ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
(Generate patch)

Comparing jsr166/src/jsr166e/ConcurrentHashMapV8.java (file contents):
Revision 1.85 by jsr166, Wed Jan 2 07:43:49 2013 UTC vs.
Revision 1.125 by jsr166, Sun Sep 13 16:28:14 2015 UTC

# Line 6 | Line 6
6  
7   package jsr166e;
8  
9 < import java.util.Comparator;
9 > import jsr166e.ForkJoinPool;
10 >
11 > import java.io.ObjectStreamField;
12 > import java.io.Serializable;
13 > import java.lang.reflect.ParameterizedType;
14 > import java.lang.reflect.Type;
15 > import java.util.AbstractMap;
16   import java.util.Arrays;
11 import java.util.Map;
12 import java.util.Set;
17   import java.util.Collection;
18 < import java.util.AbstractMap;
19 < import java.util.AbstractSet;
16 < import java.util.AbstractCollection;
17 < import java.util.Hashtable;
18 > import java.util.ConcurrentModificationException;
19 > import java.util.Enumeration;
20   import java.util.HashMap;
21 + import java.util.Hashtable;
22   import java.util.Iterator;
23 < import java.util.Enumeration;
21 < import java.util.ConcurrentModificationException;
23 > import java.util.Map;
24   import java.util.NoSuchElementException;
25 + import java.util.Set;
26   import java.util.concurrent.ConcurrentMap;
24 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
25 import java.util.concurrent.atomic.AtomicInteger;
27   import java.util.concurrent.atomic.AtomicReference;
28 < import java.io.Serializable;
28 > import java.util.concurrent.atomic.AtomicInteger;
29 > import java.util.concurrent.locks.LockSupport;
30 > import java.util.concurrent.locks.ReentrantLock;
31  
32   /**
33   * A hash table supporting full concurrency of retrievals and
# Line 78 | Line 81 | import java.io.Serializable;
81   * expected {@code concurrencyLevel} as an additional hint for
82   * internal sizing.  Note that using many keys with exactly the same
83   * {@code hashCode()} is a sure way to slow down performance of any
84 < * hash table.
84 > * hash table. To ameliorate impact, when keys are {@link Comparable},
85 > * this class may use comparison order among keys to help break ties.
86   *
87   * <p>A {@link Set} projection of a ConcurrentHashMapV8 may be created
88   * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
# Line 86 | Line 90 | import java.io.Serializable;
90   * mapped values are (perhaps transiently) not used or all take the
91   * same mapping value.
92   *
89 * <p>A ConcurrentHashMapV8 can be used as scalable frequency map (a
90 * form of histogram or multiset) by using {@link LongAdder} values
91 * and initializing via {@link #computeIfAbsent}. For example, to add
92 * a count to a {@code ConcurrentHashMapV8<String,LongAdder> freqs}, you
93 * can use {@code freqs.computeIfAbsent(k -> new
94 * LongAdder()).increment();}
95 *
93   * <p>This class and its views and iterators implement all of the
94   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
95   * interfaces.
# Line 100 | Line 97 | import java.io.Serializable;
97   * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
98   * does <em>not</em> allow {@code null} to be used as a key or value.
99   *
100 < * <p>ConcurrentHashMapV8s support sequential and parallel operations
101 < * bulk operations. (Parallel forms use the {@link
102 < * ForkJoinPool#commonPool()}). Tasks that may be used in other
103 < * contexts are available in class {@link ForkJoinTasks}. These
104 < * operations are designed to be safely, and often sensibly, applied
105 < * even with maps that are being concurrently updated by other
106 < * threads; for example, when computing a snapshot summary of the
107 < * values in a shared registry.  There are three kinds of operation,
108 < * each with four forms, accepting functions with Keys, Values,
109 < * Entries, and (Key, Value) arguments and/or return values. Because
110 < * the elements of a ConcurrentHashMapV8 are not ordered in any
111 < * particular way, and may be processed in different orders in
112 < * different parallel executions, the correctness of supplied
113 < * functions should not depend on any ordering, or on any other
114 < * objects or values that may transiently change while computation is
118 < * in progress; and except for forEach actions, should ideally be
119 < * side-effect-free.
100 > * <p>ConcurrentHashMapV8s support a set of sequential and parallel bulk
101 > * operations that are designed
102 > * to be safely, and often sensibly, applied even with maps that are
103 > * being concurrently updated by other threads; for example, when
104 > * computing a snapshot summary of the values in a shared registry.
105 > * There are three kinds of operation, each with four forms, accepting
106 > * functions with Keys, Values, Entries, and (Key, Value) arguments
107 > * and/or return values. Because the elements of a ConcurrentHashMapV8
108 > * are not ordered in any particular way, and may be processed in
109 > * different orders in different parallel executions, the correctness
110 > * of supplied functions should not depend on any ordering, or on any
111 > * other objects or values that may transiently change while
112 > * computation is in progress; and except for forEach actions, should
113 > * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
114 > * objects do not support method {@code setValue}.
115   *
116   * <ul>
117 < * <li> forEach: Perform a given action on each element.
117 > * <li>forEach: Perform a given action on each element.
118   * A variant form applies a given transformation on each element
119 < * before performing the action.</li>
119 > * before performing the action.
120   *
121 < * <li> search: Return the first available non-null result of
121 > * <li>search: Return the first available non-null result of
122   * applying a given function on each element; skipping further
123 < * search when a result is found.</li>
123 > * search when a result is found.
124   *
125 < * <li> reduce: Accumulate each element.  The supplied reduction
125 > * <li>reduce: Accumulate each element.  The supplied reduction
126   * function cannot rely on ordering (more formally, it should be
127   * both associative and commutative).  There are five variants:
128   *
129   * <ul>
130   *
131 < * <li> Plain reductions. (There is not a form of this method for
131 > * <li>Plain reductions. (There is not a form of this method for
132   * (key, value) function arguments since there is no corresponding
133 < * return type.)</li>
133 > * return type.)
134   *
135 < * <li> Mapped reductions that accumulate the results of a given
136 < * function applied to each element.</li>
135 > * <li>Mapped reductions that accumulate the results of a given
136 > * function applied to each element.
137   *
138 < * <li> Reductions to scalar doubles, longs, and ints, using a
139 < * given basis value.</li>
138 > * <li>Reductions to scalar doubles, longs, and ints, using a
139 > * given basis value.
140   *
146 * </li>
141   * </ul>
142   * </ul>
143   *
144 + * <p>These bulk operations accept a {@code parallelismThreshold}
145 + * argument. Methods proceed sequentially if the current map size is
146 + * estimated to be less than the given threshold. Using a value of
147 + * {@code Long.MAX_VALUE} suppresses all parallelism.  Using a value
148 + * of {@code 1} results in maximal parallelism by partitioning into
149 + * enough subtasks to fully utilize the {@link
150 + * ForkJoinPool#commonPool()} that is used for all parallel
151 + * computations. Normally, you would initially choose one of these
152 + * extreme values, and then measure performance of using in-between
153 + * values that trade off overhead versus throughput.
154 + *
155   * <p>The concurrency properties of bulk operations follow
156   * from those of ConcurrentHashMapV8: Any non-null result returned
157   * from {@code get(key)} and related access methods bears a
# Line 212 | Line 217 | import java.io.Serializable;
217   * @param <K> the type of keys maintained by this map
218   * @param <V> the type of mapped values
219   */
220 < public class ConcurrentHashMapV8<K, V>
221 <    implements ConcurrentMap<K, V>, Serializable {
220 > public class ConcurrentHashMapV8<K,V> extends AbstractMap<K,V>
221 >    implements ConcurrentMap<K,V>, Serializable {
222      private static final long serialVersionUID = 7249069246763182397L;
223  
224      /**
225 <     * A partitionable iterator. A Spliterator can be traversed
226 <     * directly, but can also be partitioned (before traversal) by
227 <     * creating another Spliterator that covers a non-overlapping
223 <     * portion of the elements, and so may be amenable to parallel
224 <     * execution.
225 <     *
226 <     * <p>This interface exports a subset of expected JDK8
227 <     * functionality.
228 <     *
229 <     * <p>Sample usage: Here is one (of the several) ways to compute
230 <     * the sum of the values held in a map using the ForkJoin
231 <     * framework. As illustrated here, Spliterators are well suited to
232 <     * designs in which a task repeatedly splits off half its work
233 <     * into forked subtasks until small enough to process directly,
234 <     * and then joins these subtasks. Variants of this style can also
235 <     * be used in completion-based designs.
236 <     *
237 <     * <pre>
238 <     * {@code ConcurrentHashMapV8<String, Long> m = ...
239 <     * // split as if have 8 * parallelism, for load balance
240 <     * int n = m.size();
241 <     * int p = aForkJoinPool.getParallelism() * 8;
242 <     * int split = (n < p)? n : p;
243 <     * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
244 <     * // ...
245 <     * static class SumValues extends RecursiveTask<Long> {
246 <     *   final Spliterator<Long> s;
247 <     *   final int split;             // split while > 1
248 <     *   final SumValues nextJoin;    // records forked subtasks to join
249 <     *   SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
250 <     *     this.s = s; this.depth = depth; this.nextJoin = nextJoin;
251 <     *   }
252 <     *   public Long compute() {
253 <     *     long sum = 0;
254 <     *     SumValues subtasks = null; // fork subtasks
255 <     *     for (int s = split >>> 1; s > 0; s >>>= 1)
256 <     *       (subtasks = new SumValues(s.split(), s, subtasks)).fork();
257 <     *     while (s.hasNext())        // directly process remaining elements
258 <     *       sum += s.next();
259 <     *     for (SumValues t = subtasks; t != null; t = t.nextJoin)
260 <     *       sum += t.join();         // collect subtask results
261 <     *     return sum;
262 <     *   }
263 <     * }
264 <     * }</pre>
225 >     * An object for traversing and partitioning elements of a source.
226 >     * This interface provides a subset of the functionality of JDK8
227 >     * java.util.Spliterator.
228       */
229 <    public static interface Spliterator<T> extends Iterator<T> {
229 >    public static interface ConcurrentHashMapSpliterator<T> {
230          /**
231 <         * Returns a Spliterator covering approximately half of the
232 <         * elements, guaranteed not to overlap with those subsequently
233 <         * returned by this Spliterator.  After invoking this method,
234 <         * the current Spliterator will <em>not</em> produce any of
235 <         * the elements of the returned Spliterator, but the two
236 <         * Spliterators together will produce all of the elements that
237 <         * would have been produced by this Spliterator had this
238 <         * method not been called. The exact number of elements
239 <         * produced by the returned Spliterator is not guaranteed, and
277 <         * may be zero (i.e., with {@code hasNext()} reporting {@code
278 <         * false}) if this Spliterator cannot be further split.
279 <         *
280 <         * @return a Spliterator covering approximately half of the
281 <         * elements
282 <         * @throws IllegalStateException if this Spliterator has
283 <         * already commenced traversing elements
231 >         * If possible, returns a new spliterator covering
232 >         * approximately one half of the elements, which will not be
233 >         * covered by this spliterator. Returns null if cannot be
234 >         * split.
235 >         */
236 >        ConcurrentHashMapSpliterator<T> trySplit();
237 >        /**
238 >         * Returns an estimate of the number of elements covered by
239 >         * this Spliterator.
240           */
241 <        Spliterator<T> split();
241 >        long estimateSize();
242 >
243 >        /** Applies the action to each untraversed element */
244 >        void forEachRemaining(Action<? super T> action);
245 >        /** If an element remains, applies the action and returns true. */
246 >        boolean tryAdvance(Action<? super T> action);
247      }
248  
249 +    // Sams
250 +    /** Interface describing a void action of one argument */
251 +    public interface Action<A> { void apply(A a); }
252 +    /** Interface describing a void action of two arguments */
253 +    public interface BiAction<A,B> { void apply(A a, B b); }
254 +    /** Interface describing a function of one argument */
255 +    public interface Fun<A,T> { T apply(A a); }
256 +    /** Interface describing a function of two arguments */
257 +    public interface BiFun<A,B,T> { T apply(A a, B b); }
258 +    /** Interface describing a function mapping its argument to a double */
259 +    public interface ObjectToDouble<A> { double apply(A a); }
260 +    /** Interface describing a function mapping its argument to a long */
261 +    public interface ObjectToLong<A> { long apply(A a); }
262 +    /** Interface describing a function mapping its argument to an int */
263 +    public interface ObjectToInt<A> {int apply(A a); }
264 +    /** Interface describing a function mapping two arguments to a double */
265 +    public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
266 +    /** Interface describing a function mapping two arguments to a long */
267 +    public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
268 +    /** Interface describing a function mapping two arguments to an int */
269 +    public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
270 +    /** Interface describing a function mapping two doubles to a double */
271 +    public interface DoubleByDoubleToDouble { double apply(double a, double b); }
272 +    /** Interface describing a function mapping two longs to a long */
273 +    public interface LongByLongToLong { long apply(long a, long b); }
274 +    /** Interface describing a function mapping two ints to an int */
275 +    public interface IntByIntToInt { int apply(int a, int b); }
276 +
277 +
278      /*
279       * Overview:
280       *
# Line 295 | Line 285 | public class ConcurrentHashMapV8<K, V>
285       * the same or better than java.util.HashMap, and to support high
286       * initial insertion rates on an empty table by many threads.
287       *
288 <     * Each key-value mapping is held in a Node.  Because Node key
289 <     * fields can contain special values, they are defined using plain
290 <     * Object types (not type "K"). This leads to a lot of explicit
291 <     * casting (and many explicit warning suppressions to tell
292 <     * compilers not to complain about it). It also allows some of the
293 <     * public methods to be factored into a smaller number of internal
294 <     * methods (although sadly not so for the five variants of
295 <     * put-related operations). The validation-based approach
296 <     * explained below leads to a lot of code sprawl because
297 <     * retry-control precludes factoring into smaller methods.
288 >     * This map usually acts as a binned (bucketed) hash table.  Each
289 >     * key-value mapping is held in a Node.  Most nodes are instances
290 >     * of the basic Node class with hash, key, value, and next
291 >     * fields. However, various subclasses exist: TreeNodes are
292 >     * arranged in balanced trees, not lists.  TreeBins hold the roots
293 >     * of sets of TreeNodes. ForwardingNodes are placed at the heads
294 >     * of bins during resizing. ReservationNodes are used as
295 >     * placeholders while establishing values in computeIfAbsent and
296 >     * related methods.  The types TreeBin, ForwardingNode, and
297 >     * ReservationNode do not hold normal user keys, values, or
298 >     * hashes, and are readily distinguishable during search etc
299 >     * because they have negative hash fields and null key and value
300 >     * fields. (These special nodes are either uncommon or transient,
301 >     * so the impact of carrying around some unused fields is
302 >     * insignificant.)
303       *
304       * The table is lazily initialized to a power-of-two size upon the
305       * first insertion.  Each bin in the table normally contains a
# Line 312 | Line 307 | public class ConcurrentHashMapV8<K, V>
307       * Table accesses require volatile/atomic reads, writes, and
308       * CASes.  Because there is no other way to arrange this without
309       * adding further indirections, we use intrinsics
310 <     * (sun.misc.Unsafe) operations.  The lists of nodes within bins
316 <     * are always accurately traversable under volatile reads, so long
317 <     * as lookups check hash code and non-nullness of value before
318 <     * checking key equality.
310 >     * (sun.misc.Unsafe) operations.
311       *
312       * We use the top (sign) bit of Node hash fields for control
313       * purposes -- it is available anyway because of addressing
314 <     * constraints.  Nodes with negative hash fields are forwarding
315 <     * nodes to either TreeBins or resized tables.  The lower 31 bits
324 <     * of each normal Node's hash field contain a transformation of
325 <     * the key's hash code.
314 >     * constraints.  Nodes with negative hash fields are specially
315 >     * handled or ignored in map methods.
316       *
317       * Insertion (via put or its variants) of the first node in an
318       * empty bin is performed by just CASing it to the bin.  This is
# Line 339 | Line 329 | public class ConcurrentHashMapV8<K, V>
329       * validate that it is still the first node after locking it, and
330       * retry if not. Because new nodes are always appended to lists,
331       * once a node is first in a bin, it remains first until deleted
332 <     * or the bin becomes invalidated (upon resizing).  However,
343 <     * operations that only conditionally update may inspect nodes
344 <     * until the point of update. This is a converse of sorts to the
345 <     * lazy locking technique described by Herlihy & Shavit.
332 >     * or the bin becomes invalidated (upon resizing).
333       *
334       * The main disadvantage of per-bin locks is that other update
335       * operations on other nodes in a bin list protected by the same
# Line 375 | Line 362 | public class ConcurrentHashMapV8<K, V>
362       * sometimes deviate significantly from uniform randomness.  This
363       * includes the case when N > (1<<30), so some keys MUST collide.
364       * Similarly for dumb or hostile usages in which multiple keys are
365 <     * designed to have identical hash codes. Also, although we guard
366 <     * against the worst effects of this (see method spread), sets of
367 <     * hashes may differ only in bits that do not impact their bin
368 <     * index for a given power-of-two mask.  So we use a secondary
369 <     * strategy that applies when the number of nodes in a bin exceeds
370 <     * a threshold, and at least one of the keys implements
384 <     * Comparable.  These TreeBins use a balanced tree to hold nodes
385 <     * (a specialized form of red-black trees), bounding search time
386 <     * to O(log N).  Each search step in a TreeBin is around twice as
365 >     * designed to have identical hash codes or ones that differs only
366 >     * in masked-out high bits. So we use a secondary strategy that
367 >     * applies when the number of nodes in a bin exceeds a
368 >     * threshold. These TreeBins use a balanced tree to hold nodes (a
369 >     * specialized form of red-black trees), bounding search time to
370 >     * O(log N).  Each search step in a TreeBin is at least twice as
371       * slow as in a regular list, but given that N cannot exceed
372       * (1<<64) (before running out of addresses) this bounds search
373       * steps, lock hold times, etc, to reasonable constants (roughly
# Line 396 | Line 380 | public class ConcurrentHashMapV8<K, V>
380       * The table is resized when occupancy exceeds a percentage
381       * threshold (nominally, 0.75, but see below).  Any thread
382       * noticing an overfull bin may assist in resizing after the
383 <     * initiating thread allocates and sets up the replacement
384 <     * array. However, rather than stalling, these other threads may
385 <     * proceed with insertions etc.  The use of TreeBins shields us
386 <     * from the worst case effects of overfilling while resizes are in
383 >     * initiating thread allocates and sets up the replacement array.
384 >     * However, rather than stalling, these other threads may proceed
385 >     * with insertions etc.  The use of TreeBins shields us from the
386 >     * worst case effects of overfilling while resizes are in
387       * progress.  Resizing proceeds by transferring bins, one by one,
388 <     * from the table to the next table. To enable concurrency, the
389 <     * next table must be (incrementally) prefilled with place-holders
390 <     * serving as reverse forwarders to the old table.  Because we are
388 >     * from the table to the next table. However, threads claim small
389 >     * blocks of indices to transfer (via field transferIndex) before
390 >     * doing so, reducing contention.  A generation stamp in field
391 >     * sizeCtl ensures that resizings do not overlap. Because we are
392       * using power-of-two expansion, the elements from each bin must
393       * either stay at same index, or move with a power of two
394       * offset. We eliminate unnecessary node creation by catching
# Line 424 | Line 409 | public class ConcurrentHashMapV8<K, V>
409       * locks, average aggregate waits become shorter as resizing
410       * progresses.  The transfer operation must also ensure that all
411       * accessible bins in both the old and new table are usable by any
412 <     * traversal.  This is arranged by proceeding from the last bin
413 <     * (table.length - 1) up towards the first.  Upon seeing a
414 <     * forwarding node, traversals (see class Traverser) arrange to
415 <     * move to the new table without revisiting nodes.  However, to
416 <     * ensure that no intervening nodes are skipped, bin splitting can
417 <     * only begin after the associated reverse-forwarders are in
418 <     * place.
412 >     * traversal.  This is arranged in part by proceeding from the
413 >     * last bin (table.length - 1) up towards the first.  Upon seeing
414 >     * a forwarding node, traversals (see class Traverser) arrange to
415 >     * move to the new table without revisiting nodes.  To ensure that
416 >     * no intervening nodes are skipped even when moved out of order,
417 >     * a stack (see class TableStack) is created on first encounter of
418 >     * a forwarding node during a traversal, to maintain its place if
419 >     * later processing the current table. The need for these
420 >     * save/restore mechanics is relatively rare, but when one
421 >     * forwarding node is encountered, typically many more will be.
422 >     * So Traversers use a simple caching scheme to avoid creating so
423 >     * many new TableStack nodes. (Thanks to Peter Levart for
424 >     * suggesting use of a stack here.)
425       *
426       * The traversal scheme also applies to partial traversals of
427       * ranges of bins (via an alternate Traverser constructor)
# Line 456 | Line 447 | public class ConcurrentHashMapV8<K, V>
447       * bin already holding two or more nodes. Under uniform hash
448       * distributions, the probability of this occurring at threshold
449       * is around 13%, meaning that only about 1 in 8 puts check
450 <     * threshold (and after resizing, many fewer do so). The bulk
451 <     * putAll operation further reduces contention by only committing
452 <     * count updates upon these size checks.
450 >     * threshold (and after resizing, many fewer do so).
451 >     *
452 >     * TreeBins use a special form of comparison for search and
453 >     * related operations (which is the main reason we cannot use
454 >     * existing collections such as TreeMaps). TreeBins contain
455 >     * Comparable elements, but may contain others, as well as
456 >     * elements that are Comparable but not necessarily Comparable for
457 >     * the same T, so we cannot invoke compareTo among them. To handle
458 >     * this, the tree is ordered primarily by hash value, then by
459 >     * Comparable.compareTo order if applicable.  On lookup at a node,
460 >     * if elements are not comparable or compare as 0 then both left
461 >     * and right children may need to be searched in the case of tied
462 >     * hash values. (This corresponds to the full list search that
463 >     * would be necessary if all elements were non-Comparable and had
464 >     * tied hashes.) On insertion, to keep a total ordering (or as
465 >     * close as is required here) across rebalancings, we compare
466 >     * classes and identityHashCodes as tie-breakers. The red-black
467 >     * balancing code is updated from pre-jdk-collections
468 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
469 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
470 >     * Algorithms" (CLR).
471 >     *
472 >     * TreeBins also require an additional locking mechanism.  While
473 >     * list traversal is always possible by readers even during
474 >     * updates, tree traversal is not, mainly because of tree-rotations
475 >     * that may change the root node and/or its linkages.  TreeBins
476 >     * include a simple read-write lock mechanism parasitic on the
477 >     * main bin-synchronization strategy: Structural adjustments
478 >     * associated with an insertion or removal are already bin-locked
479 >     * (and so cannot conflict with other writers) but must wait for
480 >     * ongoing readers to finish. Since there can be only one such
481 >     * waiter, we use a simple scheme using a single "waiter" field to
482 >     * block writers.  However, readers need never block.  If the root
483 >     * lock is held, they proceed along the slow traversal path (via
484 >     * next-pointers) until the lock becomes available or the list is
485 >     * exhausted, whichever comes first. These cases are not fast, but
486 >     * maximize aggregate expected throughput.
487       *
488       * Maintaining API and serialization compatibility with previous
489       * versions of this class introduces several oddities. Mainly: We
490 <     * leave untouched but unused constructor arguments refering to
490 >     * leave untouched but unused constructor arguments referring to
491       * concurrencyLevel. We accept a loadFactor constructor argument,
492       * but apply it only to initial table capacity (which is the only
493       * time that we can guarantee to honor it.) We also declare an
494       * unused "Segment" class that is instantiated in minimal form
495       * only when serializing.
496 +     *
497 +     * Also, solely for compatibility with previous versions of this
498 +     * class, it extends AbstractMap, even though all of its methods
499 +     * are overridden, so it is just useless baggage.
500 +     *
501 +     * This file is organized to make things a little easier to follow
502 +     * while reading than they might otherwise: First the main static
503 +     * declarations and utilities, then fields, then main public
504 +     * methods (with a few factorings of multiple public methods into
505 +     * internal ones), then sizing methods, trees, traversers, and
506 +     * bulk operations.
507       */
508  
509      /* ---------------- Constants -------------- */
# Line 510 | Line 546 | public class ConcurrentHashMapV8<K, V>
546  
547      /**
548       * The bin count threshold for using a tree rather than list for a
549 <     * bin.  The value reflects the approximate break-even point for
550 <     * using tree-based operations.
549 >     * bin.  Bins are converted to trees when adding an element to a
550 >     * bin with at least this many nodes. The value must be greater
551 >     * than 2, and should be at least 8 to mesh with assumptions in
552 >     * tree removal about conversion back to plain bins upon
553 >     * shrinkage.
554       */
555 <    private static final int TREE_THRESHOLD = 8;
555 >    static final int TREEIFY_THRESHOLD = 8;
556  
557      /**
558 <     * Minimum number of rebinnings per transfer step. Ranges are
559 <     * subdivided to allow multiple resizer threads.  This value
560 <     * serves as a lower bound to avoid resizers encountering
522 <     * excessive memory contention.  The value should be at least
523 <     * DEFAULT_CAPACITY.
558 >     * The bin count threshold for untreeifying a (split) bin during a
559 >     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
560 >     * most 6 to mesh with shrinkage detection under removal.
561       */
562 <    private static final int MIN_TRANSFER_STRIDE = 16;
526 <
527 <    /*
528 <     * Encodings for Node hash fields. See above for explanation.
529 <     */
530 <    static final int MOVED     = 0x80000000; // hash field for forwarding nodes
531 <    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
532 <
533 <    /** Number of CPUS, to place bounds on some sizings */
534 <    static final int NCPU = Runtime.getRuntime().availableProcessors();
535 <
536 <    /* ---------------- Counters -------------- */
537 <
538 <    // Adapted from LongAdder and Striped64.
539 <    // See their internal docs for explanation.
540 <
541 <    // A padded cell for distributing counts
542 <    static final class CounterCell {
543 <        volatile long p0, p1, p2, p3, p4, p5, p6;
544 <        volatile long value;
545 <        volatile long q0, q1, q2, q3, q4, q5, q6;
546 <        CounterCell(long x) { value = x; }
547 <    }
562 >    static final int UNTREEIFY_THRESHOLD = 6;
563  
564      /**
565 <     * Holder for the thread-local hash code determining which
566 <     * CounterCell to use. The code is initialized via the
567 <     * counterHashCodeGenerator, but may be moved upon collisions.
565 >     * The smallest table capacity for which bins may be treeified.
566 >     * (Otherwise the table is resized if too many nodes in a bin.)
567 >     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
568 >     * conflicts between resizing and treeification thresholds.
569       */
570 <    static final class CounterHashCode {
555 <        int code;
556 <    }
557 <
558 <    /**
559 <     * Generates initial value for per-thread CounterHashCodes
560 <     */
561 <    static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
562 <
563 <    /**
564 <     * Increment for counterHashCodeGenerator. See class ThreadLocal
565 <     * for explanation.
566 <     */
567 <    static final int SEED_INCREMENT = 0x61c88647;
568 <
569 <    /**
570 <     * Per-thread counter hash codes. Shared across all instances
571 <     */
572 <    static final ThreadLocal<CounterHashCode> threadCounterHashCode =
573 <        new ThreadLocal<CounterHashCode>();
574 <
575 <    /* ---------------- Fields -------------- */
570 >    static final int MIN_TREEIFY_CAPACITY = 64;
571  
572      /**
573 <     * The array of bins. Lazily initialized upon first insertion.
574 <     * Size is always a power of two. Accessed directly by iterators.
575 <     */
576 <    transient volatile Node<V>[] table;
577 <
583 <    /**
584 <     * The next table to use; non-null only while resizing.
585 <     */
586 <    private transient volatile Node<V>[] nextTable;
587 <
588 <    /**
589 <     * Base counter value, used mainly when there is no contention,
590 <     * but also as a fallback during table initialization
591 <     * races. Updated via CAS.
592 <     */
593 <    private transient volatile long baseCount;
594 <
595 <    /**
596 <     * Table initialization and resizing control.  When negative, the
597 <     * table is being initialized or resized: -1 for initialization,
598 <     * else -(1 + the number of active resizing threads).  Otherwise,
599 <     * when table is null, holds the initial table size to use upon
600 <     * creation, or 0 for default. After initialization, holds the
601 <     * next element count value upon which to resize the table.
602 <     */
603 <    private transient volatile int sizeCtl;
604 <
605 <    /**
606 <     * The next table index (plus one) to split while resizing.
573 >     * Minimum number of rebinnings per transfer step. Ranges are
574 >     * subdivided to allow multiple resizer threads.  This value
575 >     * serves as a lower bound to avoid resizers encountering
576 >     * excessive memory contention.  The value should be at least
577 >     * DEFAULT_CAPACITY.
578       */
579 <    private transient volatile int transferIndex;
579 >    private static final int MIN_TRANSFER_STRIDE = 16;
580  
581      /**
582 <     * The least available table index to split while resizing.
582 >     * The number of bits used for generation stamp in sizeCtl.
583 >     * Must be at least 6 for 32bit arrays.
584       */
585 <    private transient volatile int transferOrigin;
585 >    private static int RESIZE_STAMP_BITS = 16;
586  
587      /**
588 <     * Spinlock (locked via CAS) used when resizing and/or creating Cells.
588 >     * The maximum number of threads that can help resize.
589 >     * Must fit in 32 - RESIZE_STAMP_BITS bits.
590       */
591 <    private transient volatile int counterBusy;
591 >    private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
592  
593      /**
594 <     * Table of counter cells. When non-null, size is a power of 2.
594 >     * The bit shift for recording size stamp in sizeCtl.
595       */
596 <    private transient volatile CounterCell[] counterCells;
624 <
625 <    // views
626 <    private transient KeySetView<K,V> keySet;
627 <    private transient ValuesView<K,V> values;
628 <    private transient EntrySetView<K,V> entrySet;
629 <
630 <    /** For serialization compatibility. Null unless serialized; see below */
631 <    private Segment<K,V>[] segments;
632 <
633 <    /* ---------------- Table element access -------------- */
596 >    private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
597  
598      /*
599 <     * Volatile access methods are used for table elements as well as
600 <     * elements of in-progress next table while resizing.  Uses are
601 <     * null checked by callers, and implicitly bounds-checked, relying
602 <     * on the invariants that tab arrays have non-zero size, and all
603 <     * indices are masked with (tab.length - 1) which is never
604 <     * negative and always less than length. Note that, to be correct
642 <     * wrt arbitrary concurrency errors by users, bounds checks must
643 <     * operate on local variables, which accounts for some odd-looking
644 <     * inline assignments below.
645 <     */
646 <
647 <    @SuppressWarnings("unchecked") static final <V> Node<V> tabAt
648 <        (Node<V>[] tab, int i) { // used by Traverser
649 <        return (Node<V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
650 <    }
599 >     * Encodings for Node hash fields. See above for explanation.
600 >     */
601 >    static final int MOVED     = -1; // hash for forwarding nodes
602 >    static final int TREEBIN   = -2; // hash for roots of trees
603 >    static final int RESERVED  = -3; // hash for transient reservations
604 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
605  
606 <    private static final <V> boolean casTabAt
607 <        (Node<V>[] tab, int i, Node<V> c, Node<V> v) {
654 <        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
655 <    }
606 >    /** Number of CPUS, to place bounds on some sizings */
607 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
608  
609 <    private static final <V> void setTabAt
610 <        (Node<V>[] tab, int i, Node<V> v) {
611 <        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
612 <    }
609 >    /** For serialization compatibility. */
610 >    private static final ObjectStreamField[] serialPersistentFields = {
611 >        new ObjectStreamField("segments", Segment[].class),
612 >        new ObjectStreamField("segmentMask", Integer.TYPE),
613 >        new ObjectStreamField("segmentShift", Integer.TYPE)
614 >    };
615  
616      /* ---------------- Nodes -------------- */
617  
618      /**
619 <     * Key-value entry. Note that this is never exported out as a
620 <     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
621 <     * field of MOVED are special, and do not contain user keys or
622 <     * values.  Otherwise, keys are never null, and null val fields
623 <     * indicate that a node is in the process of being deleted or
624 <     * created. For purposes of read-only access, a key may be read
671 <     * before a val, but can only be used after checking val to be
672 <     * non-null.
619 >     * Key-value entry.  This class is never exported out as a
620 >     * user-mutable Map.Entry (i.e., one supporting setValue; see
621 >     * MapEntry below), but can be used for read-only traversals used
622 >     * in bulk tasks.  Subclasses of Node with a negative hash field
623 >     * are special, and contain null keys and values (but are never
624 >     * exported).  Otherwise, keys and vals are never null.
625       */
626 <    static class Node<V> {
626 >    static class Node<K,V> implements Map.Entry<K,V> {
627          final int hash;
628 <        final Object key;
628 >        final K key;
629          volatile V val;
630 <        volatile Node<V> next;
630 >        volatile Node<K,V> next;
631  
632 <        Node(int hash, Object key, V val, Node<V> next) {
632 >        Node(int hash, K key, V val, Node<K,V> next) {
633              this.hash = hash;
634              this.key = key;
635              this.val = val;
636              this.next = next;
637          }
686    }
687
688    /* ---------------- TreeBins -------------- */
689
690    /**
691     * Nodes for use in TreeBins
692     */
693    static final class TreeNode<V> extends Node<V> {
694        TreeNode<V> parent;  // red-black tree links
695        TreeNode<V> left;
696        TreeNode<V> right;
697        TreeNode<V> prev;    // needed to unlink next upon deletion
698        boolean red;
638  
639 <        TreeNode(int hash, Object key, V val, Node<V> next, TreeNode<V> parent) {
640 <            super(hash, key, val, next);
641 <            this.parent = parent;
642 <        }
643 <    }
644 <
706 <    /**
707 <     * A specialized form of red-black tree for use in bins
708 <     * whose size exceeds a threshold.
709 <     *
710 <     * TreeBins use a special form of comparison for search and
711 <     * related operations (which is the main reason we cannot use
712 <     * existing collections such as TreeMaps). TreeBins contain
713 <     * Comparable elements, but may contain others, as well as
714 <     * elements that are Comparable but not necessarily Comparable<T>
715 <     * for the same T, so we cannot invoke compareTo among them. To
716 <     * handle this, the tree is ordered primarily by hash value, then
717 <     * by getClass().getName() order, and then by Comparator order
718 <     * among elements of the same class.  On lookup at a node, if
719 <     * elements are not comparable or compare as 0, both left and
720 <     * right children may need to be searched in the case of tied hash
721 <     * values. (This corresponds to the full list search that would be
722 <     * necessary if all elements were non-Comparable and had tied
723 <     * hashes.)  The red-black balancing code is updated from
724 <     * pre-jdk-collections
725 <     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
726 <     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
727 <     * Algorithms" (CLR).
728 <     *
729 <     * TreeBins also maintain a separate locking discipline than
730 <     * regular bins. Because they are forwarded via special MOVED
731 <     * nodes at bin heads (which can never change once established),
732 <     * we cannot use those nodes as locks. Instead, TreeBin
733 <     * extends AbstractQueuedSynchronizer to support a simple form of
734 <     * read-write lock. For update operations and table validation,
735 <     * the exclusive form of lock behaves in the same way as bin-head
736 <     * locks. However, lookups use shared read-lock mechanics to allow
737 <     * multiple readers in the absence of writers.  Additionally,
738 <     * these lookups do not ever block: While the lock is not
739 <     * available, they proceed along the slow traversal path (via
740 <     * next-pointers) until the lock becomes available or the list is
741 <     * exhausted, whichever comes first. (These cases are not fast,
742 <     * but maximize aggregate expected throughput.)  The AQS mechanics
743 <     * for doing this are straightforward.  The lock state is held as
744 <     * AQS getState().  Read counts are negative; the write count (1)
745 <     * is positive.  There are no signalling preferences among readers
746 <     * and writers. Since we don't need to export full Lock API, we
747 <     * just override the minimal AQS methods and use them directly.
748 <     */
749 <    static final class TreeBin<V> extends AbstractQueuedSynchronizer {
750 <        private static final long serialVersionUID = 2249069246763182397L;
751 <        transient TreeNode<V> root;  // root of tree
752 <        transient TreeNode<V> first; // head of next-pointer list
753 <
754 <        /* AQS overrides */
755 <        public final boolean isHeldExclusively() { return getState() > 0; }
756 <        public final boolean tryAcquire(int ignore) {
757 <            if (compareAndSetState(0, 1)) {
758 <                setExclusiveOwnerThread(Thread.currentThread());
759 <                return true;
760 <            }
761 <            return false;
762 <        }
763 <        public final boolean tryRelease(int ignore) {
764 <            setExclusiveOwnerThread(null);
765 <            setState(0);
766 <            return true;
767 <        }
768 <        public final int tryAcquireShared(int ignore) {
769 <            for (int c;;) {
770 <                if ((c = getState()) > 0)
771 <                    return -1;
772 <                if (compareAndSetState(c, c -1))
773 <                    return 1;
774 <            }
775 <        }
776 <        public final boolean tryReleaseShared(int ignore) {
777 <            int c;
778 <            do {} while (!compareAndSetState(c = getState(), c + 1));
779 <            return c == -1;
780 <        }
781 <
782 <        /** From CLR */
783 <        private void rotateLeft(TreeNode<V> p) {
784 <            if (p != null) {
785 <                TreeNode<V> r = p.right, pp, rl;
786 <                if ((rl = p.right = r.left) != null)
787 <                    rl.parent = p;
788 <                if ((pp = r.parent = p.parent) == null)
789 <                    root = r;
790 <                else if (pp.left == p)
791 <                    pp.left = r;
792 <                else
793 <                    pp.right = r;
794 <                r.left = p;
795 <                p.parent = r;
796 <            }
797 <        }
798 <
799 <        /** From CLR */
800 <        private void rotateRight(TreeNode<V> p) {
801 <            if (p != null) {
802 <                TreeNode<V> l = p.left, pp, lr;
803 <                if ((lr = p.left = l.right) != null)
804 <                    lr.parent = p;
805 <                if ((pp = l.parent = p.parent) == null)
806 <                    root = l;
807 <                else if (pp.right == p)
808 <                    pp.right = l;
809 <                else
810 <                    pp.left = l;
811 <                l.right = p;
812 <                p.parent = l;
813 <            }
814 <        }
815 <
816 <        /**
817 <         * Returns the TreeNode (or null if not found) for the given key
818 <         * starting at given root.
819 <         */
820 <        @SuppressWarnings("unchecked") final TreeNode<V> getTreeNode
821 <            (int h, Object k, TreeNode<V> p) {
822 <            Class<?> c = k.getClass();
823 <            while (p != null) {
824 <                int dir, ph;  Object pk; Class<?> pc;
825 <                if ((ph = p.hash) == h) {
826 <                    if ((pk = p.key) == k || k.equals(pk))
827 <                        return p;
828 <                    if (c != (pc = pk.getClass()) ||
829 <                        !(k instanceof Comparable) ||
830 <                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
831 <                        if ((dir = (c == pc) ? 0 :
832 <                             c.getName().compareTo(pc.getName())) == 0) {
833 <                            TreeNode<V> r = null, pl, pr; // check both sides
834 <                            if ((pr = p.right) != null && h >= pr.hash &&
835 <                                (r = getTreeNode(h, k, pr)) != null)
836 <                                return r;
837 <                            else if ((pl = p.left) != null && h <= pl.hash)
838 <                                dir = -1;
839 <                            else // nothing there
840 <                                return null;
841 <                        }
842 <                    }
843 <                }
844 <                else
845 <                    dir = (h < ph) ? -1 : 1;
846 <                p = (dir > 0) ? p.right : p.left;
847 <            }
848 <            return null;
639 >        public final K getKey()     { return key; }
640 >        public final V getValue()   { return val; }
641 >        public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
642 >        public final String toString() { return key + "=" + val; }
643 >        public final V setValue(V value) {
644 >            throw new UnsupportedOperationException();
645          }
646  
647 <        /**
648 <         * Wrapper for getTreeNode used by CHM.get. Tries to obtain
649 <         * read-lock to call getTreeNode, but during failure to get
650 <         * lock, searches along next links.
651 <         */
652 <        final V getValue(int h, Object k) {
653 <            Node<V> r = null;
858 <            int c = getState(); // Must read lock state first
859 <            for (Node<V> e = first; e != null; e = e.next) {
860 <                if (c <= 0 && compareAndSetState(c, c - 1)) {
861 <                    try {
862 <                        r = getTreeNode(h, k, root);
863 <                    } finally {
864 <                        releaseShared(0);
865 <                    }
866 <                    break;
867 <                }
868 <                else if (e.hash == h && k.equals(e.key)) {
869 <                    r = e;
870 <                    break;
871 <                }
872 <                else
873 <                    c = getState();
874 <            }
875 <            return r == null ? null : r.val;
647 >        public final boolean equals(Object o) {
648 >            Object k, v, u; Map.Entry<?,?> e;
649 >            return ((o instanceof Map.Entry) &&
650 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
651 >                    (v = e.getValue()) != null &&
652 >                    (k == key || k.equals(key)) &&
653 >                    (v == (u = val) || v.equals(u)));
654          }
655  
656          /**
657 <         * Finds or adds a node.
880 <         * @return null if added
657 >         * Virtualized support for map.get(); overridden in subclasses.
658           */
659 <        @SuppressWarnings("unchecked") final TreeNode<V> putTreeNode
660 <            (int h, Object k, V v) {
661 <            Class<?> c = k.getClass();
662 <            TreeNode<V> pp = root, p = null;
663 <            int dir = 0;
664 <            while (pp != null) { // find existing node or leaf to insert at
665 <                int ph;  Object pk; Class<?> pc;
666 <                p = pp;
667 <                if ((ph = p.hash) == h) {
891 <                    if ((pk = p.key) == k || k.equals(pk))
892 <                        return p;
893 <                    if (c != (pc = pk.getClass()) ||
894 <                        !(k instanceof Comparable) ||
895 <                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
896 <                        TreeNode<V> s = null, r = null, pr;
897 <                        if ((dir = (c == pc) ? 0 :
898 <                             c.getName().compareTo(pc.getName())) == 0) {
899 <                            if ((pr = p.right) != null && h >= pr.hash &&
900 <                                (r = getTreeNode(h, k, pr)) != null)
901 <                                return r;
902 <                            else // continue left
903 <                                dir = -1;
904 <                        }
905 <                        else if ((pr = p.right) != null && h >= pr.hash)
906 <                            s = pr;
907 <                        if (s != null && (r = getTreeNode(h, k, s)) != null)
908 <                            return r;
909 <                    }
910 <                }
911 <                else
912 <                    dir = (h < ph) ? -1 : 1;
913 <                pp = (dir > 0) ? p.right : p.left;
914 <            }
915 <
916 <            TreeNode<V> f = first;
917 <            TreeNode<V> x = first = new TreeNode<V>(h, k, v, f, p);
918 <            if (p == null)
919 <                root = x;
920 <            else { // attach and rebalance; adapted from CLR
921 <                TreeNode<V> xp, xpp;
922 <                if (f != null)
923 <                    f.prev = x;
924 <                if (dir <= 0)
925 <                    p.left = x;
926 <                else
927 <                    p.right = x;
928 <                x.red = true;
929 <                while (x != null && (xp = x.parent) != null && xp.red &&
930 <                       (xpp = xp.parent) != null) {
931 <                    TreeNode<V> xppl = xpp.left;
932 <                    if (xp == xppl) {
933 <                        TreeNode<V> y = xpp.right;
934 <                        if (y != null && y.red) {
935 <                            y.red = false;
936 <                            xp.red = false;
937 <                            xpp.red = true;
938 <                            x = xpp;
939 <                        }
940 <                        else {
941 <                            if (x == xp.right) {
942 <                                rotateLeft(x = xp);
943 <                                xpp = (xp = x.parent) == null ? null : xp.parent;
944 <                            }
945 <                            if (xp != null) {
946 <                                xp.red = false;
947 <                                if (xpp != null) {
948 <                                    xpp.red = true;
949 <                                    rotateRight(xpp);
950 <                                }
951 <                            }
952 <                        }
953 <                    }
954 <                    else {
955 <                        TreeNode<V> y = xppl;
956 <                        if (y != null && y.red) {
957 <                            y.red = false;
958 <                            xp.red = false;
959 <                            xpp.red = true;
960 <                            x = xpp;
961 <                        }
962 <                        else {
963 <                            if (x == xp.left) {
964 <                                rotateRight(x = xp);
965 <                                xpp = (xp = x.parent) == null ? null : xp.parent;
966 <                            }
967 <                            if (xp != null) {
968 <                                xp.red = false;
969 <                                if (xpp != null) {
970 <                                    xpp.red = true;
971 <                                    rotateLeft(xpp);
972 <                                }
973 <                            }
974 <                        }
975 <                    }
976 <                }
977 <                TreeNode<V> r = root;
978 <                if (r != null && r.red)
979 <                    r.red = false;
659 >        Node<K,V> find(int h, Object k) {
660 >            Node<K,V> e = this;
661 >            if (k != null) {
662 >                do {
663 >                    K ek;
664 >                    if (e.hash == h &&
665 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
666 >                        return e;
667 >                } while ((e = e.next) != null);
668              }
669              return null;
670          }
983
984        /**
985         * Removes the given node, that must be present before this
986         * call.  This is messier than typical red-black deletion code
987         * because we cannot swap the contents of an interior node
988         * with a leaf successor that is pinned by "next" pointers
989         * that are accessible independently of lock. So instead we
990         * swap the tree linkages.
991         */
992        final void deleteTreeNode(TreeNode<V> p) {
993            TreeNode<V> next = (TreeNode<V>)p.next; // unlink traversal pointers
994            TreeNode<V> pred = p.prev;
995            if (pred == null)
996                first = next;
997            else
998                pred.next = next;
999            if (next != null)
1000                next.prev = pred;
1001            TreeNode<V> replacement;
1002            TreeNode<V> pl = p.left;
1003            TreeNode<V> pr = p.right;
1004            if (pl != null && pr != null) {
1005                TreeNode<V> s = pr, sl;
1006                while ((sl = s.left) != null) // find successor
1007                    s = sl;
1008                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
1009                TreeNode<V> sr = s.right;
1010                TreeNode<V> pp = p.parent;
1011                if (s == pr) { // p was s's direct parent
1012                    p.parent = s;
1013                    s.right = p;
1014                }
1015                else {
1016                    TreeNode<V> sp = s.parent;
1017                    if ((p.parent = sp) != null) {
1018                        if (s == sp.left)
1019                            sp.left = p;
1020                        else
1021                            sp.right = p;
1022                    }
1023                    if ((s.right = pr) != null)
1024                        pr.parent = s;
1025                }
1026                p.left = null;
1027                if ((p.right = sr) != null)
1028                    sr.parent = p;
1029                if ((s.left = pl) != null)
1030                    pl.parent = s;
1031                if ((s.parent = pp) == null)
1032                    root = s;
1033                else if (p == pp.left)
1034                    pp.left = s;
1035                else
1036                    pp.right = s;
1037                replacement = sr;
1038            }
1039            else
1040                replacement = (pl != null) ? pl : pr;
1041            TreeNode<V> pp = p.parent;
1042            if (replacement == null) {
1043                if (pp == null) {
1044                    root = null;
1045                    return;
1046                }
1047                replacement = p;
1048            }
1049            else {
1050                replacement.parent = pp;
1051                if (pp == null)
1052                    root = replacement;
1053                else if (p == pp.left)
1054                    pp.left = replacement;
1055                else
1056                    pp.right = replacement;
1057                p.left = p.right = p.parent = null;
1058            }
1059            if (!p.red) { // rebalance, from CLR
1060                TreeNode<V> x = replacement;
1061                while (x != null) {
1062                    TreeNode<V> xp, xpl;
1063                    if (x.red || (xp = x.parent) == null) {
1064                        x.red = false;
1065                        break;
1066                    }
1067                    if (x == (xpl = xp.left)) {
1068                        TreeNode<V> sib = xp.right;
1069                        if (sib != null && sib.red) {
1070                            sib.red = false;
1071                            xp.red = true;
1072                            rotateLeft(xp);
1073                            sib = (xp = x.parent) == null ? null : xp.right;
1074                        }
1075                        if (sib == null)
1076                            x = xp;
1077                        else {
1078                            TreeNode<V> sl = sib.left, sr = sib.right;
1079                            if ((sr == null || !sr.red) &&
1080                                (sl == null || !sl.red)) {
1081                                sib.red = true;
1082                                x = xp;
1083                            }
1084                            else {
1085                                if (sr == null || !sr.red) {
1086                                    if (sl != null)
1087                                        sl.red = false;
1088                                    sib.red = true;
1089                                    rotateRight(sib);
1090                                    sib = (xp = x.parent) == null ?
1091                                        null : xp.right;
1092                                }
1093                                if (sib != null) {
1094                                    sib.red = (xp == null) ? false : xp.red;
1095                                    if ((sr = sib.right) != null)
1096                                        sr.red = false;
1097                                }
1098                                if (xp != null) {
1099                                    xp.red = false;
1100                                    rotateLeft(xp);
1101                                }
1102                                x = root;
1103                            }
1104                        }
1105                    }
1106                    else { // symmetric
1107                        TreeNode<V> sib = xpl;
1108                        if (sib != null && sib.red) {
1109                            sib.red = false;
1110                            xp.red = true;
1111                            rotateRight(xp);
1112                            sib = (xp = x.parent) == null ? null : xp.left;
1113                        }
1114                        if (sib == null)
1115                            x = xp;
1116                        else {
1117                            TreeNode<V> sl = sib.left, sr = sib.right;
1118                            if ((sl == null || !sl.red) &&
1119                                (sr == null || !sr.red)) {
1120                                sib.red = true;
1121                                x = xp;
1122                            }
1123                            else {
1124                                if (sl == null || !sl.red) {
1125                                    if (sr != null)
1126                                        sr.red = false;
1127                                    sib.red = true;
1128                                    rotateLeft(sib);
1129                                    sib = (xp = x.parent) == null ?
1130                                        null : xp.left;
1131                                }
1132                                if (sib != null) {
1133                                    sib.red = (xp == null) ? false : xp.red;
1134                                    if ((sl = sib.left) != null)
1135                                        sl.red = false;
1136                                }
1137                                if (xp != null) {
1138                                    xp.red = false;
1139                                    rotateRight(xp);
1140                                }
1141                                x = root;
1142                            }
1143                        }
1144                    }
1145                }
1146            }
1147            if (p == replacement && (pp = p.parent) != null) {
1148                if (p == pp.left) // detach pointers
1149                    pp.left = null;
1150                else if (p == pp.right)
1151                    pp.right = null;
1152                p.parent = null;
1153            }
1154        }
671      }
672  
673 <    /* ---------------- Collision reduction methods -------------- */
673 >    /* ---------------- Static utilities -------------- */
674  
675      /**
676 <     * Spreads higher bits to lower, and also forces top bit to 0.
677 <     * Because the table uses power-of-two masking, sets of hashes
678 <     * that vary only in bits above the current mask will always
679 <     * collide. (Among known examples are sets of Float keys holding
680 <     * consecutive whole numbers in small tables.)  To counter this,
681 <     * we apply a transform that spreads the impact of higher bits
676 >     * Spreads (XORs) higher bits of hash to lower and also forces top
677 >     * bit to 0. Because the table uses power-of-two masking, sets of
678 >     * hashes that vary only in bits above the current mask will
679 >     * always collide. (Among known examples are sets of Float keys
680 >     * holding consecutive whole numbers in small tables.)  So we
681 >     * apply a transform that spreads the impact of higher bits
682       * downward. There is a tradeoff between speed, utility, and
683       * quality of bit-spreading. Because many common sets of hashes
684 <     * are already reasonably distributed across bits (so don't benefit
685 <     * from spreading), and because we use trees to handle large sets
686 <     * of collisions in bins, we don't need excessively high quality.
687 <     */
688 <    private static final int spread(int h) {
689 <        h ^= (h >>> 18) ^ (h >>> 12);
1174 <        return (h ^ (h >>> 10)) & HASH_BITS;
1175 <    }
1176 <
1177 <    /**
1178 <     * Replaces a list bin with a tree bin if key is comparable.  Call
1179 <     * only when locked.
1180 <     */
1181 <    private final void replaceWithTreeBin(Node<V>[] tab, int index, Object key) {
1182 <        if (key instanceof Comparable) {
1183 <            TreeBin<V> t = new TreeBin<V>();
1184 <            for (Node<V> e = tabAt(tab, index); e != null; e = e.next)
1185 <                t.putTreeNode(e.hash, e.key, e.val);
1186 <            setTabAt(tab, index, new Node<V>(MOVED, t, null, null));
1187 <        }
1188 <    }
1189 <
1190 <    /* ---------------- Internal access and update methods -------------- */
1191 <
1192 <    /** Implementation for get and containsKey */
1193 <    @SuppressWarnings("unchecked") private final V internalGet(Object k) {
1194 <        int h = spread(k.hashCode());
1195 <        retry: for (Node<V>[] tab = table; tab != null;) {
1196 <            Node<V> e; Object ek; V ev; int eh; // locals to read fields once
1197 <            for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1198 <                if ((eh = e.hash) < 0) {
1199 <                    if ((ek = e.key) instanceof TreeBin)  // search TreeBin
1200 <                        return ((TreeBin<V>)ek).getValue(h, k);
1201 <                    else {                      // restart with new table
1202 <                        tab = (Node<V>[])ek;
1203 <                        continue retry;
1204 <                    }
1205 <                }
1206 <                else if (eh == h && (ev = e.val) != null &&
1207 <                         ((ek = e.key) == k || k.equals(ek)))
1208 <                    return ev;
1209 <            }
1210 <            break;
1211 <        }
1212 <        return null;
1213 <    }
1214 <
1215 <    /**
1216 <     * Implementation for the four public remove/replace methods:
1217 <     * Replaces node value with v, conditional upon match of cv if
1218 <     * non-null.  If resulting value is null, delete.
1219 <     */
1220 <    @SuppressWarnings("unchecked") private final V internalReplace
1221 <        (Object k, V v, Object cv) {
1222 <        int h = spread(k.hashCode());
1223 <        V oldVal = null;
1224 <        for (Node<V>[] tab = table;;) {
1225 <            Node<V> f; int i, fh; Object fk;
1226 <            if (tab == null ||
1227 <                (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1228 <                break;
1229 <            else if ((fh = f.hash) < 0) {
1230 <                if ((fk = f.key) instanceof TreeBin) {
1231 <                    TreeBin<V> t = (TreeBin<V>)fk;
1232 <                    boolean validated = false;
1233 <                    boolean deleted = false;
1234 <                    t.acquire(0);
1235 <                    try {
1236 <                        if (tabAt(tab, i) == f) {
1237 <                            validated = true;
1238 <                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1239 <                            if (p != null) {
1240 <                                V pv = p.val;
1241 <                                if (cv == null || cv == pv || cv.equals(pv)) {
1242 <                                    oldVal = pv;
1243 <                                    if ((p.val = v) == null) {
1244 <                                        deleted = true;
1245 <                                        t.deleteTreeNode(p);
1246 <                                    }
1247 <                                }
1248 <                            }
1249 <                        }
1250 <                    } finally {
1251 <                        t.release(0);
1252 <                    }
1253 <                    if (validated) {
1254 <                        if (deleted)
1255 <                            addCount(-1L, -1);
1256 <                        break;
1257 <                    }
1258 <                }
1259 <                else
1260 <                    tab = (Node<V>[])fk;
1261 <            }
1262 <            else if (fh != h && f.next == null) // precheck
1263 <                break;                          // rules out possible existence
1264 <            else {
1265 <                boolean validated = false;
1266 <                boolean deleted = false;
1267 <                synchronized (f) {
1268 <                    if (tabAt(tab, i) == f) {
1269 <                        validated = true;
1270 <                        for (Node<V> e = f, pred = null;;) {
1271 <                            Object ek; V ev;
1272 <                            if (e.hash == h &&
1273 <                                ((ev = e.val) != null) &&
1274 <                                ((ek = e.key) == k || k.equals(ek))) {
1275 <                                if (cv == null || cv == ev || cv.equals(ev)) {
1276 <                                    oldVal = ev;
1277 <                                    if ((e.val = v) == null) {
1278 <                                        deleted = true;
1279 <                                        Node<V> en = e.next;
1280 <                                        if (pred != null)
1281 <                                            pred.next = en;
1282 <                                        else
1283 <                                            setTabAt(tab, i, en);
1284 <                                    }
1285 <                                }
1286 <                                break;
1287 <                            }
1288 <                            pred = e;
1289 <                            if ((e = e.next) == null)
1290 <                                break;
1291 <                        }
1292 <                    }
1293 <                }
1294 <                if (validated) {
1295 <                    if (deleted)
1296 <                        addCount(-1L, -1);
1297 <                    break;
1298 <                }
1299 <            }
1300 <        }
1301 <        return oldVal;
1302 <    }
1303 <
1304 <    /*
1305 <     * Internal versions of insertion methods
1306 <     * All have the same basic structure as the first (internalPut):
1307 <     *  1. If table uninitialized, create
1308 <     *  2. If bin empty, try to CAS new node
1309 <     *  3. If bin stale, use new table
1310 <     *  4. if bin converted to TreeBin, validate and relay to TreeBin methods
1311 <     *  5. Lock and validate; if valid, scan and add or update
1312 <     *
1313 <     * The putAll method differs mainly in attempting to pre-allocate
1314 <     * enough table space, and also more lazily performs count updates
1315 <     * and checks.
1316 <     *
1317 <     * Most of the function-accepting methods can't be factored nicely
1318 <     * because they require different functional forms, so instead
1319 <     * sprawl out similar mechanics.
684 >     * are already reasonably distributed (so don't benefit from
685 >     * spreading), and because we use trees to handle large sets of
686 >     * collisions in bins, we just XOR some shifted bits in the
687 >     * cheapest possible way to reduce systematic lossage, as well as
688 >     * to incorporate impact of the highest bits that would otherwise
689 >     * never be used in index calculations because of table bounds.
690       */
691 <
692 <    /** Implementation for put and putIfAbsent */
1323 <    @SuppressWarnings("unchecked") private final V internalPut
1324 <        (K k, V v, boolean onlyIfAbsent) {
1325 <        if (k == null || v == null) throw new NullPointerException();
1326 <        int h = spread(k.hashCode());
1327 <        int len = 0;
1328 <        for (Node<V>[] tab = table;;) {
1329 <            int i, fh; Node<V> f; Object fk; V fv;
1330 <            if (tab == null)
1331 <                tab = initTable();
1332 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1333 <                if (casTabAt(tab, i, null, new Node<V>(h, k, v, null)))
1334 <                    break;                   // no lock when adding to empty bin
1335 <            }
1336 <            else if ((fh = f.hash) < 0) {
1337 <                if ((fk = f.key) instanceof TreeBin) {
1338 <                    TreeBin<V> t = (TreeBin<V>)fk;
1339 <                    V oldVal = null;
1340 <                    t.acquire(0);
1341 <                    try {
1342 <                        if (tabAt(tab, i) == f) {
1343 <                            len = 2;
1344 <                            TreeNode<V> p = t.putTreeNode(h, k, v);
1345 <                            if (p != null) {
1346 <                                oldVal = p.val;
1347 <                                if (!onlyIfAbsent)
1348 <                                    p.val = v;
1349 <                            }
1350 <                        }
1351 <                    } finally {
1352 <                        t.release(0);
1353 <                    }
1354 <                    if (len != 0) {
1355 <                        if (oldVal != null)
1356 <                            return oldVal;
1357 <                        break;
1358 <                    }
1359 <                }
1360 <                else
1361 <                    tab = (Node<V>[])fk;
1362 <            }
1363 <            else if (onlyIfAbsent && fh == h && (fv = f.val) != null &&
1364 <                     ((fk = f.key) == k || k.equals(fk))) // peek while nearby
1365 <                return fv;
1366 <            else {
1367 <                V oldVal = null;
1368 <                synchronized (f) {
1369 <                    if (tabAt(tab, i) == f) {
1370 <                        len = 1;
1371 <                        for (Node<V> e = f;; ++len) {
1372 <                            Object ek; V ev;
1373 <                            if (e.hash == h &&
1374 <                                (ev = e.val) != null &&
1375 <                                ((ek = e.key) == k || k.equals(ek))) {
1376 <                                oldVal = ev;
1377 <                                if (!onlyIfAbsent)
1378 <                                    e.val = v;
1379 <                                break;
1380 <                            }
1381 <                            Node<V> last = e;
1382 <                            if ((e = e.next) == null) {
1383 <                                last.next = new Node<V>(h, k, v, null);
1384 <                                if (len >= TREE_THRESHOLD)
1385 <                                    replaceWithTreeBin(tab, i, k);
1386 <                                break;
1387 <                            }
1388 <                        }
1389 <                    }
1390 <                }
1391 <                if (len != 0) {
1392 <                    if (oldVal != null)
1393 <                        return oldVal;
1394 <                    break;
1395 <                }
1396 <            }
1397 <        }
1398 <        addCount(1L, len);
1399 <        return null;
1400 <    }
1401 <
1402 <    /** Implementation for computeIfAbsent */
1403 <    @SuppressWarnings("unchecked") private final V internalComputeIfAbsent
1404 <        (K k, Fun<? super K, ? extends V> mf) {
1405 <        if (k == null || mf == null)
1406 <            throw new NullPointerException();
1407 <        int h = spread(k.hashCode());
1408 <        V val = null;
1409 <        int len = 0;
1410 <        for (Node<V>[] tab = table;;) {
1411 <            Node<V> f; int i; Object fk;
1412 <            if (tab == null)
1413 <                tab = initTable();
1414 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1415 <                Node<V> node = new Node<V>(h, k, null, null);
1416 <                synchronized (node) {
1417 <                    if (casTabAt(tab, i, null, node)) {
1418 <                        len = 1;
1419 <                        try {
1420 <                            if ((val = mf.apply(k)) != null)
1421 <                                node.val = val;
1422 <                        } finally {
1423 <                            if (val == null)
1424 <                                setTabAt(tab, i, null);
1425 <                        }
1426 <                    }
1427 <                }
1428 <                if (len != 0)
1429 <                    break;
1430 <            }
1431 <            else if (f.hash < 0) {
1432 <                if ((fk = f.key) instanceof TreeBin) {
1433 <                    TreeBin<V> t = (TreeBin<V>)fk;
1434 <                    boolean added = false;
1435 <                    t.acquire(0);
1436 <                    try {
1437 <                        if (tabAt(tab, i) == f) {
1438 <                            len = 1;
1439 <                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1440 <                            if (p != null)
1441 <                                val = p.val;
1442 <                            else if ((val = mf.apply(k)) != null) {
1443 <                                added = true;
1444 <                                len = 2;
1445 <                                t.putTreeNode(h, k, val);
1446 <                            }
1447 <                        }
1448 <                    } finally {
1449 <                        t.release(0);
1450 <                    }
1451 <                    if (len != 0) {
1452 <                        if (!added)
1453 <                            return val;
1454 <                        break;
1455 <                    }
1456 <                }
1457 <                else
1458 <                    tab = (Node<V>[])fk;
1459 <            }
1460 <            else {
1461 <                for (Node<V> e = f; e != null; e = e.next) { // prescan
1462 <                    Object ek; V ev;
1463 <                    if (e.hash == h && (ev = e.val) != null &&
1464 <                        ((ek = e.key) == k || k.equals(ek)))
1465 <                        return ev;
1466 <                }
1467 <                boolean added = false;
1468 <                synchronized (f) {
1469 <                    if (tabAt(tab, i) == f) {
1470 <                        len = 1;
1471 <                        for (Node<V> e = f;; ++len) {
1472 <                            Object ek; V ev;
1473 <                            if (e.hash == h &&
1474 <                                (ev = e.val) != null &&
1475 <                                ((ek = e.key) == k || k.equals(ek))) {
1476 <                                val = ev;
1477 <                                break;
1478 <                            }
1479 <                            Node<V> last = e;
1480 <                            if ((e = e.next) == null) {
1481 <                                if ((val = mf.apply(k)) != null) {
1482 <                                    added = true;
1483 <                                    last.next = new Node<V>(h, k, val, null);
1484 <                                    if (len >= TREE_THRESHOLD)
1485 <                                        replaceWithTreeBin(tab, i, k);
1486 <                                }
1487 <                                break;
1488 <                            }
1489 <                        }
1490 <                    }
1491 <                }
1492 <                if (len != 0) {
1493 <                    if (!added)
1494 <                        return val;
1495 <                    break;
1496 <                }
1497 <            }
1498 <        }
1499 <        if (val != null)
1500 <            addCount(1L, len);
1501 <        return val;
1502 <    }
1503 <
1504 <    /** Implementation for compute */
1505 <    @SuppressWarnings("unchecked") private final V internalCompute
1506 <        (K k, boolean onlyIfPresent,
1507 <         BiFun<? super K, ? super V, ? extends V> mf) {
1508 <        if (k == null || mf == null)
1509 <            throw new NullPointerException();
1510 <        int h = spread(k.hashCode());
1511 <        V val = null;
1512 <        int delta = 0;
1513 <        int len = 0;
1514 <        for (Node<V>[] tab = table;;) {
1515 <            Node<V> f; int i, fh; Object fk;
1516 <            if (tab == null)
1517 <                tab = initTable();
1518 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1519 <                if (onlyIfPresent)
1520 <                    break;
1521 <                Node<V> node = new Node<V>(h, k, null, null);
1522 <                synchronized (node) {
1523 <                    if (casTabAt(tab, i, null, node)) {
1524 <                        try {
1525 <                            len = 1;
1526 <                            if ((val = mf.apply(k, null)) != null) {
1527 <                                node.val = val;
1528 <                                delta = 1;
1529 <                            }
1530 <                        } finally {
1531 <                            if (delta == 0)
1532 <                                setTabAt(tab, i, null);
1533 <                        }
1534 <                    }
1535 <                }
1536 <                if (len != 0)
1537 <                    break;
1538 <            }
1539 <            else if ((fh = f.hash) < 0) {
1540 <                if ((fk = f.key) instanceof TreeBin) {
1541 <                    TreeBin<V> t = (TreeBin<V>)fk;
1542 <                    t.acquire(0);
1543 <                    try {
1544 <                        if (tabAt(tab, i) == f) {
1545 <                            len = 1;
1546 <                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1547 <                            if (p == null && onlyIfPresent)
1548 <                                break;
1549 <                            V pv = (p == null) ? null : p.val;
1550 <                            if ((val = mf.apply(k, pv)) != null) {
1551 <                                if (p != null)
1552 <                                    p.val = val;
1553 <                                else {
1554 <                                    len = 2;
1555 <                                    delta = 1;
1556 <                                    t.putTreeNode(h, k, val);
1557 <                                }
1558 <                            }
1559 <                            else if (p != null) {
1560 <                                delta = -1;
1561 <                                t.deleteTreeNode(p);
1562 <                            }
1563 <                        }
1564 <                    } finally {
1565 <                        t.release(0);
1566 <                    }
1567 <                    if (len != 0)
1568 <                        break;
1569 <                }
1570 <                else
1571 <                    tab = (Node<V>[])fk;
1572 <            }
1573 <            else {
1574 <                synchronized (f) {
1575 <                    if (tabAt(tab, i) == f) {
1576 <                        len = 1;
1577 <                        for (Node<V> e = f, pred = null;; ++len) {
1578 <                            Object ek; V ev;
1579 <                            if (e.hash == h &&
1580 <                                (ev = e.val) != null &&
1581 <                                ((ek = e.key) == k || k.equals(ek))) {
1582 <                                val = mf.apply(k, ev);
1583 <                                if (val != null)
1584 <                                    e.val = val;
1585 <                                else {
1586 <                                    delta = -1;
1587 <                                    Node<V> en = e.next;
1588 <                                    if (pred != null)
1589 <                                        pred.next = en;
1590 <                                    else
1591 <                                        setTabAt(tab, i, en);
1592 <                                }
1593 <                                break;
1594 <                            }
1595 <                            pred = e;
1596 <                            if ((e = e.next) == null) {
1597 <                                if (!onlyIfPresent &&
1598 <                                    (val = mf.apply(k, null)) != null) {
1599 <                                    pred.next = new Node<V>(h, k, val, null);
1600 <                                    delta = 1;
1601 <                                    if (len >= TREE_THRESHOLD)
1602 <                                        replaceWithTreeBin(tab, i, k);
1603 <                                }
1604 <                                break;
1605 <                            }
1606 <                        }
1607 <                    }
1608 <                }
1609 <                if (len != 0)
1610 <                    break;
1611 <            }
1612 <        }
1613 <        if (delta != 0)
1614 <            addCount((long)delta, len);
1615 <        return val;
1616 <    }
1617 <
1618 <    /** Implementation for merge */
1619 <    @SuppressWarnings("unchecked") private final V internalMerge
1620 <        (K k, V v, BiFun<? super V, ? super V, ? extends V> mf) {
1621 <        if (k == null || v == null || mf == null)
1622 <            throw new NullPointerException();
1623 <        int h = spread(k.hashCode());
1624 <        V val = null;
1625 <        int delta = 0;
1626 <        int len = 0;
1627 <        for (Node<V>[] tab = table;;) {
1628 <            int i; Node<V> f; Object fk; V fv;
1629 <            if (tab == null)
1630 <                tab = initTable();
1631 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1632 <                if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1633 <                    delta = 1;
1634 <                    val = v;
1635 <                    break;
1636 <                }
1637 <            }
1638 <            else if (f.hash < 0) {
1639 <                if ((fk = f.key) instanceof TreeBin) {
1640 <                    TreeBin<V> t = (TreeBin<V>)fk;
1641 <                    t.acquire(0);
1642 <                    try {
1643 <                        if (tabAt(tab, i) == f) {
1644 <                            len = 1;
1645 <                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1646 <                            val = (p == null) ? v : mf.apply(p.val, v);
1647 <                            if (val != null) {
1648 <                                if (p != null)
1649 <                                    p.val = val;
1650 <                                else {
1651 <                                    len = 2;
1652 <                                    delta = 1;
1653 <                                    t.putTreeNode(h, k, val);
1654 <                                }
1655 <                            }
1656 <                            else if (p != null) {
1657 <                                delta = -1;
1658 <                                t.deleteTreeNode(p);
1659 <                            }
1660 <                        }
1661 <                    } finally {
1662 <                        t.release(0);
1663 <                    }
1664 <                    if (len != 0)
1665 <                        break;
1666 <                }
1667 <                else
1668 <                    tab = (Node<V>[])fk;
1669 <            }
1670 <            else {
1671 <                synchronized (f) {
1672 <                    if (tabAt(tab, i) == f) {
1673 <                        len = 1;
1674 <                        for (Node<V> e = f, pred = null;; ++len) {
1675 <                            Object ek; V ev;
1676 <                            if (e.hash == h &&
1677 <                                (ev = e.val) != null &&
1678 <                                ((ek = e.key) == k || k.equals(ek))) {
1679 <                                val = mf.apply(ev, v);
1680 <                                if (val != null)
1681 <                                    e.val = val;
1682 <                                else {
1683 <                                    delta = -1;
1684 <                                    Node<V> en = e.next;
1685 <                                    if (pred != null)
1686 <                                        pred.next = en;
1687 <                                    else
1688 <                                        setTabAt(tab, i, en);
1689 <                                }
1690 <                                break;
1691 <                            }
1692 <                            pred = e;
1693 <                            if ((e = e.next) == null) {
1694 <                                val = v;
1695 <                                pred.next = new Node<V>(h, k, val, null);
1696 <                                delta = 1;
1697 <                                if (len >= TREE_THRESHOLD)
1698 <                                    replaceWithTreeBin(tab, i, k);
1699 <                                break;
1700 <                            }
1701 <                        }
1702 <                    }
1703 <                }
1704 <                if (len != 0)
1705 <                    break;
1706 <            }
1707 <        }
1708 <        if (delta != 0)
1709 <            addCount((long)delta, len);
1710 <        return val;
1711 <    }
1712 <
1713 <    /** Implementation for putAll */
1714 <    @SuppressWarnings("unchecked") private final void internalPutAll
1715 <        (Map<? extends K, ? extends V> m) {
1716 <        tryPresize(m.size());
1717 <        long delta = 0L;     // number of uncommitted additions
1718 <        boolean npe = false; // to throw exception on exit for nulls
1719 <        try {                // to clean up counts on other exceptions
1720 <            for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
1721 <                Object k; V v;
1722 <                if (entry == null || (k = entry.getKey()) == null ||
1723 <                    (v = entry.getValue()) == null) {
1724 <                    npe = true;
1725 <                    break;
1726 <                }
1727 <                int h = spread(k.hashCode());
1728 <                for (Node<V>[] tab = table;;) {
1729 <                    int i; Node<V> f; int fh; Object fk;
1730 <                    if (tab == null)
1731 <                        tab = initTable();
1732 <                    else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1733 <                        if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1734 <                            ++delta;
1735 <                            break;
1736 <                        }
1737 <                    }
1738 <                    else if ((fh = f.hash) < 0) {
1739 <                        if ((fk = f.key) instanceof TreeBin) {
1740 <                            TreeBin<V> t = (TreeBin<V>)fk;
1741 <                            boolean validated = false;
1742 <                            t.acquire(0);
1743 <                            try {
1744 <                                if (tabAt(tab, i) == f) {
1745 <                                    validated = true;
1746 <                                    TreeNode<V> p = t.getTreeNode(h, k, t.root);
1747 <                                    if (p != null)
1748 <                                        p.val = v;
1749 <                                    else {
1750 <                                        t.putTreeNode(h, k, v);
1751 <                                        ++delta;
1752 <                                    }
1753 <                                }
1754 <                            } finally {
1755 <                                t.release(0);
1756 <                            }
1757 <                            if (validated)
1758 <                                break;
1759 <                        }
1760 <                        else
1761 <                            tab = (Node<V>[])fk;
1762 <                    }
1763 <                    else {
1764 <                        int len = 0;
1765 <                        synchronized (f) {
1766 <                            if (tabAt(tab, i) == f) {
1767 <                                len = 1;
1768 <                                for (Node<V> e = f;; ++len) {
1769 <                                    Object ek; V ev;
1770 <                                    if (e.hash == h &&
1771 <                                        (ev = e.val) != null &&
1772 <                                        ((ek = e.key) == k || k.equals(ek))) {
1773 <                                        e.val = v;
1774 <                                        break;
1775 <                                    }
1776 <                                    Node<V> last = e;
1777 <                                    if ((e = e.next) == null) {
1778 <                                        ++delta;
1779 <                                        last.next = new Node<V>(h, k, v, null);
1780 <                                        if (len >= TREE_THRESHOLD)
1781 <                                            replaceWithTreeBin(tab, i, k);
1782 <                                        break;
1783 <                                    }
1784 <                                }
1785 <                            }
1786 <                        }
1787 <                        if (len != 0) {
1788 <                            if (len > 1)
1789 <                                addCount(delta, len);
1790 <                            break;
1791 <                        }
1792 <                    }
1793 <                }
1794 <            }
1795 <        } finally {
1796 <            if (delta != 0L)
1797 <                addCount(delta, 2);
1798 <        }
1799 <        if (npe)
1800 <            throw new NullPointerException();
691 >    static final int spread(int h) {
692 >        return (h ^ (h >>> 16)) & HASH_BITS;
693      }
694  
695      /**
1804     * Implementation for clear. Steps through each bin, removing all
1805     * nodes.
1806     */
1807    @SuppressWarnings("unchecked") private final void internalClear() {
1808        long delta = 0L; // negative number of deletions
1809        int i = 0;
1810        Node<V>[] tab = table;
1811        while (tab != null && i < tab.length) {
1812            Node<V> f = tabAt(tab, i);
1813            if (f == null)
1814                ++i;
1815            else if (f.hash < 0) {
1816                Object fk;
1817                if ((fk = f.key) instanceof TreeBin) {
1818                    TreeBin<V> t = (TreeBin<V>)fk;
1819                    t.acquire(0);
1820                    try {
1821                        if (tabAt(tab, i) == f) {
1822                            for (Node<V> p = t.first; p != null; p = p.next) {
1823                                if (p.val != null) { // (currently always true)
1824                                    p.val = null;
1825                                    --delta;
1826                                }
1827                            }
1828                            t.first = null;
1829                            t.root = null;
1830                            ++i;
1831                        }
1832                    } finally {
1833                        t.release(0);
1834                    }
1835                }
1836                else
1837                    tab = (Node<V>[])fk;
1838            }
1839            else {
1840                synchronized (f) {
1841                    if (tabAt(tab, i) == f) {
1842                        for (Node<V> e = f; e != null; e = e.next) {
1843                            if (e.val != null) {  // (currently always true)
1844                                e.val = null;
1845                                --delta;
1846                            }
1847                        }
1848                        setTabAt(tab, i, null);
1849                        ++i;
1850                    }
1851                }
1852            }
1853        }
1854        if (delta != 0L)
1855            addCount(delta, -1);
1856    }
1857
1858    /* ---------------- Table Initialization and Resizing -------------- */
1859
1860    /**
696       * Returns a power of two table size for the given desired capacity.
697       * See Hackers Delight, sec 3.2
698       */
# Line 1872 | Line 707 | public class ConcurrentHashMapV8<K, V>
707      }
708  
709      /**
710 <     * Initializes table, using the size recorded in sizeCtl.
710 >     * Returns x's Class if it is of the form "class C implements
711 >     * Comparable<C>", else null.
712       */
713 <    @SuppressWarnings("unchecked") private final Node<V>[] initTable() {
714 <        Node<V>[] tab; int sc;
715 <        while ((tab = table) == null) {
716 <            if ((sc = sizeCtl) < 0)
717 <                Thread.yield(); // lost initialization race; just spin
718 <            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
719 <                try {
720 <                    if ((tab = table) == null) {
721 <                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
722 <                        @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
723 <                        table = tab = (Node<V>[])tb;
724 <                        sc = n - (n >>> 2);
725 <                    }
1890 <                } finally {
1891 <                    sizeCtl = sc;
713 >    static Class<?> comparableClassFor(Object x) {
714 >        if (x instanceof Comparable) {
715 >            Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
716 >            if ((c = x.getClass()) == String.class) // bypass checks
717 >                return c;
718 >            if ((ts = c.getGenericInterfaces()) != null) {
719 >                for (int i = 0; i < ts.length; ++i) {
720 >                    if (((t = ts[i]) instanceof ParameterizedType) &&
721 >                        ((p = (ParameterizedType)t).getRawType() ==
722 >                         Comparable.class) &&
723 >                        (as = p.getActualTypeArguments()) != null &&
724 >                        as.length == 1 && as[0] == c) // type arg is c
725 >                        return c;
726                  }
1893                break;
727              }
728          }
729 <        return tab;
729 >        return null;
730      }
731  
732      /**
733 <     * Adds to count, and if table is too small and not already
734 <     * resizing, initiates transfer. If already resizing, helps
1902 <     * perform transfer if work is available.  Rechecks occupancy
1903 <     * after a transfer to see if another resize is already needed
1904 <     * because resizings are lagging additions.
1905 <     *
1906 <     * @param x the count to add
1907 <     * @param check if <0, don't check resize, if <= 1 only check if uncontended
733 >     * Returns k.compareTo(x) if x matches kc (k's screened comparable
734 >     * class), else 0.
735       */
736 <    private final void addCount(long x, int check) {
737 <        CounterCell[] as; long b, s;
738 <        if ((as = counterCells) != null ||
739 <            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1913 <            CounterHashCode hc; CounterCell a; long v; int m;
1914 <            boolean uncontended = true;
1915 <            if ((hc = threadCounterHashCode.get()) == null ||
1916 <                as == null || (m = as.length - 1) < 0 ||
1917 <                (a = as[m & hc.code]) == null ||
1918 <                !(uncontended =
1919 <                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1920 <                fullAddCount(x, hc, uncontended);
1921 <                return;
1922 <            }
1923 <            if (check <= 1)
1924 <                return;
1925 <            s = sumCount();
1926 <        }
1927 <        if (check >= 0) {
1928 <            Node<V>[] tab, nt; int sc;
1929 <            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1930 <                   tab.length < MAXIMUM_CAPACITY) {
1931 <                if (sc < 0) {
1932 <                    if (sc == -1 || transferIndex <= transferOrigin ||
1933 <                        (nt = nextTable) == null)
1934 <                        break;
1935 <                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1936 <                        transfer(tab, nt);
1937 <                }
1938 <                else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1939 <                    transfer(tab, null);
1940 <                s = sumCount();
1941 <            }
1942 <        }
736 >    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
737 >    static int compareComparables(Class<?> kc, Object k, Object x) {
738 >        return (x == null || x.getClass() != kc ? 0 :
739 >                ((Comparable)k).compareTo(x));
740      }
741  
742 <    /**
1946 <     * Tries to presize table to accommodate the given number of elements.
1947 <     *
1948 <     * @param size number of elements (doesn't need to be perfectly accurate)
1949 <     */
1950 <    @SuppressWarnings("unchecked") private final void tryPresize(int size) {
1951 <        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1952 <            tableSizeFor(size + (size >>> 1) + 1);
1953 <        int sc;
1954 <        while ((sc = sizeCtl) >= 0) {
1955 <            Node<V>[] tab = table; int n;
1956 <            if (tab == null || (n = tab.length) == 0) {
1957 <                n = (sc > c) ? sc : c;
1958 <                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1959 <                    try {
1960 <                        if (table == tab) {
1961 <                            @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1962 <                            table = (Node<V>[])tb;
1963 <                            sc = n - (n >>> 2);
1964 <                        }
1965 <                    } finally {
1966 <                        sizeCtl = sc;
1967 <                    }
1968 <                }
1969 <            }
1970 <            else if (c <= sc || n >= MAXIMUM_CAPACITY)
1971 <                break;
1972 <            else if (tab == table &&
1973 <                     U.compareAndSwapInt(this, SIZECTL, sc, -2))
1974 <                transfer(tab, null);
1975 <        }
1976 <    }
742 >    /* ---------------- Table element access -------------- */
743  
744      /*
745 <     * Moves and/or copies the nodes in each bin to new table. See
746 <     * above for explanation.
747 <     */
748 <    @SuppressWarnings("unchecked") private final void transfer
749 <        (Node<V>[] tab, Node<V>[] nextTab) {
750 <        int n = tab.length, stride;
751 <        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
752 <            stride = MIN_TRANSFER_STRIDE; // subdivide range
753 <        if (nextTab == null) {            // initiating
754 <            try {
755 <                @SuppressWarnings("rawtypes") Node[] tb = new Node[n << 1];
756 <                nextTab = (Node<V>[])tb;
757 <            } catch (Throwable ex) {      // try to cope with OOME
758 <                sizeCtl = Integer.MAX_VALUE;
759 <                return;
760 <            }
761 <            nextTable = nextTab;
762 <            transferOrigin = n;
1997 <            transferIndex = n;
1998 <            Node<V> rev = new Node<V>(MOVED, tab, null, null);
1999 <            for (int k = n; k > 0;) {    // progressively reveal ready slots
2000 <                int nextk = (k > stride) ? k - stride : 0;
2001 <                for (int m = nextk; m < k; ++m)
2002 <                    nextTab[m] = rev;
2003 <                for (int m = n + nextk; m < n + k; ++m)
2004 <                    nextTab[m] = rev;
2005 <                U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
2006 <            }
2007 <        }
2008 <        int nextn = nextTab.length;
2009 <        Node<V> fwd = new Node<V>(MOVED, nextTab, null, null);
2010 <        boolean advance = true;
2011 <        for (int i = 0, bound = 0;;) {
2012 <            int nextIndex, nextBound; Node<V> f; Object fk;
2013 <            while (advance) {
2014 <                if (--i >= bound)
2015 <                    advance = false;
2016 <                else if ((nextIndex = transferIndex) <= transferOrigin) {
2017 <                    i = -1;
2018 <                    advance = false;
2019 <                }
2020 <                else if (U.compareAndSwapInt
2021 <                         (this, TRANSFERINDEX, nextIndex,
2022 <                          nextBound = (nextIndex > stride ?
2023 <                                       nextIndex - stride : 0))) {
2024 <                    bound = nextBound;
2025 <                    i = nextIndex - 1;
2026 <                    advance = false;
2027 <                }
2028 <            }
2029 <            if (i < 0 || i >= n || i + n >= nextn) {
2030 <                for (int sc;;) {
2031 <                    if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2032 <                        if (sc == -1) {
2033 <                            nextTable = null;
2034 <                            table = nextTab;
2035 <                            sizeCtl = (n << 1) - (n >>> 1);
2036 <                        }
2037 <                        return;
2038 <                    }
2039 <                }
2040 <            }
2041 <            else if ((f = tabAt(tab, i)) == null) {
2042 <                if (casTabAt(tab, i, null, fwd)) {
2043 <                    setTabAt(nextTab, i, null);
2044 <                    setTabAt(nextTab, i + n, null);
2045 <                    advance = true;
2046 <                }
2047 <            }
2048 <            else if (f.hash >= 0) {
2049 <                synchronized (f) {
2050 <                    if (tabAt(tab, i) == f) {
2051 <                        int runBit = f.hash & n;
2052 <                        Node<V> lastRun = f, lo = null, hi = null;
2053 <                        for (Node<V> p = f.next; p != null; p = p.next) {
2054 <                            int b = p.hash & n;
2055 <                            if (b != runBit) {
2056 <                                runBit = b;
2057 <                                lastRun = p;
2058 <                            }
2059 <                        }
2060 <                        if (runBit == 0)
2061 <                            lo = lastRun;
2062 <                        else
2063 <                            hi = lastRun;
2064 <                        for (Node<V> p = f; p != lastRun; p = p.next) {
2065 <                            int ph = p.hash;
2066 <                            Object pk = p.key; V pv = p.val;
2067 <                            if ((ph & n) == 0)
2068 <                                lo = new Node<V>(ph, pk, pv, lo);
2069 <                            else
2070 <                                hi = new Node<V>(ph, pk, pv, hi);
2071 <                        }
2072 <                        setTabAt(nextTab, i, lo);
2073 <                        setTabAt(nextTab, i + n, hi);
2074 <                        setTabAt(tab, i, fwd);
2075 <                        advance = true;
2076 <                    }
2077 <                }
2078 <            }
2079 <            else if ((fk = f.key) instanceof TreeBin) {
2080 <                TreeBin<V> t = (TreeBin<V>)fk;
2081 <                t.acquire(0);
2082 <                try {
2083 <                    if (tabAt(tab, i) == f) {
2084 <                        TreeBin<V> lt = new TreeBin<V>();
2085 <                        TreeBin<V> ht = new TreeBin<V>();
2086 <                        int lc = 0, hc = 0;
2087 <                        for (Node<V> e = t.first; e != null; e = e.next) {
2088 <                            int h = e.hash;
2089 <                            Object k = e.key; V v = e.val;
2090 <                            if ((h & n) == 0) {
2091 <                                ++lc;
2092 <                                lt.putTreeNode(h, k, v);
2093 <                            }
2094 <                            else {
2095 <                                ++hc;
2096 <                                ht.putTreeNode(h, k, v);
2097 <                            }
2098 <                        }
2099 <                        Node<V> ln, hn; // throw away trees if too small
2100 <                        if (lc < TREE_THRESHOLD) {
2101 <                            ln = null;
2102 <                            for (Node<V> p = lt.first; p != null; p = p.next)
2103 <                                ln = new Node<V>(p.hash, p.key, p.val, ln);
2104 <                        }
2105 <                        else
2106 <                            ln = new Node<V>(MOVED, lt, null, null);
2107 <                        setTabAt(nextTab, i, ln);
2108 <                        if (hc < TREE_THRESHOLD) {
2109 <                            hn = null;
2110 <                            for (Node<V> p = ht.first; p != null; p = p.next)
2111 <                                hn = new Node<V>(p.hash, p.key, p.val, hn);
2112 <                        }
2113 <                        else
2114 <                            hn = new Node<V>(MOVED, ht, null, null);
2115 <                        setTabAt(nextTab, i + n, hn);
2116 <                        setTabAt(tab, i, fwd);
2117 <                        advance = true;
2118 <                    }
2119 <                } finally {
2120 <                    t.release(0);
2121 <                }
2122 <            }
2123 <            else
2124 <                advance = true; // already processed
2125 <        }
745 >     * Volatile access methods are used for table elements as well as
746 >     * elements of in-progress next table while resizing.  All uses of
747 >     * the tab arguments must be null checked by callers.  All callers
748 >     * also paranoically precheck that tab's length is not zero (or an
749 >     * equivalent check), thus ensuring that any index argument taking
750 >     * the form of a hash value anded with (length - 1) is a valid
751 >     * index.  Note that, to be correct wrt arbitrary concurrency
752 >     * errors by users, these checks must operate on local variables,
753 >     * which accounts for some odd-looking inline assignments below.
754 >     * Note that calls to setTabAt always occur within locked regions,
755 >     * and so in principle require only release ordering, not
756 >     * full volatile semantics, but are currently coded as volatile
757 >     * writes to be conservative.
758 >     */
759 >
760 >    @SuppressWarnings("unchecked")
761 >    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
762 >        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
763      }
764  
765 <    /* ---------------- Counter support -------------- */
766 <
767 <    final long sumCount() {
2131 <        CounterCell[] as = counterCells; CounterCell a;
2132 <        long sum = baseCount;
2133 <        if (as != null) {
2134 <            for (int i = 0; i < as.length; ++i) {
2135 <                if ((a = as[i]) != null)
2136 <                    sum += a.value;
2137 <            }
2138 <        }
2139 <        return sum;
765 >    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
766 >                                        Node<K,V> c, Node<K,V> v) {
767 >        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
768      }
769  
770 <    // See LongAdder version for explanation
771 <    private final void fullAddCount(long x, CounterHashCode hc,
2144 <                                    boolean wasUncontended) {
2145 <        int h;
2146 <        if (hc == null) {
2147 <            hc = new CounterHashCode();
2148 <            int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
2149 <            h = hc.code = (s == 0) ? 1 : s; // Avoid zero
2150 <            threadCounterHashCode.set(hc);
2151 <        }
2152 <        else
2153 <            h = hc.code;
2154 <        boolean collide = false;                // True if last slot nonempty
2155 <        for (;;) {
2156 <            CounterCell[] as; CounterCell a; int n; long v;
2157 <            if ((as = counterCells) != null && (n = as.length) > 0) {
2158 <                if ((a = as[(n - 1) & h]) == null) {
2159 <                    if (counterBusy == 0) {            // Try to attach new Cell
2160 <                        CounterCell r = new CounterCell(x); // Optimistic create
2161 <                        if (counterBusy == 0 &&
2162 <                            U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2163 <                            boolean created = false;
2164 <                            try {               // Recheck under lock
2165 <                                CounterCell[] rs; int m, j;
2166 <                                if ((rs = counterCells) != null &&
2167 <                                    (m = rs.length) > 0 &&
2168 <                                    rs[j = (m - 1) & h] == null) {
2169 <                                    rs[j] = r;
2170 <                                    created = true;
2171 <                                }
2172 <                            } finally {
2173 <                                counterBusy = 0;
2174 <                            }
2175 <                            if (created)
2176 <                                break;
2177 <                            continue;           // Slot is now non-empty
2178 <                        }
2179 <                    }
2180 <                    collide = false;
2181 <                }
2182 <                else if (!wasUncontended)       // CAS already known to fail
2183 <                    wasUncontended = true;      // Continue after rehash
2184 <                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2185 <                    break;
2186 <                else if (counterCells != as || n >= NCPU)
2187 <                    collide = false;            // At max size or stale
2188 <                else if (!collide)
2189 <                    collide = true;
2190 <                else if (counterBusy == 0 &&
2191 <                         U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2192 <                    try {
2193 <                        if (counterCells == as) {// Expand table unless stale
2194 <                            CounterCell[] rs = new CounterCell[n << 1];
2195 <                            for (int i = 0; i < n; ++i)
2196 <                                rs[i] = as[i];
2197 <                            counterCells = rs;
2198 <                        }
2199 <                    } finally {
2200 <                        counterBusy = 0;
2201 <                    }
2202 <                    collide = false;
2203 <                    continue;                   // Retry with expanded table
2204 <                }
2205 <                h ^= h << 13;                   // Rehash
2206 <                h ^= h >>> 17;
2207 <                h ^= h << 5;
2208 <            }
2209 <            else if (counterBusy == 0 && counterCells == as &&
2210 <                     U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2211 <                boolean init = false;
2212 <                try {                           // Initialize table
2213 <                    if (counterCells == as) {
2214 <                        CounterCell[] rs = new CounterCell[2];
2215 <                        rs[h & 1] = new CounterCell(x);
2216 <                        counterCells = rs;
2217 <                        init = true;
2218 <                    }
2219 <                } finally {
2220 <                    counterBusy = 0;
2221 <                }
2222 <                if (init)
2223 <                    break;
2224 <            }
2225 <            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2226 <                break;                          // Fall back on using base
2227 <        }
2228 <        hc.code = h;                            // Record index for next time
770 >    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
771 >        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
772      }
773  
774 <    /* ----------------Table Traversal -------------- */
774 >    /* ---------------- Fields -------------- */
775  
776      /**
777 <     * Encapsulates traversal for methods such as containsValue; also
778 <     * serves as a base class for other iterators and bulk tasks.
779 <     *
780 <     * At each step, the iterator snapshots the key ("nextKey") and
2238 <     * value ("nextVal") of a valid node (i.e., one that, at point of
2239 <     * snapshot, has a non-null user value). Because val fields can
2240 <     * change (including to null, indicating deletion), field nextVal
2241 <     * might not be accurate at point of use, but still maintains the
2242 <     * weak consistency property of holding a value that was once
2243 <     * valid. To support iterator.remove, the nextKey field is not
2244 <     * updated (nulled out) when the iterator cannot advance.
2245 <     *
2246 <     * Internal traversals directly access these fields, as in:
2247 <     * {@code while (it.advance() != null) { process(it.nextKey); }}
2248 <     *
2249 <     * Exported iterators must track whether the iterator has advanced
2250 <     * (in hasNext vs next) (by setting/checking/nulling field
2251 <     * nextVal), and then extract key, value, or key-value pairs as
2252 <     * return values of next().
2253 <     *
2254 <     * The iterator visits once each still-valid node that was
2255 <     * reachable upon iterator construction. It might miss some that
2256 <     * were added to a bin after the bin was visited, which is OK wrt
2257 <     * consistency guarantees. Maintaining this property in the face
2258 <     * of possible ongoing resizes requires a fair amount of
2259 <     * bookkeeping state that is difficult to optimize away amidst
2260 <     * volatile accesses.  Even so, traversal maintains reasonable
2261 <     * throughput.
2262 <     *
2263 <     * Normally, iteration proceeds bin-by-bin traversing lists.
2264 <     * However, if the table has been resized, then all future steps
2265 <     * must traverse both the bin at the current index as well as at
2266 <     * (index + baseSize); and so on for further resizings. To
2267 <     * paranoically cope with potential sharing by users of iterators
2268 <     * across threads, iteration terminates if a bounds checks fails
2269 <     * for a table read.
2270 <     *
2271 <     * This class extends CountedCompleter to streamline parallel
2272 <     * iteration in bulk operations. This adds only a few fields of
2273 <     * space overhead, which is small enough in cases where it is not
2274 <     * needed to not worry about it.  Because CountedCompleter is
2275 <     * Serializable, but iterators need not be, we need to add warning
2276 <     * suppressions.
2277 <     */
2278 <    @SuppressWarnings("serial") static class Traverser<K,V,R>
2279 <        extends CountedCompleter<R> {
2280 <        final ConcurrentHashMapV8<K, V> map;
2281 <        Node<V> next;        // the next entry to use
2282 <        Object nextKey;      // cached key field of next
2283 <        V nextVal;           // cached val field of next
2284 <        Node<V>[] tab;       // current table; updated if resized
2285 <        int index;           // index of bin to use next
2286 <        int baseIndex;       // current index of initial table
2287 <        int baseLimit;       // index bound for initial table
2288 <        int baseSize;        // initial table size
2289 <        int batch;           // split control
2290 <
2291 <        /** Creates iterator for all entries in the table. */
2292 <        Traverser(ConcurrentHashMapV8<K, V> map) {
2293 <            this.map = map;
2294 <        }
777 >     * The array of bins. Lazily initialized upon first insertion.
778 >     * Size is always a power of two. Accessed directly by iterators.
779 >     */
780 >    transient volatile Node<K,V>[] table;
781  
782 <        /** Creates iterator for split() methods and task constructors */
783 <        Traverser(ConcurrentHashMapV8<K,V> map, Traverser<K,V,?> it, int batch) {
784 <            super(it);
785 <            this.batch = batch;
2300 <            if ((this.map = map) != null && it != null) { // split parent
2301 <                Node<V>[] t;
2302 <                if ((t = it.tab) == null &&
2303 <                    (t = it.tab = map.table) != null)
2304 <                    it.baseLimit = it.baseSize = t.length;
2305 <                this.tab = t;
2306 <                this.baseSize = it.baseSize;
2307 <                int hi = this.baseLimit = it.baseLimit;
2308 <                it.baseLimit = this.index = this.baseIndex =
2309 <                    (hi + it.baseIndex + 1) >>> 1;
2310 <            }
2311 <        }
782 >    /**
783 >     * The next table to use; non-null only while resizing.
784 >     */
785 >    private transient volatile Node<K,V>[] nextTable;
786  
787 <        /**
788 <         * Advances next; returns nextVal or null if terminated.
789 <         * See above for explanation.
790 <         */
791 <        @SuppressWarnings("unchecked") final V advance() {
792 <            Node<V> e = next;
2319 <            V ev = null;
2320 <            outer: do {
2321 <                if (e != null)                  // advance past used/skipped node
2322 <                    e = e.next;
2323 <                while (e == null) {             // get to next non-null bin
2324 <                    ConcurrentHashMapV8<K, V> m;
2325 <                    Node<V>[] t; int b, i, n; Object ek; //  must use locals
2326 <                    if ((t = tab) != null)
2327 <                        n = t.length;
2328 <                    else if ((m = map) != null && (t = tab = m.table) != null)
2329 <                        n = baseLimit = baseSize = t.length;
2330 <                    else
2331 <                        break outer;
2332 <                    if ((b = baseIndex) >= baseLimit ||
2333 <                        (i = index) < 0 || i >= n)
2334 <                        break outer;
2335 <                    if ((e = tabAt(t, i)) != null && e.hash < 0) {
2336 <                        if ((ek = e.key) instanceof TreeBin)
2337 <                            e = ((TreeBin<V>)ek).first;
2338 <                        else {
2339 <                            tab = (Node<V>[])ek;
2340 <                            continue;           // restarts due to null val
2341 <                        }
2342 <                    }                           // visit upper slots if present
2343 <                    index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2344 <                }
2345 <                nextKey = e.key;
2346 <            } while ((ev = e.val) == null);    // skip deleted or special nodes
2347 <            next = e;
2348 <            return nextVal = ev;
2349 <        }
787 >    /**
788 >     * Base counter value, used mainly when there is no contention,
789 >     * but also as a fallback during table initialization
790 >     * races. Updated via CAS.
791 >     */
792 >    private transient volatile long baseCount;
793  
794 <        public final void remove() {
795 <            Object k = nextKey;
796 <            if (k == null && (advance() == null || (k = nextKey) == null))
797 <                throw new IllegalStateException();
798 <            map.internalReplace(k, null, null);
799 <        }
794 >    /**
795 >     * Table initialization and resizing control.  When negative, the
796 >     * table is being initialized or resized: -1 for initialization,
797 >     * else -(1 + the number of active resizing threads).  Otherwise,
798 >     * when table is null, holds the initial table size to use upon
799 >     * creation, or 0 for default. After initialization, holds the
800 >     * next element count value upon which to resize the table.
801 >     */
802 >    private transient volatile int sizeCtl;
803  
804 <        public final boolean hasNext() {
805 <            return nextVal != null || advance() != null;
806 <        }
804 >    /**
805 >     * The next table index (plus one) to split while resizing.
806 >     */
807 >    private transient volatile int transferIndex;
808  
809 <        public final boolean hasMoreElements() { return hasNext(); }
809 >    /**
810 >     * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
811 >     */
812 >    private transient volatile int cellsBusy;
813  
814 <        public void compute() { } // default no-op CountedCompleter body
814 >    /**
815 >     * Table of counter cells. When non-null, size is a power of 2.
816 >     */
817 >    private transient volatile CounterCell[] counterCells;
818  
819 <        /**
820 <         * Returns a batch value > 0 if this task should (and must) be
821 <         * split, if so, adding to pending count, and in any case
822 <         * updating batch value. The initial batch value is approx
2370 <         * exp2 of the number of times (minus one) to split task by
2371 <         * two before executing leaf action. This value is faster to
2372 <         * compute and more convenient to use as a guide to splitting
2373 <         * than is the depth, since it is used while dividing by two
2374 <         * anyway.
2375 <         */
2376 <        final int preSplit() {
2377 <            ConcurrentHashMapV8<K, V> m; int b; Node<V>[] t;  ForkJoinPool pool;
2378 <            if ((b = batch) < 0 && (m = map) != null) { // force initialization
2379 <                if ((t = tab) == null && (t = tab = m.table) != null)
2380 <                    baseLimit = baseSize = t.length;
2381 <                if (t != null) {
2382 <                    long n = m.sumCount();
2383 <                    int par = ((pool = getPool()) == null) ?
2384 <                        ForkJoinPool.getCommonPoolParallelism() :
2385 <                        pool.getParallelism();
2386 <                    int sp = par << 3; // slack of 8
2387 <                    b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2388 <                }
2389 <            }
2390 <            b = (b <= 1 || baseIndex == baseLimit) ? 0 : (b >>> 1);
2391 <            if ((batch = b) > 0)
2392 <                addToPendingCount(1);
2393 <            return b;
2394 <        }
819 >    // views
820 >    private transient KeySetView<K,V> keySet;
821 >    private transient ValuesView<K,V> values;
822 >    private transient EntrySetView<K,V> entrySet;
823  
2396    }
824  
825      /* ---------------- Public operations -------------- */
826  
# Line 2429 | Line 856 | public class ConcurrentHashMapV8<K, V>
856       */
857      public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
858          this.sizeCtl = DEFAULT_CAPACITY;
859 <        internalPutAll(m);
859 >        putAll(m);
860      }
861  
862      /**
# Line 2470 | Line 897 | public class ConcurrentHashMapV8<K, V>
897       * nonpositive
898       */
899      public ConcurrentHashMapV8(int initialCapacity,
900 <                               float loadFactor, int concurrencyLevel) {
900 >                             float loadFactor, int concurrencyLevel) {
901          if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
902              throw new IllegalArgumentException();
903          if (initialCapacity < concurrencyLevel)   // Use at least as many bins
# Line 2481 | Line 908 | public class ConcurrentHashMapV8<K, V>
908          this.sizeCtl = cap;
909      }
910  
911 <    /**
2485 <     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2486 <     * from the given type to {@code Boolean.TRUE}.
2487 <     *
2488 <     * @return the new set
2489 <     */
2490 <    public static <K> KeySetView<K,Boolean> newKeySet() {
2491 <        return new KeySetView<K,Boolean>(new ConcurrentHashMapV8<K,Boolean>(),
2492 <                                      Boolean.TRUE);
2493 <    }
2494 <
2495 <    /**
2496 <     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2497 <     * from the given type to {@code Boolean.TRUE}.
2498 <     *
2499 <     * @param initialCapacity The implementation performs internal
2500 <     * sizing to accommodate this many elements.
2501 <     * @throws IllegalArgumentException if the initial capacity of
2502 <     * elements is negative
2503 <     * @return the new set
2504 <     */
2505 <    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2506 <        return new KeySetView<K,Boolean>
2507 <            (new ConcurrentHashMapV8<K,Boolean>(initialCapacity), Boolean.TRUE);
2508 <    }
2509 <
2510 <    /**
2511 <     * {@inheritDoc}
2512 <     */
2513 <    public boolean isEmpty() {
2514 <        return sumCount() <= 0L; // ignore transient negative values
2515 <    }
911 >    // Original (since JDK1.2) Map methods
912  
913      /**
914       * {@inheritDoc}
# Line 2525 | Line 921 | public class ConcurrentHashMapV8<K, V>
921      }
922  
923      /**
924 <     * Returns the number of mappings. This method should be used
2529 <     * instead of {@link #size} because a ConcurrentHashMapV8 may
2530 <     * contain more mappings than can be represented as an int. The
2531 <     * value returned is an estimate; the actual count may differ if
2532 <     * there are concurrent insertions or removals.
2533 <     *
2534 <     * @return the number of mappings
924 >     * {@inheritDoc}
925       */
926 <    public long mappingCount() {
927 <        long n = sumCount();
2538 <        return (n < 0L) ? 0L : n; // ignore transient negative values
926 >    public boolean isEmpty() {
927 >        return sumCount() <= 0L; // ignore transient negative values
928      }
929  
930      /**
# Line 2550 | Line 939 | public class ConcurrentHashMapV8<K, V>
939       * @throws NullPointerException if the specified key is null
940       */
941      public V get(Object key) {
942 <        return internalGet(key);
943 <    }
944 <
945 <    /**
946 <     * Returns the value to which the specified key is mapped,
947 <     * or the given defaultValue if this map contains no mapping for the key.
948 <     *
949 <     * @param key the key
950 <     * @param defaultValue the value to return if this map contains
951 <     * no mapping for the given key
952 <     * @return the mapping for the key, if present; else the defaultValue
953 <     * @throws NullPointerException if the specified key is null
954 <     */
955 <    public V getValueOrDefault(Object key, V defaultValue) {
956 <        V v;
957 <        return (v = internalGet(key)) == null ? defaultValue : v;
942 >        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
943 >        int h = spread(key.hashCode());
944 >        if ((tab = table) != null && (n = tab.length) > 0 &&
945 >            (e = tabAt(tab, (n - 1) & h)) != null) {
946 >            if ((eh = e.hash) == h) {
947 >                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
948 >                    return e.val;
949 >            }
950 >            else if (eh < 0)
951 >                return (p = e.find(h, key)) != null ? p.val : null;
952 >            while ((e = e.next) != null) {
953 >                if (e.hash == h &&
954 >                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
955 >                    return e.val;
956 >            }
957 >        }
958 >        return null;
959      }
960  
961      /**
962       * Tests if the specified object is a key in this table.
963       *
964 <     * @param  key   possible key
964 >     * @param  key possible key
965       * @return {@code true} if and only if the specified object
966       *         is a key in this table, as determined by the
967       *         {@code equals} method; {@code false} otherwise
968       * @throws NullPointerException if the specified key is null
969       */
970      public boolean containsKey(Object key) {
971 <        return internalGet(key) != null;
971 >        return get(key) != null;
972      }
973  
974      /**
# Line 2594 | Line 984 | public class ConcurrentHashMapV8<K, V>
984      public boolean containsValue(Object value) {
985          if (value == null)
986              throw new NullPointerException();
987 <        V v;
988 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
989 <        while ((v = it.advance()) != null) {
990 <            if (v == value || value.equals(v))
991 <                return true;
987 >        Node<K,V>[] t;
988 >        if ((t = table) != null) {
989 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
990 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
991 >                V v;
992 >                if ((v = p.val) == value || (v != null && value.equals(v)))
993 >                    return true;
994 >            }
995          }
996          return false;
997      }
998  
999      /**
2607     * Legacy method testing if some key maps into the specified value
2608     * in this table.  This method is identical in functionality to
2609     * {@link #containsValue}, and exists solely to ensure
2610     * full compatibility with class {@link java.util.Hashtable},
2611     * which supported this method prior to introduction of the
2612     * Java Collections framework.
2613     *
2614     * @param  value a value to search for
2615     * @return {@code true} if and only if some key maps to the
2616     *         {@code value} argument in this table as
2617     *         determined by the {@code equals} method;
2618     *         {@code false} otherwise
2619     * @throws NullPointerException if the specified value is null
2620     */
2621    @Deprecated public boolean contains(Object value) {
2622        return containsValue(value);
2623    }
2624
2625    /**
1000       * Maps the specified key to the specified value in this table.
1001       * Neither the key nor the value can be null.
1002       *
# Line 2636 | Line 1010 | public class ConcurrentHashMapV8<K, V>
1010       * @throws NullPointerException if the specified key or value is null
1011       */
1012      public V put(K key, V value) {
1013 <        return internalPut(key, value, false);
1013 >        return putVal(key, value, false);
1014      }
1015  
1016 <    /**
1017 <     * {@inheritDoc}
1018 <     *
1019 <     * @return the previous value associated with the specified key,
1020 <     *         or {@code null} if there was no mapping for the key
1021 <     * @throws NullPointerException if the specified key or value is null
1022 <     */
1023 <    public V putIfAbsent(K key, V value) {
1024 <        return internalPut(key, value, true);
1016 >    /** Implementation for put and putIfAbsent */
1017 >    final V putVal(K key, V value, boolean onlyIfAbsent) {
1018 >        if (key == null || value == null) throw new NullPointerException();
1019 >        int hash = spread(key.hashCode());
1020 >        int binCount = 0;
1021 >        for (Node<K,V>[] tab = table;;) {
1022 >            Node<K,V> f; int n, i, fh;
1023 >            if (tab == null || (n = tab.length) == 0)
1024 >                tab = initTable();
1025 >            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
1026 >                if (casTabAt(tab, i, null,
1027 >                             new Node<K,V>(hash, key, value, null)))
1028 >                    break;                   // no lock when adding to empty bin
1029 >            }
1030 >            else if ((fh = f.hash) == MOVED)
1031 >                tab = helpTransfer(tab, f);
1032 >            else {
1033 >                V oldVal = null;
1034 >                synchronized (f) {
1035 >                    if (tabAt(tab, i) == f) {
1036 >                        if (fh >= 0) {
1037 >                            binCount = 1;
1038 >                            for (Node<K,V> e = f;; ++binCount) {
1039 >                                K ek;
1040 >                                if (e.hash == hash &&
1041 >                                    ((ek = e.key) == key ||
1042 >                                     (ek != null && key.equals(ek)))) {
1043 >                                    oldVal = e.val;
1044 >                                    if (!onlyIfAbsent)
1045 >                                        e.val = value;
1046 >                                    break;
1047 >                                }
1048 >                                Node<K,V> pred = e;
1049 >                                if ((e = e.next) == null) {
1050 >                                    pred.next = new Node<K,V>(hash, key,
1051 >                                                              value, null);
1052 >                                    break;
1053 >                                }
1054 >                            }
1055 >                        }
1056 >                        else if (f instanceof TreeBin) {
1057 >                            Node<K,V> p;
1058 >                            binCount = 2;
1059 >                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1060 >                                                           value)) != null) {
1061 >                                oldVal = p.val;
1062 >                                if (!onlyIfAbsent)
1063 >                                    p.val = value;
1064 >                            }
1065 >                        }
1066 >                    }
1067 >                }
1068 >                if (binCount != 0) {
1069 >                    if (binCount >= TREEIFY_THRESHOLD)
1070 >                        treeifyBin(tab, i);
1071 >                    if (oldVal != null)
1072 >                        return oldVal;
1073 >                    break;
1074 >                }
1075 >            }
1076 >        }
1077 >        addCount(1L, binCount);
1078 >        return null;
1079      }
1080  
1081      /**
# Line 2658 | Line 1086 | public class ConcurrentHashMapV8<K, V>
1086       * @param m mappings to be stored in this map
1087       */
1088      public void putAll(Map<? extends K, ? extends V> m) {
1089 <        internalPutAll(m);
1090 <    }
1091 <
2664 <    /**
2665 <     * If the specified key is not already associated with a value,
2666 <     * computes its value using the given mappingFunction and enters
2667 <     * it into the map unless null.  This is equivalent to
2668 <     * <pre> {@code
2669 <     * if (map.containsKey(key))
2670 <     *   return map.get(key);
2671 <     * value = mappingFunction.apply(key);
2672 <     * if (value != null)
2673 <     *   map.put(key, value);
2674 <     * return value;}</pre>
2675 <     *
2676 <     * except that the action is performed atomically.  If the
2677 <     * function returns {@code null} no mapping is recorded. If the
2678 <     * function itself throws an (unchecked) exception, the exception
2679 <     * is rethrown to its caller, and no mapping is recorded.  Some
2680 <     * attempted update operations on this map by other threads may be
2681 <     * blocked while computation is in progress, so the computation
2682 <     * should be short and simple, and must not attempt to update any
2683 <     * other mappings of this Map. The most appropriate usage is to
2684 <     * construct a new object serving as an initial mapped value, or
2685 <     * memoized result, as in:
2686 <     *
2687 <     *  <pre> {@code
2688 <     * map.computeIfAbsent(key, new Fun<K, V>() {
2689 <     *   public V map(K k) { return new Value(f(k)); }});}</pre>
2690 <     *
2691 <     * @param key key with which the specified value is to be associated
2692 <     * @param mappingFunction the function to compute a value
2693 <     * @return the current (existing or computed) value associated with
2694 <     *         the specified key, or null if the computed value is null
2695 <     * @throws NullPointerException if the specified key or mappingFunction
2696 <     *         is null
2697 <     * @throws IllegalStateException if the computation detectably
2698 <     *         attempts a recursive update to this map that would
2699 <     *         otherwise never complete
2700 <     * @throws RuntimeException or Error if the mappingFunction does so,
2701 <     *         in which case the mapping is left unestablished
2702 <     */
2703 <    public V computeIfAbsent
2704 <        (K key, Fun<? super K, ? extends V> mappingFunction) {
2705 <        return internalComputeIfAbsent(key, mappingFunction);
2706 <    }
2707 <
2708 <    /**
2709 <     * If the given key is present, computes a new mapping value given a key and
2710 <     * its current mapped value. This is equivalent to
2711 <     *  <pre> {@code
2712 <     *   if (map.containsKey(key)) {
2713 <     *     value = remappingFunction.apply(key, map.get(key));
2714 <     *     if (value != null)
2715 <     *       map.put(key, value);
2716 <     *     else
2717 <     *       map.remove(key);
2718 <     *   }
2719 <     * }</pre>
2720 <     *
2721 <     * except that the action is performed atomically.  If the
2722 <     * function returns {@code null}, the mapping is removed.  If the
2723 <     * function itself throws an (unchecked) exception, the exception
2724 <     * is rethrown to its caller, and the current mapping is left
2725 <     * unchanged.  Some attempted update operations on this map by
2726 <     * other threads may be blocked while computation is in progress,
2727 <     * so the computation should be short and simple, and must not
2728 <     * attempt to update any other mappings of this Map. For example,
2729 <     * to either create or append new messages to a value mapping:
2730 <     *
2731 <     * @param key key with which the specified value is to be associated
2732 <     * @param remappingFunction the function to compute a value
2733 <     * @return the new value associated with the specified key, or null if none
2734 <     * @throws NullPointerException if the specified key or remappingFunction
2735 <     *         is null
2736 <     * @throws IllegalStateException if the computation detectably
2737 <     *         attempts a recursive update to this map that would
2738 <     *         otherwise never complete
2739 <     * @throws RuntimeException or Error if the remappingFunction does so,
2740 <     *         in which case the mapping is unchanged
2741 <     */
2742 <    public V computeIfPresent
2743 <        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2744 <        return internalCompute(key, true, remappingFunction);
2745 <    }
2746 <
2747 <    /**
2748 <     * Computes a new mapping value given a key and
2749 <     * its current mapped value (or {@code null} if there is no current
2750 <     * mapping). This is equivalent to
2751 <     *  <pre> {@code
2752 <     *   value = remappingFunction.apply(key, map.get(key));
2753 <     *   if (value != null)
2754 <     *     map.put(key, value);
2755 <     *   else
2756 <     *     map.remove(key);
2757 <     * }</pre>
2758 <     *
2759 <     * except that the action is performed atomically.  If the
2760 <     * function returns {@code null}, the mapping is removed.  If the
2761 <     * function itself throws an (unchecked) exception, the exception
2762 <     * is rethrown to its caller, and the current mapping is left
2763 <     * unchanged.  Some attempted update operations on this map by
2764 <     * other threads may be blocked while computation is in progress,
2765 <     * so the computation should be short and simple, and must not
2766 <     * attempt to update any other mappings of this Map. For example,
2767 <     * to either create or append new messages to a value mapping:
2768 <     *
2769 <     * <pre> {@code
2770 <     * Map<Key, String> map = ...;
2771 <     * final String msg = ...;
2772 <     * map.compute(key, new BiFun<Key, String, String>() {
2773 <     *   public String apply(Key k, String v) {
2774 <     *    return (v == null) ? msg : v + msg;});}}</pre>
2775 <     *
2776 <     * @param key key with which the specified value is to be associated
2777 <     * @param remappingFunction the function to compute a value
2778 <     * @return the new value associated with the specified key, or null if none
2779 <     * @throws NullPointerException if the specified key or remappingFunction
2780 <     *         is null
2781 <     * @throws IllegalStateException if the computation detectably
2782 <     *         attempts a recursive update to this map that would
2783 <     *         otherwise never complete
2784 <     * @throws RuntimeException or Error if the remappingFunction does so,
2785 <     *         in which case the mapping is unchanged
2786 <     */
2787 <    public V compute
2788 <        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2789 <        return internalCompute(key, false, remappingFunction);
2790 <    }
2791 <
2792 <    /**
2793 <     * If the specified key is not already associated
2794 <     * with a value, associate it with the given value.
2795 <     * Otherwise, replace the value with the results of
2796 <     * the given remapping function. This is equivalent to:
2797 <     *  <pre> {@code
2798 <     *   if (!map.containsKey(key))
2799 <     *     map.put(value);
2800 <     *   else {
2801 <     *     newValue = remappingFunction.apply(map.get(key), value);
2802 <     *     if (value != null)
2803 <     *       map.put(key, value);
2804 <     *     else
2805 <     *       map.remove(key);
2806 <     *   }
2807 <     * }</pre>
2808 <     * except that the action is performed atomically.  If the
2809 <     * function returns {@code null}, the mapping is removed.  If the
2810 <     * function itself throws an (unchecked) exception, the exception
2811 <     * is rethrown to its caller, and the current mapping is left
2812 <     * unchanged.  Some attempted update operations on this map by
2813 <     * other threads may be blocked while computation is in progress,
2814 <     * so the computation should be short and simple, and must not
2815 <     * attempt to update any other mappings of this Map.
2816 <     */
2817 <    public V merge
2818 <        (K key, V value,
2819 <         BiFun<? super V, ? super V, ? extends V> remappingFunction) {
2820 <        return internalMerge(key, value, remappingFunction);
1089 >        tryPresize(m.size());
1090 >        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1091 >            putVal(e.getKey(), e.getValue(), false);
1092      }
1093  
1094      /**
# Line 2830 | Line 1101 | public class ConcurrentHashMapV8<K, V>
1101       * @throws NullPointerException if the specified key is null
1102       */
1103      public V remove(Object key) {
1104 <        return internalReplace(key, null, null);
2834 <    }
2835 <
2836 <    /**
2837 <     * {@inheritDoc}
2838 <     *
2839 <     * @throws NullPointerException if the specified key is null
2840 <     */
2841 <    public boolean remove(Object key, Object value) {
2842 <        return value != null && internalReplace(key, null, value) != null;
2843 <    }
2844 <
2845 <    /**
2846 <     * {@inheritDoc}
2847 <     *
2848 <     * @throws NullPointerException if any of the arguments are null
2849 <     */
2850 <    public boolean replace(K key, V oldValue, V newValue) {
2851 <        if (key == null || oldValue == null || newValue == null)
2852 <            throw new NullPointerException();
2853 <        return internalReplace(key, newValue, oldValue) != null;
1104 >        return replaceNode(key, null, null);
1105      }
1106  
1107      /**
1108 <     * {@inheritDoc}
1109 <     *
1110 <     * @return the previous value associated with the specified key,
2860 <     *         or {@code null} if there was no mapping for the key
2861 <     * @throws NullPointerException if the specified key or value is null
1108 >     * Implementation for the four public remove/replace methods:
1109 >     * Replaces node value with v, conditional upon match of cv if
1110 >     * non-null.  If resulting value is null, delete.
1111       */
1112 <    public V replace(K key, V value) {
1113 <        if (key == null || value == null)
1114 <            throw new NullPointerException();
1115 <        return internalReplace(key, value, null);
1112 >    final V replaceNode(Object key, V value, Object cv) {
1113 >        int hash = spread(key.hashCode());
1114 >        for (Node<K,V>[] tab = table;;) {
1115 >            Node<K,V> f; int n, i, fh;
1116 >            if (tab == null || (n = tab.length) == 0 ||
1117 >                (f = tabAt(tab, i = (n - 1) & hash)) == null)
1118 >                break;
1119 >            else if ((fh = f.hash) == MOVED)
1120 >                tab = helpTransfer(tab, f);
1121 >            else {
1122 >                V oldVal = null;
1123 >                boolean validated = false;
1124 >                synchronized (f) {
1125 >                    if (tabAt(tab, i) == f) {
1126 >                        if (fh >= 0) {
1127 >                            validated = true;
1128 >                            for (Node<K,V> e = f, pred = null;;) {
1129 >                                K ek;
1130 >                                if (e.hash == hash &&
1131 >                                    ((ek = e.key) == key ||
1132 >                                     (ek != null && key.equals(ek)))) {
1133 >                                    V ev = e.val;
1134 >                                    if (cv == null || cv == ev ||
1135 >                                        (ev != null && cv.equals(ev))) {
1136 >                                        oldVal = ev;
1137 >                                        if (value != null)
1138 >                                            e.val = value;
1139 >                                        else if (pred != null)
1140 >                                            pred.next = e.next;
1141 >                                        else
1142 >                                            setTabAt(tab, i, e.next);
1143 >                                    }
1144 >                                    break;
1145 >                                }
1146 >                                pred = e;
1147 >                                if ((e = e.next) == null)
1148 >                                    break;
1149 >                            }
1150 >                        }
1151 >                        else if (f instanceof TreeBin) {
1152 >                            validated = true;
1153 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1154 >                            TreeNode<K,V> r, p;
1155 >                            if ((r = t.root) != null &&
1156 >                                (p = r.findTreeNode(hash, key, null)) != null) {
1157 >                                V pv = p.val;
1158 >                                if (cv == null || cv == pv ||
1159 >                                    (pv != null && cv.equals(pv))) {
1160 >                                    oldVal = pv;
1161 >                                    if (value != null)
1162 >                                        p.val = value;
1163 >                                    else if (t.removeTreeNode(p))
1164 >                                        setTabAt(tab, i, untreeify(t.first));
1165 >                                }
1166 >                            }
1167 >                        }
1168 >                    }
1169 >                }
1170 >                if (validated) {
1171 >                    if (oldVal != null) {
1172 >                        if (value == null)
1173 >                            addCount(-1L, -1);
1174 >                        return oldVal;
1175 >                    }
1176 >                    break;
1177 >                }
1178 >            }
1179 >        }
1180 >        return null;
1181      }
1182  
1183      /**
1184       * Removes all of the mappings from this map.
1185       */
1186      public void clear() {
1187 <        internalClear();
1187 >        long delta = 0L; // negative number of deletions
1188 >        int i = 0;
1189 >        Node<K,V>[] tab = table;
1190 >        while (tab != null && i < tab.length) {
1191 >            int fh;
1192 >            Node<K,V> f = tabAt(tab, i);
1193 >            if (f == null)
1194 >                ++i;
1195 >            else if ((fh = f.hash) == MOVED) {
1196 >                tab = helpTransfer(tab, f);
1197 >                i = 0; // restart
1198 >            }
1199 >            else {
1200 >                synchronized (f) {
1201 >                    if (tabAt(tab, i) == f) {
1202 >                        Node<K,V> p = (fh >= 0 ? f :
1203 >                                       (f instanceof TreeBin) ?
1204 >                                       ((TreeBin<K,V>)f).first : null);
1205 >                        while (p != null) {
1206 >                            --delta;
1207 >                            p = p.next;
1208 >                        }
1209 >                        setTabAt(tab, i++, null);
1210 >                    }
1211 >                }
1212 >            }
1213 >        }
1214 >        if (delta != 0L)
1215 >            addCount(delta, -1);
1216      }
1217  
1218      /**
1219       * Returns a {@link Set} view of the keys contained in this map.
1220       * The set is backed by the map, so changes to the map are
1221 <     * reflected in the set, and vice-versa.
1221 >     * reflected in the set, and vice-versa. The set supports element
1222 >     * removal, which removes the corresponding mapping from this map,
1223 >     * via the {@code Iterator.remove}, {@code Set.remove},
1224 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1225 >     * operations.  It does not support the {@code add} or
1226 >     * {@code addAll} operations.
1227       *
1228 <     * @return the set view
1229 <     */
1230 <    public KeySetView<K,V> keySet() {
1231 <        KeySetView<K,V> ks = keySet;
1232 <        return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2886 <    }
2887 <
2888 <    /**
2889 <     * Returns a {@link Set} view of the keys in this map, using the
2890 <     * given common mapped value for any additions (i.e., {@link
2891 <     * Collection#add} and {@link Collection#addAll}). This is of
2892 <     * course only appropriate if it is acceptable to use the same
2893 <     * value for all additions from this view.
1228 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1229 >     * that will never throw {@link ConcurrentModificationException},
1230 >     * and guarantees to traverse elements as they existed upon
1231 >     * construction of the iterator, and may (but is not guaranteed to)
1232 >     * reflect any modifications subsequent to construction.
1233       *
2895     * @param mappedValue the mapped value to use for any
2896     * additions.
1234       * @return the set view
2898     * @throws NullPointerException if the mappedValue is null
1235       */
1236 <    public KeySetView<K,V> keySet(V mappedValue) {
1237 <        if (mappedValue == null)
1238 <            throw new NullPointerException();
2903 <        return new KeySetView<K,V>(this, mappedValue);
1236 >    public KeySetView<K,V> keySet() {
1237 >        KeySetView<K,V> ks;
1238 >        return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1239      }
1240  
1241      /**
1242       * Returns a {@link Collection} view of the values contained in this map.
1243       * The collection is backed by the map, so changes to the map are
1244 <     * reflected in the collection, and vice-versa.
1244 >     * reflected in the collection, and vice-versa.  The collection
1245 >     * supports element removal, which removes the corresponding
1246 >     * mapping from this map, via the {@code Iterator.remove},
1247 >     * {@code Collection.remove}, {@code removeAll},
1248 >     * {@code retainAll}, and {@code clear} operations.  It does not
1249 >     * support the {@code add} or {@code addAll} operations.
1250 >     *
1251 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1252 >     * that will never throw {@link ConcurrentModificationException},
1253 >     * and guarantees to traverse elements as they existed upon
1254 >     * construction of the iterator, and may (but is not guaranteed to)
1255 >     * reflect any modifications subsequent to construction.
1256 >     *
1257 >     * @return the collection view
1258       */
1259 <    public ValuesView<K,V> values() {
1260 <        ValuesView<K,V> vs = values;
1261 <        return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
1259 >    public Collection<V> values() {
1260 >        ValuesView<K,V> vs;
1261 >        return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1262      }
1263  
1264      /**
# Line 2920 | Line 1268 | public class ConcurrentHashMapV8<K, V>
1268       * removal, which removes the corresponding mapping from the map,
1269       * via the {@code Iterator.remove}, {@code Set.remove},
1270       * {@code removeAll}, {@code retainAll}, and {@code clear}
1271 <     * operations.  It does not support the {@code add} or
2924 <     * {@code addAll} operations.
1271 >     * operations.
1272       *
1273       * <p>The view's {@code iterator} is a "weakly consistent" iterator
1274       * that will never throw {@link ConcurrentModificationException},
1275       * and guarantees to traverse elements as they existed upon
1276       * construction of the iterator, and may (but is not guaranteed to)
1277       * reflect any modifications subsequent to construction.
2931     */
2932    public Set<Map.Entry<K,V>> entrySet() {
2933        EntrySetView<K,V> es = entrySet;
2934        return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2935    }
2936
2937    /**
2938     * Returns an enumeration of the keys in this table.
2939     *
2940     * @return an enumeration of the keys in this table
2941     * @see #keySet()
2942     */
2943    public Enumeration<K> keys() {
2944        return new KeyIterator<K,V>(this);
2945    }
2946
2947    /**
2948     * Returns an enumeration of the values in this table.
1278       *
1279 <     * @return an enumeration of the values in this table
2951 <     * @see #values()
2952 <     */
2953 <    public Enumeration<V> elements() {
2954 <        return new ValueIterator<K,V>(this);
2955 <    }
2956 <
2957 <    /**
2958 <     * Returns a partitionable iterator of the keys in this map.
2959 <     *
2960 <     * @return a partitionable iterator of the keys in this map
2961 <     */
2962 <    public Spliterator<K> keySpliterator() {
2963 <        return new KeyIterator<K,V>(this);
2964 <    }
2965 <
2966 <    /**
2967 <     * Returns a partitionable iterator of the values in this map.
2968 <     *
2969 <     * @return a partitionable iterator of the values in this map
2970 <     */
2971 <    public Spliterator<V> valueSpliterator() {
2972 <        return new ValueIterator<K,V>(this);
2973 <    }
2974 <
2975 <    /**
2976 <     * Returns a partitionable iterator of the entries in this map.
2977 <     *
2978 <     * @return a partitionable iterator of the entries in this map
1279 >     * @return the set view
1280       */
1281 <    public Spliterator<Map.Entry<K,V>> entrySpliterator() {
1282 <        return new EntryIterator<K,V>(this);
1281 >    public Set<Map.Entry<K,V>> entrySet() {
1282 >        EntrySetView<K,V> es;
1283 >        return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1284      }
1285  
1286      /**
# Line 2990 | Line 1292 | public class ConcurrentHashMapV8<K, V>
1292       */
1293      public int hashCode() {
1294          int h = 0;
1295 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
1296 <        V v;
1297 <        while ((v = it.advance()) != null) {
1298 <            h += it.nextKey.hashCode() ^ v.hashCode();
1295 >        Node<K,V>[] t;
1296 >        if ((t = table) != null) {
1297 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1298 >            for (Node<K,V> p; (p = it.advance()) != null; )
1299 >                h += p.key.hashCode() ^ p.val.hashCode();
1300          }
1301          return h;
1302      }
# Line 3010 | Line 1313 | public class ConcurrentHashMapV8<K, V>
1313       * @return a string representation of this map
1314       */
1315      public String toString() {
1316 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
1316 >        Node<K,V>[] t;
1317 >        int f = (t = table) == null ? 0 : t.length;
1318 >        Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1319          StringBuilder sb = new StringBuilder();
1320          sb.append('{');
1321 <        V v;
1322 <        if ((v = it.advance()) != null) {
1321 >        Node<K,V> p;
1322 >        if ((p = it.advance()) != null) {
1323              for (;;) {
1324 <                Object k = it.nextKey;
1324 >                K k = p.key;
1325 >                V v = p.val;
1326                  sb.append(k == this ? "(this Map)" : k);
1327                  sb.append('=');
1328                  sb.append(v == this ? "(this Map)" : v);
1329 <                if ((v = it.advance()) == null)
1329 >                if ((p = it.advance()) == null)
1330                      break;
1331                  sb.append(',').append(' ');
1332              }
# Line 3043 | Line 1349 | public class ConcurrentHashMapV8<K, V>
1349              if (!(o instanceof Map))
1350                  return false;
1351              Map<?,?> m = (Map<?,?>) o;
1352 <            Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
1353 <            V val;
1354 <            while ((val = it.advance()) != null) {
1355 <                Object v = m.get(it.nextKey);
1352 >            Node<K,V>[] t;
1353 >            int f = (t = table) == null ? 0 : t.length;
1354 >            Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1355 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1356 >                V val = p.val;
1357 >                Object v = m.get(p.key);
1358                  if (v == null || (v != val && !v.equals(val)))
1359                      return false;
1360              }
# Line 3054 | Line 1362 | public class ConcurrentHashMapV8<K, V>
1362                  Object mk, mv, v;
1363                  if ((mk = e.getKey()) == null ||
1364                      (mv = e.getValue()) == null ||
1365 <                    (v = internalGet(mk)) == null ||
1365 >                    (v = get(mk)) == null ||
1366                      (mv != v && !mv.equals(v)))
1367                      return false;
1368              }
# Line 3062 | Line 1370 | public class ConcurrentHashMapV8<K, V>
1370          return true;
1371      }
1372  
3065    /* ----------------Iterators -------------- */
3066
3067    @SuppressWarnings("serial") static final class KeyIterator<K,V>
3068        extends Traverser<K,V,Object>
3069        implements Spliterator<K>, Enumeration<K> {
3070        KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3071        KeyIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3072            super(map, it, -1);
3073        }
3074        public KeyIterator<K,V> split() {
3075            if (nextKey != null)
3076                throw new IllegalStateException();
3077            return new KeyIterator<K,V>(map, this);
3078        }
3079        @SuppressWarnings("unchecked") public final K next() {
3080            if (nextVal == null && advance() == null)
3081                throw new NoSuchElementException();
3082            Object k = nextKey;
3083            nextVal = null;
3084            return (K) k;
3085        }
3086
3087        public final K nextElement() { return next(); }
3088    }
3089
3090    @SuppressWarnings("serial") static final class ValueIterator<K,V>
3091        extends Traverser<K,V,Object>
3092        implements Spliterator<V>, Enumeration<V> {
3093        ValueIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3094        ValueIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3095            super(map, it, -1);
3096        }
3097        public ValueIterator<K,V> split() {
3098            if (nextKey != null)
3099                throw new IllegalStateException();
3100            return new ValueIterator<K,V>(map, this);
3101        }
3102
3103        public final V next() {
3104            V v;
3105            if ((v = nextVal) == null && (v = advance()) == null)
3106                throw new NoSuchElementException();
3107            nextVal = null;
3108            return v;
3109        }
3110
3111        public final V nextElement() { return next(); }
3112    }
3113
3114    @SuppressWarnings("serial") static final class EntryIterator<K,V>
3115        extends Traverser<K,V,Object>
3116        implements Spliterator<Map.Entry<K,V>> {
3117        EntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3118        EntryIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3119            super(map, it, -1);
3120        }
3121        public EntryIterator<K,V> split() {
3122            if (nextKey != null)
3123                throw new IllegalStateException();
3124            return new EntryIterator<K,V>(map, this);
3125        }
3126
3127        @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3128            V v;
3129            if ((v = nextVal) == null && (v = advance()) == null)
3130                throw new NoSuchElementException();
3131            Object k = nextKey;
3132            nextVal = null;
3133            return new MapEntry<K,V>((K)k, v, map);
3134        }
3135    }
3136
3137    /**
3138     * Exported Entry for iterators
3139     */
3140    static final class MapEntry<K,V> implements Map.Entry<K, V> {
3141        final K key; // non-null
3142        V val;       // non-null
3143        final ConcurrentHashMapV8<K, V> map;
3144        MapEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
3145            this.key = key;
3146            this.val = val;
3147            this.map = map;
3148        }
3149        public final K getKey()       { return key; }
3150        public final V getValue()     { return val; }
3151        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
3152        public final String toString(){ return key + "=" + val; }
3153
3154        public final boolean equals(Object o) {
3155            Object k, v; Map.Entry<?,?> e;
3156            return ((o instanceof Map.Entry) &&
3157                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3158                    (v = e.getValue()) != null &&
3159                    (k == key || k.equals(key)) &&
3160                    (v == val || v.equals(val)));
3161        }
3162
3163        /**
3164         * Sets our entry's value and writes through to the map. The
3165         * value to return is somewhat arbitrary here. Since we do not
3166         * necessarily track asynchronous changes, the most recent
3167         * "previous" value could be different from what we return (or
3168         * could even have been removed in which case the put will
3169         * re-establish). We do not and cannot guarantee more.
3170         */
3171        public final V setValue(V value) {
3172            if (value == null) throw new NullPointerException();
3173            V v = val;
3174            val = value;
3175            map.put(key, value);
3176            return v;
3177        }
3178    }
3179
3180    /**
3181     * Returns exportable snapshot entry for the given key and value
3182     * when write-through can't or shouldn't be used.
3183     */
3184    static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3185        return new AbstractMap.SimpleEntry<K,V>(k, v);
3186    }
3187
3188    /* ---------------- Serialization Support -------------- */
3189
1373      /**
1374       * Stripped-down version of helper class used in previous version,
1375       * declared for the sake of serialization compatibility
1376       */
1377 <    static class Segment<K,V> implements Serializable {
1377 >    static class Segment<K,V> extends ReentrantLock implements Serializable {
1378          private static final long serialVersionUID = 2249069246763182397L;
1379          final float loadFactor;
1380          Segment(float lf) { this.loadFactor = lf; }
# Line 3201 | Line 1384 | public class ConcurrentHashMapV8<K, V>
1384       * Saves the state of the {@code ConcurrentHashMapV8} instance to a
1385       * stream (i.e., serializes it).
1386       * @param s the stream
1387 +     * @throws java.io.IOException if an I/O error occurs
1388       * @serialData
1389       * the key (Object) and value (Object)
1390       * for each key-value mapping, followed by a null pair.
1391       * The key-value mappings are emitted in no particular order.
1392       */
1393 <    @SuppressWarnings("unchecked") private void writeObject
3210 <        (java.io.ObjectOutputStream s)
1393 >    private void writeObject(java.io.ObjectOutputStream s)
1394          throws java.io.IOException {
1395 <        if (segments == null) { // for serialization compatibility
1396 <            segments = (Segment<K,V>[])
1397 <                new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1398 <            for (int i = 0; i < segments.length; ++i)
1399 <                segments[i] = new Segment<K,V>(LOAD_FACTOR);
1400 <        }
1401 <        s.defaultWriteObject();
1402 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
1403 <        V v;
1404 <        while ((v = it.advance()) != null) {
1405 <            s.writeObject(it.nextKey);
1406 <            s.writeObject(v);
1395 >        // For serialization compatibility
1396 >        // Emulate segment calculation from previous version of this class
1397 >        int sshift = 0;
1398 >        int ssize = 1;
1399 >        while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1400 >            ++sshift;
1401 >            ssize <<= 1;
1402 >        }
1403 >        int segmentShift = 32 - sshift;
1404 >        int segmentMask = ssize - 1;
1405 >        @SuppressWarnings("unchecked") Segment<K,V>[] segments = (Segment<K,V>[])
1406 >            new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1407 >        for (int i = 0; i < segments.length; ++i)
1408 >            segments[i] = new Segment<K,V>(LOAD_FACTOR);
1409 >        s.putFields().put("segments", segments);
1410 >        s.putFields().put("segmentShift", segmentShift);
1411 >        s.putFields().put("segmentMask", segmentMask);
1412 >        s.writeFields();
1413 >
1414 >        Node<K,V>[] t;
1415 >        if ((t = table) != null) {
1416 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1417 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1418 >                s.writeObject(p.key);
1419 >                s.writeObject(p.val);
1420 >            }
1421          }
1422          s.writeObject(null);
1423          s.writeObject(null);
# Line 3230 | Line 1427 | public class ConcurrentHashMapV8<K, V>
1427      /**
1428       * Reconstitutes the instance from a stream (that is, deserializes it).
1429       * @param s the stream
1430 +     * @throws ClassNotFoundException if the class of a serialized object
1431 +     *         could not be found
1432 +     * @throws java.io.IOException if an I/O error occurs
1433       */
1434 <    @SuppressWarnings("unchecked") private void readObject
3235 <        (java.io.ObjectInputStream s)
1434 >    private void readObject(java.io.ObjectInputStream s)
1435          throws java.io.IOException, ClassNotFoundException {
1436 +        /*
1437 +         * To improve performance in typical cases, we create nodes
1438 +         * while reading, then place in table once size is known.
1439 +         * However, we must also validate uniqueness and deal with
1440 +         * overpopulated bins while doing so, which requires
1441 +         * specialized versions of putVal mechanics.
1442 +         */
1443 +        sizeCtl = -1; // force exclusion for table construction
1444          s.defaultReadObject();
3238        this.segments = null; // unneeded
3239
3240        // Create all nodes, then place in table once size is known
1445          long size = 0L;
1446 <        Node<V> p = null;
1446 >        Node<K,V> p = null;
1447          for (;;) {
1448 <            K k = (K) s.readObject();
1449 <            V v = (V) s.readObject();
1448 >            @SuppressWarnings("unchecked") K k = (K) s.readObject();
1449 >            @SuppressWarnings("unchecked") V v = (V) s.readObject();
1450              if (k != null && v != null) {
1451 <                int h = spread(k.hashCode());
3248 <                p = new Node<V>(h, k, v, p);
1451 >                p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1452                  ++size;
1453              }
1454              else
1455                  break;
1456          }
1457 <        if (p != null) {
1458 <            boolean init = false;
1457 >        if (size == 0L)
1458 >            sizeCtl = 0;
1459 >        else {
1460              int n;
1461              if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1462                  n = MAXIMUM_CAPACITY;
# Line 3260 | Line 1464 | public class ConcurrentHashMapV8<K, V>
1464                  int sz = (int)size;
1465                  n = tableSizeFor(sz + (sz >>> 1) + 1);
1466              }
1467 <            int sc = sizeCtl;
1468 <            boolean collide = false;
1469 <            if (n > sc &&
1470 <                U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1471 <                try {
1472 <                    if (table == null) {
1473 <                        init = true;
1474 <                        @SuppressWarnings("rawtypes") Node[] rt = new Node[n];
1475 <                        Node<V>[] tab = (Node<V>[])rt;
1476 <                        int mask = n - 1;
1477 <                        while (p != null) {
1478 <                            int j = p.hash & mask;
1479 <                            Node<V> next = p.next;
1480 <                            Node<V> q = p.next = tabAt(tab, j);
1481 <                            setTabAt(tab, j, p);
1482 <                            if (!collide && q != null && q.hash == p.hash)
1483 <                                collide = true;
3280 <                            p = next;
3281 <                        }
3282 <                        table = tab;
3283 <                        addCount(size, -1);
3284 <                        sc = n - (n >>> 2);
1467 >            @SuppressWarnings("unchecked")
1468 >                Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1469 >            int mask = n - 1;
1470 >            long added = 0L;
1471 >            while (p != null) {
1472 >                boolean insertAtFront;
1473 >                Node<K,V> next = p.next, first;
1474 >                int h = p.hash, j = h & mask;
1475 >                if ((first = tabAt(tab, j)) == null)
1476 >                    insertAtFront = true;
1477 >                else {
1478 >                    K k = p.key;
1479 >                    if (first.hash < 0) {
1480 >                        TreeBin<K,V> t = (TreeBin<K,V>)first;
1481 >                        if (t.putTreeVal(h, k, p.val) == null)
1482 >                            ++added;
1483 >                        insertAtFront = false;
1484                      }
1485 <                } finally {
1486 <                    sizeCtl = sc;
1487 <                }
1488 <                if (collide) { // rescan and convert to TreeBins
1489 <                    Node<V>[] tab = table;
1490 <                    for (int i = 0; i < tab.length; ++i) {
1491 <                        int c = 0;
1492 <                        for (Node<V> e = tabAt(tab, i); e != null; e = e.next) {
1493 <                            if (++c > TREE_THRESHOLD &&
3295 <                                (e.key instanceof Comparable)) {
3296 <                                replaceWithTreeBin(tab, i, e.key);
1485 >                    else {
1486 >                        int binCount = 0;
1487 >                        insertAtFront = true;
1488 >                        Node<K,V> q; K qk;
1489 >                        for (q = first; q != null; q = q.next) {
1490 >                            if (q.hash == h &&
1491 >                                ((qk = q.key) == k ||
1492 >                                 (qk != null && k.equals(qk)))) {
1493 >                                insertAtFront = false;
1494                                  break;
1495                              }
1496 +                            ++binCount;
1497 +                        }
1498 +                        if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1499 +                            insertAtFront = false;
1500 +                            ++added;
1501 +                            p.next = first;
1502 +                            TreeNode<K,V> hd = null, tl = null;
1503 +                            for (q = p; q != null; q = q.next) {
1504 +                                TreeNode<K,V> t = new TreeNode<K,V>
1505 +                                    (q.hash, q.key, q.val, null, null);
1506 +                                if ((t.prev = tl) == null)
1507 +                                    hd = t;
1508 +                                else
1509 +                                    tl.next = t;
1510 +                                tl = t;
1511 +                            }
1512 +                            setTabAt(tab, j, new TreeBin<K,V>(hd));
1513                          }
1514                      }
1515                  }
1516 <            }
1517 <            if (!init) { // Can only happen if unsafely published.
1518 <                while (p != null) {
1519 <                    internalPut((K)p.key, p.val, false);
3306 <                    p = p.next;
1516 >                if (insertAtFront) {
1517 >                    ++added;
1518 >                    p.next = first;
1519 >                    setTabAt(tab, j, p);
1520                  }
1521 +                p = next;
1522              }
1523 +            table = tab;
1524 +            sizeCtl = n - (n >>> 2);
1525 +            baseCount = added;
1526          }
1527      }
1528  
1529 <    // -------------------------------------------------------
3313 <
3314 <    // Sams
3315 <    /** Interface describing a void action of one argument */
3316 <    public interface Action<A> { void apply(A a); }
3317 <    /** Interface describing a void action of two arguments */
3318 <    public interface BiAction<A,B> { void apply(A a, B b); }
3319 <    /** Interface describing a function of one argument */
3320 <    public interface Fun<A,T> { T apply(A a); }
3321 <    /** Interface describing a function of two arguments */
3322 <    public interface BiFun<A,B,T> { T apply(A a, B b); }
3323 <    /** Interface describing a function of no arguments */
3324 <    public interface Generator<T> { T apply(); }
3325 <    /** Interface describing a function mapping its argument to a double */
3326 <    public interface ObjectToDouble<A> { double apply(A a); }
3327 <    /** Interface describing a function mapping its argument to a long */
3328 <    public interface ObjectToLong<A> { long apply(A a); }
3329 <    /** Interface describing a function mapping its argument to an int */
3330 <    public interface ObjectToInt<A> {int apply(A a); }
3331 <    /** Interface describing a function mapping two arguments to a double */
3332 <    public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3333 <    /** Interface describing a function mapping two arguments to a long */
3334 <    public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3335 <    /** Interface describing a function mapping two arguments to an int */
3336 <    public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3337 <    /** Interface describing a function mapping a double to a double */
3338 <    public interface DoubleToDouble { double apply(double a); }
3339 <    /** Interface describing a function mapping a long to a long */
3340 <    public interface LongToLong { long apply(long a); }
3341 <    /** Interface describing a function mapping an int to an int */
3342 <    public interface IntToInt { int apply(int a); }
3343 <    /** Interface describing a function mapping two doubles to a double */
3344 <    public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3345 <    /** Interface describing a function mapping two longs to a long */
3346 <    public interface LongByLongToLong { long apply(long a, long b); }
3347 <    /** Interface describing a function mapping two ints to an int */
3348 <    public interface IntByIntToInt { int apply(int a, int b); }
3349 <
3350 <
3351 <    // -------------------------------------------------------
3352 <
3353 <    // Sequential bulk operations
1529 >    // ConcurrentMap methods
1530  
1531      /**
1532 <     * Performs the given action for each (key, value).
1532 >     * {@inheritDoc}
1533       *
1534 <     * @param action the action
1534 >     * @return the previous value associated with the specified key,
1535 >     *         or {@code null} if there was no mapping for the key
1536 >     * @throws NullPointerException if the specified key or value is null
1537       */
1538 <    @SuppressWarnings("unchecked") public void forEachSequentially
1539 <        (BiAction<K,V> action) {
3362 <        if (action == null) throw new NullPointerException();
3363 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3364 <        V v;
3365 <        while ((v = it.advance()) != null)
3366 <            action.apply((K)it.nextKey, v);
1538 >    public V putIfAbsent(K key, V value) {
1539 >        return putVal(key, value, true);
1540      }
1541  
1542      /**
1543 <     * Performs the given action for each non-null transformation
3371 <     * of each (key, value).
1543 >     * {@inheritDoc}
1544       *
1545 <     * @param transformer a function returning the transformation
3374 <     * for an element, or null of there is no transformation (in
3375 <     * which case the action is not applied).
3376 <     * @param action the action
1545 >     * @throws NullPointerException if the specified key is null
1546       */
1547 <    @SuppressWarnings("unchecked") public <U> void forEachSequentially
1548 <        (BiFun<? super K, ? super V, ? extends U> transformer,
3380 <         Action<U> action) {
3381 <        if (transformer == null || action == null)
1547 >    public boolean remove(Object key, Object value) {
1548 >        if (key == null)
1549              throw new NullPointerException();
1550 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3384 <        V v; U u;
3385 <        while ((v = it.advance()) != null) {
3386 <            if ((u = transformer.apply((K)it.nextKey, v)) != null)
3387 <                action.apply(u);
3388 <        }
1550 >        return value != null && replaceNode(key, null, value) != null;
1551      }
1552  
1553      /**
1554 <     * Returns a non-null result from applying the given search
3393 <     * function on each (key, value), or null if none.
1554 >     * {@inheritDoc}
1555       *
1556 <     * @param searchFunction a function returning a non-null
3396 <     * result on success, else null
3397 <     * @return a non-null result from applying the given search
3398 <     * function on each (key, value), or null if none
1556 >     * @throws NullPointerException if any of the arguments are null
1557       */
1558 <    @SuppressWarnings("unchecked") public <U> U searchSequentially
1559 <        (BiFun<? super K, ? super V, ? extends U> searchFunction) {
1560 <        if (searchFunction == null) throw new NullPointerException();
1561 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3404 <        V v; U u;
3405 <        while ((v = it.advance()) != null) {
3406 <            if ((u = searchFunction.apply((K)it.nextKey, v)) != null)
3407 <                return u;
3408 <        }
3409 <        return null;
1558 >    public boolean replace(K key, V oldValue, V newValue) {
1559 >        if (key == null || oldValue == null || newValue == null)
1560 >            throw new NullPointerException();
1561 >        return replaceNode(key, newValue, oldValue) != null;
1562      }
1563  
1564      /**
1565 <     * Returns the result of accumulating the given transformation
3414 <     * of all (key, value) pairs using the given reducer to
3415 <     * combine values, or null if none.
1565 >     * {@inheritDoc}
1566       *
1567 <     * @param transformer a function returning the transformation
1568 <     * for an element, or null of there is no transformation (in
1569 <     * which case it is not combined).
3420 <     * @param reducer a commutative associative combining function
3421 <     * @return the result of accumulating the given transformation
3422 <     * of all (key, value) pairs
1567 >     * @return the previous value associated with the specified key,
1568 >     *         or {@code null} if there was no mapping for the key
1569 >     * @throws NullPointerException if the specified key or value is null
1570       */
1571 <    @SuppressWarnings("unchecked") public <U> U reduceSequentially
1572 <        (BiFun<? super K, ? super V, ? extends U> transformer,
3426 <         BiFun<? super U, ? super U, ? extends U> reducer) {
3427 <        if (transformer == null || reducer == null)
1571 >    public V replace(K key, V value) {
1572 >        if (key == null || value == null)
1573              throw new NullPointerException();
1574 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3430 <        U r = null, u; V v;
3431 <        while ((v = it.advance()) != null) {
3432 <            if ((u = transformer.apply((K)it.nextKey, v)) != null)
3433 <                r = (r == null) ? u : reducer.apply(r, u);
3434 <        }
3435 <        return r;
1574 >        return replaceNode(key, value, null);
1575      }
1576  
1577 +    // Overrides of JDK8+ Map extension method defaults
1578 +
1579      /**
1580 <     * Returns the result of accumulating the given transformation
1581 <     * of all (key, value) pairs using the given reducer to
1582 <     * combine values, and the given basis as an identity value.
1580 >     * Returns the value to which the specified key is mapped, or the
1581 >     * given default value if this map contains no mapping for the
1582 >     * key.
1583       *
1584 <     * @param transformer a function returning the transformation
1585 <     * for an element
1586 <     * @param basis the identity (initial default value) for the reduction
1587 <     * @param reducer a commutative associative combining function
1588 <     * @return the result of accumulating the given transformation
3448 <     * of all (key, value) pairs
1584 >     * @param key the key whose associated value is to be returned
1585 >     * @param defaultValue the value to return if this map contains
1586 >     * no mapping for the given key
1587 >     * @return the mapping for the key, if present; else the default value
1588 >     * @throws NullPointerException if the specified key is null
1589       */
1590 <    @SuppressWarnings("unchecked") public double reduceToDoubleSequentially
1591 <        (ObjectByObjectToDouble<? super K, ? super V> transformer,
1592 <         double basis,
1593 <         DoubleByDoubleToDouble reducer) {
1594 <        if (transformer == null || reducer == null)
1595 <            throw new NullPointerException();
1596 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
1597 <        double r = basis; V v;
1598 <        while ((v = it.advance()) != null)
1599 <            r = reducer.apply(r, transformer.apply((K)it.nextKey, v));
1600 <        return r;
1590 >    public V getOrDefault(Object key, V defaultValue) {
1591 >        V v;
1592 >        return (v = get(key)) == null ? defaultValue : v;
1593 >    }
1594 >
1595 >    public void forEach(BiAction<? super K, ? super V> action) {
1596 >        if (action == null) throw new NullPointerException();
1597 >        Node<K,V>[] t;
1598 >        if ((t = table) != null) {
1599 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1600 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1601 >                action.apply(p.key, p.val);
1602 >            }
1603 >        }
1604 >    }
1605 >
1606 >    public void replaceAll(BiFun<? super K, ? super V, ? extends V> function) {
1607 >        if (function == null) throw new NullPointerException();
1608 >        Node<K,V>[] t;
1609 >        if ((t = table) != null) {
1610 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1611 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1612 >                V oldValue = p.val;
1613 >                for (K key = p.key;;) {
1614 >                    V newValue = function.apply(key, oldValue);
1615 >                    if (newValue == null)
1616 >                        throw new NullPointerException();
1617 >                    if (replaceNode(key, newValue, oldValue) != null ||
1618 >                        (oldValue = get(key)) == null)
1619 >                        break;
1620 >                }
1621 >            }
1622 >        }
1623      }
1624  
1625      /**
1626 <     * Returns the result of accumulating the given transformation
1627 <     * of all (key, value) pairs using the given reducer to
1628 <     * combine values, and the given basis as an identity value.
1626 >     * If the specified key is not already associated with a value,
1627 >     * attempts to compute its value using the given mapping function
1628 >     * and enters it into this map unless {@code null}.  The entire
1629 >     * method invocation is performed atomically, so the function is
1630 >     * applied at most once per key.  Some attempted update operations
1631 >     * on this map by other threads may be blocked while computation
1632 >     * is in progress, so the computation should be short and simple,
1633 >     * and must not attempt to update any other mappings of this map.
1634       *
1635 <     * @param transformer a function returning the transformation
1636 <     * for an element
1637 <     * @param basis the identity (initial default value) for the reduction
1638 <     * @param reducer a commutative associative combining function
1639 <     * @return the result of accumulating the given transformation
1640 <     * of all (key, value) pairs
1635 >     * @param key key with which the specified value is to be associated
1636 >     * @param mappingFunction the function to compute a value
1637 >     * @return the current (existing or computed) value associated with
1638 >     *         the specified key, or null if the computed value is null
1639 >     * @throws NullPointerException if the specified key or mappingFunction
1640 >     *         is null
1641 >     * @throws IllegalStateException if the computation detectably
1642 >     *         attempts a recursive update to this map that would
1643 >     *         otherwise never complete
1644 >     * @throws RuntimeException or Error if the mappingFunction does so,
1645 >     *         in which case the mapping is left unestablished
1646       */
1647 <    @SuppressWarnings("unchecked") public long reduceToLongSequentially
1648 <        (ObjectByObjectToLong<? super K, ? super V> transformer,
3477 <         long basis,
3478 <         LongByLongToLong reducer) {
3479 <        if (transformer == null || reducer == null)
1647 >    public V computeIfAbsent(K key, Fun<? super K, ? extends V> mappingFunction) {
1648 >        if (key == null || mappingFunction == null)
1649              throw new NullPointerException();
1650 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
1651 <        long r = basis; V v;
1652 <        while ((v = it.advance()) != null)
1653 <            r = reducer.apply(r, transformer.apply((K)it.nextKey, v));
1654 <        return r;
1650 >        int h = spread(key.hashCode());
1651 >        V val = null;
1652 >        int binCount = 0;
1653 >        for (Node<K,V>[] tab = table;;) {
1654 >            Node<K,V> f; int n, i, fh;
1655 >            if (tab == null || (n = tab.length) == 0)
1656 >                tab = initTable();
1657 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1658 >                Node<K,V> r = new ReservationNode<K,V>();
1659 >                synchronized (r) {
1660 >                    if (casTabAt(tab, i, null, r)) {
1661 >                        binCount = 1;
1662 >                        Node<K,V> node = null;
1663 >                        try {
1664 >                            if ((val = mappingFunction.apply(key)) != null)
1665 >                                node = new Node<K,V>(h, key, val, null);
1666 >                        } finally {
1667 >                            setTabAt(tab, i, node);
1668 >                        }
1669 >                    }
1670 >                }
1671 >                if (binCount != 0)
1672 >                    break;
1673 >            }
1674 >            else if ((fh = f.hash) == MOVED)
1675 >                tab = helpTransfer(tab, f);
1676 >            else {
1677 >                boolean added = false;
1678 >                synchronized (f) {
1679 >                    if (tabAt(tab, i) == f) {
1680 >                        if (fh >= 0) {
1681 >                            binCount = 1;
1682 >                            for (Node<K,V> e = f;; ++binCount) {
1683 >                                K ek; V ev;
1684 >                                if (e.hash == h &&
1685 >                                    ((ek = e.key) == key ||
1686 >                                     (ek != null && key.equals(ek)))) {
1687 >                                    val = e.val;
1688 >                                    break;
1689 >                                }
1690 >                                Node<K,V> pred = e;
1691 >                                if ((e = e.next) == null) {
1692 >                                    if ((val = mappingFunction.apply(key)) != null) {
1693 >                                        added = true;
1694 >                                        pred.next = new Node<K,V>(h, key, val, null);
1695 >                                    }
1696 >                                    break;
1697 >                                }
1698 >                            }
1699 >                        }
1700 >                        else if (f instanceof TreeBin) {
1701 >                            binCount = 2;
1702 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1703 >                            TreeNode<K,V> r, p;
1704 >                            if ((r = t.root) != null &&
1705 >                                (p = r.findTreeNode(h, key, null)) != null)
1706 >                                val = p.val;
1707 >                            else if ((val = mappingFunction.apply(key)) != null) {
1708 >                                added = true;
1709 >                                t.putTreeVal(h, key, val);
1710 >                            }
1711 >                        }
1712 >                    }
1713 >                }
1714 >                if (binCount != 0) {
1715 >                    if (binCount >= TREEIFY_THRESHOLD)
1716 >                        treeifyBin(tab, i);
1717 >                    if (!added)
1718 >                        return val;
1719 >                    break;
1720 >                }
1721 >            }
1722 >        }
1723 >        if (val != null)
1724 >            addCount(1L, binCount);
1725 >        return val;
1726      }
1727  
1728      /**
1729 <     * Returns the result of accumulating the given transformation
1730 <     * of all (key, value) pairs using the given reducer to
1731 <     * combine values, and the given basis as an identity value.
1729 >     * If the value for the specified key is present, attempts to
1730 >     * compute a new mapping given the key and its current mapped
1731 >     * value.  The entire method invocation is performed atomically.
1732 >     * Some attempted update operations on this map by other threads
1733 >     * may be blocked while computation is in progress, so the
1734 >     * computation should be short and simple, and must not attempt to
1735 >     * update any other mappings of this map.
1736       *
1737 <     * @param transformer a function returning the transformation
1738 <     * for an element
1739 <     * @param basis the identity (initial default value) for the reduction
1740 <     * @param reducer a commutative associative combining function
1741 <     * @return the result of accumulating the given transformation
1742 <     * of all (key, value) pairs
1737 >     * @param key key with which a value may be associated
1738 >     * @param remappingFunction the function to compute a value
1739 >     * @return the new value associated with the specified key, or null if none
1740 >     * @throws NullPointerException if the specified key or remappingFunction
1741 >     *         is null
1742 >     * @throws IllegalStateException if the computation detectably
1743 >     *         attempts a recursive update to this map that would
1744 >     *         otherwise never complete
1745 >     * @throws RuntimeException or Error if the remappingFunction does so,
1746 >     *         in which case the mapping is unchanged
1747       */
1748 <    @SuppressWarnings("unchecked") public int reduceToIntSequentially
1749 <        (ObjectByObjectToInt<? super K, ? super V> transformer,
3502 <         int basis,
3503 <         IntByIntToInt reducer) {
3504 <        if (transformer == null || reducer == null)
1748 >    public V computeIfPresent(K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1749 >        if (key == null || remappingFunction == null)
1750              throw new NullPointerException();
1751 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
1752 <        int r = basis; V v;
1753 <        while ((v = it.advance()) != null)
1754 <            r = reducer.apply(r, transformer.apply((K)it.nextKey, v));
1755 <        return r;
1751 >        int h = spread(key.hashCode());
1752 >        V val = null;
1753 >        int delta = 0;
1754 >        int binCount = 0;
1755 >        for (Node<K,V>[] tab = table;;) {
1756 >            Node<K,V> f; int n, i, fh;
1757 >            if (tab == null || (n = tab.length) == 0)
1758 >                tab = initTable();
1759 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1760 >                break;
1761 >            else if ((fh = f.hash) == MOVED)
1762 >                tab = helpTransfer(tab, f);
1763 >            else {
1764 >                synchronized (f) {
1765 >                    if (tabAt(tab, i) == f) {
1766 >                        if (fh >= 0) {
1767 >                            binCount = 1;
1768 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1769 >                                K ek;
1770 >                                if (e.hash == h &&
1771 >                                    ((ek = e.key) == key ||
1772 >                                     (ek != null && key.equals(ek)))) {
1773 >                                    val = remappingFunction.apply(key, e.val);
1774 >                                    if (val != null)
1775 >                                        e.val = val;
1776 >                                    else {
1777 >                                        delta = -1;
1778 >                                        Node<K,V> en = e.next;
1779 >                                        if (pred != null)
1780 >                                            pred.next = en;
1781 >                                        else
1782 >                                            setTabAt(tab, i, en);
1783 >                                    }
1784 >                                    break;
1785 >                                }
1786 >                                pred = e;
1787 >                                if ((e = e.next) == null)
1788 >                                    break;
1789 >                            }
1790 >                        }
1791 >                        else if (f instanceof TreeBin) {
1792 >                            binCount = 2;
1793 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1794 >                            TreeNode<K,V> r, p;
1795 >                            if ((r = t.root) != null &&
1796 >                                (p = r.findTreeNode(h, key, null)) != null) {
1797 >                                val = remappingFunction.apply(key, p.val);
1798 >                                if (val != null)
1799 >                                    p.val = val;
1800 >                                else {
1801 >                                    delta = -1;
1802 >                                    if (t.removeTreeNode(p))
1803 >                                        setTabAt(tab, i, untreeify(t.first));
1804 >                                }
1805 >                            }
1806 >                        }
1807 >                    }
1808 >                }
1809 >                if (binCount != 0)
1810 >                    break;
1811 >            }
1812 >        }
1813 >        if (delta != 0)
1814 >            addCount((long)delta, binCount);
1815 >        return val;
1816      }
1817  
1818      /**
1819 <     * Performs the given action for each key.
1819 >     * Attempts to compute a mapping for the specified key and its
1820 >     * current mapped value (or {@code null} if there is no current
1821 >     * mapping). The entire method invocation is performed atomically.
1822 >     * Some attempted update operations on this map by other threads
1823 >     * may be blocked while computation is in progress, so the
1824 >     * computation should be short and simple, and must not attempt to
1825 >     * update any other mappings of this Map.
1826       *
1827 <     * @param action the action
1827 >     * @param key key with which the specified value is to be associated
1828 >     * @param remappingFunction the function to compute a value
1829 >     * @return the new value associated with the specified key, or null if none
1830 >     * @throws NullPointerException if the specified key or remappingFunction
1831 >     *         is null
1832 >     * @throws IllegalStateException if the computation detectably
1833 >     *         attempts a recursive update to this map that would
1834 >     *         otherwise never complete
1835 >     * @throws RuntimeException or Error if the remappingFunction does so,
1836 >     *         in which case the mapping is unchanged
1837       */
1838 <    @SuppressWarnings("unchecked") public void forEachKeySequentially
1839 <        (Action<K> action) {
1840 <        if (action == null) throw new NullPointerException();
1841 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
1842 <        while (it.advance() != null)
1843 <            action.apply((K)it.nextKey);
1838 >    public V compute(K key,
1839 >                     BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1840 >        if (key == null || remappingFunction == null)
1841 >            throw new NullPointerException();
1842 >        int h = spread(key.hashCode());
1843 >        V val = null;
1844 >        int delta = 0;
1845 >        int binCount = 0;
1846 >        for (Node<K,V>[] tab = table;;) {
1847 >            Node<K,V> f; int n, i, fh;
1848 >            if (tab == null || (n = tab.length) == 0)
1849 >                tab = initTable();
1850 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1851 >                Node<K,V> r = new ReservationNode<K,V>();
1852 >                synchronized (r) {
1853 >                    if (casTabAt(tab, i, null, r)) {
1854 >                        binCount = 1;
1855 >                        Node<K,V> node = null;
1856 >                        try {
1857 >                            if ((val = remappingFunction.apply(key, null)) != null) {
1858 >                                delta = 1;
1859 >                                node = new Node<K,V>(h, key, val, null);
1860 >                            }
1861 >                        } finally {
1862 >                            setTabAt(tab, i, node);
1863 >                        }
1864 >                    }
1865 >                }
1866 >                if (binCount != 0)
1867 >                    break;
1868 >            }
1869 >            else if ((fh = f.hash) == MOVED)
1870 >                tab = helpTransfer(tab, f);
1871 >            else {
1872 >                synchronized (f) {
1873 >                    if (tabAt(tab, i) == f) {
1874 >                        if (fh >= 0) {
1875 >                            binCount = 1;
1876 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1877 >                                K ek;
1878 >                                if (e.hash == h &&
1879 >                                    ((ek = e.key) == key ||
1880 >                                     (ek != null && key.equals(ek)))) {
1881 >                                    val = remappingFunction.apply(key, e.val);
1882 >                                    if (val != null)
1883 >                                        e.val = val;
1884 >                                    else {
1885 >                                        delta = -1;
1886 >                                        Node<K,V> en = e.next;
1887 >                                        if (pred != null)
1888 >                                            pred.next = en;
1889 >                                        else
1890 >                                            setTabAt(tab, i, en);
1891 >                                    }
1892 >                                    break;
1893 >                                }
1894 >                                pred = e;
1895 >                                if ((e = e.next) == null) {
1896 >                                    val = remappingFunction.apply(key, null);
1897 >                                    if (val != null) {
1898 >                                        delta = 1;
1899 >                                        pred.next =
1900 >                                            new Node<K,V>(h, key, val, null);
1901 >                                    }
1902 >                                    break;
1903 >                                }
1904 >                            }
1905 >                        }
1906 >                        else if (f instanceof TreeBin) {
1907 >                            binCount = 1;
1908 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1909 >                            TreeNode<K,V> r, p;
1910 >                            if ((r = t.root) != null)
1911 >                                p = r.findTreeNode(h, key, null);
1912 >                            else
1913 >                                p = null;
1914 >                            V pv = (p == null) ? null : p.val;
1915 >                            val = remappingFunction.apply(key, pv);
1916 >                            if (val != null) {
1917 >                                if (p != null)
1918 >                                    p.val = val;
1919 >                                else {
1920 >                                    delta = 1;
1921 >                                    t.putTreeVal(h, key, val);
1922 >                                }
1923 >                            }
1924 >                            else if (p != null) {
1925 >                                delta = -1;
1926 >                                if (t.removeTreeNode(p))
1927 >                                    setTabAt(tab, i, untreeify(t.first));
1928 >                            }
1929 >                        }
1930 >                    }
1931 >                }
1932 >                if (binCount != 0) {
1933 >                    if (binCount >= TREEIFY_THRESHOLD)
1934 >                        treeifyBin(tab, i);
1935 >                    break;
1936 >                }
1937 >            }
1938 >        }
1939 >        if (delta != 0)
1940 >            addCount((long)delta, binCount);
1941 >        return val;
1942      }
1943  
1944      /**
1945 <     * Performs the given action for each non-null transformation
1946 <     * of each key.
1945 >     * If the specified key is not already associated with a
1946 >     * (non-null) value, associates it with the given value.
1947 >     * Otherwise, replaces the value with the results of the given
1948 >     * remapping function, or removes if {@code null}. The entire
1949 >     * method invocation is performed atomically.  Some attempted
1950 >     * update operations on this map by other threads may be blocked
1951 >     * while computation is in progress, so the computation should be
1952 >     * short and simple, and must not attempt to update any other
1953 >     * mappings of this Map.
1954       *
1955 <     * @param transformer a function returning the transformation
1956 <     * for an element, or null of there is no transformation (in
1957 <     * which case the action is not applied).
1958 <     * @param action the action
1955 >     * @param key key with which the specified value is to be associated
1956 >     * @param value the value to use if absent
1957 >     * @param remappingFunction the function to recompute a value if present
1958 >     * @return the new value associated with the specified key, or null if none
1959 >     * @throws NullPointerException if the specified key or the
1960 >     *         remappingFunction is null
1961 >     * @throws RuntimeException or Error if the remappingFunction does so,
1962 >     *         in which case the mapping is unchanged
1963       */
1964 <    @SuppressWarnings("unchecked") public <U> void forEachKeySequentially
1965 <        (Fun<? super K, ? extends U> transformer,
3537 <         Action<U> action) {
3538 <        if (transformer == null || action == null)
1964 >    public V merge(K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
1965 >        if (key == null || value == null || remappingFunction == null)
1966              throw new NullPointerException();
1967 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
1968 <        U u;
1969 <        while (it.advance() != null) {
1970 <            if ((u = transformer.apply((K)it.nextKey)) != null)
1971 <                action.apply(u);
1967 >        int h = spread(key.hashCode());
1968 >        V val = null;
1969 >        int delta = 0;
1970 >        int binCount = 0;
1971 >        for (Node<K,V>[] tab = table;;) {
1972 >            Node<K,V> f; int n, i, fh;
1973 >            if (tab == null || (n = tab.length) == 0)
1974 >                tab = initTable();
1975 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1976 >                if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1977 >                    delta = 1;
1978 >                    val = value;
1979 >                    break;
1980 >                }
1981 >            }
1982 >            else if ((fh = f.hash) == MOVED)
1983 >                tab = helpTransfer(tab, f);
1984 >            else {
1985 >                synchronized (f) {
1986 >                    if (tabAt(tab, i) == f) {
1987 >                        if (fh >= 0) {
1988 >                            binCount = 1;
1989 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1990 >                                K ek;
1991 >                                if (e.hash == h &&
1992 >                                    ((ek = e.key) == key ||
1993 >                                     (ek != null && key.equals(ek)))) {
1994 >                                    val = remappingFunction.apply(e.val, value);
1995 >                                    if (val != null)
1996 >                                        e.val = val;
1997 >                                    else {
1998 >                                        delta = -1;
1999 >                                        Node<K,V> en = e.next;
2000 >                                        if (pred != null)
2001 >                                            pred.next = en;
2002 >                                        else
2003 >                                            setTabAt(tab, i, en);
2004 >                                    }
2005 >                                    break;
2006 >                                }
2007 >                                pred = e;
2008 >                                if ((e = e.next) == null) {
2009 >                                    delta = 1;
2010 >                                    val = value;
2011 >                                    pred.next =
2012 >                                        new Node<K,V>(h, key, val, null);
2013 >                                    break;
2014 >                                }
2015 >                            }
2016 >                        }
2017 >                        else if (f instanceof TreeBin) {
2018 >                            binCount = 2;
2019 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2020 >                            TreeNode<K,V> r = t.root;
2021 >                            TreeNode<K,V> p = (r == null) ? null :
2022 >                                r.findTreeNode(h, key, null);
2023 >                            val = (p == null) ? value :
2024 >                                remappingFunction.apply(p.val, value);
2025 >                            if (val != null) {
2026 >                                if (p != null)
2027 >                                    p.val = val;
2028 >                                else {
2029 >                                    delta = 1;
2030 >                                    t.putTreeVal(h, key, val);
2031 >                                }
2032 >                            }
2033 >                            else if (p != null) {
2034 >                                delta = -1;
2035 >                                if (t.removeTreeNode(p))
2036 >                                    setTabAt(tab, i, untreeify(t.first));
2037 >                            }
2038 >                        }
2039 >                    }
2040 >                }
2041 >                if (binCount != 0) {
2042 >                    if (binCount >= TREEIFY_THRESHOLD)
2043 >                        treeifyBin(tab, i);
2044 >                    break;
2045 >                }
2046 >            }
2047          }
2048 <        ForkJoinTasks.forEachKey
2049 <            (this, transformer, action).invoke();
2048 >        if (delta != 0)
2049 >            addCount((long)delta, binCount);
2050 >        return val;
2051      }
2052  
2053 +    // Hashtable legacy methods
2054 +
2055      /**
2056 <     * Returns a non-null result from applying the given search
2057 <     * function on each key, or null if none.
2056 >     * Legacy method testing if some key maps into the specified value
2057 >     * in this table.  This method is identical in functionality to
2058 >     * {@link #containsValue(Object)}, and exists solely to ensure
2059 >     * full compatibility with class {@link java.util.Hashtable},
2060 >     * which supported this method prior to introduction of the
2061 >     * Java Collections framework.
2062       *
2063 <     * @param searchFunction a function returning a non-null
2064 <     * result on success, else null
2065 <     * @return a non-null result from applying the given search
2066 <     * function on each key, or null if none
2063 >     * @param  value a value to search for
2064 >     * @return {@code true} if and only if some key maps to the
2065 >     *         {@code value} argument in this table as
2066 >     *         determined by the {@code equals} method;
2067 >     *         {@code false} otherwise
2068 >     * @throws NullPointerException if the specified value is null
2069       */
2070 <    @SuppressWarnings("unchecked") public <U> U searchKeysSequentially
2071 <        (Fun<? super K, ? extends U> searchFunction) {
3561 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3562 <        U u;
3563 <        while (it.advance() != null) {
3564 <            if ((u = searchFunction.apply((K)it.nextKey)) != null)
3565 <                return u;
3566 <        }
3567 <        return null;
2070 >    @Deprecated public boolean contains(Object value) {
2071 >        return containsValue(value);
2072      }
2073  
2074      /**
2075 <     * Returns the result of accumulating all keys using the given
3572 <     * reducer to combine values, or null if none.
2075 >     * Returns an enumeration of the keys in this table.
2076       *
2077 <     * @param reducer a commutative associative combining function
2078 <     * @return the result of accumulating all keys using the given
3576 <     * reducer to combine values, or null if none
2077 >     * @return an enumeration of the keys in this table
2078 >     * @see #keySet()
2079       */
2080 <    @SuppressWarnings("unchecked") public K reduceKeysSequentially
2081 <        (BiFun<? super K, ? super K, ? extends K> reducer) {
2082 <        if (reducer == null) throw new NullPointerException();
2083 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3582 <        K r = null;
3583 <        while (it.advance() != null) {
3584 <            K u = (K)it.nextKey;
3585 <            r = (r == null) ? u : reducer.apply(r, u);
3586 <        }
3587 <        return r;
2080 >    public Enumeration<K> keys() {
2081 >        Node<K,V>[] t;
2082 >        int f = (t = table) == null ? 0 : t.length;
2083 >        return new KeyIterator<K,V>(t, f, 0, f, this);
2084      }
2085  
2086      /**
2087 <     * Returns the result of accumulating the given transformation
3592 <     * of all keys using the given reducer to combine values, or
3593 <     * null if none.
2087 >     * Returns an enumeration of the values in this table.
2088       *
2089 <     * @param transformer a function returning the transformation
2090 <     * for an element, or null of there is no transformation (in
3597 <     * which case it is not combined).
3598 <     * @param reducer a commutative associative combining function
3599 <     * @return the result of accumulating the given transformation
3600 <     * of all keys
2089 >     * @return an enumeration of the values in this table
2090 >     * @see #values()
2091       */
2092 <    @SuppressWarnings("unchecked") public <U> U reduceKeysSequentially
2093 <        (Fun<? super K, ? extends U> transformer,
2094 <         BiFun<? super U, ? super U, ? extends U> reducer) {
2095 <        if (transformer == null || reducer == null)
3606 <            throw new NullPointerException();
3607 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3608 <        U r = null, u;
3609 <        while (it.advance() != null) {
3610 <            if ((u = transformer.apply((K)it.nextKey)) != null)
3611 <                r = (r == null) ? u : reducer.apply(r, u);
3612 <        }
3613 <        return r;
2092 >    public Enumeration<V> elements() {
2093 >        Node<K,V>[] t;
2094 >        int f = (t = table) == null ? 0 : t.length;
2095 >        return new ValueIterator<K,V>(t, f, 0, f, this);
2096      }
2097  
2098 +    // ConcurrentHashMapV8-only methods
2099 +
2100      /**
2101 <     * Returns the result of accumulating the given transformation
2102 <     * of all keys using the given reducer to combine values, and
2103 <     * the given basis as an identity value.
2101 >     * Returns the number of mappings. This method should be used
2102 >     * instead of {@link #size} because a ConcurrentHashMapV8 may
2103 >     * contain more mappings than can be represented as an int. The
2104 >     * value returned is an estimate; the actual count may differ if
2105 >     * there are concurrent insertions or removals.
2106       *
2107 <     * @param transformer a function returning the transformation
2108 <     * for an element
3623 <     * @param basis the identity (initial default value) for the reduction
3624 <     * @param reducer a commutative associative combining function
3625 <     * @return  the result of accumulating the given transformation
3626 <     * of all keys
2107 >     * @return the number of mappings
2108 >     * @since 1.8
2109       */
2110 <    @SuppressWarnings("unchecked") public double reduceKeysToDoubleSequentially
2111 <        (ObjectToDouble<? super K> transformer,
2112 <         double basis,
3631 <         DoubleByDoubleToDouble reducer) {
3632 <        if (transformer == null || reducer == null)
3633 <            throw new NullPointerException();
3634 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3635 <        double r = basis;
3636 <        while (it.advance() != null)
3637 <            r = reducer.apply(r, transformer.apply((K)it.nextKey));
3638 <        return r;
2110 >    public long mappingCount() {
2111 >        long n = sumCount();
2112 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2113      }
2114  
2115      /**
2116 <     * Returns the result of accumulating the given transformation
2117 <     * of all keys using the given reducer to combine values, and
3644 <     * the given basis as an identity value.
2116 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2117 >     * from the given type to {@code Boolean.TRUE}.
2118       *
2119 <     * @param transformer a function returning the transformation
2120 <     * for an element
3648 <     * @param basis the identity (initial default value) for the reduction
3649 <     * @param reducer a commutative associative combining function
3650 <     * @return the result of accumulating the given transformation
3651 <     * of all keys
2119 >     * @return the new set
2120 >     * @since 1.8
2121       */
2122 <    @SuppressWarnings("unchecked") public long reduceKeysToLongSequentially
2123 <        (ObjectToLong<? super K> transformer,
2124 <         long basis,
3656 <         LongByLongToLong reducer) {
3657 <        if (transformer == null || reducer == null)
3658 <            throw new NullPointerException();
3659 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3660 <        long r = basis;
3661 <        while (it.advance() != null)
3662 <            r = reducer.apply(r, transformer.apply((K)it.nextKey));
3663 <        return r;
2122 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2123 >        return new KeySetView<K,Boolean>
2124 >            (new ConcurrentHashMapV8<K,Boolean>(), Boolean.TRUE);
2125      }
2126  
2127      /**
2128 <     * Returns the result of accumulating the given transformation
2129 <     * of all keys using the given reducer to combine values, and
3669 <     * the given basis as an identity value.
2128 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2129 >     * from the given type to {@code Boolean.TRUE}.
2130       *
2131 <     * @param transformer a function returning the transformation
2132 <     * for an element
2133 <     * @param basis the identity (initial default value) for the reduction
2134 <     * @param reducer a commutative associative combining function
2135 <     * @return the result of accumulating the given transformation
2136 <     * of all keys
2131 >     * @param initialCapacity The implementation performs internal
2132 >     * sizing to accommodate this many elements.
2133 >     * @return the new set
2134 >     * @throws IllegalArgumentException if the initial capacity of
2135 >     * elements is negative
2136 >     * @since 1.8
2137       */
2138 <    @SuppressWarnings("unchecked") public int reduceKeysToIntSequentially
2139 <        (ObjectToInt<? super K> transformer,
2140 <         int basis,
3681 <         IntByIntToInt reducer) {
3682 <        if (transformer == null || reducer == null)
3683 <            throw new NullPointerException();
3684 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3685 <        int r = basis;
3686 <        while (it.advance() != null)
3687 <            r = reducer.apply(r, transformer.apply((K)it.nextKey));
3688 <        return r;
2138 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2139 >        return new KeySetView<K,Boolean>
2140 >            (new ConcurrentHashMapV8<K,Boolean>(initialCapacity), Boolean.TRUE);
2141      }
2142  
2143      /**
2144 <     * Performs the given action for each value.
2144 >     * Returns a {@link Set} view of the keys in this map, using the
2145 >     * given common mapped value for any additions (i.e., {@link
2146 >     * Collection#add} and {@link Collection#addAll(Collection)}).
2147 >     * This is of course only appropriate if it is acceptable to use
2148 >     * the same value for all additions from this view.
2149       *
2150 <     * @param action the action
2150 >     * @param mappedValue the mapped value to use for any additions
2151 >     * @return the set view
2152 >     * @throws NullPointerException if the mappedValue is null
2153       */
2154 <    public void forEachValueSequentially(Action<V> action) {
2155 <        if (action == null) throw new NullPointerException();
2156 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2157 <        V v;
3700 <        while ((v = it.advance()) != null)
3701 <            action.apply(v);
2154 >    public KeySetView<K,V> keySet(V mappedValue) {
2155 >        if (mappedValue == null)
2156 >            throw new NullPointerException();
2157 >        return new KeySetView<K,V>(this, mappedValue);
2158      }
2159  
2160 +    /* ---------------- Special Nodes -------------- */
2161 +
2162      /**
2163 <     * Performs the given action for each non-null transformation
3706 <     * of each value.
3707 <     *
3708 <     * @param transformer a function returning the transformation
3709 <     * for an element, or null of there is no transformation (in
3710 <     * which case the action is not applied).
2163 >     * A node inserted at head of bins during transfer operations.
2164       */
2165 <    public <U> void forEachValueSequentially
2166 <        (Fun<? super V, ? extends U> transformer,
2167 <         Action<U> action) {
2168 <        if (transformer == null || action == null)
2169 <            throw new NullPointerException();
2170 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2171 <        V v; U u;
2172 <        while ((v = it.advance()) != null) {
2173 <            if ((u = transformer.apply(v)) != null)
2174 <                action.apply(u);
2165 >    static final class ForwardingNode<K,V> extends Node<K,V> {
2166 >        final Node<K,V>[] nextTable;
2167 >        ForwardingNode(Node<K,V>[] tab) {
2168 >            super(MOVED, null, null, null);
2169 >            this.nextTable = tab;
2170 >        }
2171 >
2172 >        Node<K,V> find(int h, Object k) {
2173 >            // loop to avoid arbitrarily deep recursion on forwarding nodes
2174 >            outer: for (Node<K,V>[] tab = nextTable;;) {
2175 >                Node<K,V> e; int n;
2176 >                if (k == null || tab == null || (n = tab.length) == 0 ||
2177 >                    (e = tabAt(tab, (n - 1) & h)) == null)
2178 >                    return null;
2179 >                for (;;) {
2180 >                    int eh; K ek;
2181 >                    if ((eh = e.hash) == h &&
2182 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
2183 >                        return e;
2184 >                    if (eh < 0) {
2185 >                        if (e instanceof ForwardingNode) {
2186 >                            tab = ((ForwardingNode<K,V>)e).nextTable;
2187 >                            continue outer;
2188 >                        }
2189 >                        else
2190 >                            return e.find(h, k);
2191 >                    }
2192 >                    if ((e = e.next) == null)
2193 >                        return null;
2194 >                }
2195 >            }
2196          }
2197      }
2198  
2199      /**
2200 <     * Returns a non-null result from applying the given search
3727 <     * function on each value, or null if none.
3728 <     *
3729 <     * @param searchFunction a function returning a non-null
3730 <     * result on success, else null
3731 <     * @return a non-null result from applying the given search
3732 <     * function on each value, or null if none
2200 >     * A place-holder node used in computeIfAbsent and compute
2201       */
2202 <    public <U> U searchValuesSequentially
2203 <        (Fun<? super V, ? extends U> searchFunction) {
2204 <        if (searchFunction == null) throw new NullPointerException();
2205 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2206 <        V v; U u;
2207 <        while ((v = it.advance()) != null) {
2208 <            if ((u = searchFunction.apply(v)) != null)
3741 <                return u;
2202 >    static final class ReservationNode<K,V> extends Node<K,V> {
2203 >        ReservationNode() {
2204 >            super(RESERVED, null, null, null);
2205 >        }
2206 >
2207 >        Node<K,V> find(int h, Object k) {
2208 >            return null;
2209          }
3743        return null;
2210      }
2211  
2212 +    /* ---------------- Table Initialization and Resizing -------------- */
2213 +
2214      /**
2215 <     * Returns the result of accumulating all values using the
2216 <     * given reducer to combine values, or null if none.
3749 <     *
3750 <     * @param reducer a commutative associative combining function
3751 <     * @return  the result of accumulating all values
2215 >     * Returns the stamp bits for resizing a table of size n.
2216 >     * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2217       */
2218 <    public V reduceValuesSequentially
2219 <        (BiFun<? super V, ? super V, ? extends V> reducer) {
3755 <        if (reducer == null) throw new NullPointerException();
3756 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3757 <        V r = null; V v;
3758 <        while ((v = it.advance()) != null)
3759 <            r = (r == null) ? v : reducer.apply(r, v);
3760 <        return r;
2218 >    static final int resizeStamp(int n) {
2219 >        return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2220      }
2221  
2222      /**
2223 <     * Returns the result of accumulating the given transformation
3765 <     * of all values using the given reducer to combine values, or
3766 <     * null if none.
3767 <     *
3768 <     * @param transformer a function returning the transformation
3769 <     * for an element, or null of there is no transformation (in
3770 <     * which case it is not combined).
3771 <     * @param reducer a commutative associative combining function
3772 <     * @return the result of accumulating the given transformation
3773 <     * of all values
2223 >     * Initializes table, using the size recorded in sizeCtl.
2224       */
2225 <    public <U> U reduceValuesSequentially
2226 <        (Fun<? super V, ? extends U> transformer,
2227 <         BiFun<? super U, ? super U, ? extends U> reducer) {
2228 <        if (transformer == null || reducer == null)
2229 <            throw new NullPointerException();
2230 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2231 <        U r = null, u; V v;
2232 <        while ((v = it.advance()) != null) {
2233 <            if ((u = transformer.apply(v)) != null)
2234 <                r = (r == null) ? u : reducer.apply(r, u);
2225 >    private final Node<K,V>[] initTable() {
2226 >        Node<K,V>[] tab; int sc;
2227 >        while ((tab = table) == null || tab.length == 0) {
2228 >            if ((sc = sizeCtl) < 0)
2229 >                Thread.yield(); // lost initialization race; just spin
2230 >            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2231 >                try {
2232 >                    if ((tab = table) == null || tab.length == 0) {
2233 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2234 >                        @SuppressWarnings("unchecked")
2235 >                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2236 >                        table = tab = nt;
2237 >                        sc = n - (n >>> 2);
2238 >                    }
2239 >                } finally {
2240 >                    sizeCtl = sc;
2241 >                }
2242 >                break;
2243 >            }
2244          }
2245 <        return r;
2245 >        return tab;
2246      }
2247  
2248      /**
2249 <     * Returns the result of accumulating the given transformation
2250 <     * of all values using the given reducer to combine values,
2251 <     * and the given basis as an identity value.
2249 >     * Adds to count, and if table is too small and not already
2250 >     * resizing, initiates transfer. If already resizing, helps
2251 >     * perform transfer if work is available.  Rechecks occupancy
2252 >     * after a transfer to see if another resize is already needed
2253 >     * because resizings are lagging additions.
2254       *
2255 <     * @param transformer a function returning the transformation
2256 <     * for an element
3796 <     * @param basis the identity (initial default value) for the reduction
3797 <     * @param reducer a commutative associative combining function
3798 <     * @return the result of accumulating the given transformation
3799 <     * of all values
2255 >     * @param x the count to add
2256 >     * @param check if <0, don't check resize, if <= 1 only check if uncontended
2257       */
2258 <    public double reduceValuesToDoubleSequentially
2259 <        (ObjectToDouble<? super V> transformer,
2260 <         double basis,
2261 <         DoubleByDoubleToDouble reducer) {
2262 <        if (transformer == null || reducer == null)
2263 <            throw new NullPointerException();
2264 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2265 <        double r = basis; V v;
2266 <        while ((v = it.advance()) != null)
2267 <            r = reducer.apply(r, transformer.apply(v));
2268 <        return r;
2258 >    private final void addCount(long x, int check) {
2259 >        CounterCell[] as; long b, s;
2260 >        if ((as = counterCells) != null ||
2261 >            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2262 >            CounterHashCode hc; CounterCell a; long v; int m;
2263 >            boolean uncontended = true;
2264 >            if ((hc = threadCounterHashCode.get()) == null ||
2265 >                as == null || (m = as.length - 1) < 0 ||
2266 >                (a = as[m & hc.code]) == null ||
2267 >                !(uncontended =
2268 >                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2269 >                fullAddCount(x, hc, uncontended);
2270 >                return;
2271 >            }
2272 >            if (check <= 1)
2273 >                return;
2274 >            s = sumCount();
2275 >        }
2276 >        if (check >= 0) {
2277 >            Node<K,V>[] tab, nt; int n, sc;
2278 >            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2279 >                   (n = tab.length) < MAXIMUM_CAPACITY) {
2280 >                int rs = resizeStamp(n);
2281 >                if (sc < 0) {
2282 >                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2283 >                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2284 >                        transferIndex <= 0)
2285 >                        break;
2286 >                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2287 >                        transfer(tab, nt);
2288 >                }
2289 >                else if (U.compareAndSwapInt(this, SIZECTL, sc,
2290 >                                             (rs << RESIZE_STAMP_SHIFT) + 2))
2291 >                    transfer(tab, null);
2292 >                s = sumCount();
2293 >            }
2294 >        }
2295      }
2296  
2297      /**
2298 <     * Returns the result of accumulating the given transformation
3816 <     * of all values using the given reducer to combine values,
3817 <     * and the given basis as an identity value.
3818 <     *
3819 <     * @param transformer a function returning the transformation
3820 <     * for an element
3821 <     * @param basis the identity (initial default value) for the reduction
3822 <     * @param reducer a commutative associative combining function
3823 <     * @return the result of accumulating the given transformation
3824 <     * of all values
2298 >     * Helps transfer if a resize is in progress.
2299       */
2300 <    public long reduceValuesToLongSequentially
2301 <        (ObjectToLong<? super V> transformer,
2302 <         long basis,
2303 <         LongByLongToLong reducer) {
2304 <        if (transformer == null || reducer == null)
2305 <            throw new NullPointerException();
2306 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2307 <        long r = basis; V v;
2308 <        while ((v = it.advance()) != null)
2309 <            r = reducer.apply(r, transformer.apply(v));
2310 <        return r;
2300 >    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2301 >        Node<K,V>[] nextTab; int sc;
2302 >        if (tab != null && (f instanceof ForwardingNode) &&
2303 >            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2304 >            int rs = resizeStamp(tab.length);
2305 >            while (nextTab == nextTable && table == tab &&
2306 >                   (sc = sizeCtl) < 0) {
2307 >                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2308 >                    sc == rs + MAX_RESIZERS || transferIndex <= 0)
2309 >                    break;
2310 >                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
2311 >                    transfer(tab, nextTab);
2312 >                    break;
2313 >                }
2314 >            }
2315 >            return nextTab;
2316 >        }
2317 >        return table;
2318      }
2319  
2320      /**
2321 <     * Returns the result of accumulating the given transformation
3841 <     * of all values using the given reducer to combine values,
3842 <     * and the given basis as an identity value.
2321 >     * Tries to presize table to accommodate the given number of elements.
2322       *
2323 <     * @param transformer a function returning the transformation
3845 <     * for an element
3846 <     * @param basis the identity (initial default value) for the reduction
3847 <     * @param reducer a commutative associative combining function
3848 <     * @return the result of accumulating the given transformation
3849 <     * of all values
2323 >     * @param size number of elements (doesn't need to be perfectly accurate)
2324       */
2325 <    public int reduceValuesToIntSequentially
2326 <        (ObjectToInt<? super V> transformer,
2327 <         int basis,
2328 <         IntByIntToInt reducer) {
2329 <        if (transformer == null || reducer == null)
2330 <            throw new NullPointerException();
2331 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2332 <        int r = basis; V v;
2333 <        while ((v = it.advance()) != null)
2334 <            r = reducer.apply(r, transformer.apply(v));
2335 <        return r;
2325 >    private final void tryPresize(int size) {
2326 >        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2327 >            tableSizeFor(size + (size >>> 1) + 1);
2328 >        int sc;
2329 >        while ((sc = sizeCtl) >= 0) {
2330 >            Node<K,V>[] tab = table; int n;
2331 >            if (tab == null || (n = tab.length) == 0) {
2332 >                n = (sc > c) ? sc : c;
2333 >                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2334 >                    try {
2335 >                        if (table == tab) {
2336 >                            @SuppressWarnings("unchecked")
2337 >                            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2338 >                            table = nt;
2339 >                            sc = n - (n >>> 2);
2340 >                        }
2341 >                    } finally {
2342 >                        sizeCtl = sc;
2343 >                    }
2344 >                }
2345 >            }
2346 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
2347 >                break;
2348 >            else if (tab == table) {
2349 >                int rs = resizeStamp(n);
2350 >                if (sc < 0) {
2351 >                    Node<K,V>[] nt;
2352 >                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2353 >                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2354 >                        transferIndex <= 0)
2355 >                        break;
2356 >                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2357 >                        transfer(tab, nt);
2358 >                }
2359 >                else if (U.compareAndSwapInt(this, SIZECTL, sc,
2360 >                                             (rs << RESIZE_STAMP_SHIFT) + 2))
2361 >                    transfer(tab, null);
2362 >            }
2363 >        }
2364      }
2365  
2366      /**
2367 <     * Performs the given action for each entry.
2368 <     *
3867 <     * @param action the action
2367 >     * Moves and/or copies the nodes in each bin to new table. See
2368 >     * above for explanation.
2369       */
2370 <    @SuppressWarnings("unchecked") public void forEachEntrySequentially
2371 <        (Action<Map.Entry<K,V>> action) {
2372 <        if (action == null) throw new NullPointerException();
2373 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2374 <        V v;
2375 <        while ((v = it.advance()) != null)
2376 <            action.apply(entryFor((K)it.nextKey, v));
2370 >    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2371 >        int n = tab.length, stride;
2372 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2373 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
2374 >        if (nextTab == null) {            // initiating
2375 >            try {
2376 >                @SuppressWarnings("unchecked")
2377 >                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2378 >                nextTab = nt;
2379 >            } catch (Throwable ex) {      // try to cope with OOME
2380 >                sizeCtl = Integer.MAX_VALUE;
2381 >                return;
2382 >            }
2383 >            nextTable = nextTab;
2384 >            transferIndex = n;
2385 >        }
2386 >        int nextn = nextTab.length;
2387 >        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2388 >        boolean advance = true;
2389 >        boolean finishing = false; // to ensure sweep before committing nextTab
2390 >        for (int i = 0, bound = 0;;) {
2391 >            Node<K,V> f; int fh;
2392 >            while (advance) {
2393 >                int nextIndex, nextBound;
2394 >                if (--i >= bound || finishing)
2395 >                    advance = false;
2396 >                else if ((nextIndex = transferIndex) <= 0) {
2397 >                    i = -1;
2398 >                    advance = false;
2399 >                }
2400 >                else if (U.compareAndSwapInt
2401 >                         (this, TRANSFERINDEX, nextIndex,
2402 >                          nextBound = (nextIndex > stride ?
2403 >                                       nextIndex - stride : 0))) {
2404 >                    bound = nextBound;
2405 >                    i = nextIndex - 1;
2406 >                    advance = false;
2407 >                }
2408 >            }
2409 >            if (i < 0 || i >= n || i + n >= nextn) {
2410 >                int sc;
2411 >                if (finishing) {
2412 >                    nextTable = null;
2413 >                    table = nextTab;
2414 >                    sizeCtl = (n << 1) - (n >>> 1);
2415 >                    return;
2416 >                }
2417 >                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2418 >                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
2419 >                        return;
2420 >                    finishing = advance = true;
2421 >                    i = n; // recheck before commit
2422 >                }
2423 >            }
2424 >            else if ((f = tabAt(tab, i)) == null)
2425 >                advance = casTabAt(tab, i, null, fwd);
2426 >            else if ((fh = f.hash) == MOVED)
2427 >                advance = true; // already processed
2428 >            else {
2429 >                synchronized (f) {
2430 >                    if (tabAt(tab, i) == f) {
2431 >                        Node<K,V> ln, hn;
2432 >                        if (fh >= 0) {
2433 >                            int runBit = fh & n;
2434 >                            Node<K,V> lastRun = f;
2435 >                            for (Node<K,V> p = f.next; p != null; p = p.next) {
2436 >                                int b = p.hash & n;
2437 >                                if (b != runBit) {
2438 >                                    runBit = b;
2439 >                                    lastRun = p;
2440 >                                }
2441 >                            }
2442 >                            if (runBit == 0) {
2443 >                                ln = lastRun;
2444 >                                hn = null;
2445 >                            }
2446 >                            else {
2447 >                                hn = lastRun;
2448 >                                ln = null;
2449 >                            }
2450 >                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
2451 >                                int ph = p.hash; K pk = p.key; V pv = p.val;
2452 >                                if ((ph & n) == 0)
2453 >                                    ln = new Node<K,V>(ph, pk, pv, ln);
2454 >                                else
2455 >                                    hn = new Node<K,V>(ph, pk, pv, hn);
2456 >                            }
2457 >                            setTabAt(nextTab, i, ln);
2458 >                            setTabAt(nextTab, i + n, hn);
2459 >                            setTabAt(tab, i, fwd);
2460 >                            advance = true;
2461 >                        }
2462 >                        else if (f instanceof TreeBin) {
2463 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2464 >                            TreeNode<K,V> lo = null, loTail = null;
2465 >                            TreeNode<K,V> hi = null, hiTail = null;
2466 >                            int lc = 0, hc = 0;
2467 >                            for (Node<K,V> e = t.first; e != null; e = e.next) {
2468 >                                int h = e.hash;
2469 >                                TreeNode<K,V> p = new TreeNode<K,V>
2470 >                                    (h, e.key, e.val, null, null);
2471 >                                if ((h & n) == 0) {
2472 >                                    if ((p.prev = loTail) == null)
2473 >                                        lo = p;
2474 >                                    else
2475 >                                        loTail.next = p;
2476 >                                    loTail = p;
2477 >                                    ++lc;
2478 >                                }
2479 >                                else {
2480 >                                    if ((p.prev = hiTail) == null)
2481 >                                        hi = p;
2482 >                                    else
2483 >                                        hiTail.next = p;
2484 >                                    hiTail = p;
2485 >                                    ++hc;
2486 >                                }
2487 >                            }
2488 >                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2489 >                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
2490 >                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2491 >                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
2492 >                            setTabAt(nextTab, i, ln);
2493 >                            setTabAt(nextTab, i + n, hn);
2494 >                            setTabAt(tab, i, fwd);
2495 >                            advance = true;
2496 >                        }
2497 >                    }
2498 >                }
2499 >            }
2500 >        }
2501      }
2502  
2503 +    /* ---------------- Conversion from/to TreeBins -------------- */
2504 +
2505      /**
2506 <     * Performs the given action for each non-null transformation
2507 <     * of each entry.
3881 <     *
3882 <     * @param transformer a function returning the transformation
3883 <     * for an element, or null of there is no transformation (in
3884 <     * which case the action is not applied).
3885 <     * @param action the action
2506 >     * Replaces all linked nodes in bin at given index unless table is
2507 >     * too small, in which case resizes instead.
2508       */
2509 <    @SuppressWarnings("unchecked") public <U> void forEachEntrySequentially
2510 <        (Fun<Map.Entry<K,V>, ? extends U> transformer,
2511 <         Action<U> action) {
2512 <        if (transformer == null || action == null)
2513 <            throw new NullPointerException();
2514 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2515 <        V v; U u;
2516 <        while ((v = it.advance()) != null) {
2517 <            if ((u = transformer.apply(entryFor((K)it.nextKey, v))) != null)
2518 <                action.apply(u);
2509 >    private final void treeifyBin(Node<K,V>[] tab, int index) {
2510 >        Node<K,V> b; int n, sc;
2511 >        if (tab != null) {
2512 >            if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2513 >                tryPresize(n << 1);
2514 >            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2515 >                synchronized (b) {
2516 >                    if (tabAt(tab, index) == b) {
2517 >                        TreeNode<K,V> hd = null, tl = null;
2518 >                        for (Node<K,V> e = b; e != null; e = e.next) {
2519 >                            TreeNode<K,V> p =
2520 >                                new TreeNode<K,V>(e.hash, e.key, e.val,
2521 >                                                  null, null);
2522 >                            if ((p.prev = tl) == null)
2523 >                                hd = p;
2524 >                            else
2525 >                                tl.next = p;
2526 >                            tl = p;
2527 >                        }
2528 >                        setTabAt(tab, index, new TreeBin<K,V>(hd));
2529 >                    }
2530 >                }
2531 >            }
2532          }
2533      }
2534  
2535      /**
2536 <     * Returns a non-null result from applying the given search
3902 <     * function on each entry, or null if none.
3903 <     *
3904 <     * @param searchFunction a function returning a non-null
3905 <     * result on success, else null
3906 <     * @return a non-null result from applying the given search
3907 <     * function on each entry, or null if none
2536 >     * Returns a list on non-TreeNodes replacing those in given list.
2537       */
2538 <    @SuppressWarnings("unchecked") public <U> U searchEntriesSequentially
2539 <        (Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
2540 <        if (searchFunction == null) throw new NullPointerException();
2541 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2542 <        V v; U u;
2543 <        while ((v = it.advance()) != null) {
2544 <            if ((u = searchFunction.apply(entryFor((K)it.nextKey, v))) != null)
2545 <                return u;
2538 >    static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2539 >        Node<K,V> hd = null, tl = null;
2540 >        for (Node<K,V> q = b; q != null; q = q.next) {
2541 >            Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2542 >            if (tl == null)
2543 >                hd = p;
2544 >            else
2545 >                tl.next = p;
2546 >            tl = p;
2547          }
2548 <        return null;
2548 >        return hd;
2549      }
2550  
2551 +    /* ---------------- TreeNodes -------------- */
2552 +
2553      /**
2554 <     * Returns the result of accumulating all entries using the
3923 <     * given reducer to combine values, or null if none.
3924 <     *
3925 <     * @param reducer a commutative associative combining function
3926 <     * @return the result of accumulating all entries
2554 >     * Nodes for use in TreeBins
2555       */
2556 <    @SuppressWarnings("unchecked") public Map.Entry<K,V> reduceEntriesSequentially
2557 <        (BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
2558 <        if (reducer == null) throw new NullPointerException();
2559 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2560 <        Map.Entry<K,V> r = null; V v;
2561 <        while ((v = it.advance()) != null) {
2562 <            Map.Entry<K,V> u = entryFor((K)it.nextKey, v);
2563 <            r = (r == null) ? u : reducer.apply(r, u);
2556 >    static final class TreeNode<K,V> extends Node<K,V> {
2557 >        TreeNode<K,V> parent;  // red-black tree links
2558 >        TreeNode<K,V> left;
2559 >        TreeNode<K,V> right;
2560 >        TreeNode<K,V> prev;    // needed to unlink next upon deletion
2561 >        boolean red;
2562 >
2563 >        TreeNode(int hash, K key, V val, Node<K,V> next,
2564 >                 TreeNode<K,V> parent) {
2565 >            super(hash, key, val, next);
2566 >            this.parent = parent;
2567 >        }
2568 >
2569 >        Node<K,V> find(int h, Object k) {
2570 >            return findTreeNode(h, k, null);
2571 >        }
2572 >
2573 >        /**
2574 >         * Returns the TreeNode (or null if not found) for the given key
2575 >         * starting at given root.
2576 >         */
2577 >        final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2578 >            if (k != null) {
2579 >                TreeNode<K,V> p = this;
2580 >                do {
2581 >                    int ph, dir; K pk; TreeNode<K,V> q;
2582 >                    TreeNode<K,V> pl = p.left, pr = p.right;
2583 >                    if ((ph = p.hash) > h)
2584 >                        p = pl;
2585 >                    else if (ph < h)
2586 >                        p = pr;
2587 >                    else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2588 >                        return p;
2589 >                    else if (pl == null)
2590 >                        p = pr;
2591 >                    else if (pr == null)
2592 >                        p = pl;
2593 >                    else if ((kc != null ||
2594 >                              (kc = comparableClassFor(k)) != null) &&
2595 >                             (dir = compareComparables(kc, k, pk)) != 0)
2596 >                        p = (dir < 0) ? pl : pr;
2597 >                    else if ((q = pr.findTreeNode(h, k, kc)) != null)
2598 >                        return q;
2599 >                    else
2600 >                        p = pl;
2601 >                } while (p != null);
2602 >            }
2603 >            return null;
2604          }
3937        return r;
2605      }
2606  
2607 +    /* ---------------- TreeBins -------------- */
2608 +
2609      /**
2610 <     * Returns the result of accumulating the given transformation
2611 <     * of all entries using the given reducer to combine values,
2612 <     * or null if none.
2613 <     *
2614 <     * @param transformer a function returning the transformation
2615 <     * for an element, or null of there is no transformation (in
2616 <     * which case it is not combined).
2617 <     * @param reducer a commutative associative combining function
2618 <     * @return the result of accumulating the given transformation
2619 <     * of all entries
2620 <     */
2621 <    @SuppressWarnings("unchecked") public <U> U reduceEntriesSequentially
2622 <        (Fun<Map.Entry<K,V>, ? extends U> transformer,
2623 <         BiFun<? super U, ? super U, ? extends U> reducer) {
2624 <        if (transformer == null || reducer == null)
2625 <            throw new NullPointerException();
2626 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2627 <        U r = null, u; V v;
2628 <        while ((v = it.advance()) != null) {
2629 <            if ((u = transformer.apply(entryFor((K)it.nextKey, v))) != null)
2630 <                r = (r == null) ? u : reducer.apply(r, u);
2610 >     * TreeNodes used at the heads of bins. TreeBins do not hold user
2611 >     * keys or values, but instead point to list of TreeNodes and
2612 >     * their root. They also maintain a parasitic read-write lock
2613 >     * forcing writers (who hold bin lock) to wait for readers (who do
2614 >     * not) to complete before tree restructuring operations.
2615 >     */
2616 >    static final class TreeBin<K,V> extends Node<K,V> {
2617 >        TreeNode<K,V> root;
2618 >        volatile TreeNode<K,V> first;
2619 >        volatile Thread waiter;
2620 >        volatile int lockState;
2621 >        // values for lockState
2622 >        static final int WRITER = 1; // set while holding write lock
2623 >        static final int WAITER = 2; // set when waiting for write lock
2624 >        static final int READER = 4; // increment value for setting read lock
2625 >
2626 >        /**
2627 >         * Tie-breaking utility for ordering insertions when equal
2628 >         * hashCodes and non-comparable. We don't require a total
2629 >         * order, just a consistent insertion rule to maintain
2630 >         * equivalence across rebalancings. Tie-breaking further than
2631 >         * necessary simplifies testing a bit.
2632 >         */
2633 >        static int tieBreakOrder(Object a, Object b) {
2634 >            int d;
2635 >            if (a == null || b == null ||
2636 >                (d = a.getClass().getName().
2637 >                 compareTo(b.getClass().getName())) == 0)
2638 >                d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2639 >                     -1 : 1);
2640 >            return d;
2641 >        }
2642 >
2643 >        /**
2644 >         * Creates bin with initial set of nodes headed by b.
2645 >         */
2646 >        TreeBin(TreeNode<K,V> b) {
2647 >            super(TREEBIN, null, null, null);
2648 >            this.first = b;
2649 >            TreeNode<K,V> r = null;
2650 >            for (TreeNode<K,V> x = b, next; x != null; x = next) {
2651 >                next = (TreeNode<K,V>)x.next;
2652 >                x.left = x.right = null;
2653 >                if (r == null) {
2654 >                    x.parent = null;
2655 >                    x.red = false;
2656 >                    r = x;
2657 >                }
2658 >                else {
2659 >                    K k = x.key;
2660 >                    int h = x.hash;
2661 >                    Class<?> kc = null;
2662 >                    for (TreeNode<K,V> p = r;;) {
2663 >                        int dir, ph;
2664 >                        K pk = p.key;
2665 >                        if ((ph = p.hash) > h)
2666 >                            dir = -1;
2667 >                        else if (ph < h)
2668 >                            dir = 1;
2669 >                        else if ((kc == null &&
2670 >                                  (kc = comparableClassFor(k)) == null) ||
2671 >                                 (dir = compareComparables(kc, k, pk)) == 0)
2672 >                            dir = tieBreakOrder(k, pk);
2673 >                            TreeNode<K,V> xp = p;
2674 >                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
2675 >                            x.parent = xp;
2676 >                            if (dir <= 0)
2677 >                                xp.left = x;
2678 >                            else
2679 >                                xp.right = x;
2680 >                            r = balanceInsertion(r, x);
2681 >                            break;
2682 >                        }
2683 >                    }
2684 >                }
2685 >            }
2686 >            this.root = r;
2687 >            assert checkInvariants(root);
2688 >        }
2689 >
2690 >        /**
2691 >         * Acquires write lock for tree restructuring.
2692 >         */
2693 >        private final void lockRoot() {
2694 >            if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2695 >                contendedLock(); // offload to separate method
2696 >        }
2697 >
2698 >        /**
2699 >         * Releases write lock for tree restructuring.
2700 >         */
2701 >        private final void unlockRoot() {
2702 >            lockState = 0;
2703 >        }
2704 >
2705 >        /**
2706 >         * Possibly blocks awaiting root lock.
2707 >         */
2708 >        private final void contendedLock() {
2709 >            boolean waiting = false;
2710 >            for (int s;;) {
2711 >                if (((s = lockState) & ~WAITER) == 0) {
2712 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2713 >                        if (waiting)
2714 >                            waiter = null;
2715 >                        return;
2716 >                    }
2717 >                }
2718 >                else if ((s & WAITER) == 0) {
2719 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2720 >                        waiting = true;
2721 >                        waiter = Thread.currentThread();
2722 >                    }
2723 >                }
2724 >                else if (waiting)
2725 >                    LockSupport.park(this);
2726 >            }
2727 >        }
2728 >
2729 >        /**
2730 >         * Returns matching node or null if none. Tries to search
2731 >         * using tree comparisons from root, but continues linear
2732 >         * search when lock not available.
2733 >         */
2734 >        final Node<K,V> find(int h, Object k) {
2735 >            if (k != null) {
2736 >                for (Node<K,V> e = first; e != null; ) {
2737 >                    int s; K ek;
2738 >                    if (((s = lockState) & (WAITER|WRITER)) != 0) {
2739 >                        if (e.hash == h &&
2740 >                            ((ek = e.key) == k || (ek != null && k.equals(ek))))
2741 >                            return e;
2742 >                        e = e.next;
2743 >                    }
2744 >                    else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2745 >                                                 s + READER)) {
2746 >                        TreeNode<K,V> r, p;
2747 >                        try {
2748 >                            p = ((r = root) == null ? null :
2749 >                                 r.findTreeNode(h, k, null));
2750 >                        } finally {
2751 >                            Thread w;
2752 >                            int ls;
2753 >                            do {} while (!U.compareAndSwapInt
2754 >                                         (this, LOCKSTATE,
2755 >                                          ls = lockState, ls - READER));
2756 >                            if (ls == (READER|WAITER) && (w = waiter) != null)
2757 >                                LockSupport.unpark(w);
2758 >                        }
2759 >                        return p;
2760 >                    }
2761 >                }
2762 >            }
2763 >            return null;
2764 >        }
2765 >
2766 >        /**
2767 >         * Finds or adds a node.
2768 >         * @return null if added
2769 >         */
2770 >        final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2771 >            Class<?> kc = null;
2772 >            boolean searched = false;
2773 >            for (TreeNode<K,V> p = root;;) {
2774 >                int dir, ph; K pk;
2775 >                if (p == null) {
2776 >                    first = root = new TreeNode<K,V>(h, k, v, null, null);
2777 >                    break;
2778 >                }
2779 >                else if ((ph = p.hash) > h)
2780 >                    dir = -1;
2781 >                else if (ph < h)
2782 >                    dir = 1;
2783 >                else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2784 >                    return p;
2785 >                else if ((kc == null &&
2786 >                          (kc = comparableClassFor(k)) == null) ||
2787 >                         (dir = compareComparables(kc, k, pk)) == 0) {
2788 >                    if (!searched) {
2789 >                        TreeNode<K,V> q, ch;
2790 >                        searched = true;
2791 >                        if (((ch = p.left) != null &&
2792 >                             (q = ch.findTreeNode(h, k, kc)) != null) ||
2793 >                            ((ch = p.right) != null &&
2794 >                             (q = ch.findTreeNode(h, k, kc)) != null))
2795 >                            return q;
2796 >                    }
2797 >                    dir = tieBreakOrder(k, pk);
2798 >                }
2799 >
2800 >                TreeNode<K,V> xp = p;
2801 >                if ((p = (dir <= 0) ? p.left : p.right) == null) {
2802 >                    TreeNode<K,V> x, f = first;
2803 >                    first = x = new TreeNode<K,V>(h, k, v, f, xp);
2804 >                    if (f != null)
2805 >                        f.prev = x;
2806 >                    if (dir <= 0)
2807 >                        xp.left = x;
2808 >                    else
2809 >                        xp.right = x;
2810 >                    if (!xp.red)
2811 >                        x.red = true;
2812 >                    else {
2813 >                        lockRoot();
2814 >                        try {
2815 >                            root = balanceInsertion(root, x);
2816 >                        } finally {
2817 >                            unlockRoot();
2818 >                        }
2819 >                    }
2820 >                    break;
2821 >                }
2822 >            }
2823 >            assert checkInvariants(root);
2824 >            return null;
2825 >        }
2826 >
2827 >        /**
2828 >         * Removes the given node, that must be present before this
2829 >         * call.  This is messier than typical red-black deletion code
2830 >         * because we cannot swap the contents of an interior node
2831 >         * with a leaf successor that is pinned by "next" pointers
2832 >         * that are accessible independently of lock. So instead we
2833 >         * swap the tree linkages.
2834 >         *
2835 >         * @return true if now too small, so should be untreeified
2836 >         */
2837 >        final boolean removeTreeNode(TreeNode<K,V> p) {
2838 >            TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2839 >            TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
2840 >            TreeNode<K,V> r, rl;
2841 >            if (pred == null)
2842 >                first = next;
2843 >            else
2844 >                pred.next = next;
2845 >            if (next != null)
2846 >                next.prev = pred;
2847 >            if (first == null) {
2848 >                root = null;
2849 >                return true;
2850 >            }
2851 >            if ((r = root) == null || r.right == null || // too small
2852 >                (rl = r.left) == null || rl.left == null)
2853 >                return true;
2854 >            lockRoot();
2855 >            try {
2856 >                TreeNode<K,V> replacement;
2857 >                TreeNode<K,V> pl = p.left;
2858 >                TreeNode<K,V> pr = p.right;
2859 >                if (pl != null && pr != null) {
2860 >                    TreeNode<K,V> s = pr, sl;
2861 >                    while ((sl = s.left) != null) // find successor
2862 >                        s = sl;
2863 >                    boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2864 >                    TreeNode<K,V> sr = s.right;
2865 >                    TreeNode<K,V> pp = p.parent;
2866 >                    if (s == pr) { // p was s's direct parent
2867 >                        p.parent = s;
2868 >                        s.right = p;
2869 >                    }
2870 >                    else {
2871 >                        TreeNode<K,V> sp = s.parent;
2872 >                        if ((p.parent = sp) != null) {
2873 >                            if (s == sp.left)
2874 >                                sp.left = p;
2875 >                            else
2876 >                                sp.right = p;
2877 >                        }
2878 >                        if ((s.right = pr) != null)
2879 >                            pr.parent = s;
2880 >                    }
2881 >                    p.left = null;
2882 >                    if ((p.right = sr) != null)
2883 >                        sr.parent = p;
2884 >                    if ((s.left = pl) != null)
2885 >                        pl.parent = s;
2886 >                    if ((s.parent = pp) == null)
2887 >                        r = s;
2888 >                    else if (p == pp.left)
2889 >                        pp.left = s;
2890 >                    else
2891 >                        pp.right = s;
2892 >                    if (sr != null)
2893 >                        replacement = sr;
2894 >                    else
2895 >                        replacement = p;
2896 >                }
2897 >                else if (pl != null)
2898 >                    replacement = pl;
2899 >                else if (pr != null)
2900 >                    replacement = pr;
2901 >                else
2902 >                    replacement = p;
2903 >                if (replacement != p) {
2904 >                    TreeNode<K,V> pp = replacement.parent = p.parent;
2905 >                    if (pp == null)
2906 >                        r = replacement;
2907 >                    else if (p == pp.left)
2908 >                        pp.left = replacement;
2909 >                    else
2910 >                        pp.right = replacement;
2911 >                    p.left = p.right = p.parent = null;
2912 >                }
2913 >
2914 >                root = (p.red) ? r : balanceDeletion(r, replacement);
2915 >
2916 >                if (p == replacement) {  // detach pointers
2917 >                    TreeNode<K,V> pp;
2918 >                    if ((pp = p.parent) != null) {
2919 >                        if (p == pp.left)
2920 >                            pp.left = null;
2921 >                        else if (p == pp.right)
2922 >                            pp.right = null;
2923 >                        p.parent = null;
2924 >                    }
2925 >                }
2926 >            } finally {
2927 >                unlockRoot();
2928 >            }
2929 >            assert checkInvariants(root);
2930 >            return false;
2931 >        }
2932 >
2933 >        /* ------------------------------------------------------------ */
2934 >        // Red-black tree methods, all adapted from CLR
2935 >
2936 >        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2937 >                                              TreeNode<K,V> p) {
2938 >            TreeNode<K,V> r, pp, rl;
2939 >            if (p != null && (r = p.right) != null) {
2940 >                if ((rl = p.right = r.left) != null)
2941 >                    rl.parent = p;
2942 >                if ((pp = r.parent = p.parent) == null)
2943 >                    (root = r).red = false;
2944 >                else if (pp.left == p)
2945 >                    pp.left = r;
2946 >                else
2947 >                    pp.right = r;
2948 >                r.left = p;
2949 >                p.parent = r;
2950 >            }
2951 >            return root;
2952 >        }
2953 >
2954 >        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2955 >                                               TreeNode<K,V> p) {
2956 >            TreeNode<K,V> l, pp, lr;
2957 >            if (p != null && (l = p.left) != null) {
2958 >                if ((lr = p.left = l.right) != null)
2959 >                    lr.parent = p;
2960 >                if ((pp = l.parent = p.parent) == null)
2961 >                    (root = l).red = false;
2962 >                else if (pp.right == p)
2963 >                    pp.right = l;
2964 >                else
2965 >                    pp.left = l;
2966 >                l.right = p;
2967 >                p.parent = l;
2968 >            }
2969 >            return root;
2970 >        }
2971 >
2972 >        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2973 >                                                    TreeNode<K,V> x) {
2974 >            x.red = true;
2975 >            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2976 >                if ((xp = x.parent) == null) {
2977 >                    x.red = false;
2978 >                    return x;
2979 >                }
2980 >                else if (!xp.red || (xpp = xp.parent) == null)
2981 >                    return root;
2982 >                if (xp == (xppl = xpp.left)) {
2983 >                    if ((xppr = xpp.right) != null && xppr.red) {
2984 >                        xppr.red = false;
2985 >                        xp.red = false;
2986 >                        xpp.red = true;
2987 >                        x = xpp;
2988 >                    }
2989 >                    else {
2990 >                        if (x == xp.right) {
2991 >                            root = rotateLeft(root, x = xp);
2992 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
2993 >                        }
2994 >                        if (xp != null) {
2995 >                            xp.red = false;
2996 >                            if (xpp != null) {
2997 >                                xpp.red = true;
2998 >                                root = rotateRight(root, xpp);
2999 >                            }
3000 >                        }
3001 >                    }
3002 >                }
3003 >                else {
3004 >                    if (xppl != null && xppl.red) {
3005 >                        xppl.red = false;
3006 >                        xp.red = false;
3007 >                        xpp.red = true;
3008 >                        x = xpp;
3009 >                    }
3010 >                    else {
3011 >                        if (x == xp.left) {
3012 >                            root = rotateRight(root, x = xp);
3013 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
3014 >                        }
3015 >                        if (xp != null) {
3016 >                            xp.red = false;
3017 >                            if (xpp != null) {
3018 >                                xpp.red = true;
3019 >                                root = rotateLeft(root, xpp);
3020 >                            }
3021 >                        }
3022 >                    }
3023 >                }
3024 >            }
3025 >        }
3026 >
3027 >        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3028 >                                                   TreeNode<K,V> x) {
3029 >            for (TreeNode<K,V> xp, xpl, xpr;;) {
3030 >                if (x == null || x == root)
3031 >                    return root;
3032 >                else if ((xp = x.parent) == null) {
3033 >                    x.red = false;
3034 >                    return x;
3035 >                }
3036 >                else if (x.red) {
3037 >                    x.red = false;
3038 >                    return root;
3039 >                }
3040 >                else if ((xpl = xp.left) == x) {
3041 >                    if ((xpr = xp.right) != null && xpr.red) {
3042 >                        xpr.red = false;
3043 >                        xp.red = true;
3044 >                        root = rotateLeft(root, xp);
3045 >                        xpr = (xp = x.parent) == null ? null : xp.right;
3046 >                    }
3047 >                    if (xpr == null)
3048 >                        x = xp;
3049 >                    else {
3050 >                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3051 >                        if ((sr == null || !sr.red) &&
3052 >                            (sl == null || !sl.red)) {
3053 >                            xpr.red = true;
3054 >                            x = xp;
3055 >                        }
3056 >                        else {
3057 >                            if (sr == null || !sr.red) {
3058 >                                if (sl != null)
3059 >                                    sl.red = false;
3060 >                                xpr.red = true;
3061 >                                root = rotateRight(root, xpr);
3062 >                                xpr = (xp = x.parent) == null ?
3063 >                                    null : xp.right;
3064 >                            }
3065 >                            if (xpr != null) {
3066 >                                xpr.red = (xp == null) ? false : xp.red;
3067 >                                if ((sr = xpr.right) != null)
3068 >                                    sr.red = false;
3069 >                            }
3070 >                            if (xp != null) {
3071 >                                xp.red = false;
3072 >                                root = rotateLeft(root, xp);
3073 >                            }
3074 >                            x = root;
3075 >                        }
3076 >                    }
3077 >                }
3078 >                else { // symmetric
3079 >                    if (xpl != null && xpl.red) {
3080 >                        xpl.red = false;
3081 >                        xp.red = true;
3082 >                        root = rotateRight(root, xp);
3083 >                        xpl = (xp = x.parent) == null ? null : xp.left;
3084 >                    }
3085 >                    if (xpl == null)
3086 >                        x = xp;
3087 >                    else {
3088 >                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3089 >                        if ((sl == null || !sl.red) &&
3090 >                            (sr == null || !sr.red)) {
3091 >                            xpl.red = true;
3092 >                            x = xp;
3093 >                        }
3094 >                        else {
3095 >                            if (sl == null || !sl.red) {
3096 >                                if (sr != null)
3097 >                                    sr.red = false;
3098 >                                xpl.red = true;
3099 >                                root = rotateLeft(root, xpl);
3100 >                                xpl = (xp = x.parent) == null ?
3101 >                                    null : xp.left;
3102 >                            }
3103 >                            if (xpl != null) {
3104 >                                xpl.red = (xp == null) ? false : xp.red;
3105 >                                if ((sl = xpl.left) != null)
3106 >                                    sl.red = false;
3107 >                            }
3108 >                            if (xp != null) {
3109 >                                xp.red = false;
3110 >                                root = rotateRight(root, xp);
3111 >                            }
3112 >                            x = root;
3113 >                        }
3114 >                    }
3115 >                }
3116 >            }
3117 >        }
3118 >
3119 >        /**
3120 >         * Recursive invariant check
3121 >         */
3122 >        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3123 >            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3124 >                tb = t.prev, tn = (TreeNode<K,V>)t.next;
3125 >            if (tb != null && tb.next != t)
3126 >                return false;
3127 >            if (tn != null && tn.prev != t)
3128 >                return false;
3129 >            if (tp != null && t != tp.left && t != tp.right)
3130 >                return false;
3131 >            if (tl != null && (tl.parent != t || tl.hash > t.hash))
3132 >                return false;
3133 >            if (tr != null && (tr.parent != t || tr.hash < t.hash))
3134 >                return false;
3135 >            if (t.red && tl != null && tl.red && tr != null && tr.red)
3136 >                return false;
3137 >            if (tl != null && !checkInvariants(tl))
3138 >                return false;
3139 >            if (tr != null && !checkInvariants(tr))
3140 >                return false;
3141 >            return true;
3142 >        }
3143 >
3144 >        private static final sun.misc.Unsafe U;
3145 >        private static final long LOCKSTATE;
3146 >        static {
3147 >            try {
3148 >                U = getUnsafe();
3149 >                Class<?> k = TreeBin.class;
3150 >                LOCKSTATE = U.objectFieldOffset
3151 >                    (k.getDeclaredField("lockState"));
3152 >            } catch (Exception e) {
3153 >                throw new Error(e);
3154 >            }
3155          }
3963        return r;
3156      }
3157  
3158 +    /* ----------------Table Traversal -------------- */
3159 +
3160      /**
3161 <     * Returns the result of accumulating the given transformation
3162 <     * of all entries using the given reducer to combine values,
3163 <     * and the given basis as an identity value.
3164 <     *
3165 <     * @param transformer a function returning the transformation
3166 <     * for an element
3167 <     * @param basis the identity (initial default value) for the reduction
3168 <     * @param reducer a commutative associative combining function
3169 <     * @return the result of accumulating the given transformation
3976 <     * of all entries
3977 <     */
3978 <    @SuppressWarnings("unchecked") public double reduceEntriesToDoubleSequentially
3979 <        (ObjectToDouble<Map.Entry<K,V>> transformer,
3980 <         double basis,
3981 <         DoubleByDoubleToDouble reducer) {
3982 <        if (transformer == null || reducer == null)
3983 <            throw new NullPointerException();
3984 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3985 <        double r = basis; V v;
3986 <        while ((v = it.advance()) != null)
3987 <            r = reducer.apply(r, transformer.apply(entryFor((K)it.nextKey, v)));
3988 <        return r;
3161 >     * Records the table, its length, and current traversal index for a
3162 >     * traverser that must process a region of a forwarded table before
3163 >     * proceeding with current table.
3164 >     */
3165 >    static final class TableStack<K,V> {
3166 >        int length;
3167 >        int index;
3168 >        Node<K,V>[] tab;
3169 >        TableStack<K,V> next;
3170      }
3171  
3172      /**
3173 <     * Returns the result of accumulating the given transformation
3174 <     * of all entries using the given reducer to combine values,
3994 <     * and the given basis as an identity value.
3173 >     * Encapsulates traversal for methods such as containsValue; also
3174 >     * serves as a base class for other iterators and spliterators.
3175       *
3176 <     * @param transformer a function returning the transformation
3177 <     * for an element
3178 <     * @param basis the identity (initial default value) for the reduction
3179 <     * @param reducer a commutative associative combining function
3180 <     * @return  the result of accumulating the given transformation
3181 <     * of all entries
3176 >     * Method advance visits once each still-valid node that was
3177 >     * reachable upon iterator construction. It might miss some that
3178 >     * were added to a bin after the bin was visited, which is OK wrt
3179 >     * consistency guarantees. Maintaining this property in the face
3180 >     * of possible ongoing resizes requires a fair amount of
3181 >     * bookkeeping state that is difficult to optimize away amidst
3182 >     * volatile accesses.  Even so, traversal maintains reasonable
3183 >     * throughput.
3184 >     *
3185 >     * Normally, iteration proceeds bin-by-bin traversing lists.
3186 >     * However, if the table has been resized, then all future steps
3187 >     * must traverse both the bin at the current index as well as at
3188 >     * (index + baseSize); and so on for further resizings. To
3189 >     * paranoically cope with potential sharing by users of iterators
3190 >     * across threads, iteration terminates if a bounds checks fails
3191 >     * for a table read.
3192       */
3193 <    @SuppressWarnings("unchecked") public long reduceEntriesToLongSequentially
3194 <        (ObjectToLong<Map.Entry<K,V>> transformer,
3195 <         long basis,
3196 <         LongByLongToLong reducer) {
3197 <        if (transformer == null || reducer == null)
3198 <            throw new NullPointerException();
3199 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3200 <        long r = basis; V v;
3201 <        while ((v = it.advance()) != null)
3202 <            r = reducer.apply(r, transformer.apply(entryFor((K)it.nextKey, v)));
3203 <        return r;
3193 >    static class Traverser<K,V> {
3194 >        Node<K,V>[] tab;        // current table; updated if resized
3195 >        Node<K,V> next;         // the next entry to use
3196 >        TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3197 >        int index;              // index of bin to use next
3198 >        int baseIndex;          // current index of initial table
3199 >        int baseLimit;          // index bound for initial table
3200 >        final int baseSize;     // initial table size
3201 >
3202 >        Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3203 >            this.tab = tab;
3204 >            this.baseSize = size;
3205 >            this.baseIndex = this.index = index;
3206 >            this.baseLimit = limit;
3207 >            this.next = null;
3208 >        }
3209 >
3210 >        /**
3211 >         * Advances if possible, returning next valid node, or null if none.
3212 >         */
3213 >        final Node<K,V> advance() {
3214 >            Node<K,V> e;
3215 >            if ((e = next) != null)
3216 >                e = e.next;
3217 >            for (;;) {
3218 >                Node<K,V>[] t; int i, n;  // must use locals in checks
3219 >                if (e != null)
3220 >                    return next = e;
3221 >                if (baseIndex >= baseLimit || (t = tab) == null ||
3222 >                    (n = t.length) <= (i = index) || i < 0)
3223 >                    return next = null;
3224 >                if ((e = tabAt(t, i)) != null && e.hash < 0) {
3225 >                    if (e instanceof ForwardingNode) {
3226 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
3227 >                        e = null;
3228 >                        pushState(t, i, n);
3229 >                        continue;
3230 >                    }
3231 >                    else if (e instanceof TreeBin)
3232 >                        e = ((TreeBin<K,V>)e).first;
3233 >                    else
3234 >                        e = null;
3235 >                }
3236 >                if (stack != null)
3237 >                    recoverState(n);
3238 >                else if ((index = i + baseSize) >= n)
3239 >                    index = ++baseIndex; // visit upper slots if present
3240 >            }
3241 >        }
3242 >
3243 >        /**
3244 >         * Saves traversal state upon encountering a forwarding node.
3245 >         */
3246 >        private void pushState(Node<K,V>[] t, int i, int n) {
3247 >            TableStack<K,V> s = spare;  // reuse if possible
3248 >            if (s != null)
3249 >                spare = s.next;
3250 >            else
3251 >                s = new TableStack<K,V>();
3252 >            s.tab = t;
3253 >            s.length = n;
3254 >            s.index = i;
3255 >            s.next = stack;
3256 >            stack = s;
3257 >        }
3258 >
3259 >        /**
3260 >         * Possibly pops traversal state.
3261 >         *
3262 >         * @param n length of current table
3263 >         */
3264 >        private void recoverState(int n) {
3265 >            TableStack<K,V> s; int len;
3266 >            while ((s = stack) != null && (index += (len = s.length)) >= n) {
3267 >                n = len;
3268 >                index = s.index;
3269 >                tab = s.tab;
3270 >                s.tab = null;
3271 >                TableStack<K,V> next = s.next;
3272 >                s.next = spare; // save for reuse
3273 >                stack = next;
3274 >                spare = s;
3275 >            }
3276 >            if (s == null && (index += baseSize) >= n)
3277 >                index = ++baseIndex;
3278 >        }
3279      }
3280  
3281      /**
3282 <     * Returns the result of accumulating the given transformation
3283 <     * of all entries using the given reducer to combine values,
3284 <     * and the given basis as an identity value.
3285 <     *
3286 <     * @param transformer a function returning the transformation
3287 <     * for an element
3288 <     * @param basis the identity (initial default value) for the reduction
3289 <     * @param reducer a commutative associative combining function
3290 <     * @return the result of accumulating the given transformation
3291 <     * of all entries
3282 >     * Base of key, value, and entry Iterators. Adds fields to
3283 >     * Traverser to support iterator.remove.
3284 >     */
3285 >    static class BaseIterator<K,V> extends Traverser<K,V> {
3286 >        final ConcurrentHashMapV8<K,V> map;
3287 >        Node<K,V> lastReturned;
3288 >        BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3289 >                    ConcurrentHashMapV8<K,V> map) {
3290 >            super(tab, size, index, limit);
3291 >            this.map = map;
3292 >            advance();
3293 >        }
3294 >
3295 >        public final boolean hasNext() { return next != null; }
3296 >        public final boolean hasMoreElements() { return next != null; }
3297 >
3298 >        public final void remove() {
3299 >            Node<K,V> p;
3300 >            if ((p = lastReturned) == null)
3301 >                throw new IllegalStateException();
3302 >            lastReturned = null;
3303 >            map.replaceNode(p.key, null, null);
3304 >        }
3305 >    }
3306 >
3307 >    static final class KeyIterator<K,V> extends BaseIterator<K,V>
3308 >        implements Iterator<K>, Enumeration<K> {
3309 >        KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3310 >                    ConcurrentHashMapV8<K,V> map) {
3311 >            super(tab, index, size, limit, map);
3312 >        }
3313 >
3314 >        public final K next() {
3315 >            Node<K,V> p;
3316 >            if ((p = next) == null)
3317 >                throw new NoSuchElementException();
3318 >            K k = p.key;
3319 >            lastReturned = p;
3320 >            advance();
3321 >            return k;
3322 >        }
3323 >
3324 >        public final K nextElement() { return next(); }
3325 >    }
3326 >
3327 >    static final class ValueIterator<K,V> extends BaseIterator<K,V>
3328 >        implements Iterator<V>, Enumeration<V> {
3329 >        ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3330 >                      ConcurrentHashMapV8<K,V> map) {
3331 >            super(tab, index, size, limit, map);
3332 >        }
3333 >
3334 >        public final V next() {
3335 >            Node<K,V> p;
3336 >            if ((p = next) == null)
3337 >                throw new NoSuchElementException();
3338 >            V v = p.val;
3339 >            lastReturned = p;
3340 >            advance();
3341 >            return v;
3342 >        }
3343 >
3344 >        public final V nextElement() { return next(); }
3345 >    }
3346 >
3347 >    static final class EntryIterator<K,V> extends BaseIterator<K,V>
3348 >        implements Iterator<Map.Entry<K,V>> {
3349 >        EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3350 >                      ConcurrentHashMapV8<K,V> map) {
3351 >            super(tab, index, size, limit, map);
3352 >        }
3353 >
3354 >        public final Map.Entry<K,V> next() {
3355 >            Node<K,V> p;
3356 >            if ((p = next) == null)
3357 >                throw new NoSuchElementException();
3358 >            K k = p.key;
3359 >            V v = p.val;
3360 >            lastReturned = p;
3361 >            advance();
3362 >            return new MapEntry<K,V>(k, v, map);
3363 >        }
3364 >    }
3365 >
3366 >    /**
3367 >     * Exported Entry for EntryIterator
3368       */
3369 <    @SuppressWarnings("unchecked") public int reduceEntriesToIntSequentially
3370 <        (ObjectToInt<Map.Entry<K,V>> transformer,
3371 <         int basis,
3372 <         IntByIntToInt reducer) {
3373 <        if (transformer == null || reducer == null)
3374 <            throw new NullPointerException();
3375 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3376 <        int r = basis; V v;
3377 <        while ((v = it.advance()) != null)
3378 <            r = reducer.apply(r, transformer.apply(entryFor((K)it.nextKey, v)));
3379 <        return r;
3369 >    static final class MapEntry<K,V> implements Map.Entry<K,V> {
3370 >        final K key; // non-null
3371 >        V val;       // non-null
3372 >        final ConcurrentHashMapV8<K,V> map;
3373 >        MapEntry(K key, V val, ConcurrentHashMapV8<K,V> map) {
3374 >            this.key = key;
3375 >            this.val = val;
3376 >            this.map = map;
3377 >        }
3378 >        public K getKey()        { return key; }
3379 >        public V getValue()      { return val; }
3380 >        public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
3381 >        public String toString() { return key + "=" + val; }
3382 >
3383 >        public boolean equals(Object o) {
3384 >            Object k, v; Map.Entry<?,?> e;
3385 >            return ((o instanceof Map.Entry) &&
3386 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3387 >                    (v = e.getValue()) != null &&
3388 >                    (k == key || k.equals(key)) &&
3389 >                    (v == val || v.equals(val)));
3390 >        }
3391 >
3392 >        /**
3393 >         * Sets our entry's value and writes through to the map. The
3394 >         * value to return is somewhat arbitrary here. Since we do not
3395 >         * necessarily track asynchronous changes, the most recent
3396 >         * "previous" value could be different from what we return (or
3397 >         * could even have been removed, in which case the put will
3398 >         * re-establish). We do not and cannot guarantee more.
3399 >         */
3400 >        public V setValue(V value) {
3401 >            if (value == null) throw new NullPointerException();
3402 >            V v = val;
3403 >            val = value;
3404 >            map.put(key, value);
3405 >            return v;
3406 >        }
3407 >    }
3408 >
3409 >    static final class KeySpliterator<K,V> extends Traverser<K,V>
3410 >        implements ConcurrentHashMapSpliterator<K> {
3411 >        long est;               // size estimate
3412 >        KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3413 >                       long est) {
3414 >            super(tab, size, index, limit);
3415 >            this.est = est;
3416 >        }
3417 >
3418 >        public ConcurrentHashMapSpliterator<K> trySplit() {
3419 >            int i, f, h;
3420 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3421 >                new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3422 >                                        f, est >>>= 1);
3423 >        }
3424 >
3425 >        public void forEachRemaining(Action<? super K> action) {
3426 >            if (action == null) throw new NullPointerException();
3427 >            for (Node<K,V> p; (p = advance()) != null;)
3428 >                action.apply(p.key);
3429 >        }
3430 >
3431 >        public boolean tryAdvance(Action<? super K> action) {
3432 >            if (action == null) throw new NullPointerException();
3433 >            Node<K,V> p;
3434 >            if ((p = advance()) == null)
3435 >                return false;
3436 >            action.apply(p.key);
3437 >            return true;
3438 >        }
3439 >
3440 >        public long estimateSize() { return est; }
3441 >
3442 >    }
3443 >
3444 >    static final class ValueSpliterator<K,V> extends Traverser<K,V>
3445 >        implements ConcurrentHashMapSpliterator<V> {
3446 >        long est;               // size estimate
3447 >        ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3448 >                         long est) {
3449 >            super(tab, size, index, limit);
3450 >            this.est = est;
3451 >        }
3452 >
3453 >        public ConcurrentHashMapSpliterator<V> trySplit() {
3454 >            int i, f, h;
3455 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3456 >                new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3457 >                                          f, est >>>= 1);
3458 >        }
3459 >
3460 >        public void forEachRemaining(Action<? super V> action) {
3461 >            if (action == null) throw new NullPointerException();
3462 >            for (Node<K,V> p; (p = advance()) != null;)
3463 >                action.apply(p.val);
3464 >        }
3465 >
3466 >        public boolean tryAdvance(Action<? super V> action) {
3467 >            if (action == null) throw new NullPointerException();
3468 >            Node<K,V> p;
3469 >            if ((p = advance()) == null)
3470 >                return false;
3471 >            action.apply(p.val);
3472 >            return true;
3473 >        }
3474 >
3475 >        public long estimateSize() { return est; }
3476 >
3477 >    }
3478 >
3479 >    static final class EntrySpliterator<K,V> extends Traverser<K,V>
3480 >        implements ConcurrentHashMapSpliterator<Map.Entry<K,V>> {
3481 >        final ConcurrentHashMapV8<K,V> map; // To export MapEntry
3482 >        long est;               // size estimate
3483 >        EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3484 >                         long est, ConcurrentHashMapV8<K,V> map) {
3485 >            super(tab, size, index, limit);
3486 >            this.map = map;
3487 >            this.est = est;
3488 >        }
3489 >
3490 >        public ConcurrentHashMapSpliterator<Map.Entry<K,V>> trySplit() {
3491 >            int i, f, h;
3492 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3493 >                new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3494 >                                          f, est >>>= 1, map);
3495 >        }
3496 >
3497 >        public void forEachRemaining(Action<? super Map.Entry<K,V>> action) {
3498 >            if (action == null) throw new NullPointerException();
3499 >            for (Node<K,V> p; (p = advance()) != null; )
3500 >                action.apply(new MapEntry<K,V>(p.key, p.val, map));
3501 >        }
3502 >
3503 >        public boolean tryAdvance(Action<? super Map.Entry<K,V>> action) {
3504 >            if (action == null) throw new NullPointerException();
3505 >            Node<K,V> p;
3506 >            if ((p = advance()) == null)
3507 >                return false;
3508 >            action.apply(new MapEntry<K,V>(p.key, p.val, map));
3509 >            return true;
3510 >        }
3511 >
3512 >        public long estimateSize() { return est; }
3513 >
3514      }
3515  
3516      // Parallel bulk operations
3517  
3518      /**
3519 +     * Computes initial batch value for bulk tasks. The returned value
3520 +     * is approximately exp2 of the number of times (minus one) to
3521 +     * split task by two before executing leaf action. This value is
3522 +     * faster to compute and more convenient to use as a guide to
3523 +     * splitting than is the depth, since it is used while dividing by
3524 +     * two anyway.
3525 +     */
3526 +    final int batchFor(long b) {
3527 +        long n;
3528 +        if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3529 +            return 0;
3530 +        int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3531 +        return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3532 +    }
3533 +
3534 +    /**
3535       * Performs the given action for each (key, value).
3536       *
3537 +     * @param parallelismThreshold the (estimated) number of elements
3538 +     * needed for this operation to be executed in parallel
3539       * @param action the action
3540 +     * @since 1.8
3541       */
3542 <    public void forEachInParallel(BiAction<K,V> action) {
3543 <        ForkJoinTasks.forEach
3544 <            (this, action).invoke();
3542 >    public void forEach(long parallelismThreshold,
3543 >                        BiAction<? super K,? super V> action) {
3544 >        if (action == null) throw new NullPointerException();
3545 >        new ForEachMappingTask<K,V>
3546 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3547 >             action).invoke();
3548      }
3549  
3550      /**
3551       * Performs the given action for each non-null transformation
3552       * of each (key, value).
3553       *
3554 +     * @param parallelismThreshold the (estimated) number of elements
3555 +     * needed for this operation to be executed in parallel
3556       * @param transformer a function returning the transformation
3557 <     * for an element, or null of there is no transformation (in
3558 <     * which case the action is not applied).
3557 >     * for an element, or null if there is no transformation (in
3558 >     * which case the action is not applied)
3559       * @param action the action
3560 +     * @since 1.8
3561       */
3562 <    public <U> void forEachInParallel
3563 <        (BiFun<? super K, ? super V, ? extends U> transformer,
3564 <                            Action<U> action) {
3565 <        ForkJoinTasks.forEach
3566 <            (this, transformer, action).invoke();
3562 >    public <U> void forEach(long parallelismThreshold,
3563 >                            BiFun<? super K, ? super V, ? extends U> transformer,
3564 >                            Action<? super U> action) {
3565 >        if (transformer == null || action == null)
3566 >            throw new NullPointerException();
3567 >        new ForEachTransformedMappingTask<K,V,U>
3568 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3569 >             transformer, action).invoke();
3570      }
3571  
3572      /**
# Line 4073 | Line 3576 | public class ConcurrentHashMapV8<K, V>
3576       * results of any other parallel invocations of the search
3577       * function are ignored.
3578       *
3579 +     * @param parallelismThreshold the (estimated) number of elements
3580 +     * needed for this operation to be executed in parallel
3581       * @param searchFunction a function returning a non-null
3582       * result on success, else null
3583       * @return a non-null result from applying the given search
3584       * function on each (key, value), or null if none
3585 +     * @since 1.8
3586       */
3587 <    public <U> U searchInParallel
3588 <        (BiFun<? super K, ? super V, ? extends U> searchFunction) {
3589 <        return ForkJoinTasks.search
3590 <            (this, searchFunction).invoke();
3587 >    public <U> U search(long parallelismThreshold,
3588 >                        BiFun<? super K, ? super V, ? extends U> searchFunction) {
3589 >        if (searchFunction == null) throw new NullPointerException();
3590 >        return new SearchMappingsTask<K,V,U>
3591 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3592 >             searchFunction, new AtomicReference<U>()).invoke();
3593      }
3594  
3595      /**
# Line 4089 | Line 3597 | public class ConcurrentHashMapV8<K, V>
3597       * of all (key, value) pairs using the given reducer to
3598       * combine values, or null if none.
3599       *
3600 +     * @param parallelismThreshold the (estimated) number of elements
3601 +     * needed for this operation to be executed in parallel
3602       * @param transformer a function returning the transformation
3603 <     * for an element, or null of there is no transformation (in
3604 <     * which case it is not combined).
3603 >     * for an element, or null if there is no transformation (in
3604 >     * which case it is not combined)
3605       * @param reducer a commutative associative combining function
3606       * @return the result of accumulating the given transformation
3607       * of all (key, value) pairs
3608 +     * @since 1.8
3609       */
3610 <    public <U> U reduceInParallel
3611 <        (BiFun<? super K, ? super V, ? extends U> transformer,
3612 <         BiFun<? super U, ? super U, ? extends U> reducer) {
3613 <        return ForkJoinTasks.reduce
3614 <            (this, transformer, reducer).invoke();
3610 >    public <U> U reduce(long parallelismThreshold,
3611 >                        BiFun<? super K, ? super V, ? extends U> transformer,
3612 >                        BiFun<? super U, ? super U, ? extends U> reducer) {
3613 >        if (transformer == null || reducer == null)
3614 >            throw new NullPointerException();
3615 >        return new MapReduceMappingsTask<K,V,U>
3616 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3617 >             null, transformer, reducer).invoke();
3618      }
3619  
3620      /**
# Line 4108 | Line 3622 | public class ConcurrentHashMapV8<K, V>
3622       * of all (key, value) pairs using the given reducer to
3623       * combine values, and the given basis as an identity value.
3624       *
3625 +     * @param parallelismThreshold the (estimated) number of elements
3626 +     * needed for this operation to be executed in parallel
3627       * @param transformer a function returning the transformation
3628       * for an element
3629       * @param basis the identity (initial default value) for the reduction
3630       * @param reducer a commutative associative combining function
3631       * @return the result of accumulating the given transformation
3632       * of all (key, value) pairs
3633 +     * @since 1.8
3634       */
3635 <    public double reduceToDoubleInParallel
3636 <        (ObjectByObjectToDouble<? super K, ? super V> transformer,
3637 <         double basis,
3638 <         DoubleByDoubleToDouble reducer) {
3639 <        return ForkJoinTasks.reduceToDouble
3640 <            (this, transformer, basis, reducer).invoke();
3635 >    public double reduceToDouble(long parallelismThreshold,
3636 >                                 ObjectByObjectToDouble<? super K, ? super V> transformer,
3637 >                                 double basis,
3638 >                                 DoubleByDoubleToDouble reducer) {
3639 >        if (transformer == null || reducer == null)
3640 >            throw new NullPointerException();
3641 >        return new MapReduceMappingsToDoubleTask<K,V>
3642 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3643 >             null, transformer, basis, reducer).invoke();
3644      }
3645  
3646      /**
# Line 4128 | Line 3648 | public class ConcurrentHashMapV8<K, V>
3648       * of all (key, value) pairs using the given reducer to
3649       * combine values, and the given basis as an identity value.
3650       *
3651 +     * @param parallelismThreshold the (estimated) number of elements
3652 +     * needed for this operation to be executed in parallel
3653       * @param transformer a function returning the transformation
3654       * for an element
3655       * @param basis the identity (initial default value) for the reduction
3656       * @param reducer a commutative associative combining function
3657       * @return the result of accumulating the given transformation
3658       * of all (key, value) pairs
3659 +     * @since 1.8
3660       */
3661 <    public long reduceToLongInParallel
3662 <        (ObjectByObjectToLong<? super K, ? super V> transformer,
3663 <         long basis,
3664 <         LongByLongToLong reducer) {
3665 <        return ForkJoinTasks.reduceToLong
3666 <            (this, transformer, basis, reducer).invoke();
3661 >    public long reduceToLong(long parallelismThreshold,
3662 >                             ObjectByObjectToLong<? super K, ? super V> transformer,
3663 >                             long basis,
3664 >                             LongByLongToLong reducer) {
3665 >        if (transformer == null || reducer == null)
3666 >            throw new NullPointerException();
3667 >        return new MapReduceMappingsToLongTask<K,V>
3668 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3669 >             null, transformer, basis, reducer).invoke();
3670      }
3671  
3672      /**
# Line 4148 | Line 3674 | public class ConcurrentHashMapV8<K, V>
3674       * of all (key, value) pairs using the given reducer to
3675       * combine values, and the given basis as an identity value.
3676       *
3677 +     * @param parallelismThreshold the (estimated) number of elements
3678 +     * needed for this operation to be executed in parallel
3679       * @param transformer a function returning the transformation
3680       * for an element
3681       * @param basis the identity (initial default value) for the reduction
3682       * @param reducer a commutative associative combining function
3683       * @return the result of accumulating the given transformation
3684       * of all (key, value) pairs
3685 +     * @since 1.8
3686       */
3687 <    public int reduceToIntInParallel
3688 <        (ObjectByObjectToInt<? super K, ? super V> transformer,
3689 <         int basis,
3690 <         IntByIntToInt reducer) {
3691 <        return ForkJoinTasks.reduceToInt
3692 <            (this, transformer, basis, reducer).invoke();
3687 >    public int reduceToInt(long parallelismThreshold,
3688 >                           ObjectByObjectToInt<? super K, ? super V> transformer,
3689 >                           int basis,
3690 >                           IntByIntToInt reducer) {
3691 >        if (transformer == null || reducer == null)
3692 >            throw new NullPointerException();
3693 >        return new MapReduceMappingsToIntTask<K,V>
3694 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3695 >             null, transformer, basis, reducer).invoke();
3696      }
3697  
3698      /**
3699       * Performs the given action for each key.
3700       *
3701 +     * @param parallelismThreshold the (estimated) number of elements
3702 +     * needed for this operation to be executed in parallel
3703       * @param action the action
3704 +     * @since 1.8
3705       */
3706 <    public void forEachKeyInParallel(Action<K> action) {
3707 <        ForkJoinTasks.forEachKey
3708 <            (this, action).invoke();
3706 >    public void forEachKey(long parallelismThreshold,
3707 >                           Action<? super K> action) {
3708 >        if (action == null) throw new NullPointerException();
3709 >        new ForEachKeyTask<K,V>
3710 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3711 >             action).invoke();
3712      }
3713  
3714      /**
3715       * Performs the given action for each non-null transformation
3716       * of each key.
3717       *
3718 +     * @param parallelismThreshold the (estimated) number of elements
3719 +     * needed for this operation to be executed in parallel
3720       * @param transformer a function returning the transformation
3721 <     * for an element, or null of there is no transformation (in
3722 <     * which case the action is not applied).
3721 >     * for an element, or null if there is no transformation (in
3722 >     * which case the action is not applied)
3723       * @param action the action
3724 +     * @since 1.8
3725       */
3726 <    public <U> void forEachKeyInParallel
3727 <        (Fun<? super K, ? extends U> transformer,
3728 <         Action<U> action) {
3729 <        ForkJoinTasks.forEachKey
3730 <            (this, transformer, action).invoke();
3726 >    public <U> void forEachKey(long parallelismThreshold,
3727 >                               Fun<? super K, ? extends U> transformer,
3728 >                               Action<? super U> action) {
3729 >        if (transformer == null || action == null)
3730 >            throw new NullPointerException();
3731 >        new ForEachTransformedKeyTask<K,V,U>
3732 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3733 >             transformer, action).invoke();
3734      }
3735  
3736      /**
# Line 4196 | Line 3740 | public class ConcurrentHashMapV8<K, V>
3740       * any other parallel invocations of the search function are
3741       * ignored.
3742       *
3743 +     * @param parallelismThreshold the (estimated) number of elements
3744 +     * needed for this operation to be executed in parallel
3745       * @param searchFunction a function returning a non-null
3746       * result on success, else null
3747       * @return a non-null result from applying the given search
3748       * function on each key, or null if none
3749 +     * @since 1.8
3750       */
3751 <    public <U> U searchKeysInParallel
3752 <        (Fun<? super K, ? extends U> searchFunction) {
3753 <        return ForkJoinTasks.searchKeys
3754 <            (this, searchFunction).invoke();
3751 >    public <U> U searchKeys(long parallelismThreshold,
3752 >                            Fun<? super K, ? extends U> searchFunction) {
3753 >        if (searchFunction == null) throw new NullPointerException();
3754 >        return new SearchKeysTask<K,V,U>
3755 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3756 >             searchFunction, new AtomicReference<U>()).invoke();
3757      }
3758  
3759      /**
3760       * Returns the result of accumulating all keys using the given
3761       * reducer to combine values, or null if none.
3762       *
3763 +     * @param parallelismThreshold the (estimated) number of elements
3764 +     * needed for this operation to be executed in parallel
3765       * @param reducer a commutative associative combining function
3766       * @return the result of accumulating all keys using the given
3767       * reducer to combine values, or null if none
3768 +     * @since 1.8
3769       */
3770 <    public K reduceKeysInParallel
3771 <        (BiFun<? super K, ? super K, ? extends K> reducer) {
3772 <        return ForkJoinTasks.reduceKeys
3773 <            (this, reducer).invoke();
3770 >    public K reduceKeys(long parallelismThreshold,
3771 >                        BiFun<? super K, ? super K, ? extends K> reducer) {
3772 >        if (reducer == null) throw new NullPointerException();
3773 >        return new ReduceKeysTask<K,V>
3774 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3775 >             null, reducer).invoke();
3776      }
3777  
3778      /**
# Line 4226 | Line 3780 | public class ConcurrentHashMapV8<K, V>
3780       * of all keys using the given reducer to combine values, or
3781       * null if none.
3782       *
3783 +     * @param parallelismThreshold the (estimated) number of elements
3784 +     * needed for this operation to be executed in parallel
3785       * @param transformer a function returning the transformation
3786 <     * for an element, or null of there is no transformation (in
3787 <     * which case it is not combined).
3786 >     * for an element, or null if there is no transformation (in
3787 >     * which case it is not combined)
3788       * @param reducer a commutative associative combining function
3789       * @return the result of accumulating the given transformation
3790       * of all keys
3791 +     * @since 1.8
3792       */
3793 <    public <U> U reduceKeysInParallel
3794 <        (Fun<? super K, ? extends U> transformer,
3793 >    public <U> U reduceKeys(long parallelismThreshold,
3794 >                            Fun<? super K, ? extends U> transformer,
3795           BiFun<? super U, ? super U, ? extends U> reducer) {
3796 <        return ForkJoinTasks.reduceKeys
3797 <            (this, transformer, reducer).invoke();
3796 >        if (transformer == null || reducer == null)
3797 >            throw new NullPointerException();
3798 >        return new MapReduceKeysTask<K,V,U>
3799 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3800 >             null, transformer, reducer).invoke();
3801      }
3802  
3803      /**
# Line 4245 | Line 3805 | public class ConcurrentHashMapV8<K, V>
3805       * of all keys using the given reducer to combine values, and
3806       * the given basis as an identity value.
3807       *
3808 +     * @param parallelismThreshold the (estimated) number of elements
3809 +     * needed for this operation to be executed in parallel
3810       * @param transformer a function returning the transformation
3811       * for an element
3812       * @param basis the identity (initial default value) for the reduction
3813       * @param reducer a commutative associative combining function
3814 <     * @return  the result of accumulating the given transformation
3814 >     * @return the result of accumulating the given transformation
3815       * of all keys
3816 +     * @since 1.8
3817       */
3818 <    public double reduceKeysToDoubleInParallel
3819 <        (ObjectToDouble<? super K> transformer,
3820 <         double basis,
3821 <         DoubleByDoubleToDouble reducer) {
3822 <        return ForkJoinTasks.reduceKeysToDouble
3823 <            (this, transformer, basis, reducer).invoke();
3818 >    public double reduceKeysToDouble(long parallelismThreshold,
3819 >                                     ObjectToDouble<? super K> transformer,
3820 >                                     double basis,
3821 >                                     DoubleByDoubleToDouble reducer) {
3822 >        if (transformer == null || reducer == null)
3823 >            throw new NullPointerException();
3824 >        return new MapReduceKeysToDoubleTask<K,V>
3825 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3826 >             null, transformer, basis, reducer).invoke();
3827      }
3828  
3829      /**
# Line 4265 | Line 3831 | public class ConcurrentHashMapV8<K, V>
3831       * of all keys using the given reducer to combine values, and
3832       * the given basis as an identity value.
3833       *
3834 +     * @param parallelismThreshold the (estimated) number of elements
3835 +     * needed for this operation to be executed in parallel
3836       * @param transformer a function returning the transformation
3837       * for an element
3838       * @param basis the identity (initial default value) for the reduction
3839       * @param reducer a commutative associative combining function
3840       * @return the result of accumulating the given transformation
3841       * of all keys
3842 +     * @since 1.8
3843       */
3844 <    public long reduceKeysToLongInParallel
3845 <        (ObjectToLong<? super K> transformer,
3846 <         long basis,
3847 <         LongByLongToLong reducer) {
3848 <        return ForkJoinTasks.reduceKeysToLong
3849 <            (this, transformer, basis, reducer).invoke();
3844 >    public long reduceKeysToLong(long parallelismThreshold,
3845 >                                 ObjectToLong<? super K> transformer,
3846 >                                 long basis,
3847 >                                 LongByLongToLong reducer) {
3848 >        if (transformer == null || reducer == null)
3849 >            throw new NullPointerException();
3850 >        return new MapReduceKeysToLongTask<K,V>
3851 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3852 >             null, transformer, basis, reducer).invoke();
3853      }
3854  
3855      /**
# Line 4285 | Line 3857 | public class ConcurrentHashMapV8<K, V>
3857       * of all keys using the given reducer to combine values, and
3858       * the given basis as an identity value.
3859       *
3860 +     * @param parallelismThreshold the (estimated) number of elements
3861 +     * needed for this operation to be executed in parallel
3862       * @param transformer a function returning the transformation
3863       * for an element
3864       * @param basis the identity (initial default value) for the reduction
3865       * @param reducer a commutative associative combining function
3866       * @return the result of accumulating the given transformation
3867       * of all keys
3868 +     * @since 1.8
3869       */
3870 <    public int reduceKeysToIntInParallel
3871 <        (ObjectToInt<? super K> transformer,
3872 <         int basis,
3873 <         IntByIntToInt reducer) {
3874 <        return ForkJoinTasks.reduceKeysToInt
3875 <            (this, transformer, basis, reducer).invoke();
3870 >    public int reduceKeysToInt(long parallelismThreshold,
3871 >                               ObjectToInt<? super K> transformer,
3872 >                               int basis,
3873 >                               IntByIntToInt reducer) {
3874 >        if (transformer == null || reducer == null)
3875 >            throw new NullPointerException();
3876 >        return new MapReduceKeysToIntTask<K,V>
3877 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3878 >             null, transformer, basis, reducer).invoke();
3879      }
3880  
3881      /**
3882       * Performs the given action for each value.
3883       *
3884 +     * @param parallelismThreshold the (estimated) number of elements
3885 +     * needed for this operation to be executed in parallel
3886       * @param action the action
3887 +     * @since 1.8
3888       */
3889 <    public void forEachValueInParallel(Action<V> action) {
3890 <        ForkJoinTasks.forEachValue
3891 <            (this, action).invoke();
3889 >    public void forEachValue(long parallelismThreshold,
3890 >                             Action<? super V> action) {
3891 >        if (action == null)
3892 >            throw new NullPointerException();
3893 >        new ForEachValueTask<K,V>
3894 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3895 >             action).invoke();
3896      }
3897  
3898      /**
3899       * Performs the given action for each non-null transformation
3900       * of each value.
3901       *
3902 +     * @param parallelismThreshold the (estimated) number of elements
3903 +     * needed for this operation to be executed in parallel
3904       * @param transformer a function returning the transformation
3905 <     * for an element, or null of there is no transformation (in
3906 <     * which case the action is not applied).
3905 >     * for an element, or null if there is no transformation (in
3906 >     * which case the action is not applied)
3907 >     * @param action the action
3908 >     * @since 1.8
3909       */
3910 <    public <U> void forEachValueInParallel
3911 <        (Fun<? super V, ? extends U> transformer,
3912 <         Action<U> action) {
3913 <        ForkJoinTasks.forEachValue
3914 <            (this, transformer, action).invoke();
3910 >    public <U> void forEachValue(long parallelismThreshold,
3911 >                                 Fun<? super V, ? extends U> transformer,
3912 >                                 Action<? super U> action) {
3913 >        if (transformer == null || action == null)
3914 >            throw new NullPointerException();
3915 >        new ForEachTransformedValueTask<K,V,U>
3916 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3917 >             transformer, action).invoke();
3918      }
3919  
3920      /**
# Line 4332 | Line 3924 | public class ConcurrentHashMapV8<K, V>
3924       * any other parallel invocations of the search function are
3925       * ignored.
3926       *
3927 +     * @param parallelismThreshold the (estimated) number of elements
3928 +     * needed for this operation to be executed in parallel
3929       * @param searchFunction a function returning a non-null
3930       * result on success, else null
3931       * @return a non-null result from applying the given search
3932       * function on each value, or null if none
3933 +     * @since 1.8
3934       */
3935 <    public <U> U searchValuesInParallel
3936 <        (Fun<? super V, ? extends U> searchFunction) {
3937 <        return ForkJoinTasks.searchValues
3938 <            (this, searchFunction).invoke();
3935 >    public <U> U searchValues(long parallelismThreshold,
3936 >                              Fun<? super V, ? extends U> searchFunction) {
3937 >        if (searchFunction == null) throw new NullPointerException();
3938 >        return new SearchValuesTask<K,V,U>
3939 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3940 >             searchFunction, new AtomicReference<U>()).invoke();
3941      }
3942  
3943      /**
3944       * Returns the result of accumulating all values using the
3945       * given reducer to combine values, or null if none.
3946       *
3947 +     * @param parallelismThreshold the (estimated) number of elements
3948 +     * needed for this operation to be executed in parallel
3949       * @param reducer a commutative associative combining function
3950 <     * @return  the result of accumulating all values
3950 >     * @return the result of accumulating all values
3951 >     * @since 1.8
3952       */
3953 <    public V reduceValuesInParallel
3954 <        (BiFun<? super V, ? super V, ? extends V> reducer) {
3955 <        return ForkJoinTasks.reduceValues
3956 <            (this, reducer).invoke();
3953 >    public V reduceValues(long parallelismThreshold,
3954 >                          BiFun<? super V, ? super V, ? extends V> reducer) {
3955 >        if (reducer == null) throw new NullPointerException();
3956 >        return new ReduceValuesTask<K,V>
3957 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3958 >             null, reducer).invoke();
3959      }
3960  
3961      /**
# Line 4361 | Line 3963 | public class ConcurrentHashMapV8<K, V>
3963       * of all values using the given reducer to combine values, or
3964       * null if none.
3965       *
3966 +     * @param parallelismThreshold the (estimated) number of elements
3967 +     * needed for this operation to be executed in parallel
3968       * @param transformer a function returning the transformation
3969 <     * for an element, or null of there is no transformation (in
3970 <     * which case it is not combined).
3969 >     * for an element, or null if there is no transformation (in
3970 >     * which case it is not combined)
3971       * @param reducer a commutative associative combining function
3972       * @return the result of accumulating the given transformation
3973       * of all values
3974 +     * @since 1.8
3975       */
3976 <    public <U> U reduceValuesInParallel
3977 <        (Fun<? super V, ? extends U> transformer,
3978 <         BiFun<? super U, ? super U, ? extends U> reducer) {
3979 <        return ForkJoinTasks.reduceValues
3980 <            (this, transformer, reducer).invoke();
3976 >    public <U> U reduceValues(long parallelismThreshold,
3977 >                              Fun<? super V, ? extends U> transformer,
3978 >                              BiFun<? super U, ? super U, ? extends U> reducer) {
3979 >        if (transformer == null || reducer == null)
3980 >            throw new NullPointerException();
3981 >        return new MapReduceValuesTask<K,V,U>
3982 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3983 >             null, transformer, reducer).invoke();
3984      }
3985  
3986      /**
# Line 4380 | Line 3988 | public class ConcurrentHashMapV8<K, V>
3988       * of all values using the given reducer to combine values,
3989       * and the given basis as an identity value.
3990       *
3991 +     * @param parallelismThreshold the (estimated) number of elements
3992 +     * needed for this operation to be executed in parallel
3993       * @param transformer a function returning the transformation
3994       * for an element
3995       * @param basis the identity (initial default value) for the reduction
3996       * @param reducer a commutative associative combining function
3997       * @return the result of accumulating the given transformation
3998       * of all values
3999 +     * @since 1.8
4000       */
4001 <    public double reduceValuesToDoubleInParallel
4002 <        (ObjectToDouble<? super V> transformer,
4003 <         double basis,
4004 <         DoubleByDoubleToDouble reducer) {
4005 <        return ForkJoinTasks.reduceValuesToDouble
4006 <            (this, transformer, basis, reducer).invoke();
4001 >    public double reduceValuesToDouble(long parallelismThreshold,
4002 >                                       ObjectToDouble<? super V> transformer,
4003 >                                       double basis,
4004 >                                       DoubleByDoubleToDouble reducer) {
4005 >        if (transformer == null || reducer == null)
4006 >            throw new NullPointerException();
4007 >        return new MapReduceValuesToDoubleTask<K,V>
4008 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4009 >             null, transformer, basis, reducer).invoke();
4010      }
4011  
4012      /**
# Line 4400 | Line 4014 | public class ConcurrentHashMapV8<K, V>
4014       * of all values using the given reducer to combine values,
4015       * and the given basis as an identity value.
4016       *
4017 +     * @param parallelismThreshold the (estimated) number of elements
4018 +     * needed for this operation to be executed in parallel
4019       * @param transformer a function returning the transformation
4020       * for an element
4021       * @param basis the identity (initial default value) for the reduction
4022       * @param reducer a commutative associative combining function
4023       * @return the result of accumulating the given transformation
4024       * of all values
4025 +     * @since 1.8
4026       */
4027 <    public long reduceValuesToLongInParallel
4028 <        (ObjectToLong<? super V> transformer,
4029 <         long basis,
4030 <         LongByLongToLong reducer) {
4031 <        return ForkJoinTasks.reduceValuesToLong
4032 <            (this, transformer, basis, reducer).invoke();
4027 >    public long reduceValuesToLong(long parallelismThreshold,
4028 >                                   ObjectToLong<? super V> transformer,
4029 >                                   long basis,
4030 >                                   LongByLongToLong reducer) {
4031 >        if (transformer == null || reducer == null)
4032 >            throw new NullPointerException();
4033 >        return new MapReduceValuesToLongTask<K,V>
4034 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4035 >             null, transformer, basis, reducer).invoke();
4036      }
4037  
4038      /**
# Line 4420 | Line 4040 | public class ConcurrentHashMapV8<K, V>
4040       * of all values using the given reducer to combine values,
4041       * and the given basis as an identity value.
4042       *
4043 +     * @param parallelismThreshold the (estimated) number of elements
4044 +     * needed for this operation to be executed in parallel
4045       * @param transformer a function returning the transformation
4046       * for an element
4047       * @param basis the identity (initial default value) for the reduction
4048       * @param reducer a commutative associative combining function
4049       * @return the result of accumulating the given transformation
4050       * of all values
4051 +     * @since 1.8
4052       */
4053 <    public int reduceValuesToIntInParallel
4054 <        (ObjectToInt<? super V> transformer,
4055 <         int basis,
4056 <         IntByIntToInt reducer) {
4057 <        return ForkJoinTasks.reduceValuesToInt
4058 <            (this, transformer, basis, reducer).invoke();
4053 >    public int reduceValuesToInt(long parallelismThreshold,
4054 >                                 ObjectToInt<? super V> transformer,
4055 >                                 int basis,
4056 >                                 IntByIntToInt reducer) {
4057 >        if (transformer == null || reducer == null)
4058 >            throw new NullPointerException();
4059 >        return new MapReduceValuesToIntTask<K,V>
4060 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4061 >             null, transformer, basis, reducer).invoke();
4062      }
4063  
4064      /**
4065       * Performs the given action for each entry.
4066       *
4067 +     * @param parallelismThreshold the (estimated) number of elements
4068 +     * needed for this operation to be executed in parallel
4069       * @param action the action
4070 +     * @since 1.8
4071       */
4072 <    public void forEachEntryInParallel(Action<Map.Entry<K,V>> action) {
4073 <        ForkJoinTasks.forEachEntry
4074 <            (this, action).invoke();
4072 >    public void forEachEntry(long parallelismThreshold,
4073 >                             Action<? super Map.Entry<K,V>> action) {
4074 >        if (action == null) throw new NullPointerException();
4075 >        new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4076 >                                  action).invoke();
4077      }
4078  
4079      /**
4080       * Performs the given action for each non-null transformation
4081       * of each entry.
4082       *
4083 +     * @param parallelismThreshold the (estimated) number of elements
4084 +     * needed for this operation to be executed in parallel
4085       * @param transformer a function returning the transformation
4086 <     * for an element, or null of there is no transformation (in
4087 <     * which case the action is not applied).
4086 >     * for an element, or null if there is no transformation (in
4087 >     * which case the action is not applied)
4088       * @param action the action
4089 +     * @since 1.8
4090       */
4091 <    public <U> void forEachEntryInParallel
4092 <        (Fun<Map.Entry<K,V>, ? extends U> transformer,
4093 <         Action<U> action) {
4094 <        ForkJoinTasks.forEachEntry
4095 <            (this, transformer, action).invoke();
4091 >    public <U> void forEachEntry(long parallelismThreshold,
4092 >                                 Fun<Map.Entry<K,V>, ? extends U> transformer,
4093 >                                 Action<? super U> action) {
4094 >        if (transformer == null || action == null)
4095 >            throw new NullPointerException();
4096 >        new ForEachTransformedEntryTask<K,V,U>
4097 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4098 >             transformer, action).invoke();
4099      }
4100  
4101      /**
# Line 4468 | Line 4105 | public class ConcurrentHashMapV8<K, V>
4105       * any other parallel invocations of the search function are
4106       * ignored.
4107       *
4108 +     * @param parallelismThreshold the (estimated) number of elements
4109 +     * needed for this operation to be executed in parallel
4110       * @param searchFunction a function returning a non-null
4111       * result on success, else null
4112       * @return a non-null result from applying the given search
4113       * function on each entry, or null if none
4114 +     * @since 1.8
4115       */
4116 <    public <U> U searchEntriesInParallel
4117 <        (Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4118 <        return ForkJoinTasks.searchEntries
4119 <            (this, searchFunction).invoke();
4116 >    public <U> U searchEntries(long parallelismThreshold,
4117 >                               Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4118 >        if (searchFunction == null) throw new NullPointerException();
4119 >        return new SearchEntriesTask<K,V,U>
4120 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4121 >             searchFunction, new AtomicReference<U>()).invoke();
4122      }
4123  
4124      /**
4125       * Returns the result of accumulating all entries using the
4126       * given reducer to combine values, or null if none.
4127       *
4128 +     * @param parallelismThreshold the (estimated) number of elements
4129 +     * needed for this operation to be executed in parallel
4130       * @param reducer a commutative associative combining function
4131       * @return the result of accumulating all entries
4132 +     * @since 1.8
4133       */
4134 <    public Map.Entry<K,V> reduceEntriesInParallel
4135 <        (BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4136 <        return ForkJoinTasks.reduceEntries
4137 <            (this, reducer).invoke();
4134 >    public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4135 >                                        BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4136 >        if (reducer == null) throw new NullPointerException();
4137 >        return new ReduceEntriesTask<K,V>
4138 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4139 >             null, reducer).invoke();
4140      }
4141  
4142      /**
# Line 4497 | Line 4144 | public class ConcurrentHashMapV8<K, V>
4144       * of all entries using the given reducer to combine values,
4145       * or null if none.
4146       *
4147 +     * @param parallelismThreshold the (estimated) number of elements
4148 +     * needed for this operation to be executed in parallel
4149       * @param transformer a function returning the transformation
4150 <     * for an element, or null of there is no transformation (in
4151 <     * which case it is not combined).
4150 >     * for an element, or null if there is no transformation (in
4151 >     * which case it is not combined)
4152       * @param reducer a commutative associative combining function
4153       * @return the result of accumulating the given transformation
4154       * of all entries
4155 +     * @since 1.8
4156       */
4157 <    public <U> U reduceEntriesInParallel
4158 <        (Fun<Map.Entry<K,V>, ? extends U> transformer,
4159 <         BiFun<? super U, ? super U, ? extends U> reducer) {
4160 <        return ForkJoinTasks.reduceEntries
4161 <            (this, transformer, reducer).invoke();
4157 >    public <U> U reduceEntries(long parallelismThreshold,
4158 >                               Fun<Map.Entry<K,V>, ? extends U> transformer,
4159 >                               BiFun<? super U, ? super U, ? extends U> reducer) {
4160 >        if (transformer == null || reducer == null)
4161 >            throw new NullPointerException();
4162 >        return new MapReduceEntriesTask<K,V,U>
4163 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4164 >             null, transformer, reducer).invoke();
4165      }
4166  
4167      /**
# Line 4516 | Line 4169 | public class ConcurrentHashMapV8<K, V>
4169       * of all entries using the given reducer to combine values,
4170       * and the given basis as an identity value.
4171       *
4172 +     * @param parallelismThreshold the (estimated) number of elements
4173 +     * needed for this operation to be executed in parallel
4174       * @param transformer a function returning the transformation
4175       * for an element
4176       * @param basis the identity (initial default value) for the reduction
4177       * @param reducer a commutative associative combining function
4178       * @return the result of accumulating the given transformation
4179       * of all entries
4180 +     * @since 1.8
4181       */
4182 <    public double reduceEntriesToDoubleInParallel
4183 <        (ObjectToDouble<Map.Entry<K,V>> transformer,
4184 <         double basis,
4185 <         DoubleByDoubleToDouble reducer) {
4186 <        return ForkJoinTasks.reduceEntriesToDouble
4187 <            (this, transformer, basis, reducer).invoke();
4182 >    public double reduceEntriesToDouble(long parallelismThreshold,
4183 >                                        ObjectToDouble<Map.Entry<K,V>> transformer,
4184 >                                        double basis,
4185 >                                        DoubleByDoubleToDouble reducer) {
4186 >        if (transformer == null || reducer == null)
4187 >            throw new NullPointerException();
4188 >        return new MapReduceEntriesToDoubleTask<K,V>
4189 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4190 >             null, transformer, basis, reducer).invoke();
4191      }
4192  
4193      /**
# Line 4536 | Line 4195 | public class ConcurrentHashMapV8<K, V>
4195       * of all entries using the given reducer to combine values,
4196       * and the given basis as an identity value.
4197       *
4198 +     * @param parallelismThreshold the (estimated) number of elements
4199 +     * needed for this operation to be executed in parallel
4200       * @param transformer a function returning the transformation
4201       * for an element
4202       * @param basis the identity (initial default value) for the reduction
4203       * @param reducer a commutative associative combining function
4204 <     * @return  the result of accumulating the given transformation
4204 >     * @return the result of accumulating the given transformation
4205       * of all entries
4206 +     * @since 1.8
4207       */
4208 <    public long reduceEntriesToLongInParallel
4209 <        (ObjectToLong<Map.Entry<K,V>> transformer,
4210 <         long basis,
4211 <         LongByLongToLong reducer) {
4212 <        return ForkJoinTasks.reduceEntriesToLong
4213 <            (this, transformer, basis, reducer).invoke();
4208 >    public long reduceEntriesToLong(long parallelismThreshold,
4209 >                                    ObjectToLong<Map.Entry<K,V>> transformer,
4210 >                                    long basis,
4211 >                                    LongByLongToLong reducer) {
4212 >        if (transformer == null || reducer == null)
4213 >            throw new NullPointerException();
4214 >        return new MapReduceEntriesToLongTask<K,V>
4215 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4216 >             null, transformer, basis, reducer).invoke();
4217      }
4218  
4219      /**
# Line 4556 | Line 4221 | public class ConcurrentHashMapV8<K, V>
4221       * of all entries using the given reducer to combine values,
4222       * and the given basis as an identity value.
4223       *
4224 +     * @param parallelismThreshold the (estimated) number of elements
4225 +     * needed for this operation to be executed in parallel
4226       * @param transformer a function returning the transformation
4227       * for an element
4228       * @param basis the identity (initial default value) for the reduction
4229       * @param reducer a commutative associative combining function
4230       * @return the result of accumulating the given transformation
4231       * of all entries
4232 +     * @since 1.8
4233       */
4234 <    public int reduceEntriesToIntInParallel
4235 <        (ObjectToInt<Map.Entry<K,V>> transformer,
4236 <         int basis,
4237 <         IntByIntToInt reducer) {
4238 <        return ForkJoinTasks.reduceEntriesToInt
4239 <            (this, transformer, basis, reducer).invoke();
4234 >    public int reduceEntriesToInt(long parallelismThreshold,
4235 >                                  ObjectToInt<Map.Entry<K,V>> transformer,
4236 >                                  int basis,
4237 >                                  IntByIntToInt reducer) {
4238 >        if (transformer == null || reducer == null)
4239 >            throw new NullPointerException();
4240 >        return new MapReduceEntriesToIntTask<K,V>
4241 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4242 >             null, transformer, basis, reducer).invoke();
4243      }
4244  
4245  
# Line 4577 | Line 4248 | public class ConcurrentHashMapV8<K, V>
4248      /**
4249       * Base class for views.
4250       */
4251 <    static abstract class CHMView<K, V> {
4252 <        final ConcurrentHashMapV8<K, V> map;
4253 <        CHMView(ConcurrentHashMapV8<K, V> map)  { this.map = map; }
4251 >    abstract static class CollectionView<K,V,E>
4252 >        implements Collection<E>, java.io.Serializable {
4253 >        private static final long serialVersionUID = 7249069246763182397L;
4254 >        final ConcurrentHashMapV8<K,V> map;
4255 >        CollectionView(ConcurrentHashMapV8<K,V> map)  { this.map = map; }
4256  
4257          /**
4258           * Returns the map backing this view.
# Line 4588 | Line 4261 | public class ConcurrentHashMapV8<K, V>
4261           */
4262          public ConcurrentHashMapV8<K,V> getMap() { return map; }
4263  
4264 <        public final int size()                 { return map.size(); }
4265 <        public final boolean isEmpty()          { return map.isEmpty(); }
4266 <        public final void clear()               { map.clear(); }
4264 >        /**
4265 >         * Removes all of the elements from this view, by removing all
4266 >         * the mappings from the map backing this view.
4267 >         */
4268 >        public final void clear()      { map.clear(); }
4269 >        public final int size()        { return map.size(); }
4270 >        public final boolean isEmpty() { return map.isEmpty(); }
4271  
4272          // implementations below rely on concrete classes supplying these
4273 <        abstract public Iterator<?> iterator();
4274 <        abstract public boolean contains(Object o);
4275 <        abstract public boolean remove(Object o);
4273 >        // abstract methods
4274 >        /**
4275 >         * Returns a "weakly consistent" iterator that will never
4276 >         * throw {@link ConcurrentModificationException}, and
4277 >         * guarantees to traverse elements as they existed upon
4278 >         * construction of the iterator, and may (but is not
4279 >         * guaranteed to) reflect any modifications subsequent to
4280 >         * construction.
4281 >         */
4282 >        public abstract Iterator<E> iterator();
4283 >        public abstract boolean contains(Object o);
4284 >        public abstract boolean remove(Object o);
4285  
4286          private static final String oomeMsg = "Required array size too large";
4287  
4288          public final Object[] toArray() {
4289              long sz = map.mappingCount();
4290 <            if (sz > (long)(MAX_ARRAY_SIZE))
4290 >            if (sz > MAX_ARRAY_SIZE)
4291                  throw new OutOfMemoryError(oomeMsg);
4292              int n = (int)sz;
4293              Object[] r = new Object[n];
4294              int i = 0;
4295 <            Iterator<?> it = iterator();
4610 <            while (it.hasNext()) {
4295 >            for (E e : this) {
4296                  if (i == n) {
4297                      if (n >= MAX_ARRAY_SIZE)
4298                          throw new OutOfMemoryError(oomeMsg);
# Line 4617 | Line 4302 | public class ConcurrentHashMapV8<K, V>
4302                          n += (n >>> 1) + 1;
4303                      r = Arrays.copyOf(r, n);
4304                  }
4305 <                r[i++] = it.next();
4305 >                r[i++] = e;
4306              }
4307              return (i == n) ? r : Arrays.copyOf(r, i);
4308          }
4309  
4310 <        @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
4310 >        @SuppressWarnings("unchecked")
4311 >        public final <T> T[] toArray(T[] a) {
4312              long sz = map.mappingCount();
4313 <            if (sz > (long)(MAX_ARRAY_SIZE))
4313 >            if (sz > MAX_ARRAY_SIZE)
4314                  throw new OutOfMemoryError(oomeMsg);
4315              int m = (int)sz;
4316              T[] r = (a.length >= m) ? a :
# Line 4632 | Line 4318 | public class ConcurrentHashMapV8<K, V>
4318                  .newInstance(a.getClass().getComponentType(), m);
4319              int n = r.length;
4320              int i = 0;
4321 <            Iterator<?> it = iterator();
4636 <            while (it.hasNext()) {
4321 >            for (E e : this) {
4322                  if (i == n) {
4323                      if (n >= MAX_ARRAY_SIZE)
4324                          throw new OutOfMemoryError(oomeMsg);
# Line 4643 | Line 4328 | public class ConcurrentHashMapV8<K, V>
4328                          n += (n >>> 1) + 1;
4329                      r = Arrays.copyOf(r, n);
4330                  }
4331 <                r[i++] = (T)it.next();
4331 >                r[i++] = (T)e;
4332              }
4333              if (a == r && i < n) {
4334                  r[i] = null; // null-terminate
# Line 4652 | Line 4337 | public class ConcurrentHashMapV8<K, V>
4337              return (i == n) ? r : Arrays.copyOf(r, i);
4338          }
4339  
4340 <        public final int hashCode() {
4341 <            int h = 0;
4342 <            for (Iterator<?> it = iterator(); it.hasNext();)
4343 <                h += it.next().hashCode();
4344 <            return h;
4345 <        }
4346 <
4340 >        /**
4341 >         * Returns a string representation of this collection.
4342 >         * The string representation consists of the string representations
4343 >         * of the collection's elements in the order they are returned by
4344 >         * its iterator, enclosed in square brackets ({@code "[]"}).
4345 >         * Adjacent elements are separated by the characters {@code ", "}
4346 >         * (comma and space).  Elements are converted to strings as by
4347 >         * {@link String#valueOf(Object)}.
4348 >         *
4349 >         * @return a string representation of this collection
4350 >         */
4351          public final String toString() {
4352              StringBuilder sb = new StringBuilder();
4353              sb.append('[');
4354 <            Iterator<?> it = iterator();
4354 >            Iterator<E> it = iterator();
4355              if (it.hasNext()) {
4356                  for (;;) {
4357                      Object e = it.next();
# Line 4677 | Line 4366 | public class ConcurrentHashMapV8<K, V>
4366  
4367          public final boolean containsAll(Collection<?> c) {
4368              if (c != this) {
4369 <                for (Iterator<?> it = c.iterator(); it.hasNext();) {
4681 <                    Object e = it.next();
4369 >                for (Object e : c) {
4370                      if (e == null || !contains(e))
4371                          return false;
4372                  }
# Line 4688 | Line 4376 | public class ConcurrentHashMapV8<K, V>
4376  
4377          public final boolean removeAll(Collection<?> c) {
4378              boolean modified = false;
4379 <            for (Iterator<?> it = iterator(); it.hasNext();) {
4379 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4380                  if (c.contains(it.next())) {
4381                      it.remove();
4382                      modified = true;
# Line 4699 | Line 4387 | public class ConcurrentHashMapV8<K, V>
4387  
4388          public final boolean retainAll(Collection<?> c) {
4389              boolean modified = false;
4390 <            for (Iterator<?> it = iterator(); it.hasNext();) {
4390 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4391                  if (!c.contains(it.next())) {
4392                      it.remove();
4393                      modified = true;
# Line 4713 | Line 4401 | public class ConcurrentHashMapV8<K, V>
4401      /**
4402       * A view of a ConcurrentHashMapV8 as a {@link Set} of keys, in
4403       * which additions may optionally be enabled by mapping to a
4404 <     * common value.  This class cannot be directly instantiated. See
4405 <     * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
4406 <     * {@link #newKeySet(int)}.
4404 >     * common value.  This class cannot be directly instantiated.
4405 >     * See {@link #keySet() keySet()},
4406 >     * {@link #keySet(Object) keySet(V)},
4407 >     * {@link #newKeySet() newKeySet()},
4408 >     * {@link #newKeySet(int) newKeySet(int)}.
4409 >     *
4410 >     * @since 1.8
4411       */
4412 <    public static class KeySetView<K,V> extends CHMView<K,V>
4412 >    public static class KeySetView<K,V> extends CollectionView<K,V,K>
4413          implements Set<K>, java.io.Serializable {
4414          private static final long serialVersionUID = 7249069246763182397L;
4415          private final V value;
4416 <        KeySetView(ConcurrentHashMapV8<K, V> map, V value) {  // non-public
4416 >        KeySetView(ConcurrentHashMapV8<K,V> map, V value) {  // non-public
4417              super(map);
4418              this.value = value;
4419          }
# Line 4731 | Line 4423 | public class ConcurrentHashMapV8<K, V>
4423           * or {@code null} if additions are not supported.
4424           *
4425           * @return the default mapped value for additions, or {@code null}
4426 <         * if not supported.
4426 >         * if not supported
4427           */
4428          public V getMappedValue() { return value; }
4429  
4430 <        // implement Set API
4431 <
4430 >        /**
4431 >         * {@inheritDoc}
4432 >         * @throws NullPointerException if the specified key is null
4433 >         */
4434          public boolean contains(Object o) { return map.containsKey(o); }
4741        public boolean remove(Object o)   { return map.remove(o) != null; }
4435  
4436          /**
4437 <         * Returns a "weakly consistent" iterator that will never
4438 <         * throw {@link ConcurrentModificationException}, and
4439 <         * guarantees to traverse elements as they existed upon
4747 <         * construction of the iterator, and may (but is not
4748 <         * guaranteed to) reflect any modifications subsequent to
4749 <         * construction.
4437 >         * Removes the key from this map view, by removing the key (and its
4438 >         * corresponding value) from the backing map.  This method does
4439 >         * nothing if the key is not in the map.
4440           *
4441 <         * @return an iterator over the keys of this map
4441 >         * @param  o the key to be removed from the backing map
4442 >         * @return {@code true} if the backing map contained the specified key
4443 >         * @throws NullPointerException if the specified key is null
4444 >         */
4445 >        public boolean remove(Object o) { return map.remove(o) != null; }
4446 >
4447 >        /**
4448 >         * @return an iterator over the keys of the backing map
4449 >         */
4450 >        public Iterator<K> iterator() {
4451 >            Node<K,V>[] t;
4452 >            ConcurrentHashMapV8<K,V> m = map;
4453 >            int f = (t = m.table) == null ? 0 : t.length;
4454 >            return new KeyIterator<K,V>(t, f, 0, f, m);
4455 >        }
4456 >
4457 >        /**
4458 >         * Adds the specified key to this set view by mapping the key to
4459 >         * the default mapped value in the backing map, if defined.
4460 >         *
4461 >         * @param e key to be added
4462 >         * @return {@code true} if this set changed as a result of the call
4463 >         * @throws NullPointerException if the specified key is null
4464 >         * @throws UnsupportedOperationException if no default mapped value
4465 >         * for additions was provided
4466           */
4753        public Iterator<K> iterator()     { return new KeyIterator<K,V>(map); }
4467          public boolean add(K e) {
4468              V v;
4469              if ((v = value) == null)
4470                  throw new UnsupportedOperationException();
4471 <            if (e == null)
4759 <                throw new NullPointerException();
4760 <            return map.internalPut(e, v, true) == null;
4471 >            return map.putVal(e, v, true) == null;
4472          }
4473 +
4474 +        /**
4475 +         * Adds all of the elements in the specified collection to this set,
4476 +         * as if by calling {@link #add} on each one.
4477 +         *
4478 +         * @param c the elements to be inserted into this set
4479 +         * @return {@code true} if this set changed as a result of the call
4480 +         * @throws NullPointerException if the collection or any of its
4481 +         * elements are {@code null}
4482 +         * @throws UnsupportedOperationException if no default mapped value
4483 +         * for additions was provided
4484 +         */
4485          public boolean addAll(Collection<? extends K> c) {
4486              boolean added = false;
4487              V v;
4488              if ((v = value) == null)
4489                  throw new UnsupportedOperationException();
4490              for (K e : c) {
4491 <                if (e == null)
4769 <                    throw new NullPointerException();
4770 <                if (map.internalPut(e, v, true) == null)
4491 >                if (map.putVal(e, v, true) == null)
4492                      added = true;
4493              }
4494              return added;
4495          }
4496 +
4497 +        public int hashCode() {
4498 +            int h = 0;
4499 +            for (K e : this)
4500 +                h += e.hashCode();
4501 +            return h;
4502 +        }
4503 +
4504          public boolean equals(Object o) {
4505              Set<?> c;
4506              return ((o instanceof Set) &&
4507                      ((c = (Set<?>)o) == this ||
4508                       (containsAll(c) && c.containsAll(this))));
4509          }
4510 +
4511 +        public ConcurrentHashMapSpliterator<K> spliterator() {
4512 +            Node<K,V>[] t;
4513 +            ConcurrentHashMapV8<K,V> m = map;
4514 +            long n = m.sumCount();
4515 +            int f = (t = m.table) == null ? 0 : t.length;
4516 +            return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4517 +        }
4518 +
4519 +        public void forEach(Action<? super K> action) {
4520 +            if (action == null) throw new NullPointerException();
4521 +            Node<K,V>[] t;
4522 +            if ((t = map.table) != null) {
4523 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4524 +                for (Node<K,V> p; (p = it.advance()) != null; )
4525 +                    action.apply(p.key);
4526 +            }
4527 +        }
4528      }
4529  
4530      /**
4531       * A view of a ConcurrentHashMapV8 as a {@link Collection} of
4532       * values, in which additions are disabled. This class cannot be
4533 <     * directly instantiated. See {@link #values},
4787 <     *
4788 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4789 <     * that will never throw {@link ConcurrentModificationException},
4790 <     * and guarantees to traverse elements as they existed upon
4791 <     * construction of the iterator, and may (but is not guaranteed to)
4792 <     * reflect any modifications subsequent to construction.
4533 >     * directly instantiated. See {@link #values()}.
4534       */
4535 <    public static final class ValuesView<K,V> extends CHMView<K,V>
4536 <        implements Collection<V> {
4537 <        ValuesView(ConcurrentHashMapV8<K, V> map)   { super(map); }
4538 <        public final boolean contains(Object o) { return map.containsValue(o); }
4535 >    static final class ValuesView<K,V> extends CollectionView<K,V,V>
4536 >        implements Collection<V>, java.io.Serializable {
4537 >        private static final long serialVersionUID = 2249069246763182397L;
4538 >        ValuesView(ConcurrentHashMapV8<K,V> map) { super(map); }
4539 >        public final boolean contains(Object o) {
4540 >            return map.containsValue(o);
4541 >        }
4542 >
4543          public final boolean remove(Object o) {
4544              if (o != null) {
4545 <                Iterator<V> it = new ValueIterator<K,V>(map);
4801 <                while (it.hasNext()) {
4545 >                for (Iterator<V> it = iterator(); it.hasNext();) {
4546                      if (o.equals(it.next())) {
4547                          it.remove();
4548                          return true;
# Line 4808 | Line 4552 | public class ConcurrentHashMapV8<K, V>
4552              return false;
4553          }
4554  
4811        /**
4812         * Returns a "weakly consistent" iterator that will never
4813         * throw {@link ConcurrentModificationException}, and
4814         * guarantees to traverse elements as they existed upon
4815         * construction of the iterator, and may (but is not
4816         * guaranteed to) reflect any modifications subsequent to
4817         * construction.
4818         *
4819         * @return an iterator over the values of this map
4820         */
4555          public final Iterator<V> iterator() {
4556 <            return new ValueIterator<K,V>(map);
4556 >            ConcurrentHashMapV8<K,V> m = map;
4557 >            Node<K,V>[] t;
4558 >            int f = (t = m.table) == null ? 0 : t.length;
4559 >            return new ValueIterator<K,V>(t, f, 0, f, m);
4560          }
4561 +
4562          public final boolean add(V e) {
4563              throw new UnsupportedOperationException();
4564          }
# Line 4828 | Line 4566 | public class ConcurrentHashMapV8<K, V>
4566              throw new UnsupportedOperationException();
4567          }
4568  
4569 +        public ConcurrentHashMapSpliterator<V> spliterator() {
4570 +            Node<K,V>[] t;
4571 +            ConcurrentHashMapV8<K,V> m = map;
4572 +            long n = m.sumCount();
4573 +            int f = (t = m.table) == null ? 0 : t.length;
4574 +            return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4575 +        }
4576 +
4577 +        public void forEach(Action<? super V> action) {
4578 +            if (action == null) throw new NullPointerException();
4579 +            Node<K,V>[] t;
4580 +            if ((t = map.table) != null) {
4581 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4582 +                for (Node<K,V> p; (p = it.advance()) != null; )
4583 +                    action.apply(p.val);
4584 +            }
4585 +        }
4586      }
4587  
4588      /**
4589       * A view of a ConcurrentHashMapV8 as a {@link Set} of (key, value)
4590       * entries.  This class cannot be directly instantiated. See
4591 <     * {@link #entrySet}.
4591 >     * {@link #entrySet()}.
4592       */
4593 <    public static final class EntrySetView<K,V> extends CHMView<K,V>
4594 <        implements Set<Map.Entry<K,V>> {
4595 <        EntrySetView(ConcurrentHashMapV8<K, V> map) { super(map); }
4596 <        public final boolean contains(Object o) {
4593 >    static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4594 >        implements Set<Map.Entry<K,V>>, java.io.Serializable {
4595 >        private static final long serialVersionUID = 2249069246763182397L;
4596 >        EntrySetView(ConcurrentHashMapV8<K,V> map) { super(map); }
4597 >
4598 >        public boolean contains(Object o) {
4599              Object k, v, r; Map.Entry<?,?> e;
4600              return ((o instanceof Map.Entry) &&
4601                      (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
# Line 4846 | Line 4603 | public class ConcurrentHashMapV8<K, V>
4603                      (v = e.getValue()) != null &&
4604                      (v == r || v.equals(r)));
4605          }
4606 <        public final boolean remove(Object o) {
4606 >
4607 >        public boolean remove(Object o) {
4608              Object k, v; Map.Entry<?,?> e;
4609              return ((o instanceof Map.Entry) &&
4610                      (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
# Line 4855 | Line 4613 | public class ConcurrentHashMapV8<K, V>
4613          }
4614  
4615          /**
4616 <         * Returns a "weakly consistent" iterator that will never
4859 <         * throw {@link ConcurrentModificationException}, and
4860 <         * guarantees to traverse elements as they existed upon
4861 <         * construction of the iterator, and may (but is not
4862 <         * guaranteed to) reflect any modifications subsequent to
4863 <         * construction.
4864 <         *
4865 <         * @return an iterator over the entries of this map
4616 >         * @return an iterator over the entries of the backing map
4617           */
4618 <        public final Iterator<Map.Entry<K,V>> iterator() {
4619 <            return new EntryIterator<K,V>(map);
4618 >        public Iterator<Map.Entry<K,V>> iterator() {
4619 >            ConcurrentHashMapV8<K,V> m = map;
4620 >            Node<K,V>[] t;
4621 >            int f = (t = m.table) == null ? 0 : t.length;
4622 >            return new EntryIterator<K,V>(t, f, 0, f, m);
4623          }
4624  
4625 <        public final boolean add(Entry<K,V> e) {
4626 <            K key = e.getKey();
4873 <            V value = e.getValue();
4874 <            if (key == null || value == null)
4875 <                throw new NullPointerException();
4876 <            return map.internalPut(key, value, false) == null;
4625 >        public boolean add(Entry<K,V> e) {
4626 >            return map.putVal(e.getKey(), e.getValue(), false) == null;
4627          }
4628 <        public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4628 >
4629 >        public boolean addAll(Collection<? extends Entry<K,V>> c) {
4630              boolean added = false;
4631              for (Entry<K,V> e : c) {
4632                  if (add(e))
# Line 4883 | Line 4634 | public class ConcurrentHashMapV8<K, V>
4634              }
4635              return added;
4636          }
4637 <        public boolean equals(Object o) {
4637 >
4638 >        public final int hashCode() {
4639 >            int h = 0;
4640 >            Node<K,V>[] t;
4641 >            if ((t = map.table) != null) {
4642 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4643 >                for (Node<K,V> p; (p = it.advance()) != null; ) {
4644 >                    h += p.hashCode();
4645 >                }
4646 >            }
4647 >            return h;
4648 >        }
4649 >
4650 >        public final boolean equals(Object o) {
4651              Set<?> c;
4652              return ((o instanceof Set) &&
4653                      ((c = (Set<?>)o) == this ||
4654                       (containsAll(c) && c.containsAll(this))));
4655          }
4892    }
4893
4894    // ---------------------------------------------------------------------
4895
4896    /**
4897     * Predefined tasks for performing bulk parallel operations on
4898     * ConcurrentHashMapV8s. These tasks follow the forms and rules used
4899     * for bulk operations. Each method has the same name, but returns
4900     * a task rather than invoking it. These methods may be useful in
4901     * custom applications such as submitting a task without waiting
4902     * for completion, using a custom pool, or combining with other
4903     * tasks.
4904     */
4905    public static class ForkJoinTasks {
4906        private ForkJoinTasks() {}
4656  
4657 <        /**
4658 <         * Returns a task that when invoked, performs the given
4659 <         * action for each (key, value)
4660 <         *
4661 <         * @param map the map
4662 <         * @param action the action
4914 <         * @return the task
4915 <         */
4916 <        public static <K,V> ForkJoinTask<Void> forEach
4917 <            (ConcurrentHashMapV8<K,V> map,
4918 <             BiAction<K,V> action) {
4919 <            if (action == null) throw new NullPointerException();
4920 <            return new ForEachMappingTask<K,V>(map, null, -1, action);
4657 >        public ConcurrentHashMapSpliterator<Map.Entry<K,V>> spliterator() {
4658 >            Node<K,V>[] t;
4659 >            ConcurrentHashMapV8<K,V> m = map;
4660 >            long n = m.sumCount();
4661 >            int f = (t = m.table) == null ? 0 : t.length;
4662 >            return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4663          }
4664  
4665 <        /**
4924 <         * Returns a task that when invoked, performs the given
4925 <         * action for each non-null transformation of each (key, value)
4926 <         *
4927 <         * @param map the map
4928 <         * @param transformer a function returning the transformation
4929 <         * for an element, or null if there is no transformation (in
4930 <         * which case the action is not applied)
4931 <         * @param action the action
4932 <         * @return the task
4933 <         */
4934 <        public static <K,V,U> ForkJoinTask<Void> forEach
4935 <            (ConcurrentHashMapV8<K,V> map,
4936 <             BiFun<? super K, ? super V, ? extends U> transformer,
4937 <             Action<U> action) {
4938 <            if (transformer == null || action == null)
4939 <                throw new NullPointerException();
4940 <            return new ForEachTransformedMappingTask<K,V,U>
4941 <                (map, null, -1, transformer, action);
4942 <        }
4943 <
4944 <        /**
4945 <         * Returns a task that when invoked, returns a non-null result
4946 <         * from applying the given search function on each (key,
4947 <         * value), or null if none. Upon success, further element
4948 <         * processing is suppressed and the results of any other
4949 <         * parallel invocations of the search function are ignored.
4950 <         *
4951 <         * @param map the map
4952 <         * @param searchFunction a function returning a non-null
4953 <         * result on success, else null
4954 <         * @return the task
4955 <         */
4956 <        public static <K,V,U> ForkJoinTask<U> search
4957 <            (ConcurrentHashMapV8<K,V> map,
4958 <             BiFun<? super K, ? super V, ? extends U> searchFunction) {
4959 <            if (searchFunction == null) throw new NullPointerException();
4960 <            return new SearchMappingsTask<K,V,U>
4961 <                (map, null, -1, searchFunction,
4962 <                 new AtomicReference<U>());
4963 <        }
4964 <
4965 <        /**
4966 <         * Returns a task that when invoked, returns the result of
4967 <         * accumulating the given transformation of all (key, value) pairs
4968 <         * using the given reducer to combine values, or null if none.
4969 <         *
4970 <         * @param map the map
4971 <         * @param transformer a function returning the transformation
4972 <         * for an element, or null if there is no transformation (in
4973 <         * which case it is not combined).
4974 <         * @param reducer a commutative associative combining function
4975 <         * @return the task
4976 <         */
4977 <        public static <K,V,U> ForkJoinTask<U> reduce
4978 <            (ConcurrentHashMapV8<K,V> map,
4979 <             BiFun<? super K, ? super V, ? extends U> transformer,
4980 <             BiFun<? super U, ? super U, ? extends U> reducer) {
4981 <            if (transformer == null || reducer == null)
4982 <                throw new NullPointerException();
4983 <            return new MapReduceMappingsTask<K,V,U>
4984 <                (map, null, -1, null, transformer, reducer);
4985 <        }
4986 <
4987 <        /**
4988 <         * Returns a task that when invoked, returns the result of
4989 <         * accumulating the given transformation of all (key, value) pairs
4990 <         * using the given reducer to combine values, and the given
4991 <         * basis as an identity value.
4992 <         *
4993 <         * @param map the map
4994 <         * @param transformer a function returning the transformation
4995 <         * for an element
4996 <         * @param basis the identity (initial default value) for the reduction
4997 <         * @param reducer a commutative associative combining function
4998 <         * @return the task
4999 <         */
5000 <        public static <K,V> ForkJoinTask<Double> reduceToDouble
5001 <            (ConcurrentHashMapV8<K,V> map,
5002 <             ObjectByObjectToDouble<? super K, ? super V> transformer,
5003 <             double basis,
5004 <             DoubleByDoubleToDouble reducer) {
5005 <            if (transformer == null || reducer == null)
5006 <                throw new NullPointerException();
5007 <            return new MapReduceMappingsToDoubleTask<K,V>
5008 <                (map, null, -1, null, transformer, basis, reducer);
5009 <        }
5010 <
5011 <        /**
5012 <         * Returns a task that when invoked, returns the result of
5013 <         * accumulating the given transformation of all (key, value) pairs
5014 <         * using the given reducer to combine values, and the given
5015 <         * basis as an identity value.
5016 <         *
5017 <         * @param map the map
5018 <         * @param transformer a function returning the transformation
5019 <         * for an element
5020 <         * @param basis the identity (initial default value) for the reduction
5021 <         * @param reducer a commutative associative combining function
5022 <         * @return the task
5023 <         */
5024 <        public static <K,V> ForkJoinTask<Long> reduceToLong
5025 <            (ConcurrentHashMapV8<K,V> map,
5026 <             ObjectByObjectToLong<? super K, ? super V> transformer,
5027 <             long basis,
5028 <             LongByLongToLong reducer) {
5029 <            if (transformer == null || reducer == null)
5030 <                throw new NullPointerException();
5031 <            return new MapReduceMappingsToLongTask<K,V>
5032 <                (map, null, -1, null, transformer, basis, reducer);
5033 <        }
5034 <
5035 <        /**
5036 <         * Returns a task that when invoked, returns the result of
5037 <         * accumulating the given transformation of all (key, value) pairs
5038 <         * using the given reducer to combine values, and the given
5039 <         * basis as an identity value.
5040 <         *
5041 <         * @param transformer a function returning the transformation
5042 <         * for an element
5043 <         * @param basis the identity (initial default value) for the reduction
5044 <         * @param reducer a commutative associative combining function
5045 <         * @return the task
5046 <         */
5047 <        public static <K,V> ForkJoinTask<Integer> reduceToInt
5048 <            (ConcurrentHashMapV8<K,V> map,
5049 <             ObjectByObjectToInt<? super K, ? super V> transformer,
5050 <             int basis,
5051 <             IntByIntToInt reducer) {
5052 <            if (transformer == null || reducer == null)
5053 <                throw new NullPointerException();
5054 <            return new MapReduceMappingsToIntTask<K,V>
5055 <                (map, null, -1, null, transformer, basis, reducer);
5056 <        }
5057 <
5058 <        /**
5059 <         * Returns a task that when invoked, performs the given action
5060 <         * for each key.
5061 <         *
5062 <         * @param map the map
5063 <         * @param action the action
5064 <         * @return the task
5065 <         */
5066 <        public static <K,V> ForkJoinTask<Void> forEachKey
5067 <            (ConcurrentHashMapV8<K,V> map,
5068 <             Action<K> action) {
5069 <            if (action == null) throw new NullPointerException();
5070 <            return new ForEachKeyTask<K,V>(map, null, -1, action);
5071 <        }
5072 <
5073 <        /**
5074 <         * Returns a task that when invoked, performs the given action
5075 <         * for each non-null transformation of each key.
5076 <         *
5077 <         * @param map the map
5078 <         * @param transformer a function returning the transformation
5079 <         * for an element, or null if there is no transformation (in
5080 <         * which case the action is not applied)
5081 <         * @param action the action
5082 <         * @return the task
5083 <         */
5084 <        public static <K,V,U> ForkJoinTask<Void> forEachKey
5085 <            (ConcurrentHashMapV8<K,V> map,
5086 <             Fun<? super K, ? extends U> transformer,
5087 <             Action<U> action) {
5088 <            if (transformer == null || action == null)
5089 <                throw new NullPointerException();
5090 <            return new ForEachTransformedKeyTask<K,V,U>
5091 <                (map, null, -1, transformer, action);
5092 <        }
5093 <
5094 <        /**
5095 <         * Returns a task that when invoked, returns a non-null result
5096 <         * from applying the given search function on each key, or
5097 <         * null if none.  Upon success, further element processing is
5098 <         * suppressed and the results of any other parallel
5099 <         * invocations of the search function are ignored.
5100 <         *
5101 <         * @param map the map
5102 <         * @param searchFunction a function returning a non-null
5103 <         * result on success, else null
5104 <         * @return the task
5105 <         */
5106 <        public static <K,V,U> ForkJoinTask<U> searchKeys
5107 <            (ConcurrentHashMapV8<K,V> map,
5108 <             Fun<? super K, ? extends U> searchFunction) {
5109 <            if (searchFunction == null) throw new NullPointerException();
5110 <            return new SearchKeysTask<K,V,U>
5111 <                (map, null, -1, searchFunction,
5112 <                 new AtomicReference<U>());
5113 <        }
5114 <
5115 <        /**
5116 <         * Returns a task that when invoked, returns the result of
5117 <         * accumulating all keys using the given reducer to combine
5118 <         * values, or null if none.
5119 <         *
5120 <         * @param map the map
5121 <         * @param reducer a commutative associative combining function
5122 <         * @return the task
5123 <         */
5124 <        public static <K,V> ForkJoinTask<K> reduceKeys
5125 <            (ConcurrentHashMapV8<K,V> map,
5126 <             BiFun<? super K, ? super K, ? extends K> reducer) {
5127 <            if (reducer == null) throw new NullPointerException();
5128 <            return new ReduceKeysTask<K,V>
5129 <                (map, null, -1, null, reducer);
5130 <        }
5131 <
5132 <        /**
5133 <         * Returns a task that when invoked, returns the result of
5134 <         * accumulating the given transformation of all keys using the given
5135 <         * reducer to combine values, or null if none.
5136 <         *
5137 <         * @param map the map
5138 <         * @param transformer a function returning the transformation
5139 <         * for an element, or null if there is no transformation (in
5140 <         * which case it is not combined).
5141 <         * @param reducer a commutative associative combining function
5142 <         * @return the task
5143 <         */
5144 <        public static <K,V,U> ForkJoinTask<U> reduceKeys
5145 <            (ConcurrentHashMapV8<K,V> map,
5146 <             Fun<? super K, ? extends U> transformer,
5147 <             BiFun<? super U, ? super U, ? extends U> reducer) {
5148 <            if (transformer == null || reducer == null)
5149 <                throw new NullPointerException();
5150 <            return new MapReduceKeysTask<K,V,U>
5151 <                (map, null, -1, null, transformer, reducer);
5152 <        }
5153 <
5154 <        /**
5155 <         * Returns a task that when invoked, returns the result of
5156 <         * accumulating the given transformation of all keys using the given
5157 <         * reducer to combine values, and the given basis as an
5158 <         * identity value.
5159 <         *
5160 <         * @param map the map
5161 <         * @param transformer a function returning the transformation
5162 <         * for an element
5163 <         * @param basis the identity (initial default value) for the reduction
5164 <         * @param reducer a commutative associative combining function
5165 <         * @return the task
5166 <         */
5167 <        public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
5168 <            (ConcurrentHashMapV8<K,V> map,
5169 <             ObjectToDouble<? super K> transformer,
5170 <             double basis,
5171 <             DoubleByDoubleToDouble reducer) {
5172 <            if (transformer == null || reducer == null)
5173 <                throw new NullPointerException();
5174 <            return new MapReduceKeysToDoubleTask<K,V>
5175 <                (map, null, -1, null, transformer, basis, reducer);
5176 <        }
5177 <
5178 <        /**
5179 <         * Returns a task that when invoked, returns the result of
5180 <         * accumulating the given transformation of all keys using the given
5181 <         * reducer to combine values, and the given basis as an
5182 <         * identity value.
5183 <         *
5184 <         * @param map the map
5185 <         * @param transformer a function returning the transformation
5186 <         * for an element
5187 <         * @param basis the identity (initial default value) for the reduction
5188 <         * @param reducer a commutative associative combining function
5189 <         * @return the task
5190 <         */
5191 <        public static <K,V> ForkJoinTask<Long> reduceKeysToLong
5192 <            (ConcurrentHashMapV8<K,V> map,
5193 <             ObjectToLong<? super K> transformer,
5194 <             long basis,
5195 <             LongByLongToLong reducer) {
5196 <            if (transformer == null || reducer == null)
5197 <                throw new NullPointerException();
5198 <            return new MapReduceKeysToLongTask<K,V>
5199 <                (map, null, -1, null, transformer, basis, reducer);
5200 <        }
5201 <
5202 <        /**
5203 <         * Returns a task that when invoked, returns the result of
5204 <         * accumulating the given transformation of all keys using the given
5205 <         * reducer to combine values, and the given basis as an
5206 <         * identity value.
5207 <         *
5208 <         * @param map the map
5209 <         * @param transformer a function returning the transformation
5210 <         * for an element
5211 <         * @param basis the identity (initial default value) for the reduction
5212 <         * @param reducer a commutative associative combining function
5213 <         * @return the task
5214 <         */
5215 <        public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5216 <            (ConcurrentHashMapV8<K,V> map,
5217 <             ObjectToInt<? super K> transformer,
5218 <             int basis,
5219 <             IntByIntToInt reducer) {
5220 <            if (transformer == null || reducer == null)
5221 <                throw new NullPointerException();
5222 <            return new MapReduceKeysToIntTask<K,V>
5223 <                (map, null, -1, null, transformer, basis, reducer);
5224 <        }
5225 <
5226 <        /**
5227 <         * Returns a task that when invoked, performs the given action
5228 <         * for each value.
5229 <         *
5230 <         * @param map the map
5231 <         * @param action the action
5232 <         */
5233 <        public static <K,V> ForkJoinTask<Void> forEachValue
5234 <            (ConcurrentHashMapV8<K,V> map,
5235 <             Action<V> action) {
5236 <            if (action == null) throw new NullPointerException();
5237 <            return new ForEachValueTask<K,V>(map, null, -1, action);
5238 <        }
5239 <
5240 <        /**
5241 <         * Returns a task that when invoked, performs the given action
5242 <         * for each non-null transformation of each value.
5243 <         *
5244 <         * @param map the map
5245 <         * @param transformer a function returning the transformation
5246 <         * for an element, or null if there is no transformation (in
5247 <         * which case the action is not applied)
5248 <         * @param action the action
5249 <         */
5250 <        public static <K,V,U> ForkJoinTask<Void> forEachValue
5251 <            (ConcurrentHashMapV8<K,V> map,
5252 <             Fun<? super V, ? extends U> transformer,
5253 <             Action<U> action) {
5254 <            if (transformer == null || action == null)
5255 <                throw new NullPointerException();
5256 <            return new ForEachTransformedValueTask<K,V,U>
5257 <                (map, null, -1, transformer, action);
5258 <        }
5259 <
5260 <        /**
5261 <         * Returns a task that when invoked, returns a non-null result
5262 <         * from applying the given search function on each value, or
5263 <         * null if none.  Upon success, further element processing is
5264 <         * suppressed and the results of any other parallel
5265 <         * invocations of the search function are ignored.
5266 <         *
5267 <         * @param map the map
5268 <         * @param searchFunction a function returning a non-null
5269 <         * result on success, else null
5270 <         * @return the task
5271 <         */
5272 <        public static <K,V,U> ForkJoinTask<U> searchValues
5273 <            (ConcurrentHashMapV8<K,V> map,
5274 <             Fun<? super V, ? extends U> searchFunction) {
5275 <            if (searchFunction == null) throw new NullPointerException();
5276 <            return new SearchValuesTask<K,V,U>
5277 <                (map, null, -1, searchFunction,
5278 <                 new AtomicReference<U>());
5279 <        }
5280 <
5281 <        /**
5282 <         * Returns a task that when invoked, returns the result of
5283 <         * accumulating all values using the given reducer to combine
5284 <         * values, or null if none.
5285 <         *
5286 <         * @param map the map
5287 <         * @param reducer a commutative associative combining function
5288 <         * @return the task
5289 <         */
5290 <        public static <K,V> ForkJoinTask<V> reduceValues
5291 <            (ConcurrentHashMapV8<K,V> map,
5292 <             BiFun<? super V, ? super V, ? extends V> reducer) {
5293 <            if (reducer == null) throw new NullPointerException();
5294 <            return new ReduceValuesTask<K,V>
5295 <                (map, null, -1, null, reducer);
5296 <        }
5297 <
5298 <        /**
5299 <         * Returns a task that when invoked, returns the result of
5300 <         * accumulating the given transformation of all values using the
5301 <         * given reducer to combine values, or null if none.
5302 <         *
5303 <         * @param map the map
5304 <         * @param transformer a function returning the transformation
5305 <         * for an element, or null if there is no transformation (in
5306 <         * which case it is not combined).
5307 <         * @param reducer a commutative associative combining function
5308 <         * @return the task
5309 <         */
5310 <        public static <K,V,U> ForkJoinTask<U> reduceValues
5311 <            (ConcurrentHashMapV8<K,V> map,
5312 <             Fun<? super V, ? extends U> transformer,
5313 <             BiFun<? super U, ? super U, ? extends U> reducer) {
5314 <            if (transformer == null || reducer == null)
5315 <                throw new NullPointerException();
5316 <            return new MapReduceValuesTask<K,V,U>
5317 <                (map, null, -1, null, transformer, reducer);
5318 <        }
5319 <
5320 <        /**
5321 <         * Returns a task that when invoked, returns the result of
5322 <         * accumulating the given transformation of all values using the
5323 <         * given reducer to combine values, and the given basis as an
5324 <         * identity value.
5325 <         *
5326 <         * @param map the map
5327 <         * @param transformer a function returning the transformation
5328 <         * for an element
5329 <         * @param basis the identity (initial default value) for the reduction
5330 <         * @param reducer a commutative associative combining function
5331 <         * @return the task
5332 <         */
5333 <        public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5334 <            (ConcurrentHashMapV8<K,V> map,
5335 <             ObjectToDouble<? super V> transformer,
5336 <             double basis,
5337 <             DoubleByDoubleToDouble reducer) {
5338 <            if (transformer == null || reducer == null)
5339 <                throw new NullPointerException();
5340 <            return new MapReduceValuesToDoubleTask<K,V>
5341 <                (map, null, -1, null, transformer, basis, reducer);
5342 <        }
5343 <
5344 <        /**
5345 <         * Returns a task that when invoked, returns the result of
5346 <         * accumulating the given transformation of all values using the
5347 <         * given reducer to combine values, and the given basis as an
5348 <         * identity value.
5349 <         *
5350 <         * @param map the map
5351 <         * @param transformer a function returning the transformation
5352 <         * for an element
5353 <         * @param basis the identity (initial default value) for the reduction
5354 <         * @param reducer a commutative associative combining function
5355 <         * @return the task
5356 <         */
5357 <        public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5358 <            (ConcurrentHashMapV8<K,V> map,
5359 <             ObjectToLong<? super V> transformer,
5360 <             long basis,
5361 <             LongByLongToLong reducer) {
5362 <            if (transformer == null || reducer == null)
5363 <                throw new NullPointerException();
5364 <            return new MapReduceValuesToLongTask<K,V>
5365 <                (map, null, -1, null, transformer, basis, reducer);
5366 <        }
5367 <
5368 <        /**
5369 <         * Returns a task that when invoked, returns the result of
5370 <         * accumulating the given transformation of all values using the
5371 <         * given reducer to combine values, and the given basis as an
5372 <         * identity value.
5373 <         *
5374 <         * @param map the map
5375 <         * @param transformer a function returning the transformation
5376 <         * for an element
5377 <         * @param basis the identity (initial default value) for the reduction
5378 <         * @param reducer a commutative associative combining function
5379 <         * @return the task
5380 <         */
5381 <        public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5382 <            (ConcurrentHashMapV8<K,V> map,
5383 <             ObjectToInt<? super V> transformer,
5384 <             int basis,
5385 <             IntByIntToInt reducer) {
5386 <            if (transformer == null || reducer == null)
5387 <                throw new NullPointerException();
5388 <            return new MapReduceValuesToIntTask<K,V>
5389 <                (map, null, -1, null, transformer, basis, reducer);
5390 <        }
5391 <
5392 <        /**
5393 <         * Returns a task that when invoked, perform the given action
5394 <         * for each entry.
5395 <         *
5396 <         * @param map the map
5397 <         * @param action the action
5398 <         */
5399 <        public static <K,V> ForkJoinTask<Void> forEachEntry
5400 <            (ConcurrentHashMapV8<K,V> map,
5401 <             Action<Map.Entry<K,V>> action) {
4665 >        public void forEach(Action<? super Map.Entry<K,V>> action) {
4666              if (action == null) throw new NullPointerException();
4667 <            return new ForEachEntryTask<K,V>(map, null, -1, action);
4668 <        }
4669 <
4670 <        /**
4671 <         * Returns a task that when invoked, perform the given action
4672 <         * for each non-null transformation of each entry.
5409 <         *
5410 <         * @param map the map
5411 <         * @param transformer a function returning the transformation
5412 <         * for an element, or null if there is no transformation (in
5413 <         * which case the action is not applied)
5414 <         * @param action the action
5415 <         */
5416 <        public static <K,V,U> ForkJoinTask<Void> forEachEntry
5417 <            (ConcurrentHashMapV8<K,V> map,
5418 <             Fun<Map.Entry<K,V>, ? extends U> transformer,
5419 <             Action<U> action) {
5420 <            if (transformer == null || action == null)
5421 <                throw new NullPointerException();
5422 <            return new ForEachTransformedEntryTask<K,V,U>
5423 <                (map, null, -1, transformer, action);
5424 <        }
5425 <
5426 <        /**
5427 <         * Returns a task that when invoked, returns a non-null result
5428 <         * from applying the given search function on each entry, or
5429 <         * null if none.  Upon success, further element processing is
5430 <         * suppressed and the results of any other parallel
5431 <         * invocations of the search function are ignored.
5432 <         *
5433 <         * @param map the map
5434 <         * @param searchFunction a function returning a non-null
5435 <         * result on success, else null
5436 <         * @return the task
5437 <         */
5438 <        public static <K,V,U> ForkJoinTask<U> searchEntries
5439 <            (ConcurrentHashMapV8<K,V> map,
5440 <             Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
5441 <            if (searchFunction == null) throw new NullPointerException();
5442 <            return new SearchEntriesTask<K,V,U>
5443 <                (map, null, -1, searchFunction,
5444 <                 new AtomicReference<U>());
5445 <        }
5446 <
5447 <        /**
5448 <         * Returns a task that when invoked, returns the result of
5449 <         * accumulating all entries using the given reducer to combine
5450 <         * values, or null if none.
5451 <         *
5452 <         * @param map the map
5453 <         * @param reducer a commutative associative combining function
5454 <         * @return the task
5455 <         */
5456 <        public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5457 <            (ConcurrentHashMapV8<K,V> map,
5458 <             BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5459 <            if (reducer == null) throw new NullPointerException();
5460 <            return new ReduceEntriesTask<K,V>
5461 <                (map, null, -1, null, reducer);
4667 >            Node<K,V>[] t;
4668 >            if ((t = map.table) != null) {
4669 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4670 >                for (Node<K,V> p; (p = it.advance()) != null; )
4671 >                    action.apply(new MapEntry<K,V>(p.key, p.val, map));
4672 >            }
4673          }
4674  
4675 <        /**
5465 <         * Returns a task that when invoked, returns the result of
5466 <         * accumulating the given transformation of all entries using the
5467 <         * given reducer to combine values, or null if none.
5468 <         *
5469 <         * @param map the map
5470 <         * @param transformer a function returning the transformation
5471 <         * for an element, or null if there is no transformation (in
5472 <         * which case it is not combined).
5473 <         * @param reducer a commutative associative combining function
5474 <         * @return the task
5475 <         */
5476 <        public static <K,V,U> ForkJoinTask<U> reduceEntries
5477 <            (ConcurrentHashMapV8<K,V> map,
5478 <             Fun<Map.Entry<K,V>, ? extends U> transformer,
5479 <             BiFun<? super U, ? super U, ? extends U> reducer) {
5480 <            if (transformer == null || reducer == null)
5481 <                throw new NullPointerException();
5482 <            return new MapReduceEntriesTask<K,V,U>
5483 <                (map, null, -1, null, transformer, reducer);
5484 <        }
4675 >    }
4676  
4677 <        /**
5487 <         * Returns a task that when invoked, returns the result of
5488 <         * accumulating the given transformation of all entries using the
5489 <         * given reducer to combine values, and the given basis as an
5490 <         * identity value.
5491 <         *
5492 <         * @param map the map
5493 <         * @param transformer a function returning the transformation
5494 <         * for an element
5495 <         * @param basis the identity (initial default value) for the reduction
5496 <         * @param reducer a commutative associative combining function
5497 <         * @return the task
5498 <         */
5499 <        public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5500 <            (ConcurrentHashMapV8<K,V> map,
5501 <             ObjectToDouble<Map.Entry<K,V>> transformer,
5502 <             double basis,
5503 <             DoubleByDoubleToDouble reducer) {
5504 <            if (transformer == null || reducer == null)
5505 <                throw new NullPointerException();
5506 <            return new MapReduceEntriesToDoubleTask<K,V>
5507 <                (map, null, -1, null, transformer, basis, reducer);
5508 <        }
4677 >    // -------------------------------------------------------
4678  
4679 <        /**
4680 <         * Returns a task that when invoked, returns the result of
4681 <         * accumulating the given transformation of all entries using the
4682 <         * given reducer to combine values, and the given basis as an
4683 <         * identity value.
4684 <         *
4685 <         * @param map the map
4686 <         * @param transformer a function returning the transformation
4687 <         * for an element
4688 <         * @param basis the identity (initial default value) for the reduction
4689 <         * @param reducer a commutative associative combining function
4690 <         * @return the task
4691 <         */
4692 <        public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
4693 <            (ConcurrentHashMapV8<K,V> map,
4694 <             ObjectToLong<Map.Entry<K,V>> transformer,
4695 <             long basis,
4696 <             LongByLongToLong reducer) {
4697 <            if (transformer == null || reducer == null)
4698 <                throw new NullPointerException();
4699 <            return new MapReduceEntriesToLongTask<K,V>
4700 <                (map, null, -1, null, transformer, basis, reducer);
4679 >    /**
4680 >     * Base class for bulk tasks. Repeats some fields and code from
4681 >     * class Traverser, because we need to subclass CountedCompleter.
4682 >     */
4683 >    abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4684 >        Node<K,V>[] tab;        // same as Traverser
4685 >        Node<K,V> next;
4686 >        int index;
4687 >        int baseIndex;
4688 >        int baseLimit;
4689 >        final int baseSize;
4690 >        int batch;              // split control
4691 >
4692 >        BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4693 >            super(par);
4694 >            this.batch = b;
4695 >            this.index = this.baseIndex = i;
4696 >            if ((this.tab = t) == null)
4697 >                this.baseSize = this.baseLimit = 0;
4698 >            else if (par == null)
4699 >                this.baseSize = this.baseLimit = t.length;
4700 >            else {
4701 >                this.baseLimit = f;
4702 >                this.baseSize = par.baseSize;
4703 >            }
4704          }
4705  
4706          /**
4707 <         * Returns a task that when invoked, returns the result of
5536 <         * accumulating the given transformation of all entries using the
5537 <         * given reducer to combine values, and the given basis as an
5538 <         * identity value.
5539 <         *
5540 <         * @param map the map
5541 <         * @param transformer a function returning the transformation
5542 <         * for an element
5543 <         * @param basis the identity (initial default value) for the reduction
5544 <         * @param reducer a commutative associative combining function
5545 <         * @return the task
4707 >         * Same as Traverser version
4708           */
4709 <        public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
4710 <            (ConcurrentHashMapV8<K,V> map,
4711 <             ObjectToInt<Map.Entry<K,V>> transformer,
4712 <             int basis,
4713 <             IntByIntToInt reducer) {
4714 <            if (transformer == null || reducer == null)
4715 <                throw new NullPointerException();
4716 <            return new MapReduceEntriesToIntTask<K,V>
4717 <                (map, null, -1, null, transformer, basis, reducer);
4709 >        final Node<K,V> advance() {
4710 >            Node<K,V> e;
4711 >            if ((e = next) != null)
4712 >                e = e.next;
4713 >            for (;;) {
4714 >                Node<K,V>[] t; int i, n; K ek;  // must use locals in checks
4715 >                if (e != null)
4716 >                    return next = e;
4717 >                if (baseIndex >= baseLimit || (t = tab) == null ||
4718 >                    (n = t.length) <= (i = index) || i < 0)
4719 >                    return next = null;
4720 >                if ((e = tabAt(t, index)) != null && e.hash < 0) {
4721 >                    if (e instanceof ForwardingNode) {
4722 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
4723 >                        e = null;
4724 >                        continue;
4725 >                    }
4726 >                    else if (e instanceof TreeBin)
4727 >                        e = ((TreeBin<K,V>)e).first;
4728 >                    else
4729 >                        e = null;
4730 >                }
4731 >                if ((index += baseSize) >= n)
4732 >                    index = ++baseIndex;    // visit upper slots if present
4733 >            }
4734          }
4735      }
4736  
5559    // -------------------------------------------------------
5560
4737      /*
4738       * Task classes. Coded in a regular but ugly format/style to
4739       * simplify checks that each variant differs in the right way from
# Line 5565 | Line 4741 | public class ConcurrentHashMapV8<K, V>
4741       * that we've already null-checked task arguments, so we force
4742       * simplest hoisted bypass to help avoid convoluted traps.
4743       */
4744 <
4745 <    @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
4746 <        extends Traverser<K,V,Void> {
4747 <        final Action<K> action;
4744 >    @SuppressWarnings("serial")
4745 >    static final class ForEachKeyTask<K,V>
4746 >        extends BulkTask<K,V,Void> {
4747 >        final Action<? super K> action;
4748          ForEachKeyTask
4749 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4750 <             Action<K> action) {
4751 <            super(m, p, b);
4749 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4750 >             Action<? super K> action) {
4751 >            super(p, b, i, f, t);
4752              this.action = action;
4753          }
4754 <        @SuppressWarnings("unchecked") public final void compute() {
4755 <            final Action<K> action;
4754 >        public final void compute() {
4755 >            final Action<? super K> action;
4756              if ((action = this.action) != null) {
4757 <                for (int b; (b = preSplit()) > 0;)
4758 <                    new ForEachKeyTask<K,V>(map, this, b, action).fork();
4759 <                while (advance() != null)
4760 <                    action.apply((K)nextKey);
4757 >                for (int i = baseIndex, f, h; batch > 0 &&
4758 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4759 >                    addToPendingCount(1);
4760 >                    new ForEachKeyTask<K,V>
4761 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4762 >                         action).fork();
4763 >                }
4764 >                for (Node<K,V> p; (p = advance()) != null;)
4765 >                    action.apply(p.key);
4766                  propagateCompletion();
4767              }
4768          }
4769      }
4770  
4771 <    @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
4772 <        extends Traverser<K,V,Void> {
4773 <        final Action<V> action;
4771 >    @SuppressWarnings("serial")
4772 >    static final class ForEachValueTask<K,V>
4773 >        extends BulkTask<K,V,Void> {
4774 >        final Action<? super V> action;
4775          ForEachValueTask
4776 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4777 <             Action<V> action) {
4778 <            super(m, p, b);
4776 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4777 >             Action<? super V> action) {
4778 >            super(p, b, i, f, t);
4779              this.action = action;
4780          }
4781 <        @SuppressWarnings("unchecked") public final void compute() {
4782 <            final Action<V> action;
4781 >        public final void compute() {
4782 >            final Action<? super V> action;
4783              if ((action = this.action) != null) {
4784 <                for (int b; (b = preSplit()) > 0;)
4785 <                    new ForEachValueTask<K,V>(map, this, b, action).fork();
4786 <                V v;
4787 <                while ((v = advance()) != null)
4788 <                    action.apply(v);
4784 >                for (int i = baseIndex, f, h; batch > 0 &&
4785 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4786 >                    addToPendingCount(1);
4787 >                    new ForEachValueTask<K,V>
4788 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4789 >                         action).fork();
4790 >                }
4791 >                for (Node<K,V> p; (p = advance()) != null;)
4792 >                    action.apply(p.val);
4793                  propagateCompletion();
4794              }
4795          }
4796      }
4797  
4798 <    @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
4799 <        extends Traverser<K,V,Void> {
4800 <        final Action<Entry<K,V>> action;
4798 >    @SuppressWarnings("serial")
4799 >    static final class ForEachEntryTask<K,V>
4800 >        extends BulkTask<K,V,Void> {
4801 >        final Action<? super Entry<K,V>> action;
4802          ForEachEntryTask
4803 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4804 <             Action<Entry<K,V>> action) {
4805 <            super(m, p, b);
4803 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4804 >             Action<? super Entry<K,V>> action) {
4805 >            super(p, b, i, f, t);
4806              this.action = action;
4807          }
4808 <        @SuppressWarnings("unchecked") public final void compute() {
4809 <            final Action<Entry<K,V>> action;
4808 >        public final void compute() {
4809 >            final Action<? super Entry<K,V>> action;
4810              if ((action = this.action) != null) {
4811 <                for (int b; (b = preSplit()) > 0;)
4812 <                    new ForEachEntryTask<K,V>(map, this, b, action).fork();
4813 <                V v;
4814 <                while ((v = advance()) != null)
4815 <                    action.apply(entryFor((K)nextKey, v));
4811 >                for (int i = baseIndex, f, h; batch > 0 &&
4812 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4813 >                    addToPendingCount(1);
4814 >                    new ForEachEntryTask<K,V>
4815 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4816 >                         action).fork();
4817 >                }
4818 >                for (Node<K,V> p; (p = advance()) != null; )
4819 >                    action.apply(p);
4820                  propagateCompletion();
4821              }
4822          }
4823      }
4824  
4825 <    @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
4826 <        extends Traverser<K,V,Void> {
4827 <        final BiAction<K,V> action;
4825 >    @SuppressWarnings("serial")
4826 >    static final class ForEachMappingTask<K,V>
4827 >        extends BulkTask<K,V,Void> {
4828 >        final BiAction<? super K, ? super V> action;
4829          ForEachMappingTask
4830 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4831 <             BiAction<K,V> action) {
4832 <            super(m, p, b);
4830 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4831 >             BiAction<? super K,? super V> action) {
4832 >            super(p, b, i, f, t);
4833              this.action = action;
4834          }
4835 <        @SuppressWarnings("unchecked") public final void compute() {
4836 <            final BiAction<K,V> action;
4835 >        public final void compute() {
4836 >            final BiAction<? super K, ? super V> action;
4837              if ((action = this.action) != null) {
4838 <                for (int b; (b = preSplit()) > 0;)
4839 <                    new ForEachMappingTask<K,V>(map, this, b, action).fork();
4840 <                V v;
4841 <                while ((v = advance()) != null)
4842 <                    action.apply((K)nextKey, v);
4838 >                for (int i = baseIndex, f, h; batch > 0 &&
4839 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4840 >                    addToPendingCount(1);
4841 >                    new ForEachMappingTask<K,V>
4842 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4843 >                         action).fork();
4844 >                }
4845 >                for (Node<K,V> p; (p = advance()) != null; )
4846 >                    action.apply(p.key, p.val);
4847                  propagateCompletion();
4848              }
4849          }
4850      }
4851  
4852 <    @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
4853 <        extends Traverser<K,V,Void> {
4852 >    @SuppressWarnings("serial")
4853 >    static final class ForEachTransformedKeyTask<K,V,U>
4854 >        extends BulkTask<K,V,Void> {
4855          final Fun<? super K, ? extends U> transformer;
4856 <        final Action<U> action;
4856 >        final Action<? super U> action;
4857          ForEachTransformedKeyTask
4858 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4859 <             Fun<? super K, ? extends U> transformer, Action<U> action) {
4860 <            super(m, p, b);
4858 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4859 >             Fun<? super K, ? extends U> transformer, Action<? super U> action) {
4860 >            super(p, b, i, f, t);
4861              this.transformer = transformer; this.action = action;
4862          }
4863 <        @SuppressWarnings("unchecked") public final void compute() {
4863 >        public final void compute() {
4864              final Fun<? super K, ? extends U> transformer;
4865 <            final Action<U> action;
4865 >            final Action<? super U> action;
4866              if ((transformer = this.transformer) != null &&
4867                  (action = this.action) != null) {
4868 <                for (int b; (b = preSplit()) > 0;)
4868 >                for (int i = baseIndex, f, h; batch > 0 &&
4869 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4870 >                    addToPendingCount(1);
4871                      new ForEachTransformedKeyTask<K,V,U>
4872 <                        (map, this, b, transformer, action).fork();
4873 <                U u;
4874 <                while (advance() != null) {
4875 <                    if ((u = transformer.apply((K)nextKey)) != null)
4872 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4873 >                         transformer, action).fork();
4874 >                }
4875 >                for (Node<K,V> p; (p = advance()) != null; ) {
4876 >                    U u;
4877 >                    if ((u = transformer.apply(p.key)) != null)
4878                          action.apply(u);
4879                  }
4880                  propagateCompletion();
# Line 5681 | Line 4882 | public class ConcurrentHashMapV8<K, V>
4882          }
4883      }
4884  
4885 <    @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
4886 <        extends Traverser<K,V,Void> {
4885 >    @SuppressWarnings("serial")
4886 >    static final class ForEachTransformedValueTask<K,V,U>
4887 >        extends BulkTask<K,V,Void> {
4888          final Fun<? super V, ? extends U> transformer;
4889 <        final Action<U> action;
4889 >        final Action<? super U> action;
4890          ForEachTransformedValueTask
4891 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4892 <             Fun<? super V, ? extends U> transformer, Action<U> action) {
4893 <            super(m, p, b);
4891 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4892 >             Fun<? super V, ? extends U> transformer, Action<? super U> action) {
4893 >            super(p, b, i, f, t);
4894              this.transformer = transformer; this.action = action;
4895          }
4896 <        @SuppressWarnings("unchecked") public final void compute() {
4896 >        public final void compute() {
4897              final Fun<? super V, ? extends U> transformer;
4898 <            final Action<U> action;
4898 >            final Action<? super U> action;
4899              if ((transformer = this.transformer) != null &&
4900                  (action = this.action) != null) {
4901 <                for (int b; (b = preSplit()) > 0;)
4901 >                for (int i = baseIndex, f, h; batch > 0 &&
4902 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4903 >                    addToPendingCount(1);
4904                      new ForEachTransformedValueTask<K,V,U>
4905 <                        (map, this, b, transformer, action).fork();
4906 <                V v; U u;
4907 <                while ((v = advance()) != null) {
4908 <                    if ((u = transformer.apply(v)) != null)
4905 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4906 >                         transformer, action).fork();
4907 >                }
4908 >                for (Node<K,V> p; (p = advance()) != null; ) {
4909 >                    U u;
4910 >                    if ((u = transformer.apply(p.val)) != null)
4911                          action.apply(u);
4912                  }
4913                  propagateCompletion();
# Line 5709 | Line 4915 | public class ConcurrentHashMapV8<K, V>
4915          }
4916      }
4917  
4918 <    @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
4919 <        extends Traverser<K,V,Void> {
4918 >    @SuppressWarnings("serial")
4919 >    static final class ForEachTransformedEntryTask<K,V,U>
4920 >        extends BulkTask<K,V,Void> {
4921          final Fun<Map.Entry<K,V>, ? extends U> transformer;
4922 <        final Action<U> action;
4922 >        final Action<? super U> action;
4923          ForEachTransformedEntryTask
4924 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4925 <             Fun<Map.Entry<K,V>, ? extends U> transformer, Action<U> action) {
4926 <            super(m, p, b);
4924 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4925 >             Fun<Map.Entry<K,V>, ? extends U> transformer, Action<? super U> action) {
4926 >            super(p, b, i, f, t);
4927              this.transformer = transformer; this.action = action;
4928          }
4929 <        @SuppressWarnings("unchecked") public final void compute() {
4929 >        public final void compute() {
4930              final Fun<Map.Entry<K,V>, ? extends U> transformer;
4931 <            final Action<U> action;
4931 >            final Action<? super U> action;
4932              if ((transformer = this.transformer) != null &&
4933                  (action = this.action) != null) {
4934 <                for (int b; (b = preSplit()) > 0;)
4934 >                for (int i = baseIndex, f, h; batch > 0 &&
4935 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4936 >                    addToPendingCount(1);
4937                      new ForEachTransformedEntryTask<K,V,U>
4938 <                        (map, this, b, transformer, action).fork();
4939 <                V v; U u;
4940 <                while ((v = advance()) != null) {
4941 <                    if ((u = transformer.apply(entryFor((K)nextKey,
4942 <                                                        v))) != null)
4938 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4939 >                         transformer, action).fork();
4940 >                }
4941 >                for (Node<K,V> p; (p = advance()) != null; ) {
4942 >                    U u;
4943 >                    if ((u = transformer.apply(p)) != null)
4944                          action.apply(u);
4945                  }
4946                  propagateCompletion();
# Line 5738 | Line 4948 | public class ConcurrentHashMapV8<K, V>
4948          }
4949      }
4950  
4951 <    @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
4952 <        extends Traverser<K,V,Void> {
4951 >    @SuppressWarnings("serial")
4952 >    static final class ForEachTransformedMappingTask<K,V,U>
4953 >        extends BulkTask<K,V,Void> {
4954          final BiFun<? super K, ? super V, ? extends U> transformer;
4955 <        final Action<U> action;
4955 >        final Action<? super U> action;
4956          ForEachTransformedMappingTask
4957 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4957 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4958               BiFun<? super K, ? super V, ? extends U> transformer,
4959 <             Action<U> action) {
4960 <            super(m, p, b);
4959 >             Action<? super U> action) {
4960 >            super(p, b, i, f, t);
4961              this.transformer = transformer; this.action = action;
4962          }
4963 <        @SuppressWarnings("unchecked") public final void compute() {
4963 >        public final void compute() {
4964              final BiFun<? super K, ? super V, ? extends U> transformer;
4965 <            final Action<U> action;
4965 >            final Action<? super U> action;
4966              if ((transformer = this.transformer) != null &&
4967                  (action = this.action) != null) {
4968 <                for (int b; (b = preSplit()) > 0;)
4968 >                for (int i = baseIndex, f, h; batch > 0 &&
4969 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4970 >                    addToPendingCount(1);
4971                      new ForEachTransformedMappingTask<K,V,U>
4972 <                        (map, this, b, transformer, action).fork();
4973 <                V v; U u;
4974 <                while ((v = advance()) != null) {
4975 <                    if ((u = transformer.apply((K)nextKey, v)) != null)
4972 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4973 >                         transformer, action).fork();
4974 >                }
4975 >                for (Node<K,V> p; (p = advance()) != null; ) {
4976 >                    U u;
4977 >                    if ((u = transformer.apply(p.key, p.val)) != null)
4978                          action.apply(u);
4979                  }
4980                  propagateCompletion();
# Line 5767 | Line 4982 | public class ConcurrentHashMapV8<K, V>
4982          }
4983      }
4984  
4985 <    @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
4986 <        extends Traverser<K,V,U> {
4985 >    @SuppressWarnings("serial")
4986 >    static final class SearchKeysTask<K,V,U>
4987 >        extends BulkTask<K,V,U> {
4988          final Fun<? super K, ? extends U> searchFunction;
4989          final AtomicReference<U> result;
4990          SearchKeysTask
4991 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4991 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4992               Fun<? super K, ? extends U> searchFunction,
4993               AtomicReference<U> result) {
4994 <            super(m, p, b);
4994 >            super(p, b, i, f, t);
4995              this.searchFunction = searchFunction; this.result = result;
4996          }
4997          public final U getRawResult() { return result.get(); }
4998 <        @SuppressWarnings("unchecked") public final void compute() {
4998 >        public final void compute() {
4999              final Fun<? super K, ? extends U> searchFunction;
5000              final AtomicReference<U> result;
5001              if ((searchFunction = this.searchFunction) != null &&
5002                  (result = this.result) != null) {
5003 <                for (int b;;) {
5003 >                for (int i = baseIndex, f, h; batch > 0 &&
5004 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5005                      if (result.get() != null)
5006                          return;
5007 <                    if ((b = preSplit()) <= 0)
5791 <                        break;
5007 >                    addToPendingCount(1);
5008                      new SearchKeysTask<K,V,U>
5009 <                        (map, this, b, searchFunction, result).fork();
5009 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5010 >                         searchFunction, result).fork();
5011                  }
5012                  while (result.get() == null) {
5013                      U u;
5014 <                    if (advance() == null) {
5014 >                    Node<K,V> p;
5015 >                    if ((p = advance()) == null) {
5016                          propagateCompletion();
5017                          break;
5018                      }
5019 <                    if ((u = searchFunction.apply((K)nextKey)) != null) {
5019 >                    if ((u = searchFunction.apply(p.key)) != null) {
5020                          if (result.compareAndSet(null, u))
5021                              quietlyCompleteRoot();
5022                          break;
# Line 5808 | Line 5026 | public class ConcurrentHashMapV8<K, V>
5026          }
5027      }
5028  
5029 <    @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5030 <        extends Traverser<K,V,U> {
5029 >    @SuppressWarnings("serial")
5030 >    static final class SearchValuesTask<K,V,U>
5031 >        extends BulkTask<K,V,U> {
5032          final Fun<? super V, ? extends U> searchFunction;
5033          final AtomicReference<U> result;
5034          SearchValuesTask
5035 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5035 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5036               Fun<? super V, ? extends U> searchFunction,
5037               AtomicReference<U> result) {
5038 <            super(m, p, b);
5038 >            super(p, b, i, f, t);
5039              this.searchFunction = searchFunction; this.result = result;
5040          }
5041          public final U getRawResult() { return result.get(); }
5042 <        @SuppressWarnings("unchecked") public final void compute() {
5042 >        public final void compute() {
5043              final Fun<? super V, ? extends U> searchFunction;
5044              final AtomicReference<U> result;
5045              if ((searchFunction = this.searchFunction) != null &&
5046                  (result = this.result) != null) {
5047 <                for (int b;;) {
5047 >                for (int i = baseIndex, f, h; batch > 0 &&
5048 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5049                      if (result.get() != null)
5050                          return;
5051 <                    if ((b = preSplit()) <= 0)
5832 <                        break;
5051 >                    addToPendingCount(1);
5052                      new SearchValuesTask<K,V,U>
5053 <                        (map, this, b, searchFunction, result).fork();
5053 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5054 >                         searchFunction, result).fork();
5055                  }
5056                  while (result.get() == null) {
5057 <                    V v; U u;
5058 <                    if ((v = advance()) == null) {
5057 >                    U u;
5058 >                    Node<K,V> p;
5059 >                    if ((p = advance()) == null) {
5060                          propagateCompletion();
5061                          break;
5062                      }
5063 <                    if ((u = searchFunction.apply(v)) != null) {
5063 >                    if ((u = searchFunction.apply(p.val)) != null) {
5064                          if (result.compareAndSet(null, u))
5065                              quietlyCompleteRoot();
5066                          break;
# Line 5849 | Line 5070 | public class ConcurrentHashMapV8<K, V>
5070          }
5071      }
5072  
5073 <    @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5074 <        extends Traverser<K,V,U> {
5073 >    @SuppressWarnings("serial")
5074 >    static final class SearchEntriesTask<K,V,U>
5075 >        extends BulkTask<K,V,U> {
5076          final Fun<Entry<K,V>, ? extends U> searchFunction;
5077          final AtomicReference<U> result;
5078          SearchEntriesTask
5079 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5079 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5080               Fun<Entry<K,V>, ? extends U> searchFunction,
5081               AtomicReference<U> result) {
5082 <            super(m, p, b);
5082 >            super(p, b, i, f, t);
5083              this.searchFunction = searchFunction; this.result = result;
5084          }
5085          public final U getRawResult() { return result.get(); }
5086 <        @SuppressWarnings("unchecked") public final void compute() {
5086 >        public final void compute() {
5087              final Fun<Entry<K,V>, ? extends U> searchFunction;
5088              final AtomicReference<U> result;
5089              if ((searchFunction = this.searchFunction) != null &&
5090                  (result = this.result) != null) {
5091 <                for (int b;;) {
5091 >                for (int i = baseIndex, f, h; batch > 0 &&
5092 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5093                      if (result.get() != null)
5094                          return;
5095 <                    if ((b = preSplit()) <= 0)
5873 <                        break;
5095 >                    addToPendingCount(1);
5096                      new SearchEntriesTask<K,V,U>
5097 <                        (map, this, b, searchFunction, result).fork();
5097 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5098 >                         searchFunction, result).fork();
5099                  }
5100                  while (result.get() == null) {
5101 <                    V v; U u;
5102 <                    if ((v = advance()) == null) {
5101 >                    U u;
5102 >                    Node<K,V> p;
5103 >                    if ((p = advance()) == null) {
5104                          propagateCompletion();
5105                          break;
5106                      }
5107 <                    if ((u = searchFunction.apply(entryFor((K)nextKey,
5884 <                                                           v))) != null) {
5107 >                    if ((u = searchFunction.apply(p)) != null) {
5108                          if (result.compareAndSet(null, u))
5109                              quietlyCompleteRoot();
5110                          return;
# Line 5891 | Line 5114 | public class ConcurrentHashMapV8<K, V>
5114          }
5115      }
5116  
5117 <    @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5118 <        extends Traverser<K,V,U> {
5117 >    @SuppressWarnings("serial")
5118 >    static final class SearchMappingsTask<K,V,U>
5119 >        extends BulkTask<K,V,U> {
5120          final BiFun<? super K, ? super V, ? extends U> searchFunction;
5121          final AtomicReference<U> result;
5122          SearchMappingsTask
5123 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5123 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5124               BiFun<? super K, ? super V, ? extends U> searchFunction,
5125               AtomicReference<U> result) {
5126 <            super(m, p, b);
5126 >            super(p, b, i, f, t);
5127              this.searchFunction = searchFunction; this.result = result;
5128          }
5129          public final U getRawResult() { return result.get(); }
5130 <        @SuppressWarnings("unchecked") public final void compute() {
5130 >        public final void compute() {
5131              final BiFun<? super K, ? super V, ? extends U> searchFunction;
5132              final AtomicReference<U> result;
5133              if ((searchFunction = this.searchFunction) != null &&
5134                  (result = this.result) != null) {
5135 <                for (int b;;) {
5135 >                for (int i = baseIndex, f, h; batch > 0 &&
5136 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5137                      if (result.get() != null)
5138                          return;
5139 <                    if ((b = preSplit()) <= 0)
5915 <                        break;
5139 >                    addToPendingCount(1);
5140                      new SearchMappingsTask<K,V,U>
5141 <                        (map, this, b, searchFunction, result).fork();
5141 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5142 >                         searchFunction, result).fork();
5143                  }
5144                  while (result.get() == null) {
5145 <                    V v; U u;
5146 <                    if ((v = advance()) == null) {
5145 >                    U u;
5146 >                    Node<K,V> p;
5147 >                    if ((p = advance()) == null) {
5148                          propagateCompletion();
5149                          break;
5150                      }
5151 <                    if ((u = searchFunction.apply((K)nextKey, v)) != null) {
5151 >                    if ((u = searchFunction.apply(p.key, p.val)) != null) {
5152                          if (result.compareAndSet(null, u))
5153                              quietlyCompleteRoot();
5154                          break;
# Line 5932 | Line 5158 | public class ConcurrentHashMapV8<K, V>
5158          }
5159      }
5160  
5161 <    @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5162 <        extends Traverser<K,V,K> {
5161 >    @SuppressWarnings("serial")
5162 >    static final class ReduceKeysTask<K,V>
5163 >        extends BulkTask<K,V,K> {
5164          final BiFun<? super K, ? super K, ? extends K> reducer;
5165          K result;
5166          ReduceKeysTask<K,V> rights, nextRight;
5167          ReduceKeysTask
5168 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5168 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5169               ReduceKeysTask<K,V> nextRight,
5170               BiFun<? super K, ? super K, ? extends K> reducer) {
5171 <            super(m, p, b); this.nextRight = nextRight;
5171 >            super(p, b, i, f, t); this.nextRight = nextRight;
5172              this.reducer = reducer;
5173          }
5174          public final K getRawResult() { return result; }
5175 <        @SuppressWarnings("unchecked") public final void compute() {
5175 >        public final void compute() {
5176              final BiFun<? super K, ? super K, ? extends K> reducer;
5177              if ((reducer = this.reducer) != null) {
5178 <                for (int b; (b = preSplit()) > 0;)
5178 >                for (int i = baseIndex, f, h; batch > 0 &&
5179 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5180 >                    addToPendingCount(1);
5181                      (rights = new ReduceKeysTask<K,V>
5182 <                     (map, this, b, rights, reducer)).fork();
5182 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5183 >                      rights, reducer)).fork();
5184 >                }
5185                  K r = null;
5186 <                while (advance() != null) {
5187 <                    K u = (K)nextKey;
5188 <                    r = (r == null) ? u : reducer.apply(r, u);
5186 >                for (Node<K,V> p; (p = advance()) != null; ) {
5187 >                    K u = p.key;
5188 >                    r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5189                  }
5190                  result = r;
5191                  CountedCompleter<?> c;
5192                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5193 <                    ReduceKeysTask<K,V>
5193 >                    @SuppressWarnings("unchecked") ReduceKeysTask<K,V>
5194                          t = (ReduceKeysTask<K,V>)c,
5195                          s = t.rights;
5196                      while (s != null) {
# Line 5974 | Line 5205 | public class ConcurrentHashMapV8<K, V>
5205          }
5206      }
5207  
5208 <    @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5209 <        extends Traverser<K,V,V> {
5208 >    @SuppressWarnings("serial")
5209 >    static final class ReduceValuesTask<K,V>
5210 >        extends BulkTask<K,V,V> {
5211          final BiFun<? super V, ? super V, ? extends V> reducer;
5212          V result;
5213          ReduceValuesTask<K,V> rights, nextRight;
5214          ReduceValuesTask
5215 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5215 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5216               ReduceValuesTask<K,V> nextRight,
5217               BiFun<? super V, ? super V, ? extends V> reducer) {
5218 <            super(m, p, b); this.nextRight = nextRight;
5218 >            super(p, b, i, f, t); this.nextRight = nextRight;
5219              this.reducer = reducer;
5220          }
5221          public final V getRawResult() { return result; }
5222 <        @SuppressWarnings("unchecked") public final void compute() {
5222 >        public final void compute() {
5223              final BiFun<? super V, ? super V, ? extends V> reducer;
5224              if ((reducer = this.reducer) != null) {
5225 <                for (int b; (b = preSplit()) > 0;)
5225 >                for (int i = baseIndex, f, h; batch > 0 &&
5226 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5227 >                    addToPendingCount(1);
5228                      (rights = new ReduceValuesTask<K,V>
5229 <                     (map, this, b, rights, reducer)).fork();
5229 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5230 >                      rights, reducer)).fork();
5231 >                }
5232                  V r = null;
5233 <                V v;
5234 <                while ((v = advance()) != null) {
5235 <                    V u = v;
6000 <                    r = (r == null) ? u : reducer.apply(r, u);
5233 >                for (Node<K,V> p; (p = advance()) != null; ) {
5234 >                    V v = p.val;
5235 >                    r = (r == null) ? v : reducer.apply(r, v);
5236                  }
5237                  result = r;
5238                  CountedCompleter<?> c;
5239                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5240 <                    ReduceValuesTask<K,V>
5240 >                    @SuppressWarnings("unchecked") ReduceValuesTask<K,V>
5241                          t = (ReduceValuesTask<K,V>)c,
5242                          s = t.rights;
5243                      while (s != null) {
# Line 6017 | Line 5252 | public class ConcurrentHashMapV8<K, V>
5252          }
5253      }
5254  
5255 <    @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
5256 <        extends Traverser<K,V,Map.Entry<K,V>> {
5255 >    @SuppressWarnings("serial")
5256 >    static final class ReduceEntriesTask<K,V>
5257 >        extends BulkTask<K,V,Map.Entry<K,V>> {
5258          final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5259          Map.Entry<K,V> result;
5260          ReduceEntriesTask<K,V> rights, nextRight;
5261          ReduceEntriesTask
5262 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5262 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5263               ReduceEntriesTask<K,V> nextRight,
5264               BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5265 <            super(m, p, b); this.nextRight = nextRight;
5265 >            super(p, b, i, f, t); this.nextRight = nextRight;
5266              this.reducer = reducer;
5267          }
5268          public final Map.Entry<K,V> getRawResult() { return result; }
5269 <        @SuppressWarnings("unchecked") public final void compute() {
5269 >        public final void compute() {
5270              final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5271              if ((reducer = this.reducer) != null) {
5272 <                for (int b; (b = preSplit()) > 0;)
5272 >                for (int i = baseIndex, f, h; batch > 0 &&
5273 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5274 >                    addToPendingCount(1);
5275                      (rights = new ReduceEntriesTask<K,V>
5276 <                     (map, this, b, rights, reducer)).fork();
5277 <                Map.Entry<K,V> r = null;
6040 <                V v;
6041 <                while ((v = advance()) != null) {
6042 <                    Map.Entry<K,V> u = entryFor((K)nextKey, v);
6043 <                    r = (r == null) ? u : reducer.apply(r, u);
5276 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5277 >                      rights, reducer)).fork();
5278                  }
5279 +                Map.Entry<K,V> r = null;
5280 +                for (Node<K,V> p; (p = advance()) != null; )
5281 +                    r = (r == null) ? p : reducer.apply(r, p);
5282                  result = r;
5283                  CountedCompleter<?> c;
5284                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5285 <                    ReduceEntriesTask<K,V>
5285 >                    @SuppressWarnings("unchecked") ReduceEntriesTask<K,V>
5286                          t = (ReduceEntriesTask<K,V>)c,
5287                          s = t.rights;
5288                      while (s != null) {
# Line 6060 | Line 5297 | public class ConcurrentHashMapV8<K, V>
5297          }
5298      }
5299  
5300 <    @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
5301 <        extends Traverser<K,V,U> {
5300 >    @SuppressWarnings("serial")
5301 >    static final class MapReduceKeysTask<K,V,U>
5302 >        extends BulkTask<K,V,U> {
5303          final Fun<? super K, ? extends U> transformer;
5304          final BiFun<? super U, ? super U, ? extends U> reducer;
5305          U result;
5306          MapReduceKeysTask<K,V,U> rights, nextRight;
5307          MapReduceKeysTask
5308 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5308 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5309               MapReduceKeysTask<K,V,U> nextRight,
5310               Fun<? super K, ? extends U> transformer,
5311               BiFun<? super U, ? super U, ? extends U> reducer) {
5312 <            super(m, p, b); this.nextRight = nextRight;
5312 >            super(p, b, i, f, t); this.nextRight = nextRight;
5313              this.transformer = transformer;
5314              this.reducer = reducer;
5315          }
5316          public final U getRawResult() { return result; }
5317 <        @SuppressWarnings("unchecked") public final void compute() {
5317 >        public final void compute() {
5318              final Fun<? super K, ? extends U> transformer;
5319              final BiFun<? super U, ? super U, ? extends U> reducer;
5320              if ((transformer = this.transformer) != null &&
5321                  (reducer = this.reducer) != null) {
5322 <                for (int b; (b = preSplit()) > 0;)
5322 >                for (int i = baseIndex, f, h; batch > 0 &&
5323 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5324 >                    addToPendingCount(1);
5325                      (rights = new MapReduceKeysTask<K,V,U>
5326 <                     (map, this, b, rights, transformer, reducer)).fork();
5327 <                U r = null, u;
5328 <                while (advance() != null) {
5329 <                    if ((u = transformer.apply((K)nextKey)) != null)
5326 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5327 >                      rights, transformer, reducer)).fork();
5328 >                }
5329 >                U r = null;
5330 >                for (Node<K,V> p; (p = advance()) != null; ) {
5331 >                    U u;
5332 >                    if ((u = transformer.apply(p.key)) != null)
5333                          r = (r == null) ? u : reducer.apply(r, u);
5334                  }
5335                  result = r;
5336                  CountedCompleter<?> c;
5337                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5338 <                    MapReduceKeysTask<K,V,U>
5338 >                    @SuppressWarnings("unchecked") MapReduceKeysTask<K,V,U>
5339                          t = (MapReduceKeysTask<K,V,U>)c,
5340                          s = t.rights;
5341                      while (s != null) {
# Line 6107 | Line 5350 | public class ConcurrentHashMapV8<K, V>
5350          }
5351      }
5352  
5353 <    @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
5354 <        extends Traverser<K,V,U> {
5353 >    @SuppressWarnings("serial")
5354 >    static final class MapReduceValuesTask<K,V,U>
5355 >        extends BulkTask<K,V,U> {
5356          final Fun<? super V, ? extends U> transformer;
5357          final BiFun<? super U, ? super U, ? extends U> reducer;
5358          U result;
5359          MapReduceValuesTask<K,V,U> rights, nextRight;
5360          MapReduceValuesTask
5361 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5361 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5362               MapReduceValuesTask<K,V,U> nextRight,
5363               Fun<? super V, ? extends U> transformer,
5364               BiFun<? super U, ? super U, ? extends U> reducer) {
5365 <            super(m, p, b); this.nextRight = nextRight;
5365 >            super(p, b, i, f, t); this.nextRight = nextRight;
5366              this.transformer = transformer;
5367              this.reducer = reducer;
5368          }
5369          public final U getRawResult() { return result; }
5370 <        @SuppressWarnings("unchecked") public final void compute() {
5370 >        public final void compute() {
5371              final Fun<? super V, ? extends U> transformer;
5372              final BiFun<? super U, ? super U, ? extends U> reducer;
5373              if ((transformer = this.transformer) != null &&
5374                  (reducer = this.reducer) != null) {
5375 <                for (int b; (b = preSplit()) > 0;)
5375 >                for (int i = baseIndex, f, h; batch > 0 &&
5376 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5377 >                    addToPendingCount(1);
5378                      (rights = new MapReduceValuesTask<K,V,U>
5379 <                     (map, this, b, rights, transformer, reducer)).fork();
5380 <                U r = null, u;
5381 <                V v;
5382 <                while ((v = advance()) != null) {
5383 <                    if ((u = transformer.apply(v)) != null)
5379 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5380 >                      rights, transformer, reducer)).fork();
5381 >                }
5382 >                U r = null;
5383 >                for (Node<K,V> p; (p = advance()) != null; ) {
5384 >                    U u;
5385 >                    if ((u = transformer.apply(p.val)) != null)
5386                          r = (r == null) ? u : reducer.apply(r, u);
5387                  }
5388                  result = r;
5389                  CountedCompleter<?> c;
5390                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5391 <                    MapReduceValuesTask<K,V,U>
5391 >                    @SuppressWarnings("unchecked") MapReduceValuesTask<K,V,U>
5392                          t = (MapReduceValuesTask<K,V,U>)c,
5393                          s = t.rights;
5394                      while (s != null) {
# Line 6155 | Line 5403 | public class ConcurrentHashMapV8<K, V>
5403          }
5404      }
5405  
5406 <    @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
5407 <        extends Traverser<K,V,U> {
5406 >    @SuppressWarnings("serial")
5407 >    static final class MapReduceEntriesTask<K,V,U>
5408 >        extends BulkTask<K,V,U> {
5409          final Fun<Map.Entry<K,V>, ? extends U> transformer;
5410          final BiFun<? super U, ? super U, ? extends U> reducer;
5411          U result;
5412          MapReduceEntriesTask<K,V,U> rights, nextRight;
5413          MapReduceEntriesTask
5414 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5414 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5415               MapReduceEntriesTask<K,V,U> nextRight,
5416               Fun<Map.Entry<K,V>, ? extends U> transformer,
5417               BiFun<? super U, ? super U, ? extends U> reducer) {
5418 <            super(m, p, b); this.nextRight = nextRight;
5418 >            super(p, b, i, f, t); this.nextRight = nextRight;
5419              this.transformer = transformer;
5420              this.reducer = reducer;
5421          }
5422          public final U getRawResult() { return result; }
5423 <        @SuppressWarnings("unchecked") public final void compute() {
5423 >        public final void compute() {
5424              final Fun<Map.Entry<K,V>, ? extends U> transformer;
5425              final BiFun<? super U, ? super U, ? extends U> reducer;
5426              if ((transformer = this.transformer) != null &&
5427                  (reducer = this.reducer) != null) {
5428 <                for (int b; (b = preSplit()) > 0;)
5428 >                for (int i = baseIndex, f, h; batch > 0 &&
5429 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5430 >                    addToPendingCount(1);
5431                      (rights = new MapReduceEntriesTask<K,V,U>
5432 <                     (map, this, b, rights, transformer, reducer)).fork();
5433 <                U r = null, u;
5434 <                V v;
5435 <                while ((v = advance()) != null) {
5436 <                    if ((u = transformer.apply(entryFor((K)nextKey,
5437 <                                                        v))) != null)
5432 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5433 >                      rights, transformer, reducer)).fork();
5434 >                }
5435 >                U r = null;
5436 >                for (Node<K,V> p; (p = advance()) != null; ) {
5437 >                    U u;
5438 >                    if ((u = transformer.apply(p)) != null)
5439                          r = (r == null) ? u : reducer.apply(r, u);
5440                  }
5441                  result = r;
5442                  CountedCompleter<?> c;
5443                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5444 <                    MapReduceEntriesTask<K,V,U>
5444 >                    @SuppressWarnings("unchecked") MapReduceEntriesTask<K,V,U>
5445                          t = (MapReduceEntriesTask<K,V,U>)c,
5446                          s = t.rights;
5447                      while (s != null) {
# Line 6204 | Line 5456 | public class ConcurrentHashMapV8<K, V>
5456          }
5457      }
5458  
5459 <    @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
5460 <        extends Traverser<K,V,U> {
5459 >    @SuppressWarnings("serial")
5460 >    static final class MapReduceMappingsTask<K,V,U>
5461 >        extends BulkTask<K,V,U> {
5462          final BiFun<? super K, ? super V, ? extends U> transformer;
5463          final BiFun<? super U, ? super U, ? extends U> reducer;
5464          U result;
5465          MapReduceMappingsTask<K,V,U> rights, nextRight;
5466          MapReduceMappingsTask
5467 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5467 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5468               MapReduceMappingsTask<K,V,U> nextRight,
5469               BiFun<? super K, ? super V, ? extends U> transformer,
5470               BiFun<? super U, ? super U, ? extends U> reducer) {
5471 <            super(m, p, b); this.nextRight = nextRight;
5471 >            super(p, b, i, f, t); this.nextRight = nextRight;
5472              this.transformer = transformer;
5473              this.reducer = reducer;
5474          }
5475          public final U getRawResult() { return result; }
5476 <        @SuppressWarnings("unchecked") public final void compute() {
5476 >        public final void compute() {
5477              final BiFun<? super K, ? super V, ? extends U> transformer;
5478              final BiFun<? super U, ? super U, ? extends U> reducer;
5479              if ((transformer = this.transformer) != null &&
5480                  (reducer = this.reducer) != null) {
5481 <                for (int b; (b = preSplit()) > 0;)
5481 >                for (int i = baseIndex, f, h; batch > 0 &&
5482 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5483 >                    addToPendingCount(1);
5484                      (rights = new MapReduceMappingsTask<K,V,U>
5485 <                     (map, this, b, rights, transformer, reducer)).fork();
5486 <                U r = null, u;
5487 <                V v;
5488 <                while ((v = advance()) != null) {
5489 <                    if ((u = transformer.apply((K)nextKey, v)) != null)
5485 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5486 >                      rights, transformer, reducer)).fork();
5487 >                }
5488 >                U r = null;
5489 >                for (Node<K,V> p; (p = advance()) != null; ) {
5490 >                    U u;
5491 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5492                          r = (r == null) ? u : reducer.apply(r, u);
5493                  }
5494                  result = r;
5495                  CountedCompleter<?> c;
5496                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5497 <                    MapReduceMappingsTask<K,V,U>
5497 >                    @SuppressWarnings("unchecked") MapReduceMappingsTask<K,V,U>
5498                          t = (MapReduceMappingsTask<K,V,U>)c,
5499                          s = t.rights;
5500                      while (s != null) {
# Line 6252 | Line 5509 | public class ConcurrentHashMapV8<K, V>
5509          }
5510      }
5511  
5512 <    @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
5513 <        extends Traverser<K,V,Double> {
5512 >    @SuppressWarnings("serial")
5513 >    static final class MapReduceKeysToDoubleTask<K,V>
5514 >        extends BulkTask<K,V,Double> {
5515          final ObjectToDouble<? super K> transformer;
5516          final DoubleByDoubleToDouble reducer;
5517          final double basis;
5518          double result;
5519          MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5520          MapReduceKeysToDoubleTask
5521 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5521 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5522               MapReduceKeysToDoubleTask<K,V> nextRight,
5523               ObjectToDouble<? super K> transformer,
5524               double basis,
5525               DoubleByDoubleToDouble reducer) {
5526 <            super(m, p, b); this.nextRight = nextRight;
5526 >            super(p, b, i, f, t); this.nextRight = nextRight;
5527              this.transformer = transformer;
5528              this.basis = basis; this.reducer = reducer;
5529          }
5530          public final Double getRawResult() { return result; }
5531 <        @SuppressWarnings("unchecked") public final void compute() {
5531 >        public final void compute() {
5532              final ObjectToDouble<? super K> transformer;
5533              final DoubleByDoubleToDouble reducer;
5534              if ((transformer = this.transformer) != null &&
5535                  (reducer = this.reducer) != null) {
5536                  double r = this.basis;
5537 <                for (int b; (b = preSplit()) > 0;)
5537 >                for (int i = baseIndex, f, h; batch > 0 &&
5538 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5539 >                    addToPendingCount(1);
5540                      (rights = new MapReduceKeysToDoubleTask<K,V>
5541 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5542 <                while (advance() != null)
5543 <                    r = reducer.apply(r, transformer.apply((K)nextKey));
5541 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5542 >                      rights, transformer, r, reducer)).fork();
5543 >                }
5544 >                for (Node<K,V> p; (p = advance()) != null; )
5545 >                    r = reducer.apply(r, transformer.apply(p.key));
5546                  result = r;
5547                  CountedCompleter<?> c;
5548                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5549 <                    MapReduceKeysToDoubleTask<K,V>
5549 >                    @SuppressWarnings("unchecked") MapReduceKeysToDoubleTask<K,V>
5550                          t = (MapReduceKeysToDoubleTask<K,V>)c,
5551                          s = t.rights;
5552                      while (s != null) {
# Line 6296 | Line 5558 | public class ConcurrentHashMapV8<K, V>
5558          }
5559      }
5560  
5561 <    @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
5562 <        extends Traverser<K,V,Double> {
5561 >    @SuppressWarnings("serial")
5562 >    static final class MapReduceValuesToDoubleTask<K,V>
5563 >        extends BulkTask<K,V,Double> {
5564          final ObjectToDouble<? super V> transformer;
5565          final DoubleByDoubleToDouble reducer;
5566          final double basis;
5567          double result;
5568          MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5569          MapReduceValuesToDoubleTask
5570 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5570 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5571               MapReduceValuesToDoubleTask<K,V> nextRight,
5572               ObjectToDouble<? super V> transformer,
5573               double basis,
5574               DoubleByDoubleToDouble reducer) {
5575 <            super(m, p, b); this.nextRight = nextRight;
5575 >            super(p, b, i, f, t); this.nextRight = nextRight;
5576              this.transformer = transformer;
5577              this.basis = basis; this.reducer = reducer;
5578          }
5579          public final Double getRawResult() { return result; }
5580 <        @SuppressWarnings("unchecked") public final void compute() {
5580 >        public final void compute() {
5581              final ObjectToDouble<? super V> transformer;
5582              final DoubleByDoubleToDouble reducer;
5583              if ((transformer = this.transformer) != null &&
5584                  (reducer = this.reducer) != null) {
5585                  double r = this.basis;
5586 <                for (int b; (b = preSplit()) > 0;)
5586 >                for (int i = baseIndex, f, h; batch > 0 &&
5587 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5588 >                    addToPendingCount(1);
5589                      (rights = new MapReduceValuesToDoubleTask<K,V>
5590 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5591 <                V v;
5592 <                while ((v = advance()) != null)
5593 <                    r = reducer.apply(r, transformer.apply(v));
5590 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5591 >                      rights, transformer, r, reducer)).fork();
5592 >                }
5593 >                for (Node<K,V> p; (p = advance()) != null; )
5594 >                    r = reducer.apply(r, transformer.apply(p.val));
5595                  result = r;
5596                  CountedCompleter<?> c;
5597                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5598 <                    MapReduceValuesToDoubleTask<K,V>
5598 >                    @SuppressWarnings("unchecked") MapReduceValuesToDoubleTask<K,V>
5599                          t = (MapReduceValuesToDoubleTask<K,V>)c,
5600                          s = t.rights;
5601                      while (s != null) {
# Line 6341 | Line 5607 | public class ConcurrentHashMapV8<K, V>
5607          }
5608      }
5609  
5610 <    @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
5611 <        extends Traverser<K,V,Double> {
5610 >    @SuppressWarnings("serial")
5611 >    static final class MapReduceEntriesToDoubleTask<K,V>
5612 >        extends BulkTask<K,V,Double> {
5613          final ObjectToDouble<Map.Entry<K,V>> transformer;
5614          final DoubleByDoubleToDouble reducer;
5615          final double basis;
5616          double result;
5617          MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5618          MapReduceEntriesToDoubleTask
5619 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5619 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5620               MapReduceEntriesToDoubleTask<K,V> nextRight,
5621               ObjectToDouble<Map.Entry<K,V>> transformer,
5622               double basis,
5623               DoubleByDoubleToDouble reducer) {
5624 <            super(m, p, b); this.nextRight = nextRight;
5624 >            super(p, b, i, f, t); this.nextRight = nextRight;
5625              this.transformer = transformer;
5626              this.basis = basis; this.reducer = reducer;
5627          }
5628          public final Double getRawResult() { return result; }
5629 <        @SuppressWarnings("unchecked") public final void compute() {
5629 >        public final void compute() {
5630              final ObjectToDouble<Map.Entry<K,V>> transformer;
5631              final DoubleByDoubleToDouble reducer;
5632              if ((transformer = this.transformer) != null &&
5633                  (reducer = this.reducer) != null) {
5634                  double r = this.basis;
5635 <                for (int b; (b = preSplit()) > 0;)
5635 >                for (int i = baseIndex, f, h; batch > 0 &&
5636 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5637 >                    addToPendingCount(1);
5638                      (rights = new MapReduceEntriesToDoubleTask<K,V>
5639 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5640 <                V v;
5641 <                while ((v = advance()) != null)
5642 <                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
5643 <                                                                    v)));
5639 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5640 >                      rights, transformer, r, reducer)).fork();
5641 >                }
5642 >                for (Node<K,V> p; (p = advance()) != null; )
5643 >                    r = reducer.apply(r, transformer.apply(p));
5644                  result = r;
5645                  CountedCompleter<?> c;
5646                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5647 <                    MapReduceEntriesToDoubleTask<K,V>
5647 >                    @SuppressWarnings("unchecked") MapReduceEntriesToDoubleTask<K,V>
5648                          t = (MapReduceEntriesToDoubleTask<K,V>)c,
5649                          s = t.rights;
5650                      while (s != null) {
# Line 6387 | Line 5656 | public class ConcurrentHashMapV8<K, V>
5656          }
5657      }
5658  
5659 <    @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
5660 <        extends Traverser<K,V,Double> {
5659 >    @SuppressWarnings("serial")
5660 >    static final class MapReduceMappingsToDoubleTask<K,V>
5661 >        extends BulkTask<K,V,Double> {
5662          final ObjectByObjectToDouble<? super K, ? super V> transformer;
5663          final DoubleByDoubleToDouble reducer;
5664          final double basis;
5665          double result;
5666          MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5667          MapReduceMappingsToDoubleTask
5668 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5668 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5669               MapReduceMappingsToDoubleTask<K,V> nextRight,
5670               ObjectByObjectToDouble<? super K, ? super V> transformer,
5671               double basis,
5672               DoubleByDoubleToDouble reducer) {
5673 <            super(m, p, b); this.nextRight = nextRight;
5673 >            super(p, b, i, f, t); this.nextRight = nextRight;
5674              this.transformer = transformer;
5675              this.basis = basis; this.reducer = reducer;
5676          }
5677          public final Double getRawResult() { return result; }
5678 <        @SuppressWarnings("unchecked") public final void compute() {
5678 >        public final void compute() {
5679              final ObjectByObjectToDouble<? super K, ? super V> transformer;
5680              final DoubleByDoubleToDouble reducer;
5681              if ((transformer = this.transformer) != null &&
5682                  (reducer = this.reducer) != null) {
5683                  double r = this.basis;
5684 <                for (int b; (b = preSplit()) > 0;)
5684 >                for (int i = baseIndex, f, h; batch > 0 &&
5685 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5686 >                    addToPendingCount(1);
5687                      (rights = new MapReduceMappingsToDoubleTask<K,V>
5688 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5689 <                V v;
5690 <                while ((v = advance()) != null)
5691 <                    r = reducer.apply(r, transformer.apply((K)nextKey, v));
5688 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5689 >                      rights, transformer, r, reducer)).fork();
5690 >                }
5691 >                for (Node<K,V> p; (p = advance()) != null; )
5692 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
5693                  result = r;
5694                  CountedCompleter<?> c;
5695                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5696 <                    MapReduceMappingsToDoubleTask<K,V>
5696 >                    @SuppressWarnings("unchecked") MapReduceMappingsToDoubleTask<K,V>
5697                          t = (MapReduceMappingsToDoubleTask<K,V>)c,
5698                          s = t.rights;
5699                      while (s != null) {
# Line 6432 | Line 5705 | public class ConcurrentHashMapV8<K, V>
5705          }
5706      }
5707  
5708 <    @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
5709 <        extends Traverser<K,V,Long> {
5708 >    @SuppressWarnings("serial")
5709 >    static final class MapReduceKeysToLongTask<K,V>
5710 >        extends BulkTask<K,V,Long> {
5711          final ObjectToLong<? super K> transformer;
5712          final LongByLongToLong reducer;
5713          final long basis;
5714          long result;
5715          MapReduceKeysToLongTask<K,V> rights, nextRight;
5716          MapReduceKeysToLongTask
5717 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5717 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5718               MapReduceKeysToLongTask<K,V> nextRight,
5719               ObjectToLong<? super K> transformer,
5720               long basis,
5721               LongByLongToLong reducer) {
5722 <            super(m, p, b); this.nextRight = nextRight;
5722 >            super(p, b, i, f, t); this.nextRight = nextRight;
5723              this.transformer = transformer;
5724              this.basis = basis; this.reducer = reducer;
5725          }
5726          public final Long getRawResult() { return result; }
5727 <        @SuppressWarnings("unchecked") public final void compute() {
5727 >        public final void compute() {
5728              final ObjectToLong<? super K> transformer;
5729              final LongByLongToLong reducer;
5730              if ((transformer = this.transformer) != null &&
5731                  (reducer = this.reducer) != null) {
5732                  long r = this.basis;
5733 <                for (int b; (b = preSplit()) > 0;)
5733 >                for (int i = baseIndex, f, h; batch > 0 &&
5734 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5735 >                    addToPendingCount(1);
5736                      (rights = new MapReduceKeysToLongTask<K,V>
5737 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5738 <                while (advance() != null)
5739 <                    r = reducer.apply(r, transformer.apply((K)nextKey));
5737 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5738 >                      rights, transformer, r, reducer)).fork();
5739 >                }
5740 >                for (Node<K,V> p; (p = advance()) != null; )
5741 >                    r = reducer.apply(r, transformer.apply(p.key));
5742                  result = r;
5743                  CountedCompleter<?> c;
5744                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5745 <                    MapReduceKeysToLongTask<K,V>
5745 >                    @SuppressWarnings("unchecked") MapReduceKeysToLongTask<K,V>
5746                          t = (MapReduceKeysToLongTask<K,V>)c,
5747                          s = t.rights;
5748                      while (s != null) {
# Line 6476 | Line 5754 | public class ConcurrentHashMapV8<K, V>
5754          }
5755      }
5756  
5757 <    @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
5758 <        extends Traverser<K,V,Long> {
5757 >    @SuppressWarnings("serial")
5758 >    static final class MapReduceValuesToLongTask<K,V>
5759 >        extends BulkTask<K,V,Long> {
5760          final ObjectToLong<? super V> transformer;
5761          final LongByLongToLong reducer;
5762          final long basis;
5763          long result;
5764          MapReduceValuesToLongTask<K,V> rights, nextRight;
5765          MapReduceValuesToLongTask
5766 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5766 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5767               MapReduceValuesToLongTask<K,V> nextRight,
5768               ObjectToLong<? super V> transformer,
5769               long basis,
5770               LongByLongToLong reducer) {
5771 <            super(m, p, b); this.nextRight = nextRight;
5771 >            super(p, b, i, f, t); this.nextRight = nextRight;
5772              this.transformer = transformer;
5773              this.basis = basis; this.reducer = reducer;
5774          }
5775          public final Long getRawResult() { return result; }
5776 <        @SuppressWarnings("unchecked") public final void compute() {
5776 >        public final void compute() {
5777              final ObjectToLong<? super V> transformer;
5778              final LongByLongToLong reducer;
5779              if ((transformer = this.transformer) != null &&
5780                  (reducer = this.reducer) != null) {
5781                  long r = this.basis;
5782 <                for (int b; (b = preSplit()) > 0;)
5782 >                for (int i = baseIndex, f, h; batch > 0 &&
5783 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5784 >                    addToPendingCount(1);
5785                      (rights = new MapReduceValuesToLongTask<K,V>
5786 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5787 <                V v;
5788 <                while ((v = advance()) != null)
5789 <                    r = reducer.apply(r, transformer.apply(v));
5786 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5787 >                      rights, transformer, r, reducer)).fork();
5788 >                }
5789 >                for (Node<K,V> p; (p = advance()) != null; )
5790 >                    r = reducer.apply(r, transformer.apply(p.val));
5791                  result = r;
5792                  CountedCompleter<?> c;
5793                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5794 <                    MapReduceValuesToLongTask<K,V>
5794 >                    @SuppressWarnings("unchecked") MapReduceValuesToLongTask<K,V>
5795                          t = (MapReduceValuesToLongTask<K,V>)c,
5796                          s = t.rights;
5797                      while (s != null) {
# Line 6521 | Line 5803 | public class ConcurrentHashMapV8<K, V>
5803          }
5804      }
5805  
5806 <    @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
5807 <        extends Traverser<K,V,Long> {
5806 >    @SuppressWarnings("serial")
5807 >    static final class MapReduceEntriesToLongTask<K,V>
5808 >        extends BulkTask<K,V,Long> {
5809          final ObjectToLong<Map.Entry<K,V>> transformer;
5810          final LongByLongToLong reducer;
5811          final long basis;
5812          long result;
5813          MapReduceEntriesToLongTask<K,V> rights, nextRight;
5814          MapReduceEntriesToLongTask
5815 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5815 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5816               MapReduceEntriesToLongTask<K,V> nextRight,
5817               ObjectToLong<Map.Entry<K,V>> transformer,
5818               long basis,
5819               LongByLongToLong reducer) {
5820 <            super(m, p, b); this.nextRight = nextRight;
5820 >            super(p, b, i, f, t); this.nextRight = nextRight;
5821              this.transformer = transformer;
5822              this.basis = basis; this.reducer = reducer;
5823          }
5824          public final Long getRawResult() { return result; }
5825 <        @SuppressWarnings("unchecked") public final void compute() {
5825 >        public final void compute() {
5826              final ObjectToLong<Map.Entry<K,V>> transformer;
5827              final LongByLongToLong reducer;
5828              if ((transformer = this.transformer) != null &&
5829                  (reducer = this.reducer) != null) {
5830                  long r = this.basis;
5831 <                for (int b; (b = preSplit()) > 0;)
5831 >                for (int i = baseIndex, f, h; batch > 0 &&
5832 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5833 >                    addToPendingCount(1);
5834                      (rights = new MapReduceEntriesToLongTask<K,V>
5835 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5836 <                V v;
5837 <                while ((v = advance()) != null)
5838 <                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
5839 <                                                                    v)));
5835 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5836 >                      rights, transformer, r, reducer)).fork();
5837 >                }
5838 >                for (Node<K,V> p; (p = advance()) != null; )
5839 >                    r = reducer.apply(r, transformer.apply(p));
5840                  result = r;
5841                  CountedCompleter<?> c;
5842                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5843 <                    MapReduceEntriesToLongTask<K,V>
5843 >                    @SuppressWarnings("unchecked") MapReduceEntriesToLongTask<K,V>
5844                          t = (MapReduceEntriesToLongTask<K,V>)c,
5845                          s = t.rights;
5846                      while (s != null) {
# Line 6567 | Line 5852 | public class ConcurrentHashMapV8<K, V>
5852          }
5853      }
5854  
5855 <    @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
5856 <        extends Traverser<K,V,Long> {
5855 >    @SuppressWarnings("serial")
5856 >    static final class MapReduceMappingsToLongTask<K,V>
5857 >        extends BulkTask<K,V,Long> {
5858          final ObjectByObjectToLong<? super K, ? super V> transformer;
5859          final LongByLongToLong reducer;
5860          final long basis;
5861          long result;
5862          MapReduceMappingsToLongTask<K,V> rights, nextRight;
5863          MapReduceMappingsToLongTask
5864 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5864 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5865               MapReduceMappingsToLongTask<K,V> nextRight,
5866               ObjectByObjectToLong<? super K, ? super V> transformer,
5867               long basis,
5868               LongByLongToLong reducer) {
5869 <            super(m, p, b); this.nextRight = nextRight;
5869 >            super(p, b, i, f, t); this.nextRight = nextRight;
5870              this.transformer = transformer;
5871              this.basis = basis; this.reducer = reducer;
5872          }
5873          public final Long getRawResult() { return result; }
5874 <        @SuppressWarnings("unchecked") public final void compute() {
5874 >        public final void compute() {
5875              final ObjectByObjectToLong<? super K, ? super V> transformer;
5876              final LongByLongToLong reducer;
5877              if ((transformer = this.transformer) != null &&
5878                  (reducer = this.reducer) != null) {
5879                  long r = this.basis;
5880 <                for (int b; (b = preSplit()) > 0;)
5880 >                for (int i = baseIndex, f, h; batch > 0 &&
5881 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5882 >                    addToPendingCount(1);
5883                      (rights = new MapReduceMappingsToLongTask<K,V>
5884 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5885 <                V v;
5886 <                while ((v = advance()) != null)
5887 <                    r = reducer.apply(r, transformer.apply((K)nextKey, v));
5884 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5885 >                      rights, transformer, r, reducer)).fork();
5886 >                }
5887 >                for (Node<K,V> p; (p = advance()) != null; )
5888 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
5889                  result = r;
5890                  CountedCompleter<?> c;
5891                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5892 <                    MapReduceMappingsToLongTask<K,V>
5892 >                    @SuppressWarnings("unchecked") MapReduceMappingsToLongTask<K,V>
5893                          t = (MapReduceMappingsToLongTask<K,V>)c,
5894                          s = t.rights;
5895                      while (s != null) {
# Line 6612 | Line 5901 | public class ConcurrentHashMapV8<K, V>
5901          }
5902      }
5903  
5904 <    @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
5905 <        extends Traverser<K,V,Integer> {
5904 >    @SuppressWarnings("serial")
5905 >    static final class MapReduceKeysToIntTask<K,V>
5906 >        extends BulkTask<K,V,Integer> {
5907          final ObjectToInt<? super K> transformer;
5908          final IntByIntToInt reducer;
5909          final int basis;
5910          int result;
5911          MapReduceKeysToIntTask<K,V> rights, nextRight;
5912          MapReduceKeysToIntTask
5913 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5913 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5914               MapReduceKeysToIntTask<K,V> nextRight,
5915               ObjectToInt<? super K> transformer,
5916               int basis,
5917               IntByIntToInt reducer) {
5918 <            super(m, p, b); this.nextRight = nextRight;
5918 >            super(p, b, i, f, t); this.nextRight = nextRight;
5919              this.transformer = transformer;
5920              this.basis = basis; this.reducer = reducer;
5921          }
5922          public final Integer getRawResult() { return result; }
5923 <        @SuppressWarnings("unchecked") public final void compute() {
5923 >        public final void compute() {
5924              final ObjectToInt<? super K> transformer;
5925              final IntByIntToInt reducer;
5926              if ((transformer = this.transformer) != null &&
5927                  (reducer = this.reducer) != null) {
5928                  int r = this.basis;
5929 <                for (int b; (b = preSplit()) > 0;)
5929 >                for (int i = baseIndex, f, h; batch > 0 &&
5930 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5931 >                    addToPendingCount(1);
5932                      (rights = new MapReduceKeysToIntTask<K,V>
5933 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5934 <                while (advance() != null)
5935 <                    r = reducer.apply(r, transformer.apply((K)nextKey));
5933 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5934 >                      rights, transformer, r, reducer)).fork();
5935 >                }
5936 >                for (Node<K,V> p; (p = advance()) != null; )
5937 >                    r = reducer.apply(r, transformer.apply(p.key));
5938                  result = r;
5939                  CountedCompleter<?> c;
5940                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5941 <                    MapReduceKeysToIntTask<K,V>
5941 >                    @SuppressWarnings("unchecked") MapReduceKeysToIntTask<K,V>
5942                          t = (MapReduceKeysToIntTask<K,V>)c,
5943                          s = t.rights;
5944                      while (s != null) {
# Line 6656 | Line 5950 | public class ConcurrentHashMapV8<K, V>
5950          }
5951      }
5952  
5953 <    @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
5954 <        extends Traverser<K,V,Integer> {
5953 >    @SuppressWarnings("serial")
5954 >    static final class MapReduceValuesToIntTask<K,V>
5955 >        extends BulkTask<K,V,Integer> {
5956          final ObjectToInt<? super V> transformer;
5957          final IntByIntToInt reducer;
5958          final int basis;
5959          int result;
5960          MapReduceValuesToIntTask<K,V> rights, nextRight;
5961          MapReduceValuesToIntTask
5962 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5962 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5963               MapReduceValuesToIntTask<K,V> nextRight,
5964               ObjectToInt<? super V> transformer,
5965               int basis,
5966               IntByIntToInt reducer) {
5967 <            super(m, p, b); this.nextRight = nextRight;
5967 >            super(p, b, i, f, t); this.nextRight = nextRight;
5968              this.transformer = transformer;
5969              this.basis = basis; this.reducer = reducer;
5970          }
5971          public final Integer getRawResult() { return result; }
5972 <        @SuppressWarnings("unchecked") public final void compute() {
5972 >        public final void compute() {
5973              final ObjectToInt<? super V> transformer;
5974              final IntByIntToInt reducer;
5975              if ((transformer = this.transformer) != null &&
5976                  (reducer = this.reducer) != null) {
5977                  int r = this.basis;
5978 <                for (int b; (b = preSplit()) > 0;)
5978 >                for (int i = baseIndex, f, h; batch > 0 &&
5979 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5980 >                    addToPendingCount(1);
5981                      (rights = new MapReduceValuesToIntTask<K,V>
5982 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5983 <                V v;
5984 <                while ((v = advance()) != null)
5985 <                    r = reducer.apply(r, transformer.apply(v));
5982 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5983 >                      rights, transformer, r, reducer)).fork();
5984 >                }
5985 >                for (Node<K,V> p; (p = advance()) != null; )
5986 >                    r = reducer.apply(r, transformer.apply(p.val));
5987                  result = r;
5988                  CountedCompleter<?> c;
5989                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5990 <                    MapReduceValuesToIntTask<K,V>
5990 >                    @SuppressWarnings("unchecked") MapReduceValuesToIntTask<K,V>
5991                          t = (MapReduceValuesToIntTask<K,V>)c,
5992                          s = t.rights;
5993                      while (s != null) {
# Line 6701 | Line 5999 | public class ConcurrentHashMapV8<K, V>
5999          }
6000      }
6001  
6002 <    @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6003 <        extends Traverser<K,V,Integer> {
6002 >    @SuppressWarnings("serial")
6003 >    static final class MapReduceEntriesToIntTask<K,V>
6004 >        extends BulkTask<K,V,Integer> {
6005          final ObjectToInt<Map.Entry<K,V>> transformer;
6006          final IntByIntToInt reducer;
6007          final int basis;
6008          int result;
6009          MapReduceEntriesToIntTask<K,V> rights, nextRight;
6010          MapReduceEntriesToIntTask
6011 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6011 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6012               MapReduceEntriesToIntTask<K,V> nextRight,
6013               ObjectToInt<Map.Entry<K,V>> transformer,
6014               int basis,
6015               IntByIntToInt reducer) {
6016 <            super(m, p, b); this.nextRight = nextRight;
6016 >            super(p, b, i, f, t); this.nextRight = nextRight;
6017              this.transformer = transformer;
6018              this.basis = basis; this.reducer = reducer;
6019          }
6020          public final Integer getRawResult() { return result; }
6021 <        @SuppressWarnings("unchecked") public final void compute() {
6021 >        public final void compute() {
6022              final ObjectToInt<Map.Entry<K,V>> transformer;
6023              final IntByIntToInt reducer;
6024              if ((transformer = this.transformer) != null &&
6025                  (reducer = this.reducer) != null) {
6026                  int r = this.basis;
6027 <                for (int b; (b = preSplit()) > 0;)
6027 >                for (int i = baseIndex, f, h; batch > 0 &&
6028 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6029 >                    addToPendingCount(1);
6030                      (rights = new MapReduceEntriesToIntTask<K,V>
6031 <                     (map, this, b, rights, transformer, r, reducer)).fork();
6032 <                V v;
6033 <                while ((v = advance()) != null)
6034 <                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
6035 <                                                                    v)));
6031 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6032 >                      rights, transformer, r, reducer)).fork();
6033 >                }
6034 >                for (Node<K,V> p; (p = advance()) != null; )
6035 >                    r = reducer.apply(r, transformer.apply(p));
6036                  result = r;
6037                  CountedCompleter<?> c;
6038                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
6039 <                    MapReduceEntriesToIntTask<K,V>
6039 >                    @SuppressWarnings("unchecked") MapReduceEntriesToIntTask<K,V>
6040                          t = (MapReduceEntriesToIntTask<K,V>)c,
6041                          s = t.rights;
6042                      while (s != null) {
# Line 6747 | Line 6048 | public class ConcurrentHashMapV8<K, V>
6048          }
6049      }
6050  
6051 <    @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6052 <        extends Traverser<K,V,Integer> {
6051 >    @SuppressWarnings("serial")
6052 >    static final class MapReduceMappingsToIntTask<K,V>
6053 >        extends BulkTask<K,V,Integer> {
6054          final ObjectByObjectToInt<? super K, ? super V> transformer;
6055          final IntByIntToInt reducer;
6056          final int basis;
6057          int result;
6058          MapReduceMappingsToIntTask<K,V> rights, nextRight;
6059          MapReduceMappingsToIntTask
6060 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6060 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6061               MapReduceMappingsToIntTask<K,V> nextRight,
6062               ObjectByObjectToInt<? super K, ? super V> transformer,
6063               int basis,
6064               IntByIntToInt reducer) {
6065 <            super(m, p, b); this.nextRight = nextRight;
6065 >            super(p, b, i, f, t); this.nextRight = nextRight;
6066              this.transformer = transformer;
6067              this.basis = basis; this.reducer = reducer;
6068          }
6069          public final Integer getRawResult() { return result; }
6070 <        @SuppressWarnings("unchecked") public final void compute() {
6070 >        public final void compute() {
6071              final ObjectByObjectToInt<? super K, ? super V> transformer;
6072              final IntByIntToInt reducer;
6073              if ((transformer = this.transformer) != null &&
6074                  (reducer = this.reducer) != null) {
6075                  int r = this.basis;
6076 <                for (int b; (b = preSplit()) > 0;)
6076 >                for (int i = baseIndex, f, h; batch > 0 &&
6077 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6078 >                    addToPendingCount(1);
6079                      (rights = new MapReduceMappingsToIntTask<K,V>
6080 <                     (map, this, b, rights, transformer, r, reducer)).fork();
6081 <                V v;
6082 <                while ((v = advance()) != null)
6083 <                    r = reducer.apply(r, transformer.apply((K)nextKey, v));
6080 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6081 >                      rights, transformer, r, reducer)).fork();
6082 >                }
6083 >                for (Node<K,V> p; (p = advance()) != null; )
6084 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
6085                  result = r;
6086                  CountedCompleter<?> c;
6087                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
6088 <                    MapReduceMappingsToIntTask<K,V>
6088 >                    @SuppressWarnings("unchecked") MapReduceMappingsToIntTask<K,V>
6089                          t = (MapReduceMappingsToIntTask<K,V>)c,
6090                          s = t.rights;
6091                      while (s != null) {
# Line 6792 | Line 6097 | public class ConcurrentHashMapV8<K, V>
6097          }
6098      }
6099  
6100 +    /* ---------------- Counters -------------- */
6101 +
6102 +    // Adapted from LongAdder and Striped64.
6103 +    // See their internal docs for explanation.
6104 +
6105 +    // A padded cell for distributing counts
6106 +    static final class CounterCell {
6107 +        volatile long p0, p1, p2, p3, p4, p5, p6;
6108 +        volatile long value;
6109 +        volatile long q0, q1, q2, q3, q4, q5, q6;
6110 +        CounterCell(long x) { value = x; }
6111 +    }
6112 +
6113 +    /**
6114 +     * Holder for the thread-local hash code determining which
6115 +     * CounterCell to use. The code is initialized via the
6116 +     * counterHashCodeGenerator, but may be moved upon collisions.
6117 +     */
6118 +    static final class CounterHashCode {
6119 +        int code;
6120 +    }
6121 +
6122 +    /**
6123 +     * Generates initial value for per-thread CounterHashCodes.
6124 +     */
6125 +    static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
6126 +
6127 +    /**
6128 +     * Increment for counterHashCodeGenerator. See class ThreadLocal
6129 +     * for explanation.
6130 +     */
6131 +    static final int SEED_INCREMENT = 0x61c88647;
6132 +
6133 +    /**
6134 +     * Per-thread counter hash codes. Shared across all instances.
6135 +     */
6136 +    static final ThreadLocal<CounterHashCode> threadCounterHashCode =
6137 +        new ThreadLocal<CounterHashCode>();
6138 +
6139 +
6140 +    final long sumCount() {
6141 +        CounterCell[] as = counterCells; CounterCell a;
6142 +        long sum = baseCount;
6143 +        if (as != null) {
6144 +            for (int i = 0; i < as.length; ++i) {
6145 +                if ((a = as[i]) != null)
6146 +                    sum += a.value;
6147 +            }
6148 +        }
6149 +        return sum;
6150 +    }
6151 +
6152 +    // See LongAdder version for explanation
6153 +    private final void fullAddCount(long x, CounterHashCode hc,
6154 +                                    boolean wasUncontended) {
6155 +        int h;
6156 +        if (hc == null) {
6157 +            hc = new CounterHashCode();
6158 +            int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
6159 +            h = hc.code = (s == 0) ? 1 : s; // Avoid zero
6160 +            threadCounterHashCode.set(hc);
6161 +        }
6162 +        else
6163 +            h = hc.code;
6164 +        boolean collide = false;                // True if last slot nonempty
6165 +        for (;;) {
6166 +            CounterCell[] as; CounterCell a; int n; long v;
6167 +            if ((as = counterCells) != null && (n = as.length) > 0) {
6168 +                if ((a = as[(n - 1) & h]) == null) {
6169 +                    if (cellsBusy == 0) {            // Try to attach new Cell
6170 +                        CounterCell r = new CounterCell(x); // Optimistic create
6171 +                        if (cellsBusy == 0 &&
6172 +                            U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6173 +                            boolean created = false;
6174 +                            try {               // Recheck under lock
6175 +                                CounterCell[] rs; int m, j;
6176 +                                if ((rs = counterCells) != null &&
6177 +                                    (m = rs.length) > 0 &&
6178 +                                    rs[j = (m - 1) & h] == null) {
6179 +                                    rs[j] = r;
6180 +                                    created = true;
6181 +                                }
6182 +                            } finally {
6183 +                                cellsBusy = 0;
6184 +                            }
6185 +                            if (created)
6186 +                                break;
6187 +                            continue;           // Slot is now non-empty
6188 +                        }
6189 +                    }
6190 +                    collide = false;
6191 +                }
6192 +                else if (!wasUncontended)       // CAS already known to fail
6193 +                    wasUncontended = true;      // Continue after rehash
6194 +                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
6195 +                    break;
6196 +                else if (counterCells != as || n >= NCPU)
6197 +                    collide = false;            // At max size or stale
6198 +                else if (!collide)
6199 +                    collide = true;
6200 +                else if (cellsBusy == 0 &&
6201 +                         U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6202 +                    try {
6203 +                        if (counterCells == as) {// Expand table unless stale
6204 +                            CounterCell[] rs = new CounterCell[n << 1];
6205 +                            for (int i = 0; i < n; ++i)
6206 +                                rs[i] = as[i];
6207 +                            counterCells = rs;
6208 +                        }
6209 +                    } finally {
6210 +                        cellsBusy = 0;
6211 +                    }
6212 +                    collide = false;
6213 +                    continue;                   // Retry with expanded table
6214 +                }
6215 +                h ^= h << 13;                   // Rehash
6216 +                h ^= h >>> 17;
6217 +                h ^= h << 5;
6218 +            }
6219 +            else if (cellsBusy == 0 && counterCells == as &&
6220 +                     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6221 +                boolean init = false;
6222 +                try {                           // Initialize table
6223 +                    if (counterCells == as) {
6224 +                        CounterCell[] rs = new CounterCell[2];
6225 +                        rs[h & 1] = new CounterCell(x);
6226 +                        counterCells = rs;
6227 +                        init = true;
6228 +                    }
6229 +                } finally {
6230 +                    cellsBusy = 0;
6231 +                }
6232 +                if (init)
6233 +                    break;
6234 +            }
6235 +            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
6236 +                break;                          // Fall back on using base
6237 +        }
6238 +        hc.code = h;                            // Record index for next time
6239 +    }
6240 +
6241      // Unsafe mechanics
6242      private static final sun.misc.Unsafe U;
6243      private static final long SIZECTL;
6244      private static final long TRANSFERINDEX;
6799    private static final long TRANSFERORIGIN;
6245      private static final long BASECOUNT;
6246 <    private static final long COUNTERBUSY;
6246 >    private static final long CELLSBUSY;
6247      private static final long CELLVALUE;
6248      private static final long ABASE;
6249      private static final int ASHIFT;
6250  
6251      static {
6807        int ss;
6252          try {
6253              U = getUnsafe();
6254              Class<?> k = ConcurrentHashMapV8.class;
# Line 6812 | Line 6256 | public class ConcurrentHashMapV8<K, V>
6256                  (k.getDeclaredField("sizeCtl"));
6257              TRANSFERINDEX = U.objectFieldOffset
6258                  (k.getDeclaredField("transferIndex"));
6815            TRANSFERORIGIN = U.objectFieldOffset
6816                (k.getDeclaredField("transferOrigin"));
6259              BASECOUNT = U.objectFieldOffset
6260                  (k.getDeclaredField("baseCount"));
6261 <            COUNTERBUSY = U.objectFieldOffset
6262 <                (k.getDeclaredField("counterBusy"));
6261 >            CELLSBUSY = U.objectFieldOffset
6262 >                (k.getDeclaredField("cellsBusy"));
6263              Class<?> ck = CounterCell.class;
6264              CELLVALUE = U.objectFieldOffset
6265                  (ck.getDeclaredField("value"));
6266 <            Class<?> sc = Node[].class;
6267 <            ABASE = U.arrayBaseOffset(sc);
6268 <            ss = U.arrayIndexScale(sc);
6269 <            ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6266 >            Class<?> ak = Node[].class;
6267 >            ABASE = U.arrayBaseOffset(ak);
6268 >            int scale = U.arrayIndexScale(ak);
6269 >            if ((scale & (scale - 1)) != 0)
6270 >                throw new Error("data type scale not a power of two");
6271 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6272          } catch (Exception e) {
6273              throw new Error(e);
6274          }
6831        if ((ss & (ss-1)) != 0)
6832            throw new Error("data type scale not a power of two");
6275      }
6276  
6277      /**
# Line 6842 | Line 6284 | public class ConcurrentHashMapV8<K, V>
6284      private static sun.misc.Unsafe getUnsafe() {
6285          try {
6286              return sun.misc.Unsafe.getUnsafe();
6287 <        } catch (SecurityException se) {
6288 <            try {
6289 <                return java.security.AccessController.doPrivileged
6290 <                    (new java.security
6291 <                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
6292 <                        public sun.misc.Unsafe run() throws Exception {
6293 <                            java.lang.reflect.Field f = sun.misc
6294 <                                .Unsafe.class.getDeclaredField("theUnsafe");
6295 <                            f.setAccessible(true);
6296 <                            return (sun.misc.Unsafe) f.get(null);
6297 <                        }});
6298 <            } catch (java.security.PrivilegedActionException e) {
6299 <                throw new RuntimeException("Could not initialize intrinsics",
6300 <                                           e.getCause());
6301 <            }
6287 >        } catch (SecurityException tryReflectionInstead) {}
6288 >        try {
6289 >            return java.security.AccessController.doPrivileged
6290 >            (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
6291 >                public sun.misc.Unsafe run() throws Exception {
6292 >                    Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
6293 >                    for (java.lang.reflect.Field f : k.getDeclaredFields()) {
6294 >                        f.setAccessible(true);
6295 >                        Object x = f.get(null);
6296 >                        if (k.isInstance(x))
6297 >                            return k.cast(x);
6298 >                    }
6299 >                    throw new NoSuchFieldError("the Unsafe");
6300 >                }});
6301 >        } catch (java.security.PrivilegedActionException e) {
6302 >            throw new RuntimeException("Could not initialize intrinsics",
6303 >                                       e.getCause());
6304          }
6305      }
6306   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines