ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
(Generate patch)

Comparing jsr166/src/jsr166e/ConcurrentHashMapV8.java (file contents):
Revision 1.10 by dl, Tue Aug 30 16:03:48 2011 UTC vs.
Revision 1.87 by jsr166, Wed Jan 9 02:51:36 2013 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166e;
8 < import jsr166e.LongAdder;
8 >
9 > import java.util.Comparator;
10 > import java.util.Arrays;
11   import java.util.Map;
12   import java.util.Set;
13   import java.util.Collection;
# Line 19 | Line 21 | import java.util.Enumeration;
21   import java.util.ConcurrentModificationException;
22   import java.util.NoSuchElementException;
23   import java.util.concurrent.ConcurrentMap;
24 + import java.util.concurrent.locks.AbstractQueuedSynchronizer;
25 + import java.util.concurrent.atomic.AtomicInteger;
26 + import java.util.concurrent.atomic.AtomicReference;
27   import java.io.Serializable;
28  
29   /**
# Line 33 | Line 38 | import java.io.Serializable;
38   * interoperable with {@code Hashtable} in programs that rely on its
39   * thread safety but not on its synchronization details.
40   *
41 < * <p> Retrieval operations (including {@code get}) generally do not
41 > * <p>Retrieval operations (including {@code get}) generally do not
42   * block, so may overlap with update operations (including {@code put}
43   * and {@code remove}). Retrievals reflect the results of the most
44   * recently <em>completed</em> update operations holding upon their
45 < * onset.  For aggregate operations such as {@code putAll} and {@code
46 < * clear}, concurrent retrievals may reflect insertion or removal of
47 < * only some entries.  Similarly, Iterators and Enumerations return
48 < * elements reflecting the state of the hash table at some point at or
49 < * since the creation of the iterator/enumeration.  They do
50 < * <em>not</em> throw {@link ConcurrentModificationException}.
51 < * However, iterators are designed to be used by only one thread at a
52 < * time.  Bear in mind that the results of aggregate status methods
53 < * including {@code size}, {@code isEmpty}, and {@code containsValue}
54 < * are typically useful only when a map is not undergoing concurrent
55 < * updates in other threads.  Otherwise the results of these methods
56 < * reflect transient states that may be adequate for monitoring
57 < * purposes, but not for program control.
58 < *
59 < * <p> Resizing this or any other kind of hash table is a relatively
60 < * slow operation, so, when possible, it is a good idea to provide
61 < * estimates of expected table sizes in constructors. Also, for
62 < * compatibility with previous versions of this class, constructors
63 < * may optionally specify an expected {@code concurrencyLevel} as an
64 < * additional hint for internal sizing.
45 > * onset. (More formally, an update operation for a given key bears a
46 > * <em>happens-before</em> relation with any (non-null) retrieval for
47 > * that key reporting the updated value.)  For aggregate operations
48 > * such as {@code putAll} and {@code clear}, concurrent retrievals may
49 > * reflect insertion or removal of only some entries.  Similarly,
50 > * Iterators and Enumerations return elements reflecting the state of
51 > * the hash table at some point at or since the creation of the
52 > * iterator/enumeration.  They do <em>not</em> throw {@link
53 > * ConcurrentModificationException}.  However, iterators are designed
54 > * to be used by only one thread at a time.  Bear in mind that the
55 > * results of aggregate status methods including {@code size}, {@code
56 > * isEmpty}, and {@code containsValue} are typically useful only when
57 > * a map is not undergoing concurrent updates in other threads.
58 > * Otherwise the results of these methods reflect transient states
59 > * that may be adequate for monitoring or estimation purposes, but not
60 > * for program control.
61 > *
62 > * <p>The table is dynamically expanded when there are too many
63 > * collisions (i.e., keys that have distinct hash codes but fall into
64 > * the same slot modulo the table size), with the expected average
65 > * effect of maintaining roughly two bins per mapping (corresponding
66 > * to a 0.75 load factor threshold for resizing). There may be much
67 > * variance around this average as mappings are added and removed, but
68 > * overall, this maintains a commonly accepted time/space tradeoff for
69 > * hash tables.  However, resizing this or any other kind of hash
70 > * table may be a relatively slow operation. When possible, it is a
71 > * good idea to provide a size estimate as an optional {@code
72 > * initialCapacity} constructor argument. An additional optional
73 > * {@code loadFactor} constructor argument provides a further means of
74 > * customizing initial table capacity by specifying the table density
75 > * to be used in calculating the amount of space to allocate for the
76 > * given number of elements.  Also, for compatibility with previous
77 > * versions of this class, constructors may optionally specify an
78 > * expected {@code concurrencyLevel} as an additional hint for
79 > * internal sizing.  Note that using many keys with exactly the same
80 > * {@code hashCode()} is a sure way to slow down performance of any
81 > * hash table.
82 > *
83 > * <p>A {@link Set} projection of a ConcurrentHashMapV8 may be created
84 > * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
85 > * (using {@link #keySet(Object)} when only keys are of interest, and the
86 > * mapped values are (perhaps transiently) not used or all take the
87 > * same mapping value.
88 > *
89 > * <p>A ConcurrentHashMapV8 can be used as scalable frequency map (a
90 > * form of histogram or multiset) by using {@link LongAdder} values
91 > * and initializing via {@link #computeIfAbsent}. For example, to add
92 > * a count to a {@code ConcurrentHashMapV8<String,LongAdder> freqs}, you
93 > * can use {@code freqs.computeIfAbsent(k -> new
94 > * LongAdder()).increment();}
95   *
96   * <p>This class and its views and iterators implement all of the
97   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
98   * interfaces.
99   *
100 < * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
100 > * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
101   * does <em>not</em> allow {@code null} to be used as a key or value.
102   *
103 + * <p>ConcurrentHashMapV8s support sequential and parallel operations
104 + * bulk operations. (Parallel forms use the {@link
105 + * ForkJoinPool#commonPool()}). Tasks that may be used in other
106 + * contexts are available in class {@link ForkJoinTasks}. These
107 + * operations are designed to be safely, and often sensibly, applied
108 + * even with maps that are being concurrently updated by other
109 + * threads; for example, when computing a snapshot summary of the
110 + * values in a shared registry.  There are three kinds of operation,
111 + * each with four forms, accepting functions with Keys, Values,
112 + * Entries, and (Key, Value) arguments and/or return values. Because
113 + * the elements of a ConcurrentHashMapV8 are not ordered in any
114 + * particular way, and may be processed in different orders in
115 + * different parallel executions, the correctness of supplied
116 + * functions should not depend on any ordering, or on any other
117 + * objects or values that may transiently change while computation is
118 + * in progress; and except for forEach actions, should ideally be
119 + * side-effect-free.
120 + *
121 + * <ul>
122 + * <li> forEach: Perform a given action on each element.
123 + * A variant form applies a given transformation on each element
124 + * before performing the action.</li>
125 + *
126 + * <li> search: Return the first available non-null result of
127 + * applying a given function on each element; skipping further
128 + * search when a result is found.</li>
129 + *
130 + * <li> reduce: Accumulate each element.  The supplied reduction
131 + * function cannot rely on ordering (more formally, it should be
132 + * both associative and commutative).  There are five variants:
133 + *
134 + * <ul>
135 + *
136 + * <li> Plain reductions. (There is not a form of this method for
137 + * (key, value) function arguments since there is no corresponding
138 + * return type.)</li>
139 + *
140 + * <li> Mapped reductions that accumulate the results of a given
141 + * function applied to each element.</li>
142 + *
143 + * <li> Reductions to scalar doubles, longs, and ints, using a
144 + * given basis value.</li>
145 + *
146 + * </li>
147 + * </ul>
148 + * </ul>
149 + *
150 + * <p>The concurrency properties of bulk operations follow
151 + * from those of ConcurrentHashMapV8: Any non-null result returned
152 + * from {@code get(key)} and related access methods bears a
153 + * happens-before relation with the associated insertion or
154 + * update.  The result of any bulk operation reflects the
155 + * composition of these per-element relations (but is not
156 + * necessarily atomic with respect to the map as a whole unless it
157 + * is somehow known to be quiescent).  Conversely, because keys
158 + * and values in the map are never null, null serves as a reliable
159 + * atomic indicator of the current lack of any result.  To
160 + * maintain this property, null serves as an implicit basis for
161 + * all non-scalar reduction operations. For the double, long, and
162 + * int versions, the basis should be one that, when combined with
163 + * any other value, returns that other value (more formally, it
164 + * should be the identity element for the reduction). Most common
165 + * reductions have these properties; for example, computing a sum
166 + * with basis 0 or a minimum with basis MAX_VALUE.
167 + *
168 + * <p>Search and transformation functions provided as arguments
169 + * should similarly return null to indicate the lack of any result
170 + * (in which case it is not used). In the case of mapped
171 + * reductions, this also enables transformations to serve as
172 + * filters, returning null (or, in the case of primitive
173 + * specializations, the identity basis) if the element should not
174 + * be combined. You can create compound transformations and
175 + * filterings by composing them yourself under this "null means
176 + * there is nothing there now" rule before using them in search or
177 + * reduce operations.
178 + *
179 + * <p>Methods accepting and/or returning Entry arguments maintain
180 + * key-value associations. They may be useful for example when
181 + * finding the key for the greatest value. Note that "plain" Entry
182 + * arguments can be supplied using {@code new
183 + * AbstractMap.SimpleEntry(k,v)}.
184 + *
185 + * <p>Bulk operations may complete abruptly, throwing an
186 + * exception encountered in the application of a supplied
187 + * function. Bear in mind when handling such exceptions that other
188 + * concurrently executing functions could also have thrown
189 + * exceptions, or would have done so if the first exception had
190 + * not occurred.
191 + *
192 + * <p>Speedups for parallel compared to sequential forms are common
193 + * but not guaranteed.  Parallel operations involving brief functions
194 + * on small maps may execute more slowly than sequential forms if the
195 + * underlying work to parallelize the computation is more expensive
196 + * than the computation itself.  Similarly, parallelization may not
197 + * lead to much actual parallelism if all processors are busy
198 + * performing unrelated tasks.
199 + *
200 + * <p>All arguments to all task methods must be non-null.
201 + *
202 + * <p><em>jsr166e note: During transition, this class
203 + * uses nested functional interfaces with different names but the
204 + * same forms as those expected for JDK8.</em>
205 + *
206   * <p>This class is a member of the
207   * <a href="{@docRoot}/../technotes/guides/collections/index.html">
208   * Java Collections Framework</a>.
209   *
72 * <p><em>jsr166e note: This class is a candidate replacement for
73 * java.util.concurrent.ConcurrentHashMap.<em>
74 *
210   * @since 1.5
211   * @author Doug Lea
212   * @param <K> the type of keys maintained by this map
213   * @param <V> the type of mapped values
214   */
215   public class ConcurrentHashMapV8<K, V>
216 <        implements ConcurrentMap<K, V>, Serializable {
216 >    implements ConcurrentMap<K, V>, Serializable {
217      private static final long serialVersionUID = 7249069246763182397L;
218  
219      /**
220 <     * A function computing a mapping from the given key to a value,
221 <     * or {@code null} if there is no mapping. This is a place-holder
222 <     * for an upcoming JDK8 interface.
223 <     */
224 <    public static interface MappingFunction<K, V> {
225 <        /**
226 <         * Returns a value for the given key, or null if there is no
227 <         * mapping. If this function throws an (unchecked) exception,
228 <         * the exception is rethrown to its caller, and no mapping is
229 <         * recorded.  Because this function is invoked within
230 <         * atomicity control, the computation should be short and
231 <         * simple. The most common usage is to construct a new object
232 <         * serving as an initial mapped value.
220 >     * A partitionable iterator. A Spliterator can be traversed
221 >     * directly, but can also be partitioned (before traversal) by
222 >     * creating another Spliterator that covers a non-overlapping
223 >     * portion of the elements, and so may be amenable to parallel
224 >     * execution.
225 >     *
226 >     * <p>This interface exports a subset of expected JDK8
227 >     * functionality.
228 >     *
229 >     * <p>Sample usage: Here is one (of the several) ways to compute
230 >     * the sum of the values held in a map using the ForkJoin
231 >     * framework. As illustrated here, Spliterators are well suited to
232 >     * designs in which a task repeatedly splits off half its work
233 >     * into forked subtasks until small enough to process directly,
234 >     * and then joins these subtasks. Variants of this style can also
235 >     * be used in completion-based designs.
236 >     *
237 >     * <pre>
238 >     * {@code ConcurrentHashMapV8<String, Long> m = ...
239 >     * // split as if have 8 * parallelism, for load balance
240 >     * int n = m.size();
241 >     * int p = aForkJoinPool.getParallelism() * 8;
242 >     * int split = (n < p)? n : p;
243 >     * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
244 >     * // ...
245 >     * static class SumValues extends RecursiveTask<Long> {
246 >     *   final Spliterator<Long> s;
247 >     *   final int split;             // split while > 1
248 >     *   final SumValues nextJoin;    // records forked subtasks to join
249 >     *   SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
250 >     *     this.s = s; this.depth = depth; this.nextJoin = nextJoin;
251 >     *   }
252 >     *   public Long compute() {
253 >     *     long sum = 0;
254 >     *     SumValues subtasks = null; // fork subtasks
255 >     *     for (int s = split >>> 1; s > 0; s >>>= 1)
256 >     *       (subtasks = new SumValues(s.split(), s, subtasks)).fork();
257 >     *     while (s.hasNext())        // directly process remaining elements
258 >     *       sum += s.next();
259 >     *     for (SumValues t = subtasks; t != null; t = t.nextJoin)
260 >     *       sum += t.join();         // collect subtask results
261 >     *     return sum;
262 >     *   }
263 >     * }
264 >     * }</pre>
265 >     */
266 >    public static interface Spliterator<T> extends Iterator<T> {
267 >        /**
268 >         * Returns a Spliterator covering approximately half of the
269 >         * elements, guaranteed not to overlap with those subsequently
270 >         * returned by this Spliterator.  After invoking this method,
271 >         * the current Spliterator will <em>not</em> produce any of
272 >         * the elements of the returned Spliterator, but the two
273 >         * Spliterators together will produce all of the elements that
274 >         * would have been produced by this Spliterator had this
275 >         * method not been called. The exact number of elements
276 >         * produced by the returned Spliterator is not guaranteed, and
277 >         * may be zero (i.e., with {@code hasNext()} reporting {@code
278 >         * false}) if this Spliterator cannot be further split.
279           *
280 <         * @param key the (non-null) key
281 <         * @return a value, or null if none
280 >         * @return a Spliterator covering approximately half of the
281 >         * elements
282 >         * @throws IllegalStateException if this Spliterator has
283 >         * already commenced traversing elements
284           */
285 <        V map(K key);
285 >        Spliterator<T> split();
286      }
287  
288      /*
# Line 108 | Line 291 | public class ConcurrentHashMapV8<K, V>
291       * The primary design goal of this hash table is to maintain
292       * concurrent readability (typically method get(), but also
293       * iterators and related methods) while minimizing update
294 <     * contention.
295 <     *
296 <     * Each key-value mapping is held in a Node.  Because Node fields
297 <     * can contain special values, they are defined using plain Object
298 <     * types. Similarly in turn, all internal methods that use them
299 <     * work off Object types. All public generic-typed methods relay
300 <     * in/out of these internal methods, supplying casts as needed.
294 >     * contention. Secondary goals are to keep space consumption about
295 >     * the same or better than java.util.HashMap, and to support high
296 >     * initial insertion rates on an empty table by many threads.
297 >     *
298 >     * Each key-value mapping is held in a Node.  Because Node key
299 >     * fields can contain special values, they are defined using plain
300 >     * Object types (not type "K"). This leads to a lot of explicit
301 >     * casting (and many explicit warning suppressions to tell
302 >     * compilers not to complain about it). It also allows some of the
303 >     * public methods to be factored into a smaller number of internal
304 >     * methods (although sadly not so for the five variants of
305 >     * put-related operations). The validation-based approach
306 >     * explained below leads to a lot of code sprawl because
307 >     * retry-control precludes factoring into smaller methods.
308       *
309       * The table is lazily initialized to a power-of-two size upon the
310 <     * first insertion.  Each bin in the table contains a (typically
311 <     * short) list of Nodes.  Table accesses require volatile/atomic
312 <     * reads, writes, and CASes.  Because there is no other way to
313 <     * arrange this without adding further indirections, we use
314 <     * intrinsics (sun.misc.Unsafe) operations.  The lists of nodes
315 <     * within bins are always accurately traversable under volatile
316 <     * reads, so long as lookups check hash code and non-nullness of
317 <     * key and value before checking key equality. (All valid hash
318 <     * codes are nonnegative. Negative values are reserved for special
319 <     * forwarding nodes; see below.)
320 <     *
321 <     * A bin may be locked during update (insert, delete, and replace)
322 <     * operations.  We do not want to waste the space required to
323 <     * associate a distinct lock object with each bin, so instead use
324 <     * the first node of a bin list itself as a lock, using builtin
325 <     * "synchronized" locks. These save space and we can live with
326 <     * only plain block-structured lock/unlock operations. Using the
327 <     * first node of a list as a lock does not by itself suffice
328 <     * though: When a node is locked, any update must first validate
329 <     * that it is still the first node, and retry if not. (Because new
330 <     * nodes are always appended to lists, once a node is first in a
331 <     * bin, it remains first until deleted or the bin becomes
332 <     * invalidated.)  However, update operations can and sometimes do
333 <     * still traverse the bin until the point of update, which helps
334 <     * reduce cache misses on retries.  This is a converse of sorts to
335 <     * the lazy locking technique described by Herlihy & Shavit. If
336 <     * there is no existing node during a put operation, then one can
337 <     * be CAS'ed in (without need for lock except in computeIfAbsent);
338 <     * the CAS serves as validation. This is on average the most
339 <     * common case for put operations -- under random hash codes, the
340 <     * distribution of nodes in bins follows a Poisson distribution
341 <     * (see http://en.wikipedia.org/wiki/Poisson_distribution) with a
342 <     * parameter of 0.5 on average under the default loadFactor of
343 <     * 0.75.  The expected number of locks covering different elements
344 <     * (i.e., bins with 2 or more nodes) is approximately 10% at
345 <     * steady state under default settings.  Lock contention
346 <     * probability for two threads accessing arbitrary distinct
347 <     * elements is, roughly, 1 / (8 * #elements).
348 <     *
349 <     * The table is resized when occupancy exceeds a threshold.  Only
350 <     * a single thread performs the resize (using field "resizing", to
351 <     * arrange exclusion), but the table otherwise remains usable for
352 <     * both reads and updates. Resizing proceeds by transferring bins,
353 <     * one by one, from the table to the next table.  Upon transfer,
354 <     * the old table bin contains only a special forwarding node (with
355 <     * negative hash code ("MOVED")) that contains the next table as
356 <     * its key. On encountering a forwarding node, access and update
357 <     * operations restart, using the new table. To ensure concurrent
358 <     * readability of traversals, transfers must proceed from the last
359 <     * bin (table.length - 1) up towards the first.  Any traversal
360 <     * starting from the first bin can then arrange to move to the new
361 <     * table for the rest of the traversal without revisiting nodes.
362 <     * This constrains bin transfers to a particular order, and so can
363 <     * block indefinitely waiting for the next lock, and other threads
364 <     * cannot help with the transfer. However, expected stalls are
365 <     * infrequent enough to not warrant the additional overhead and
366 <     * complexity of access and iteration schemes that could admit
367 <     * out-of-order or concurrent bin transfers.
368 <     *
369 <     * A similar traversal scheme (not yet implemented) can apply to
370 <     * partial traversals during partitioned aggregate operations.
371 <     * Also, read-only operations give up if ever forwarded to a null
372 <     * table, which provides support for shutdown-style clearing,
373 <     * which is also not currently implemented.
374 <     *
375 <     * The element count is maintained using a LongAdder, which avoids
376 <     * contention on updates but can encounter cache thrashing if read
377 <     * too frequently during concurrent updates. To avoid reading so
378 <     * often, resizing is normally attempted only upon adding to a bin
379 <     * already holding two or more nodes. Under the default threshold
380 <     * (0.75), and uniform hash distributions, the probability of this
381 <     * occurring at threshold is around 13%, meaning that only about 1
382 <     * in 8 puts check threshold (and after resizing, many fewer do
383 <     * so). But this approximation has high variance for small table
384 <     * sizes, so we check on any collision for sizes <= 64.  Further,
385 <     * to increase the probability that a resize occurs soon enough, we
386 <     * offset the threshold (see THRESHOLD_OFFSET) by the expected
387 <     * number of puts between checks. This is currently set to 8, in
388 <     * accord with the default load factor. In practice, this is
389 <     * rarely overridden, and in any case is close enough to other
390 <     * plausible values not to waste dynamic probability computation
391 <     * for more precision.
310 >     * first insertion.  Each bin in the table normally contains a
311 >     * list of Nodes (most often, the list has only zero or one Node).
312 >     * Table accesses require volatile/atomic reads, writes, and
313 >     * CASes.  Because there is no other way to arrange this without
314 >     * adding further indirections, we use intrinsics
315 >     * (sun.misc.Unsafe) operations.  The lists of nodes within bins
316 >     * are always accurately traversable under volatile reads, so long
317 >     * as lookups check hash code and non-nullness of value before
318 >     * checking key equality.
319 >     *
320 >     * We use the top (sign) bit of Node hash fields for control
321 >     * purposes -- it is available anyway because of addressing
322 >     * constraints.  Nodes with negative hash fields are forwarding
323 >     * nodes to either TreeBins or resized tables.  The lower 31 bits
324 >     * of each normal Node's hash field contain a transformation of
325 >     * the key's hash code.
326 >     *
327 >     * Insertion (via put or its variants) of the first node in an
328 >     * empty bin is performed by just CASing it to the bin.  This is
329 >     * by far the most common case for put operations under most
330 >     * key/hash distributions.  Other update operations (insert,
331 >     * delete, and replace) require locks.  We do not want to waste
332 >     * the space required to associate a distinct lock object with
333 >     * each bin, so instead use the first node of a bin list itself as
334 >     * a lock. Locking support for these locks relies on builtin
335 >     * "synchronized" monitors.
336 >     *
337 >     * Using the first node of a list as a lock does not by itself
338 >     * suffice though: When a node is locked, any update must first
339 >     * validate that it is still the first node after locking it, and
340 >     * retry if not. Because new nodes are always appended to lists,
341 >     * once a node is first in a bin, it remains first until deleted
342 >     * or the bin becomes invalidated (upon resizing).  However,
343 >     * operations that only conditionally update may inspect nodes
344 >     * until the point of update. This is a converse of sorts to the
345 >     * lazy locking technique described by Herlihy & Shavit.
346 >     *
347 >     * The main disadvantage of per-bin locks is that other update
348 >     * operations on other nodes in a bin list protected by the same
349 >     * lock can stall, for example when user equals() or mapping
350 >     * functions take a long time.  However, statistically, under
351 >     * random hash codes, this is not a common problem.  Ideally, the
352 >     * frequency of nodes in bins follows a Poisson distribution
353 >     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
354 >     * parameter of about 0.5 on average, given the resizing threshold
355 >     * of 0.75, although with a large variance because of resizing
356 >     * granularity. Ignoring variance, the expected occurrences of
357 >     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
358 >     * first values are:
359 >     *
360 >     * 0:    0.60653066
361 >     * 1:    0.30326533
362 >     * 2:    0.07581633
363 >     * 3:    0.01263606
364 >     * 4:    0.00157952
365 >     * 5:    0.00015795
366 >     * 6:    0.00001316
367 >     * 7:    0.00000094
368 >     * 8:    0.00000006
369 >     * more: less than 1 in ten million
370 >     *
371 >     * Lock contention probability for two threads accessing distinct
372 >     * elements is roughly 1 / (8 * #elements) under random hashes.
373 >     *
374 >     * Actual hash code distributions encountered in practice
375 >     * sometimes deviate significantly from uniform randomness.  This
376 >     * includes the case when N > (1<<30), so some keys MUST collide.
377 >     * Similarly for dumb or hostile usages in which multiple keys are
378 >     * designed to have identical hash codes. Also, although we guard
379 >     * against the worst effects of this (see method spread), sets of
380 >     * hashes may differ only in bits that do not impact their bin
381 >     * index for a given power-of-two mask.  So we use a secondary
382 >     * strategy that applies when the number of nodes in a bin exceeds
383 >     * a threshold, and at least one of the keys implements
384 >     * Comparable.  These TreeBins use a balanced tree to hold nodes
385 >     * (a specialized form of red-black trees), bounding search time
386 >     * to O(log N).  Each search step in a TreeBin is around twice as
387 >     * slow as in a regular list, but given that N cannot exceed
388 >     * (1<<64) (before running out of addresses) this bounds search
389 >     * steps, lock hold times, etc, to reasonable constants (roughly
390 >     * 100 nodes inspected per operation worst case) so long as keys
391 >     * are Comparable (which is very common -- String, Long, etc).
392 >     * TreeBin nodes (TreeNodes) also maintain the same "next"
393 >     * traversal pointers as regular nodes, so can be traversed in
394 >     * iterators in the same way.
395 >     *
396 >     * The table is resized when occupancy exceeds a percentage
397 >     * threshold (nominally, 0.75, but see below).  Any thread
398 >     * noticing an overfull bin may assist in resizing after the
399 >     * initiating thread allocates and sets up the replacement
400 >     * array. However, rather than stalling, these other threads may
401 >     * proceed with insertions etc.  The use of TreeBins shields us
402 >     * from the worst case effects of overfilling while resizes are in
403 >     * progress.  Resizing proceeds by transferring bins, one by one,
404 >     * from the table to the next table. To enable concurrency, the
405 >     * next table must be (incrementally) prefilled with place-holders
406 >     * serving as reverse forwarders to the old table.  Because we are
407 >     * using power-of-two expansion, the elements from each bin must
408 >     * either stay at same index, or move with a power of two
409 >     * offset. We eliminate unnecessary node creation by catching
410 >     * cases where old nodes can be reused because their next fields
411 >     * won't change.  On average, only about one-sixth of them need
412 >     * cloning when a table doubles. The nodes they replace will be
413 >     * garbage collectable as soon as they are no longer referenced by
414 >     * any reader thread that may be in the midst of concurrently
415 >     * traversing table.  Upon transfer, the old table bin contains
416 >     * only a special forwarding node (with hash field "MOVED") that
417 >     * contains the next table as its key. On encountering a
418 >     * forwarding node, access and update operations restart, using
419 >     * the new table.
420 >     *
421 >     * Each bin transfer requires its bin lock, which can stall
422 >     * waiting for locks while resizing. However, because other
423 >     * threads can join in and help resize rather than contend for
424 >     * locks, average aggregate waits become shorter as resizing
425 >     * progresses.  The transfer operation must also ensure that all
426 >     * accessible bins in both the old and new table are usable by any
427 >     * traversal.  This is arranged by proceeding from the last bin
428 >     * (table.length - 1) up towards the first.  Upon seeing a
429 >     * forwarding node, traversals (see class Traverser) arrange to
430 >     * move to the new table without revisiting nodes.  However, to
431 >     * ensure that no intervening nodes are skipped, bin splitting can
432 >     * only begin after the associated reverse-forwarders are in
433 >     * place.
434 >     *
435 >     * The traversal scheme also applies to partial traversals of
436 >     * ranges of bins (via an alternate Traverser constructor)
437 >     * to support partitioned aggregate operations.  Also, read-only
438 >     * operations give up if ever forwarded to a null table, which
439 >     * provides support for shutdown-style clearing, which is also not
440 >     * currently implemented.
441 >     *
442 >     * Lazy table initialization minimizes footprint until first use,
443 >     * and also avoids resizings when the first operation is from a
444 >     * putAll, constructor with map argument, or deserialization.
445 >     * These cases attempt to override the initial capacity settings,
446 >     * but harmlessly fail to take effect in cases of races.
447 >     *
448 >     * The element count is maintained using a specialization of
449 >     * LongAdder. We need to incorporate a specialization rather than
450 >     * just use a LongAdder in order to access implicit
451 >     * contention-sensing that leads to creation of multiple
452 >     * CounterCells.  The counter mechanics avoid contention on
453 >     * updates but can encounter cache thrashing if read too
454 >     * frequently during concurrent access. To avoid reading so often,
455 >     * resizing under contention is attempted only upon adding to a
456 >     * bin already holding two or more nodes. Under uniform hash
457 >     * distributions, the probability of this occurring at threshold
458 >     * is around 13%, meaning that only about 1 in 8 puts check
459 >     * threshold (and after resizing, many fewer do so). The bulk
460 >     * putAll operation further reduces contention by only committing
461 >     * count updates upon these size checks.
462 >     *
463 >     * Maintaining API and serialization compatibility with previous
464 >     * versions of this class introduces several oddities. Mainly: We
465 >     * leave untouched but unused constructor arguments refering to
466 >     * concurrencyLevel. We accept a loadFactor constructor argument,
467 >     * but apply it only to initial table capacity (which is the only
468 >     * time that we can guarantee to honor it.) We also declare an
469 >     * unused "Segment" class that is instantiated in minimal form
470 >     * only when serializing.
471       */
472  
473      /* ---------------- Constants -------------- */
474  
475      /**
476 <     * The smallest allowed table capacity.  Must be a power of 2, at
477 <     * least 2.
476 >     * The largest possible table capacity.  This value must be
477 >     * exactly 1<<30 to stay within Java array allocation and indexing
478 >     * bounds for power of two table sizes, and is further required
479 >     * because the top two bits of 32bit hash fields are used for
480 >     * control purposes.
481       */
482 <    static final int MINIMUM_CAPACITY = 2;
482 >    private static final int MAXIMUM_CAPACITY = 1 << 30;
483  
484      /**
485 <     * The largest allowed table capacity.  Must be a power of 2, at
486 <     * most 1<<30.
485 >     * The default initial table capacity.  Must be a power of 2
486 >     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
487       */
488 <    static final int MAXIMUM_CAPACITY = 1 << 30;
488 >    private static final int DEFAULT_CAPACITY = 16;
489  
490      /**
491 <     * The default initial table capacity.  Must be a power of 2, at
492 <     * least MINIMUM_CAPACITY and at most MAXIMUM_CAPACITY.
491 >     * The largest possible (non-power of two) array size.
492 >     * Needed by toArray and related methods.
493       */
494 <    static final int DEFAULT_CAPACITY = 16;
494 >    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
495  
496      /**
497 <     * The default load factor for this table, used when not otherwise
498 <     * specified in a constructor.
497 >     * The default concurrency level for this table. Unused but
498 >     * defined for compatibility with previous versions of this class.
499       */
500 <    static final float DEFAULT_LOAD_FACTOR = 0.75f;
500 >    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
501  
502      /**
503 <     * The default concurrency level for this table. Unused, but
504 <     * defined for compatibility with previous versions of this class.
503 >     * The load factor for this table. Overrides of this value in
504 >     * constructors affect only the initial table capacity.  The
505 >     * actual floating point value isn't normally used -- it is
506 >     * simpler to use expressions such as {@code n - (n >>> 2)} for
507 >     * the associated resizing threshold.
508 >     */
509 >    private static final float LOAD_FACTOR = 0.75f;
510 >
511 >    /**
512 >     * The bin count threshold for using a tree rather than list for a
513 >     * bin.  The value reflects the approximate break-even point for
514 >     * using tree-based operations.
515 >     */
516 >    private static final int TREE_THRESHOLD = 8;
517 >
518 >    /**
519 >     * Minimum number of rebinnings per transfer step. Ranges are
520 >     * subdivided to allow multiple resizer threads.  This value
521 >     * serves as a lower bound to avoid resizers encountering
522 >     * excessive memory contention.  The value should be at least
523 >     * DEFAULT_CAPACITY.
524 >     */
525 >    private static final int MIN_TRANSFER_STRIDE = 16;
526 >
527 >    /*
528 >     * Encodings for Node hash fields. See above for explanation.
529       */
530 <    static final int DEFAULT_CONCURRENCY_LEVEL = 16;
530 >    static final int MOVED     = 0x80000000; // hash field for forwarding nodes
531 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
532 >
533 >    /** Number of CPUS, to place bounds on some sizings */
534 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
535 >
536 >    /* ---------------- Counters -------------- */
537 >
538 >    // Adapted from LongAdder and Striped64.
539 >    // See their internal docs for explanation.
540 >
541 >    // A padded cell for distributing counts
542 >    static final class CounterCell {
543 >        volatile long p0, p1, p2, p3, p4, p5, p6;
544 >        volatile long value;
545 >        volatile long q0, q1, q2, q3, q4, q5, q6;
546 >        CounterCell(long x) { value = x; }
547 >    }
548  
549      /**
550 <     * The count value to offset thresholds to compensate for checking
551 <     * for resizing only when inserting into bins with two or more
552 <     * elements. See above for explanation.
550 >     * Holder for the thread-local hash code determining which
551 >     * CounterCell to use. The code is initialized via the
552 >     * counterHashCodeGenerator, but may be moved upon collisions.
553       */
554 <    static final int THRESHOLD_OFFSET = 8;
554 >    static final class CounterHashCode {
555 >        int code;
556 >    }
557  
558      /**
559 <     * Special node hash value indicating to use table in node.key
245 <     * Must be negative.
559 >     * Generates initial value for per-thread CounterHashCodes
560       */
561 <    static final int MOVED = -1;
561 >    static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
562 >
563 >    /**
564 >     * Increment for counterHashCodeGenerator. See class ThreadLocal
565 >     * for explanation.
566 >     */
567 >    static final int SEED_INCREMENT = 0x61c88647;
568 >
569 >    /**
570 >     * Per-thread counter hash codes. Shared across all instances.
571 >     */
572 >    static final ThreadLocal<CounterHashCode> threadCounterHashCode =
573 >        new ThreadLocal<CounterHashCode>();
574  
575      /* ---------------- Fields -------------- */
576  
577      /**
578       * The array of bins. Lazily initialized upon first insertion.
579 <     * Size is always a power of two. Accessed directly by inner
580 <     * classes.
579 >     * Size is always a power of two. Accessed directly by iterators.
580 >     */
581 >    transient volatile Node<V>[] table;
582 >
583 >    /**
584 >     * The next table to use; non-null only while resizing.
585 >     */
586 >    private transient volatile Node<V>[] nextTable;
587 >
588 >    /**
589 >     * Base counter value, used mainly when there is no contention,
590 >     * but also as a fallback during table initialization
591 >     * races. Updated via CAS.
592 >     */
593 >    private transient volatile long baseCount;
594 >
595 >    /**
596 >     * Table initialization and resizing control.  When negative, the
597 >     * table is being initialized or resized: -1 for initialization,
598 >     * else -(1 + the number of active resizing threads).  Otherwise,
599 >     * when table is null, holds the initial table size to use upon
600 >     * creation, or 0 for default. After initialization, holds the
601 >     * next element count value upon which to resize the table.
602 >     */
603 >    private transient volatile int sizeCtl;
604 >
605 >    /**
606 >     * The next table index (plus one) to split while resizing.
607 >     */
608 >    private transient volatile int transferIndex;
609 >
610 >    /**
611 >     * The least available table index to split while resizing.
612 >     */
613 >    private transient volatile int transferOrigin;
614 >
615 >    /**
616 >     * Spinlock (locked via CAS) used when resizing and/or creating Cells.
617       */
618 <    transient volatile Node[] table;
618 >    private transient volatile int counterBusy;
619  
620 <    /** The counter maintaining number of elements. */
621 <    private transient final LongAdder counter;
622 <    /** Nonzero when table is being initialized or resized. Updated via CAS. */
623 <    private transient volatile int resizing;
262 <    /** The target load factor for the table. */
263 <    private transient float loadFactor;
264 <    /** The next element count value upon which to resize the table. */
265 <    private transient int threshold;
266 <    /** The initial capacity of the table. */
267 <    private transient int initCap;
620 >    /**
621 >     * Table of counter cells. When non-null, size is a power of 2.
622 >     */
623 >    private transient volatile CounterCell[] counterCells;
624  
625      // views
626 <    transient Set<K> keySet;
627 <    transient Set<Map.Entry<K,V>> entrySet;
628 <    transient Collection<V> values;
626 >    private transient KeySetView<K,V> keySet;
627 >    private transient ValuesView<K,V> values;
628 >    private transient EntrySetView<K,V> entrySet;
629  
630      /** For serialization compatibility. Null unless serialized; see below */
631 <    Segment<K,V>[] segments;
631 >    private Segment<K,V>[] segments;
632  
633 <    /**
634 <     * Applies a supplemental hash function to a given hashCode, which
635 <     * defends against poor quality hash functions.  The result must
636 <     * be non-negative, and for reasonable performance must have good
637 <     * avalanche properties; i.e., that each bit of the argument
638 <     * affects each bit (except sign bit) of the result.
633 >    /* ---------------- Table element access -------------- */
634 >
635 >    /*
636 >     * Volatile access methods are used for table elements as well as
637 >     * elements of in-progress next table while resizing.  Uses are
638 >     * null checked by callers, and implicitly bounds-checked, relying
639 >     * on the invariants that tab arrays have non-zero size, and all
640 >     * indices are masked with (tab.length - 1) which is never
641 >     * negative and always less than length. Note that, to be correct
642 >     * wrt arbitrary concurrency errors by users, bounds checks must
643 >     * operate on local variables, which accounts for some odd-looking
644 >     * inline assignments below.
645       */
646 <    private static final int spread(int h) {
647 <        // Apply base step of MurmurHash; see http://code.google.com/p/smhasher/
648 <        h ^= h >>> 16;
649 <        h *= 0x85ebca6b;
650 <        h ^= h >>> 13;
651 <        h *= 0xc2b2ae35;
652 <        return (h >>> 16) ^ (h & 0x7fffffff); // mask out sign bit
646 >
647 >    @SuppressWarnings("unchecked") static final <V> Node<V> tabAt
648 >        (Node<V>[] tab, int i) { // used by Traverser
649 >        return (Node<V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
650 >    }
651 >
652 >    private static final <V> boolean casTabAt
653 >        (Node<V>[] tab, int i, Node<V> c, Node<V> v) {
654 >        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
655      }
656  
657 +    private static final <V> void setTabAt
658 +        (Node<V>[] tab, int i, Node<V> v) {
659 +        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
660 +    }
661 +
662 +    /* ---------------- Nodes -------------- */
663 +
664      /**
665       * Key-value entry. Note that this is never exported out as a
666 <     * user-visible Map.Entry.
666 >     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
667 >     * field of MOVED are special, and do not contain user keys or
668 >     * values.  Otherwise, keys are never null, and null val fields
669 >     * indicate that a node is in the process of being deleted or
670 >     * created. For purposes of read-only access, a key may be read
671 >     * before a val, but can only be used after checking val to be
672 >     * non-null.
673       */
674 <    static final class Node {
674 >    static class Node<V> {
675          final int hash;
676          final Object key;
677 <        volatile Object val;
678 <        volatile Node next;
677 >        volatile V val;
678 >        volatile Node<V> next;
679  
680 <        Node(int hash, Object key, Object val, Node next) {
680 >        Node(int hash, Object key, V val, Node<V> next) {
681              this.hash = hash;
682              this.key = key;
683              this.val = val;
# Line 308 | Line 685 | public class ConcurrentHashMapV8<K, V>
685          }
686      }
687  
688 <    /*
312 <     * Volatile access methods are used for table elements as well as
313 <     * elements of in-progress next table while resizing.  Uses in
314 <     * access and update methods are null checked by callers, and
315 <     * implicitly bounds-checked, relying on the invariants that tab
316 <     * arrays have non-zero size, and all indices are masked with
317 <     * (tab.length - 1) which is never negative and always less than
318 <     * length. The "relaxed" non-volatile forms are used only during
319 <     * table initialization. The only other usage is in
320 <     * HashIterator.advance, which performs explicit checks.
321 <     */
688 >    /* ---------------- TreeBins -------------- */
689  
690 <    static final Node tabAt(Node[] tab, int i) { // used in HashIterator
691 <        return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
692 <    }
693 <
694 <    private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
695 <        return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
690 >    /**
691 >     * Nodes for use in TreeBins
692 >     */
693 >    static final class TreeNode<V> extends Node<V> {
694 >        TreeNode<V> parent;  // red-black tree links
695 >        TreeNode<V> left;
696 >        TreeNode<V> right;
697 >        TreeNode<V> prev;    // needed to unlink next upon deletion
698 >        boolean red;
699 >
700 >        TreeNode(int hash, Object key, V val, Node<V> next, TreeNode<V> parent) {
701 >            super(hash, key, val, next);
702 >            this.parent = parent;
703 >        }
704      }
705  
706 <    private static final void setTabAt(Node[] tab, int i, Node v) {
707 <        UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
708 <    }
706 >    /**
707 >     * A specialized form of red-black tree for use in bins
708 >     * whose size exceeds a threshold.
709 >     *
710 >     * TreeBins use a special form of comparison for search and
711 >     * related operations (which is the main reason we cannot use
712 >     * existing collections such as TreeMaps). TreeBins contain
713 >     * Comparable elements, but may contain others, as well as
714 >     * elements that are Comparable but not necessarily Comparable<T>
715 >     * for the same T, so we cannot invoke compareTo among them. To
716 >     * handle this, the tree is ordered primarily by hash value, then
717 >     * by getClass().getName() order, and then by Comparator order
718 >     * among elements of the same class.  On lookup at a node, if
719 >     * elements are not comparable or compare as 0, both left and
720 >     * right children may need to be searched in the case of tied hash
721 >     * values. (This corresponds to the full list search that would be
722 >     * necessary if all elements were non-Comparable and had tied
723 >     * hashes.)  The red-black balancing code is updated from
724 >     * pre-jdk-collections
725 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
726 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
727 >     * Algorithms" (CLR).
728 >     *
729 >     * TreeBins also maintain a separate locking discipline than
730 >     * regular bins. Because they are forwarded via special MOVED
731 >     * nodes at bin heads (which can never change once established),
732 >     * we cannot use those nodes as locks. Instead, TreeBin
733 >     * extends AbstractQueuedSynchronizer to support a simple form of
734 >     * read-write lock. For update operations and table validation,
735 >     * the exclusive form of lock behaves in the same way as bin-head
736 >     * locks. However, lookups use shared read-lock mechanics to allow
737 >     * multiple readers in the absence of writers.  Additionally,
738 >     * these lookups do not ever block: While the lock is not
739 >     * available, they proceed along the slow traversal path (via
740 >     * next-pointers) until the lock becomes available or the list is
741 >     * exhausted, whichever comes first. (These cases are not fast,
742 >     * but maximize aggregate expected throughput.)  The AQS mechanics
743 >     * for doing this are straightforward.  The lock state is held as
744 >     * AQS getState().  Read counts are negative; the write count (1)
745 >     * is positive.  There are no signalling preferences among readers
746 >     * and writers. Since we don't need to export full Lock API, we
747 >     * just override the minimal AQS methods and use them directly.
748 >     */
749 >    static final class TreeBin<V> extends AbstractQueuedSynchronizer {
750 >        private static final long serialVersionUID = 2249069246763182397L;
751 >        transient TreeNode<V> root;  // root of tree
752 >        transient TreeNode<V> first; // head of next-pointer list
753  
754 <    private static final Node relaxedTabAt(Node[] tab, int i) {
755 <        return (Node)UNSAFE.getObject(tab, ((long)i<<ASHIFT)+ABASE);
756 <    }
754 >        /* AQS overrides */
755 >        public final boolean isHeldExclusively() { return getState() > 0; }
756 >        public final boolean tryAcquire(int ignore) {
757 >            if (compareAndSetState(0, 1)) {
758 >                setExclusiveOwnerThread(Thread.currentThread());
759 >                return true;
760 >            }
761 >            return false;
762 >        }
763 >        public final boolean tryRelease(int ignore) {
764 >            setExclusiveOwnerThread(null);
765 >            setState(0);
766 >            return true;
767 >        }
768 >        public final int tryAcquireShared(int ignore) {
769 >            for (int c;;) {
770 >                if ((c = getState()) > 0)
771 >                    return -1;
772 >                if (compareAndSetState(c, c -1))
773 >                    return 1;
774 >            }
775 >        }
776 >        public final boolean tryReleaseShared(int ignore) {
777 >            int c;
778 >            do {} while (!compareAndSetState(c = getState(), c + 1));
779 >            return c == -1;
780 >        }
781 >
782 >        /** From CLR */
783 >        private void rotateLeft(TreeNode<V> p) {
784 >            if (p != null) {
785 >                TreeNode<V> r = p.right, pp, rl;
786 >                if ((rl = p.right = r.left) != null)
787 >                    rl.parent = p;
788 >                if ((pp = r.parent = p.parent) == null)
789 >                    root = r;
790 >                else if (pp.left == p)
791 >                    pp.left = r;
792 >                else
793 >                    pp.right = r;
794 >                r.left = p;
795 >                p.parent = r;
796 >            }
797 >        }
798  
799 <    private static final void relaxedSetTabAt(Node[] tab, int i, Node v) {
800 <        UNSAFE.putObject(tab, ((long)i<<ASHIFT)+ABASE, v);
801 <    }
799 >        /** From CLR */
800 >        private void rotateRight(TreeNode<V> p) {
801 >            if (p != null) {
802 >                TreeNode<V> l = p.left, pp, lr;
803 >                if ((lr = p.left = l.right) != null)
804 >                    lr.parent = p;
805 >                if ((pp = l.parent = p.parent) == null)
806 >                    root = l;
807 >                else if (pp.right == p)
808 >                    pp.right = l;
809 >                else
810 >                    pp.left = l;
811 >                l.right = p;
812 >                p.parent = l;
813 >            }
814 >        }
815  
816 <    /* ---------------- Access and update operations -------------- */
816 >        /**
817 >         * Returns the TreeNode (or null if not found) for the given key
818 >         * starting at given root.
819 >         */
820 >        @SuppressWarnings("unchecked") final TreeNode<V> getTreeNode
821 >            (int h, Object k, TreeNode<V> p) {
822 >            Class<?> c = k.getClass();
823 >            while (p != null) {
824 >                int dir, ph;  Object pk; Class<?> pc;
825 >                if ((ph = p.hash) == h) {
826 >                    if ((pk = p.key) == k || k.equals(pk))
827 >                        return p;
828 >                    if (c != (pc = pk.getClass()) ||
829 >                        !(k instanceof Comparable) ||
830 >                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
831 >                        if ((dir = (c == pc) ? 0 :
832 >                             c.getName().compareTo(pc.getName())) == 0) {
833 >                            TreeNode<V> r = null, pl, pr; // check both sides
834 >                            if ((pr = p.right) != null && h >= pr.hash &&
835 >                                (r = getTreeNode(h, k, pr)) != null)
836 >                                return r;
837 >                            else if ((pl = p.left) != null && h <= pl.hash)
838 >                                dir = -1;
839 >                            else // nothing there
840 >                                return null;
841 >                        }
842 >                    }
843 >                }
844 >                else
845 >                    dir = (h < ph) ? -1 : 1;
846 >                p = (dir > 0) ? p.right : p.left;
847 >            }
848 >            return null;
849 >        }
850  
851 <   /** Implementation for get and containsKey */
852 <    private final Object internalGet(Object k) {
853 <        int h = spread(k.hashCode());
854 <        Node[] tab = table;
855 <        retry: while (tab != null) {
856 <            Node e = tabAt(tab, (tab.length - 1) & h);
857 <            while (e != null) {
858 <                int eh = e.hash;
859 <                if (eh == h) {
860 <                    Object ek = e.key, ev = e.val;
861 <                    if (ev != null && ek != null && (k == ek || k.equals(ek)))
862 <                        return ev;
851 >        /**
852 >         * Wrapper for getTreeNode used by CHM.get. Tries to obtain
853 >         * read-lock to call getTreeNode, but during failure to get
854 >         * lock, searches along next links.
855 >         */
856 >        final V getValue(int h, Object k) {
857 >            Node<V> r = null;
858 >            int c = getState(); // Must read lock state first
859 >            for (Node<V> e = first; e != null; e = e.next) {
860 >                if (c <= 0 && compareAndSetState(c, c - 1)) {
861 >                    try {
862 >                        r = getTreeNode(h, k, root);
863 >                    } finally {
864 >                        releaseShared(0);
865 >                    }
866 >                    break;
867                  }
868 <                else if (eh < 0) { // bin was moved during resize
869 <                    tab = (Node[])e.key;
870 <                    continue retry;
868 >                else if (e.hash == h && k.equals(e.key)) {
869 >                    r = e;
870 >                    break;
871                  }
872 <                e = e.next;
872 >                else
873 >                    c = getState();
874              }
875 <            break;
875 >            return r == null ? null : r.val;
876          }
366        return null;
367    }
877  
878 +        /**
879 +         * Finds or adds a node.
880 +         * @return null if added
881 +         */
882 +        @SuppressWarnings("unchecked") final TreeNode<V> putTreeNode
883 +            (int h, Object k, V v) {
884 +            Class<?> c = k.getClass();
885 +            TreeNode<V> pp = root, p = null;
886 +            int dir = 0;
887 +            while (pp != null) { // find existing node or leaf to insert at
888 +                int ph;  Object pk; Class<?> pc;
889 +                p = pp;
890 +                if ((ph = p.hash) == h) {
891 +                    if ((pk = p.key) == k || k.equals(pk))
892 +                        return p;
893 +                    if (c != (pc = pk.getClass()) ||
894 +                        !(k instanceof Comparable) ||
895 +                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
896 +                        TreeNode<V> s = null, r = null, pr;
897 +                        if ((dir = (c == pc) ? 0 :
898 +                             c.getName().compareTo(pc.getName())) == 0) {
899 +                            if ((pr = p.right) != null && h >= pr.hash &&
900 +                                (r = getTreeNode(h, k, pr)) != null)
901 +                                return r;
902 +                            else // continue left
903 +                                dir = -1;
904 +                        }
905 +                        else if ((pr = p.right) != null && h >= pr.hash)
906 +                            s = pr;
907 +                        if (s != null && (r = getTreeNode(h, k, s)) != null)
908 +                            return r;
909 +                    }
910 +                }
911 +                else
912 +                    dir = (h < ph) ? -1 : 1;
913 +                pp = (dir > 0) ? p.right : p.left;
914 +            }
915  
916 <    /** Implementation for put and putIfAbsent */
917 <    private final Object internalPut(Object k, Object v, boolean replace) {
918 <        int h = spread(k.hashCode());
919 <        Object oldVal = null;  // the previous value or null if none
920 <        Node[] tab = table;
921 <        for (;;) {
922 <            Node e; int i;
923 <            if (tab == null)
924 <                tab = grow(0);
925 <            else if ((e = tabAt(tab, i = (tab.length - 1) & h)) == null) {
926 <                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
927 <                    break;
916 >            TreeNode<V> f = first;
917 >            TreeNode<V> x = first = new TreeNode<V>(h, k, v, f, p);
918 >            if (p == null)
919 >                root = x;
920 >            else { // attach and rebalance; adapted from CLR
921 >                TreeNode<V> xp, xpp;
922 >                if (f != null)
923 >                    f.prev = x;
924 >                if (dir <= 0)
925 >                    p.left = x;
926 >                else
927 >                    p.right = x;
928 >                x.red = true;
929 >                while (x != null && (xp = x.parent) != null && xp.red &&
930 >                       (xpp = xp.parent) != null) {
931 >                    TreeNode<V> xppl = xpp.left;
932 >                    if (xp == xppl) {
933 >                        TreeNode<V> y = xpp.right;
934 >                        if (y != null && y.red) {
935 >                            y.red = false;
936 >                            xp.red = false;
937 >                            xpp.red = true;
938 >                            x = xpp;
939 >                        }
940 >                        else {
941 >                            if (x == xp.right) {
942 >                                rotateLeft(x = xp);
943 >                                xpp = (xp = x.parent) == null ? null : xp.parent;
944 >                            }
945 >                            if (xp != null) {
946 >                                xp.red = false;
947 >                                if (xpp != null) {
948 >                                    xpp.red = true;
949 >                                    rotateRight(xpp);
950 >                                }
951 >                            }
952 >                        }
953 >                    }
954 >                    else {
955 >                        TreeNode<V> y = xppl;
956 >                        if (y != null && y.red) {
957 >                            y.red = false;
958 >                            xp.red = false;
959 >                            xpp.red = true;
960 >                            x = xpp;
961 >                        }
962 >                        else {
963 >                            if (x == xp.left) {
964 >                                rotateRight(x = xp);
965 >                                xpp = (xp = x.parent) == null ? null : xp.parent;
966 >                            }
967 >                            if (xp != null) {
968 >                                xp.red = false;
969 >                                if (xpp != null) {
970 >                                    xpp.red = true;
971 >                                    rotateLeft(xpp);
972 >                                }
973 >                            }
974 >                        }
975 >                    }
976 >                }
977 >                TreeNode<V> r = root;
978 >                if (r != null && r.red)
979 >                    r.red = false;
980 >            }
981 >            return null;
982 >        }
983 >
984 >        /**
985 >         * Removes the given node, that must be present before this
986 >         * call.  This is messier than typical red-black deletion code
987 >         * because we cannot swap the contents of an interior node
988 >         * with a leaf successor that is pinned by "next" pointers
989 >         * that are accessible independently of lock. So instead we
990 >         * swap the tree linkages.
991 >         */
992 >        final void deleteTreeNode(TreeNode<V> p) {
993 >            TreeNode<V> next = (TreeNode<V>)p.next; // unlink traversal pointers
994 >            TreeNode<V> pred = p.prev;
995 >            if (pred == null)
996 >                first = next;
997 >            else
998 >                pred.next = next;
999 >            if (next != null)
1000 >                next.prev = pred;
1001 >            TreeNode<V> replacement;
1002 >            TreeNode<V> pl = p.left;
1003 >            TreeNode<V> pr = p.right;
1004 >            if (pl != null && pr != null) {
1005 >                TreeNode<V> s = pr, sl;
1006 >                while ((sl = s.left) != null) // find successor
1007 >                    s = sl;
1008 >                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
1009 >                TreeNode<V> sr = s.right;
1010 >                TreeNode<V> pp = p.parent;
1011 >                if (s == pr) { // p was s's direct parent
1012 >                    p.parent = s;
1013 >                    s.right = p;
1014 >                }
1015 >                else {
1016 >                    TreeNode<V> sp = s.parent;
1017 >                    if ((p.parent = sp) != null) {
1018 >                        if (s == sp.left)
1019 >                            sp.left = p;
1020 >                        else
1021 >                            sp.right = p;
1022 >                    }
1023 >                    if ((s.right = pr) != null)
1024 >                        pr.parent = s;
1025 >                }
1026 >                p.left = null;
1027 >                if ((p.right = sr) != null)
1028 >                    sr.parent = p;
1029 >                if ((s.left = pl) != null)
1030 >                    pl.parent = s;
1031 >                if ((s.parent = pp) == null)
1032 >                    root = s;
1033 >                else if (p == pp.left)
1034 >                    pp.left = s;
1035 >                else
1036 >                    pp.right = s;
1037 >                replacement = sr;
1038 >            }
1039 >            else
1040 >                replacement = (pl != null) ? pl : pr;
1041 >            TreeNode<V> pp = p.parent;
1042 >            if (replacement == null) {
1043 >                if (pp == null) {
1044 >                    root = null;
1045 >                    return;
1046 >                }
1047 >                replacement = p;
1048              }
383            else if (e.hash < 0)
384                tab = (Node[])e.key;
1049              else {
1050 <                boolean validated = false;
1051 <                boolean checkSize = false;
1052 <                synchronized (e) {
1053 <                    if (tabAt(tab, i) == e) {
1054 <                        validated = true;
1055 <                        for (Node first = e;;) {
1056 <                            Object ek, ev;
1057 <                            if (e.hash == h &&
1058 <                                (ek = e.key) != null &&
1059 <                                (ev = e.val) != null &&
1060 <                                (k == ek || k.equals(ek))) {
1061 <                                oldVal = ev;
1062 <                                if (replace)
1063 <                                    e.val = v;
1064 <                                break;
1050 >                replacement.parent = pp;
1051 >                if (pp == null)
1052 >                    root = replacement;
1053 >                else if (p == pp.left)
1054 >                    pp.left = replacement;
1055 >                else
1056 >                    pp.right = replacement;
1057 >                p.left = p.right = p.parent = null;
1058 >            }
1059 >            if (!p.red) { // rebalance, from CLR
1060 >                TreeNode<V> x = replacement;
1061 >                while (x != null) {
1062 >                    TreeNode<V> xp, xpl;
1063 >                    if (x.red || (xp = x.parent) == null) {
1064 >                        x.red = false;
1065 >                        break;
1066 >                    }
1067 >                    if (x == (xpl = xp.left)) {
1068 >                        TreeNode<V> sib = xp.right;
1069 >                        if (sib != null && sib.red) {
1070 >                            sib.red = false;
1071 >                            xp.red = true;
1072 >                            rotateLeft(xp);
1073 >                            sib = (xp = x.parent) == null ? null : xp.right;
1074 >                        }
1075 >                        if (sib == null)
1076 >                            x = xp;
1077 >                        else {
1078 >                            TreeNode<V> sl = sib.left, sr = sib.right;
1079 >                            if ((sr == null || !sr.red) &&
1080 >                                (sl == null || !sl.red)) {
1081 >                                sib.red = true;
1082 >                                x = xp;
1083                              }
1084 <                            Node last = e;
1085 <                            if ((e = e.next) == null) {
1086 <                                last.next = new Node(h, k, v, null);
1087 <                                if (last != first || tab.length <= 64)
1088 <                                    checkSize = true;
1089 <                                break;
1084 >                            else {
1085 >                                if (sr == null || !sr.red) {
1086 >                                    if (sl != null)
1087 >                                        sl.red = false;
1088 >                                    sib.red = true;
1089 >                                    rotateRight(sib);
1090 >                                    sib = (xp = x.parent) == null ?
1091 >                                        null : xp.right;
1092 >                                }
1093 >                                if (sib != null) {
1094 >                                    sib.red = (xp == null) ? false : xp.red;
1095 >                                    if ((sr = sib.right) != null)
1096 >                                        sr.red = false;
1097 >                                }
1098 >                                if (xp != null) {
1099 >                                    xp.red = false;
1100 >                                    rotateLeft(xp);
1101 >                                }
1102 >                                x = root;
1103 >                            }
1104 >                        }
1105 >                    }
1106 >                    else { // symmetric
1107 >                        TreeNode<V> sib = xpl;
1108 >                        if (sib != null && sib.red) {
1109 >                            sib.red = false;
1110 >                            xp.red = true;
1111 >                            rotateRight(xp);
1112 >                            sib = (xp = x.parent) == null ? null : xp.left;
1113 >                        }
1114 >                        if (sib == null)
1115 >                            x = xp;
1116 >                        else {
1117 >                            TreeNode<V> sl = sib.left, sr = sib.right;
1118 >                            if ((sl == null || !sl.red) &&
1119 >                                (sr == null || !sr.red)) {
1120 >                                sib.red = true;
1121 >                                x = xp;
1122 >                            }
1123 >                            else {
1124 >                                if (sl == null || !sl.red) {
1125 >                                    if (sr != null)
1126 >                                        sr.red = false;
1127 >                                    sib.red = true;
1128 >                                    rotateLeft(sib);
1129 >                                    sib = (xp = x.parent) == null ?
1130 >                                        null : xp.left;
1131 >                                }
1132 >                                if (sib != null) {
1133 >                                    sib.red = (xp == null) ? false : xp.red;
1134 >                                    if ((sl = sib.left) != null)
1135 >                                        sl.red = false;
1136 >                                }
1137 >                                if (xp != null) {
1138 >                                    xp.red = false;
1139 >                                    rotateRight(xp);
1140 >                                }
1141 >                                x = root;
1142                              }
1143                          }
1144                      }
1145                  }
1146 <                if (validated) {
1147 <                    if (checkSize && tab.length < MAXIMUM_CAPACITY &&
1148 <                        resizing == 0 && counter.sum() >= threshold)
1149 <                        grow(0);
1150 <                    break;
1146 >            }
1147 >            if (p == replacement && (pp = p.parent) != null) {
1148 >                if (p == pp.left) // detach pointers
1149 >                    pp.left = null;
1150 >                else if (p == pp.right)
1151 >                    pp.right = null;
1152 >                p.parent = null;
1153 >            }
1154 >        }
1155 >    }
1156 >
1157 >    /* ---------------- Collision reduction methods -------------- */
1158 >
1159 >    /**
1160 >     * Spreads higher bits to lower, and also forces top bit to 0.
1161 >     * Because the table uses power-of-two masking, sets of hashes
1162 >     * that vary only in bits above the current mask will always
1163 >     * collide. (Among known examples are sets of Float keys holding
1164 >     * consecutive whole numbers in small tables.)  To counter this,
1165 >     * we apply a transform that spreads the impact of higher bits
1166 >     * downward. There is a tradeoff between speed, utility, and
1167 >     * quality of bit-spreading. Because many common sets of hashes
1168 >     * are already reasonably distributed across bits (so don't benefit
1169 >     * from spreading), and because we use trees to handle large sets
1170 >     * of collisions in bins, we don't need excessively high quality.
1171 >     */
1172 >    private static final int spread(int h) {
1173 >        h ^= (h >>> 18) ^ (h >>> 12);
1174 >        return (h ^ (h >>> 10)) & HASH_BITS;
1175 >    }
1176 >
1177 >    /**
1178 >     * Replaces a list bin with a tree bin if key is comparable.  Call
1179 >     * only when locked.
1180 >     */
1181 >    private final void replaceWithTreeBin(Node<V>[] tab, int index, Object key) {
1182 >        if (key instanceof Comparable) {
1183 >            TreeBin<V> t = new TreeBin<V>();
1184 >            for (Node<V> e = tabAt(tab, index); e != null; e = e.next)
1185 >                t.putTreeNode(e.hash, e.key, e.val);
1186 >            setTabAt(tab, index, new Node<V>(MOVED, t, null, null));
1187 >        }
1188 >    }
1189 >
1190 >    /* ---------------- Internal access and update methods -------------- */
1191 >
1192 >    /** Implementation for get and containsKey */
1193 >    @SuppressWarnings("unchecked") private final V internalGet(Object k) {
1194 >        int h = spread(k.hashCode());
1195 >        retry: for (Node<V>[] tab = table; tab != null;) {
1196 >            Node<V> e; Object ek; V ev; int eh; // locals to read fields once
1197 >            for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1198 >                if ((eh = e.hash) < 0) {
1199 >                    if ((ek = e.key) instanceof TreeBin)  // search TreeBin
1200 >                        return ((TreeBin<V>)ek).getValue(h, k);
1201 >                    else {                      // restart with new table
1202 >                        tab = (Node<V>[])ek;
1203 >                        continue retry;
1204 >                    }
1205                  }
1206 +                else if (eh == h && (ev = e.val) != null &&
1207 +                         ((ek = e.key) == k || k.equals(ek)))
1208 +                    return ev;
1209              }
1210 +            break;
1211          }
1212 <        if (oldVal == null)
421 <            counter.increment();
422 <        return oldVal;
1212 >        return null;
1213      }
1214  
1215      /**
# Line 427 | Line 1217 | public class ConcurrentHashMapV8<K, V>
1217       * Replaces node value with v, conditional upon match of cv if
1218       * non-null.  If resulting value is null, delete.
1219       */
1220 <    private final Object internalReplace(Object k, Object v, Object cv) {
1220 >    @SuppressWarnings("unchecked") private final V internalReplace
1221 >        (Object k, V v, Object cv) {
1222          int h = spread(k.hashCode());
1223 <        Object oldVal = null;
1224 <        Node e; int i;
1225 <        Node[] tab = table;
1226 <        while (tab != null &&
1227 <               (e = tabAt(tab, i = (tab.length - 1) & h)) != null) {
1228 <            if (e.hash < 0)
1229 <                tab = (Node[])e.key;
1223 >        V oldVal = null;
1224 >        for (Node<V>[] tab = table;;) {
1225 >            Node<V> f; int i, fh; Object fk;
1226 >            if (tab == null ||
1227 >                (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1228 >                break;
1229 >            else if ((fh = f.hash) < 0) {
1230 >                if ((fk = f.key) instanceof TreeBin) {
1231 >                    TreeBin<V> t = (TreeBin<V>)fk;
1232 >                    boolean validated = false;
1233 >                    boolean deleted = false;
1234 >                    t.acquire(0);
1235 >                    try {
1236 >                        if (tabAt(tab, i) == f) {
1237 >                            validated = true;
1238 >                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1239 >                            if (p != null) {
1240 >                                V pv = p.val;
1241 >                                if (cv == null || cv == pv || cv.equals(pv)) {
1242 >                                    oldVal = pv;
1243 >                                    if ((p.val = v) == null) {
1244 >                                        deleted = true;
1245 >                                        t.deleteTreeNode(p);
1246 >                                    }
1247 >                                }
1248 >                            }
1249 >                        }
1250 >                    } finally {
1251 >                        t.release(0);
1252 >                    }
1253 >                    if (validated) {
1254 >                        if (deleted)
1255 >                            addCount(-1L, -1);
1256 >                        break;
1257 >                    }
1258 >                }
1259 >                else
1260 >                    tab = (Node<V>[])fk;
1261 >            }
1262 >            else if (fh != h && f.next == null) // precheck
1263 >                break;                          // rules out possible existence
1264              else {
1265                  boolean validated = false;
1266                  boolean deleted = false;
1267 <                synchronized (e) {
1268 <                    if (tabAt(tab, i) == e) {
1267 >                synchronized (f) {
1268 >                    if (tabAt(tab, i) == f) {
1269                          validated = true;
1270 <                        Node pred = null;
1271 <                        do {
447 <                            Object ek, ev;
1270 >                        for (Node<V> e = f, pred = null;;) {
1271 >                            Object ek; V ev;
1272                              if (e.hash == h &&
1273 <                                (ek = e.key) != null &&
1274 <                                (ev = e.val) != null &&
451 <                                (k == ek || k.equals(ek))) {
1273 >                                ((ev = e.val) != null) &&
1274 >                                ((ek = e.key) == k || k.equals(ek))) {
1275                                  if (cv == null || cv == ev || cv.equals(ev)) {
1276                                      oldVal = ev;
1277                                      if ((e.val = v) == null) {
1278                                          deleted = true;
1279 <                                        Node en = e.next;
1279 >                                        Node<V> en = e.next;
1280                                          if (pred != null)
1281                                              pred.next = en;
1282                                          else
# Line 463 | Line 1286 | public class ConcurrentHashMapV8<K, V>
1286                                  break;
1287                              }
1288                              pred = e;
1289 <                        } while ((e = e.next) != null);
1289 >                            if ((e = e.next) == null)
1290 >                                break;
1291 >                        }
1292                      }
1293                  }
1294                  if (validated) {
1295                      if (deleted)
1296 <                        counter.decrement();
1296 >                        addCount(-1L, -1);
1297                      break;
1298                  }
1299              }
# Line 476 | Line 1301 | public class ConcurrentHashMapV8<K, V>
1301          return oldVal;
1302      }
1303  
1304 <    /** Implementation for computeIfAbsent and compute */
1305 <    @SuppressWarnings("unchecked")
1306 <    private final V internalCompute(K k,
1307 <                                    MappingFunction<? super K, ? extends V> f,
1308 <                                    boolean replace) {
1304 >    /*
1305 >     * Internal versions of insertion methods
1306 >     * All have the same basic structure as the first (internalPut):
1307 >     *  1. If table uninitialized, create
1308 >     *  2. If bin empty, try to CAS new node
1309 >     *  3. If bin stale, use new table
1310 >     *  4. if bin converted to TreeBin, validate and relay to TreeBin methods
1311 >     *  5. Lock and validate; if valid, scan and add or update
1312 >     *
1313 >     * The putAll method differs mainly in attempting to pre-allocate
1314 >     * enough table space, and also more lazily performs count updates
1315 >     * and checks.
1316 >     *
1317 >     * Most of the function-accepting methods can't be factored nicely
1318 >     * because they require different functional forms, so instead
1319 >     * sprawl out similar mechanics.
1320 >     */
1321 >
1322 >    /** Implementation for put and putIfAbsent */
1323 >    @SuppressWarnings("unchecked") private final V internalPut
1324 >        (K k, V v, boolean onlyIfAbsent) {
1325 >        if (k == null || v == null) throw new NullPointerException();
1326 >        int h = spread(k.hashCode());
1327 >        int len = 0;
1328 >        for (Node<V>[] tab = table;;) {
1329 >            int i, fh; Node<V> f; Object fk; V fv;
1330 >            if (tab == null)
1331 >                tab = initTable();
1332 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1333 >                if (casTabAt(tab, i, null, new Node<V>(h, k, v, null)))
1334 >                    break;                   // no lock when adding to empty bin
1335 >            }
1336 >            else if ((fh = f.hash) < 0) {
1337 >                if ((fk = f.key) instanceof TreeBin) {
1338 >                    TreeBin<V> t = (TreeBin<V>)fk;
1339 >                    V oldVal = null;
1340 >                    t.acquire(0);
1341 >                    try {
1342 >                        if (tabAt(tab, i) == f) {
1343 >                            len = 2;
1344 >                            TreeNode<V> p = t.putTreeNode(h, k, v);
1345 >                            if (p != null) {
1346 >                                oldVal = p.val;
1347 >                                if (!onlyIfAbsent)
1348 >                                    p.val = v;
1349 >                            }
1350 >                        }
1351 >                    } finally {
1352 >                        t.release(0);
1353 >                    }
1354 >                    if (len != 0) {
1355 >                        if (oldVal != null)
1356 >                            return oldVal;
1357 >                        break;
1358 >                    }
1359 >                }
1360 >                else
1361 >                    tab = (Node<V>[])fk;
1362 >            }
1363 >            else if (onlyIfAbsent && fh == h && (fv = f.val) != null &&
1364 >                     ((fk = f.key) == k || k.equals(fk))) // peek while nearby
1365 >                return fv;
1366 >            else {
1367 >                V oldVal = null;
1368 >                synchronized (f) {
1369 >                    if (tabAt(tab, i) == f) {
1370 >                        len = 1;
1371 >                        for (Node<V> e = f;; ++len) {
1372 >                            Object ek; V ev;
1373 >                            if (e.hash == h &&
1374 >                                (ev = e.val) != null &&
1375 >                                ((ek = e.key) == k || k.equals(ek))) {
1376 >                                oldVal = ev;
1377 >                                if (!onlyIfAbsent)
1378 >                                    e.val = v;
1379 >                                break;
1380 >                            }
1381 >                            Node<V> last = e;
1382 >                            if ((e = e.next) == null) {
1383 >                                last.next = new Node<V>(h, k, v, null);
1384 >                                if (len >= TREE_THRESHOLD)
1385 >                                    replaceWithTreeBin(tab, i, k);
1386 >                                break;
1387 >                            }
1388 >                        }
1389 >                    }
1390 >                }
1391 >                if (len != 0) {
1392 >                    if (oldVal != null)
1393 >                        return oldVal;
1394 >                    break;
1395 >                }
1396 >            }
1397 >        }
1398 >        addCount(1L, len);
1399 >        return null;
1400 >    }
1401 >
1402 >    /** Implementation for computeIfAbsent */
1403 >    @SuppressWarnings("unchecked") private final V internalComputeIfAbsent
1404 >        (K k, Fun<? super K, ? extends V> mf) {
1405 >        if (k == null || mf == null)
1406 >            throw new NullPointerException();
1407          int h = spread(k.hashCode());
1408          V val = null;
1409 <        boolean added = false;
1410 <        Node[] tab = table;
1411 <        for(;;) {
489 <            Node e; int i;
1409 >        int len = 0;
1410 >        for (Node<V>[] tab = table;;) {
1411 >            Node<V> f; int i; Object fk;
1412              if (tab == null)
1413 <                tab = grow(0);
1414 <            else if ((e = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1415 <                Node node = new Node(h, k, null, null);
494 <                boolean validated = false;
1413 >                tab = initTable();
1414 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1415 >                Node<V> node = new Node<V>(h, k, null, null);
1416                  synchronized (node) {
1417                      if (casTabAt(tab, i, null, node)) {
1418 <                        validated = true;
1418 >                        len = 1;
1419                          try {
1420 <                            val = f.map(k);
500 <                            if (val != null) {
1420 >                            if ((val = mf.apply(k)) != null)
1421                                  node.val = val;
502                                added = true;
503                            }
1422                          } finally {
1423 <                            if (!added)
1423 >                            if (val == null)
1424                                  setTabAt(tab, i, null);
1425                          }
1426                      }
1427                  }
1428 <                if (validated)
1428 >                if (len != 0)
1429                      break;
1430              }
1431 <            else if (e.hash < 0)
1432 <                tab = (Node[])e.key;
1433 <            else if (Thread.holdsLock(e))
1434 <                throw new IllegalStateException("Recursive map computation");
1431 >            else if (f.hash < 0) {
1432 >                if ((fk = f.key) instanceof TreeBin) {
1433 >                    TreeBin<V> t = (TreeBin<V>)fk;
1434 >                    boolean added = false;
1435 >                    t.acquire(0);
1436 >                    try {
1437 >                        if (tabAt(tab, i) == f) {
1438 >                            len = 1;
1439 >                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1440 >                            if (p != null)
1441 >                                val = p.val;
1442 >                            else if ((val = mf.apply(k)) != null) {
1443 >                                added = true;
1444 >                                len = 2;
1445 >                                t.putTreeNode(h, k, val);
1446 >                            }
1447 >                        }
1448 >                    } finally {
1449 >                        t.release(0);
1450 >                    }
1451 >                    if (len != 0) {
1452 >                        if (!added)
1453 >                            return val;
1454 >                        break;
1455 >                    }
1456 >                }
1457 >                else
1458 >                    tab = (Node<V>[])fk;
1459 >            }
1460              else {
1461 <                boolean validated = false;
1462 <                boolean checkSize = false;
1463 <                synchronized (e) {
1464 <                    if (tabAt(tab, i) == e) {
1465 <                        validated = true;
1466 <                        for (Node first = e;;) {
1467 <                            Object ek, ev, fv;
1461 >                for (Node<V> e = f; e != null; e = e.next) { // prescan
1462 >                    Object ek; V ev;
1463 >                    if (e.hash == h && (ev = e.val) != null &&
1464 >                        ((ek = e.key) == k || k.equals(ek)))
1465 >                        return ev;
1466 >                }
1467 >                boolean added = false;
1468 >                synchronized (f) {
1469 >                    if (tabAt(tab, i) == f) {
1470 >                        len = 1;
1471 >                        for (Node<V> e = f;; ++len) {
1472 >                            Object ek; V ev;
1473                              if (e.hash == h &&
526                                (ek = e.key) != null &&
1474                                  (ev = e.val) != null &&
1475 <                                (k == ek || k.equals(ek))) {
1476 <                                if (replace && (fv = f.map(k)) != null)
530 <                                    ev = e.val = fv;
531 <                                val = (V)ev;
1475 >                                ((ek = e.key) == k || k.equals(ek))) {
1476 >                                val = ev;
1477                                  break;
1478                              }
1479 <                            Node last = e;
1479 >                            Node<V> last = e;
1480                              if ((e = e.next) == null) {
1481 <                                if ((val = f.map(k)) != null) {
537 <                                    last.next = new Node(h, k, val, null);
1481 >                                if ((val = mf.apply(k)) != null) {
1482                                      added = true;
1483 <                                    if (last != first || tab.length <= 64)
1484 <                                        checkSize = true;
1483 >                                    last.next = new Node<V>(h, k, val, null);
1484 >                                    if (len >= TREE_THRESHOLD)
1485 >                                        replaceWithTreeBin(tab, i, k);
1486                                  }
1487                                  break;
1488                              }
1489                          }
1490                      }
1491                  }
1492 <                if (validated) {
1493 <                    if (checkSize && tab.length < MAXIMUM_CAPACITY &&
1494 <                        resizing == 0 && counter.sum() >= threshold)
550 <                        grow(0);
1492 >                if (len != 0) {
1493 >                    if (!added)
1494 >                        return val;
1495                      break;
1496                  }
1497              }
1498          }
1499 <        if (added)
1500 <            counter.increment();
1499 >        if (val != null)
1500 >            addCount(1L, len);
1501          return val;
1502      }
1503  
1504 <    /*
1505 <     * Reclassifies nodes in each bin to new table.  Because we are
1506 <     * using power-of-two expansion, the elements from each bin must
1507 <     * either stay at same index, or move with a power of two
1508 <     * offset. We eliminate unnecessary node creation by catching
1509 <     * cases where old nodes can be reused because their next fields
1510 <     * won't change.  Statistically, at the default threshold, only
1511 <     * about one-sixth of them need cloning when a table doubles. The
1512 <     * nodes they replace will be garbage collectable as soon as they
1513 <     * are no longer referenced by any reader thread that may be in
1514 <     * the midst of concurrently traversing table.
1515 <     *
1516 <     * Transfers are done from the bottom up to preserve iterator
1517 <     * traversability. On each step, the old bin is locked,
1518 <     * moved/copied, and then replaced with a forwarding node.
1519 <     */
1520 <    private static final void transfer(Node[] tab, Node[] nextTab) {
1521 <        int n = tab.length;
1522 <        int mask = nextTab.length - 1;
1523 <        Node fwd = new Node(MOVED, nextTab, null, null);
1524 <        for (int i = n - 1; i >= 0; --i) {
1525 <            for (Node e;;) {
1526 <                if ((e = tabAt(tab, i)) == null) {
1527 <                    if (casTabAt(tab, i, e, fwd))
1528 <                        break;
1504 >    /** Implementation for compute */
1505 >    @SuppressWarnings("unchecked") private final V internalCompute
1506 >        (K k, boolean onlyIfPresent,
1507 >         BiFun<? super K, ? super V, ? extends V> mf) {
1508 >        if (k == null || mf == null)
1509 >            throw new NullPointerException();
1510 >        int h = spread(k.hashCode());
1511 >        V val = null;
1512 >        int delta = 0;
1513 >        int len = 0;
1514 >        for (Node<V>[] tab = table;;) {
1515 >            Node<V> f; int i, fh; Object fk;
1516 >            if (tab == null)
1517 >                tab = initTable();
1518 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1519 >                if (onlyIfPresent)
1520 >                    break;
1521 >                Node<V> node = new Node<V>(h, k, null, null);
1522 >                synchronized (node) {
1523 >                    if (casTabAt(tab, i, null, node)) {
1524 >                        try {
1525 >                            len = 1;
1526 >                            if ((val = mf.apply(k, null)) != null) {
1527 >                                node.val = val;
1528 >                                delta = 1;
1529 >                            }
1530 >                        } finally {
1531 >                            if (delta == 0)
1532 >                                setTabAt(tab, i, null);
1533 >                        }
1534 >                    }
1535                  }
1536 <                else {
1537 <                    int idx = e.hash & mask;
1538 <                    boolean validated = false;
1539 <                    synchronized (e) {
1540 <                        if (tabAt(tab, i) == e) {
1541 <                            validated = true;
1542 <                            Node lastRun = e;
1543 <                            for (Node p = e.next; p != null; p = p.next) {
1544 <                                int j = p.hash & mask;
1545 <                                if (j != idx) {
1546 <                                    idx = j;
1547 <                                    lastRun = p;
1536 >                if (len != 0)
1537 >                    break;
1538 >            }
1539 >            else if ((fh = f.hash) < 0) {
1540 >                if ((fk = f.key) instanceof TreeBin) {
1541 >                    TreeBin<V> t = (TreeBin<V>)fk;
1542 >                    t.acquire(0);
1543 >                    try {
1544 >                        if (tabAt(tab, i) == f) {
1545 >                            len = 1;
1546 >                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1547 >                            if (p == null && onlyIfPresent)
1548 >                                break;
1549 >                            V pv = (p == null) ? null : p.val;
1550 >                            if ((val = mf.apply(k, pv)) != null) {
1551 >                                if (p != null)
1552 >                                    p.val = val;
1553 >                                else {
1554 >                                    len = 2;
1555 >                                    delta = 1;
1556 >                                    t.putTreeNode(h, k, val);
1557                                  }
1558                              }
1559 <                            relaxedSetTabAt(nextTab, idx, lastRun);
1560 <                            for (Node p = e; p != lastRun; p = p.next) {
1561 <                                int h = p.hash;
603 <                                int j = h & mask;
604 <                                Node r = relaxedTabAt(nextTab, j);
605 <                                relaxedSetTabAt(nextTab, j,
606 <                                                new Node(h, p.key, p.val, r));
1559 >                            else if (p != null) {
1560 >                                delta = -1;
1561 >                                t.deleteTreeNode(p);
1562                              }
608                            setTabAt(tab, i, fwd);
1563                          }
1564 +                    } finally {
1565 +                        t.release(0);
1566                      }
1567 <                    if (validated)
1567 >                    if (len != 0)
1568                          break;
1569                  }
1570 +                else
1571 +                    tab = (Node<V>[])fk;
1572 +            }
1573 +            else {
1574 +                synchronized (f) {
1575 +                    if (tabAt(tab, i) == f) {
1576 +                        len = 1;
1577 +                        for (Node<V> e = f, pred = null;; ++len) {
1578 +                            Object ek; V ev;
1579 +                            if (e.hash == h &&
1580 +                                (ev = e.val) != null &&
1581 +                                ((ek = e.key) == k || k.equals(ek))) {
1582 +                                val = mf.apply(k, ev);
1583 +                                if (val != null)
1584 +                                    e.val = val;
1585 +                                else {
1586 +                                    delta = -1;
1587 +                                    Node<V> en = e.next;
1588 +                                    if (pred != null)
1589 +                                        pred.next = en;
1590 +                                    else
1591 +                                        setTabAt(tab, i, en);
1592 +                                }
1593 +                                break;
1594 +                            }
1595 +                            pred = e;
1596 +                            if ((e = e.next) == null) {
1597 +                                if (!onlyIfPresent &&
1598 +                                    (val = mf.apply(k, null)) != null) {
1599 +                                    pred.next = new Node<V>(h, k, val, null);
1600 +                                    delta = 1;
1601 +                                    if (len >= TREE_THRESHOLD)
1602 +                                        replaceWithTreeBin(tab, i, k);
1603 +                                }
1604 +                                break;
1605 +                            }
1606 +                        }
1607 +                    }
1608 +                }
1609 +                if (len != 0)
1610 +                    break;
1611              }
1612          }
1613 +        if (delta != 0)
1614 +            addCount((long)delta, len);
1615 +        return val;
1616      }
1617  
1618 <    /**
1619 <     * If not already resizing, initializes or creates next table and
1620 <     * transfers bins. Rechecks occupancy after a transfer to see if
1621 <     * another resize is already needed because resizings are lagging
1622 <     * additions.
1623 <     *
1624 <     * @param sizeHint overridden capacity target (nonzero only from putAll)
1625 <     * @return current table
1626 <     */
1627 <    private final Node[] grow(int sizeHint) {
1628 <        if (resizing == 0 &&
1629 <            UNSAFE.compareAndSwapInt(this, resizingOffset, 0, 1)) {
1630 <            try {
1631 <                for (;;) {
1632 <                    int cap, n;
1633 <                    Node[] tab = table;
1634 <                    if (tab == null) {
1635 <                        int c = initCap;
1636 <                        if (c < sizeHint)
1637 <                            c = sizeHint;
1638 <                        if (c == DEFAULT_CAPACITY)
1639 <                            cap = c;
1640 <                        else if (c >= MAXIMUM_CAPACITY)
1641 <                            cap = MAXIMUM_CAPACITY;
1642 <                        else {
1643 <                            cap = MINIMUM_CAPACITY;
1644 <                            while (cap < c)
1645 <                                cap <<= 1;
1618 >    /** Implementation for merge */
1619 >    @SuppressWarnings("unchecked") private final V internalMerge
1620 >        (K k, V v, BiFun<? super V, ? super V, ? extends V> mf) {
1621 >        if (k == null || v == null || mf == null)
1622 >            throw new NullPointerException();
1623 >        int h = spread(k.hashCode());
1624 >        V val = null;
1625 >        int delta = 0;
1626 >        int len = 0;
1627 >        for (Node<V>[] tab = table;;) {
1628 >            int i; Node<V> f; Object fk; V fv;
1629 >            if (tab == null)
1630 >                tab = initTable();
1631 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1632 >                if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1633 >                    delta = 1;
1634 >                    val = v;
1635 >                    break;
1636 >                }
1637 >            }
1638 >            else if (f.hash < 0) {
1639 >                if ((fk = f.key) instanceof TreeBin) {
1640 >                    TreeBin<V> t = (TreeBin<V>)fk;
1641 >                    t.acquire(0);
1642 >                    try {
1643 >                        if (tabAt(tab, i) == f) {
1644 >                            len = 1;
1645 >                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1646 >                            val = (p == null) ? v : mf.apply(p.val, v);
1647 >                            if (val != null) {
1648 >                                if (p != null)
1649 >                                    p.val = val;
1650 >                                else {
1651 >                                    len = 2;
1652 >                                    delta = 1;
1653 >                                    t.putTreeNode(h, k, val);
1654 >                                }
1655 >                            }
1656 >                            else if (p != null) {
1657 >                                delta = -1;
1658 >                                t.deleteTreeNode(p);
1659 >                            }
1660                          }
1661 +                    } finally {
1662 +                        t.release(0);
1663                      }
1664 <                    else if ((n = tab.length) < MAXIMUM_CAPACITY &&
649 <                             (sizeHint <= 0 || n < sizeHint))
650 <                        cap = n << 1;
651 <                    else
652 <                        break;
653 <                    threshold = (int)(cap * loadFactor) - THRESHOLD_OFFSET;
654 <                    Node[] nextTab = new Node[cap];
655 <                    if (tab != null)
656 <                        transfer(tab, nextTab);
657 <                    table = nextTab;
658 <                    if (tab == null || cap >= MAXIMUM_CAPACITY ||
659 <                        ((sizeHint > 0) ? cap >= sizeHint :
660 <                         counter.sum() < threshold))
1664 >                    if (len != 0)
1665                          break;
1666                  }
1667 <            } finally {
1668 <                resizing = 0;
1667 >                else
1668 >                    tab = (Node<V>[])fk;
1669 >            }
1670 >            else {
1671 >                synchronized (f) {
1672 >                    if (tabAt(tab, i) == f) {
1673 >                        len = 1;
1674 >                        for (Node<V> e = f, pred = null;; ++len) {
1675 >                            Object ek; V ev;
1676 >                            if (e.hash == h &&
1677 >                                (ev = e.val) != null &&
1678 >                                ((ek = e.key) == k || k.equals(ek))) {
1679 >                                val = mf.apply(ev, v);
1680 >                                if (val != null)
1681 >                                    e.val = val;
1682 >                                else {
1683 >                                    delta = -1;
1684 >                                    Node<V> en = e.next;
1685 >                                    if (pred != null)
1686 >                                        pred.next = en;
1687 >                                    else
1688 >                                        setTabAt(tab, i, en);
1689 >                                }
1690 >                                break;
1691 >                            }
1692 >                            pred = e;
1693 >                            if ((e = e.next) == null) {
1694 >                                val = v;
1695 >                                pred.next = new Node<V>(h, k, val, null);
1696 >                                delta = 1;
1697 >                                if (len >= TREE_THRESHOLD)
1698 >                                    replaceWithTreeBin(tab, i, k);
1699 >                                break;
1700 >                            }
1701 >                        }
1702 >                    }
1703 >                }
1704 >                if (len != 0)
1705 >                    break;
1706              }
1707          }
1708 <        else if (table == null)
1709 <            Thread.yield(); // lost initialization race; just spin
1710 <        return table;
1708 >        if (delta != 0)
1709 >            addCount((long)delta, len);
1710 >        return val;
1711      }
1712  
1713 <    /**
1714 <     * Implementation for putAll and constructor with Map
1715 <     * argument. Tries to first override initial capacity or grow
1716 <     * based on map size to pre-allocate table space.
1717 <     */
1718 <    private final void internalPutAll(Map<? extends K, ? extends V> m) {
1719 <        int s = m.size();
1720 <        grow((s >= (MAXIMUM_CAPACITY >>> 1)) ? s : s + (s >>> 1));
1721 <        for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
1722 <            Object k = e.getKey();
1723 <            Object v = e.getValue();
1724 <            if (k == null || v == null)
1725 <                throw new NullPointerException();
1726 <            internalPut(k, v, true);
1713 >    /** Implementation for putAll */
1714 >    @SuppressWarnings("unchecked") private final void internalPutAll
1715 >        (Map<? extends K, ? extends V> m) {
1716 >        tryPresize(m.size());
1717 >        long delta = 0L;     // number of uncommitted additions
1718 >        boolean npe = false; // to throw exception on exit for nulls
1719 >        try {                // to clean up counts on other exceptions
1720 >            for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
1721 >                Object k; V v;
1722 >                if (entry == null || (k = entry.getKey()) == null ||
1723 >                    (v = entry.getValue()) == null) {
1724 >                    npe = true;
1725 >                    break;
1726 >                }
1727 >                int h = spread(k.hashCode());
1728 >                for (Node<V>[] tab = table;;) {
1729 >                    int i; Node<V> f; int fh; Object fk;
1730 >                    if (tab == null)
1731 >                        tab = initTable();
1732 >                    else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1733 >                        if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1734 >                            ++delta;
1735 >                            break;
1736 >                        }
1737 >                    }
1738 >                    else if ((fh = f.hash) < 0) {
1739 >                        if ((fk = f.key) instanceof TreeBin) {
1740 >                            TreeBin<V> t = (TreeBin<V>)fk;
1741 >                            boolean validated = false;
1742 >                            t.acquire(0);
1743 >                            try {
1744 >                                if (tabAt(tab, i) == f) {
1745 >                                    validated = true;
1746 >                                    TreeNode<V> p = t.getTreeNode(h, k, t.root);
1747 >                                    if (p != null)
1748 >                                        p.val = v;
1749 >                                    else {
1750 >                                        t.putTreeNode(h, k, v);
1751 >                                        ++delta;
1752 >                                    }
1753 >                                }
1754 >                            } finally {
1755 >                                t.release(0);
1756 >                            }
1757 >                            if (validated)
1758 >                                break;
1759 >                        }
1760 >                        else
1761 >                            tab = (Node<V>[])fk;
1762 >                    }
1763 >                    else {
1764 >                        int len = 0;
1765 >                        synchronized (f) {
1766 >                            if (tabAt(tab, i) == f) {
1767 >                                len = 1;
1768 >                                for (Node<V> e = f;; ++len) {
1769 >                                    Object ek; V ev;
1770 >                                    if (e.hash == h &&
1771 >                                        (ev = e.val) != null &&
1772 >                                        ((ek = e.key) == k || k.equals(ek))) {
1773 >                                        e.val = v;
1774 >                                        break;
1775 >                                    }
1776 >                                    Node<V> last = e;
1777 >                                    if ((e = e.next) == null) {
1778 >                                        ++delta;
1779 >                                        last.next = new Node<V>(h, k, v, null);
1780 >                                        if (len >= TREE_THRESHOLD)
1781 >                                            replaceWithTreeBin(tab, i, k);
1782 >                                        break;
1783 >                                    }
1784 >                                }
1785 >                            }
1786 >                        }
1787 >                        if (len != 0) {
1788 >                            if (len > 1)
1789 >                                addCount(delta, len);
1790 >                            break;
1791 >                        }
1792 >                    }
1793 >                }
1794 >            }
1795 >        } finally {
1796 >            if (delta != 0L)
1797 >                addCount(delta, 2);
1798          }
1799 +        if (npe)
1800 +            throw new NullPointerException();
1801      }
1802  
1803      /**
1804 <     * Implementation for clear. Steps through each bin, removing all nodes.
1804 >     * Implementation for clear. Steps through each bin, removing all
1805 >     * nodes.
1806       */
1807 <    private final void internalClear() {
1808 <        long deletions = 0L;
1807 >    @SuppressWarnings("unchecked") private final void internalClear() {
1808 >        long delta = 0L; // negative number of deletions
1809          int i = 0;
1810 <        Node[] tab = table;
1810 >        Node<V>[] tab = table;
1811          while (tab != null && i < tab.length) {
1812 <            Node e = tabAt(tab, i);
1813 <            if (e == null)
1812 >            Node<V> f = tabAt(tab, i);
1813 >            if (f == null)
1814                  ++i;
1815 <            else if (e.hash < 0)
1816 <                tab = (Node[])e.key;
1815 >            else if (f.hash < 0) {
1816 >                Object fk;
1817 >                if ((fk = f.key) instanceof TreeBin) {
1818 >                    TreeBin<V> t = (TreeBin<V>)fk;
1819 >                    t.acquire(0);
1820 >                    try {
1821 >                        if (tabAt(tab, i) == f) {
1822 >                            for (Node<V> p = t.first; p != null; p = p.next) {
1823 >                                if (p.val != null) { // (currently always true)
1824 >                                    p.val = null;
1825 >                                    --delta;
1826 >                                }
1827 >                            }
1828 >                            t.first = null;
1829 >                            t.root = null;
1830 >                            ++i;
1831 >                        }
1832 >                    } finally {
1833 >                        t.release(0);
1834 >                    }
1835 >                }
1836 >                else
1837 >                    tab = (Node<V>[])fk;
1838 >            }
1839              else {
1840 <                boolean validated = false;
1841 <                synchronized (e) {
1842 <                    if (tabAt(tab, i) == e) {
1843 <                        validated = true;
707 <                        do {
708 <                            if (e.val != null) {
1840 >                synchronized (f) {
1841 >                    if (tabAt(tab, i) == f) {
1842 >                        for (Node<V> e = f; e != null; e = e.next) {
1843 >                            if (e.val != null) {  // (currently always true)
1844                                  e.val = null;
1845 <                                ++deletions;
1845 >                                --delta;
1846                              }
1847 <                        } while ((e = e.next) != null);
1847 >                        }
1848                          setTabAt(tab, i, null);
1849 +                        ++i;
1850                      }
1851                  }
1852 <                if (validated) {
1853 <                    ++i;
1854 <                    if (deletions > THRESHOLD_OFFSET) { // bound lag in counts
1855 <                        counter.add(-deletions);
1856 <                        deletions = 0L;
1852 >            }
1853 >        }
1854 >        if (delta != 0L)
1855 >            addCount(delta, -1);
1856 >    }
1857 >
1858 >    /* ---------------- Table Initialization and Resizing -------------- */
1859 >
1860 >    /**
1861 >     * Returns a power of two table size for the given desired capacity.
1862 >     * See Hackers Delight, sec 3.2
1863 >     */
1864 >    private static final int tableSizeFor(int c) {
1865 >        int n = c - 1;
1866 >        n |= n >>> 1;
1867 >        n |= n >>> 2;
1868 >        n |= n >>> 4;
1869 >        n |= n >>> 8;
1870 >        n |= n >>> 16;
1871 >        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1872 >    }
1873 >
1874 >    /**
1875 >     * Initializes table, using the size recorded in sizeCtl.
1876 >     */
1877 >    @SuppressWarnings("unchecked") private final Node<V>[] initTable() {
1878 >        Node<V>[] tab; int sc;
1879 >        while ((tab = table) == null) {
1880 >            if ((sc = sizeCtl) < 0)
1881 >                Thread.yield(); // lost initialization race; just spin
1882 >            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1883 >                try {
1884 >                    if ((tab = table) == null) {
1885 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1886 >                        @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1887 >                        table = tab = (Node<V>[])tb;
1888 >                        sc = n - (n >>> 2);
1889                      }
1890 +                } finally {
1891 +                    sizeCtl = sc;
1892 +                }
1893 +                break;
1894 +            }
1895 +        }
1896 +        return tab;
1897 +    }
1898 +
1899 +    /**
1900 +     * Adds to count, and if table is too small and not already
1901 +     * resizing, initiates transfer. If already resizing, helps
1902 +     * perform transfer if work is available.  Rechecks occupancy
1903 +     * after a transfer to see if another resize is already needed
1904 +     * because resizings are lagging additions.
1905 +     *
1906 +     * @param x the count to add
1907 +     * @param check if <0, don't check resize, if <= 1 only check if uncontended
1908 +     */
1909 +    private final void addCount(long x, int check) {
1910 +        CounterCell[] as; long b, s;
1911 +        if ((as = counterCells) != null ||
1912 +            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1913 +            CounterHashCode hc; CounterCell a; long v; int m;
1914 +            boolean uncontended = true;
1915 +            if ((hc = threadCounterHashCode.get()) == null ||
1916 +                as == null || (m = as.length - 1) < 0 ||
1917 +                (a = as[m & hc.code]) == null ||
1918 +                !(uncontended =
1919 +                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1920 +                fullAddCount(x, hc, uncontended);
1921 +                return;
1922 +            }
1923 +            if (check <= 1)
1924 +                return;
1925 +            s = sumCount();
1926 +        }
1927 +        if (check >= 0) {
1928 +            Node<V>[] tab, nt; int sc;
1929 +            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1930 +                   tab.length < MAXIMUM_CAPACITY) {
1931 +                if (sc < 0) {
1932 +                    if (sc == -1 || transferIndex <= transferOrigin ||
1933 +                        (nt = nextTable) == null)
1934 +                        break;
1935 +                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1936 +                        transfer(tab, nt);
1937                  }
1938 +                else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1939 +                    transfer(tab, null);
1940 +                s = sumCount();
1941              }
1942          }
725        if (deletions != 0L)
726            counter.add(-deletions);
1943      }
1944  
1945      /**
1946 <     * Base class for key, value, and entry iterators, plus internal
1947 <     * implementations of public traversal-based methods, to avoid
1948 <     * duplicating traversal code.
1946 >     * Tries to presize table to accommodate the given number of elements.
1947 >     *
1948 >     * @param size number of elements (doesn't need to be perfectly accurate)
1949       */
1950 <    class HashIterator {
1951 <        private Node next;          // the next entry to return
1952 <        private Node[] tab;         // current table; updated if resized
1953 <        private Node lastReturned;  // the last entry returned, for remove
1954 <        private Object nextVal;     // cached value of next
1955 <        private int index;          // index of bin to use next
1956 <        private int baseIndex;      // current index of initial table
1957 <        private final int baseSize; // initial table size
1950 >    @SuppressWarnings("unchecked") private final void tryPresize(int size) {
1951 >        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1952 >            tableSizeFor(size + (size >>> 1) + 1);
1953 >        int sc;
1954 >        while ((sc = sizeCtl) >= 0) {
1955 >            Node<V>[] tab = table; int n;
1956 >            if (tab == null || (n = tab.length) == 0) {
1957 >                n = (sc > c) ? sc : c;
1958 >                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1959 >                    try {
1960 >                        if (table == tab) {
1961 >                            @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1962 >                            table = (Node<V>[])tb;
1963 >                            sc = n - (n >>> 2);
1964 >                        }
1965 >                    } finally {
1966 >                        sizeCtl = sc;
1967 >                    }
1968 >                }
1969 >            }
1970 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
1971 >                break;
1972 >            else if (tab == table &&
1973 >                     U.compareAndSwapInt(this, SIZECTL, sc, -2))
1974 >                transfer(tab, null);
1975 >        }
1976 >    }
1977  
1978 <        HashIterator() {
1979 <            Node[] t = tab = table;
1980 <            if (t == null)
1981 <                baseSize = 0;
1982 <            else {
1983 <                baseSize = t.length;
1984 <                advance(null);
1978 >    /*
1979 >     * Moves and/or copies the nodes in each bin to new table. See
1980 >     * above for explanation.
1981 >     */
1982 >    @SuppressWarnings("unchecked") private final void transfer
1983 >        (Node<V>[] tab, Node<V>[] nextTab) {
1984 >        int n = tab.length, stride;
1985 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1986 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
1987 >        if (nextTab == null) {            // initiating
1988 >            try {
1989 >                @SuppressWarnings("rawtypes") Node[] tb = new Node[n << 1];
1990 >                nextTab = (Node<V>[])tb;
1991 >            } catch (Throwable ex) {      // try to cope with OOME
1992 >                sizeCtl = Integer.MAX_VALUE;
1993 >                return;
1994 >            }
1995 >            nextTable = nextTab;
1996 >            transferOrigin = n;
1997 >            transferIndex = n;
1998 >            Node<V> rev = new Node<V>(MOVED, tab, null, null);
1999 >            for (int k = n; k > 0;) {    // progressively reveal ready slots
2000 >                int nextk = (k > stride) ? k - stride : 0;
2001 >                for (int m = nextk; m < k; ++m)
2002 >                    nextTab[m] = rev;
2003 >                for (int m = n + nextk; m < n + k; ++m)
2004 >                    nextTab[m] = rev;
2005 >                U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
2006 >            }
2007 >        }
2008 >        int nextn = nextTab.length;
2009 >        Node<V> fwd = new Node<V>(MOVED, nextTab, null, null);
2010 >        boolean advance = true;
2011 >        for (int i = 0, bound = 0;;) {
2012 >            int nextIndex, nextBound; Node<V> f; Object fk;
2013 >            while (advance) {
2014 >                if (--i >= bound)
2015 >                    advance = false;
2016 >                else if ((nextIndex = transferIndex) <= transferOrigin) {
2017 >                    i = -1;
2018 >                    advance = false;
2019 >                }
2020 >                else if (U.compareAndSwapInt
2021 >                         (this, TRANSFERINDEX, nextIndex,
2022 >                          nextBound = (nextIndex > stride ?
2023 >                                       nextIndex - stride : 0))) {
2024 >                    bound = nextBound;
2025 >                    i = nextIndex - 1;
2026 >                    advance = false;
2027 >                }
2028 >            }
2029 >            if (i < 0 || i >= n || i + n >= nextn) {
2030 >                for (int sc;;) {
2031 >                    if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2032 >                        if (sc == -1) {
2033 >                            nextTable = null;
2034 >                            table = nextTab;
2035 >                            sizeCtl = (n << 1) - (n >>> 1);
2036 >                        }
2037 >                        return;
2038 >                    }
2039 >                }
2040 >            }
2041 >            else if ((f = tabAt(tab, i)) == null) {
2042 >                if (casTabAt(tab, i, null, fwd)) {
2043 >                    setTabAt(nextTab, i, null);
2044 >                    setTabAt(nextTab, i + n, null);
2045 >                    advance = true;
2046 >                }
2047 >            }
2048 >            else if (f.hash >= 0) {
2049 >                synchronized (f) {
2050 >                    if (tabAt(tab, i) == f) {
2051 >                        int runBit = f.hash & n;
2052 >                        Node<V> lastRun = f, lo = null, hi = null;
2053 >                        for (Node<V> p = f.next; p != null; p = p.next) {
2054 >                            int b = p.hash & n;
2055 >                            if (b != runBit) {
2056 >                                runBit = b;
2057 >                                lastRun = p;
2058 >                            }
2059 >                        }
2060 >                        if (runBit == 0)
2061 >                            lo = lastRun;
2062 >                        else
2063 >                            hi = lastRun;
2064 >                        for (Node<V> p = f; p != lastRun; p = p.next) {
2065 >                            int ph = p.hash;
2066 >                            Object pk = p.key; V pv = p.val;
2067 >                            if ((ph & n) == 0)
2068 >                                lo = new Node<V>(ph, pk, pv, lo);
2069 >                            else
2070 >                                hi = new Node<V>(ph, pk, pv, hi);
2071 >                        }
2072 >                        setTabAt(nextTab, i, lo);
2073 >                        setTabAt(nextTab, i + n, hi);
2074 >                        setTabAt(tab, i, fwd);
2075 >                        advance = true;
2076 >                    }
2077 >                }
2078 >            }
2079 >            else if ((fk = f.key) instanceof TreeBin) {
2080 >                TreeBin<V> t = (TreeBin<V>)fk;
2081 >                t.acquire(0);
2082 >                try {
2083 >                    if (tabAt(tab, i) == f) {
2084 >                        TreeBin<V> lt = new TreeBin<V>();
2085 >                        TreeBin<V> ht = new TreeBin<V>();
2086 >                        int lc = 0, hc = 0;
2087 >                        for (Node<V> e = t.first; e != null; e = e.next) {
2088 >                            int h = e.hash;
2089 >                            Object k = e.key; V v = e.val;
2090 >                            if ((h & n) == 0) {
2091 >                                ++lc;
2092 >                                lt.putTreeNode(h, k, v);
2093 >                            }
2094 >                            else {
2095 >                                ++hc;
2096 >                                ht.putTreeNode(h, k, v);
2097 >                            }
2098 >                        }
2099 >                        Node<V> ln, hn; // throw away trees if too small
2100 >                        if (lc < TREE_THRESHOLD) {
2101 >                            ln = null;
2102 >                            for (Node<V> p = lt.first; p != null; p = p.next)
2103 >                                ln = new Node<V>(p.hash, p.key, p.val, ln);
2104 >                        }
2105 >                        else
2106 >                            ln = new Node<V>(MOVED, lt, null, null);
2107 >                        setTabAt(nextTab, i, ln);
2108 >                        if (hc < TREE_THRESHOLD) {
2109 >                            hn = null;
2110 >                            for (Node<V> p = ht.first; p != null; p = p.next)
2111 >                                hn = new Node<V>(p.hash, p.key, p.val, hn);
2112 >                        }
2113 >                        else
2114 >                            hn = new Node<V>(MOVED, ht, null, null);
2115 >                        setTabAt(nextTab, i + n, hn);
2116 >                        setTabAt(tab, i, fwd);
2117 >                        advance = true;
2118 >                    }
2119 >                } finally {
2120 >                    t.release(0);
2121 >                }
2122              }
2123 +            else
2124 +                advance = true; // already processed
2125          }
2126 +    }
2127  
2128 <        public final boolean hasNext()         { return next != null; }
754 <        public final boolean hasMoreElements() { return next != null; }
2128 >    /* ---------------- Counter support -------------- */
2129  
2130 <        /**
2131 <         * Advances next.  Normally, iteration proceeds bin-by-bin
2132 <         * traversing lists.  However, if the table has been resized,
2133 <         * then all future steps must traverse both the bin at the
2134 <         * current index as well as at (index + baseSize); and so on
2135 <         * for further resizings. To paranoically cope with potential
2136 <         * (improper) sharing of iterators across threads, table reads
2137 <         * are bounds-checked.
2138 <         */
2139 <        final void advance(Node e) {
2140 <            for (;;) {
2141 <                Node[] t; int i; // for bounds checks
2142 <                if (e != null) {
2143 <                    Object ek = e.key, ev = e.val;
2144 <                    if (ev != null && ek != null) {
2145 <                        nextVal = ev;
2146 <                        next = e;
2147 <                        break;
2130 >    final long sumCount() {
2131 >        CounterCell[] as = counterCells; CounterCell a;
2132 >        long sum = baseCount;
2133 >        if (as != null) {
2134 >            for (int i = 0; i < as.length; ++i) {
2135 >                if ((a = as[i]) != null)
2136 >                    sum += a.value;
2137 >            }
2138 >        }
2139 >        return sum;
2140 >    }
2141 >
2142 >    // See LongAdder version for explanation
2143 >    private final void fullAddCount(long x, CounterHashCode hc,
2144 >                                    boolean wasUncontended) {
2145 >        int h;
2146 >        if (hc == null) {
2147 >            hc = new CounterHashCode();
2148 >            int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
2149 >            h = hc.code = (s == 0) ? 1 : s; // Avoid zero
2150 >            threadCounterHashCode.set(hc);
2151 >        }
2152 >        else
2153 >            h = hc.code;
2154 >        boolean collide = false;                // True if last slot nonempty
2155 >        for (;;) {
2156 >            CounterCell[] as; CounterCell a; int n; long v;
2157 >            if ((as = counterCells) != null && (n = as.length) > 0) {
2158 >                if ((a = as[(n - 1) & h]) == null) {
2159 >                    if (counterBusy == 0) {            // Try to attach new Cell
2160 >                        CounterCell r = new CounterCell(x); // Optimistic create
2161 >                        if (counterBusy == 0 &&
2162 >                            U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2163 >                            boolean created = false;
2164 >                            try {               // Recheck under lock
2165 >                                CounterCell[] rs; int m, j;
2166 >                                if ((rs = counterCells) != null &&
2167 >                                    (m = rs.length) > 0 &&
2168 >                                    rs[j = (m - 1) & h] == null) {
2169 >                                    rs[j] = r;
2170 >                                    created = true;
2171 >                                }
2172 >                            } finally {
2173 >                                counterBusy = 0;
2174 >                            }
2175 >                            if (created)
2176 >                                break;
2177 >                            continue;           // Slot is now non-empty
2178 >                        }
2179                      }
2180 <                    e = e.next;
2180 >                    collide = false;
2181                  }
2182 <                else if (baseIndex < baseSize && (t = tab) != null &&
2183 <                         t.length > (i = index) && i >= 0) {
2184 <                    if ((e = tabAt(t, i)) != null && e.hash < 0) {
2185 <                        tab = (Node[])e.key;
2186 <                        e = null;
2182 >                else if (!wasUncontended)       // CAS already known to fail
2183 >                    wasUncontended = true;      // Continue after rehash
2184 >                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2185 >                    break;
2186 >                else if (counterCells != as || n >= NCPU)
2187 >                    collide = false;            // At max size or stale
2188 >                else if (!collide)
2189 >                    collide = true;
2190 >                else if (counterBusy == 0 &&
2191 >                         U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2192 >                    try {
2193 >                        if (counterCells == as) {// Expand table unless stale
2194 >                            CounterCell[] rs = new CounterCell[n << 1];
2195 >                            for (int i = 0; i < n; ++i)
2196 >                                rs[i] = as[i];
2197 >                            counterCells = rs;
2198 >                        }
2199 >                    } finally {
2200 >                        counterBusy = 0;
2201                      }
2202 <                    else if (i + baseSize < t.length)
2203 <                        index += baseSize;    // visit forwarded upper slots
785 <                    else
786 <                        index = ++baseIndex;
2202 >                    collide = false;
2203 >                    continue;                   // Retry with expanded table
2204                  }
2205 <                else {
2206 <                    next = null;
2207 <                    break;
2205 >                h ^= h << 13;                   // Rehash
2206 >                h ^= h >>> 17;
2207 >                h ^= h << 5;
2208 >            }
2209 >            else if (counterBusy == 0 && counterCells == as &&
2210 >                     U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2211 >                boolean init = false;
2212 >                try {                           // Initialize table
2213 >                    if (counterCells == as) {
2214 >                        CounterCell[] rs = new CounterCell[2];
2215 >                        rs[h & 1] = new CounterCell(x);
2216 >                        counterCells = rs;
2217 >                        init = true;
2218 >                    }
2219 >                } finally {
2220 >                    counterBusy = 0;
2221                  }
2222 +                if (init)
2223 +                    break;
2224              }
2225 +            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2226 +                break;                          // Fall back on using base
2227          }
2228 +        hc.code = h;                            // Record index for next time
2229 +    }
2230  
2231 <        final Object nextKey() {
796 <            Node e = next;
797 <            if (e == null)
798 <                throw new NoSuchElementException();
799 <            Object k = e.key;
800 <            advance((lastReturned = e).next);
801 <            return k;
802 <        }
2231 >    /* ----------------Table Traversal -------------- */
2232  
2233 <        final Object nextValue() {
2234 <            Node e = next;
2235 <            if (e == null)
2236 <                throw new NoSuchElementException();
2237 <            Object v = nextVal;
2238 <            advance((lastReturned = e).next);
2239 <            return v;
2233 >    /**
2234 >     * Encapsulates traversal for methods such as containsValue; also
2235 >     * serves as a base class for other iterators and bulk tasks.
2236 >     *
2237 >     * At each step, the iterator snapshots the key ("nextKey") and
2238 >     * value ("nextVal") of a valid node (i.e., one that, at point of
2239 >     * snapshot, has a non-null user value). Because val fields can
2240 >     * change (including to null, indicating deletion), field nextVal
2241 >     * might not be accurate at point of use, but still maintains the
2242 >     * weak consistency property of holding a value that was once
2243 >     * valid. To support iterator.remove, the nextKey field is not
2244 >     * updated (nulled out) when the iterator cannot advance.
2245 >     *
2246 >     * Internal traversals directly access these fields, as in:
2247 >     * {@code while (it.advance() != null) { process(it.nextKey); }}
2248 >     *
2249 >     * Exported iterators must track whether the iterator has advanced
2250 >     * (in hasNext vs next) (by setting/checking/nulling field
2251 >     * nextVal), and then extract key, value, or key-value pairs as
2252 >     * return values of next().
2253 >     *
2254 >     * The iterator visits once each still-valid node that was
2255 >     * reachable upon iterator construction. It might miss some that
2256 >     * were added to a bin after the bin was visited, which is OK wrt
2257 >     * consistency guarantees. Maintaining this property in the face
2258 >     * of possible ongoing resizes requires a fair amount of
2259 >     * bookkeeping state that is difficult to optimize away amidst
2260 >     * volatile accesses.  Even so, traversal maintains reasonable
2261 >     * throughput.
2262 >     *
2263 >     * Normally, iteration proceeds bin-by-bin traversing lists.
2264 >     * However, if the table has been resized, then all future steps
2265 >     * must traverse both the bin at the current index as well as at
2266 >     * (index + baseSize); and so on for further resizings. To
2267 >     * paranoically cope with potential sharing by users of iterators
2268 >     * across threads, iteration terminates if a bounds checks fails
2269 >     * for a table read.
2270 >     *
2271 >     * This class extends CountedCompleter to streamline parallel
2272 >     * iteration in bulk operations. This adds only a few fields of
2273 >     * space overhead, which is small enough in cases where it is not
2274 >     * needed to not worry about it.  Because CountedCompleter is
2275 >     * Serializable, but iterators need not be, we need to add warning
2276 >     * suppressions.
2277 >     */
2278 >    @SuppressWarnings("serial") static class Traverser<K,V,R>
2279 >        extends CountedCompleter<R> {
2280 >        final ConcurrentHashMapV8<K, V> map;
2281 >        Node<V> next;        // the next entry to use
2282 >        Object nextKey;      // cached key field of next
2283 >        V nextVal;           // cached val field of next
2284 >        Node<V>[] tab;       // current table; updated if resized
2285 >        int index;           // index of bin to use next
2286 >        int baseIndex;       // current index of initial table
2287 >        int baseLimit;       // index bound for initial table
2288 >        int baseSize;        // initial table size
2289 >        int batch;           // split control
2290 >
2291 >        /** Creates iterator for all entries in the table. */
2292 >        Traverser(ConcurrentHashMapV8<K, V> map) {
2293 >            this.map = map;
2294 >        }
2295 >
2296 >        /** Creates iterator for split() methods and task constructors */
2297 >        Traverser(ConcurrentHashMapV8<K,V> map, Traverser<K,V,?> it, int batch) {
2298 >            super(it);
2299 >            this.batch = batch;
2300 >            if ((this.map = map) != null && it != null) { // split parent
2301 >                Node<V>[] t;
2302 >                if ((t = it.tab) == null &&
2303 >                    (t = it.tab = map.table) != null)
2304 >                    it.baseLimit = it.baseSize = t.length;
2305 >                this.tab = t;
2306 >                this.baseSize = it.baseSize;
2307 >                int hi = this.baseLimit = it.baseLimit;
2308 >                it.baseLimit = this.index = this.baseIndex =
2309 >                    (hi + it.baseIndex + 1) >>> 1;
2310 >            }
2311          }
2312  
2313 <        final WriteThroughEntry nextEntry() {
2314 <            Node e = next;
2315 <            if (e == null)
2316 <                throw new NoSuchElementException();
2317 <            WriteThroughEntry entry =
2318 <                new WriteThroughEntry(e.key, nextVal);
2319 <            advance((lastReturned = e).next);
2320 <            return entry;
2313 >        /**
2314 >         * Advances next; returns nextVal or null if terminated.
2315 >         * See above for explanation.
2316 >         */
2317 >        @SuppressWarnings("unchecked") final V advance() {
2318 >            Node<V> e = next;
2319 >            V ev = null;
2320 >            outer: do {
2321 >                if (e != null)                  // advance past used/skipped node
2322 >                    e = e.next;
2323 >                while (e == null) {             // get to next non-null bin
2324 >                    ConcurrentHashMapV8<K, V> m;
2325 >                    Node<V>[] t; int b, i, n; Object ek; //  must use locals
2326 >                    if ((t = tab) != null)
2327 >                        n = t.length;
2328 >                    else if ((m = map) != null && (t = tab = m.table) != null)
2329 >                        n = baseLimit = baseSize = t.length;
2330 >                    else
2331 >                        break outer;
2332 >                    if ((b = baseIndex) >= baseLimit ||
2333 >                        (i = index) < 0 || i >= n)
2334 >                        break outer;
2335 >                    if ((e = tabAt(t, i)) != null && e.hash < 0) {
2336 >                        if ((ek = e.key) instanceof TreeBin)
2337 >                            e = ((TreeBin<V>)ek).first;
2338 >                        else {
2339 >                            tab = (Node<V>[])ek;
2340 >                            continue;           // restarts due to null val
2341 >                        }
2342 >                    }                           // visit upper slots if present
2343 >                    index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2344 >                }
2345 >                nextKey = e.key;
2346 >            } while ((ev = e.val) == null);    // skip deleted or special nodes
2347 >            next = e;
2348 >            return nextVal = ev;
2349          }
2350  
2351          public final void remove() {
2352 <            if (lastReturned == null)
2352 >            Object k = nextKey;
2353 >            if (k == null && (advance() == null || (k = nextKey) == null))
2354                  throw new IllegalStateException();
2355 <            ConcurrentHashMapV8.this.remove(lastReturned.key);
827 <            lastReturned = null;
2355 >            map.internalReplace(k, null, null);
2356          }
2357  
2358 <        /** Helper for serialization */
2359 <        final void writeEntries(java.io.ObjectOutputStream s)
832 <            throws java.io.IOException {
833 <            Node e;
834 <            while ((e = next) != null) {
835 <                s.writeObject(e.key);
836 <                s.writeObject(nextVal);
837 <                advance(e.next);
838 <            }
2358 >        public final boolean hasNext() {
2359 >            return nextVal != null || advance() != null;
2360          }
2361  
2362 <        /** Helper for containsValue */
842 <        final boolean containsVal(Object value) {
843 <            if (value != null) {
844 <                Node e;
845 <                while ((e = next) != null) {
846 <                    Object v = nextVal;
847 <                    if (value == v || value.equals(v))
848 <                        return true;
849 <                    advance(e.next);
850 <                }
851 <            }
852 <            return false;
853 <        }
2362 >        public final boolean hasMoreElements() { return hasNext(); }
2363  
2364 <        /** Helper for Map.hashCode */
856 <        final int mapHashCode() {
857 <            int h = 0;
858 <            Node e;
859 <            while ((e = next) != null) {
860 <                h += e.key.hashCode() ^ nextVal.hashCode();
861 <                advance(e.next);
862 <            }
863 <            return h;
864 <        }
2364 >        public void compute() { } // default no-op CountedCompleter body
2365  
2366 <        /** Helper for Map.toString */
2367 <        final String mapToString() {
2368 <            Node e = next;
2369 <            if (e == null)
2370 <                return "{}";
2371 <            StringBuilder sb = new StringBuilder();
2372 <            sb.append('{');
2373 <            for (;;) {
2374 <                sb.append(e.key   == this ? "(this Map)" : e.key);
2375 <                sb.append('=');
2376 <                sb.append(nextVal == this ? "(this Map)" : nextVal);
2377 <                advance(e.next);
2378 <                if ((e = next) != null)
2379 <                    sb.append(',').append(' ');
2380 <                else
2381 <                    return sb.append('}').toString();
2366 >        /**
2367 >         * Returns a batch value > 0 if this task should (and must) be
2368 >         * split, if so, adding to pending count, and in any case
2369 >         * updating batch value. The initial batch value is approx
2370 >         * exp2 of the number of times (minus one) to split task by
2371 >         * two before executing leaf action. This value is faster to
2372 >         * compute and more convenient to use as a guide to splitting
2373 >         * than is the depth, since it is used while dividing by two
2374 >         * anyway.
2375 >         */
2376 >        final int preSplit() {
2377 >            ConcurrentHashMapV8<K, V> m; int b; Node<V>[] t;  ForkJoinPool pool;
2378 >            if ((b = batch) < 0 && (m = map) != null) { // force initialization
2379 >                if ((t = tab) == null && (t = tab = m.table) != null)
2380 >                    baseLimit = baseSize = t.length;
2381 >                if (t != null) {
2382 >                    long n = m.sumCount();
2383 >                    int par = ((pool = getPool()) == null) ?
2384 >                        ForkJoinPool.getCommonPoolParallelism() :
2385 >                        pool.getParallelism();
2386 >                    int sp = par << 3; // slack of 8
2387 >                    b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2388 >                }
2389              }
2390 +            b = (b <= 1 || baseIndex == baseLimit) ? 0 : (b >>> 1);
2391 +            if ((batch = b) > 0)
2392 +                addToPendingCount(1);
2393 +            return b;
2394          }
2395 +
2396      }
2397  
2398      /* ---------------- Public operations -------------- */
2399  
2400      /**
2401 <     * Creates a new, empty map with the specified initial
890 <     * capacity, load factor and concurrency level.
891 <     *
892 <     * @param initialCapacity the initial capacity. The implementation
893 <     * performs internal sizing to accommodate this many elements.
894 <     * @param loadFactor  the load factor threshold, used to control resizing.
895 <     * Resizing may be performed when the average number of elements per
896 <     * bin exceeds this threshold.
897 <     * @param concurrencyLevel the estimated number of concurrently
898 <     * updating threads. The implementation may use this value as
899 <     * a sizing hint.
900 <     * @throws IllegalArgumentException if the initial capacity is
901 <     * negative or the load factor or concurrencyLevel are
902 <     * nonpositive.
2401 >     * Creates a new, empty map with the default initial table size (16).
2402       */
2403 <    public ConcurrentHashMapV8(int initialCapacity,
905 <                               float loadFactor, int concurrencyLevel) {
906 <        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
907 <            throw new IllegalArgumentException();
908 <        this.initCap = initialCapacity;
909 <        this.loadFactor = loadFactor;
910 <        this.counter = new LongAdder();
2403 >    public ConcurrentHashMapV8() {
2404      }
2405  
2406      /**
2407 <     * Creates a new, empty map with the specified initial capacity
2408 <     * and load factor and with the default concurrencyLevel (16).
2407 >     * Creates a new, empty map with an initial table size
2408 >     * accommodating the specified number of elements without the need
2409 >     * to dynamically resize.
2410       *
2411       * @param initialCapacity The implementation performs internal
2412       * sizing to accommodate this many elements.
2413 <     * @param loadFactor  the load factor threshold, used to control resizing.
2414 <     * Resizing may be performed when the average number of elements per
2415 <     * bin exceeds this threshold.
2413 >     * @throws IllegalArgumentException if the initial capacity of
2414 >     * elements is negative
2415 >     */
2416 >    public ConcurrentHashMapV8(int initialCapacity) {
2417 >        if (initialCapacity < 0)
2418 >            throw new IllegalArgumentException();
2419 >        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2420 >                   MAXIMUM_CAPACITY :
2421 >                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2422 >        this.sizeCtl = cap;
2423 >    }
2424 >
2425 >    /**
2426 >     * Creates a new map with the same mappings as the given map.
2427 >     *
2428 >     * @param m the map
2429 >     */
2430 >    public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
2431 >        this.sizeCtl = DEFAULT_CAPACITY;
2432 >        internalPutAll(m);
2433 >    }
2434 >
2435 >    /**
2436 >     * Creates a new, empty map with an initial table size based on
2437 >     * the given number of elements ({@code initialCapacity}) and
2438 >     * initial table density ({@code loadFactor}).
2439 >     *
2440 >     * @param initialCapacity the initial capacity. The implementation
2441 >     * performs internal sizing to accommodate this many elements,
2442 >     * given the specified load factor.
2443 >     * @param loadFactor the load factor (table density) for
2444 >     * establishing the initial table size
2445       * @throws IllegalArgumentException if the initial capacity of
2446       * elements is negative or the load factor is nonpositive
2447       *
2448       * @since 1.6
2449       */
2450      public ConcurrentHashMapV8(int initialCapacity, float loadFactor) {
2451 <        this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
2451 >        this(initialCapacity, loadFactor, 1);
2452      }
2453  
2454      /**
2455 <     * Creates a new, empty map with the specified initial capacity,
2456 <     * and with default load factor (0.75) and concurrencyLevel (16).
2455 >     * Creates a new, empty map with an initial table size based on
2456 >     * the given number of elements ({@code initialCapacity}), table
2457 >     * density ({@code loadFactor}), and number of concurrently
2458 >     * updating threads ({@code concurrencyLevel}).
2459       *
2460       * @param initialCapacity the initial capacity. The implementation
2461 <     * performs internal sizing to accommodate this many elements.
2462 <     * @throws IllegalArgumentException if the initial capacity of
2463 <     * elements is negative.
2461 >     * performs internal sizing to accommodate this many elements,
2462 >     * given the specified load factor.
2463 >     * @param loadFactor the load factor (table density) for
2464 >     * establishing the initial table size
2465 >     * @param concurrencyLevel the estimated number of concurrently
2466 >     * updating threads. The implementation may use this value as
2467 >     * a sizing hint.
2468 >     * @throws IllegalArgumentException if the initial capacity is
2469 >     * negative or the load factor or concurrencyLevel are
2470 >     * nonpositive
2471       */
2472 <    public ConcurrentHashMapV8(int initialCapacity) {
2473 <        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
2472 >    public ConcurrentHashMapV8(int initialCapacity,
2473 >                               float loadFactor, int concurrencyLevel) {
2474 >        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2475 >            throw new IllegalArgumentException();
2476 >        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
2477 >            initialCapacity = concurrencyLevel;   // as estimated threads
2478 >        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2479 >        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2480 >            MAXIMUM_CAPACITY : tableSizeFor((int)size);
2481 >        this.sizeCtl = cap;
2482      }
2483  
2484      /**
2485 <     * Creates a new, empty map with a default initial capacity (16),
2486 <     * load factor (0.75) and concurrencyLevel (16).
2485 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2486 >     * from the given type to {@code Boolean.TRUE}.
2487 >     *
2488 >     * @return the new set
2489       */
2490 <    public ConcurrentHashMapV8() {
2491 <        this(DEFAULT_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
2490 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2491 >        return new KeySetView<K,Boolean>(new ConcurrentHashMapV8<K,Boolean>(),
2492 >                                      Boolean.TRUE);
2493      }
2494  
2495      /**
2496 <     * Creates a new map with the same mappings as the given map.
2497 <     * The map is created with a capacity of 1.5 times the number
955 <     * of mappings in the given map or 16 (whichever is greater),
956 <     * and a default load factor (0.75) and concurrencyLevel (16).
2496 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2497 >     * from the given type to {@code Boolean.TRUE}.
2498       *
2499 <     * @param m the map
2499 >     * @param initialCapacity The implementation performs internal
2500 >     * sizing to accommodate this many elements.
2501 >     * @throws IllegalArgumentException if the initial capacity of
2502 >     * elements is negative
2503 >     * @return the new set
2504       */
2505 <    public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
2506 <        this(DEFAULT_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
2507 <        if (m == null)
963 <            throw new NullPointerException();
964 <        internalPutAll(m);
2505 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2506 >        return new KeySetView<K,Boolean>
2507 >            (new ConcurrentHashMapV8<K,Boolean>(initialCapacity), Boolean.TRUE);
2508      }
2509  
2510      /**
2511 <     * Returns {@code true} if this map contains no key-value mappings.
969 <     *
970 <     * @return {@code true} if this map contains no key-value mappings
2511 >     * {@inheritDoc}
2512       */
2513      public boolean isEmpty() {
2514 <        return counter.sum() <= 0L; // ignore transient negative values
2514 >        return sumCount() <= 0L; // ignore transient negative values
2515      }
2516  
2517      /**
2518 <     * Returns the number of key-value mappings in this map.  If the
978 <     * map contains more than {@code Integer.MAX_VALUE} elements, returns
979 <     * {@code Integer.MAX_VALUE}.
980 <     *
981 <     * @return the number of key-value mappings in this map
2518 >     * {@inheritDoc}
2519       */
2520      public int size() {
2521 <        long n = counter.sum();
2522 <        return ((n >>> 31) == 0) ? (int)n : (n < 0L) ? 0 : Integer.MAX_VALUE;
2521 >        long n = sumCount();
2522 >        return ((n < 0L) ? 0 :
2523 >                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2524 >                (int)n);
2525 >    }
2526 >
2527 >    /**
2528 >     * Returns the number of mappings. This method should be used
2529 >     * instead of {@link #size} because a ConcurrentHashMapV8 may
2530 >     * contain more mappings than can be represented as an int. The
2531 >     * value returned is an estimate; the actual count may differ if
2532 >     * there are concurrent insertions or removals.
2533 >     *
2534 >     * @return the number of mappings
2535 >     */
2536 >    public long mappingCount() {
2537 >        long n = sumCount();
2538 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2539      }
2540  
2541      /**
# Line 996 | Line 2549 | public class ConcurrentHashMapV8<K, V>
2549       *
2550       * @throws NullPointerException if the specified key is null
2551       */
999    @SuppressWarnings("unchecked")
2552      public V get(Object key) {
2553 <        if (key == null)
2554 <            throw new NullPointerException();
2555 <        return (V)internalGet(key);
2553 >        return internalGet(key);
2554 >    }
2555 >
2556 >    /**
2557 >     * Returns the value to which the specified key is mapped,
2558 >     * or the given defaultValue if this map contains no mapping for the key.
2559 >     *
2560 >     * @param key the key
2561 >     * @param defaultValue the value to return if this map contains
2562 >     * no mapping for the given key
2563 >     * @return the mapping for the key, if present; else the defaultValue
2564 >     * @throws NullPointerException if the specified key is null
2565 >     */
2566 >    public V getValueOrDefault(Object key, V defaultValue) {
2567 >        V v;
2568 >        return (v = internalGet(key)) == null ? defaultValue : v;
2569      }
2570  
2571      /**
# Line 1009 | Line 2574 | public class ConcurrentHashMapV8<K, V>
2574       * @param  key   possible key
2575       * @return {@code true} if and only if the specified object
2576       *         is a key in this table, as determined by the
2577 <     *         {@code equals} method; {@code false} otherwise.
2577 >     *         {@code equals} method; {@code false} otherwise
2578       * @throws NullPointerException if the specified key is null
2579       */
2580      public boolean containsKey(Object key) {
1016        if (key == null)
1017            throw new NullPointerException();
2581          return internalGet(key) != null;
2582      }
2583  
2584      /**
2585       * Returns {@code true} if this map maps one or more keys to the
2586 <     * specified value. Note: This method requires a full internal
2587 <     * traversal of the hash table, and so is much slower than
1025 <     * method {@code containsKey}.
2586 >     * specified value. Note: This method may require a full traversal
2587 >     * of the map, and is much slower than method {@code containsKey}.
2588       *
2589       * @param value value whose presence in this map is to be tested
2590       * @return {@code true} if this map maps one or more keys to the
# Line 1032 | Line 2594 | public class ConcurrentHashMapV8<K, V>
2594      public boolean containsValue(Object value) {
2595          if (value == null)
2596              throw new NullPointerException();
2597 <        return new HashIterator().containsVal(value);
2597 >        V v;
2598 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2599 >        while ((v = it.advance()) != null) {
2600 >            if (v == value || value.equals(v))
2601 >                return true;
2602 >        }
2603 >        return false;
2604      }
2605  
2606      /**
# Line 1050 | Line 2618 | public class ConcurrentHashMapV8<K, V>
2618       *         {@code false} otherwise
2619       * @throws NullPointerException if the specified value is null
2620       */
2621 <    public boolean contains(Object value) {
2621 >    @Deprecated public boolean contains(Object value) {
2622          return containsValue(value);
2623      }
2624  
# Line 1058 | Line 2626 | public class ConcurrentHashMapV8<K, V>
2626       * Maps the specified key to the specified value in this table.
2627       * Neither the key nor the value can be null.
2628       *
2629 <     * <p> The value can be retrieved by calling the {@code get} method
2629 >     * <p>The value can be retrieved by calling the {@code get} method
2630       * with a key that is equal to the original key.
2631       *
2632       * @param key key with which the specified value is to be associated
# Line 1067 | Line 2635 | public class ConcurrentHashMapV8<K, V>
2635       *         {@code null} if there was no mapping for {@code key}
2636       * @throws NullPointerException if the specified key or value is null
2637       */
1070    @SuppressWarnings("unchecked")
2638      public V put(K key, V value) {
2639 <        if (key == null || value == null)
1073 <            throw new NullPointerException();
1074 <        return (V)internalPut(key, value, true);
2639 >        return internalPut(key, value, false);
2640      }
2641  
2642      /**
# Line 1081 | Line 2646 | public class ConcurrentHashMapV8<K, V>
2646       *         or {@code null} if there was no mapping for the key
2647       * @throws NullPointerException if the specified key or value is null
2648       */
1084    @SuppressWarnings("unchecked")
2649      public V putIfAbsent(K key, V value) {
2650 <        if (key == null || value == null)
1087 <            throw new NullPointerException();
1088 <        return (V)internalPut(key, value, false);
2650 >        return internalPut(key, value, true);
2651      }
2652  
2653      /**
# Line 1096 | Line 2658 | public class ConcurrentHashMapV8<K, V>
2658       * @param m mappings to be stored in this map
2659       */
2660      public void putAll(Map<? extends K, ? extends V> m) {
1099        if (m == null)
1100            throw new NullPointerException();
2661          internalPutAll(m);
2662      }
2663  
2664      /**
2665       * If the specified key is not already associated with a value,
2666 <     * computes its value using the given mappingFunction, and if
2667 <     * non-null, enters it into the map.  This is equivalent to
2668 <     *
2669 <     * <pre>
2670 <     *   if (map.containsKey(key))
2671 <     *       return map.get(key);
2672 <     *   value = mappingFunction.map(key);
2673 <     *   if (value != null)
2674 <     *      map.put(key, value);
2675 <     *   return value;
2676 <     * </pre>
2677 <     *
2678 <     * except that the action is performed atomically.  Some attempted
2679 <     * update operations on this map by other threads may be blocked
2680 <     * while computation is in progress, so the computation should be
2681 <     * short and simple, and must not attempt to update any other
2682 <     * mappings of this Map. The most appropriate usage is to
2666 >     * computes its value using the given mappingFunction and enters
2667 >     * it into the map unless null.  This is equivalent to
2668 >     * <pre> {@code
2669 >     * if (map.containsKey(key))
2670 >     *   return map.get(key);
2671 >     * value = mappingFunction.apply(key);
2672 >     * if (value != null)
2673 >     *   map.put(key, value);
2674 >     * return value;}</pre>
2675 >     *
2676 >     * except that the action is performed atomically.  If the
2677 >     * function returns {@code null} no mapping is recorded. If the
2678 >     * function itself throws an (unchecked) exception, the exception
2679 >     * is rethrown to its caller, and no mapping is recorded.  Some
2680 >     * attempted update operations on this map by other threads may be
2681 >     * blocked while computation is in progress, so the computation
2682 >     * should be short and simple, and must not attempt to update any
2683 >     * other mappings of this Map. The most appropriate usage is to
2684       * construct a new object serving as an initial mapped value, or
2685       * memoized result, as in:
2686 <     * <pre>{@code
2687 <     * map.computeIfAbsent(key, new MappingFunction<K, V>() {
2688 <     *   public V map(K k) { return new Value(f(k)); }};
2689 <     * }</pre>
2686 >     *
2687 >     *  <pre> {@code
2688 >     * map.computeIfAbsent(key, new Fun<K, V>() {
2689 >     *   public V map(K k) { return new Value(f(k)); }});}</pre>
2690       *
2691       * @param key key with which the specified value is to be associated
2692       * @param mappingFunction the function to compute a value
2693       * @return the current (existing or computed) value associated with
2694 <     *         the specified key, or {@code null} if the computation
1134 <     *         returned {@code null}.
2694 >     *         the specified key, or null if the computed value is null
2695       * @throws NullPointerException if the specified key or mappingFunction
2696 <     *         is null,
2696 >     *         is null
2697       * @throws IllegalStateException if the computation detectably
2698       *         attempts a recursive update to this map that would
2699 <     *         otherwise never complete.
2699 >     *         otherwise never complete
2700       * @throws RuntimeException or Error if the mappingFunction does so,
2701 <     *         in which case the mapping is left unestablished.
2701 >     *         in which case the mapping is left unestablished
2702       */
2703 <    public V computeIfAbsent(K key, MappingFunction<? super K, ? extends V> mappingFunction) {
2704 <        if (key == null || mappingFunction == null)
2705 <            throw new NullPointerException();
1146 <        return internalCompute(key, mappingFunction, false);
2703 >    public V computeIfAbsent
2704 >        (K key, Fun<? super K, ? extends V> mappingFunction) {
2705 >        return internalComputeIfAbsent(key, mappingFunction);
2706      }
2707  
2708      /**
2709 <     * Computes the value associated with the given key using the given
2710 <     * mappingFunction, and if non-null, enters it into the map.  This
2711 <     * is equivalent to
2709 >     * If the given key is present, computes a new mapping value given a key and
2710 >     * its current mapped value. This is equivalent to
2711 >     *  <pre> {@code
2712 >     *   if (map.containsKey(key)) {
2713 >     *     value = remappingFunction.apply(key, map.get(key));
2714 >     *     if (value != null)
2715 >     *       map.put(key, value);
2716 >     *     else
2717 >     *       map.remove(key);
2718 >     *   }
2719 >     * }</pre>
2720       *
2721 <     * <pre>
2722 <     *   value = mappingFunction.map(key);
2721 >     * except that the action is performed atomically.  If the
2722 >     * function returns {@code null}, the mapping is removed.  If the
2723 >     * function itself throws an (unchecked) exception, the exception
2724 >     * is rethrown to its caller, and the current mapping is left
2725 >     * unchanged.  Some attempted update operations on this map by
2726 >     * other threads may be blocked while computation is in progress,
2727 >     * so the computation should be short and simple, and must not
2728 >     * attempt to update any other mappings of this Map. For example,
2729 >     * to either create or append new messages to a value mapping:
2730 >     *
2731 >     * @param key key with which the specified value is to be associated
2732 >     * @param remappingFunction the function to compute a value
2733 >     * @return the new value associated with the specified key, or null if none
2734 >     * @throws NullPointerException if the specified key or remappingFunction
2735 >     *         is null
2736 >     * @throws IllegalStateException if the computation detectably
2737 >     *         attempts a recursive update to this map that would
2738 >     *         otherwise never complete
2739 >     * @throws RuntimeException or Error if the remappingFunction does so,
2740 >     *         in which case the mapping is unchanged
2741 >     */
2742 >    public V computeIfPresent
2743 >        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2744 >        return internalCompute(key, true, remappingFunction);
2745 >    }
2746 >
2747 >    /**
2748 >     * Computes a new mapping value given a key and
2749 >     * its current mapped value (or {@code null} if there is no current
2750 >     * mapping). This is equivalent to
2751 >     *  <pre> {@code
2752 >     *   value = remappingFunction.apply(key, map.get(key));
2753       *   if (value != null)
2754 <     *      map.put(key, value);
2754 >     *     map.put(key, value);
2755       *   else
2756 <     *      value = map.get(key);
2757 <     *   return value;
2758 <     * </pre>
2759 <     *
2760 <     * except that the action is performed atomically.  Some attempted
2761 <     * update operations on this map by other threads may be blocked
2762 <     * while computation is in progress, so the computation should be
2763 <     * short and simple, and must not attempt to update any other
2764 <     * mappings of this Map.
2756 >     *     map.remove(key);
2757 >     * }</pre>
2758 >     *
2759 >     * except that the action is performed atomically.  If the
2760 >     * function returns {@code null}, the mapping is removed.  If the
2761 >     * function itself throws an (unchecked) exception, the exception
2762 >     * is rethrown to its caller, and the current mapping is left
2763 >     * unchanged.  Some attempted update operations on this map by
2764 >     * other threads may be blocked while computation is in progress,
2765 >     * so the computation should be short and simple, and must not
2766 >     * attempt to update any other mappings of this Map. For example,
2767 >     * to either create or append new messages to a value mapping:
2768 >     *
2769 >     * <pre> {@code
2770 >     * Map<Key, String> map = ...;
2771 >     * final String msg = ...;
2772 >     * map.compute(key, new BiFun<Key, String, String>() {
2773 >     *   public String apply(Key k, String v) {
2774 >     *    return (v == null) ? msg : v + msg;});}}</pre>
2775       *
2776       * @param key key with which the specified value is to be associated
2777 <     * @param mappingFunction the function to compute a value
2778 <     * @return the current value associated with
2779 <     *         the specified key, or {@code null} if the computation
2780 <     *         returned {@code null} and the value was not otherwise present.
1174 <     * @throws NullPointerException if the specified key or mappingFunction
1175 <     *         is null,
2777 >     * @param remappingFunction the function to compute a value
2778 >     * @return the new value associated with the specified key, or null if none
2779 >     * @throws NullPointerException if the specified key or remappingFunction
2780 >     *         is null
2781       * @throws IllegalStateException if the computation detectably
2782       *         attempts a recursive update to this map that would
2783 <     *         otherwise never complete.
2784 <     * @throws RuntimeException or Error if the mappingFunction does so,
2785 <     *         in which case the mapping is unchanged.
2786 <     */
2787 <    public V compute(K key, MappingFunction<? super K, ? extends V> mappingFunction) {
2788 <        if (key == null || mappingFunction == null)
2789 <            throw new NullPointerException();
2790 <        return internalCompute(key, mappingFunction, true);
2783 >     *         otherwise never complete
2784 >     * @throws RuntimeException or Error if the remappingFunction does so,
2785 >     *         in which case the mapping is unchanged
2786 >     */
2787 >    public V compute
2788 >        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2789 >        return internalCompute(key, false, remappingFunction);
2790 >    }
2791 >
2792 >    /**
2793 >     * If the specified key is not already associated
2794 >     * with a value, associate it with the given value.
2795 >     * Otherwise, replace the value with the results of
2796 >     * the given remapping function. This is equivalent to:
2797 >     *  <pre> {@code
2798 >     *   if (!map.containsKey(key))
2799 >     *     map.put(value);
2800 >     *   else {
2801 >     *     newValue = remappingFunction.apply(map.get(key), value);
2802 >     *     if (value != null)
2803 >     *       map.put(key, value);
2804 >     *     else
2805 >     *       map.remove(key);
2806 >     *   }
2807 >     * }</pre>
2808 >     * except that the action is performed atomically.  If the
2809 >     * function returns {@code null}, the mapping is removed.  If the
2810 >     * function itself throws an (unchecked) exception, the exception
2811 >     * is rethrown to its caller, and the current mapping is left
2812 >     * unchanged.  Some attempted update operations on this map by
2813 >     * other threads may be blocked while computation is in progress,
2814 >     * so the computation should be short and simple, and must not
2815 >     * attempt to update any other mappings of this Map.
2816 >     */
2817 >    public V merge
2818 >        (K key, V value,
2819 >         BiFun<? super V, ? super V, ? extends V> remappingFunction) {
2820 >        return internalMerge(key, value, remappingFunction);
2821      }
2822  
2823      /**
# Line 1194 | Line 2829 | public class ConcurrentHashMapV8<K, V>
2829       *         {@code null} if there was no mapping for {@code key}
2830       * @throws NullPointerException if the specified key is null
2831       */
1197    @SuppressWarnings("unchecked")
2832      public V remove(Object key) {
2833 <        if (key == null)
1200 <            throw new NullPointerException();
1201 <        return (V)internalReplace(key, null, null);
2833 >        return internalReplace(key, null, null);
2834      }
2835  
2836      /**
# Line 1207 | Line 2839 | public class ConcurrentHashMapV8<K, V>
2839       * @throws NullPointerException if the specified key is null
2840       */
2841      public boolean remove(Object key, Object value) {
2842 <        if (key == null)
1211 <            throw new NullPointerException();
1212 <        if (value == null)
1213 <            return false;
1214 <        return internalReplace(key, null, value) != null;
2842 >        return value != null && internalReplace(key, null, value) != null;
2843      }
2844  
2845      /**
# Line 1232 | Line 2860 | public class ConcurrentHashMapV8<K, V>
2860       *         or {@code null} if there was no mapping for the key
2861       * @throws NullPointerException if the specified key or value is null
2862       */
1235    @SuppressWarnings("unchecked")
2863      public V replace(K key, V value) {
2864          if (key == null || value == null)
2865              throw new NullPointerException();
2866 <        return (V)internalReplace(key, value, null);
2866 >        return internalReplace(key, value, null);
2867      }
2868  
2869      /**
# Line 1249 | Line 2876 | public class ConcurrentHashMapV8<K, V>
2876      /**
2877       * Returns a {@link Set} view of the keys contained in this map.
2878       * The set is backed by the map, so changes to the map are
2879 <     * reflected in the set, and vice-versa.  The set supports element
1253 <     * removal, which removes the corresponding mapping from this map,
1254 <     * via the {@code Iterator.remove}, {@code Set.remove},
1255 <     * {@code removeAll}, {@code retainAll}, and {@code clear}
1256 <     * operations.  It does not support the {@code add} or
1257 <     * {@code addAll} operations.
2879 >     * reflected in the set, and vice-versa.
2880       *
2881 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2882 <     * that will never throw {@link ConcurrentModificationException},
2883 <     * and guarantees to traverse elements as they existed upon
2884 <     * construction of the iterator, and may (but is not guaranteed to)
2885 <     * reflect any modifications subsequent to construction.
2881 >     * @return the set view
2882 >     */
2883 >    public KeySetView<K,V> keySet() {
2884 >        KeySetView<K,V> ks = keySet;
2885 >        return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2886 >    }
2887 >
2888 >    /**
2889 >     * Returns a {@link Set} view of the keys in this map, using the
2890 >     * given common mapped value for any additions (i.e., {@link
2891 >     * Collection#add} and {@link Collection#addAll}). This is of
2892 >     * course only appropriate if it is acceptable to use the same
2893 >     * value for all additions from this view.
2894 >     *
2895 >     * @param mappedValue the mapped value to use for any
2896 >     * additions.
2897 >     * @return the set view
2898 >     * @throws NullPointerException if the mappedValue is null
2899       */
2900 <    public Set<K> keySet() {
2901 <        Set<K> ks = keySet;
2902 <        return (ks != null) ? ks : (keySet = new KeySet());
2900 >    public KeySetView<K,V> keySet(V mappedValue) {
2901 >        if (mappedValue == null)
2902 >            throw new NullPointerException();
2903 >        return new KeySetView<K,V>(this, mappedValue);
2904      }
2905  
2906      /**
2907       * Returns a {@link Collection} view of the values contained in this map.
2908       * The collection is backed by the map, so changes to the map are
2909 <     * reflected in the collection, and vice-versa.  The collection
1274 <     * supports element removal, which removes the corresponding
1275 <     * mapping from this map, via the {@code Iterator.remove},
1276 <     * {@code Collection.remove}, {@code removeAll},
1277 <     * {@code retainAll}, and {@code clear} operations.  It does not
1278 <     * support the {@code add} or {@code addAll} operations.
1279 <     *
1280 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1281 <     * that will never throw {@link ConcurrentModificationException},
1282 <     * and guarantees to traverse elements as they existed upon
1283 <     * construction of the iterator, and may (but is not guaranteed to)
1284 <     * reflect any modifications subsequent to construction.
2909 >     * reflected in the collection, and vice-versa.
2910       */
2911 <    public Collection<V> values() {
2912 <        Collection<V> vs = values;
2913 <        return (vs != null) ? vs : (values = new Values());
2911 >    public ValuesView<K,V> values() {
2912 >        ValuesView<K,V> vs = values;
2913 >        return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2914      }
2915  
2916      /**
# Line 1305 | Line 2930 | public class ConcurrentHashMapV8<K, V>
2930       * reflect any modifications subsequent to construction.
2931       */
2932      public Set<Map.Entry<K,V>> entrySet() {
2933 <        Set<Map.Entry<K,V>> es = entrySet;
2934 <        return (es != null) ? es : (entrySet = new EntrySet());
2933 >        EntrySetView<K,V> es = entrySet;
2934 >        return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2935      }
2936  
2937      /**
# Line 1316 | Line 2941 | public class ConcurrentHashMapV8<K, V>
2941       * @see #keySet()
2942       */
2943      public Enumeration<K> keys() {
2944 <        return new KeyIterator();
2944 >        return new KeyIterator<K,V>(this);
2945      }
2946  
2947      /**
# Line 1326 | Line 2951 | public class ConcurrentHashMapV8<K, V>
2951       * @see #values()
2952       */
2953      public Enumeration<V> elements() {
2954 <        return new ValueIterator();
2954 >        return new ValueIterator<K,V>(this);
2955 >    }
2956 >
2957 >    /**
2958 >     * Returns a partitionable iterator of the keys in this map.
2959 >     *
2960 >     * @return a partitionable iterator of the keys in this map
2961 >     */
2962 >    public Spliterator<K> keySpliterator() {
2963 >        return new KeyIterator<K,V>(this);
2964 >    }
2965 >
2966 >    /**
2967 >     * Returns a partitionable iterator of the values in this map.
2968 >     *
2969 >     * @return a partitionable iterator of the values in this map
2970 >     */
2971 >    public Spliterator<V> valueSpliterator() {
2972 >        return new ValueIterator<K,V>(this);
2973 >    }
2974 >
2975 >    /**
2976 >     * Returns a partitionable iterator of the entries in this map.
2977 >     *
2978 >     * @return a partitionable iterator of the entries in this map
2979 >     */
2980 >    public Spliterator<Map.Entry<K,V>> entrySpliterator() {
2981 >        return new EntryIterator<K,V>(this);
2982      }
2983  
2984      /**
# Line 1337 | Line 2989 | public class ConcurrentHashMapV8<K, V>
2989       * @return the hash code value for this map
2990       */
2991      public int hashCode() {
2992 <        return new HashIterator().mapHashCode();
2992 >        int h = 0;
2993 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2994 >        V v;
2995 >        while ((v = it.advance()) != null) {
2996 >            h += it.nextKey.hashCode() ^ v.hashCode();
2997 >        }
2998 >        return h;
2999      }
3000  
3001      /**
# Line 1352 | Line 3010 | public class ConcurrentHashMapV8<K, V>
3010       * @return a string representation of this map
3011       */
3012      public String toString() {
3013 <        return new HashIterator().mapToString();
3013 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3014 >        StringBuilder sb = new StringBuilder();
3015 >        sb.append('{');
3016 >        V v;
3017 >        if ((v = it.advance()) != null) {
3018 >            for (;;) {
3019 >                Object k = it.nextKey;
3020 >                sb.append(k == this ? "(this Map)" : k);
3021 >                sb.append('=');
3022 >                sb.append(v == this ? "(this Map)" : v);
3023 >                if ((v = it.advance()) == null)
3024 >                    break;
3025 >                sb.append(',').append(' ');
3026 >            }
3027 >        }
3028 >        return sb.append('}').toString();
3029      }
3030  
3031      /**
# Line 1366 | Line 3039 | public class ConcurrentHashMapV8<K, V>
3039       * @return {@code true} if the specified object is equal to this map
3040       */
3041      public boolean equals(Object o) {
3042 <        if (o == this)
3043 <            return true;
3044 <        if (!(o instanceof Map))
3045 <            return false;
3046 <        Map<?,?> m = (Map<?,?>) o;
3047 <        try {
3048 <            for (Map.Entry<K,V> e : this.entrySet())
3049 <                if (! e.getValue().equals(m.get(e.getKey())))
3042 >        if (o != this) {
3043 >            if (!(o instanceof Map))
3044 >                return false;
3045 >            Map<?,?> m = (Map<?,?>) o;
3046 >            Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3047 >            V val;
3048 >            while ((val = it.advance()) != null) {
3049 >                Object v = m.get(it.nextKey);
3050 >                if (v == null || (v != val && !v.equals(val)))
3051                      return false;
3052 +            }
3053              for (Map.Entry<?,?> e : m.entrySet()) {
3054 <                Object k = e.getKey();
3055 <                Object v = e.getValue();
3056 <                if (k == null || v == null || !v.equals(get(k)))
3054 >                Object mk, mv, v;
3055 >                if ((mk = e.getKey()) == null ||
3056 >                    (mv = e.getValue()) == null ||
3057 >                    (v = internalGet(mk)) == null ||
3058 >                    (mv != v && !mv.equals(v)))
3059                      return false;
3060              }
1384            return true;
1385        } catch (ClassCastException unused) {
1386            return false;
1387        } catch (NullPointerException unused) {
1388            return false;
3061          }
3062 +        return true;
3063      }
3064  
3065 <    /**
1393 <     * Custom Entry class used by EntryIterator.next(), that relays
1394 <     * setValue changes to the underlying map.
1395 <     */
1396 <    final class WriteThroughEntry extends AbstractMap.SimpleEntry<K,V> {
1397 <        @SuppressWarnings("unchecked")
1398 <        WriteThroughEntry(Object k, Object v) {
1399 <            super((K)k, (V)v);
1400 <        }
3065 >    /* ----------------Iterators -------------- */
3066  
3067 <        /**
3068 <         * Sets our entry's value and writes through to the map. The
3069 <         * value to return is somewhat arbitrary here. Since a
3070 <         * WriteThroughEntry does not necessarily track asynchronous
3071 <         * changes, the most recent "previous" value could be
3072 <         * different from what we return (or could even have been
3073 <         * removed in which case the put will re-establish). We do not
3074 <         * and cannot guarantee more.
3075 <         */
3076 <        public V setValue(V value) {
3077 <            if (value == null) throw new NullPointerException();
3078 <            V v = super.setValue(value);
3079 <            ConcurrentHashMapV8.this.put(getKey(), value);
3080 <            return v;
3067 >    @SuppressWarnings("serial") static final class KeyIterator<K,V>
3068 >        extends Traverser<K,V,Object>
3069 >        implements Spliterator<K>, Enumeration<K> {
3070 >        KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3071 >        KeyIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3072 >            super(map, it, -1);
3073 >        }
3074 >        public KeyIterator<K,V> split() {
3075 >            if (nextKey != null)
3076 >                throw new IllegalStateException();
3077 >            return new KeyIterator<K,V>(map, this);
3078 >        }
3079 >        @SuppressWarnings("unchecked") public final K next() {
3080 >            if (nextVal == null && advance() == null)
3081 >                throw new NoSuchElementException();
3082 >            Object k = nextKey;
3083 >            nextVal = null;
3084 >            return (K) k;
3085          }
1417    }
1418
1419    final class KeyIterator extends HashIterator
1420        implements Iterator<K>, Enumeration<K> {
1421        @SuppressWarnings("unchecked")
1422        public final K next()        { return (K)super.nextKey(); }
1423        @SuppressWarnings("unchecked")
1424        public final K nextElement() { return (K)super.nextKey(); }
1425    }
1426
1427    final class ValueIterator extends HashIterator
1428        implements Iterator<V>, Enumeration<V> {
1429        @SuppressWarnings("unchecked")
1430        public final V next()        { return (V)super.nextValue(); }
1431        @SuppressWarnings("unchecked")
1432        public final V nextElement() { return (V)super.nextValue(); }
1433    }
3086  
3087 <    final class EntryIterator extends HashIterator
1436 <        implements Iterator<Entry<K,V>> {
1437 <        public final Map.Entry<K,V> next() { return super.nextEntry(); }
3087 >        public final K nextElement() { return next(); }
3088      }
3089  
3090 <    final class KeySet extends AbstractSet<K> {
3091 <        public int size() {
3092 <            return ConcurrentHashMapV8.this.size();
3093 <        }
3094 <        public boolean isEmpty() {
3095 <            return ConcurrentHashMapV8.this.isEmpty();
1446 <        }
1447 <        public void clear() {
1448 <            ConcurrentHashMapV8.this.clear();
3090 >    @SuppressWarnings("serial") static final class ValueIterator<K,V>
3091 >        extends Traverser<K,V,Object>
3092 >        implements Spliterator<V>, Enumeration<V> {
3093 >        ValueIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3094 >        ValueIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3095 >            super(map, it, -1);
3096          }
3097 <        public Iterator<K> iterator() {
3098 <            return new KeyIterator();
3099 <        }
3100 <        public boolean contains(Object o) {
1454 <            return ConcurrentHashMapV8.this.containsKey(o);
3097 >        public ValueIterator<K,V> split() {
3098 >            if (nextKey != null)
3099 >                throw new IllegalStateException();
3100 >            return new ValueIterator<K,V>(map, this);
3101          }
3102 <        public boolean remove(Object o) {
3103 <            return ConcurrentHashMapV8.this.remove(o) != null;
3102 >
3103 >        public final V next() {
3104 >            V v;
3105 >            if ((v = nextVal) == null && (v = advance()) == null)
3106 >                throw new NoSuchElementException();
3107 >            nextVal = null;
3108 >            return v;
3109          }
3110 +
3111 +        public final V nextElement() { return next(); }
3112      }
3113  
3114 <    final class Values extends AbstractCollection<V> {
3115 <        public int size() {
3116 <            return ConcurrentHashMapV8.this.size();
3114 >    @SuppressWarnings("serial") static final class EntryIterator<K,V>
3115 >        extends Traverser<K,V,Object>
3116 >        implements Spliterator<Map.Entry<K,V>> {
3117 >        EntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3118 >        EntryIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3119 >            super(map, it, -1);
3120          }
3121 <        public boolean isEmpty() {
3122 <            return ConcurrentHashMapV8.this.isEmpty();
3123 <        }
3124 <        public void clear() {
1469 <            ConcurrentHashMapV8.this.clear();
1470 <        }
1471 <        public Iterator<V> iterator() {
1472 <            return new ValueIterator();
3121 >        public EntryIterator<K,V> split() {
3122 >            if (nextKey != null)
3123 >                throw new IllegalStateException();
3124 >            return new EntryIterator<K,V>(map, this);
3125          }
3126 <        public boolean contains(Object o) {
3127 <            return ConcurrentHashMapV8.this.containsValue(o);
3126 >
3127 >        @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3128 >            V v;
3129 >            if ((v = nextVal) == null && (v = advance()) == null)
3130 >                throw new NoSuchElementException();
3131 >            Object k = nextKey;
3132 >            nextVal = null;
3133 >            return new MapEntry<K,V>((K)k, v, map);
3134          }
3135      }
3136  
3137 <    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
3138 <        public int size() {
3139 <            return ConcurrentHashMapV8.this.size();
3140 <        }
3141 <        public boolean isEmpty() {
3142 <            return ConcurrentHashMapV8.this.isEmpty();
3143 <        }
3144 <        public void clear() {
3145 <            ConcurrentHashMapV8.this.clear();
3146 <        }
3147 <        public Iterator<Map.Entry<K,V>> iterator() {
1490 <            return new EntryIterator();
3137 >    /**
3138 >     * Exported Entry for iterators
3139 >     */
3140 >    static final class MapEntry<K,V> implements Map.Entry<K, V> {
3141 >        final K key; // non-null
3142 >        V val;       // non-null
3143 >        final ConcurrentHashMapV8<K, V> map;
3144 >        MapEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
3145 >            this.key = key;
3146 >            this.val = val;
3147 >            this.map = map;
3148          }
3149 <        public boolean contains(Object o) {
3150 <            if (!(o instanceof Map.Entry))
3151 <                return false;
3152 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
3153 <            V v = ConcurrentHashMapV8.this.get(e.getKey());
3154 <            return v != null && v.equals(e.getValue());
3149 >        public final K getKey()       { return key; }
3150 >        public final V getValue()     { return val; }
3151 >        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
3152 >        public final String toString(){ return key + "=" + val; }
3153 >
3154 >        public final boolean equals(Object o) {
3155 >            Object k, v; Map.Entry<?,?> e;
3156 >            return ((o instanceof Map.Entry) &&
3157 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3158 >                    (v = e.getValue()) != null &&
3159 >                    (k == key || k.equals(key)) &&
3160 >                    (v == val || v.equals(val)));
3161          }
3162 <        public boolean remove(Object o) {
3163 <            if (!(o instanceof Map.Entry))
3164 <                return false;
3165 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
3166 <            return ConcurrentHashMapV8.this.remove(e.getKey(), e.getValue());
3162 >
3163 >        /**
3164 >         * Sets our entry's value and writes through to the map. The
3165 >         * value to return is somewhat arbitrary here. Since we do not
3166 >         * necessarily track asynchronous changes, the most recent
3167 >         * "previous" value could be different from what we return (or
3168 >         * could even have been removed in which case the put will
3169 >         * re-establish). We do not and cannot guarantee more.
3170 >         */
3171 >        public final V setValue(V value) {
3172 >            if (value == null) throw new NullPointerException();
3173 >            V v = val;
3174 >            val = value;
3175 >            map.put(key, value);
3176 >            return v;
3177          }
3178      }
3179  
3180 +    /**
3181 +     * Returns exportable snapshot entry for the given key and value
3182 +     * when write-through can't or shouldn't be used.
3183 +     */
3184 +    static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3185 +        return new AbstractMap.SimpleEntry<K,V>(k, v);
3186 +    }
3187 +
3188      /* ---------------- Serialization Support -------------- */
3189  
3190      /**
3191 <     * Helper class used in previous version, declared for the sake of
3192 <     * serialization compatibility
3191 >     * Stripped-down version of helper class used in previous version,
3192 >     * declared for the sake of serialization compatibility
3193       */
3194 <    static class Segment<K,V> extends java.util.concurrent.locks.ReentrantLock
1514 <        implements Serializable {
3194 >    static class Segment<K,V> implements Serializable {
3195          private static final long serialVersionUID = 2249069246763182397L;
3196          final float loadFactor;
3197          Segment(float lf) { this.loadFactor = lf; }
# Line 1526 | Line 3206 | public class ConcurrentHashMapV8<K, V>
3206       * for each key-value mapping, followed by a null pair.
3207       * The key-value mappings are emitted in no particular order.
3208       */
3209 <    @SuppressWarnings("unchecked")
3210 <    private void writeObject(java.io.ObjectOutputStream s)
3211 <            throws java.io.IOException {
3209 >    @SuppressWarnings("unchecked") private void writeObject
3210 >        (java.io.ObjectOutputStream s)
3211 >        throws java.io.IOException {
3212          if (segments == null) { // for serialization compatibility
3213              segments = (Segment<K,V>[])
3214                  new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3215              for (int i = 0; i < segments.length; ++i)
3216 <                segments[i] = new Segment<K,V>(loadFactor);
3216 >                segments[i] = new Segment<K,V>(LOAD_FACTOR);
3217          }
3218          s.defaultWriteObject();
3219 <        new HashIterator().writeEntries(s);
3219 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3220 >        V v;
3221 >        while ((v = it.advance()) != null) {
3222 >            s.writeObject(it.nextKey);
3223 >            s.writeObject(v);
3224 >        }
3225          s.writeObject(null);
3226          s.writeObject(null);
3227          segments = null; // throw away
# Line 1546 | Line 3231 | public class ConcurrentHashMapV8<K, V>
3231       * Reconstitutes the instance from a stream (that is, deserializes it).
3232       * @param s the stream
3233       */
3234 <    @SuppressWarnings("unchecked")
3235 <    private void readObject(java.io.ObjectInputStream s)
3236 <            throws java.io.IOException, ClassNotFoundException {
3234 >    @SuppressWarnings("unchecked") private void readObject
3235 >        (java.io.ObjectInputStream s)
3236 >        throws java.io.IOException, ClassNotFoundException {
3237          s.defaultReadObject();
1553        // find load factor in a segment, if one exists
1554        if (segments != null && segments.length != 0)
1555            this.loadFactor = segments[0].loadFactor;
1556        else
1557            this.loadFactor = DEFAULT_LOAD_FACTOR;
1558        this.initCap = DEFAULT_CAPACITY;
1559        LongAdder ct = new LongAdder(); // force final field write
1560        UNSAFE.putObjectVolatile(this, counterOffset, ct);
3238          this.segments = null; // unneeded
3239  
3240 <        // Read the keys and values, and put the mappings in the table
3240 >        // Create all nodes, then place in table once size is known
3241 >        long size = 0L;
3242 >        Node<V> p = null;
3243          for (;;) {
3244 <            K key = (K) s.readObject();
3245 <            V value = (V) s.readObject();
3246 <            if (key == null)
3244 >            K k = (K) s.readObject();
3245 >            V v = (V) s.readObject();
3246 >            if (k != null && v != null) {
3247 >                int h = spread(k.hashCode());
3248 >                p = new Node<V>(h, k, v, p);
3249 >                ++size;
3250 >            }
3251 >            else
3252                  break;
3253 <            put(key, value);
3253 >        }
3254 >        if (p != null) {
3255 >            boolean init = false;
3256 >            int n;
3257 >            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3258 >                n = MAXIMUM_CAPACITY;
3259 >            else {
3260 >                int sz = (int)size;
3261 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
3262 >            }
3263 >            int sc = sizeCtl;
3264 >            boolean collide = false;
3265 >            if (n > sc &&
3266 >                U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3267 >                try {
3268 >                    if (table == null) {
3269 >                        init = true;
3270 >                        @SuppressWarnings("rawtypes") Node[] rt = new Node[n];
3271 >                        Node<V>[] tab = (Node<V>[])rt;
3272 >                        int mask = n - 1;
3273 >                        while (p != null) {
3274 >                            int j = p.hash & mask;
3275 >                            Node<V> next = p.next;
3276 >                            Node<V> q = p.next = tabAt(tab, j);
3277 >                            setTabAt(tab, j, p);
3278 >                            if (!collide && q != null && q.hash == p.hash)
3279 >                                collide = true;
3280 >                            p = next;
3281 >                        }
3282 >                        table = tab;
3283 >                        addCount(size, -1);
3284 >                        sc = n - (n >>> 2);
3285 >                    }
3286 >                } finally {
3287 >                    sizeCtl = sc;
3288 >                }
3289 >                if (collide) { // rescan and convert to TreeBins
3290 >                    Node<V>[] tab = table;
3291 >                    for (int i = 0; i < tab.length; ++i) {
3292 >                        int c = 0;
3293 >                        for (Node<V> e = tabAt(tab, i); e != null; e = e.next) {
3294 >                            if (++c > TREE_THRESHOLD &&
3295 >                                (e.key instanceof Comparable)) {
3296 >                                replaceWithTreeBin(tab, i, e.key);
3297 >                                break;
3298 >                            }
3299 >                        }
3300 >                    }
3301 >                }
3302 >            }
3303 >            if (!init) { // Can only happen if unsafely published.
3304 >                while (p != null) {
3305 >                    internalPut((K)p.key, p.val, false);
3306 >                    p = p.next;
3307 >                }
3308 >            }
3309 >        }
3310 >    }
3311 >
3312 >    // -------------------------------------------------------
3313 >
3314 >    // Sams
3315 >    /** Interface describing a void action of one argument */
3316 >    public interface Action<A> { void apply(A a); }
3317 >    /** Interface describing a void action of two arguments */
3318 >    public interface BiAction<A,B> { void apply(A a, B b); }
3319 >    /** Interface describing a function of one argument */
3320 >    public interface Fun<A,T> { T apply(A a); }
3321 >    /** Interface describing a function of two arguments */
3322 >    public interface BiFun<A,B,T> { T apply(A a, B b); }
3323 >    /** Interface describing a function of no arguments */
3324 >    public interface Generator<T> { T apply(); }
3325 >    /** Interface describing a function mapping its argument to a double */
3326 >    public interface ObjectToDouble<A> { double apply(A a); }
3327 >    /** Interface describing a function mapping its argument to a long */
3328 >    public interface ObjectToLong<A> { long apply(A a); }
3329 >    /** Interface describing a function mapping its argument to an int */
3330 >    public interface ObjectToInt<A> {int apply(A a); }
3331 >    /** Interface describing a function mapping two arguments to a double */
3332 >    public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3333 >    /** Interface describing a function mapping two arguments to a long */
3334 >    public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3335 >    /** Interface describing a function mapping two arguments to an int */
3336 >    public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3337 >    /** Interface describing a function mapping a double to a double */
3338 >    public interface DoubleToDouble { double apply(double a); }
3339 >    /** Interface describing a function mapping a long to a long */
3340 >    public interface LongToLong { long apply(long a); }
3341 >    /** Interface describing a function mapping an int to an int */
3342 >    public interface IntToInt { int apply(int a); }
3343 >    /** Interface describing a function mapping two doubles to a double */
3344 >    public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3345 >    /** Interface describing a function mapping two longs to a long */
3346 >    public interface LongByLongToLong { long apply(long a, long b); }
3347 >    /** Interface describing a function mapping two ints to an int */
3348 >    public interface IntByIntToInt { int apply(int a, int b); }
3349 >
3350 >
3351 >    // -------------------------------------------------------
3352 >
3353 >    // Sequential bulk operations
3354 >
3355 >    /**
3356 >     * Performs the given action for each (key, value).
3357 >     *
3358 >     * @param action the action
3359 >     */
3360 >    @SuppressWarnings("unchecked") public void forEachSequentially
3361 >        (BiAction<K,V> action) {
3362 >        if (action == null) throw new NullPointerException();
3363 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3364 >        V v;
3365 >        while ((v = it.advance()) != null)
3366 >            action.apply((K)it.nextKey, v);
3367 >    }
3368 >
3369 >    /**
3370 >     * Performs the given action for each non-null transformation
3371 >     * of each (key, value).
3372 >     *
3373 >     * @param transformer a function returning the transformation
3374 >     * for an element, or null of there is no transformation (in
3375 >     * which case the action is not applied).
3376 >     * @param action the action
3377 >     */
3378 >    @SuppressWarnings("unchecked") public <U> void forEachSequentially
3379 >        (BiFun<? super K, ? super V, ? extends U> transformer,
3380 >         Action<U> action) {
3381 >        if (transformer == null || action == null)
3382 >            throw new NullPointerException();
3383 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3384 >        V v; U u;
3385 >        while ((v = it.advance()) != null) {
3386 >            if ((u = transformer.apply((K)it.nextKey, v)) != null)
3387 >                action.apply(u);
3388 >        }
3389 >    }
3390 >
3391 >    /**
3392 >     * Returns a non-null result from applying the given search
3393 >     * function on each (key, value), or null if none.
3394 >     *
3395 >     * @param searchFunction a function returning a non-null
3396 >     * result on success, else null
3397 >     * @return a non-null result from applying the given search
3398 >     * function on each (key, value), or null if none
3399 >     */
3400 >    @SuppressWarnings("unchecked") public <U> U searchSequentially
3401 >        (BiFun<? super K, ? super V, ? extends U> searchFunction) {
3402 >        if (searchFunction == null) throw new NullPointerException();
3403 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3404 >        V v; U u;
3405 >        while ((v = it.advance()) != null) {
3406 >            if ((u = searchFunction.apply((K)it.nextKey, v)) != null)
3407 >                return u;
3408 >        }
3409 >        return null;
3410 >    }
3411 >
3412 >    /**
3413 >     * Returns the result of accumulating the given transformation
3414 >     * of all (key, value) pairs using the given reducer to
3415 >     * combine values, or null if none.
3416 >     *
3417 >     * @param transformer a function returning the transformation
3418 >     * for an element, or null of there is no transformation (in
3419 >     * which case it is not combined).
3420 >     * @param reducer a commutative associative combining function
3421 >     * @return the result of accumulating the given transformation
3422 >     * of all (key, value) pairs
3423 >     */
3424 >    @SuppressWarnings("unchecked") public <U> U reduceSequentially
3425 >        (BiFun<? super K, ? super V, ? extends U> transformer,
3426 >         BiFun<? super U, ? super U, ? extends U> reducer) {
3427 >        if (transformer == null || reducer == null)
3428 >            throw new NullPointerException();
3429 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3430 >        U r = null, u; V v;
3431 >        while ((v = it.advance()) != null) {
3432 >            if ((u = transformer.apply((K)it.nextKey, v)) != null)
3433 >                r = (r == null) ? u : reducer.apply(r, u);
3434 >        }
3435 >        return r;
3436 >    }
3437 >
3438 >    /**
3439 >     * Returns the result of accumulating the given transformation
3440 >     * of all (key, value) pairs using the given reducer to
3441 >     * combine values, and the given basis as an identity value.
3442 >     *
3443 >     * @param transformer a function returning the transformation
3444 >     * for an element
3445 >     * @param basis the identity (initial default value) for the reduction
3446 >     * @param reducer a commutative associative combining function
3447 >     * @return the result of accumulating the given transformation
3448 >     * of all (key, value) pairs
3449 >     */
3450 >    @SuppressWarnings("unchecked") public double reduceToDoubleSequentially
3451 >        (ObjectByObjectToDouble<? super K, ? super V> transformer,
3452 >         double basis,
3453 >         DoubleByDoubleToDouble reducer) {
3454 >        if (transformer == null || reducer == null)
3455 >            throw new NullPointerException();
3456 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3457 >        double r = basis; V v;
3458 >        while ((v = it.advance()) != null)
3459 >            r = reducer.apply(r, transformer.apply((K)it.nextKey, v));
3460 >        return r;
3461 >    }
3462 >
3463 >    /**
3464 >     * Returns the result of accumulating the given transformation
3465 >     * of all (key, value) pairs using the given reducer to
3466 >     * combine values, and the given basis as an identity value.
3467 >     *
3468 >     * @param transformer a function returning the transformation
3469 >     * for an element
3470 >     * @param basis the identity (initial default value) for the reduction
3471 >     * @param reducer a commutative associative combining function
3472 >     * @return the result of accumulating the given transformation
3473 >     * of all (key, value) pairs
3474 >     */
3475 >    @SuppressWarnings("unchecked") public long reduceToLongSequentially
3476 >        (ObjectByObjectToLong<? super K, ? super V> transformer,
3477 >         long basis,
3478 >         LongByLongToLong reducer) {
3479 >        if (transformer == null || reducer == null)
3480 >            throw new NullPointerException();
3481 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3482 >        long r = basis; V v;
3483 >        while ((v = it.advance()) != null)
3484 >            r = reducer.apply(r, transformer.apply((K)it.nextKey, v));
3485 >        return r;
3486 >    }
3487 >
3488 >    /**
3489 >     * Returns the result of accumulating the given transformation
3490 >     * of all (key, value) pairs using the given reducer to
3491 >     * combine values, and the given basis as an identity value.
3492 >     *
3493 >     * @param transformer a function returning the transformation
3494 >     * for an element
3495 >     * @param basis the identity (initial default value) for the reduction
3496 >     * @param reducer a commutative associative combining function
3497 >     * @return the result of accumulating the given transformation
3498 >     * of all (key, value) pairs
3499 >     */
3500 >    @SuppressWarnings("unchecked") public int reduceToIntSequentially
3501 >        (ObjectByObjectToInt<? super K, ? super V> transformer,
3502 >         int basis,
3503 >         IntByIntToInt reducer) {
3504 >        if (transformer == null || reducer == null)
3505 >            throw new NullPointerException();
3506 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3507 >        int r = basis; V v;
3508 >        while ((v = it.advance()) != null)
3509 >            r = reducer.apply(r, transformer.apply((K)it.nextKey, v));
3510 >        return r;
3511 >    }
3512 >
3513 >    /**
3514 >     * Performs the given action for each key.
3515 >     *
3516 >     * @param action the action
3517 >     */
3518 >    @SuppressWarnings("unchecked") public void forEachKeySequentially
3519 >        (Action<K> action) {
3520 >        if (action == null) throw new NullPointerException();
3521 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3522 >        while (it.advance() != null)
3523 >            action.apply((K)it.nextKey);
3524 >    }
3525 >
3526 >    /**
3527 >     * Performs the given action for each non-null transformation
3528 >     * of each key.
3529 >     *
3530 >     * @param transformer a function returning the transformation
3531 >     * for an element, or null of there is no transformation (in
3532 >     * which case the action is not applied).
3533 >     * @param action the action
3534 >     */
3535 >    @SuppressWarnings("unchecked") public <U> void forEachKeySequentially
3536 >        (Fun<? super K, ? extends U> transformer,
3537 >         Action<U> action) {
3538 >        if (transformer == null || action == null)
3539 >            throw new NullPointerException();
3540 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3541 >        U u;
3542 >        while (it.advance() != null) {
3543 >            if ((u = transformer.apply((K)it.nextKey)) != null)
3544 >                action.apply(u);
3545 >        }
3546 >        ForkJoinTasks.forEachKey
3547 >            (this, transformer, action).invoke();
3548 >    }
3549 >
3550 >    /**
3551 >     * Returns a non-null result from applying the given search
3552 >     * function on each key, or null if none.
3553 >     *
3554 >     * @param searchFunction a function returning a non-null
3555 >     * result on success, else null
3556 >     * @return a non-null result from applying the given search
3557 >     * function on each key, or null if none
3558 >     */
3559 >    @SuppressWarnings("unchecked") public <U> U searchKeysSequentially
3560 >        (Fun<? super K, ? extends U> searchFunction) {
3561 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3562 >        U u;
3563 >        while (it.advance() != null) {
3564 >            if ((u = searchFunction.apply((K)it.nextKey)) != null)
3565 >                return u;
3566 >        }
3567 >        return null;
3568 >    }
3569 >
3570 >    /**
3571 >     * Returns the result of accumulating all keys using the given
3572 >     * reducer to combine values, or null if none.
3573 >     *
3574 >     * @param reducer a commutative associative combining function
3575 >     * @return the result of accumulating all keys using the given
3576 >     * reducer to combine values, or null if none
3577 >     */
3578 >    @SuppressWarnings("unchecked") public K reduceKeysSequentially
3579 >        (BiFun<? super K, ? super K, ? extends K> reducer) {
3580 >        if (reducer == null) throw new NullPointerException();
3581 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3582 >        K r = null;
3583 >        while (it.advance() != null) {
3584 >            K u = (K)it.nextKey;
3585 >            r = (r == null) ? u : reducer.apply(r, u);
3586 >        }
3587 >        return r;
3588 >    }
3589 >
3590 >    /**
3591 >     * Returns the result of accumulating the given transformation
3592 >     * of all keys using the given reducer to combine values, or
3593 >     * null if none.
3594 >     *
3595 >     * @param transformer a function returning the transformation
3596 >     * for an element, or null of there is no transformation (in
3597 >     * which case it is not combined).
3598 >     * @param reducer a commutative associative combining function
3599 >     * @return the result of accumulating the given transformation
3600 >     * of all keys
3601 >     */
3602 >    @SuppressWarnings("unchecked") public <U> U reduceKeysSequentially
3603 >        (Fun<? super K, ? extends U> transformer,
3604 >         BiFun<? super U, ? super U, ? extends U> reducer) {
3605 >        if (transformer == null || reducer == null)
3606 >            throw new NullPointerException();
3607 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3608 >        U r = null, u;
3609 >        while (it.advance() != null) {
3610 >            if ((u = transformer.apply((K)it.nextKey)) != null)
3611 >                r = (r == null) ? u : reducer.apply(r, u);
3612 >        }
3613 >        return r;
3614 >    }
3615 >
3616 >    /**
3617 >     * Returns the result of accumulating the given transformation
3618 >     * of all keys using the given reducer to combine values, and
3619 >     * the given basis as an identity value.
3620 >     *
3621 >     * @param transformer a function returning the transformation
3622 >     * for an element
3623 >     * @param basis the identity (initial default value) for the reduction
3624 >     * @param reducer a commutative associative combining function
3625 >     * @return  the result of accumulating the given transformation
3626 >     * of all keys
3627 >     */
3628 >    @SuppressWarnings("unchecked") public double reduceKeysToDoubleSequentially
3629 >        (ObjectToDouble<? super K> transformer,
3630 >         double basis,
3631 >         DoubleByDoubleToDouble reducer) {
3632 >        if (transformer == null || reducer == null)
3633 >            throw new NullPointerException();
3634 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3635 >        double r = basis;
3636 >        while (it.advance() != null)
3637 >            r = reducer.apply(r, transformer.apply((K)it.nextKey));
3638 >        return r;
3639 >    }
3640 >
3641 >    /**
3642 >     * Returns the result of accumulating the given transformation
3643 >     * of all keys using the given reducer to combine values, and
3644 >     * the given basis as an identity value.
3645 >     *
3646 >     * @param transformer a function returning the transformation
3647 >     * for an element
3648 >     * @param basis the identity (initial default value) for the reduction
3649 >     * @param reducer a commutative associative combining function
3650 >     * @return the result of accumulating the given transformation
3651 >     * of all keys
3652 >     */
3653 >    @SuppressWarnings("unchecked") public long reduceKeysToLongSequentially
3654 >        (ObjectToLong<? super K> transformer,
3655 >         long basis,
3656 >         LongByLongToLong reducer) {
3657 >        if (transformer == null || reducer == null)
3658 >            throw new NullPointerException();
3659 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3660 >        long r = basis;
3661 >        while (it.advance() != null)
3662 >            r = reducer.apply(r, transformer.apply((K)it.nextKey));
3663 >        return r;
3664 >    }
3665 >
3666 >    /**
3667 >     * Returns the result of accumulating the given transformation
3668 >     * of all keys using the given reducer to combine values, and
3669 >     * the given basis as an identity value.
3670 >     *
3671 >     * @param transformer a function returning the transformation
3672 >     * for an element
3673 >     * @param basis the identity (initial default value) for the reduction
3674 >     * @param reducer a commutative associative combining function
3675 >     * @return the result of accumulating the given transformation
3676 >     * of all keys
3677 >     */
3678 >    @SuppressWarnings("unchecked") public int reduceKeysToIntSequentially
3679 >        (ObjectToInt<? super K> transformer,
3680 >         int basis,
3681 >         IntByIntToInt reducer) {
3682 >        if (transformer == null || reducer == null)
3683 >            throw new NullPointerException();
3684 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3685 >        int r = basis;
3686 >        while (it.advance() != null)
3687 >            r = reducer.apply(r, transformer.apply((K)it.nextKey));
3688 >        return r;
3689 >    }
3690 >
3691 >    /**
3692 >     * Performs the given action for each value.
3693 >     *
3694 >     * @param action the action
3695 >     */
3696 >    public void forEachValueSequentially(Action<V> action) {
3697 >        if (action == null) throw new NullPointerException();
3698 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3699 >        V v;
3700 >        while ((v = it.advance()) != null)
3701 >            action.apply(v);
3702 >    }
3703 >
3704 >    /**
3705 >     * Performs the given action for each non-null transformation
3706 >     * of each value.
3707 >     *
3708 >     * @param transformer a function returning the transformation
3709 >     * for an element, or null of there is no transformation (in
3710 >     * which case the action is not applied).
3711 >     */
3712 >    public <U> void forEachValueSequentially
3713 >        (Fun<? super V, ? extends U> transformer,
3714 >         Action<U> action) {
3715 >        if (transformer == null || action == null)
3716 >            throw new NullPointerException();
3717 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3718 >        V v; U u;
3719 >        while ((v = it.advance()) != null) {
3720 >            if ((u = transformer.apply(v)) != null)
3721 >                action.apply(u);
3722 >        }
3723 >    }
3724 >
3725 >    /**
3726 >     * Returns a non-null result from applying the given search
3727 >     * function on each value, or null if none.
3728 >     *
3729 >     * @param searchFunction a function returning a non-null
3730 >     * result on success, else null
3731 >     * @return a non-null result from applying the given search
3732 >     * function on each value, or null if none
3733 >     */
3734 >    public <U> U searchValuesSequentially
3735 >        (Fun<? super V, ? extends U> searchFunction) {
3736 >        if (searchFunction == null) throw new NullPointerException();
3737 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3738 >        V v; U u;
3739 >        while ((v = it.advance()) != null) {
3740 >            if ((u = searchFunction.apply(v)) != null)
3741 >                return u;
3742 >        }
3743 >        return null;
3744 >    }
3745 >
3746 >    /**
3747 >     * Returns the result of accumulating all values using the
3748 >     * given reducer to combine values, or null if none.
3749 >     *
3750 >     * @param reducer a commutative associative combining function
3751 >     * @return  the result of accumulating all values
3752 >     */
3753 >    public V reduceValuesSequentially
3754 >        (BiFun<? super V, ? super V, ? extends V> reducer) {
3755 >        if (reducer == null) throw new NullPointerException();
3756 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3757 >        V r = null; V v;
3758 >        while ((v = it.advance()) != null)
3759 >            r = (r == null) ? v : reducer.apply(r, v);
3760 >        return r;
3761 >    }
3762 >
3763 >    /**
3764 >     * Returns the result of accumulating the given transformation
3765 >     * of all values using the given reducer to combine values, or
3766 >     * null if none.
3767 >     *
3768 >     * @param transformer a function returning the transformation
3769 >     * for an element, or null of there is no transformation (in
3770 >     * which case it is not combined).
3771 >     * @param reducer a commutative associative combining function
3772 >     * @return the result of accumulating the given transformation
3773 >     * of all values
3774 >     */
3775 >    public <U> U reduceValuesSequentially
3776 >        (Fun<? super V, ? extends U> transformer,
3777 >         BiFun<? super U, ? super U, ? extends U> reducer) {
3778 >        if (transformer == null || reducer == null)
3779 >            throw new NullPointerException();
3780 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3781 >        U r = null, u; V v;
3782 >        while ((v = it.advance()) != null) {
3783 >            if ((u = transformer.apply(v)) != null)
3784 >                r = (r == null) ? u : reducer.apply(r, u);
3785 >        }
3786 >        return r;
3787 >    }
3788 >
3789 >    /**
3790 >     * Returns the result of accumulating the given transformation
3791 >     * of all values using the given reducer to combine values,
3792 >     * and the given basis as an identity value.
3793 >     *
3794 >     * @param transformer a function returning the transformation
3795 >     * for an element
3796 >     * @param basis the identity (initial default value) for the reduction
3797 >     * @param reducer a commutative associative combining function
3798 >     * @return the result of accumulating the given transformation
3799 >     * of all values
3800 >     */
3801 >    public double reduceValuesToDoubleSequentially
3802 >        (ObjectToDouble<? super V> transformer,
3803 >         double basis,
3804 >         DoubleByDoubleToDouble reducer) {
3805 >        if (transformer == null || reducer == null)
3806 >            throw new NullPointerException();
3807 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3808 >        double r = basis; V v;
3809 >        while ((v = it.advance()) != null)
3810 >            r = reducer.apply(r, transformer.apply(v));
3811 >        return r;
3812 >    }
3813 >
3814 >    /**
3815 >     * Returns the result of accumulating the given transformation
3816 >     * of all values using the given reducer to combine values,
3817 >     * and the given basis as an identity value.
3818 >     *
3819 >     * @param transformer a function returning the transformation
3820 >     * for an element
3821 >     * @param basis the identity (initial default value) for the reduction
3822 >     * @param reducer a commutative associative combining function
3823 >     * @return the result of accumulating the given transformation
3824 >     * of all values
3825 >     */
3826 >    public long reduceValuesToLongSequentially
3827 >        (ObjectToLong<? super V> transformer,
3828 >         long basis,
3829 >         LongByLongToLong reducer) {
3830 >        if (transformer == null || reducer == null)
3831 >            throw new NullPointerException();
3832 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3833 >        long r = basis; V v;
3834 >        while ((v = it.advance()) != null)
3835 >            r = reducer.apply(r, transformer.apply(v));
3836 >        return r;
3837 >    }
3838 >
3839 >    /**
3840 >     * Returns the result of accumulating the given transformation
3841 >     * of all values using the given reducer to combine values,
3842 >     * and the given basis as an identity value.
3843 >     *
3844 >     * @param transformer a function returning the transformation
3845 >     * for an element
3846 >     * @param basis the identity (initial default value) for the reduction
3847 >     * @param reducer a commutative associative combining function
3848 >     * @return the result of accumulating the given transformation
3849 >     * of all values
3850 >     */
3851 >    public int reduceValuesToIntSequentially
3852 >        (ObjectToInt<? super V> transformer,
3853 >         int basis,
3854 >         IntByIntToInt reducer) {
3855 >        if (transformer == null || reducer == null)
3856 >            throw new NullPointerException();
3857 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3858 >        int r = basis; V v;
3859 >        while ((v = it.advance()) != null)
3860 >            r = reducer.apply(r, transformer.apply(v));
3861 >        return r;
3862 >    }
3863 >
3864 >    /**
3865 >     * Performs the given action for each entry.
3866 >     *
3867 >     * @param action the action
3868 >     */
3869 >    @SuppressWarnings("unchecked") public void forEachEntrySequentially
3870 >        (Action<Map.Entry<K,V>> action) {
3871 >        if (action == null) throw new NullPointerException();
3872 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3873 >        V v;
3874 >        while ((v = it.advance()) != null)
3875 >            action.apply(entryFor((K)it.nextKey, v));
3876 >    }
3877 >
3878 >    /**
3879 >     * Performs the given action for each non-null transformation
3880 >     * of each entry.
3881 >     *
3882 >     * @param transformer a function returning the transformation
3883 >     * for an element, or null of there is no transformation (in
3884 >     * which case the action is not applied).
3885 >     * @param action the action
3886 >     */
3887 >    @SuppressWarnings("unchecked") public <U> void forEachEntrySequentially
3888 >        (Fun<Map.Entry<K,V>, ? extends U> transformer,
3889 >         Action<U> action) {
3890 >        if (transformer == null || action == null)
3891 >            throw new NullPointerException();
3892 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3893 >        V v; U u;
3894 >        while ((v = it.advance()) != null) {
3895 >            if ((u = transformer.apply(entryFor((K)it.nextKey, v))) != null)
3896 >                action.apply(u);
3897 >        }
3898 >    }
3899 >
3900 >    /**
3901 >     * Returns a non-null result from applying the given search
3902 >     * function on each entry, or null if none.
3903 >     *
3904 >     * @param searchFunction a function returning a non-null
3905 >     * result on success, else null
3906 >     * @return a non-null result from applying the given search
3907 >     * function on each entry, or null if none
3908 >     */
3909 >    @SuppressWarnings("unchecked") public <U> U searchEntriesSequentially
3910 >        (Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
3911 >        if (searchFunction == null) throw new NullPointerException();
3912 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3913 >        V v; U u;
3914 >        while ((v = it.advance()) != null) {
3915 >            if ((u = searchFunction.apply(entryFor((K)it.nextKey, v))) != null)
3916 >                return u;
3917 >        }
3918 >        return null;
3919 >    }
3920 >
3921 >    /**
3922 >     * Returns the result of accumulating all entries using the
3923 >     * given reducer to combine values, or null if none.
3924 >     *
3925 >     * @param reducer a commutative associative combining function
3926 >     * @return the result of accumulating all entries
3927 >     */
3928 >    @SuppressWarnings("unchecked") public Map.Entry<K,V> reduceEntriesSequentially
3929 >        (BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3930 >        if (reducer == null) throw new NullPointerException();
3931 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3932 >        Map.Entry<K,V> r = null; V v;
3933 >        while ((v = it.advance()) != null) {
3934 >            Map.Entry<K,V> u = entryFor((K)it.nextKey, v);
3935 >            r = (r == null) ? u : reducer.apply(r, u);
3936 >        }
3937 >        return r;
3938 >    }
3939 >
3940 >    /**
3941 >     * Returns the result of accumulating the given transformation
3942 >     * of all entries using the given reducer to combine values,
3943 >     * or null if none.
3944 >     *
3945 >     * @param transformer a function returning the transformation
3946 >     * for an element, or null of there is no transformation (in
3947 >     * which case it is not combined).
3948 >     * @param reducer a commutative associative combining function
3949 >     * @return the result of accumulating the given transformation
3950 >     * of all entries
3951 >     */
3952 >    @SuppressWarnings("unchecked") public <U> U reduceEntriesSequentially
3953 >        (Fun<Map.Entry<K,V>, ? extends U> transformer,
3954 >         BiFun<? super U, ? super U, ? extends U> reducer) {
3955 >        if (transformer == null || reducer == null)
3956 >            throw new NullPointerException();
3957 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3958 >        U r = null, u; V v;
3959 >        while ((v = it.advance()) != null) {
3960 >            if ((u = transformer.apply(entryFor((K)it.nextKey, v))) != null)
3961 >                r = (r == null) ? u : reducer.apply(r, u);
3962 >        }
3963 >        return r;
3964 >    }
3965 >
3966 >    /**
3967 >     * Returns the result of accumulating the given transformation
3968 >     * of all entries using the given reducer to combine values,
3969 >     * and the given basis as an identity value.
3970 >     *
3971 >     * @param transformer a function returning the transformation
3972 >     * for an element
3973 >     * @param basis the identity (initial default value) for the reduction
3974 >     * @param reducer a commutative associative combining function
3975 >     * @return the result of accumulating the given transformation
3976 >     * of all entries
3977 >     */
3978 >    @SuppressWarnings("unchecked") public double reduceEntriesToDoubleSequentially
3979 >        (ObjectToDouble<Map.Entry<K,V>> transformer,
3980 >         double basis,
3981 >         DoubleByDoubleToDouble reducer) {
3982 >        if (transformer == null || reducer == null)
3983 >            throw new NullPointerException();
3984 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3985 >        double r = basis; V v;
3986 >        while ((v = it.advance()) != null)
3987 >            r = reducer.apply(r, transformer.apply(entryFor((K)it.nextKey, v)));
3988 >        return r;
3989 >    }
3990 >
3991 >    /**
3992 >     * Returns the result of accumulating the given transformation
3993 >     * of all entries using the given reducer to combine values,
3994 >     * and the given basis as an identity value.
3995 >     *
3996 >     * @param transformer a function returning the transformation
3997 >     * for an element
3998 >     * @param basis the identity (initial default value) for the reduction
3999 >     * @param reducer a commutative associative combining function
4000 >     * @return  the result of accumulating the given transformation
4001 >     * of all entries
4002 >     */
4003 >    @SuppressWarnings("unchecked") public long reduceEntriesToLongSequentially
4004 >        (ObjectToLong<Map.Entry<K,V>> transformer,
4005 >         long basis,
4006 >         LongByLongToLong reducer) {
4007 >        if (transformer == null || reducer == null)
4008 >            throw new NullPointerException();
4009 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4010 >        long r = basis; V v;
4011 >        while ((v = it.advance()) != null)
4012 >            r = reducer.apply(r, transformer.apply(entryFor((K)it.nextKey, v)));
4013 >        return r;
4014 >    }
4015 >
4016 >    /**
4017 >     * Returns the result of accumulating the given transformation
4018 >     * of all entries using the given reducer to combine values,
4019 >     * and the given basis as an identity value.
4020 >     *
4021 >     * @param transformer a function returning the transformation
4022 >     * for an element
4023 >     * @param basis the identity (initial default value) for the reduction
4024 >     * @param reducer a commutative associative combining function
4025 >     * @return the result of accumulating the given transformation
4026 >     * of all entries
4027 >     */
4028 >    @SuppressWarnings("unchecked") public int reduceEntriesToIntSequentially
4029 >        (ObjectToInt<Map.Entry<K,V>> transformer,
4030 >         int basis,
4031 >         IntByIntToInt reducer) {
4032 >        if (transformer == null || reducer == null)
4033 >            throw new NullPointerException();
4034 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4035 >        int r = basis; V v;
4036 >        while ((v = it.advance()) != null)
4037 >            r = reducer.apply(r, transformer.apply(entryFor((K)it.nextKey, v)));
4038 >        return r;
4039 >    }
4040 >
4041 >    // Parallel bulk operations
4042 >
4043 >    /**
4044 >     * Performs the given action for each (key, value).
4045 >     *
4046 >     * @param action the action
4047 >     */
4048 >    public void forEachInParallel(BiAction<K,V> action) {
4049 >        ForkJoinTasks.forEach
4050 >            (this, action).invoke();
4051 >    }
4052 >
4053 >    /**
4054 >     * Performs the given action for each non-null transformation
4055 >     * of each (key, value).
4056 >     *
4057 >     * @param transformer a function returning the transformation
4058 >     * for an element, or null of there is no transformation (in
4059 >     * which case the action is not applied).
4060 >     * @param action the action
4061 >     */
4062 >    public <U> void forEachInParallel
4063 >        (BiFun<? super K, ? super V, ? extends U> transformer,
4064 >                            Action<U> action) {
4065 >        ForkJoinTasks.forEach
4066 >            (this, transformer, action).invoke();
4067 >    }
4068 >
4069 >    /**
4070 >     * Returns a non-null result from applying the given search
4071 >     * function on each (key, value), or null if none.  Upon
4072 >     * success, further element processing is suppressed and the
4073 >     * results of any other parallel invocations of the search
4074 >     * function are ignored.
4075 >     *
4076 >     * @param searchFunction a function returning a non-null
4077 >     * result on success, else null
4078 >     * @return a non-null result from applying the given search
4079 >     * function on each (key, value), or null if none
4080 >     */
4081 >    public <U> U searchInParallel
4082 >        (BiFun<? super K, ? super V, ? extends U> searchFunction) {
4083 >        return ForkJoinTasks.search
4084 >            (this, searchFunction).invoke();
4085 >    }
4086 >
4087 >    /**
4088 >     * Returns the result of accumulating the given transformation
4089 >     * of all (key, value) pairs using the given reducer to
4090 >     * combine values, or null if none.
4091 >     *
4092 >     * @param transformer a function returning the transformation
4093 >     * for an element, or null of there is no transformation (in
4094 >     * which case it is not combined).
4095 >     * @param reducer a commutative associative combining function
4096 >     * @return the result of accumulating the given transformation
4097 >     * of all (key, value) pairs
4098 >     */
4099 >    public <U> U reduceInParallel
4100 >        (BiFun<? super K, ? super V, ? extends U> transformer,
4101 >         BiFun<? super U, ? super U, ? extends U> reducer) {
4102 >        return ForkJoinTasks.reduce
4103 >            (this, transformer, reducer).invoke();
4104 >    }
4105 >
4106 >    /**
4107 >     * Returns the result of accumulating the given transformation
4108 >     * of all (key, value) pairs using the given reducer to
4109 >     * combine values, and the given basis as an identity value.
4110 >     *
4111 >     * @param transformer a function returning the transformation
4112 >     * for an element
4113 >     * @param basis the identity (initial default value) for the reduction
4114 >     * @param reducer a commutative associative combining function
4115 >     * @return the result of accumulating the given transformation
4116 >     * of all (key, value) pairs
4117 >     */
4118 >    public double reduceToDoubleInParallel
4119 >        (ObjectByObjectToDouble<? super K, ? super V> transformer,
4120 >         double basis,
4121 >         DoubleByDoubleToDouble reducer) {
4122 >        return ForkJoinTasks.reduceToDouble
4123 >            (this, transformer, basis, reducer).invoke();
4124 >    }
4125 >
4126 >    /**
4127 >     * Returns the result of accumulating the given transformation
4128 >     * of all (key, value) pairs using the given reducer to
4129 >     * combine values, and the given basis as an identity value.
4130 >     *
4131 >     * @param transformer a function returning the transformation
4132 >     * for an element
4133 >     * @param basis the identity (initial default value) for the reduction
4134 >     * @param reducer a commutative associative combining function
4135 >     * @return the result of accumulating the given transformation
4136 >     * of all (key, value) pairs
4137 >     */
4138 >    public long reduceToLongInParallel
4139 >        (ObjectByObjectToLong<? super K, ? super V> transformer,
4140 >         long basis,
4141 >         LongByLongToLong reducer) {
4142 >        return ForkJoinTasks.reduceToLong
4143 >            (this, transformer, basis, reducer).invoke();
4144 >    }
4145 >
4146 >    /**
4147 >     * Returns the result of accumulating the given transformation
4148 >     * of all (key, value) pairs using the given reducer to
4149 >     * combine values, and the given basis as an identity value.
4150 >     *
4151 >     * @param transformer a function returning the transformation
4152 >     * for an element
4153 >     * @param basis the identity (initial default value) for the reduction
4154 >     * @param reducer a commutative associative combining function
4155 >     * @return the result of accumulating the given transformation
4156 >     * of all (key, value) pairs
4157 >     */
4158 >    public int reduceToIntInParallel
4159 >        (ObjectByObjectToInt<? super K, ? super V> transformer,
4160 >         int basis,
4161 >         IntByIntToInt reducer) {
4162 >        return ForkJoinTasks.reduceToInt
4163 >            (this, transformer, basis, reducer).invoke();
4164 >    }
4165 >
4166 >    /**
4167 >     * Performs the given action for each key.
4168 >     *
4169 >     * @param action the action
4170 >     */
4171 >    public void forEachKeyInParallel(Action<K> action) {
4172 >        ForkJoinTasks.forEachKey
4173 >            (this, action).invoke();
4174 >    }
4175 >
4176 >    /**
4177 >     * Performs the given action for each non-null transformation
4178 >     * of each key.
4179 >     *
4180 >     * @param transformer a function returning the transformation
4181 >     * for an element, or null of there is no transformation (in
4182 >     * which case the action is not applied).
4183 >     * @param action the action
4184 >     */
4185 >    public <U> void forEachKeyInParallel
4186 >        (Fun<? super K, ? extends U> transformer,
4187 >         Action<U> action) {
4188 >        ForkJoinTasks.forEachKey
4189 >            (this, transformer, action).invoke();
4190 >    }
4191 >
4192 >    /**
4193 >     * Returns a non-null result from applying the given search
4194 >     * function on each key, or null if none. Upon success,
4195 >     * further element processing is suppressed and the results of
4196 >     * any other parallel invocations of the search function are
4197 >     * ignored.
4198 >     *
4199 >     * @param searchFunction a function returning a non-null
4200 >     * result on success, else null
4201 >     * @return a non-null result from applying the given search
4202 >     * function on each key, or null if none
4203 >     */
4204 >    public <U> U searchKeysInParallel
4205 >        (Fun<? super K, ? extends U> searchFunction) {
4206 >        return ForkJoinTasks.searchKeys
4207 >            (this, searchFunction).invoke();
4208 >    }
4209 >
4210 >    /**
4211 >     * Returns the result of accumulating all keys using the given
4212 >     * reducer to combine values, or null if none.
4213 >     *
4214 >     * @param reducer a commutative associative combining function
4215 >     * @return the result of accumulating all keys using the given
4216 >     * reducer to combine values, or null if none
4217 >     */
4218 >    public K reduceKeysInParallel
4219 >        (BiFun<? super K, ? super K, ? extends K> reducer) {
4220 >        return ForkJoinTasks.reduceKeys
4221 >            (this, reducer).invoke();
4222 >    }
4223 >
4224 >    /**
4225 >     * Returns the result of accumulating the given transformation
4226 >     * of all keys using the given reducer to combine values, or
4227 >     * null if none.
4228 >     *
4229 >     * @param transformer a function returning the transformation
4230 >     * for an element, or null of there is no transformation (in
4231 >     * which case it is not combined).
4232 >     * @param reducer a commutative associative combining function
4233 >     * @return the result of accumulating the given transformation
4234 >     * of all keys
4235 >     */
4236 >    public <U> U reduceKeysInParallel
4237 >        (Fun<? super K, ? extends U> transformer,
4238 >         BiFun<? super U, ? super U, ? extends U> reducer) {
4239 >        return ForkJoinTasks.reduceKeys
4240 >            (this, transformer, reducer).invoke();
4241 >    }
4242 >
4243 >    /**
4244 >     * Returns the result of accumulating the given transformation
4245 >     * of all keys using the given reducer to combine values, and
4246 >     * the given basis as an identity value.
4247 >     *
4248 >     * @param transformer a function returning the transformation
4249 >     * for an element
4250 >     * @param basis the identity (initial default value) for the reduction
4251 >     * @param reducer a commutative associative combining function
4252 >     * @return  the result of accumulating the given transformation
4253 >     * of all keys
4254 >     */
4255 >    public double reduceKeysToDoubleInParallel
4256 >        (ObjectToDouble<? super K> transformer,
4257 >         double basis,
4258 >         DoubleByDoubleToDouble reducer) {
4259 >        return ForkJoinTasks.reduceKeysToDouble
4260 >            (this, transformer, basis, reducer).invoke();
4261 >    }
4262 >
4263 >    /**
4264 >     * Returns the result of accumulating the given transformation
4265 >     * of all keys using the given reducer to combine values, and
4266 >     * the given basis as an identity value.
4267 >     *
4268 >     * @param transformer a function returning the transformation
4269 >     * for an element
4270 >     * @param basis the identity (initial default value) for the reduction
4271 >     * @param reducer a commutative associative combining function
4272 >     * @return the result of accumulating the given transformation
4273 >     * of all keys
4274 >     */
4275 >    public long reduceKeysToLongInParallel
4276 >        (ObjectToLong<? super K> transformer,
4277 >         long basis,
4278 >         LongByLongToLong reducer) {
4279 >        return ForkJoinTasks.reduceKeysToLong
4280 >            (this, transformer, basis, reducer).invoke();
4281 >    }
4282 >
4283 >    /**
4284 >     * Returns the result of accumulating the given transformation
4285 >     * of all keys using the given reducer to combine values, and
4286 >     * the given basis as an identity value.
4287 >     *
4288 >     * @param transformer a function returning the transformation
4289 >     * for an element
4290 >     * @param basis the identity (initial default value) for the reduction
4291 >     * @param reducer a commutative associative combining function
4292 >     * @return the result of accumulating the given transformation
4293 >     * of all keys
4294 >     */
4295 >    public int reduceKeysToIntInParallel
4296 >        (ObjectToInt<? super K> transformer,
4297 >         int basis,
4298 >         IntByIntToInt reducer) {
4299 >        return ForkJoinTasks.reduceKeysToInt
4300 >            (this, transformer, basis, reducer).invoke();
4301 >    }
4302 >
4303 >    /**
4304 >     * Performs the given action for each value.
4305 >     *
4306 >     * @param action the action
4307 >     */
4308 >    public void forEachValueInParallel(Action<V> action) {
4309 >        ForkJoinTasks.forEachValue
4310 >            (this, action).invoke();
4311 >    }
4312 >
4313 >    /**
4314 >     * Performs the given action for each non-null transformation
4315 >     * of each value.
4316 >     *
4317 >     * @param transformer a function returning the transformation
4318 >     * for an element, or null of there is no transformation (in
4319 >     * which case the action is not applied).
4320 >     */
4321 >    public <U> void forEachValueInParallel
4322 >        (Fun<? super V, ? extends U> transformer,
4323 >         Action<U> action) {
4324 >        ForkJoinTasks.forEachValue
4325 >            (this, transformer, action).invoke();
4326 >    }
4327 >
4328 >    /**
4329 >     * Returns a non-null result from applying the given search
4330 >     * function on each value, or null if none.  Upon success,
4331 >     * further element processing is suppressed and the results of
4332 >     * any other parallel invocations of the search function are
4333 >     * ignored.
4334 >     *
4335 >     * @param searchFunction a function returning a non-null
4336 >     * result on success, else null
4337 >     * @return a non-null result from applying the given search
4338 >     * function on each value, or null if none
4339 >     */
4340 >    public <U> U searchValuesInParallel
4341 >        (Fun<? super V, ? extends U> searchFunction) {
4342 >        return ForkJoinTasks.searchValues
4343 >            (this, searchFunction).invoke();
4344 >    }
4345 >
4346 >    /**
4347 >     * Returns the result of accumulating all values using the
4348 >     * given reducer to combine values, or null if none.
4349 >     *
4350 >     * @param reducer a commutative associative combining function
4351 >     * @return  the result of accumulating all values
4352 >     */
4353 >    public V reduceValuesInParallel
4354 >        (BiFun<? super V, ? super V, ? extends V> reducer) {
4355 >        return ForkJoinTasks.reduceValues
4356 >            (this, reducer).invoke();
4357 >    }
4358 >
4359 >    /**
4360 >     * Returns the result of accumulating the given transformation
4361 >     * of all values using the given reducer to combine values, or
4362 >     * null if none.
4363 >     *
4364 >     * @param transformer a function returning the transformation
4365 >     * for an element, or null of there is no transformation (in
4366 >     * which case it is not combined).
4367 >     * @param reducer a commutative associative combining function
4368 >     * @return the result of accumulating the given transformation
4369 >     * of all values
4370 >     */
4371 >    public <U> U reduceValuesInParallel
4372 >        (Fun<? super V, ? extends U> transformer,
4373 >         BiFun<? super U, ? super U, ? extends U> reducer) {
4374 >        return ForkJoinTasks.reduceValues
4375 >            (this, transformer, reducer).invoke();
4376 >    }
4377 >
4378 >    /**
4379 >     * Returns the result of accumulating the given transformation
4380 >     * of all values using the given reducer to combine values,
4381 >     * and the given basis as an identity value.
4382 >     *
4383 >     * @param transformer a function returning the transformation
4384 >     * for an element
4385 >     * @param basis the identity (initial default value) for the reduction
4386 >     * @param reducer a commutative associative combining function
4387 >     * @return the result of accumulating the given transformation
4388 >     * of all values
4389 >     */
4390 >    public double reduceValuesToDoubleInParallel
4391 >        (ObjectToDouble<? super V> transformer,
4392 >         double basis,
4393 >         DoubleByDoubleToDouble reducer) {
4394 >        return ForkJoinTasks.reduceValuesToDouble
4395 >            (this, transformer, basis, reducer).invoke();
4396 >    }
4397 >
4398 >    /**
4399 >     * Returns the result of accumulating the given transformation
4400 >     * of all values using the given reducer to combine values,
4401 >     * and the given basis as an identity value.
4402 >     *
4403 >     * @param transformer a function returning the transformation
4404 >     * for an element
4405 >     * @param basis the identity (initial default value) for the reduction
4406 >     * @param reducer a commutative associative combining function
4407 >     * @return the result of accumulating the given transformation
4408 >     * of all values
4409 >     */
4410 >    public long reduceValuesToLongInParallel
4411 >        (ObjectToLong<? super V> transformer,
4412 >         long basis,
4413 >         LongByLongToLong reducer) {
4414 >        return ForkJoinTasks.reduceValuesToLong
4415 >            (this, transformer, basis, reducer).invoke();
4416 >    }
4417 >
4418 >    /**
4419 >     * Returns the result of accumulating the given transformation
4420 >     * of all values using the given reducer to combine values,
4421 >     * and the given basis as an identity value.
4422 >     *
4423 >     * @param transformer a function returning the transformation
4424 >     * for an element
4425 >     * @param basis the identity (initial default value) for the reduction
4426 >     * @param reducer a commutative associative combining function
4427 >     * @return the result of accumulating the given transformation
4428 >     * of all values
4429 >     */
4430 >    public int reduceValuesToIntInParallel
4431 >        (ObjectToInt<? super V> transformer,
4432 >         int basis,
4433 >         IntByIntToInt reducer) {
4434 >        return ForkJoinTasks.reduceValuesToInt
4435 >            (this, transformer, basis, reducer).invoke();
4436 >    }
4437 >
4438 >    /**
4439 >     * Performs the given action for each entry.
4440 >     *
4441 >     * @param action the action
4442 >     */
4443 >    public void forEachEntryInParallel(Action<Map.Entry<K,V>> action) {
4444 >        ForkJoinTasks.forEachEntry
4445 >            (this, action).invoke();
4446 >    }
4447 >
4448 >    /**
4449 >     * Performs the given action for each non-null transformation
4450 >     * of each entry.
4451 >     *
4452 >     * @param transformer a function returning the transformation
4453 >     * for an element, or null of there is no transformation (in
4454 >     * which case the action is not applied).
4455 >     * @param action the action
4456 >     */
4457 >    public <U> void forEachEntryInParallel
4458 >        (Fun<Map.Entry<K,V>, ? extends U> transformer,
4459 >         Action<U> action) {
4460 >        ForkJoinTasks.forEachEntry
4461 >            (this, transformer, action).invoke();
4462 >    }
4463 >
4464 >    /**
4465 >     * Returns a non-null result from applying the given search
4466 >     * function on each entry, or null if none.  Upon success,
4467 >     * further element processing is suppressed and the results of
4468 >     * any other parallel invocations of the search function are
4469 >     * ignored.
4470 >     *
4471 >     * @param searchFunction a function returning a non-null
4472 >     * result on success, else null
4473 >     * @return a non-null result from applying the given search
4474 >     * function on each entry, or null if none
4475 >     */
4476 >    public <U> U searchEntriesInParallel
4477 >        (Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4478 >        return ForkJoinTasks.searchEntries
4479 >            (this, searchFunction).invoke();
4480 >    }
4481 >
4482 >    /**
4483 >     * Returns the result of accumulating all entries using the
4484 >     * given reducer to combine values, or null if none.
4485 >     *
4486 >     * @param reducer a commutative associative combining function
4487 >     * @return the result of accumulating all entries
4488 >     */
4489 >    public Map.Entry<K,V> reduceEntriesInParallel
4490 >        (BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4491 >        return ForkJoinTasks.reduceEntries
4492 >            (this, reducer).invoke();
4493 >    }
4494 >
4495 >    /**
4496 >     * Returns the result of accumulating the given transformation
4497 >     * of all entries using the given reducer to combine values,
4498 >     * or null if none.
4499 >     *
4500 >     * @param transformer a function returning the transformation
4501 >     * for an element, or null of there is no transformation (in
4502 >     * which case it is not combined).
4503 >     * @param reducer a commutative associative combining function
4504 >     * @return the result of accumulating the given transformation
4505 >     * of all entries
4506 >     */
4507 >    public <U> U reduceEntriesInParallel
4508 >        (Fun<Map.Entry<K,V>, ? extends U> transformer,
4509 >         BiFun<? super U, ? super U, ? extends U> reducer) {
4510 >        return ForkJoinTasks.reduceEntries
4511 >            (this, transformer, reducer).invoke();
4512 >    }
4513 >
4514 >    /**
4515 >     * Returns the result of accumulating the given transformation
4516 >     * of all entries using the given reducer to combine values,
4517 >     * and the given basis as an identity value.
4518 >     *
4519 >     * @param transformer a function returning the transformation
4520 >     * for an element
4521 >     * @param basis the identity (initial default value) for the reduction
4522 >     * @param reducer a commutative associative combining function
4523 >     * @return the result of accumulating the given transformation
4524 >     * of all entries
4525 >     */
4526 >    public double reduceEntriesToDoubleInParallel
4527 >        (ObjectToDouble<Map.Entry<K,V>> transformer,
4528 >         double basis,
4529 >         DoubleByDoubleToDouble reducer) {
4530 >        return ForkJoinTasks.reduceEntriesToDouble
4531 >            (this, transformer, basis, reducer).invoke();
4532 >    }
4533 >
4534 >    /**
4535 >     * Returns the result of accumulating the given transformation
4536 >     * of all entries using the given reducer to combine values,
4537 >     * and the given basis as an identity value.
4538 >     *
4539 >     * @param transformer a function returning the transformation
4540 >     * for an element
4541 >     * @param basis the identity (initial default value) for the reduction
4542 >     * @param reducer a commutative associative combining function
4543 >     * @return  the result of accumulating the given transformation
4544 >     * of all entries
4545 >     */
4546 >    public long reduceEntriesToLongInParallel
4547 >        (ObjectToLong<Map.Entry<K,V>> transformer,
4548 >         long basis,
4549 >         LongByLongToLong reducer) {
4550 >        return ForkJoinTasks.reduceEntriesToLong
4551 >            (this, transformer, basis, reducer).invoke();
4552 >    }
4553 >
4554 >    /**
4555 >     * Returns the result of accumulating the given transformation
4556 >     * of all entries using the given reducer to combine values,
4557 >     * and the given basis as an identity value.
4558 >     *
4559 >     * @param transformer a function returning the transformation
4560 >     * for an element
4561 >     * @param basis the identity (initial default value) for the reduction
4562 >     * @param reducer a commutative associative combining function
4563 >     * @return the result of accumulating the given transformation
4564 >     * of all entries
4565 >     */
4566 >    public int reduceEntriesToIntInParallel
4567 >        (ObjectToInt<Map.Entry<K,V>> transformer,
4568 >         int basis,
4569 >         IntByIntToInt reducer) {
4570 >        return ForkJoinTasks.reduceEntriesToInt
4571 >            (this, transformer, basis, reducer).invoke();
4572 >    }
4573 >
4574 >
4575 >    /* ----------------Views -------------- */
4576 >
4577 >    /**
4578 >     * Base class for views.
4579 >     */
4580 >    static abstract class CHMView<K, V> {
4581 >        final ConcurrentHashMapV8<K, V> map;
4582 >        CHMView(ConcurrentHashMapV8<K, V> map)  { this.map = map; }
4583 >
4584 >        /**
4585 >         * Returns the map backing this view.
4586 >         *
4587 >         * @return the map backing this view
4588 >         */
4589 >        public ConcurrentHashMapV8<K,V> getMap() { return map; }
4590 >
4591 >        public final int size()                 { return map.size(); }
4592 >        public final boolean isEmpty()          { return map.isEmpty(); }
4593 >        public final void clear()               { map.clear(); }
4594 >
4595 >        // implementations below rely on concrete classes supplying these
4596 >        abstract public Iterator<?> iterator();
4597 >        abstract public boolean contains(Object o);
4598 >        abstract public boolean remove(Object o);
4599 >
4600 >        private static final String oomeMsg = "Required array size too large";
4601 >
4602 >        public final Object[] toArray() {
4603 >            long sz = map.mappingCount();
4604 >            if (sz > (long)(MAX_ARRAY_SIZE))
4605 >                throw new OutOfMemoryError(oomeMsg);
4606 >            int n = (int)sz;
4607 >            Object[] r = new Object[n];
4608 >            int i = 0;
4609 >            Iterator<?> it = iterator();
4610 >            while (it.hasNext()) {
4611 >                if (i == n) {
4612 >                    if (n >= MAX_ARRAY_SIZE)
4613 >                        throw new OutOfMemoryError(oomeMsg);
4614 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4615 >                        n = MAX_ARRAY_SIZE;
4616 >                    else
4617 >                        n += (n >>> 1) + 1;
4618 >                    r = Arrays.copyOf(r, n);
4619 >                }
4620 >                r[i++] = it.next();
4621 >            }
4622 >            return (i == n) ? r : Arrays.copyOf(r, i);
4623 >        }
4624 >
4625 >        @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
4626 >            long sz = map.mappingCount();
4627 >            if (sz > (long)(MAX_ARRAY_SIZE))
4628 >                throw new OutOfMemoryError(oomeMsg);
4629 >            int m = (int)sz;
4630 >            T[] r = (a.length >= m) ? a :
4631 >                (T[])java.lang.reflect.Array
4632 >                .newInstance(a.getClass().getComponentType(), m);
4633 >            int n = r.length;
4634 >            int i = 0;
4635 >            Iterator<?> it = iterator();
4636 >            while (it.hasNext()) {
4637 >                if (i == n) {
4638 >                    if (n >= MAX_ARRAY_SIZE)
4639 >                        throw new OutOfMemoryError(oomeMsg);
4640 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4641 >                        n = MAX_ARRAY_SIZE;
4642 >                    else
4643 >                        n += (n >>> 1) + 1;
4644 >                    r = Arrays.copyOf(r, n);
4645 >                }
4646 >                r[i++] = (T)it.next();
4647 >            }
4648 >            if (a == r && i < n) {
4649 >                r[i] = null; // null-terminate
4650 >                return r;
4651 >            }
4652 >            return (i == n) ? r : Arrays.copyOf(r, i);
4653 >        }
4654 >
4655 >        public final int hashCode() {
4656 >            int h = 0;
4657 >            for (Iterator<?> it = iterator(); it.hasNext();)
4658 >                h += it.next().hashCode();
4659 >            return h;
4660 >        }
4661 >
4662 >        public final String toString() {
4663 >            StringBuilder sb = new StringBuilder();
4664 >            sb.append('[');
4665 >            Iterator<?> it = iterator();
4666 >            if (it.hasNext()) {
4667 >                for (;;) {
4668 >                    Object e = it.next();
4669 >                    sb.append(e == this ? "(this Collection)" : e);
4670 >                    if (!it.hasNext())
4671 >                        break;
4672 >                    sb.append(',').append(' ');
4673 >                }
4674 >            }
4675 >            return sb.append(']').toString();
4676 >        }
4677 >
4678 >        public final boolean containsAll(Collection<?> c) {
4679 >            if (c != this) {
4680 >                for (Iterator<?> it = c.iterator(); it.hasNext();) {
4681 >                    Object e = it.next();
4682 >                    if (e == null || !contains(e))
4683 >                        return false;
4684 >                }
4685 >            }
4686 >            return true;
4687 >        }
4688 >
4689 >        public final boolean removeAll(Collection<?> c) {
4690 >            boolean modified = false;
4691 >            for (Iterator<?> it = iterator(); it.hasNext();) {
4692 >                if (c.contains(it.next())) {
4693 >                    it.remove();
4694 >                    modified = true;
4695 >                }
4696 >            }
4697 >            return modified;
4698 >        }
4699 >
4700 >        public final boolean retainAll(Collection<?> c) {
4701 >            boolean modified = false;
4702 >            for (Iterator<?> it = iterator(); it.hasNext();) {
4703 >                if (!c.contains(it.next())) {
4704 >                    it.remove();
4705 >                    modified = true;
4706 >                }
4707 >            }
4708 >            return modified;
4709 >        }
4710 >
4711 >    }
4712 >
4713 >    /**
4714 >     * A view of a ConcurrentHashMapV8 as a {@link Set} of keys, in
4715 >     * which additions may optionally be enabled by mapping to a
4716 >     * common value.  This class cannot be directly instantiated. See
4717 >     * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
4718 >     * {@link #newKeySet(int)}.
4719 >     */
4720 >    public static class KeySetView<K,V> extends CHMView<K,V>
4721 >        implements Set<K>, java.io.Serializable {
4722 >        private static final long serialVersionUID = 7249069246763182397L;
4723 >        private final V value;
4724 >        KeySetView(ConcurrentHashMapV8<K, V> map, V value) {  // non-public
4725 >            super(map);
4726 >            this.value = value;
4727 >        }
4728 >
4729 >        /**
4730 >         * Returns the default mapped value for additions,
4731 >         * or {@code null} if additions are not supported.
4732 >         *
4733 >         * @return the default mapped value for additions, or {@code null}
4734 >         * if not supported.
4735 >         */
4736 >        public V getMappedValue() { return value; }
4737 >
4738 >        // implement Set API
4739 >
4740 >        public boolean contains(Object o) { return map.containsKey(o); }
4741 >        public boolean remove(Object o)   { return map.remove(o) != null; }
4742 >
4743 >        /**
4744 >         * Returns a "weakly consistent" iterator that will never
4745 >         * throw {@link ConcurrentModificationException}, and
4746 >         * guarantees to traverse elements as they existed upon
4747 >         * construction of the iterator, and may (but is not
4748 >         * guaranteed to) reflect any modifications subsequent to
4749 >         * construction.
4750 >         *
4751 >         * @return an iterator over the keys of this map
4752 >         */
4753 >        public Iterator<K> iterator()     { return new KeyIterator<K,V>(map); }
4754 >        public boolean add(K e) {
4755 >            V v;
4756 >            if ((v = value) == null)
4757 >                throw new UnsupportedOperationException();
4758 >            if (e == null)
4759 >                throw new NullPointerException();
4760 >            return map.internalPut(e, v, true) == null;
4761 >        }
4762 >        public boolean addAll(Collection<? extends K> c) {
4763 >            boolean added = false;
4764 >            V v;
4765 >            if ((v = value) == null)
4766 >                throw new UnsupportedOperationException();
4767 >            for (K e : c) {
4768 >                if (e == null)
4769 >                    throw new NullPointerException();
4770 >                if (map.internalPut(e, v, true) == null)
4771 >                    added = true;
4772 >            }
4773 >            return added;
4774 >        }
4775 >        public boolean equals(Object o) {
4776 >            Set<?> c;
4777 >            return ((o instanceof Set) &&
4778 >                    ((c = (Set<?>)o) == this ||
4779 >                     (containsAll(c) && c.containsAll(this))));
4780 >        }
4781 >    }
4782 >
4783 >    /**
4784 >     * A view of a ConcurrentHashMapV8 as a {@link Collection} of
4785 >     * values, in which additions are disabled. This class cannot be
4786 >     * directly instantiated. See {@link #values},
4787 >     *
4788 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4789 >     * that will never throw {@link ConcurrentModificationException},
4790 >     * and guarantees to traverse elements as they existed upon
4791 >     * construction of the iterator, and may (but is not guaranteed to)
4792 >     * reflect any modifications subsequent to construction.
4793 >     */
4794 >    public static final class ValuesView<K,V> extends CHMView<K,V>
4795 >        implements Collection<V> {
4796 >        ValuesView(ConcurrentHashMapV8<K, V> map)   { super(map); }
4797 >        public final boolean contains(Object o) { return map.containsValue(o); }
4798 >        public final boolean remove(Object o) {
4799 >            if (o != null) {
4800 >                Iterator<V> it = new ValueIterator<K,V>(map);
4801 >                while (it.hasNext()) {
4802 >                    if (o.equals(it.next())) {
4803 >                        it.remove();
4804 >                        return true;
4805 >                    }
4806 >                }
4807 >            }
4808 >            return false;
4809 >        }
4810 >
4811 >        /**
4812 >         * Returns a "weakly consistent" iterator that will never
4813 >         * throw {@link ConcurrentModificationException}, and
4814 >         * guarantees to traverse elements as they existed upon
4815 >         * construction of the iterator, and may (but is not
4816 >         * guaranteed to) reflect any modifications subsequent to
4817 >         * construction.
4818 >         *
4819 >         * @return an iterator over the values of this map
4820 >         */
4821 >        public final Iterator<V> iterator() {
4822 >            return new ValueIterator<K,V>(map);
4823 >        }
4824 >        public final boolean add(V e) {
4825 >            throw new UnsupportedOperationException();
4826 >        }
4827 >        public final boolean addAll(Collection<? extends V> c) {
4828 >            throw new UnsupportedOperationException();
4829 >        }
4830 >
4831 >    }
4832 >
4833 >    /**
4834 >     * A view of a ConcurrentHashMapV8 as a {@link Set} of (key, value)
4835 >     * entries.  This class cannot be directly instantiated. See
4836 >     * {@link #entrySet}.
4837 >     */
4838 >    public static final class EntrySetView<K,V> extends CHMView<K,V>
4839 >        implements Set<Map.Entry<K,V>> {
4840 >        EntrySetView(ConcurrentHashMapV8<K, V> map) { super(map); }
4841 >        public final boolean contains(Object o) {
4842 >            Object k, v, r; Map.Entry<?,?> e;
4843 >            return ((o instanceof Map.Entry) &&
4844 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4845 >                    (r = map.get(k)) != null &&
4846 >                    (v = e.getValue()) != null &&
4847 >                    (v == r || v.equals(r)));
4848 >        }
4849 >        public final boolean remove(Object o) {
4850 >            Object k, v; Map.Entry<?,?> e;
4851 >            return ((o instanceof Map.Entry) &&
4852 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4853 >                    (v = e.getValue()) != null &&
4854 >                    map.remove(k, v));
4855 >        }
4856 >
4857 >        /**
4858 >         * Returns a "weakly consistent" iterator that will never
4859 >         * throw {@link ConcurrentModificationException}, and
4860 >         * guarantees to traverse elements as they existed upon
4861 >         * construction of the iterator, and may (but is not
4862 >         * guaranteed to) reflect any modifications subsequent to
4863 >         * construction.
4864 >         *
4865 >         * @return an iterator over the entries of this map
4866 >         */
4867 >        public final Iterator<Map.Entry<K,V>> iterator() {
4868 >            return new EntryIterator<K,V>(map);
4869 >        }
4870 >
4871 >        public final boolean add(Entry<K,V> e) {
4872 >            K key = e.getKey();
4873 >            V value = e.getValue();
4874 >            if (key == null || value == null)
4875 >                throw new NullPointerException();
4876 >            return map.internalPut(key, value, false) == null;
4877 >        }
4878 >        public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4879 >            boolean added = false;
4880 >            for (Entry<K,V> e : c) {
4881 >                if (add(e))
4882 >                    added = true;
4883 >            }
4884 >            return added;
4885 >        }
4886 >        public boolean equals(Object o) {
4887 >            Set<?> c;
4888 >            return ((o instanceof Set) &&
4889 >                    ((c = (Set<?>)o) == this ||
4890 >                     (containsAll(c) && c.containsAll(this))));
4891 >        }
4892 >    }
4893 >
4894 >    // ---------------------------------------------------------------------
4895 >
4896 >    /**
4897 >     * Predefined tasks for performing bulk parallel operations on
4898 >     * ConcurrentHashMapV8s. These tasks follow the forms and rules used
4899 >     * for bulk operations. Each method has the same name, but returns
4900 >     * a task rather than invoking it. These methods may be useful in
4901 >     * custom applications such as submitting a task without waiting
4902 >     * for completion, using a custom pool, or combining with other
4903 >     * tasks.
4904 >     */
4905 >    public static class ForkJoinTasks {
4906 >        private ForkJoinTasks() {}
4907 >
4908 >        /**
4909 >         * Returns a task that when invoked, performs the given
4910 >         * action for each (key, value)
4911 >         *
4912 >         * @param map the map
4913 >         * @param action the action
4914 >         * @return the task
4915 >         */
4916 >        public static <K,V> ForkJoinTask<Void> forEach
4917 >            (ConcurrentHashMapV8<K,V> map,
4918 >             BiAction<K,V> action) {
4919 >            if (action == null) throw new NullPointerException();
4920 >            return new ForEachMappingTask<K,V>(map, null, -1, action);
4921 >        }
4922 >
4923 >        /**
4924 >         * Returns a task that when invoked, performs the given
4925 >         * action for each non-null transformation of each (key, value)
4926 >         *
4927 >         * @param map the map
4928 >         * @param transformer a function returning the transformation
4929 >         * for an element, or null if there is no transformation (in
4930 >         * which case the action is not applied)
4931 >         * @param action the action
4932 >         * @return the task
4933 >         */
4934 >        public static <K,V,U> ForkJoinTask<Void> forEach
4935 >            (ConcurrentHashMapV8<K,V> map,
4936 >             BiFun<? super K, ? super V, ? extends U> transformer,
4937 >             Action<U> action) {
4938 >            if (transformer == null || action == null)
4939 >                throw new NullPointerException();
4940 >            return new ForEachTransformedMappingTask<K,V,U>
4941 >                (map, null, -1, transformer, action);
4942 >        }
4943 >
4944 >        /**
4945 >         * Returns a task that when invoked, returns a non-null result
4946 >         * from applying the given search function on each (key,
4947 >         * value), or null if none. Upon success, further element
4948 >         * processing is suppressed and the results of any other
4949 >         * parallel invocations of the search function are ignored.
4950 >         *
4951 >         * @param map the map
4952 >         * @param searchFunction a function returning a non-null
4953 >         * result on success, else null
4954 >         * @return the task
4955 >         */
4956 >        public static <K,V,U> ForkJoinTask<U> search
4957 >            (ConcurrentHashMapV8<K,V> map,
4958 >             BiFun<? super K, ? super V, ? extends U> searchFunction) {
4959 >            if (searchFunction == null) throw new NullPointerException();
4960 >            return new SearchMappingsTask<K,V,U>
4961 >                (map, null, -1, searchFunction,
4962 >                 new AtomicReference<U>());
4963 >        }
4964 >
4965 >        /**
4966 >         * Returns a task that when invoked, returns the result of
4967 >         * accumulating the given transformation of all (key, value) pairs
4968 >         * using the given reducer to combine values, or null if none.
4969 >         *
4970 >         * @param map the map
4971 >         * @param transformer a function returning the transformation
4972 >         * for an element, or null if there is no transformation (in
4973 >         * which case it is not combined).
4974 >         * @param reducer a commutative associative combining function
4975 >         * @return the task
4976 >         */
4977 >        public static <K,V,U> ForkJoinTask<U> reduce
4978 >            (ConcurrentHashMapV8<K,V> map,
4979 >             BiFun<? super K, ? super V, ? extends U> transformer,
4980 >             BiFun<? super U, ? super U, ? extends U> reducer) {
4981 >            if (transformer == null || reducer == null)
4982 >                throw new NullPointerException();
4983 >            return new MapReduceMappingsTask<K,V,U>
4984 >                (map, null, -1, null, transformer, reducer);
4985 >        }
4986 >
4987 >        /**
4988 >         * Returns a task that when invoked, returns the result of
4989 >         * accumulating the given transformation of all (key, value) pairs
4990 >         * using the given reducer to combine values, and the given
4991 >         * basis as an identity value.
4992 >         *
4993 >         * @param map the map
4994 >         * @param transformer a function returning the transformation
4995 >         * for an element
4996 >         * @param basis the identity (initial default value) for the reduction
4997 >         * @param reducer a commutative associative combining function
4998 >         * @return the task
4999 >         */
5000 >        public static <K,V> ForkJoinTask<Double> reduceToDouble
5001 >            (ConcurrentHashMapV8<K,V> map,
5002 >             ObjectByObjectToDouble<? super K, ? super V> transformer,
5003 >             double basis,
5004 >             DoubleByDoubleToDouble reducer) {
5005 >            if (transformer == null || reducer == null)
5006 >                throw new NullPointerException();
5007 >            return new MapReduceMappingsToDoubleTask<K,V>
5008 >                (map, null, -1, null, transformer, basis, reducer);
5009 >        }
5010 >
5011 >        /**
5012 >         * Returns a task that when invoked, returns the result of
5013 >         * accumulating the given transformation of all (key, value) pairs
5014 >         * using the given reducer to combine values, and the given
5015 >         * basis as an identity value.
5016 >         *
5017 >         * @param map the map
5018 >         * @param transformer a function returning the transformation
5019 >         * for an element
5020 >         * @param basis the identity (initial default value) for the reduction
5021 >         * @param reducer a commutative associative combining function
5022 >         * @return the task
5023 >         */
5024 >        public static <K,V> ForkJoinTask<Long> reduceToLong
5025 >            (ConcurrentHashMapV8<K,V> map,
5026 >             ObjectByObjectToLong<? super K, ? super V> transformer,
5027 >             long basis,
5028 >             LongByLongToLong reducer) {
5029 >            if (transformer == null || reducer == null)
5030 >                throw new NullPointerException();
5031 >            return new MapReduceMappingsToLongTask<K,V>
5032 >                (map, null, -1, null, transformer, basis, reducer);
5033 >        }
5034 >
5035 >        /**
5036 >         * Returns a task that when invoked, returns the result of
5037 >         * accumulating the given transformation of all (key, value) pairs
5038 >         * using the given reducer to combine values, and the given
5039 >         * basis as an identity value.
5040 >         *
5041 >         * @param transformer a function returning the transformation
5042 >         * for an element
5043 >         * @param basis the identity (initial default value) for the reduction
5044 >         * @param reducer a commutative associative combining function
5045 >         * @return the task
5046 >         */
5047 >        public static <K,V> ForkJoinTask<Integer> reduceToInt
5048 >            (ConcurrentHashMapV8<K,V> map,
5049 >             ObjectByObjectToInt<? super K, ? super V> transformer,
5050 >             int basis,
5051 >             IntByIntToInt reducer) {
5052 >            if (transformer == null || reducer == null)
5053 >                throw new NullPointerException();
5054 >            return new MapReduceMappingsToIntTask<K,V>
5055 >                (map, null, -1, null, transformer, basis, reducer);
5056 >        }
5057 >
5058 >        /**
5059 >         * Returns a task that when invoked, performs the given action
5060 >         * for each key.
5061 >         *
5062 >         * @param map the map
5063 >         * @param action the action
5064 >         * @return the task
5065 >         */
5066 >        public static <K,V> ForkJoinTask<Void> forEachKey
5067 >            (ConcurrentHashMapV8<K,V> map,
5068 >             Action<K> action) {
5069 >            if (action == null) throw new NullPointerException();
5070 >            return new ForEachKeyTask<K,V>(map, null, -1, action);
5071 >        }
5072 >
5073 >        /**
5074 >         * Returns a task that when invoked, performs the given action
5075 >         * for each non-null transformation of each key.
5076 >         *
5077 >         * @param map the map
5078 >         * @param transformer a function returning the transformation
5079 >         * for an element, or null if there is no transformation (in
5080 >         * which case the action is not applied)
5081 >         * @param action the action
5082 >         * @return the task
5083 >         */
5084 >        public static <K,V,U> ForkJoinTask<Void> forEachKey
5085 >            (ConcurrentHashMapV8<K,V> map,
5086 >             Fun<? super K, ? extends U> transformer,
5087 >             Action<U> action) {
5088 >            if (transformer == null || action == null)
5089 >                throw new NullPointerException();
5090 >            return new ForEachTransformedKeyTask<K,V,U>
5091 >                (map, null, -1, transformer, action);
5092 >        }
5093 >
5094 >        /**
5095 >         * Returns a task that when invoked, returns a non-null result
5096 >         * from applying the given search function on each key, or
5097 >         * null if none.  Upon success, further element processing is
5098 >         * suppressed and the results of any other parallel
5099 >         * invocations of the search function are ignored.
5100 >         *
5101 >         * @param map the map
5102 >         * @param searchFunction a function returning a non-null
5103 >         * result on success, else null
5104 >         * @return the task
5105 >         */
5106 >        public static <K,V,U> ForkJoinTask<U> searchKeys
5107 >            (ConcurrentHashMapV8<K,V> map,
5108 >             Fun<? super K, ? extends U> searchFunction) {
5109 >            if (searchFunction == null) throw new NullPointerException();
5110 >            return new SearchKeysTask<K,V,U>
5111 >                (map, null, -1, searchFunction,
5112 >                 new AtomicReference<U>());
5113 >        }
5114 >
5115 >        /**
5116 >         * Returns a task that when invoked, returns the result of
5117 >         * accumulating all keys using the given reducer to combine
5118 >         * values, or null if none.
5119 >         *
5120 >         * @param map the map
5121 >         * @param reducer a commutative associative combining function
5122 >         * @return the task
5123 >         */
5124 >        public static <K,V> ForkJoinTask<K> reduceKeys
5125 >            (ConcurrentHashMapV8<K,V> map,
5126 >             BiFun<? super K, ? super K, ? extends K> reducer) {
5127 >            if (reducer == null) throw new NullPointerException();
5128 >            return new ReduceKeysTask<K,V>
5129 >                (map, null, -1, null, reducer);
5130 >        }
5131 >
5132 >        /**
5133 >         * Returns a task that when invoked, returns the result of
5134 >         * accumulating the given transformation of all keys using the given
5135 >         * reducer to combine values, or null if none.
5136 >         *
5137 >         * @param map the map
5138 >         * @param transformer a function returning the transformation
5139 >         * for an element, or null if there is no transformation (in
5140 >         * which case it is not combined).
5141 >         * @param reducer a commutative associative combining function
5142 >         * @return the task
5143 >         */
5144 >        public static <K,V,U> ForkJoinTask<U> reduceKeys
5145 >            (ConcurrentHashMapV8<K,V> map,
5146 >             Fun<? super K, ? extends U> transformer,
5147 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5148 >            if (transformer == null || reducer == null)
5149 >                throw new NullPointerException();
5150 >            return new MapReduceKeysTask<K,V,U>
5151 >                (map, null, -1, null, transformer, reducer);
5152 >        }
5153 >
5154 >        /**
5155 >         * Returns a task that when invoked, returns the result of
5156 >         * accumulating the given transformation of all keys using the given
5157 >         * reducer to combine values, and the given basis as an
5158 >         * identity value.
5159 >         *
5160 >         * @param map the map
5161 >         * @param transformer a function returning the transformation
5162 >         * for an element
5163 >         * @param basis the identity (initial default value) for the reduction
5164 >         * @param reducer a commutative associative combining function
5165 >         * @return the task
5166 >         */
5167 >        public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
5168 >            (ConcurrentHashMapV8<K,V> map,
5169 >             ObjectToDouble<? super K> transformer,
5170 >             double basis,
5171 >             DoubleByDoubleToDouble reducer) {
5172 >            if (transformer == null || reducer == null)
5173 >                throw new NullPointerException();
5174 >            return new MapReduceKeysToDoubleTask<K,V>
5175 >                (map, null, -1, null, transformer, basis, reducer);
5176 >        }
5177 >
5178 >        /**
5179 >         * Returns a task that when invoked, returns the result of
5180 >         * accumulating the given transformation of all keys using the given
5181 >         * reducer to combine values, and the given basis as an
5182 >         * identity value.
5183 >         *
5184 >         * @param map the map
5185 >         * @param transformer a function returning the transformation
5186 >         * for an element
5187 >         * @param basis the identity (initial default value) for the reduction
5188 >         * @param reducer a commutative associative combining function
5189 >         * @return the task
5190 >         */
5191 >        public static <K,V> ForkJoinTask<Long> reduceKeysToLong
5192 >            (ConcurrentHashMapV8<K,V> map,
5193 >             ObjectToLong<? super K> transformer,
5194 >             long basis,
5195 >             LongByLongToLong reducer) {
5196 >            if (transformer == null || reducer == null)
5197 >                throw new NullPointerException();
5198 >            return new MapReduceKeysToLongTask<K,V>
5199 >                (map, null, -1, null, transformer, basis, reducer);
5200 >        }
5201 >
5202 >        /**
5203 >         * Returns a task that when invoked, returns the result of
5204 >         * accumulating the given transformation of all keys using the given
5205 >         * reducer to combine values, and the given basis as an
5206 >         * identity value.
5207 >         *
5208 >         * @param map the map
5209 >         * @param transformer a function returning the transformation
5210 >         * for an element
5211 >         * @param basis the identity (initial default value) for the reduction
5212 >         * @param reducer a commutative associative combining function
5213 >         * @return the task
5214 >         */
5215 >        public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5216 >            (ConcurrentHashMapV8<K,V> map,
5217 >             ObjectToInt<? super K> transformer,
5218 >             int basis,
5219 >             IntByIntToInt reducer) {
5220 >            if (transformer == null || reducer == null)
5221 >                throw new NullPointerException();
5222 >            return new MapReduceKeysToIntTask<K,V>
5223 >                (map, null, -1, null, transformer, basis, reducer);
5224 >        }
5225 >
5226 >        /**
5227 >         * Returns a task that when invoked, performs the given action
5228 >         * for each value.
5229 >         *
5230 >         * @param map the map
5231 >         * @param action the action
5232 >         */
5233 >        public static <K,V> ForkJoinTask<Void> forEachValue
5234 >            (ConcurrentHashMapV8<K,V> map,
5235 >             Action<V> action) {
5236 >            if (action == null) throw new NullPointerException();
5237 >            return new ForEachValueTask<K,V>(map, null, -1, action);
5238 >        }
5239 >
5240 >        /**
5241 >         * Returns a task that when invoked, performs the given action
5242 >         * for each non-null transformation of each value.
5243 >         *
5244 >         * @param map the map
5245 >         * @param transformer a function returning the transformation
5246 >         * for an element, or null if there is no transformation (in
5247 >         * which case the action is not applied)
5248 >         * @param action the action
5249 >         */
5250 >        public static <K,V,U> ForkJoinTask<Void> forEachValue
5251 >            (ConcurrentHashMapV8<K,V> map,
5252 >             Fun<? super V, ? extends U> transformer,
5253 >             Action<U> action) {
5254 >            if (transformer == null || action == null)
5255 >                throw new NullPointerException();
5256 >            return new ForEachTransformedValueTask<K,V,U>
5257 >                (map, null, -1, transformer, action);
5258 >        }
5259 >
5260 >        /**
5261 >         * Returns a task that when invoked, returns a non-null result
5262 >         * from applying the given search function on each value, or
5263 >         * null if none.  Upon success, further element processing is
5264 >         * suppressed and the results of any other parallel
5265 >         * invocations of the search function are ignored.
5266 >         *
5267 >         * @param map the map
5268 >         * @param searchFunction a function returning a non-null
5269 >         * result on success, else null
5270 >         * @return the task
5271 >         */
5272 >        public static <K,V,U> ForkJoinTask<U> searchValues
5273 >            (ConcurrentHashMapV8<K,V> map,
5274 >             Fun<? super V, ? extends U> searchFunction) {
5275 >            if (searchFunction == null) throw new NullPointerException();
5276 >            return new SearchValuesTask<K,V,U>
5277 >                (map, null, -1, searchFunction,
5278 >                 new AtomicReference<U>());
5279 >        }
5280 >
5281 >        /**
5282 >         * Returns a task that when invoked, returns the result of
5283 >         * accumulating all values using the given reducer to combine
5284 >         * values, or null if none.
5285 >         *
5286 >         * @param map the map
5287 >         * @param reducer a commutative associative combining function
5288 >         * @return the task
5289 >         */
5290 >        public static <K,V> ForkJoinTask<V> reduceValues
5291 >            (ConcurrentHashMapV8<K,V> map,
5292 >             BiFun<? super V, ? super V, ? extends V> reducer) {
5293 >            if (reducer == null) throw new NullPointerException();
5294 >            return new ReduceValuesTask<K,V>
5295 >                (map, null, -1, null, reducer);
5296 >        }
5297 >
5298 >        /**
5299 >         * Returns a task that when invoked, returns the result of
5300 >         * accumulating the given transformation of all values using the
5301 >         * given reducer to combine values, or null if none.
5302 >         *
5303 >         * @param map the map
5304 >         * @param transformer a function returning the transformation
5305 >         * for an element, or null if there is no transformation (in
5306 >         * which case it is not combined).
5307 >         * @param reducer a commutative associative combining function
5308 >         * @return the task
5309 >         */
5310 >        public static <K,V,U> ForkJoinTask<U> reduceValues
5311 >            (ConcurrentHashMapV8<K,V> map,
5312 >             Fun<? super V, ? extends U> transformer,
5313 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5314 >            if (transformer == null || reducer == null)
5315 >                throw new NullPointerException();
5316 >            return new MapReduceValuesTask<K,V,U>
5317 >                (map, null, -1, null, transformer, reducer);
5318 >        }
5319 >
5320 >        /**
5321 >         * Returns a task that when invoked, returns the result of
5322 >         * accumulating the given transformation of all values using the
5323 >         * given reducer to combine values, and the given basis as an
5324 >         * identity value.
5325 >         *
5326 >         * @param map the map
5327 >         * @param transformer a function returning the transformation
5328 >         * for an element
5329 >         * @param basis the identity (initial default value) for the reduction
5330 >         * @param reducer a commutative associative combining function
5331 >         * @return the task
5332 >         */
5333 >        public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5334 >            (ConcurrentHashMapV8<K,V> map,
5335 >             ObjectToDouble<? super V> transformer,
5336 >             double basis,
5337 >             DoubleByDoubleToDouble reducer) {
5338 >            if (transformer == null || reducer == null)
5339 >                throw new NullPointerException();
5340 >            return new MapReduceValuesToDoubleTask<K,V>
5341 >                (map, null, -1, null, transformer, basis, reducer);
5342 >        }
5343 >
5344 >        /**
5345 >         * Returns a task that when invoked, returns the result of
5346 >         * accumulating the given transformation of all values using the
5347 >         * given reducer to combine values, and the given basis as an
5348 >         * identity value.
5349 >         *
5350 >         * @param map the map
5351 >         * @param transformer a function returning the transformation
5352 >         * for an element
5353 >         * @param basis the identity (initial default value) for the reduction
5354 >         * @param reducer a commutative associative combining function
5355 >         * @return the task
5356 >         */
5357 >        public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5358 >            (ConcurrentHashMapV8<K,V> map,
5359 >             ObjectToLong<? super V> transformer,
5360 >             long basis,
5361 >             LongByLongToLong reducer) {
5362 >            if (transformer == null || reducer == null)
5363 >                throw new NullPointerException();
5364 >            return new MapReduceValuesToLongTask<K,V>
5365 >                (map, null, -1, null, transformer, basis, reducer);
5366 >        }
5367 >
5368 >        /**
5369 >         * Returns a task that when invoked, returns the result of
5370 >         * accumulating the given transformation of all values using the
5371 >         * given reducer to combine values, and the given basis as an
5372 >         * identity value.
5373 >         *
5374 >         * @param map the map
5375 >         * @param transformer a function returning the transformation
5376 >         * for an element
5377 >         * @param basis the identity (initial default value) for the reduction
5378 >         * @param reducer a commutative associative combining function
5379 >         * @return the task
5380 >         */
5381 >        public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5382 >            (ConcurrentHashMapV8<K,V> map,
5383 >             ObjectToInt<? super V> transformer,
5384 >             int basis,
5385 >             IntByIntToInt reducer) {
5386 >            if (transformer == null || reducer == null)
5387 >                throw new NullPointerException();
5388 >            return new MapReduceValuesToIntTask<K,V>
5389 >                (map, null, -1, null, transformer, basis, reducer);
5390 >        }
5391 >
5392 >        /**
5393 >         * Returns a task that when invoked, perform the given action
5394 >         * for each entry.
5395 >         *
5396 >         * @param map the map
5397 >         * @param action the action
5398 >         */
5399 >        public static <K,V> ForkJoinTask<Void> forEachEntry
5400 >            (ConcurrentHashMapV8<K,V> map,
5401 >             Action<Map.Entry<K,V>> action) {
5402 >            if (action == null) throw new NullPointerException();
5403 >            return new ForEachEntryTask<K,V>(map, null, -1, action);
5404 >        }
5405 >
5406 >        /**
5407 >         * Returns a task that when invoked, perform the given action
5408 >         * for each non-null transformation of each entry.
5409 >         *
5410 >         * @param map the map
5411 >         * @param transformer a function returning the transformation
5412 >         * for an element, or null if there is no transformation (in
5413 >         * which case the action is not applied)
5414 >         * @param action the action
5415 >         */
5416 >        public static <K,V,U> ForkJoinTask<Void> forEachEntry
5417 >            (ConcurrentHashMapV8<K,V> map,
5418 >             Fun<Map.Entry<K,V>, ? extends U> transformer,
5419 >             Action<U> action) {
5420 >            if (transformer == null || action == null)
5421 >                throw new NullPointerException();
5422 >            return new ForEachTransformedEntryTask<K,V,U>
5423 >                (map, null, -1, transformer, action);
5424 >        }
5425 >
5426 >        /**
5427 >         * Returns a task that when invoked, returns a non-null result
5428 >         * from applying the given search function on each entry, or
5429 >         * null if none.  Upon success, further element processing is
5430 >         * suppressed and the results of any other parallel
5431 >         * invocations of the search function are ignored.
5432 >         *
5433 >         * @param map the map
5434 >         * @param searchFunction a function returning a non-null
5435 >         * result on success, else null
5436 >         * @return the task
5437 >         */
5438 >        public static <K,V,U> ForkJoinTask<U> searchEntries
5439 >            (ConcurrentHashMapV8<K,V> map,
5440 >             Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
5441 >            if (searchFunction == null) throw new NullPointerException();
5442 >            return new SearchEntriesTask<K,V,U>
5443 >                (map, null, -1, searchFunction,
5444 >                 new AtomicReference<U>());
5445 >        }
5446 >
5447 >        /**
5448 >         * Returns a task that when invoked, returns the result of
5449 >         * accumulating all entries using the given reducer to combine
5450 >         * values, or null if none.
5451 >         *
5452 >         * @param map the map
5453 >         * @param reducer a commutative associative combining function
5454 >         * @return the task
5455 >         */
5456 >        public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5457 >            (ConcurrentHashMapV8<K,V> map,
5458 >             BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5459 >            if (reducer == null) throw new NullPointerException();
5460 >            return new ReduceEntriesTask<K,V>
5461 >                (map, null, -1, null, reducer);
5462 >        }
5463 >
5464 >        /**
5465 >         * Returns a task that when invoked, returns the result of
5466 >         * accumulating the given transformation of all entries using the
5467 >         * given reducer to combine values, or null if none.
5468 >         *
5469 >         * @param map the map
5470 >         * @param transformer a function returning the transformation
5471 >         * for an element, or null if there is no transformation (in
5472 >         * which case it is not combined).
5473 >         * @param reducer a commutative associative combining function
5474 >         * @return the task
5475 >         */
5476 >        public static <K,V,U> ForkJoinTask<U> reduceEntries
5477 >            (ConcurrentHashMapV8<K,V> map,
5478 >             Fun<Map.Entry<K,V>, ? extends U> transformer,
5479 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5480 >            if (transformer == null || reducer == null)
5481 >                throw new NullPointerException();
5482 >            return new MapReduceEntriesTask<K,V,U>
5483 >                (map, null, -1, null, transformer, reducer);
5484 >        }
5485 >
5486 >        /**
5487 >         * Returns a task that when invoked, returns the result of
5488 >         * accumulating the given transformation of all entries using the
5489 >         * given reducer to combine values, and the given basis as an
5490 >         * identity value.
5491 >         *
5492 >         * @param map the map
5493 >         * @param transformer a function returning the transformation
5494 >         * for an element
5495 >         * @param basis the identity (initial default value) for the reduction
5496 >         * @param reducer a commutative associative combining function
5497 >         * @return the task
5498 >         */
5499 >        public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5500 >            (ConcurrentHashMapV8<K,V> map,
5501 >             ObjectToDouble<Map.Entry<K,V>> transformer,
5502 >             double basis,
5503 >             DoubleByDoubleToDouble reducer) {
5504 >            if (transformer == null || reducer == null)
5505 >                throw new NullPointerException();
5506 >            return new MapReduceEntriesToDoubleTask<K,V>
5507 >                (map, null, -1, null, transformer, basis, reducer);
5508 >        }
5509 >
5510 >        /**
5511 >         * Returns a task that when invoked, returns the result of
5512 >         * accumulating the given transformation of all entries using the
5513 >         * given reducer to combine values, and the given basis as an
5514 >         * identity value.
5515 >         *
5516 >         * @param map the map
5517 >         * @param transformer a function returning the transformation
5518 >         * for an element
5519 >         * @param basis the identity (initial default value) for the reduction
5520 >         * @param reducer a commutative associative combining function
5521 >         * @return the task
5522 >         */
5523 >        public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5524 >            (ConcurrentHashMapV8<K,V> map,
5525 >             ObjectToLong<Map.Entry<K,V>> transformer,
5526 >             long basis,
5527 >             LongByLongToLong reducer) {
5528 >            if (transformer == null || reducer == null)
5529 >                throw new NullPointerException();
5530 >            return new MapReduceEntriesToLongTask<K,V>
5531 >                (map, null, -1, null, transformer, basis, reducer);
5532 >        }
5533 >
5534 >        /**
5535 >         * Returns a task that when invoked, returns the result of
5536 >         * accumulating the given transformation of all entries using the
5537 >         * given reducer to combine values, and the given basis as an
5538 >         * identity value.
5539 >         *
5540 >         * @param map the map
5541 >         * @param transformer a function returning the transformation
5542 >         * for an element
5543 >         * @param basis the identity (initial default value) for the reduction
5544 >         * @param reducer a commutative associative combining function
5545 >         * @return the task
5546 >         */
5547 >        public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5548 >            (ConcurrentHashMapV8<K,V> map,
5549 >             ObjectToInt<Map.Entry<K,V>> transformer,
5550 >             int basis,
5551 >             IntByIntToInt reducer) {
5552 >            if (transformer == null || reducer == null)
5553 >                throw new NullPointerException();
5554 >            return new MapReduceEntriesToIntTask<K,V>
5555 >                (map, null, -1, null, transformer, basis, reducer);
5556 >        }
5557 >    }
5558 >
5559 >    // -------------------------------------------------------
5560 >
5561 >    /*
5562 >     * Task classes. Coded in a regular but ugly format/style to
5563 >     * simplify checks that each variant differs in the right way from
5564 >     * others. The null screenings exist because compilers cannot tell
5565 >     * that we've already null-checked task arguments, so we force
5566 >     * simplest hoisted bypass to help avoid convoluted traps.
5567 >     */
5568 >
5569 >    @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5570 >        extends Traverser<K,V,Void> {
5571 >        final Action<K> action;
5572 >        ForEachKeyTask
5573 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5574 >             Action<K> action) {
5575 >            super(m, p, b);
5576 >            this.action = action;
5577 >        }
5578 >        @SuppressWarnings("unchecked") public final void compute() {
5579 >            final Action<K> action;
5580 >            if ((action = this.action) != null) {
5581 >                for (int b; (b = preSplit()) > 0;)
5582 >                    new ForEachKeyTask<K,V>(map, this, b, action).fork();
5583 >                while (advance() != null)
5584 >                    action.apply((K)nextKey);
5585 >                propagateCompletion();
5586 >            }
5587 >        }
5588 >    }
5589 >
5590 >    @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5591 >        extends Traverser<K,V,Void> {
5592 >        final Action<V> action;
5593 >        ForEachValueTask
5594 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5595 >             Action<V> action) {
5596 >            super(m, p, b);
5597 >            this.action = action;
5598 >        }
5599 >        @SuppressWarnings("unchecked") public final void compute() {
5600 >            final Action<V> action;
5601 >            if ((action = this.action) != null) {
5602 >                for (int b; (b = preSplit()) > 0;)
5603 >                    new ForEachValueTask<K,V>(map, this, b, action).fork();
5604 >                V v;
5605 >                while ((v = advance()) != null)
5606 >                    action.apply(v);
5607 >                propagateCompletion();
5608 >            }
5609 >        }
5610 >    }
5611 >
5612 >    @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5613 >        extends Traverser<K,V,Void> {
5614 >        final Action<Entry<K,V>> action;
5615 >        ForEachEntryTask
5616 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5617 >             Action<Entry<K,V>> action) {
5618 >            super(m, p, b);
5619 >            this.action = action;
5620 >        }
5621 >        @SuppressWarnings("unchecked") public final void compute() {
5622 >            final Action<Entry<K,V>> action;
5623 >            if ((action = this.action) != null) {
5624 >                for (int b; (b = preSplit()) > 0;)
5625 >                    new ForEachEntryTask<K,V>(map, this, b, action).fork();
5626 >                V v;
5627 >                while ((v = advance()) != null)
5628 >                    action.apply(entryFor((K)nextKey, v));
5629 >                propagateCompletion();
5630 >            }
5631 >        }
5632 >    }
5633 >
5634 >    @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5635 >        extends Traverser<K,V,Void> {
5636 >        final BiAction<K,V> action;
5637 >        ForEachMappingTask
5638 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5639 >             BiAction<K,V> action) {
5640 >            super(m, p, b);
5641 >            this.action = action;
5642 >        }
5643 >        @SuppressWarnings("unchecked") public final void compute() {
5644 >            final BiAction<K,V> action;
5645 >            if ((action = this.action) != null) {
5646 >                for (int b; (b = preSplit()) > 0;)
5647 >                    new ForEachMappingTask<K,V>(map, this, b, action).fork();
5648 >                V v;
5649 >                while ((v = advance()) != null)
5650 >                    action.apply((K)nextKey, v);
5651 >                propagateCompletion();
5652 >            }
5653 >        }
5654 >    }
5655 >
5656 >    @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5657 >        extends Traverser<K,V,Void> {
5658 >        final Fun<? super K, ? extends U> transformer;
5659 >        final Action<U> action;
5660 >        ForEachTransformedKeyTask
5661 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5662 >             Fun<? super K, ? extends U> transformer, Action<U> action) {
5663 >            super(m, p, b);
5664 >            this.transformer = transformer; this.action = action;
5665 >        }
5666 >        @SuppressWarnings("unchecked") public final void compute() {
5667 >            final Fun<? super K, ? extends U> transformer;
5668 >            final Action<U> action;
5669 >            if ((transformer = this.transformer) != null &&
5670 >                (action = this.action) != null) {
5671 >                for (int b; (b = preSplit()) > 0;)
5672 >                    new ForEachTransformedKeyTask<K,V,U>
5673 >                        (map, this, b, transformer, action).fork();
5674 >                U u;
5675 >                while (advance() != null) {
5676 >                    if ((u = transformer.apply((K)nextKey)) != null)
5677 >                        action.apply(u);
5678 >                }
5679 >                propagateCompletion();
5680 >            }
5681 >        }
5682 >    }
5683 >
5684 >    @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5685 >        extends Traverser<K,V,Void> {
5686 >        final Fun<? super V, ? extends U> transformer;
5687 >        final Action<U> action;
5688 >        ForEachTransformedValueTask
5689 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5690 >             Fun<? super V, ? extends U> transformer, Action<U> action) {
5691 >            super(m, p, b);
5692 >            this.transformer = transformer; this.action = action;
5693 >        }
5694 >        @SuppressWarnings("unchecked") public final void compute() {
5695 >            final Fun<? super V, ? extends U> transformer;
5696 >            final Action<U> action;
5697 >            if ((transformer = this.transformer) != null &&
5698 >                (action = this.action) != null) {
5699 >                for (int b; (b = preSplit()) > 0;)
5700 >                    new ForEachTransformedValueTask<K,V,U>
5701 >                        (map, this, b, transformer, action).fork();
5702 >                V v; U u;
5703 >                while ((v = advance()) != null) {
5704 >                    if ((u = transformer.apply(v)) != null)
5705 >                        action.apply(u);
5706 >                }
5707 >                propagateCompletion();
5708 >            }
5709 >        }
5710 >    }
5711 >
5712 >    @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5713 >        extends Traverser<K,V,Void> {
5714 >        final Fun<Map.Entry<K,V>, ? extends U> transformer;
5715 >        final Action<U> action;
5716 >        ForEachTransformedEntryTask
5717 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5718 >             Fun<Map.Entry<K,V>, ? extends U> transformer, Action<U> action) {
5719 >            super(m, p, b);
5720 >            this.transformer = transformer; this.action = action;
5721 >        }
5722 >        @SuppressWarnings("unchecked") public final void compute() {
5723 >            final Fun<Map.Entry<K,V>, ? extends U> transformer;
5724 >            final Action<U> action;
5725 >            if ((transformer = this.transformer) != null &&
5726 >                (action = this.action) != null) {
5727 >                for (int b; (b = preSplit()) > 0;)
5728 >                    new ForEachTransformedEntryTask<K,V,U>
5729 >                        (map, this, b, transformer, action).fork();
5730 >                V v; U u;
5731 >                while ((v = advance()) != null) {
5732 >                    if ((u = transformer.apply(entryFor((K)nextKey,
5733 >                                                        v))) != null)
5734 >                        action.apply(u);
5735 >                }
5736 >                propagateCompletion();
5737 >            }
5738 >        }
5739 >    }
5740 >
5741 >    @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5742 >        extends Traverser<K,V,Void> {
5743 >        final BiFun<? super K, ? super V, ? extends U> transformer;
5744 >        final Action<U> action;
5745 >        ForEachTransformedMappingTask
5746 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5747 >             BiFun<? super K, ? super V, ? extends U> transformer,
5748 >             Action<U> action) {
5749 >            super(m, p, b);
5750 >            this.transformer = transformer; this.action = action;
5751 >        }
5752 >        @SuppressWarnings("unchecked") public final void compute() {
5753 >            final BiFun<? super K, ? super V, ? extends U> transformer;
5754 >            final Action<U> action;
5755 >            if ((transformer = this.transformer) != null &&
5756 >                (action = this.action) != null) {
5757 >                for (int b; (b = preSplit()) > 0;)
5758 >                    new ForEachTransformedMappingTask<K,V,U>
5759 >                        (map, this, b, transformer, action).fork();
5760 >                V v; U u;
5761 >                while ((v = advance()) != null) {
5762 >                    if ((u = transformer.apply((K)nextKey, v)) != null)
5763 >                        action.apply(u);
5764 >                }
5765 >                propagateCompletion();
5766 >            }
5767 >        }
5768 >    }
5769 >
5770 >    @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5771 >        extends Traverser<K,V,U> {
5772 >        final Fun<? super K, ? extends U> searchFunction;
5773 >        final AtomicReference<U> result;
5774 >        SearchKeysTask
5775 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5776 >             Fun<? super K, ? extends U> searchFunction,
5777 >             AtomicReference<U> result) {
5778 >            super(m, p, b);
5779 >            this.searchFunction = searchFunction; this.result = result;
5780 >        }
5781 >        public final U getRawResult() { return result.get(); }
5782 >        @SuppressWarnings("unchecked") public final void compute() {
5783 >            final Fun<? super K, ? extends U> searchFunction;
5784 >            final AtomicReference<U> result;
5785 >            if ((searchFunction = this.searchFunction) != null &&
5786 >                (result = this.result) != null) {
5787 >                for (int b;;) {
5788 >                    if (result.get() != null)
5789 >                        return;
5790 >                    if ((b = preSplit()) <= 0)
5791 >                        break;
5792 >                    new SearchKeysTask<K,V,U>
5793 >                        (map, this, b, searchFunction, result).fork();
5794 >                }
5795 >                while (result.get() == null) {
5796 >                    U u;
5797 >                    if (advance() == null) {
5798 >                        propagateCompletion();
5799 >                        break;
5800 >                    }
5801 >                    if ((u = searchFunction.apply((K)nextKey)) != null) {
5802 >                        if (result.compareAndSet(null, u))
5803 >                            quietlyCompleteRoot();
5804 >                        break;
5805 >                    }
5806 >                }
5807 >            }
5808 >        }
5809 >    }
5810 >
5811 >    @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5812 >        extends Traverser<K,V,U> {
5813 >        final Fun<? super V, ? extends U> searchFunction;
5814 >        final AtomicReference<U> result;
5815 >        SearchValuesTask
5816 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5817 >             Fun<? super V, ? extends U> searchFunction,
5818 >             AtomicReference<U> result) {
5819 >            super(m, p, b);
5820 >            this.searchFunction = searchFunction; this.result = result;
5821 >        }
5822 >        public final U getRawResult() { return result.get(); }
5823 >        @SuppressWarnings("unchecked") public final void compute() {
5824 >            final Fun<? super V, ? extends U> searchFunction;
5825 >            final AtomicReference<U> result;
5826 >            if ((searchFunction = this.searchFunction) != null &&
5827 >                (result = this.result) != null) {
5828 >                for (int b;;) {
5829 >                    if (result.get() != null)
5830 >                        return;
5831 >                    if ((b = preSplit()) <= 0)
5832 >                        break;
5833 >                    new SearchValuesTask<K,V,U>
5834 >                        (map, this, b, searchFunction, result).fork();
5835 >                }
5836 >                while (result.get() == null) {
5837 >                    V v; U u;
5838 >                    if ((v = advance()) == null) {
5839 >                        propagateCompletion();
5840 >                        break;
5841 >                    }
5842 >                    if ((u = searchFunction.apply(v)) != null) {
5843 >                        if (result.compareAndSet(null, u))
5844 >                            quietlyCompleteRoot();
5845 >                        break;
5846 >                    }
5847 >                }
5848 >            }
5849 >        }
5850 >    }
5851 >
5852 >    @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5853 >        extends Traverser<K,V,U> {
5854 >        final Fun<Entry<K,V>, ? extends U> searchFunction;
5855 >        final AtomicReference<U> result;
5856 >        SearchEntriesTask
5857 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5858 >             Fun<Entry<K,V>, ? extends U> searchFunction,
5859 >             AtomicReference<U> result) {
5860 >            super(m, p, b);
5861 >            this.searchFunction = searchFunction; this.result = result;
5862 >        }
5863 >        public final U getRawResult() { return result.get(); }
5864 >        @SuppressWarnings("unchecked") public final void compute() {
5865 >            final Fun<Entry<K,V>, ? extends U> searchFunction;
5866 >            final AtomicReference<U> result;
5867 >            if ((searchFunction = this.searchFunction) != null &&
5868 >                (result = this.result) != null) {
5869 >                for (int b;;) {
5870 >                    if (result.get() != null)
5871 >                        return;
5872 >                    if ((b = preSplit()) <= 0)
5873 >                        break;
5874 >                    new SearchEntriesTask<K,V,U>
5875 >                        (map, this, b, searchFunction, result).fork();
5876 >                }
5877 >                while (result.get() == null) {
5878 >                    V v; U u;
5879 >                    if ((v = advance()) == null) {
5880 >                        propagateCompletion();
5881 >                        break;
5882 >                    }
5883 >                    if ((u = searchFunction.apply(entryFor((K)nextKey,
5884 >                                                           v))) != null) {
5885 >                        if (result.compareAndSet(null, u))
5886 >                            quietlyCompleteRoot();
5887 >                        return;
5888 >                    }
5889 >                }
5890 >            }
5891 >        }
5892 >    }
5893 >
5894 >    @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5895 >        extends Traverser<K,V,U> {
5896 >        final BiFun<? super K, ? super V, ? extends U> searchFunction;
5897 >        final AtomicReference<U> result;
5898 >        SearchMappingsTask
5899 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5900 >             BiFun<? super K, ? super V, ? extends U> searchFunction,
5901 >             AtomicReference<U> result) {
5902 >            super(m, p, b);
5903 >            this.searchFunction = searchFunction; this.result = result;
5904 >        }
5905 >        public final U getRawResult() { return result.get(); }
5906 >        @SuppressWarnings("unchecked") public final void compute() {
5907 >            final BiFun<? super K, ? super V, ? extends U> searchFunction;
5908 >            final AtomicReference<U> result;
5909 >            if ((searchFunction = this.searchFunction) != null &&
5910 >                (result = this.result) != null) {
5911 >                for (int b;;) {
5912 >                    if (result.get() != null)
5913 >                        return;
5914 >                    if ((b = preSplit()) <= 0)
5915 >                        break;
5916 >                    new SearchMappingsTask<K,V,U>
5917 >                        (map, this, b, searchFunction, result).fork();
5918 >                }
5919 >                while (result.get() == null) {
5920 >                    V v; U u;
5921 >                    if ((v = advance()) == null) {
5922 >                        propagateCompletion();
5923 >                        break;
5924 >                    }
5925 >                    if ((u = searchFunction.apply((K)nextKey, v)) != null) {
5926 >                        if (result.compareAndSet(null, u))
5927 >                            quietlyCompleteRoot();
5928 >                        break;
5929 >                    }
5930 >                }
5931 >            }
5932 >        }
5933 >    }
5934 >
5935 >    @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5936 >        extends Traverser<K,V,K> {
5937 >        final BiFun<? super K, ? super K, ? extends K> reducer;
5938 >        K result;
5939 >        ReduceKeysTask<K,V> rights, nextRight;
5940 >        ReduceKeysTask
5941 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5942 >             ReduceKeysTask<K,V> nextRight,
5943 >             BiFun<? super K, ? super K, ? extends K> reducer) {
5944 >            super(m, p, b); this.nextRight = nextRight;
5945 >            this.reducer = reducer;
5946 >        }
5947 >        public final K getRawResult() { return result; }
5948 >        @SuppressWarnings("unchecked") public final void compute() {
5949 >            final BiFun<? super K, ? super K, ? extends K> reducer;
5950 >            if ((reducer = this.reducer) != null) {
5951 >                for (int b; (b = preSplit()) > 0;)
5952 >                    (rights = new ReduceKeysTask<K,V>
5953 >                     (map, this, b, rights, reducer)).fork();
5954 >                K r = null;
5955 >                while (advance() != null) {
5956 >                    K u = (K)nextKey;
5957 >                    r = (r == null) ? u : reducer.apply(r, u);
5958 >                }
5959 >                result = r;
5960 >                CountedCompleter<?> c;
5961 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5962 >                    ReduceKeysTask<K,V>
5963 >                        t = (ReduceKeysTask<K,V>)c,
5964 >                        s = t.rights;
5965 >                    while (s != null) {
5966 >                        K tr, sr;
5967 >                        if ((sr = s.result) != null)
5968 >                            t.result = (((tr = t.result) == null) ? sr :
5969 >                                        reducer.apply(tr, sr));
5970 >                        s = t.rights = s.nextRight;
5971 >                    }
5972 >                }
5973 >            }
5974 >        }
5975 >    }
5976 >
5977 >    @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5978 >        extends Traverser<K,V,V> {
5979 >        final BiFun<? super V, ? super V, ? extends V> reducer;
5980 >        V result;
5981 >        ReduceValuesTask<K,V> rights, nextRight;
5982 >        ReduceValuesTask
5983 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5984 >             ReduceValuesTask<K,V> nextRight,
5985 >             BiFun<? super V, ? super V, ? extends V> reducer) {
5986 >            super(m, p, b); this.nextRight = nextRight;
5987 >            this.reducer = reducer;
5988 >        }
5989 >        public final V getRawResult() { return result; }
5990 >        @SuppressWarnings("unchecked") public final void compute() {
5991 >            final BiFun<? super V, ? super V, ? extends V> reducer;
5992 >            if ((reducer = this.reducer) != null) {
5993 >                for (int b; (b = preSplit()) > 0;)
5994 >                    (rights = new ReduceValuesTask<K,V>
5995 >                     (map, this, b, rights, reducer)).fork();
5996 >                V r = null;
5997 >                V v;
5998 >                while ((v = advance()) != null) {
5999 >                    V u = v;
6000 >                    r = (r == null) ? u : reducer.apply(r, u);
6001 >                }
6002 >                result = r;
6003 >                CountedCompleter<?> c;
6004 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6005 >                    ReduceValuesTask<K,V>
6006 >                        t = (ReduceValuesTask<K,V>)c,
6007 >                        s = t.rights;
6008 >                    while (s != null) {
6009 >                        V tr, sr;
6010 >                        if ((sr = s.result) != null)
6011 >                            t.result = (((tr = t.result) == null) ? sr :
6012 >                                        reducer.apply(tr, sr));
6013 >                        s = t.rights = s.nextRight;
6014 >                    }
6015 >                }
6016 >            }
6017 >        }
6018 >    }
6019 >
6020 >    @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
6021 >        extends Traverser<K,V,Map.Entry<K,V>> {
6022 >        final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6023 >        Map.Entry<K,V> result;
6024 >        ReduceEntriesTask<K,V> rights, nextRight;
6025 >        ReduceEntriesTask
6026 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6027 >             ReduceEntriesTask<K,V> nextRight,
6028 >             BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
6029 >            super(m, p, b); this.nextRight = nextRight;
6030 >            this.reducer = reducer;
6031 >        }
6032 >        public final Map.Entry<K,V> getRawResult() { return result; }
6033 >        @SuppressWarnings("unchecked") public final void compute() {
6034 >            final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6035 >            if ((reducer = this.reducer) != null) {
6036 >                for (int b; (b = preSplit()) > 0;)
6037 >                    (rights = new ReduceEntriesTask<K,V>
6038 >                     (map, this, b, rights, reducer)).fork();
6039 >                Map.Entry<K,V> r = null;
6040 >                V v;
6041 >                while ((v = advance()) != null) {
6042 >                    Map.Entry<K,V> u = entryFor((K)nextKey, v);
6043 >                    r = (r == null) ? u : reducer.apply(r, u);
6044 >                }
6045 >                result = r;
6046 >                CountedCompleter<?> c;
6047 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6048 >                    ReduceEntriesTask<K,V>
6049 >                        t = (ReduceEntriesTask<K,V>)c,
6050 >                        s = t.rights;
6051 >                    while (s != null) {
6052 >                        Map.Entry<K,V> tr, sr;
6053 >                        if ((sr = s.result) != null)
6054 >                            t.result = (((tr = t.result) == null) ? sr :
6055 >                                        reducer.apply(tr, sr));
6056 >                        s = t.rights = s.nextRight;
6057 >                    }
6058 >                }
6059 >            }
6060 >        }
6061 >    }
6062 >
6063 >    @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
6064 >        extends Traverser<K,V,U> {
6065 >        final Fun<? super K, ? extends U> transformer;
6066 >        final BiFun<? super U, ? super U, ? extends U> reducer;
6067 >        U result;
6068 >        MapReduceKeysTask<K,V,U> rights, nextRight;
6069 >        MapReduceKeysTask
6070 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6071 >             MapReduceKeysTask<K,V,U> nextRight,
6072 >             Fun<? super K, ? extends U> transformer,
6073 >             BiFun<? super U, ? super U, ? extends U> reducer) {
6074 >            super(m, p, b); this.nextRight = nextRight;
6075 >            this.transformer = transformer;
6076 >            this.reducer = reducer;
6077 >        }
6078 >        public final U getRawResult() { return result; }
6079 >        @SuppressWarnings("unchecked") public final void compute() {
6080 >            final Fun<? super K, ? extends U> transformer;
6081 >            final BiFun<? super U, ? super U, ? extends U> reducer;
6082 >            if ((transformer = this.transformer) != null &&
6083 >                (reducer = this.reducer) != null) {
6084 >                for (int b; (b = preSplit()) > 0;)
6085 >                    (rights = new MapReduceKeysTask<K,V,U>
6086 >                     (map, this, b, rights, transformer, reducer)).fork();
6087 >                U r = null, u;
6088 >                while (advance() != null) {
6089 >                    if ((u = transformer.apply((K)nextKey)) != null)
6090 >                        r = (r == null) ? u : reducer.apply(r, u);
6091 >                }
6092 >                result = r;
6093 >                CountedCompleter<?> c;
6094 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6095 >                    MapReduceKeysTask<K,V,U>
6096 >                        t = (MapReduceKeysTask<K,V,U>)c,
6097 >                        s = t.rights;
6098 >                    while (s != null) {
6099 >                        U tr, sr;
6100 >                        if ((sr = s.result) != null)
6101 >                            t.result = (((tr = t.result) == null) ? sr :
6102 >                                        reducer.apply(tr, sr));
6103 >                        s = t.rights = s.nextRight;
6104 >                    }
6105 >                }
6106 >            }
6107 >        }
6108 >    }
6109 >
6110 >    @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
6111 >        extends Traverser<K,V,U> {
6112 >        final Fun<? super V, ? extends U> transformer;
6113 >        final BiFun<? super U, ? super U, ? extends U> reducer;
6114 >        U result;
6115 >        MapReduceValuesTask<K,V,U> rights, nextRight;
6116 >        MapReduceValuesTask
6117 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6118 >             MapReduceValuesTask<K,V,U> nextRight,
6119 >             Fun<? super V, ? extends U> transformer,
6120 >             BiFun<? super U, ? super U, ? extends U> reducer) {
6121 >            super(m, p, b); this.nextRight = nextRight;
6122 >            this.transformer = transformer;
6123 >            this.reducer = reducer;
6124 >        }
6125 >        public final U getRawResult() { return result; }
6126 >        @SuppressWarnings("unchecked") public final void compute() {
6127 >            final Fun<? super V, ? extends U> transformer;
6128 >            final BiFun<? super U, ? super U, ? extends U> reducer;
6129 >            if ((transformer = this.transformer) != null &&
6130 >                (reducer = this.reducer) != null) {
6131 >                for (int b; (b = preSplit()) > 0;)
6132 >                    (rights = new MapReduceValuesTask<K,V,U>
6133 >                     (map, this, b, rights, transformer, reducer)).fork();
6134 >                U r = null, u;
6135 >                V v;
6136 >                while ((v = advance()) != null) {
6137 >                    if ((u = transformer.apply(v)) != null)
6138 >                        r = (r == null) ? u : reducer.apply(r, u);
6139 >                }
6140 >                result = r;
6141 >                CountedCompleter<?> c;
6142 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6143 >                    MapReduceValuesTask<K,V,U>
6144 >                        t = (MapReduceValuesTask<K,V,U>)c,
6145 >                        s = t.rights;
6146 >                    while (s != null) {
6147 >                        U tr, sr;
6148 >                        if ((sr = s.result) != null)
6149 >                            t.result = (((tr = t.result) == null) ? sr :
6150 >                                        reducer.apply(tr, sr));
6151 >                        s = t.rights = s.nextRight;
6152 >                    }
6153 >                }
6154 >            }
6155 >        }
6156 >    }
6157 >
6158 >    @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
6159 >        extends Traverser<K,V,U> {
6160 >        final Fun<Map.Entry<K,V>, ? extends U> transformer;
6161 >        final BiFun<? super U, ? super U, ? extends U> reducer;
6162 >        U result;
6163 >        MapReduceEntriesTask<K,V,U> rights, nextRight;
6164 >        MapReduceEntriesTask
6165 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6166 >             MapReduceEntriesTask<K,V,U> nextRight,
6167 >             Fun<Map.Entry<K,V>, ? extends U> transformer,
6168 >             BiFun<? super U, ? super U, ? extends U> reducer) {
6169 >            super(m, p, b); this.nextRight = nextRight;
6170 >            this.transformer = transformer;
6171 >            this.reducer = reducer;
6172 >        }
6173 >        public final U getRawResult() { return result; }
6174 >        @SuppressWarnings("unchecked") public final void compute() {
6175 >            final Fun<Map.Entry<K,V>, ? extends U> transformer;
6176 >            final BiFun<? super U, ? super U, ? extends U> reducer;
6177 >            if ((transformer = this.transformer) != null &&
6178 >                (reducer = this.reducer) != null) {
6179 >                for (int b; (b = preSplit()) > 0;)
6180 >                    (rights = new MapReduceEntriesTask<K,V,U>
6181 >                     (map, this, b, rights, transformer, reducer)).fork();
6182 >                U r = null, u;
6183 >                V v;
6184 >                while ((v = advance()) != null) {
6185 >                    if ((u = transformer.apply(entryFor((K)nextKey,
6186 >                                                        v))) != null)
6187 >                        r = (r == null) ? u : reducer.apply(r, u);
6188 >                }
6189 >                result = r;
6190 >                CountedCompleter<?> c;
6191 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6192 >                    MapReduceEntriesTask<K,V,U>
6193 >                        t = (MapReduceEntriesTask<K,V,U>)c,
6194 >                        s = t.rights;
6195 >                    while (s != null) {
6196 >                        U tr, sr;
6197 >                        if ((sr = s.result) != null)
6198 >                            t.result = (((tr = t.result) == null) ? sr :
6199 >                                        reducer.apply(tr, sr));
6200 >                        s = t.rights = s.nextRight;
6201 >                    }
6202 >                }
6203 >            }
6204 >        }
6205 >    }
6206 >
6207 >    @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
6208 >        extends Traverser<K,V,U> {
6209 >        final BiFun<? super K, ? super V, ? extends U> transformer;
6210 >        final BiFun<? super U, ? super U, ? extends U> reducer;
6211 >        U result;
6212 >        MapReduceMappingsTask<K,V,U> rights, nextRight;
6213 >        MapReduceMappingsTask
6214 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6215 >             MapReduceMappingsTask<K,V,U> nextRight,
6216 >             BiFun<? super K, ? super V, ? extends U> transformer,
6217 >             BiFun<? super U, ? super U, ? extends U> reducer) {
6218 >            super(m, p, b); this.nextRight = nextRight;
6219 >            this.transformer = transformer;
6220 >            this.reducer = reducer;
6221 >        }
6222 >        public final U getRawResult() { return result; }
6223 >        @SuppressWarnings("unchecked") public final void compute() {
6224 >            final BiFun<? super K, ? super V, ? extends U> transformer;
6225 >            final BiFun<? super U, ? super U, ? extends U> reducer;
6226 >            if ((transformer = this.transformer) != null &&
6227 >                (reducer = this.reducer) != null) {
6228 >                for (int b; (b = preSplit()) > 0;)
6229 >                    (rights = new MapReduceMappingsTask<K,V,U>
6230 >                     (map, this, b, rights, transformer, reducer)).fork();
6231 >                U r = null, u;
6232 >                V v;
6233 >                while ((v = advance()) != null) {
6234 >                    if ((u = transformer.apply((K)nextKey, v)) != null)
6235 >                        r = (r == null) ? u : reducer.apply(r, u);
6236 >                }
6237 >                result = r;
6238 >                CountedCompleter<?> c;
6239 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6240 >                    MapReduceMappingsTask<K,V,U>
6241 >                        t = (MapReduceMappingsTask<K,V,U>)c,
6242 >                        s = t.rights;
6243 >                    while (s != null) {
6244 >                        U tr, sr;
6245 >                        if ((sr = s.result) != null)
6246 >                            t.result = (((tr = t.result) == null) ? sr :
6247 >                                        reducer.apply(tr, sr));
6248 >                        s = t.rights = s.nextRight;
6249 >                    }
6250 >                }
6251 >            }
6252 >        }
6253 >    }
6254 >
6255 >    @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
6256 >        extends Traverser<K,V,Double> {
6257 >        final ObjectToDouble<? super K> transformer;
6258 >        final DoubleByDoubleToDouble reducer;
6259 >        final double basis;
6260 >        double result;
6261 >        MapReduceKeysToDoubleTask<K,V> rights, nextRight;
6262 >        MapReduceKeysToDoubleTask
6263 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6264 >             MapReduceKeysToDoubleTask<K,V> nextRight,
6265 >             ObjectToDouble<? super K> transformer,
6266 >             double basis,
6267 >             DoubleByDoubleToDouble reducer) {
6268 >            super(m, p, b); this.nextRight = nextRight;
6269 >            this.transformer = transformer;
6270 >            this.basis = basis; this.reducer = reducer;
6271 >        }
6272 >        public final Double getRawResult() { return result; }
6273 >        @SuppressWarnings("unchecked") public final void compute() {
6274 >            final ObjectToDouble<? super K> transformer;
6275 >            final DoubleByDoubleToDouble reducer;
6276 >            if ((transformer = this.transformer) != null &&
6277 >                (reducer = this.reducer) != null) {
6278 >                double r = this.basis;
6279 >                for (int b; (b = preSplit()) > 0;)
6280 >                    (rights = new MapReduceKeysToDoubleTask<K,V>
6281 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6282 >                while (advance() != null)
6283 >                    r = reducer.apply(r, transformer.apply((K)nextKey));
6284 >                result = r;
6285 >                CountedCompleter<?> c;
6286 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6287 >                    MapReduceKeysToDoubleTask<K,V>
6288 >                        t = (MapReduceKeysToDoubleTask<K,V>)c,
6289 >                        s = t.rights;
6290 >                    while (s != null) {
6291 >                        t.result = reducer.apply(t.result, s.result);
6292 >                        s = t.rights = s.nextRight;
6293 >                    }
6294 >                }
6295 >            }
6296 >        }
6297 >    }
6298 >
6299 >    @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
6300 >        extends Traverser<K,V,Double> {
6301 >        final ObjectToDouble<? super V> transformer;
6302 >        final DoubleByDoubleToDouble reducer;
6303 >        final double basis;
6304 >        double result;
6305 >        MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6306 >        MapReduceValuesToDoubleTask
6307 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6308 >             MapReduceValuesToDoubleTask<K,V> nextRight,
6309 >             ObjectToDouble<? super V> transformer,
6310 >             double basis,
6311 >             DoubleByDoubleToDouble reducer) {
6312 >            super(m, p, b); this.nextRight = nextRight;
6313 >            this.transformer = transformer;
6314 >            this.basis = basis; this.reducer = reducer;
6315 >        }
6316 >        public final Double getRawResult() { return result; }
6317 >        @SuppressWarnings("unchecked") public final void compute() {
6318 >            final ObjectToDouble<? super V> transformer;
6319 >            final DoubleByDoubleToDouble reducer;
6320 >            if ((transformer = this.transformer) != null &&
6321 >                (reducer = this.reducer) != null) {
6322 >                double r = this.basis;
6323 >                for (int b; (b = preSplit()) > 0;)
6324 >                    (rights = new MapReduceValuesToDoubleTask<K,V>
6325 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6326 >                V v;
6327 >                while ((v = advance()) != null)
6328 >                    r = reducer.apply(r, transformer.apply(v));
6329 >                result = r;
6330 >                CountedCompleter<?> c;
6331 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6332 >                    MapReduceValuesToDoubleTask<K,V>
6333 >                        t = (MapReduceValuesToDoubleTask<K,V>)c,
6334 >                        s = t.rights;
6335 >                    while (s != null) {
6336 >                        t.result = reducer.apply(t.result, s.result);
6337 >                        s = t.rights = s.nextRight;
6338 >                    }
6339 >                }
6340 >            }
6341 >        }
6342 >    }
6343 >
6344 >    @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6345 >        extends Traverser<K,V,Double> {
6346 >        final ObjectToDouble<Map.Entry<K,V>> transformer;
6347 >        final DoubleByDoubleToDouble reducer;
6348 >        final double basis;
6349 >        double result;
6350 >        MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6351 >        MapReduceEntriesToDoubleTask
6352 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6353 >             MapReduceEntriesToDoubleTask<K,V> nextRight,
6354 >             ObjectToDouble<Map.Entry<K,V>> transformer,
6355 >             double basis,
6356 >             DoubleByDoubleToDouble reducer) {
6357 >            super(m, p, b); this.nextRight = nextRight;
6358 >            this.transformer = transformer;
6359 >            this.basis = basis; this.reducer = reducer;
6360 >        }
6361 >        public final Double getRawResult() { return result; }
6362 >        @SuppressWarnings("unchecked") public final void compute() {
6363 >            final ObjectToDouble<Map.Entry<K,V>> transformer;
6364 >            final DoubleByDoubleToDouble reducer;
6365 >            if ((transformer = this.transformer) != null &&
6366 >                (reducer = this.reducer) != null) {
6367 >                double r = this.basis;
6368 >                for (int b; (b = preSplit()) > 0;)
6369 >                    (rights = new MapReduceEntriesToDoubleTask<K,V>
6370 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6371 >                V v;
6372 >                while ((v = advance()) != null)
6373 >                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
6374 >                                                                    v)));
6375 >                result = r;
6376 >                CountedCompleter<?> c;
6377 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6378 >                    MapReduceEntriesToDoubleTask<K,V>
6379 >                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
6380 >                        s = t.rights;
6381 >                    while (s != null) {
6382 >                        t.result = reducer.apply(t.result, s.result);
6383 >                        s = t.rights = s.nextRight;
6384 >                    }
6385 >                }
6386 >            }
6387 >        }
6388 >    }
6389 >
6390 >    @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6391 >        extends Traverser<K,V,Double> {
6392 >        final ObjectByObjectToDouble<? super K, ? super V> transformer;
6393 >        final DoubleByDoubleToDouble reducer;
6394 >        final double basis;
6395 >        double result;
6396 >        MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6397 >        MapReduceMappingsToDoubleTask
6398 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6399 >             MapReduceMappingsToDoubleTask<K,V> nextRight,
6400 >             ObjectByObjectToDouble<? super K, ? super V> transformer,
6401 >             double basis,
6402 >             DoubleByDoubleToDouble reducer) {
6403 >            super(m, p, b); this.nextRight = nextRight;
6404 >            this.transformer = transformer;
6405 >            this.basis = basis; this.reducer = reducer;
6406 >        }
6407 >        public final Double getRawResult() { return result; }
6408 >        @SuppressWarnings("unchecked") public final void compute() {
6409 >            final ObjectByObjectToDouble<? super K, ? super V> transformer;
6410 >            final DoubleByDoubleToDouble reducer;
6411 >            if ((transformer = this.transformer) != null &&
6412 >                (reducer = this.reducer) != null) {
6413 >                double r = this.basis;
6414 >                for (int b; (b = preSplit()) > 0;)
6415 >                    (rights = new MapReduceMappingsToDoubleTask<K,V>
6416 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6417 >                V v;
6418 >                while ((v = advance()) != null)
6419 >                    r = reducer.apply(r, transformer.apply((K)nextKey, v));
6420 >                result = r;
6421 >                CountedCompleter<?> c;
6422 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6423 >                    MapReduceMappingsToDoubleTask<K,V>
6424 >                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
6425 >                        s = t.rights;
6426 >                    while (s != null) {
6427 >                        t.result = reducer.apply(t.result, s.result);
6428 >                        s = t.rights = s.nextRight;
6429 >                    }
6430 >                }
6431 >            }
6432 >        }
6433 >    }
6434 >
6435 >    @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6436 >        extends Traverser<K,V,Long> {
6437 >        final ObjectToLong<? super K> transformer;
6438 >        final LongByLongToLong reducer;
6439 >        final long basis;
6440 >        long result;
6441 >        MapReduceKeysToLongTask<K,V> rights, nextRight;
6442 >        MapReduceKeysToLongTask
6443 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6444 >             MapReduceKeysToLongTask<K,V> nextRight,
6445 >             ObjectToLong<? super K> transformer,
6446 >             long basis,
6447 >             LongByLongToLong reducer) {
6448 >            super(m, p, b); this.nextRight = nextRight;
6449 >            this.transformer = transformer;
6450 >            this.basis = basis; this.reducer = reducer;
6451 >        }
6452 >        public final Long getRawResult() { return result; }
6453 >        @SuppressWarnings("unchecked") public final void compute() {
6454 >            final ObjectToLong<? super K> transformer;
6455 >            final LongByLongToLong reducer;
6456 >            if ((transformer = this.transformer) != null &&
6457 >                (reducer = this.reducer) != null) {
6458 >                long r = this.basis;
6459 >                for (int b; (b = preSplit()) > 0;)
6460 >                    (rights = new MapReduceKeysToLongTask<K,V>
6461 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6462 >                while (advance() != null)
6463 >                    r = reducer.apply(r, transformer.apply((K)nextKey));
6464 >                result = r;
6465 >                CountedCompleter<?> c;
6466 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6467 >                    MapReduceKeysToLongTask<K,V>
6468 >                        t = (MapReduceKeysToLongTask<K,V>)c,
6469 >                        s = t.rights;
6470 >                    while (s != null) {
6471 >                        t.result = reducer.apply(t.result, s.result);
6472 >                        s = t.rights = s.nextRight;
6473 >                    }
6474 >                }
6475 >            }
6476 >        }
6477 >    }
6478 >
6479 >    @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6480 >        extends Traverser<K,V,Long> {
6481 >        final ObjectToLong<? super V> transformer;
6482 >        final LongByLongToLong reducer;
6483 >        final long basis;
6484 >        long result;
6485 >        MapReduceValuesToLongTask<K,V> rights, nextRight;
6486 >        MapReduceValuesToLongTask
6487 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6488 >             MapReduceValuesToLongTask<K,V> nextRight,
6489 >             ObjectToLong<? super V> transformer,
6490 >             long basis,
6491 >             LongByLongToLong reducer) {
6492 >            super(m, p, b); this.nextRight = nextRight;
6493 >            this.transformer = transformer;
6494 >            this.basis = basis; this.reducer = reducer;
6495 >        }
6496 >        public final Long getRawResult() { return result; }
6497 >        @SuppressWarnings("unchecked") public final void compute() {
6498 >            final ObjectToLong<? super V> transformer;
6499 >            final LongByLongToLong reducer;
6500 >            if ((transformer = this.transformer) != null &&
6501 >                (reducer = this.reducer) != null) {
6502 >                long r = this.basis;
6503 >                for (int b; (b = preSplit()) > 0;)
6504 >                    (rights = new MapReduceValuesToLongTask<K,V>
6505 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6506 >                V v;
6507 >                while ((v = advance()) != null)
6508 >                    r = reducer.apply(r, transformer.apply(v));
6509 >                result = r;
6510 >                CountedCompleter<?> c;
6511 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6512 >                    MapReduceValuesToLongTask<K,V>
6513 >                        t = (MapReduceValuesToLongTask<K,V>)c,
6514 >                        s = t.rights;
6515 >                    while (s != null) {
6516 >                        t.result = reducer.apply(t.result, s.result);
6517 >                        s = t.rights = s.nextRight;
6518 >                    }
6519 >                }
6520 >            }
6521 >        }
6522 >    }
6523 >
6524 >    @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6525 >        extends Traverser<K,V,Long> {
6526 >        final ObjectToLong<Map.Entry<K,V>> transformer;
6527 >        final LongByLongToLong reducer;
6528 >        final long basis;
6529 >        long result;
6530 >        MapReduceEntriesToLongTask<K,V> rights, nextRight;
6531 >        MapReduceEntriesToLongTask
6532 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6533 >             MapReduceEntriesToLongTask<K,V> nextRight,
6534 >             ObjectToLong<Map.Entry<K,V>> transformer,
6535 >             long basis,
6536 >             LongByLongToLong reducer) {
6537 >            super(m, p, b); this.nextRight = nextRight;
6538 >            this.transformer = transformer;
6539 >            this.basis = basis; this.reducer = reducer;
6540 >        }
6541 >        public final Long getRawResult() { return result; }
6542 >        @SuppressWarnings("unchecked") public final void compute() {
6543 >            final ObjectToLong<Map.Entry<K,V>> transformer;
6544 >            final LongByLongToLong reducer;
6545 >            if ((transformer = this.transformer) != null &&
6546 >                (reducer = this.reducer) != null) {
6547 >                long r = this.basis;
6548 >                for (int b; (b = preSplit()) > 0;)
6549 >                    (rights = new MapReduceEntriesToLongTask<K,V>
6550 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6551 >                V v;
6552 >                while ((v = advance()) != null)
6553 >                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
6554 >                                                                    v)));
6555 >                result = r;
6556 >                CountedCompleter<?> c;
6557 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6558 >                    MapReduceEntriesToLongTask<K,V>
6559 >                        t = (MapReduceEntriesToLongTask<K,V>)c,
6560 >                        s = t.rights;
6561 >                    while (s != null) {
6562 >                        t.result = reducer.apply(t.result, s.result);
6563 >                        s = t.rights = s.nextRight;
6564 >                    }
6565 >                }
6566 >            }
6567 >        }
6568 >    }
6569 >
6570 >    @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6571 >        extends Traverser<K,V,Long> {
6572 >        final ObjectByObjectToLong<? super K, ? super V> transformer;
6573 >        final LongByLongToLong reducer;
6574 >        final long basis;
6575 >        long result;
6576 >        MapReduceMappingsToLongTask<K,V> rights, nextRight;
6577 >        MapReduceMappingsToLongTask
6578 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6579 >             MapReduceMappingsToLongTask<K,V> nextRight,
6580 >             ObjectByObjectToLong<? super K, ? super V> transformer,
6581 >             long basis,
6582 >             LongByLongToLong reducer) {
6583 >            super(m, p, b); this.nextRight = nextRight;
6584 >            this.transformer = transformer;
6585 >            this.basis = basis; this.reducer = reducer;
6586 >        }
6587 >        public final Long getRawResult() { return result; }
6588 >        @SuppressWarnings("unchecked") public final void compute() {
6589 >            final ObjectByObjectToLong<? super K, ? super V> transformer;
6590 >            final LongByLongToLong reducer;
6591 >            if ((transformer = this.transformer) != null &&
6592 >                (reducer = this.reducer) != null) {
6593 >                long r = this.basis;
6594 >                for (int b; (b = preSplit()) > 0;)
6595 >                    (rights = new MapReduceMappingsToLongTask<K,V>
6596 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6597 >                V v;
6598 >                while ((v = advance()) != null)
6599 >                    r = reducer.apply(r, transformer.apply((K)nextKey, v));
6600 >                result = r;
6601 >                CountedCompleter<?> c;
6602 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6603 >                    MapReduceMappingsToLongTask<K,V>
6604 >                        t = (MapReduceMappingsToLongTask<K,V>)c,
6605 >                        s = t.rights;
6606 >                    while (s != null) {
6607 >                        t.result = reducer.apply(t.result, s.result);
6608 >                        s = t.rights = s.nextRight;
6609 >                    }
6610 >                }
6611 >            }
6612 >        }
6613 >    }
6614 >
6615 >    @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6616 >        extends Traverser<K,V,Integer> {
6617 >        final ObjectToInt<? super K> transformer;
6618 >        final IntByIntToInt reducer;
6619 >        final int basis;
6620 >        int result;
6621 >        MapReduceKeysToIntTask<K,V> rights, nextRight;
6622 >        MapReduceKeysToIntTask
6623 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6624 >             MapReduceKeysToIntTask<K,V> nextRight,
6625 >             ObjectToInt<? super K> transformer,
6626 >             int basis,
6627 >             IntByIntToInt reducer) {
6628 >            super(m, p, b); this.nextRight = nextRight;
6629 >            this.transformer = transformer;
6630 >            this.basis = basis; this.reducer = reducer;
6631 >        }
6632 >        public final Integer getRawResult() { return result; }
6633 >        @SuppressWarnings("unchecked") public final void compute() {
6634 >            final ObjectToInt<? super K> transformer;
6635 >            final IntByIntToInt reducer;
6636 >            if ((transformer = this.transformer) != null &&
6637 >                (reducer = this.reducer) != null) {
6638 >                int r = this.basis;
6639 >                for (int b; (b = preSplit()) > 0;)
6640 >                    (rights = new MapReduceKeysToIntTask<K,V>
6641 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6642 >                while (advance() != null)
6643 >                    r = reducer.apply(r, transformer.apply((K)nextKey));
6644 >                result = r;
6645 >                CountedCompleter<?> c;
6646 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6647 >                    MapReduceKeysToIntTask<K,V>
6648 >                        t = (MapReduceKeysToIntTask<K,V>)c,
6649 >                        s = t.rights;
6650 >                    while (s != null) {
6651 >                        t.result = reducer.apply(t.result, s.result);
6652 >                        s = t.rights = s.nextRight;
6653 >                    }
6654 >                }
6655 >            }
6656 >        }
6657 >    }
6658 >
6659 >    @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6660 >        extends Traverser<K,V,Integer> {
6661 >        final ObjectToInt<? super V> transformer;
6662 >        final IntByIntToInt reducer;
6663 >        final int basis;
6664 >        int result;
6665 >        MapReduceValuesToIntTask<K,V> rights, nextRight;
6666 >        MapReduceValuesToIntTask
6667 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6668 >             MapReduceValuesToIntTask<K,V> nextRight,
6669 >             ObjectToInt<? super V> transformer,
6670 >             int basis,
6671 >             IntByIntToInt reducer) {
6672 >            super(m, p, b); this.nextRight = nextRight;
6673 >            this.transformer = transformer;
6674 >            this.basis = basis; this.reducer = reducer;
6675 >        }
6676 >        public final Integer getRawResult() { return result; }
6677 >        @SuppressWarnings("unchecked") public final void compute() {
6678 >            final ObjectToInt<? super V> transformer;
6679 >            final IntByIntToInt reducer;
6680 >            if ((transformer = this.transformer) != null &&
6681 >                (reducer = this.reducer) != null) {
6682 >                int r = this.basis;
6683 >                for (int b; (b = preSplit()) > 0;)
6684 >                    (rights = new MapReduceValuesToIntTask<K,V>
6685 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6686 >                V v;
6687 >                while ((v = advance()) != null)
6688 >                    r = reducer.apply(r, transformer.apply(v));
6689 >                result = r;
6690 >                CountedCompleter<?> c;
6691 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6692 >                    MapReduceValuesToIntTask<K,V>
6693 >                        t = (MapReduceValuesToIntTask<K,V>)c,
6694 >                        s = t.rights;
6695 >                    while (s != null) {
6696 >                        t.result = reducer.apply(t.result, s.result);
6697 >                        s = t.rights = s.nextRight;
6698 >                    }
6699 >                }
6700 >            }
6701 >        }
6702 >    }
6703 >
6704 >    @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6705 >        extends Traverser<K,V,Integer> {
6706 >        final ObjectToInt<Map.Entry<K,V>> transformer;
6707 >        final IntByIntToInt reducer;
6708 >        final int basis;
6709 >        int result;
6710 >        MapReduceEntriesToIntTask<K,V> rights, nextRight;
6711 >        MapReduceEntriesToIntTask
6712 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6713 >             MapReduceEntriesToIntTask<K,V> nextRight,
6714 >             ObjectToInt<Map.Entry<K,V>> transformer,
6715 >             int basis,
6716 >             IntByIntToInt reducer) {
6717 >            super(m, p, b); this.nextRight = nextRight;
6718 >            this.transformer = transformer;
6719 >            this.basis = basis; this.reducer = reducer;
6720 >        }
6721 >        public final Integer getRawResult() { return result; }
6722 >        @SuppressWarnings("unchecked") public final void compute() {
6723 >            final ObjectToInt<Map.Entry<K,V>> transformer;
6724 >            final IntByIntToInt reducer;
6725 >            if ((transformer = this.transformer) != null &&
6726 >                (reducer = this.reducer) != null) {
6727 >                int r = this.basis;
6728 >                for (int b; (b = preSplit()) > 0;)
6729 >                    (rights = new MapReduceEntriesToIntTask<K,V>
6730 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6731 >                V v;
6732 >                while ((v = advance()) != null)
6733 >                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
6734 >                                                                    v)));
6735 >                result = r;
6736 >                CountedCompleter<?> c;
6737 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6738 >                    MapReduceEntriesToIntTask<K,V>
6739 >                        t = (MapReduceEntriesToIntTask<K,V>)c,
6740 >                        s = t.rights;
6741 >                    while (s != null) {
6742 >                        t.result = reducer.apply(t.result, s.result);
6743 >                        s = t.rights = s.nextRight;
6744 >                    }
6745 >                }
6746 >            }
6747 >        }
6748 >    }
6749 >
6750 >    @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6751 >        extends Traverser<K,V,Integer> {
6752 >        final ObjectByObjectToInt<? super K, ? super V> transformer;
6753 >        final IntByIntToInt reducer;
6754 >        final int basis;
6755 >        int result;
6756 >        MapReduceMappingsToIntTask<K,V> rights, nextRight;
6757 >        MapReduceMappingsToIntTask
6758 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6759 >             MapReduceMappingsToIntTask<K,V> nextRight,
6760 >             ObjectByObjectToInt<? super K, ? super V> transformer,
6761 >             int basis,
6762 >             IntByIntToInt reducer) {
6763 >            super(m, p, b); this.nextRight = nextRight;
6764 >            this.transformer = transformer;
6765 >            this.basis = basis; this.reducer = reducer;
6766 >        }
6767 >        public final Integer getRawResult() { return result; }
6768 >        @SuppressWarnings("unchecked") public final void compute() {
6769 >            final ObjectByObjectToInt<? super K, ? super V> transformer;
6770 >            final IntByIntToInt reducer;
6771 >            if ((transformer = this.transformer) != null &&
6772 >                (reducer = this.reducer) != null) {
6773 >                int r = this.basis;
6774 >                for (int b; (b = preSplit()) > 0;)
6775 >                    (rights = new MapReduceMappingsToIntTask<K,V>
6776 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6777 >                V v;
6778 >                while ((v = advance()) != null)
6779 >                    r = reducer.apply(r, transformer.apply((K)nextKey, v));
6780 >                result = r;
6781 >                CountedCompleter<?> c;
6782 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6783 >                    MapReduceMappingsToIntTask<K,V>
6784 >                        t = (MapReduceMappingsToIntTask<K,V>)c,
6785 >                        s = t.rights;
6786 >                    while (s != null) {
6787 >                        t.result = reducer.apply(t.result, s.result);
6788 >                        s = t.rights = s.nextRight;
6789 >                    }
6790 >                }
6791 >            }
6792          }
6793      }
6794  
6795      // Unsafe mechanics
6796 <    private static final sun.misc.Unsafe UNSAFE;
6797 <    private static final long counterOffset;
6798 <    private static final long resizingOffset;
6796 >    private static final sun.misc.Unsafe U;
6797 >    private static final long SIZECTL;
6798 >    private static final long TRANSFERINDEX;
6799 >    private static final long TRANSFERORIGIN;
6800 >    private static final long BASECOUNT;
6801 >    private static final long COUNTERBUSY;
6802 >    private static final long CELLVALUE;
6803      private static final long ABASE;
6804      private static final int ASHIFT;
6805  
6806      static {
6807          int ss;
6808          try {
6809 <            UNSAFE = getUnsafe();
6809 >            U = getUnsafe();
6810              Class<?> k = ConcurrentHashMapV8.class;
6811 <            counterOffset = UNSAFE.objectFieldOffset
6812 <                (k.getDeclaredField("counter"));
6813 <            resizingOffset = UNSAFE.objectFieldOffset
6814 <                (k.getDeclaredField("resizing"));
6811 >            SIZECTL = U.objectFieldOffset
6812 >                (k.getDeclaredField("sizeCtl"));
6813 >            TRANSFERINDEX = U.objectFieldOffset
6814 >                (k.getDeclaredField("transferIndex"));
6815 >            TRANSFERORIGIN = U.objectFieldOffset
6816 >                (k.getDeclaredField("transferOrigin"));
6817 >            BASECOUNT = U.objectFieldOffset
6818 >                (k.getDeclaredField("baseCount"));
6819 >            COUNTERBUSY = U.objectFieldOffset
6820 >                (k.getDeclaredField("counterBusy"));
6821 >            Class<?> ck = CounterCell.class;
6822 >            CELLVALUE = U.objectFieldOffset
6823 >                (ck.getDeclaredField("value"));
6824              Class<?> sc = Node[].class;
6825 <            ABASE = UNSAFE.arrayBaseOffset(sc);
6826 <            ss = UNSAFE.arrayIndexScale(sc);
6825 >            ABASE = U.arrayBaseOffset(sc);
6826 >            ss = U.arrayIndexScale(sc);
6827 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6828          } catch (Exception e) {
6829              throw new Error(e);
6830          }
6831          if ((ss & (ss-1)) != 0)
6832              throw new Error("data type scale not a power of two");
1597        ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6833      }
6834  
6835      /**
# Line 1607 | Line 6842 | public class ConcurrentHashMapV8<K, V>
6842      private static sun.misc.Unsafe getUnsafe() {
6843          try {
6844              return sun.misc.Unsafe.getUnsafe();
6845 <        } catch (SecurityException se) {
6846 <            try {
6847 <                return java.security.AccessController.doPrivileged
6848 <                    (new java.security
6849 <                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
6850 <                        public sun.misc.Unsafe run() throws Exception {
6851 <                            java.lang.reflect.Field f = sun.misc
6852 <                                .Unsafe.class.getDeclaredField("theUnsafe");
6853 <                            f.setAccessible(true);
6854 <                            return (sun.misc.Unsafe) f.get(null);
6855 <                        }});
6856 <            } catch (java.security.PrivilegedActionException e) {
6857 <                throw new RuntimeException("Could not initialize intrinsics",
6858 <                                           e.getCause());
6859 <            }
6845 >        } catch (SecurityException tryReflectionInstead) {}
6846 >        try {
6847 >            return java.security.AccessController.doPrivileged
6848 >            (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
6849 >                public sun.misc.Unsafe run() throws Exception {
6850 >                    Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
6851 >                    for (java.lang.reflect.Field f : k.getDeclaredFields()) {
6852 >                        f.setAccessible(true);
6853 >                        Object x = f.get(null);
6854 >                        if (k.isInstance(x))
6855 >                            return k.cast(x);
6856 >                    }
6857 >                    throw new NoSuchFieldError("the Unsafe");
6858 >                }});
6859 >        } catch (java.security.PrivilegedActionException e) {
6860 >            throw new RuntimeException("Could not initialize intrinsics",
6861 >                                       e.getCause());
6862          }
6863      }
1627
6864   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines