object k) {
1190 >    @SuppressWarnings("unchecked") private final V internalGet(Object k) {
1191          int h = spread(k.hashCode());
1192          retry: for (Node[] tab = table; tab != null;) {
1193 <            Node e, p; Object ek, ev; int eh;      // locals to read fields once
1193 >            Node e; Object ek, ev; int eh;      // locals to read fields once
1194              for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1195 <                if ((eh = e.hash) == MOVED) {
1195 >                if ((eh = e.hash) < 0) {
1196                      if ((ek = e.key) instanceof TreeBin)  // search TreeBin
1197 <                        return ((TreeBin)ek).getValue(h, k);
1197 >                        return (V)((TreeBin)ek).getValue(h, k);
1198                      else {                        // restart with new table
1199                          tab = (Node[])ek;
1200                          continue retry;
1201                      }
1202                  }
1203 <                else if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
1203 >                else if (eh == h && (ev = e.val) != null &&
1204                           ((ek = e.key) == k || k.equals(ek)))
1205 <                    return ev;
1205 >                    return (V)ev;
1206              }
1207              break;
1208          }
# Line 1132 | Line 1214 | public class ConcurrentHashMapV8<K, V>
1214       * Replaces node value with v, conditional upon match of cv if
1215       * non-null.  If resulting value is null, delete.
1216       */
1217 <    private final Object internalReplace(Object k, Object v, Object cv) {
1217 >    @SuppressWarnings("unchecked") private final V internalReplace
1218 >        (Object k, V v, Object cv) {
1219          int h = spread(k.hashCode());
1220          Object oldVal = null;
1221          for (Node[] tab = table;;) {
# Line 1140 | Line 1223 | public class ConcurrentHashMapV8<K, V>
1223              if (tab == null ||
1224                  (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1225                  break;
1226 <            else if ((fh = f.hash) == MOVED) {
1226 >            else if ((fh = f.hash) < 0) {
1227                  if ((fk = f.key) instanceof TreeBin) {
1228                      TreeBin t = (TreeBin)fk;
1229                      boolean validated = false;
# Line 1166 | Line 1249 | public class ConcurrentHashMapV8<K, V>
1249                      }
1250                      if (validated) {
1251                          if (deleted)
1252 <                            counter.add(-1L);
1252 >                            addCount(-1L, -1);
1253                          break;
1254                      }
1255                  }
1256                  else
1257                      tab = (Node[])fk;
1258              }
1259 <            else if ((fh & HASH_BITS) != h && f.next == null) // precheck
1259 >            else if (fh != h && f.next == null) // precheck
1260                  break;                          // rules out possible existence
1261 <            else if ((fh & LOCKED) != 0) {
1179 <                checkForResize();               // try resizing if can't get lock
1180 <                f.tryAwaitLock(tab, i);
1181 <            }
1182 <            else if (f.casHash(fh, fh | LOCKED)) {
1261 >            else {
1262                  boolean validated = false;
1263                  boolean deleted = false;
1264 <                try {
1264 >                synchronized (f) {
1265                      if (tabAt(tab, i) == f) {
1266                          validated = true;
1267                          for (Node e = f, pred = null;;) {
1268                              Object ek, ev;
1269 <                            if ((e.hash & HASH_BITS) == h &&
1269 >                            if (e.hash == h &&
1270                                  ((ev = e.val) != null) &&
1271                                  ((ek = e.key) == k || k.equals(ek))) {
1272                                  if (cv == null || cv == ev || cv.equals(ev)) {
# Line 1208 | Line 1287 | public class ConcurrentHashMapV8<K, V>
1287                                  break;
1288                          }
1289                      }
1211                } finally {
1212                    if (!f.casHash(fh | LOCKED, fh)) {
1213                        f.hash = fh;
1214                        synchronized (f) { f.notifyAll(); };
1215                    }
1290                  }
1291                  if (validated) {
1292                      if (deleted)
1293 <                        counter.add(-1L);
1293 >                        addCount(-1L, -1);
1294                      break;
1295                  }
1296              }
1297          }
1298 <        return oldVal;
1298 >        return (V)oldVal;
1299      }
1300  
1301      /*
1302 <     * Internal versions of the five insertion methods, each a
1303 <     * little more complicated than the last. All have
1230 <     * the same basic structure as the first (internalPut):
1302 >     * Internal versions of insertion methods
1303 >     * All have the same basic structure as the first (internalPut):
1304       *  1. If table uninitialized, create
1305       *  2. If bin empty, try to CAS new node
1306       *  3. If bin stale, use new table
1307       *  4. if bin converted to TreeBin, validate and relay to TreeBin methods
1308       *  5. Lock and validate; if valid, scan and add or update
1309       *
1310 <     * The others interweave other checks and/or alternative actions:
1311 <     *  * Plain put checks for and performs resize after insertion.
1312 <     *  * putIfAbsent prescans for mapping without lock (and fails to add
1313 <     *    if present), which also makes pre-emptive resize checks worthwhile.
1314 <     *  * computeIfAbsent extends form used in putIfAbsent with additional
1315 <     *    mechanics to deal with, calls, potential exceptions and null
1316 <     *    returns from function call.
1244 <     *  * compute uses the same function-call mechanics, but without
1245 <     *    the prescans
1246 <     *  * putAll attempts to pre-allocate enough table space
1247 <     *    and more lazily performs count updates and checks.
1248 <     *
1249 <     * Someday when details settle down a bit more, it might be worth
1250 <     * some factoring to reduce sprawl.
1310 >     * The putAll method differs mainly in attempting to pre-allocate
1311 >     * enough table space, and also more lazily performs count updates
1312 >     * and checks.
1313 >     *
1314 >     * Most of the function-accepting methods can't be factored nicely
1315 >     * because they require different functional forms, so instead
1316 >     * sprawl out similar mechanics.
1317       */
1318  
1319 <    /** Implementation for put */
1320 <    private final Object internalPut(Object k, Object v) {
1319 >    /** Implementation for put and putIfAbsent */
1320 >    @SuppressWarnings("unchecked") private final V internalPut
1321 >        (K k, V v, boolean onlyIfAbsent) {
1322 >        if (k == null || v == null) throw new NullPointerException();
1323          int h = spread(k.hashCode());
1324 <        int count = 0;
1324 >        int len = 0;
1325          for (Node[] tab = table;;) {
1326 <            int i; Node f; int fh; Object fk;
1326 >            int i, fh; Node f; Object fk, fv;
1327              if (tab == null)
1328                  tab = initTable();
1329              else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1330                  if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1331                      break;                   // no lock when adding to empty bin
1332              }
1333 <            else if ((fh = f.hash) == MOVED) {
1333 >            else if ((fh = f.hash) < 0) {
1334                  if ((fk = f.key) instanceof TreeBin) {
1335                      TreeBin t = (TreeBin)fk;
1336                      Object oldVal = null;
1337                      t.acquire(0);
1338                      try {
1339                          if (tabAt(tab, i) == f) {
1340 <                            count = 2;
1340 >                            len = 2;
1341                              TreeNode p = t.putTreeNode(h, k, v);
1342                              if (p != null) {
1343                                  oldVal = p.val;
1344 <                                p.val = v;
1344 >                                if (!onlyIfAbsent)
1345 >                                    p.val = v;
1346                              }
1347                          }
1348                      } finally {
1349                          t.release(0);
1350                      }
1351 <                    if (count != 0) {
1351 >                    if (len != 0) {
1352                          if (oldVal != null)
1353 <                            return oldVal;
1353 >                            return (V)oldVal;
1354                          break;
1355                      }
1356                  }
1357                  else
1358                      tab = (Node[])fk;
1359              }
1360 <            else if ((fh & LOCKED) != 0) {
1361 <                checkForResize();
1362 <                f.tryAwaitLock(tab, i);
1363 <            }
1295 <            else if (f.casHash(fh, fh | LOCKED)) {
1360 >            else if (onlyIfAbsent && fh == h && (fv = f.val) != null &&
1361 >                     ((fk = f.key) == k || k.equals(fk))) // peek while nearby
1362 >                return (V)fv;
1363 >            else {
1364                  Object oldVal = null;
1365 <                try {                        // needed in case equals() throws
1365 >                synchronized (f) {
1366                      if (tabAt(tab, i) == f) {
1367 <                        count = 1;
1368 <                        for (Node e = f;; ++count) {
1367 >                        len = 1;
1368 >                        for (Node e = f;; ++len) {
1369                              Object ek, ev;
1370 <                            if ((e.hash & HASH_BITS) == h &&
1370 >                            if (e.hash == h &&
1371                                  (ev = e.val) != null &&
1372                                  ((ek = e.key) == k || k.equals(ek))) {
1373                                  oldVal = ev;
1374 <                                e.val = v;
1374 >                                if (!onlyIfAbsent)
1375 >                                    e.val = v;
1376                                  break;
1377                              }
1378                              Node last = e;
1379                              if ((e = e.next) == null) {
1380                                  last.next = new Node(h, k, v, null);
1381 <                                if (count >= TREE_THRESHOLD)
1381 >                                if (len >= TREE_THRESHOLD)
1382                                      replaceWithTreeBin(tab, i, k);
1383                                  break;
1384                              }
1385                          }
1386                      }
1318                } finally {                  // unlock and signal if needed
1319                    if (!f.casHash(fh | LOCKED, fh)) {
1320                        f.hash = fh;
1321                        synchronized (f) { f.notifyAll(); };
1322                    }
1387                  }
1388 <                if (count != 0) {
1388 >                if (len != 0) {
1389                      if (oldVal != null)
1390 <                        return oldVal;
1327 <                    if (tab.length <= 64)
1328 <                        count = 2;
1390 >                        return (V)oldVal;
1391                      break;
1392                  }
1393              }
1394          }
1395 <        counter.add(1L);
1334 <        if (count > 1)
1335 <            checkForResize();
1395 >        addCount(1L, len);
1396          return null;
1397      }
1398  
1399 <    /** Implementation for putIfAbsent */
1400 <    private final Object internalPutIfAbsent(Object k, Object v) {
1399 >    /** Implementation for computeIfAbsent */
1400 >    @SuppressWarnings("unchecked") private final V internalComputeIfAbsent
1401 >        (K k, Fun<? super K, ?> mf) {
1402 >        if (k == null || mf == null)
1403 >            throw new NullPointerException();
1404          int h = spread(k.hashCode());
1405 <        int count = 0;
1405 >        Object val = null;
1406 >        int len = 0;
1407          for (Node[] tab = table;;) {
1408 <            int i; Node f; int fh; Object fk, fv;
1408 >            Node f; int i; Object fk;
1409              if (tab == null)
1410                  tab = initTable();
1411              else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1412 <                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1412 >                Node node = new Node(h, k, null, null);
1413 >                synchronized (node) {
1414 >                    if (casTabAt(tab, i, null, node)) {
1415 >                        len = 1;
1416 >                        try {
1417 >                            if ((val = mf.apply(k)) != null)
1418 >                                node.val = val;
1419 >                        } finally {
1420 >                            if (val == null)
1421 >                                setTabAt(tab, i, null);
1422 >                        }
1423 >                    }
1424 >                }
1425 >                if (len != 0)
1426                      break;
1427              }
1428 <            else if ((fh = f.hash) == MOVED) {
1428 >            else if (f.hash < 0) {
1429                  if ((fk = f.key) instanceof TreeBin) {
1430                      TreeBin t = (TreeBin)fk;
1431 <                    Object oldVal = null;
1431 >                    boolean added = false;
1432                      t.acquire(0);
1433                      try {
1434                          if (tabAt(tab, i) == f) {
1435 <                            count = 2;
1436 <                            TreeNode p = t.putTreeNode(h, k, v);
1435 >                            len = 1;
1436 >                            TreeNode p = t.getTreeNode(h, k, t.root);
1437                              if (p != null)
1438 <                                oldVal = p.val;
1438 >                                val = p.val;
1439 >                            else if ((val = mf.apply(k)) != null) {
1440 >                                added = true;
1441 >                                len = 2;
1442 >                                t.putTreeNode(h, k, val);
1443 >                            }
1444                          }
1445                      } finally {
1446                          t.release(0);
1447                      }
1448 <                    if (count != 0) {
1449 <                        if (oldVal != null)
1450 <                            return oldVal;
1448 >                    if (len != 0) {
1449 >                        if (!added)
1450 >                            return (V)val;
1451                          break;
1452                      }
1453                  }
1454                  else
1455                      tab = (Node[])fk;
1456              }
1375            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1376                     ((fk = f.key) == k || k.equals(fk)))
1377                return fv;
1457              else {
1458 <                Node g = f.next;
1459 <                if (g != null) { // at least 2 nodes -- search and maybe resize
1460 <                    for (Node e = g;;) {
1461 <                        Object ek, ev;
1462 <                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1384 <                            ((ek = e.key) == k || k.equals(ek)))
1385 <                            return ev;
1386 <                        if ((e = e.next) == null) {
1387 <                            checkForResize();
1388 <                            break;
1389 <                        }
1390 <                    }
1391 <                }
1392 <                if (((fh = f.hash) & LOCKED) != 0) {
1393 <                    checkForResize();
1394 <                    f.tryAwaitLock(tab, i);
1458 >                for (Node e = f; e != null; e = e.next) { // prescan
1459 >                    Object ek, ev;
1460 >                    if (e.hash == h && (ev = e.val) != null &&
1461 >                        ((ek = e.key) == k || k.equals(ek)))
1462 >                        return (V)ev;
1463                  }
1464 <                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1465 <                    Object oldVal = null;
1466 <                    try {
1467 <                        if (tabAt(tab, i) == f) {
1468 <                            count = 1;
1469 <                            for (Node e = f;; ++count) {
1470 <                                Object ek, ev;
1471 <                                if ((e.hash & HASH_BITS) == h &&
1472 <                                    (ev = e.val) != null &&
1473 <                                    ((ek = e.key) == k || k.equals(ek))) {
1474 <                                    oldVal = ev;
1475 <                                    break;
1476 <                                }
1477 <                                Node last = e;
1478 <                                if ((e = e.next) == null) {
1479 <                                    last.next = new Node(h, k, v, null);
1480 <                                    if (count >= TREE_THRESHOLD)
1464 >                boolean added = false;
1465 >                synchronized (f) {
1466 >                    if (tabAt(tab, i) == f) {
1467 >                        len = 1;
1468 >                        for (Node e = f;; ++len) {
1469 >                            Object ek, ev;
1470 >                            if (e.hash == h &&
1471 >                                (ev = e.val) != null &&
1472 >                                ((ek = e.key) == k || k.equals(ek))) {
1473 >                                val = ev;
1474 >                                break;
1475 >                            }
1476 >                            Node last = e;
1477 >                            if ((e = e.next) == null) {
1478 >                                if ((val = mf.apply(k)) != null) {
1479 >                                    added = true;
1480 >                                    last.next = new Node(h, k, val, null);
1481 >                                    if (len >= TREE_THRESHOLD)
1482                                          replaceWithTreeBin(tab, i, k);
1414                                    break;
1483                                  }
1484 +                                break;
1485                              }
1486                          }
1418                    } finally {
1419                        if (!f.casHash(fh | LOCKED, fh)) {
1420                            f.hash = fh;
1421                            synchronized (f) { f.notifyAll(); };
1422                        }
1423                    }
1424                    if (count != 0) {
1425                        if (oldVal != null)
1426                            return oldVal;
1427                        if (tab.length <= 64)
1428                            count = 2;
1429                        break;
1487                      }
1488                  }
1489 +                if (len != 0) {
1490 +                    if (!added)
1491 +                        return (V)val;
1492 +                    break;
1493 +                }
1494              }
1495          }
1496 <        counter.add(1L);
1497 <        if (count > 1)
1498 <            checkForResize();
1437 <        return null;
1496 >        if (val != null)
1497 >            addCount(1L, len);
1498 >        return (V)val;
1499      }
1500  
1501 <    /** Implementation for computeIfAbsent */
1502 <    private final Object internalComputeIfAbsent(K k,
1503 <                                                 MappingFunction<? super K, ?> mf) {
1501 >    /** Implementation for compute */
1502 >    @SuppressWarnings("unchecked") private final V internalCompute
1503 >        (K k, boolean onlyIfPresent,
1504 >         BiFun<? super K, ? super V, ? extends V> mf) {
1505 >        if (k == null || mf == null)
1506 >            throw new NullPointerException();
1507          int h = spread(k.hashCode());
1508          Object val = null;
1509 <        int count = 0;
1509 >        int delta = 0;
1510 >        int len = 0;
1511          for (Node[] tab = table;;) {
1512 <            Node f; int i, fh; Object fk, fv;
1512 >            Node f; int i, fh; Object fk;
1513              if (tab == null)
1514                  tab = initTable();
1515              else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1516 <                Node node = new Node(fh = h | LOCKED, k, null, null);
1517 <                if (casTabAt(tab, i, null, node)) {
1518 <                    count = 1;
1519 <                    try {
1520 <                        if ((val = mf.map(k)) != null)
1521 <                            node.val = val;
1522 <                    } finally {
1523 <                        if (val == null)
1524 <                            setTabAt(tab, i, null);
1525 <                        if (!node.casHash(fh, h)) {
1526 <                            node.hash = h;
1527 <                            synchronized (node) { node.notifyAll(); };
1516 >                if (onlyIfPresent)
1517 >                    break;
1518 >                Node node = new Node(h, k, null, null);
1519 >                synchronized (node) {
1520 >                    if (casTabAt(tab, i, null, node)) {
1521 >                        try {
1522 >                            len = 1;
1523 >                            if ((val = mf.apply(k, null)) != null) {
1524 >                                node.val = val;
1525 >                                delta = 1;
1526 >                            }
1527 >                        } finally {
1528 >                            if (delta == 0)
1529 >                                setTabAt(tab, i, null);
1530                          }
1531                      }
1532                  }
1533 <                if (count != 0)
1533 >                if (len != 0)
1534                      break;
1535              }
1536 <            else if ((fh = f.hash) == MOVED) {
1536 >            else if ((fh = f.hash) < 0) {
1537                  if ((fk = f.key) instanceof TreeBin) {
1538                      TreeBin t = (TreeBin)fk;
1472                    boolean added = false;
1539                      t.acquire(0);
1540                      try {
1541                          if (tabAt(tab, i) == f) {
1542 <                            count = 1;
1542 >                            len = 1;
1543                              TreeNode p = t.getTreeNode(h, k, t.root);
1544 <                            if (p != null)
1545 <                                val = p.val;
1546 <                            else if ((val = mf.map(k)) != null) {
1547 <                                added = true;
1548 <                                count = 2;
1549 <                                t.putTreeNode(h, k, val);
1544 >                            if (p == null && onlyIfPresent)
1545 >                                break;
1546 >                            Object pv = (p == null) ? null : p.val;
1547 >                            if ((val = mf.apply(k, (V)pv)) != null) {
1548 >                                if (p != null)
1549 >                                    p.val = val;
1550 >                                else {
1551 >                                    len = 2;
1552 >                                    delta = 1;
1553 >                                    t.putTreeNode(h, k, val);
1554 >                                }
1555 >                            }
1556 >                            else if (p != null) {
1557 >                                delta = -1;
1558 >                                t.deleteTreeNode(p);
1559                              }
1560                          }
1561                      } finally {
1562                          t.release(0);
1563                      }
1564 <                    if (count != 0) {
1490 <                        if (!added)
1491 <                            return val;
1564 >                    if (len != 0)
1565                          break;
1493                    }
1566                  }
1567                  else
1568                      tab = (Node[])fk;
1569              }
1498            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1499                     ((fk = f.key) == k || k.equals(fk)))
1500                return fv;
1570              else {
1571 <                Node g = f.next;
1572 <                if (g != null) {
1573 <                    for (Node e = g;;) {
1574 <                        Object ek, ev;
1575 <                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1576 <                            ((ek = e.key) == k || k.equals(ek)))
1577 <                            return ev;
1578 <                        if ((e = e.next) == null) {
1579 <                            checkForResize();
1580 <                            break;
1581 <                        }
1582 <                    }
1583 <                }
1584 <                if (((fh = f.hash) & LOCKED) != 0) {
1585 <                    checkForResize();
1586 <                    f.tryAwaitLock(tab, i);
1587 <                }
1588 <                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1520 <                    boolean added = false;
1521 <                    try {
1522 <                        if (tabAt(tab, i) == f) {
1523 <                            count = 1;
1524 <                            for (Node e = f;; ++count) {
1525 <                                Object ek, ev;
1526 <                                if ((e.hash & HASH_BITS) == h &&
1527 <                                    (ev = e.val) != null &&
1528 <                                    ((ek = e.key) == k || k.equals(ek))) {
1529 <                                    val = ev;
1530 <                                    break;
1571 >                synchronized (f) {
1572 >                    if (tabAt(tab, i) == f) {
1573 >                        len = 1;
1574 >                        for (Node e = f, pred = null;; ++len) {
1575 >                            Object ek, ev;
1576 >                            if (e.hash == h &&
1577 >                                (ev = e.val) != null &&
1578 >                                ((ek = e.key) == k || k.equals(ek))) {
1579 >                                val = mf.apply(k, (V)ev);
1580 >                                if (val != null)
1581 >                                    e.val = val;
1582 >                                else {
1583 >                                    delta = -1;
1584 >                                    Node en = e.next;
1585 >                                    if (pred != null)
1586 >                                        pred.next = en;
1587 >                                    else
1588 >                                        setTabAt(tab, i, en);
1589                                  }
1590 <                                Node last = e;
1591 <                                if ((e = e.next) == null) {
1592 <                                    if ((val = mf.map(k)) != null) {
1593 <                                        added = true;
1594 <                                        last.next = new Node(h, k, val, null);
1595 <                                        if (count >= TREE_THRESHOLD)
1596 <                                            replaceWithTreeBin(tab, i, k);
1597 <                                    }
1598 <                                    break;
1590 >                                break;
1591 >                            }
1592 >                            pred = e;
1593 >                            if ((e = e.next) == null) {
1594 >                                if (!onlyIfPresent &&
1595 >                                    (val = mf.apply(k, null)) != null) {
1596 >                                    pred.next = new Node(h, k, val, null);
1597 >                                    delta = 1;
1598 >                                    if (len >= TREE_THRESHOLD)
1599 >                                        replaceWithTreeBin(tab, i, k);
1600                                  }
1601 +                                break;
1602                              }
1603                          }
1544                    } finally {
1545                        if (!f.casHash(fh | LOCKED, fh)) {
1546                            f.hash = fh;
1547                            synchronized (f) { f.notifyAll(); };
1548                        }
1549                    }
1550                    if (count != 0) {
1551                        if (!added)
1552                            return val;
1553                        if (tab.length <= 64)
1554                            count = 2;
1555                        break;
1604                      }
1605                  }
1606 +                if (len != 0)
1607 +                    break;
1608              }
1609          }
1610 <        if (val != null) {
1611 <            counter.add(1L);
1612 <            if (count > 1)
1563 <                checkForResize();
1564 <        }
1565 <        return val;
1610 >        if (delta != 0)
1611 >            addCount((long)delta, len);
1612 >        return (V)val;
1613      }
1614  
1615 <    /** Implementation for compute */
1616 <    @SuppressWarnings("unchecked")
1617 <    private final Object internalCompute(K k,
1618 <                                         RemappingFunction<? super K, V> mf) {
1615 >    /** Implementation for merge */
1616 >    @SuppressWarnings("unchecked") private final V internalMerge
1617 >        (K k, V v, BiFun<? super V, ? super V, ? extends V> mf) {
1618 >        if (k == null || v == null || mf == null)
1619 >            throw new NullPointerException();
1620          int h = spread(k.hashCode());
1621          Object val = null;
1622          int delta = 0;
1623 <        int count = 0;
1623 >        int len = 0;
1624          for (Node[] tab = table;;) {
1625 <            Node f; int i, fh; Object fk;
1625 >            int i; Node f; Object fk, fv;
1626              if (tab == null)
1627                  tab = initTable();
1628              else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1629 <                Node node = new Node(fh = h | LOCKED, k, null, null);
1630 <                if (casTabAt(tab, i, null, node)) {
1631 <                    try {
1584 <                        count = 1;
1585 <                        if ((val = mf.remap(k, null)) != null) {
1586 <                            node.val = val;
1587 <                            delta = 1;
1588 <                        }
1589 <                    } finally {
1590 <                        if (delta == 0)
1591 <                            setTabAt(tab, i, null);
1592 <                        if (!node.casHash(fh, h)) {
1593 <                            node.hash = h;
1594 <                            synchronized (node) { node.notifyAll(); };
1595 <                        }
1596 <                    }
1597 <                }
1598 <                if (count != 0)
1629 >                if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1630 >                    delta = 1;
1631 >                    val = v;
1632                      break;
1633 +                }
1634              }
1635 <            else if ((fh = f.hash) == MOVED) {
1635 >            else if (f.hash < 0) {
1636                  if ((fk = f.key) instanceof TreeBin) {
1637                      TreeBin t = (TreeBin)fk;
1638                      t.acquire(0);
1639                      try {
1640                          if (tabAt(tab, i) == f) {
1641 <                            count = 1;
1641 >                            len = 1;
1642                              TreeNode p = t.getTreeNode(h, k, t.root);
1643 <                            Object pv = (p == null) ? null : p.val;
1644 <                            if ((val = mf.remap(k, (V)pv)) != null) {
1643 >                            val = (p == null) ? v : mf.apply((V)p.val, v);
1644 >                            if (val != null) {
1645                                  if (p != null)
1646                                      p.val = val;
1647                                  else {
1648 <                                    count = 2;
1648 >                                    len = 2;
1649                                      delta = 1;
1650                                      t.putTreeNode(h, k, val);
1651                                  }
# Line 1624 | Line 1658 | public class ConcurrentHashMapV8<K, V>
1658                      } finally {
1659                          t.release(0);
1660                      }
1661 <                    if (count != 0)
1661 >                    if (len != 0)
1662                          break;
1663                  }
1664                  else
1665                      tab = (Node[])fk;
1666              }
1667 <            else if ((fh & LOCKED) != 0) {
1668 <                checkForResize();
1635 <                f.tryAwaitLock(tab, i);
1636 <            }
1637 <            else if (f.casHash(fh, fh | LOCKED)) {
1638 <                try {
1667 >            else {
1668 >                synchronized (f) {
1669                      if (tabAt(tab, i) == f) {
1670 <                        count = 1;
1671 <                        for (Node e = f, pred = null;; ++count) {
1670 >                        len = 1;
1671 >                        for (Node e = f, pred = null;; ++len) {
1672                              Object ek, ev;
1673 <                            if ((e.hash & HASH_BITS) == h &&
1673 >                            if (e.hash == h &&
1674                                  (ev = e.val) != null &&
1675                                  ((ek = e.key) == k || k.equals(ek))) {
1676 <                                val = mf.remap(k, (V)ev);
1676 >                                val = mf.apply((V)ev, v);
1677                                  if (val != null)
1678                                      e.val = val;
1679                                  else {
# Line 1658 | Line 1688 | public class ConcurrentHashMapV8<K, V>
1688                              }
1689                              pred = e;
1690                              if ((e = e.next) == null) {
1691 <                                if ((val = mf.remap(k, null)) != null) {
1692 <                                    pred.next = new Node(h, k, val, null);
1693 <                                    delta = 1;
1694 <                                    if (count >= TREE_THRESHOLD)
1695 <                                        replaceWithTreeBin(tab, i, k);
1666 <                                }
1691 >                                val = v;
1692 >                                pred.next = new Node(h, k, val, null);
1693 >                                delta = 1;
1694 >                                if (len >= TREE_THRESHOLD)
1695 >                                    replaceWithTreeBin(tab, i, k);
1696                                  break;
1697                              }
1698                          }
1699                      }
1671                } finally {
1672                    if (!f.casHash(fh | LOCKED, fh)) {
1673                        f.hash = fh;
1674                        synchronized (f) { f.notifyAll(); };
1675                    }
1700                  }
1701 <                if (count != 0) {
1678 <                    if (tab.length <= 64)
1679 <                        count = 2;
1701 >                if (len != 0)
1702                      break;
1681                }
1703              }
1704          }
1705 <        if (delta != 0) {
1706 <            counter.add((long)delta);
1707 <            if (count > 1)
1687 <                checkForResize();
1688 <        }
1689 <        return val;
1705 >        if (delta != 0)
1706 >            addCount((long)delta, len);
1707 >        return (V)val;
1708      }
1709  
1710      /** Implementation for putAll */
# Line 1713 | Line 1731 | public class ConcurrentHashMapV8<K, V>
1731                              break;
1732                          }
1733                      }
1734 <                    else if ((fh = f.hash) == MOVED) {
1734 >                    else if ((fh = f.hash) < 0) {
1735                          if ((fk = f.key) instanceof TreeBin) {
1736                              TreeBin t = (TreeBin)fk;
1737                              boolean validated = false;
# Line 1738 | Line 1756 | public class ConcurrentHashMapV8<K, V>
1756                          else
1757                              tab = (Node[])fk;
1758                      }
1759 <                    else if ((fh & LOCKED) != 0) {
1760 <                        counter.add(delta);
1761 <                        delta = 0L;
1744 <                        checkForResize();
1745 <                        f.tryAwaitLock(tab, i);
1746 <                    }
1747 <                    else if (f.casHash(fh, fh | LOCKED)) {
1748 <                        int count = 0;
1749 <                        try {
1759 >                    else {
1760 >                        int len = 0;
1761 >                        synchronized (f) {
1762                              if (tabAt(tab, i) == f) {
1763 <                                count = 1;
1764 <                                for (Node e = f;; ++count) {
1763 >                                len = 1;
1764 >                                for (Node e = f;; ++len) {
1765                                      Object ek, ev;
1766 <                                    if ((e.hash & HASH_BITS) == h &&
1766 >                                    if (e.hash == h &&
1767                                          (ev = e.val) != null &&
1768                                          ((ek = e.key) == k || k.equals(ek))) {
1769                                          e.val = v;
# Line 1761 | Line 1773 | public class ConcurrentHashMapV8<K, V>
1773                                      if ((e = e.next) == null) {
1774                                          ++delta;
1775                                          last.next = new Node(h, k, v, null);
1776 <                                        if (count >= TREE_THRESHOLD)
1776 >                                        if (len >= TREE_THRESHOLD)
1777                                              replaceWithTreeBin(tab, i, k);
1778                                          break;
1779                                      }
1780                                  }
1781                              }
1770                        } finally {
1771                            if (!f.casHash(fh | LOCKED, fh)) {
1772                                f.hash = fh;
1773                                synchronized (f) { f.notifyAll(); };
1774                            }
1782                          }
1783 <                        if (count != 0) {
1784 <                            if (count > 1) {
1785 <                                counter.add(delta);
1779 <                                delta = 0L;
1780 <                                checkForResize();
1781 <                            }
1783 >                        if (len != 0) {
1784 >                            if (len > 1)
1785 >                                addCount(delta, len);
1786                              break;
1787                          }
1788                      }
1789                  }
1790              }
1791          } finally {
1792 <            if (delta != 0)
1793 <                counter.add(delta);
1792 >            if (delta != 0L)
1793 >                addCount(delta, 2);
1794          }
1795          if (npe)
1796              throw new NullPointerException();
1797      }
1798  
1799 +    /**
1800 +     * Implementation for clear. Steps through each bin, removing all
1801 +     * nodes.
1802 +     */
1803 +    private final void internalClear() {
1804 +        long delta = 0L; // negative number of deletions
1805 +        int i = 0;
1806 +        Node[] tab = table;
1807 +        while (tab != null && i < tab.length) {
1808 +            Node f = tabAt(tab, i);
1809 +            if (f == null)
1810 +                ++i;
1811 +            else if (f.hash < 0) {
1812 +                Object fk;
1813 +                if ((fk = f.key) instanceof TreeBin) {
1814 +                    TreeBin t = (TreeBin)fk;
1815 +                    t.acquire(0);
1816 +                    try {
1817 +                        if (tabAt(tab, i) == f) {
1818 +                            for (Node p = t.first; p != null; p = p.next) {
1819 +                                if (p.val != null) { // (currently always true)
1820 +                                    p.val = null;
1821 +                                    --delta;
1822 +                                }
1823 +                            }
1824 +                            t.first = null;
1825 +                            t.root = null;
1826 +                            ++i;
1827 +                        }
1828 +                    } finally {
1829 +                        t.release(0);
1830 +                    }
1831 +                }
1832 +                else
1833 +                    tab = (Node[])fk;
1834 +            }
1835 +            else {
1836 +                synchronized (f) {
1837 +                    if (tabAt(tab, i) == f) {
1838 +                        for (Node e = f; e != null; e = e.next) {
1839 +                            if (e.val != null) {  // (currently always true)
1840 +                                e.val = null;
1841 +                                --delta;
1842 +                            }
1843 +                        }
1844 +                        setTabAt(tab, i, null);
1845 +                        ++i;
1846 +                    }
1847 +                }
1848 +            }
1849 +        }
1850 +        if (delta != 0L)
1851 +            addCount(delta, -1);
1852 +    }
1853 +
1854      /* ---------------- Table Initialization and Resizing -------------- */
1855  
1856      /**
# Line 1816 | Line 1875 | public class ConcurrentHashMapV8<K, V>
1875          while ((tab = table) == null) {
1876              if ((sc = sizeCtl) < 0)
1877                  Thread.yield(); // lost initialization race; just spin
1878 <            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1878 >            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1879                  try {
1880                      if ((tab = table) == null) {
1881                          int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
# Line 1833 | Line 1892 | public class ConcurrentHashMapV8<K, V>
1892      }
1893  
1894      /**
1895 <     * If table is too small and not already resizing, creates next
1896 <     * table and transfers bins.  Rechecks occupancy after a transfer
1897 <     * to see if another resize is already needed because resizings
1898 <     * are lagging additions.
1899 <     */
1900 <    private final void checkForResize() {
1901 <        Node[] tab; int n, sc;
1902 <        while ((tab = table) != null &&
1903 <               (n = tab.length) < MAXIMUM_CAPACITY &&
1904 <               (sc = sizeCtl) >= 0 && counter.sum() >= (long)sc &&
1905 <               UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1906 <            try {
1907 <                if (tab == table) {
1908 <                    table = rebuild(tab);
1909 <                    sc = (n << 1) - (n >>> 1);
1895 >     * Adds to count, and if table is too small and not already
1896 >     * resizing, initiates transfer. If already resizing, helps
1897 >     * perform transfer if work is available.  Rechecks occupancy
1898 >     * after a transfer to see if another resize is already needed
1899 >     * because resizings are lagging additions.
1900 >     *
1901 >     * @param x the count to add
1902 >     * @param check if <0, don't check resize, if <= 1 only check if uncontended
1903 >     */
1904 >    private final void addCount(long x, int check) {
1905 >        CounterCell[] as; long b, s;
1906 >        if ((as = counterCells) != null ||
1907 >            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1908 >            CounterHashCode hc; CounterCell a; long v; int m;
1909 >            boolean uncontended = true;
1910 >            if ((hc = threadCounterHashCode.get()) == null ||
1911 >                as == null || (m = as.length - 1) < 0 ||
1912 >                (a = as[m & hc.code]) == null ||
1913 >                !(uncontended =
1914 >                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1915 >                fullAddCount(x, hc, uncontended);
1916 >                return;
1917 >            }
1918 >            if (check <= 1)
1919 >                return;
1920 >            s = sumCount();
1921 >        }
1922 >        if (check >= 0) {
1923 >            Node[] tab, nt; int sc;
1924 >            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1925 >                   tab.length < MAXIMUM_CAPACITY) {
1926 >                if (sc < 0) {
1927 >                    if (sc == -1 || transferIndex <= transferOrigin ||
1928 >                        (nt = nextTable) == null)
1929 >                        break;
1930 >                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1931 >                        transfer(tab, nt);
1932                  }
1933 <            } finally {
1934 <                sizeCtl = sc;
1933 >                else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1934 >                    transfer(tab, null);
1935 >                s = sumCount();
1936              }
1937          }
1938      }
# Line 1868 | Line 1950 | public class ConcurrentHashMapV8<K, V>
1950              Node[] tab = table; int n;
1951              if (tab == null || (n = tab.length) == 0) {
1952                  n = (sc > c) ? sc : c;
1953 <                if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1953 >                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1954                      try {
1955                          if (table == tab) {
1956                              table = new Node[n];
# Line 1881 | Line 1963 | public class ConcurrentHashMapV8<K, V>
1963              }
1964              else if (c <= sc || n >= MAXIMUM_CAPACITY)
1965                  break;
1966 <            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1967 <                try {
1968 <                    if (table == tab) {
1887 <                        table = rebuild(tab);
1888 <                        sc = (n << 1) - (n >>> 1);
1889 <                    }
1890 <                } finally {
1891 <                    sizeCtl = sc;
1892 <                }
1893 <            }
1966 >            else if (tab == table &&
1967 >                     U.compareAndSwapInt(this, SIZECTL, sc, -2))
1968 >                transfer(tab, null);
1969          }
1970      }
1971  
1972      /*
1973       * Moves and/or copies the nodes in each bin to new table. See
1974       * above for explanation.
1900     *
1901     * @return the new table
1975       */
1976 <    private static final Node[] rebuild(Node[] tab) {
1977 <        int n = tab.length;
1978 <        Node[] nextTab = new Node[n << 1];
1976 >    private final void transfer(Node[] tab, Node[] nextTab) {
1977 >        int n = tab.length, stride;
1978 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1979 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
1980 >        if (nextTab == null) {            // initiating
1981 >            try {
1982 >                nextTab = new Node[n << 1];
1983 >            } catch (Throwable ex) {      // try to cope with OOME
1984 >                sizeCtl = Integer.MAX_VALUE;
1985 >                return;
1986 >            }
1987 >            nextTable = nextTab;
1988 >            transferOrigin = n;
1989 >            transferIndex = n;
1990 >            Node rev = new Node(MOVED, tab, null, null);
1991 >            for (int k = n; k > 0;) {    // progressively reveal ready slots
1992 >                int nextk = (k > stride) ? k - stride : 0;
1993 >                for (int m = nextk; m < k; ++m)
1994 >                    nextTab[m] = rev;
1995 >                for (int m = n + nextk; m < n + k; ++m)
1996 >                    nextTab[m] = rev;
1997 >                U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
1998 >            }
1999 >        }
2000 >        int nextn = nextTab.length;
2001          Node fwd = new Node(MOVED, nextTab, null, null);
2002 <        int[] buffer = null;       // holds bins to revisit; null until needed
2003 <        Node rev = null;           // reverse forwarder; null until needed
2004 <        int nbuffered = 0;         // the number of bins in buffer list
2005 <        int bufferIndex = 0;       // buffer index of current buffered bin
2006 <        int bin = n - 1;           // current non-buffered bin or -1 if none
2007 <
2008 <        for (int i = bin;;) {      // start upwards sweep
2009 <            int fh; Node f;
2010 <            if ((f = tabAt(tab, i)) == null) {
2011 <                if (bin >= 0) {    // no lock needed (or available)
2012 <                    if (!casTabAt(tab, i, f, fwd))
2013 <                        continue;
2014 <                }
2015 <                else {             // transiently use a locked forwarding node
2016 <                    Node g = new Node(MOVED|LOCKED, nextTab, null, null);
2017 <                    if (!casTabAt(tab, i, f, g))
2018 <                        continue;
2002 >        boolean advance = true;
2003 >        for (int i = 0, bound = 0;;) {
2004 >            int nextIndex, nextBound; Node f; Object fk;
2005 >            while (advance) {
2006 >                if (--i >= bound)
2007 >                    advance = false;
2008 >                else if ((nextIndex = transferIndex) <= transferOrigin) {
2009 >                    i = -1;
2010 >                    advance = false;
2011 >                }
2012 >                else if (U.compareAndSwapInt
2013 >                         (this, TRANSFERINDEX, nextIndex,
2014 >                          nextBound = (nextIndex > stride ?
2015 >                                       nextIndex - stride : 0))) {
2016 >                    bound = nextBound;
2017 >                    i = nextIndex - 1;
2018 >                    advance = false;
2019 >                }
2020 >            }
2021 >            if (i < 0 || i >= n || i + n >= nextn) {
2022 >                for (int sc;;) {
2023 >                    if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2024 >                        if (sc == -1) {
2025 >                            nextTable = null;
2026 >                            table = nextTab;
2027 >                            sizeCtl = (n << 1) - (n >>> 1);
2028 >                        }
2029 >                        return;
2030 >                    }
2031 >                }
2032 >            }
2033 >            else if ((f = tabAt(tab, i)) == null) {
2034 >                if (casTabAt(tab, i, null, fwd)) {
2035                      setTabAt(nextTab, i, null);
2036                      setTabAt(nextTab, i + n, null);
2037 <                    setTabAt(tab, i, fwd);
1927 <                    if (!g.casHash(MOVED|LOCKED, MOVED)) {
1928 <                        g.hash = MOVED;
1929 <                        synchronized (g) { g.notifyAll(); }
1930 <                    }
2037 >                    advance = true;
2038                  }
2039              }
2040 <            else if ((fh = f.hash) == MOVED) {
2041 <                Object fk = f.key;
2042 <                if (fk instanceof TreeBin) {
2043 <                    TreeBin t = (TreeBin)fk;
2044 <                    boolean validated = false;
2045 <                    t.acquire(0);
2046 <                    try {
2047 <                        if (tabAt(tab, i) == f) {
2048 <                            validated = true;
2049 <                            splitTreeBin(nextTab, i, t);
2050 <                            setTabAt(tab, i, fwd);
2040 >            else if (f.hash >= 0) {
2041 >                synchronized (f) {
2042 >                    if (tabAt(tab, i) == f) {
2043 >                        int runBit = f.hash & n;
2044 >                        Node lastRun = f, lo = null, hi = null;
2045 >                        for (Node p = f.next; p != null; p = p.next) {
2046 >                            int b = p.hash & n;
2047 >                            if (b != runBit) {
2048 >                                runBit = b;
2049 >                                lastRun = p;
2050 >                            }
2051                          }
2052 <                    } finally {
2053 <                        t.release(0);
2052 >                        if (runBit == 0)
2053 >                            lo = lastRun;
2054 >                        else
2055 >                            hi = lastRun;
2056 >                        for (Node p = f; p != lastRun; p = p.next) {
2057 >                            int ph = p.hash;
2058 >                            Object pk = p.key, pv = p.val;
2059 >                            if ((ph & n) == 0)
2060 >                                lo = new Node(ph, pk, pv, lo);
2061 >                            else
2062 >                                hi = new Node(ph, pk, pv, hi);
2063 >                        }
2064 >                        setTabAt(nextTab, i, lo);
2065 >                        setTabAt(nextTab, i + n, hi);
2066 >                        setTabAt(tab, i, fwd);
2067 >                        advance = true;
2068                      }
1948                    if (!validated)
1949                        continue;
2069                  }
2070              }
2071 <            else if ((fh & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
2072 <                boolean validated = false;
2073 <                try {              // split to lo and hi lists; copying as needed
2071 >            else if ((fk = f.key) instanceof TreeBin) {
2072 >                TreeBin t = (TreeBin)fk;
2073 >                t.acquire(0);
2074 >                try {
2075                      if (tabAt(tab, i) == f) {
2076 <                        validated = true;
2077 <                        splitBin(nextTab, i, f);
2076 >                        TreeBin lt = new TreeBin();
2077 >                        TreeBin ht = new TreeBin();
2078 >                        int lc = 0, hc = 0;
2079 >                        for (Node e = t.first; e != null; e = e.next) {
2080 >                            int h = e.hash;
2081 >                            Object k = e.key, v = e.val;
2082 >                            if ((h & n) == 0) {
2083 >                                ++lc;
2084 >                                lt.putTreeNode(h, k, v);
2085 >                            }
2086 >                            else {
2087 >                                ++hc;
2088 >                                ht.putTreeNode(h, k, v);
2089 >                            }
2090 >                        }
2091 >                        Node ln, hn; // throw away trees if too small
2092 >                        if (lc < TREE_THRESHOLD) {
2093 >                            ln = null;
2094 >                            for (Node p = lt.first; p != null; p = p.next)
2095 >                                ln = new Node(p.hash, p.key, p.val, ln);
2096 >                        }
2097 >                        else
2098 >                            ln = new Node(MOVED, lt, null, null);
2099 >                        setTabAt(nextTab, i, ln);
2100 >                        if (hc < TREE_THRESHOLD) {
2101 >                            hn = null;
2102 >                            for (Node p = ht.first; p != null; p = p.next)
2103 >                                hn = new Node(p.hash, p.key, p.val, hn);
2104 >                        }
2105 >                        else
2106 >                            hn = new Node(MOVED, ht, null, null);
2107 >                        setTabAt(nextTab, i + n, hn);
2108                          setTabAt(tab, i, fwd);
2109 +                        advance = true;
2110                      }
2111                  } finally {
2112 <                    if (!f.casHash(fh | LOCKED, fh)) {
1962 <                        f.hash = fh;
1963 <                        synchronized (f) { f.notifyAll(); };
1964 <                    }
2112 >                    t.release(0);
2113                  }
1966                if (!validated)
1967                    continue;
1968            }
1969            else {
1970                if (buffer == null) // initialize buffer for revisits
1971                    buffer = new int[TRANSFER_BUFFER_SIZE];
1972                if (bin < 0 && bufferIndex > 0) {
1973                    int j = buffer[--bufferIndex];
1974                    buffer[bufferIndex] = i;
1975                    i = j;         // swap with another bin
1976                    continue;
1977                }
1978                if (bin < 0 || nbuffered >= TRANSFER_BUFFER_SIZE) {
1979                    f.tryAwaitLock(tab, i);
1980                    continue;      // no other options -- block
1981                }
1982                if (rev == null)   // initialize reverse-forwarder
1983                    rev = new Node(MOVED, tab, null, null);
1984                if (tabAt(tab, i) != f || (f.hash & LOCKED) == 0)
1985                    continue;      // recheck before adding to list
1986                buffer[nbuffered++] = i;
1987                setTabAt(nextTab, i, rev);     // install place-holders
1988                setTabAt(nextTab, i + n, rev);
1989            }
1990
1991            if (bin > 0)
1992                i = --bin;
1993            else if (buffer != null && nbuffered > 0) {
1994                bin = -1;
1995                i = buffer[bufferIndex = --nbuffered];
2114              }
2115              else
2116 <                return nextTab;
2116 >                advance = true; // already processed
2117          }
2118      }
2119  
2120 <    /**
2121 <     * Splits a normal bin with list headed by e into lo and hi parts;
2122 <     * installs in given table.
2123 <     */
2124 <    private static void splitBin(Node[] nextTab, int i, Node e) {
2125 <        int bit = nextTab.length >>> 1; // bit to split on
2126 <        int runBit = e.hash & bit;
2127 <        Node lastRun = e, lo = null, hi = null;
2128 <        for (Node p = e.next; p != null; p = p.next) {
2011 <            int b = p.hash & bit;
2012 <            if (b != runBit) {
2013 <                runBit = b;
2014 <                lastRun = p;
2120 >    /* ---------------- Counter support -------------- */
2121 >
2122 >    final long sumCount() {
2123 >        CounterCell[] as = counterCells; CounterCell a;
2124 >        long sum = baseCount;
2125 >        if (as != null) {
2126 >            for (int i = 0; i < as.length; ++i) {
2127 >                if ((a = as[i]) != null)
2128 >                    sum += a.value;
2129              }
2130          }
2131 <        if (runBit == 0)
2018 <            lo = lastRun;
2019 <        else
2020 <            hi = lastRun;
2021 <        for (Node p = e; p != lastRun; p = p.next) {
2022 <            int ph = p.hash & HASH_BITS;
2023 <            Object pk = p.key, pv = p.val;
2024 <            if ((ph & bit) == 0)
2025 <                lo = new Node(ph, pk, pv, lo);
2026 <            else
2027 <                hi = new Node(ph, pk, pv, hi);
2028 <        }
2029 <        setTabAt(nextTab, i, lo);
2030 <        setTabAt(nextTab, i + bit, hi);
2131 >        return sum;
2132      }
2133  
2134 <    /**
2135 <     * Splits a tree bin into lo and hi parts; installs in given table.
2136 <     */
2137 <    private static void splitTreeBin(Node[] nextTab, int i, TreeBin t) {
2138 <        int bit = nextTab.length >>> 1;
2139 <        TreeBin lt = new TreeBin();
2140 <        TreeBin ht = new TreeBin();
2141 <        int lc = 0, hc = 0;
2142 <        for (Node e = t.first; e != null; e = e.next) {
2042 <            int h = e.hash & HASH_BITS;
2043 <            Object k = e.key, v = e.val;
2044 <            if ((h & bit) == 0) {
2045 <                ++lc;
2046 <                lt.putTreeNode(h, k, v);
2047 <            }
2048 <            else {
2049 <                ++hc;
2050 <                ht.putTreeNode(h, k, v);
2051 <            }
2052 <        }
2053 <        Node ln, hn; // throw away trees if too small
2054 <        if (lc <= (TREE_THRESHOLD >>> 1)) {
2055 <            ln = null;
2056 <            for (Node p = lt.first; p != null; p = p.next)
2057 <                ln = new Node(p.hash, p.key, p.val, ln);
2134 >    // See LongAdder version for explanation
2135 >    private final void fullAddCount(long x, CounterHashCode hc,
2136 >                                    boolean wasUncontended) {
2137 >        int h;
2138 >        if (hc == null) {
2139 >            hc = new CounterHashCode();
2140 >            int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
2141 >            h = hc.code = (s == 0) ? 1 : s; // Avoid zero
2142 >            threadCounterHashCode.set(hc);
2143          }
2144          else
2145 <            ln = new Node(MOVED, lt, null, null);
2146 <        setTabAt(nextTab, i, ln);
2147 <        if (hc <= (TREE_THRESHOLD >>> 1)) {
2148 <            hn = null;
2149 <            for (Node p = ht.first; p != null; p = p.next)
2150 <                hn = new Node(p.hash, p.key, p.val, hn);
2151 <        }
2152 <        else
2153 <            hn = new Node(MOVED, ht, null, null);
2154 <        setTabAt(nextTab, i + bit, hn);
2155 <    }
2156 <
2157 <    /**
2158 <     * Implementation for clear. Steps through each bin, removing all
2159 <     * nodes.
2160 <     */
2161 <    private final void internalClear() {
2162 <        long delta = 0L; // negative number of deletions
2163 <        int i = 0;
2164 <        Node[] tab = table;
2165 <        while (tab != null && i < tab.length) {
2081 <            int fh; Object fk;
2082 <            Node f = tabAt(tab, i);
2083 <            if (f == null)
2084 <                ++i;
2085 <            else if ((fh = f.hash) == MOVED) {
2086 <                if ((fk = f.key) instanceof TreeBin) {
2087 <                    TreeBin t = (TreeBin)fk;
2088 <                    t.acquire(0);
2089 <                    try {
2090 <                        if (tabAt(tab, i) == f) {
2091 <                            for (Node p = t.first; p != null; p = p.next) {
2092 <                                p.val = null;
2093 <                                --delta;
2145 >            h = hc.code;
2146 >        boolean collide = false;                // True if last slot nonempty
2147 >        for (;;) {
2148 >            CounterCell[] as; CounterCell a; int n; long v;
2149 >            if ((as = counterCells) != null && (n = as.length) > 0) {
2150 >                if ((a = as[(n - 1) & h]) == null) {
2151 >                    if (counterBusy == 0) {            // Try to attach new Cell
2152 >                        CounterCell r = new CounterCell(x); // Optimistic create
2153 >                        if (counterBusy == 0 &&
2154 >                            U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2155 >                            boolean created = false;
2156 >                            try {               // Recheck under lock
2157 >                                CounterCell[] rs; int m, j;
2158 >                                if ((rs = counterCells) != null &&
2159 >                                    (m = rs.length) > 0 &&
2160 >                                    rs[j = (m - 1) & h] == null) {
2161 >                                    rs[j] = r;
2162 >                                    created = true;
2163 >                                }
2164 >                            } finally {
2165 >                                counterBusy = 0;
2166                              }
2167 <                            t.first = null;
2168 <                            t.root = null;
2169 <                            ++i;
2167 >                            if (created)
2168 >                                break;
2169 >                            continue;           // Slot is now non-empty
2170                          }
2099                    } finally {
2100                        t.release(0);
2171                      }
2172 +                    collide = false;
2173                  }
2174 <                else
2175 <                    tab = (Node[])fk;
2176 <            }
2177 <            else if ((fh & LOCKED) != 0) {
2178 <                counter.add(delta); // opportunistically update count
2179 <                delta = 0L;
2180 <                f.tryAwaitLock(tab, i);
2181 <            }
2182 <            else if (f.casHash(fh, fh | LOCKED)) {
2183 <                try {
2184 <                    if (tabAt(tab, i) == f) {
2185 <                        for (Node e = f; e != null; e = e.next) {
2186 <                            e.val = null;
2187 <                            --delta;
2174 >                else if (!wasUncontended)       // CAS already known to fail
2175 >                    wasUncontended = true;      // Continue after rehash
2176 >                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2177 >                    break;
2178 >                else if (counterCells != as || n >= NCPU)
2179 >                    collide = false;            // At max size or stale
2180 >                else if (!collide)
2181 >                    collide = true;
2182 >                else if (counterBusy == 0 &&
2183 >                         U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2184 >                    try {
2185 >                        if (counterCells == as) {// Expand table unless stale
2186 >                            CounterCell[] rs = new CounterCell[n << 1];
2187 >                            for (int i = 0; i < n; ++i)
2188 >                                rs[i] = as[i];
2189 >                            counterCells = rs;
2190                          }
2191 <                        setTabAt(tab, i, null);
2192 <                        ++i;
2191 >                    } finally {
2192 >                        counterBusy = 0;
2193                      }
2194 <                } finally {
2195 <                    if (!f.casHash(fh | LOCKED, fh)) {
2196 <                        f.hash = fh;
2197 <                        synchronized (f) { f.notifyAll(); };
2194 >                    collide = false;
2195 >                    continue;                   // Retry with expanded table
2196 >                }
2197 >                h ^= h << 13;                   // Rehash
2198 >                h ^= h >>> 17;
2199 >                h ^= h << 5;
2200 >            }
2201 >            else if (counterBusy == 0 && counterCells == as &&
2202 >                     U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2203 >                boolean init = false;
2204 >                try {                           // Initialize table
2205 >                    if (counterCells == as) {
2206 >                        CounterCell[] rs = new CounterCell[2];
2207 >                        rs[h & 1] = new CounterCell(x);
2208 >                        counterCells = rs;
2209 >                        init = true;
2210                      }
2211 +                } finally {
2212 +                    counterBusy = 0;
2213                  }
2214 +                if (init)
2215 +                    break;
2216              }
2217 +            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2218 +                break;                          // Fall back on using base
2219          }
2220 <        if (delta != 0)
2130 <            counter.add(delta);
2220 >        hc.code = h;                            // Record index for next time
2221      }
2222  
2223      /* ----------------Table Traversal -------------- */
2224  
2225      /**
2226       * Encapsulates traversal for methods such as containsValue; also
2227 <     * serves as a base class for other iterators.
2227 >     * serves as a base class for other iterators and bulk tasks.
2228       *
2229       * At each step, the iterator snapshots the key ("nextKey") and
2230       * value ("nextVal") of a valid node (i.e., one that, at point of
# Line 2142 | Line 2232 | public class ConcurrentHashMapV8<K, V>
2232       * change (including to null, indicating deletion), field nextVal
2233       * might not be accurate at point of use, but still maintains the
2234       * weak consistency property of holding a value that was once
2235 <     * valid.
2235 >     * valid. To support iterator.remove, the nextKey field is not
2236 >     * updated (nulled out) when the iterator cannot advance.
2237       *
2238       * Internal traversals directly access these fields, as in:
2239       * {@code while (it.advance() != null) { process(it.nextKey); }}
# Line 2168 | Line 2259 | public class ConcurrentHashMapV8<K, V>
2259       * paranoically cope with potential sharing by users of iterators
2260       * across threads, iteration terminates if a bounds checks fails
2261       * for a table read.
2262 +     *
2263 +     * This class extends CountedCompleter to streamline parallel
2264 +     * iteration in bulk operations. This adds only a few fields of
2265 +     * space overhead, which is small enough in cases where it is not
2266 +     * needed to not worry about it.  Because CountedCompleter is
2267 +     * Serializable, but iterators need not be, we need to add warning
2268 +     * suppressions.
2269       */
2270 <    static class InternalIterator<K,V> {
2270 >    @SuppressWarnings("serial") static class Traverser<K,V,R>
2271 >        extends CountedCompleter<R> {
2272          final ConcurrentHashMapV8<K, V> map;
2273          Node next;           // the next entry to use
2175        Node last;           // the last entry used
2274          Object nextKey;      // cached key field of next
2275          Object nextVal;      // cached val field of next
2276          Node[] tab;          // current table; updated if resized
2277          int index;           // index of bin to use next
2278          int baseIndex;       // current index of initial table
2279          int baseLimit;       // index bound for initial table
2280 <        final int baseSize;  // initial table size
2280 >        int baseSize;        // initial table size
2281 >        int batch;           // split control
2282  
2283          /** Creates iterator for all entries in the table. */
2284 <        InternalIterator(ConcurrentHashMapV8<K, V> map) {
2285 <            this.tab = (this.map = map).table;
2187 <            baseLimit = baseSize = (tab == null) ? 0 : tab.length;
2284 >        Traverser(ConcurrentHashMapV8<K, V> map) {
2285 >            this.map = map;
2286          }
2287  
2288 <        /** Creates iterator for clone() and split() methods. */
2289 <        InternalIterator(InternalIterator<K,V> it, boolean split) {
2290 <            this.map = it.map;
2291 <            this.tab = it.tab;
2292 <            this.baseSize = it.baseSize;
2293 <            int lo = it.baseIndex;
2294 <            int hi = this.baseLimit = it.baseLimit;
2295 <            this.index = this.baseIndex =
2296 <                (split) ? (it.baseLimit = (lo + hi + 1) >>> 1) : lo;
2288 >        /** Creates iterator for split() methods and task constructors */
2289 >        Traverser(ConcurrentHashMapV8<K,V> map, Traverser<K,V,?> it, int batch) {
2290 >            super(it);
2291 >            this.batch = batch;
2292 >            if ((this.map = map) != null && it != null) { // split parent
2293 >                Node[] t;
2294 >                if ((t = it.tab) == null &&
2295 >                    (t = it.tab = map.table) != null)
2296 >                    it.baseLimit = it.baseSize = t.length;
2297 >                this.tab = t;
2298 >                this.baseSize = it.baseSize;
2299 >                int hi = this.baseLimit = it.baseLimit;
2300 >                it.baseLimit = this.index = this.baseIndex =
2301 >                    (hi + it.baseIndex + 1) >>> 1;
2302 >            }
2303          }
2304  
2305          /**
# Line 2203 | Line 2307 | public class ConcurrentHashMapV8<K, V>
2307           * See above for explanation.
2308           */
2309          final Object advance() {
2310 <            Node e = last = next;
2310 >            Node e = next;
2311              Object ev = null;
2312              outer: do {
2313                  if (e != null)                  // advance past used/skipped node
2314                      e = e.next;
2315                  while (e == null) {             // get to next non-null bin
2316 +                    ConcurrentHashMapV8<K, V> m;
2317                      Node[] t; int b, i, n; Object ek; // checks must use locals
2318 <                    if ((b = baseIndex) >= baseLimit || (i = index) < 0 ||
2319 <                        (t = tab) == null || i >= (n = t.length))
2318 >                    if ((t = tab) != null)
2319 >                        n = t.length;
2320 >                    else if ((m = map) != null && (t = tab = m.table) != null)
2321 >                        n = baseLimit = baseSize = t.length;
2322 >                    else
2323                          break outer;
2324 <                    else if ((e = tabAt(t, i)) != null && e.hash == MOVED) {
2324 >                    if ((b = baseIndex) >= baseLimit ||
2325 >                        (i = index) < 0 || i >= n)
2326 >                        break outer;
2327 >                    if ((e = tabAt(t, i)) != null && e.hash < 0) {
2328                          if ((ek = e.key) instanceof TreeBin)
2329                              e = ((TreeBin)ek).first;
2330                          else {
# Line 2230 | Line 2341 | public class ConcurrentHashMapV8<K, V>
2341          }
2342  
2343          public final void remove() {
2344 <            if (nextVal == null)
2345 <                advance();
2235 <            Node e = last;
2236 <            if (e == null)
2344 >            Object k = nextKey;
2345 >            if (k == null && (advance() == null || (k = nextKey) == null))
2346                  throw new IllegalStateException();
2347 <            last = null;
2239 <            map.remove(e.key);
2347 >            map.internalReplace(k, null, null);
2348          }
2349  
2350          public final boolean hasNext() {
# Line 2244 | Line 2352 | public class ConcurrentHashMapV8<K, V>
2352          }
2353  
2354          public final boolean hasMoreElements() { return hasNext(); }
2355 +
2356 +        public void compute() { } // default no-op CountedCompleter body
2357 +
2358 +        /**
2359 +         * Returns a batch value > 0 if this task should (and must) be
2360 +         * split, if so, adding to pending count, and in any case
2361 +         * updating batch value. The initial batch value is approx
2362 +         * exp2 of the number of times (minus one) to split task by
2363 +         * two before executing leaf action. This value is faster to
2364 +         * compute and more convenient to use as a guide to splitting
2365 +         * than is the depth, since it is used while dividing by two
2366 +         * anyway.
2367 +         */
2368 +        final int preSplit() {
2369 +            ConcurrentHashMapV8<K, V> m; int b; Node[] t;  ForkJoinPool pool;
2370 +            if ((b = batch) < 0 && (m = map) != null) { // force initialization
2371 +                if ((t = tab) == null && (t = tab = m.table) != null)
2372 +                    baseLimit = baseSize = t.length;
2373 +                if (t != null) {
2374 +                    long n = m.sumCount();
2375 +                    int par = ((pool = getPool()) == null) ?
2376 +                        ForkJoinPool.getCommonPoolParallelism() :
2377 +                        pool.getParallelism();
2378 +                    int sp = par << 3; // slack of 8
2379 +                    b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2380 +                }
2381 +            }
2382 +            b = (b <= 1 || baseIndex == baseLimit) ? 0 : (b >>> 1);
2383 +            if ((batch = b) > 0)
2384 +                addToPendingCount(1);
2385 +            return b;
2386 +        }
2387 +
2388      }
2389  
2390      /* ---------------- Public operations -------------- */
# Line 2252 | Line 2393 | public class ConcurrentHashMapV8<K, V>
2393       * Creates a new, empty map with the default initial table size (16).
2394       */
2395      public ConcurrentHashMapV8() {
2255        this.counter = new LongAdder();
2396      }
2397  
2398      /**
# Line 2271 | Line 2411 | public class ConcurrentHashMapV8<K, V>
2411          int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2412                     MAXIMUM_CAPACITY :
2413                     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2274        this.counter = new LongAdder();
2414          this.sizeCtl = cap;
2415      }
2416  
# Line 2281 | Line 2420 | public class ConcurrentHashMapV8<K, V>
2420       * @param m the map
2421       */
2422      public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
2284        this.counter = new LongAdder();
2423          this.sizeCtl = DEFAULT_CAPACITY;
2424          internalPutAll(m);
2425      }
# Line 2332 | Line 2470 | public class ConcurrentHashMapV8<K, V>
2470          long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2471          int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2472              MAXIMUM_CAPACITY : tableSizeFor((int)size);
2335        this.counter = new LongAdder();
2473          this.sizeCtl = cap;
2474      }
2475  
2476      /**
2477 +     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2478 +     * from the given type to {@code Boolean.TRUE}.
2479 +     *
2480 +     * @return the new set
2481 +     */
2482 +    public static <K> KeySetView<K,Boolean> newKeySet() {
2483 +        return new KeySetView<K,Boolean>(new ConcurrentHashMapV8<K,Boolean>(),
2484 +                                      Boolean.TRUE);
2485 +    }
2486 +
2487 +    /**
2488 +     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2489 +     * from the given type to {@code Boolean.TRUE}.
2490 +     *
2491 +     * @param initialCapacity The implementation performs internal
2492 +     * sizing to accommodate this many elements.
2493 +     * @throws IllegalArgumentException if the initial capacity of
2494 +     * elements is negative
2495 +     * @return the new set
2496 +     */
2497 +    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2498 +        return new KeySetView<K,Boolean>
2499 +            (new ConcurrentHashMapV8<K,Boolean>(initialCapacity), Boolean.TRUE);
2500 +    }
2501 +
2502 +    /**
2503       * {@inheritDoc}
2504       */
2505      public boolean isEmpty() {
2506 <        return counter.sum() <= 0L; // ignore transient negative values
2506 >        return sumCount() <= 0L; // ignore transient negative values
2507      }
2508  
2509      /**
2510       * {@inheritDoc}
2511       */
2512      public int size() {
2513 <        long n = counter.sum();
2513 >        long n = sumCount();
2514          return ((n < 0L) ? 0 :
2515                  (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2516                  (int)n);
2517      }
2518  
2519 <    final long longSize() { // accurate version of size needed for views
2520 <        long n = counter.sum();
2521 <        return (n < 0L) ? 0L : n;
2519 >    /**
2520 >     * Returns the number of mappings. This method should be used
2521 >     * instead of {@link #size} because a ConcurrentHashMapV8 may
2522 >     * contain more mappings than can be represented as an int. The
2523 >     * value returned is an estimate; the actual count may differ if
2524 >     * there are concurrent insertions or removals.
2525 >     *
2526 >     * @return the number of mappings
2527 >     */
2528 >    public long mappingCount() {
2529 >        long n = sumCount();
2530 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2531      }
2532  
2533      /**
# Line 2369 | Line 2541 | public class ConcurrentHashMapV8<K, V>
2541       *
2542       * @throws NullPointerException if the specified key is null
2543       */
2372    @SuppressWarnings("unchecked")
2544      public V get(Object key) {
2545 <        if (key == null)
2546 <            throw new NullPointerException();
2547 <        return (V)internalGet(key);
2545 >        return internalGet(key);
2546 >    }
2547 >
2548 >    /**
2549 >     * Returns the value to which the specified key is mapped,
2550 >     * or the given defaultValue if this map contains no mapping for the key.
2551 >     *
2552 >     * @param key the key
2553 >     * @param defaultValue the value to return if this map contains
2554 >     * no mapping for the given key
2555 >     * @return the mapping for the key, if present; else the defaultValue
2556 >     * @throws NullPointerException if the specified key is null
2557 >     */
2558 >    public V getValueOrDefault(Object key, V defaultValue) {
2559 >        V v;
2560 >        return (v = internalGet(key)) == null ? defaultValue : v;
2561      }
2562  
2563      /**
# Line 2386 | Line 2570 | public class ConcurrentHashMapV8<K, V>
2570       * @throws NullPointerException if the specified key is null
2571       */
2572      public boolean containsKey(Object key) {
2389        if (key == null)
2390            throw new NullPointerException();
2573          return internalGet(key) != null;
2574      }
2575  
# Line 2405 | Line 2587 | public class ConcurrentHashMapV8<K, V>
2587          if (value == null)
2588              throw new NullPointerException();
2589          Object v;
2590 <        InternalIterator<K,V> it = new InternalIterator<K,V>(this);
2590 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2591          while ((v = it.advance()) != null) {
2592              if (v == value || value.equals(v))
2593                  return true;
# Line 2436 | Line 2618 | public class ConcurrentHashMapV8<K, V>
2618       * Maps the specified key to the specified value in this table.
2619       * Neither the key nor the value can be null.
2620       *
2621 <     * <p> The value can be retrieved by calling the {@code get} method
2621 >     * <p>The value can be retrieved by calling the {@code get} method
2622       * with a key that is equal to the original key.
2623       *
2624       * @param key key with which the specified value is to be associated
# Line 2445 | Line 2627 | public class ConcurrentHashMapV8<K, V>
2627       *         {@code null} if there was no mapping for {@code key}
2628       * @throws NullPointerException if the specified key or value is null
2629       */
2448    @SuppressWarnings("unchecked")
2630      public V put(K key, V value) {
2631 <        if (key == null || value == null)
2451 <            throw new NullPointerException();
2452 <        return (V)internalPut(key, value);
2631 >        return internalPut(key, value, false);
2632      }
2633  
2634      /**
# Line 2459 | Line 2638 | public class ConcurrentHashMapV8<K, V>
2638       *         or {@code null} if there was no mapping for the key
2639       * @throws NullPointerException if the specified key or value is null
2640       */
2462    @SuppressWarnings("unchecked")
2641      public V putIfAbsent(K key, V value) {
2642 <        if (key == null || value == null)
2465 <            throw new NullPointerException();
2466 <        return (V)internalPutIfAbsent(key, value);
2642 >        return internalPut(key, value, true);
2643      }
2644  
2645      /**
# Line 2484 | Line 2660 | public class ConcurrentHashMapV8<K, V>
2660       * <pre> {@code
2661       * if (map.containsKey(key))
2662       *   return map.get(key);
2663 <     * value = mappingFunction.map(key);
2663 >     * value = mappingFunction.apply(key);
2664       * if (value != null)
2665       *   map.put(key, value);
2666       * return value;}</pre>
# Line 2501 | Line 2677 | public class ConcurrentHashMapV8<K, V>
2677       * memoized result, as in:
2678       *
2679       *  <pre> {@code
2680 <     * map.computeIfAbsent(key, new MappingFunction<K, V>() {
2680 >     * map.computeIfAbsent(key, new Fun<K, V>() {
2681       *   public V map(K k) { return new Value(f(k)); }});}</pre>
2682       *
2683       * @param key key with which the specified value is to be associated
2684       * @param mappingFunction the function to compute a value
2685       * @return the current (existing or computed) value associated with
2686 <     *         the specified key, or null if the computed value is null.
2686 >     *         the specified key, or null if the computed value is null
2687       * @throws NullPointerException if the specified key or mappingFunction
2688       *         is null
2689       * @throws IllegalStateException if the computation detectably
# Line 2516 | Line 2692 | public class ConcurrentHashMapV8<K, V>
2692       * @throws RuntimeException or Error if the mappingFunction does so,
2693       *         in which case the mapping is left unestablished
2694       */
2695 <    @SuppressWarnings("unchecked")
2696 <    public V computeIfAbsent(K key, MappingFunction<? super K, ? extends V> mappingFunction) {
2697 <        if (key == null || mappingFunction == null)
2698 <            throw new NullPointerException();
2699 <        return (V)internalComputeIfAbsent(key, mappingFunction);
2695 >    public V computeIfAbsent
2696 >        (K key, Fun<? super K, ? extends V> mappingFunction) {
2697 >        return internalComputeIfAbsent(key, mappingFunction);
2698 >    }
2699 >
2700 >    /**
2701 >     * If the given key is present, computes a new mapping value given a key and
2702 >     * its current mapped value. This is equivalent to
2703 >     *  <pre> {@code
2704 >     *   if (map.containsKey(key)) {
2705 >     *     value = remappingFunction.apply(key, map.get(key));
2706 >     *     if (value != null)
2707 >     *       map.put(key, value);
2708 >     *     else
2709 >     *       map.remove(key);
2710 >     *   }
2711 >     * }</pre>
2712 >     *
2713 >     * except that the action is performed atomically.  If the
2714 >     * function returns {@code null}, the mapping is removed.  If the
2715 >     * function itself throws an (unchecked) exception, the exception
2716 >     * is rethrown to its caller, and the current mapping is left
2717 >     * unchanged.  Some attempted update operations on this map by
2718 >     * other threads may be blocked while computation is in progress,
2719 >     * so the computation should be short and simple, and must not
2720 >     * attempt to update any other mappings of this Map. For example,
2721 >     * to either create or append new messages to a value mapping:
2722 >     *
2723 >     * @param key key with which the specified value is to be associated
2724 >     * @param remappingFunction the function to compute a value
2725 >     * @return the new value associated with the specified key, or null if none
2726 >     * @throws NullPointerException if the specified key or remappingFunction
2727 >     *         is null
2728 >     * @throws IllegalStateException if the computation detectably
2729 >     *         attempts a recursive update to this map that would
2730 >     *         otherwise never complete
2731 >     * @throws RuntimeException or Error if the remappingFunction does so,
2732 >     *         in which case the mapping is unchanged
2733 >     */
2734 >    public V computeIfPresent
2735 >        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2736 >        return internalCompute(key, true, remappingFunction);
2737      }
2738  
2739      /**
# Line 2528 | Line 2741 | public class ConcurrentHashMapV8<K, V>
2741       * its current mapped value (or {@code null} if there is no current
2742       * mapping). This is equivalent to
2743       *  <pre> {@code
2744 <     *   value = remappingFunction.remap(key, map.get(key));
2744 >     *   value = remappingFunction.apply(key, map.get(key));
2745       *   if (value != null)
2746       *     map.put(key, value);
2747       *   else
# Line 2548 | Line 2761 | public class ConcurrentHashMapV8<K, V>
2761       * <pre> {@code
2762       * Map<Key, String> map = ...;
2763       * final String msg = ...;
2764 <     * map.compute(key, new RemappingFunction<Key, String>() {
2765 <     *   public String remap(Key k, String v) {
2764 >     * map.compute(key, new BiFun<Key, String, String>() {
2765 >     *   public String apply(Key k, String v) {
2766       *    return (v == null) ? msg : v + msg;});}}</pre>
2767       *
2768       * @param key key with which the specified value is to be associated
2769       * @param remappingFunction the function to compute a value
2770 <     * @return the new value associated with
2558 <     *         the specified key, or null if none.
2770 >     * @return the new value associated with the specified key, or null if none
2771       * @throws NullPointerException if the specified key or remappingFunction
2772       *         is null
2773       * @throws IllegalStateException if the computation detectably
# Line 2564 | Line 2776 | public class ConcurrentHashMapV8<K, V>
2776       * @throws RuntimeException or Error if the remappingFunction does so,
2777       *         in which case the mapping is unchanged
2778       */
2779 <    @SuppressWarnings("unchecked")
2780 <    public V compute(K key, RemappingFunction<? super K, V> remappingFunction) {
2781 <        if (key == null || remappingFunction == null)
2782 <            throw new NullPointerException();
2783 <        return (V)internalCompute(key, remappingFunction);
2779 >    public V compute
2780 >        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2781 >        return internalCompute(key, false, remappingFunction);
2782 >    }
2783 >
2784 >    /**
2785 >     * If the specified key is not already associated
2786 >     * with a value, associate it with the given value.
2787 >     * Otherwise, replace the value with the results of
2788 >     * the given remapping function. This is equivalent to:
2789 >     *  <pre> {@code
2790 >     *   if (!map.containsKey(key))
2791 >     *     map.put(value);
2792 >     *   else {
2793 >     *     newValue = remappingFunction.apply(map.get(key), value);
2794 >     *     if (value != null)
2795 >     *       map.put(key, value);
2796 >     *     else
2797 >     *       map.remove(key);
2798 >     *   }
2799 >     * }</pre>
2800 >     * except that the action is performed atomically.  If the
2801 >     * function returns {@code null}, the mapping is removed.  If the
2802 >     * function itself throws an (unchecked) exception, the exception
2803 >     * is rethrown to its caller, and the current mapping is left
2804 >     * unchanged.  Some attempted update operations on this map by
2805 >     * other threads may be blocked while computation is in progress,
2806 >     * so the computation should be short and simple, and must not
2807 >     * attempt to update any other mappings of this Map.
2808 >     */
2809 >    public V merge
2810 >        (K key, V value,
2811 >         BiFun<? super V, ? super V, ? extends V> remappingFunction) {
2812 >        return internalMerge(key, value, remappingFunction);
2813      }
2814  
2815      /**
# Line 2580 | Line 2821 | public class ConcurrentHashMapV8<K, V>
2821       *         {@code null} if there was no mapping for {@code key}
2822       * @throws NullPointerException if the specified key is null
2823       */
2583    @SuppressWarnings("unchecked")
2824      public V remove(Object key) {
2825 <        if (key == null)
2586 <            throw new NullPointerException();
2587 <        return (V)internalReplace(key, null, null);
2825 >        return internalReplace(key, null, null);
2826      }
2827  
2828      /**
# Line 2593 | Line 2831 | public class ConcurrentHashMapV8<K, V>
2831       * @throws NullPointerException if the specified key is null
2832       */
2833      public boolean remove(Object key, Object value) {
2834 <        if (key == null)
2597 <            throw new NullPointerException();
2598 <        if (value == null)
2599 <            return false;
2600 <        return internalReplace(key, null, value) != null;
2834 >        return value != null && internalReplace(key, null, value) != null;
2835      }
2836  
2837      /**
# Line 2618 | Line 2852 | public class ConcurrentHashMapV8<K, V>
2852       *         or {@code null} if there was no mapping for the key
2853       * @throws NullPointerException if the specified key or value is null
2854       */
2621    @SuppressWarnings("unchecked")
2855      public V replace(K key, V value) {
2856          if (key == null || value == null)
2857              throw new NullPointerException();
2858 <        return (V)internalReplace(key, value, null);
2858 >        return internalReplace(key, value, null);
2859      }
2860  
2861      /**
# Line 2635 | Line 2868 | public class ConcurrentHashMapV8<K, V>
2868      /**
2869       * Returns a {@link Set} view of the keys contained in this map.
2870       * The set is backed by the map, so changes to the map are
2871 <     * reflected in the set, and vice-versa.  The set supports element
2639 <     * removal, which removes the corresponding mapping from this map,
2640 <     * via the {@code Iterator.remove}, {@code Set.remove},
2641 <     * {@code removeAll}, {@code retainAll}, and {@code clear}
2642 <     * operations.  It does not support the {@code add} or
2643 <     * {@code addAll} operations.
2871 >     * reflected in the set, and vice-versa.
2872       *
2873 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2646 <     * that will never throw {@link ConcurrentModificationException},
2647 <     * and guarantees to traverse elements as they existed upon
2648 <     * construction of the iterator, and may (but is not guaranteed to)
2649 <     * reflect any modifications subsequent to construction.
2873 >     * @return the set view
2874       */
2875 <    public Set<K> keySet() {
2876 <        KeySet<K,V> ks = keySet;
2877 <        return (ks != null) ? ks : (keySet = new KeySet<K,V>(this));
2875 >    public KeySetView<K,V> keySet() {
2876 >        KeySetView<K,V> ks = keySet;
2877 >        return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2878 >    }
2879 >
2880 >    /**
2881 >     * Returns a {@link Set} view of the keys in this map, using the
2882 >     * given common mapped value for any additions (i.e., {@link
2883 >     * Collection#add} and {@link Collection#addAll}). This is of
2884 >     * course only appropriate if it is acceptable to use the same
2885 >     * value for all additions from this view.
2886 >     *
2887 >     * @param mappedValue the mapped value to use for any
2888 >     * additions.
2889 >     * @return the set view
2890 >     * @throws NullPointerException if the mappedValue is null
2891 >     */
2892 >    public KeySetView<K,V> keySet(V mappedValue) {
2893 >        if (mappedValue == null)
2894 >            throw new NullPointerException();
2895 >        return new KeySetView<K,V>(this, mappedValue);
2896      }
2897  
2898      /**
2899       * Returns a {@link Collection} view of the values contained in this map.
2900       * The collection is backed by the map, so changes to the map are
2901 <     * reflected in the collection, and vice-versa.  The collection
2660 <     * supports element removal, which removes the corresponding
2661 <     * mapping from this map, via the {@code Iterator.remove},
2662 <     * {@code Collection.remove}, {@code removeAll},
2663 <     * {@code retainAll}, and {@code clear} operations.  It does not
2664 <     * support the {@code add} or {@code addAll} operations.
2665 <     *
2666 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2667 <     * that will never throw {@link ConcurrentModificationException},
2668 <     * and guarantees to traverse elements as they existed upon
2669 <     * construction of the iterator, and may (but is not guaranteed to)
2670 <     * reflect any modifications subsequent to construction.
2901 >     * reflected in the collection, and vice-versa.
2902       */
2903 <    public Collection<V> values() {
2904 <        Values<K,V> vs = values;
2905 <        return (vs != null) ? vs : (values = new Values<K,V>(this));
2903 >    public ValuesView<K,V> values() {
2904 >        ValuesView<K,V> vs = values;
2905 >        return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2906      }
2907  
2908      /**
# Line 2691 | Line 2922 | public class ConcurrentHashMapV8<K, V>
2922       * reflect any modifications subsequent to construction.
2923       */
2924      public Set<Map.Entry<K,V>> entrySet() {
2925 <        EntrySet<K,V> es = entrySet;
2926 <        return (es != null) ? es : (entrySet = new EntrySet<K,V>(this));
2925 >        EntrySetView<K,V> es = entrySet;
2926 >        return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2927      }
2928  
2929      /**
# Line 2716 | Line 2947 | public class ConcurrentHashMapV8<K, V>
2947      }
2948  
2949      /**
2950 <     * Returns a partionable iterator of the keys in this map.
2950 >     * Returns a partitionable iterator of the keys in this map.
2951       *
2952 <     * @return a partionable iterator of the keys in this map
2952 >     * @return a partitionable iterator of the keys in this map
2953       */
2954      public Spliterator<K> keySpliterator() {
2955          return new KeyIterator<K,V>(this);
2956      }
2957  
2958      /**
2959 <     * Returns a partionable iterator of the values in this map.
2959 >     * Returns a partitionable iterator of the values in this map.
2960       *
2961 <     * @return a partionable iterator of the values in this map
2961 >     * @return a partitionable iterator of the values in this map
2962       */
2963      public Spliterator<V> valueSpliterator() {
2964          return new ValueIterator<K,V>(this);
2965      }
2966  
2967      /**
2968 <     * Returns a partionable iterator of the entries in this map.
2968 >     * Returns a partitionable iterator of the entries in this map.
2969       *
2970 <     * @return a partionable iterator of the entries in this map
2970 >     * @return a partitionable iterator of the entries in this map
2971       */
2972      public Spliterator<Map.Entry<K,V>> entrySpliterator() {
2973          return new EntryIterator<K,V>(this);
# Line 2751 | Line 2982 | public class ConcurrentHashMapV8<K, V>
2982       */
2983      public int hashCode() {
2984          int h = 0;
2985 <        InternalIterator<K,V> it = new InternalIterator<K,V>(this);
2985 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2986          Object v;
2987          while ((v = it.advance()) != null) {
2988              h += it.nextKey.hashCode() ^ v.hashCode();
# Line 2771 | Line 3002 | public class ConcurrentHashMapV8<K, V>
3002       * @return a string representation of this map
3003       */
3004      public String toString() {
3005 <        InternalIterator<K,V> it = new InternalIterator<K,V>(this);
3005 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3006          StringBuilder sb = new StringBuilder();
3007          sb.append('{');
3008          Object v;
# Line 2804 | Line 3035 | public class ConcurrentHashMapV8<K, V>
3035              if (!(o instanceof Map))
3036                  return false;
3037              Map<?,?> m = (Map<?,?>) o;
3038 <            InternalIterator<K,V> it = new InternalIterator<K,V>(this);
3038 >            Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3039              Object val;
3040              while ((val = it.advance()) != null) {
3041                  Object v = m.get(it.nextKey);
# Line 2825 | Line 3056 | public class ConcurrentHashMapV8<K, V>
3056  
3057      /* ----------------Iterators -------------- */
3058  
3059 <    static final class KeyIterator<K,V> extends InternalIterator<K,V>
3059 >    @SuppressWarnings("serial") static final class KeyIterator<K,V>
3060 >        extends Traverser<K,V,Object>
3061          implements Spliterator<K>, Enumeration<K> {
3062          KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3063 <        KeyIterator(InternalIterator<K,V> it, boolean split) {
3064 <            super(it, split);
3063 >        KeyIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3064 >            super(map, it, -1);
3065          }
3066          public KeyIterator<K,V> split() {
3067 <            if (last != null || (next != null && nextVal == null))
3067 >            if (nextKey != null)
3068                  throw new IllegalStateException();
3069 <            return new KeyIterator<K,V>(this, true);
3069 >            return new KeyIterator<K,V>(map, this);
3070          }
3071 <        public KeyIterator<K,V> clone() {
2840 <            if (last != null || (next != null && nextVal == null))
2841 <                throw new IllegalStateException();
2842 <            return new KeyIterator<K,V>(this, false);
2843 <        }
2844 <
2845 <        @SuppressWarnings("unchecked")
2846 <        public final K next() {
3071 >        @SuppressWarnings("unchecked") public final K next() {
3072              if (nextVal == null && advance() == null)
3073                  throw new NoSuchElementException();
3074              Object k = nextKey;
# Line 2854 | Line 3079 | public class ConcurrentHashMapV8<K, V>
3079          public final K nextElement() { return next(); }
3080      }
3081  
3082 <    static final class ValueIterator<K,V> extends InternalIterator<K,V>
3082 >    @SuppressWarnings("serial") static final class ValueIterator<K,V>
3083 >        extends Traverser<K,V,Object>
3084          implements Spliterator<V>, Enumeration<V> {
3085          ValueIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3086 <        ValueIterator(InternalIterator<K,V> it, boolean split) {
3087 <            super(it, split);
3086 >        ValueIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3087 >            super(map, it, -1);
3088          }
3089          public ValueIterator<K,V> split() {
3090 <            if (last != null || (next != null && nextVal == null))
3090 >            if (nextKey != null)
3091                  throw new IllegalStateException();
3092 <            return new ValueIterator<K,V>(this, true);
3092 >            return new ValueIterator<K,V>(map, this);
3093          }
3094  
3095 <        public ValueIterator<K,V> clone() {
2870 <            if (last != null || (next != null && nextVal == null))
2871 <                throw new IllegalStateException();
2872 <            return new ValueIterator<K,V>(this, false);
2873 <        }
2874 <
2875 <        @SuppressWarnings("unchecked")
2876 <        public final V next() {
3095 >        @SuppressWarnings("unchecked") public final V next() {
3096              Object v;
3097              if ((v = nextVal) == null && (v = advance()) == null)
3098                  throw new NoSuchElementException();
# Line 2884 | Line 3103 | public class ConcurrentHashMapV8<K, V>
3103          public final V nextElement() { return next(); }
3104      }
3105  
3106 <    static final class EntryIterator<K,V> extends InternalIterator<K,V>
3106 >    @SuppressWarnings("serial") static final class EntryIterator<K,V>
3107 >        extends Traverser<K,V,Object>
3108          implements Spliterator<Map.Entry<K,V>> {
3109          EntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3110 <        EntryIterator(InternalIterator<K,V> it, boolean split) {
3111 <            super(it, split);
3110 >        EntryIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3111 >            super(map, it, -1);
3112          }
3113          public EntryIterator<K,V> split() {
3114 <            if (last != null || (next != null && nextVal == null))
2895 <                throw new IllegalStateException();
2896 <            return new EntryIterator<K,V>(this, true);
2897 <        }
2898 <        public EntryIterator<K,V> clone() {
2899 <            if (last != null || (next != null && nextVal == null))
3114 >            if (nextKey != null)
3115                  throw new IllegalStateException();
3116 <            return new EntryIterator<K,V>(this, false);
3116 >            return new EntryIterator<K,V>(map, this);
3117          }
3118  
3119 <        @SuppressWarnings("unchecked")
2905 <        public final Map.Entry<K,V> next() {
3119 >        @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3120              Object v;
3121              if ((v = nextVal) == null && (v = advance()) == null)
3122                  throw new NoSuchElementException();
# Line 2955 | Line 3169 | public class ConcurrentHashMapV8<K, V>
3169          }
3170      }
3171  
3172 +    /**
3173 +     * Returns exportable snapshot entry for the given key and value
3174 +     * when write-through can't or shouldn't be used.
3175 +     */
3176 +    static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3177 +        return new AbstractMap.SimpleEntry<K,V>(k, v);
3178 +    }
3179 +
3180 +    /* ---------------- Serialization Support -------------- */
3181 +
3182 +    /**
3183 +     * Stripped-down version of helper class used in previous version,
3184 +     * declared for the sake of serialization compatibility
3185 +     */
3186 +    static class Segment<K,V> implements Serializable {
3187 +        private static final long serialVersionUID = 2249069246763182397L;
3188 +        final float loadFactor;
3189 +        Segment(float lf) { this.loadFactor = lf; }
3190 +    }
3191 +
3192 +    /**
3193 +     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
3194 +     * stream (i.e., serializes it).
3195 +     * @param s the stream
3196 +     * @serialData
3197 +     * the key (Object) and value (Object)
3198 +     * for each key-value mapping, followed by a null pair.
3199 +     * The key-value mappings are emitted in no particular order.
3200 +     */
3201 +    @SuppressWarnings("unchecked") private void writeObject
3202 +        (java.io.ObjectOutputStream s)
3203 +        throws java.io.IOException {
3204 +        if (segments == null) { // for serialization compatibility
3205 +            segments = (Segment<K,V>[])
3206 +                new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3207 +            for (int i = 0; i < segments.length; ++i)
3208 +                segments[i] = new Segment<K,V>(LOAD_FACTOR);
3209 +        }
3210 +        s.defaultWriteObject();
3211 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3212 +        Object v;
3213 +        while ((v = it.advance()) != null) {
3214 +            s.writeObject(it.nextKey);
3215 +            s.writeObject(v);
3216 +        }
3217 +        s.writeObject(null);
3218 +        s.writeObject(null);
3219 +        segments = null; // throw away
3220 +    }
3221 +
3222 +    /**
3223 +     * Reconstitutes the instance from a stream (that is, deserializes it).
3224 +     * @param s the stream
3225 +     */
3226 +    @SuppressWarnings("unchecked") private void readObject
3227 +        (java.io.ObjectInputStream s)
3228 +        throws java.io.IOException, ClassNotFoundException {
3229 +        s.defaultReadObject();
3230 +        this.segments = null; // unneeded
3231 +
3232 +        // Create all nodes, then place in table once size is known
3233 +        long size = 0L;
3234 +        Node p = null;
3235 +        for (;;) {
3236 +            K k = (K) s.readObject();
3237 +            V v = (V) s.readObject();
3238 +            if (k != null && v != null) {
3239 +                int h = spread(k.hashCode());
3240 +                p = new Node(h, k, v, p);
3241 +                ++size;
3242 +            }
3243 +            else
3244 +                break;
3245 +        }
3246 +        if (p != null) {
3247 +            boolean init = false;
3248 +            int n;
3249 +            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3250 +                n = MAXIMUM_CAPACITY;
3251 +            else {
3252 +                int sz = (int)size;
3253 +                n = tableSizeFor(sz + (sz >>> 1) + 1);
3254 +            }
3255 +            int sc = sizeCtl;
3256 +            boolean collide = false;
3257 +            if (n > sc &&
3258 +                U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3259 +                try {
3260 +                    if (table == null) {
3261 +                        init = true;
3262 +                        Node[] tab = new Node[n];
3263 +                        int mask = n - 1;
3264 +                        while (p != null) {
3265 +                            int j = p.hash & mask;
3266 +                            Node next = p.next;
3267 +                            Node q = p.next = tabAt(tab, j);
3268 +                            setTabAt(tab, j, p);
3269 +                            if (!collide && q != null && q.hash == p.hash)
3270 +                                collide = true;
3271 +                            p = next;
3272 +                        }
3273 +                        table = tab;
3274 +                        addCount(size, -1);
3275 +                        sc = n - (n >>> 2);
3276 +                    }
3277 +                } finally {
3278 +                    sizeCtl = sc;
3279 +                }
3280 +                if (collide) { // rescan and convert to TreeBins
3281 +                    Node[] tab = table;
3282 +                    for (int i = 0; i < tab.length; ++i) {
3283 +                        int c = 0;
3284 +                        for (Node e = tabAt(tab, i); e != null; e = e.next) {
3285 +                            if (++c > TREE_THRESHOLD &&
3286 +                                (e.key instanceof Comparable)) {
3287 +                                replaceWithTreeBin(tab, i, e.key);
3288 +                                break;
3289 +                            }
3290 +                        }
3291 +                    }
3292 +                }
3293 +            }
3294 +            if (!init) { // Can only happen if unsafely published.
3295 +                while (p != null) {
3296 +                    internalPut((K)p.key, (V)p.val, false);
3297 +                    p = p.next;
3298 +                }
3299 +            }
3300 +        }
3301 +    }
3302 +
3303 +    // -------------------------------------------------------
3304 +
3305 +    // Sams
3306 +    /** Interface describing a void action of one argument */
3307 +    public interface Action<A> { void apply(A a); }
3308 +    /** Interface describing a void action of two arguments */
3309 +    public interface BiAction<A,B> { void apply(A a, B b); }
3310 +    /** Interface describing a function of one argument */
3311 +    public interface Fun<A,T> { T apply(A a); }
3312 +    /** Interface describing a function of two arguments */
3313 +    public interface BiFun<A,B,T> { T apply(A a, B b); }
3314 +    /** Interface describing a function of no arguments */
3315 +    public interface Generator<T> { T apply(); }
3316 +    /** Interface describing a function mapping its argument to a double */
3317 +    public interface ObjectToDouble<A> { double apply(A a); }
3318 +    /** Interface describing a function mapping its argument to a long */
3319 +    public interface ObjectToLong<A> { long apply(A a); }
3320 +    /** Interface describing a function mapping its argument to an int */
3321 +    public interface ObjectToInt<A> {int apply(A a); }
3322 +    /** Interface describing a function mapping two arguments to a double */
3323 +    public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3324 +    /** Interface describing a function mapping two arguments to a long */
3325 +    public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3326 +    /** Interface describing a function mapping two arguments to an int */
3327 +    public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3328 +    /** Interface describing a function mapping a double to a double */
3329 +    public interface DoubleToDouble { double apply(double a); }
3330 +    /** Interface describing a function mapping a long to a long */
3331 +    public interface LongToLong { long apply(long a); }
3332 +    /** Interface describing a function mapping an int to an int */
3333 +    public interface IntToInt { int apply(int a); }
3334 +    /** Interface describing a function mapping two doubles to a double */
3335 +    public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3336 +    /** Interface describing a function mapping two longs to a long */
3337 +    public interface LongByLongToLong { long apply(long a, long b); }
3338 +    /** Interface describing a function mapping two ints to an int */
3339 +    public interface IntByIntToInt { int apply(int a, int b); }
3340 +
3341 +
3342 +    // -------------------------------------------------------
3343 +
3344 +    /**
3345 +     * Performs the given action for each (key, value).
3346 +     *
3347 +     * @param action the action
3348 +     */
3349 +    public void forEach(BiAction<K,V> action) {
3350 +        ForkJoinTasks.forEach
3351 +            (this, action).invoke();
3352 +    }
3353 +
3354 +    /**
3355 +     * Performs the given action for each non-null transformation
3356 +     * of each (key, value).
3357 +     *
3358 +     * @param transformer a function returning the transformation
3359 +     * for an element, or null of there is no transformation (in
3360 +     * which case the action is not applied).
3361 +     * @param action the action
3362 +     */
3363 +    public <U> void forEach(BiFun<? super K, ? super V, ? extends U> transformer,
3364 +                            Action<U> action) {
3365 +        ForkJoinTasks.forEach
3366 +            (this, transformer, action).invoke();
3367 +    }
3368 +
3369 +    /**
3370 +     * Returns a non-null result from applying the given search
3371 +     * function on each (key, value), or null if none.  Upon
3372 +     * success, further element processing is suppressed and the
3373 +     * results of any other parallel invocations of the search
3374 +     * function are ignored.
3375 +     *
3376 +     * @param searchFunction a function returning a non-null
3377 +     * result on success, else null
3378 +     * @return a non-null result from applying the given search
3379 +     * function on each (key, value), or null if none
3380 +     */
3381 +    public <U> U search(BiFun<? super K, ? super V, ? extends U> searchFunction) {
3382 +        return ForkJoinTasks.search
3383 +            (this, searchFunction).invoke();
3384 +    }
3385 +
3386 +    /**
3387 +     * Returns the result of accumulating the given transformation
3388 +     * of all (key, value) pairs using the given reducer to
3389 +     * combine values, or null if none.
3390 +     *
3391 +     * @param transformer a function returning the transformation
3392 +     * for an element, or null of there is no transformation (in
3393 +     * which case it is not combined).
3394 +     * @param reducer a commutative associative combining function
3395 +     * @return the result of accumulating the given transformation
3396 +     * of all (key, value) pairs
3397 +     */
3398 +    public <U> U reduce(BiFun<? super K, ? super V, ? extends U> transformer,
3399 +                        BiFun<? super U, ? super U, ? extends U> reducer) {
3400 +        return ForkJoinTasks.reduce
3401 +            (this, transformer, reducer).invoke();
3402 +    }
3403 +
3404 +    /**
3405 +     * Returns the result of accumulating the given transformation
3406 +     * of all (key, value) pairs using the given reducer to
3407 +     * combine values, and the given basis as an identity value.
3408 +     *
3409 +     * @param transformer a function returning the transformation
3410 +     * for an element
3411 +     * @param basis the identity (initial default value) for the reduction
3412 +     * @param reducer a commutative associative combining function
3413 +     * @return the result of accumulating the given transformation
3414 +     * of all (key, value) pairs
3415 +     */
3416 +    public double reduceToDouble(ObjectByObjectToDouble<? super K, ? super V> transformer,
3417 +                                 double basis,
3418 +                                 DoubleByDoubleToDouble reducer) {
3419 +        return ForkJoinTasks.reduceToDouble
3420 +            (this, transformer, basis, reducer).invoke();
3421 +    }
3422 +
3423 +    /**
3424 +     * Returns the result of accumulating the given transformation
3425 +     * of all (key, value) pairs using the given reducer to
3426 +     * combine values, and the given basis as an identity value.
3427 +     *
3428 +     * @param transformer a function returning the transformation
3429 +     * for an element
3430 +     * @param basis the identity (initial default value) for the reduction
3431 +     * @param reducer a commutative associative combining function
3432 +     * @return the result of accumulating the given transformation
3433 +     * of all (key, value) pairs
3434 +     */
3435 +    public long reduceToLong(ObjectByObjectToLong<? super K, ? super V> transformer,
3436 +                             long basis,
3437 +                             LongByLongToLong reducer) {
3438 +        return ForkJoinTasks.reduceToLong
3439 +            (this, transformer, basis, reducer).invoke();
3440 +    }
3441 +
3442 +    /**
3443 +     * Returns the result of accumulating the given transformation
3444 +     * of all (key, value) pairs using the given reducer to
3445 +     * combine values, and the given basis as an identity value.
3446 +     *
3447 +     * @param transformer a function returning the transformation
3448 +     * for an element
3449 +     * @param basis the identity (initial default value) for the reduction
3450 +     * @param reducer a commutative associative combining function
3451 +     * @return the result of accumulating the given transformation
3452 +     * of all (key, value) pairs
3453 +     */
3454 +    public int reduceToInt(ObjectByObjectToInt<? super K, ? super V> transformer,
3455 +                           int basis,
3456 +                           IntByIntToInt reducer) {
3457 +        return ForkJoinTasks.reduceToInt
3458 +            (this, transformer, basis, reducer).invoke();
3459 +    }
3460 +
3461 +    /**
3462 +     * Performs the given action for each key.
3463 +     *
3464 +     * @param action the action
3465 +     */
3466 +    public void forEachKey(Action<K> action) {
3467 +        ForkJoinTasks.forEachKey
3468 +            (this, action).invoke();
3469 +    }
3470 +
3471 +    /**
3472 +     * Performs the given action for each non-null transformation
3473 +     * of each key.
3474 +     *
3475 +     * @param transformer a function returning the transformation
3476 +     * for an element, or null of there is no transformation (in
3477 +     * which case the action is not applied).
3478 +     * @param action the action
3479 +     */
3480 +    public <U> void forEachKey(Fun<? super K, ? extends U> transformer,
3481 +                               Action<U> action) {
3482 +        ForkJoinTasks.forEachKey
3483 +            (this, transformer, action).invoke();
3484 +    }
3485 +
3486 +    /**
3487 +     * Returns a non-null result from applying the given search
3488 +     * function on each key, or null if none. Upon success,
3489 +     * further element processing is suppressed and the results of
3490 +     * any other parallel invocations of the search function are
3491 +     * ignored.
3492 +     *
3493 +     * @param searchFunction a function returning a non-null
3494 +     * result on success, else null
3495 +     * @return a non-null result from applying the given search
3496 +     * function on each key, or null if none
3497 +     */
3498 +    public <U> U searchKeys(Fun<? super K, ? extends U> searchFunction) {
3499 +        return ForkJoinTasks.searchKeys
3500 +            (this, searchFunction).invoke();
3501 +    }
3502 +
3503 +    /**
3504 +     * Returns the result of accumulating all keys using the given
3505 +     * reducer to combine values, or null if none.
3506 +     *
3507 +     * @param reducer a commutative associative combining function
3508 +     * @return the result of accumulating all keys using the given
3509 +     * reducer to combine values, or null if none
3510 +     */
3511 +    public K reduceKeys(BiFun<? super K, ? super K, ? extends K> reducer) {
3512 +        return ForkJoinTasks.reduceKeys
3513 +            (this, reducer).invoke();
3514 +    }
3515 +
3516 +    /**
3517 +     * Returns the result of accumulating the given transformation
3518 +     * of all keys using the given reducer to combine values, or
3519 +     * null if none.
3520 +     *
3521 +     * @param transformer a function returning the transformation
3522 +     * for an element, or null of there is no transformation (in
3523 +     * which case it is not combined).
3524 +     * @param reducer a commutative associative combining function
3525 +     * @return the result of accumulating the given transformation
3526 +     * of all keys
3527 +     */
3528 +    public <U> U reduceKeys(Fun<? super K, ? extends U> transformer,
3529 +                            BiFun<? super U, ? super U, ? extends U> reducer) {
3530 +        return ForkJoinTasks.reduceKeys
3531 +            (this, transformer, reducer).invoke();
3532 +    }
3533 +
3534 +    /**
3535 +     * Returns the result of accumulating the given transformation
3536 +     * of all keys using the given reducer to combine values, and
3537 +     * the given basis as an identity value.
3538 +     *
3539 +     * @param transformer a function returning the transformation
3540 +     * for an element
3541 +     * @param basis the identity (initial default value) for the reduction
3542 +     * @param reducer a commutative associative combining function
3543 +     * @return  the result of accumulating the given transformation
3544 +     * of all keys
3545 +     */
3546 +    public double reduceKeysToDouble(ObjectToDouble<? super K> transformer,
3547 +                                     double basis,
3548 +                                     DoubleByDoubleToDouble reducer) {
3549 +        return ForkJoinTasks.reduceKeysToDouble
3550 +            (this, transformer, basis, reducer).invoke();
3551 +    }
3552 +
3553 +    /**
3554 +     * Returns the result of accumulating the given transformation
3555 +     * of all keys using the given reducer to combine values, and
3556 +     * the given basis as an identity value.
3557 +     *
3558 +     * @param transformer a function returning the transformation
3559 +     * for an element
3560 +     * @param basis the identity (initial default value) for the reduction
3561 +     * @param reducer a commutative associative combining function
3562 +     * @return the result of accumulating the given transformation
3563 +     * of all keys
3564 +     */
3565 +    public long reduceKeysToLong(ObjectToLong<? super K> transformer,
3566 +                                 long basis,
3567 +                                 LongByLongToLong reducer) {
3568 +        return ForkJoinTasks.reduceKeysToLong
3569 +            (this, transformer, basis, reducer).invoke();
3570 +    }
3571 +
3572 +    /**
3573 +     * Returns the result of accumulating the given transformation
3574 +     * of all keys using the given reducer to combine values, and
3575 +     * the given basis as an identity value.
3576 +     *
3577 +     * @param transformer a function returning the transformation
3578 +     * for an element
3579 +     * @param basis the identity (initial default value) for the reduction
3580 +     * @param reducer a commutative associative combining function
3581 +     * @return the result of accumulating the given transformation
3582 +     * of all keys
3583 +     */
3584 +    public int reduceKeysToInt(ObjectToInt<? super K> transformer,
3585 +                               int basis,
3586 +                               IntByIntToInt reducer) {
3587 +        return ForkJoinTasks.reduceKeysToInt
3588 +            (this, transformer, basis, reducer).invoke();
3589 +    }
3590 +
3591 +    /**
3592 +     * Performs the given action for each value.
3593 +     *
3594 +     * @param action the action
3595 +     */
3596 +    public void forEachValue(Action<V> action) {
3597 +        ForkJoinTasks.forEachValue
3598 +            (this, action).invoke();
3599 +    }
3600 +
3601 +    /**
3602 +     * Performs the given action for each non-null transformation
3603 +     * of each value.
3604 +     *
3605 +     * @param transformer a function returning the transformation
3606 +     * for an element, or null of there is no transformation (in
3607 +     * which case the action is not applied).
3608 +     */
3609 +    public <U> void forEachValue(Fun<? super V, ? extends U> transformer,
3610 +                                 Action<U> action) {
3611 +        ForkJoinTasks.forEachValue
3612 +            (this, transformer, action).invoke();
3613 +    }
3614 +
3615 +    /**
3616 +     * Returns a non-null result from applying the given search
3617 +     * function on each value, or null if none.  Upon success,
3618 +     * further element processing is suppressed and the results of
3619 +     * any other parallel invocations of the search function are
3620 +     * ignored.
3621 +     *
3622 +     * @param searchFunction a function returning a non-null
3623 +     * result on success, else null
3624 +     * @return a non-null result from applying the given search
3625 +     * function on each value, or null if none
3626 +     *
3627 +     */
3628 +    public <U> U searchValues(Fun<? super V, ? extends U> searchFunction) {
3629 +        return ForkJoinTasks.searchValues
3630 +            (this, searchFunction).invoke();
3631 +    }
3632 +
3633 +    /**
3634 +     * Returns the result of accumulating all values using the
3635 +     * given reducer to combine values, or null if none.
3636 +     *
3637 +     * @param reducer a commutative associative combining function
3638 +     * @return  the result of accumulating all values
3639 +     */
3640 +    public V reduceValues(BiFun<? super V, ? super V, ? extends V> reducer) {
3641 +        return ForkJoinTasks.reduceValues
3642 +            (this, reducer).invoke();
3643 +    }
3644 +
3645 +    /**
3646 +     * Returns the result of accumulating the given transformation
3647 +     * of all values using the given reducer to combine values, or
3648 +     * null if none.
3649 +     *
3650 +     * @param transformer a function returning the transformation
3651 +     * for an element, or null of there is no transformation (in
3652 +     * which case it is not combined).
3653 +     * @param reducer a commutative associative combining function
3654 +     * @return the result of accumulating the given transformation
3655 +     * of all values
3656 +     */
3657 +    public <U> U reduceValues(Fun<? super V, ? extends U> transformer,
3658 +                              BiFun<? super U, ? super U, ? extends U> reducer) {
3659 +        return ForkJoinTasks.reduceValues
3660 +            (this, transformer, reducer).invoke();
3661 +    }
3662 +
3663 +    /**
3664 +     * Returns the result of accumulating the given transformation
3665 +     * of all values using the given reducer to combine values,
3666 +     * and the given basis as an identity value.
3667 +     *
3668 +     * @param transformer a function returning the transformation
3669 +     * for an element
3670 +     * @param basis the identity (initial default value) for the reduction
3671 +     * @param reducer a commutative associative combining function
3672 +     * @return the result of accumulating the given transformation
3673 +     * of all values
3674 +     */
3675 +    public double reduceValuesToDouble(ObjectToDouble<? super V> transformer,
3676 +                                       double basis,
3677 +                                       DoubleByDoubleToDouble reducer) {
3678 +        return ForkJoinTasks.reduceValuesToDouble
3679 +            (this, transformer, basis, reducer).invoke();
3680 +    }
3681 +
3682 +    /**
3683 +     * Returns the result of accumulating the given transformation
3684 +     * of all values using the given reducer to combine values,
3685 +     * and the given basis as an identity value.
3686 +     *
3687 +     * @param transformer a function returning the transformation
3688 +     * for an element
3689 +     * @param basis the identity (initial default value) for the reduction
3690 +     * @param reducer a commutative associative combining function
3691 +     * @return the result of accumulating the given transformation
3692 +     * of all values
3693 +     */
3694 +    public long reduceValuesToLong(ObjectToLong<? super V> transformer,
3695 +                                   long basis,
3696 +                                   LongByLongToLong reducer) {
3697 +        return ForkJoinTasks.reduceValuesToLong
3698 +            (this, transformer, basis, reducer).invoke();
3699 +    }
3700 +
3701 +    /**
3702 +     * Returns the result of accumulating the given transformation
3703 +     * of all values using the given reducer to combine values,
3704 +     * and the given basis as an identity value.
3705 +     *
3706 +     * @param transformer a function returning the transformation
3707 +     * for an element
3708 +     * @param basis the identity (initial default value) for the reduction
3709 +     * @param reducer a commutative associative combining function
3710 +     * @return the result of accumulating the given transformation
3711 +     * of all values
3712 +     */
3713 +    public int reduceValuesToInt(ObjectToInt<? super V> transformer,
3714 +                                 int basis,
3715 +                                 IntByIntToInt reducer) {
3716 +        return ForkJoinTasks.reduceValuesToInt
3717 +            (this, transformer, basis, reducer).invoke();
3718 +    }
3719 +
3720 +    /**
3721 +     * Performs the given action for each entry.
3722 +     *
3723 +     * @param action the action
3724 +     */
3725 +    public void forEachEntry(Action<Map.Entry<K,V>> action) {
3726 +        ForkJoinTasks.forEachEntry
3727 +            (this, action).invoke();
3728 +    }
3729 +
3730 +    /**
3731 +     * Performs the given action for each non-null transformation
3732 +     * of each entry.
3733 +     *
3734 +     * @param transformer a function returning the transformation
3735 +     * for an element, or null of there is no transformation (in
3736 +     * which case the action is not applied).
3737 +     * @param action the action
3738 +     */
3739 +    public <U> void forEachEntry(Fun<Map.Entry<K,V>, ? extends U> transformer,
3740 +                                 Action<U> action) {
3741 +        ForkJoinTasks.forEachEntry
3742 +            (this, transformer, action).invoke();
3743 +    }
3744 +
3745 +    /**
3746 +     * Returns a non-null result from applying the given search
3747 +     * function on each entry, or null if none.  Upon success,
3748 +     * further element processing is suppressed and the results of
3749 +     * any other parallel invocations of the search function are
3750 +     * ignored.
3751 +     *
3752 +     * @param searchFunction a function returning a non-null
3753 +     * result on success, else null
3754 +     * @return a non-null result from applying the given search
3755 +     * function on each entry, or null if none
3756 +     */
3757 +    public <U> U searchEntries(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
3758 +        return ForkJoinTasks.searchEntries
3759 +            (this, searchFunction).invoke();
3760 +    }
3761 +
3762 +    /**
3763 +     * Returns the result of accumulating all entries using the
3764 +     * given reducer to combine values, or null if none.
3765 +     *
3766 +     * @param reducer a commutative associative combining function
3767 +     * @return the result of accumulating all entries
3768 +     */
3769 +    public Map.Entry<K,V> reduceEntries(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3770 +        return ForkJoinTasks.reduceEntries
3771 +            (this, reducer).invoke();
3772 +    }
3773 +
3774 +    /**
3775 +     * Returns the result of accumulating the given transformation
3776 +     * of all entries using the given reducer to combine values,
3777 +     * or null if none.
3778 +     *
3779 +     * @param transformer a function returning the transformation
3780 +     * for an element, or null of there is no transformation (in
3781 +     * which case it is not combined).
3782 +     * @param reducer a commutative associative combining function
3783 +     * @return the result of accumulating the given transformation
3784 +     * of all entries
3785 +     */
3786 +    public <U> U reduceEntries(Fun<Map.Entry<K,V>, ? extends U> transformer,
3787 +                               BiFun<? super U, ? super U, ? extends U> reducer) {
3788 +        return ForkJoinTasks.reduceEntries
3789 +            (this, transformer, reducer).invoke();
3790 +    }
3791 +
3792 +    /**
3793 +     * Returns the result of accumulating the given transformation
3794 +     * of all entries using the given reducer to combine values,
3795 +     * and the given basis as an identity value.
3796 +     *
3797 +     * @param transformer a function returning the transformation
3798 +     * for an element
3799 +     * @param basis the identity (initial default value) for the reduction
3800 +     * @param reducer a commutative associative combining function
3801 +     * @return the result of accumulating the given transformation
3802 +     * of all entries
3803 +     */
3804 +    public double reduceEntriesToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
3805 +                                        double basis,
3806 +                                        DoubleByDoubleToDouble reducer) {
3807 +        return ForkJoinTasks.reduceEntriesToDouble
3808 +            (this, transformer, basis, reducer).invoke();
3809 +    }
3810 +
3811 +    /**
3812 +     * Returns the result of accumulating the given transformation
3813 +     * of all entries using the given reducer to combine values,
3814 +     * and the given basis as an identity value.
3815 +     *
3816 +     * @param transformer a function returning the transformation
3817 +     * for an element
3818 +     * @param basis the identity (initial default value) for the reduction
3819 +     * @param reducer a commutative associative combining function
3820 +     * @return  the result of accumulating the given transformation
3821 +     * of all entries
3822 +     */
3823 +    public long reduceEntriesToLong(ObjectToLong<Map.Entry<K,V>> transformer,
3824 +                                    long basis,
3825 +                                    LongByLongToLong reducer) {
3826 +        return ForkJoinTasks.reduceEntriesToLong
3827 +            (this, transformer, basis, reducer).invoke();
3828 +    }
3829 +
3830 +    /**
3831 +     * Returns the result of accumulating the given transformation
3832 +     * of all entries using the given reducer to combine values,
3833 +     * and the given basis as an identity value.
3834 +     *
3835 +     * @param transformer a function returning the transformation
3836 +     * for an element
3837 +     * @param basis the identity (initial default value) for the reduction
3838 +     * @param reducer a commutative associative combining function
3839 +     * @return the result of accumulating the given transformation
3840 +     * of all entries
3841 +     */
3842 +    public int reduceEntriesToInt(ObjectToInt<Map.Entry<K,V>> transformer,
3843 +                                  int basis,
3844 +                                  IntByIntToInt reducer) {
3845 +        return ForkJoinTasks.reduceEntriesToInt
3846 +            (this, transformer, basis, reducer).invoke();
3847 +    }
3848 +
3849      /* ----------------Views -------------- */
3850  
3851      /**
3852       * Base class for views.
3853       */
3854 <    static abstract class MapView<K, V> {
3854 >    static abstract class CHMView<K, V> {
3855          final ConcurrentHashMapV8<K, V> map;
3856 <        MapView(ConcurrentHashMapV8<K, V> map)  { this.map = map; }
3856 >        CHMView(ConcurrentHashMapV8<K, V> map)  { this.map = map; }
3857 >
3858 >        /**
3859 >         * Returns the map backing this view.
3860 >         *
3861 >         * @return the map backing this view
3862 >         */
3863 >        public ConcurrentHashMapV8<K,V> getMap() { return map; }
3864 >
3865          public final int size()                 { return map.size(); }
3866          public final boolean isEmpty()          { return map.isEmpty(); }
3867          public final void clear()               { map.clear(); }
# Line 2975 | Line 3874 | public class ConcurrentHashMapV8<K, V>
3874          private static final String oomeMsg = "Required array size too large";
3875  
3876          public final Object[] toArray() {
3877 <            long sz = map.longSize();
3877 >            long sz = map.mappingCount();
3878              if (sz > (long)(MAX_ARRAY_SIZE))
3879                  throw new OutOfMemoryError(oomeMsg);
3880              int n = (int)sz;
# Line 2997 | Line 3896 | public class ConcurrentHashMapV8<K, V>
3896              return (i == n) ? r : Arrays.copyOf(r, i);
3897          }
3898  
3899 <        @SuppressWarnings("unchecked")
3900 <        public final <T> T[] toArray(T[] a) {
3002 <            long sz = map.longSize();
3899 >        @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
3900 >            long sz = map.mappingCount();
3901              if (sz > (long)(MAX_ARRAY_SIZE))
3902                  throw new OutOfMemoryError(oomeMsg);
3903              int m = (int)sz;
# Line 3086 | Line 3984 | public class ConcurrentHashMapV8<K, V>
3984  
3985      }
3986  
3987 <    static final class KeySet<K,V> extends MapView<K,V> implements Set<K> {
3988 <        KeySet(ConcurrentHashMapV8<K, V> map)   { super(map); }
3989 <        public final boolean contains(Object o) { return map.containsKey(o); }
3990 <        public final boolean remove(Object o)   { return map.remove(o) != null; }
3991 <        public final Iterator<K> iterator() {
3992 <            return new KeyIterator<K,V>(map);
3987 >    /**
3988 >     * A view of a ConcurrentHashMapV8 as a {@link Set} of keys, in
3989 >     * which additions may optionally be enabled by mapping to a
3990 >     * common value.  This class cannot be directly instantiated. See
3991 >     * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
3992 >     * {@link #newKeySet(int)}.
3993 >     */
3994 >    public static class KeySetView<K,V> extends CHMView<K,V>
3995 >        implements Set<K>, java.io.Serializable {
3996 >        private static final long serialVersionUID = 7249069246763182397L;
3997 >        private final V value;
3998 >        KeySetView(ConcurrentHashMapV8<K, V> map, V value) {  // non-public
3999 >            super(map);
4000 >            this.value = value;
4001          }
4002 <        public final boolean add(K e) {
4003 <            throw new UnsupportedOperationException();
4002 >
4003 >        /**
4004 >         * Returns the default mapped value for additions,
4005 >         * or {@code null} if additions are not supported.
4006 >         *
4007 >         * @return the default mapped value for additions, or {@code null}
4008 >         * if not supported.
4009 >         */
4010 >        public V getMappedValue() { return value; }
4011 >
4012 >        // implement Set API
4013 >
4014 >        public boolean contains(Object o) { return map.containsKey(o); }
4015 >        public boolean remove(Object o)   { return map.remove(o) != null; }
4016 >
4017 >        /**
4018 >         * Returns a "weakly consistent" iterator that will never
4019 >         * throw {@link ConcurrentModificationException}, and
4020 >         * guarantees to traverse elements as they existed upon
4021 >         * construction of the iterator, and may (but is not
4022 >         * guaranteed to) reflect any modifications subsequent to
4023 >         * construction.
4024 >         *
4025 >         * @return an iterator over the keys of this map
4026 >         */
4027 >        public Iterator<K> iterator()     { return new KeyIterator<K,V>(map); }
4028 >        public boolean add(K e) {
4029 >            V v;
4030 >            if ((v = value) == null)
4031 >                throw new UnsupportedOperationException();
4032 >            if (e == null)
4033 >                throw new NullPointerException();
4034 >            return map.internalPut(e, v, true) == null;
4035          }
4036 <        public final boolean addAll(Collection<? extends K> c) {
4037 <            throw new UnsupportedOperationException();
4036 >        public boolean addAll(Collection<? extends K> c) {
4037 >            boolean added = false;
4038 >            V v;
4039 >            if ((v = value) == null)
4040 >                throw new UnsupportedOperationException();
4041 >            for (K e : c) {
4042 >                if (e == null)
4043 >                    throw new NullPointerException();
4044 >                if (map.internalPut(e, v, true) == null)
4045 >                    added = true;
4046 >            }
4047 >            return added;
4048          }
4049          public boolean equals(Object o) {
4050              Set<?> c;
# Line 3105 | Line 4052 | public class ConcurrentHashMapV8<K, V>
4052                      ((c = (Set<?>)o) == this ||
4053                       (containsAll(c) && c.containsAll(this))));
4054          }
4055 +
4056 +        /**
4057 +         * Performs the given action for each key.
4058 +         *
4059 +         * @param action the action
4060 +         */
4061 +        public void forEach(Action<K> action) {
4062 +            ForkJoinTasks.forEachKey
4063 +                (map, action).invoke();
4064 +        }
4065 +
4066 +        /**
4067 +         * Performs the given action for each non-null transformation
4068 +         * of each key.
4069 +         *
4070 +         * @param transformer a function returning the transformation
4071 +         * for an element, or null of there is no transformation (in
4072 +         * which case the action is not applied).
4073 +         * @param action the action
4074 +         */
4075 +        public <U> void forEach(Fun<? super K, ? extends U> transformer,
4076 +                                Action<U> action) {
4077 +            ForkJoinTasks.forEachKey
4078 +                (map, transformer, action).invoke();
4079 +        }
4080 +
4081 +        /**
4082 +         * Returns a non-null result from applying the given search
4083 +         * function on each key, or null if none. Upon success,
4084 +         * further element processing is suppressed and the results of
4085 +         * any other parallel invocations of the search function are
4086 +         * ignored.
4087 +         *
4088 +         * @param searchFunction a function returning a non-null
4089 +         * result on success, else null
4090 +         * @return a non-null result from applying the given search
4091 +         * function on each key, or null if none
4092 +         */
4093 +        public <U> U search(Fun<? super K, ? extends U> searchFunction) {
4094 +            return ForkJoinTasks.searchKeys
4095 +                (map, searchFunction).invoke();
4096 +        }
4097 +
4098 +        /**
4099 +         * Returns the result of accumulating all keys using the given
4100 +         * reducer to combine values, or null if none.
4101 +         *
4102 +         * @param reducer a commutative associative combining function
4103 +         * @return the result of accumulating all keys using the given
4104 +         * reducer to combine values, or null if none
4105 +         */
4106 +        public K reduce(BiFun<? super K, ? super K, ? extends K> reducer) {
4107 +            return ForkJoinTasks.reduceKeys
4108 +                (map, reducer).invoke();
4109 +        }
4110 +
4111 +        /**
4112 +         * Returns the result of accumulating the given transformation
4113 +         * of all keys using the given reducer to combine values, and
4114 +         * the given basis as an identity value.
4115 +         *
4116 +         * @param transformer a function returning the transformation
4117 +         * for an element
4118 +         * @param basis the identity (initial default value) for the reduction
4119 +         * @param reducer a commutative associative combining function
4120 +         * @return  the result of accumulating the given transformation
4121 +         * of all keys
4122 +         */
4123 +        public double reduceToDouble(ObjectToDouble<? super K> transformer,
4124 +                                     double basis,
4125 +                                     DoubleByDoubleToDouble reducer) {
4126 +            return ForkJoinTasks.reduceKeysToDouble
4127 +                (map, transformer, basis, reducer).invoke();
4128 +        }
4129 +
4130 +        /**
4131 +         * Returns the result of accumulating the given transformation
4132 +         * of all keys using the given reducer to combine values, and
4133 +         * the given basis as an identity value.
4134 +         *
4135 +         * @param transformer a function returning the transformation
4136 +         * for an element
4137 +         * @param basis the identity (initial default value) for the reduction
4138 +         * @param reducer a commutative associative combining function
4139 +         * @return the result of accumulating the given transformation
4140 +         * of all keys
4141 +         */
4142 +        public long reduceToLong(ObjectToLong<? super K> transformer,
4143 +                                 long basis,
4144 +                                 LongByLongToLong reducer) {
4145 +            return ForkJoinTasks.reduceKeysToLong
4146 +                (map, transformer, basis, reducer).invoke();
4147 +        }
4148 +
4149 +        /**
4150 +         * Returns the result of accumulating the given transformation
4151 +         * of all keys using the given reducer to combine values, and
4152 +         * the given basis as an identity value.
4153 +         *
4154 +         * @param transformer a function returning the transformation
4155 +         * for an element
4156 +         * @param basis the identity (initial default value) for the reduction
4157 +         * @param reducer a commutative associative combining function
4158 +         * @return the result of accumulating the given transformation
4159 +         * of all keys
4160 +         */
4161 +        public int reduceToInt(ObjectToInt<? super K> transformer,
4162 +                               int basis,
4163 +                               IntByIntToInt reducer) {
4164 +            return ForkJoinTasks.reduceKeysToInt
4165 +                (map, transformer, basis, reducer).invoke();
4166 +        }
4167 +
4168      }
4169  
4170 <    static final class Values<K,V> extends MapView<K,V>
4170 >    /**
4171 >     * A view of a ConcurrentHashMapV8 as a {@link Collection} of
4172 >     * values, in which additions are disabled. This class cannot be
4173 >     * directly instantiated. See {@link #values},
4174 >     *
4175 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4176 >     * that will never throw {@link ConcurrentModificationException},
4177 >     * and guarantees to traverse elements as they existed upon
4178 >     * construction of the iterator, and may (but is not guaranteed to)
4179 >     * reflect any modifications subsequent to construction.
4180 >     */
4181 >    public static final class ValuesView<K,V> extends CHMView<K,V>
4182          implements Collection<V> {
4183 <        Values(ConcurrentHashMapV8<K, V> map)   { super(map); }
4183 >        ValuesView(ConcurrentHashMapV8<K, V> map)   { super(map); }
4184          public final boolean contains(Object o) { return map.containsValue(o); }
4185          public final boolean remove(Object o) {
4186              if (o != null) {
# Line 3123 | Line 4194 | public class ConcurrentHashMapV8<K, V>
4194              }
4195              return false;
4196          }
4197 +
4198 +        /**
4199 +         * Returns a "weakly consistent" iterator that will never
4200 +         * throw {@link ConcurrentModificationException}, and
4201 +         * guarantees to traverse elements as they existed upon
4202 +         * construction of the iterator, and may (but is not
4203 +         * guaranteed to) reflect any modifications subsequent to
4204 +         * construction.
4205 +         *
4206 +         * @return an iterator over the values of this map
4207 +         */
4208          public final Iterator<V> iterator() {
4209              return new ValueIterator<K,V>(map);
4210          }
# Line 3132 | Line 4214 | public class ConcurrentHashMapV8<K, V>
4214          public final boolean addAll(Collection<? extends V> c) {
4215              throw new UnsupportedOperationException();
4216          }
4217 +
4218 +        /**
4219 +         * Performs the given action for each value.
4220 +         *
4221 +         * @param action the action
4222 +         */
4223 +        public void forEach(Action<V> action) {
4224 +            ForkJoinTasks.forEachValue
4225 +                (map, action).invoke();
4226 +        }
4227 +
4228 +        /**
4229 +         * Performs the given action for each non-null transformation
4230 +         * of each value.
4231 +         *
4232 +         * @param transformer a function returning the transformation
4233 +         * for an element, or null of there is no transformation (in
4234 +         * which case the action is not applied).
4235 +         */
4236 +        public <U> void forEach(Fun<? super V, ? extends U> transformer,
4237 +                                     Action<U> action) {
4238 +            ForkJoinTasks.forEachValue
4239 +                (map, transformer, action).invoke();
4240 +        }
4241 +
4242 +        /**
4243 +         * Returns a non-null result from applying the given search
4244 +         * function on each value, or null if none.  Upon success,
4245 +         * further element processing is suppressed and the results of
4246 +         * any other parallel invocations of the search function are
4247 +         * ignored.
4248 +         *
4249 +         * @param searchFunction a function returning a non-null
4250 +         * result on success, else null
4251 +         * @return a non-null result from applying the given search
4252 +         * function on each value, or null if none
4253 +         *
4254 +         */
4255 +        public <U> U search(Fun<? super V, ? extends U> searchFunction) {
4256 +            return ForkJoinTasks.searchValues
4257 +                (map, searchFunction).invoke();
4258 +        }
4259 +
4260 +        /**
4261 +         * Returns the result of accumulating all values using the
4262 +         * given reducer to combine values, or null if none.
4263 +         *
4264 +         * @param reducer a commutative associative combining function
4265 +         * @return  the result of accumulating all values
4266 +         */
4267 +        public V reduce(BiFun<? super V, ? super V, ? extends V> reducer) {
4268 +            return ForkJoinTasks.reduceValues
4269 +                (map, reducer).invoke();
4270 +        }
4271 +
4272 +        /**
4273 +         * Returns the result of accumulating the given transformation
4274 +         * of all values using the given reducer to combine values, or
4275 +         * null if none.
4276 +         *
4277 +         * @param transformer a function returning the transformation
4278 +         * for an element, or null of there is no transformation (in
4279 +         * which case it is not combined).
4280 +         * @param reducer a commutative associative combining function
4281 +         * @return the result of accumulating the given transformation
4282 +         * of all values
4283 +         */
4284 +        public <U> U reduce(Fun<? super V, ? extends U> transformer,
4285 +                            BiFun<? super U, ? super U, ? extends U> reducer) {
4286 +            return ForkJoinTasks.reduceValues
4287 +                (map, transformer, reducer).invoke();
4288 +        }
4289 +
4290 +        /**
4291 +         * Returns the result of accumulating the given transformation
4292 +         * of all values using the given reducer to combine values,
4293 +         * and the given basis as an identity value.
4294 +         *
4295 +         * @param transformer a function returning the transformation
4296 +         * for an element
4297 +         * @param basis the identity (initial default value) for the reduction
4298 +         * @param reducer a commutative associative combining function
4299 +         * @return the result of accumulating the given transformation
4300 +         * of all values
4301 +         */
4302 +        public double reduceToDouble(ObjectToDouble<? super V> transformer,
4303 +                                     double basis,
4304 +                                     DoubleByDoubleToDouble reducer) {
4305 +            return ForkJoinTasks.reduceValuesToDouble
4306 +                (map, transformer, basis, reducer).invoke();
4307 +        }
4308 +
4309 +        /**
4310 +         * Returns the result of accumulating the given transformation
4311 +         * of all values using the given reducer to combine values,
4312 +         * and the given basis as an identity value.
4313 +         *
4314 +         * @param transformer a function returning the transformation
4315 +         * for an element
4316 +         * @param basis the identity (initial default value) for the reduction
4317 +         * @param reducer a commutative associative combining function
4318 +         * @return the result of accumulating the given transformation
4319 +         * of all values
4320 +         */
4321 +        public long reduceToLong(ObjectToLong<? super V> transformer,
4322 +                                 long basis,
4323 +                                 LongByLongToLong reducer) {
4324 +            return ForkJoinTasks.reduceValuesToLong
4325 +                (map, transformer, basis, reducer).invoke();
4326 +        }
4327 +
4328 +        /**
4329 +         * Returns the result of accumulating the given transformation
4330 +         * of all values using the given reducer to combine values,
4331 +         * and the given basis as an identity value.
4332 +         *
4333 +         * @param transformer a function returning the transformation
4334 +         * for an element
4335 +         * @param basis the identity (initial default value) for the reduction
4336 +         * @param reducer a commutative associative combining function
4337 +         * @return the result of accumulating the given transformation
4338 +         * of all values
4339 +         */
4340 +        public int reduceToInt(ObjectToInt<? super V> transformer,
4341 +                               int basis,
4342 +                               IntByIntToInt reducer) {
4343 +            return ForkJoinTasks.reduceValuesToInt
4344 +                (map, transformer, basis, reducer).invoke();
4345 +        }
4346 +
4347      }
4348  
4349 <    static final class EntrySet<K,V> extends MapView<K,V>
4349 >    /**
4350 >     * A view of a ConcurrentHashMapV8 as a {@link Set} of (key, value)
4351 >     * entries.  This class cannot be directly instantiated. See
4352 >     * {@link #entrySet}.
4353 >     */
4354 >    public static final class EntrySetView<K,V> extends CHMView<K,V>
4355          implements Set<Map.Entry<K,V>> {
4356 <        EntrySet(ConcurrentHashMapV8<K, V> map) { super(map); }
4356 >        EntrySetView(ConcurrentHashMapV8<K, V> map) { super(map); }
4357          public final boolean contains(Object o) {
4358              Object k, v, r; Map.Entry<?,?> e;
4359              return ((o instanceof Map.Entry) &&
# Line 3152 | Line 4369 | public class ConcurrentHashMapV8<K, V>
4369                      (v = e.getValue()) != null &&
4370                      map.remove(k, v));
4371          }
4372 +
4373 +        /**
4374 +         * Returns a "weakly consistent" iterator that will never
4375 +         * throw {@link ConcurrentModificationException}, and
4376 +         * guarantees to traverse elements as they existed upon
4377 +         * construction of the iterator, and may (but is not
4378 +         * guaranteed to) reflect any modifications subsequent to
4379 +         * construction.
4380 +         *
4381 +         * @return an iterator over the entries of this map
4382 +         */
4383          public final Iterator<Map.Entry<K,V>> iterator() {
4384              return new EntryIterator<K,V>(map);
4385          }
4386 +
4387          public final boolean add(Entry<K,V> e) {
4388 <            throw new UnsupportedOperationException();
4388 >            K key = e.getKey();
4389 >            V value = e.getValue();
4390 >            if (key == null || value == null)
4391 >                throw new NullPointerException();
4392 >            return map.internalPut(key, value, false) == null;
4393          }
4394          public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4395 <            throw new UnsupportedOperationException();
4395 >            boolean added = false;
4396 >            for (Entry<K,V> e : c) {
4397 >                if (add(e))
4398 >                    added = true;
4399 >            }
4400 >            return added;
4401          }
4402          public boolean equals(Object o) {
4403              Set<?> c;
# Line 3167 | Line 4405 | public class ConcurrentHashMapV8<K, V>
4405                      ((c = (Set<?>)o) == this ||
4406                       (containsAll(c) && c.containsAll(this))));
4407          }
3170    }
4408  
4409 <    /* ---------------- Serialization Support -------------- */
4409 >        /**
4410 >         * Performs the given action for each entry.
4411 >         *
4412 >         * @param action the action
4413 >         */
4414 >        public void forEach(Action<Map.Entry<K,V>> action) {
4415 >            ForkJoinTasks.forEachEntry
4416 >                (map, action).invoke();
4417 >        }
4418 >
4419 >        /**
4420 >         * Performs the given action for each non-null transformation
4421 >         * of each entry.
4422 >         *
4423 >         * @param transformer a function returning the transformation
4424 >         * for an element, or null of there is no transformation (in
4425 >         * which case the action is not applied).
4426 >         * @param action the action
4427 >         */
4428 >        public <U> void forEach(Fun<Map.Entry<K,V>, ? extends U> transformer,
4429 >                                Action<U> action) {
4430 >            ForkJoinTasks.forEachEntry
4431 >                (map, transformer, action).invoke();
4432 >        }
4433 >
4434 >        /**
4435 >         * Returns a non-null result from applying the given search
4436 >         * function on each entry, or null if none.  Upon success,
4437 >         * further element processing is suppressed and the results of
4438 >         * any other parallel invocations of the search function are
4439 >         * ignored.
4440 >         *
4441 >         * @param searchFunction a function returning a non-null
4442 >         * result on success, else null
4443 >         * @return a non-null result from applying the given search
4444 >         * function on each entry, or null if none
4445 >         */
4446 >        public <U> U search(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4447 >            return ForkJoinTasks.searchEntries
4448 >                (map, searchFunction).invoke();
4449 >        }
4450 >
4451 >        /**
4452 >         * Returns the result of accumulating all entries using the
4453 >         * given reducer to combine values, or null if none.
4454 >         *
4455 >         * @param reducer a commutative associative combining function
4456 >         * @return the result of accumulating all entries
4457 >         */
4458 >        public Map.Entry<K,V> reduce(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4459 >            return ForkJoinTasks.reduceEntries
4460 >                (map, reducer).invoke();
4461 >        }
4462 >
4463 >        /**
4464 >         * Returns the result of accumulating the given transformation
4465 >         * of all entries using the given reducer to combine values,
4466 >         * or null if none.
4467 >         *
4468 >         * @param transformer a function returning the transformation
4469 >         * for an element, or null of there is no transformation (in
4470 >         * which case it is not combined).
4471 >         * @param reducer a commutative associative combining function
4472 >         * @return the result of accumulating the given transformation
4473 >         * of all entries
4474 >         */
4475 >        public <U> U reduce(Fun<Map.Entry<K,V>, ? extends U> transformer,
4476 >                            BiFun<? super U, ? super U, ? extends U> reducer) {
4477 >            return ForkJoinTasks.reduceEntries
4478 >                (map, transformer, reducer).invoke();
4479 >        }
4480 >
4481 >        /**
4482 >         * Returns the result of accumulating the given transformation
4483 >         * of all entries using the given reducer to combine values,
4484 >         * and the given basis as an identity value.
4485 >         *
4486 >         * @param transformer a function returning the transformation
4487 >         * for an element
4488 >         * @param basis the identity (initial default value) for the reduction
4489 >         * @param reducer a commutative associative combining function
4490 >         * @return the result of accumulating the given transformation
4491 >         * of all entries
4492 >         */
4493 >        public double reduceToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4494 >                                     double basis,
4495 >                                     DoubleByDoubleToDouble reducer) {
4496 >            return ForkJoinTasks.reduceEntriesToDouble
4497 >                (map, transformer, basis, reducer).invoke();
4498 >        }
4499 >
4500 >        /**
4501 >         * Returns the result of accumulating the given transformation
4502 >         * of all entries using the given reducer to combine values,
4503 >         * and the given basis as an identity value.
4504 >         *
4505 >         * @param transformer a function returning the transformation
4506 >         * for an element
4507 >         * @param basis the identity (initial default value) for the reduction
4508 >         * @param reducer a commutative associative combining function
4509 >         * @return  the result of accumulating the given transformation
4510 >         * of all entries
4511 >         */
4512 >        public long reduceToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4513 >                                 long basis,
4514 >                                 LongByLongToLong reducer) {
4515 >            return ForkJoinTasks.reduceEntriesToLong
4516 >                (map, transformer, basis, reducer).invoke();
4517 >        }
4518 >
4519 >        /**
4520 >         * Returns the result of accumulating the given transformation
4521 >         * of all entries using the given reducer to combine values,
4522 >         * and the given basis as an identity value.
4523 >         *
4524 >         * @param transformer a function returning the transformation
4525 >         * for an element
4526 >         * @param basis the identity (initial default value) for the reduction
4527 >         * @param reducer a commutative associative combining function
4528 >         * @return the result of accumulating the given transformation
4529 >         * of all entries
4530 >         */
4531 >        public int reduceToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4532 >                               int basis,
4533 >                               IntByIntToInt reducer) {
4534 >            return ForkJoinTasks.reduceEntriesToInt
4535 >                (map, transformer, basis, reducer).invoke();
4536 >        }
4537  
3174    /**
3175     * Stripped-down version of helper class used in previous version,
3176     * declared for the sake of serialization compatibility
3177     */
3178    static class Segment<K,V> implements Serializable {
3179        private static final long serialVersionUID = 2249069246763182397L;
3180        final float loadFactor;
3181        Segment(float lf) { this.loadFactor = lf; }
4538      }
4539  
4540 +    // ---------------------------------------------------------------------
4541 +
4542      /**
4543 <     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
4544 <     * stream (i.e., serializes it).
4545 <     * @param s the stream
4546 <     * @serialData
4547 <     * the key (Object) and value (Object)
4548 <     * for each key-value mapping, followed by a null pair.
4549 <     * The key-value mappings are emitted in no particular order.
4543 >     * Predefined tasks for performing bulk parallel operations on
4544 >     * ConcurrentHashMapV8s. These tasks follow the forms and rules used
4545 >     * for bulk operations. Each method has the same name, but returns
4546 >     * a task rather than invoking it. These methods may be useful in
4547 >     * custom applications such as submitting a task without waiting
4548 >     * for completion, using a custom pool, or combining with other
4549 >     * tasks.
4550       */
4551 <    @SuppressWarnings("unchecked")
4552 <    private void writeObject(java.io.ObjectOutputStream s)
4553 <            throws java.io.IOException {
4554 <        if (segments == null) { // for serialization compatibility
4555 <            segments = (Segment<K,V>[])
4556 <                new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
4557 <            for (int i = 0; i < segments.length; ++i)
4558 <                segments[i] = new Segment<K,V>(LOAD_FACTOR);
4551 >    public static class ForkJoinTasks {
4552 >        private ForkJoinTasks() {}
4553 >
4554 >        /**
4555 >         * Returns a task that when invoked, performs the given
4556 >         * action for each (key, value)
4557 >         *
4558 >         * @param map the map
4559 >         * @param action the action
4560 >         * @return the task
4561 >         */
4562 >        public static <K,V> ForkJoinTask<Void> forEach
4563 >            (ConcurrentHashMapV8<K,V> map,
4564 >             BiAction<K,V> action) {
4565 >            if (action == null) throw new NullPointerException();
4566 >            return new ForEachMappingTask<K,V>(map, null, -1, action);
4567          }
4568 <        s.defaultWriteObject();
4569 <        InternalIterator<K,V> it = new InternalIterator<K,V>(this);
4570 <        Object v;
4571 <        while ((v = it.advance()) != null) {
4572 <            s.writeObject(it.nextKey);
4573 <            s.writeObject(v);
4568 >
4569 >        /**
4570 >         * Returns a task that when invoked, performs the given
4571 >         * action for each non-null transformation of each (key, value)
4572 >         *
4573 >         * @param map the map
4574 >         * @param transformer a function returning the transformation
4575 >         * for an element, or null if there is no transformation (in
4576 >         * which case the action is not applied)
4577 >         * @param action the action
4578 >         * @return the task
4579 >         */
4580 >        public static <K,V,U> ForkJoinTask<Void> forEach
4581 >            (ConcurrentHashMapV8<K,V> map,
4582 >             BiFun<? super K, ? super V, ? extends U> transformer,
4583 >             Action<U> action) {
4584 >            if (transformer == null || action == null)
4585 >                throw new NullPointerException();
4586 >            return new ForEachTransformedMappingTask<K,V,U>
4587 >                (map, null, -1, transformer, action);
4588 >        }
4589 >
4590 >        /**
4591 >         * Returns a task that when invoked, returns a non-null result
4592 >         * from applying the given search function on each (key,
4593 >         * value), or null if none. Upon success, further element
4594 >         * processing is suppressed and the results of any other
4595 >         * parallel invocations of the search function are ignored.
4596 >         *
4597 >         * @param map the map
4598 >         * @param searchFunction a function returning a non-null
4599 >         * result on success, else null
4600 >         * @return the task
4601 >         */
4602 >        public static <K,V,U> ForkJoinTask<U> search
4603 >            (ConcurrentHashMapV8<K,V> map,
4604 >             BiFun<? super K, ? super V, ? extends U> searchFunction) {
4605 >            if (searchFunction == null) throw new NullPointerException();
4606 >            return new SearchMappingsTask<K,V,U>
4607 >                (map, null, -1, searchFunction,
4608 >                 new AtomicReference<U>());
4609 >        }
4610 >
4611 >        /**
4612 >         * Returns a task that when invoked, returns the result of
4613 >         * accumulating the given transformation of all (key, value) pairs
4614 >         * using the given reducer to combine values, or null if none.
4615 >         *
4616 >         * @param map the map
4617 >         * @param transformer a function returning the transformation
4618 >         * for an element, or null if there is no transformation (in
4619 >         * which case it is not combined).
4620 >         * @param reducer a commutative associative combining function
4621 >         * @return the task
4622 >         */
4623 >        public static <K,V,U> ForkJoinTask<U> reduce
4624 >            (ConcurrentHashMapV8<K,V> map,
4625 >             BiFun<? super K, ? super V, ? extends U> transformer,
4626 >             BiFun<? super U, ? super U, ? extends U> reducer) {
4627 >            if (transformer == null || reducer == null)
4628 >                throw new NullPointerException();
4629 >            return new MapReduceMappingsTask<K,V,U>
4630 >                (map, null, -1, null, transformer, reducer);
4631 >        }
4632 >
4633 >        /**
4634 >         * Returns a task that when invoked, returns the result of
4635 >         * accumulating the given transformation of all (key, value) pairs
4636 >         * using the given reducer to combine values, and the given
4637 >         * basis as an identity value.
4638 >         *
4639 >         * @param map the map
4640 >         * @param transformer a function returning the transformation
4641 >         * for an element
4642 >         * @param basis the identity (initial default value) for the reduction
4643 >         * @param reducer a commutative associative combining function
4644 >         * @return the task
4645 >         */
4646 >        public static <K,V> ForkJoinTask<Double> reduceToDouble
4647 >            (ConcurrentHashMapV8<K,V> map,
4648 >             ObjectByObjectToDouble<? super K, ? super V> transformer,
4649 >             double basis,
4650 >             DoubleByDoubleToDouble reducer) {
4651 >            if (transformer == null || reducer == null)
4652 >                throw new NullPointerException();
4653 >            return new MapReduceMappingsToDoubleTask<K,V>
4654 >                (map, null, -1, null, transformer, basis, reducer);
4655 >        }
4656 >
4657 >        /**
4658 >         * Returns a task that when invoked, returns the result of
4659 >         * accumulating the given transformation of all (key, value) pairs
4660 >         * using the given reducer to combine values, and the given
4661 >         * basis as an identity value.
4662 >         *
4663 >         * @param map the map
4664 >         * @param transformer a function returning the transformation
4665 >         * for an element
4666 >         * @param basis the identity (initial default value) for the reduction
4667 >         * @param reducer a commutative associative combining function
4668 >         * @return the task
4669 >         */
4670 >        public static <K,V> ForkJoinTask<Long> reduceToLong
4671 >            (ConcurrentHashMapV8<K,V> map,
4672 >             ObjectByObjectToLong<? super K, ? super V> transformer,
4673 >             long basis,
4674 >             LongByLongToLong reducer) {
4675 >            if (transformer == null || reducer == null)
4676 >                throw new NullPointerException();
4677 >            return new MapReduceMappingsToLongTask<K,V>
4678 >                (map, null, -1, null, transformer, basis, reducer);
4679 >        }
4680 >
4681 >        /**
4682 >         * Returns a task that when invoked, returns the result of
4683 >         * accumulating the given transformation of all (key, value) pairs
4684 >         * using the given reducer to combine values, and the given
4685 >         * basis as an identity value.
4686 >         *
4687 >         * @param transformer a function returning the transformation
4688 >         * for an element
4689 >         * @param basis the identity (initial default value) for the reduction
4690 >         * @param reducer a commutative associative combining function
4691 >         * @return the task
4692 >         */
4693 >        public static <K,V> ForkJoinTask<Integer> reduceToInt
4694 >            (ConcurrentHashMapV8<K,V> map,
4695 >             ObjectByObjectToInt<? super K, ? super V> transformer,
4696 >             int basis,
4697 >             IntByIntToInt reducer) {
4698 >            if (transformer == null || reducer == null)
4699 >                throw new NullPointerException();
4700 >            return new MapReduceMappingsToIntTask<K,V>
4701 >                (map, null, -1, null, transformer, basis, reducer);
4702 >        }
4703 >
4704 >        /**
4705 >         * Returns a task that when invoked, performs the given action
4706 >         * for each key.
4707 >         *
4708 >         * @param map the map
4709 >         * @param action the action
4710 >         * @return the task
4711 >         */
4712 >        public static <K,V> ForkJoinTask<Void> forEachKey
4713 >            (ConcurrentHashMapV8<K,V> map,
4714 >             Action<K> action) {
4715 >            if (action == null) throw new NullPointerException();
4716 >            return new ForEachKeyTask<K,V>(map, null, -1, action);
4717 >        }
4718 >
4719 >        /**
4720 >         * Returns a task that when invoked, performs the given action
4721 >         * for each non-null transformation of each key.
4722 >         *
4723 >         * @param map the map
4724 >         * @param transformer a function returning the transformation
4725 >         * for an element, or null if there is no transformation (in
4726 >         * which case the action is not applied)
4727 >         * @param action the action
4728 >         * @return the task
4729 >         */
4730 >        public static <K,V,U> ForkJoinTask<Void> forEachKey
4731 >            (ConcurrentHashMapV8<K,V> map,
4732 >             Fun<? super K, ? extends U> transformer,
4733 >             Action<U> action) {
4734 >            if (transformer == null || action == null)
4735 >                throw new NullPointerException();
4736 >            return new ForEachTransformedKeyTask<K,V,U>
4737 >                (map, null, -1, transformer, action);
4738 >        }
4739 >
4740 >        /**
4741 >         * Returns a task that when invoked, returns a non-null result
4742 >         * from applying the given search function on each key, or
4743 >         * null if none.  Upon success, further element processing is
4744 >         * suppressed and the results of any other parallel
4745 >         * invocations of the search function are ignored.
4746 >         *
4747 >         * @param map the map
4748 >         * @param searchFunction a function returning a non-null
4749 >         * result on success, else null
4750 >         * @return the task
4751 >         */
4752 >        public static <K,V,U> ForkJoinTask<U> searchKeys
4753 >            (ConcurrentHashMapV8<K,V> map,
4754 >             Fun<? super K, ? extends U> searchFunction) {
4755 >            if (searchFunction == null) throw new NullPointerException();
4756 >            return new SearchKeysTask<K,V,U>
4757 >                (map, null, -1, searchFunction,
4758 >                 new AtomicReference<U>());
4759 >        }
4760 >
4761 >        /**
4762 >         * Returns a task that when invoked, returns the result of
4763 >         * accumulating all keys using the given reducer to combine
4764 >         * values, or null if none.
4765 >         *
4766 >         * @param map the map
4767 >         * @param reducer a commutative associative combining function
4768 >         * @return the task
4769 >         */
4770 >        public static <K,V> ForkJoinTask<K> reduceKeys
4771 >            (ConcurrentHashMapV8<K,V> map,
4772 >             BiFun<? super K, ? super K, ? extends K> reducer) {
4773 >            if (reducer == null) throw new NullPointerException();
4774 >            return new ReduceKeysTask<K,V>
4775 >                (map, null, -1, null, reducer);
4776 >        }
4777 >
4778 >        /**
4779 >         * Returns a task that when invoked, returns the result of
4780 >         * accumulating the given transformation of all keys using the given
4781 >         * reducer to combine values, or null if none.
4782 >         *
4783 >         * @param map the map
4784 >         * @param transformer a function returning the transformation
4785 >         * for an element, or null if there is no transformation (in
4786 >         * which case it is not combined).
4787 >         * @param reducer a commutative associative combining function
4788 >         * @return the task
4789 >         */
4790 >        public static <K,V,U> ForkJoinTask<U> reduceKeys
4791 >            (ConcurrentHashMapV8<K,V> map,
4792 >             Fun<? super K, ? extends U> transformer,
4793 >             BiFun<? super U, ? super U, ? extends U> reducer) {
4794 >            if (transformer == null || reducer == null)
4795 >                throw new NullPointerException();
4796 >            return new MapReduceKeysTask<K,V,U>
4797 >                (map, null, -1, null, transformer, reducer);
4798 >        }
4799 >
4800 >        /**
4801 >         * Returns a task that when invoked, returns the result of
4802 >         * accumulating the given transformation of all keys using the given
4803 >         * reducer to combine values, and the given basis as an
4804 >         * identity value.
4805 >         *
4806 >         * @param map the map
4807 >         * @param transformer a function returning the transformation
4808 >         * for an element
4809 >         * @param basis the identity (initial default value) for the reduction
4810 >         * @param reducer a commutative associative combining function
4811 >         * @return the task
4812 >         */
4813 >        public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
4814 >            (ConcurrentHashMapV8<K,V> map,
4815 >             ObjectToDouble<? super K> transformer,
4816 >             double basis,
4817 >             DoubleByDoubleToDouble reducer) {
4818 >            if (transformer == null || reducer == null)
4819 >                throw new NullPointerException();
4820 >            return new MapReduceKeysToDoubleTask<K,V>
4821 >                (map, null, -1, null, transformer, basis, reducer);
4822 >        }
4823 >
4824 >        /**
4825 >         * Returns a task that when invoked, returns the result of
4826 >         * accumulating the given transformation of all keys using the given
4827 >         * reducer to combine values, and the given basis as an
4828 >         * identity value.
4829 >         *
4830 >         * @param map the map
4831 >         * @param transformer a function returning the transformation
4832 >         * for an element
4833 >         * @param basis the identity (initial default value) for the reduction
4834 >         * @param reducer a commutative associative combining function
4835 >         * @return the task
4836 >         */
4837 >        public static <K,V> ForkJoinTask<Long> reduceKeysToLong
4838 >            (ConcurrentHashMapV8<K,V> map,
4839 >             ObjectToLong<? super K> transformer,
4840 >             long basis,
4841 >             LongByLongToLong reducer) {
4842 >            if (transformer == null || reducer == null)
4843 >                throw new NullPointerException();
4844 >            return new MapReduceKeysToLongTask<K,V>
4845 >                (map, null, -1, null, transformer, basis, reducer);
4846 >        }
4847 >
4848 >        /**
4849 >         * Returns a task that when invoked, returns the result of
4850 >         * accumulating the given transformation of all keys using the given
4851 >         * reducer to combine values, and the given basis as an
4852 >         * identity value.
4853 >         *
4854 >         * @param map the map
4855 >         * @param transformer a function returning the transformation
4856 >         * for an element
4857 >         * @param basis the identity (initial default value) for the reduction
4858 >         * @param reducer a commutative associative combining function
4859 >         * @return the task
4860 >         */
4861 >        public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
4862 >            (ConcurrentHashMapV8<K,V> map,
4863 >             ObjectToInt<? super K> transformer,
4864 >             int basis,
4865 >             IntByIntToInt reducer) {
4866 >            if (transformer == null || reducer == null)
4867 >                throw new NullPointerException();
4868 >            return new MapReduceKeysToIntTask<K,V>
4869 >                (map, null, -1, null, transformer, basis, reducer);
4870 >        }
4871 >
4872 >        /**
4873 >         * Returns a task that when invoked, performs the given action
4874 >         * for each value.
4875 >         *
4876 >         * @param map the map
4877 >         * @param action the action
4878 >         */
4879 >        public static <K,V> ForkJoinTask<Void> forEachValue
4880 >            (ConcurrentHashMapV8<K,V> map,
4881 >             Action<V> action) {
4882 >            if (action == null) throw new NullPointerException();
4883 >            return new ForEachValueTask<K,V>(map, null, -1, action);
4884 >        }
4885 >
4886 >        /**
4887 >         * Returns a task that when invoked, performs the given action
4888 >         * for each non-null transformation of each value.
4889 >         *
4890 >         * @param map the map
4891 >         * @param transformer a function returning the transformation
4892 >         * for an element, or null if there is no transformation (in
4893 >         * which case the action is not applied)
4894 >         * @param action the action
4895 >         */
4896 >        public static <K,V,U> ForkJoinTask<Void> forEachValue
4897 >            (ConcurrentHashMapV8<K,V> map,
4898 >             Fun<? super V, ? extends U> transformer,
4899 >             Action<U> action) {
4900 >            if (transformer == null || action == null)
4901 >                throw new NullPointerException();
4902 >            return new ForEachTransformedValueTask<K,V,U>
4903 >                (map, null, -1, transformer, action);
4904 >        }
4905 >
4906 >        /**
4907 >         * Returns a task that when invoked, returns a non-null result
4908 >         * from applying the given search function on each value, or
4909 >         * null if none.  Upon success, further element processing is
4910 >         * suppressed and the results of any other parallel
4911 >         * invocations of the search function are ignored.
4912 >         *
4913 >         * @param map the map
4914 >         * @param searchFunction a function returning a non-null
4915 >         * result on success, else null
4916 >         * @return the task
4917 >         */
4918 >        public static <K,V,U> ForkJoinTask<U> searchValues
4919 >            (ConcurrentHashMapV8<K,V> map,
4920 >             Fun<? super V, ? extends U> searchFunction) {
4921 >            if (searchFunction == null) throw new NullPointerException();
4922 >            return new SearchValuesTask<K,V,U>
4923 >                (map, null, -1, searchFunction,
4924 >                 new AtomicReference<U>());
4925 >        }
4926 >
4927 >        /**
4928 >         * Returns a task that when invoked, returns the result of
4929 >         * accumulating all values using the given reducer to combine
4930 >         * values, or null if none.
4931 >         *
4932 >         * @param map the map
4933 >         * @param reducer a commutative associative combining function
4934 >         * @return the task
4935 >         */
4936 >        public static <K,V> ForkJoinTask<V> reduceValues
4937 >            (ConcurrentHashMapV8<K,V> map,
4938 >             BiFun<? super V, ? super V, ? extends V> reducer) {
4939 >            if (reducer == null) throw new NullPointerException();
4940 >            return new ReduceValuesTask<K,V>
4941 >                (map, null, -1, null, reducer);
4942 >        }
4943 >
4944 >        /**
4945 >         * Returns a task that when invoked, returns the result of
4946 >         * accumulating the given transformation of all values using the
4947 >         * given reducer to combine values, or null if none.
4948 >         *
4949 >         * @param map the map
4950 >         * @param transformer a function returning the transformation
4951 >         * for an element, or null if there is no transformation (in
4952 >         * which case it is not combined).
4953 >         * @param reducer a commutative associative combining function
4954 >         * @return the task
4955 >         */
4956 >        public static <K,V,U> ForkJoinTask<U> reduceValues
4957 >            (ConcurrentHashMapV8<K,V> map,
4958 >             Fun<? super V, ? extends U> transformer,
4959 >             BiFun<? super U, ? super U, ? extends U> reducer) {
4960 >            if (transformer == null || reducer == null)
4961 >                throw new NullPointerException();
4962 >            return new MapReduceValuesTask<K,V,U>
4963 >                (map, null, -1, null, transformer, reducer);
4964 >        }
4965 >
4966 >        /**
4967 >         * Returns a task that when invoked, returns the result of
4968 >         * accumulating the given transformation of all values using the
4969 >         * given reducer to combine values, and the given basis as an
4970 >         * identity value.
4971 >         *
4972 >         * @param map the map
4973 >         * @param transformer a function returning the transformation
4974 >         * for an element
4975 >         * @param basis the identity (initial default value) for the reduction
4976 >         * @param reducer a commutative associative combining function
4977 >         * @return the task
4978 >         */
4979 >        public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
4980 >            (ConcurrentHashMapV8<K,V> map,
4981 >             ObjectToDouble<? super V> transformer,
4982 >             double basis,
4983 >             DoubleByDoubleToDouble reducer) {
4984 >            if (transformer == null || reducer == null)
4985 >                throw new NullPointerException();
4986 >            return new MapReduceValuesToDoubleTask<K,V>
4987 >                (map, null, -1, null, transformer, basis, reducer);
4988 >        }
4989 >
4990 >        /**
4991 >         * Returns a task that when invoked, returns the result of
4992 >         * accumulating the given transformation of all values using the
4993 >         * given reducer to combine values, and the given basis as an
4994 >         * identity value.
4995 >         *
4996 >         * @param map the map
4997 >         * @param transformer a function returning the transformation
4998 >         * for an element
4999 >         * @param basis the identity (initial default value) for the reduction
5000 >         * @param reducer a commutative associative combining function
5001 >         * @return the task
5002 >         */
5003 >        public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5004 >            (ConcurrentHashMapV8<K,V> map,
5005 >             ObjectToLong<? super V> transformer,
5006 >             long basis,
5007 >             LongByLongToLong reducer) {
5008 >            if (transformer == null || reducer == null)
5009 >                throw new NullPointerException();
5010 >            return new MapReduceValuesToLongTask<K,V>
5011 >                (map, null, -1, null, transformer, basis, reducer);
5012 >        }
5013 >
5014 >        /**
5015 >         * Returns a task that when invoked, returns the result of
5016 >         * accumulating the given transformation of all values using the
5017 >         * given reducer to combine values, and the given basis as an
5018 >         * identity value.
5019 >         *
5020 >         * @param map the map
5021 >         * @param transformer a function returning the transformation
5022 >         * for an element
5023 >         * @param basis the identity (initial default value) for the reduction
5024 >         * @param reducer a commutative associative combining function
5025 >         * @return the task
5026 >         */
5027 >        public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5028 >            (ConcurrentHashMapV8<K,V> map,
5029 >             ObjectToInt<? super V> transformer,
5030 >             int basis,
5031 >             IntByIntToInt reducer) {
5032 >            if (transformer == null || reducer == null)
5033 >                throw new NullPointerException();
5034 >            return new MapReduceValuesToIntTask<K,V>
5035 >                (map, null, -1, null, transformer, basis, reducer);
5036 >        }
5037 >
5038 >        /**
5039 >         * Returns a task that when invoked, perform the given action
5040 >         * for each entry.
5041 >         *
5042 >         * @param map the map
5043 >         * @param action the action
5044 >         */
5045 >        public static <K,V> ForkJoinTask<Void> forEachEntry
5046 >            (ConcurrentHashMapV8<K,V> map,
5047 >             Action<Map.Entry<K,V>> action) {
5048 >            if (action == null) throw new NullPointerException();
5049 >            return new ForEachEntryTask<K,V>(map, null, -1, action);
5050 >        }
5051 >
5052 >        /**
5053 >         * Returns a task that when invoked, perform the given action
5054 >         * for each non-null transformation of each entry.
5055 >         *
5056 >         * @param map the map
5057 >         * @param transformer a function returning the transformation
5058 >         * for an element, or null if there is no transformation (in
5059 >         * which case the action is not applied)
5060 >         * @param action the action
5061 >         */
5062 >        public static <K,V,U> ForkJoinTask<Void> forEachEntry
5063 >            (ConcurrentHashMapV8<K,V> map,
5064 >             Fun<Map.Entry<K,V>, ? extends U> transformer,
5065 >             Action<U> action) {
5066 >            if (transformer == null || action == null)
5067 >                throw new NullPointerException();
5068 >            return new ForEachTransformedEntryTask<K,V,U>
5069 >                (map, null, -1, transformer, action);
5070 >        }
5071 >
5072 >        /**
5073 >         * Returns a task that when invoked, returns a non-null result
5074 >         * from applying the given search function on each entry, or
5075 >         * null if none.  Upon success, further element processing is
5076 >         * suppressed and the results of any other parallel
5077 >         * invocations of the search function are ignored.
5078 >         *
5079 >         * @param map the map
5080 >         * @param searchFunction a function returning a non-null
5081 >         * result on success, else null
5082 >         * @return the task
5083 >         */
5084 >        public static <K,V,U> ForkJoinTask<U> searchEntries
5085 >            (ConcurrentHashMapV8<K,V> map,
5086 >             Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
5087 >            if (searchFunction == null) throw new NullPointerException();
5088 >            return new SearchEntriesTask<K,V,U>
5089 >                (map, null, -1, searchFunction,
5090 >                 new AtomicReference<U>());
5091 >        }
5092 >
5093 >        /**
5094 >         * Returns a task that when invoked, returns the result of
5095 >         * accumulating all entries using the given reducer to combine
5096 >         * values, or null if none.
5097 >         *
5098 >         * @param map the map
5099 >         * @param reducer a commutative associative combining function
5100 >         * @return the task
5101 >         */
5102 >        public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5103 >            (ConcurrentHashMapV8<K,V> map,
5104 >             BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5105 >            if (reducer == null) throw new NullPointerException();
5106 >            return new ReduceEntriesTask<K,V>
5107 >                (map, null, -1, null, reducer);
5108 >        }
5109 >
5110 >        /**
5111 >         * Returns a task that when invoked, returns the result of
5112 >         * accumulating the given transformation of all entries using the
5113 >         * given reducer to combine values, or null if none.
5114 >         *
5115 >         * @param map the map
5116 >         * @param transformer a function returning the transformation
5117 >         * for an element, or null if there is no transformation (in
5118 >         * which case it is not combined).
5119 >         * @param reducer a commutative associative combining function
5120 >         * @return the task
5121 >         */
5122 >        public static <K,V,U> ForkJoinTask<U> reduceEntries
5123 >            (ConcurrentHashMapV8<K,V> map,
5124 >             Fun<Map.Entry<K,V>, ? extends U> transformer,
5125 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5126 >            if (transformer == null || reducer == null)
5127 >                throw new NullPointerException();
5128 >            return new MapReduceEntriesTask<K,V,U>
5129 >                (map, null, -1, null, transformer, reducer);
5130 >        }
5131 >
5132 >        /**
5133 >         * Returns a task that when invoked, returns the result of
5134 >         * accumulating the given transformation of all entries using the
5135 >         * given reducer to combine values, and the given basis as an
5136 >         * identity value.
5137 >         *
5138 >         * @param map the map
5139 >         * @param transformer a function returning the transformation
5140 >         * for an element
5141 >         * @param basis the identity (initial default value) for the reduction
5142 >         * @param reducer a commutative associative combining function
5143 >         * @return the task
5144 >         */
5145 >        public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5146 >            (ConcurrentHashMapV8<K,V> map,
5147 >             ObjectToDouble<Map.Entry<K,V>> transformer,
5148 >             double basis,
5149 >             DoubleByDoubleToDouble reducer) {
5150 >            if (transformer == null || reducer == null)
5151 >                throw new NullPointerException();
5152 >            return new MapReduceEntriesToDoubleTask<K,V>
5153 >                (map, null, -1, null, transformer, basis, reducer);
5154 >        }
5155 >
5156 >        /**
5157 >         * Returns a task that when invoked, returns the result of
5158 >         * accumulating the given transformation of all entries using the
5159 >         * given reducer to combine values, and the given basis as an
5160 >         * identity value.
5161 >         *
5162 >         * @param map the map
5163 >         * @param transformer a function returning the transformation
5164 >         * for an element
5165 >         * @param basis the identity (initial default value) for the reduction
5166 >         * @param reducer a commutative associative combining function
5167 >         * @return the task
5168 >         */
5169 >        public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5170 >            (ConcurrentHashMapV8<K,V> map,
5171 >             ObjectToLong<Map.Entry<K,V>> transformer,
5172 >             long basis,
5173 >             LongByLongToLong reducer) {
5174 >            if (transformer == null || reducer == null)
5175 >                throw new NullPointerException();
5176 >            return new MapReduceEntriesToLongTask<K,V>
5177 >                (map, null, -1, null, transformer, basis, reducer);
5178 >        }
5179 >
5180 >        /**
5181 >         * Returns a task that when invoked, returns the result of
5182 >         * accumulating the given transformation of all entries using the
5183 >         * given reducer to combine values, and the given basis as an
5184 >         * identity value.
5185 >         *
5186 >         * @param map the map
5187 >         * @param transformer a function returning the transformation
5188 >         * for an element
5189 >         * @param basis the identity (initial default value) for the reduction
5190 >         * @param reducer a commutative associative combining function
5191 >         * @return the task
5192 >         */
5193 >        public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5194 >            (ConcurrentHashMapV8<K,V> map,
5195 >             ObjectToInt<Map.Entry<K,V>> transformer,
5196 >             int basis,
5197 >             IntByIntToInt reducer) {
5198 >            if (transformer == null || reducer == null)
5199 >                throw new NullPointerException();
5200 >            return new MapReduceEntriesToIntTask<K,V>
5201 >                (map, null, -1, null, transformer, basis, reducer);
5202          }
3209        s.writeObject(null);
3210        s.writeObject(null);
3211        segments = null; // throw away
5203      }
5204  
5205 <    /**
3215 <     * Reconstitutes the instance from a stream (that is, deserializes it).
3216 <     * @param s the stream
3217 <     */
3218 <    @SuppressWarnings("unchecked")
3219 <    private void readObject(java.io.ObjectInputStream s)
3220 <            throws java.io.IOException, ClassNotFoundException {
3221 <        s.defaultReadObject();
3222 <        this.segments = null; // unneeded
3223 <        // initialize transient final field
3224 <        UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
5205 >    // -------------------------------------------------------
5206  
5207 <        // Create all nodes, then place in table once size is known
5208 <        long size = 0L;
5209 <        Node p = null;
5210 <        for (;;) {
5211 <            K k = (K) s.readObject();
5212 <            V v = (V) s.readObject();
5213 <            if (k != null && v != null) {
5214 <                int h = spread(k.hashCode());
5215 <                p = new Node(h, k, v, p);
5216 <                ++size;
5207 >    /*
5208 >     * Task classes. Coded in a regular but ugly format/style to
5209 >     * simplify checks that each variant differs in the right way from
5210 >     * others. The null screenings exist because compilers cannot tell
5211 >     * that we've already null-checked task arguments, so we force
5212 >     * simplest hoisted bypass to help avoid convoluted traps.
5213 >     */
5214 >
5215 >    @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5216 >        extends Traverser<K,V,Void> {
5217 >        final Action<K> action;
5218 >        ForEachKeyTask
5219 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5220 >             Action<K> action) {
5221 >            super(m, p, b);
5222 >            this.action = action;
5223 >        }
5224 >        @SuppressWarnings("unchecked") public final void compute() {
5225 >            final Action<K> action;
5226 >            if ((action = this.action) != null) {
5227 >                for (int b; (b = preSplit()) > 0;)
5228 >                    new ForEachKeyTask<K,V>(map, this, b, action).fork();
5229 >                while (advance() != null)
5230 >                    action.apply((K)nextKey);
5231 >                propagateCompletion();
5232 >            }
5233 >        }
5234 >    }
5235 >
5236 >    @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5237 >        extends Traverser<K,V,Void> {
5238 >        final Action<V> action;
5239 >        ForEachValueTask
5240 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5241 >             Action<V> action) {
5242 >            super(m, p, b);
5243 >            this.action = action;
5244 >        }
5245 >        @SuppressWarnings("unchecked") public final void compute() {
5246 >            final Action<V> action;
5247 >            if ((action = this.action) != null) {
5248 >                for (int b; (b = preSplit()) > 0;)
5249 >                    new ForEachValueTask<K,V>(map, this, b, action).fork();
5250 >                Object v;
5251 >                while ((v = advance()) != null)
5252 >                    action.apply((V)v);
5253 >                propagateCompletion();
5254 >            }
5255 >        }
5256 >    }
5257 >
5258 >    @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5259 >        extends Traverser<K,V,Void> {
5260 >        final Action<Entry<K,V>> action;
5261 >        ForEachEntryTask
5262 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5263 >             Action<Entry<K,V>> action) {
5264 >            super(m, p, b);
5265 >            this.action = action;
5266 >        }
5267 >        @SuppressWarnings("unchecked") public final void compute() {
5268 >            final Action<Entry<K,V>> action;
5269 >            if ((action = this.action) != null) {
5270 >                for (int b; (b = preSplit()) > 0;)
5271 >                    new ForEachEntryTask<K,V>(map, this, b, action).fork();
5272 >                Object v;
5273 >                while ((v = advance()) != null)
5274 >                    action.apply(entryFor((K)nextKey, (V)v));
5275 >                propagateCompletion();
5276 >            }
5277 >        }
5278 >    }
5279 >
5280 >    @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5281 >        extends Traverser<K,V,Void> {
5282 >        final BiAction<K,V> action;
5283 >        ForEachMappingTask
5284 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5285 >             BiAction<K,V> action) {
5286 >            super(m, p, b);
5287 >            this.action = action;
5288 >        }
5289 >        @SuppressWarnings("unchecked") public final void compute() {
5290 >            final BiAction<K,V> action;
5291 >            if ((action = this.action) != null) {
5292 >                for (int b; (b = preSplit()) > 0;)
5293 >                    new ForEachMappingTask<K,V>(map, this, b, action).fork();
5294 >                Object v;
5295 >                while ((v = advance()) != null)
5296 >                    action.apply((K)nextKey, (V)v);
5297 >                propagateCompletion();
5298 >            }
5299 >        }
5300 >    }
5301 >
5302 >    @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5303 >        extends Traverser<K,V,Void> {
5304 >        final Fun<? super K, ? extends U> transformer;
5305 >        final Action<U> action;
5306 >        ForEachTransformedKeyTask
5307 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5308 >             Fun<? super K, ? extends U> transformer, Action<U> action) {
5309 >            super(m, p, b);
5310 >            this.transformer = transformer; this.action = action;
5311 >        }
5312 >        @SuppressWarnings("unchecked") public final void compute() {
5313 >            final Fun<? super K, ? extends U> transformer;
5314 >            final Action<U> action;
5315 >            if ((transformer = this.transformer) != null &&
5316 >                (action = this.action) != null) {
5317 >                for (int b; (b = preSplit()) > 0;)
5318 >                    new ForEachTransformedKeyTask<K,V,U>
5319 >                        (map, this, b, transformer, action).fork();
5320 >                U u;
5321 >                while (advance() != null) {
5322 >                    if ((u = transformer.apply((K)nextKey)) != null)
5323 >                        action.apply(u);
5324 >                }
5325 >                propagateCompletion();
5326 >            }
5327 >        }
5328 >    }
5329 >
5330 >    @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5331 >        extends Traverser<K,V,Void> {
5332 >        final Fun<? super V, ? extends U> transformer;
5333 >        final Action<U> action;
5334 >        ForEachTransformedValueTask
5335 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5336 >             Fun<? super V, ? extends U> transformer, Action<U> action) {
5337 >            super(m, p, b);
5338 >            this.transformer = transformer; this.action = action;
5339 >        }
5340 >        @SuppressWarnings("unchecked") public final void compute() {
5341 >            final Fun<? super V, ? extends U> transformer;
5342 >            final Action<U> action;
5343 >            if ((transformer = this.transformer) != null &&
5344 >                (action = this.action) != null) {
5345 >                for (int b; (b = preSplit()) > 0;)
5346 >                    new ForEachTransformedValueTask<K,V,U>
5347 >                        (map, this, b, transformer, action).fork();
5348 >                Object v; U u;
5349 >                while ((v = advance()) != null) {
5350 >                    if ((u = transformer.apply((V)v)) != null)
5351 >                        action.apply(u);
5352 >                }
5353 >                propagateCompletion();
5354 >            }
5355 >        }
5356 >    }
5357 >
5358 >    @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5359 >        extends Traverser<K,V,Void> {
5360 >        final Fun<Map.Entry<K,V>, ? extends U> transformer;
5361 >        final Action<U> action;
5362 >        ForEachTransformedEntryTask
5363 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5364 >             Fun<Map.Entry<K,V>, ? extends U> transformer, Action<U> action) {
5365 >            super(m, p, b);
5366 >            this.transformer = transformer; this.action = action;
5367 >        }
5368 >        @SuppressWarnings("unchecked") public final void compute() {
5369 >            final Fun<Map.Entry<K,V>, ? extends U> transformer;
5370 >            final Action<U> action;
5371 >            if ((transformer = this.transformer) != null &&
5372 >                (action = this.action) != null) {
5373 >                for (int b; (b = preSplit()) > 0;)
5374 >                    new ForEachTransformedEntryTask<K,V,U>
5375 >                        (map, this, b, transformer, action).fork();
5376 >                Object v; U u;
5377 >                while ((v = advance()) != null) {
5378 >                    if ((u = transformer.apply(entryFor((K)nextKey,
5379 >                                                        (V)v))) != null)
5380 >                        action.apply(u);
5381 >                }
5382 >                propagateCompletion();
5383 >            }
5384 >        }
5385 >    }
5386 >
5387 >    @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5388 >        extends Traverser<K,V,Void> {
5389 >        final BiFun<? super K, ? super V, ? extends U> transformer;
5390 >        final Action<U> action;
5391 >        ForEachTransformedMappingTask
5392 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5393 >             BiFun<? super K, ? super V, ? extends U> transformer,
5394 >             Action<U> action) {
5395 >            super(m, p, b);
5396 >            this.transformer = transformer; this.action = action;
5397 >        }
5398 >        @SuppressWarnings("unchecked") public final void compute() {
5399 >            final BiFun<? super K, ? super V, ? extends U> transformer;
5400 >            final Action<U> action;
5401 >            if ((transformer = this.transformer) != null &&
5402 >                (action = this.action) != null) {
5403 >                for (int b; (b = preSplit()) > 0;)
5404 >                    new ForEachTransformedMappingTask<K,V,U>
5405 >                        (map, this, b, transformer, action).fork();
5406 >                Object v; U u;
5407 >                while ((v = advance()) != null) {
5408 >                    if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5409 >                        action.apply(u);
5410 >                }
5411 >                propagateCompletion();
5412 >            }
5413 >        }
5414 >    }
5415 >
5416 >    @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5417 >        extends Traverser<K,V,U> {
5418 >        final Fun<? super K, ? extends U> searchFunction;
5419 >        final AtomicReference<U> result;
5420 >        SearchKeysTask
5421 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5422 >             Fun<? super K, ? extends U> searchFunction,
5423 >             AtomicReference<U> result) {
5424 >            super(m, p, b);
5425 >            this.searchFunction = searchFunction; this.result = result;
5426 >        }
5427 >        public final U getRawResult() { return result.get(); }
5428 >        @SuppressWarnings("unchecked") public final void compute() {
5429 >            final Fun<? super K, ? extends U> searchFunction;
5430 >            final AtomicReference<U> result;
5431 >            if ((searchFunction = this.searchFunction) != null &&
5432 >                (result = this.result) != null) {
5433 >                for (int b;;) {
5434 >                    if (result.get() != null)
5435 >                        return;
5436 >                    if ((b = preSplit()) <= 0)
5437 >                        break;
5438 >                    new SearchKeysTask<K,V,U>
5439 >                        (map, this, b, searchFunction, result).fork();
5440 >                }
5441 >                while (result.get() == null) {
5442 >                    U u;
5443 >                    if (advance() == null) {
5444 >                        propagateCompletion();
5445 >                        break;
5446 >                    }
5447 >                    if ((u = searchFunction.apply((K)nextKey)) != null) {
5448 >                        if (result.compareAndSet(null, u))
5449 >                            quietlyCompleteRoot();
5450 >                        break;
5451 >                    }
5452 >                }
5453              }
3237            else
3238                break;
5454          }
5455 <        if (p != null) {
5456 <            boolean init = false;
5457 <            int n;
5458 <            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
5459 <                n = MAXIMUM_CAPACITY;
5460 <            else {
5461 <                int sz = (int)size;
5462 <                n = tableSizeFor(sz + (sz >>> 1) + 1);
5455 >    }
5456 >
5457 >    @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5458 >        extends Traverser<K,V,U> {
5459 >        final Fun<? super V, ? extends U> searchFunction;
5460 >        final AtomicReference<U> result;
5461 >        SearchValuesTask
5462 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5463 >             Fun<? super V, ? extends U> searchFunction,
5464 >             AtomicReference<U> result) {
5465 >            super(m, p, b);
5466 >            this.searchFunction = searchFunction; this.result = result;
5467 >        }
5468 >        public final U getRawResult() { return result.get(); }
5469 >        @SuppressWarnings("unchecked") public final void compute() {
5470 >            final Fun<? super V, ? extends U> searchFunction;
5471 >            final AtomicReference<U> result;
5472 >            if ((searchFunction = this.searchFunction) != null &&
5473 >                (result = this.result) != null) {
5474 >                for (int b;;) {
5475 >                    if (result.get() != null)
5476 >                        return;
5477 >                    if ((b = preSplit()) <= 0)
5478 >                        break;
5479 >                    new SearchValuesTask<K,V,U>
5480 >                        (map, this, b, searchFunction, result).fork();
5481 >                }
5482 >                while (result.get() == null) {
5483 >                    Object v; U u;
5484 >                    if ((v = advance()) == null) {
5485 >                        propagateCompletion();
5486 >                        break;
5487 >                    }
5488 >                    if ((u = searchFunction.apply((V)v)) != null) {
5489 >                        if (result.compareAndSet(null, u))
5490 >                            quietlyCompleteRoot();
5491 >                        break;
5492 >                    }
5493 >                }
5494              }
5495 <            int sc = sizeCtl;
5496 <            boolean collide = false;
5497 <            if (n > sc &&
5498 <                UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
5499 <                try {
5500 <                    if (table == null) {
5501 <                        init = true;
5502 <                        Node[] tab = new Node[n];
5503 <                        int mask = n - 1;
5504 <                        while (p != null) {
5505 <                            int j = p.hash & mask;
5506 <                            Node next = p.next;
5507 <                            Node q = p.next = tabAt(tab, j);
5508 <                            setTabAt(tab, j, p);
5509 <                            if (!collide && q != null && q.hash == p.hash)
5510 <                                collide = true;
5511 <                            p = next;
5512 <                        }
5513 <                        table = tab;
5514 <                        counter.add(size);
5515 <                        sc = n - (n >>> 2);
5495 >        }
5496 >    }
5497 >
5498 >    @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5499 >        extends Traverser<K,V,U> {
5500 >        final Fun<Entry<K,V>, ? extends U> searchFunction;
5501 >        final AtomicReference<U> result;
5502 >        SearchEntriesTask
5503 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5504 >             Fun<Entry<K,V>, ? extends U> searchFunction,
5505 >             AtomicReference<U> result) {
5506 >            super(m, p, b);
5507 >            this.searchFunction = searchFunction; this.result = result;
5508 >        }
5509 >        public final U getRawResult() { return result.get(); }
5510 >        @SuppressWarnings("unchecked") public final void compute() {
5511 >            final Fun<Entry<K,V>, ? extends U> searchFunction;
5512 >            final AtomicReference<U> result;
5513 >            if ((searchFunction = this.searchFunction) != null &&
5514 >                (result = this.result) != null) {
5515 >                for (int b;;) {
5516 >                    if (result.get() != null)
5517 >                        return;
5518 >                    if ((b = preSplit()) <= 0)
5519 >                        break;
5520 >                    new SearchEntriesTask<K,V,U>
5521 >                        (map, this, b, searchFunction, result).fork();
5522 >                }
5523 >                while (result.get() == null) {
5524 >                    Object v; U u;
5525 >                    if ((v = advance()) == null) {
5526 >                        propagateCompletion();
5527 >                        break;
5528 >                    }
5529 >                    if ((u = searchFunction.apply(entryFor((K)nextKey,
5530 >                                                           (V)v))) != null) {
5531 >                        if (result.compareAndSet(null, u))
5532 >                            quietlyCompleteRoot();
5533 >                        return;
5534                      }
3271                } finally {
3272                    sizeCtl = sc;
5535                  }
5536 <                if (collide) { // rescan and convert to TreeBins
5537 <                    Node[] tab = table;
5538 <                    for (int i = 0; i < tab.length; ++i) {
5539 <                        int c = 0;
5540 <                        for (Node e = tabAt(tab, i); e != null; e = e.next) {
5541 <                            if (++c > TREE_THRESHOLD &&
5542 <                                (e.key instanceof Comparable)) {
5543 <                                replaceWithTreeBin(tab, i, e.key);
5544 <                                break;
5545 <                            }
5546 <                        }
5536 >            }
5537 >        }
5538 >    }
5539 >
5540 >    @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5541 >        extends Traverser<K,V,U> {
5542 >        final BiFun<? super K, ? super V, ? extends U> searchFunction;
5543 >        final AtomicReference<U> result;
5544 >        SearchMappingsTask
5545 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5546 >             BiFun<? super K, ? super V, ? extends U> searchFunction,
5547 >             AtomicReference<U> result) {
5548 >            super(m, p, b);
5549 >            this.searchFunction = searchFunction; this.result = result;
5550 >        }
5551 >        public final U getRawResult() { return result.get(); }
5552 >        @SuppressWarnings("unchecked") public final void compute() {
5553 >            final BiFun<? super K, ? super V, ? extends U> searchFunction;
5554 >            final AtomicReference<U> result;
5555 >            if ((searchFunction = this.searchFunction) != null &&
5556 >                (result = this.result) != null) {
5557 >                for (int b;;) {
5558 >                    if (result.get() != null)
5559 >                        return;
5560 >                    if ((b = preSplit()) <= 0)
5561 >                        break;
5562 >                    new SearchMappingsTask<K,V,U>
5563 >                        (map, this, b, searchFunction, result).fork();
5564 >                }
5565 >                while (result.get() == null) {
5566 >                    Object v; U u;
5567 >                    if ((v = advance()) == null) {
5568 >                        propagateCompletion();
5569 >                        break;
5570 >                    }
5571 >                    if ((u = searchFunction.apply((K)nextKey, (V)v)) != null) {
5572 >                        if (result.compareAndSet(null, u))
5573 >                            quietlyCompleteRoot();
5574 >                        break;
5575                      }
5576                  }
5577              }
5578 <            if (!init) { // Can only happen if unsafely published.
5579 <                while (p != null) {
5580 <                    internalPut(p.key, p.val);
5581 <                    p = p.next;
5578 >        }
5579 >    }
5580 >
5581 >    @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5582 >        extends Traverser<K,V,K> {
5583 >        final BiFun<? super K, ? super K, ? extends K> reducer;
5584 >        K result;
5585 >        ReduceKeysTask<K,V> rights, nextRight;
5586 >        ReduceKeysTask
5587 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5588 >             ReduceKeysTask<K,V> nextRight,
5589 >             BiFun<? super K, ? super K, ? extends K> reducer) {
5590 >            super(m, p, b); this.nextRight = nextRight;
5591 >            this.reducer = reducer;
5592 >        }
5593 >        public final K getRawResult() { return result; }
5594 >        @SuppressWarnings("unchecked") public final void compute() {
5595 >            final BiFun<? super K, ? super K, ? extends K> reducer;
5596 >            if ((reducer = this.reducer) != null) {
5597 >                for (int b; (b = preSplit()) > 0;)
5598 >                    (rights = new ReduceKeysTask<K,V>
5599 >                     (map, this, b, rights, reducer)).fork();
5600 >                K r = null;
5601 >                while (advance() != null) {
5602 >                    K u = (K)nextKey;
5603 >                    r = (r == null) ? u : reducer.apply(r, u);
5604 >                }
5605 >                result = r;
5606 >                CountedCompleter<?> c;
5607 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5608 >                    ReduceKeysTask<K,V>
5609 >                        t = (ReduceKeysTask<K,V>)c,
5610 >                        s = t.rights;
5611 >                    while (s != null) {
5612 >                        K tr, sr;
5613 >                        if ((sr = s.result) != null)
5614 >                            t.result = (((tr = t.result) == null) ? sr :
5615 >                                        reducer.apply(tr, sr));
5616 >                        s = t.rights = s.nextRight;
5617 >                    }
5618 >                }
5619 >            }
5620 >        }
5621 >    }
5622 >
5623 >    @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5624 >        extends Traverser<K,V,V> {
5625 >        final BiFun<? super V, ? super V, ? extends V> reducer;
5626 >        V result;
5627 >        ReduceValuesTask<K,V> rights, nextRight;
5628 >        ReduceValuesTask
5629 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5630 >             ReduceValuesTask<K,V> nextRight,
5631 >             BiFun<? super V, ? super V, ? extends V> reducer) {
5632 >            super(m, p, b); this.nextRight = nextRight;
5633 >            this.reducer = reducer;
5634 >        }
5635 >        public final V getRawResult() { return result; }
5636 >        @SuppressWarnings("unchecked") public final void compute() {
5637 >            final BiFun<? super V, ? super V, ? extends V> reducer;
5638 >            if ((reducer = this.reducer) != null) {
5639 >                for (int b; (b = preSplit()) > 0;)
5640 >                    (rights = new ReduceValuesTask<K,V>
5641 >                     (map, this, b, rights, reducer)).fork();
5642 >                V r = null;
5643 >                Object v;
5644 >                while ((v = advance()) != null) {
5645 >                    V u = (V)v;
5646 >                    r = (r == null) ? u : reducer.apply(r, u);
5647 >                }
5648 >                result = r;
5649 >                CountedCompleter<?> c;
5650 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5651 >                    ReduceValuesTask<K,V>
5652 >                        t = (ReduceValuesTask<K,V>)c,
5653 >                        s = t.rights;
5654 >                    while (s != null) {
5655 >                        V tr, sr;
5656 >                        if ((sr = s.result) != null)
5657 >                            t.result = (((tr = t.result) == null) ? sr :
5658 >                                        reducer.apply(tr, sr));
5659 >                        s = t.rights = s.nextRight;
5660 >                    }
5661 >                }
5662 >            }
5663 >        }
5664 >    }
5665 >
5666 >    @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
5667 >        extends Traverser<K,V,Map.Entry<K,V>> {
5668 >        final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5669 >        Map.Entry<K,V> result;
5670 >        ReduceEntriesTask<K,V> rights, nextRight;
5671 >        ReduceEntriesTask
5672 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5673 >             ReduceEntriesTask<K,V> nextRight,
5674 >             BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5675 >            super(m, p, b); this.nextRight = nextRight;
5676 >            this.reducer = reducer;
5677 >        }
5678 >        public final Map.Entry<K,V> getRawResult() { return result; }
5679 >        @SuppressWarnings("unchecked") public final void compute() {
5680 >            final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5681 >            if ((reducer = this.reducer) != null) {
5682 >                for (int b; (b = preSplit()) > 0;)
5683 >                    (rights = new ReduceEntriesTask<K,V>
5684 >                     (map, this, b, rights, reducer)).fork();
5685 >                Map.Entry<K,V> r = null;
5686 >                Object v;
5687 >                while ((v = advance()) != null) {
5688 >                    Map.Entry<K,V> u = entryFor((K)nextKey, (V)v);
5689 >                    r = (r == null) ? u : reducer.apply(r, u);
5690 >                }
5691 >                result = r;
5692 >                CountedCompleter<?> c;
5693 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5694 >                    ReduceEntriesTask<K,V>
5695 >                        t = (ReduceEntriesTask<K,V>)c,
5696 >                        s = t.rights;
5697 >                    while (s != null) {
5698 >                        Map.Entry<K,V> tr, sr;
5699 >                        if ((sr = s.result) != null)
5700 >                            t.result = (((tr = t.result) == null) ? sr :
5701 >                                        reducer.apply(tr, sr));
5702 >                        s = t.rights = s.nextRight;
5703 >                    }
5704 >                }
5705 >            }
5706 >        }
5707 >    }
5708 >
5709 >    @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
5710 >        extends Traverser<K,V,U> {
5711 >        final Fun<? super K, ? extends U> transformer;
5712 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5713 >        U result;
5714 >        MapReduceKeysTask<K,V,U> rights, nextRight;
5715 >        MapReduceKeysTask
5716 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5717 >             MapReduceKeysTask<K,V,U> nextRight,
5718 >             Fun<? super K, ? extends U> transformer,
5719 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5720 >            super(m, p, b); this.nextRight = nextRight;
5721 >            this.transformer = transformer;
5722 >            this.reducer = reducer;
5723 >        }
5724 >        public final U getRawResult() { return result; }
5725 >        @SuppressWarnings("unchecked") public final void compute() {
5726 >            final Fun<? super K, ? extends U> transformer;
5727 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5728 >            if ((transformer = this.transformer) != null &&
5729 >                (reducer = this.reducer) != null) {
5730 >                for (int b; (b = preSplit()) > 0;)
5731 >                    (rights = new MapReduceKeysTask<K,V,U>
5732 >                     (map, this, b, rights, transformer, reducer)).fork();
5733 >                U r = null, u;
5734 >                while (advance() != null) {
5735 >                    if ((u = transformer.apply((K)nextKey)) != null)
5736 >                        r = (r == null) ? u : reducer.apply(r, u);
5737 >                }
5738 >                result = r;
5739 >                CountedCompleter<?> c;
5740 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5741 >                    MapReduceKeysTask<K,V,U>
5742 >                        t = (MapReduceKeysTask<K,V,U>)c,
5743 >                        s = t.rights;
5744 >                    while (s != null) {
5745 >                        U tr, sr;
5746 >                        if ((sr = s.result) != null)
5747 >                            t.result = (((tr = t.result) == null) ? sr :
5748 >                                        reducer.apply(tr, sr));
5749 >                        s = t.rights = s.nextRight;
5750 >                    }
5751 >                }
5752 >            }
5753 >        }
5754 >    }
5755 >
5756 >    @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
5757 >        extends Traverser<K,V,U> {
5758 >        final Fun<? super V, ? extends U> transformer;
5759 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5760 >        U result;
5761 >        MapReduceValuesTask<K,V,U> rights, nextRight;
5762 >        MapReduceValuesTask
5763 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5764 >             MapReduceValuesTask<K,V,U> nextRight,
5765 >             Fun<? super V, ? extends U> transformer,
5766 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5767 >            super(m, p, b); this.nextRight = nextRight;
5768 >            this.transformer = transformer;
5769 >            this.reducer = reducer;
5770 >        }
5771 >        public final U getRawResult() { return result; }
5772 >        @SuppressWarnings("unchecked") public final void compute() {
5773 >            final Fun<? super V, ? extends U> transformer;
5774 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5775 >            if ((transformer = this.transformer) != null &&
5776 >                (reducer = this.reducer) != null) {
5777 >                for (int b; (b = preSplit()) > 0;)
5778 >                    (rights = new MapReduceValuesTask<K,V,U>
5779 >                     (map, this, b, rights, transformer, reducer)).fork();
5780 >                U r = null, u;
5781 >                Object v;
5782 >                while ((v = advance()) != null) {
5783 >                    if ((u = transformer.apply((V)v)) != null)
5784 >                        r = (r == null) ? u : reducer.apply(r, u);
5785 >                }
5786 >                result = r;
5787 >                CountedCompleter<?> c;
5788 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5789 >                    MapReduceValuesTask<K,V,U>
5790 >                        t = (MapReduceValuesTask<K,V,U>)c,
5791 >                        s = t.rights;
5792 >                    while (s != null) {
5793 >                        U tr, sr;
5794 >                        if ((sr = s.result) != null)
5795 >                            t.result = (((tr = t.result) == null) ? sr :
5796 >                                        reducer.apply(tr, sr));
5797 >                        s = t.rights = s.nextRight;
5798 >                    }
5799 >                }
5800 >            }
5801 >        }
5802 >    }
5803 >
5804 >    @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
5805 >        extends Traverser<K,V,U> {
5806 >        final Fun<Map.Entry<K,V>, ? extends U> transformer;
5807 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5808 >        U result;
5809 >        MapReduceEntriesTask<K,V,U> rights, nextRight;
5810 >        MapReduceEntriesTask
5811 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5812 >             MapReduceEntriesTask<K,V,U> nextRight,
5813 >             Fun<Map.Entry<K,V>, ? extends U> transformer,
5814 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5815 >            super(m, p, b); this.nextRight = nextRight;
5816 >            this.transformer = transformer;
5817 >            this.reducer = reducer;
5818 >        }
5819 >        public final U getRawResult() { return result; }
5820 >        @SuppressWarnings("unchecked") public final void compute() {
5821 >            final Fun<Map.Entry<K,V>, ? extends U> transformer;
5822 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5823 >            if ((transformer = this.transformer) != null &&
5824 >                (reducer = this.reducer) != null) {
5825 >                for (int b; (b = preSplit()) > 0;)
5826 >                    (rights = new MapReduceEntriesTask<K,V,U>
5827 >                     (map, this, b, rights, transformer, reducer)).fork();
5828 >                U r = null, u;
5829 >                Object v;
5830 >                while ((v = advance()) != null) {
5831 >                    if ((u = transformer.apply(entryFor((K)nextKey,
5832 >                                                        (V)v))) != null)
5833 >                        r = (r == null) ? u : reducer.apply(r, u);
5834 >                }
5835 >                result = r;
5836 >                CountedCompleter<?> c;
5837 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5838 >                    MapReduceEntriesTask<K,V,U>
5839 >                        t = (MapReduceEntriesTask<K,V,U>)c,
5840 >                        s = t.rights;
5841 >                    while (s != null) {
5842 >                        U tr, sr;
5843 >                        if ((sr = s.result) != null)
5844 >                            t.result = (((tr = t.result) == null) ? sr :
5845 >                                        reducer.apply(tr, sr));
5846 >                        s = t.rights = s.nextRight;
5847 >                    }
5848 >                }
5849 >            }
5850 >        }
5851 >    }
5852 >
5853 >    @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
5854 >        extends Traverser<K,V,U> {
5855 >        final BiFun<? super K, ? super V, ? extends U> transformer;
5856 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5857 >        U result;
5858 >        MapReduceMappingsTask<K,V,U> rights, nextRight;
5859 >        MapReduceMappingsTask
5860 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5861 >             MapReduceMappingsTask<K,V,U> nextRight,
5862 >             BiFun<? super K, ? super V, ? extends U> transformer,
5863 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5864 >            super(m, p, b); this.nextRight = nextRight;
5865 >            this.transformer = transformer;
5866 >            this.reducer = reducer;
5867 >        }
5868 >        public final U getRawResult() { return result; }
5869 >        @SuppressWarnings("unchecked") public final void compute() {
5870 >            final BiFun<? super K, ? super V, ? extends U> transformer;
5871 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5872 >            if ((transformer = this.transformer) != null &&
5873 >                (reducer = this.reducer) != null) {
5874 >                for (int b; (b = preSplit()) > 0;)
5875 >                    (rights = new MapReduceMappingsTask<K,V,U>
5876 >                     (map, this, b, rights, transformer, reducer)).fork();
5877 >                U r = null, u;
5878 >                Object v;
5879 >                while ((v = advance()) != null) {
5880 >                    if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5881 >                        r = (r == null) ? u : reducer.apply(r, u);
5882 >                }
5883 >                result = r;
5884 >                CountedCompleter<?> c;
5885 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5886 >                    MapReduceMappingsTask<K,V,U>
5887 >                        t = (MapReduceMappingsTask<K,V,U>)c,
5888 >                        s = t.rights;
5889 >                    while (s != null) {
5890 >                        U tr, sr;
5891 >                        if ((sr = s.result) != null)
5892 >                            t.result = (((tr = t.result) == null) ? sr :
5893 >                                        reducer.apply(tr, sr));
5894 >                        s = t.rights = s.nextRight;
5895 >                    }
5896 >                }
5897 >            }
5898 >        }
5899 >    }
5900 >
5901 >    @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
5902 >        extends Traverser<K,V,Double> {
5903 >        final ObjectToDouble<? super K> transformer;
5904 >        final DoubleByDoubleToDouble reducer;
5905 >        final double basis;
5906 >        double result;
5907 >        MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5908 >        MapReduceKeysToDoubleTask
5909 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5910 >             MapReduceKeysToDoubleTask<K,V> nextRight,
5911 >             ObjectToDouble<? super K> transformer,
5912 >             double basis,
5913 >             DoubleByDoubleToDouble reducer) {
5914 >            super(m, p, b); this.nextRight = nextRight;
5915 >            this.transformer = transformer;
5916 >            this.basis = basis; this.reducer = reducer;
5917 >        }
5918 >        public final Double getRawResult() { return result; }
5919 >        @SuppressWarnings("unchecked") public final void compute() {
5920 >            final ObjectToDouble<? super K> transformer;
5921 >            final DoubleByDoubleToDouble reducer;
5922 >            if ((transformer = this.transformer) != null &&
5923 >                (reducer = this.reducer) != null) {
5924 >                double r = this.basis;
5925 >                for (int b; (b = preSplit()) > 0;)
5926 >                    (rights = new MapReduceKeysToDoubleTask<K,V>
5927 >                     (map, this, b, rights, transformer, r, reducer)).fork();
5928 >                while (advance() != null)
5929 >                    r = reducer.apply(r, transformer.apply((K)nextKey));
5930 >                result = r;
5931 >                CountedCompleter<?> c;
5932 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5933 >                    MapReduceKeysToDoubleTask<K,V>
5934 >                        t = (MapReduceKeysToDoubleTask<K,V>)c,
5935 >                        s = t.rights;
5936 >                    while (s != null) {
5937 >                        t.result = reducer.apply(t.result, s.result);
5938 >                        s = t.rights = s.nextRight;
5939 >                    }
5940 >                }
5941 >            }
5942 >        }
5943 >    }
5944 >
5945 >    @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
5946 >        extends Traverser<K,V,Double> {
5947 >        final ObjectToDouble<? super V> transformer;
5948 >        final DoubleByDoubleToDouble reducer;
5949 >        final double basis;
5950 >        double result;
5951 >        MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5952 >        MapReduceValuesToDoubleTask
5953 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5954 >             MapReduceValuesToDoubleTask<K,V> nextRight,
5955 >             ObjectToDouble<? super V> transformer,
5956 >             double basis,
5957 >             DoubleByDoubleToDouble reducer) {
5958 >            super(m, p, b); this.nextRight = nextRight;
5959 >            this.transformer = transformer;
5960 >            this.basis = basis; this.reducer = reducer;
5961 >        }
5962 >        public final Double getRawResult() { return result; }
5963 >        @SuppressWarnings("unchecked") public final void compute() {
5964 >            final ObjectToDouble<? super V> transformer;
5965 >            final DoubleByDoubleToDouble reducer;
5966 >            if ((transformer = this.transformer) != null &&
5967 >                (reducer = this.reducer) != null) {
5968 >                double r = this.basis;
5969 >                for (int b; (b = preSplit()) > 0;)
5970 >                    (rights = new MapReduceValuesToDoubleTask<K,V>
5971 >                     (map, this, b, rights, transformer, r, reducer)).fork();
5972 >                Object v;
5973 >                while ((v = advance()) != null)
5974 >                    r = reducer.apply(r, transformer.apply((V)v));
5975 >                result = r;
5976 >                CountedCompleter<?> c;
5977 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5978 >                    MapReduceValuesToDoubleTask<K,V>
5979 >                        t = (MapReduceValuesToDoubleTask<K,V>)c,
5980 >                        s = t.rights;
5981 >                    while (s != null) {
5982 >                        t.result = reducer.apply(t.result, s.result);
5983 >                        s = t.rights = s.nextRight;
5984 >                    }
5985 >                }
5986 >            }
5987 >        }
5988 >    }
5989 >
5990 >    @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
5991 >        extends Traverser<K,V,Double> {
5992 >        final ObjectToDouble<Map.Entry<K,V>> transformer;
5993 >        final DoubleByDoubleToDouble reducer;
5994 >        final double basis;
5995 >        double result;
5996 >        MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5997 >        MapReduceEntriesToDoubleTask
5998 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5999 >             MapReduceEntriesToDoubleTask<K,V> nextRight,
6000 >             ObjectToDouble<Map.Entry<K,V>> transformer,
6001 >             double basis,
6002 >             DoubleByDoubleToDouble reducer) {
6003 >            super(m, p, b); this.nextRight = nextRight;
6004 >            this.transformer = transformer;
6005 >            this.basis = basis; this.reducer = reducer;
6006 >        }
6007 >        public final Double getRawResult() { return result; }
6008 >        @SuppressWarnings("unchecked") public final void compute() {
6009 >            final ObjectToDouble<Map.Entry<K,V>> transformer;
6010 >            final DoubleByDoubleToDouble reducer;
6011 >            if ((transformer = this.transformer) != null &&
6012 >                (reducer = this.reducer) != null) {
6013 >                double r = this.basis;
6014 >                for (int b; (b = preSplit()) > 0;)
6015 >                    (rights = new MapReduceEntriesToDoubleTask<K,V>
6016 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6017 >                Object v;
6018 >                while ((v = advance()) != null)
6019 >                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
6020 >                                                                    (V)v)));
6021 >                result = r;
6022 >                CountedCompleter<?> c;
6023 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6024 >                    MapReduceEntriesToDoubleTask<K,V>
6025 >                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
6026 >                        s = t.rights;
6027 >                    while (s != null) {
6028 >                        t.result = reducer.apply(t.result, s.result);
6029 >                        s = t.rights = s.nextRight;
6030 >                    }
6031 >                }
6032 >            }
6033 >        }
6034 >    }
6035 >
6036 >    @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6037 >        extends Traverser<K,V,Double> {
6038 >        final ObjectByObjectToDouble<? super K, ? super V> transformer;
6039 >        final DoubleByDoubleToDouble reducer;
6040 >        final double basis;
6041 >        double result;
6042 >        MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6043 >        MapReduceMappingsToDoubleTask
6044 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6045 >             MapReduceMappingsToDoubleTask<K,V> nextRight,
6046 >             ObjectByObjectToDouble<? super K, ? super V> transformer,
6047 >             double basis,
6048 >             DoubleByDoubleToDouble reducer) {
6049 >            super(m, p, b); this.nextRight = nextRight;
6050 >            this.transformer = transformer;
6051 >            this.basis = basis; this.reducer = reducer;
6052 >        }
6053 >        public final Double getRawResult() { return result; }
6054 >        @SuppressWarnings("unchecked") public final void compute() {
6055 >            final ObjectByObjectToDouble<? super K, ? super V> transformer;
6056 >            final DoubleByDoubleToDouble reducer;
6057 >            if ((transformer = this.transformer) != null &&
6058 >                (reducer = this.reducer) != null) {
6059 >                double r = this.basis;
6060 >                for (int b; (b = preSplit()) > 0;)
6061 >                    (rights = new MapReduceMappingsToDoubleTask<K,V>
6062 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6063 >                Object v;
6064 >                while ((v = advance()) != null)
6065 >                    r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6066 >                result = r;
6067 >                CountedCompleter<?> c;
6068 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6069 >                    MapReduceMappingsToDoubleTask<K,V>
6070 >                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
6071 >                        s = t.rights;
6072 >                    while (s != null) {
6073 >                        t.result = reducer.apply(t.result, s.result);
6074 >                        s = t.rights = s.nextRight;
6075 >                    }
6076 >                }
6077 >            }
6078 >        }
6079 >    }
6080 >
6081 >    @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6082 >        extends Traverser<K,V,Long> {
6083 >        final ObjectToLong<? super K> transformer;
6084 >        final LongByLongToLong reducer;
6085 >        final long basis;
6086 >        long result;
6087 >        MapReduceKeysToLongTask<K,V> rights, nextRight;
6088 >        MapReduceKeysToLongTask
6089 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6090 >             MapReduceKeysToLongTask<K,V> nextRight,
6091 >             ObjectToLong<? super K> transformer,
6092 >             long basis,
6093 >             LongByLongToLong reducer) {
6094 >            super(m, p, b); this.nextRight = nextRight;
6095 >            this.transformer = transformer;
6096 >            this.basis = basis; this.reducer = reducer;
6097 >        }
6098 >        public final Long getRawResult() { return result; }
6099 >        @SuppressWarnings("unchecked") public final void compute() {
6100 >            final ObjectToLong<? super K> transformer;
6101 >            final LongByLongToLong reducer;
6102 >            if ((transformer = this.transformer) != null &&
6103 >                (reducer = this.reducer) != null) {
6104 >                long r = this.basis;
6105 >                for (int b; (b = preSplit()) > 0;)
6106 >                    (rights = new MapReduceKeysToLongTask<K,V>
6107 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6108 >                while (advance() != null)
6109 >                    r = reducer.apply(r, transformer.apply((K)nextKey));
6110 >                result = r;
6111 >                CountedCompleter<?> c;
6112 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6113 >                    MapReduceKeysToLongTask<K,V>
6114 >                        t = (MapReduceKeysToLongTask<K,V>)c,
6115 >                        s = t.rights;
6116 >                    while (s != null) {
6117 >                        t.result = reducer.apply(t.result, s.result);
6118 >                        s = t.rights = s.nextRight;
6119 >                    }
6120 >                }
6121 >            }
6122 >        }
6123 >    }
6124 >
6125 >    @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6126 >        extends Traverser<K,V,Long> {
6127 >        final ObjectToLong<? super V> transformer;
6128 >        final LongByLongToLong reducer;
6129 >        final long basis;
6130 >        long result;
6131 >        MapReduceValuesToLongTask<K,V> rights, nextRight;
6132 >        MapReduceValuesToLongTask
6133 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6134 >             MapReduceValuesToLongTask<K,V> nextRight,
6135 >             ObjectToLong<? super V> transformer,
6136 >             long basis,
6137 >             LongByLongToLong reducer) {
6138 >            super(m, p, b); this.nextRight = nextRight;
6139 >            this.transformer = transformer;
6140 >            this.basis = basis; this.reducer = reducer;
6141 >        }
6142 >        public final Long getRawResult() { return result; }
6143 >        @SuppressWarnings("unchecked") public final void compute() {
6144 >            final ObjectToLong<? super V> transformer;
6145 >            final LongByLongToLong reducer;
6146 >            if ((transformer = this.transformer) != null &&
6147 >                (reducer = this.reducer) != null) {
6148 >                long r = this.basis;
6149 >                for (int b; (b = preSplit()) > 0;)
6150 >                    (rights = new MapReduceValuesToLongTask<K,V>
6151 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6152 >                Object v;
6153 >                while ((v = advance()) != null)
6154 >                    r = reducer.apply(r, transformer.apply((V)v));
6155 >                result = r;
6156 >                CountedCompleter<?> c;
6157 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6158 >                    MapReduceValuesToLongTask<K,V>
6159 >                        t = (MapReduceValuesToLongTask<K,V>)c,
6160 >                        s = t.rights;
6161 >                    while (s != null) {
6162 >                        t.result = reducer.apply(t.result, s.result);
6163 >                        s = t.rights = s.nextRight;
6164 >                    }
6165 >                }
6166 >            }
6167 >        }
6168 >    }
6169 >
6170 >    @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6171 >        extends Traverser<K,V,Long> {
6172 >        final ObjectToLong<Map.Entry<K,V>> transformer;
6173 >        final LongByLongToLong reducer;
6174 >        final long basis;
6175 >        long result;
6176 >        MapReduceEntriesToLongTask<K,V> rights, nextRight;
6177 >        MapReduceEntriesToLongTask
6178 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6179 >             MapReduceEntriesToLongTask<K,V> nextRight,
6180 >             ObjectToLong<Map.Entry<K,V>> transformer,
6181 >             long basis,
6182 >             LongByLongToLong reducer) {
6183 >            super(m, p, b); this.nextRight = nextRight;
6184 >            this.transformer = transformer;
6185 >            this.basis = basis; this.reducer = reducer;
6186 >        }
6187 >        public final Long getRawResult() { return result; }
6188 >        @SuppressWarnings("unchecked") public final void compute() {
6189 >            final ObjectToLong<Map.Entry<K,V>> transformer;
6190 >            final LongByLongToLong reducer;
6191 >            if ((transformer = this.transformer) != null &&
6192 >                (reducer = this.reducer) != null) {
6193 >                long r = this.basis;
6194 >                for (int b; (b = preSplit()) > 0;)
6195 >                    (rights = new MapReduceEntriesToLongTask<K,V>
6196 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6197 >                Object v;
6198 >                while ((v = advance()) != null)
6199 >                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
6200 >                                                                    (V)v)));
6201 >                result = r;
6202 >                CountedCompleter<?> c;
6203 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6204 >                    MapReduceEntriesToLongTask<K,V>
6205 >                        t = (MapReduceEntriesToLongTask<K,V>)c,
6206 >                        s = t.rights;
6207 >                    while (s != null) {
6208 >                        t.result = reducer.apply(t.result, s.result);
6209 >                        s = t.rights = s.nextRight;
6210 >                    }
6211 >                }
6212 >            }
6213 >        }
6214 >    }
6215 >
6216 >    @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6217 >        extends Traverser<K,V,Long> {
6218 >        final ObjectByObjectToLong<? super K, ? super V> transformer;
6219 >        final LongByLongToLong reducer;
6220 >        final long basis;
6221 >        long result;
6222 >        MapReduceMappingsToLongTask<K,V> rights, nextRight;
6223 >        MapReduceMappingsToLongTask
6224 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6225 >             MapReduceMappingsToLongTask<K,V> nextRight,
6226 >             ObjectByObjectToLong<? super K, ? super V> transformer,
6227 >             long basis,
6228 >             LongByLongToLong reducer) {
6229 >            super(m, p, b); this.nextRight = nextRight;
6230 >            this.transformer = transformer;
6231 >            this.basis = basis; this.reducer = reducer;
6232 >        }
6233 >        public final Long getRawResult() { return result; }
6234 >        @SuppressWarnings("unchecked") public final void compute() {
6235 >            final ObjectByObjectToLong<? super K, ? super V> transformer;
6236 >            final LongByLongToLong reducer;
6237 >            if ((transformer = this.transformer) != null &&
6238 >                (reducer = this.reducer) != null) {
6239 >                long r = this.basis;
6240 >                for (int b; (b = preSplit()) > 0;)
6241 >                    (rights = new MapReduceMappingsToLongTask<K,V>
6242 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6243 >                Object v;
6244 >                while ((v = advance()) != null)
6245 >                    r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6246 >                result = r;
6247 >                CountedCompleter<?> c;
6248 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6249 >                    MapReduceMappingsToLongTask<K,V>
6250 >                        t = (MapReduceMappingsToLongTask<K,V>)c,
6251 >                        s = t.rights;
6252 >                    while (s != null) {
6253 >                        t.result = reducer.apply(t.result, s.result);
6254 >                        s = t.rights = s.nextRight;
6255 >                    }
6256 >                }
6257 >            }
6258 >        }
6259 >    }
6260 >
6261 >    @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6262 >        extends Traverser<K,V,Integer> {
6263 >        final ObjectToInt<? super K> transformer;
6264 >        final IntByIntToInt reducer;
6265 >        final int basis;
6266 >        int result;
6267 >        MapReduceKeysToIntTask<K,V> rights, nextRight;
6268 >        MapReduceKeysToIntTask
6269 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6270 >             MapReduceKeysToIntTask<K,V> nextRight,
6271 >             ObjectToInt<? super K> transformer,
6272 >             int basis,
6273 >             IntByIntToInt reducer) {
6274 >            super(m, p, b); this.nextRight = nextRight;
6275 >            this.transformer = transformer;
6276 >            this.basis = basis; this.reducer = reducer;
6277 >        }
6278 >        public final Integer getRawResult() { return result; }
6279 >        @SuppressWarnings("unchecked") public final void compute() {
6280 >            final ObjectToInt<? super K> transformer;
6281 >            final IntByIntToInt reducer;
6282 >            if ((transformer = this.transformer) != null &&
6283 >                (reducer = this.reducer) != null) {
6284 >                int r = this.basis;
6285 >                for (int b; (b = preSplit()) > 0;)
6286 >                    (rights = new MapReduceKeysToIntTask<K,V>
6287 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6288 >                while (advance() != null)
6289 >                    r = reducer.apply(r, transformer.apply((K)nextKey));
6290 >                result = r;
6291 >                CountedCompleter<?> c;
6292 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6293 >                    MapReduceKeysToIntTask<K,V>
6294 >                        t = (MapReduceKeysToIntTask<K,V>)c,
6295 >                        s = t.rights;
6296 >                    while (s != null) {
6297 >                        t.result = reducer.apply(t.result, s.result);
6298 >                        s = t.rights = s.nextRight;
6299 >                    }
6300 >                }
6301 >            }
6302 >        }
6303 >    }
6304 >
6305 >    @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6306 >        extends Traverser<K,V,Integer> {
6307 >        final ObjectToInt<? super V> transformer;
6308 >        final IntByIntToInt reducer;
6309 >        final int basis;
6310 >        int result;
6311 >        MapReduceValuesToIntTask<K,V> rights, nextRight;
6312 >        MapReduceValuesToIntTask
6313 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6314 >             MapReduceValuesToIntTask<K,V> nextRight,
6315 >             ObjectToInt<? super V> transformer,
6316 >             int basis,
6317 >             IntByIntToInt reducer) {
6318 >            super(m, p, b); this.nextRight = nextRight;
6319 >            this.transformer = transformer;
6320 >            this.basis = basis; this.reducer = reducer;
6321 >        }
6322 >        public final Integer getRawResult() { return result; }
6323 >        @SuppressWarnings("unchecked") public final void compute() {
6324 >            final ObjectToInt<? super V> transformer;
6325 >            final IntByIntToInt reducer;
6326 >            if ((transformer = this.transformer) != null &&
6327 >                (reducer = this.reducer) != null) {
6328 >                int r = this.basis;
6329 >                for (int b; (b = preSplit()) > 0;)
6330 >                    (rights = new MapReduceValuesToIntTask<K,V>
6331 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6332 >                Object v;
6333 >                while ((v = advance()) != null)
6334 >                    r = reducer.apply(r, transformer.apply((V)v));
6335 >                result = r;
6336 >                CountedCompleter<?> c;
6337 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6338 >                    MapReduceValuesToIntTask<K,V>
6339 >                        t = (MapReduceValuesToIntTask<K,V>)c,
6340 >                        s = t.rights;
6341 >                    while (s != null) {
6342 >                        t.result = reducer.apply(t.result, s.result);
6343 >                        s = t.rights = s.nextRight;
6344 >                    }
6345 >                }
6346 >            }
6347 >        }
6348 >    }
6349 >
6350 >    @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6351 >        extends Traverser<K,V,Integer> {
6352 >        final ObjectToInt<Map.Entry<K,V>> transformer;
6353 >        final IntByIntToInt reducer;
6354 >        final int basis;
6355 >        int result;
6356 >        MapReduceEntriesToIntTask<K,V> rights, nextRight;
6357 >        MapReduceEntriesToIntTask
6358 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6359 >             MapReduceEntriesToIntTask<K,V> nextRight,
6360 >             ObjectToInt<Map.Entry<K,V>> transformer,
6361 >             int basis,
6362 >             IntByIntToInt reducer) {
6363 >            super(m, p, b); this.nextRight = nextRight;
6364 >            this.transformer = transformer;
6365 >            this.basis = basis; this.reducer = reducer;
6366 >        }
6367 >        public final Integer getRawResult() { return result; }
6368 >        @SuppressWarnings("unchecked") public final void compute() {
6369 >            final ObjectToInt<Map.Entry<K,V>> transformer;
6370 >            final IntByIntToInt reducer;
6371 >            if ((transformer = this.transformer) != null &&
6372 >                (reducer = this.reducer) != null) {
6373 >                int r = this.basis;
6374 >                for (int b; (b = preSplit()) > 0;)
6375 >                    (rights = new MapReduceEntriesToIntTask<K,V>
6376 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6377 >                Object v;
6378 >                while ((v = advance()) != null)
6379 >                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
6380 >                                                                    (V)v)));
6381 >                result = r;
6382 >                CountedCompleter<?> c;
6383 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6384 >                    MapReduceEntriesToIntTask<K,V>
6385 >                        t = (MapReduceEntriesToIntTask<K,V>)c,
6386 >                        s = t.rights;
6387 >                    while (s != null) {
6388 >                        t.result = reducer.apply(t.result, s.result);
6389 >                        s = t.rights = s.nextRight;
6390 >                    }
6391 >                }
6392 >            }
6393 >        }
6394 >    }
6395 >
6396 >    @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6397 >        extends Traverser<K,V,Integer> {
6398 >        final ObjectByObjectToInt<? super K, ? super V> transformer;
6399 >        final IntByIntToInt reducer;
6400 >        final int basis;
6401 >        int result;
6402 >        MapReduceMappingsToIntTask<K,V> rights, nextRight;
6403 >        MapReduceMappingsToIntTask
6404 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6405 >             MapReduceMappingsToIntTask<K,V> nextRight,
6406 >             ObjectByObjectToInt<? super K, ? super V> transformer,
6407 >             int basis,
6408 >             IntByIntToInt reducer) {
6409 >            super(m, p, b); this.nextRight = nextRight;
6410 >            this.transformer = transformer;
6411 >            this.basis = basis; this.reducer = reducer;
6412 >        }
6413 >        public final Integer getRawResult() { return result; }
6414 >        @SuppressWarnings("unchecked") public final void compute() {
6415 >            final ObjectByObjectToInt<? super K, ? super V> transformer;
6416 >            final IntByIntToInt reducer;
6417 >            if ((transformer = this.transformer) != null &&
6418 >                (reducer = this.reducer) != null) {
6419 >                int r = this.basis;
6420 >                for (int b; (b = preSplit()) > 0;)
6421 >                    (rights = new MapReduceMappingsToIntTask<K,V>
6422 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6423 >                Object v;
6424 >                while ((v = advance()) != null)
6425 >                    r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6426 >                result = r;
6427 >                CountedCompleter<?> c;
6428 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6429 >                    MapReduceMappingsToIntTask<K,V>
6430 >                        t = (MapReduceMappingsToIntTask<K,V>)c,
6431 >                        s = t.rights;
6432 >                    while (s != null) {
6433 >                        t.result = reducer.apply(t.result, s.result);
6434 >                        s = t.rights = s.nextRight;
6435 >                    }
6436                  }
6437              }
6438          }
6439      }
6440  
6441      // Unsafe mechanics
6442 <    private static final sun.misc.Unsafe UNSAFE;
6443 <    private static final long counterOffset;
6444 <    private static final long sizeCtlOffset;
6442 >    private static final sun.misc.Unsafe U;
6443 >    private static final long SIZECTL;
6444 >    private static final long TRANSFERINDEX;
6445 >    private static final long TRANSFERORIGIN;
6446 >    private static final long BASECOUNT;
6447 >    private static final long COUNTERBUSY;
6448 >    private static final long CELLVALUE;
6449      private static final long ABASE;
6450      private static final int ASHIFT;
6451  
6452      static {
6453          int ss;
6454          try {
6455 <            UNSAFE = getUnsafe();
6455 >            U = getUnsafe();
6456              Class<?> k = ConcurrentHashMapV8.class;
6457 <            counterOffset = UNSAFE.objectFieldOffset
3310 <                (k.getDeclaredField("counter"));
3311 <            sizeCtlOffset = UNSAFE.objectFieldOffset
6457 >            SIZECTL = U.objectFieldOffset
6458                  (k.getDeclaredField("sizeCtl"));
6459 +            TRANSFERINDEX = U.objectFieldOffset
6460 +                (k.getDeclaredField("transferIndex"));
6461 +            TRANSFERORIGIN = U.objectFieldOffset
6462 +                (k.getDeclaredField("transferOrigin"));
6463 +            BASECOUNT = U.objectFieldOffset
6464 +                (k.getDeclaredField("baseCount"));
6465 +            COUNTERBUSY = U.objectFieldOffset
6466 +                (k.getDeclaredField("counterBusy"));
6467 +            Class<?> ck = CounterCell.class;
6468 +            CELLVALUE = U.objectFieldOffset
6469 +                (ck.getDeclaredField("value"));
6470              Class<?> sc = Node[].class;
6471 <            ABASE = UNSAFE.arrayBaseOffset(sc);
6472 <            ss = UNSAFE.arrayIndexScale(sc);
6471 >            ABASE = U.arrayBaseOffset(sc);
6472 >            ss = U.arrayIndexScale(sc);
6473 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6474          } catch (Exception e) {
6475              throw new Error(e);
6476          }
6477          if ((ss & (ss-1)) != 0)
6478              throw new Error("data type scale not a power of two");
3321        ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6479      }
6480  
6481      /**
# Line 3348 | Line 6505 | public class ConcurrentHashMapV8<K, V>
6505              }
6506          }
6507      }
3351
6508   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines