ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
(Generate patch)

Comparing jsr166/src/jsr166e/ConcurrentHashMapV8.java (file contents):
Revision 1.80 by jsr166, Sat Nov 24 03:46:28 2012 UTC vs.
Revision 1.86 by jsr166, Sun Jan 6 20:05:51 2013 UTC

# Line 21 | Line 21 | import java.util.Enumeration;
21   import java.util.ConcurrentModificationException;
22   import java.util.NoSuchElementException;
23   import java.util.concurrent.ConcurrentMap;
24 import java.util.concurrent.ThreadLocalRandom;
25 import java.util.concurrent.locks.LockSupport;
24   import java.util.concurrent.locks.AbstractQueuedSynchronizer;
25 + import java.util.concurrent.atomic.AtomicInteger;
26   import java.util.concurrent.atomic.AtomicReference;
28
29 import java.io.Serializable;
30
31 import java.util.Comparator;
32 import java.util.Arrays;
33 import java.util.Map;
34 import java.util.Set;
35 import java.util.Collection;
36 import java.util.AbstractMap;
37 import java.util.AbstractSet;
38 import java.util.AbstractCollection;
39 import java.util.Hashtable;
40 import java.util.HashMap;
41 import java.util.Iterator;
42 import java.util.Enumeration;
43 import java.util.ConcurrentModificationException;
44 import java.util.NoSuchElementException;
45 import java.util.concurrent.ConcurrentMap;
46 import java.util.concurrent.ThreadLocalRandom;
47 import java.util.concurrent.locks.LockSupport;
48 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
49 import java.util.concurrent.atomic.AtomicReference;
50
27   import java.io.Serializable;
28  
29   /**
# Line 124 | Line 100 | import java.io.Serializable;
100   * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
101   * does <em>not</em> allow {@code null} to be used as a key or value.
102   *
103 < * <p>ConcurrentHashMapV8s support parallel operations using the {@link
104 < * ForkJoinPool#commonPool}. (Tasks that may be used in other contexts
105 < * are available in class {@link ForkJoinTasks}). These operations are
106 < * designed to be safely, and often sensibly, applied even with maps
107 < * that are being concurrently updated by other threads; for example,
108 < * when computing a snapshot summary of the values in a shared
109 < * registry.  There are three kinds of operation, each with four
110 < * forms, accepting functions with Keys, Values, Entries, and (Key,
111 < * Value) arguments and/or return values. (The first three forms are
112 < * also available via the {@link #keySet()}, {@link #values()} and
113 < * {@link #entrySet()} views). Because the elements of a
114 < * ConcurrentHashMapV8 are not ordered in any particular way, and may be
115 < * processed in different orders in different parallel executions, the
116 < * correctness of supplied functions should not depend on any
117 < * ordering, or on any other objects or values that may transiently
118 < * change while computation is in progress; and except for forEach
119 < * actions, should ideally be side-effect-free.
103 > * <p>ConcurrentHashMapV8s support sequential and parallel operations
104 > * bulk operations. (Parallel forms use the {@link
105 > * ForkJoinPool#commonPool()}). Tasks that may be used in other
106 > * contexts are available in class {@link ForkJoinTasks}. These
107 > * operations are designed to be safely, and often sensibly, applied
108 > * even with maps that are being concurrently updated by other
109 > * threads; for example, when computing a snapshot summary of the
110 > * values in a shared registry.  There are three kinds of operation,
111 > * each with four forms, accepting functions with Keys, Values,
112 > * Entries, and (Key, Value) arguments and/or return values. Because
113 > * the elements of a ConcurrentHashMapV8 are not ordered in any
114 > * particular way, and may be processed in different orders in
115 > * different parallel executions, the correctness of supplied
116 > * functions should not depend on any ordering, or on any other
117 > * objects or values that may transiently change while computation is
118 > * in progress; and except for forEach actions, should ideally be
119 > * side-effect-free.
120   *
121   * <ul>
122   * <li> forEach: Perform a given action on each element.
# Line 213 | Line 189 | import java.io.Serializable;
189   * exceptions, or would have done so if the first exception had
190   * not occurred.
191   *
192 < * <p>Parallel speedups for bulk operations compared to sequential
193 < * processing are common but not guaranteed.  Operations involving
194 < * brief functions on small maps may execute more slowly than
195 < * sequential loops if the underlying work to parallelize the
196 < * computation is more expensive than the computation itself.
197 < * Similarly, parallelization may not lead to much actual parallelism
198 < * if all processors are busy performing unrelated tasks.
192 > * <p>Speedups for parallel compared to sequential forms are common
193 > * but not guaranteed.  Parallel operations involving brief functions
194 > * on small maps may execute more slowly than sequential forms if the
195 > * underlying work to parallelize the computation is more expensive
196 > * than the computation itself.  Similarly, parallelization may not
197 > * lead to much actual parallelism if all processors are busy
198 > * performing unrelated tasks.
199   *
200   * <p>All arguments to all task methods must be non-null.
201   *
# Line 309 | Line 285 | public class ConcurrentHashMapV8<K, V>
285          Spliterator<T> split();
286      }
287  
312
288      /*
289       * Overview:
290       *
# Line 320 | Line 295 | public class ConcurrentHashMapV8<K, V>
295       * the same or better than java.util.HashMap, and to support high
296       * initial insertion rates on an empty table by many threads.
297       *
298 <     * Each key-value mapping is held in a Node.  Because Node fields
299 <     * can contain special values, they are defined using plain Object
300 <     * types. Similarly in turn, all internal methods that use them
301 <     * work off Object types. And similarly, so do the internal
302 <     * methods of auxiliary iterator and view classes.  All public
303 <     * generic typed methods relay in/out of these internal methods,
304 <     * supplying null-checks and casts as needed. This also allows
305 <     * many of the public methods to be factored into a smaller number
306 <     * of internal methods (although sadly not so for the five
332 <     * variants of put-related operations). The validation-based
333 <     * approach explained below leads to a lot of code sprawl because
298 >     * Each key-value mapping is held in a Node.  Because Node key
299 >     * fields can contain special values, they are defined using plain
300 >     * Object types (not type "K"). This leads to a lot of explicit
301 >     * casting (and many explicit warning suppressions to tell
302 >     * compilers not to complain about it). It also allows some of the
303 >     * public methods to be factored into a smaller number of internal
304 >     * methods (although sadly not so for the five variants of
305 >     * put-related operations). The validation-based approach
306 >     * explained below leads to a lot of code sprawl because
307       * retry-control precludes factoring into smaller methods.
308       *
309       * The table is lazily initialized to a power-of-two size upon the
# Line 344 | Line 317 | public class ConcurrentHashMapV8<K, V>
317       * as lookups check hash code and non-nullness of value before
318       * checking key equality.
319       *
320 <     * We use the top two bits of Node hash fields for control
321 <     * purposes -- they are available anyway because of addressing
322 <     * constraints.  As explained further below, these top bits are
323 <     * used as follows:
324 <     *  00 - Normal
325 <     *  01 - Locked
353 <     *  11 - Locked and may have a thread waiting for lock
354 <     *  10 - Node is a forwarding node
355 <     *
356 <     * The lower 30 bits of each Node's hash field contain a
357 <     * transformation of the key's hash code, except for forwarding
358 <     * nodes, for which the lower bits are zero (and so always have
359 <     * hash field == MOVED).
320 >     * We use the top (sign) bit of Node hash fields for control
321 >     * purposes -- it is available anyway because of addressing
322 >     * constraints.  Nodes with negative hash fields are forwarding
323 >     * nodes to either TreeBins or resized tables.  The lower 31 bits
324 >     * of each normal Node's hash field contain a transformation of
325 >     * the key's hash code.
326       *
327       * Insertion (via put or its variants) of the first node in an
328       * empty bin is performed by just CASing it to the bin.  This is
# Line 365 | Line 331 | public class ConcurrentHashMapV8<K, V>
331       * delete, and replace) require locks.  We do not want to waste
332       * the space required to associate a distinct lock object with
333       * each bin, so instead use the first node of a bin list itself as
334 <     * a lock. Blocking support for these locks relies on the builtin
335 <     * "synchronized" monitors.  However, we also need a tryLock
370 <     * construction, so we overlay these by using bits of the Node
371 <     * hash field for lock control (see above), and so normally use
372 <     * builtin monitors only for blocking and signalling using
373 <     * wait/notifyAll constructions. See Node.tryAwaitLock.
334 >     * a lock. Locking support for these locks relies on builtin
335 >     * "synchronized" monitors.
336       *
337       * Using the first node of a list as a lock does not by itself
338       * suffice though: When a node is locked, any update must first
# Line 432 | Line 394 | public class ConcurrentHashMapV8<K, V>
394       * iterators in the same way.
395       *
396       * The table is resized when occupancy exceeds a percentage
397 <     * threshold (nominally, 0.75, but see below).  Only a single
398 <     * thread performs the resize (using field "sizeCtl", to arrange
399 <     * exclusion), but the table otherwise remains usable for reads
400 <     * and updates. Resizing proceeds by transferring bins, one by
401 <     * one, from the table to the next table.  Because we are using
402 <     * power-of-two expansion, the elements from each bin must either
403 <     * stay at same index, or move with a power of two offset. We
404 <     * eliminate unnecessary node creation by catching cases where old
405 <     * nodes can be reused because their next fields won't change.  On
406 <     * average, only about one-sixth of them need cloning when a table
407 <     * doubles. The nodes they replace will be garbage collectable as
408 <     * soon as they are no longer referenced by any reader thread that
409 <     * may be in the midst of concurrently traversing table.  Upon
410 <     * transfer, the old table bin contains only a special forwarding
411 <     * node (with hash field "MOVED") that contains the next table as
412 <     * its key. On encountering a forwarding node, access and update
413 <     * operations restart, using the new table.
414 <     *
415 <     * Each bin transfer requires its bin lock. However, unlike other
416 <     * cases, a transfer can skip a bin if it fails to acquire its
417 <     * lock, and revisit it later (unless it is a TreeBin). Method
418 <     * rebuild maintains a buffer of TRANSFER_BUFFER_SIZE bins that
419 <     * have been skipped because of failure to acquire a lock, and
420 <     * blocks only if none are available (i.e., only very rarely).
421 <     * The transfer operation must also ensure that all accessible
422 <     * bins in both the old and new table are usable by any traversal.
423 <     * When there are no lock acquisition failures, this is arranged
424 <     * simply by proceeding from the last bin (table.length - 1) up
425 <     * towards the first.  Upon seeing a forwarding node, traversals
426 <     * (see class Iter) arrange to move to the new table
427 <     * without revisiting nodes.  However, when any node is skipped
428 <     * during a transfer, all earlier table bins may have become
429 <     * visible, so are initialized with a reverse-forwarding node back
430 <     * to the old table until the new ones are established. (This
431 <     * sometimes requires transiently locking a forwarding node, which
432 <     * is possible under the above encoding.) These more expensive
433 <     * mechanics trigger only when necessary.
397 >     * threshold (nominally, 0.75, but see below).  Any thread
398 >     * noticing an overfull bin may assist in resizing after the
399 >     * initiating thread allocates and sets up the replacement
400 >     * array. However, rather than stalling, these other threads may
401 >     * proceed with insertions etc.  The use of TreeBins shields us
402 >     * from the worst case effects of overfilling while resizes are in
403 >     * progress.  Resizing proceeds by transferring bins, one by one,
404 >     * from the table to the next table. To enable concurrency, the
405 >     * next table must be (incrementally) prefilled with place-holders
406 >     * serving as reverse forwarders to the old table.  Because we are
407 >     * using power-of-two expansion, the elements from each bin must
408 >     * either stay at same index, or move with a power of two
409 >     * offset. We eliminate unnecessary node creation by catching
410 >     * cases where old nodes can be reused because their next fields
411 >     * won't change.  On average, only about one-sixth of them need
412 >     * cloning when a table doubles. The nodes they replace will be
413 >     * garbage collectable as soon as they are no longer referenced by
414 >     * any reader thread that may be in the midst of concurrently
415 >     * traversing table.  Upon transfer, the old table bin contains
416 >     * only a special forwarding node (with hash field "MOVED") that
417 >     * contains the next table as its key. On encountering a
418 >     * forwarding node, access and update operations restart, using
419 >     * the new table.
420 >     *
421 >     * Each bin transfer requires its bin lock, which can stall
422 >     * waiting for locks while resizing. However, because other
423 >     * threads can join in and help resize rather than contend for
424 >     * locks, average aggregate waits become shorter as resizing
425 >     * progresses.  The transfer operation must also ensure that all
426 >     * accessible bins in both the old and new table are usable by any
427 >     * traversal.  This is arranged by proceeding from the last bin
428 >     * (table.length - 1) up towards the first.  Upon seeing a
429 >     * forwarding node, traversals (see class Traverser) arrange to
430 >     * move to the new table without revisiting nodes.  However, to
431 >     * ensure that no intervening nodes are skipped, bin splitting can
432 >     * only begin after the associated reverse-forwarders are in
433 >     * place.
434       *
435       * The traversal scheme also applies to partial traversals of
436       * ranges of bins (via an alternate Traverser constructor)
# Line 483 | Line 445 | public class ConcurrentHashMapV8<K, V>
445       * These cases attempt to override the initial capacity settings,
446       * but harmlessly fail to take effect in cases of races.
447       *
448 <     * The element count is maintained using a LongAdder, which avoids
449 <     * contention on updates but can encounter cache thrashing if read
450 <     * too frequently during concurrent access. To avoid reading so
451 <     * often, resizing is attempted either when a bin lock is
452 <     * contended, or upon adding to a bin already holding two or more
453 <     * nodes (checked before adding in the xIfAbsent methods, after
454 <     * adding in others). Under uniform hash distributions, the
455 <     * probability of this occurring at threshold is around 13%,
456 <     * meaning that only about 1 in 8 puts check threshold (and after
457 <     * resizing, many fewer do so). But this approximation has high
458 <     * variance for small table sizes, so we check on any collision
459 <     * for sizes <= 64. The bulk putAll operation further reduces
460 <     * contention by only committing count updates upon these size
461 <     * checks.
448 >     * The element count is maintained using a specialization of
449 >     * LongAdder. We need to incorporate a specialization rather than
450 >     * just use a LongAdder in order to access implicit
451 >     * contention-sensing that leads to creation of multiple
452 >     * CounterCells.  The counter mechanics avoid contention on
453 >     * updates but can encounter cache thrashing if read too
454 >     * frequently during concurrent access. To avoid reading so often,
455 >     * resizing under contention is attempted only upon adding to a
456 >     * bin already holding two or more nodes. Under uniform hash
457 >     * distributions, the probability of this occurring at threshold
458 >     * is around 13%, meaning that only about 1 in 8 puts check
459 >     * threshold (and after resizing, many fewer do so). The bulk
460 >     * putAll operation further reduces contention by only committing
461 >     * count updates upon these size checks.
462       *
463       * Maintaining API and serialization compatibility with previous
464       * versions of this class introduces several oddities. Mainly: We
# Line 547 | Line 509 | public class ConcurrentHashMapV8<K, V>
509      private static final float LOAD_FACTOR = 0.75f;
510  
511      /**
550     * The buffer size for skipped bins during transfers. The
551     * value is arbitrary but should be large enough to avoid
552     * most locking stalls during resizes.
553     */
554    private static final int TRANSFER_BUFFER_SIZE = 32;
555
556    /**
512       * The bin count threshold for using a tree rather than list for a
513       * bin.  The value reflects the approximate break-even point for
514       * using tree-based operations.
515       */
516      private static final int TREE_THRESHOLD = 8;
517  
518 +    /**
519 +     * Minimum number of rebinnings per transfer step. Ranges are
520 +     * subdivided to allow multiple resizer threads.  This value
521 +     * serves as a lower bound to avoid resizers encountering
522 +     * excessive memory contention.  The value should be at least
523 +     * DEFAULT_CAPACITY.
524 +     */
525 +    private static final int MIN_TRANSFER_STRIDE = 16;
526 +
527      /*
528 <     * Encodings for special uses of Node hash fields. See above for
565 <     * explanation.
528 >     * Encodings for Node hash fields. See above for explanation.
529       */
530      static final int MOVED     = 0x80000000; // hash field for forwarding nodes
531 <    static final int LOCKED    = 0x40000000; // set/tested only as a bit
532 <    static final int WAITING   = 0xc0000000; // both bits set/tested together
533 <    static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash
531 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
532 >
533 >    /** Number of CPUS, to place bounds on some sizings */
534 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
535 >
536 >    /* ---------------- Counters -------------- */
537 >
538 >    // Adapted from LongAdder and Striped64.
539 >    // See their internal docs for explanation.
540 >
541 >    // A padded cell for distributing counts
542 >    static final class CounterCell {
543 >        volatile long p0, p1, p2, p3, p4, p5, p6;
544 >        volatile long value;
545 >        volatile long q0, q1, q2, q3, q4, q5, q6;
546 >        CounterCell(long x) { value = x; }
547 >    }
548 >
549 >    /**
550 >     * Holder for the thread-local hash code determining which
551 >     * CounterCell to use. The code is initialized via the
552 >     * counterHashCodeGenerator, but may be moved upon collisions.
553 >     */
554 >    static final class CounterHashCode {
555 >        int code;
556 >    }
557 >
558 >    /**
559 >     * Generates initial value for per-thread CounterHashCodes
560 >     */
561 >    static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
562 >
563 >    /**
564 >     * Increment for counterHashCodeGenerator. See class ThreadLocal
565 >     * for explanation.
566 >     */
567 >    static final int SEED_INCREMENT = 0x61c88647;
568 >
569 >    /**
570 >     * Per-thread counter hash codes. Shared across all instances.
571 >     */
572 >    static final ThreadLocal<CounterHashCode> threadCounterHashCode =
573 >        new ThreadLocal<CounterHashCode>();
574  
575      /* ---------------- Fields -------------- */
576  
# Line 575 | Line 578 | public class ConcurrentHashMapV8<K, V>
578       * The array of bins. Lazily initialized upon first insertion.
579       * Size is always a power of two. Accessed directly by iterators.
580       */
581 <    transient volatile Node[] table;
581 >    transient volatile Node<V>[] table;
582 >
583 >    /**
584 >     * The next table to use; non-null only while resizing.
585 >     */
586 >    private transient volatile Node<V>[] nextTable;
587  
588      /**
589 <     * The counter maintaining number of elements.
589 >     * Base counter value, used mainly when there is no contention,
590 >     * but also as a fallback during table initialization
591 >     * races. Updated via CAS.
592       */
593 <    private transient final LongAdder counter;
593 >    private transient volatile long baseCount;
594  
595      /**
596       * Table initialization and resizing control.  When negative, the
597 <     * table is being initialized or resized. Otherwise, when table is
598 <     * null, holds the initial table size to use upon creation, or 0
599 <     * for default. After initialization, holds the next element count
600 <     * value upon which to resize the table.
597 >     * table is being initialized or resized: -1 for initialization,
598 >     * else -(1 + the number of active resizing threads).  Otherwise,
599 >     * when table is null, holds the initial table size to use upon
600 >     * creation, or 0 for default. After initialization, holds the
601 >     * next element count value upon which to resize the table.
602       */
603      private transient volatile int sizeCtl;
604  
605 +    /**
606 +     * The next table index (plus one) to split while resizing.
607 +     */
608 +    private transient volatile int transferIndex;
609 +
610 +    /**
611 +     * The least available table index to split while resizing.
612 +     */
613 +    private transient volatile int transferOrigin;
614 +
615 +    /**
616 +     * Spinlock (locked via CAS) used when resizing and/or creating Cells.
617 +     */
618 +    private transient volatile int counterBusy;
619 +
620 +    /**
621 +     * Table of counter cells. When non-null, size is a power of 2.
622 +     */
623 +    private transient volatile CounterCell[] counterCells;
624 +
625      // views
626      private transient KeySetView<K,V> keySet;
627      private transient ValuesView<K,V> values;
# Line 613 | Line 644 | public class ConcurrentHashMapV8<K, V>
644       * inline assignments below.
645       */
646  
647 <    static final Node tabAt(Node[] tab, int i) { // used by Iter
648 <        return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
647 >    @SuppressWarnings("unchecked") static final <V> Node<V> tabAt
648 >        (Node<V>[] tab, int i) { // used by Traverser
649 >        return (Node<V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
650      }
651  
652 <    private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
653 <        return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
652 >    private static final <V> boolean casTabAt
653 >        (Node<V>[] tab, int i, Node<V> c, Node<V> v) {
654 >        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
655      }
656  
657 <    private static final void setTabAt(Node[] tab, int i, Node v) {
658 <        UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
657 >    private static final <V> void setTabAt
658 >        (Node<V>[] tab, int i, Node<V> v) {
659 >        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
660      }
661  
662      /* ---------------- Nodes -------------- */
# Line 637 | Line 671 | public class ConcurrentHashMapV8<K, V>
671       * before a val, but can only be used after checking val to be
672       * non-null.
673       */
674 <    static class Node {
675 <        volatile int hash;
674 >    static class Node<V> {
675 >        final int hash;
676          final Object key;
677 <        volatile Object val;
678 <        volatile Node next;
677 >        volatile V val;
678 >        volatile Node<V> next;
679  
680 <        Node(int hash, Object key, Object val, Node next) {
680 >        Node(int hash, Object key, V val, Node<V> next) {
681              this.hash = hash;
682              this.key = key;
683              this.val = val;
684              this.next = next;
685          }
652
653        /** CompareAndSet the hash field */
654        final boolean casHash(int cmp, int val) {
655            return UNSAFE.compareAndSwapInt(this, hashOffset, cmp, val);
656        }
657
658        /** The number of spins before blocking for a lock */
659        static final int MAX_SPINS =
660            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
661
662        /**
663         * Spins a while if LOCKED bit set and this node is the first
664         * of its bin, and then sets WAITING bits on hash field and
665         * blocks (once) if they are still set.  It is OK for this
666         * method to return even if lock is not available upon exit,
667         * which enables these simple single-wait mechanics.
668         *
669         * The corresponding signalling operation is performed within
670         * callers: Upon detecting that WAITING has been set when
671         * unlocking lock (via a failed CAS from non-waiting LOCKED
672         * state), unlockers acquire the sync lock and perform a
673         * notifyAll.
674         *
675         * The initial sanity check on tab and bounds is not currently
676         * necessary in the only usages of this method, but enables
677         * use in other future contexts.
678         */
679        final void tryAwaitLock(Node[] tab, int i) {
680            if (tab != null && i >= 0 && i < tab.length) { // sanity check
681                int r = ThreadLocalRandom.current().nextInt(); // randomize spins
682                int spins = MAX_SPINS, h;
683                while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) {
684                    if (spins >= 0) {
685                        r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
686                        if (r >= 0 && --spins == 0)
687                            Thread.yield();  // yield before block
688                    }
689                    else if (casHash(h, h | WAITING)) {
690                        synchronized (this) {
691                            if (tabAt(tab, i) == this &&
692                                (hash & WAITING) == WAITING) {
693                                try {
694                                    wait();
695                                } catch (InterruptedException ie) {
696                                    try {
697                                        Thread.currentThread().interrupt();
698                                    } catch (SecurityException ignore) {
699                                    }
700                                }
701                            }
702                            else
703                                notifyAll(); // possibly won race vs signaller
704                        }
705                        break;
706                    }
707                }
708            }
709        }
710
711        // Unsafe mechanics for casHash
712        private static final sun.misc.Unsafe UNSAFE;
713        private static final long hashOffset;
714
715        static {
716            try {
717                UNSAFE = getUnsafe();
718                Class<?> k = Node.class;
719                hashOffset = UNSAFE.objectFieldOffset
720                    (k.getDeclaredField("hash"));
721            } catch (Exception e) {
722                throw new Error(e);
723            }
724        }
686      }
687  
688      /* ---------------- TreeBins -------------- */
# Line 729 | Line 690 | public class ConcurrentHashMapV8<K, V>
690      /**
691       * Nodes for use in TreeBins
692       */
693 <    static final class TreeNode extends Node {
694 <        TreeNode parent;  // red-black tree links
695 <        TreeNode left;
696 <        TreeNode right;
697 <        TreeNode prev;    // needed to unlink next upon deletion
693 >    static final class TreeNode<V> extends Node<V> {
694 >        TreeNode<V> parent;  // red-black tree links
695 >        TreeNode<V> left;
696 >        TreeNode<V> right;
697 >        TreeNode<V> prev;    // needed to unlink next upon deletion
698          boolean red;
699  
700 <        TreeNode(int hash, Object key, Object val, Node next, TreeNode parent) {
700 >        TreeNode(int hash, Object key, V val, Node<V> next, TreeNode<V> parent) {
701              super(hash, key, val, next);
702              this.parent = parent;
703          }
# Line 785 | Line 746 | public class ConcurrentHashMapV8<K, V>
746       * and writers. Since we don't need to export full Lock API, we
747       * just override the minimal AQS methods and use them directly.
748       */
749 <    static final class TreeBin extends AbstractQueuedSynchronizer {
749 >    static final class TreeBin<V> extends AbstractQueuedSynchronizer {
750          private static final long serialVersionUID = 2249069246763182397L;
751 <        transient TreeNode root;  // root of tree
752 <        transient TreeNode first; // head of next-pointer list
751 >        transient TreeNode<V> root;  // root of tree
752 >        transient TreeNode<V> first; // head of next-pointer list
753  
754          /* AQS overrides */
755          public final boolean isHeldExclusively() { return getState() > 0; }
# Line 819 | Line 780 | public class ConcurrentHashMapV8<K, V>
780          }
781  
782          /** From CLR */
783 <        private void rotateLeft(TreeNode p) {
783 >        private void rotateLeft(TreeNode<V> p) {
784              if (p != null) {
785 <                TreeNode r = p.right, pp, rl;
785 >                TreeNode<V> r = p.right, pp, rl;
786                  if ((rl = p.right = r.left) != null)
787                      rl.parent = p;
788                  if ((pp = r.parent = p.parent) == null)
# Line 836 | Line 797 | public class ConcurrentHashMapV8<K, V>
797          }
798  
799          /** From CLR */
800 <        private void rotateRight(TreeNode p) {
800 >        private void rotateRight(TreeNode<V> p) {
801              if (p != null) {
802 <                TreeNode l = p.left, pp, lr;
802 >                TreeNode<V> l = p.left, pp, lr;
803                  if ((lr = p.left = l.right) != null)
804                      lr.parent = p;
805                  if ((pp = l.parent = p.parent) == null)
# Line 856 | Line 817 | public class ConcurrentHashMapV8<K, V>
817           * Returns the TreeNode (or null if not found) for the given key
818           * starting at given root.
819           */
820 <        @SuppressWarnings("unchecked") final TreeNode getTreeNode
821 <            (int h, Object k, TreeNode p) {
820 >        @SuppressWarnings("unchecked") final TreeNode<V> getTreeNode
821 >            (int h, Object k, TreeNode<V> p) {
822              Class<?> c = k.getClass();
823              while (p != null) {
824                  int dir, ph;  Object pk; Class<?> pc;
# Line 867 | Line 828 | public class ConcurrentHashMapV8<K, V>
828                      if (c != (pc = pk.getClass()) ||
829                          !(k instanceof Comparable) ||
830                          (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
831 <                        dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
832 <                        TreeNode r = null, s = null, pl, pr;
833 <                        if (dir >= 0) {
834 <                            if ((pl = p.left) != null && h <= pl.hash)
835 <                                s = pl;
831 >                        if ((dir = (c == pc) ? 0 :
832 >                             c.getName().compareTo(pc.getName())) == 0) {
833 >                            TreeNode<V> r = null, pl, pr; // check both sides
834 >                            if ((pr = p.right) != null && h >= pr.hash &&
835 >                                (r = getTreeNode(h, k, pr)) != null)
836 >                                return r;
837 >                            else if ((pl = p.left) != null && h <= pl.hash)
838 >                                dir = -1;
839 >                            else // nothing there
840 >                                return null;
841                          }
876                        else if ((pr = p.right) != null && h >= pr.hash)
877                            s = pr;
878                        if (s != null && (r = getTreeNode(h, k, s)) != null)
879                            return r;
842                      }
843                  }
844                  else
# Line 891 | Line 853 | public class ConcurrentHashMapV8<K, V>
853           * read-lock to call getTreeNode, but during failure to get
854           * lock, searches along next links.
855           */
856 <        final Object getValue(int h, Object k) {
857 <            Node r = null;
856 >        final V getValue(int h, Object k) {
857 >            Node<V> r = null;
858              int c = getState(); // Must read lock state first
859 <            for (Node e = first; e != null; e = e.next) {
859 >            for (Node<V> e = first; e != null; e = e.next) {
860                  if (c <= 0 && compareAndSetState(c, c - 1)) {
861                      try {
862                          r = getTreeNode(h, k, root);
# Line 903 | Line 865 | public class ConcurrentHashMapV8<K, V>
865                      }
866                      break;
867                  }
868 <                else if ((e.hash & HASH_BITS) == h && k.equals(e.key)) {
868 >                else if (e.hash == h && k.equals(e.key)) {
869                      r = e;
870                      break;
871                  }
# Line 917 | Line 879 | public class ConcurrentHashMapV8<K, V>
879           * Finds or adds a node.
880           * @return null if added
881           */
882 <        @SuppressWarnings("unchecked") final TreeNode putTreeNode
883 <            (int h, Object k, Object v) {
882 >        @SuppressWarnings("unchecked") final TreeNode<V> putTreeNode
883 >            (int h, Object k, V v) {
884              Class<?> c = k.getClass();
885 <            TreeNode pp = root, p = null;
885 >            TreeNode<V> pp = root, p = null;
886              int dir = 0;
887              while (pp != null) { // find existing node or leaf to insert at
888                  int ph;  Object pk; Class<?> pc;
# Line 931 | Line 893 | public class ConcurrentHashMapV8<K, V>
893                      if (c != (pc = pk.getClass()) ||
894                          !(k instanceof Comparable) ||
895                          (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
896 <                        dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
897 <                        TreeNode r = null, s = null, pl, pr;
898 <                        if (dir >= 0) {
899 <                            if ((pl = p.left) != null && h <= pl.hash)
900 <                                s = pl;
896 >                        TreeNode<V> s = null, r = null, pr;
897 >                        if ((dir = (c == pc) ? 0 :
898 >                             c.getName().compareTo(pc.getName())) == 0) {
899 >                            if ((pr = p.right) != null && h >= pr.hash &&
900 >                                (r = getTreeNode(h, k, pr)) != null)
901 >                                return r;
902 >                            else // continue left
903 >                                dir = -1;
904                          }
905                          else if ((pr = p.right) != null && h >= pr.hash)
906                              s = pr;
# Line 948 | Line 913 | public class ConcurrentHashMapV8<K, V>
913                  pp = (dir > 0) ? p.right : p.left;
914              }
915  
916 <            TreeNode f = first;
917 <            TreeNode x = first = new TreeNode(h, k, v, f, p);
916 >            TreeNode<V> f = first;
917 >            TreeNode<V> x = first = new TreeNode<V>(h, k, v, f, p);
918              if (p == null)
919                  root = x;
920              else { // attach and rebalance; adapted from CLR
921 <                TreeNode xp, xpp;
921 >                TreeNode<V> xp, xpp;
922                  if (f != null)
923                      f.prev = x;
924                  if (dir <= 0)
# Line 963 | Line 928 | public class ConcurrentHashMapV8<K, V>
928                  x.red = true;
929                  while (x != null && (xp = x.parent) != null && xp.red &&
930                         (xpp = xp.parent) != null) {
931 <                    TreeNode xppl = xpp.left;
931 >                    TreeNode<V> xppl = xpp.left;
932                      if (xp == xppl) {
933 <                        TreeNode y = xpp.right;
933 >                        TreeNode<V> y = xpp.right;
934                          if (y != null && y.red) {
935                              y.red = false;
936                              xp.red = false;
# Line 987 | Line 952 | public class ConcurrentHashMapV8<K, V>
952                          }
953                      }
954                      else {
955 <                        TreeNode y = xppl;
955 >                        TreeNode<V> y = xppl;
956                          if (y != null && y.red) {
957                              y.red = false;
958                              xp.red = false;
# Line 1009 | Line 974 | public class ConcurrentHashMapV8<K, V>
974                          }
975                      }
976                  }
977 <                TreeNode r = root;
977 >                TreeNode<V> r = root;
978                  if (r != null && r.red)
979                      r.red = false;
980              }
# Line 1024 | Line 989 | public class ConcurrentHashMapV8<K, V>
989           * that are accessible independently of lock. So instead we
990           * swap the tree linkages.
991           */
992 <        final void deleteTreeNode(TreeNode p) {
993 <            TreeNode next = (TreeNode)p.next; // unlink traversal pointers
994 <            TreeNode pred = p.prev;
992 >        final void deleteTreeNode(TreeNode<V> p) {
993 >            TreeNode<V> next = (TreeNode<V>)p.next; // unlink traversal pointers
994 >            TreeNode<V> pred = p.prev;
995              if (pred == null)
996                  first = next;
997              else
998                  pred.next = next;
999              if (next != null)
1000                  next.prev = pred;
1001 <            TreeNode replacement;
1002 <            TreeNode pl = p.left;
1003 <            TreeNode pr = p.right;
1001 >            TreeNode<V> replacement;
1002 >            TreeNode<V> pl = p.left;
1003 >            TreeNode<V> pr = p.right;
1004              if (pl != null && pr != null) {
1005 <                TreeNode s = pr, sl;
1005 >                TreeNode<V> s = pr, sl;
1006                  while ((sl = s.left) != null) // find successor
1007                      s = sl;
1008                  boolean c = s.red; s.red = p.red; p.red = c; // swap colors
1009 <                TreeNode sr = s.right;
1010 <                TreeNode pp = p.parent;
1009 >                TreeNode<V> sr = s.right;
1010 >                TreeNode<V> pp = p.parent;
1011                  if (s == pr) { // p was s's direct parent
1012                      p.parent = s;
1013                      s.right = p;
1014                  }
1015                  else {
1016 <                    TreeNode sp = s.parent;
1016 >                    TreeNode<V> sp = s.parent;
1017                      if ((p.parent = sp) != null) {
1018                          if (s == sp.left)
1019                              sp.left = p;
# Line 1073 | Line 1038 | public class ConcurrentHashMapV8<K, V>
1038              }
1039              else
1040                  replacement = (pl != null) ? pl : pr;
1041 <            TreeNode pp = p.parent;
1041 >            TreeNode<V> pp = p.parent;
1042              if (replacement == null) {
1043                  if (pp == null) {
1044                      root = null;
# Line 1092 | Line 1057 | public class ConcurrentHashMapV8<K, V>
1057                  p.left = p.right = p.parent = null;
1058              }
1059              if (!p.red) { // rebalance, from CLR
1060 <                TreeNode x = replacement;
1060 >                TreeNode<V> x = replacement;
1061                  while (x != null) {
1062 <                    TreeNode xp, xpl;
1062 >                    TreeNode<V> xp, xpl;
1063                      if (x.red || (xp = x.parent) == null) {
1064                          x.red = false;
1065                          break;
1066                      }
1067                      if (x == (xpl = xp.left)) {
1068 <                        TreeNode sib = xp.right;
1068 >                        TreeNode<V> sib = xp.right;
1069                          if (sib != null && sib.red) {
1070                              sib.red = false;
1071                              xp.red = true;
# Line 1110 | Line 1075 | public class ConcurrentHashMapV8<K, V>
1075                          if (sib == null)
1076                              x = xp;
1077                          else {
1078 <                            TreeNode sl = sib.left, sr = sib.right;
1078 >                            TreeNode<V> sl = sib.left, sr = sib.right;
1079                              if ((sr == null || !sr.red) &&
1080                                  (sl == null || !sl.red)) {
1081                                  sib.red = true;
# Line 1122 | Line 1087 | public class ConcurrentHashMapV8<K, V>
1087                                          sl.red = false;
1088                                      sib.red = true;
1089                                      rotateRight(sib);
1090 <                                    sib = (xp = x.parent) == null ? null : xp.right;
1090 >                                    sib = (xp = x.parent) == null ?
1091 >                                        null : xp.right;
1092                                  }
1093                                  if (sib != null) {
1094                                      sib.red = (xp == null) ? false : xp.red;
# Line 1138 | Line 1104 | public class ConcurrentHashMapV8<K, V>
1104                          }
1105                      }
1106                      else { // symmetric
1107 <                        TreeNode sib = xpl;
1107 >                        TreeNode<V> sib = xpl;
1108                          if (sib != null && sib.red) {
1109                              sib.red = false;
1110                              xp.red = true;
# Line 1148 | Line 1114 | public class ConcurrentHashMapV8<K, V>
1114                          if (sib == null)
1115                              x = xp;
1116                          else {
1117 <                            TreeNode sl = sib.left, sr = sib.right;
1117 >                            TreeNode<V> sl = sib.left, sr = sib.right;
1118                              if ((sl == null || !sl.red) &&
1119                                  (sr == null || !sr.red)) {
1120                                  sib.red = true;
# Line 1160 | Line 1126 | public class ConcurrentHashMapV8<K, V>
1126                                          sr.red = false;
1127                                      sib.red = true;
1128                                      rotateLeft(sib);
1129 <                                    sib = (xp = x.parent) == null ? null : xp.left;
1129 >                                    sib = (xp = x.parent) == null ?
1130 >                                        null : xp.left;
1131                                  }
1132                                  if (sib != null) {
1133                                      sib.red = (xp == null) ? false : xp.red;
# Line 1190 | Line 1157 | public class ConcurrentHashMapV8<K, V>
1157      /* ---------------- Collision reduction methods -------------- */
1158  
1159      /**
1160 <     * Spreads higher bits to lower, and also forces top 2 bits to 0.
1160 >     * Spreads higher bits to lower, and also forces top bit to 0.
1161       * Because the table uses power-of-two masking, sets of hashes
1162       * that vary only in bits above the current mask will always
1163       * collide. (Among known examples are sets of Float keys holding
# Line 1208 | Line 1175 | public class ConcurrentHashMapV8<K, V>
1175      }
1176  
1177      /**
1178 <     * Replaces a list bin with a tree bin. Call only when locked.
1179 <     * Fails to replace if the given key is non-comparable or table
1180 <     * is, or needs, resizing.
1181 <     */
1182 <    private final void replaceWithTreeBin(Node[] tab, int index, Object key) {
1183 <        if ((key instanceof Comparable) &&
1184 <            (tab.length >= MAXIMUM_CAPACITY || counter.sum() < (long)sizeCtl)) {
1185 <            TreeBin t = new TreeBin();
1186 <            for (Node e = tabAt(tab, index); e != null; e = e.next)
1220 <                t.putTreeNode(e.hash & HASH_BITS, e.key, e.val);
1221 <            setTabAt(tab, index, new Node(MOVED, t, null, null));
1178 >     * Replaces a list bin with a tree bin if key is comparable.  Call
1179 >     * only when locked.
1180 >     */
1181 >    private final void replaceWithTreeBin(Node<V>[] tab, int index, Object key) {
1182 >        if (key instanceof Comparable) {
1183 >            TreeBin<V> t = new TreeBin<V>();
1184 >            for (Node<V> e = tabAt(tab, index); e != null; e = e.next)
1185 >                t.putTreeNode(e.hash, e.key, e.val);
1186 >            setTabAt(tab, index, new Node<V>(MOVED, t, null, null));
1187          }
1188      }
1189  
1190      /* ---------------- Internal access and update methods -------------- */
1191  
1192      /** Implementation for get and containsKey */
1193 <    private final Object internalGet(Object k) {
1193 >    @SuppressWarnings("unchecked") private final V internalGet(Object k) {
1194          int h = spread(k.hashCode());
1195 <        retry: for (Node[] tab = table; tab != null;) {
1196 <            Node e, p; Object ek, ev; int eh;      // locals to read fields once
1195 >        retry: for (Node<V>[] tab = table; tab != null;) {
1196 >            Node<V> e; Object ek; V ev; int eh; // locals to read fields once
1197              for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1198 <                if ((eh = e.hash) == MOVED) {
1198 >                if ((eh = e.hash) < 0) {
1199                      if ((ek = e.key) instanceof TreeBin)  // search TreeBin
1200 <                        return ((TreeBin)ek).getValue(h, k);
1201 <                    else {                        // restart with new table
1202 <                        tab = (Node[])ek;
1200 >                        return ((TreeBin<V>)ek).getValue(h, k);
1201 >                    else {                      // restart with new table
1202 >                        tab = (Node<V>[])ek;
1203                          continue retry;
1204                      }
1205                  }
1206 <                else if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
1206 >                else if (eh == h && (ev = e.val) != null &&
1207                           ((ek = e.key) == k || k.equals(ek)))
1208                      return ev;
1209              }
# Line 1252 | Line 1217 | public class ConcurrentHashMapV8<K, V>
1217       * Replaces node value with v, conditional upon match of cv if
1218       * non-null.  If resulting value is null, delete.
1219       */
1220 <    private final Object internalReplace(Object k, Object v, Object cv) {
1220 >    @SuppressWarnings("unchecked") private final V internalReplace
1221 >        (Object k, V v, Object cv) {
1222          int h = spread(k.hashCode());
1223 <        Object oldVal = null;
1224 <        for (Node[] tab = table;;) {
1225 <            Node f; int i, fh; Object fk;
1223 >        V oldVal = null;
1224 >        for (Node<V>[] tab = table;;) {
1225 >            Node<V> f; int i, fh; Object fk;
1226              if (tab == null ||
1227                  (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1228                  break;
1229 <            else if ((fh = f.hash) == MOVED) {
1229 >            else if ((fh = f.hash) < 0) {
1230                  if ((fk = f.key) instanceof TreeBin) {
1231 <                    TreeBin t = (TreeBin)fk;
1231 >                    TreeBin<V> t = (TreeBin<V>)fk;
1232                      boolean validated = false;
1233                      boolean deleted = false;
1234                      t.acquire(0);
1235                      try {
1236                          if (tabAt(tab, i) == f) {
1237                              validated = true;
1238 <                            TreeNode p = t.getTreeNode(h, k, t.root);
1238 >                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1239                              if (p != null) {
1240 <                                Object pv = p.val;
1240 >                                V pv = p.val;
1241                                  if (cv == null || cv == pv || cv.equals(pv)) {
1242                                      oldVal = pv;
1243                                      if ((p.val = v) == null) {
# Line 1286 | Line 1252 | public class ConcurrentHashMapV8<K, V>
1252                      }
1253                      if (validated) {
1254                          if (deleted)
1255 <                            counter.add(-1L);
1255 >                            addCount(-1L, -1);
1256                          break;
1257                      }
1258                  }
1259                  else
1260 <                    tab = (Node[])fk;
1260 >                    tab = (Node<V>[])fk;
1261              }
1262 <            else if ((fh & HASH_BITS) != h && f.next == null) // precheck
1262 >            else if (fh != h && f.next == null) // precheck
1263                  break;                          // rules out possible existence
1264 <            else if ((fh & LOCKED) != 0) {
1299 <                checkForResize();               // try resizing if can't get lock
1300 <                f.tryAwaitLock(tab, i);
1301 <            }
1302 <            else if (f.casHash(fh, fh | LOCKED)) {
1264 >            else {
1265                  boolean validated = false;
1266                  boolean deleted = false;
1267 <                try {
1267 >                synchronized (f) {
1268                      if (tabAt(tab, i) == f) {
1269                          validated = true;
1270 <                        for (Node e = f, pred = null;;) {
1271 <                            Object ek, ev;
1272 <                            if ((e.hash & HASH_BITS) == h &&
1270 >                        for (Node<V> e = f, pred = null;;) {
1271 >                            Object ek; V ev;
1272 >                            if (e.hash == h &&
1273                                  ((ev = e.val) != null) &&
1274                                  ((ek = e.key) == k || k.equals(ek))) {
1275                                  if (cv == null || cv == ev || cv.equals(ev)) {
1276                                      oldVal = ev;
1277                                      if ((e.val = v) == null) {
1278                                          deleted = true;
1279 <                                        Node en = e.next;
1279 >                                        Node<V> en = e.next;
1280                                          if (pred != null)
1281                                              pred.next = en;
1282                                          else
# Line 1328 | Line 1290 | public class ConcurrentHashMapV8<K, V>
1290                                  break;
1291                          }
1292                      }
1331                } finally {
1332                    if (!f.casHash(fh | LOCKED, fh)) {
1333                        f.hash = fh;
1334                        synchronized (f) { f.notifyAll(); };
1335                    }
1293                  }
1294                  if (validated) {
1295                      if (deleted)
1296 <                        counter.add(-1L);
1296 >                        addCount(-1L, -1);
1297                      break;
1298                  }
1299              }
# Line 1345 | Line 1302 | public class ConcurrentHashMapV8<K, V>
1302      }
1303  
1304      /*
1305 <     * Internal versions of the six insertion methods, each a
1306 <     * little more complicated than the last. All have
1350 <     * the same basic structure as the first (internalPut):
1305 >     * Internal versions of insertion methods
1306 >     * All have the same basic structure as the first (internalPut):
1307       *  1. If table uninitialized, create
1308       *  2. If bin empty, try to CAS new node
1309       *  3. If bin stale, use new table
1310       *  4. if bin converted to TreeBin, validate and relay to TreeBin methods
1311       *  5. Lock and validate; if valid, scan and add or update
1312       *
1313 <     * The others interweave other checks and/or alternative actions:
1314 <     *  * Plain put checks for and performs resize after insertion.
1315 <     *  * putIfAbsent prescans for mapping without lock (and fails to add
1316 <     *    if present), which also makes pre-emptive resize checks worthwhile.
1317 <     *  * computeIfAbsent extends form used in putIfAbsent with additional
1318 <     *    mechanics to deal with, calls, potential exceptions and null
1319 <     *    returns from function call.
1364 <     *  * compute uses the same function-call mechanics, but without
1365 <     *    the prescans
1366 <     *  * merge acts as putIfAbsent in the absent case, but invokes the
1367 <     *    update function if present
1368 <     *  * putAll attempts to pre-allocate enough table space
1369 <     *    and more lazily performs count updates and checks.
1370 <     *
1371 <     * Someday when details settle down a bit more, it might be worth
1372 <     * some factoring to reduce sprawl.
1313 >     * The putAll method differs mainly in attempting to pre-allocate
1314 >     * enough table space, and also more lazily performs count updates
1315 >     * and checks.
1316 >     *
1317 >     * Most of the function-accepting methods can't be factored nicely
1318 >     * because they require different functional forms, so instead
1319 >     * sprawl out similar mechanics.
1320       */
1321  
1322 <    /** Implementation for put */
1323 <    private final Object internalPut(Object k, Object v) {
1322 >    /** Implementation for put and putIfAbsent */
1323 >    @SuppressWarnings("unchecked") private final V internalPut
1324 >        (K k, V v, boolean onlyIfAbsent) {
1325 >        if (k == null || v == null) throw new NullPointerException();
1326          int h = spread(k.hashCode());
1327 <        int count = 0;
1328 <        for (Node[] tab = table;;) {
1329 <            int i; Node f; int fh; Object fk;
1327 >        int len = 0;
1328 >        for (Node<V>[] tab = table;;) {
1329 >            int i, fh; Node<V> f; Object fk; V fv;
1330              if (tab == null)
1331                  tab = initTable();
1332              else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1333 <                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1333 >                if (casTabAt(tab, i, null, new Node<V>(h, k, v, null)))
1334                      break;                   // no lock when adding to empty bin
1335              }
1336 <            else if ((fh = f.hash) == MOVED) {
1336 >            else if ((fh = f.hash) < 0) {
1337                  if ((fk = f.key) instanceof TreeBin) {
1338 <                    TreeBin t = (TreeBin)fk;
1339 <                    Object oldVal = null;
1338 >                    TreeBin<V> t = (TreeBin<V>)fk;
1339 >                    V oldVal = null;
1340                      t.acquire(0);
1341                      try {
1342                          if (tabAt(tab, i) == f) {
1343 <                            count = 2;
1344 <                            TreeNode p = t.putTreeNode(h, k, v);
1343 >                            len = 2;
1344 >                            TreeNode<V> p = t.putTreeNode(h, k, v);
1345                              if (p != null) {
1346                                  oldVal = p.val;
1347 <                                p.val = v;
1347 >                                if (!onlyIfAbsent)
1348 >                                    p.val = v;
1349                              }
1350                          }
1351                      } finally {
1352                          t.release(0);
1353                      }
1354 <                    if (count != 0) {
1354 >                    if (len != 0) {
1355                          if (oldVal != null)
1356                              return oldVal;
1357                          break;
1358                      }
1359                  }
1360                  else
1361 <                    tab = (Node[])fk;
1361 >                    tab = (Node<V>[])fk;
1362              }
1363 <            else if ((fh & LOCKED) != 0) {
1364 <                checkForResize();
1365 <                f.tryAwaitLock(tab, i);
1366 <            }
1367 <            else if (f.casHash(fh, fh | LOCKED)) {
1368 <                Object oldVal = null;
1419 <                try {                        // needed in case equals() throws
1363 >            else if (onlyIfAbsent && fh == h && (fv = f.val) != null &&
1364 >                     ((fk = f.key) == k || k.equals(fk))) // peek while nearby
1365 >                return fv;
1366 >            else {
1367 >                V oldVal = null;
1368 >                synchronized (f) {
1369                      if (tabAt(tab, i) == f) {
1370 <                        count = 1;
1371 <                        for (Node e = f;; ++count) {
1372 <                            Object ek, ev;
1373 <                            if ((e.hash & HASH_BITS) == h &&
1370 >                        len = 1;
1371 >                        for (Node<V> e = f;; ++len) {
1372 >                            Object ek; V ev;
1373 >                            if (e.hash == h &&
1374                                  (ev = e.val) != null &&
1375                                  ((ek = e.key) == k || k.equals(ek))) {
1376                                  oldVal = ev;
1377 <                                e.val = v;
1377 >                                if (!onlyIfAbsent)
1378 >                                    e.val = v;
1379                                  break;
1380                              }
1381 <                            Node last = e;
1381 >                            Node<V> last = e;
1382                              if ((e = e.next) == null) {
1383 <                                last.next = new Node(h, k, v, null);
1384 <                                if (count >= TREE_THRESHOLD)
1383 >                                last.next = new Node<V>(h, k, v, null);
1384 >                                if (len >= TREE_THRESHOLD)
1385                                      replaceWithTreeBin(tab, i, k);
1386                                  break;
1387                              }
1388                          }
1389                      }
1440                } finally {                  // unlock and signal if needed
1441                    if (!f.casHash(fh | LOCKED, fh)) {
1442                        f.hash = fh;
1443                        synchronized (f) { f.notifyAll(); };
1444                    }
1390                  }
1391 <                if (count != 0) {
1391 >                if (len != 0) {
1392                      if (oldVal != null)
1393                          return oldVal;
1449                    if (tab.length <= 64)
1450                        count = 2;
1394                      break;
1395                  }
1396              }
1397          }
1398 <        counter.add(1L);
1456 <        if (count > 1)
1457 <            checkForResize();
1458 <        return null;
1459 <    }
1460 <
1461 <    /** Implementation for putIfAbsent */
1462 <    private final Object internalPutIfAbsent(Object k, Object v) {
1463 <        int h = spread(k.hashCode());
1464 <        int count = 0;
1465 <        for (Node[] tab = table;;) {
1466 <            int i; Node f; int fh; Object fk, fv;
1467 <            if (tab == null)
1468 <                tab = initTable();
1469 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1470 <                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1471 <                    break;
1472 <            }
1473 <            else if ((fh = f.hash) == MOVED) {
1474 <                if ((fk = f.key) instanceof TreeBin) {
1475 <                    TreeBin t = (TreeBin)fk;
1476 <                    Object oldVal = null;
1477 <                    t.acquire(0);
1478 <                    try {
1479 <                        if (tabAt(tab, i) == f) {
1480 <                            count = 2;
1481 <                            TreeNode p = t.putTreeNode(h, k, v);
1482 <                            if (p != null)
1483 <                                oldVal = p.val;
1484 <                        }
1485 <                    } finally {
1486 <                        t.release(0);
1487 <                    }
1488 <                    if (count != 0) {
1489 <                        if (oldVal != null)
1490 <                            return oldVal;
1491 <                        break;
1492 <                    }
1493 <                }
1494 <                else
1495 <                    tab = (Node[])fk;
1496 <            }
1497 <            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1498 <                     ((fk = f.key) == k || k.equals(fk)))
1499 <                return fv;
1500 <            else {
1501 <                Node g = f.next;
1502 <                if (g != null) { // at least 2 nodes -- search and maybe resize
1503 <                    for (Node e = g;;) {
1504 <                        Object ek, ev;
1505 <                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1506 <                            ((ek = e.key) == k || k.equals(ek)))
1507 <                            return ev;
1508 <                        if ((e = e.next) == null) {
1509 <                            checkForResize();
1510 <                            break;
1511 <                        }
1512 <                    }
1513 <                }
1514 <                if (((fh = f.hash) & LOCKED) != 0) {
1515 <                    checkForResize();
1516 <                    f.tryAwaitLock(tab, i);
1517 <                }
1518 <                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1519 <                    Object oldVal = null;
1520 <                    try {
1521 <                        if (tabAt(tab, i) == f) {
1522 <                            count = 1;
1523 <                            for (Node e = f;; ++count) {
1524 <                                Object ek, ev;
1525 <                                if ((e.hash & HASH_BITS) == h &&
1526 <                                    (ev = e.val) != null &&
1527 <                                    ((ek = e.key) == k || k.equals(ek))) {
1528 <                                    oldVal = ev;
1529 <                                    break;
1530 <                                }
1531 <                                Node last = e;
1532 <                                if ((e = e.next) == null) {
1533 <                                    last.next = new Node(h, k, v, null);
1534 <                                    if (count >= TREE_THRESHOLD)
1535 <                                        replaceWithTreeBin(tab, i, k);
1536 <                                    break;
1537 <                                }
1538 <                            }
1539 <                        }
1540 <                    } finally {
1541 <                        if (!f.casHash(fh | LOCKED, fh)) {
1542 <                            f.hash = fh;
1543 <                            synchronized (f) { f.notifyAll(); };
1544 <                        }
1545 <                    }
1546 <                    if (count != 0) {
1547 <                        if (oldVal != null)
1548 <                            return oldVal;
1549 <                        if (tab.length <= 64)
1550 <                            count = 2;
1551 <                        break;
1552 <                    }
1553 <                }
1554 <            }
1555 <        }
1556 <        counter.add(1L);
1557 <        if (count > 1)
1558 <            checkForResize();
1398 >        addCount(1L, len);
1399          return null;
1400      }
1401  
1402      /** Implementation for computeIfAbsent */
1403 <    private final Object internalComputeIfAbsent(K k,
1404 <                                                 Fun<? super K, ?> mf) {
1403 >    @SuppressWarnings("unchecked") private final V internalComputeIfAbsent
1404 >        (K k, Fun<? super K, ? extends V> mf) {
1405 >        if (k == null || mf == null)
1406 >            throw new NullPointerException();
1407          int h = spread(k.hashCode());
1408 <        Object val = null;
1409 <        int count = 0;
1410 <        for (Node[] tab = table;;) {
1411 <            Node f; int i, fh; Object fk, fv;
1408 >        V val = null;
1409 >        int len = 0;
1410 >        for (Node<V>[] tab = table;;) {
1411 >            Node<V> f; int i; Object fk;
1412              if (tab == null)
1413                  tab = initTable();
1414              else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1415 <                Node node = new Node(fh = h | LOCKED, k, null, null);
1416 <                if (casTabAt(tab, i, null, node)) {
1417 <                    count = 1;
1418 <                    try {
1419 <                        if ((val = mf.apply(k)) != null)
1420 <                            node.val = val;
1421 <                    } finally {
1422 <                        if (val == null)
1423 <                            setTabAt(tab, i, null);
1424 <                        if (!node.casHash(fh, h)) {
1583 <                            node.hash = h;
1584 <                            synchronized (node) { node.notifyAll(); };
1415 >                Node<V> node = new Node<V>(h, k, null, null);
1416 >                synchronized (node) {
1417 >                    if (casTabAt(tab, i, null, node)) {
1418 >                        len = 1;
1419 >                        try {
1420 >                            if ((val = mf.apply(k)) != null)
1421 >                                node.val = val;
1422 >                        } finally {
1423 >                            if (val == null)
1424 >                                setTabAt(tab, i, null);
1425                          }
1426                      }
1427                  }
1428 <                if (count != 0)
1428 >                if (len != 0)
1429                      break;
1430              }
1431 <            else if ((fh = f.hash) == MOVED) {
1431 >            else if (f.hash < 0) {
1432                  if ((fk = f.key) instanceof TreeBin) {
1433 <                    TreeBin t = (TreeBin)fk;
1433 >                    TreeBin<V> t = (TreeBin<V>)fk;
1434                      boolean added = false;
1435                      t.acquire(0);
1436                      try {
1437                          if (tabAt(tab, i) == f) {
1438 <                            count = 1;
1439 <                            TreeNode p = t.getTreeNode(h, k, t.root);
1438 >                            len = 1;
1439 >                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1440                              if (p != null)
1441                                  val = p.val;
1442                              else if ((val = mf.apply(k)) != null) {
1443                                  added = true;
1444 <                                count = 2;
1444 >                                len = 2;
1445                                  t.putTreeNode(h, k, val);
1446                              }
1447                          }
1448                      } finally {
1449                          t.release(0);
1450                      }
1451 <                    if (count != 0) {
1451 >                    if (len != 0) {
1452                          if (!added)
1453                              return val;
1454                          break;
1455                      }
1456                  }
1457                  else
1458 <                    tab = (Node[])fk;
1458 >                    tab = (Node<V>[])fk;
1459              }
1620            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1621                     ((fk = f.key) == k || k.equals(fk)))
1622                return fv;
1460              else {
1461 <                Node g = f.next;
1462 <                if (g != null) {
1463 <                    for (Node e = g;;) {
1464 <                        Object ek, ev;
1465 <                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1629 <                            ((ek = e.key) == k || k.equals(ek)))
1630 <                            return ev;
1631 <                        if ((e = e.next) == null) {
1632 <                            checkForResize();
1633 <                            break;
1634 <                        }
1635 <                    }
1636 <                }
1637 <                if (((fh = f.hash) & LOCKED) != 0) {
1638 <                    checkForResize();
1639 <                    f.tryAwaitLock(tab, i);
1461 >                for (Node<V> e = f; e != null; e = e.next) { // prescan
1462 >                    Object ek; V ev;
1463 >                    if (e.hash == h && (ev = e.val) != null &&
1464 >                        ((ek = e.key) == k || k.equals(ek)))
1465 >                        return ev;
1466                  }
1467 <                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1468 <                    boolean added = false;
1469 <                    try {
1470 <                        if (tabAt(tab, i) == f) {
1471 <                            count = 1;
1472 <                            for (Node e = f;; ++count) {
1473 <                                Object ek, ev;
1474 <                                if ((e.hash & HASH_BITS) == h &&
1475 <                                    (ev = e.val) != null &&
1476 <                                    ((ek = e.key) == k || k.equals(ek))) {
1477 <                                    val = ev;
1478 <                                    break;
1479 <                                }
1480 <                                Node last = e;
1481 <                                if ((e = e.next) == null) {
1482 <                                    if ((val = mf.apply(k)) != null) {
1483 <                                        added = true;
1484 <                                        last.next = new Node(h, k, val, null);
1485 <                                        if (count >= TREE_THRESHOLD)
1660 <                                            replaceWithTreeBin(tab, i, k);
1661 <                                    }
1662 <                                    break;
1467 >                boolean added = false;
1468 >                synchronized (f) {
1469 >                    if (tabAt(tab, i) == f) {
1470 >                        len = 1;
1471 >                        for (Node<V> e = f;; ++len) {
1472 >                            Object ek; V ev;
1473 >                            if (e.hash == h &&
1474 >                                (ev = e.val) != null &&
1475 >                                ((ek = e.key) == k || k.equals(ek))) {
1476 >                                val = ev;
1477 >                                break;
1478 >                            }
1479 >                            Node<V> last = e;
1480 >                            if ((e = e.next) == null) {
1481 >                                if ((val = mf.apply(k)) != null) {
1482 >                                    added = true;
1483 >                                    last.next = new Node<V>(h, k, val, null);
1484 >                                    if (len >= TREE_THRESHOLD)
1485 >                                        replaceWithTreeBin(tab, i, k);
1486                                  }
1487 +                                break;
1488                              }
1489                          }
1666                    } finally {
1667                        if (!f.casHash(fh | LOCKED, fh)) {
1668                            f.hash = fh;
1669                            synchronized (f) { f.notifyAll(); };
1670                        }
1671                    }
1672                    if (count != 0) {
1673                        if (!added)
1674                            return val;
1675                        if (tab.length <= 64)
1676                            count = 2;
1677                        break;
1490                      }
1491                  }
1492 +                if (len != 0) {
1493 +                    if (!added)
1494 +                        return val;
1495 +                    break;
1496 +                }
1497              }
1498          }
1499 <        if (val != null) {
1500 <            counter.add(1L);
1684 <            if (count > 1)
1685 <                checkForResize();
1686 <        }
1499 >        if (val != null)
1500 >            addCount(1L, len);
1501          return val;
1502      }
1503  
1504      /** Implementation for compute */
1505 <    @SuppressWarnings("unchecked") private final Object internalCompute
1506 <        (K k, boolean onlyIfPresent, BiFun<? super K, ? super V, ? extends V> mf) {
1505 >    @SuppressWarnings("unchecked") private final V internalCompute
1506 >        (K k, boolean onlyIfPresent,
1507 >         BiFun<? super K, ? super V, ? extends V> mf) {
1508 >        if (k == null || mf == null)
1509 >            throw new NullPointerException();
1510          int h = spread(k.hashCode());
1511 <        Object val = null;
1511 >        V val = null;
1512          int delta = 0;
1513 <        int count = 0;
1514 <        for (Node[] tab = table;;) {
1515 <            Node f; int i, fh; Object fk;
1513 >        int len = 0;
1514 >        for (Node<V>[] tab = table;;) {
1515 >            Node<V> f; int i, fh; Object fk;
1516              if (tab == null)
1517                  tab = initTable();
1518              else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1519                  if (onlyIfPresent)
1520                      break;
1521 <                Node node = new Node(fh = h | LOCKED, k, null, null);
1522 <                if (casTabAt(tab, i, null, node)) {
1523 <                    try {
1524 <                        count = 1;
1525 <                        if ((val = mf.apply(k, null)) != null) {
1526 <                            node.val = val;
1527 <                            delta = 1;
1528 <                        }
1529 <                    } finally {
1530 <                        if (delta == 0)
1531 <                            setTabAt(tab, i, null);
1532 <                        if (!node.casHash(fh, h)) {
1716 <                            node.hash = h;
1717 <                            synchronized (node) { node.notifyAll(); };
1521 >                Node<V> node = new Node<V>(h, k, null, null);
1522 >                synchronized (node) {
1523 >                    if (casTabAt(tab, i, null, node)) {
1524 >                        try {
1525 >                            len = 1;
1526 >                            if ((val = mf.apply(k, null)) != null) {
1527 >                                node.val = val;
1528 >                                delta = 1;
1529 >                            }
1530 >                        } finally {
1531 >                            if (delta == 0)
1532 >                                setTabAt(tab, i, null);
1533                          }
1534                      }
1535                  }
1536 <                if (count != 0)
1536 >                if (len != 0)
1537                      break;
1538              }
1539 <            else if ((fh = f.hash) == MOVED) {
1539 >            else if ((fh = f.hash) < 0) {
1540                  if ((fk = f.key) instanceof TreeBin) {
1541 <                    TreeBin t = (TreeBin)fk;
1541 >                    TreeBin<V> t = (TreeBin<V>)fk;
1542                      t.acquire(0);
1543                      try {
1544                          if (tabAt(tab, i) == f) {
1545 <                            count = 1;
1546 <                            TreeNode p = t.getTreeNode(h, k, t.root);
1547 <                            Object pv = (p == null) ? null : p.val;
1548 <                            if ((val = mf.apply(k, (V)pv)) != null) {
1545 >                            len = 1;
1546 >                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1547 >                            if (p == null && onlyIfPresent)
1548 >                                break;
1549 >                            V pv = (p == null) ? null : p.val;
1550 >                            if ((val = mf.apply(k, pv)) != null) {
1551                                  if (p != null)
1552                                      p.val = val;
1553                                  else {
1554 <                                    count = 2;
1554 >                                    len = 2;
1555                                      delta = 1;
1556                                      t.putTreeNode(h, k, val);
1557                                  }
# Line 1747 | Line 1564 | public class ConcurrentHashMapV8<K, V>
1564                      } finally {
1565                          t.release(0);
1566                      }
1567 <                    if (count != 0)
1567 >                    if (len != 0)
1568                          break;
1569                  }
1570                  else
1571 <                    tab = (Node[])fk;
1755 <            }
1756 <            else if ((fh & LOCKED) != 0) {
1757 <                checkForResize();
1758 <                f.tryAwaitLock(tab, i);
1571 >                    tab = (Node<V>[])fk;
1572              }
1573 <            else if (f.casHash(fh, fh | LOCKED)) {
1574 <                try {
1573 >            else {
1574 >                synchronized (f) {
1575                      if (tabAt(tab, i) == f) {
1576 <                        count = 1;
1577 <                        for (Node e = f, pred = null;; ++count) {
1578 <                            Object ek, ev;
1579 <                            if ((e.hash & HASH_BITS) == h &&
1576 >                        len = 1;
1577 >                        for (Node<V> e = f, pred = null;; ++len) {
1578 >                            Object ek; V ev;
1579 >                            if (e.hash == h &&
1580                                  (ev = e.val) != null &&
1581                                  ((ek = e.key) == k || k.equals(ek))) {
1582 <                                val = mf.apply(k, (V)ev);
1582 >                                val = mf.apply(k, ev);
1583                                  if (val != null)
1584                                      e.val = val;
1585                                  else {
1586                                      delta = -1;
1587 <                                    Node en = e.next;
1587 >                                    Node<V> en = e.next;
1588                                      if (pred != null)
1589                                          pred.next = en;
1590                                      else
# Line 1781 | Line 1594 | public class ConcurrentHashMapV8<K, V>
1594                              }
1595                              pred = e;
1596                              if ((e = e.next) == null) {
1597 <                                if (!onlyIfPresent && (val = mf.apply(k, null)) != null) {
1598 <                                    pred.next = new Node(h, k, val, null);
1597 >                                if (!onlyIfPresent &&
1598 >                                    (val = mf.apply(k, null)) != null) {
1599 >                                    pred.next = new Node<V>(h, k, val, null);
1600                                      delta = 1;
1601 <                                    if (count >= TREE_THRESHOLD)
1601 >                                    if (len >= TREE_THRESHOLD)
1602                                          replaceWithTreeBin(tab, i, k);
1603                                  }
1604                                  break;
1605                              }
1606                          }
1607                      }
1794                } finally {
1795                    if (!f.casHash(fh | LOCKED, fh)) {
1796                        f.hash = fh;
1797                        synchronized (f) { f.notifyAll(); };
1798                    }
1608                  }
1609 <                if (count != 0) {
1801 <                    if (tab.length <= 64)
1802 <                        count = 2;
1609 >                if (len != 0)
1610                      break;
1804                }
1611              }
1612          }
1613 <        if (delta != 0) {
1614 <            counter.add((long)delta);
1809 <            if (count > 1)
1810 <                checkForResize();
1811 <        }
1613 >        if (delta != 0)
1614 >            addCount((long)delta, len);
1615          return val;
1616      }
1617  
1618      /** Implementation for merge */
1619 <    @SuppressWarnings("unchecked") private final Object internalMerge
1619 >    @SuppressWarnings("unchecked") private final V internalMerge
1620          (K k, V v, BiFun<? super V, ? super V, ? extends V> mf) {
1621 +        if (k == null || v == null || mf == null)
1622 +            throw new NullPointerException();
1623          int h = spread(k.hashCode());
1624 <        Object val = null;
1624 >        V val = null;
1625          int delta = 0;
1626 <        int count = 0;
1627 <        for (Node[] tab = table;;) {
1628 <            int i; Node f; int fh; Object fk, fv;
1626 >        int len = 0;
1627 >        for (Node<V>[] tab = table;;) {
1628 >            int i; Node<V> f; Object fk; V fv;
1629              if (tab == null)
1630                  tab = initTable();
1631              else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1632 <                if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1632 >                if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1633                      delta = 1;
1634                      val = v;
1635                      break;
1636                  }
1637              }
1638 <            else if ((fh = f.hash) == MOVED) {
1638 >            else if (f.hash < 0) {
1639                  if ((fk = f.key) instanceof TreeBin) {
1640 <                    TreeBin t = (TreeBin)fk;
1640 >                    TreeBin<V> t = (TreeBin<V>)fk;
1641                      t.acquire(0);
1642                      try {
1643                          if (tabAt(tab, i) == f) {
1644 <                            count = 1;
1645 <                            TreeNode p = t.getTreeNode(h, k, t.root);
1646 <                            val = (p == null) ? v : mf.apply((V)p.val, v);
1644 >                            len = 1;
1645 >                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1646 >                            val = (p == null) ? v : mf.apply(p.val, v);
1647                              if (val != null) {
1648                                  if (p != null)
1649                                      p.val = val;
1650                                  else {
1651 <                                    count = 2;
1651 >                                    len = 2;
1652                                      delta = 1;
1653                                      t.putTreeNode(h, k, val);
1654                                  }
# Line 1856 | Line 1661 | public class ConcurrentHashMapV8<K, V>
1661                      } finally {
1662                          t.release(0);
1663                      }
1664 <                    if (count != 0)
1664 >                    if (len != 0)
1665                          break;
1666                  }
1667                  else
1668 <                    tab = (Node[])fk;
1864 <            }
1865 <            else if ((fh & LOCKED) != 0) {
1866 <                checkForResize();
1867 <                f.tryAwaitLock(tab, i);
1668 >                    tab = (Node<V>[])fk;
1669              }
1670 <            else if (f.casHash(fh, fh | LOCKED)) {
1671 <                try {
1670 >            else {
1671 >                synchronized (f) {
1672                      if (tabAt(tab, i) == f) {
1673 <                        count = 1;
1674 <                        for (Node e = f, pred = null;; ++count) {
1675 <                            Object ek, ev;
1676 <                            if ((e.hash & HASH_BITS) == h &&
1673 >                        len = 1;
1674 >                        for (Node<V> e = f, pred = null;; ++len) {
1675 >                            Object ek; V ev;
1676 >                            if (e.hash == h &&
1677                                  (ev = e.val) != null &&
1678                                  ((ek = e.key) == k || k.equals(ek))) {
1679 <                                val = mf.apply(v, (V)ev);
1679 >                                val = mf.apply(ev, v);
1680                                  if (val != null)
1681                                      e.val = val;
1682                                  else {
1683                                      delta = -1;
1684 <                                    Node en = e.next;
1684 >                                    Node<V> en = e.next;
1685                                      if (pred != null)
1686                                          pred.next = en;
1687                                      else
# Line 1891 | Line 1692 | public class ConcurrentHashMapV8<K, V>
1692                              pred = e;
1693                              if ((e = e.next) == null) {
1694                                  val = v;
1695 <                                pred.next = new Node(h, k, val, null);
1695 >                                pred.next = new Node<V>(h, k, val, null);
1696                                  delta = 1;
1697 <                                if (count >= TREE_THRESHOLD)
1697 >                                if (len >= TREE_THRESHOLD)
1698                                      replaceWithTreeBin(tab, i, k);
1699                                  break;
1700                              }
1701                          }
1702                      }
1902                } finally {
1903                    if (!f.casHash(fh | LOCKED, fh)) {
1904                        f.hash = fh;
1905                        synchronized (f) { f.notifyAll(); };
1906                    }
1703                  }
1704 <                if (count != 0) {
1909 <                    if (tab.length <= 64)
1910 <                        count = 2;
1704 >                if (len != 0)
1705                      break;
1912                }
1706              }
1707          }
1708 <        if (delta != 0) {
1709 <            counter.add((long)delta);
1917 <            if (count > 1)
1918 <                checkForResize();
1919 <        }
1708 >        if (delta != 0)
1709 >            addCount((long)delta, len);
1710          return val;
1711      }
1712  
1713      /** Implementation for putAll */
1714 <    private final void internalPutAll(Map<?, ?> m) {
1714 >    @SuppressWarnings("unchecked") private final void internalPutAll
1715 >        (Map<? extends K, ? extends V> m) {
1716          tryPresize(m.size());
1717          long delta = 0L;     // number of uncommitted additions
1718          boolean npe = false; // to throw exception on exit for nulls
1719          try {                // to clean up counts on other exceptions
1720 <            for (Map.Entry<?, ?> entry : m.entrySet()) {
1721 <                Object k, v;
1720 >            for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
1721 >                Object k; V v;
1722                  if (entry == null || (k = entry.getKey()) == null ||
1723                      (v = entry.getValue()) == null) {
1724                      npe = true;
1725                      break;
1726                  }
1727                  int h = spread(k.hashCode());
1728 <                for (Node[] tab = table;;) {
1729 <                    int i; Node f; int fh; Object fk;
1728 >                for (Node<V>[] tab = table;;) {
1729 >                    int i; Node<V> f; int fh; Object fk;
1730                      if (tab == null)
1731                          tab = initTable();
1732                      else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1733 <                        if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1733 >                        if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1734                              ++delta;
1735                              break;
1736                          }
1737                      }
1738 <                    else if ((fh = f.hash) == MOVED) {
1738 >                    else if ((fh = f.hash) < 0) {
1739                          if ((fk = f.key) instanceof TreeBin) {
1740 <                            TreeBin t = (TreeBin)fk;
1740 >                            TreeBin<V> t = (TreeBin<V>)fk;
1741                              boolean validated = false;
1742                              t.acquire(0);
1743                              try {
1744                                  if (tabAt(tab, i) == f) {
1745                                      validated = true;
1746 <                                    TreeNode p = t.getTreeNode(h, k, t.root);
1746 >                                    TreeNode<V> p = t.getTreeNode(h, k, t.root);
1747                                      if (p != null)
1748                                          p.val = v;
1749                                      else {
# Line 1967 | Line 1758 | public class ConcurrentHashMapV8<K, V>
1758                                  break;
1759                          }
1760                          else
1761 <                            tab = (Node[])fk;
1761 >                            tab = (Node<V>[])fk;
1762                      }
1763 <                    else if ((fh & LOCKED) != 0) {
1764 <                        counter.add(delta);
1765 <                        delta = 0L;
1975 <                        checkForResize();
1976 <                        f.tryAwaitLock(tab, i);
1977 <                    }
1978 <                    else if (f.casHash(fh, fh | LOCKED)) {
1979 <                        int count = 0;
1980 <                        try {
1763 >                    else {
1764 >                        int len = 0;
1765 >                        synchronized (f) {
1766                              if (tabAt(tab, i) == f) {
1767 <                                count = 1;
1768 <                                for (Node e = f;; ++count) {
1769 <                                    Object ek, ev;
1770 <                                    if ((e.hash & HASH_BITS) == h &&
1767 >                                len = 1;
1768 >                                for (Node<V> e = f;; ++len) {
1769 >                                    Object ek; V ev;
1770 >                                    if (e.hash == h &&
1771                                          (ev = e.val) != null &&
1772                                          ((ek = e.key) == k || k.equals(ek))) {
1773                                          e.val = v;
1774                                          break;
1775                                      }
1776 <                                    Node last = e;
1776 >                                    Node<V> last = e;
1777                                      if ((e = e.next) == null) {
1778                                          ++delta;
1779 <                                        last.next = new Node(h, k, v, null);
1780 <                                        if (count >= TREE_THRESHOLD)
1779 >                                        last.next = new Node<V>(h, k, v, null);
1780 >                                        if (len >= TREE_THRESHOLD)
1781                                              replaceWithTreeBin(tab, i, k);
1782                                          break;
1783                                      }
1784                                  }
1785                              }
2001                        } finally {
2002                            if (!f.casHash(fh | LOCKED, fh)) {
2003                                f.hash = fh;
2004                                synchronized (f) { f.notifyAll(); };
2005                            }
1786                          }
1787 <                        if (count != 0) {
1788 <                            if (count > 1) {
1789 <                                counter.add(delta);
2010 <                                delta = 0L;
2011 <                                checkForResize();
2012 <                            }
1787 >                        if (len != 0) {
1788 >                            if (len > 1)
1789 >                                addCount(delta, len);
1790                              break;
1791                          }
1792                      }
1793                  }
1794              }
1795          } finally {
1796 <            if (delta != 0)
1797 <                counter.add(delta);
1796 >            if (delta != 0L)
1797 >                addCount(delta, 2);
1798          }
1799          if (npe)
1800              throw new NullPointerException();
1801      }
1802  
1803 +    /**
1804 +     * Implementation for clear. Steps through each bin, removing all
1805 +     * nodes.
1806 +     */
1807 +    @SuppressWarnings("unchecked") private final void internalClear() {
1808 +        long delta = 0L; // negative number of deletions
1809 +        int i = 0;
1810 +        Node<V>[] tab = table;
1811 +        while (tab != null && i < tab.length) {
1812 +            Node<V> f = tabAt(tab, i);
1813 +            if (f == null)
1814 +                ++i;
1815 +            else if (f.hash < 0) {
1816 +                Object fk;
1817 +                if ((fk = f.key) instanceof TreeBin) {
1818 +                    TreeBin<V> t = (TreeBin<V>)fk;
1819 +                    t.acquire(0);
1820 +                    try {
1821 +                        if (tabAt(tab, i) == f) {
1822 +                            for (Node<V> p = t.first; p != null; p = p.next) {
1823 +                                if (p.val != null) { // (currently always true)
1824 +                                    p.val = null;
1825 +                                    --delta;
1826 +                                }
1827 +                            }
1828 +                            t.first = null;
1829 +                            t.root = null;
1830 +                            ++i;
1831 +                        }
1832 +                    } finally {
1833 +                        t.release(0);
1834 +                    }
1835 +                }
1836 +                else
1837 +                    tab = (Node<V>[])fk;
1838 +            }
1839 +            else {
1840 +                synchronized (f) {
1841 +                    if (tabAt(tab, i) == f) {
1842 +                        for (Node<V> e = f; e != null; e = e.next) {
1843 +                            if (e.val != null) {  // (currently always true)
1844 +                                e.val = null;
1845 +                                --delta;
1846 +                            }
1847 +                        }
1848 +                        setTabAt(tab, i, null);
1849 +                        ++i;
1850 +                    }
1851 +                }
1852 +            }
1853 +        }
1854 +        if (delta != 0L)
1855 +            addCount(delta, -1);
1856 +    }
1857 +
1858      /* ---------------- Table Initialization and Resizing -------------- */
1859  
1860      /**
# Line 2042 | Line 1874 | public class ConcurrentHashMapV8<K, V>
1874      /**
1875       * Initializes table, using the size recorded in sizeCtl.
1876       */
1877 <    private final Node[] initTable() {
1878 <        Node[] tab; int sc;
1877 >    @SuppressWarnings("unchecked") private final Node<V>[] initTable() {
1878 >        Node<V>[] tab; int sc;
1879          while ((tab = table) == null) {
1880              if ((sc = sizeCtl) < 0)
1881                  Thread.yield(); // lost initialization race; just spin
1882 <            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1882 >            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1883                  try {
1884                      if ((tab = table) == null) {
1885                          int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1886 <                        tab = table = new Node[n];
1886 >                        @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1887 >                        table = tab = (Node<V>[])tb;
1888                          sc = n - (n >>> 2);
1889                      }
1890                  } finally {
# Line 2064 | Line 1897 | public class ConcurrentHashMapV8<K, V>
1897      }
1898  
1899      /**
1900 <     * If table is too small and not already resizing, creates next
1901 <     * table and transfers bins.  Rechecks occupancy after a transfer
1902 <     * to see if another resize is already needed because resizings
1903 <     * are lagging additions.
1904 <     */
1905 <    private final void checkForResize() {
1906 <        Node[] tab; int n, sc;
1907 <        while ((tab = table) != null &&
1908 <               (n = tab.length) < MAXIMUM_CAPACITY &&
1909 <               (sc = sizeCtl) >= 0 && counter.sum() >= (long)sc &&
1910 <               UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1911 <            try {
1912 <                if (tab == table) {
1913 <                    table = rebuild(tab);
1914 <                    sc = (n << 1) - (n >>> 1);
1900 >     * Adds to count, and if table is too small and not already
1901 >     * resizing, initiates transfer. If already resizing, helps
1902 >     * perform transfer if work is available.  Rechecks occupancy
1903 >     * after a transfer to see if another resize is already needed
1904 >     * because resizings are lagging additions.
1905 >     *
1906 >     * @param x the count to add
1907 >     * @param check if <0, don't check resize, if <= 1 only check if uncontended
1908 >     */
1909 >    private final void addCount(long x, int check) {
1910 >        CounterCell[] as; long b, s;
1911 >        if ((as = counterCells) != null ||
1912 >            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1913 >            CounterHashCode hc; CounterCell a; long v; int m;
1914 >            boolean uncontended = true;
1915 >            if ((hc = threadCounterHashCode.get()) == null ||
1916 >                as == null || (m = as.length - 1) < 0 ||
1917 >                (a = as[m & hc.code]) == null ||
1918 >                !(uncontended =
1919 >                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1920 >                fullAddCount(x, hc, uncontended);
1921 >                return;
1922 >            }
1923 >            if (check <= 1)
1924 >                return;
1925 >            s = sumCount();
1926 >        }
1927 >        if (check >= 0) {
1928 >            Node<V>[] tab, nt; int sc;
1929 >            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1930 >                   tab.length < MAXIMUM_CAPACITY) {
1931 >                if (sc < 0) {
1932 >                    if (sc == -1 || transferIndex <= transferOrigin ||
1933 >                        (nt = nextTable) == null)
1934 >                        break;
1935 >                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1936 >                        transfer(tab, nt);
1937                  }
1938 <            } finally {
1939 <                sizeCtl = sc;
1938 >                else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1939 >                    transfer(tab, null);
1940 >                s = sumCount();
1941              }
1942          }
1943      }
# Line 2091 | Line 1947 | public class ConcurrentHashMapV8<K, V>
1947       *
1948       * @param size number of elements (doesn't need to be perfectly accurate)
1949       */
1950 <    private final void tryPresize(int size) {
1950 >    @SuppressWarnings("unchecked") private final void tryPresize(int size) {
1951          int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1952              tableSizeFor(size + (size >>> 1) + 1);
1953          int sc;
1954          while ((sc = sizeCtl) >= 0) {
1955 <            Node[] tab = table; int n;
1955 >            Node<V>[] tab = table; int n;
1956              if (tab == null || (n = tab.length) == 0) {
1957                  n = (sc > c) ? sc : c;
1958 <                if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1958 >                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1959                      try {
1960                          if (table == tab) {
1961 <                            table = new Node[n];
1961 >                            @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1962 >                            table = (Node<V>[])tb;
1963                              sc = n - (n >>> 2);
1964                          }
1965                      } finally {
# Line 2112 | Line 1969 | public class ConcurrentHashMapV8<K, V>
1969              }
1970              else if (c <= sc || n >= MAXIMUM_CAPACITY)
1971                  break;
1972 <            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1973 <                try {
1974 <                    if (table == tab) {
2118 <                        table = rebuild(tab);
2119 <                        sc = (n << 1) - (n >>> 1);
2120 <                    }
2121 <                } finally {
2122 <                    sizeCtl = sc;
2123 <                }
2124 <            }
1972 >            else if (tab == table &&
1973 >                     U.compareAndSwapInt(this, SIZECTL, sc, -2))
1974 >                transfer(tab, null);
1975          }
1976      }
1977  
1978      /*
1979       * Moves and/or copies the nodes in each bin to new table. See
1980       * above for explanation.
2131     *
2132     * @return the new table
1981       */
1982 <    private static final Node[] rebuild(Node[] tab) {
1983 <        int n = tab.length;
1984 <        Node[] nextTab = new Node[n << 1];
1985 <        Node fwd = new Node(MOVED, nextTab, null, null);
1986 <        int[] buffer = null;       // holds bins to revisit; null until needed
1987 <        Node rev = null;           // reverse forwarder; null until needed
1988 <        int nbuffered = 0;         // the number of bins in buffer list
1989 <        int bufferIndex = 0;       // buffer index of current buffered bin
1990 <        int bin = n - 1;           // current non-buffered bin or -1 if none
1991 <
1992 <        for (int i = bin;;) {      // start upwards sweep
1993 <            int fh; Node f;
1994 <            if ((f = tabAt(tab, i)) == null) {
1995 <                if (bin >= 0) {    // Unbuffered; no lock needed (or available)
1996 <                    if (!casTabAt(tab, i, f, fwd))
1997 <                        continue;
1998 <                }
1999 <                else {             // transiently use a locked forwarding node
2000 <                    Node g = new Node(MOVED|LOCKED, nextTab, null, null);
2001 <                    if (!casTabAt(tab, i, f, g))
2002 <                        continue;
1982 >    @SuppressWarnings("unchecked") private final void transfer
1983 >        (Node<V>[] tab, Node<V>[] nextTab) {
1984 >        int n = tab.length, stride;
1985 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1986 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
1987 >        if (nextTab == null) {            // initiating
1988 >            try {
1989 >                @SuppressWarnings("rawtypes") Node[] tb = new Node[n << 1];
1990 >                nextTab = (Node<V>[])tb;
1991 >            } catch (Throwable ex) {      // try to cope with OOME
1992 >                sizeCtl = Integer.MAX_VALUE;
1993 >                return;
1994 >            }
1995 >            nextTable = nextTab;
1996 >            transferOrigin = n;
1997 >            transferIndex = n;
1998 >            Node<V> rev = new Node<V>(MOVED, tab, null, null);
1999 >            for (int k = n; k > 0;) {    // progressively reveal ready slots
2000 >                int nextk = (k > stride) ? k - stride : 0;
2001 >                for (int m = nextk; m < k; ++m)
2002 >                    nextTab[m] = rev;
2003 >                for (int m = n + nextk; m < n + k; ++m)
2004 >                    nextTab[m] = rev;
2005 >                U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
2006 >            }
2007 >        }
2008 >        int nextn = nextTab.length;
2009 >        Node<V> fwd = new Node<V>(MOVED, nextTab, null, null);
2010 >        boolean advance = true;
2011 >        for (int i = 0, bound = 0;;) {
2012 >            int nextIndex, nextBound; Node<V> f; Object fk;
2013 >            while (advance) {
2014 >                if (--i >= bound)
2015 >                    advance = false;
2016 >                else if ((nextIndex = transferIndex) <= transferOrigin) {
2017 >                    i = -1;
2018 >                    advance = false;
2019 >                }
2020 >                else if (U.compareAndSwapInt
2021 >                         (this, TRANSFERINDEX, nextIndex,
2022 >                          nextBound = (nextIndex > stride ?
2023 >                                       nextIndex - stride : 0))) {
2024 >                    bound = nextBound;
2025 >                    i = nextIndex - 1;
2026 >                    advance = false;
2027 >                }
2028 >            }
2029 >            if (i < 0 || i >= n || i + n >= nextn) {
2030 >                for (int sc;;) {
2031 >                    if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2032 >                        if (sc == -1) {
2033 >                            nextTable = null;
2034 >                            table = nextTab;
2035 >                            sizeCtl = (n << 1) - (n >>> 1);
2036 >                        }
2037 >                        return;
2038 >                    }
2039 >                }
2040 >            }
2041 >            else if ((f = tabAt(tab, i)) == null) {
2042 >                if (casTabAt(tab, i, null, fwd)) {
2043                      setTabAt(nextTab, i, null);
2044                      setTabAt(nextTab, i + n, null);
2045 <                    setTabAt(tab, i, fwd);
2158 <                    if (!g.casHash(MOVED|LOCKED, MOVED)) {
2159 <                        g.hash = MOVED;
2160 <                        synchronized (g) { g.notifyAll(); }
2161 <                    }
2045 >                    advance = true;
2046                  }
2047              }
2048 <            else if ((fh = f.hash) == MOVED) {
2049 <                Object fk = f.key;
2050 <                if (fk instanceof TreeBin) {
2051 <                    TreeBin t = (TreeBin)fk;
2052 <                    boolean validated = false;
2053 <                    t.acquire(0);
2054 <                    try {
2055 <                        if (tabAt(tab, i) == f) {
2056 <                            validated = true;
2057 <                            splitTreeBin(nextTab, i, t);
2058 <                            setTabAt(tab, i, fwd);
2048 >            else if (f.hash >= 0) {
2049 >                synchronized (f) {
2050 >                    if (tabAt(tab, i) == f) {
2051 >                        int runBit = f.hash & n;
2052 >                        Node<V> lastRun = f, lo = null, hi = null;
2053 >                        for (Node<V> p = f.next; p != null; p = p.next) {
2054 >                            int b = p.hash & n;
2055 >                            if (b != runBit) {
2056 >                                runBit = b;
2057 >                                lastRun = p;
2058 >                            }
2059                          }
2060 <                    } finally {
2061 <                        t.release(0);
2060 >                        if (runBit == 0)
2061 >                            lo = lastRun;
2062 >                        else
2063 >                            hi = lastRun;
2064 >                        for (Node<V> p = f; p != lastRun; p = p.next) {
2065 >                            int ph = p.hash;
2066 >                            Object pk = p.key; V pv = p.val;
2067 >                            if ((ph & n) == 0)
2068 >                                lo = new Node<V>(ph, pk, pv, lo);
2069 >                            else
2070 >                                hi = new Node<V>(ph, pk, pv, hi);
2071 >                        }
2072 >                        setTabAt(nextTab, i, lo);
2073 >                        setTabAt(nextTab, i + n, hi);
2074 >                        setTabAt(tab, i, fwd);
2075 >                        advance = true;
2076                      }
2179                    if (!validated)
2180                        continue;
2077                  }
2078              }
2079 <            else if ((fh & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
2080 <                boolean validated = false;
2081 <                try {              // split to lo and hi lists; copying as needed
2079 >            else if ((fk = f.key) instanceof TreeBin) {
2080 >                TreeBin<V> t = (TreeBin<V>)fk;
2081 >                t.acquire(0);
2082 >                try {
2083                      if (tabAt(tab, i) == f) {
2084 <                        validated = true;
2085 <                        splitBin(nextTab, i, f);
2084 >                        TreeBin<V> lt = new TreeBin<V>();
2085 >                        TreeBin<V> ht = new TreeBin<V>();
2086 >                        int lc = 0, hc = 0;
2087 >                        for (Node<V> e = t.first; e != null; e = e.next) {
2088 >                            int h = e.hash;
2089 >                            Object k = e.key; V v = e.val;
2090 >                            if ((h & n) == 0) {
2091 >                                ++lc;
2092 >                                lt.putTreeNode(h, k, v);
2093 >                            }
2094 >                            else {
2095 >                                ++hc;
2096 >                                ht.putTreeNode(h, k, v);
2097 >                            }
2098 >                        }
2099 >                        Node<V> ln, hn; // throw away trees if too small
2100 >                        if (lc < TREE_THRESHOLD) {
2101 >                            ln = null;
2102 >                            for (Node<V> p = lt.first; p != null; p = p.next)
2103 >                                ln = new Node<V>(p.hash, p.key, p.val, ln);
2104 >                        }
2105 >                        else
2106 >                            ln = new Node<V>(MOVED, lt, null, null);
2107 >                        setTabAt(nextTab, i, ln);
2108 >                        if (hc < TREE_THRESHOLD) {
2109 >                            hn = null;
2110 >                            for (Node<V> p = ht.first; p != null; p = p.next)
2111 >                                hn = new Node<V>(p.hash, p.key, p.val, hn);
2112 >                        }
2113 >                        else
2114 >                            hn = new Node<V>(MOVED, ht, null, null);
2115 >                        setTabAt(nextTab, i + n, hn);
2116                          setTabAt(tab, i, fwd);
2117 +                        advance = true;
2118                      }
2119                  } finally {
2120 <                    if (!f.casHash(fh | LOCKED, fh)) {
2193 <                        f.hash = fh;
2194 <                        synchronized (f) { f.notifyAll(); };
2195 <                    }
2120 >                    t.release(0);
2121                  }
2197                if (!validated)
2198                    continue;
2199            }
2200            else {
2201                if (buffer == null) // initialize buffer for revisits
2202                    buffer = new int[TRANSFER_BUFFER_SIZE];
2203                if (bin < 0 && bufferIndex > 0) {
2204                    int j = buffer[--bufferIndex];
2205                    buffer[bufferIndex] = i;
2206                    i = j;         // swap with another bin
2207                    continue;
2208                }
2209                if (bin < 0 || nbuffered >= TRANSFER_BUFFER_SIZE) {
2210                    f.tryAwaitLock(tab, i);
2211                    continue;      // no other options -- block
2212                }
2213                if (rev == null)   // initialize reverse-forwarder
2214                    rev = new Node(MOVED, tab, null, null);
2215                if (tabAt(tab, i) != f || (f.hash & LOCKED) == 0)
2216                    continue;      // recheck before adding to list
2217                buffer[nbuffered++] = i;
2218                setTabAt(nextTab, i, rev);     // install place-holders
2219                setTabAt(nextTab, i + n, rev);
2220            }
2221
2222            if (bin > 0)
2223                i = --bin;
2224            else if (buffer != null && nbuffered > 0) {
2225                bin = -1;
2226                i = buffer[bufferIndex = --nbuffered];
2122              }
2123              else
2124 <                return nextTab;
2124 >                advance = true; // already processed
2125          }
2126      }
2127  
2128 <    /**
2129 <     * Splits a normal bin with list headed by e into lo and hi parts;
2130 <     * installs in given table.
2131 <     */
2132 <    private static void splitBin(Node[] nextTab, int i, Node e) {
2133 <        int bit = nextTab.length >>> 1; // bit to split on
2134 <        int runBit = e.hash & bit;
2135 <        Node lastRun = e, lo = null, hi = null;
2136 <        for (Node p = e.next; p != null; p = p.next) {
2242 <            int b = p.hash & bit;
2243 <            if (b != runBit) {
2244 <                runBit = b;
2245 <                lastRun = p;
2128 >    /* ---------------- Counter support -------------- */
2129 >
2130 >    final long sumCount() {
2131 >        CounterCell[] as = counterCells; CounterCell a;
2132 >        long sum = baseCount;
2133 >        if (as != null) {
2134 >            for (int i = 0; i < as.length; ++i) {
2135 >                if ((a = as[i]) != null)
2136 >                    sum += a.value;
2137              }
2138          }
2139 <        if (runBit == 0)
2249 <            lo = lastRun;
2250 <        else
2251 <            hi = lastRun;
2252 <        for (Node p = e; p != lastRun; p = p.next) {
2253 <            int ph = p.hash & HASH_BITS;
2254 <            Object pk = p.key, pv = p.val;
2255 <            if ((ph & bit) == 0)
2256 <                lo = new Node(ph, pk, pv, lo);
2257 <            else
2258 <                hi = new Node(ph, pk, pv, hi);
2259 <        }
2260 <        setTabAt(nextTab, i, lo);
2261 <        setTabAt(nextTab, i + bit, hi);
2139 >        return sum;
2140      }
2141  
2142 <    /**
2143 <     * Splits a tree bin into lo and hi parts; installs in given table.
2144 <     */
2145 <    private static void splitTreeBin(Node[] nextTab, int i, TreeBin t) {
2146 <        int bit = nextTab.length >>> 1;
2147 <        TreeBin lt = new TreeBin();
2148 <        TreeBin ht = new TreeBin();
2149 <        int lc = 0, hc = 0;
2150 <        for (Node e = t.first; e != null; e = e.next) {
2273 <            int h = e.hash & HASH_BITS;
2274 <            Object k = e.key, v = e.val;
2275 <            if ((h & bit) == 0) {
2276 <                ++lc;
2277 <                lt.putTreeNode(h, k, v);
2278 <            }
2279 <            else {
2280 <                ++hc;
2281 <                ht.putTreeNode(h, k, v);
2282 <            }
2283 <        }
2284 <        Node ln, hn; // throw away trees if too small
2285 <        if (lc <= (TREE_THRESHOLD >>> 1)) {
2286 <            ln = null;
2287 <            for (Node p = lt.first; p != null; p = p.next)
2288 <                ln = new Node(p.hash, p.key, p.val, ln);
2142 >    // See LongAdder version for explanation
2143 >    private final void fullAddCount(long x, CounterHashCode hc,
2144 >                                    boolean wasUncontended) {
2145 >        int h;
2146 >        if (hc == null) {
2147 >            hc = new CounterHashCode();
2148 >            int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
2149 >            h = hc.code = (s == 0) ? 1 : s; // Avoid zero
2150 >            threadCounterHashCode.set(hc);
2151          }
2152          else
2153 <            ln = new Node(MOVED, lt, null, null);
2154 <        setTabAt(nextTab, i, ln);
2155 <        if (hc <= (TREE_THRESHOLD >>> 1)) {
2156 <            hn = null;
2157 <            for (Node p = ht.first; p != null; p = p.next)
2158 <                hn = new Node(p.hash, p.key, p.val, hn);
2159 <        }
2160 <        else
2161 <            hn = new Node(MOVED, ht, null, null);
2162 <        setTabAt(nextTab, i + bit, hn);
2163 <    }
2164 <
2165 <    /**
2166 <     * Implementation for clear. Steps through each bin, removing all
2167 <     * nodes.
2168 <     */
2169 <    private final void internalClear() {
2170 <        long delta = 0L; // negative number of deletions
2309 <        int i = 0;
2310 <        Node[] tab = table;
2311 <        while (tab != null && i < tab.length) {
2312 <            int fh; Object fk;
2313 <            Node f = tabAt(tab, i);
2314 <            if (f == null)
2315 <                ++i;
2316 <            else if ((fh = f.hash) == MOVED) {
2317 <                if ((fk = f.key) instanceof TreeBin) {
2318 <                    TreeBin t = (TreeBin)fk;
2319 <                    t.acquire(0);
2320 <                    try {
2321 <                        if (tabAt(tab, i) == f) {
2322 <                            for (Node p = t.first; p != null; p = p.next) {
2323 <                                if (p.val != null) { // (currently always true)
2324 <                                    p.val = null;
2325 <                                    --delta;
2153 >            h = hc.code;
2154 >        boolean collide = false;                // True if last slot nonempty
2155 >        for (;;) {
2156 >            CounterCell[] as; CounterCell a; int n; long v;
2157 >            if ((as = counterCells) != null && (n = as.length) > 0) {
2158 >                if ((a = as[(n - 1) & h]) == null) {
2159 >                    if (counterBusy == 0) {            // Try to attach new Cell
2160 >                        CounterCell r = new CounterCell(x); // Optimistic create
2161 >                        if (counterBusy == 0 &&
2162 >                            U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2163 >                            boolean created = false;
2164 >                            try {               // Recheck under lock
2165 >                                CounterCell[] rs; int m, j;
2166 >                                if ((rs = counterCells) != null &&
2167 >                                    (m = rs.length) > 0 &&
2168 >                                    rs[j = (m - 1) & h] == null) {
2169 >                                    rs[j] = r;
2170 >                                    created = true;
2171                                  }
2172 +                            } finally {
2173 +                                counterBusy = 0;
2174                              }
2175 <                            t.first = null;
2176 <                            t.root = null;
2177 <                            ++i;
2175 >                            if (created)
2176 >                                break;
2177 >                            continue;           // Slot is now non-empty
2178                          }
2332                    } finally {
2333                        t.release(0);
2179                      }
2180 +                    collide = false;
2181                  }
2182 <                else
2183 <                    tab = (Node[])fk;
2184 <            }
2185 <            else if ((fh & LOCKED) != 0) {
2186 <                counter.add(delta); // opportunistically update count
2187 <                delta = 0L;
2188 <                f.tryAwaitLock(tab, i);
2189 <            }
2190 <            else if (f.casHash(fh, fh | LOCKED)) {
2191 <                try {
2192 <                    if (tabAt(tab, i) == f) {
2193 <                        for (Node e = f; e != null; e = e.next) {
2194 <                            if (e.val != null) {  // (currently always true)
2195 <                                e.val = null;
2196 <                                --delta;
2197 <                            }
2182 >                else if (!wasUncontended)       // CAS already known to fail
2183 >                    wasUncontended = true;      // Continue after rehash
2184 >                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2185 >                    break;
2186 >                else if (counterCells != as || n >= NCPU)
2187 >                    collide = false;            // At max size or stale
2188 >                else if (!collide)
2189 >                    collide = true;
2190 >                else if (counterBusy == 0 &&
2191 >                         U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2192 >                    try {
2193 >                        if (counterCells == as) {// Expand table unless stale
2194 >                            CounterCell[] rs = new CounterCell[n << 1];
2195 >                            for (int i = 0; i < n; ++i)
2196 >                                rs[i] = as[i];
2197 >                            counterCells = rs;
2198                          }
2199 <                        setTabAt(tab, i, null);
2200 <                        ++i;
2199 >                    } finally {
2200 >                        counterBusy = 0;
2201                      }
2202 <                } finally {
2203 <                    if (!f.casHash(fh | LOCKED, fh)) {
2204 <                        f.hash = fh;
2205 <                        synchronized (f) { f.notifyAll(); };
2202 >                    collide = false;
2203 >                    continue;                   // Retry with expanded table
2204 >                }
2205 >                h ^= h << 13;                   // Rehash
2206 >                h ^= h >>> 17;
2207 >                h ^= h << 5;
2208 >            }
2209 >            else if (counterBusy == 0 && counterCells == as &&
2210 >                     U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2211 >                boolean init = false;
2212 >                try {                           // Initialize table
2213 >                    if (counterCells == as) {
2214 >                        CounterCell[] rs = new CounterCell[2];
2215 >                        rs[h & 1] = new CounterCell(x);
2216 >                        counterCells = rs;
2217 >                        init = true;
2218                      }
2219 +                } finally {
2220 +                    counterBusy = 0;
2221                  }
2222 +                if (init)
2223 +                    break;
2224              }
2225 +            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2226 +                break;                          // Fall back on using base
2227          }
2228 <        if (delta != 0)
2365 <            counter.add(delta);
2228 >        hc.code = h;                            // Record index for next time
2229      }
2230  
2231      /* ----------------Table Traversal -------------- */
# Line 2412 | Line 2275 | public class ConcurrentHashMapV8<K, V>
2275       * Serializable, but iterators need not be, we need to add warning
2276       * suppressions.
2277       */
2278 <    @SuppressWarnings("serial") static class Traverser<K,V,R> extends CountedCompleter<R> {
2278 >    @SuppressWarnings("serial") static class Traverser<K,V,R>
2279 >        extends CountedCompleter<R> {
2280          final ConcurrentHashMapV8<K, V> map;
2281 <        Node next;           // the next entry to use
2281 >        Node<V> next;        // the next entry to use
2282          Object nextKey;      // cached key field of next
2283 <        Object nextVal;      // cached val field of next
2284 <        Node[] tab;          // current table; updated if resized
2283 >        V nextVal;           // cached val field of next
2284 >        Node<V>[] tab;       // current table; updated if resized
2285          int index;           // index of bin to use next
2286          int baseIndex;       // current index of initial table
2287          int baseLimit;       // index bound for initial table
# Line 2434 | Line 2298 | public class ConcurrentHashMapV8<K, V>
2298              super(it);
2299              this.batch = batch;
2300              if ((this.map = map) != null && it != null) { // split parent
2301 <                Node[] t;
2301 >                Node<V>[] t;
2302                  if ((t = it.tab) == null &&
2303                      (t = it.tab = map.table) != null)
2304                      it.baseLimit = it.baseSize = t.length;
# Line 2450 | Line 2314 | public class ConcurrentHashMapV8<K, V>
2314           * Advances next; returns nextVal or null if terminated.
2315           * See above for explanation.
2316           */
2317 <        final Object advance() {
2318 <            Node e = next;
2319 <            Object ev = null;
2317 >        @SuppressWarnings("unchecked") final V advance() {
2318 >            Node<V> e = next;
2319 >            V ev = null;
2320              outer: do {
2321                  if (e != null)                  // advance past used/skipped node
2322                      e = e.next;
2323                  while (e == null) {             // get to next non-null bin
2324                      ConcurrentHashMapV8<K, V> m;
2325 <                    Node[] t; int b, i, n; Object ek; // checks must use locals
2325 >                    Node<V>[] t; int b, i, n; Object ek; //  must use locals
2326                      if ((t = tab) != null)
2327                          n = t.length;
2328                      else if ((m = map) != null && (t = tab = m.table) != null)
# Line 2468 | Line 2332 | public class ConcurrentHashMapV8<K, V>
2332                      if ((b = baseIndex) >= baseLimit ||
2333                          (i = index) < 0 || i >= n)
2334                          break outer;
2335 <                    if ((e = tabAt(t, i)) != null && e.hash == MOVED) {
2335 >                    if ((e = tabAt(t, i)) != null && e.hash < 0) {
2336                          if ((ek = e.key) instanceof TreeBin)
2337 <                            e = ((TreeBin)ek).first;
2337 >                            e = ((TreeBin<V>)ek).first;
2338                          else {
2339 <                            tab = (Node[])ek;
2339 >                            tab = (Node<V>[])ek;
2340                              continue;           // restarts due to null val
2341                          }
2342                      }                           // visit upper slots if present
# Line 2510 | Line 2374 | public class ConcurrentHashMapV8<K, V>
2374           * anyway.
2375           */
2376          final int preSplit() {
2377 <            ConcurrentHashMapV8<K, V> m; int b; Node[] t;  ForkJoinPool pool;
2377 >            ConcurrentHashMapV8<K, V> m; int b; Node<V>[] t;  ForkJoinPool pool;
2378              if ((b = batch) < 0 && (m = map) != null) { // force initialization
2379                  if ((t = tab) == null && (t = tab = m.table) != null)
2380                      baseLimit = baseSize = t.length;
2381                  if (t != null) {
2382 <                    long n = m.counter.sum();
2382 >                    long n = m.sumCount();
2383                      int par = ((pool = getPool()) == null) ?
2384                          ForkJoinPool.getCommonPoolParallelism() :
2385                          pool.getParallelism();
# Line 2537 | Line 2401 | public class ConcurrentHashMapV8<K, V>
2401       * Creates a new, empty map with the default initial table size (16).
2402       */
2403      public ConcurrentHashMapV8() {
2540        this.counter = new LongAdder();
2404      }
2405  
2406      /**
# Line 2556 | Line 2419 | public class ConcurrentHashMapV8<K, V>
2419          int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2420                     MAXIMUM_CAPACITY :
2421                     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2559        this.counter = new LongAdder();
2422          this.sizeCtl = cap;
2423      }
2424  
# Line 2566 | Line 2428 | public class ConcurrentHashMapV8<K, V>
2428       * @param m the map
2429       */
2430      public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
2569        this.counter = new LongAdder();
2431          this.sizeCtl = DEFAULT_CAPACITY;
2432          internalPutAll(m);
2433      }
# Line 2617 | Line 2478 | public class ConcurrentHashMapV8<K, V>
2478          long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2479          int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2480              MAXIMUM_CAPACITY : tableSizeFor((int)size);
2620        this.counter = new LongAdder();
2481          this.sizeCtl = cap;
2482      }
2483  
# Line 2643 | Line 2503 | public class ConcurrentHashMapV8<K, V>
2503       * @return the new set
2504       */
2505      public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2506 <        return new KeySetView<K,Boolean>(new ConcurrentHashMapV8<K,Boolean>(initialCapacity),
2507 <                                      Boolean.TRUE);
2506 >        return new KeySetView<K,Boolean>
2507 >            (new ConcurrentHashMapV8<K,Boolean>(initialCapacity), Boolean.TRUE);
2508      }
2509  
2510      /**
2511       * {@inheritDoc}
2512       */
2513      public boolean isEmpty() {
2514 <        return counter.sum() <= 0L; // ignore transient negative values
2514 >        return sumCount() <= 0L; // ignore transient negative values
2515      }
2516  
2517      /**
2518       * {@inheritDoc}
2519       */
2520      public int size() {
2521 <        long n = counter.sum();
2521 >        long n = sumCount();
2522          return ((n < 0L) ? 0 :
2523                  (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2524                  (int)n);
# Line 2674 | Line 2534 | public class ConcurrentHashMapV8<K, V>
2534       * @return the number of mappings
2535       */
2536      public long mappingCount() {
2537 <        long n = counter.sum();
2537 >        long n = sumCount();
2538          return (n < 0L) ? 0L : n; // ignore transient negative values
2539      }
2540  
# Line 2689 | Line 2549 | public class ConcurrentHashMapV8<K, V>
2549       *
2550       * @throws NullPointerException if the specified key is null
2551       */
2552 <    @SuppressWarnings("unchecked") public V get(Object key) {
2553 <        if (key == null)
2694 <            throw new NullPointerException();
2695 <        return (V)internalGet(key);
2552 >    public V get(Object key) {
2553 >        return internalGet(key);
2554      }
2555  
2556      /**
# Line 2705 | Line 2563 | public class ConcurrentHashMapV8<K, V>
2563       * @return the mapping for the key, if present; else the defaultValue
2564       * @throws NullPointerException if the specified key is null
2565       */
2566 <    @SuppressWarnings("unchecked") public V getValueOrDefault(Object key, V defaultValue) {
2567 <        if (key == null)
2568 <            throw new NullPointerException();
2711 <        V v = (V) internalGet(key);
2712 <        return v == null ? defaultValue : v;
2566 >    public V getValueOrDefault(Object key, V defaultValue) {
2567 >        V v;
2568 >        return (v = internalGet(key)) == null ? defaultValue : v;
2569      }
2570  
2571      /**
# Line 2722 | Line 2578 | public class ConcurrentHashMapV8<K, V>
2578       * @throws NullPointerException if the specified key is null
2579       */
2580      public boolean containsKey(Object key) {
2725        if (key == null)
2726            throw new NullPointerException();
2581          return internalGet(key) != null;
2582      }
2583  
# Line 2740 | Line 2594 | public class ConcurrentHashMapV8<K, V>
2594      public boolean containsValue(Object value) {
2595          if (value == null)
2596              throw new NullPointerException();
2597 <        Object v;
2597 >        V v;
2598          Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2599          while ((v = it.advance()) != null) {
2600              if (v == value || value.equals(v))
# Line 2764 | Line 2618 | public class ConcurrentHashMapV8<K, V>
2618       *         {@code false} otherwise
2619       * @throws NullPointerException if the specified value is null
2620       */
2621 <    public boolean contains(Object value) {
2621 >    @Deprecated public boolean contains(Object value) {
2622          return containsValue(value);
2623      }
2624  
# Line 2781 | Line 2635 | public class ConcurrentHashMapV8<K, V>
2635       *         {@code null} if there was no mapping for {@code key}
2636       * @throws NullPointerException if the specified key or value is null
2637       */
2638 <    @SuppressWarnings("unchecked") public V put(K key, V value) {
2639 <        if (key == null || value == null)
2786 <            throw new NullPointerException();
2787 <        return (V)internalPut(key, value);
2638 >    public V put(K key, V value) {
2639 >        return internalPut(key, value, false);
2640      }
2641  
2642      /**
# Line 2794 | Line 2646 | public class ConcurrentHashMapV8<K, V>
2646       *         or {@code null} if there was no mapping for the key
2647       * @throws NullPointerException if the specified key or value is null
2648       */
2649 <    @SuppressWarnings("unchecked") public V putIfAbsent(K key, V value) {
2650 <        if (key == null || value == null)
2799 <            throw new NullPointerException();
2800 <        return (V)internalPutIfAbsent(key, value);
2649 >    public V putIfAbsent(K key, V value) {
2650 >        return internalPut(key, value, true);
2651      }
2652  
2653      /**
# Line 2850 | Line 2700 | public class ConcurrentHashMapV8<K, V>
2700       * @throws RuntimeException or Error if the mappingFunction does so,
2701       *         in which case the mapping is left unestablished
2702       */
2703 <    @SuppressWarnings("unchecked") public V computeIfAbsent
2703 >    public V computeIfAbsent
2704          (K key, Fun<? super K, ? extends V> mappingFunction) {
2705 <        if (key == null || mappingFunction == null)
2856 <            throw new NullPointerException();
2857 <        return (V)internalComputeIfAbsent(key, mappingFunction);
2705 >        return internalComputeIfAbsent(key, mappingFunction);
2706      }
2707  
2708      /**
# Line 2891 | Line 2739 | public class ConcurrentHashMapV8<K, V>
2739       * @throws RuntimeException or Error if the remappingFunction does so,
2740       *         in which case the mapping is unchanged
2741       */
2742 <    @SuppressWarnings("unchecked") public V computeIfPresent
2742 >    public V computeIfPresent
2743          (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2744 <        if (key == null || remappingFunction == null)
2897 <            throw new NullPointerException();
2898 <        return (V)internalCompute(key, true, remappingFunction);
2744 >        return internalCompute(key, true, remappingFunction);
2745      }
2746  
2747      /**
# Line 2938 | Line 2784 | public class ConcurrentHashMapV8<K, V>
2784       * @throws RuntimeException or Error if the remappingFunction does so,
2785       *         in which case the mapping is unchanged
2786       */
2787 <    @SuppressWarnings("unchecked") public V compute
2787 >    public V compute
2788          (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2789 <        if (key == null || remappingFunction == null)
2944 <            throw new NullPointerException();
2945 <        return (V)internalCompute(key, false, remappingFunction);
2789 >        return internalCompute(key, false, remappingFunction);
2790      }
2791  
2792      /**
# Line 2970 | Line 2814 | public class ConcurrentHashMapV8<K, V>
2814       * so the computation should be short and simple, and must not
2815       * attempt to update any other mappings of this Map.
2816       */
2817 <    @SuppressWarnings("unchecked") public V merge
2818 <        (K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
2819 <        if (key == null || value == null || remappingFunction == null)
2820 <            throw new NullPointerException();
2977 <        return (V)internalMerge(key, value, remappingFunction);
2817 >    public V merge
2818 >        (K key, V value,
2819 >         BiFun<? super V, ? super V, ? extends V> remappingFunction) {
2820 >        return internalMerge(key, value, remappingFunction);
2821      }
2822  
2823      /**
# Line 2986 | Line 2829 | public class ConcurrentHashMapV8<K, V>
2829       *         {@code null} if there was no mapping for {@code key}
2830       * @throws NullPointerException if the specified key is null
2831       */
2832 <    @SuppressWarnings("unchecked") public V remove(Object key) {
2833 <        if (key == null)
2991 <            throw new NullPointerException();
2992 <        return (V)internalReplace(key, null, null);
2832 >    public V remove(Object key) {
2833 >        return internalReplace(key, null, null);
2834      }
2835  
2836      /**
# Line 2998 | Line 2839 | public class ConcurrentHashMapV8<K, V>
2839       * @throws NullPointerException if the specified key is null
2840       */
2841      public boolean remove(Object key, Object value) {
2842 <        if (key == null)
3002 <            throw new NullPointerException();
3003 <        if (value == null)
3004 <            return false;
3005 <        return internalReplace(key, null, value) != null;
2842 >        return value != null && internalReplace(key, null, value) != null;
2843      }
2844  
2845      /**
# Line 3023 | Line 2860 | public class ConcurrentHashMapV8<K, V>
2860       *         or {@code null} if there was no mapping for the key
2861       * @throws NullPointerException if the specified key or value is null
2862       */
2863 <    @SuppressWarnings("unchecked") public V replace(K key, V value) {
2863 >    public V replace(K key, V value) {
2864          if (key == null || value == null)
2865              throw new NullPointerException();
2866 <        return (V)internalReplace(key, value, null);
2866 >        return internalReplace(key, value, null);
2867      }
2868  
2869      /**
# Line 3154 | Line 2991 | public class ConcurrentHashMapV8<K, V>
2991      public int hashCode() {
2992          int h = 0;
2993          Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2994 <        Object v;
2994 >        V v;
2995          while ((v = it.advance()) != null) {
2996              h += it.nextKey.hashCode() ^ v.hashCode();
2997          }
# Line 3176 | Line 3013 | public class ConcurrentHashMapV8<K, V>
3013          Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3014          StringBuilder sb = new StringBuilder();
3015          sb.append('{');
3016 <        Object v;
3016 >        V v;
3017          if ((v = it.advance()) != null) {
3018              for (;;) {
3019                  Object k = it.nextKey;
# Line 3207 | Line 3044 | public class ConcurrentHashMapV8<K, V>
3044                  return false;
3045              Map<?,?> m = (Map<?,?>) o;
3046              Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3047 <            Object val;
3047 >            V val;
3048              while ((val = it.advance()) != null) {
3049                  Object v = m.get(it.nextKey);
3050                  if (v == null || (v != val && !v.equals(val)))
# Line 3227 | Line 3064 | public class ConcurrentHashMapV8<K, V>
3064  
3065      /* ----------------Iterators -------------- */
3066  
3067 <    @SuppressWarnings("serial") static final class KeyIterator<K,V> extends Traverser<K,V,Object>
3067 >    @SuppressWarnings("serial") static final class KeyIterator<K,V>
3068 >        extends Traverser<K,V,Object>
3069          implements Spliterator<K>, Enumeration<K> {
3070          KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3071          KeyIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
# Line 3249 | Line 3087 | public class ConcurrentHashMapV8<K, V>
3087          public final K nextElement() { return next(); }
3088      }
3089  
3090 <    @SuppressWarnings("serial") static final class ValueIterator<K,V> extends Traverser<K,V,Object>
3090 >    @SuppressWarnings("serial") static final class ValueIterator<K,V>
3091 >        extends Traverser<K,V,Object>
3092          implements Spliterator<V>, Enumeration<V> {
3093          ValueIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3094          ValueIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
# Line 3261 | Line 3100 | public class ConcurrentHashMapV8<K, V>
3100              return new ValueIterator<K,V>(map, this);
3101          }
3102  
3103 <        @SuppressWarnings("unchecked") public final V next() {
3104 <            Object v;
3103 >        public final V next() {
3104 >            V v;
3105              if ((v = nextVal) == null && (v = advance()) == null)
3106                  throw new NoSuchElementException();
3107              nextVal = null;
3108 <            return (V) v;
3108 >            return v;
3109          }
3110  
3111          public final V nextElement() { return next(); }
3112      }
3113  
3114 <    @SuppressWarnings("serial") static final class EntryIterator<K,V> extends Traverser<K,V,Object>
3114 >    @SuppressWarnings("serial") static final class EntryIterator<K,V>
3115 >        extends Traverser<K,V,Object>
3116          implements Spliterator<Map.Entry<K,V>> {
3117          EntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3118          EntryIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
# Line 3285 | Line 3125 | public class ConcurrentHashMapV8<K, V>
3125          }
3126  
3127          @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3128 <            Object v;
3128 >            V v;
3129              if ((v = nextVal) == null && (v = advance()) == null)
3130                  throw new NoSuchElementException();
3131              Object k = nextKey;
3132              nextVal = null;
3133 <            return new MapEntry<K,V>((K)k, (V)v, map);
3133 >            return new MapEntry<K,V>((K)k, v, map);
3134          }
3135      }
3136  
# Line 3366 | Line 3206 | public class ConcurrentHashMapV8<K, V>
3206       * for each key-value mapping, followed by a null pair.
3207       * The key-value mappings are emitted in no particular order.
3208       */
3209 <    @SuppressWarnings("unchecked") private void writeObject(java.io.ObjectOutputStream s)
3209 >    @SuppressWarnings("unchecked") private void writeObject
3210 >        (java.io.ObjectOutputStream s)
3211          throws java.io.IOException {
3212          if (segments == null) { // for serialization compatibility
3213              segments = (Segment<K,V>[])
# Line 3376 | Line 3217 | public class ConcurrentHashMapV8<K, V>
3217          }
3218          s.defaultWriteObject();
3219          Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3220 <        Object v;
3220 >        V v;
3221          while ((v = it.advance()) != null) {
3222              s.writeObject(it.nextKey);
3223              s.writeObject(v);
# Line 3390 | Line 3231 | public class ConcurrentHashMapV8<K, V>
3231       * Reconstitutes the instance from a stream (that is, deserializes it).
3232       * @param s the stream
3233       */
3234 <    @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s)
3234 >    @SuppressWarnings("unchecked") private void readObject
3235 >        (java.io.ObjectInputStream s)
3236          throws java.io.IOException, ClassNotFoundException {
3237          s.defaultReadObject();
3238          this.segments = null; // unneeded
3397        // initialize transient final field
3398        UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
3239  
3240          // Create all nodes, then place in table once size is known
3241          long size = 0L;
3242 <        Node p = null;
3242 >        Node<V> p = null;
3243          for (;;) {
3244              K k = (K) s.readObject();
3245              V v = (V) s.readObject();
3246              if (k != null && v != null) {
3247                  int h = spread(k.hashCode());
3248 <                p = new Node(h, k, v, p);
3248 >                p = new Node<V>(h, k, v, p);
3249                  ++size;
3250              }
3251              else
# Line 3423 | Line 3263 | public class ConcurrentHashMapV8<K, V>
3263              int sc = sizeCtl;
3264              boolean collide = false;
3265              if (n > sc &&
3266 <                UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
3266 >                U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3267                  try {
3268                      if (table == null) {
3269                          init = true;
3270 <                        Node[] tab = new Node[n];
3270 >                        @SuppressWarnings("rawtypes") Node[] rt = new Node[n];
3271 >                        Node<V>[] tab = (Node<V>[])rt;
3272                          int mask = n - 1;
3273                          while (p != null) {
3274                              int j = p.hash & mask;
3275 <                            Node next = p.next;
3276 <                            Node q = p.next = tabAt(tab, j);
3275 >                            Node<V> next = p.next;
3276 >                            Node<V> q = p.next = tabAt(tab, j);
3277                              setTabAt(tab, j, p);
3278                              if (!collide && q != null && q.hash == p.hash)
3279                                  collide = true;
3280                              p = next;
3281                          }
3282                          table = tab;
3283 <                        counter.add(size);
3283 >                        addCount(size, -1);
3284                          sc = n - (n >>> 2);
3285                      }
3286                  } finally {
3287                      sizeCtl = sc;
3288                  }
3289                  if (collide) { // rescan and convert to TreeBins
3290 <                    Node[] tab = table;
3290 >                    Node<V>[] tab = table;
3291                      for (int i = 0; i < tab.length; ++i) {
3292                          int c = 0;
3293 <                        for (Node e = tabAt(tab, i); e != null; e = e.next) {
3293 >                        for (Node<V> e = tabAt(tab, i); e != null; e = e.next) {
3294                              if (++c > TREE_THRESHOLD &&
3295                                  (e.key instanceof Comparable)) {
3296                                  replaceWithTreeBin(tab, i, e.key);
# Line 3461 | Line 3302 | public class ConcurrentHashMapV8<K, V>
3302              }
3303              if (!init) { // Can only happen if unsafely published.
3304                  while (p != null) {
3305 <                    internalPut(p.key, p.val);
3305 >                    internalPut((K)p.key, p.val, false);
3306                      p = p.next;
3307                  }
3308              }
3309          }
3310      }
3311  
3471
3312      // -------------------------------------------------------
3313  
3314      // Sams
# Line 3510 | Line 3350 | public class ConcurrentHashMapV8<K, V>
3350  
3351      // -------------------------------------------------------
3352  
3353 +    // Sequential bulk operations
3354 +
3355 +    /**
3356 +     * Performs the given action for each (key, value).
3357 +     *
3358 +     * @param action the action
3359 +     */
3360 +    @SuppressWarnings("unchecked") public void forEachSequentially
3361 +        (BiAction<K,V> action) {
3362 +        if (action == null) throw new NullPointerException();
3363 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3364 +        V v;
3365 +        while ((v = it.advance()) != null)
3366 +            action.apply((K)it.nextKey, v);
3367 +    }
3368 +
3369 +    /**
3370 +     * Performs the given action for each non-null transformation
3371 +     * of each (key, value).
3372 +     *
3373 +     * @param transformer a function returning the transformation
3374 +     * for an element, or null of there is no transformation (in
3375 +     * which case the action is not applied).
3376 +     * @param action the action
3377 +     */
3378 +    @SuppressWarnings("unchecked") public <U> void forEachSequentially
3379 +        (BiFun<? super K, ? super V, ? extends U> transformer,
3380 +         Action<U> action) {
3381 +        if (transformer == null || action == null)
3382 +            throw new NullPointerException();
3383 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3384 +        V v; U u;
3385 +        while ((v = it.advance()) != null) {
3386 +            if ((u = transformer.apply((K)it.nextKey, v)) != null)
3387 +                action.apply(u);
3388 +        }
3389 +    }
3390 +
3391 +    /**
3392 +     * Returns a non-null result from applying the given search
3393 +     * function on each (key, value), or null if none.
3394 +     *
3395 +     * @param searchFunction a function returning a non-null
3396 +     * result on success, else null
3397 +     * @return a non-null result from applying the given search
3398 +     * function on each (key, value), or null if none
3399 +     */
3400 +    @SuppressWarnings("unchecked") public <U> U searchSequentially
3401 +        (BiFun<? super K, ? super V, ? extends U> searchFunction) {
3402 +        if (searchFunction == null) throw new NullPointerException();
3403 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3404 +        V v; U u;
3405 +        while ((v = it.advance()) != null) {
3406 +            if ((u = searchFunction.apply((K)it.nextKey, v)) != null)
3407 +                return u;
3408 +        }
3409 +        return null;
3410 +    }
3411 +
3412 +    /**
3413 +     * Returns the result of accumulating the given transformation
3414 +     * of all (key, value) pairs using the given reducer to
3415 +     * combine values, or null if none.
3416 +     *
3417 +     * @param transformer a function returning the transformation
3418 +     * for an element, or null of there is no transformation (in
3419 +     * which case it is not combined).
3420 +     * @param reducer a commutative associative combining function
3421 +     * @return the result of accumulating the given transformation
3422 +     * of all (key, value) pairs
3423 +     */
3424 +    @SuppressWarnings("unchecked") public <U> U reduceSequentially
3425 +        (BiFun<? super K, ? super V, ? extends U> transformer,
3426 +         BiFun<? super U, ? super U, ? extends U> reducer) {
3427 +        if (transformer == null || reducer == null)
3428 +            throw new NullPointerException();
3429 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3430 +        U r = null, u; V v;
3431 +        while ((v = it.advance()) != null) {
3432 +            if ((u = transformer.apply((K)it.nextKey, v)) != null)
3433 +                r = (r == null) ? u : reducer.apply(r, u);
3434 +        }
3435 +        return r;
3436 +    }
3437 +
3438 +    /**
3439 +     * Returns the result of accumulating the given transformation
3440 +     * of all (key, value) pairs using the given reducer to
3441 +     * combine values, and the given basis as an identity value.
3442 +     *
3443 +     * @param transformer a function returning the transformation
3444 +     * for an element
3445 +     * @param basis the identity (initial default value) for the reduction
3446 +     * @param reducer a commutative associative combining function
3447 +     * @return the result of accumulating the given transformation
3448 +     * of all (key, value) pairs
3449 +     */
3450 +    @SuppressWarnings("unchecked") public double reduceToDoubleSequentially
3451 +        (ObjectByObjectToDouble<? super K, ? super V> transformer,
3452 +         double basis,
3453 +         DoubleByDoubleToDouble reducer) {
3454 +        if (transformer == null || reducer == null)
3455 +            throw new NullPointerException();
3456 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3457 +        double r = basis; V v;
3458 +        while ((v = it.advance()) != null)
3459 +            r = reducer.apply(r, transformer.apply((K)it.nextKey, v));
3460 +        return r;
3461 +    }
3462 +
3463 +    /**
3464 +     * Returns the result of accumulating the given transformation
3465 +     * of all (key, value) pairs using the given reducer to
3466 +     * combine values, and the given basis as an identity value.
3467 +     *
3468 +     * @param transformer a function returning the transformation
3469 +     * for an element
3470 +     * @param basis the identity (initial default value) for the reduction
3471 +     * @param reducer a commutative associative combining function
3472 +     * @return the result of accumulating the given transformation
3473 +     * of all (key, value) pairs
3474 +     */
3475 +    @SuppressWarnings("unchecked") public long reduceToLongSequentially
3476 +        (ObjectByObjectToLong<? super K, ? super V> transformer,
3477 +         long basis,
3478 +         LongByLongToLong reducer) {
3479 +        if (transformer == null || reducer == null)
3480 +            throw new NullPointerException();
3481 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3482 +        long r = basis; V v;
3483 +        while ((v = it.advance()) != null)
3484 +            r = reducer.apply(r, transformer.apply((K)it.nextKey, v));
3485 +        return r;
3486 +    }
3487 +
3488 +    /**
3489 +     * Returns the result of accumulating the given transformation
3490 +     * of all (key, value) pairs using the given reducer to
3491 +     * combine values, and the given basis as an identity value.
3492 +     *
3493 +     * @param transformer a function returning the transformation
3494 +     * for an element
3495 +     * @param basis the identity (initial default value) for the reduction
3496 +     * @param reducer a commutative associative combining function
3497 +     * @return the result of accumulating the given transformation
3498 +     * of all (key, value) pairs
3499 +     */
3500 +    @SuppressWarnings("unchecked") public int reduceToIntSequentially
3501 +        (ObjectByObjectToInt<? super K, ? super V> transformer,
3502 +         int basis,
3503 +         IntByIntToInt reducer) {
3504 +        if (transformer == null || reducer == null)
3505 +            throw new NullPointerException();
3506 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3507 +        int r = basis; V v;
3508 +        while ((v = it.advance()) != null)
3509 +            r = reducer.apply(r, transformer.apply((K)it.nextKey, v));
3510 +        return r;
3511 +    }
3512 +
3513 +    /**
3514 +     * Performs the given action for each key.
3515 +     *
3516 +     * @param action the action
3517 +     */
3518 +    @SuppressWarnings("unchecked") public void forEachKeySequentially
3519 +        (Action<K> action) {
3520 +        if (action == null) throw new NullPointerException();
3521 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3522 +        while (it.advance() != null)
3523 +            action.apply((K)it.nextKey);
3524 +    }
3525 +
3526 +    /**
3527 +     * Performs the given action for each non-null transformation
3528 +     * of each key.
3529 +     *
3530 +     * @param transformer a function returning the transformation
3531 +     * for an element, or null of there is no transformation (in
3532 +     * which case the action is not applied).
3533 +     * @param action the action
3534 +     */
3535 +    @SuppressWarnings("unchecked") public <U> void forEachKeySequentially
3536 +        (Fun<? super K, ? extends U> transformer,
3537 +         Action<U> action) {
3538 +        if (transformer == null || action == null)
3539 +            throw new NullPointerException();
3540 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3541 +        U u;
3542 +        while (it.advance() != null) {
3543 +            if ((u = transformer.apply((K)it.nextKey)) != null)
3544 +                action.apply(u);
3545 +        }
3546 +        ForkJoinTasks.forEachKey
3547 +            (this, transformer, action).invoke();
3548 +    }
3549 +
3550 +    /**
3551 +     * Returns a non-null result from applying the given search
3552 +     * function on each key, or null if none.
3553 +     *
3554 +     * @param searchFunction a function returning a non-null
3555 +     * result on success, else null
3556 +     * @return a non-null result from applying the given search
3557 +     * function on each key, or null if none
3558 +     */
3559 +    @SuppressWarnings("unchecked") public <U> U searchKeysSequentially
3560 +        (Fun<? super K, ? extends U> searchFunction) {
3561 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3562 +        U u;
3563 +        while (it.advance() != null) {
3564 +            if ((u = searchFunction.apply((K)it.nextKey)) != null)
3565 +                return u;
3566 +        }
3567 +        return null;
3568 +    }
3569 +
3570 +    /**
3571 +     * Returns the result of accumulating all keys using the given
3572 +     * reducer to combine values, or null if none.
3573 +     *
3574 +     * @param reducer a commutative associative combining function
3575 +     * @return the result of accumulating all keys using the given
3576 +     * reducer to combine values, or null if none
3577 +     */
3578 +    @SuppressWarnings("unchecked") public K reduceKeysSequentially
3579 +        (BiFun<? super K, ? super K, ? extends K> reducer) {
3580 +        if (reducer == null) throw new NullPointerException();
3581 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3582 +        K r = null;
3583 +        while (it.advance() != null) {
3584 +            K u = (K)it.nextKey;
3585 +            r = (r == null) ? u : reducer.apply(r, u);
3586 +        }
3587 +        return r;
3588 +    }
3589 +
3590 +    /**
3591 +     * Returns the result of accumulating the given transformation
3592 +     * of all keys using the given reducer to combine values, or
3593 +     * null if none.
3594 +     *
3595 +     * @param transformer a function returning the transformation
3596 +     * for an element, or null of there is no transformation (in
3597 +     * which case it is not combined).
3598 +     * @param reducer a commutative associative combining function
3599 +     * @return the result of accumulating the given transformation
3600 +     * of all keys
3601 +     */
3602 +    @SuppressWarnings("unchecked") public <U> U reduceKeysSequentially
3603 +        (Fun<? super K, ? extends U> transformer,
3604 +         BiFun<? super U, ? super U, ? extends U> reducer) {
3605 +        if (transformer == null || reducer == null)
3606 +            throw new NullPointerException();
3607 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3608 +        U r = null, u;
3609 +        while (it.advance() != null) {
3610 +            if ((u = transformer.apply((K)it.nextKey)) != null)
3611 +                r = (r == null) ? u : reducer.apply(r, u);
3612 +        }
3613 +        return r;
3614 +    }
3615 +
3616 +    /**
3617 +     * Returns the result of accumulating the given transformation
3618 +     * of all keys using the given reducer to combine values, and
3619 +     * the given basis as an identity value.
3620 +     *
3621 +     * @param transformer a function returning the transformation
3622 +     * for an element
3623 +     * @param basis the identity (initial default value) for the reduction
3624 +     * @param reducer a commutative associative combining function
3625 +     * @return  the result of accumulating the given transformation
3626 +     * of all keys
3627 +     */
3628 +    @SuppressWarnings("unchecked") public double reduceKeysToDoubleSequentially
3629 +        (ObjectToDouble<? super K> transformer,
3630 +         double basis,
3631 +         DoubleByDoubleToDouble reducer) {
3632 +        if (transformer == null || reducer == null)
3633 +            throw new NullPointerException();
3634 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3635 +        double r = basis;
3636 +        while (it.advance() != null)
3637 +            r = reducer.apply(r, transformer.apply((K)it.nextKey));
3638 +        return r;
3639 +    }
3640 +
3641 +    /**
3642 +     * Returns the result of accumulating the given transformation
3643 +     * of all keys using the given reducer to combine values, and
3644 +     * the given basis as an identity value.
3645 +     *
3646 +     * @param transformer a function returning the transformation
3647 +     * for an element
3648 +     * @param basis the identity (initial default value) for the reduction
3649 +     * @param reducer a commutative associative combining function
3650 +     * @return the result of accumulating the given transformation
3651 +     * of all keys
3652 +     */
3653 +    @SuppressWarnings("unchecked") public long reduceKeysToLongSequentially
3654 +        (ObjectToLong<? super K> transformer,
3655 +         long basis,
3656 +         LongByLongToLong reducer) {
3657 +        if (transformer == null || reducer == null)
3658 +            throw new NullPointerException();
3659 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3660 +        long r = basis;
3661 +        while (it.advance() != null)
3662 +            r = reducer.apply(r, transformer.apply((K)it.nextKey));
3663 +        return r;
3664 +    }
3665 +
3666 +    /**
3667 +     * Returns the result of accumulating the given transformation
3668 +     * of all keys using the given reducer to combine values, and
3669 +     * the given basis as an identity value.
3670 +     *
3671 +     * @param transformer a function returning the transformation
3672 +     * for an element
3673 +     * @param basis the identity (initial default value) for the reduction
3674 +     * @param reducer a commutative associative combining function
3675 +     * @return the result of accumulating the given transformation
3676 +     * of all keys
3677 +     */
3678 +    @SuppressWarnings("unchecked") public int reduceKeysToIntSequentially
3679 +        (ObjectToInt<? super K> transformer,
3680 +         int basis,
3681 +         IntByIntToInt reducer) {
3682 +        if (transformer == null || reducer == null)
3683 +            throw new NullPointerException();
3684 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3685 +        int r = basis;
3686 +        while (it.advance() != null)
3687 +            r = reducer.apply(r, transformer.apply((K)it.nextKey));
3688 +        return r;
3689 +    }
3690 +
3691 +    /**
3692 +     * Performs the given action for each value.
3693 +     *
3694 +     * @param action the action
3695 +     */
3696 +    public void forEachValueSequentially(Action<V> action) {
3697 +        if (action == null) throw new NullPointerException();
3698 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3699 +        V v;
3700 +        while ((v = it.advance()) != null)
3701 +            action.apply(v);
3702 +    }
3703 +
3704 +    /**
3705 +     * Performs the given action for each non-null transformation
3706 +     * of each value.
3707 +     *
3708 +     * @param transformer a function returning the transformation
3709 +     * for an element, or null of there is no transformation (in
3710 +     * which case the action is not applied).
3711 +     */
3712 +    public <U> void forEachValueSequentially
3713 +        (Fun<? super V, ? extends U> transformer,
3714 +         Action<U> action) {
3715 +        if (transformer == null || action == null)
3716 +            throw new NullPointerException();
3717 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3718 +        V v; U u;
3719 +        while ((v = it.advance()) != null) {
3720 +            if ((u = transformer.apply(v)) != null)
3721 +                action.apply(u);
3722 +        }
3723 +    }
3724 +
3725 +    /**
3726 +     * Returns a non-null result from applying the given search
3727 +     * function on each value, or null if none.
3728 +     *
3729 +     * @param searchFunction a function returning a non-null
3730 +     * result on success, else null
3731 +     * @return a non-null result from applying the given search
3732 +     * function on each value, or null if none
3733 +     */
3734 +    public <U> U searchValuesSequentially
3735 +        (Fun<? super V, ? extends U> searchFunction) {
3736 +        if (searchFunction == null) throw new NullPointerException();
3737 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3738 +        V v; U u;
3739 +        while ((v = it.advance()) != null) {
3740 +            if ((u = searchFunction.apply(v)) != null)
3741 +                return u;
3742 +        }
3743 +        return null;
3744 +    }
3745 +
3746 +    /**
3747 +     * Returns the result of accumulating all values using the
3748 +     * given reducer to combine values, or null if none.
3749 +     *
3750 +     * @param reducer a commutative associative combining function
3751 +     * @return  the result of accumulating all values
3752 +     */
3753 +    public V reduceValuesSequentially
3754 +        (BiFun<? super V, ? super V, ? extends V> reducer) {
3755 +        if (reducer == null) throw new NullPointerException();
3756 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3757 +        V r = null; V v;
3758 +        while ((v = it.advance()) != null)
3759 +            r = (r == null) ? v : reducer.apply(r, v);
3760 +        return r;
3761 +    }
3762 +
3763 +    /**
3764 +     * Returns the result of accumulating the given transformation
3765 +     * of all values using the given reducer to combine values, or
3766 +     * null if none.
3767 +     *
3768 +     * @param transformer a function returning the transformation
3769 +     * for an element, or null of there is no transformation (in
3770 +     * which case it is not combined).
3771 +     * @param reducer a commutative associative combining function
3772 +     * @return the result of accumulating the given transformation
3773 +     * of all values
3774 +     */
3775 +    public <U> U reduceValuesSequentially
3776 +        (Fun<? super V, ? extends U> transformer,
3777 +         BiFun<? super U, ? super U, ? extends U> reducer) {
3778 +        if (transformer == null || reducer == null)
3779 +            throw new NullPointerException();
3780 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3781 +        U r = null, u; V v;
3782 +        while ((v = it.advance()) != null) {
3783 +            if ((u = transformer.apply(v)) != null)
3784 +                r = (r == null) ? u : reducer.apply(r, u);
3785 +        }
3786 +        return r;
3787 +    }
3788 +
3789 +    /**
3790 +     * Returns the result of accumulating the given transformation
3791 +     * of all values using the given reducer to combine values,
3792 +     * and the given basis as an identity value.
3793 +     *
3794 +     * @param transformer a function returning the transformation
3795 +     * for an element
3796 +     * @param basis the identity (initial default value) for the reduction
3797 +     * @param reducer a commutative associative combining function
3798 +     * @return the result of accumulating the given transformation
3799 +     * of all values
3800 +     */
3801 +    public double reduceValuesToDoubleSequentially
3802 +        (ObjectToDouble<? super V> transformer,
3803 +         double basis,
3804 +         DoubleByDoubleToDouble reducer) {
3805 +        if (transformer == null || reducer == null)
3806 +            throw new NullPointerException();
3807 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3808 +        double r = basis; V v;
3809 +        while ((v = it.advance()) != null)
3810 +            r = reducer.apply(r, transformer.apply(v));
3811 +        return r;
3812 +    }
3813 +
3814 +    /**
3815 +     * Returns the result of accumulating the given transformation
3816 +     * of all values using the given reducer to combine values,
3817 +     * and the given basis as an identity value.
3818 +     *
3819 +     * @param transformer a function returning the transformation
3820 +     * for an element
3821 +     * @param basis the identity (initial default value) for the reduction
3822 +     * @param reducer a commutative associative combining function
3823 +     * @return the result of accumulating the given transformation
3824 +     * of all values
3825 +     */
3826 +    public long reduceValuesToLongSequentially
3827 +        (ObjectToLong<? super V> transformer,
3828 +         long basis,
3829 +         LongByLongToLong reducer) {
3830 +        if (transformer == null || reducer == null)
3831 +            throw new NullPointerException();
3832 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3833 +        long r = basis; V v;
3834 +        while ((v = it.advance()) != null)
3835 +            r = reducer.apply(r, transformer.apply(v));
3836 +        return r;
3837 +    }
3838 +
3839 +    /**
3840 +     * Returns the result of accumulating the given transformation
3841 +     * of all values using the given reducer to combine values,
3842 +     * and the given basis as an identity value.
3843 +     *
3844 +     * @param transformer a function returning the transformation
3845 +     * for an element
3846 +     * @param basis the identity (initial default value) for the reduction
3847 +     * @param reducer a commutative associative combining function
3848 +     * @return the result of accumulating the given transformation
3849 +     * of all values
3850 +     */
3851 +    public int reduceValuesToIntSequentially
3852 +        (ObjectToInt<? super V> transformer,
3853 +         int basis,
3854 +         IntByIntToInt reducer) {
3855 +        if (transformer == null || reducer == null)
3856 +            throw new NullPointerException();
3857 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3858 +        int r = basis; V v;
3859 +        while ((v = it.advance()) != null)
3860 +            r = reducer.apply(r, transformer.apply(v));
3861 +        return r;
3862 +    }
3863 +
3864 +    /**
3865 +     * Performs the given action for each entry.
3866 +     *
3867 +     * @param action the action
3868 +     */
3869 +    @SuppressWarnings("unchecked") public void forEachEntrySequentially
3870 +        (Action<Map.Entry<K,V>> action) {
3871 +        if (action == null) throw new NullPointerException();
3872 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3873 +        V v;
3874 +        while ((v = it.advance()) != null)
3875 +            action.apply(entryFor((K)it.nextKey, v));
3876 +    }
3877 +
3878 +    /**
3879 +     * Performs the given action for each non-null transformation
3880 +     * of each entry.
3881 +     *
3882 +     * @param transformer a function returning the transformation
3883 +     * for an element, or null of there is no transformation (in
3884 +     * which case the action is not applied).
3885 +     * @param action the action
3886 +     */
3887 +    @SuppressWarnings("unchecked") public <U> void forEachEntrySequentially
3888 +        (Fun<Map.Entry<K,V>, ? extends U> transformer,
3889 +         Action<U> action) {
3890 +        if (transformer == null || action == null)
3891 +            throw new NullPointerException();
3892 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3893 +        V v; U u;
3894 +        while ((v = it.advance()) != null) {
3895 +            if ((u = transformer.apply(entryFor((K)it.nextKey, v))) != null)
3896 +                action.apply(u);
3897 +        }
3898 +    }
3899 +
3900 +    /**
3901 +     * Returns a non-null result from applying the given search
3902 +     * function on each entry, or null if none.
3903 +     *
3904 +     * @param searchFunction a function returning a non-null
3905 +     * result on success, else null
3906 +     * @return a non-null result from applying the given search
3907 +     * function on each entry, or null if none
3908 +     */
3909 +    @SuppressWarnings("unchecked") public <U> U searchEntriesSequentially
3910 +        (Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
3911 +        if (searchFunction == null) throw new NullPointerException();
3912 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3913 +        V v; U u;
3914 +        while ((v = it.advance()) != null) {
3915 +            if ((u = searchFunction.apply(entryFor((K)it.nextKey, v))) != null)
3916 +                return u;
3917 +        }
3918 +        return null;
3919 +    }
3920 +
3921 +    /**
3922 +     * Returns the result of accumulating all entries using the
3923 +     * given reducer to combine values, or null if none.
3924 +     *
3925 +     * @param reducer a commutative associative combining function
3926 +     * @return the result of accumulating all entries
3927 +     */
3928 +    @SuppressWarnings("unchecked") public Map.Entry<K,V> reduceEntriesSequentially
3929 +        (BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3930 +        if (reducer == null) throw new NullPointerException();
3931 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3932 +        Map.Entry<K,V> r = null; V v;
3933 +        while ((v = it.advance()) != null) {
3934 +            Map.Entry<K,V> u = entryFor((K)it.nextKey, v);
3935 +            r = (r == null) ? u : reducer.apply(r, u);
3936 +        }
3937 +        return r;
3938 +    }
3939 +
3940 +    /**
3941 +     * Returns the result of accumulating the given transformation
3942 +     * of all entries using the given reducer to combine values,
3943 +     * or null if none.
3944 +     *
3945 +     * @param transformer a function returning the transformation
3946 +     * for an element, or null of there is no transformation (in
3947 +     * which case it is not combined).
3948 +     * @param reducer a commutative associative combining function
3949 +     * @return the result of accumulating the given transformation
3950 +     * of all entries
3951 +     */
3952 +    @SuppressWarnings("unchecked") public <U> U reduceEntriesSequentially
3953 +        (Fun<Map.Entry<K,V>, ? extends U> transformer,
3954 +         BiFun<? super U, ? super U, ? extends U> reducer) {
3955 +        if (transformer == null || reducer == null)
3956 +            throw new NullPointerException();
3957 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3958 +        U r = null, u; V v;
3959 +        while ((v = it.advance()) != null) {
3960 +            if ((u = transformer.apply(entryFor((K)it.nextKey, v))) != null)
3961 +                r = (r == null) ? u : reducer.apply(r, u);
3962 +        }
3963 +        return r;
3964 +    }
3965 +
3966 +    /**
3967 +     * Returns the result of accumulating the given transformation
3968 +     * of all entries using the given reducer to combine values,
3969 +     * and the given basis as an identity value.
3970 +     *
3971 +     * @param transformer a function returning the transformation
3972 +     * for an element
3973 +     * @param basis the identity (initial default value) for the reduction
3974 +     * @param reducer a commutative associative combining function
3975 +     * @return the result of accumulating the given transformation
3976 +     * of all entries
3977 +     */
3978 +    @SuppressWarnings("unchecked") public double reduceEntriesToDoubleSequentially
3979 +        (ObjectToDouble<Map.Entry<K,V>> transformer,
3980 +         double basis,
3981 +         DoubleByDoubleToDouble reducer) {
3982 +        if (transformer == null || reducer == null)
3983 +            throw new NullPointerException();
3984 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3985 +        double r = basis; V v;
3986 +        while ((v = it.advance()) != null)
3987 +            r = reducer.apply(r, transformer.apply(entryFor((K)it.nextKey, v)));
3988 +        return r;
3989 +    }
3990 +
3991 +    /**
3992 +     * Returns the result of accumulating the given transformation
3993 +     * of all entries using the given reducer to combine values,
3994 +     * and the given basis as an identity value.
3995 +     *
3996 +     * @param transformer a function returning the transformation
3997 +     * for an element
3998 +     * @param basis the identity (initial default value) for the reduction
3999 +     * @param reducer a commutative associative combining function
4000 +     * @return  the result of accumulating the given transformation
4001 +     * of all entries
4002 +     */
4003 +    @SuppressWarnings("unchecked") public long reduceEntriesToLongSequentially
4004 +        (ObjectToLong<Map.Entry<K,V>> transformer,
4005 +         long basis,
4006 +         LongByLongToLong reducer) {
4007 +        if (transformer == null || reducer == null)
4008 +            throw new NullPointerException();
4009 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4010 +        long r = basis; V v;
4011 +        while ((v = it.advance()) != null)
4012 +            r = reducer.apply(r, transformer.apply(entryFor((K)it.nextKey, v)));
4013 +        return r;
4014 +    }
4015 +
4016 +    /**
4017 +     * Returns the result of accumulating the given transformation
4018 +     * of all entries using the given reducer to combine values,
4019 +     * and the given basis as an identity value.
4020 +     *
4021 +     * @param transformer a function returning the transformation
4022 +     * for an element
4023 +     * @param basis the identity (initial default value) for the reduction
4024 +     * @param reducer a commutative associative combining function
4025 +     * @return the result of accumulating the given transformation
4026 +     * of all entries
4027 +     */
4028 +    @SuppressWarnings("unchecked") public int reduceEntriesToIntSequentially
4029 +        (ObjectToInt<Map.Entry<K,V>> transformer,
4030 +         int basis,
4031 +         IntByIntToInt reducer) {
4032 +        if (transformer == null || reducer == null)
4033 +            throw new NullPointerException();
4034 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4035 +        int r = basis; V v;
4036 +        while ((v = it.advance()) != null)
4037 +            r = reducer.apply(r, transformer.apply(entryFor((K)it.nextKey, v)));
4038 +        return r;
4039 +    }
4040 +
4041 +    // Parallel bulk operations
4042 +
4043      /**
4044       * Performs the given action for each (key, value).
4045       *
4046       * @param action the action
4047       */
4048 <    public void forEach(BiAction<K,V> action) {
4048 >    public void forEachInParallel(BiAction<K,V> action) {
4049          ForkJoinTasks.forEach
4050              (this, action).invoke();
4051      }
# Line 3529 | Line 4059 | public class ConcurrentHashMapV8<K, V>
4059       * which case the action is not applied).
4060       * @param action the action
4061       */
4062 <    public <U> void forEach(BiFun<? super K, ? super V, ? extends U> transformer,
4062 >    public <U> void forEachInParallel
4063 >        (BiFun<? super K, ? super V, ? extends U> transformer,
4064                              Action<U> action) {
4065          ForkJoinTasks.forEach
4066              (this, transformer, action).invoke();
# Line 3547 | Line 4078 | public class ConcurrentHashMapV8<K, V>
4078       * @return a non-null result from applying the given search
4079       * function on each (key, value), or null if none
4080       */
4081 <    public <U> U search(BiFun<? super K, ? super V, ? extends U> searchFunction) {
4081 >    public <U> U searchInParallel
4082 >        (BiFun<? super K, ? super V, ? extends U> searchFunction) {
4083          return ForkJoinTasks.search
4084              (this, searchFunction).invoke();
4085      }
# Line 3564 | Line 4096 | public class ConcurrentHashMapV8<K, V>
4096       * @return the result of accumulating the given transformation
4097       * of all (key, value) pairs
4098       */
4099 <    public <U> U reduce(BiFun<? super K, ? super V, ? extends U> transformer,
4100 <                        BiFun<? super U, ? super U, ? extends U> reducer) {
4099 >    public <U> U reduceInParallel
4100 >        (BiFun<? super K, ? super V, ? extends U> transformer,
4101 >         BiFun<? super U, ? super U, ? extends U> reducer) {
4102          return ForkJoinTasks.reduce
4103              (this, transformer, reducer).invoke();
4104      }
# Line 3582 | Line 4115 | public class ConcurrentHashMapV8<K, V>
4115       * @return the result of accumulating the given transformation
4116       * of all (key, value) pairs
4117       */
4118 <    public double reduceToDouble(ObjectByObjectToDouble<? super K, ? super V> transformer,
4119 <                                 double basis,
4120 <                                 DoubleByDoubleToDouble reducer) {
4118 >    public double reduceToDoubleInParallel
4119 >        (ObjectByObjectToDouble<? super K, ? super V> transformer,
4120 >         double basis,
4121 >         DoubleByDoubleToDouble reducer) {
4122          return ForkJoinTasks.reduceToDouble
4123              (this, transformer, basis, reducer).invoke();
4124      }
# Line 3601 | Line 4135 | public class ConcurrentHashMapV8<K, V>
4135       * @return the result of accumulating the given transformation
4136       * of all (key, value) pairs
4137       */
4138 <    public long reduceToLong(ObjectByObjectToLong<? super K, ? super V> transformer,
4139 <                             long basis,
4140 <                             LongByLongToLong reducer) {
4138 >    public long reduceToLongInParallel
4139 >        (ObjectByObjectToLong<? super K, ? super V> transformer,
4140 >         long basis,
4141 >         LongByLongToLong reducer) {
4142          return ForkJoinTasks.reduceToLong
4143              (this, transformer, basis, reducer).invoke();
4144      }
# Line 3620 | Line 4155 | public class ConcurrentHashMapV8<K, V>
4155       * @return the result of accumulating the given transformation
4156       * of all (key, value) pairs
4157       */
4158 <    public int reduceToInt(ObjectByObjectToInt<? super K, ? super V> transformer,
4159 <                           int basis,
4160 <                           IntByIntToInt reducer) {
4158 >    public int reduceToIntInParallel
4159 >        (ObjectByObjectToInt<? super K, ? super V> transformer,
4160 >         int basis,
4161 >         IntByIntToInt reducer) {
4162          return ForkJoinTasks.reduceToInt
4163              (this, transformer, basis, reducer).invoke();
4164      }
# Line 3632 | Line 4168 | public class ConcurrentHashMapV8<K, V>
4168       *
4169       * @param action the action
4170       */
4171 <    public void forEachKey(Action<K> action) {
4171 >    public void forEachKeyInParallel(Action<K> action) {
4172          ForkJoinTasks.forEachKey
4173              (this, action).invoke();
4174      }
# Line 3646 | Line 4182 | public class ConcurrentHashMapV8<K, V>
4182       * which case the action is not applied).
4183       * @param action the action
4184       */
4185 <    public <U> void forEachKey(Fun<? super K, ? extends U> transformer,
4186 <                               Action<U> action) {
4185 >    public <U> void forEachKeyInParallel
4186 >        (Fun<? super K, ? extends U> transformer,
4187 >         Action<U> action) {
4188          ForkJoinTasks.forEachKey
4189              (this, transformer, action).invoke();
4190      }
# Line 3664 | Line 4201 | public class ConcurrentHashMapV8<K, V>
4201       * @return a non-null result from applying the given search
4202       * function on each key, or null if none
4203       */
4204 <    public <U> U searchKeys(Fun<? super K, ? extends U> searchFunction) {
4204 >    public <U> U searchKeysInParallel
4205 >        (Fun<? super K, ? extends U> searchFunction) {
4206          return ForkJoinTasks.searchKeys
4207              (this, searchFunction).invoke();
4208      }
# Line 3677 | Line 4215 | public class ConcurrentHashMapV8<K, V>
4215       * @return the result of accumulating all keys using the given
4216       * reducer to combine values, or null if none
4217       */
4218 <    public K reduceKeys(BiFun<? super K, ? super K, ? extends K> reducer) {
4218 >    public K reduceKeysInParallel
4219 >        (BiFun<? super K, ? super K, ? extends K> reducer) {
4220          return ForkJoinTasks.reduceKeys
4221              (this, reducer).invoke();
4222      }
# Line 3694 | Line 4233 | public class ConcurrentHashMapV8<K, V>
4233       * @return the result of accumulating the given transformation
4234       * of all keys
4235       */
4236 <    public <U> U reduceKeys(Fun<? super K, ? extends U> transformer,
4237 <                            BiFun<? super U, ? super U, ? extends U> reducer) {
4236 >    public <U> U reduceKeysInParallel
4237 >        (Fun<? super K, ? extends U> transformer,
4238 >         BiFun<? super U, ? super U, ? extends U> reducer) {
4239          return ForkJoinTasks.reduceKeys
4240              (this, transformer, reducer).invoke();
4241      }
# Line 3712 | Line 4252 | public class ConcurrentHashMapV8<K, V>
4252       * @return  the result of accumulating the given transformation
4253       * of all keys
4254       */
4255 <    public double reduceKeysToDouble(ObjectToDouble<? super K> transformer,
4256 <                                     double basis,
4257 <                                     DoubleByDoubleToDouble reducer) {
4255 >    public double reduceKeysToDoubleInParallel
4256 >        (ObjectToDouble<? super K> transformer,
4257 >         double basis,
4258 >         DoubleByDoubleToDouble reducer) {
4259          return ForkJoinTasks.reduceKeysToDouble
4260              (this, transformer, basis, reducer).invoke();
4261      }
# Line 3731 | Line 4272 | public class ConcurrentHashMapV8<K, V>
4272       * @return the result of accumulating the given transformation
4273       * of all keys
4274       */
4275 <    public long reduceKeysToLong(ObjectToLong<? super K> transformer,
4276 <                                 long basis,
4277 <                                 LongByLongToLong reducer) {
4275 >    public long reduceKeysToLongInParallel
4276 >        (ObjectToLong<? super K> transformer,
4277 >         long basis,
4278 >         LongByLongToLong reducer) {
4279          return ForkJoinTasks.reduceKeysToLong
4280              (this, transformer, basis, reducer).invoke();
4281      }
# Line 3750 | Line 4292 | public class ConcurrentHashMapV8<K, V>
4292       * @return the result of accumulating the given transformation
4293       * of all keys
4294       */
4295 <    public int reduceKeysToInt(ObjectToInt<? super K> transformer,
4296 <                               int basis,
4297 <                               IntByIntToInt reducer) {
4295 >    public int reduceKeysToIntInParallel
4296 >        (ObjectToInt<? super K> transformer,
4297 >         int basis,
4298 >         IntByIntToInt reducer) {
4299          return ForkJoinTasks.reduceKeysToInt
4300              (this, transformer, basis, reducer).invoke();
4301      }
# Line 3762 | Line 4305 | public class ConcurrentHashMapV8<K, V>
4305       *
4306       * @param action the action
4307       */
4308 <    public void forEachValue(Action<V> action) {
4308 >    public void forEachValueInParallel(Action<V> action) {
4309          ForkJoinTasks.forEachValue
4310              (this, action).invoke();
4311      }
# Line 3775 | Line 4318 | public class ConcurrentHashMapV8<K, V>
4318       * for an element, or null of there is no transformation (in
4319       * which case the action is not applied).
4320       */
4321 <    public <U> void forEachValue(Fun<? super V, ? extends U> transformer,
4322 <                                 Action<U> action) {
4321 >    public <U> void forEachValueInParallel
4322 >        (Fun<? super V, ? extends U> transformer,
4323 >         Action<U> action) {
4324          ForkJoinTasks.forEachValue
4325              (this, transformer, action).invoke();
4326      }
# Line 3792 | Line 4336 | public class ConcurrentHashMapV8<K, V>
4336       * result on success, else null
4337       * @return a non-null result from applying the given search
4338       * function on each value, or null if none
3795     *
4339       */
4340 <    public <U> U searchValues(Fun<? super V, ? extends U> searchFunction) {
4340 >    public <U> U searchValuesInParallel
4341 >        (Fun<? super V, ? extends U> searchFunction) {
4342          return ForkJoinTasks.searchValues
4343              (this, searchFunction).invoke();
4344      }
# Line 3806 | Line 4350 | public class ConcurrentHashMapV8<K, V>
4350       * @param reducer a commutative associative combining function
4351       * @return  the result of accumulating all values
4352       */
4353 <    public V reduceValues(BiFun<? super V, ? super V, ? extends V> reducer) {
4353 >    public V reduceValuesInParallel
4354 >        (BiFun<? super V, ? super V, ? extends V> reducer) {
4355          return ForkJoinTasks.reduceValues
4356              (this, reducer).invoke();
4357      }
# Line 3823 | Line 4368 | public class ConcurrentHashMapV8<K, V>
4368       * @return the result of accumulating the given transformation
4369       * of all values
4370       */
4371 <    public <U> U reduceValues(Fun<? super V, ? extends U> transformer,
4372 <                              BiFun<? super U, ? super U, ? extends U> reducer) {
4371 >    public <U> U reduceValuesInParallel
4372 >        (Fun<? super V, ? extends U> transformer,
4373 >         BiFun<? super U, ? super U, ? extends U> reducer) {
4374          return ForkJoinTasks.reduceValues
4375              (this, transformer, reducer).invoke();
4376      }
# Line 3841 | Line 4387 | public class ConcurrentHashMapV8<K, V>
4387       * @return the result of accumulating the given transformation
4388       * of all values
4389       */
4390 <    public double reduceValuesToDouble(ObjectToDouble<? super V> transformer,
4391 <                                       double basis,
4392 <                                       DoubleByDoubleToDouble reducer) {
4390 >    public double reduceValuesToDoubleInParallel
4391 >        (ObjectToDouble<? super V> transformer,
4392 >         double basis,
4393 >         DoubleByDoubleToDouble reducer) {
4394          return ForkJoinTasks.reduceValuesToDouble
4395              (this, transformer, basis, reducer).invoke();
4396      }
# Line 3860 | Line 4407 | public class ConcurrentHashMapV8<K, V>
4407       * @return the result of accumulating the given transformation
4408       * of all values
4409       */
4410 <    public long reduceValuesToLong(ObjectToLong<? super V> transformer,
4411 <                                   long basis,
4412 <                                   LongByLongToLong reducer) {
4410 >    public long reduceValuesToLongInParallel
4411 >        (ObjectToLong<? super V> transformer,
4412 >         long basis,
4413 >         LongByLongToLong reducer) {
4414          return ForkJoinTasks.reduceValuesToLong
4415              (this, transformer, basis, reducer).invoke();
4416      }
# Line 3879 | Line 4427 | public class ConcurrentHashMapV8<K, V>
4427       * @return the result of accumulating the given transformation
4428       * of all values
4429       */
4430 <    public int reduceValuesToInt(ObjectToInt<? super V> transformer,
4431 <                                 int basis,
4432 <                                 IntByIntToInt reducer) {
4430 >    public int reduceValuesToIntInParallel
4431 >        (ObjectToInt<? super V> transformer,
4432 >         int basis,
4433 >         IntByIntToInt reducer) {
4434          return ForkJoinTasks.reduceValuesToInt
4435              (this, transformer, basis, reducer).invoke();
4436      }
# Line 3891 | Line 4440 | public class ConcurrentHashMapV8<K, V>
4440       *
4441       * @param action the action
4442       */
4443 <    public void forEachEntry(Action<Map.Entry<K,V>> action) {
4443 >    public void forEachEntryInParallel(Action<Map.Entry<K,V>> action) {
4444          ForkJoinTasks.forEachEntry
4445              (this, action).invoke();
4446      }
# Line 3905 | Line 4454 | public class ConcurrentHashMapV8<K, V>
4454       * which case the action is not applied).
4455       * @param action the action
4456       */
4457 <    public <U> void forEachEntry(Fun<Map.Entry<K,V>, ? extends U> transformer,
4458 <                                 Action<U> action) {
4457 >    public <U> void forEachEntryInParallel
4458 >        (Fun<Map.Entry<K,V>, ? extends U> transformer,
4459 >         Action<U> action) {
4460          ForkJoinTasks.forEachEntry
4461              (this, transformer, action).invoke();
4462      }
# Line 3923 | Line 4473 | public class ConcurrentHashMapV8<K, V>
4473       * @return a non-null result from applying the given search
4474       * function on each entry, or null if none
4475       */
4476 <    public <U> U searchEntries(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4476 >    public <U> U searchEntriesInParallel
4477 >        (Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4478          return ForkJoinTasks.searchEntries
4479              (this, searchFunction).invoke();
4480      }
# Line 3935 | Line 4486 | public class ConcurrentHashMapV8<K, V>
4486       * @param reducer a commutative associative combining function
4487       * @return the result of accumulating all entries
4488       */
4489 <    public Map.Entry<K,V> reduceEntries(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4489 >    public Map.Entry<K,V> reduceEntriesInParallel
4490 >        (BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4491          return ForkJoinTasks.reduceEntries
4492              (this, reducer).invoke();
4493      }
# Line 3952 | Line 4504 | public class ConcurrentHashMapV8<K, V>
4504       * @return the result of accumulating the given transformation
4505       * of all entries
4506       */
4507 <    public <U> U reduceEntries(Fun<Map.Entry<K,V>, ? extends U> transformer,
4508 <                               BiFun<? super U, ? super U, ? extends U> reducer) {
4507 >    public <U> U reduceEntriesInParallel
4508 >        (Fun<Map.Entry<K,V>, ? extends U> transformer,
4509 >         BiFun<? super U, ? super U, ? extends U> reducer) {
4510          return ForkJoinTasks.reduceEntries
4511              (this, transformer, reducer).invoke();
4512      }
# Line 3970 | Line 4523 | public class ConcurrentHashMapV8<K, V>
4523       * @return the result of accumulating the given transformation
4524       * of all entries
4525       */
4526 <    public double reduceEntriesToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4527 <                                        double basis,
4528 <                                        DoubleByDoubleToDouble reducer) {
4526 >    public double reduceEntriesToDoubleInParallel
4527 >        (ObjectToDouble<Map.Entry<K,V>> transformer,
4528 >         double basis,
4529 >         DoubleByDoubleToDouble reducer) {
4530          return ForkJoinTasks.reduceEntriesToDouble
4531              (this, transformer, basis, reducer).invoke();
4532      }
# Line 3989 | Line 4543 | public class ConcurrentHashMapV8<K, V>
4543       * @return  the result of accumulating the given transformation
4544       * of all entries
4545       */
4546 <    public long reduceEntriesToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4547 <                                    long basis,
4548 <                                    LongByLongToLong reducer) {
4546 >    public long reduceEntriesToLongInParallel
4547 >        (ObjectToLong<Map.Entry<K,V>> transformer,
4548 >         long basis,
4549 >         LongByLongToLong reducer) {
4550          return ForkJoinTasks.reduceEntriesToLong
4551              (this, transformer, basis, reducer).invoke();
4552      }
# Line 4008 | Line 4563 | public class ConcurrentHashMapV8<K, V>
4563       * @return the result of accumulating the given transformation
4564       * of all entries
4565       */
4566 <    public int reduceEntriesToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4567 <                                  int basis,
4568 <                                  IntByIntToInt reducer) {
4566 >    public int reduceEntriesToIntInParallel
4567 >        (ObjectToInt<Map.Entry<K,V>> transformer,
4568 >         int basis,
4569 >         IntByIntToInt reducer) {
4570          return ForkJoinTasks.reduceEntriesToInt
4571              (this, transformer, basis, reducer).invoke();
4572      }
4573  
4574 +
4575      /* ----------------Views -------------- */
4576  
4577      /**
# Line 4160 | Line 4717 | public class ConcurrentHashMapV8<K, V>
4717       * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
4718       * {@link #newKeySet(int)}.
4719       */
4720 <    public static class KeySetView<K,V> extends CHMView<K,V> implements Set<K>, java.io.Serializable {
4720 >    public static class KeySetView<K,V> extends CHMView<K,V>
4721 >        implements Set<K>, java.io.Serializable {
4722          private static final long serialVersionUID = 7249069246763182397L;
4723          private final V value;
4724          KeySetView(ConcurrentHashMapV8<K, V> map, V value) {  // non-public
# Line 4199 | Line 4757 | public class ConcurrentHashMapV8<K, V>
4757                  throw new UnsupportedOperationException();
4758              if (e == null)
4759                  throw new NullPointerException();
4760 <            return map.internalPutIfAbsent(e, v) == null;
4760 >            return map.internalPut(e, v, true) == null;
4761          }
4762          public boolean addAll(Collection<? extends K> c) {
4763              boolean added = false;
# Line 4209 | Line 4767 | public class ConcurrentHashMapV8<K, V>
4767              for (K e : c) {
4768                  if (e == null)
4769                      throw new NullPointerException();
4770 <                if (map.internalPutIfAbsent(e, v) == null)
4770 >                if (map.internalPut(e, v, true) == null)
4771                      added = true;
4772              }
4773              return added;
# Line 4220 | Line 4778 | public class ConcurrentHashMapV8<K, V>
4778                      ((c = (Set<?>)o) == this ||
4779                       (containsAll(c) && c.containsAll(this))));
4780          }
4223
4224        /**
4225         * Performs the given action for each key.
4226         *
4227         * @param action the action
4228         */
4229        public void forEach(Action<K> action) {
4230            ForkJoinTasks.forEachKey
4231                (map, action).invoke();
4232        }
4233
4234        /**
4235         * Performs the given action for each non-null transformation
4236         * of each key.
4237         *
4238         * @param transformer a function returning the transformation
4239         * for an element, or null of there is no transformation (in
4240         * which case the action is not applied).
4241         * @param action the action
4242         */
4243        public <U> void forEach(Fun<? super K, ? extends U> transformer,
4244                                Action<U> action) {
4245            ForkJoinTasks.forEachKey
4246                (map, transformer, action).invoke();
4247        }
4248
4249        /**
4250         * Returns a non-null result from applying the given search
4251         * function on each key, or null if none. Upon success,
4252         * further element processing is suppressed and the results of
4253         * any other parallel invocations of the search function are
4254         * ignored.
4255         *
4256         * @param searchFunction a function returning a non-null
4257         * result on success, else null
4258         * @return a non-null result from applying the given search
4259         * function on each key, or null if none
4260         */
4261        public <U> U search(Fun<? super K, ? extends U> searchFunction) {
4262            return ForkJoinTasks.searchKeys
4263                (map, searchFunction).invoke();
4264        }
4265
4266        /**
4267         * Returns the result of accumulating all keys using the given
4268         * reducer to combine values, or null if none.
4269         *
4270         * @param reducer a commutative associative combining function
4271         * @return the result of accumulating all keys using the given
4272         * reducer to combine values, or null if none
4273         */
4274        public K reduce(BiFun<? super K, ? super K, ? extends K> reducer) {
4275            return ForkJoinTasks.reduceKeys
4276                (map, reducer).invoke();
4277        }
4278
4279        /**
4280         * Returns the result of accumulating the given transformation
4281         * of all keys using the given reducer to combine values, and
4282         * the given basis as an identity value.
4283         *
4284         * @param transformer a function returning the transformation
4285         * for an element
4286         * @param basis the identity (initial default value) for the reduction
4287         * @param reducer a commutative associative combining function
4288         * @return  the result of accumulating the given transformation
4289         * of all keys
4290         */
4291        public double reduceToDouble(ObjectToDouble<? super K> transformer,
4292                                     double basis,
4293                                     DoubleByDoubleToDouble reducer) {
4294            return ForkJoinTasks.reduceKeysToDouble
4295                (map, transformer, basis, reducer).invoke();
4296        }
4297
4298
4299        /**
4300         * Returns the result of accumulating the given transformation
4301         * of all keys using the given reducer to combine values, and
4302         * the given basis as an identity value.
4303         *
4304         * @param transformer a function returning the transformation
4305         * for an element
4306         * @param basis the identity (initial default value) for the reduction
4307         * @param reducer a commutative associative combining function
4308         * @return the result of accumulating the given transformation
4309         * of all keys
4310         */
4311        public long reduceToLong(ObjectToLong<? super K> transformer,
4312                                 long basis,
4313                                 LongByLongToLong reducer) {
4314            return ForkJoinTasks.reduceKeysToLong
4315                (map, transformer, basis, reducer).invoke();
4316        }
4317
4318        /**
4319         * Returns the result of accumulating the given transformation
4320         * of all keys using the given reducer to combine values, and
4321         * the given basis as an identity value.
4322         *
4323         * @param transformer a function returning the transformation
4324         * for an element
4325         * @param basis the identity (initial default value) for the reduction
4326         * @param reducer a commutative associative combining function
4327         * @return the result of accumulating the given transformation
4328         * of all keys
4329         */
4330        public int reduceToInt(ObjectToInt<? super K> transformer,
4331                               int basis,
4332                               IntByIntToInt reducer) {
4333            return ForkJoinTasks.reduceKeysToInt
4334                (map, transformer, basis, reducer).invoke();
4335        }
4336
4781      }
4782  
4783      /**
# Line 4384 | Line 4828 | public class ConcurrentHashMapV8<K, V>
4828              throw new UnsupportedOperationException();
4829          }
4830  
4387        /**
4388         * Performs the given action for each value.
4389         *
4390         * @param action the action
4391         */
4392        public void forEach(Action<V> action) {
4393            ForkJoinTasks.forEachValue
4394                (map, action).invoke();
4395        }
4396
4397        /**
4398         * Performs the given action for each non-null transformation
4399         * of each value.
4400         *
4401         * @param transformer a function returning the transformation
4402         * for an element, or null of there is no transformation (in
4403         * which case the action is not applied).
4404         */
4405        public <U> void forEach(Fun<? super V, ? extends U> transformer,
4406                                     Action<U> action) {
4407            ForkJoinTasks.forEachValue
4408                (map, transformer, action).invoke();
4409        }
4410
4411        /**
4412         * Returns a non-null result from applying the given search
4413         * function on each value, or null if none.  Upon success,
4414         * further element processing is suppressed and the results of
4415         * any other parallel invocations of the search function are
4416         * ignored.
4417         *
4418         * @param searchFunction a function returning a non-null
4419         * result on success, else null
4420         * @return a non-null result from applying the given search
4421         * function on each value, or null if none
4422         *
4423         */
4424        public <U> U search(Fun<? super V, ? extends U> searchFunction) {
4425            return ForkJoinTasks.searchValues
4426                (map, searchFunction).invoke();
4427        }
4428
4429        /**
4430         * Returns the result of accumulating all values using the
4431         * given reducer to combine values, or null if none.
4432         *
4433         * @param reducer a commutative associative combining function
4434         * @return  the result of accumulating all values
4435         */
4436        public V reduce(BiFun<? super V, ? super V, ? extends V> reducer) {
4437            return ForkJoinTasks.reduceValues
4438                (map, reducer).invoke();
4439        }
4440
4441        /**
4442         * Returns the result of accumulating the given transformation
4443         * of all values using the given reducer to combine values, or
4444         * null if none.
4445         *
4446         * @param transformer a function returning the transformation
4447         * for an element, or null of there is no transformation (in
4448         * which case it is not combined).
4449         * @param reducer a commutative associative combining function
4450         * @return the result of accumulating the given transformation
4451         * of all values
4452         */
4453        public <U> U reduce(Fun<? super V, ? extends U> transformer,
4454                            BiFun<? super U, ? super U, ? extends U> reducer) {
4455            return ForkJoinTasks.reduceValues
4456                (map, transformer, reducer).invoke();
4457        }
4458
4459        /**
4460         * Returns the result of accumulating the given transformation
4461         * of all values using the given reducer to combine values,
4462         * and the given basis as an identity value.
4463         *
4464         * @param transformer a function returning the transformation
4465         * for an element
4466         * @param basis the identity (initial default value) for the reduction
4467         * @param reducer a commutative associative combining function
4468         * @return the result of accumulating the given transformation
4469         * of all values
4470         */
4471        public double reduceToDouble(ObjectToDouble<? super V> transformer,
4472                                     double basis,
4473                                     DoubleByDoubleToDouble reducer) {
4474            return ForkJoinTasks.reduceValuesToDouble
4475                (map, transformer, basis, reducer).invoke();
4476        }
4477
4478        /**
4479         * Returns the result of accumulating the given transformation
4480         * of all values using the given reducer to combine values,
4481         * and the given basis as an identity value.
4482         *
4483         * @param transformer a function returning the transformation
4484         * for an element
4485         * @param basis the identity (initial default value) for the reduction
4486         * @param reducer a commutative associative combining function
4487         * @return the result of accumulating the given transformation
4488         * of all values
4489         */
4490        public long reduceToLong(ObjectToLong<? super V> transformer,
4491                                 long basis,
4492                                 LongByLongToLong reducer) {
4493            return ForkJoinTasks.reduceValuesToLong
4494                (map, transformer, basis, reducer).invoke();
4495        }
4496
4497        /**
4498         * Returns the result of accumulating the given transformation
4499         * of all values using the given reducer to combine values,
4500         * and the given basis as an identity value.
4501         *
4502         * @param transformer a function returning the transformation
4503         * for an element
4504         * @param basis the identity (initial default value) for the reduction
4505         * @param reducer a commutative associative combining function
4506         * @return the result of accumulating the given transformation
4507         * of all values
4508         */
4509        public int reduceToInt(ObjectToInt<? super V> transformer,
4510                               int basis,
4511                               IntByIntToInt reducer) {
4512            return ForkJoinTasks.reduceValuesToInt
4513                (map, transformer, basis, reducer).invoke();
4514        }
4515
4831      }
4832  
4833      /**
# Line 4558 | Line 4873 | public class ConcurrentHashMapV8<K, V>
4873              V value = e.getValue();
4874              if (key == null || value == null)
4875                  throw new NullPointerException();
4876 <            return map.internalPut(key, value) == null;
4876 >            return map.internalPut(key, value, false) == null;
4877          }
4878          public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4879              boolean added = false;
# Line 4574 | Line 4889 | public class ConcurrentHashMapV8<K, V>
4889                      ((c = (Set<?>)o) == this ||
4890                       (containsAll(c) && c.containsAll(this))));
4891          }
4577
4578        /**
4579         * Performs the given action for each entry.
4580         *
4581         * @param action the action
4582         */
4583        public void forEach(Action<Map.Entry<K,V>> action) {
4584            ForkJoinTasks.forEachEntry
4585                (map, action).invoke();
4586        }
4587
4588        /**
4589         * Performs the given action for each non-null transformation
4590         * of each entry.
4591         *
4592         * @param transformer a function returning the transformation
4593         * for an element, or null of there is no transformation (in
4594         * which case the action is not applied).
4595         * @param action the action
4596         */
4597        public <U> void forEach(Fun<Map.Entry<K,V>, ? extends U> transformer,
4598                                Action<U> action) {
4599            ForkJoinTasks.forEachEntry
4600                (map, transformer, action).invoke();
4601        }
4602
4603        /**
4604         * Returns a non-null result from applying the given search
4605         * function on each entry, or null if none.  Upon success,
4606         * further element processing is suppressed and the results of
4607         * any other parallel invocations of the search function are
4608         * ignored.
4609         *
4610         * @param searchFunction a function returning a non-null
4611         * result on success, else null
4612         * @return a non-null result from applying the given search
4613         * function on each entry, or null if none
4614         */
4615        public <U> U search(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4616            return ForkJoinTasks.searchEntries
4617                (map, searchFunction).invoke();
4618        }
4619
4620        /**
4621         * Returns the result of accumulating all entries using the
4622         * given reducer to combine values, or null if none.
4623         *
4624         * @param reducer a commutative associative combining function
4625         * @return the result of accumulating all entries
4626         */
4627        public Map.Entry<K,V> reduce(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4628            return ForkJoinTasks.reduceEntries
4629                (map, reducer).invoke();
4630        }
4631
4632        /**
4633         * Returns the result of accumulating the given transformation
4634         * of all entries using the given reducer to combine values,
4635         * or null if none.
4636         *
4637         * @param transformer a function returning the transformation
4638         * for an element, or null of there is no transformation (in
4639         * which case it is not combined).
4640         * @param reducer a commutative associative combining function
4641         * @return the result of accumulating the given transformation
4642         * of all entries
4643         */
4644        public <U> U reduce(Fun<Map.Entry<K,V>, ? extends U> transformer,
4645                            BiFun<? super U, ? super U, ? extends U> reducer) {
4646            return ForkJoinTasks.reduceEntries
4647                (map, transformer, reducer).invoke();
4648        }
4649
4650        /**
4651         * Returns the result of accumulating the given transformation
4652         * of all entries using the given reducer to combine values,
4653         * and the given basis as an identity value.
4654         *
4655         * @param transformer a function returning the transformation
4656         * for an element
4657         * @param basis the identity (initial default value) for the reduction
4658         * @param reducer a commutative associative combining function
4659         * @return the result of accumulating the given transformation
4660         * of all entries
4661         */
4662        public double reduceToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4663                                     double basis,
4664                                     DoubleByDoubleToDouble reducer) {
4665            return ForkJoinTasks.reduceEntriesToDouble
4666                (map, transformer, basis, reducer).invoke();
4667        }
4668
4669        /**
4670         * Returns the result of accumulating the given transformation
4671         * of all entries using the given reducer to combine values,
4672         * and the given basis as an identity value.
4673         *
4674         * @param transformer a function returning the transformation
4675         * for an element
4676         * @param basis the identity (initial default value) for the reduction
4677         * @param reducer a commutative associative combining function
4678         * @return  the result of accumulating the given transformation
4679         * of all entries
4680         */
4681        public long reduceToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4682                                 long basis,
4683                                 LongByLongToLong reducer) {
4684            return ForkJoinTasks.reduceEntriesToLong
4685                (map, transformer, basis, reducer).invoke();
4686        }
4687
4688        /**
4689         * Returns the result of accumulating the given transformation
4690         * of all entries using the given reducer to combine values,
4691         * and the given basis as an identity value.
4692         *
4693         * @param transformer a function returning the transformation
4694         * for an element
4695         * @param basis the identity (initial default value) for the reduction
4696         * @param reducer a commutative associative combining function
4697         * @return the result of accumulating the given transformation
4698         * of all entries
4699         */
4700        public int reduceToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4701                               int basis,
4702                               IntByIntToInt reducer) {
4703            return ForkJoinTasks.reduceEntriesToInt
4704                (map, transformer, basis, reducer).invoke();
4705        }
4706
4892      }
4893  
4894      // ---------------------------------------------------------------------
# Line 5376 | Line 5561 | public class ConcurrentHashMapV8<K, V>
5561      /*
5562       * Task classes. Coded in a regular but ugly format/style to
5563       * simplify checks that each variant differs in the right way from
5564 <     * others.
5564 >     * others. The null screenings exist because compilers cannot tell
5565 >     * that we've already null-checked task arguments, so we force
5566 >     * simplest hoisted bypass to help avoid convoluted traps.
5567       */
5568  
5569      @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
# Line 5390 | Line 5577 | public class ConcurrentHashMapV8<K, V>
5577          }
5578          @SuppressWarnings("unchecked") public final void compute() {
5579              final Action<K> action;
5580 <            if ((action = this.action) == null)
5581 <                throw new NullPointerException();
5582 <            for (int b; (b = preSplit()) > 0;)
5583 <                new ForEachKeyTask<K,V>(map, this, b, action).fork();
5584 <            while (advance() != null)
5585 <                action.apply((K)nextKey);
5586 <            propagateCompletion();
5580 >            if ((action = this.action) != null) {
5581 >                for (int b; (b = preSplit()) > 0;)
5582 >                    new ForEachKeyTask<K,V>(map, this, b, action).fork();
5583 >                while (advance() != null)
5584 >                    action.apply((K)nextKey);
5585 >                propagateCompletion();
5586 >            }
5587          }
5588      }
5589  
# Line 5411 | Line 5598 | public class ConcurrentHashMapV8<K, V>
5598          }
5599          @SuppressWarnings("unchecked") public final void compute() {
5600              final Action<V> action;
5601 <            if ((action = this.action) == null)
5602 <                throw new NullPointerException();
5603 <            for (int b; (b = preSplit()) > 0;)
5604 <                new ForEachValueTask<K,V>(map, this, b, action).fork();
5605 <            Object v;
5606 <            while ((v = advance()) != null)
5607 <                action.apply((V)v);
5608 <            propagateCompletion();
5601 >            if ((action = this.action) != null) {
5602 >                for (int b; (b = preSplit()) > 0;)
5603 >                    new ForEachValueTask<K,V>(map, this, b, action).fork();
5604 >                V v;
5605 >                while ((v = advance()) != null)
5606 >                    action.apply(v);
5607 >                propagateCompletion();
5608 >            }
5609          }
5610      }
5611  
# Line 5433 | Line 5620 | public class ConcurrentHashMapV8<K, V>
5620          }
5621          @SuppressWarnings("unchecked") public final void compute() {
5622              final Action<Entry<K,V>> action;
5623 <            if ((action = this.action) == null)
5624 <                throw new NullPointerException();
5625 <            for (int b; (b = preSplit()) > 0;)
5626 <                new ForEachEntryTask<K,V>(map, this, b, action).fork();
5627 <            Object v;
5628 <            while ((v = advance()) != null)
5629 <                action.apply(entryFor((K)nextKey, (V)v));
5630 <            propagateCompletion();
5623 >            if ((action = this.action) != null) {
5624 >                for (int b; (b = preSplit()) > 0;)
5625 >                    new ForEachEntryTask<K,V>(map, this, b, action).fork();
5626 >                V v;
5627 >                while ((v = advance()) != null)
5628 >                    action.apply(entryFor((K)nextKey, v));
5629 >                propagateCompletion();
5630 >            }
5631          }
5632      }
5633  
# Line 5455 | Line 5642 | public class ConcurrentHashMapV8<K, V>
5642          }
5643          @SuppressWarnings("unchecked") public final void compute() {
5644              final BiAction<K,V> action;
5645 <            if ((action = this.action) == null)
5646 <                throw new NullPointerException();
5647 <            for (int b; (b = preSplit()) > 0;)
5648 <                new ForEachMappingTask<K,V>(map, this, b, action).fork();
5649 <            Object v;
5650 <            while ((v = advance()) != null)
5651 <                action.apply((K)nextKey, (V)v);
5652 <            propagateCompletion();
5645 >            if ((action = this.action) != null) {
5646 >                for (int b; (b = preSplit()) > 0;)
5647 >                    new ForEachMappingTask<K,V>(map, this, b, action).fork();
5648 >                V v;
5649 >                while ((v = advance()) != null)
5650 >                    action.apply((K)nextKey, v);
5651 >                propagateCompletion();
5652 >            }
5653          }
5654      }
5655  
# Line 5479 | Line 5666 | public class ConcurrentHashMapV8<K, V>
5666          @SuppressWarnings("unchecked") public final void compute() {
5667              final Fun<? super K, ? extends U> transformer;
5668              final Action<U> action;
5669 <            if ((transformer = this.transformer) == null ||
5670 <                (action = this.action) == null)
5671 <                throw new NullPointerException();
5672 <            for (int b; (b = preSplit()) > 0;)
5673 <                new ForEachTransformedKeyTask<K,V,U>
5674 <                     (map, this, b, transformer, action).fork();
5675 <            U u;
5676 <            while (advance() != null) {
5677 <                if ((u = transformer.apply((K)nextKey)) != null)
5678 <                    action.apply(u);
5669 >            if ((transformer = this.transformer) != null &&
5670 >                (action = this.action) != null) {
5671 >                for (int b; (b = preSplit()) > 0;)
5672 >                    new ForEachTransformedKeyTask<K,V,U>
5673 >                        (map, this, b, transformer, action).fork();
5674 >                U u;
5675 >                while (advance() != null) {
5676 >                    if ((u = transformer.apply((K)nextKey)) != null)
5677 >                        action.apply(u);
5678 >                }
5679 >                propagateCompletion();
5680              }
5493            propagateCompletion();
5681          }
5682      }
5683  
# Line 5507 | Line 5694 | public class ConcurrentHashMapV8<K, V>
5694          @SuppressWarnings("unchecked") public final void compute() {
5695              final Fun<? super V, ? extends U> transformer;
5696              final Action<U> action;
5697 <            if ((transformer = this.transformer) == null ||
5698 <                (action = this.action) == null)
5699 <                throw new NullPointerException();
5700 <            for (int b; (b = preSplit()) > 0;)
5701 <                new ForEachTransformedValueTask<K,V,U>
5702 <                    (map, this, b, transformer, action).fork();
5703 <            Object v; U u;
5704 <            while ((v = advance()) != null) {
5705 <                if ((u = transformer.apply((V)v)) != null)
5706 <                    action.apply(u);
5697 >            if ((transformer = this.transformer) != null &&
5698 >                (action = this.action) != null) {
5699 >                for (int b; (b = preSplit()) > 0;)
5700 >                    new ForEachTransformedValueTask<K,V,U>
5701 >                        (map, this, b, transformer, action).fork();
5702 >                V v; U u;
5703 >                while ((v = advance()) != null) {
5704 >                    if ((u = transformer.apply(v)) != null)
5705 >                        action.apply(u);
5706 >                }
5707 >                propagateCompletion();
5708              }
5521            propagateCompletion();
5709          }
5710      }
5711  
# Line 5535 | Line 5722 | public class ConcurrentHashMapV8<K, V>
5722          @SuppressWarnings("unchecked") public final void compute() {
5723              final Fun<Map.Entry<K,V>, ? extends U> transformer;
5724              final Action<U> action;
5725 <            if ((transformer = this.transformer) == null ||
5726 <                (action = this.action) == null)
5727 <                throw new NullPointerException();
5728 <            for (int b; (b = preSplit()) > 0;)
5729 <                new ForEachTransformedEntryTask<K,V,U>
5730 <                    (map, this, b, transformer, action).fork();
5731 <            Object v; U u;
5732 <            while ((v = advance()) != null) {
5733 <                if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
5734 <                    action.apply(u);
5725 >            if ((transformer = this.transformer) != null &&
5726 >                (action = this.action) != null) {
5727 >                for (int b; (b = preSplit()) > 0;)
5728 >                    new ForEachTransformedEntryTask<K,V,U>
5729 >                        (map, this, b, transformer, action).fork();
5730 >                V v; U u;
5731 >                while ((v = advance()) != null) {
5732 >                    if ((u = transformer.apply(entryFor((K)nextKey,
5733 >                                                        v))) != null)
5734 >                        action.apply(u);
5735 >                }
5736 >                propagateCompletion();
5737              }
5549            propagateCompletion();
5738          }
5739      }
5740  
# Line 5564 | Line 5752 | public class ConcurrentHashMapV8<K, V>
5752          @SuppressWarnings("unchecked") public final void compute() {
5753              final BiFun<? super K, ? super V, ? extends U> transformer;
5754              final Action<U> action;
5755 <            if ((transformer = this.transformer) == null ||
5756 <                (action = this.action) == null)
5757 <                throw new NullPointerException();
5758 <            for (int b; (b = preSplit()) > 0;)
5759 <                new ForEachTransformedMappingTask<K,V,U>
5760 <                    (map, this, b, transformer, action).fork();
5761 <            Object v; U u;
5762 <            while ((v = advance()) != null) {
5763 <                if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5764 <                    action.apply(u);
5755 >            if ((transformer = this.transformer) != null &&
5756 >                (action = this.action) != null) {
5757 >                for (int b; (b = preSplit()) > 0;)
5758 >                    new ForEachTransformedMappingTask<K,V,U>
5759 >                        (map, this, b, transformer, action).fork();
5760 >                V v; U u;
5761 >                while ((v = advance()) != null) {
5762 >                    if ((u = transformer.apply((K)nextKey, v)) != null)
5763 >                        action.apply(u);
5764 >                }
5765 >                propagateCompletion();
5766              }
5578            propagateCompletion();
5767          }
5768      }
5769  
# Line 5594 | Line 5782 | public class ConcurrentHashMapV8<K, V>
5782          @SuppressWarnings("unchecked") public final void compute() {
5783              final Fun<? super K, ? extends U> searchFunction;
5784              final AtomicReference<U> result;
5785 <            if ((searchFunction = this.searchFunction) == null ||
5786 <                (result = this.result) == null)
5787 <                throw new NullPointerException();
5788 <            for (int b;;) {
5789 <                if (result.get() != null)
5790 <                    return;
5791 <                if ((b = preSplit()) <= 0)
5792 <                    break;
5793 <                new SearchKeysTask<K,V,U>
5606 <                    (map, this, b, searchFunction, result).fork();
5607 <            }
5608 <            while (result.get() == null) {
5609 <                U u;
5610 <                if (advance() == null) {
5611 <                    propagateCompletion();
5612 <                    break;
5785 >            if ((searchFunction = this.searchFunction) != null &&
5786 >                (result = this.result) != null) {
5787 >                for (int b;;) {
5788 >                    if (result.get() != null)
5789 >                        return;
5790 >                    if ((b = preSplit()) <= 0)
5791 >                        break;
5792 >                    new SearchKeysTask<K,V,U>
5793 >                        (map, this, b, searchFunction, result).fork();
5794                  }
5795 <                if ((u = searchFunction.apply((K)nextKey)) != null) {
5796 <                    if (result.compareAndSet(null, u))
5797 <                        quietlyCompleteRoot();
5798 <                    break;
5795 >                while (result.get() == null) {
5796 >                    U u;
5797 >                    if (advance() == null) {
5798 >                        propagateCompletion();
5799 >                        break;
5800 >                    }
5801 >                    if ((u = searchFunction.apply((K)nextKey)) != null) {
5802 >                        if (result.compareAndSet(null, u))
5803 >                            quietlyCompleteRoot();
5804 >                        break;
5805 >                    }
5806                  }
5807              }
5808          }
# Line 5635 | Line 5823 | public class ConcurrentHashMapV8<K, V>
5823          @SuppressWarnings("unchecked") public final void compute() {
5824              final Fun<? super V, ? extends U> searchFunction;
5825              final AtomicReference<U> result;
5826 <            if ((searchFunction = this.searchFunction) == null ||
5827 <                (result = this.result) == null)
5828 <                throw new NullPointerException();
5829 <            for (int b;;) {
5830 <                if (result.get() != null)
5831 <                    return;
5832 <                if ((b = preSplit()) <= 0)
5833 <                    break;
5834 <                new SearchValuesTask<K,V,U>
5647 <                    (map, this, b, searchFunction, result).fork();
5648 <            }
5649 <            while (result.get() == null) {
5650 <                Object v; U u;
5651 <                if ((v = advance()) == null) {
5652 <                    propagateCompletion();
5653 <                    break;
5826 >            if ((searchFunction = this.searchFunction) != null &&
5827 >                (result = this.result) != null) {
5828 >                for (int b;;) {
5829 >                    if (result.get() != null)
5830 >                        return;
5831 >                    if ((b = preSplit()) <= 0)
5832 >                        break;
5833 >                    new SearchValuesTask<K,V,U>
5834 >                        (map, this, b, searchFunction, result).fork();
5835                  }
5836 <                if ((u = searchFunction.apply((V)v)) != null) {
5837 <                    if (result.compareAndSet(null, u))
5838 <                        quietlyCompleteRoot();
5839 <                    break;
5836 >                while (result.get() == null) {
5837 >                    V v; U u;
5838 >                    if ((v = advance()) == null) {
5839 >                        propagateCompletion();
5840 >                        break;
5841 >                    }
5842 >                    if ((u = searchFunction.apply(v)) != null) {
5843 >                        if (result.compareAndSet(null, u))
5844 >                            quietlyCompleteRoot();
5845 >                        break;
5846 >                    }
5847                  }
5848              }
5849          }
# Line 5676 | Line 5864 | public class ConcurrentHashMapV8<K, V>
5864          @SuppressWarnings("unchecked") public final void compute() {
5865              final Fun<Entry<K,V>, ? extends U> searchFunction;
5866              final AtomicReference<U> result;
5867 <            if ((searchFunction = this.searchFunction) == null ||
5868 <                (result = this.result) == null)
5869 <                throw new NullPointerException();
5870 <            for (int b;;) {
5871 <                if (result.get() != null)
5872 <                    return;
5873 <                if ((b = preSplit()) <= 0)
5874 <                    break;
5875 <                new SearchEntriesTask<K,V,U>
5688 <                    (map, this, b, searchFunction, result).fork();
5689 <            }
5690 <            while (result.get() == null) {
5691 <                Object v; U u;
5692 <                if ((v = advance()) == null) {
5693 <                    propagateCompletion();
5694 <                    break;
5867 >            if ((searchFunction = this.searchFunction) != null &&
5868 >                (result = this.result) != null) {
5869 >                for (int b;;) {
5870 >                    if (result.get() != null)
5871 >                        return;
5872 >                    if ((b = preSplit()) <= 0)
5873 >                        break;
5874 >                    new SearchEntriesTask<K,V,U>
5875 >                        (map, this, b, searchFunction, result).fork();
5876                  }
5877 <                if ((u = searchFunction.apply(entryFor((K)nextKey, (V)v))) != null) {
5878 <                    if (result.compareAndSet(null, u))
5879 <                        quietlyCompleteRoot();
5880 <                    return;
5877 >                while (result.get() == null) {
5878 >                    V v; U u;
5879 >                    if ((v = advance()) == null) {
5880 >                        propagateCompletion();
5881 >                        break;
5882 >                    }
5883 >                    if ((u = searchFunction.apply(entryFor((K)nextKey,
5884 >                                                           v))) != null) {
5885 >                        if (result.compareAndSet(null, u))
5886 >                            quietlyCompleteRoot();
5887 >                        return;
5888 >                    }
5889                  }
5890              }
5891          }
# Line 5717 | Line 5906 | public class ConcurrentHashMapV8<K, V>
5906          @SuppressWarnings("unchecked") public final void compute() {
5907              final BiFun<? super K, ? super V, ? extends U> searchFunction;
5908              final AtomicReference<U> result;
5909 <            if ((searchFunction = this.searchFunction) == null ||
5910 <                (result = this.result) == null)
5911 <                throw new NullPointerException();
5912 <            for (int b;;) {
5913 <                if (result.get() != null)
5914 <                    return;
5915 <                if ((b = preSplit()) <= 0)
5916 <                    break;
5917 <                new SearchMappingsTask<K,V,U>
5729 <                    (map, this, b, searchFunction, result).fork();
5730 <            }
5731 <            while (result.get() == null) {
5732 <                Object v; U u;
5733 <                if ((v = advance()) == null) {
5734 <                    propagateCompletion();
5735 <                    break;
5909 >            if ((searchFunction = this.searchFunction) != null &&
5910 >                (result = this.result) != null) {
5911 >                for (int b;;) {
5912 >                    if (result.get() != null)
5913 >                        return;
5914 >                    if ((b = preSplit()) <= 0)
5915 >                        break;
5916 >                    new SearchMappingsTask<K,V,U>
5917 >                        (map, this, b, searchFunction, result).fork();
5918                  }
5919 <                if ((u = searchFunction.apply((K)nextKey, (V)v)) != null) {
5920 <                    if (result.compareAndSet(null, u))
5921 <                        quietlyCompleteRoot();
5922 <                    break;
5919 >                while (result.get() == null) {
5920 >                    V v; U u;
5921 >                    if ((v = advance()) == null) {
5922 >                        propagateCompletion();
5923 >                        break;
5924 >                    }
5925 >                    if ((u = searchFunction.apply((K)nextKey, v)) != null) {
5926 >                        if (result.compareAndSet(null, u))
5927 >                            quietlyCompleteRoot();
5928 >                        break;
5929 >                    }
5930                  }
5931              }
5932          }
# Line 5757 | Line 5946 | public class ConcurrentHashMapV8<K, V>
5946          }
5947          public final K getRawResult() { return result; }
5948          @SuppressWarnings("unchecked") public final void compute() {
5949 <            final BiFun<? super K, ? super K, ? extends K> reducer =
5950 <                this.reducer;
5951 <            if (reducer == null)
5952 <                throw new NullPointerException();
5953 <            for (int b; (b = preSplit()) > 0;)
5954 <                (rights = new ReduceKeysTask<K,V>
5955 <                 (map, this, b, rights, reducer)).fork();
5956 <            K r = null;
5957 <            while (advance() != null) {
5958 <                K u = (K)nextKey;
5959 <                r = (r == null) ? u : reducer.apply(r, u);
5960 <            }
5961 <            result = r;
5962 <            CountedCompleter<?> c;
5963 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5964 <                ReduceKeysTask<K,V>
5965 <                    t = (ReduceKeysTask<K,V>)c,
5966 <                    s = t.rights;
5967 <                while (s != null) {
5968 <                    K tr, sr;
5969 <                    if ((sr = s.result) != null)
5970 <                        t.result = (((tr = t.result) == null) ? sr :
5971 <                                    reducer.apply(tr, sr));
5783 <                    s = t.rights = s.nextRight;
5949 >            final BiFun<? super K, ? super K, ? extends K> reducer;
5950 >            if ((reducer = this.reducer) != null) {
5951 >                for (int b; (b = preSplit()) > 0;)
5952 >                    (rights = new ReduceKeysTask<K,V>
5953 >                     (map, this, b, rights, reducer)).fork();
5954 >                K r = null;
5955 >                while (advance() != null) {
5956 >                    K u = (K)nextKey;
5957 >                    r = (r == null) ? u : reducer.apply(r, u);
5958 >                }
5959 >                result = r;
5960 >                CountedCompleter<?> c;
5961 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5962 >                    ReduceKeysTask<K,V>
5963 >                        t = (ReduceKeysTask<K,V>)c,
5964 >                        s = t.rights;
5965 >                    while (s != null) {
5966 >                        K tr, sr;
5967 >                        if ((sr = s.result) != null)
5968 >                            t.result = (((tr = t.result) == null) ? sr :
5969 >                                        reducer.apply(tr, sr));
5970 >                        s = t.rights = s.nextRight;
5971 >                    }
5972                  }
5973              }
5974          }
# Line 5800 | Line 5988 | public class ConcurrentHashMapV8<K, V>
5988          }
5989          public final V getRawResult() { return result; }
5990          @SuppressWarnings("unchecked") public final void compute() {
5991 <            final BiFun<? super V, ? super V, ? extends V> reducer =
5992 <                this.reducer;
5993 <            if (reducer == null)
5994 <                throw new NullPointerException();
5995 <            for (int b; (b = preSplit()) > 0;)
5996 <                (rights = new ReduceValuesTask<K,V>
5997 <                 (map, this, b, rights, reducer)).fork();
5998 <            V r = null;
5999 <            Object v;
6000 <            while ((v = advance()) != null) {
6001 <                V u = (V)v;
6002 <                r = (r == null) ? u : reducer.apply(r, u);
6003 <            }
6004 <            result = r;
6005 <            CountedCompleter<?> c;
6006 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6007 <                ReduceValuesTask<K,V>
6008 <                    t = (ReduceValuesTask<K,V>)c,
6009 <                    s = t.rights;
6010 <                while (s != null) {
6011 <                    V tr, sr;
6012 <                    if ((sr = s.result) != null)
6013 <                        t.result = (((tr = t.result) == null) ? sr :
6014 <                                    reducer.apply(tr, sr));
5827 <                    s = t.rights = s.nextRight;
5991 >            final BiFun<? super V, ? super V, ? extends V> reducer;
5992 >            if ((reducer = this.reducer) != null) {
5993 >                for (int b; (b = preSplit()) > 0;)
5994 >                    (rights = new ReduceValuesTask<K,V>
5995 >                     (map, this, b, rights, reducer)).fork();
5996 >                V r = null;
5997 >                V v;
5998 >                while ((v = advance()) != null) {
5999 >                    V u = v;
6000 >                    r = (r == null) ? u : reducer.apply(r, u);
6001 >                }
6002 >                result = r;
6003 >                CountedCompleter<?> c;
6004 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6005 >                    ReduceValuesTask<K,V>
6006 >                        t = (ReduceValuesTask<K,V>)c,
6007 >                        s = t.rights;
6008 >                    while (s != null) {
6009 >                        V tr, sr;
6010 >                        if ((sr = s.result) != null)
6011 >                            t.result = (((tr = t.result) == null) ? sr :
6012 >                                        reducer.apply(tr, sr));
6013 >                        s = t.rights = s.nextRight;
6014 >                    }
6015                  }
6016              }
6017          }
# Line 5844 | Line 6031 | public class ConcurrentHashMapV8<K, V>
6031          }
6032          public final Map.Entry<K,V> getRawResult() { return result; }
6033          @SuppressWarnings("unchecked") public final void compute() {
6034 <            final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer =
6035 <                this.reducer;
6036 <            if (reducer == null)
6037 <                throw new NullPointerException();
6038 <            for (int b; (b = preSplit()) > 0;)
6039 <                (rights = new ReduceEntriesTask<K,V>
6040 <                 (map, this, b, rights, reducer)).fork();
6041 <            Map.Entry<K,V> r = null;
6042 <            Object v;
6043 <            while ((v = advance()) != null) {
6044 <                Map.Entry<K,V> u = entryFor((K)nextKey, (V)v);
6045 <                r = (r == null) ? u : reducer.apply(r, u);
6046 <            }
6047 <            result = r;
6048 <            CountedCompleter<?> c;
6049 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6050 <                ReduceEntriesTask<K,V>
6051 <                    t = (ReduceEntriesTask<K,V>)c,
6052 <                    s = t.rights;
6053 <                while (s != null) {
6054 <                    Map.Entry<K,V> tr, sr;
6055 <                    if ((sr = s.result) != null)
6056 <                        t.result = (((tr = t.result) == null) ? sr :
6057 <                                    reducer.apply(tr, sr));
5871 <                    s = t.rights = s.nextRight;
6034 >            final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6035 >            if ((reducer = this.reducer) != null) {
6036 >                for (int b; (b = preSplit()) > 0;)
6037 >                    (rights = new ReduceEntriesTask<K,V>
6038 >                     (map, this, b, rights, reducer)).fork();
6039 >                Map.Entry<K,V> r = null;
6040 >                V v;
6041 >                while ((v = advance()) != null) {
6042 >                    Map.Entry<K,V> u = entryFor((K)nextKey, v);
6043 >                    r = (r == null) ? u : reducer.apply(r, u);
6044 >                }
6045 >                result = r;
6046 >                CountedCompleter<?> c;
6047 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6048 >                    ReduceEntriesTask<K,V>
6049 >                        t = (ReduceEntriesTask<K,V>)c,
6050 >                        s = t.rights;
6051 >                    while (s != null) {
6052 >                        Map.Entry<K,V> tr, sr;
6053 >                        if ((sr = s.result) != null)
6054 >                            t.result = (((tr = t.result) == null) ? sr :
6055 >                                        reducer.apply(tr, sr));
6056 >                        s = t.rights = s.nextRight;
6057 >                    }
6058                  }
6059              }
6060          }
# Line 5891 | Line 6077 | public class ConcurrentHashMapV8<K, V>
6077          }
6078          public final U getRawResult() { return result; }
6079          @SuppressWarnings("unchecked") public final void compute() {
6080 <            final Fun<? super K, ? extends U> transformer =
6081 <                this.transformer;
6082 <            final BiFun<? super U, ? super U, ? extends U> reducer =
6083 <                this.reducer;
6084 <            if (transformer == null || reducer == null)
6085 <                throw new NullPointerException();
6086 <            for (int b; (b = preSplit()) > 0;)
6087 <                (rights = new MapReduceKeysTask<K,V,U>
6088 <                 (map, this, b, rights, transformer, reducer)).fork();
6089 <            U r = null, u;
6090 <            while (advance() != null) {
6091 <                if ((u = transformer.apply((K)nextKey)) != null)
6092 <                    r = (r == null) ? u : reducer.apply(r, u);
6093 <            }
6094 <            result = r;
6095 <            CountedCompleter<?> c;
6096 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6097 <                MapReduceKeysTask<K,V,U>
6098 <                    t = (MapReduceKeysTask<K,V,U>)c,
6099 <                    s = t.rights;
6100 <                while (s != null) {
6101 <                    U tr, sr;
6102 <                    if ((sr = s.result) != null)
6103 <                        t.result = (((tr = t.result) == null) ? sr :
6104 <                                    reducer.apply(tr, sr));
5919 <                    s = t.rights = s.nextRight;
6080 >            final Fun<? super K, ? extends U> transformer;
6081 >            final BiFun<? super U, ? super U, ? extends U> reducer;
6082 >            if ((transformer = this.transformer) != null &&
6083 >                (reducer = this.reducer) != null) {
6084 >                for (int b; (b = preSplit()) > 0;)
6085 >                    (rights = new MapReduceKeysTask<K,V,U>
6086 >                     (map, this, b, rights, transformer, reducer)).fork();
6087 >                U r = null, u;
6088 >                while (advance() != null) {
6089 >                    if ((u = transformer.apply((K)nextKey)) != null)
6090 >                        r = (r == null) ? u : reducer.apply(r, u);
6091 >                }
6092 >                result = r;
6093 >                CountedCompleter<?> c;
6094 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6095 >                    MapReduceKeysTask<K,V,U>
6096 >                        t = (MapReduceKeysTask<K,V,U>)c,
6097 >                        s = t.rights;
6098 >                    while (s != null) {
6099 >                        U tr, sr;
6100 >                        if ((sr = s.result) != null)
6101 >                            t.result = (((tr = t.result) == null) ? sr :
6102 >                                        reducer.apply(tr, sr));
6103 >                        s = t.rights = s.nextRight;
6104 >                    }
6105                  }
6106              }
6107          }
# Line 5939 | Line 6124 | public class ConcurrentHashMapV8<K, V>
6124          }
6125          public final U getRawResult() { return result; }
6126          @SuppressWarnings("unchecked") public final void compute() {
6127 <            final Fun<? super V, ? extends U> transformer =
6128 <                this.transformer;
6129 <            final BiFun<? super U, ? super U, ? extends U> reducer =
6130 <                this.reducer;
6131 <            if (transformer == null || reducer == null)
6132 <                throw new NullPointerException();
6133 <            for (int b; (b = preSplit()) > 0;)
6134 <                (rights = new MapReduceValuesTask<K,V,U>
6135 <                 (map, this, b, rights, transformer, reducer)).fork();
6136 <            U r = null, u;
6137 <            Object v;
6138 <            while ((v = advance()) != null) {
6139 <                if ((u = transformer.apply((V)v)) != null)
6140 <                    r = (r == null) ? u : reducer.apply(r, u);
6141 <            }
6142 <            result = r;
6143 <            CountedCompleter<?> c;
6144 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6145 <                MapReduceValuesTask<K,V,U>
6146 <                    t = (MapReduceValuesTask<K,V,U>)c,
6147 <                    s = t.rights;
6148 <                while (s != null) {
6149 <                    U tr, sr;
6150 <                    if ((sr = s.result) != null)
6151 <                        t.result = (((tr = t.result) == null) ? sr :
6152 <                                    reducer.apply(tr, sr));
5968 <                    s = t.rights = s.nextRight;
6127 >            final Fun<? super V, ? extends U> transformer;
6128 >            final BiFun<? super U, ? super U, ? extends U> reducer;
6129 >            if ((transformer = this.transformer) != null &&
6130 >                (reducer = this.reducer) != null) {
6131 >                for (int b; (b = preSplit()) > 0;)
6132 >                    (rights = new MapReduceValuesTask<K,V,U>
6133 >                     (map, this, b, rights, transformer, reducer)).fork();
6134 >                U r = null, u;
6135 >                V v;
6136 >                while ((v = advance()) != null) {
6137 >                    if ((u = transformer.apply(v)) != null)
6138 >                        r = (r == null) ? u : reducer.apply(r, u);
6139 >                }
6140 >                result = r;
6141 >                CountedCompleter<?> c;
6142 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6143 >                    MapReduceValuesTask<K,V,U>
6144 >                        t = (MapReduceValuesTask<K,V,U>)c,
6145 >                        s = t.rights;
6146 >                    while (s != null) {
6147 >                        U tr, sr;
6148 >                        if ((sr = s.result) != null)
6149 >                            t.result = (((tr = t.result) == null) ? sr :
6150 >                                        reducer.apply(tr, sr));
6151 >                        s = t.rights = s.nextRight;
6152 >                    }
6153                  }
6154              }
6155          }
# Line 5988 | Line 6172 | public class ConcurrentHashMapV8<K, V>
6172          }
6173          public final U getRawResult() { return result; }
6174          @SuppressWarnings("unchecked") public final void compute() {
6175 <            final Fun<Map.Entry<K,V>, ? extends U> transformer =
6176 <                this.transformer;
6177 <            final BiFun<? super U, ? super U, ? extends U> reducer =
6178 <                this.reducer;
6179 <            if (transformer == null || reducer == null)
6180 <                throw new NullPointerException();
6181 <            for (int b; (b = preSplit()) > 0;)
6182 <                (rights = new MapReduceEntriesTask<K,V,U>
6183 <                 (map, this, b, rights, transformer, reducer)).fork();
6184 <            U r = null, u;
6185 <            Object v;
6186 <            while ((v = advance()) != null) {
6187 <                if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
6188 <                    r = (r == null) ? u : reducer.apply(r, u);
6189 <            }
6190 <            result = r;
6191 <            CountedCompleter<?> c;
6192 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6193 <                MapReduceEntriesTask<K,V,U>
6194 <                    t = (MapReduceEntriesTask<K,V,U>)c,
6195 <                    s = t.rights;
6196 <                while (s != null) {
6197 <                    U tr, sr;
6198 <                    if ((sr = s.result) != null)
6199 <                        t.result = (((tr = t.result) == null) ? sr :
6200 <                                    reducer.apply(tr, sr));
6201 <                    s = t.rights = s.nextRight;
6175 >            final Fun<Map.Entry<K,V>, ? extends U> transformer;
6176 >            final BiFun<? super U, ? super U, ? extends U> reducer;
6177 >            if ((transformer = this.transformer) != null &&
6178 >                (reducer = this.reducer) != null) {
6179 >                for (int b; (b = preSplit()) > 0;)
6180 >                    (rights = new MapReduceEntriesTask<K,V,U>
6181 >                     (map, this, b, rights, transformer, reducer)).fork();
6182 >                U r = null, u;
6183 >                V v;
6184 >                while ((v = advance()) != null) {
6185 >                    if ((u = transformer.apply(entryFor((K)nextKey,
6186 >                                                        v))) != null)
6187 >                        r = (r == null) ? u : reducer.apply(r, u);
6188 >                }
6189 >                result = r;
6190 >                CountedCompleter<?> c;
6191 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6192 >                    MapReduceEntriesTask<K,V,U>
6193 >                        t = (MapReduceEntriesTask<K,V,U>)c,
6194 >                        s = t.rights;
6195 >                    while (s != null) {
6196 >                        U tr, sr;
6197 >                        if ((sr = s.result) != null)
6198 >                            t.result = (((tr = t.result) == null) ? sr :
6199 >                                        reducer.apply(tr, sr));
6200 >                        s = t.rights = s.nextRight;
6201 >                    }
6202                  }
6203              }
6204          }
# Line 6037 | Line 6221 | public class ConcurrentHashMapV8<K, V>
6221          }
6222          public final U getRawResult() { return result; }
6223          @SuppressWarnings("unchecked") public final void compute() {
6224 <            final BiFun<? super K, ? super V, ? extends U> transformer =
6225 <                this.transformer;
6226 <            final BiFun<? super U, ? super U, ? extends U> reducer =
6227 <                this.reducer;
6228 <            if (transformer == null || reducer == null)
6229 <                throw new NullPointerException();
6230 <            for (int b; (b = preSplit()) > 0;)
6231 <                (rights = new MapReduceMappingsTask<K,V,U>
6232 <                 (map, this, b, rights, transformer, reducer)).fork();
6233 <            U r = null, u;
6234 <            Object v;
6235 <            while ((v = advance()) != null) {
6236 <                if ((u = transformer.apply((K)nextKey, (V)v)) != null)
6237 <                    r = (r == null) ? u : reducer.apply(r, u);
6238 <            }
6239 <            result = r;
6240 <            CountedCompleter<?> c;
6241 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6242 <                MapReduceMappingsTask<K,V,U>
6243 <                    t = (MapReduceMappingsTask<K,V,U>)c,
6244 <                    s = t.rights;
6245 <                while (s != null) {
6246 <                    U tr, sr;
6247 <                    if ((sr = s.result) != null)
6248 <                        t.result = (((tr = t.result) == null) ? sr :
6249 <                                    reducer.apply(tr, sr));
6066 <                    s = t.rights = s.nextRight;
6224 >            final BiFun<? super K, ? super V, ? extends U> transformer;
6225 >            final BiFun<? super U, ? super U, ? extends U> reducer;
6226 >            if ((transformer = this.transformer) != null &&
6227 >                (reducer = this.reducer) != null) {
6228 >                for (int b; (b = preSplit()) > 0;)
6229 >                    (rights = new MapReduceMappingsTask<K,V,U>
6230 >                     (map, this, b, rights, transformer, reducer)).fork();
6231 >                U r = null, u;
6232 >                V v;
6233 >                while ((v = advance()) != null) {
6234 >                    if ((u = transformer.apply((K)nextKey, v)) != null)
6235 >                        r = (r == null) ? u : reducer.apply(r, u);
6236 >                }
6237 >                result = r;
6238 >                CountedCompleter<?> c;
6239 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6240 >                    MapReduceMappingsTask<K,V,U>
6241 >                        t = (MapReduceMappingsTask<K,V,U>)c,
6242 >                        s = t.rights;
6243 >                    while (s != null) {
6244 >                        U tr, sr;
6245 >                        if ((sr = s.result) != null)
6246 >                            t.result = (((tr = t.result) == null) ? sr :
6247 >                                        reducer.apply(tr, sr));
6248 >                        s = t.rights = s.nextRight;
6249 >                    }
6250                  }
6251              }
6252          }
# Line 6088 | Line 6271 | public class ConcurrentHashMapV8<K, V>
6271          }
6272          public final Double getRawResult() { return result; }
6273          @SuppressWarnings("unchecked") public final void compute() {
6274 <            final ObjectToDouble<? super K> transformer =
6275 <                this.transformer;
6276 <            final DoubleByDoubleToDouble reducer = this.reducer;
6277 <            if (transformer == null || reducer == null)
6278 <                throw new NullPointerException();
6279 <            double r = this.basis;
6280 <            for (int b; (b = preSplit()) > 0;)
6281 <                (rights = new MapReduceKeysToDoubleTask<K,V>
6282 <                 (map, this, b, rights, transformer, r, reducer)).fork();
6283 <            while (advance() != null)
6284 <                r = reducer.apply(r, transformer.apply((K)nextKey));
6285 <            result = r;
6286 <            CountedCompleter<?> c;
6287 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6288 <                MapReduceKeysToDoubleTask<K,V>
6289 <                    t = (MapReduceKeysToDoubleTask<K,V>)c,
6290 <                    s = t.rights;
6291 <                while (s != null) {
6292 <                    t.result = reducer.apply(t.result, s.result);
6293 <                    s = t.rights = s.nextRight;
6274 >            final ObjectToDouble<? super K> transformer;
6275 >            final DoubleByDoubleToDouble reducer;
6276 >            if ((transformer = this.transformer) != null &&
6277 >                (reducer = this.reducer) != null) {
6278 >                double r = this.basis;
6279 >                for (int b; (b = preSplit()) > 0;)
6280 >                    (rights = new MapReduceKeysToDoubleTask<K,V>
6281 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6282 >                while (advance() != null)
6283 >                    r = reducer.apply(r, transformer.apply((K)nextKey));
6284 >                result = r;
6285 >                CountedCompleter<?> c;
6286 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6287 >                    MapReduceKeysToDoubleTask<K,V>
6288 >                        t = (MapReduceKeysToDoubleTask<K,V>)c,
6289 >                        s = t.rights;
6290 >                    while (s != null) {
6291 >                        t.result = reducer.apply(t.result, s.result);
6292 >                        s = t.rights = s.nextRight;
6293 >                    }
6294                  }
6295              }
6296          }
# Line 6132 | Line 6315 | public class ConcurrentHashMapV8<K, V>
6315          }
6316          public final Double getRawResult() { return result; }
6317          @SuppressWarnings("unchecked") public final void compute() {
6318 <            final ObjectToDouble<? super V> transformer =
6319 <                this.transformer;
6320 <            final DoubleByDoubleToDouble reducer = this.reducer;
6321 <            if (transformer == null || reducer == null)
6322 <                throw new NullPointerException();
6323 <            double r = this.basis;
6324 <            for (int b; (b = preSplit()) > 0;)
6325 <                (rights = new MapReduceValuesToDoubleTask<K,V>
6326 <                 (map, this, b, rights, transformer, r, reducer)).fork();
6327 <            Object v;
6328 <            while ((v = advance()) != null)
6329 <                r = reducer.apply(r, transformer.apply((V)v));
6330 <            result = r;
6331 <            CountedCompleter<?> c;
6332 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6333 <                MapReduceValuesToDoubleTask<K,V>
6334 <                    t = (MapReduceValuesToDoubleTask<K,V>)c,
6335 <                    s = t.rights;
6336 <                while (s != null) {
6337 <                    t.result = reducer.apply(t.result, s.result);
6338 <                    s = t.rights = s.nextRight;
6318 >            final ObjectToDouble<? super V> transformer;
6319 >            final DoubleByDoubleToDouble reducer;
6320 >            if ((transformer = this.transformer) != null &&
6321 >                (reducer = this.reducer) != null) {
6322 >                double r = this.basis;
6323 >                for (int b; (b = preSplit()) > 0;)
6324 >                    (rights = new MapReduceValuesToDoubleTask<K,V>
6325 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6326 >                V v;
6327 >                while ((v = advance()) != null)
6328 >                    r = reducer.apply(r, transformer.apply(v));
6329 >                result = r;
6330 >                CountedCompleter<?> c;
6331 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6332 >                    MapReduceValuesToDoubleTask<K,V>
6333 >                        t = (MapReduceValuesToDoubleTask<K,V>)c,
6334 >                        s = t.rights;
6335 >                    while (s != null) {
6336 >                        t.result = reducer.apply(t.result, s.result);
6337 >                        s = t.rights = s.nextRight;
6338 >                    }
6339                  }
6340              }
6341          }
# Line 6177 | Line 6360 | public class ConcurrentHashMapV8<K, V>
6360          }
6361          public final Double getRawResult() { return result; }
6362          @SuppressWarnings("unchecked") public final void compute() {
6363 <            final ObjectToDouble<Map.Entry<K,V>> transformer =
6364 <                this.transformer;
6365 <            final DoubleByDoubleToDouble reducer = this.reducer;
6366 <            if (transformer == null || reducer == null)
6367 <                throw new NullPointerException();
6368 <            double r = this.basis;
6369 <            for (int b; (b = preSplit()) > 0;)
6370 <                (rights = new MapReduceEntriesToDoubleTask<K,V>
6371 <                 (map, this, b, rights, transformer, r, reducer)).fork();
6372 <            Object v;
6373 <            while ((v = advance()) != null)
6374 <                r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6375 <            result = r;
6376 <            CountedCompleter<?> c;
6377 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6378 <                MapReduceEntriesToDoubleTask<K,V>
6379 <                    t = (MapReduceEntriesToDoubleTask<K,V>)c,
6380 <                    s = t.rights;
6381 <                while (s != null) {
6382 <                    t.result = reducer.apply(t.result, s.result);
6383 <                    s = t.rights = s.nextRight;
6363 >            final ObjectToDouble<Map.Entry<K,V>> transformer;
6364 >            final DoubleByDoubleToDouble reducer;
6365 >            if ((transformer = this.transformer) != null &&
6366 >                (reducer = this.reducer) != null) {
6367 >                double r = this.basis;
6368 >                for (int b; (b = preSplit()) > 0;)
6369 >                    (rights = new MapReduceEntriesToDoubleTask<K,V>
6370 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6371 >                V v;
6372 >                while ((v = advance()) != null)
6373 >                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
6374 >                                                                    v)));
6375 >                result = r;
6376 >                CountedCompleter<?> c;
6377 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6378 >                    MapReduceEntriesToDoubleTask<K,V>
6379 >                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
6380 >                        s = t.rights;
6381 >                    while (s != null) {
6382 >                        t.result = reducer.apply(t.result, s.result);
6383 >                        s = t.rights = s.nextRight;
6384 >                    }
6385                  }
6386              }
6387          }
# Line 6222 | Line 6406 | public class ConcurrentHashMapV8<K, V>
6406          }
6407          public final Double getRawResult() { return result; }
6408          @SuppressWarnings("unchecked") public final void compute() {
6409 <            final ObjectByObjectToDouble<? super K, ? super V> transformer =
6410 <                this.transformer;
6411 <            final DoubleByDoubleToDouble reducer = this.reducer;
6412 <            if (transformer == null || reducer == null)
6413 <                throw new NullPointerException();
6414 <            double r = this.basis;
6415 <            for (int b; (b = preSplit()) > 0;)
6416 <                (rights = new MapReduceMappingsToDoubleTask<K,V>
6417 <                 (map, this, b, rights, transformer, r, reducer)).fork();
6418 <            Object v;
6419 <            while ((v = advance()) != null)
6420 <                r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6421 <            result = r;
6422 <            CountedCompleter<?> c;
6423 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6424 <                MapReduceMappingsToDoubleTask<K,V>
6425 <                    t = (MapReduceMappingsToDoubleTask<K,V>)c,
6426 <                    s = t.rights;
6427 <                while (s != null) {
6428 <                    t.result = reducer.apply(t.result, s.result);
6429 <                    s = t.rights = s.nextRight;
6409 >            final ObjectByObjectToDouble<? super K, ? super V> transformer;
6410 >            final DoubleByDoubleToDouble reducer;
6411 >            if ((transformer = this.transformer) != null &&
6412 >                (reducer = this.reducer) != null) {
6413 >                double r = this.basis;
6414 >                for (int b; (b = preSplit()) > 0;)
6415 >                    (rights = new MapReduceMappingsToDoubleTask<K,V>
6416 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6417 >                V v;
6418 >                while ((v = advance()) != null)
6419 >                    r = reducer.apply(r, transformer.apply((K)nextKey, v));
6420 >                result = r;
6421 >                CountedCompleter<?> c;
6422 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6423 >                    MapReduceMappingsToDoubleTask<K,V>
6424 >                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
6425 >                        s = t.rights;
6426 >                    while (s != null) {
6427 >                        t.result = reducer.apply(t.result, s.result);
6428 >                        s = t.rights = s.nextRight;
6429 >                    }
6430                  }
6431              }
6432          }
# Line 6267 | Line 6451 | public class ConcurrentHashMapV8<K, V>
6451          }
6452          public final Long getRawResult() { return result; }
6453          @SuppressWarnings("unchecked") public final void compute() {
6454 <            final ObjectToLong<? super K> transformer =
6455 <                this.transformer;
6456 <            final LongByLongToLong reducer = this.reducer;
6457 <            if (transformer == null || reducer == null)
6458 <                throw new NullPointerException();
6459 <            long r = this.basis;
6460 <            for (int b; (b = preSplit()) > 0;)
6461 <                (rights = new MapReduceKeysToLongTask<K,V>
6462 <                 (map, this, b, rights, transformer, r, reducer)).fork();
6463 <            while (advance() != null)
6464 <                r = reducer.apply(r, transformer.apply((K)nextKey));
6465 <            result = r;
6466 <            CountedCompleter<?> c;
6467 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6468 <                MapReduceKeysToLongTask<K,V>
6469 <                    t = (MapReduceKeysToLongTask<K,V>)c,
6470 <                    s = t.rights;
6471 <                while (s != null) {
6472 <                    t.result = reducer.apply(t.result, s.result);
6473 <                    s = t.rights = s.nextRight;
6454 >            final ObjectToLong<? super K> transformer;
6455 >            final LongByLongToLong reducer;
6456 >            if ((transformer = this.transformer) != null &&
6457 >                (reducer = this.reducer) != null) {
6458 >                long r = this.basis;
6459 >                for (int b; (b = preSplit()) > 0;)
6460 >                    (rights = new MapReduceKeysToLongTask<K,V>
6461 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6462 >                while (advance() != null)
6463 >                    r = reducer.apply(r, transformer.apply((K)nextKey));
6464 >                result = r;
6465 >                CountedCompleter<?> c;
6466 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6467 >                    MapReduceKeysToLongTask<K,V>
6468 >                        t = (MapReduceKeysToLongTask<K,V>)c,
6469 >                        s = t.rights;
6470 >                    while (s != null) {
6471 >                        t.result = reducer.apply(t.result, s.result);
6472 >                        s = t.rights = s.nextRight;
6473 >                    }
6474                  }
6475              }
6476          }
# Line 6311 | Line 6495 | public class ConcurrentHashMapV8<K, V>
6495          }
6496          public final Long getRawResult() { return result; }
6497          @SuppressWarnings("unchecked") public final void compute() {
6498 <            final ObjectToLong<? super V> transformer =
6499 <                this.transformer;
6500 <            final LongByLongToLong reducer = this.reducer;
6501 <            if (transformer == null || reducer == null)
6502 <                throw new NullPointerException();
6503 <            long r = this.basis;
6504 <            for (int b; (b = preSplit()) > 0;)
6505 <                (rights = new MapReduceValuesToLongTask<K,V>
6506 <                 (map, this, b, rights, transformer, r, reducer)).fork();
6507 <            Object v;
6508 <            while ((v = advance()) != null)
6509 <                r = reducer.apply(r, transformer.apply((V)v));
6510 <            result = r;
6511 <            CountedCompleter<?> c;
6512 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6513 <                MapReduceValuesToLongTask<K,V>
6514 <                    t = (MapReduceValuesToLongTask<K,V>)c,
6515 <                    s = t.rights;
6516 <                while (s != null) {
6517 <                    t.result = reducer.apply(t.result, s.result);
6518 <                    s = t.rights = s.nextRight;
6498 >            final ObjectToLong<? super V> transformer;
6499 >            final LongByLongToLong reducer;
6500 >            if ((transformer = this.transformer) != null &&
6501 >                (reducer = this.reducer) != null) {
6502 >                long r = this.basis;
6503 >                for (int b; (b = preSplit()) > 0;)
6504 >                    (rights = new MapReduceValuesToLongTask<K,V>
6505 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6506 >                V v;
6507 >                while ((v = advance()) != null)
6508 >                    r = reducer.apply(r, transformer.apply(v));
6509 >                result = r;
6510 >                CountedCompleter<?> c;
6511 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6512 >                    MapReduceValuesToLongTask<K,V>
6513 >                        t = (MapReduceValuesToLongTask<K,V>)c,
6514 >                        s = t.rights;
6515 >                    while (s != null) {
6516 >                        t.result = reducer.apply(t.result, s.result);
6517 >                        s = t.rights = s.nextRight;
6518 >                    }
6519                  }
6520              }
6521          }
# Line 6356 | Line 6540 | public class ConcurrentHashMapV8<K, V>
6540          }
6541          public final Long getRawResult() { return result; }
6542          @SuppressWarnings("unchecked") public final void compute() {
6543 <            final ObjectToLong<Map.Entry<K,V>> transformer =
6544 <                this.transformer;
6545 <            final LongByLongToLong reducer = this.reducer;
6546 <            if (transformer == null || reducer == null)
6547 <                throw new NullPointerException();
6548 <            long r = this.basis;
6549 <            for (int b; (b = preSplit()) > 0;)
6550 <                (rights = new MapReduceEntriesToLongTask<K,V>
6551 <                 (map, this, b, rights, transformer, r, reducer)).fork();
6552 <            Object v;
6553 <            while ((v = advance()) != null)
6554 <                r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6555 <            result = r;
6556 <            CountedCompleter<?> c;
6557 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6558 <                MapReduceEntriesToLongTask<K,V>
6559 <                    t = (MapReduceEntriesToLongTask<K,V>)c,
6560 <                    s = t.rights;
6561 <                while (s != null) {
6562 <                    t.result = reducer.apply(t.result, s.result);
6563 <                    s = t.rights = s.nextRight;
6543 >            final ObjectToLong<Map.Entry<K,V>> transformer;
6544 >            final LongByLongToLong reducer;
6545 >            if ((transformer = this.transformer) != null &&
6546 >                (reducer = this.reducer) != null) {
6547 >                long r = this.basis;
6548 >                for (int b; (b = preSplit()) > 0;)
6549 >                    (rights = new MapReduceEntriesToLongTask<K,V>
6550 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6551 >                V v;
6552 >                while ((v = advance()) != null)
6553 >                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
6554 >                                                                    v)));
6555 >                result = r;
6556 >                CountedCompleter<?> c;
6557 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6558 >                    MapReduceEntriesToLongTask<K,V>
6559 >                        t = (MapReduceEntriesToLongTask<K,V>)c,
6560 >                        s = t.rights;
6561 >                    while (s != null) {
6562 >                        t.result = reducer.apply(t.result, s.result);
6563 >                        s = t.rights = s.nextRight;
6564 >                    }
6565                  }
6566              }
6567          }
# Line 6401 | Line 6586 | public class ConcurrentHashMapV8<K, V>
6586          }
6587          public final Long getRawResult() { return result; }
6588          @SuppressWarnings("unchecked") public final void compute() {
6589 <            final ObjectByObjectToLong<? super K, ? super V> transformer =
6590 <                this.transformer;
6591 <            final LongByLongToLong reducer = this.reducer;
6592 <            if (transformer == null || reducer == null)
6593 <                throw new NullPointerException();
6594 <            long r = this.basis;
6595 <            for (int b; (b = preSplit()) > 0;)
6596 <                (rights = new MapReduceMappingsToLongTask<K,V>
6597 <                 (map, this, b, rights, transformer, r, reducer)).fork();
6598 <            Object v;
6599 <            while ((v = advance()) != null)
6600 <                r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6601 <            result = r;
6602 <            CountedCompleter<?> c;
6603 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6604 <                MapReduceMappingsToLongTask<K,V>
6605 <                    t = (MapReduceMappingsToLongTask<K,V>)c,
6606 <                    s = t.rights;
6607 <                while (s != null) {
6608 <                    t.result = reducer.apply(t.result, s.result);
6609 <                    s = t.rights = s.nextRight;
6589 >            final ObjectByObjectToLong<? super K, ? super V> transformer;
6590 >            final LongByLongToLong reducer;
6591 >            if ((transformer = this.transformer) != null &&
6592 >                (reducer = this.reducer) != null) {
6593 >                long r = this.basis;
6594 >                for (int b; (b = preSplit()) > 0;)
6595 >                    (rights = new MapReduceMappingsToLongTask<K,V>
6596 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6597 >                V v;
6598 >                while ((v = advance()) != null)
6599 >                    r = reducer.apply(r, transformer.apply((K)nextKey, v));
6600 >                result = r;
6601 >                CountedCompleter<?> c;
6602 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6603 >                    MapReduceMappingsToLongTask<K,V>
6604 >                        t = (MapReduceMappingsToLongTask<K,V>)c,
6605 >                        s = t.rights;
6606 >                    while (s != null) {
6607 >                        t.result = reducer.apply(t.result, s.result);
6608 >                        s = t.rights = s.nextRight;
6609 >                    }
6610                  }
6611              }
6612          }
# Line 6446 | Line 6631 | public class ConcurrentHashMapV8<K, V>
6631          }
6632          public final Integer getRawResult() { return result; }
6633          @SuppressWarnings("unchecked") public final void compute() {
6634 <            final ObjectToInt<? super K> transformer =
6635 <                this.transformer;
6636 <            final IntByIntToInt reducer = this.reducer;
6637 <            if (transformer == null || reducer == null)
6638 <                throw new NullPointerException();
6639 <            int r = this.basis;
6640 <            for (int b; (b = preSplit()) > 0;)
6641 <                (rights = new MapReduceKeysToIntTask<K,V>
6642 <                 (map, this, b, rights, transformer, r, reducer)).fork();
6643 <            while (advance() != null)
6644 <                r = reducer.apply(r, transformer.apply((K)nextKey));
6645 <            result = r;
6646 <            CountedCompleter<?> c;
6647 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6648 <                MapReduceKeysToIntTask<K,V>
6649 <                    t = (MapReduceKeysToIntTask<K,V>)c,
6650 <                    s = t.rights;
6651 <                while (s != null) {
6652 <                    t.result = reducer.apply(t.result, s.result);
6653 <                    s = t.rights = s.nextRight;
6634 >            final ObjectToInt<? super K> transformer;
6635 >            final IntByIntToInt reducer;
6636 >            if ((transformer = this.transformer) != null &&
6637 >                (reducer = this.reducer) != null) {
6638 >                int r = this.basis;
6639 >                for (int b; (b = preSplit()) > 0;)
6640 >                    (rights = new MapReduceKeysToIntTask<K,V>
6641 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6642 >                while (advance() != null)
6643 >                    r = reducer.apply(r, transformer.apply((K)nextKey));
6644 >                result = r;
6645 >                CountedCompleter<?> c;
6646 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6647 >                    MapReduceKeysToIntTask<K,V>
6648 >                        t = (MapReduceKeysToIntTask<K,V>)c,
6649 >                        s = t.rights;
6650 >                    while (s != null) {
6651 >                        t.result = reducer.apply(t.result, s.result);
6652 >                        s = t.rights = s.nextRight;
6653 >                    }
6654                  }
6655              }
6656          }
# Line 6490 | Line 6675 | public class ConcurrentHashMapV8<K, V>
6675          }
6676          public final Integer getRawResult() { return result; }
6677          @SuppressWarnings("unchecked") public final void compute() {
6678 <            final ObjectToInt<? super V> transformer =
6679 <                this.transformer;
6680 <            final IntByIntToInt reducer = this.reducer;
6681 <            if (transformer == null || reducer == null)
6682 <                throw new NullPointerException();
6683 <            int r = this.basis;
6684 <            for (int b; (b = preSplit()) > 0;)
6685 <                (rights = new MapReduceValuesToIntTask<K,V>
6686 <                 (map, this, b, rights, transformer, r, reducer)).fork();
6687 <            Object v;
6688 <            while ((v = advance()) != null)
6689 <                r = reducer.apply(r, transformer.apply((V)v));
6690 <            result = r;
6691 <            CountedCompleter<?> c;
6692 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6693 <                MapReduceValuesToIntTask<K,V>
6694 <                    t = (MapReduceValuesToIntTask<K,V>)c,
6695 <                    s = t.rights;
6696 <                while (s != null) {
6697 <                    t.result = reducer.apply(t.result, s.result);
6698 <                    s = t.rights = s.nextRight;
6678 >            final ObjectToInt<? super V> transformer;
6679 >            final IntByIntToInt reducer;
6680 >            if ((transformer = this.transformer) != null &&
6681 >                (reducer = this.reducer) != null) {
6682 >                int r = this.basis;
6683 >                for (int b; (b = preSplit()) > 0;)
6684 >                    (rights = new MapReduceValuesToIntTask<K,V>
6685 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6686 >                V v;
6687 >                while ((v = advance()) != null)
6688 >                    r = reducer.apply(r, transformer.apply(v));
6689 >                result = r;
6690 >                CountedCompleter<?> c;
6691 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6692 >                    MapReduceValuesToIntTask<K,V>
6693 >                        t = (MapReduceValuesToIntTask<K,V>)c,
6694 >                        s = t.rights;
6695 >                    while (s != null) {
6696 >                        t.result = reducer.apply(t.result, s.result);
6697 >                        s = t.rights = s.nextRight;
6698 >                    }
6699                  }
6700              }
6701          }
# Line 6535 | Line 6720 | public class ConcurrentHashMapV8<K, V>
6720          }
6721          public final Integer getRawResult() { return result; }
6722          @SuppressWarnings("unchecked") public final void compute() {
6723 <            final ObjectToInt<Map.Entry<K,V>> transformer =
6724 <                this.transformer;
6725 <            final IntByIntToInt reducer = this.reducer;
6726 <            if (transformer == null || reducer == null)
6727 <                throw new NullPointerException();
6728 <            int r = this.basis;
6729 <            for (int b; (b = preSplit()) > 0;)
6730 <                (rights = new MapReduceEntriesToIntTask<K,V>
6731 <                 (map, this, b, rights, transformer, r, reducer)).fork();
6732 <            Object v;
6733 <            while ((v = advance()) != null)
6734 <                r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6735 <            result = r;
6736 <            CountedCompleter<?> c;
6737 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6738 <                MapReduceEntriesToIntTask<K,V>
6739 <                    t = (MapReduceEntriesToIntTask<K,V>)c,
6740 <                    s = t.rights;
6741 <                while (s != null) {
6742 <                    t.result = reducer.apply(t.result, s.result);
6743 <                    s = t.rights = s.nextRight;
6723 >            final ObjectToInt<Map.Entry<K,V>> transformer;
6724 >            final IntByIntToInt reducer;
6725 >            if ((transformer = this.transformer) != null &&
6726 >                (reducer = this.reducer) != null) {
6727 >                int r = this.basis;
6728 >                for (int b; (b = preSplit()) > 0;)
6729 >                    (rights = new MapReduceEntriesToIntTask<K,V>
6730 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6731 >                V v;
6732 >                while ((v = advance()) != null)
6733 >                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
6734 >                                                                    v)));
6735 >                result = r;
6736 >                CountedCompleter<?> c;
6737 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6738 >                    MapReduceEntriesToIntTask<K,V>
6739 >                        t = (MapReduceEntriesToIntTask<K,V>)c,
6740 >                        s = t.rights;
6741 >                    while (s != null) {
6742 >                        t.result = reducer.apply(t.result, s.result);
6743 >                        s = t.rights = s.nextRight;
6744 >                    }
6745                  }
6746              }
6747          }
# Line 6580 | Line 6766 | public class ConcurrentHashMapV8<K, V>
6766          }
6767          public final Integer getRawResult() { return result; }
6768          @SuppressWarnings("unchecked") public final void compute() {
6769 <            final ObjectByObjectToInt<? super K, ? super V> transformer =
6770 <                this.transformer;
6771 <            final IntByIntToInt reducer = this.reducer;
6772 <            if (transformer == null || reducer == null)
6773 <                throw new NullPointerException();
6774 <            int r = this.basis;
6775 <            for (int b; (b = preSplit()) > 0;)
6776 <                (rights = new MapReduceMappingsToIntTask<K,V>
6777 <                 (map, this, b, rights, transformer, r, reducer)).fork();
6778 <            Object v;
6779 <            while ((v = advance()) != null)
6780 <                r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6781 <            result = r;
6782 <            CountedCompleter<?> c;
6783 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6784 <                MapReduceMappingsToIntTask<K,V>
6785 <                    t = (MapReduceMappingsToIntTask<K,V>)c,
6786 <                    s = t.rights;
6787 <                while (s != null) {
6788 <                    t.result = reducer.apply(t.result, s.result);
6789 <                    s = t.rights = s.nextRight;
6769 >            final ObjectByObjectToInt<? super K, ? super V> transformer;
6770 >            final IntByIntToInt reducer;
6771 >            if ((transformer = this.transformer) != null &&
6772 >                (reducer = this.reducer) != null) {
6773 >                int r = this.basis;
6774 >                for (int b; (b = preSplit()) > 0;)
6775 >                    (rights = new MapReduceMappingsToIntTask<K,V>
6776 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6777 >                V v;
6778 >                while ((v = advance()) != null)
6779 >                    r = reducer.apply(r, transformer.apply((K)nextKey, v));
6780 >                result = r;
6781 >                CountedCompleter<?> c;
6782 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6783 >                    MapReduceMappingsToIntTask<K,V>
6784 >                        t = (MapReduceMappingsToIntTask<K,V>)c,
6785 >                        s = t.rights;
6786 >                    while (s != null) {
6787 >                        t.result = reducer.apply(t.result, s.result);
6788 >                        s = t.rights = s.nextRight;
6789 >                    }
6790                  }
6791              }
6792          }
6793      }
6794  
6795      // Unsafe mechanics
6796 <    private static final sun.misc.Unsafe UNSAFE;
6797 <    private static final long counterOffset;
6798 <    private static final long sizeCtlOffset;
6796 >    private static final sun.misc.Unsafe U;
6797 >    private static final long SIZECTL;
6798 >    private static final long TRANSFERINDEX;
6799 >    private static final long TRANSFERORIGIN;
6800 >    private static final long BASECOUNT;
6801 >    private static final long COUNTERBUSY;
6802 >    private static final long CELLVALUE;
6803      private static final long ABASE;
6804      private static final int ASHIFT;
6805  
6806      static {
6807          int ss;
6808          try {
6809 <            UNSAFE = getUnsafe();
6809 >            U = getUnsafe();
6810              Class<?> k = ConcurrentHashMapV8.class;
6811 <            counterOffset = UNSAFE.objectFieldOffset
6622 <                (k.getDeclaredField("counter"));
6623 <            sizeCtlOffset = UNSAFE.objectFieldOffset
6811 >            SIZECTL = U.objectFieldOffset
6812                  (k.getDeclaredField("sizeCtl"));
6813 +            TRANSFERINDEX = U.objectFieldOffset
6814 +                (k.getDeclaredField("transferIndex"));
6815 +            TRANSFERORIGIN = U.objectFieldOffset
6816 +                (k.getDeclaredField("transferOrigin"));
6817 +            BASECOUNT = U.objectFieldOffset
6818 +                (k.getDeclaredField("baseCount"));
6819 +            COUNTERBUSY = U.objectFieldOffset
6820 +                (k.getDeclaredField("counterBusy"));
6821 +            Class<?> ck = CounterCell.class;
6822 +            CELLVALUE = U.objectFieldOffset
6823 +                (ck.getDeclaredField("value"));
6824              Class<?> sc = Node[].class;
6825 <            ABASE = UNSAFE.arrayBaseOffset(sc);
6826 <            ss = UNSAFE.arrayIndexScale(sc);
6825 >            ABASE = U.arrayBaseOffset(sc);
6826 >            ss = U.arrayIndexScale(sc);
6827 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6828          } catch (Exception e) {
6829              throw new Error(e);
6830          }
6831          if ((ss & (ss-1)) != 0)
6832              throw new Error("data type scale not a power of two");
6633        ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6833      }
6834  
6835      /**

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines