ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
(Generate patch)

Comparing jsr166/src/jsr166e/ConcurrentHashMapV8.java (file contents):
Revision 1.35 by jsr166, Mon Jan 2 23:16:22 2012 UTC vs.
Revision 1.88 by jsr166, Fri Jan 18 04:23:27 2013 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166e;
8 < import jsr166e.LongAdder;
8 >
9 > import java.util.Comparator;
10   import java.util.Arrays;
11   import java.util.Map;
12   import java.util.Set;
# Line 20 | Line 21 | import java.util.Enumeration;
21   import java.util.ConcurrentModificationException;
22   import java.util.NoSuchElementException;
23   import java.util.concurrent.ConcurrentMap;
24 < import java.util.concurrent.locks.LockSupport;
24 > import java.util.concurrent.locks.AbstractQueuedSynchronizer;
25 > import java.util.concurrent.atomic.AtomicInteger;
26 > import java.util.concurrent.atomic.AtomicReference;
27   import java.io.Serializable;
28  
29   /**
# Line 35 | Line 38 | import java.io.Serializable;
38   * interoperable with {@code Hashtable} in programs that rely on its
39   * thread safety but not on its synchronization details.
40   *
41 < * <p> Retrieval operations (including {@code get}) generally do not
41 > * <p>Retrieval operations (including {@code get}) generally do not
42   * block, so may overlap with update operations (including {@code put}
43   * and {@code remove}). Retrievals reflect the results of the most
44   * recently <em>completed</em> update operations holding upon their
45 < * onset.  For aggregate operations such as {@code putAll} and {@code
46 < * clear}, concurrent retrievals may reflect insertion or removal of
47 < * only some entries.  Similarly, Iterators and Enumerations return
48 < * elements reflecting the state of the hash table at some point at or
49 < * since the creation of the iterator/enumeration.  They do
50 < * <em>not</em> throw {@link ConcurrentModificationException}.
51 < * However, iterators are designed to be used by only one thread at a
52 < * time.  Bear in mind that the results of aggregate status methods
53 < * including {@code size}, {@code isEmpty}, and {@code containsValue}
54 < * are typically useful only when a map is not undergoing concurrent
55 < * updates in other threads.  Otherwise the results of these methods
56 < * reflect transient states that may be adequate for monitoring
57 < * or estimation purposes, but not for program control.
45 > * onset. (More formally, an update operation for a given key bears a
46 > * <em>happens-before</em> relation with any (non-null) retrieval for
47 > * that key reporting the updated value.)  For aggregate operations
48 > * such as {@code putAll} and {@code clear}, concurrent retrievals may
49 > * reflect insertion or removal of only some entries.  Similarly,
50 > * Iterators and Enumerations return elements reflecting the state of
51 > * the hash table at some point at or since the creation of the
52 > * iterator/enumeration.  They do <em>not</em> throw {@link
53 > * ConcurrentModificationException}.  However, iterators are designed
54 > * to be used by only one thread at a time.  Bear in mind that the
55 > * results of aggregate status methods including {@code size}, {@code
56 > * isEmpty}, and {@code containsValue} are typically useful only when
57 > * a map is not undergoing concurrent updates in other threads.
58 > * Otherwise the results of these methods reflect transient states
59 > * that may be adequate for monitoring or estimation purposes, but not
60 > * for program control.
61   *
62 < * <p> The table is dynamically expanded when there are too many
62 > * <p>The table is dynamically expanded when there are too many
63   * collisions (i.e., keys that have distinct hash codes but fall into
64   * the same slot modulo the table size), with the expected average
65   * effect of maintaining roughly two bins per mapping (corresponding
# Line 74 | Line 80 | import java.io.Serializable;
80   * {@code hashCode()} is a sure way to slow down performance of any
81   * hash table.
82   *
83 + * <p>A {@link Set} projection of a ConcurrentHashMapV8 may be created
84 + * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
85 + * (using {@link #keySet(Object)} when only keys are of interest, and the
86 + * mapped values are (perhaps transiently) not used or all take the
87 + * same mapping value.
88 + *
89 + * <p>A ConcurrentHashMapV8 can be used as scalable frequency map (a
90 + * form of histogram or multiset) by using {@link LongAdder} values
91 + * and initializing via {@link #computeIfAbsent}. For example, to add
92 + * a count to a {@code ConcurrentHashMapV8<String,LongAdder> freqs}, you
93 + * can use {@code freqs.computeIfAbsent(k -> new
94 + * LongAdder()).increment();}
95 + *
96   * <p>This class and its views and iterators implement all of the
97   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
98   * interfaces.
99   *
100 < * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
100 > * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
101   * does <em>not</em> allow {@code null} to be used as a key or value.
102   *
103 + * <p>ConcurrentHashMapV8s support sequential and parallel operations
104 + * bulk operations. (Parallel forms use the {@link
105 + * ForkJoinPool#commonPool()}). Tasks that may be used in other
106 + * contexts are available in class {@link ForkJoinTasks}. These
107 + * operations are designed to be safely, and often sensibly, applied
108 + * even with maps that are being concurrently updated by other
109 + * threads; for example, when computing a snapshot summary of the
110 + * values in a shared registry.  There are three kinds of operation,
111 + * each with four forms, accepting functions with Keys, Values,
112 + * Entries, and (Key, Value) arguments and/or return values. Because
113 + * the elements of a ConcurrentHashMapV8 are not ordered in any
114 + * particular way, and may be processed in different orders in
115 + * different parallel executions, the correctness of supplied
116 + * functions should not depend on any ordering, or on any other
117 + * objects or values that may transiently change while computation is
118 + * in progress; and except for forEach actions, should ideally be
119 + * side-effect-free.
120 + *
121 + * <ul>
122 + * <li> forEach: Perform a given action on each element.
123 + * A variant form applies a given transformation on each element
124 + * before performing the action.</li>
125 + *
126 + * <li> search: Return the first available non-null result of
127 + * applying a given function on each element; skipping further
128 + * search when a result is found.</li>
129 + *
130 + * <li> reduce: Accumulate each element.  The supplied reduction
131 + * function cannot rely on ordering (more formally, it should be
132 + * both associative and commutative).  There are five variants:
133 + *
134 + * <ul>
135 + *
136 + * <li> Plain reductions. (There is not a form of this method for
137 + * (key, value) function arguments since there is no corresponding
138 + * return type.)</li>
139 + *
140 + * <li> Mapped reductions that accumulate the results of a given
141 + * function applied to each element.</li>
142 + *
143 + * <li> Reductions to scalar doubles, longs, and ints, using a
144 + * given basis value.</li>
145 + *
146 + * </li>
147 + * </ul>
148 + * </ul>
149 + *
150 + * <p>The concurrency properties of bulk operations follow
151 + * from those of ConcurrentHashMapV8: Any non-null result returned
152 + * from {@code get(key)} and related access methods bears a
153 + * happens-before relation with the associated insertion or
154 + * update.  The result of any bulk operation reflects the
155 + * composition of these per-element relations (but is not
156 + * necessarily atomic with respect to the map as a whole unless it
157 + * is somehow known to be quiescent).  Conversely, because keys
158 + * and values in the map are never null, null serves as a reliable
159 + * atomic indicator of the current lack of any result.  To
160 + * maintain this property, null serves as an implicit basis for
161 + * all non-scalar reduction operations. For the double, long, and
162 + * int versions, the basis should be one that, when combined with
163 + * any other value, returns that other value (more formally, it
164 + * should be the identity element for the reduction). Most common
165 + * reductions have these properties; for example, computing a sum
166 + * with basis 0 or a minimum with basis MAX_VALUE.
167 + *
168 + * <p>Search and transformation functions provided as arguments
169 + * should similarly return null to indicate the lack of any result
170 + * (in which case it is not used). In the case of mapped
171 + * reductions, this also enables transformations to serve as
172 + * filters, returning null (or, in the case of primitive
173 + * specializations, the identity basis) if the element should not
174 + * be combined. You can create compound transformations and
175 + * filterings by composing them yourself under this "null means
176 + * there is nothing there now" rule before using them in search or
177 + * reduce operations.
178 + *
179 + * <p>Methods accepting and/or returning Entry arguments maintain
180 + * key-value associations. They may be useful for example when
181 + * finding the key for the greatest value. Note that "plain" Entry
182 + * arguments can be supplied using {@code new
183 + * AbstractMap.SimpleEntry(k,v)}.
184 + *
185 + * <p>Bulk operations may complete abruptly, throwing an
186 + * exception encountered in the application of a supplied
187 + * function. Bear in mind when handling such exceptions that other
188 + * concurrently executing functions could also have thrown
189 + * exceptions, or would have done so if the first exception had
190 + * not occurred.
191 + *
192 + * <p>Speedups for parallel compared to sequential forms are common
193 + * but not guaranteed.  Parallel operations involving brief functions
194 + * on small maps may execute more slowly than sequential forms if the
195 + * underlying work to parallelize the computation is more expensive
196 + * than the computation itself.  Similarly, parallelization may not
197 + * lead to much actual parallelism if all processors are busy
198 + * performing unrelated tasks.
199 + *
200 + * <p>All arguments to all task methods must be non-null.
201 + *
202 + * <p><em>jsr166e note: During transition, this class
203 + * uses nested functional interfaces with different names but the
204 + * same forms as those expected for JDK8.</em>
205 + *
206   * <p>This class is a member of the
207   * <a href="{@docRoot}/../technotes/guides/collections/index.html">
208   * Java Collections Framework</a>.
209   *
88 * <p><em>jsr166e note: This class is a candidate replacement for
89 * java.util.concurrent.ConcurrentHashMap.<em>
90 *
210   * @since 1.5
211   * @author Doug Lea
212   * @param <K> the type of keys maintained by this map
213   * @param <V> the type of mapped values
214   */
215   public class ConcurrentHashMapV8<K, V>
216 <        implements ConcurrentMap<K, V>, Serializable {
216 >    implements ConcurrentMap<K, V>, Serializable {
217      private static final long serialVersionUID = 7249069246763182397L;
218  
219      /**
220 <     * A function computing a mapping from the given key to a value.
221 <     * This is a place-holder for an upcoming JDK8 interface.
222 <     */
223 <    public static interface MappingFunction<K, V> {
224 <        /**
225 <         * Returns a non-null value for the given key.
226 <         *
227 <         * @param key the (non-null) key
228 <         * @return a non-null value
229 <         */
230 <        V map(K key);
231 <    }
232 <
233 <    /**
234 <     * A function computing a new mapping given a key and its current
235 <     * mapped value (or {@code null} if there is no current
236 <     * mapping). This is a place-holder for an upcoming JDK8
237 <     * interface.
220 >     * A partitionable iterator. A Spliterator can be traversed
221 >     * directly, but can also be partitioned (before traversal) by
222 >     * creating another Spliterator that covers a non-overlapping
223 >     * portion of the elements, and so may be amenable to parallel
224 >     * execution.
225 >     *
226 >     * <p>This interface exports a subset of expected JDK8
227 >     * functionality.
228 >     *
229 >     * <p>Sample usage: Here is one (of the several) ways to compute
230 >     * the sum of the values held in a map using the ForkJoin
231 >     * framework. As illustrated here, Spliterators are well suited to
232 >     * designs in which a task repeatedly splits off half its work
233 >     * into forked subtasks until small enough to process directly,
234 >     * and then joins these subtasks. Variants of this style can also
235 >     * be used in completion-based designs.
236 >     *
237 >     * <pre>
238 >     * {@code ConcurrentHashMapV8<String, Long> m = ...
239 >     * // split as if have 8 * parallelism, for load balance
240 >     * int n = m.size();
241 >     * int p = aForkJoinPool.getParallelism() * 8;
242 >     * int split = (n < p)? n : p;
243 >     * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
244 >     * // ...
245 >     * static class SumValues extends RecursiveTask<Long> {
246 >     *   final Spliterator<Long> s;
247 >     *   final int split;             // split while > 1
248 >     *   final SumValues nextJoin;    // records forked subtasks to join
249 >     *   SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
250 >     *     this.s = s; this.depth = depth; this.nextJoin = nextJoin;
251 >     *   }
252 >     *   public Long compute() {
253 >     *     long sum = 0;
254 >     *     SumValues subtasks = null; // fork subtasks
255 >     *     for (int s = split >>> 1; s > 0; s >>>= 1)
256 >     *       (subtasks = new SumValues(s.split(), s, subtasks)).fork();
257 >     *     while (s.hasNext())        // directly process remaining elements
258 >     *       sum += s.next();
259 >     *     for (SumValues t = subtasks; t != null; t = t.nextJoin)
260 >     *       sum += t.join();         // collect subtask results
261 >     *     return sum;
262 >     *   }
263 >     * }
264 >     * }</pre>
265       */
266 <    public static interface RemappingFunction<K, V> {
266 >    public static interface Spliterator<T> extends Iterator<T> {
267          /**
268 <         * Returns a new value given a key and its current value.
268 >         * Returns a Spliterator covering approximately half of the
269 >         * elements, guaranteed not to overlap with those subsequently
270 >         * returned by this Spliterator.  After invoking this method,
271 >         * the current Spliterator will <em>not</em> produce any of
272 >         * the elements of the returned Spliterator, but the two
273 >         * Spliterators together will produce all of the elements that
274 >         * would have been produced by this Spliterator had this
275 >         * method not been called. The exact number of elements
276 >         * produced by the returned Spliterator is not guaranteed, and
277 >         * may be zero (i.e., with {@code hasNext()} reporting {@code
278 >         * false}) if this Spliterator cannot be further split.
279           *
280 <         * @param key the (non-null) key
281 <         * @param value the current value, or null if there is no mapping
282 <         * @return a non-null value
280 >         * @return a Spliterator covering approximately half of the
281 >         * elements
282 >         * @throws IllegalStateException if this Spliterator has
283 >         * already commenced traversing elements
284           */
285 <        V remap(K key, V value);
285 >        Spliterator<T> split();
286      }
287  
288      /*
# Line 138 | Line 295 | public class ConcurrentHashMapV8<K, V>
295       * the same or better than java.util.HashMap, and to support high
296       * initial insertion rates on an empty table by many threads.
297       *
298 <     * Each key-value mapping is held in a Node.  Because Node fields
299 <     * can contain special values, they are defined using plain Object
300 <     * types. Similarly in turn, all internal methods that use them
301 <     * work off Object types. And similarly, so do the internal
302 <     * methods of auxiliary iterator and view classes.  All public
303 <     * generic typed methods relay in/out of these internal methods,
304 <     * supplying null-checks and casts as needed. This also allows
305 <     * many of the public methods to be factored into a smaller number
306 <     * of internal methods (although sadly not so for the five
307 <     * sprawling variants of put-related operations).
298 >     * Each key-value mapping is held in a Node.  Because Node key
299 >     * fields can contain special values, they are defined using plain
300 >     * Object types (not type "K"). This leads to a lot of explicit
301 >     * casting (and many explicit warning suppressions to tell
302 >     * compilers not to complain about it). It also allows some of the
303 >     * public methods to be factored into a smaller number of internal
304 >     * methods (although sadly not so for the five variants of
305 >     * put-related operations). The validation-based approach
306 >     * explained below leads to a lot of code sprawl because
307 >     * retry-control precludes factoring into smaller methods.
308       *
309       * The table is lazily initialized to a power-of-two size upon the
310 <     * first insertion.  Each bin in the table contains a list of
311 <     * Nodes (most often, the list has only zero or one Node).  Table
312 <     * accesses require volatile/atomic reads, writes, and CASes.
313 <     * Because there is no other way to arrange this without adding
314 <     * further indirections, we use intrinsics (sun.misc.Unsafe)
315 <     * operations.  The lists of nodes within bins are always
316 <     * accurately traversable under volatile reads, so long as lookups
317 <     * check hash code and non-nullness of value before checking key
318 <     * equality.
319 <     *
320 <     * We use the top two bits of Node hash fields for control
321 <     * purposes -- they are available anyway because of addressing
322 <     * constraints.  As explained further below, these top bits are
323 <     * used as follows:
324 <     *  00 - Normal
325 <     *  01 - Locked
169 <     *  11 - Locked and may have a thread waiting for lock
170 <     *  10 - Node is a forwarding node
171 <     *
172 <     * The lower 30 bits of each Node's hash field contain a
173 <     * transformation (for better randomization -- method "spread") of
174 <     * the key's hash code, except for forwarding nodes, for which the
175 <     * lower bits are zero (and so always have hash field == MOVED).
310 >     * first insertion.  Each bin in the table normally contains a
311 >     * list of Nodes (most often, the list has only zero or one Node).
312 >     * Table accesses require volatile/atomic reads, writes, and
313 >     * CASes.  Because there is no other way to arrange this without
314 >     * adding further indirections, we use intrinsics
315 >     * (sun.misc.Unsafe) operations.  The lists of nodes within bins
316 >     * are always accurately traversable under volatile reads, so long
317 >     * as lookups check hash code and non-nullness of value before
318 >     * checking key equality.
319 >     *
320 >     * We use the top (sign) bit of Node hash fields for control
321 >     * purposes -- it is available anyway because of addressing
322 >     * constraints.  Nodes with negative hash fields are forwarding
323 >     * nodes to either TreeBins or resized tables.  The lower 31 bits
324 >     * of each normal Node's hash field contain a transformation of
325 >     * the key's hash code.
326       *
327       * Insertion (via put or its variants) of the first node in an
328       * empty bin is performed by just CASing it to the bin.  This is
329 <     * by far the most common case for put operations.  Other update
330 <     * operations (insert, delete, and replace) require locks.  We do
331 <     * not want to waste the space required to associate a distinct
332 <     * lock object with each bin, so instead use the first node of a
333 <     * bin list itself as a lock. Blocking support for these locks
334 <     * relies on the builtin "synchronized" monitors.  However, we
335 <     * also need a tryLock construction, so we overlay these by using
186 <     * bits of the Node hash field for lock control (see above), and
187 <     * so normally use builtin monitors only for blocking and
188 <     * signalling using wait/notifyAll constructions. See
189 <     * Node.tryAwaitLock.
329 >     * by far the most common case for put operations under most
330 >     * key/hash distributions.  Other update operations (insert,
331 >     * delete, and replace) require locks.  We do not want to waste
332 >     * the space required to associate a distinct lock object with
333 >     * each bin, so instead use the first node of a bin list itself as
334 >     * a lock. Locking support for these locks relies on builtin
335 >     * "synchronized" monitors.
336       *
337       * Using the first node of a list as a lock does not by itself
338       * suffice though: When a node is locked, any update must first
# Line 201 | Line 347 | public class ConcurrentHashMapV8<K, V>
347       * The main disadvantage of per-bin locks is that other update
348       * operations on other nodes in a bin list protected by the same
349       * lock can stall, for example when user equals() or mapping
350 <     * functions take a long time.  However, statistically, this is
351 <     * not a common enough problem to outweigh the time/space overhead
352 <     * of alternatives: Under random hash codes, the frequency of
207 <     * nodes in bins follows a Poisson distribution
350 >     * functions take a long time.  However, statistically, under
351 >     * random hash codes, this is not a common problem.  Ideally, the
352 >     * frequency of nodes in bins follows a Poisson distribution
353       * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
354       * parameter of about 0.5 on average, given the resizing threshold
355       * of 0.75, although with a large variance because of resizing
356       * granularity. Ignoring variance, the expected occurrences of
357       * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
358 <     * first few values are:
358 >     * first values are:
359       *
360 <     * 0:    0.607
361 <     * 1:    0.303
362 <     * 2:    0.076
363 <     * 3:    0.012
364 <     * more: 0.002
360 >     * 0:    0.60653066
361 >     * 1:    0.30326533
362 >     * 2:    0.07581633
363 >     * 3:    0.01263606
364 >     * 4:    0.00157952
365 >     * 5:    0.00015795
366 >     * 6:    0.00001316
367 >     * 7:    0.00000094
368 >     * 8:    0.00000006
369 >     * more: less than 1 in ten million
370       *
371       * Lock contention probability for two threads accessing distinct
372 <     * elements is roughly 1 / (8 * #elements).  Function "spread"
373 <     * performs hashCode randomization that improves the likelihood
374 <     * that these assumptions hold unless users define exactly the
375 <     * same value for too many hashCodes.
376 <     *
377 <     * The table is resized when occupancy exceeds an occupancy
378 <     * threshold (nominally, 0.75, but see below).  Only a single
379 <     * thread performs the resize (using field "sizeCtl", to arrange
380 <     * exclusion), but the table otherwise remains usable for reads
381 <     * and updates. Resizing proceeds by transferring bins, one by
382 <     * one, from the table to the next table.  Because we are using
383 <     * power-of-two expansion, the elements from each bin must either
384 <     * stay at same index, or move with a power of two offset. We
385 <     * eliminate unnecessary node creation by catching cases where old
386 <     * nodes can be reused because their next fields won't change.  On
387 <     * average, only about one-sixth of them need cloning when a table
388 <     * doubles. The nodes they replace will be garbage collectable as
389 <     * soon as they are no longer referenced by any reader thread that
390 <     * may be in the midst of concurrently traversing table.  Upon
391 <     * transfer, the old table bin contains only a special forwarding
392 <     * node (with hash field "MOVED") that contains the next table as
393 <     * its key. On encountering a forwarding node, access and update
394 <     * operations restart, using the new table.
395 <     *
396 <     * Each bin transfer requires its bin lock. However, unlike other
397 <     * cases, a transfer can skip a bin if it fails to acquire its
398 <     * lock, and revisit it later. Method rebuild maintains a buffer
399 <     * of TRANSFER_BUFFER_SIZE bins that have been skipped because of
400 <     * failure to acquire a lock, and blocks only if none are
401 <     * available (i.e., only very rarely).  The transfer operation
402 <     * must also ensure that all accessible bins in both the old and
403 <     * new table are usable by any traversal.  When there are no lock
404 <     * acquisition failures, this is arranged simply by proceeding
405 <     * from the last bin (table.length - 1) up towards the first.
406 <     * Upon seeing a forwarding node, traversals (see class
407 <     * InternalIterator) arrange to move to the new table without
408 <     * revisiting nodes.  However, when any node is skipped during a
409 <     * transfer, all earlier table bins may have become visible, so
410 <     * are initialized with a reverse-forwarding node back to the old
411 <     * table until the new ones are established. (This sometimes
412 <     * requires transiently locking a forwarding node, which is
413 <     * possible under the above encoding.) These more expensive
414 <     * mechanics trigger only when necessary.
372 >     * elements is roughly 1 / (8 * #elements) under random hashes.
373 >     *
374 >     * Actual hash code distributions encountered in practice
375 >     * sometimes deviate significantly from uniform randomness.  This
376 >     * includes the case when N > (1<<30), so some keys MUST collide.
377 >     * Similarly for dumb or hostile usages in which multiple keys are
378 >     * designed to have identical hash codes. Also, although we guard
379 >     * against the worst effects of this (see method spread), sets of
380 >     * hashes may differ only in bits that do not impact their bin
381 >     * index for a given power-of-two mask.  So we use a secondary
382 >     * strategy that applies when the number of nodes in a bin exceeds
383 >     * a threshold, and at least one of the keys implements
384 >     * Comparable.  These TreeBins use a balanced tree to hold nodes
385 >     * (a specialized form of red-black trees), bounding search time
386 >     * to O(log N).  Each search step in a TreeBin is around twice as
387 >     * slow as in a regular list, but given that N cannot exceed
388 >     * (1<<64) (before running out of addresses) this bounds search
389 >     * steps, lock hold times, etc, to reasonable constants (roughly
390 >     * 100 nodes inspected per operation worst case) so long as keys
391 >     * are Comparable (which is very common -- String, Long, etc).
392 >     * TreeBin nodes (TreeNodes) also maintain the same "next"
393 >     * traversal pointers as regular nodes, so can be traversed in
394 >     * iterators in the same way.
395 >     *
396 >     * The table is resized when occupancy exceeds a percentage
397 >     * threshold (nominally, 0.75, but see below).  Any thread
398 >     * noticing an overfull bin may assist in resizing after the
399 >     * initiating thread allocates and sets up the replacement
400 >     * array. However, rather than stalling, these other threads may
401 >     * proceed with insertions etc.  The use of TreeBins shields us
402 >     * from the worst case effects of overfilling while resizes are in
403 >     * progress.  Resizing proceeds by transferring bins, one by one,
404 >     * from the table to the next table. To enable concurrency, the
405 >     * next table must be (incrementally) prefilled with place-holders
406 >     * serving as reverse forwarders to the old table.  Because we are
407 >     * using power-of-two expansion, the elements from each bin must
408 >     * either stay at same index, or move with a power of two
409 >     * offset. We eliminate unnecessary node creation by catching
410 >     * cases where old nodes can be reused because their next fields
411 >     * won't change.  On average, only about one-sixth of them need
412 >     * cloning when a table doubles. The nodes they replace will be
413 >     * garbage collectable as soon as they are no longer referenced by
414 >     * any reader thread that may be in the midst of concurrently
415 >     * traversing table.  Upon transfer, the old table bin contains
416 >     * only a special forwarding node (with hash field "MOVED") that
417 >     * contains the next table as its key. On encountering a
418 >     * forwarding node, access and update operations restart, using
419 >     * the new table.
420 >     *
421 >     * Each bin transfer requires its bin lock, which can stall
422 >     * waiting for locks while resizing. However, because other
423 >     * threads can join in and help resize rather than contend for
424 >     * locks, average aggregate waits become shorter as resizing
425 >     * progresses.  The transfer operation must also ensure that all
426 >     * accessible bins in both the old and new table are usable by any
427 >     * traversal.  This is arranged by proceeding from the last bin
428 >     * (table.length - 1) up towards the first.  Upon seeing a
429 >     * forwarding node, traversals (see class Traverser) arrange to
430 >     * move to the new table without revisiting nodes.  However, to
431 >     * ensure that no intervening nodes are skipped, bin splitting can
432 >     * only begin after the associated reverse-forwarders are in
433 >     * place.
434       *
435       * The traversal scheme also applies to partial traversals of
436 <     * ranges of bins (via an alternate InternalIterator constructor)
437 <     * to support partitioned aggregate operations (that are not
438 <     * otherwise implemented yet).  Also, read-only operations give up
439 <     * if ever forwarded to a null table, which provides support for
440 <     * shutdown-style clearing, which is also not currently
272 <     * implemented.
436 >     * ranges of bins (via an alternate Traverser constructor)
437 >     * to support partitioned aggregate operations.  Also, read-only
438 >     * operations give up if ever forwarded to a null table, which
439 >     * provides support for shutdown-style clearing, which is also not
440 >     * currently implemented.
441       *
442       * Lazy table initialization minimizes footprint until first use,
443       * and also avoids resizings when the first operation is from a
# Line 277 | Line 445 | public class ConcurrentHashMapV8<K, V>
445       * These cases attempt to override the initial capacity settings,
446       * but harmlessly fail to take effect in cases of races.
447       *
448 <     * The element count is maintained using a LongAdder, which avoids
449 <     * contention on updates but can encounter cache thrashing if read
450 <     * too frequently during concurrent access. To avoid reading so
451 <     * often, resizing is attempted either when a bin lock is
452 <     * contended, or upon adding to a bin already holding two or more
453 <     * nodes (checked before adding in the xIfAbsent methods, after
454 <     * adding in others). Under uniform hash distributions, the
455 <     * probability of this occurring at threshold is around 13%,
456 <     * meaning that only about 1 in 8 puts check threshold (and after
457 <     * resizing, many fewer do so). But this approximation has high
458 <     * variance for small table sizes, so we check on any collision
459 <     * for sizes <= 64. The bulk putAll operation further reduces
460 <     * contention by only committing count updates upon these size
461 <     * checks.
448 >     * The element count is maintained using a specialization of
449 >     * LongAdder. We need to incorporate a specialization rather than
450 >     * just use a LongAdder in order to access implicit
451 >     * contention-sensing that leads to creation of multiple
452 >     * CounterCells.  The counter mechanics avoid contention on
453 >     * updates but can encounter cache thrashing if read too
454 >     * frequently during concurrent access. To avoid reading so often,
455 >     * resizing under contention is attempted only upon adding to a
456 >     * bin already holding two or more nodes. Under uniform hash
457 >     * distributions, the probability of this occurring at threshold
458 >     * is around 13%, meaning that only about 1 in 8 puts check
459 >     * threshold (and after resizing, many fewer do so). The bulk
460 >     * putAll operation further reduces contention by only committing
461 >     * count updates upon these size checks.
462       *
463       * Maintaining API and serialization compatibility with previous
464       * versions of this class introduces several oddities. Mainly: We
# Line 341 | Line 509 | public class ConcurrentHashMapV8<K, V>
509      private static final float LOAD_FACTOR = 0.75f;
510  
511      /**
512 <     * The buffer size for skipped bins during transfers. The
513 <     * value is arbitrary but should be large enough to avoid
514 <     * most locking stalls during resizes.
512 >     * The bin count threshold for using a tree rather than list for a
513 >     * bin.  The value reflects the approximate break-even point for
514 >     * using tree-based operations.
515       */
516 <    private static final int TRANSFER_BUFFER_SIZE = 32;
516 >    private static final int TREE_THRESHOLD = 8;
517 >
518 >    /**
519 >     * Minimum number of rebinnings per transfer step. Ranges are
520 >     * subdivided to allow multiple resizer threads.  This value
521 >     * serves as a lower bound to avoid resizers encountering
522 >     * excessive memory contention.  The value should be at least
523 >     * DEFAULT_CAPACITY.
524 >     */
525 >    private static final int MIN_TRANSFER_STRIDE = 16;
526  
527      /*
528 <     * Encodings for special uses of Node hash fields. See above for
352 <     * explanation.
528 >     * Encodings for Node hash fields. See above for explanation.
529       */
530      static final int MOVED     = 0x80000000; // hash field for forwarding nodes
531 <    static final int LOCKED    = 0x40000000; // set/tested only as a bit
532 <    static final int WAITING   = 0xc0000000; // both bits set/tested together
533 <    static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash
531 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
532 >
533 >    /** Number of CPUS, to place bounds on some sizings */
534 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
535 >
536 >    /* ---------------- Counters -------------- */
537 >
538 >    // Adapted from LongAdder and Striped64.
539 >    // See their internal docs for explanation.
540 >
541 >    // A padded cell for distributing counts
542 >    static final class CounterCell {
543 >        volatile long p0, p1, p2, p3, p4, p5, p6;
544 >        volatile long value;
545 >        volatile long q0, q1, q2, q3, q4, q5, q6;
546 >        CounterCell(long x) { value = x; }
547 >    }
548 >
549 >    /**
550 >     * Holder for the thread-local hash code determining which
551 >     * CounterCell to use. The code is initialized via the
552 >     * counterHashCodeGenerator, but may be moved upon collisions.
553 >     */
554 >    static final class CounterHashCode {
555 >        int code;
556 >    }
557 >
558 >    /**
559 >     * Generates initial value for per-thread CounterHashCodes
560 >     */
561 >    static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
562 >
563 >    /**
564 >     * Increment for counterHashCodeGenerator. See class ThreadLocal
565 >     * for explanation.
566 >     */
567 >    static final int SEED_INCREMENT = 0x61c88647;
568 >
569 >    /**
570 >     * Per-thread counter hash codes. Shared across all instances.
571 >     */
572 >    static final ThreadLocal<CounterHashCode> threadCounterHashCode =
573 >        new ThreadLocal<CounterHashCode>();
574  
575      /* ---------------- Fields -------------- */
576  
# Line 362 | Line 578 | public class ConcurrentHashMapV8<K, V>
578       * The array of bins. Lazily initialized upon first insertion.
579       * Size is always a power of two. Accessed directly by iterators.
580       */
581 <    transient volatile Node[] table;
581 >    transient volatile Node<V>[] table;
582 >
583 >    /**
584 >     * The next table to use; non-null only while resizing.
585 >     */
586 >    private transient volatile Node<V>[] nextTable;
587  
588      /**
589 <     * The counter maintaining number of elements.
589 >     * Base counter value, used mainly when there is no contention,
590 >     * but also as a fallback during table initialization
591 >     * races. Updated via CAS.
592       */
593 <    private transient final LongAdder counter;
593 >    private transient volatile long baseCount;
594  
595      /**
596       * Table initialization and resizing control.  When negative, the
597 <     * table is being initialized or resized. Otherwise, when table is
598 <     * null, holds the initial table size to use upon creation, or 0
599 <     * for default. After initialization, holds the next element count
600 <     * value upon which to resize the table.
597 >     * table is being initialized or resized: -1 for initialization,
598 >     * else -(1 + the number of active resizing threads).  Otherwise,
599 >     * when table is null, holds the initial table size to use upon
600 >     * creation, or 0 for default. After initialization, holds the
601 >     * next element count value upon which to resize the table.
602       */
603      private transient volatile int sizeCtl;
604  
605 +    /**
606 +     * The next table index (plus one) to split while resizing.
607 +     */
608 +    private transient volatile int transferIndex;
609 +
610 +    /**
611 +     * The least available table index to split while resizing.
612 +     */
613 +    private transient volatile int transferOrigin;
614 +
615 +    /**
616 +     * Spinlock (locked via CAS) used when resizing and/or creating Cells.
617 +     */
618 +    private transient volatile int counterBusy;
619 +
620 +    /**
621 +     * Table of counter cells. When non-null, size is a power of 2.
622 +     */
623 +    private transient volatile CounterCell[] counterCells;
624 +
625      // views
626 <    private transient KeySet<K,V> keySet;
627 <    private transient Values<K,V> values;
628 <    private transient EntrySet<K,V> entrySet;
626 >    private transient KeySetView<K,V> keySet;
627 >    private transient ValuesView<K,V> values;
628 >    private transient EntrySetView<K,V> entrySet;
629  
630      /** For serialization compatibility. Null unless serialized; see below */
631      private Segment<K,V>[] segments;
632  
633 +    /* ---------------- Table element access -------------- */
634 +
635 +    /*
636 +     * Volatile access methods are used for table elements as well as
637 +     * elements of in-progress next table while resizing.  Uses are
638 +     * null checked by callers, and implicitly bounds-checked, relying
639 +     * on the invariants that tab arrays have non-zero size, and all
640 +     * indices are masked with (tab.length - 1) which is never
641 +     * negative and always less than length. Note that, to be correct
642 +     * wrt arbitrary concurrency errors by users, bounds checks must
643 +     * operate on local variables, which accounts for some odd-looking
644 +     * inline assignments below.
645 +     */
646 +
647 +    @SuppressWarnings("unchecked") static final <V> Node<V> tabAt
648 +        (Node<V>[] tab, int i) { // used by Traverser
649 +        return (Node<V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
650 +    }
651 +
652 +    private static final <V> boolean casTabAt
653 +        (Node<V>[] tab, int i, Node<V> c, Node<V> v) {
654 +        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
655 +    }
656 +
657 +    private static final <V> void setTabAt
658 +        (Node<V>[] tab, int i, Node<V> v) {
659 +        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
660 +    }
661 +
662      /* ---------------- Nodes -------------- */
663  
664      /**
665       * Key-value entry. Note that this is never exported out as a
666 <     * user-visible Map.Entry (see WriteThroughEntry and SnapshotEntry
667 <     * below). Nodes with a hash field of MOVED are special, and do
668 <     * not contain user keys or values.  Otherwise, keys are never
669 <     * null, and null val fields indicate that a node is in the
670 <     * process of being deleted or created. For purposes of read-only
671 <     * access, a key may be read before a val, but can only be used
672 <     * after checking val to be non-null.
666 >     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
667 >     * field of MOVED are special, and do not contain user keys or
668 >     * values.  Otherwise, keys are never null, and null val fields
669 >     * indicate that a node is in the process of being deleted or
670 >     * created. For purposes of read-only access, a key may be read
671 >     * before a val, but can only be used after checking val to be
672 >     * non-null.
673       */
674 <    static final class Node {
675 <        volatile int hash;
674 >    static class Node<V> {
675 >        final int hash;
676          final Object key;
677 <        volatile Object val;
678 <        volatile Node next;
677 >        volatile V val;
678 >        volatile Node<V> next;
679  
680 <        Node(int hash, Object key, Object val, Node next) {
680 >        Node(int hash, Object key, V val, Node<V> next) {
681              this.hash = hash;
682              this.key = key;
683              this.val = val;
684              this.next = next;
685          }
686 +    }
687 +
688 +    /* ---------------- TreeBins -------------- */
689 +
690 +    /**
691 +     * Nodes for use in TreeBins
692 +     */
693 +    static final class TreeNode<V> extends Node<V> {
694 +        TreeNode<V> parent;  // red-black tree links
695 +        TreeNode<V> left;
696 +        TreeNode<V> right;
697 +        TreeNode<V> prev;    // needed to unlink next upon deletion
698 +        boolean red;
699 +
700 +        TreeNode(int hash, Object key, V val, Node<V> next, TreeNode<V> parent) {
701 +            super(hash, key, val, next);
702 +            this.parent = parent;
703 +        }
704 +    }
705 +
706 +    /**
707 +     * A specialized form of red-black tree for use in bins
708 +     * whose size exceeds a threshold.
709 +     *
710 +     * TreeBins use a special form of comparison for search and
711 +     * related operations (which is the main reason we cannot use
712 +     * existing collections such as TreeMaps). TreeBins contain
713 +     * Comparable elements, but may contain others, as well as
714 +     * elements that are Comparable but not necessarily Comparable<T>
715 +     * for the same T, so we cannot invoke compareTo among them. To
716 +     * handle this, the tree is ordered primarily by hash value, then
717 +     * by getClass().getName() order, and then by Comparator order
718 +     * among elements of the same class.  On lookup at a node, if
719 +     * elements are not comparable or compare as 0, both left and
720 +     * right children may need to be searched in the case of tied hash
721 +     * values. (This corresponds to the full list search that would be
722 +     * necessary if all elements were non-Comparable and had tied
723 +     * hashes.)  The red-black balancing code is updated from
724 +     * pre-jdk-collections
725 +     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
726 +     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
727 +     * Algorithms" (CLR).
728 +     *
729 +     * TreeBins also maintain a separate locking discipline than
730 +     * regular bins. Because they are forwarded via special MOVED
731 +     * nodes at bin heads (which can never change once established),
732 +     * we cannot use those nodes as locks. Instead, TreeBin
733 +     * extends AbstractQueuedSynchronizer to support a simple form of
734 +     * read-write lock. For update operations and table validation,
735 +     * the exclusive form of lock behaves in the same way as bin-head
736 +     * locks. However, lookups use shared read-lock mechanics to allow
737 +     * multiple readers in the absence of writers.  Additionally,
738 +     * these lookups do not ever block: While the lock is not
739 +     * available, they proceed along the slow traversal path (via
740 +     * next-pointers) until the lock becomes available or the list is
741 +     * exhausted, whichever comes first. (These cases are not fast,
742 +     * but maximize aggregate expected throughput.)  The AQS mechanics
743 +     * for doing this are straightforward.  The lock state is held as
744 +     * AQS getState().  Read counts are negative; the write count (1)
745 +     * is positive.  There are no signalling preferences among readers
746 +     * and writers. Since we don't need to export full Lock API, we
747 +     * just override the minimal AQS methods and use them directly.
748 +     */
749 +    static final class TreeBin<V> extends AbstractQueuedSynchronizer {
750 +        private static final long serialVersionUID = 2249069246763182397L;
751 +        transient TreeNode<V> root;  // root of tree
752 +        transient TreeNode<V> first; // head of next-pointer list
753 +
754 +        /* AQS overrides */
755 +        public final boolean isHeldExclusively() { return getState() > 0; }
756 +        public final boolean tryAcquire(int ignore) {
757 +            if (compareAndSetState(0, 1)) {
758 +                setExclusiveOwnerThread(Thread.currentThread());
759 +                return true;
760 +            }
761 +            return false;
762 +        }
763 +        public final boolean tryRelease(int ignore) {
764 +            setExclusiveOwnerThread(null);
765 +            setState(0);
766 +            return true;
767 +        }
768 +        public final int tryAcquireShared(int ignore) {
769 +            for (int c;;) {
770 +                if ((c = getState()) > 0)
771 +                    return -1;
772 +                if (compareAndSetState(c, c -1))
773 +                    return 1;
774 +            }
775 +        }
776 +        public final boolean tryReleaseShared(int ignore) {
777 +            int c;
778 +            do {} while (!compareAndSetState(c = getState(), c + 1));
779 +            return c == -1;
780 +        }
781 +
782 +        /** From CLR */
783 +        private void rotateLeft(TreeNode<V> p) {
784 +            if (p != null) {
785 +                TreeNode<V> r = p.right, pp, rl;
786 +                if ((rl = p.right = r.left) != null)
787 +                    rl.parent = p;
788 +                if ((pp = r.parent = p.parent) == null)
789 +                    root = r;
790 +                else if (pp.left == p)
791 +                    pp.left = r;
792 +                else
793 +                    pp.right = r;
794 +                r.left = p;
795 +                p.parent = r;
796 +            }
797 +        }
798 +
799 +        /** From CLR */
800 +        private void rotateRight(TreeNode<V> p) {
801 +            if (p != null) {
802 +                TreeNode<V> l = p.left, pp, lr;
803 +                if ((lr = p.left = l.right) != null)
804 +                    lr.parent = p;
805 +                if ((pp = l.parent = p.parent) == null)
806 +                    root = l;
807 +                else if (pp.right == p)
808 +                    pp.right = l;
809 +                else
810 +                    pp.left = l;
811 +                l.right = p;
812 +                p.parent = l;
813 +            }
814 +        }
815 +
816 +        /**
817 +         * Returns the TreeNode (or null if not found) for the given key
818 +         * starting at given root.
819 +         */
820 +        @SuppressWarnings("unchecked") final TreeNode<V> getTreeNode
821 +            (int h, Object k, TreeNode<V> p) {
822 +            Class<?> c = k.getClass();
823 +            while (p != null) {
824 +                int dir, ph;  Object pk; Class<?> pc;
825 +                if ((ph = p.hash) == h) {
826 +                    if ((pk = p.key) == k || k.equals(pk))
827 +                        return p;
828 +                    if (c != (pc = pk.getClass()) ||
829 +                        !(k instanceof Comparable) ||
830 +                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
831 +                        if ((dir = (c == pc) ? 0 :
832 +                             c.getName().compareTo(pc.getName())) == 0) {
833 +                            TreeNode<V> r = null, pl, pr; // check both sides
834 +                            if ((pr = p.right) != null && h >= pr.hash &&
835 +                                (r = getTreeNode(h, k, pr)) != null)
836 +                                return r;
837 +                            else if ((pl = p.left) != null && h <= pl.hash)
838 +                                dir = -1;
839 +                            else // nothing there
840 +                                return null;
841 +                        }
842 +                    }
843 +                }
844 +                else
845 +                    dir = (h < ph) ? -1 : 1;
846 +                p = (dir > 0) ? p.right : p.left;
847 +            }
848 +            return null;
849 +        }
850  
851 <        /** CompareAndSet the hash field */
852 <        final boolean casHash(int cmp, int val) {
853 <            return UNSAFE.compareAndSwapInt(this, hashOffset, cmp, val);
854 <        }
855 <
856 <        /** The number of spins before blocking for a lock */
857 <        static final int MAX_SPINS =
858 <            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
859 <
860 <        /**
861 <         * Spins a while if LOCKED bit set and this node is the first
862 <         * of its bin, and then sets WAITING bits on hash field and
863 <         * blocks (once) if they are still set.  It is OK for this
864 <         * method to return even if lock is not available upon exit,
865 <         * which enables these simple single-wait mechanics.
866 <         *
867 <         * The corresponding signalling operation is performed within
868 <         * callers: Upon detecting that WAITING has been set when
869 <         * unlocking lock (via a failed CAS from non-waiting LOCKED
870 <         * state), unlockers acquire the sync lock and perform a
871 <         * notifyAll.
872 <         */
873 <        final void tryAwaitLock(Node[] tab, int i) {
874 <            if (tab != null && i >= 0 && i < tab.length) { // bounds check
875 <                int spins = MAX_SPINS, h;
876 <                while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) {
877 <                    if (spins >= 0) {
878 <                        if (--spins == MAX_SPINS >>> 1)
879 <                            Thread.yield();  // heuristically yield mid-way
880 <                    }
881 <                    else if (casHash(h, h | WAITING)) {
882 <                        synchronized (this) {
883 <                            if (tabAt(tab, i) == this &&
884 <                                (hash & WAITING) == WAITING) {
885 <                                try {
886 <                                    wait();
887 <                                } catch (InterruptedException ie) {
888 <                                    Thread.currentThread().interrupt();
851 >        /**
852 >         * Wrapper for getTreeNode used by CHM.get. Tries to obtain
853 >         * read-lock to call getTreeNode, but during failure to get
854 >         * lock, searches along next links.
855 >         */
856 >        final V getValue(int h, Object k) {
857 >            Node<V> r = null;
858 >            int c = getState(); // Must read lock state first
859 >            for (Node<V> e = first; e != null; e = e.next) {
860 >                if (c <= 0 && compareAndSetState(c, c - 1)) {
861 >                    try {
862 >                        r = getTreeNode(h, k, root);
863 >                    } finally {
864 >                        releaseShared(0);
865 >                    }
866 >                    break;
867 >                }
868 >                else if (e.hash == h && k.equals(e.key)) {
869 >                    r = e;
870 >                    break;
871 >                }
872 >                else
873 >                    c = getState();
874 >            }
875 >            return r == null ? null : r.val;
876 >        }
877 >
878 >        /**
879 >         * Finds or adds a node.
880 >         * @return null if added
881 >         */
882 >        @SuppressWarnings("unchecked") final TreeNode<V> putTreeNode
883 >            (int h, Object k, V v) {
884 >            Class<?> c = k.getClass();
885 >            TreeNode<V> pp = root, p = null;
886 >            int dir = 0;
887 >            while (pp != null) { // find existing node or leaf to insert at
888 >                int ph;  Object pk; Class<?> pc;
889 >                p = pp;
890 >                if ((ph = p.hash) == h) {
891 >                    if ((pk = p.key) == k || k.equals(pk))
892 >                        return p;
893 >                    if (c != (pc = pk.getClass()) ||
894 >                        !(k instanceof Comparable) ||
895 >                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
896 >                        TreeNode<V> s = null, r = null, pr;
897 >                        if ((dir = (c == pc) ? 0 :
898 >                             c.getName().compareTo(pc.getName())) == 0) {
899 >                            if ((pr = p.right) != null && h >= pr.hash &&
900 >                                (r = getTreeNode(h, k, pr)) != null)
901 >                                return r;
902 >                            else // continue left
903 >                                dir = -1;
904 >                        }
905 >                        else if ((pr = p.right) != null && h >= pr.hash)
906 >                            s = pr;
907 >                        if (s != null && (r = getTreeNode(h, k, s)) != null)
908 >                            return r;
909 >                    }
910 >                }
911 >                else
912 >                    dir = (h < ph) ? -1 : 1;
913 >                pp = (dir > 0) ? p.right : p.left;
914 >            }
915 >
916 >            TreeNode<V> f = first;
917 >            TreeNode<V> x = first = new TreeNode<V>(h, k, v, f, p);
918 >            if (p == null)
919 >                root = x;
920 >            else { // attach and rebalance; adapted from CLR
921 >                TreeNode<V> xp, xpp;
922 >                if (f != null)
923 >                    f.prev = x;
924 >                if (dir <= 0)
925 >                    p.left = x;
926 >                else
927 >                    p.right = x;
928 >                x.red = true;
929 >                while (x != null && (xp = x.parent) != null && xp.red &&
930 >                       (xpp = xp.parent) != null) {
931 >                    TreeNode<V> xppl = xpp.left;
932 >                    if (xp == xppl) {
933 >                        TreeNode<V> y = xpp.right;
934 >                        if (y != null && y.red) {
935 >                            y.red = false;
936 >                            xp.red = false;
937 >                            xpp.red = true;
938 >                            x = xpp;
939 >                        }
940 >                        else {
941 >                            if (x == xp.right) {
942 >                                rotateLeft(x = xp);
943 >                                xpp = (xp = x.parent) == null ? null : xp.parent;
944 >                            }
945 >                            if (xp != null) {
946 >                                xp.red = false;
947 >                                if (xpp != null) {
948 >                                    xpp.red = true;
949 >                                    rotateRight(xpp);
950 >                                }
951 >                            }
952 >                        }
953 >                    }
954 >                    else {
955 >                        TreeNode<V> y = xppl;
956 >                        if (y != null && y.red) {
957 >                            y.red = false;
958 >                            xp.red = false;
959 >                            xpp.red = true;
960 >                            x = xpp;
961 >                        }
962 >                        else {
963 >                            if (x == xp.left) {
964 >                                rotateRight(x = xp);
965 >                                xpp = (xp = x.parent) == null ? null : xp.parent;
966 >                            }
967 >                            if (xp != null) {
968 >                                xp.red = false;
969 >                                if (xpp != null) {
970 >                                    xpp.red = true;
971 >                                    rotateLeft(xpp);
972                                  }
973                              }
454                            else
455                                notifyAll(); // possibly won race vs signaller
974                          }
457                        break;
975                      }
976                  }
977 +                TreeNode<V> r = root;
978 +                if (r != null && r.red)
979 +                    r.red = false;
980              }
981 +            return null;
982          }
983  
984 <        // Unsafe mechanics for casHash
985 <        private static final sun.misc.Unsafe UNSAFE;
986 <        private static final long hashOffset;
987 <
988 <        static {
989 <            try {
990 <                UNSAFE = getUnsafe();
991 <                Class<?> k = Node.class;
992 <                hashOffset = UNSAFE.objectFieldOffset
993 <                    (k.getDeclaredField("hash"));
994 <            } catch (Exception e) {
995 <                throw new Error(e);
984 >        /**
985 >         * Removes the given node, that must be present before this
986 >         * call.  This is messier than typical red-black deletion code
987 >         * because we cannot swap the contents of an interior node
988 >         * with a leaf successor that is pinned by "next" pointers
989 >         * that are accessible independently of lock. So instead we
990 >         * swap the tree linkages.
991 >         */
992 >        final void deleteTreeNode(TreeNode<V> p) {
993 >            TreeNode<V> next = (TreeNode<V>)p.next; // unlink traversal pointers
994 >            TreeNode<V> pred = p.prev;
995 >            if (pred == null)
996 >                first = next;
997 >            else
998 >                pred.next = next;
999 >            if (next != null)
1000 >                next.prev = pred;
1001 >            TreeNode<V> replacement;
1002 >            TreeNode<V> pl = p.left;
1003 >            TreeNode<V> pr = p.right;
1004 >            if (pl != null && pr != null) {
1005 >                TreeNode<V> s = pr, sl;
1006 >                while ((sl = s.left) != null) // find successor
1007 >                    s = sl;
1008 >                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
1009 >                TreeNode<V> sr = s.right;
1010 >                TreeNode<V> pp = p.parent;
1011 >                if (s == pr) { // p was s's direct parent
1012 >                    p.parent = s;
1013 >                    s.right = p;
1014 >                }
1015 >                else {
1016 >                    TreeNode<V> sp = s.parent;
1017 >                    if ((p.parent = sp) != null) {
1018 >                        if (s == sp.left)
1019 >                            sp.left = p;
1020 >                        else
1021 >                            sp.right = p;
1022 >                    }
1023 >                    if ((s.right = pr) != null)
1024 >                        pr.parent = s;
1025 >                }
1026 >                p.left = null;
1027 >                if ((p.right = sr) != null)
1028 >                    sr.parent = p;
1029 >                if ((s.left = pl) != null)
1030 >                    pl.parent = s;
1031 >                if ((s.parent = pp) == null)
1032 >                    root = s;
1033 >                else if (p == pp.left)
1034 >                    pp.left = s;
1035 >                else
1036 >                    pp.right = s;
1037 >                replacement = sr;
1038 >            }
1039 >            else
1040 >                replacement = (pl != null) ? pl : pr;
1041 >            TreeNode<V> pp = p.parent;
1042 >            if (replacement == null) {
1043 >                if (pp == null) {
1044 >                    root = null;
1045 >                    return;
1046 >                }
1047 >                replacement = p;
1048 >            }
1049 >            else {
1050 >                replacement.parent = pp;
1051 >                if (pp == null)
1052 >                    root = replacement;
1053 >                else if (p == pp.left)
1054 >                    pp.left = replacement;
1055 >                else
1056 >                    pp.right = replacement;
1057 >                p.left = p.right = p.parent = null;
1058 >            }
1059 >            if (!p.red) { // rebalance, from CLR
1060 >                TreeNode<V> x = replacement;
1061 >                while (x != null) {
1062 >                    TreeNode<V> xp, xpl;
1063 >                    if (x.red || (xp = x.parent) == null) {
1064 >                        x.red = false;
1065 >                        break;
1066 >                    }
1067 >                    if (x == (xpl = xp.left)) {
1068 >                        TreeNode<V> sib = xp.right;
1069 >                        if (sib != null && sib.red) {
1070 >                            sib.red = false;
1071 >                            xp.red = true;
1072 >                            rotateLeft(xp);
1073 >                            sib = (xp = x.parent) == null ? null : xp.right;
1074 >                        }
1075 >                        if (sib == null)
1076 >                            x = xp;
1077 >                        else {
1078 >                            TreeNode<V> sl = sib.left, sr = sib.right;
1079 >                            if ((sr == null || !sr.red) &&
1080 >                                (sl == null || !sl.red)) {
1081 >                                sib.red = true;
1082 >                                x = xp;
1083 >                            }
1084 >                            else {
1085 >                                if (sr == null || !sr.red) {
1086 >                                    if (sl != null)
1087 >                                        sl.red = false;
1088 >                                    sib.red = true;
1089 >                                    rotateRight(sib);
1090 >                                    sib = (xp = x.parent) == null ?
1091 >                                        null : xp.right;
1092 >                                }
1093 >                                if (sib != null) {
1094 >                                    sib.red = (xp == null) ? false : xp.red;
1095 >                                    if ((sr = sib.right) != null)
1096 >                                        sr.red = false;
1097 >                                }
1098 >                                if (xp != null) {
1099 >                                    xp.red = false;
1100 >                                    rotateLeft(xp);
1101 >                                }
1102 >                                x = root;
1103 >                            }
1104 >                        }
1105 >                    }
1106 >                    else { // symmetric
1107 >                        TreeNode<V> sib = xpl;
1108 >                        if (sib != null && sib.red) {
1109 >                            sib.red = false;
1110 >                            xp.red = true;
1111 >                            rotateRight(xp);
1112 >                            sib = (xp = x.parent) == null ? null : xp.left;
1113 >                        }
1114 >                        if (sib == null)
1115 >                            x = xp;
1116 >                        else {
1117 >                            TreeNode<V> sl = sib.left, sr = sib.right;
1118 >                            if ((sl == null || !sl.red) &&
1119 >                                (sr == null || !sr.red)) {
1120 >                                sib.red = true;
1121 >                                x = xp;
1122 >                            }
1123 >                            else {
1124 >                                if (sl == null || !sl.red) {
1125 >                                    if (sr != null)
1126 >                                        sr.red = false;
1127 >                                    sib.red = true;
1128 >                                    rotateLeft(sib);
1129 >                                    sib = (xp = x.parent) == null ?
1130 >                                        null : xp.left;
1131 >                                }
1132 >                                if (sib != null) {
1133 >                                    sib.red = (xp == null) ? false : xp.red;
1134 >                                    if ((sl = sib.left) != null)
1135 >                                        sl.red = false;
1136 >                                }
1137 >                                if (xp != null) {
1138 >                                    xp.red = false;
1139 >                                    rotateRight(xp);
1140 >                                }
1141 >                                x = root;
1142 >                            }
1143 >                        }
1144 >                    }
1145 >                }
1146 >            }
1147 >            if (p == replacement && (pp = p.parent) != null) {
1148 >                if (p == pp.left) // detach pointers
1149 >                    pp.left = null;
1150 >                else if (p == pp.right)
1151 >                    pp.right = null;
1152 >                p.parent = null;
1153              }
1154          }
1155      }
1156  
1157 <    /* ---------------- Table element access -------------- */
1158 <
1159 <    /*
1160 <     * Volatile access methods are used for table elements as well as
1161 <     * elements of in-progress next table while resizing.  Uses are
1162 <     * null checked by callers, and implicitly bounds-checked, relying
1163 <     * on the invariants that tab arrays have non-zero size, and all
1164 <     * indices are masked with (tab.length - 1) which is never
1165 <     * negative and always less than length. Note that, to be correct
1166 <     * wrt arbitrary concurrency errors by users, bounds checks must
1167 <     * operate on local variables, which accounts for some odd-looking
1168 <     * inline assignments below.
1157 >    /* ---------------- Collision reduction methods -------------- */
1158 >
1159 >    /**
1160 >     * Spreads higher bits to lower, and also forces top bit to 0.
1161 >     * Because the table uses power-of-two masking, sets of hashes
1162 >     * that vary only in bits above the current mask will always
1163 >     * collide. (Among known examples are sets of Float keys holding
1164 >     * consecutive whole numbers in small tables.)  To counter this,
1165 >     * we apply a transform that spreads the impact of higher bits
1166 >     * downward. There is a tradeoff between speed, utility, and
1167 >     * quality of bit-spreading. Because many common sets of hashes
1168 >     * are already reasonably distributed across bits (so don't benefit
1169 >     * from spreading), and because we use trees to handle large sets
1170 >     * of collisions in bins, we don't need excessively high quality.
1171       */
1172 <
1173 <    static final Node tabAt(Node[] tab, int i) { // used by InternalIterator
1174 <        return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
495 <    }
496 <
497 <    private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
498 <        return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
499 <    }
500 <
501 <    private static final void setTabAt(Node[] tab, int i, Node v) {
502 <        UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
1172 >    private static final int spread(int h) {
1173 >        h ^= (h >>> 18) ^ (h >>> 12);
1174 >        return (h ^ (h >>> 10)) & HASH_BITS;
1175      }
1176  
505    /* ---------------- Internal access and update methods -------------- */
506
1177      /**
1178 <     * Applies a supplemental hash function to a given hashCode, which
1179 <     * defends against poor quality hash functions.  The result must
510 <     * be have the top 2 bits clear. For reasonable performance, this
511 <     * function must have good avalanche properties; i.e., that each
512 <     * bit of the argument affects each bit of the result. (Although
513 <     * we don't care about the unused top 2 bits.)
1178 >     * Replaces a list bin with a tree bin if key is comparable.  Call
1179 >     * only when locked.
1180       */
1181 <    private static final int spread(int h) {
1182 <        // Apply base step of MurmurHash; see http://code.google.com/p/smhasher/
1183 <        // Despite two multiplies, this is often faster than others
1184 <        // with comparable bit-spread properties.
1185 <        h ^= h >>> 16;
1186 <        h *= 0x85ebca6b;
1187 <        h ^= h >>> 13;
522 <        h *= 0xc2b2ae35;
523 <        return ((h >>> 16) ^ h) & HASH_BITS; // mask out top bits
1181 >    private final void replaceWithTreeBin(Node<V>[] tab, int index, Object key) {
1182 >        if (key instanceof Comparable) {
1183 >            TreeBin<V> t = new TreeBin<V>();
1184 >            for (Node<V> e = tabAt(tab, index); e != null; e = e.next)
1185 >                t.putTreeNode(e.hash, e.key, e.val);
1186 >            setTabAt(tab, index, new Node<V>(MOVED, t, null, null));
1187 >        }
1188      }
1189  
1190 +    /* ---------------- Internal access and update methods -------------- */
1191 +
1192      /** Implementation for get and containsKey */
1193 <    private final Object internalGet(Object k) {
1193 >    @SuppressWarnings("unchecked") private final V internalGet(Object k) {
1194          int h = spread(k.hashCode());
1195 <        retry: for (Node[] tab = table; tab != null;) {
1196 <            Node e; Object ek, ev; int eh;    // locals to read fields once
1195 >        retry: for (Node<V>[] tab = table; tab != null;) {
1196 >            Node<V> e; Object ek; V ev; int eh; // locals to read fields once
1197              for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1198 <                if ((eh = e.hash) == MOVED) {
1199 <                    tab = (Node[])e.key;      // restart with new table
1200 <                    continue retry;
1198 >                if ((eh = e.hash) < 0) {
1199 >                    if ((ek = e.key) instanceof TreeBin)  // search TreeBin
1200 >                        return ((TreeBin<V>)ek).getValue(h, k);
1201 >                    else {                      // restart with new table
1202 >                        tab = (Node<V>[])ek;
1203 >                        continue retry;
1204 >                    }
1205                  }
1206 <                if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
1207 <                    ((ek = e.key) == k || k.equals(ek)))
1206 >                else if (eh == h && (ev = e.val) != null &&
1207 >                         ((ek = e.key) == k || k.equals(ek)))
1208                      return ev;
1209              }
1210              break;
# Line 547 | Line 1217 | public class ConcurrentHashMapV8<K, V>
1217       * Replaces node value with v, conditional upon match of cv if
1218       * non-null.  If resulting value is null, delete.
1219       */
1220 <    private final Object internalReplace(Object k, Object v, Object cv) {
1220 >    @SuppressWarnings("unchecked") private final V internalReplace
1221 >        (Object k, V v, Object cv) {
1222          int h = spread(k.hashCode());
1223 <        Object oldVal = null;
1224 <        for (Node[] tab = table;;) {
1225 <            Node f; int i, fh;
1223 >        V oldVal = null;
1224 >        for (Node<V>[] tab = table;;) {
1225 >            Node<V> f; int i, fh; Object fk;
1226              if (tab == null ||
1227                  (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1228                  break;
1229 <            else if ((fh = f.hash) == MOVED)
1230 <                tab = (Node[])f.key;
1231 <            else if ((fh & HASH_BITS) != h && f.next == null) // precheck
1232 <                break;                          // rules out possible existence
1233 <            else if ((fh & LOCKED) != 0) {
1234 <                checkForResize();               // try resizing if can't get lock
1235 <                f.tryAwaitLock(tab, i);
1229 >            else if ((fh = f.hash) < 0) {
1230 >                if ((fk = f.key) instanceof TreeBin) {
1231 >                    TreeBin<V> t = (TreeBin<V>)fk;
1232 >                    boolean validated = false;
1233 >                    boolean deleted = false;
1234 >                    t.acquire(0);
1235 >                    try {
1236 >                        if (tabAt(tab, i) == f) {
1237 >                            validated = true;
1238 >                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1239 >                            if (p != null) {
1240 >                                V pv = p.val;
1241 >                                if (cv == null || cv == pv || cv.equals(pv)) {
1242 >                                    oldVal = pv;
1243 >                                    if ((p.val = v) == null) {
1244 >                                        deleted = true;
1245 >                                        t.deleteTreeNode(p);
1246 >                                    }
1247 >                                }
1248 >                            }
1249 >                        }
1250 >                    } finally {
1251 >                        t.release(0);
1252 >                    }
1253 >                    if (validated) {
1254 >                        if (deleted)
1255 >                            addCount(-1L, -1);
1256 >                        break;
1257 >                    }
1258 >                }
1259 >                else
1260 >                    tab = (Node<V>[])fk;
1261              }
1262 <            else if (f.casHash(fh, fh | LOCKED)) {
1262 >            else if (fh != h && f.next == null) // precheck
1263 >                break;                          // rules out possible existence
1264 >            else {
1265                  boolean validated = false;
1266                  boolean deleted = false;
1267 <                try {
1267 >                synchronized (f) {
1268                      if (tabAt(tab, i) == f) {
1269                          validated = true;
1270 <                        for (Node e = f, pred = null;;) {
1271 <                            Object ek, ev;
1272 <                            if ((e.hash & HASH_BITS) == h &&
1270 >                        for (Node<V> e = f, pred = null;;) {
1271 >                            Object ek; V ev;
1272 >                            if (e.hash == h &&
1273                                  ((ev = e.val) != null) &&
1274                                  ((ek = e.key) == k || k.equals(ek))) {
1275                                  if (cv == null || cv == ev || cv.equals(ev)) {
1276                                      oldVal = ev;
1277                                      if ((e.val = v) == null) {
1278                                          deleted = true;
1279 <                                        Node en = e.next;
1279 >                                        Node<V> en = e.next;
1280                                          if (pred != null)
1281                                              pred.next = en;
1282                                          else
# Line 592 | Line 1290 | public class ConcurrentHashMapV8<K, V>
1290                                  break;
1291                          }
1292                      }
595                } finally {
596                    if (!f.casHash(fh | LOCKED, fh)) {
597                        f.hash = fh;
598                        synchronized (f) { f.notifyAll(); };
599                    }
1293                  }
1294                  if (validated) {
1295                      if (deleted)
1296 <                        counter.add(-1L);
1296 >                        addCount(-1L, -1);
1297                      break;
1298                  }
1299              }
# Line 609 | Line 1302 | public class ConcurrentHashMapV8<K, V>
1302      }
1303  
1304      /*
1305 <     * Internal versions of the five insertion methods, each a
1306 <     * little more complicated than the last. All have
614 <     * the same basic structure as the first (internalPut):
1305 >     * Internal versions of insertion methods
1306 >     * All have the same basic structure as the first (internalPut):
1307       *  1. If table uninitialized, create
1308       *  2. If bin empty, try to CAS new node
1309       *  3. If bin stale, use new table
1310 <     *  4. Lock and validate; if valid, scan and add or update
1311 <     *
620 <     * The others interweave other checks and/or alternative actions:
621 <     *  * Plain put checks for and performs resize after insertion.
622 <     *  * putIfAbsent prescans for mapping without lock (and fails to add
623 <     *    if present), which also makes pre-emptive resize checks worthwhile.
624 <     *  * computeIfAbsent extends form used in putIfAbsent with additional
625 <     *    mechanics to deal with, calls, potential exceptions and null
626 <     *    returns from function call.
627 <     *  * compute uses the same function-call mechanics, but without
628 <     *    the prescans
629 <     *  * putAll attempts to pre-allocate enough table space
630 <     *    and more lazily performs count updates and checks.
1310 >     *  4. if bin converted to TreeBin, validate and relay to TreeBin methods
1311 >     *  5. Lock and validate; if valid, scan and add or update
1312       *
1313 <     * Someday when details settle down a bit more, it might be worth
1314 <     * some factoring to reduce sprawl.
1315 <     */
1316 <
1317 <    /** Implementation for put */
1318 <    private final Object internalPut(Object k, Object v) {
1313 >     * The putAll method differs mainly in attempting to pre-allocate
1314 >     * enough table space, and also more lazily performs count updates
1315 >     * and checks.
1316 >     *
1317 >     * Most of the function-accepting methods can't be factored nicely
1318 >     * because they require different functional forms, so instead
1319 >     * sprawl out similar mechanics.
1320 >     */
1321 >
1322 >    /** Implementation for put and putIfAbsent */
1323 >    @SuppressWarnings("unchecked") private final V internalPut
1324 >        (K k, V v, boolean onlyIfAbsent) {
1325 >        if (k == null || v == null) throw new NullPointerException();
1326          int h = spread(k.hashCode());
1327 <        boolean checkSize = false;
1328 <        for (Node[] tab = table;;) {
1329 <            int i; Node f; int fh;
1327 >        int len = 0;
1328 >        for (Node<V>[] tab = table;;) {
1329 >            int i, fh; Node<V> f; Object fk; V fv;
1330              if (tab == null)
1331                  tab = initTable();
1332              else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1333 <                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1333 >                if (casTabAt(tab, i, null, new Node<V>(h, k, v, null)))
1334                      break;                   // no lock when adding to empty bin
1335              }
1336 <            else if ((fh = f.hash) == MOVED)
1337 <                tab = (Node[])f.key;
1338 <            else if ((fh & LOCKED) != 0) {
1339 <                checkForResize();
1340 <                f.tryAwaitLock(tab, i);
1336 >            else if ((fh = f.hash) < 0) {
1337 >                if ((fk = f.key) instanceof TreeBin) {
1338 >                    TreeBin<V> t = (TreeBin<V>)fk;
1339 >                    V oldVal = null;
1340 >                    t.acquire(0);
1341 >                    try {
1342 >                        if (tabAt(tab, i) == f) {
1343 >                            len = 2;
1344 >                            TreeNode<V> p = t.putTreeNode(h, k, v);
1345 >                            if (p != null) {
1346 >                                oldVal = p.val;
1347 >                                if (!onlyIfAbsent)
1348 >                                    p.val = v;
1349 >                            }
1350 >                        }
1351 >                    } finally {
1352 >                        t.release(0);
1353 >                    }
1354 >                    if (len != 0) {
1355 >                        if (oldVal != null)
1356 >                            return oldVal;
1357 >                        break;
1358 >                    }
1359 >                }
1360 >                else
1361 >                    tab = (Node<V>[])fk;
1362              }
1363 <            else if (f.casHash(fh, fh | LOCKED)) {
1364 <                Object oldVal = null;
1365 <                boolean validated = false;
1366 <                try {                        // needed in case equals() throws
1363 >            else if (onlyIfAbsent && fh == h && (fv = f.val) != null &&
1364 >                     ((fk = f.key) == k || k.equals(fk))) // peek while nearby
1365 >                return fv;
1366 >            else {
1367 >                V oldVal = null;
1368 >                synchronized (f) {
1369                      if (tabAt(tab, i) == f) {
1370 <                        validated = true;    // retry if 1st already deleted
1371 <                        for (Node e = f;;) {
1372 <                            Object ek, ev;
1373 <                            if ((e.hash & HASH_BITS) == h &&
1370 >                        len = 1;
1371 >                        for (Node<V> e = f;; ++len) {
1372 >                            Object ek; V ev;
1373 >                            if (e.hash == h &&
1374                                  (ev = e.val) != null &&
1375                                  ((ek = e.key) == k || k.equals(ek))) {
1376                                  oldVal = ev;
1377 <                                e.val = v;
1377 >                                if (!onlyIfAbsent)
1378 >                                    e.val = v;
1379                                  break;
1380                              }
1381 <                            Node last = e;
1381 >                            Node<V> last = e;
1382                              if ((e = e.next) == null) {
1383 <                                last.next = new Node(h, k, v, null);
1384 <                                if (last != f || tab.length <= 64)
1385 <                                    checkSize = true;
1383 >                                last.next = new Node<V>(h, k, v, null);
1384 >                                if (len >= TREE_THRESHOLD)
1385 >                                    replaceWithTreeBin(tab, i, k);
1386                                  break;
1387                              }
1388                          }
1389                      }
678                } finally {                  // unlock and signal if needed
679                    if (!f.casHash(fh | LOCKED, fh)) {
680                        f.hash = fh;
681                        synchronized (f) { f.notifyAll(); };
682                    }
1390                  }
1391 <                if (validated) {
1391 >                if (len != 0) {
1392                      if (oldVal != null)
1393                          return oldVal;
1394                      break;
1395                  }
1396              }
1397          }
1398 <        counter.add(1L);
692 <        if (checkSize)
693 <            checkForResize();
1398 >        addCount(1L, len);
1399          return null;
1400      }
1401  
1402 <    /** Implementation for putIfAbsent */
1403 <    private final Object internalPutIfAbsent(Object k, Object v) {
1402 >    /** Implementation for computeIfAbsent */
1403 >    @SuppressWarnings("unchecked") private final V internalComputeIfAbsent
1404 >        (K k, Fun<? super K, ? extends V> mf) {
1405 >        if (k == null || mf == null)
1406 >            throw new NullPointerException();
1407          int h = spread(k.hashCode());
1408 <        for (Node[] tab = table;;) {
1409 <            int i; Node f; int fh; Object fk, fv;
1408 >        V val = null;
1409 >        int len = 0;
1410 >        for (Node<V>[] tab = table;;) {
1411 >            Node<V> f; int i; Object fk;
1412              if (tab == null)
1413                  tab = initTable();
1414              else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1415 <                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1416 <                    break;
1417 <            }
1418 <            else if ((fh = f.hash) == MOVED)
1419 <                tab = (Node[])f.key;
1420 <            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1421 <                     ((fk = f.key) == k || k.equals(fk)))
1422 <                return fv;
1423 <            else {
1424 <                Node g = f.next;
715 <                if (g != null) { // at least 2 nodes -- search and maybe resize
716 <                    for (Node e = g;;) {
717 <                        Object ek, ev;
718 <                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
719 <                            ((ek = e.key) == k || k.equals(ek)))
720 <                            return ev;
721 <                        if ((e = e.next) == null) {
722 <                            checkForResize();
723 <                            break;
1415 >                Node<V> node = new Node<V>(h, k, null, null);
1416 >                synchronized (node) {
1417 >                    if (casTabAt(tab, i, null, node)) {
1418 >                        len = 1;
1419 >                        try {
1420 >                            if ((val = mf.apply(k)) != null)
1421 >                                node.val = val;
1422 >                        } finally {
1423 >                            if (val == null)
1424 >                                setTabAt(tab, i, null);
1425                          }
1426                      }
1427                  }
1428 <                if (((fh = f.hash) & LOCKED) != 0) {
1429 <                    checkForResize();
1430 <                    f.tryAwaitLock(tab, i);
1431 <                }
1432 <                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1433 <                    Object oldVal = null;
1434 <                    boolean validated = false;
1428 >                if (len != 0)
1429 >                    break;
1430 >            }
1431 >            else if (f.hash < 0) {
1432 >                if ((fk = f.key) instanceof TreeBin) {
1433 >                    TreeBin<V> t = (TreeBin<V>)fk;
1434 >                    boolean added = false;
1435 >                    t.acquire(0);
1436                      try {
1437                          if (tabAt(tab, i) == f) {
1438 <                            validated = true;
1439 <                            for (Node e = f;;) {
1440 <                                Object ek, ev;
1441 <                                if ((e.hash & HASH_BITS) == h &&
1442 <                                    (ev = e.val) != null &&
1443 <                                    ((ek = e.key) == k || k.equals(ek))) {
1444 <                                    oldVal = ev;
1445 <                                    break;
744 <                                }
745 <                                Node last = e;
746 <                                if ((e = e.next) == null) {
747 <                                    last.next = new Node(h, k, v, null);
748 <                                    break;
749 <                                }
1438 >                            len = 1;
1439 >                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1440 >                            if (p != null)
1441 >                                val = p.val;
1442 >                            else if ((val = mf.apply(k)) != null) {
1443 >                                added = true;
1444 >                                len = 2;
1445 >                                t.putTreeNode(h, k, val);
1446                              }
1447                          }
1448                      } finally {
1449 <                        if (!f.casHash(fh | LOCKED, fh)) {
754 <                            f.hash = fh;
755 <                            synchronized (f) { f.notifyAll(); };
756 <                        }
1449 >                        t.release(0);
1450                      }
1451 <                    if (validated) {
1452 <                        if (oldVal != null)
1453 <                            return oldVal;
1451 >                    if (len != 0) {
1452 >                        if (!added)
1453 >                            return val;
1454                          break;
1455                      }
1456                  }
1457 +                else
1458 +                    tab = (Node<V>[])fk;
1459 +            }
1460 +            else {
1461 +                for (Node<V> e = f; e != null; e = e.next) { // prescan
1462 +                    Object ek; V ev;
1463 +                    if (e.hash == h && (ev = e.val) != null &&
1464 +                        ((ek = e.key) == k || k.equals(ek)))
1465 +                        return ev;
1466 +                }
1467 +                boolean added = false;
1468 +                synchronized (f) {
1469 +                    if (tabAt(tab, i) == f) {
1470 +                        len = 1;
1471 +                        for (Node<V> e = f;; ++len) {
1472 +                            Object ek; V ev;
1473 +                            if (e.hash == h &&
1474 +                                (ev = e.val) != null &&
1475 +                                ((ek = e.key) == k || k.equals(ek))) {
1476 +                                val = ev;
1477 +                                break;
1478 +                            }
1479 +                            Node<V> last = e;
1480 +                            if ((e = e.next) == null) {
1481 +                                if ((val = mf.apply(k)) != null) {
1482 +                                    added = true;
1483 +                                    last.next = new Node<V>(h, k, val, null);
1484 +                                    if (len >= TREE_THRESHOLD)
1485 +                                        replaceWithTreeBin(tab, i, k);
1486 +                                }
1487 +                                break;
1488 +                            }
1489 +                        }
1490 +                    }
1491 +                }
1492 +                if (len != 0) {
1493 +                    if (!added)
1494 +                        return val;
1495 +                    break;
1496 +                }
1497              }
1498          }
1499 <        counter.add(1L);
1500 <        return null;
1499 >        if (val != null)
1500 >            addCount(1L, len);
1501 >        return val;
1502      }
1503  
1504 <    /** Implementation for computeIfAbsent */
1505 <    private final Object internalComputeIfAbsent(K k,
1506 <                                                 MappingFunction<? super K, ?> mf) {
1504 >    /** Implementation for compute */
1505 >    @SuppressWarnings("unchecked") private final V internalCompute
1506 >        (K k, boolean onlyIfPresent,
1507 >         BiFun<? super K, ? super V, ? extends V> mf) {
1508 >        if (k == null || mf == null)
1509 >            throw new NullPointerException();
1510          int h = spread(k.hashCode());
1511 <        Object val = null;
1512 <        for (Node[] tab = table;;) {
1513 <            Node f; int i, fh; Object fk, fv;
1511 >        V val = null;
1512 >        int delta = 0;
1513 >        int len = 0;
1514 >        for (Node<V>[] tab = table;;) {
1515 >            Node<V> f; int i, fh; Object fk;
1516              if (tab == null)
1517                  tab = initTable();
1518              else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1519 <                Node node = new Node(fh = h | LOCKED, k, null, null);
1520 <                boolean validated = false;
1521 <                if (casTabAt(tab, i, null, node)) {
1522 <                    validated = true;
1523 <                    try {
1524 <                        if ((val = mf.map(k)) != null)
1525 <                            node.val = val;
1526 <                    } finally {
1527 <                        if (val == null)
1528 <                            setTabAt(tab, i, null);
1529 <                        if (!node.casHash(fh, h)) {
1530 <                            node.hash = h;
1531 <                            synchronized (node) { node.notifyAll(); };
1519 >                if (onlyIfPresent)
1520 >                    break;
1521 >                Node<V> node = new Node<V>(h, k, null, null);
1522 >                synchronized (node) {
1523 >                    if (casTabAt(tab, i, null, node)) {
1524 >                        try {
1525 >                            len = 1;
1526 >                            if ((val = mf.apply(k, null)) != null) {
1527 >                                node.val = val;
1528 >                                delta = 1;
1529 >                            }
1530 >                        } finally {
1531 >                            if (delta == 0)
1532 >                                setTabAt(tab, i, null);
1533                          }
1534                      }
1535                  }
1536 <                if (validated)
1536 >                if (len != 0)
1537                      break;
1538              }
1539 <            else if ((fh = f.hash) == MOVED)
1540 <                tab = (Node[])f.key;
1541 <            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1542 <                     ((fk = f.key) == k || k.equals(fk)))
803 <                return fv;
804 <            else {
805 <                Node g = f.next;
806 <                if (g != null) {
807 <                    for (Node e = g;;) {
808 <                        Object ek, ev;
809 <                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
810 <                            ((ek = e.key) == k || k.equals(ek)))
811 <                            return ev;
812 <                        if ((e = e.next) == null) {
813 <                            checkForResize();
814 <                            break;
815 <                        }
816 <                    }
817 <                }
818 <                if (((fh = f.hash) & LOCKED) != 0) {
819 <                    checkForResize();
820 <                    f.tryAwaitLock(tab, i);
821 <                }
822 <                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
823 <                    boolean validated = false;
1539 >            else if ((fh = f.hash) < 0) {
1540 >                if ((fk = f.key) instanceof TreeBin) {
1541 >                    TreeBin<V> t = (TreeBin<V>)fk;
1542 >                    t.acquire(0);
1543                      try {
1544                          if (tabAt(tab, i) == f) {
1545 <                            validated = true;
1546 <                            for (Node e = f;;) {
1547 <                                Object ek, ev;
1548 <                                if ((e.hash & HASH_BITS) == h &&
1549 <                                    (ev = e.val) != null &&
1550 <                                    ((ek = e.key) == k || k.equals(ek))) {
1551 <                                    val = ev;
1552 <                                    break;
1553 <                                }
1554 <                                Node last = e;
1555 <                                if ((e = e.next) == null) {
1556 <                                    if ((val = mf.map(k)) != null)
838 <                                        last.next = new Node(h, k, val, null);
839 <                                    break;
1545 >                            len = 1;
1546 >                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1547 >                            if (p == null && onlyIfPresent)
1548 >                                break;
1549 >                            V pv = (p == null) ? null : p.val;
1550 >                            if ((val = mf.apply(k, pv)) != null) {
1551 >                                if (p != null)
1552 >                                    p.val = val;
1553 >                                else {
1554 >                                    len = 2;
1555 >                                    delta = 1;
1556 >                                    t.putTreeNode(h, k, val);
1557                                  }
1558                              }
1559 +                            else if (p != null) {
1560 +                                delta = -1;
1561 +                                t.deleteTreeNode(p);
1562 +                            }
1563                          }
1564                      } finally {
1565 <                        if (!f.casHash(fh | LOCKED, fh)) {
845 <                            f.hash = fh;
846 <                            synchronized (f) { f.notifyAll(); };
847 <                        }
1565 >                        t.release(0);
1566                      }
1567 <                    if (validated)
1567 >                    if (len != 0)
1568                          break;
1569                  }
1570 +                else
1571 +                    tab = (Node<V>[])fk;
1572 +            }
1573 +            else {
1574 +                synchronized (f) {
1575 +                    if (tabAt(tab, i) == f) {
1576 +                        len = 1;
1577 +                        for (Node<V> e = f, pred = null;; ++len) {
1578 +                            Object ek; V ev;
1579 +                            if (e.hash == h &&
1580 +                                (ev = e.val) != null &&
1581 +                                ((ek = e.key) == k || k.equals(ek))) {
1582 +                                val = mf.apply(k, ev);
1583 +                                if (val != null)
1584 +                                    e.val = val;
1585 +                                else {
1586 +                                    delta = -1;
1587 +                                    Node<V> en = e.next;
1588 +                                    if (pred != null)
1589 +                                        pred.next = en;
1590 +                                    else
1591 +                                        setTabAt(tab, i, en);
1592 +                                }
1593 +                                break;
1594 +                            }
1595 +                            pred = e;
1596 +                            if ((e = e.next) == null) {
1597 +                                if (!onlyIfPresent &&
1598 +                                    (val = mf.apply(k, null)) != null) {
1599 +                                    pred.next = new Node<V>(h, k, val, null);
1600 +                                    delta = 1;
1601 +                                    if (len >= TREE_THRESHOLD)
1602 +                                        replaceWithTreeBin(tab, i, k);
1603 +                                }
1604 +                                break;
1605 +                            }
1606 +                        }
1607 +                    }
1608 +                }
1609 +                if (len != 0)
1610 +                    break;
1611              }
1612          }
1613 <        if (val == null)
1614 <            throw new NullPointerException();
856 <        counter.add(1L);
1613 >        if (delta != 0)
1614 >            addCount((long)delta, len);
1615          return val;
1616      }
1617  
1618 <    /** Implementation for compute */
1619 <    @SuppressWarnings("unchecked")
1620 <    private final Object internalCompute(K k,
1621 <                                         RemappingFunction<? super K, V> mf) {
1618 >    /** Implementation for merge */
1619 >    @SuppressWarnings("unchecked") private final V internalMerge
1620 >        (K k, V v, BiFun<? super V, ? super V, ? extends V> mf) {
1621 >        if (k == null || v == null || mf == null)
1622 >            throw new NullPointerException();
1623          int h = spread(k.hashCode());
1624 <        Object val = null;
1625 <        boolean added = false;
1626 <        boolean checkSize = false;
1627 <        for (Node[] tab = table;;) {
1628 <            Node f; int i, fh;
1624 >        V val = null;
1625 >        int delta = 0;
1626 >        int len = 0;
1627 >        for (Node<V>[] tab = table;;) {
1628 >            int i; Node<V> f; Object fk; V fv;
1629              if (tab == null)
1630                  tab = initTable();
1631              else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1632 <                Node node = new Node(fh = h | LOCKED, k, null, null);
1633 <                boolean validated = false;
1634 <                if (casTabAt(tab, i, null, node)) {
1635 <                    validated = true;
1632 >                if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1633 >                    delta = 1;
1634 >                    val = v;
1635 >                    break;
1636 >                }
1637 >            }
1638 >            else if (f.hash < 0) {
1639 >                if ((fk = f.key) instanceof TreeBin) {
1640 >                    TreeBin<V> t = (TreeBin<V>)fk;
1641 >                    t.acquire(0);
1642                      try {
1643 <                        if ((val = mf.remap(k, null)) != null) {
1644 <                            node.val = val;
1645 <                            added = true;
1643 >                        if (tabAt(tab, i) == f) {
1644 >                            len = 1;
1645 >                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1646 >                            val = (p == null) ? v : mf.apply(p.val, v);
1647 >                            if (val != null) {
1648 >                                if (p != null)
1649 >                                    p.val = val;
1650 >                                else {
1651 >                                    len = 2;
1652 >                                    delta = 1;
1653 >                                    t.putTreeNode(h, k, val);
1654 >                                }
1655 >                            }
1656 >                            else if (p != null) {
1657 >                                delta = -1;
1658 >                                t.deleteTreeNode(p);
1659 >                            }
1660                          }
1661                      } finally {
1662 <                        if (!added)
884 <                            setTabAt(tab, i, null);
885 <                        if (!node.casHash(fh, h)) {
886 <                            node.hash = h;
887 <                            synchronized (node) { node.notifyAll(); };
888 <                        }
1662 >                        t.release(0);
1663                      }
1664 +                    if (len != 0)
1665 +                        break;
1666                  }
1667 <                if (validated)
1668 <                    break;
893 <            }
894 <            else if ((fh = f.hash) == MOVED)
895 <                tab = (Node[])f.key;
896 <            else if ((fh & LOCKED) != 0) {
897 <                checkForResize();
898 <                f.tryAwaitLock(tab, i);
1667 >                else
1668 >                    tab = (Node<V>[])fk;
1669              }
1670 <            else if (f.casHash(fh, fh | LOCKED)) {
1671 <                boolean validated = false;
902 <                try {
1670 >            else {
1671 >                synchronized (f) {
1672                      if (tabAt(tab, i) == f) {
1673 <                        validated = true;
1674 <                        for (Node e = f;;) {
1675 <                            Object ek, ev;
1676 <                            if ((e.hash & HASH_BITS) == h &&
1673 >                        len = 1;
1674 >                        for (Node<V> e = f, pred = null;; ++len) {
1675 >                            Object ek; V ev;
1676 >                            if (e.hash == h &&
1677                                  (ev = e.val) != null &&
1678                                  ((ek = e.key) == k || k.equals(ek))) {
1679 <                                val = mf.remap(k, (V)ev);
1679 >                                val = mf.apply(ev, v);
1680                                  if (val != null)
1681                                      e.val = val;
1682 +                                else {
1683 +                                    delta = -1;
1684 +                                    Node<V> en = e.next;
1685 +                                    if (pred != null)
1686 +                                        pred.next = en;
1687 +                                    else
1688 +                                        setTabAt(tab, i, en);
1689 +                                }
1690                                  break;
1691                              }
1692 <                            Node last = e;
1692 >                            pred = e;
1693                              if ((e = e.next) == null) {
1694 <                                if ((val = mf.remap(k, null)) != null) {
1695 <                                    last.next = new Node(h, k, val, null);
1696 <                                    added = true;
1697 <                                    if (last != f || tab.length <= 64)
1698 <                                        checkSize = true;
922 <                                }
1694 >                                val = v;
1695 >                                pred.next = new Node<V>(h, k, val, null);
1696 >                                delta = 1;
1697 >                                if (len >= TREE_THRESHOLD)
1698 >                                    replaceWithTreeBin(tab, i, k);
1699                                  break;
1700                              }
1701                          }
1702                      }
927                } finally {
928                    if (!f.casHash(fh | LOCKED, fh)) {
929                        f.hash = fh;
930                        synchronized (f) { f.notifyAll(); };
931                    }
1703                  }
1704 <                if (validated)
1704 >                if (len != 0)
1705                      break;
1706              }
1707          }
1708 <        if (val == null)
1709 <            throw new NullPointerException();
939 <        if (added) {
940 <            counter.add(1L);
941 <            if (checkSize)
942 <                checkForResize();
943 <        }
1708 >        if (delta != 0)
1709 >            addCount((long)delta, len);
1710          return val;
1711      }
1712  
1713      /** Implementation for putAll */
1714 <    private final void internalPutAll(Map<?, ?> m) {
1714 >    @SuppressWarnings("unchecked") private final void internalPutAll
1715 >        (Map<? extends K, ? extends V> m) {
1716          tryPresize(m.size());
1717          long delta = 0L;     // number of uncommitted additions
1718          boolean npe = false; // to throw exception on exit for nulls
1719          try {                // to clean up counts on other exceptions
1720 <            for (Map.Entry<?, ?> entry : m.entrySet()) {
1721 <                Object k, v;
1720 >            for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
1721 >                Object k; V v;
1722                  if (entry == null || (k = entry.getKey()) == null ||
1723                      (v = entry.getValue()) == null) {
1724                      npe = true;
1725                      break;
1726                  }
1727                  int h = spread(k.hashCode());
1728 <                for (Node[] tab = table;;) {
1729 <                    int i; Node f; int fh;
1728 >                for (Node<V>[] tab = table;;) {
1729 >                    int i; Node<V> f; int fh; Object fk;
1730                      if (tab == null)
1731                          tab = initTable();
1732                      else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1733 <                        if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1733 >                        if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1734                              ++delta;
1735                              break;
1736                          }
1737                      }
1738 <                    else if ((fh = f.hash) == MOVED)
1739 <                        tab = (Node[])f.key;
1740 <                    else if ((fh & LOCKED) != 0) {
1741 <                        counter.add(delta);
1742 <                        delta = 0L;
1743 <                        checkForResize();
1744 <                        f.tryAwaitLock(tab, i);
1745 <                    }
1746 <                    else if (f.casHash(fh, fh | LOCKED)) {
1747 <                        boolean validated = false;
1748 <                        boolean tooLong = false;
1749 <                        try {
1738 >                    else if ((fh = f.hash) < 0) {
1739 >                        if ((fk = f.key) instanceof TreeBin) {
1740 >                            TreeBin<V> t = (TreeBin<V>)fk;
1741 >                            boolean validated = false;
1742 >                            t.acquire(0);
1743 >                            try {
1744 >                                if (tabAt(tab, i) == f) {
1745 >                                    validated = true;
1746 >                                    TreeNode<V> p = t.getTreeNode(h, k, t.root);
1747 >                                    if (p != null)
1748 >                                        p.val = v;
1749 >                                    else {
1750 >                                        t.putTreeNode(h, k, v);
1751 >                                        ++delta;
1752 >                                    }
1753 >                                }
1754 >                            } finally {
1755 >                                t.release(0);
1756 >                            }
1757 >                            if (validated)
1758 >                                break;
1759 >                        }
1760 >                        else
1761 >                            tab = (Node<V>[])fk;
1762 >                    }
1763 >                    else {
1764 >                        int len = 0;
1765 >                        synchronized (f) {
1766                              if (tabAt(tab, i) == f) {
1767 <                                validated = true;
1768 <                                for (Node e = f;;) {
1769 <                                    Object ek, ev;
1770 <                                    if ((e.hash & HASH_BITS) == h &&
1767 >                                len = 1;
1768 >                                for (Node<V> e = f;; ++len) {
1769 >                                    Object ek; V ev;
1770 >                                    if (e.hash == h &&
1771                                          (ev = e.val) != null &&
1772                                          ((ek = e.key) == k || k.equals(ek))) {
1773                                          e.val = v;
1774                                          break;
1775                                      }
1776 <                                    Node last = e;
1776 >                                    Node<V> last = e;
1777                                      if ((e = e.next) == null) {
1778                                          ++delta;
1779 <                                        last.next = new Node(h, k, v, null);
1779 >                                        last.next = new Node<V>(h, k, v, null);
1780 >                                        if (len >= TREE_THRESHOLD)
1781 >                                            replaceWithTreeBin(tab, i, k);
1782                                          break;
1783                                      }
999                                    tooLong = true;
1784                                  }
1785                              }
1002                        } finally {
1003                            if (!f.casHash(fh | LOCKED, fh)) {
1004                                f.hash = fh;
1005                                synchronized (f) { f.notifyAll(); };
1006                            }
1786                          }
1787 <                        if (validated) {
1788 <                            if (tooLong) {
1789 <                                counter.add(delta);
1011 <                                delta = 0L;
1012 <                                checkForResize();
1013 <                            }
1787 >                        if (len != 0) {
1788 >                            if (len > 1)
1789 >                                addCount(delta, len);
1790                              break;
1791                          }
1792                      }
1793                  }
1794              }
1795          } finally {
1796 <            if (delta != 0)
1797 <                counter.add(delta);
1796 >            if (delta != 0L)
1797 >                addCount(delta, 2);
1798          }
1799          if (npe)
1800              throw new NullPointerException();
1801      }
1802  
1803 +    /**
1804 +     * Implementation for clear. Steps through each bin, removing all
1805 +     * nodes.
1806 +     */
1807 +    @SuppressWarnings("unchecked") private final void internalClear() {
1808 +        long delta = 0L; // negative number of deletions
1809 +        int i = 0;
1810 +        Node<V>[] tab = table;
1811 +        while (tab != null && i < tab.length) {
1812 +            Node<V> f = tabAt(tab, i);
1813 +            if (f == null)
1814 +                ++i;
1815 +            else if (f.hash < 0) {
1816 +                Object fk;
1817 +                if ((fk = f.key) instanceof TreeBin) {
1818 +                    TreeBin<V> t = (TreeBin<V>)fk;
1819 +                    t.acquire(0);
1820 +                    try {
1821 +                        if (tabAt(tab, i) == f) {
1822 +                            for (Node<V> p = t.first; p != null; p = p.next) {
1823 +                                if (p.val != null) { // (currently always true)
1824 +                                    p.val = null;
1825 +                                    --delta;
1826 +                                }
1827 +                            }
1828 +                            t.first = null;
1829 +                            t.root = null;
1830 +                            ++i;
1831 +                        }
1832 +                    } finally {
1833 +                        t.release(0);
1834 +                    }
1835 +                }
1836 +                else
1837 +                    tab = (Node<V>[])fk;
1838 +            }
1839 +            else {
1840 +                synchronized (f) {
1841 +                    if (tabAt(tab, i) == f) {
1842 +                        for (Node<V> e = f; e != null; e = e.next) {
1843 +                            if (e.val != null) {  // (currently always true)
1844 +                                e.val = null;
1845 +                                --delta;
1846 +                            }
1847 +                        }
1848 +                        setTabAt(tab, i, null);
1849 +                        ++i;
1850 +                    }
1851 +                }
1852 +            }
1853 +        }
1854 +        if (delta != 0L)
1855 +            addCount(delta, -1);
1856 +    }
1857 +
1858      /* ---------------- Table Initialization and Resizing -------------- */
1859  
1860      /**
# Line 1043 | Line 1874 | public class ConcurrentHashMapV8<K, V>
1874      /**
1875       * Initializes table, using the size recorded in sizeCtl.
1876       */
1877 <    private final Node[] initTable() {
1878 <        Node[] tab; int sc;
1877 >    @SuppressWarnings("unchecked") private final Node<V>[] initTable() {
1878 >        Node<V>[] tab; int sc;
1879          while ((tab = table) == null) {
1880              if ((sc = sizeCtl) < 0)
1881                  Thread.yield(); // lost initialization race; just spin
1882 <            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1882 >            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1883                  try {
1884                      if ((tab = table) == null) {
1885                          int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1886 <                        tab = table = new Node[n];
1886 >                        @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1887 >                        table = tab = (Node<V>[])tb;
1888                          sc = n - (n >>> 2);
1889                      }
1890                  } finally {
# Line 1065 | Line 1897 | public class ConcurrentHashMapV8<K, V>
1897      }
1898  
1899      /**
1900 <     * If table is too small and not already resizing, creates next
1901 <     * table and transfers bins.  Rechecks occupancy after a transfer
1902 <     * to see if another resize is already needed because resizings
1903 <     * are lagging additions.
1904 <     */
1905 <    private final void checkForResize() {
1906 <        Node[] tab; int n, sc;
1907 <        while ((tab = table) != null &&
1908 <               (n = tab.length) < MAXIMUM_CAPACITY &&
1909 <               (sc = sizeCtl) >= 0 && counter.sum() >= (long)sc &&
1910 <               UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1911 <            try {
1912 <                if (tab == table) {
1913 <                    table = rebuild(tab);
1914 <                    sc = (n << 1) - (n >>> 1);
1900 >     * Adds to count, and if table is too small and not already
1901 >     * resizing, initiates transfer. If already resizing, helps
1902 >     * perform transfer if work is available.  Rechecks occupancy
1903 >     * after a transfer to see if another resize is already needed
1904 >     * because resizings are lagging additions.
1905 >     *
1906 >     * @param x the count to add
1907 >     * @param check if <0, don't check resize, if <= 1 only check if uncontended
1908 >     */
1909 >    private final void addCount(long x, int check) {
1910 >        CounterCell[] as; long b, s;
1911 >        if ((as = counterCells) != null ||
1912 >            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1913 >            CounterHashCode hc; CounterCell a; long v; int m;
1914 >            boolean uncontended = true;
1915 >            if ((hc = threadCounterHashCode.get()) == null ||
1916 >                as == null || (m = as.length - 1) < 0 ||
1917 >                (a = as[m & hc.code]) == null ||
1918 >                !(uncontended =
1919 >                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1920 >                fullAddCount(x, hc, uncontended);
1921 >                return;
1922 >            }
1923 >            if (check <= 1)
1924 >                return;
1925 >            s = sumCount();
1926 >        }
1927 >        if (check >= 0) {
1928 >            Node<V>[] tab, nt; int sc;
1929 >            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1930 >                   tab.length < MAXIMUM_CAPACITY) {
1931 >                if (sc < 0) {
1932 >                    if (sc == -1 || transferIndex <= transferOrigin ||
1933 >                        (nt = nextTable) == null)
1934 >                        break;
1935 >                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1936 >                        transfer(tab, nt);
1937                  }
1938 <            } finally {
1939 <                sizeCtl = sc;
1938 >                else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1939 >                    transfer(tab, null);
1940 >                s = sumCount();
1941              }
1942          }
1943      }
# Line 1092 | Line 1947 | public class ConcurrentHashMapV8<K, V>
1947       *
1948       * @param size number of elements (doesn't need to be perfectly accurate)
1949       */
1950 <    private final void tryPresize(int size) {
1950 >    @SuppressWarnings("unchecked") private final void tryPresize(int size) {
1951          int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1952              tableSizeFor(size + (size >>> 1) + 1);
1953          int sc;
1954          while ((sc = sizeCtl) >= 0) {
1955 <            Node[] tab = table; int n;
1955 >            Node<V>[] tab = table; int n;
1956              if (tab == null || (n = tab.length) == 0) {
1957                  n = (sc > c) ? sc : c;
1958 <                if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1958 >                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1959                      try {
1960                          if (table == tab) {
1961 <                            table = new Node[n];
1961 >                            @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1962 >                            table = (Node<V>[])tb;
1963                              sc = n - (n >>> 2);
1964                          }
1965                      } finally {
# Line 1113 | Line 1969 | public class ConcurrentHashMapV8<K, V>
1969              }
1970              else if (c <= sc || n >= MAXIMUM_CAPACITY)
1971                  break;
1972 <            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1973 <                try {
1974 <                    if (table == tab) {
1119 <                        table = rebuild(tab);
1120 <                        sc = (n << 1) - (n >>> 1);
1121 <                    }
1122 <                } finally {
1123 <                    sizeCtl = sc;
1124 <                }
1125 <            }
1972 >            else if (tab == table &&
1973 >                     U.compareAndSwapInt(this, SIZECTL, sc, -2))
1974 >                transfer(tab, null);
1975          }
1976      }
1977  
1978      /*
1979       * Moves and/or copies the nodes in each bin to new table. See
1980       * above for explanation.
1132     *
1133     * @return the new table
1981       */
1982 <    private static final Node[] rebuild(Node[] tab) {
1983 <        int n = tab.length;
1984 <        Node[] nextTab = new Node[n << 1];
1985 <        Node fwd = new Node(MOVED, nextTab, null, null);
1986 <        int[] buffer = null;       // holds bins to revisit; null until needed
1987 <        Node rev = null;           // reverse forwarder; null until needed
1988 <        int nbuffered = 0;         // the number of bins in buffer list
1989 <        int bufferIndex = 0;       // buffer index of current buffered bin
1990 <        int bin = n - 1;           // current non-buffered bin or -1 if none
1991 <
1992 <        for (int i = bin;;) {      // start upwards sweep
1993 <            int fh; Node f;
1994 <            if ((f = tabAt(tab, i)) == null) {
1995 <                if (bin >= 0) {    // no lock needed (or available)
1996 <                    if (!casTabAt(tab, i, f, fwd))
1997 <                        continue;
1998 <                }
1999 <                else {             // transiently use a locked forwarding node
2000 <                    Node g = new Node(MOVED|LOCKED, nextTab, null, null);
2001 <                    if (!casTabAt(tab, i, f, g))
2002 <                        continue;
1982 >    @SuppressWarnings("unchecked") private final void transfer
1983 >        (Node<V>[] tab, Node<V>[] nextTab) {
1984 >        int n = tab.length, stride;
1985 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1986 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
1987 >        if (nextTab == null) {            // initiating
1988 >            try {
1989 >                @SuppressWarnings("rawtypes") Node[] tb = new Node[n << 1];
1990 >                nextTab = (Node<V>[])tb;
1991 >            } catch (Throwable ex) {      // try to cope with OOME
1992 >                sizeCtl = Integer.MAX_VALUE;
1993 >                return;
1994 >            }
1995 >            nextTable = nextTab;
1996 >            transferOrigin = n;
1997 >            transferIndex = n;
1998 >            Node<V> rev = new Node<V>(MOVED, tab, null, null);
1999 >            for (int k = n; k > 0;) {    // progressively reveal ready slots
2000 >                int nextk = (k > stride) ? k - stride : 0;
2001 >                for (int m = nextk; m < k; ++m)
2002 >                    nextTab[m] = rev;
2003 >                for (int m = n + nextk; m < n + k; ++m)
2004 >                    nextTab[m] = rev;
2005 >                U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
2006 >            }
2007 >        }
2008 >        int nextn = nextTab.length;
2009 >        Node<V> fwd = new Node<V>(MOVED, nextTab, null, null);
2010 >        boolean advance = true;
2011 >        for (int i = 0, bound = 0;;) {
2012 >            int nextIndex, nextBound; Node<V> f; Object fk;
2013 >            while (advance) {
2014 >                if (--i >= bound)
2015 >                    advance = false;
2016 >                else if ((nextIndex = transferIndex) <= transferOrigin) {
2017 >                    i = -1;
2018 >                    advance = false;
2019 >                }
2020 >                else if (U.compareAndSwapInt
2021 >                         (this, TRANSFERINDEX, nextIndex,
2022 >                          nextBound = (nextIndex > stride ?
2023 >                                       nextIndex - stride : 0))) {
2024 >                    bound = nextBound;
2025 >                    i = nextIndex - 1;
2026 >                    advance = false;
2027 >                }
2028 >            }
2029 >            if (i < 0 || i >= n || i + n >= nextn) {
2030 >                for (int sc;;) {
2031 >                    if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2032 >                        if (sc == -1) {
2033 >                            nextTable = null;
2034 >                            table = nextTab;
2035 >                            sizeCtl = (n << 1) - (n >>> 1);
2036 >                        }
2037 >                        return;
2038 >                    }
2039 >                }
2040 >            }
2041 >            else if ((f = tabAt(tab, i)) == null) {
2042 >                if (casTabAt(tab, i, null, fwd)) {
2043                      setTabAt(nextTab, i, null);
2044                      setTabAt(nextTab, i + n, null);
2045 <                    setTabAt(tab, i, fwd);
1159 <                    if (!g.casHash(MOVED|LOCKED, MOVED)) {
1160 <                        g.hash = MOVED;
1161 <                        synchronized (g) { g.notifyAll(); }
1162 <                    }
2045 >                    advance = true;
2046                  }
2047              }
2048 <            else if (((fh = f.hash) & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
2049 <                boolean validated = false;
1167 <                try {              // split to lo and hi lists; copying as needed
2048 >            else if (f.hash >= 0) {
2049 >                synchronized (f) {
2050                      if (tabAt(tab, i) == f) {
2051 <                        validated = true;
2052 <                        Node e = f, lastRun = f;
2053 <                        Node lo = null, hi = null;
1172 <                        int runBit = e.hash & n;
1173 <                        for (Node p = e.next; p != null; p = p.next) {
2051 >                        int runBit = f.hash & n;
2052 >                        Node<V> lastRun = f, lo = null, hi = null;
2053 >                        for (Node<V> p = f.next; p != null; p = p.next) {
2054                              int b = p.hash & n;
2055                              if (b != runBit) {
2056                                  runBit = b;
# Line 1181 | Line 2061 | public class ConcurrentHashMapV8<K, V>
2061                              lo = lastRun;
2062                          else
2063                              hi = lastRun;
2064 <                        for (Node p = e; p != lastRun; p = p.next) {
2065 <                            int ph = p.hash & HASH_BITS;
2066 <                            Object pk = p.key, pv = p.val;
2064 >                        for (Node<V> p = f; p != lastRun; p = p.next) {
2065 >                            int ph = p.hash;
2066 >                            Object pk = p.key; V pv = p.val;
2067                              if ((ph & n) == 0)
2068 <                                lo = new Node(ph, pk, pv, lo);
2068 >                                lo = new Node<V>(ph, pk, pv, lo);
2069                              else
2070 <                                hi = new Node(ph, pk, pv, hi);
2070 >                                hi = new Node<V>(ph, pk, pv, hi);
2071                          }
2072                          setTabAt(nextTab, i, lo);
2073                          setTabAt(nextTab, i + n, hi);
2074                          setTabAt(tab, i, fwd);
2075 <                    }
1196 <                } finally {
1197 <                    if (!f.casHash(fh | LOCKED, fh)) {
1198 <                        f.hash = fh;
1199 <                        synchronized (f) { f.notifyAll(); };
2075 >                        advance = true;
2076                      }
2077                  }
1202                if (!validated)
1203                    continue;
2078              }
2079 <            else {
2080 <                if (buffer == null) // initialize buffer for revisits
2081 <                    buffer = new int[TRANSFER_BUFFER_SIZE];
2082 <                if (bin < 0 && bufferIndex > 0) {
2083 <                    int j = buffer[--bufferIndex];
2084 <                    buffer[bufferIndex] = i;
2085 <                    i = j;         // swap with another bin
2086 <                    continue;
2087 <                }
2088 <                if (bin < 0 || nbuffered >= TRANSFER_BUFFER_SIZE) {
2089 <                    f.tryAwaitLock(tab, i);
2090 <                    continue;      // no other options -- block
2091 <                }
2092 <                if (rev == null)   // initialize reverse-forwarder
2093 <                    rev = new Node(MOVED, tab, null, null);
2094 <                if (tabAt(tab, i) != f || (f.hash & LOCKED) == 0)
2095 <                    continue;      // recheck before adding to list
2096 <                buffer[nbuffered++] = i;
2097 <                setTabAt(nextTab, i, rev);     // install place-holders
2098 <                setTabAt(nextTab, i + n, rev);
2099 <            }
2100 <
2101 <            if (bin > 0)
2102 <                i = --bin;
2103 <            else if (buffer != null && nbuffered > 0) {
2104 <                bin = -1;
2105 <                i = buffer[bufferIndex = --nbuffered];
2079 >            else if ((fk = f.key) instanceof TreeBin) {
2080 >                TreeBin<V> t = (TreeBin<V>)fk;
2081 >                t.acquire(0);
2082 >                try {
2083 >                    if (tabAt(tab, i) == f) {
2084 >                        TreeBin<V> lt = new TreeBin<V>();
2085 >                        TreeBin<V> ht = new TreeBin<V>();
2086 >                        int lc = 0, hc = 0;
2087 >                        for (Node<V> e = t.first; e != null; e = e.next) {
2088 >                            int h = e.hash;
2089 >                            Object k = e.key; V v = e.val;
2090 >                            if ((h & n) == 0) {
2091 >                                ++lc;
2092 >                                lt.putTreeNode(h, k, v);
2093 >                            }
2094 >                            else {
2095 >                                ++hc;
2096 >                                ht.putTreeNode(h, k, v);
2097 >                            }
2098 >                        }
2099 >                        Node<V> ln, hn; // throw away trees if too small
2100 >                        if (lc < TREE_THRESHOLD) {
2101 >                            ln = null;
2102 >                            for (Node<V> p = lt.first; p != null; p = p.next)
2103 >                                ln = new Node<V>(p.hash, p.key, p.val, ln);
2104 >                        }
2105 >                        else
2106 >                            ln = new Node<V>(MOVED, lt, null, null);
2107 >                        setTabAt(nextTab, i, ln);
2108 >                        if (hc < TREE_THRESHOLD) {
2109 >                            hn = null;
2110 >                            for (Node<V> p = ht.first; p != null; p = p.next)
2111 >                                hn = new Node<V>(p.hash, p.key, p.val, hn);
2112 >                        }
2113 >                        else
2114 >                            hn = new Node<V>(MOVED, ht, null, null);
2115 >                        setTabAt(nextTab, i + n, hn);
2116 >                        setTabAt(tab, i, fwd);
2117 >                        advance = true;
2118 >                    }
2119 >                } finally {
2120 >                    t.release(0);
2121 >                }
2122              }
2123              else
2124 <                return nextTab;
2124 >                advance = true; // already processed
2125          }
2126      }
2127  
2128 <    /**
2129 <     * Implementation for clear. Steps through each bin, removing all
2130 <     * nodes.
2131 <     */
2132 <    private final void internalClear() {
2133 <        long delta = 0L; // negative number of deletions
2134 <        int i = 0;
2135 <        Node[] tab = table;
2136 <        while (tab != null && i < tab.length) {
1247 <            int fh;
1248 <            Node f = tabAt(tab, i);
1249 <            if (f == null)
1250 <                ++i;
1251 <            else if ((fh = f.hash) == MOVED)
1252 <                tab = (Node[])f.key;
1253 <            else if ((fh & LOCKED) != 0) {
1254 <                counter.add(delta); // opportunistically update count
1255 <                delta = 0L;
1256 <                f.tryAwaitLock(tab, i);
2128 >    /* ---------------- Counter support -------------- */
2129 >
2130 >    final long sumCount() {
2131 >        CounterCell[] as = counterCells; CounterCell a;
2132 >        long sum = baseCount;
2133 >        if (as != null) {
2134 >            for (int i = 0; i < as.length; ++i) {
2135 >                if ((a = as[i]) != null)
2136 >                    sum += a.value;
2137              }
2138 <            else if (f.casHash(fh, fh | LOCKED)) {
2139 <                boolean validated = false;
2140 <                try {
2141 <                    if (tabAt(tab, i) == f) {
2142 <                        validated = true;
2143 <                        for (Node e = f; e != null; e = e.next) {
2144 <                            if (e.val != null) { // currently always true
2145 <                                e.val = null;
2146 <                                --delta;
2138 >        }
2139 >        return sum;
2140 >    }
2141 >
2142 >    // See LongAdder version for explanation
2143 >    private final void fullAddCount(long x, CounterHashCode hc,
2144 >                                    boolean wasUncontended) {
2145 >        int h;
2146 >        if (hc == null) {
2147 >            hc = new CounterHashCode();
2148 >            int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
2149 >            h = hc.code = (s == 0) ? 1 : s; // Avoid zero
2150 >            threadCounterHashCode.set(hc);
2151 >        }
2152 >        else
2153 >            h = hc.code;
2154 >        boolean collide = false;                // True if last slot nonempty
2155 >        for (;;) {
2156 >            CounterCell[] as; CounterCell a; int n; long v;
2157 >            if ((as = counterCells) != null && (n = as.length) > 0) {
2158 >                if ((a = as[(n - 1) & h]) == null) {
2159 >                    if (counterBusy == 0) {            // Try to attach new Cell
2160 >                        CounterCell r = new CounterCell(x); // Optimistic create
2161 >                        if (counterBusy == 0 &&
2162 >                            U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2163 >                            boolean created = false;
2164 >                            try {               // Recheck under lock
2165 >                                CounterCell[] rs; int m, j;
2166 >                                if ((rs = counterCells) != null &&
2167 >                                    (m = rs.length) > 0 &&
2168 >                                    rs[j = (m - 1) & h] == null) {
2169 >                                    rs[j] = r;
2170 >                                    created = true;
2171 >                                }
2172 >                            } finally {
2173 >                                counterBusy = 0;
2174                              }
2175 +                            if (created)
2176 +                                break;
2177 +                            continue;           // Slot is now non-empty
2178                          }
1269                        setTabAt(tab, i, null);
2179                      }
2180 <                } finally {
2181 <                    if (!f.casHash(fh | LOCKED, fh)) {
2182 <                        f.hash = fh;
2183 <                        synchronized (f) { f.notifyAll(); };
2180 >                    collide = false;
2181 >                }
2182 >                else if (!wasUncontended)       // CAS already known to fail
2183 >                    wasUncontended = true;      // Continue after rehash
2184 >                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2185 >                    break;
2186 >                else if (counterCells != as || n >= NCPU)
2187 >                    collide = false;            // At max size or stale
2188 >                else if (!collide)
2189 >                    collide = true;
2190 >                else if (counterBusy == 0 &&
2191 >                         U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2192 >                    try {
2193 >                        if (counterCells == as) {// Expand table unless stale
2194 >                            CounterCell[] rs = new CounterCell[n << 1];
2195 >                            for (int i = 0; i < n; ++i)
2196 >                                rs[i] = as[i];
2197 >                            counterCells = rs;
2198 >                        }
2199 >                    } finally {
2200 >                        counterBusy = 0;
2201 >                    }
2202 >                    collide = false;
2203 >                    continue;                   // Retry with expanded table
2204 >                }
2205 >                h ^= h << 13;                   // Rehash
2206 >                h ^= h >>> 17;
2207 >                h ^= h << 5;
2208 >            }
2209 >            else if (counterBusy == 0 && counterCells == as &&
2210 >                     U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2211 >                boolean init = false;
2212 >                try {                           // Initialize table
2213 >                    if (counterCells == as) {
2214 >                        CounterCell[] rs = new CounterCell[2];
2215 >                        rs[h & 1] = new CounterCell(x);
2216 >                        counterCells = rs;
2217 >                        init = true;
2218                      }
2219 +                } finally {
2220 +                    counterBusy = 0;
2221                  }
2222 <                if (validated)
2223 <                    ++i;
2222 >                if (init)
2223 >                    break;
2224              }
2225 +            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2226 +                break;                          // Fall back on using base
2227          }
2228 <        if (delta != 0)
1282 <            counter.add(delta);
2228 >        hc.code = h;                            // Record index for next time
2229      }
2230  
1285
2231      /* ----------------Table Traversal -------------- */
2232  
2233      /**
2234       * Encapsulates traversal for methods such as containsValue; also
2235 <     * serves as a base class for other iterators.
2235 >     * serves as a base class for other iterators and bulk tasks.
2236       *
2237       * At each step, the iterator snapshots the key ("nextKey") and
2238       * value ("nextVal") of a valid node (i.e., one that, at point of
2239 <     * snapshot, has a nonnull user value). Because val fields can
2239 >     * snapshot, has a non-null user value). Because val fields can
2240       * change (including to null, indicating deletion), field nextVal
2241       * might not be accurate at point of use, but still maintains the
2242       * weak consistency property of holding a value that was once
2243 <     * valid.
2243 >     * valid. To support iterator.remove, the nextKey field is not
2244 >     * updated (nulled out) when the iterator cannot advance.
2245       *
2246       * Internal traversals directly access these fields, as in:
2247 <     * {@code while (it.next != null) { process(it.nextKey); it.advance(); }}
2247 >     * {@code while (it.advance() != null) { process(it.nextKey); }}
2248       *
2249 <     * Exported iterators (subclasses of ViewIterator) extract key,
2250 <     * value, or key-value pairs as return values of Iterator.next(),
2251 <     * and encapsulate the it.next check as hasNext();
2249 >     * Exported iterators must track whether the iterator has advanced
2250 >     * (in hasNext vs next) (by setting/checking/nulling field
2251 >     * nextVal), and then extract key, value, or key-value pairs as
2252 >     * return values of next().
2253       *
2254       * The iterator visits once each still-valid node that was
2255       * reachable upon iterator construction. It might miss some that
# Line 1321 | Line 2268 | public class ConcurrentHashMapV8<K, V>
2268       * across threads, iteration terminates if a bounds checks fails
2269       * for a table read.
2270       *
2271 <     * The range-based constructor enables creation of parallel
2272 <     * range-splitting traversals. (Not yet implemented.)
2271 >     * This class extends CountedCompleter to streamline parallel
2272 >     * iteration in bulk operations. This adds only a few fields of
2273 >     * space overhead, which is small enough in cases where it is not
2274 >     * needed to not worry about it.  Because CountedCompleter is
2275 >     * Serializable, but iterators need not be, we need to add warning
2276 >     * suppressions.
2277       */
2278 <    static class InternalIterator {
2279 <        Node next;           // the next entry to use
2280 <        Node last;           // the last entry used
2278 >    @SuppressWarnings("serial") static class Traverser<K,V,R>
2279 >        extends CountedCompleter<R> {
2280 >        final ConcurrentHashMapV8<K, V> map;
2281 >        Node<V> next;        // the next entry to use
2282          Object nextKey;      // cached key field of next
2283 <        Object nextVal;      // cached val field of next
2284 <        Node[] tab;          // current table; updated if resized
2283 >        V nextVal;           // cached val field of next
2284 >        Node<V>[] tab;       // current table; updated if resized
2285          int index;           // index of bin to use next
2286          int baseIndex;       // current index of initial table
2287 <        final int baseLimit; // index bound for initial table
2288 <        final int baseSize;  // initial table size
2287 >        int baseLimit;       // index bound for initial table
2288 >        int baseSize;        // initial table size
2289 >        int batch;           // split control
2290  
2291          /** Creates iterator for all entries in the table. */
2292 <        InternalIterator(Node[] tab) {
2293 <            this.tab = tab;
2294 <            baseLimit = baseSize = (tab == null) ? 0 : tab.length;
2295 <            index = baseIndex = 0;
2296 <            next = null;
2297 <            advance();
2298 <        }
2299 <
2300 <        /** Creates iterator for the given range of the table */
2301 <        InternalIterator(Node[] tab, int lo, int hi) {
2302 <            this.tab = tab;
2303 <            baseSize = (tab == null) ? 0 : tab.length;
2304 <            baseLimit = (hi <= baseSize) ? hi : baseSize;
2305 <            index = baseIndex = (lo >= 0) ? lo : 0;
2306 <            next = null;
2307 <            advance();
2308 <        }
2309 <
2310 <        /** Advances next. See above for explanation. */
2311 <        final void advance() {
2312 <            Node e = last = next;
2292 >        Traverser(ConcurrentHashMapV8<K, V> map) {
2293 >            this.map = map;
2294 >        }
2295 >
2296 >        /** Creates iterator for split() methods and task constructors */
2297 >        Traverser(ConcurrentHashMapV8<K,V> map, Traverser<K,V,?> it, int batch) {
2298 >            super(it);
2299 >            this.batch = batch;
2300 >            if ((this.map = map) != null && it != null) { // split parent
2301 >                Node<V>[] t;
2302 >                if ((t = it.tab) == null &&
2303 >                    (t = it.tab = map.table) != null)
2304 >                    it.baseLimit = it.baseSize = t.length;
2305 >                this.tab = t;
2306 >                this.baseSize = it.baseSize;
2307 >                int hi = this.baseLimit = it.baseLimit;
2308 >                it.baseLimit = this.index = this.baseIndex =
2309 >                    (hi + it.baseIndex + 1) >>> 1;
2310 >            }
2311 >        }
2312 >
2313 >        /**
2314 >         * Advances next; returns nextVal or null if terminated.
2315 >         * See above for explanation.
2316 >         */
2317 >        @SuppressWarnings("unchecked") final V advance() {
2318 >            Node<V> e = next;
2319 >            V ev = null;
2320              outer: do {
2321                  if (e != null)                  // advance past used/skipped node
2322                      e = e.next;
2323                  while (e == null) {             // get to next non-null bin
2324 <                    Node[] t; int b, i, n;      // checks must use locals
2325 <                    if ((b = baseIndex) >= baseLimit || (i = index) < 0 ||
2326 <                        (t = tab) == null || i >= (n = t.length))
2324 >                    ConcurrentHashMapV8<K, V> m;
2325 >                    Node<V>[] t; int b, i, n; Object ek; //  must use locals
2326 >                    if ((t = tab) != null)
2327 >                        n = t.length;
2328 >                    else if ((m = map) != null && (t = tab = m.table) != null)
2329 >                        n = baseLimit = baseSize = t.length;
2330 >                    else
2331 >                        break outer;
2332 >                    if ((b = baseIndex) >= baseLimit ||
2333 >                        (i = index) < 0 || i >= n)
2334                          break outer;
2335 <                    else if ((e = tabAt(t, i)) != null && e.hash == MOVED)
2336 <                        tab = (Node[])e.key;    // restarts due to null val
2337 <                    else                        // visit upper slots if present
2338 <                        index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2335 >                    if ((e = tabAt(t, i)) != null && e.hash < 0) {
2336 >                        if ((ek = e.key) instanceof TreeBin)
2337 >                            e = ((TreeBin<V>)ek).first;
2338 >                        else {
2339 >                            tab = (Node<V>[])ek;
2340 >                            continue;           // restarts due to null val
2341 >                        }
2342 >                    }                           // visit upper slots if present
2343 >                    index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2344                  }
2345                  nextKey = e.key;
2346 <            } while ((nextVal = e.val) == null);// skip deleted or special nodes
2346 >            } while ((ev = e.val) == null);    // skip deleted or special nodes
2347              next = e;
2348 +            return nextVal = ev;
2349 +        }
2350 +
2351 +        public final void remove() {
2352 +            Object k = nextKey;
2353 +            if (k == null && (advance() == null || (k = nextKey) == null))
2354 +                throw new IllegalStateException();
2355 +            map.internalReplace(k, null, null);
2356          }
2357 +
2358 +        public final boolean hasNext() {
2359 +            return nextVal != null || advance() != null;
2360 +        }
2361 +
2362 +        public final boolean hasMoreElements() { return hasNext(); }
2363 +
2364 +        public void compute() { } // default no-op CountedCompleter body
2365 +
2366 +        /**
2367 +         * Returns a batch value > 0 if this task should (and must) be
2368 +         * split, if so, adding to pending count, and in any case
2369 +         * updating batch value. The initial batch value is approx
2370 +         * exp2 of the number of times (minus one) to split task by
2371 +         * two before executing leaf action. This value is faster to
2372 +         * compute and more convenient to use as a guide to splitting
2373 +         * than is the depth, since it is used while dividing by two
2374 +         * anyway.
2375 +         */
2376 +        final int preSplit() {
2377 +            ConcurrentHashMapV8<K, V> m; int b; Node<V>[] t;  ForkJoinPool pool;
2378 +            if ((b = batch) < 0 && (m = map) != null) { // force initialization
2379 +                if ((t = tab) == null && (t = tab = m.table) != null)
2380 +                    baseLimit = baseSize = t.length;
2381 +                if (t != null) {
2382 +                    long n = m.sumCount();
2383 +                    int par = ((pool = getPool()) == null) ?
2384 +                        ForkJoinPool.getCommonPoolParallelism() :
2385 +                        pool.getParallelism();
2386 +                    int sp = par << 3; // slack of 8
2387 +                    b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2388 +                }
2389 +            }
2390 +            b = (b <= 1 || baseIndex == baseLimit) ? 0 : (b >>> 1);
2391 +            if ((batch = b) > 0)
2392 +                addToPendingCount(1);
2393 +            return b;
2394 +        }
2395 +
2396      }
2397  
2398      /* ---------------- Public operations -------------- */
2399  
2400      /**
2401 <     * Creates a new, empty map with the default initial table size (16),
2401 >     * Creates a new, empty map with the default initial table size (16).
2402       */
2403      public ConcurrentHashMapV8() {
1385        this.counter = new LongAdder();
2404      }
2405  
2406      /**
# Line 1401 | Line 2419 | public class ConcurrentHashMapV8<K, V>
2419          int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2420                     MAXIMUM_CAPACITY :
2421                     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
1404        this.counter = new LongAdder();
2422          this.sizeCtl = cap;
2423      }
2424  
# Line 1411 | Line 2428 | public class ConcurrentHashMapV8<K, V>
2428       * @param m the map
2429       */
2430      public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
1414        this.counter = new LongAdder();
2431          this.sizeCtl = DEFAULT_CAPACITY;
2432          internalPutAll(m);
2433      }
# Line 1460 | Line 2476 | public class ConcurrentHashMapV8<K, V>
2476          if (initialCapacity < concurrencyLevel)   // Use at least as many bins
2477              initialCapacity = concurrencyLevel;   // as estimated threads
2478          long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2479 <        int cap = ((size >= (long)MAXIMUM_CAPACITY) ?
2480 <                   MAXIMUM_CAPACITY: tableSizeFor((int)size));
1465 <        this.counter = new LongAdder();
2479 >        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2480 >            MAXIMUM_CAPACITY : tableSizeFor((int)size);
2481          this.sizeCtl = cap;
2482      }
2483  
2484      /**
2485 +     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2486 +     * from the given type to {@code Boolean.TRUE}.
2487 +     *
2488 +     * @return the new set
2489 +     */
2490 +    public static <K> KeySetView<K,Boolean> newKeySet() {
2491 +        return new KeySetView<K,Boolean>(new ConcurrentHashMapV8<K,Boolean>(),
2492 +                                      Boolean.TRUE);
2493 +    }
2494 +
2495 +    /**
2496 +     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2497 +     * from the given type to {@code Boolean.TRUE}.
2498 +     *
2499 +     * @param initialCapacity The implementation performs internal
2500 +     * sizing to accommodate this many elements.
2501 +     * @throws IllegalArgumentException if the initial capacity of
2502 +     * elements is negative
2503 +     * @return the new set
2504 +     */
2505 +    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2506 +        return new KeySetView<K,Boolean>
2507 +            (new ConcurrentHashMapV8<K,Boolean>(initialCapacity), Boolean.TRUE);
2508 +    }
2509 +
2510 +    /**
2511       * {@inheritDoc}
2512       */
2513      public boolean isEmpty() {
2514 <        return counter.sum() <= 0L; // ignore transient negative values
2514 >        return sumCount() <= 0L; // ignore transient negative values
2515      }
2516  
2517      /**
2518       * {@inheritDoc}
2519       */
2520      public int size() {
2521 <        long n = counter.sum();
2521 >        long n = sumCount();
2522          return ((n < 0L) ? 0 :
2523                  (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2524                  (int)n);
2525      }
2526  
2527 <    final long longSize() { // accurate version of size needed for views
2528 <        long n = counter.sum();
2529 <        return (n < 0L) ? 0L : n;
2527 >    /**
2528 >     * Returns the number of mappings. This method should be used
2529 >     * instead of {@link #size} because a ConcurrentHashMapV8 may
2530 >     * contain more mappings than can be represented as an int. The
2531 >     * value returned is an estimate; the actual count may differ if
2532 >     * there are concurrent insertions or removals.
2533 >     *
2534 >     * @return the number of mappings
2535 >     */
2536 >    public long mappingCount() {
2537 >        long n = sumCount();
2538 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2539      }
2540  
2541      /**
# Line 1499 | Line 2549 | public class ConcurrentHashMapV8<K, V>
2549       *
2550       * @throws NullPointerException if the specified key is null
2551       */
1502    @SuppressWarnings("unchecked")
2552      public V get(Object key) {
2553 <        if (key == null)
2554 <            throw new NullPointerException();
2555 <        return (V)internalGet(key);
2553 >        return internalGet(key);
2554 >    }
2555 >
2556 >    /**
2557 >     * Returns the value to which the specified key is mapped,
2558 >     * or the given defaultValue if this map contains no mapping for the key.
2559 >     *
2560 >     * @param key the key
2561 >     * @param defaultValue the value to return if this map contains
2562 >     * no mapping for the given key
2563 >     * @return the mapping for the key, if present; else the defaultValue
2564 >     * @throws NullPointerException if the specified key is null
2565 >     */
2566 >    public V getValueOrDefault(Object key, V defaultValue) {
2567 >        V v;
2568 >        return (v = internalGet(key)) == null ? defaultValue : v;
2569      }
2570  
2571      /**
# Line 1516 | Line 2578 | public class ConcurrentHashMapV8<K, V>
2578       * @throws NullPointerException if the specified key is null
2579       */
2580      public boolean containsKey(Object key) {
1519        if (key == null)
1520            throw new NullPointerException();
2581          return internalGet(key) != null;
2582      }
2583  
# Line 1534 | Line 2594 | public class ConcurrentHashMapV8<K, V>
2594      public boolean containsValue(Object value) {
2595          if (value == null)
2596              throw new NullPointerException();
2597 <        Object v;
2598 <        InternalIterator it = new InternalIterator(table);
2599 <        while (it.next != null) {
2600 <            if ((v = it.nextVal) == value || value.equals(v))
2597 >        V v;
2598 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2599 >        while ((v = it.advance()) != null) {
2600 >            if (v == value || value.equals(v))
2601                  return true;
1542            it.advance();
2602          }
2603          return false;
2604      }
# Line 1559 | Line 2618 | public class ConcurrentHashMapV8<K, V>
2618       *         {@code false} otherwise
2619       * @throws NullPointerException if the specified value is null
2620       */
2621 <    public boolean contains(Object value) {
2621 >    @Deprecated public boolean contains(Object value) {
2622          return containsValue(value);
2623      }
2624  
# Line 1567 | Line 2626 | public class ConcurrentHashMapV8<K, V>
2626       * Maps the specified key to the specified value in this table.
2627       * Neither the key nor the value can be null.
2628       *
2629 <     * <p> The value can be retrieved by calling the {@code get} method
2629 >     * <p>The value can be retrieved by calling the {@code get} method
2630       * with a key that is equal to the original key.
2631       *
2632       * @param key key with which the specified value is to be associated
# Line 1576 | Line 2635 | public class ConcurrentHashMapV8<K, V>
2635       *         {@code null} if there was no mapping for {@code key}
2636       * @throws NullPointerException if the specified key or value is null
2637       */
1579    @SuppressWarnings("unchecked")
2638      public V put(K key, V value) {
2639 <        if (key == null || value == null)
1582 <            throw new NullPointerException();
1583 <        return (V)internalPut(key, value);
2639 >        return internalPut(key, value, false);
2640      }
2641  
2642      /**
# Line 1590 | Line 2646 | public class ConcurrentHashMapV8<K, V>
2646       *         or {@code null} if there was no mapping for the key
2647       * @throws NullPointerException if the specified key or value is null
2648       */
1593    @SuppressWarnings("unchecked")
2649      public V putIfAbsent(K key, V value) {
2650 <        if (key == null || value == null)
1596 <            throw new NullPointerException();
1597 <        return (V)internalPutIfAbsent(key, value);
2650 >        return internalPut(key, value, true);
2651      }
2652  
2653      /**
# Line 1610 | Line 2663 | public class ConcurrentHashMapV8<K, V>
2663  
2664      /**
2665       * If the specified key is not already associated with a value,
2666 <     * computes its value using the given mappingFunction and
2667 <     * enters it into the map.  This is equivalent to
2666 >     * computes its value using the given mappingFunction and enters
2667 >     * it into the map unless null.  This is equivalent to
2668       * <pre> {@code
2669       * if (map.containsKey(key))
2670       *   return map.get(key);
2671 <     * value = mappingFunction.map(key);
2672 <     * map.put(key, value);
2671 >     * value = mappingFunction.apply(key);
2672 >     * if (value != null)
2673 >     *   map.put(key, value);
2674       * return value;}</pre>
2675       *
2676       * except that the action is performed atomically.  If the
2677 <     * function returns {@code null} (in which case a {@code
2678 <     * NullPointerException} is thrown), or the function itself throws
2679 <     * an (unchecked) exception, the exception is rethrown to its
2680 <     * caller, and no mapping is recorded.  Some attempted update
2681 <     * operations on this map by other threads may be blocked while
2682 <     * computation is in progress, so the computation should be short
2683 <     * and simple, and must not attempt to update any other mappings
2684 <     * of this Map. The most appropriate usage is to construct a new
2685 <     * object serving as an initial mapped value, or memoized result,
1632 <     * as in:
2677 >     * function returns {@code null} no mapping is recorded. If the
2678 >     * function itself throws an (unchecked) exception, the exception
2679 >     * is rethrown to its caller, and no mapping is recorded.  Some
2680 >     * attempted update operations on this map by other threads may be
2681 >     * blocked while computation is in progress, so the computation
2682 >     * should be short and simple, and must not attempt to update any
2683 >     * other mappings of this Map. The most appropriate usage is to
2684 >     * construct a new object serving as an initial mapped value, or
2685 >     * memoized result, as in:
2686       *
2687       *  <pre> {@code
2688 <     * map.computeIfAbsent(key, new MappingFunction<K, V>() {
2688 >     * map.computeIfAbsent(key, new Fun<K, V>() {
2689       *   public V map(K k) { return new Value(f(k)); }});}</pre>
2690       *
2691       * @param key key with which the specified value is to be associated
2692       * @param mappingFunction the function to compute a value
2693       * @return the current (existing or computed) value associated with
2694 <     *         the specified key.
2695 <     * @throws NullPointerException if the specified key, mappingFunction,
2696 <     *         or computed value is null
2694 >     *         the specified key, or null if the computed value is null
2695 >     * @throws NullPointerException if the specified key or mappingFunction
2696 >     *         is null
2697       * @throws IllegalStateException if the computation detectably
2698       *         attempts a recursive update to this map that would
2699       *         otherwise never complete
2700       * @throws RuntimeException or Error if the mappingFunction does so,
2701       *         in which case the mapping is left unestablished
2702       */
2703 <    @SuppressWarnings("unchecked")
2704 <    public V computeIfAbsent(K key, MappingFunction<? super K, ? extends V> mappingFunction) {
2705 <        if (key == null || mappingFunction == null)
1653 <            throw new NullPointerException();
1654 <        return (V)internalComputeIfAbsent(key, mappingFunction);
2703 >    public V computeIfAbsent
2704 >        (K key, Fun<? super K, ? extends V> mappingFunction) {
2705 >        return internalComputeIfAbsent(key, mappingFunction);
2706      }
2707  
2708      /**
2709 <     * Computes and enters a new mapping value given a key and
2709 >     * If the given key is present, computes a new mapping value given a key and
2710 >     * its current mapped value. This is equivalent to
2711 >     *  <pre> {@code
2712 >     *   if (map.containsKey(key)) {
2713 >     *     value = remappingFunction.apply(key, map.get(key));
2714 >     *     if (value != null)
2715 >     *       map.put(key, value);
2716 >     *     else
2717 >     *       map.remove(key);
2718 >     *   }
2719 >     * }</pre>
2720 >     *
2721 >     * except that the action is performed atomically.  If the
2722 >     * function returns {@code null}, the mapping is removed.  If the
2723 >     * function itself throws an (unchecked) exception, the exception
2724 >     * is rethrown to its caller, and the current mapping is left
2725 >     * unchanged.  Some attempted update operations on this map by
2726 >     * other threads may be blocked while computation is in progress,
2727 >     * so the computation should be short and simple, and must not
2728 >     * attempt to update any other mappings of this Map. For example,
2729 >     * to either create or append new messages to a value mapping:
2730 >     *
2731 >     * @param key key with which the specified value is to be associated
2732 >     * @param remappingFunction the function to compute a value
2733 >     * @return the new value associated with the specified key, or null if none
2734 >     * @throws NullPointerException if the specified key or remappingFunction
2735 >     *         is null
2736 >     * @throws IllegalStateException if the computation detectably
2737 >     *         attempts a recursive update to this map that would
2738 >     *         otherwise never complete
2739 >     * @throws RuntimeException or Error if the remappingFunction does so,
2740 >     *         in which case the mapping is unchanged
2741 >     */
2742 >    public V computeIfPresent
2743 >        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2744 >        return internalCompute(key, true, remappingFunction);
2745 >    }
2746 >
2747 >    /**
2748 >     * Computes a new mapping value given a key and
2749       * its current mapped value (or {@code null} if there is no current
2750       * mapping). This is equivalent to
2751       *  <pre> {@code
2752 <     *  map.put(key, remappingFunction.remap(key, map.get(key));
2752 >     *   value = remappingFunction.apply(key, map.get(key));
2753 >     *   if (value != null)
2754 >     *     map.put(key, value);
2755 >     *   else
2756 >     *     map.remove(key);
2757       * }</pre>
2758       *
2759       * except that the action is performed atomically.  If the
2760 <     * function returns {@code null} (in which case a {@code
2761 <     * NullPointerException} is thrown), or the function itself throws
2762 <     * an (unchecked) exception, the exception is rethrown to its
2763 <     * caller, and current mapping is left unchanged.  Some attempted
2764 <     * update operations on this map by other threads may be blocked
2765 <     * while computation is in progress, so the computation should be
2766 <     * short and simple, and must not attempt to update any other
2767 <     * mappings of this Map. For example, to either create or
1674 <     * append new messages to a value mapping:
2760 >     * function returns {@code null}, the mapping is removed.  If the
2761 >     * function itself throws an (unchecked) exception, the exception
2762 >     * is rethrown to its caller, and the current mapping is left
2763 >     * unchanged.  Some attempted update operations on this map by
2764 >     * other threads may be blocked while computation is in progress,
2765 >     * so the computation should be short and simple, and must not
2766 >     * attempt to update any other mappings of this Map. For example,
2767 >     * to either create or append new messages to a value mapping:
2768       *
2769       * <pre> {@code
2770       * Map<Key, String> map = ...;
2771       * final String msg = ...;
2772 <     * map.compute(key, new RemappingFunction<Key, String>() {
2773 <     *   public String remap(Key k, String v) {
2772 >     * map.compute(key, new BiFun<Key, String, String>() {
2773 >     *   public String apply(Key k, String v) {
2774       *    return (v == null) ? msg : v + msg;});}}</pre>
2775       *
2776       * @param key key with which the specified value is to be associated
2777       * @param remappingFunction the function to compute a value
2778 <     * @return the new value associated with
1686 <     *         the specified key.
2778 >     * @return the new value associated with the specified key, or null if none
2779       * @throws NullPointerException if the specified key or remappingFunction
2780 <     *         or computed value is null
2780 >     *         is null
2781       * @throws IllegalStateException if the computation detectably
2782       *         attempts a recursive update to this map that would
2783       *         otherwise never complete
2784       * @throws RuntimeException or Error if the remappingFunction does so,
2785       *         in which case the mapping is unchanged
2786       */
2787 <    @SuppressWarnings("unchecked")
2788 <    public V compute(K key, RemappingFunction<? super K, V> remappingFunction) {
2789 <        if (key == null || remappingFunction == null)
2790 <            throw new NullPointerException();
2791 <        return (V)internalCompute(key, remappingFunction);
2787 >    public V compute
2788 >        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2789 >        return internalCompute(key, false, remappingFunction);
2790 >    }
2791 >
2792 >    /**
2793 >     * If the specified key is not already associated
2794 >     * with a value, associate it with the given value.
2795 >     * Otherwise, replace the value with the results of
2796 >     * the given remapping function. This is equivalent to:
2797 >     *  <pre> {@code
2798 >     *   if (!map.containsKey(key))
2799 >     *     map.put(value);
2800 >     *   else {
2801 >     *     newValue = remappingFunction.apply(map.get(key), value);
2802 >     *     if (value != null)
2803 >     *       map.put(key, value);
2804 >     *     else
2805 >     *       map.remove(key);
2806 >     *   }
2807 >     * }</pre>
2808 >     * except that the action is performed atomically.  If the
2809 >     * function returns {@code null}, the mapping is removed.  If the
2810 >     * function itself throws an (unchecked) exception, the exception
2811 >     * is rethrown to its caller, and the current mapping is left
2812 >     * unchanged.  Some attempted update operations on this map by
2813 >     * other threads may be blocked while computation is in progress,
2814 >     * so the computation should be short and simple, and must not
2815 >     * attempt to update any other mappings of this Map.
2816 >     */
2817 >    public V merge
2818 >        (K key, V value,
2819 >         BiFun<? super V, ? super V, ? extends V> remappingFunction) {
2820 >        return internalMerge(key, value, remappingFunction);
2821      }
2822  
2823      /**
# Line 1708 | Line 2829 | public class ConcurrentHashMapV8<K, V>
2829       *         {@code null} if there was no mapping for {@code key}
2830       * @throws NullPointerException if the specified key is null
2831       */
1711    @SuppressWarnings("unchecked")
2832      public V remove(Object key) {
2833 <        if (key == null)
1714 <            throw new NullPointerException();
1715 <        return (V)internalReplace(key, null, null);
2833 >        return internalReplace(key, null, null);
2834      }
2835  
2836      /**
# Line 1721 | Line 2839 | public class ConcurrentHashMapV8<K, V>
2839       * @throws NullPointerException if the specified key is null
2840       */
2841      public boolean remove(Object key, Object value) {
2842 <        if (key == null)
1725 <            throw new NullPointerException();
1726 <        if (value == null)
1727 <            return false;
1728 <        return internalReplace(key, null, value) != null;
2842 >        return value != null && internalReplace(key, null, value) != null;
2843      }
2844  
2845      /**
# Line 1746 | Line 2860 | public class ConcurrentHashMapV8<K, V>
2860       *         or {@code null} if there was no mapping for the key
2861       * @throws NullPointerException if the specified key or value is null
2862       */
1749    @SuppressWarnings("unchecked")
2863      public V replace(K key, V value) {
2864          if (key == null || value == null)
2865              throw new NullPointerException();
2866 <        return (V)internalReplace(key, value, null);
2866 >        return internalReplace(key, value, null);
2867      }
2868  
2869      /**
# Line 1763 | Line 2876 | public class ConcurrentHashMapV8<K, V>
2876      /**
2877       * Returns a {@link Set} view of the keys contained in this map.
2878       * The set is backed by the map, so changes to the map are
2879 <     * reflected in the set, and vice-versa.  The set supports element
1767 <     * removal, which removes the corresponding mapping from this map,
1768 <     * via the {@code Iterator.remove}, {@code Set.remove},
1769 <     * {@code removeAll}, {@code retainAll}, and {@code clear}
1770 <     * operations.  It does not support the {@code add} or
1771 <     * {@code addAll} operations.
2879 >     * reflected in the set, and vice-versa.
2880       *
2881 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1774 <     * that will never throw {@link ConcurrentModificationException},
1775 <     * and guarantees to traverse elements as they existed upon
1776 <     * construction of the iterator, and may (but is not guaranteed to)
1777 <     * reflect any modifications subsequent to construction.
2881 >     * @return the set view
2882       */
2883 <    public Set<K> keySet() {
2884 <        KeySet<K,V> ks = keySet;
2885 <        return (ks != null) ? ks : (keySet = new KeySet<K,V>(this));
2883 >    public KeySetView<K,V> keySet() {
2884 >        KeySetView<K,V> ks = keySet;
2885 >        return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2886 >    }
2887 >
2888 >    /**
2889 >     * Returns a {@link Set} view of the keys in this map, using the
2890 >     * given common mapped value for any additions (i.e., {@link
2891 >     * Collection#add} and {@link Collection#addAll}). This is of
2892 >     * course only appropriate if it is acceptable to use the same
2893 >     * value for all additions from this view.
2894 >     *
2895 >     * @param mappedValue the mapped value to use for any
2896 >     * additions.
2897 >     * @return the set view
2898 >     * @throws NullPointerException if the mappedValue is null
2899 >     */
2900 >    public KeySetView<K,V> keySet(V mappedValue) {
2901 >        if (mappedValue == null)
2902 >            throw new NullPointerException();
2903 >        return new KeySetView<K,V>(this, mappedValue);
2904      }
2905  
2906      /**
2907       * Returns a {@link Collection} view of the values contained in this map.
2908       * The collection is backed by the map, so changes to the map are
2909 <     * reflected in the collection, and vice-versa.  The collection
1788 <     * supports element removal, which removes the corresponding
1789 <     * mapping from this map, via the {@code Iterator.remove},
1790 <     * {@code Collection.remove}, {@code removeAll},
1791 <     * {@code retainAll}, and {@code clear} operations.  It does not
1792 <     * support the {@code add} or {@code addAll} operations.
1793 <     *
1794 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1795 <     * that will never throw {@link ConcurrentModificationException},
1796 <     * and guarantees to traverse elements as they existed upon
1797 <     * construction of the iterator, and may (but is not guaranteed to)
1798 <     * reflect any modifications subsequent to construction.
2909 >     * reflected in the collection, and vice-versa.
2910       */
2911 <    public Collection<V> values() {
2912 <        Values<K,V> vs = values;
2913 <        return (vs != null) ? vs : (values = new Values<K,V>(this));
2911 >    public ValuesView<K,V> values() {
2912 >        ValuesView<K,V> vs = values;
2913 >        return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2914      }
2915  
2916      /**
# Line 1819 | Line 2930 | public class ConcurrentHashMapV8<K, V>
2930       * reflect any modifications subsequent to construction.
2931       */
2932      public Set<Map.Entry<K,V>> entrySet() {
2933 <        EntrySet<K,V> es = entrySet;
2934 <        return (es != null) ? es : (entrySet = new EntrySet<K,V>(this));
2933 >        EntrySetView<K,V> es = entrySet;
2934 >        return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2935      }
2936  
2937      /**
# Line 1844 | Line 2955 | public class ConcurrentHashMapV8<K, V>
2955      }
2956  
2957      /**
2958 +     * Returns a partitionable iterator of the keys in this map.
2959 +     *
2960 +     * @return a partitionable iterator of the keys in this map
2961 +     */
2962 +    public Spliterator<K> keySpliterator() {
2963 +        return new KeyIterator<K,V>(this);
2964 +    }
2965 +
2966 +    /**
2967 +     * Returns a partitionable iterator of the values in this map.
2968 +     *
2969 +     * @return a partitionable iterator of the values in this map
2970 +     */
2971 +    public Spliterator<V> valueSpliterator() {
2972 +        return new ValueIterator<K,V>(this);
2973 +    }
2974 +
2975 +    /**
2976 +     * Returns a partitionable iterator of the entries in this map.
2977 +     *
2978 +     * @return a partitionable iterator of the entries in this map
2979 +     */
2980 +    public Spliterator<Map.Entry<K,V>> entrySpliterator() {
2981 +        return new EntryIterator<K,V>(this);
2982 +    }
2983 +
2984 +    /**
2985       * Returns the hash code value for this {@link Map}, i.e.,
2986       * the sum of, for each key-value pair in the map,
2987       * {@code key.hashCode() ^ value.hashCode()}.
# Line 1852 | Line 2990 | public class ConcurrentHashMapV8<K, V>
2990       */
2991      public int hashCode() {
2992          int h = 0;
2993 <        InternalIterator it = new InternalIterator(table);
2994 <        while (it.next != null) {
2995 <            h += it.nextKey.hashCode() ^ it.nextVal.hashCode();
2996 <            it.advance();
2993 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2994 >        V v;
2995 >        while ((v = it.advance()) != null) {
2996 >            h += it.nextKey.hashCode() ^ v.hashCode();
2997          }
2998          return h;
2999      }
# Line 1872 | Line 3010 | public class ConcurrentHashMapV8<K, V>
3010       * @return a string representation of this map
3011       */
3012      public String toString() {
3013 <        InternalIterator it = new InternalIterator(table);
3013 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3014          StringBuilder sb = new StringBuilder();
3015          sb.append('{');
3016 <        if (it.next != null) {
3016 >        V v;
3017 >        if ((v = it.advance()) != null) {
3018              for (;;) {
3019 <                Object k = it.nextKey, v = it.nextVal;
3019 >                Object k = it.nextKey;
3020                  sb.append(k == this ? "(this Map)" : k);
3021                  sb.append('=');
3022                  sb.append(v == this ? "(this Map)" : v);
3023 <                it.advance();
1885 <                if (it.next == null)
3023 >                if ((v = it.advance()) == null)
3024                      break;
3025                  sb.append(',').append(' ');
3026              }
# Line 1905 | Line 3043 | public class ConcurrentHashMapV8<K, V>
3043              if (!(o instanceof Map))
3044                  return false;
3045              Map<?,?> m = (Map<?,?>) o;
3046 <            InternalIterator it = new InternalIterator(table);
3047 <            while (it.next != null) {
3048 <                Object val = it.nextVal;
3046 >            Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3047 >            V val;
3048 >            while ((val = it.advance()) != null) {
3049                  Object v = m.get(it.nextKey);
3050                  if (v == null || (v != val && !v.equals(val)))
3051                      return false;
1914                it.advance();
3052              }
3053              for (Map.Entry<?,?> e : m.entrySet()) {
3054                  Object mk, mv, v;
# Line 1927 | Line 3064 | public class ConcurrentHashMapV8<K, V>
3064  
3065      /* ----------------Iterators -------------- */
3066  
3067 <    /**
3068 <     * Base class for key, value, and entry iterators.  Adds a map
3069 <     * reference to InternalIterator to support Iterator.remove.
3070 <     */
3071 <    static abstract class ViewIterator<K,V> extends InternalIterator {
3072 <        final ConcurrentHashMapV8<K, V> map;
1936 <        ViewIterator(ConcurrentHashMapV8<K, V> map) {
1937 <            super(map.table);
1938 <            this.map = map;
3067 >    @SuppressWarnings("serial") static final class KeyIterator<K,V>
3068 >        extends Traverser<K,V,Object>
3069 >        implements Spliterator<K>, Enumeration<K> {
3070 >        KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3071 >        KeyIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3072 >            super(map, it, -1);
3073          }
3074 <
3075 <        public final void remove() {
1942 <            if (last == null)
3074 >        public KeyIterator<K,V> split() {
3075 >            if (nextKey != null)
3076                  throw new IllegalStateException();
3077 <            map.remove(last.key);
1945 <            last = null;
3077 >            return new KeyIterator<K,V>(map, this);
3078          }
3079 <
3080 <        public final boolean hasNext()         { return next != null; }
1949 <        public final boolean hasMoreElements() { return next != null; }
1950 <    }
1951 <
1952 <    static final class KeyIterator<K,V> extends ViewIterator<K,V>
1953 <        implements Iterator<K>, Enumeration<K> {
1954 <        KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
1955 <
1956 <        @SuppressWarnings("unchecked")
1957 <        public final K next() {
1958 <            if (next == null)
3079 >        @SuppressWarnings("unchecked") public final K next() {
3080 >            if (nextVal == null && advance() == null)
3081                  throw new NoSuchElementException();
3082              Object k = nextKey;
3083 <            advance();
3084 <            return (K)k;
3083 >            nextVal = null;
3084 >            return (K) k;
3085          }
3086  
3087          public final K nextElement() { return next(); }
3088      }
3089  
3090 <    static final class ValueIterator<K,V> extends ViewIterator<K,V>
3091 <        implements Iterator<V>, Enumeration<V> {
3090 >    @SuppressWarnings("serial") static final class ValueIterator<K,V>
3091 >        extends Traverser<K,V,Object>
3092 >        implements Spliterator<V>, Enumeration<V> {
3093          ValueIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3094 +        ValueIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3095 +            super(map, it, -1);
3096 +        }
3097 +        public ValueIterator<K,V> split() {
3098 +            if (nextKey != null)
3099 +                throw new IllegalStateException();
3100 +            return new ValueIterator<K,V>(map, this);
3101 +        }
3102  
1972        @SuppressWarnings("unchecked")
3103          public final V next() {
3104 <            if (next == null)
3104 >            V v;
3105 >            if ((v = nextVal) == null && (v = advance()) == null)
3106                  throw new NoSuchElementException();
3107 <            Object v = nextVal;
3108 <            advance();
1978 <            return (V)v;
3107 >            nextVal = null;
3108 >            return v;
3109          }
3110  
3111          public final V nextElement() { return next(); }
3112      }
3113  
3114 <    static final class EntryIterator<K,V> extends ViewIterator<K,V>
3115 <        implements Iterator<Map.Entry<K,V>> {
3114 >    @SuppressWarnings("serial") static final class EntryIterator<K,V>
3115 >        extends Traverser<K,V,Object>
3116 >        implements Spliterator<Map.Entry<K,V>> {
3117          EntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3118 <
3119 <        @SuppressWarnings("unchecked")
3120 <        public final Map.Entry<K,V> next() {
3121 <            if (next == null)
3122 <                throw new NoSuchElementException();
3123 <            Object k = nextKey;
3124 <            Object v = nextVal;
1994 <            advance();
1995 <            return new WriteThroughEntry<K,V>((K)k, (V)v, map);
3118 >        EntryIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3119 >            super(map, it, -1);
3120 >        }
3121 >        public EntryIterator<K,V> split() {
3122 >            if (nextKey != null)
3123 >                throw new IllegalStateException();
3124 >            return new EntryIterator<K,V>(map, this);
3125          }
1997    }
1998
1999    static final class SnapshotEntryIterator<K,V> extends ViewIterator<K,V>
2000        implements Iterator<Map.Entry<K,V>> {
2001        SnapshotEntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3126  
3127 <        @SuppressWarnings("unchecked")
3128 <        public final Map.Entry<K,V> next() {
3129 <            if (next == null)
3127 >        @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3128 >            V v;
3129 >            if ((v = nextVal) == null && (v = advance()) == null)
3130                  throw new NoSuchElementException();
3131              Object k = nextKey;
3132 <            Object v = nextVal;
3133 <            advance();
2010 <            return new SnapshotEntry<K,V>((K)k, (V)v);
3132 >            nextVal = null;
3133 >            return new MapEntry<K,V>((K)k, v, map);
3134          }
3135      }
3136  
3137      /**
3138 <     * Base of writeThrough and Snapshot entry classes
3138 >     * Exported Entry for iterators
3139       */
3140 <    static abstract class MapEntry<K,V> implements Map.Entry<K, V> {
3140 >    static final class MapEntry<K,V> implements Map.Entry<K, V> {
3141          final K key; // non-null
3142          V val;       // non-null
3143 <        MapEntry(K key, V val)        { this.key = key; this.val = val; }
3143 >        final ConcurrentHashMapV8<K, V> map;
3144 >        MapEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
3145 >            this.key = key;
3146 >            this.val = val;
3147 >            this.map = map;
3148 >        }
3149          public final K getKey()       { return key; }
3150          public final V getValue()     { return val; }
3151          public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
# Line 2032 | Line 3160 | public class ConcurrentHashMapV8<K, V>
3160                      (v == val || v.equals(val)));
3161          }
3162  
2035        public abstract V setValue(V value);
2036    }
2037
2038    /**
2039     * Entry used by EntryIterator.next(), that relays setValue
2040     * changes to the underlying map.
2041     */
2042    static final class WriteThroughEntry<K,V> extends MapEntry<K,V>
2043        implements Map.Entry<K, V> {
2044        final ConcurrentHashMapV8<K, V> map;
2045        WriteThroughEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
2046            super(key, val);
2047            this.map = map;
2048        }
2049
3163          /**
3164           * Sets our entry's value and writes through to the map. The
3165 <         * value to return is somewhat arbitrary here. Since a
3166 <         * WriteThroughEntry does not necessarily track asynchronous
3167 <         * changes, the most recent "previous" value could be
3168 <         * different from what we return (or could even have been
3169 <         * removed in which case the put will re-establish). We do not
2057 <         * and cannot guarantee more.
3165 >         * value to return is somewhat arbitrary here. Since we do not
3166 >         * necessarily track asynchronous changes, the most recent
3167 >         * "previous" value could be different from what we return (or
3168 >         * could even have been removed in which case the put will
3169 >         * re-establish). We do not and cannot guarantee more.
3170           */
3171          public final V setValue(V value) {
3172              if (value == null) throw new NullPointerException();
# Line 2066 | Line 3178 | public class ConcurrentHashMapV8<K, V>
3178      }
3179  
3180      /**
3181 <     * Internal version of entry, that doesn't write though changes
3181 >     * Returns exportable snapshot entry for the given key and value
3182 >     * when write-through can't or shouldn't be used.
3183       */
3184 <    static final class SnapshotEntry<K,V> extends MapEntry<K,V>
3185 <        implements Map.Entry<K, V> {
3186 <        SnapshotEntry(K key, V val) { super(key, val); }
3187 <        public final V setValue(V value) { // only locally update
3188 <            if (value == null) throw new NullPointerException();
3189 <            V v = val;
3190 <            val = value;
3191 <            return v;
3184 >    static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3185 >        return new AbstractMap.SimpleEntry<K,V>(k, v);
3186 >    }
3187 >
3188 >    /* ---------------- Serialization Support -------------- */
3189 >
3190 >    /**
3191 >     * Stripped-down version of helper class used in previous version,
3192 >     * declared for the sake of serialization compatibility
3193 >     */
3194 >    static class Segment<K,V> implements Serializable {
3195 >        private static final long serialVersionUID = 2249069246763182397L;
3196 >        final float loadFactor;
3197 >        Segment(float lf) { this.loadFactor = lf; }
3198 >    }
3199 >
3200 >    /**
3201 >     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
3202 >     * stream (i.e., serializes it).
3203 >     * @param s the stream
3204 >     * @serialData
3205 >     * the key (Object) and value (Object)
3206 >     * for each key-value mapping, followed by a null pair.
3207 >     * The key-value mappings are emitted in no particular order.
3208 >     */
3209 >    @SuppressWarnings("unchecked") private void writeObject
3210 >        (java.io.ObjectOutputStream s)
3211 >        throws java.io.IOException {
3212 >        if (segments == null) { // for serialization compatibility
3213 >            segments = (Segment<K,V>[])
3214 >                new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3215 >            for (int i = 0; i < segments.length; ++i)
3216 >                segments[i] = new Segment<K,V>(LOAD_FACTOR);
3217 >        }
3218 >        s.defaultWriteObject();
3219 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3220 >        V v;
3221 >        while ((v = it.advance()) != null) {
3222 >            s.writeObject(it.nextKey);
3223 >            s.writeObject(v);
3224 >        }
3225 >        s.writeObject(null);
3226 >        s.writeObject(null);
3227 >        segments = null; // throw away
3228 >    }
3229 >
3230 >    /**
3231 >     * Reconstitutes the instance from a stream (that is, deserializes it).
3232 >     * @param s the stream
3233 >     */
3234 >    @SuppressWarnings("unchecked") private void readObject
3235 >        (java.io.ObjectInputStream s)
3236 >        throws java.io.IOException, ClassNotFoundException {
3237 >        s.defaultReadObject();
3238 >        this.segments = null; // unneeded
3239 >
3240 >        // Create all nodes, then place in table once size is known
3241 >        long size = 0L;
3242 >        Node<V> p = null;
3243 >        for (;;) {
3244 >            K k = (K) s.readObject();
3245 >            V v = (V) s.readObject();
3246 >            if (k != null && v != null) {
3247 >                int h = spread(k.hashCode());
3248 >                p = new Node<V>(h, k, v, p);
3249 >                ++size;
3250 >            }
3251 >            else
3252 >                break;
3253 >        }
3254 >        if (p != null) {
3255 >            boolean init = false;
3256 >            int n;
3257 >            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3258 >                n = MAXIMUM_CAPACITY;
3259 >            else {
3260 >                int sz = (int)size;
3261 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
3262 >            }
3263 >            int sc = sizeCtl;
3264 >            boolean collide = false;
3265 >            if (n > sc &&
3266 >                U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3267 >                try {
3268 >                    if (table == null) {
3269 >                        init = true;
3270 >                        @SuppressWarnings("rawtypes") Node[] rt = new Node[n];
3271 >                        Node<V>[] tab = (Node<V>[])rt;
3272 >                        int mask = n - 1;
3273 >                        while (p != null) {
3274 >                            int j = p.hash & mask;
3275 >                            Node<V> next = p.next;
3276 >                            Node<V> q = p.next = tabAt(tab, j);
3277 >                            setTabAt(tab, j, p);
3278 >                            if (!collide && q != null && q.hash == p.hash)
3279 >                                collide = true;
3280 >                            p = next;
3281 >                        }
3282 >                        table = tab;
3283 >                        addCount(size, -1);
3284 >                        sc = n - (n >>> 2);
3285 >                    }
3286 >                } finally {
3287 >                    sizeCtl = sc;
3288 >                }
3289 >                if (collide) { // rescan and convert to TreeBins
3290 >                    Node<V>[] tab = table;
3291 >                    for (int i = 0; i < tab.length; ++i) {
3292 >                        int c = 0;
3293 >                        for (Node<V> e = tabAt(tab, i); e != null; e = e.next) {
3294 >                            if (++c > TREE_THRESHOLD &&
3295 >                                (e.key instanceof Comparable)) {
3296 >                                replaceWithTreeBin(tab, i, e.key);
3297 >                                break;
3298 >                            }
3299 >                        }
3300 >                    }
3301 >                }
3302 >            }
3303 >            if (!init) { // Can only happen if unsafely published.
3304 >                while (p != null) {
3305 >                    internalPut((K)p.key, p.val, false);
3306 >                    p = p.next;
3307 >                }
3308 >            }
3309          }
3310      }
3311  
3312 +    // -------------------------------------------------------
3313 +
3314 +    // Sams
3315 +    /** Interface describing a void action of one argument */
3316 +    public interface Action<A> { void apply(A a); }
3317 +    /** Interface describing a void action of two arguments */
3318 +    public interface BiAction<A,B> { void apply(A a, B b); }
3319 +    /** Interface describing a function of one argument */
3320 +    public interface Fun<A,T> { T apply(A a); }
3321 +    /** Interface describing a function of two arguments */
3322 +    public interface BiFun<A,B,T> { T apply(A a, B b); }
3323 +    /** Interface describing a function of no arguments */
3324 +    public interface Generator<T> { T apply(); }
3325 +    /** Interface describing a function mapping its argument to a double */
3326 +    public interface ObjectToDouble<A> { double apply(A a); }
3327 +    /** Interface describing a function mapping its argument to a long */
3328 +    public interface ObjectToLong<A> { long apply(A a); }
3329 +    /** Interface describing a function mapping its argument to an int */
3330 +    public interface ObjectToInt<A> {int apply(A a); }
3331 +    /** Interface describing a function mapping two arguments to a double */
3332 +    public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3333 +    /** Interface describing a function mapping two arguments to a long */
3334 +    public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3335 +    /** Interface describing a function mapping two arguments to an int */
3336 +    public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3337 +    /** Interface describing a function mapping a double to a double */
3338 +    public interface DoubleToDouble { double apply(double a); }
3339 +    /** Interface describing a function mapping a long to a long */
3340 +    public interface LongToLong { long apply(long a); }
3341 +    /** Interface describing a function mapping an int to an int */
3342 +    public interface IntToInt { int apply(int a); }
3343 +    /** Interface describing a function mapping two doubles to a double */
3344 +    public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3345 +    /** Interface describing a function mapping two longs to a long */
3346 +    public interface LongByLongToLong { long apply(long a, long b); }
3347 +    /** Interface describing a function mapping two ints to an int */
3348 +    public interface IntByIntToInt { int apply(int a, int b); }
3349 +
3350 +
3351 +    // -------------------------------------------------------
3352 +
3353 +    // Sequential bulk operations
3354 +
3355 +    /**
3356 +     * Performs the given action for each (key, value).
3357 +     *
3358 +     * @param action the action
3359 +     */
3360 +    @SuppressWarnings("unchecked") public void forEachSequentially
3361 +        (BiAction<K,V> action) {
3362 +        if (action == null) throw new NullPointerException();
3363 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3364 +        V v;
3365 +        while ((v = it.advance()) != null)
3366 +            action.apply((K)it.nextKey, v);
3367 +    }
3368 +
3369 +    /**
3370 +     * Performs the given action for each non-null transformation
3371 +     * of each (key, value).
3372 +     *
3373 +     * @param transformer a function returning the transformation
3374 +     * for an element, or null of there is no transformation (in
3375 +     * which case the action is not applied).
3376 +     * @param action the action
3377 +     */
3378 +    @SuppressWarnings("unchecked") public <U> void forEachSequentially
3379 +        (BiFun<? super K, ? super V, ? extends U> transformer,
3380 +         Action<U> action) {
3381 +        if (transformer == null || action == null)
3382 +            throw new NullPointerException();
3383 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3384 +        V v; U u;
3385 +        while ((v = it.advance()) != null) {
3386 +            if ((u = transformer.apply((K)it.nextKey, v)) != null)
3387 +                action.apply(u);
3388 +        }
3389 +    }
3390 +
3391 +    /**
3392 +     * Returns a non-null result from applying the given search
3393 +     * function on each (key, value), or null if none.
3394 +     *
3395 +     * @param searchFunction a function returning a non-null
3396 +     * result on success, else null
3397 +     * @return a non-null result from applying the given search
3398 +     * function on each (key, value), or null if none
3399 +     */
3400 +    @SuppressWarnings("unchecked") public <U> U searchSequentially
3401 +        (BiFun<? super K, ? super V, ? extends U> searchFunction) {
3402 +        if (searchFunction == null) throw new NullPointerException();
3403 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3404 +        V v; U u;
3405 +        while ((v = it.advance()) != null) {
3406 +            if ((u = searchFunction.apply((K)it.nextKey, v)) != null)
3407 +                return u;
3408 +        }
3409 +        return null;
3410 +    }
3411 +
3412 +    /**
3413 +     * Returns the result of accumulating the given transformation
3414 +     * of all (key, value) pairs using the given reducer to
3415 +     * combine values, or null if none.
3416 +     *
3417 +     * @param transformer a function returning the transformation
3418 +     * for an element, or null of there is no transformation (in
3419 +     * which case it is not combined).
3420 +     * @param reducer a commutative associative combining function
3421 +     * @return the result of accumulating the given transformation
3422 +     * of all (key, value) pairs
3423 +     */
3424 +    @SuppressWarnings("unchecked") public <U> U reduceSequentially
3425 +        (BiFun<? super K, ? super V, ? extends U> transformer,
3426 +         BiFun<? super U, ? super U, ? extends U> reducer) {
3427 +        if (transformer == null || reducer == null)
3428 +            throw new NullPointerException();
3429 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3430 +        U r = null, u; V v;
3431 +        while ((v = it.advance()) != null) {
3432 +            if ((u = transformer.apply((K)it.nextKey, v)) != null)
3433 +                r = (r == null) ? u : reducer.apply(r, u);
3434 +        }
3435 +        return r;
3436 +    }
3437 +
3438 +    /**
3439 +     * Returns the result of accumulating the given transformation
3440 +     * of all (key, value) pairs using the given reducer to
3441 +     * combine values, and the given basis as an identity value.
3442 +     *
3443 +     * @param transformer a function returning the transformation
3444 +     * for an element
3445 +     * @param basis the identity (initial default value) for the reduction
3446 +     * @param reducer a commutative associative combining function
3447 +     * @return the result of accumulating the given transformation
3448 +     * of all (key, value) pairs
3449 +     */
3450 +    @SuppressWarnings("unchecked") public double reduceToDoubleSequentially
3451 +        (ObjectByObjectToDouble<? super K, ? super V> transformer,
3452 +         double basis,
3453 +         DoubleByDoubleToDouble reducer) {
3454 +        if (transformer == null || reducer == null)
3455 +            throw new NullPointerException();
3456 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3457 +        double r = basis; V v;
3458 +        while ((v = it.advance()) != null)
3459 +            r = reducer.apply(r, transformer.apply((K)it.nextKey, v));
3460 +        return r;
3461 +    }
3462 +
3463 +    /**
3464 +     * Returns the result of accumulating the given transformation
3465 +     * of all (key, value) pairs using the given reducer to
3466 +     * combine values, and the given basis as an identity value.
3467 +     *
3468 +     * @param transformer a function returning the transformation
3469 +     * for an element
3470 +     * @param basis the identity (initial default value) for the reduction
3471 +     * @param reducer a commutative associative combining function
3472 +     * @return the result of accumulating the given transformation
3473 +     * of all (key, value) pairs
3474 +     */
3475 +    @SuppressWarnings("unchecked") public long reduceToLongSequentially
3476 +        (ObjectByObjectToLong<? super K, ? super V> transformer,
3477 +         long basis,
3478 +         LongByLongToLong reducer) {
3479 +        if (transformer == null || reducer == null)
3480 +            throw new NullPointerException();
3481 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3482 +        long r = basis; V v;
3483 +        while ((v = it.advance()) != null)
3484 +            r = reducer.apply(r, transformer.apply((K)it.nextKey, v));
3485 +        return r;
3486 +    }
3487 +
3488 +    /**
3489 +     * Returns the result of accumulating the given transformation
3490 +     * of all (key, value) pairs using the given reducer to
3491 +     * combine values, and the given basis as an identity value.
3492 +     *
3493 +     * @param transformer a function returning the transformation
3494 +     * for an element
3495 +     * @param basis the identity (initial default value) for the reduction
3496 +     * @param reducer a commutative associative combining function
3497 +     * @return the result of accumulating the given transformation
3498 +     * of all (key, value) pairs
3499 +     */
3500 +    @SuppressWarnings("unchecked") public int reduceToIntSequentially
3501 +        (ObjectByObjectToInt<? super K, ? super V> transformer,
3502 +         int basis,
3503 +         IntByIntToInt reducer) {
3504 +        if (transformer == null || reducer == null)
3505 +            throw new NullPointerException();
3506 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3507 +        int r = basis; V v;
3508 +        while ((v = it.advance()) != null)
3509 +            r = reducer.apply(r, transformer.apply((K)it.nextKey, v));
3510 +        return r;
3511 +    }
3512 +
3513 +    /**
3514 +     * Performs the given action for each key.
3515 +     *
3516 +     * @param action the action
3517 +     */
3518 +    @SuppressWarnings("unchecked") public void forEachKeySequentially
3519 +        (Action<K> action) {
3520 +        if (action == null) throw new NullPointerException();
3521 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3522 +        while (it.advance() != null)
3523 +            action.apply((K)it.nextKey);
3524 +    }
3525 +
3526 +    /**
3527 +     * Performs the given action for each non-null transformation
3528 +     * of each key.
3529 +     *
3530 +     * @param transformer a function returning the transformation
3531 +     * for an element, or null of there is no transformation (in
3532 +     * which case the action is not applied).
3533 +     * @param action the action
3534 +     */
3535 +    @SuppressWarnings("unchecked") public <U> void forEachKeySequentially
3536 +        (Fun<? super K, ? extends U> transformer,
3537 +         Action<U> action) {
3538 +        if (transformer == null || action == null)
3539 +            throw new NullPointerException();
3540 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3541 +        U u;
3542 +        while (it.advance() != null) {
3543 +            if ((u = transformer.apply((K)it.nextKey)) != null)
3544 +                action.apply(u);
3545 +        }
3546 +        ForkJoinTasks.forEachKey
3547 +            (this, transformer, action).invoke();
3548 +    }
3549 +
3550 +    /**
3551 +     * Returns a non-null result from applying the given search
3552 +     * function on each key, or null if none.
3553 +     *
3554 +     * @param searchFunction a function returning a non-null
3555 +     * result on success, else null
3556 +     * @return a non-null result from applying the given search
3557 +     * function on each key, or null if none
3558 +     */
3559 +    @SuppressWarnings("unchecked") public <U> U searchKeysSequentially
3560 +        (Fun<? super K, ? extends U> searchFunction) {
3561 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3562 +        U u;
3563 +        while (it.advance() != null) {
3564 +            if ((u = searchFunction.apply((K)it.nextKey)) != null)
3565 +                return u;
3566 +        }
3567 +        return null;
3568 +    }
3569 +
3570 +    /**
3571 +     * Returns the result of accumulating all keys using the given
3572 +     * reducer to combine values, or null if none.
3573 +     *
3574 +     * @param reducer a commutative associative combining function
3575 +     * @return the result of accumulating all keys using the given
3576 +     * reducer to combine values, or null if none
3577 +     */
3578 +    @SuppressWarnings("unchecked") public K reduceKeysSequentially
3579 +        (BiFun<? super K, ? super K, ? extends K> reducer) {
3580 +        if (reducer == null) throw new NullPointerException();
3581 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3582 +        K r = null;
3583 +        while (it.advance() != null) {
3584 +            K u = (K)it.nextKey;
3585 +            r = (r == null) ? u : reducer.apply(r, u);
3586 +        }
3587 +        return r;
3588 +    }
3589 +
3590 +    /**
3591 +     * Returns the result of accumulating the given transformation
3592 +     * of all keys using the given reducer to combine values, or
3593 +     * null if none.
3594 +     *
3595 +     * @param transformer a function returning the transformation
3596 +     * for an element, or null of there is no transformation (in
3597 +     * which case it is not combined).
3598 +     * @param reducer a commutative associative combining function
3599 +     * @return the result of accumulating the given transformation
3600 +     * of all keys
3601 +     */
3602 +    @SuppressWarnings("unchecked") public <U> U reduceKeysSequentially
3603 +        (Fun<? super K, ? extends U> transformer,
3604 +         BiFun<? super U, ? super U, ? extends U> reducer) {
3605 +        if (transformer == null || reducer == null)
3606 +            throw new NullPointerException();
3607 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3608 +        U r = null, u;
3609 +        while (it.advance() != null) {
3610 +            if ((u = transformer.apply((K)it.nextKey)) != null)
3611 +                r = (r == null) ? u : reducer.apply(r, u);
3612 +        }
3613 +        return r;
3614 +    }
3615 +
3616 +    /**
3617 +     * Returns the result of accumulating the given transformation
3618 +     * of all keys using the given reducer to combine values, and
3619 +     * the given basis as an identity value.
3620 +     *
3621 +     * @param transformer a function returning the transformation
3622 +     * for an element
3623 +     * @param basis the identity (initial default value) for the reduction
3624 +     * @param reducer a commutative associative combining function
3625 +     * @return  the result of accumulating the given transformation
3626 +     * of all keys
3627 +     */
3628 +    @SuppressWarnings("unchecked") public double reduceKeysToDoubleSequentially
3629 +        (ObjectToDouble<? super K> transformer,
3630 +         double basis,
3631 +         DoubleByDoubleToDouble reducer) {
3632 +        if (transformer == null || reducer == null)
3633 +            throw new NullPointerException();
3634 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3635 +        double r = basis;
3636 +        while (it.advance() != null)
3637 +            r = reducer.apply(r, transformer.apply((K)it.nextKey));
3638 +        return r;
3639 +    }
3640 +
3641 +    /**
3642 +     * Returns the result of accumulating the given transformation
3643 +     * of all keys using the given reducer to combine values, and
3644 +     * the given basis as an identity value.
3645 +     *
3646 +     * @param transformer a function returning the transformation
3647 +     * for an element
3648 +     * @param basis the identity (initial default value) for the reduction
3649 +     * @param reducer a commutative associative combining function
3650 +     * @return the result of accumulating the given transformation
3651 +     * of all keys
3652 +     */
3653 +    @SuppressWarnings("unchecked") public long reduceKeysToLongSequentially
3654 +        (ObjectToLong<? super K> transformer,
3655 +         long basis,
3656 +         LongByLongToLong reducer) {
3657 +        if (transformer == null || reducer == null)
3658 +            throw new NullPointerException();
3659 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3660 +        long r = basis;
3661 +        while (it.advance() != null)
3662 +            r = reducer.apply(r, transformer.apply((K)it.nextKey));
3663 +        return r;
3664 +    }
3665 +
3666 +    /**
3667 +     * Returns the result of accumulating the given transformation
3668 +     * of all keys using the given reducer to combine values, and
3669 +     * the given basis as an identity value.
3670 +     *
3671 +     * @param transformer a function returning the transformation
3672 +     * for an element
3673 +     * @param basis the identity (initial default value) for the reduction
3674 +     * @param reducer a commutative associative combining function
3675 +     * @return the result of accumulating the given transformation
3676 +     * of all keys
3677 +     */
3678 +    @SuppressWarnings("unchecked") public int reduceKeysToIntSequentially
3679 +        (ObjectToInt<? super K> transformer,
3680 +         int basis,
3681 +         IntByIntToInt reducer) {
3682 +        if (transformer == null || reducer == null)
3683 +            throw new NullPointerException();
3684 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3685 +        int r = basis;
3686 +        while (it.advance() != null)
3687 +            r = reducer.apply(r, transformer.apply((K)it.nextKey));
3688 +        return r;
3689 +    }
3690 +
3691 +    /**
3692 +     * Performs the given action for each value.
3693 +     *
3694 +     * @param action the action
3695 +     */
3696 +    public void forEachValueSequentially(Action<V> action) {
3697 +        if (action == null) throw new NullPointerException();
3698 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3699 +        V v;
3700 +        while ((v = it.advance()) != null)
3701 +            action.apply(v);
3702 +    }
3703 +
3704 +    /**
3705 +     * Performs the given action for each non-null transformation
3706 +     * of each value.
3707 +     *
3708 +     * @param transformer a function returning the transformation
3709 +     * for an element, or null of there is no transformation (in
3710 +     * which case the action is not applied).
3711 +     */
3712 +    public <U> void forEachValueSequentially
3713 +        (Fun<? super V, ? extends U> transformer,
3714 +         Action<U> action) {
3715 +        if (transformer == null || action == null)
3716 +            throw new NullPointerException();
3717 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3718 +        V v; U u;
3719 +        while ((v = it.advance()) != null) {
3720 +            if ((u = transformer.apply(v)) != null)
3721 +                action.apply(u);
3722 +        }
3723 +    }
3724 +
3725 +    /**
3726 +     * Returns a non-null result from applying the given search
3727 +     * function on each value, or null if none.
3728 +     *
3729 +     * @param searchFunction a function returning a non-null
3730 +     * result on success, else null
3731 +     * @return a non-null result from applying the given search
3732 +     * function on each value, or null if none
3733 +     */
3734 +    public <U> U searchValuesSequentially
3735 +        (Fun<? super V, ? extends U> searchFunction) {
3736 +        if (searchFunction == null) throw new NullPointerException();
3737 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3738 +        V v; U u;
3739 +        while ((v = it.advance()) != null) {
3740 +            if ((u = searchFunction.apply(v)) != null)
3741 +                return u;
3742 +        }
3743 +        return null;
3744 +    }
3745 +
3746 +    /**
3747 +     * Returns the result of accumulating all values using the
3748 +     * given reducer to combine values, or null if none.
3749 +     *
3750 +     * @param reducer a commutative associative combining function
3751 +     * @return  the result of accumulating all values
3752 +     */
3753 +    public V reduceValuesSequentially
3754 +        (BiFun<? super V, ? super V, ? extends V> reducer) {
3755 +        if (reducer == null) throw new NullPointerException();
3756 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3757 +        V r = null; V v;
3758 +        while ((v = it.advance()) != null)
3759 +            r = (r == null) ? v : reducer.apply(r, v);
3760 +        return r;
3761 +    }
3762 +
3763 +    /**
3764 +     * Returns the result of accumulating the given transformation
3765 +     * of all values using the given reducer to combine values, or
3766 +     * null if none.
3767 +     *
3768 +     * @param transformer a function returning the transformation
3769 +     * for an element, or null of there is no transformation (in
3770 +     * which case it is not combined).
3771 +     * @param reducer a commutative associative combining function
3772 +     * @return the result of accumulating the given transformation
3773 +     * of all values
3774 +     */
3775 +    public <U> U reduceValuesSequentially
3776 +        (Fun<? super V, ? extends U> transformer,
3777 +         BiFun<? super U, ? super U, ? extends U> reducer) {
3778 +        if (transformer == null || reducer == null)
3779 +            throw new NullPointerException();
3780 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3781 +        U r = null, u; V v;
3782 +        while ((v = it.advance()) != null) {
3783 +            if ((u = transformer.apply(v)) != null)
3784 +                r = (r == null) ? u : reducer.apply(r, u);
3785 +        }
3786 +        return r;
3787 +    }
3788 +
3789 +    /**
3790 +     * Returns the result of accumulating the given transformation
3791 +     * of all values using the given reducer to combine values,
3792 +     * and the given basis as an identity value.
3793 +     *
3794 +     * @param transformer a function returning the transformation
3795 +     * for an element
3796 +     * @param basis the identity (initial default value) for the reduction
3797 +     * @param reducer a commutative associative combining function
3798 +     * @return the result of accumulating the given transformation
3799 +     * of all values
3800 +     */
3801 +    public double reduceValuesToDoubleSequentially
3802 +        (ObjectToDouble<? super V> transformer,
3803 +         double basis,
3804 +         DoubleByDoubleToDouble reducer) {
3805 +        if (transformer == null || reducer == null)
3806 +            throw new NullPointerException();
3807 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3808 +        double r = basis; V v;
3809 +        while ((v = it.advance()) != null)
3810 +            r = reducer.apply(r, transformer.apply(v));
3811 +        return r;
3812 +    }
3813 +
3814 +    /**
3815 +     * Returns the result of accumulating the given transformation
3816 +     * of all values using the given reducer to combine values,
3817 +     * and the given basis as an identity value.
3818 +     *
3819 +     * @param transformer a function returning the transformation
3820 +     * for an element
3821 +     * @param basis the identity (initial default value) for the reduction
3822 +     * @param reducer a commutative associative combining function
3823 +     * @return the result of accumulating the given transformation
3824 +     * of all values
3825 +     */
3826 +    public long reduceValuesToLongSequentially
3827 +        (ObjectToLong<? super V> transformer,
3828 +         long basis,
3829 +         LongByLongToLong reducer) {
3830 +        if (transformer == null || reducer == null)
3831 +            throw new NullPointerException();
3832 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3833 +        long r = basis; V v;
3834 +        while ((v = it.advance()) != null)
3835 +            r = reducer.apply(r, transformer.apply(v));
3836 +        return r;
3837 +    }
3838 +
3839 +    /**
3840 +     * Returns the result of accumulating the given transformation
3841 +     * of all values using the given reducer to combine values,
3842 +     * and the given basis as an identity value.
3843 +     *
3844 +     * @param transformer a function returning the transformation
3845 +     * for an element
3846 +     * @param basis the identity (initial default value) for the reduction
3847 +     * @param reducer a commutative associative combining function
3848 +     * @return the result of accumulating the given transformation
3849 +     * of all values
3850 +     */
3851 +    public int reduceValuesToIntSequentially
3852 +        (ObjectToInt<? super V> transformer,
3853 +         int basis,
3854 +         IntByIntToInt reducer) {
3855 +        if (transformer == null || reducer == null)
3856 +            throw new NullPointerException();
3857 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3858 +        int r = basis; V v;
3859 +        while ((v = it.advance()) != null)
3860 +            r = reducer.apply(r, transformer.apply(v));
3861 +        return r;
3862 +    }
3863 +
3864 +    /**
3865 +     * Performs the given action for each entry.
3866 +     *
3867 +     * @param action the action
3868 +     */
3869 +    @SuppressWarnings("unchecked") public void forEachEntrySequentially
3870 +        (Action<Map.Entry<K,V>> action) {
3871 +        if (action == null) throw new NullPointerException();
3872 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3873 +        V v;
3874 +        while ((v = it.advance()) != null)
3875 +            action.apply(entryFor((K)it.nextKey, v));
3876 +    }
3877 +
3878 +    /**
3879 +     * Performs the given action for each non-null transformation
3880 +     * of each entry.
3881 +     *
3882 +     * @param transformer a function returning the transformation
3883 +     * for an element, or null of there is no transformation (in
3884 +     * which case the action is not applied).
3885 +     * @param action the action
3886 +     */
3887 +    @SuppressWarnings("unchecked") public <U> void forEachEntrySequentially
3888 +        (Fun<Map.Entry<K,V>, ? extends U> transformer,
3889 +         Action<U> action) {
3890 +        if (transformer == null || action == null)
3891 +            throw new NullPointerException();
3892 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3893 +        V v; U u;
3894 +        while ((v = it.advance()) != null) {
3895 +            if ((u = transformer.apply(entryFor((K)it.nextKey, v))) != null)
3896 +                action.apply(u);
3897 +        }
3898 +    }
3899 +
3900 +    /**
3901 +     * Returns a non-null result from applying the given search
3902 +     * function on each entry, or null if none.
3903 +     *
3904 +     * @param searchFunction a function returning a non-null
3905 +     * result on success, else null
3906 +     * @return a non-null result from applying the given search
3907 +     * function on each entry, or null if none
3908 +     */
3909 +    @SuppressWarnings("unchecked") public <U> U searchEntriesSequentially
3910 +        (Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
3911 +        if (searchFunction == null) throw new NullPointerException();
3912 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3913 +        V v; U u;
3914 +        while ((v = it.advance()) != null) {
3915 +            if ((u = searchFunction.apply(entryFor((K)it.nextKey, v))) != null)
3916 +                return u;
3917 +        }
3918 +        return null;
3919 +    }
3920 +
3921 +    /**
3922 +     * Returns the result of accumulating all entries using the
3923 +     * given reducer to combine values, or null if none.
3924 +     *
3925 +     * @param reducer a commutative associative combining function
3926 +     * @return the result of accumulating all entries
3927 +     */
3928 +    @SuppressWarnings("unchecked") public Map.Entry<K,V> reduceEntriesSequentially
3929 +        (BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3930 +        if (reducer == null) throw new NullPointerException();
3931 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3932 +        Map.Entry<K,V> r = null; V v;
3933 +        while ((v = it.advance()) != null) {
3934 +            Map.Entry<K,V> u = entryFor((K)it.nextKey, v);
3935 +            r = (r == null) ? u : reducer.apply(r, u);
3936 +        }
3937 +        return r;
3938 +    }
3939 +
3940 +    /**
3941 +     * Returns the result of accumulating the given transformation
3942 +     * of all entries using the given reducer to combine values,
3943 +     * or null if none.
3944 +     *
3945 +     * @param transformer a function returning the transformation
3946 +     * for an element, or null of there is no transformation (in
3947 +     * which case it is not combined).
3948 +     * @param reducer a commutative associative combining function
3949 +     * @return the result of accumulating the given transformation
3950 +     * of all entries
3951 +     */
3952 +    @SuppressWarnings("unchecked") public <U> U reduceEntriesSequentially
3953 +        (Fun<Map.Entry<K,V>, ? extends U> transformer,
3954 +         BiFun<? super U, ? super U, ? extends U> reducer) {
3955 +        if (transformer == null || reducer == null)
3956 +            throw new NullPointerException();
3957 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3958 +        U r = null, u; V v;
3959 +        while ((v = it.advance()) != null) {
3960 +            if ((u = transformer.apply(entryFor((K)it.nextKey, v))) != null)
3961 +                r = (r == null) ? u : reducer.apply(r, u);
3962 +        }
3963 +        return r;
3964 +    }
3965 +
3966 +    /**
3967 +     * Returns the result of accumulating the given transformation
3968 +     * of all entries using the given reducer to combine values,
3969 +     * and the given basis as an identity value.
3970 +     *
3971 +     * @param transformer a function returning the transformation
3972 +     * for an element
3973 +     * @param basis the identity (initial default value) for the reduction
3974 +     * @param reducer a commutative associative combining function
3975 +     * @return the result of accumulating the given transformation
3976 +     * of all entries
3977 +     */
3978 +    @SuppressWarnings("unchecked") public double reduceEntriesToDoubleSequentially
3979 +        (ObjectToDouble<Map.Entry<K,V>> transformer,
3980 +         double basis,
3981 +         DoubleByDoubleToDouble reducer) {
3982 +        if (transformer == null || reducer == null)
3983 +            throw new NullPointerException();
3984 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3985 +        double r = basis; V v;
3986 +        while ((v = it.advance()) != null)
3987 +            r = reducer.apply(r, transformer.apply(entryFor((K)it.nextKey, v)));
3988 +        return r;
3989 +    }
3990 +
3991 +    /**
3992 +     * Returns the result of accumulating the given transformation
3993 +     * of all entries using the given reducer to combine values,
3994 +     * and the given basis as an identity value.
3995 +     *
3996 +     * @param transformer a function returning the transformation
3997 +     * for an element
3998 +     * @param basis the identity (initial default value) for the reduction
3999 +     * @param reducer a commutative associative combining function
4000 +     * @return  the result of accumulating the given transformation
4001 +     * of all entries
4002 +     */
4003 +    @SuppressWarnings("unchecked") public long reduceEntriesToLongSequentially
4004 +        (ObjectToLong<Map.Entry<K,V>> transformer,
4005 +         long basis,
4006 +         LongByLongToLong reducer) {
4007 +        if (transformer == null || reducer == null)
4008 +            throw new NullPointerException();
4009 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4010 +        long r = basis; V v;
4011 +        while ((v = it.advance()) != null)
4012 +            r = reducer.apply(r, transformer.apply(entryFor((K)it.nextKey, v)));
4013 +        return r;
4014 +    }
4015 +
4016 +    /**
4017 +     * Returns the result of accumulating the given transformation
4018 +     * of all entries using the given reducer to combine values,
4019 +     * and the given basis as an identity value.
4020 +     *
4021 +     * @param transformer a function returning the transformation
4022 +     * for an element
4023 +     * @param basis the identity (initial default value) for the reduction
4024 +     * @param reducer a commutative associative combining function
4025 +     * @return the result of accumulating the given transformation
4026 +     * of all entries
4027 +     */
4028 +    @SuppressWarnings("unchecked") public int reduceEntriesToIntSequentially
4029 +        (ObjectToInt<Map.Entry<K,V>> transformer,
4030 +         int basis,
4031 +         IntByIntToInt reducer) {
4032 +        if (transformer == null || reducer == null)
4033 +            throw new NullPointerException();
4034 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4035 +        int r = basis; V v;
4036 +        while ((v = it.advance()) != null)
4037 +            r = reducer.apply(r, transformer.apply(entryFor((K)it.nextKey, v)));
4038 +        return r;
4039 +    }
4040 +
4041 +    // Parallel bulk operations
4042 +
4043 +    /**
4044 +     * Performs the given action for each (key, value).
4045 +     *
4046 +     * @param action the action
4047 +     */
4048 +    public void forEachInParallel(BiAction<K,V> action) {
4049 +        ForkJoinTasks.forEach
4050 +            (this, action).invoke();
4051 +    }
4052 +
4053 +    /**
4054 +     * Performs the given action for each non-null transformation
4055 +     * of each (key, value).
4056 +     *
4057 +     * @param transformer a function returning the transformation
4058 +     * for an element, or null of there is no transformation (in
4059 +     * which case the action is not applied).
4060 +     * @param action the action
4061 +     */
4062 +    public <U> void forEachInParallel
4063 +        (BiFun<? super K, ? super V, ? extends U> transformer,
4064 +                            Action<U> action) {
4065 +        ForkJoinTasks.forEach
4066 +            (this, transformer, action).invoke();
4067 +    }
4068 +
4069 +    /**
4070 +     * Returns a non-null result from applying the given search
4071 +     * function on each (key, value), or null if none.  Upon
4072 +     * success, further element processing is suppressed and the
4073 +     * results of any other parallel invocations of the search
4074 +     * function are ignored.
4075 +     *
4076 +     * @param searchFunction a function returning a non-null
4077 +     * result on success, else null
4078 +     * @return a non-null result from applying the given search
4079 +     * function on each (key, value), or null if none
4080 +     */
4081 +    public <U> U searchInParallel
4082 +        (BiFun<? super K, ? super V, ? extends U> searchFunction) {
4083 +        return ForkJoinTasks.search
4084 +            (this, searchFunction).invoke();
4085 +    }
4086 +
4087 +    /**
4088 +     * Returns the result of accumulating the given transformation
4089 +     * of all (key, value) pairs using the given reducer to
4090 +     * combine values, or null if none.
4091 +     *
4092 +     * @param transformer a function returning the transformation
4093 +     * for an element, or null of there is no transformation (in
4094 +     * which case it is not combined).
4095 +     * @param reducer a commutative associative combining function
4096 +     * @return the result of accumulating the given transformation
4097 +     * of all (key, value) pairs
4098 +     */
4099 +    public <U> U reduceInParallel
4100 +        (BiFun<? super K, ? super V, ? extends U> transformer,
4101 +         BiFun<? super U, ? super U, ? extends U> reducer) {
4102 +        return ForkJoinTasks.reduce
4103 +            (this, transformer, reducer).invoke();
4104 +    }
4105 +
4106 +    /**
4107 +     * Returns the result of accumulating the given transformation
4108 +     * of all (key, value) pairs using the given reducer to
4109 +     * combine values, and the given basis as an identity value.
4110 +     *
4111 +     * @param transformer a function returning the transformation
4112 +     * for an element
4113 +     * @param basis the identity (initial default value) for the reduction
4114 +     * @param reducer a commutative associative combining function
4115 +     * @return the result of accumulating the given transformation
4116 +     * of all (key, value) pairs
4117 +     */
4118 +    public double reduceToDoubleInParallel
4119 +        (ObjectByObjectToDouble<? super K, ? super V> transformer,
4120 +         double basis,
4121 +         DoubleByDoubleToDouble reducer) {
4122 +        return ForkJoinTasks.reduceToDouble
4123 +            (this, transformer, basis, reducer).invoke();
4124 +    }
4125 +
4126 +    /**
4127 +     * Returns the result of accumulating the given transformation
4128 +     * of all (key, value) pairs using the given reducer to
4129 +     * combine values, and the given basis as an identity value.
4130 +     *
4131 +     * @param transformer a function returning the transformation
4132 +     * for an element
4133 +     * @param basis the identity (initial default value) for the reduction
4134 +     * @param reducer a commutative associative combining function
4135 +     * @return the result of accumulating the given transformation
4136 +     * of all (key, value) pairs
4137 +     */
4138 +    public long reduceToLongInParallel
4139 +        (ObjectByObjectToLong<? super K, ? super V> transformer,
4140 +         long basis,
4141 +         LongByLongToLong reducer) {
4142 +        return ForkJoinTasks.reduceToLong
4143 +            (this, transformer, basis, reducer).invoke();
4144 +    }
4145 +
4146 +    /**
4147 +     * Returns the result of accumulating the given transformation
4148 +     * of all (key, value) pairs using the given reducer to
4149 +     * combine values, and the given basis as an identity value.
4150 +     *
4151 +     * @param transformer a function returning the transformation
4152 +     * for an element
4153 +     * @param basis the identity (initial default value) for the reduction
4154 +     * @param reducer a commutative associative combining function
4155 +     * @return the result of accumulating the given transformation
4156 +     * of all (key, value) pairs
4157 +     */
4158 +    public int reduceToIntInParallel
4159 +        (ObjectByObjectToInt<? super K, ? super V> transformer,
4160 +         int basis,
4161 +         IntByIntToInt reducer) {
4162 +        return ForkJoinTasks.reduceToInt
4163 +            (this, transformer, basis, reducer).invoke();
4164 +    }
4165 +
4166 +    /**
4167 +     * Performs the given action for each key.
4168 +     *
4169 +     * @param action the action
4170 +     */
4171 +    public void forEachKeyInParallel(Action<K> action) {
4172 +        ForkJoinTasks.forEachKey
4173 +            (this, action).invoke();
4174 +    }
4175 +
4176 +    /**
4177 +     * Performs the given action for each non-null transformation
4178 +     * of each key.
4179 +     *
4180 +     * @param transformer a function returning the transformation
4181 +     * for an element, or null of there is no transformation (in
4182 +     * which case the action is not applied).
4183 +     * @param action the action
4184 +     */
4185 +    public <U> void forEachKeyInParallel
4186 +        (Fun<? super K, ? extends U> transformer,
4187 +         Action<U> action) {
4188 +        ForkJoinTasks.forEachKey
4189 +            (this, transformer, action).invoke();
4190 +    }
4191 +
4192 +    /**
4193 +     * Returns a non-null result from applying the given search
4194 +     * function on each key, or null if none. Upon success,
4195 +     * further element processing is suppressed and the results of
4196 +     * any other parallel invocations of the search function are
4197 +     * ignored.
4198 +     *
4199 +     * @param searchFunction a function returning a non-null
4200 +     * result on success, else null
4201 +     * @return a non-null result from applying the given search
4202 +     * function on each key, or null if none
4203 +     */
4204 +    public <U> U searchKeysInParallel
4205 +        (Fun<? super K, ? extends U> searchFunction) {
4206 +        return ForkJoinTasks.searchKeys
4207 +            (this, searchFunction).invoke();
4208 +    }
4209 +
4210 +    /**
4211 +     * Returns the result of accumulating all keys using the given
4212 +     * reducer to combine values, or null if none.
4213 +     *
4214 +     * @param reducer a commutative associative combining function
4215 +     * @return the result of accumulating all keys using the given
4216 +     * reducer to combine values, or null if none
4217 +     */
4218 +    public K reduceKeysInParallel
4219 +        (BiFun<? super K, ? super K, ? extends K> reducer) {
4220 +        return ForkJoinTasks.reduceKeys
4221 +            (this, reducer).invoke();
4222 +    }
4223 +
4224 +    /**
4225 +     * Returns the result of accumulating the given transformation
4226 +     * of all keys using the given reducer to combine values, or
4227 +     * null if none.
4228 +     *
4229 +     * @param transformer a function returning the transformation
4230 +     * for an element, or null of there is no transformation (in
4231 +     * which case it is not combined).
4232 +     * @param reducer a commutative associative combining function
4233 +     * @return the result of accumulating the given transformation
4234 +     * of all keys
4235 +     */
4236 +    public <U> U reduceKeysInParallel
4237 +        (Fun<? super K, ? extends U> transformer,
4238 +         BiFun<? super U, ? super U, ? extends U> reducer) {
4239 +        return ForkJoinTasks.reduceKeys
4240 +            (this, transformer, reducer).invoke();
4241 +    }
4242 +
4243 +    /**
4244 +     * Returns the result of accumulating the given transformation
4245 +     * of all keys using the given reducer to combine values, and
4246 +     * the given basis as an identity value.
4247 +     *
4248 +     * @param transformer a function returning the transformation
4249 +     * for an element
4250 +     * @param basis the identity (initial default value) for the reduction
4251 +     * @param reducer a commutative associative combining function
4252 +     * @return  the result of accumulating the given transformation
4253 +     * of all keys
4254 +     */
4255 +    public double reduceKeysToDoubleInParallel
4256 +        (ObjectToDouble<? super K> transformer,
4257 +         double basis,
4258 +         DoubleByDoubleToDouble reducer) {
4259 +        return ForkJoinTasks.reduceKeysToDouble
4260 +            (this, transformer, basis, reducer).invoke();
4261 +    }
4262 +
4263 +    /**
4264 +     * Returns the result of accumulating the given transformation
4265 +     * of all keys using the given reducer to combine values, and
4266 +     * the given basis as an identity value.
4267 +     *
4268 +     * @param transformer a function returning the transformation
4269 +     * for an element
4270 +     * @param basis the identity (initial default value) for the reduction
4271 +     * @param reducer a commutative associative combining function
4272 +     * @return the result of accumulating the given transformation
4273 +     * of all keys
4274 +     */
4275 +    public long reduceKeysToLongInParallel
4276 +        (ObjectToLong<? super K> transformer,
4277 +         long basis,
4278 +         LongByLongToLong reducer) {
4279 +        return ForkJoinTasks.reduceKeysToLong
4280 +            (this, transformer, basis, reducer).invoke();
4281 +    }
4282 +
4283 +    /**
4284 +     * Returns the result of accumulating the given transformation
4285 +     * of all keys using the given reducer to combine values, and
4286 +     * the given basis as an identity value.
4287 +     *
4288 +     * @param transformer a function returning the transformation
4289 +     * for an element
4290 +     * @param basis the identity (initial default value) for the reduction
4291 +     * @param reducer a commutative associative combining function
4292 +     * @return the result of accumulating the given transformation
4293 +     * of all keys
4294 +     */
4295 +    public int reduceKeysToIntInParallel
4296 +        (ObjectToInt<? super K> transformer,
4297 +         int basis,
4298 +         IntByIntToInt reducer) {
4299 +        return ForkJoinTasks.reduceKeysToInt
4300 +            (this, transformer, basis, reducer).invoke();
4301 +    }
4302 +
4303 +    /**
4304 +     * Performs the given action for each value.
4305 +     *
4306 +     * @param action the action
4307 +     */
4308 +    public void forEachValueInParallel(Action<V> action) {
4309 +        ForkJoinTasks.forEachValue
4310 +            (this, action).invoke();
4311 +    }
4312 +
4313 +    /**
4314 +     * Performs the given action for each non-null transformation
4315 +     * of each value.
4316 +     *
4317 +     * @param transformer a function returning the transformation
4318 +     * for an element, or null of there is no transformation (in
4319 +     * which case the action is not applied).
4320 +     */
4321 +    public <U> void forEachValueInParallel
4322 +        (Fun<? super V, ? extends U> transformer,
4323 +         Action<U> action) {
4324 +        ForkJoinTasks.forEachValue
4325 +            (this, transformer, action).invoke();
4326 +    }
4327 +
4328 +    /**
4329 +     * Returns a non-null result from applying the given search
4330 +     * function on each value, or null if none.  Upon success,
4331 +     * further element processing is suppressed and the results of
4332 +     * any other parallel invocations of the search function are
4333 +     * ignored.
4334 +     *
4335 +     * @param searchFunction a function returning a non-null
4336 +     * result on success, else null
4337 +     * @return a non-null result from applying the given search
4338 +     * function on each value, or null if none
4339 +     */
4340 +    public <U> U searchValuesInParallel
4341 +        (Fun<? super V, ? extends U> searchFunction) {
4342 +        return ForkJoinTasks.searchValues
4343 +            (this, searchFunction).invoke();
4344 +    }
4345 +
4346 +    /**
4347 +     * Returns the result of accumulating all values using the
4348 +     * given reducer to combine values, or null if none.
4349 +     *
4350 +     * @param reducer a commutative associative combining function
4351 +     * @return  the result of accumulating all values
4352 +     */
4353 +    public V reduceValuesInParallel
4354 +        (BiFun<? super V, ? super V, ? extends V> reducer) {
4355 +        return ForkJoinTasks.reduceValues
4356 +            (this, reducer).invoke();
4357 +    }
4358 +
4359 +    /**
4360 +     * Returns the result of accumulating the given transformation
4361 +     * of all values using the given reducer to combine values, or
4362 +     * null if none.
4363 +     *
4364 +     * @param transformer a function returning the transformation
4365 +     * for an element, or null of there is no transformation (in
4366 +     * which case it is not combined).
4367 +     * @param reducer a commutative associative combining function
4368 +     * @return the result of accumulating the given transformation
4369 +     * of all values
4370 +     */
4371 +    public <U> U reduceValuesInParallel
4372 +        (Fun<? super V, ? extends U> transformer,
4373 +         BiFun<? super U, ? super U, ? extends U> reducer) {
4374 +        return ForkJoinTasks.reduceValues
4375 +            (this, transformer, reducer).invoke();
4376 +    }
4377 +
4378 +    /**
4379 +     * Returns the result of accumulating the given transformation
4380 +     * of all values using the given reducer to combine values,
4381 +     * and the given basis as an identity value.
4382 +     *
4383 +     * @param transformer a function returning the transformation
4384 +     * for an element
4385 +     * @param basis the identity (initial default value) for the reduction
4386 +     * @param reducer a commutative associative combining function
4387 +     * @return the result of accumulating the given transformation
4388 +     * of all values
4389 +     */
4390 +    public double reduceValuesToDoubleInParallel
4391 +        (ObjectToDouble<? super V> transformer,
4392 +         double basis,
4393 +         DoubleByDoubleToDouble reducer) {
4394 +        return ForkJoinTasks.reduceValuesToDouble
4395 +            (this, transformer, basis, reducer).invoke();
4396 +    }
4397 +
4398 +    /**
4399 +     * Returns the result of accumulating the given transformation
4400 +     * of all values using the given reducer to combine values,
4401 +     * and the given basis as an identity value.
4402 +     *
4403 +     * @param transformer a function returning the transformation
4404 +     * for an element
4405 +     * @param basis the identity (initial default value) for the reduction
4406 +     * @param reducer a commutative associative combining function
4407 +     * @return the result of accumulating the given transformation
4408 +     * of all values
4409 +     */
4410 +    public long reduceValuesToLongInParallel
4411 +        (ObjectToLong<? super V> transformer,
4412 +         long basis,
4413 +         LongByLongToLong reducer) {
4414 +        return ForkJoinTasks.reduceValuesToLong
4415 +            (this, transformer, basis, reducer).invoke();
4416 +    }
4417 +
4418 +    /**
4419 +     * Returns the result of accumulating the given transformation
4420 +     * of all values using the given reducer to combine values,
4421 +     * and the given basis as an identity value.
4422 +     *
4423 +     * @param transformer a function returning the transformation
4424 +     * for an element
4425 +     * @param basis the identity (initial default value) for the reduction
4426 +     * @param reducer a commutative associative combining function
4427 +     * @return the result of accumulating the given transformation
4428 +     * of all values
4429 +     */
4430 +    public int reduceValuesToIntInParallel
4431 +        (ObjectToInt<? super V> transformer,
4432 +         int basis,
4433 +         IntByIntToInt reducer) {
4434 +        return ForkJoinTasks.reduceValuesToInt
4435 +            (this, transformer, basis, reducer).invoke();
4436 +    }
4437 +
4438 +    /**
4439 +     * Performs the given action for each entry.
4440 +     *
4441 +     * @param action the action
4442 +     */
4443 +    public void forEachEntryInParallel(Action<Map.Entry<K,V>> action) {
4444 +        ForkJoinTasks.forEachEntry
4445 +            (this, action).invoke();
4446 +    }
4447 +
4448 +    /**
4449 +     * Performs the given action for each non-null transformation
4450 +     * of each entry.
4451 +     *
4452 +     * @param transformer a function returning the transformation
4453 +     * for an element, or null of there is no transformation (in
4454 +     * which case the action is not applied).
4455 +     * @param action the action
4456 +     */
4457 +    public <U> void forEachEntryInParallel
4458 +        (Fun<Map.Entry<K,V>, ? extends U> transformer,
4459 +         Action<U> action) {
4460 +        ForkJoinTasks.forEachEntry
4461 +            (this, transformer, action).invoke();
4462 +    }
4463 +
4464 +    /**
4465 +     * Returns a non-null result from applying the given search
4466 +     * function on each entry, or null if none.  Upon success,
4467 +     * further element processing is suppressed and the results of
4468 +     * any other parallel invocations of the search function are
4469 +     * ignored.
4470 +     *
4471 +     * @param searchFunction a function returning a non-null
4472 +     * result on success, else null
4473 +     * @return a non-null result from applying the given search
4474 +     * function on each entry, or null if none
4475 +     */
4476 +    public <U> U searchEntriesInParallel
4477 +        (Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4478 +        return ForkJoinTasks.searchEntries
4479 +            (this, searchFunction).invoke();
4480 +    }
4481 +
4482 +    /**
4483 +     * Returns the result of accumulating all entries using the
4484 +     * given reducer to combine values, or null if none.
4485 +     *
4486 +     * @param reducer a commutative associative combining function
4487 +     * @return the result of accumulating all entries
4488 +     */
4489 +    public Map.Entry<K,V> reduceEntriesInParallel
4490 +        (BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4491 +        return ForkJoinTasks.reduceEntries
4492 +            (this, reducer).invoke();
4493 +    }
4494 +
4495 +    /**
4496 +     * Returns the result of accumulating the given transformation
4497 +     * of all entries using the given reducer to combine values,
4498 +     * or null if none.
4499 +     *
4500 +     * @param transformer a function returning the transformation
4501 +     * for an element, or null of there is no transformation (in
4502 +     * which case it is not combined).
4503 +     * @param reducer a commutative associative combining function
4504 +     * @return the result of accumulating the given transformation
4505 +     * of all entries
4506 +     */
4507 +    public <U> U reduceEntriesInParallel
4508 +        (Fun<Map.Entry<K,V>, ? extends U> transformer,
4509 +         BiFun<? super U, ? super U, ? extends U> reducer) {
4510 +        return ForkJoinTasks.reduceEntries
4511 +            (this, transformer, reducer).invoke();
4512 +    }
4513 +
4514 +    /**
4515 +     * Returns the result of accumulating the given transformation
4516 +     * of all entries using the given reducer to combine values,
4517 +     * and the given basis as an identity value.
4518 +     *
4519 +     * @param transformer a function returning the transformation
4520 +     * for an element
4521 +     * @param basis the identity (initial default value) for the reduction
4522 +     * @param reducer a commutative associative combining function
4523 +     * @return the result of accumulating the given transformation
4524 +     * of all entries
4525 +     */
4526 +    public double reduceEntriesToDoubleInParallel
4527 +        (ObjectToDouble<Map.Entry<K,V>> transformer,
4528 +         double basis,
4529 +         DoubleByDoubleToDouble reducer) {
4530 +        return ForkJoinTasks.reduceEntriesToDouble
4531 +            (this, transformer, basis, reducer).invoke();
4532 +    }
4533 +
4534 +    /**
4535 +     * Returns the result of accumulating the given transformation
4536 +     * of all entries using the given reducer to combine values,
4537 +     * and the given basis as an identity value.
4538 +     *
4539 +     * @param transformer a function returning the transformation
4540 +     * for an element
4541 +     * @param basis the identity (initial default value) for the reduction
4542 +     * @param reducer a commutative associative combining function
4543 +     * @return  the result of accumulating the given transformation
4544 +     * of all entries
4545 +     */
4546 +    public long reduceEntriesToLongInParallel
4547 +        (ObjectToLong<Map.Entry<K,V>> transformer,
4548 +         long basis,
4549 +         LongByLongToLong reducer) {
4550 +        return ForkJoinTasks.reduceEntriesToLong
4551 +            (this, transformer, basis, reducer).invoke();
4552 +    }
4553 +
4554 +    /**
4555 +     * Returns the result of accumulating the given transformation
4556 +     * of all entries using the given reducer to combine values,
4557 +     * and the given basis as an identity value.
4558 +     *
4559 +     * @param transformer a function returning the transformation
4560 +     * for an element
4561 +     * @param basis the identity (initial default value) for the reduction
4562 +     * @param reducer a commutative associative combining function
4563 +     * @return the result of accumulating the given transformation
4564 +     * of all entries
4565 +     */
4566 +    public int reduceEntriesToIntInParallel
4567 +        (ObjectToInt<Map.Entry<K,V>> transformer,
4568 +         int basis,
4569 +         IntByIntToInt reducer) {
4570 +        return ForkJoinTasks.reduceEntriesToInt
4571 +            (this, transformer, basis, reducer).invoke();
4572 +    }
4573 +
4574 +
4575      /* ----------------Views -------------- */
4576  
4577      /**
4578 <     * Base class for views. This is done mainly to allow adding
2086 <     * customized parallel traversals (not yet implemented.)
4578 >     * Base class for views.
4579       */
4580 <    static abstract class MapView<K, V> {
4580 >    abstract static class CHMView<K, V> {
4581          final ConcurrentHashMapV8<K, V> map;
4582 <        MapView(ConcurrentHashMapV8<K, V> map)  { this.map = map; }
4582 >        CHMView(ConcurrentHashMapV8<K, V> map)  { this.map = map; }
4583 >
4584 >        /**
4585 >         * Returns the map backing this view.
4586 >         *
4587 >         * @return the map backing this view
4588 >         */
4589 >        public ConcurrentHashMapV8<K,V> getMap() { return map; }
4590 >
4591          public final int size()                 { return map.size(); }
4592          public final boolean isEmpty()          { return map.isEmpty(); }
4593          public final void clear()               { map.clear(); }
4594  
4595          // implementations below rely on concrete classes supplying these
4596 <        abstract Iterator<?> iter();
4597 <        abstract public boolean contains(Object o);
4598 <        abstract public boolean remove(Object o);
4596 >        public abstract Iterator<?> iterator();
4597 >        public abstract boolean contains(Object o);
4598 >        public abstract boolean remove(Object o);
4599  
4600          private static final String oomeMsg = "Required array size too large";
4601  
4602          public final Object[] toArray() {
4603 <            long sz = map.longSize();
4603 >            long sz = map.mappingCount();
4604              if (sz > (long)(MAX_ARRAY_SIZE))
4605                  throw new OutOfMemoryError(oomeMsg);
4606              int n = (int)sz;
4607              Object[] r = new Object[n];
4608              int i = 0;
4609 <            Iterator<?> it = iter();
4609 >            Iterator<?> it = iterator();
4610              while (it.hasNext()) {
4611                  if (i == n) {
4612                      if (n >= MAX_ARRAY_SIZE)
# Line 2122 | Line 4622 | public class ConcurrentHashMapV8<K, V>
4622              return (i == n) ? r : Arrays.copyOf(r, i);
4623          }
4624  
4625 <        @SuppressWarnings("unchecked")
4626 <        public final <T> T[] toArray(T[] a) {
2127 <            long sz = map.longSize();
4625 >        @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
4626 >            long sz = map.mappingCount();
4627              if (sz > (long)(MAX_ARRAY_SIZE))
4628                  throw new OutOfMemoryError(oomeMsg);
4629              int m = (int)sz;
# Line 2133 | Line 4632 | public class ConcurrentHashMapV8<K, V>
4632                  .newInstance(a.getClass().getComponentType(), m);
4633              int n = r.length;
4634              int i = 0;
4635 <            Iterator<?> it = iter();
4635 >            Iterator<?> it = iterator();
4636              while (it.hasNext()) {
4637                  if (i == n) {
4638                      if (n >= MAX_ARRAY_SIZE)
# Line 2155 | Line 4654 | public class ConcurrentHashMapV8<K, V>
4654  
4655          public final int hashCode() {
4656              int h = 0;
4657 <            for (Iterator<?> it = iter(); it.hasNext();)
4657 >            for (Iterator<?> it = iterator(); it.hasNext();)
4658                  h += it.next().hashCode();
4659              return h;
4660          }
# Line 2163 | Line 4662 | public class ConcurrentHashMapV8<K, V>
4662          public final String toString() {
4663              StringBuilder sb = new StringBuilder();
4664              sb.append('[');
4665 <            Iterator<?> it = iter();
4665 >            Iterator<?> it = iterator();
4666              if (it.hasNext()) {
4667                  for (;;) {
4668                      Object e = it.next();
# Line 2189 | Line 4688 | public class ConcurrentHashMapV8<K, V>
4688  
4689          public final boolean removeAll(Collection<?> c) {
4690              boolean modified = false;
4691 <            for (Iterator<?> it = iter(); it.hasNext();) {
4691 >            for (Iterator<?> it = iterator(); it.hasNext();) {
4692                  if (c.contains(it.next())) {
4693                      it.remove();
4694                      modified = true;
# Line 2200 | Line 4699 | public class ConcurrentHashMapV8<K, V>
4699  
4700          public final boolean retainAll(Collection<?> c) {
4701              boolean modified = false;
4702 <            for (Iterator<?> it = iter(); it.hasNext();) {
4702 >            for (Iterator<?> it = iterator(); it.hasNext();) {
4703                  if (!c.contains(it.next())) {
4704                      it.remove();
4705                      modified = true;
# Line 2211 | Line 4710 | public class ConcurrentHashMapV8<K, V>
4710  
4711      }
4712  
4713 <    static final class KeySet<K,V> extends MapView<K,V> implements Set<K> {
4714 <        KeySet(ConcurrentHashMapV8<K, V> map)   { super(map); }
4715 <        public final boolean contains(Object o) { return map.containsKey(o); }
4716 <        public final boolean remove(Object o)   { return map.remove(o) != null; }
4717 <
4718 <        public final Iterator<K> iterator() {
4719 <            return new KeyIterator<K,V>(map);
4720 <        }
4721 <        final Iterator<?> iter() {
4722 <            return new KeyIterator<K,V>(map);
4723 <        }
4724 <        public final boolean add(K e) {
4725 <            throw new UnsupportedOperationException();
4713 >    /**
4714 >     * A view of a ConcurrentHashMapV8 as a {@link Set} of keys, in
4715 >     * which additions may optionally be enabled by mapping to a
4716 >     * common value.  This class cannot be directly instantiated. See
4717 >     * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
4718 >     * {@link #newKeySet(int)}.
4719 >     */
4720 >    public static class KeySetView<K,V> extends CHMView<K,V>
4721 >        implements Set<K>, java.io.Serializable {
4722 >        private static final long serialVersionUID = 7249069246763182397L;
4723 >        private final V value;
4724 >        KeySetView(ConcurrentHashMapV8<K, V> map, V value) {  // non-public
4725 >            super(map);
4726 >            this.value = value;
4727          }
4728 <        public final boolean addAll(Collection<? extends K> c) {
4729 <            throw new UnsupportedOperationException();
4728 >
4729 >        /**
4730 >         * Returns the default mapped value for additions,
4731 >         * or {@code null} if additions are not supported.
4732 >         *
4733 >         * @return the default mapped value for additions, or {@code null}
4734 >         * if not supported.
4735 >         */
4736 >        public V getMappedValue() { return value; }
4737 >
4738 >        // implement Set API
4739 >
4740 >        public boolean contains(Object o) { return map.containsKey(o); }
4741 >        public boolean remove(Object o)   { return map.remove(o) != null; }
4742 >
4743 >        /**
4744 >         * Returns a "weakly consistent" iterator that will never
4745 >         * throw {@link ConcurrentModificationException}, and
4746 >         * guarantees to traverse elements as they existed upon
4747 >         * construction of the iterator, and may (but is not
4748 >         * guaranteed to) reflect any modifications subsequent to
4749 >         * construction.
4750 >         *
4751 >         * @return an iterator over the keys of this map
4752 >         */
4753 >        public Iterator<K> iterator()     { return new KeyIterator<K,V>(map); }
4754 >        public boolean add(K e) {
4755 >            V v;
4756 >            if ((v = value) == null)
4757 >                throw new UnsupportedOperationException();
4758 >            if (e == null)
4759 >                throw new NullPointerException();
4760 >            return map.internalPut(e, v, true) == null;
4761 >        }
4762 >        public boolean addAll(Collection<? extends K> c) {
4763 >            boolean added = false;
4764 >            V v;
4765 >            if ((v = value) == null)
4766 >                throw new UnsupportedOperationException();
4767 >            for (K e : c) {
4768 >                if (e == null)
4769 >                    throw new NullPointerException();
4770 >                if (map.internalPut(e, v, true) == null)
4771 >                    added = true;
4772 >            }
4773 >            return added;
4774          }
4775          public boolean equals(Object o) {
4776              Set<?> c;
# Line 2236 | Line 4780 | public class ConcurrentHashMapV8<K, V>
4780          }
4781      }
4782  
4783 <    static final class Values<K,V> extends MapView<K,V>
4783 >    /**
4784 >     * A view of a ConcurrentHashMapV8 as a {@link Collection} of
4785 >     * values, in which additions are disabled. This class cannot be
4786 >     * directly instantiated. See {@link #values},
4787 >     *
4788 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4789 >     * that will never throw {@link ConcurrentModificationException},
4790 >     * and guarantees to traverse elements as they existed upon
4791 >     * construction of the iterator, and may (but is not guaranteed to)
4792 >     * reflect any modifications subsequent to construction.
4793 >     */
4794 >    public static final class ValuesView<K,V> extends CHMView<K,V>
4795          implements Collection<V> {
4796 <        Values(ConcurrentHashMapV8<K, V> map)   { super(map); }
4796 >        ValuesView(ConcurrentHashMapV8<K, V> map)   { super(map); }
4797          public final boolean contains(Object o) { return map.containsValue(o); }
2243
4798          public final boolean remove(Object o) {
4799              if (o != null) {
4800                  Iterator<V> it = new ValueIterator<K,V>(map);
# Line 2253 | Line 4807 | public class ConcurrentHashMapV8<K, V>
4807              }
4808              return false;
4809          }
4810 +
4811 +        /**
4812 +         * Returns a "weakly consistent" iterator that will never
4813 +         * throw {@link ConcurrentModificationException}, and
4814 +         * guarantees to traverse elements as they existed upon
4815 +         * construction of the iterator, and may (but is not
4816 +         * guaranteed to) reflect any modifications subsequent to
4817 +         * construction.
4818 +         *
4819 +         * @return an iterator over the values of this map
4820 +         */
4821          public final Iterator<V> iterator() {
4822              return new ValueIterator<K,V>(map);
4823          }
2259        final Iterator<?> iter() {
2260            return new ValueIterator<K,V>(map);
2261        }
4824          public final boolean add(V e) {
4825              throw new UnsupportedOperationException();
4826          }
4827          public final boolean addAll(Collection<? extends V> c) {
4828              throw new UnsupportedOperationException();
4829          }
4830 +
4831      }
4832  
4833 <    static final class EntrySet<K,V> extends MapView<K,V>
4833 >    /**
4834 >     * A view of a ConcurrentHashMapV8 as a {@link Set} of (key, value)
4835 >     * entries.  This class cannot be directly instantiated. See
4836 >     * {@link #entrySet}.
4837 >     */
4838 >    public static final class EntrySetView<K,V> extends CHMView<K,V>
4839          implements Set<Map.Entry<K,V>> {
4840 <        EntrySet(ConcurrentHashMapV8<K, V> map) { super(map); }
2273 <
4840 >        EntrySetView(ConcurrentHashMapV8<K, V> map) { super(map); }
4841          public final boolean contains(Object o) {
4842              Object k, v, r; Map.Entry<?,?> e;
4843              return ((o instanceof Map.Entry) &&
# Line 2279 | Line 4846 | public class ConcurrentHashMapV8<K, V>
4846                      (v = e.getValue()) != null &&
4847                      (v == r || v.equals(r)));
4848          }
2282
4849          public final boolean remove(Object o) {
4850              Object k, v; Map.Entry<?,?> e;
4851              return ((o instanceof Map.Entry) &&
# Line 2288 | Line 4854 | public class ConcurrentHashMapV8<K, V>
4854                      map.remove(k, v));
4855          }
4856  
4857 +        /**
4858 +         * Returns a "weakly consistent" iterator that will never
4859 +         * throw {@link ConcurrentModificationException}, and
4860 +         * guarantees to traverse elements as they existed upon
4861 +         * construction of the iterator, and may (but is not
4862 +         * guaranteed to) reflect any modifications subsequent to
4863 +         * construction.
4864 +         *
4865 +         * @return an iterator over the entries of this map
4866 +         */
4867          public final Iterator<Map.Entry<K,V>> iterator() {
4868              return new EntryIterator<K,V>(map);
4869          }
4870 <        final Iterator<?> iter() {
2295 <            return new SnapshotEntryIterator<K,V>(map);
2296 <        }
4870 >
4871          public final boolean add(Entry<K,V> e) {
4872 <            throw new UnsupportedOperationException();
4872 >            K key = e.getKey();
4873 >            V value = e.getValue();
4874 >            if (key == null || value == null)
4875 >                throw new NullPointerException();
4876 >            return map.internalPut(key, value, false) == null;
4877          }
4878          public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4879 <            throw new UnsupportedOperationException();
4879 >            boolean added = false;
4880 >            for (Entry<K,V> e : c) {
4881 >                if (add(e))
4882 >                    added = true;
4883 >            }
4884 >            return added;
4885          }
4886          public boolean equals(Object o) {
4887              Set<?> c;
# Line 2308 | Line 4891 | public class ConcurrentHashMapV8<K, V>
4891          }
4892      }
4893  
4894 <    /* ---------------- Serialization Support -------------- */
4894 >    // ---------------------------------------------------------------------
4895  
4896      /**
4897 <     * Stripped-down version of helper class used in previous version,
4898 <     * declared for the sake of serialization compatibility
4897 >     * Predefined tasks for performing bulk parallel operations on
4898 >     * ConcurrentHashMapV8s. These tasks follow the forms and rules used
4899 >     * for bulk operations. Each method has the same name, but returns
4900 >     * a task rather than invoking it. These methods may be useful in
4901 >     * custom applications such as submitting a task without waiting
4902 >     * for completion, using a custom pool, or combining with other
4903 >     * tasks.
4904       */
4905 <    static class Segment<K,V> implements Serializable {
4906 <        private static final long serialVersionUID = 2249069246763182397L;
4907 <        final float loadFactor;
4908 <        Segment(float lf) { this.loadFactor = lf; }
4905 >    public static class ForkJoinTasks {
4906 >        private ForkJoinTasks() {}
4907 >
4908 >        /**
4909 >         * Returns a task that when invoked, performs the given
4910 >         * action for each (key, value)
4911 >         *
4912 >         * @param map the map
4913 >         * @param action the action
4914 >         * @return the task
4915 >         */
4916 >        public static <K,V> ForkJoinTask<Void> forEach
4917 >            (ConcurrentHashMapV8<K,V> map,
4918 >             BiAction<K,V> action) {
4919 >            if (action == null) throw new NullPointerException();
4920 >            return new ForEachMappingTask<K,V>(map, null, -1, action);
4921 >        }
4922 >
4923 >        /**
4924 >         * Returns a task that when invoked, performs the given
4925 >         * action for each non-null transformation of each (key, value)
4926 >         *
4927 >         * @param map the map
4928 >         * @param transformer a function returning the transformation
4929 >         * for an element, or null if there is no transformation (in
4930 >         * which case the action is not applied)
4931 >         * @param action the action
4932 >         * @return the task
4933 >         */
4934 >        public static <K,V,U> ForkJoinTask<Void> forEach
4935 >            (ConcurrentHashMapV8<K,V> map,
4936 >             BiFun<? super K, ? super V, ? extends U> transformer,
4937 >             Action<U> action) {
4938 >            if (transformer == null || action == null)
4939 >                throw new NullPointerException();
4940 >            return new ForEachTransformedMappingTask<K,V,U>
4941 >                (map, null, -1, transformer, action);
4942 >        }
4943 >
4944 >        /**
4945 >         * Returns a task that when invoked, returns a non-null result
4946 >         * from applying the given search function on each (key,
4947 >         * value), or null if none. Upon success, further element
4948 >         * processing is suppressed and the results of any other
4949 >         * parallel invocations of the search function are ignored.
4950 >         *
4951 >         * @param map the map
4952 >         * @param searchFunction a function returning a non-null
4953 >         * result on success, else null
4954 >         * @return the task
4955 >         */
4956 >        public static <K,V,U> ForkJoinTask<U> search
4957 >            (ConcurrentHashMapV8<K,V> map,
4958 >             BiFun<? super K, ? super V, ? extends U> searchFunction) {
4959 >            if (searchFunction == null) throw new NullPointerException();
4960 >            return new SearchMappingsTask<K,V,U>
4961 >                (map, null, -1, searchFunction,
4962 >                 new AtomicReference<U>());
4963 >        }
4964 >
4965 >        /**
4966 >         * Returns a task that when invoked, returns the result of
4967 >         * accumulating the given transformation of all (key, value) pairs
4968 >         * using the given reducer to combine values, or null if none.
4969 >         *
4970 >         * @param map the map
4971 >         * @param transformer a function returning the transformation
4972 >         * for an element, or null if there is no transformation (in
4973 >         * which case it is not combined).
4974 >         * @param reducer a commutative associative combining function
4975 >         * @return the task
4976 >         */
4977 >        public static <K,V,U> ForkJoinTask<U> reduce
4978 >            (ConcurrentHashMapV8<K,V> map,
4979 >             BiFun<? super K, ? super V, ? extends U> transformer,
4980 >             BiFun<? super U, ? super U, ? extends U> reducer) {
4981 >            if (transformer == null || reducer == null)
4982 >                throw new NullPointerException();
4983 >            return new MapReduceMappingsTask<K,V,U>
4984 >                (map, null, -1, null, transformer, reducer);
4985 >        }
4986 >
4987 >        /**
4988 >         * Returns a task that when invoked, returns the result of
4989 >         * accumulating the given transformation of all (key, value) pairs
4990 >         * using the given reducer to combine values, and the given
4991 >         * basis as an identity value.
4992 >         *
4993 >         * @param map the map
4994 >         * @param transformer a function returning the transformation
4995 >         * for an element
4996 >         * @param basis the identity (initial default value) for the reduction
4997 >         * @param reducer a commutative associative combining function
4998 >         * @return the task
4999 >         */
5000 >        public static <K,V> ForkJoinTask<Double> reduceToDouble
5001 >            (ConcurrentHashMapV8<K,V> map,
5002 >             ObjectByObjectToDouble<? super K, ? super V> transformer,
5003 >             double basis,
5004 >             DoubleByDoubleToDouble reducer) {
5005 >            if (transformer == null || reducer == null)
5006 >                throw new NullPointerException();
5007 >            return new MapReduceMappingsToDoubleTask<K,V>
5008 >                (map, null, -1, null, transformer, basis, reducer);
5009 >        }
5010 >
5011 >        /**
5012 >         * Returns a task that when invoked, returns the result of
5013 >         * accumulating the given transformation of all (key, value) pairs
5014 >         * using the given reducer to combine values, and the given
5015 >         * basis as an identity value.
5016 >         *
5017 >         * @param map the map
5018 >         * @param transformer a function returning the transformation
5019 >         * for an element
5020 >         * @param basis the identity (initial default value) for the reduction
5021 >         * @param reducer a commutative associative combining function
5022 >         * @return the task
5023 >         */
5024 >        public static <K,V> ForkJoinTask<Long> reduceToLong
5025 >            (ConcurrentHashMapV8<K,V> map,
5026 >             ObjectByObjectToLong<? super K, ? super V> transformer,
5027 >             long basis,
5028 >             LongByLongToLong reducer) {
5029 >            if (transformer == null || reducer == null)
5030 >                throw new NullPointerException();
5031 >            return new MapReduceMappingsToLongTask<K,V>
5032 >                (map, null, -1, null, transformer, basis, reducer);
5033 >        }
5034 >
5035 >        /**
5036 >         * Returns a task that when invoked, returns the result of
5037 >         * accumulating the given transformation of all (key, value) pairs
5038 >         * using the given reducer to combine values, and the given
5039 >         * basis as an identity value.
5040 >         *
5041 >         * @param transformer a function returning the transformation
5042 >         * for an element
5043 >         * @param basis the identity (initial default value) for the reduction
5044 >         * @param reducer a commutative associative combining function
5045 >         * @return the task
5046 >         */
5047 >        public static <K,V> ForkJoinTask<Integer> reduceToInt
5048 >            (ConcurrentHashMapV8<K,V> map,
5049 >             ObjectByObjectToInt<? super K, ? super V> transformer,
5050 >             int basis,
5051 >             IntByIntToInt reducer) {
5052 >            if (transformer == null || reducer == null)
5053 >                throw new NullPointerException();
5054 >            return new MapReduceMappingsToIntTask<K,V>
5055 >                (map, null, -1, null, transformer, basis, reducer);
5056 >        }
5057 >
5058 >        /**
5059 >         * Returns a task that when invoked, performs the given action
5060 >         * for each key.
5061 >         *
5062 >         * @param map the map
5063 >         * @param action the action
5064 >         * @return the task
5065 >         */
5066 >        public static <K,V> ForkJoinTask<Void> forEachKey
5067 >            (ConcurrentHashMapV8<K,V> map,
5068 >             Action<K> action) {
5069 >            if (action == null) throw new NullPointerException();
5070 >            return new ForEachKeyTask<K,V>(map, null, -1, action);
5071 >        }
5072 >
5073 >        /**
5074 >         * Returns a task that when invoked, performs the given action
5075 >         * for each non-null transformation of each key.
5076 >         *
5077 >         * @param map the map
5078 >         * @param transformer a function returning the transformation
5079 >         * for an element, or null if there is no transformation (in
5080 >         * which case the action is not applied)
5081 >         * @param action the action
5082 >         * @return the task
5083 >         */
5084 >        public static <K,V,U> ForkJoinTask<Void> forEachKey
5085 >            (ConcurrentHashMapV8<K,V> map,
5086 >             Fun<? super K, ? extends U> transformer,
5087 >             Action<U> action) {
5088 >            if (transformer == null || action == null)
5089 >                throw new NullPointerException();
5090 >            return new ForEachTransformedKeyTask<K,V,U>
5091 >                (map, null, -1, transformer, action);
5092 >        }
5093 >
5094 >        /**
5095 >         * Returns a task that when invoked, returns a non-null result
5096 >         * from applying the given search function on each key, or
5097 >         * null if none.  Upon success, further element processing is
5098 >         * suppressed and the results of any other parallel
5099 >         * invocations of the search function are ignored.
5100 >         *
5101 >         * @param map the map
5102 >         * @param searchFunction a function returning a non-null
5103 >         * result on success, else null
5104 >         * @return the task
5105 >         */
5106 >        public static <K,V,U> ForkJoinTask<U> searchKeys
5107 >            (ConcurrentHashMapV8<K,V> map,
5108 >             Fun<? super K, ? extends U> searchFunction) {
5109 >            if (searchFunction == null) throw new NullPointerException();
5110 >            return new SearchKeysTask<K,V,U>
5111 >                (map, null, -1, searchFunction,
5112 >                 new AtomicReference<U>());
5113 >        }
5114 >
5115 >        /**
5116 >         * Returns a task that when invoked, returns the result of
5117 >         * accumulating all keys using the given reducer to combine
5118 >         * values, or null if none.
5119 >         *
5120 >         * @param map the map
5121 >         * @param reducer a commutative associative combining function
5122 >         * @return the task
5123 >         */
5124 >        public static <K,V> ForkJoinTask<K> reduceKeys
5125 >            (ConcurrentHashMapV8<K,V> map,
5126 >             BiFun<? super K, ? super K, ? extends K> reducer) {
5127 >            if (reducer == null) throw new NullPointerException();
5128 >            return new ReduceKeysTask<K,V>
5129 >                (map, null, -1, null, reducer);
5130 >        }
5131 >
5132 >        /**
5133 >         * Returns a task that when invoked, returns the result of
5134 >         * accumulating the given transformation of all keys using the given
5135 >         * reducer to combine values, or null if none.
5136 >         *
5137 >         * @param map the map
5138 >         * @param transformer a function returning the transformation
5139 >         * for an element, or null if there is no transformation (in
5140 >         * which case it is not combined).
5141 >         * @param reducer a commutative associative combining function
5142 >         * @return the task
5143 >         */
5144 >        public static <K,V,U> ForkJoinTask<U> reduceKeys
5145 >            (ConcurrentHashMapV8<K,V> map,
5146 >             Fun<? super K, ? extends U> transformer,
5147 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5148 >            if (transformer == null || reducer == null)
5149 >                throw new NullPointerException();
5150 >            return new MapReduceKeysTask<K,V,U>
5151 >                (map, null, -1, null, transformer, reducer);
5152 >        }
5153 >
5154 >        /**
5155 >         * Returns a task that when invoked, returns the result of
5156 >         * accumulating the given transformation of all keys using the given
5157 >         * reducer to combine values, and the given basis as an
5158 >         * identity value.
5159 >         *
5160 >         * @param map the map
5161 >         * @param transformer a function returning the transformation
5162 >         * for an element
5163 >         * @param basis the identity (initial default value) for the reduction
5164 >         * @param reducer a commutative associative combining function
5165 >         * @return the task
5166 >         */
5167 >        public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
5168 >            (ConcurrentHashMapV8<K,V> map,
5169 >             ObjectToDouble<? super K> transformer,
5170 >             double basis,
5171 >             DoubleByDoubleToDouble reducer) {
5172 >            if (transformer == null || reducer == null)
5173 >                throw new NullPointerException();
5174 >            return new MapReduceKeysToDoubleTask<K,V>
5175 >                (map, null, -1, null, transformer, basis, reducer);
5176 >        }
5177 >
5178 >        /**
5179 >         * Returns a task that when invoked, returns the result of
5180 >         * accumulating the given transformation of all keys using the given
5181 >         * reducer to combine values, and the given basis as an
5182 >         * identity value.
5183 >         *
5184 >         * @param map the map
5185 >         * @param transformer a function returning the transformation
5186 >         * for an element
5187 >         * @param basis the identity (initial default value) for the reduction
5188 >         * @param reducer a commutative associative combining function
5189 >         * @return the task
5190 >         */
5191 >        public static <K,V> ForkJoinTask<Long> reduceKeysToLong
5192 >            (ConcurrentHashMapV8<K,V> map,
5193 >             ObjectToLong<? super K> transformer,
5194 >             long basis,
5195 >             LongByLongToLong reducer) {
5196 >            if (transformer == null || reducer == null)
5197 >                throw new NullPointerException();
5198 >            return new MapReduceKeysToLongTask<K,V>
5199 >                (map, null, -1, null, transformer, basis, reducer);
5200 >        }
5201 >
5202 >        /**
5203 >         * Returns a task that when invoked, returns the result of
5204 >         * accumulating the given transformation of all keys using the given
5205 >         * reducer to combine values, and the given basis as an
5206 >         * identity value.
5207 >         *
5208 >         * @param map the map
5209 >         * @param transformer a function returning the transformation
5210 >         * for an element
5211 >         * @param basis the identity (initial default value) for the reduction
5212 >         * @param reducer a commutative associative combining function
5213 >         * @return the task
5214 >         */
5215 >        public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5216 >            (ConcurrentHashMapV8<K,V> map,
5217 >             ObjectToInt<? super K> transformer,
5218 >             int basis,
5219 >             IntByIntToInt reducer) {
5220 >            if (transformer == null || reducer == null)
5221 >                throw new NullPointerException();
5222 >            return new MapReduceKeysToIntTask<K,V>
5223 >                (map, null, -1, null, transformer, basis, reducer);
5224 >        }
5225 >
5226 >        /**
5227 >         * Returns a task that when invoked, performs the given action
5228 >         * for each value.
5229 >         *
5230 >         * @param map the map
5231 >         * @param action the action
5232 >         */
5233 >        public static <K,V> ForkJoinTask<Void> forEachValue
5234 >            (ConcurrentHashMapV8<K,V> map,
5235 >             Action<V> action) {
5236 >            if (action == null) throw new NullPointerException();
5237 >            return new ForEachValueTask<K,V>(map, null, -1, action);
5238 >        }
5239 >
5240 >        /**
5241 >         * Returns a task that when invoked, performs the given action
5242 >         * for each non-null transformation of each value.
5243 >         *
5244 >         * @param map the map
5245 >         * @param transformer a function returning the transformation
5246 >         * for an element, or null if there is no transformation (in
5247 >         * which case the action is not applied)
5248 >         * @param action the action
5249 >         */
5250 >        public static <K,V,U> ForkJoinTask<Void> forEachValue
5251 >            (ConcurrentHashMapV8<K,V> map,
5252 >             Fun<? super V, ? extends U> transformer,
5253 >             Action<U> action) {
5254 >            if (transformer == null || action == null)
5255 >                throw new NullPointerException();
5256 >            return new ForEachTransformedValueTask<K,V,U>
5257 >                (map, null, -1, transformer, action);
5258 >        }
5259 >
5260 >        /**
5261 >         * Returns a task that when invoked, returns a non-null result
5262 >         * from applying the given search function on each value, or
5263 >         * null if none.  Upon success, further element processing is
5264 >         * suppressed and the results of any other parallel
5265 >         * invocations of the search function are ignored.
5266 >         *
5267 >         * @param map the map
5268 >         * @param searchFunction a function returning a non-null
5269 >         * result on success, else null
5270 >         * @return the task
5271 >         */
5272 >        public static <K,V,U> ForkJoinTask<U> searchValues
5273 >            (ConcurrentHashMapV8<K,V> map,
5274 >             Fun<? super V, ? extends U> searchFunction) {
5275 >            if (searchFunction == null) throw new NullPointerException();
5276 >            return new SearchValuesTask<K,V,U>
5277 >                (map, null, -1, searchFunction,
5278 >                 new AtomicReference<U>());
5279 >        }
5280 >
5281 >        /**
5282 >         * Returns a task that when invoked, returns the result of
5283 >         * accumulating all values using the given reducer to combine
5284 >         * values, or null if none.
5285 >         *
5286 >         * @param map the map
5287 >         * @param reducer a commutative associative combining function
5288 >         * @return the task
5289 >         */
5290 >        public static <K,V> ForkJoinTask<V> reduceValues
5291 >            (ConcurrentHashMapV8<K,V> map,
5292 >             BiFun<? super V, ? super V, ? extends V> reducer) {
5293 >            if (reducer == null) throw new NullPointerException();
5294 >            return new ReduceValuesTask<K,V>
5295 >                (map, null, -1, null, reducer);
5296 >        }
5297 >
5298 >        /**
5299 >         * Returns a task that when invoked, returns the result of
5300 >         * accumulating the given transformation of all values using the
5301 >         * given reducer to combine values, or null if none.
5302 >         *
5303 >         * @param map the map
5304 >         * @param transformer a function returning the transformation
5305 >         * for an element, or null if there is no transformation (in
5306 >         * which case it is not combined).
5307 >         * @param reducer a commutative associative combining function
5308 >         * @return the task
5309 >         */
5310 >        public static <K,V,U> ForkJoinTask<U> reduceValues
5311 >            (ConcurrentHashMapV8<K,V> map,
5312 >             Fun<? super V, ? extends U> transformer,
5313 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5314 >            if (transformer == null || reducer == null)
5315 >                throw new NullPointerException();
5316 >            return new MapReduceValuesTask<K,V,U>
5317 >                (map, null, -1, null, transformer, reducer);
5318 >        }
5319 >
5320 >        /**
5321 >         * Returns a task that when invoked, returns the result of
5322 >         * accumulating the given transformation of all values using the
5323 >         * given reducer to combine values, and the given basis as an
5324 >         * identity value.
5325 >         *
5326 >         * @param map the map
5327 >         * @param transformer a function returning the transformation
5328 >         * for an element
5329 >         * @param basis the identity (initial default value) for the reduction
5330 >         * @param reducer a commutative associative combining function
5331 >         * @return the task
5332 >         */
5333 >        public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5334 >            (ConcurrentHashMapV8<K,V> map,
5335 >             ObjectToDouble<? super V> transformer,
5336 >             double basis,
5337 >             DoubleByDoubleToDouble reducer) {
5338 >            if (transformer == null || reducer == null)
5339 >                throw new NullPointerException();
5340 >            return new MapReduceValuesToDoubleTask<K,V>
5341 >                (map, null, -1, null, transformer, basis, reducer);
5342 >        }
5343 >
5344 >        /**
5345 >         * Returns a task that when invoked, returns the result of
5346 >         * accumulating the given transformation of all values using the
5347 >         * given reducer to combine values, and the given basis as an
5348 >         * identity value.
5349 >         *
5350 >         * @param map the map
5351 >         * @param transformer a function returning the transformation
5352 >         * for an element
5353 >         * @param basis the identity (initial default value) for the reduction
5354 >         * @param reducer a commutative associative combining function
5355 >         * @return the task
5356 >         */
5357 >        public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5358 >            (ConcurrentHashMapV8<K,V> map,
5359 >             ObjectToLong<? super V> transformer,
5360 >             long basis,
5361 >             LongByLongToLong reducer) {
5362 >            if (transformer == null || reducer == null)
5363 >                throw new NullPointerException();
5364 >            return new MapReduceValuesToLongTask<K,V>
5365 >                (map, null, -1, null, transformer, basis, reducer);
5366 >        }
5367 >
5368 >        /**
5369 >         * Returns a task that when invoked, returns the result of
5370 >         * accumulating the given transformation of all values using the
5371 >         * given reducer to combine values, and the given basis as an
5372 >         * identity value.
5373 >         *
5374 >         * @param map the map
5375 >         * @param transformer a function returning the transformation
5376 >         * for an element
5377 >         * @param basis the identity (initial default value) for the reduction
5378 >         * @param reducer a commutative associative combining function
5379 >         * @return the task
5380 >         */
5381 >        public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5382 >            (ConcurrentHashMapV8<K,V> map,
5383 >             ObjectToInt<? super V> transformer,
5384 >             int basis,
5385 >             IntByIntToInt reducer) {
5386 >            if (transformer == null || reducer == null)
5387 >                throw new NullPointerException();
5388 >            return new MapReduceValuesToIntTask<K,V>
5389 >                (map, null, -1, null, transformer, basis, reducer);
5390 >        }
5391 >
5392 >        /**
5393 >         * Returns a task that when invoked, perform the given action
5394 >         * for each entry.
5395 >         *
5396 >         * @param map the map
5397 >         * @param action the action
5398 >         */
5399 >        public static <K,V> ForkJoinTask<Void> forEachEntry
5400 >            (ConcurrentHashMapV8<K,V> map,
5401 >             Action<Map.Entry<K,V>> action) {
5402 >            if (action == null) throw new NullPointerException();
5403 >            return new ForEachEntryTask<K,V>(map, null, -1, action);
5404 >        }
5405 >
5406 >        /**
5407 >         * Returns a task that when invoked, perform the given action
5408 >         * for each non-null transformation of each entry.
5409 >         *
5410 >         * @param map the map
5411 >         * @param transformer a function returning the transformation
5412 >         * for an element, or null if there is no transformation (in
5413 >         * which case the action is not applied)
5414 >         * @param action the action
5415 >         */
5416 >        public static <K,V,U> ForkJoinTask<Void> forEachEntry
5417 >            (ConcurrentHashMapV8<K,V> map,
5418 >             Fun<Map.Entry<K,V>, ? extends U> transformer,
5419 >             Action<U> action) {
5420 >            if (transformer == null || action == null)
5421 >                throw new NullPointerException();
5422 >            return new ForEachTransformedEntryTask<K,V,U>
5423 >                (map, null, -1, transformer, action);
5424 >        }
5425 >
5426 >        /**
5427 >         * Returns a task that when invoked, returns a non-null result
5428 >         * from applying the given search function on each entry, or
5429 >         * null if none.  Upon success, further element processing is
5430 >         * suppressed and the results of any other parallel
5431 >         * invocations of the search function are ignored.
5432 >         *
5433 >         * @param map the map
5434 >         * @param searchFunction a function returning a non-null
5435 >         * result on success, else null
5436 >         * @return the task
5437 >         */
5438 >        public static <K,V,U> ForkJoinTask<U> searchEntries
5439 >            (ConcurrentHashMapV8<K,V> map,
5440 >             Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
5441 >            if (searchFunction == null) throw new NullPointerException();
5442 >            return new SearchEntriesTask<K,V,U>
5443 >                (map, null, -1, searchFunction,
5444 >                 new AtomicReference<U>());
5445 >        }
5446 >
5447 >        /**
5448 >         * Returns a task that when invoked, returns the result of
5449 >         * accumulating all entries using the given reducer to combine
5450 >         * values, or null if none.
5451 >         *
5452 >         * @param map the map
5453 >         * @param reducer a commutative associative combining function
5454 >         * @return the task
5455 >         */
5456 >        public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5457 >            (ConcurrentHashMapV8<K,V> map,
5458 >             BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5459 >            if (reducer == null) throw new NullPointerException();
5460 >            return new ReduceEntriesTask<K,V>
5461 >                (map, null, -1, null, reducer);
5462 >        }
5463 >
5464 >        /**
5465 >         * Returns a task that when invoked, returns the result of
5466 >         * accumulating the given transformation of all entries using the
5467 >         * given reducer to combine values, or null if none.
5468 >         *
5469 >         * @param map the map
5470 >         * @param transformer a function returning the transformation
5471 >         * for an element, or null if there is no transformation (in
5472 >         * which case it is not combined).
5473 >         * @param reducer a commutative associative combining function
5474 >         * @return the task
5475 >         */
5476 >        public static <K,V,U> ForkJoinTask<U> reduceEntries
5477 >            (ConcurrentHashMapV8<K,V> map,
5478 >             Fun<Map.Entry<K,V>, ? extends U> transformer,
5479 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5480 >            if (transformer == null || reducer == null)
5481 >                throw new NullPointerException();
5482 >            return new MapReduceEntriesTask<K,V,U>
5483 >                (map, null, -1, null, transformer, reducer);
5484 >        }
5485 >
5486 >        /**
5487 >         * Returns a task that when invoked, returns the result of
5488 >         * accumulating the given transformation of all entries using the
5489 >         * given reducer to combine values, and the given basis as an
5490 >         * identity value.
5491 >         *
5492 >         * @param map the map
5493 >         * @param transformer a function returning the transformation
5494 >         * for an element
5495 >         * @param basis the identity (initial default value) for the reduction
5496 >         * @param reducer a commutative associative combining function
5497 >         * @return the task
5498 >         */
5499 >        public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5500 >            (ConcurrentHashMapV8<K,V> map,
5501 >             ObjectToDouble<Map.Entry<K,V>> transformer,
5502 >             double basis,
5503 >             DoubleByDoubleToDouble reducer) {
5504 >            if (transformer == null || reducer == null)
5505 >                throw new NullPointerException();
5506 >            return new MapReduceEntriesToDoubleTask<K,V>
5507 >                (map, null, -1, null, transformer, basis, reducer);
5508 >        }
5509 >
5510 >        /**
5511 >         * Returns a task that when invoked, returns the result of
5512 >         * accumulating the given transformation of all entries using the
5513 >         * given reducer to combine values, and the given basis as an
5514 >         * identity value.
5515 >         *
5516 >         * @param map the map
5517 >         * @param transformer a function returning the transformation
5518 >         * for an element
5519 >         * @param basis the identity (initial default value) for the reduction
5520 >         * @param reducer a commutative associative combining function
5521 >         * @return the task
5522 >         */
5523 >        public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5524 >            (ConcurrentHashMapV8<K,V> map,
5525 >             ObjectToLong<Map.Entry<K,V>> transformer,
5526 >             long basis,
5527 >             LongByLongToLong reducer) {
5528 >            if (transformer == null || reducer == null)
5529 >                throw new NullPointerException();
5530 >            return new MapReduceEntriesToLongTask<K,V>
5531 >                (map, null, -1, null, transformer, basis, reducer);
5532 >        }
5533 >
5534 >        /**
5535 >         * Returns a task that when invoked, returns the result of
5536 >         * accumulating the given transformation of all entries using the
5537 >         * given reducer to combine values, and the given basis as an
5538 >         * identity value.
5539 >         *
5540 >         * @param map the map
5541 >         * @param transformer a function returning the transformation
5542 >         * for an element
5543 >         * @param basis the identity (initial default value) for the reduction
5544 >         * @param reducer a commutative associative combining function
5545 >         * @return the task
5546 >         */
5547 >        public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5548 >            (ConcurrentHashMapV8<K,V> map,
5549 >             ObjectToInt<Map.Entry<K,V>> transformer,
5550 >             int basis,
5551 >             IntByIntToInt reducer) {
5552 >            if (transformer == null || reducer == null)
5553 >                throw new NullPointerException();
5554 >            return new MapReduceEntriesToIntTask<K,V>
5555 >                (map, null, -1, null, transformer, basis, reducer);
5556 >        }
5557      }
5558  
5559 <    /**
5560 <     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
5561 <     * stream (i.e., serializes it).
5562 <     * @param s the stream
5563 <     * @serialData
5564 <     * the key (Object) and value (Object)
5565 <     * for each key-value mapping, followed by a null pair.
5566 <     * The key-value mappings are emitted in no particular order.
5567 <     */
5568 <    @SuppressWarnings("unchecked")
5569 <    private void writeObject(java.io.ObjectOutputStream s)
5570 <            throws java.io.IOException {
5571 <        if (segments == null) { // for serialization compatibility
5572 <            segments = (Segment<K,V>[])
5573 <                new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
5574 <            for (int i = 0; i < segments.length; ++i)
5575 <                segments[i] = new Segment<K,V>(LOAD_FACTOR);
5559 >    // -------------------------------------------------------
5560 >
5561 >    /*
5562 >     * Task classes. Coded in a regular but ugly format/style to
5563 >     * simplify checks that each variant differs in the right way from
5564 >     * others. The null screenings exist because compilers cannot tell
5565 >     * that we've already null-checked task arguments, so we force
5566 >     * simplest hoisted bypass to help avoid convoluted traps.
5567 >     */
5568 >
5569 >    @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5570 >        extends Traverser<K,V,Void> {
5571 >        final Action<K> action;
5572 >        ForEachKeyTask
5573 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5574 >             Action<K> action) {
5575 >            super(m, p, b);
5576 >            this.action = action;
5577 >        }
5578 >        @SuppressWarnings("unchecked") public final void compute() {
5579 >            final Action<K> action;
5580 >            if ((action = this.action) != null) {
5581 >                for (int b; (b = preSplit()) > 0;)
5582 >                    new ForEachKeyTask<K,V>(map, this, b, action).fork();
5583 >                while (advance() != null)
5584 >                    action.apply((K)nextKey);
5585 >                propagateCompletion();
5586 >            }
5587 >        }
5588 >    }
5589 >
5590 >    @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5591 >        extends Traverser<K,V,Void> {
5592 >        final Action<V> action;
5593 >        ForEachValueTask
5594 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5595 >             Action<V> action) {
5596 >            super(m, p, b);
5597 >            this.action = action;
5598 >        }
5599 >        @SuppressWarnings("unchecked") public final void compute() {
5600 >            final Action<V> action;
5601 >            if ((action = this.action) != null) {
5602 >                for (int b; (b = preSplit()) > 0;)
5603 >                    new ForEachValueTask<K,V>(map, this, b, action).fork();
5604 >                V v;
5605 >                while ((v = advance()) != null)
5606 >                    action.apply(v);
5607 >                propagateCompletion();
5608 >            }
5609 >        }
5610 >    }
5611 >
5612 >    @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5613 >        extends Traverser<K,V,Void> {
5614 >        final Action<Entry<K,V>> action;
5615 >        ForEachEntryTask
5616 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5617 >             Action<Entry<K,V>> action) {
5618 >            super(m, p, b);
5619 >            this.action = action;
5620 >        }
5621 >        @SuppressWarnings("unchecked") public final void compute() {
5622 >            final Action<Entry<K,V>> action;
5623 >            if ((action = this.action) != null) {
5624 >                for (int b; (b = preSplit()) > 0;)
5625 >                    new ForEachEntryTask<K,V>(map, this, b, action).fork();
5626 >                V v;
5627 >                while ((v = advance()) != null)
5628 >                    action.apply(entryFor((K)nextKey, v));
5629 >                propagateCompletion();
5630 >            }
5631 >        }
5632 >    }
5633 >
5634 >    @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5635 >        extends Traverser<K,V,Void> {
5636 >        final BiAction<K,V> action;
5637 >        ForEachMappingTask
5638 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5639 >             BiAction<K,V> action) {
5640 >            super(m, p, b);
5641 >            this.action = action;
5642 >        }
5643 >        @SuppressWarnings("unchecked") public final void compute() {
5644 >            final BiAction<K,V> action;
5645 >            if ((action = this.action) != null) {
5646 >                for (int b; (b = preSplit()) > 0;)
5647 >                    new ForEachMappingTask<K,V>(map, this, b, action).fork();
5648 >                V v;
5649 >                while ((v = advance()) != null)
5650 >                    action.apply((K)nextKey, v);
5651 >                propagateCompletion();
5652 >            }
5653 >        }
5654 >    }
5655 >
5656 >    @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5657 >        extends Traverser<K,V,Void> {
5658 >        final Fun<? super K, ? extends U> transformer;
5659 >        final Action<U> action;
5660 >        ForEachTransformedKeyTask
5661 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5662 >             Fun<? super K, ? extends U> transformer, Action<U> action) {
5663 >            super(m, p, b);
5664 >            this.transformer = transformer; this.action = action;
5665 >        }
5666 >        @SuppressWarnings("unchecked") public final void compute() {
5667 >            final Fun<? super K, ? extends U> transformer;
5668 >            final Action<U> action;
5669 >            if ((transformer = this.transformer) != null &&
5670 >                (action = this.action) != null) {
5671 >                for (int b; (b = preSplit()) > 0;)
5672 >                    new ForEachTransformedKeyTask<K,V,U>
5673 >                        (map, this, b, transformer, action).fork();
5674 >                U u;
5675 >                while (advance() != null) {
5676 >                    if ((u = transformer.apply((K)nextKey)) != null)
5677 >                        action.apply(u);
5678 >                }
5679 >                propagateCompletion();
5680 >            }
5681          }
5682 <        s.defaultWriteObject();
5683 <        InternalIterator it = new InternalIterator(table);
5684 <        while (it.next != null) {
5685 <            s.writeObject(it.nextKey);
5686 <            s.writeObject(it.nextVal);
5687 <            it.advance();
5682 >    }
5683 >
5684 >    @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5685 >        extends Traverser<K,V,Void> {
5686 >        final Fun<? super V, ? extends U> transformer;
5687 >        final Action<U> action;
5688 >        ForEachTransformedValueTask
5689 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5690 >             Fun<? super V, ? extends U> transformer, Action<U> action) {
5691 >            super(m, p, b);
5692 >            this.transformer = transformer; this.action = action;
5693 >        }
5694 >        @SuppressWarnings("unchecked") public final void compute() {
5695 >            final Fun<? super V, ? extends U> transformer;
5696 >            final Action<U> action;
5697 >            if ((transformer = this.transformer) != null &&
5698 >                (action = this.action) != null) {
5699 >                for (int b; (b = preSplit()) > 0;)
5700 >                    new ForEachTransformedValueTask<K,V,U>
5701 >                        (map, this, b, transformer, action).fork();
5702 >                V v; U u;
5703 >                while ((v = advance()) != null) {
5704 >                    if ((u = transformer.apply(v)) != null)
5705 >                        action.apply(u);
5706 >                }
5707 >                propagateCompletion();
5708 >            }
5709          }
2348        s.writeObject(null);
2349        s.writeObject(null);
2350        segments = null; // throw away
5710      }
5711  
5712 <    /**
5713 <     * Reconstitutes the instance from a stream (that is, deserializes it).
5714 <     * @param s the stream
5715 <     */
5716 <    @SuppressWarnings("unchecked")
5717 <    private void readObject(java.io.ObjectInputStream s)
5718 <            throws java.io.IOException, ClassNotFoundException {
5719 <        s.defaultReadObject();
5720 <        this.segments = null; // unneeded
5721 <        // initialize transient final field
5722 <        UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
5712 >    @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5713 >        extends Traverser<K,V,Void> {
5714 >        final Fun<Map.Entry<K,V>, ? extends U> transformer;
5715 >        final Action<U> action;
5716 >        ForEachTransformedEntryTask
5717 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5718 >             Fun<Map.Entry<K,V>, ? extends U> transformer, Action<U> action) {
5719 >            super(m, p, b);
5720 >            this.transformer = transformer; this.action = action;
5721 >        }
5722 >        @SuppressWarnings("unchecked") public final void compute() {
5723 >            final Fun<Map.Entry<K,V>, ? extends U> transformer;
5724 >            final Action<U> action;
5725 >            if ((transformer = this.transformer) != null &&
5726 >                (action = this.action) != null) {
5727 >                for (int b; (b = preSplit()) > 0;)
5728 >                    new ForEachTransformedEntryTask<K,V,U>
5729 >                        (map, this, b, transformer, action).fork();
5730 >                V v; U u;
5731 >                while ((v = advance()) != null) {
5732 >                    if ((u = transformer.apply(entryFor((K)nextKey,
5733 >                                                        v))) != null)
5734 >                        action.apply(u);
5735 >                }
5736 >                propagateCompletion();
5737 >            }
5738 >        }
5739 >    }
5740  
5741 <        // Create all nodes, then place in table once size is known
5742 <        long size = 0L;
5743 <        Node p = null;
5744 <        for (;;) {
5745 <            K k = (K) s.readObject();
5746 <            V v = (V) s.readObject();
5747 <            if (k != null && v != null) {
5748 <                p = new Node(spread(k.hashCode()), k, v, p);
5749 <                ++size;
5741 >    @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5742 >        extends Traverser<K,V,Void> {
5743 >        final BiFun<? super K, ? super V, ? extends U> transformer;
5744 >        final Action<U> action;
5745 >        ForEachTransformedMappingTask
5746 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5747 >             BiFun<? super K, ? super V, ? extends U> transformer,
5748 >             Action<U> action) {
5749 >            super(m, p, b);
5750 >            this.transformer = transformer; this.action = action;
5751 >        }
5752 >        @SuppressWarnings("unchecked") public final void compute() {
5753 >            final BiFun<? super K, ? super V, ? extends U> transformer;
5754 >            final Action<U> action;
5755 >            if ((transformer = this.transformer) != null &&
5756 >                (action = this.action) != null) {
5757 >                for (int b; (b = preSplit()) > 0;)
5758 >                    new ForEachTransformedMappingTask<K,V,U>
5759 >                        (map, this, b, transformer, action).fork();
5760 >                V v; U u;
5761 >                while ((v = advance()) != null) {
5762 >                    if ((u = transformer.apply((K)nextKey, v)) != null)
5763 >                        action.apply(u);
5764 >                }
5765 >                propagateCompletion();
5766              }
2375            else
2376                break;
5767          }
5768 <        if (p != null) {
5769 <            boolean init = false;
5770 <            int n;
5771 <            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
5772 <                n = MAXIMUM_CAPACITY;
5773 <            else {
5774 <                int sz = (int)size;
5775 <                n = tableSizeFor(sz + (sz >>> 1) + 1);
5768 >    }
5769 >
5770 >    @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5771 >        extends Traverser<K,V,U> {
5772 >        final Fun<? super K, ? extends U> searchFunction;
5773 >        final AtomicReference<U> result;
5774 >        SearchKeysTask
5775 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5776 >             Fun<? super K, ? extends U> searchFunction,
5777 >             AtomicReference<U> result) {
5778 >            super(m, p, b);
5779 >            this.searchFunction = searchFunction; this.result = result;
5780 >        }
5781 >        public final U getRawResult() { return result.get(); }
5782 >        @SuppressWarnings("unchecked") public final void compute() {
5783 >            final Fun<? super K, ? extends U> searchFunction;
5784 >            final AtomicReference<U> result;
5785 >            if ((searchFunction = this.searchFunction) != null &&
5786 >                (result = this.result) != null) {
5787 >                for (int b;;) {
5788 >                    if (result.get() != null)
5789 >                        return;
5790 >                    if ((b = preSplit()) <= 0)
5791 >                        break;
5792 >                    new SearchKeysTask<K,V,U>
5793 >                        (map, this, b, searchFunction, result).fork();
5794 >                }
5795 >                while (result.get() == null) {
5796 >                    U u;
5797 >                    if (advance() == null) {
5798 >                        propagateCompletion();
5799 >                        break;
5800 >                    }
5801 >                    if ((u = searchFunction.apply((K)nextKey)) != null) {
5802 >                        if (result.compareAndSet(null, u))
5803 >                            quietlyCompleteRoot();
5804 >                        break;
5805 >                    }
5806 >                }
5807              }
5808 <            int sc = sizeCtl;
5809 <            if (n > sc &&
5810 <                UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
5811 <                try {
5812 <                    if (table == null) {
5813 <                        init = true;
5814 <                        Node[] tab = new Node[n];
5815 <                        int mask = n - 1;
5816 <                        while (p != null) {
5817 <                            int j = p.hash & mask;
5818 <                            Node next = p.next;
5819 <                            p.next = tabAt(tab, j);
5820 <                            setTabAt(tab, j, p);
5821 <                            p = next;
5822 <                        }
5823 <                        table = tab;
5824 <                        counter.add(size);
5825 <                        sc = n - (n >>> 2);
5808 >        }
5809 >    }
5810 >
5811 >    @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5812 >        extends Traverser<K,V,U> {
5813 >        final Fun<? super V, ? extends U> searchFunction;
5814 >        final AtomicReference<U> result;
5815 >        SearchValuesTask
5816 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5817 >             Fun<? super V, ? extends U> searchFunction,
5818 >             AtomicReference<U> result) {
5819 >            super(m, p, b);
5820 >            this.searchFunction = searchFunction; this.result = result;
5821 >        }
5822 >        public final U getRawResult() { return result.get(); }
5823 >        @SuppressWarnings("unchecked") public final void compute() {
5824 >            final Fun<? super V, ? extends U> searchFunction;
5825 >            final AtomicReference<U> result;
5826 >            if ((searchFunction = this.searchFunction) != null &&
5827 >                (result = this.result) != null) {
5828 >                for (int b;;) {
5829 >                    if (result.get() != null)
5830 >                        return;
5831 >                    if ((b = preSplit()) <= 0)
5832 >                        break;
5833 >                    new SearchValuesTask<K,V,U>
5834 >                        (map, this, b, searchFunction, result).fork();
5835 >                }
5836 >                while (result.get() == null) {
5837 >                    V v; U u;
5838 >                    if ((v = advance()) == null) {
5839 >                        propagateCompletion();
5840 >                        break;
5841 >                    }
5842 >                    if ((u = searchFunction.apply(v)) != null) {
5843 >                        if (result.compareAndSet(null, u))
5844 >                            quietlyCompleteRoot();
5845 >                        break;
5846                      }
2406                } finally {
2407                    sizeCtl = sc;
5847                  }
5848              }
5849 <            if (!init) { // Can only happen if unsafely published.
5850 <                while (p != null) {
5851 <                    internalPut(p.key, p.val);
5852 <                    p = p.next;
5849 >        }
5850 >    }
5851 >
5852 >    @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5853 >        extends Traverser<K,V,U> {
5854 >        final Fun<Entry<K,V>, ? extends U> searchFunction;
5855 >        final AtomicReference<U> result;
5856 >        SearchEntriesTask
5857 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5858 >             Fun<Entry<K,V>, ? extends U> searchFunction,
5859 >             AtomicReference<U> result) {
5860 >            super(m, p, b);
5861 >            this.searchFunction = searchFunction; this.result = result;
5862 >        }
5863 >        public final U getRawResult() { return result.get(); }
5864 >        @SuppressWarnings("unchecked") public final void compute() {
5865 >            final Fun<Entry<K,V>, ? extends U> searchFunction;
5866 >            final AtomicReference<U> result;
5867 >            if ((searchFunction = this.searchFunction) != null &&
5868 >                (result = this.result) != null) {
5869 >                for (int b;;) {
5870 >                    if (result.get() != null)
5871 >                        return;
5872 >                    if ((b = preSplit()) <= 0)
5873 >                        break;
5874 >                    new SearchEntriesTask<K,V,U>
5875 >                        (map, this, b, searchFunction, result).fork();
5876 >                }
5877 >                while (result.get() == null) {
5878 >                    V v; U u;
5879 >                    if ((v = advance()) == null) {
5880 >                        propagateCompletion();
5881 >                        break;
5882 >                    }
5883 >                    if ((u = searchFunction.apply(entryFor((K)nextKey,
5884 >                                                           v))) != null) {
5885 >                        if (result.compareAndSet(null, u))
5886 >                            quietlyCompleteRoot();
5887 >                        return;
5888 >                    }
5889 >                }
5890 >            }
5891 >        }
5892 >    }
5893 >
5894 >    @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5895 >        extends Traverser<K,V,U> {
5896 >        final BiFun<? super K, ? super V, ? extends U> searchFunction;
5897 >        final AtomicReference<U> result;
5898 >        SearchMappingsTask
5899 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5900 >             BiFun<? super K, ? super V, ? extends U> searchFunction,
5901 >             AtomicReference<U> result) {
5902 >            super(m, p, b);
5903 >            this.searchFunction = searchFunction; this.result = result;
5904 >        }
5905 >        public final U getRawResult() { return result.get(); }
5906 >        @SuppressWarnings("unchecked") public final void compute() {
5907 >            final BiFun<? super K, ? super V, ? extends U> searchFunction;
5908 >            final AtomicReference<U> result;
5909 >            if ((searchFunction = this.searchFunction) != null &&
5910 >                (result = this.result) != null) {
5911 >                for (int b;;) {
5912 >                    if (result.get() != null)
5913 >                        return;
5914 >                    if ((b = preSplit()) <= 0)
5915 >                        break;
5916 >                    new SearchMappingsTask<K,V,U>
5917 >                        (map, this, b, searchFunction, result).fork();
5918 >                }
5919 >                while (result.get() == null) {
5920 >                    V v; U u;
5921 >                    if ((v = advance()) == null) {
5922 >                        propagateCompletion();
5923 >                        break;
5924 >                    }
5925 >                    if ((u = searchFunction.apply((K)nextKey, v)) != null) {
5926 >                        if (result.compareAndSet(null, u))
5927 >                            quietlyCompleteRoot();
5928 >                        break;
5929 >                    }
5930 >                }
5931 >            }
5932 >        }
5933 >    }
5934 >
5935 >    @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5936 >        extends Traverser<K,V,K> {
5937 >        final BiFun<? super K, ? super K, ? extends K> reducer;
5938 >        K result;
5939 >        ReduceKeysTask<K,V> rights, nextRight;
5940 >        ReduceKeysTask
5941 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5942 >             ReduceKeysTask<K,V> nextRight,
5943 >             BiFun<? super K, ? super K, ? extends K> reducer) {
5944 >            super(m, p, b); this.nextRight = nextRight;
5945 >            this.reducer = reducer;
5946 >        }
5947 >        public final K getRawResult() { return result; }
5948 >        @SuppressWarnings("unchecked") public final void compute() {
5949 >            final BiFun<? super K, ? super K, ? extends K> reducer;
5950 >            if ((reducer = this.reducer) != null) {
5951 >                for (int b; (b = preSplit()) > 0;)
5952 >                    (rights = new ReduceKeysTask<K,V>
5953 >                     (map, this, b, rights, reducer)).fork();
5954 >                K r = null;
5955 >                while (advance() != null) {
5956 >                    K u = (K)nextKey;
5957 >                    r = (r == null) ? u : reducer.apply(r, u);
5958 >                }
5959 >                result = r;
5960 >                CountedCompleter<?> c;
5961 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5962 >                    ReduceKeysTask<K,V>
5963 >                        t = (ReduceKeysTask<K,V>)c,
5964 >                        s = t.rights;
5965 >                    while (s != null) {
5966 >                        K tr, sr;
5967 >                        if ((sr = s.result) != null)
5968 >                            t.result = (((tr = t.result) == null) ? sr :
5969 >                                        reducer.apply(tr, sr));
5970 >                        s = t.rights = s.nextRight;
5971 >                    }
5972 >                }
5973 >            }
5974 >        }
5975 >    }
5976 >
5977 >    @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5978 >        extends Traverser<K,V,V> {
5979 >        final BiFun<? super V, ? super V, ? extends V> reducer;
5980 >        V result;
5981 >        ReduceValuesTask<K,V> rights, nextRight;
5982 >        ReduceValuesTask
5983 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5984 >             ReduceValuesTask<K,V> nextRight,
5985 >             BiFun<? super V, ? super V, ? extends V> reducer) {
5986 >            super(m, p, b); this.nextRight = nextRight;
5987 >            this.reducer = reducer;
5988 >        }
5989 >        public final V getRawResult() { return result; }
5990 >        @SuppressWarnings("unchecked") public final void compute() {
5991 >            final BiFun<? super V, ? super V, ? extends V> reducer;
5992 >            if ((reducer = this.reducer) != null) {
5993 >                for (int b; (b = preSplit()) > 0;)
5994 >                    (rights = new ReduceValuesTask<K,V>
5995 >                     (map, this, b, rights, reducer)).fork();
5996 >                V r = null;
5997 >                V v;
5998 >                while ((v = advance()) != null) {
5999 >                    V u = v;
6000 >                    r = (r == null) ? u : reducer.apply(r, u);
6001 >                }
6002 >                result = r;
6003 >                CountedCompleter<?> c;
6004 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6005 >                    ReduceValuesTask<K,V>
6006 >                        t = (ReduceValuesTask<K,V>)c,
6007 >                        s = t.rights;
6008 >                    while (s != null) {
6009 >                        V tr, sr;
6010 >                        if ((sr = s.result) != null)
6011 >                            t.result = (((tr = t.result) == null) ? sr :
6012 >                                        reducer.apply(tr, sr));
6013 >                        s = t.rights = s.nextRight;
6014 >                    }
6015 >                }
6016 >            }
6017 >        }
6018 >    }
6019 >
6020 >    @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
6021 >        extends Traverser<K,V,Map.Entry<K,V>> {
6022 >        final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6023 >        Map.Entry<K,V> result;
6024 >        ReduceEntriesTask<K,V> rights, nextRight;
6025 >        ReduceEntriesTask
6026 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6027 >             ReduceEntriesTask<K,V> nextRight,
6028 >             BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
6029 >            super(m, p, b); this.nextRight = nextRight;
6030 >            this.reducer = reducer;
6031 >        }
6032 >        public final Map.Entry<K,V> getRawResult() { return result; }
6033 >        @SuppressWarnings("unchecked") public final void compute() {
6034 >            final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6035 >            if ((reducer = this.reducer) != null) {
6036 >                for (int b; (b = preSplit()) > 0;)
6037 >                    (rights = new ReduceEntriesTask<K,V>
6038 >                     (map, this, b, rights, reducer)).fork();
6039 >                Map.Entry<K,V> r = null;
6040 >                V v;
6041 >                while ((v = advance()) != null) {
6042 >                    Map.Entry<K,V> u = entryFor((K)nextKey, v);
6043 >                    r = (r == null) ? u : reducer.apply(r, u);
6044 >                }
6045 >                result = r;
6046 >                CountedCompleter<?> c;
6047 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6048 >                    ReduceEntriesTask<K,V>
6049 >                        t = (ReduceEntriesTask<K,V>)c,
6050 >                        s = t.rights;
6051 >                    while (s != null) {
6052 >                        Map.Entry<K,V> tr, sr;
6053 >                        if ((sr = s.result) != null)
6054 >                            t.result = (((tr = t.result) == null) ? sr :
6055 >                                        reducer.apply(tr, sr));
6056 >                        s = t.rights = s.nextRight;
6057 >                    }
6058 >                }
6059 >            }
6060 >        }
6061 >    }
6062 >
6063 >    @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
6064 >        extends Traverser<K,V,U> {
6065 >        final Fun<? super K, ? extends U> transformer;
6066 >        final BiFun<? super U, ? super U, ? extends U> reducer;
6067 >        U result;
6068 >        MapReduceKeysTask<K,V,U> rights, nextRight;
6069 >        MapReduceKeysTask
6070 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6071 >             MapReduceKeysTask<K,V,U> nextRight,
6072 >             Fun<? super K, ? extends U> transformer,
6073 >             BiFun<? super U, ? super U, ? extends U> reducer) {
6074 >            super(m, p, b); this.nextRight = nextRight;
6075 >            this.transformer = transformer;
6076 >            this.reducer = reducer;
6077 >        }
6078 >        public final U getRawResult() { return result; }
6079 >        @SuppressWarnings("unchecked") public final void compute() {
6080 >            final Fun<? super K, ? extends U> transformer;
6081 >            final BiFun<? super U, ? super U, ? extends U> reducer;
6082 >            if ((transformer = this.transformer) != null &&
6083 >                (reducer = this.reducer) != null) {
6084 >                for (int b; (b = preSplit()) > 0;)
6085 >                    (rights = new MapReduceKeysTask<K,V,U>
6086 >                     (map, this, b, rights, transformer, reducer)).fork();
6087 >                U r = null, u;
6088 >                while (advance() != null) {
6089 >                    if ((u = transformer.apply((K)nextKey)) != null)
6090 >                        r = (r == null) ? u : reducer.apply(r, u);
6091 >                }
6092 >                result = r;
6093 >                CountedCompleter<?> c;
6094 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6095 >                    MapReduceKeysTask<K,V,U>
6096 >                        t = (MapReduceKeysTask<K,V,U>)c,
6097 >                        s = t.rights;
6098 >                    while (s != null) {
6099 >                        U tr, sr;
6100 >                        if ((sr = s.result) != null)
6101 >                            t.result = (((tr = t.result) == null) ? sr :
6102 >                                        reducer.apply(tr, sr));
6103 >                        s = t.rights = s.nextRight;
6104 >                    }
6105 >                }
6106 >            }
6107 >        }
6108 >    }
6109 >
6110 >    @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
6111 >        extends Traverser<K,V,U> {
6112 >        final Fun<? super V, ? extends U> transformer;
6113 >        final BiFun<? super U, ? super U, ? extends U> reducer;
6114 >        U result;
6115 >        MapReduceValuesTask<K,V,U> rights, nextRight;
6116 >        MapReduceValuesTask
6117 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6118 >             MapReduceValuesTask<K,V,U> nextRight,
6119 >             Fun<? super V, ? extends U> transformer,
6120 >             BiFun<? super U, ? super U, ? extends U> reducer) {
6121 >            super(m, p, b); this.nextRight = nextRight;
6122 >            this.transformer = transformer;
6123 >            this.reducer = reducer;
6124 >        }
6125 >        public final U getRawResult() { return result; }
6126 >        @SuppressWarnings("unchecked") public final void compute() {
6127 >            final Fun<? super V, ? extends U> transformer;
6128 >            final BiFun<? super U, ? super U, ? extends U> reducer;
6129 >            if ((transformer = this.transformer) != null &&
6130 >                (reducer = this.reducer) != null) {
6131 >                for (int b; (b = preSplit()) > 0;)
6132 >                    (rights = new MapReduceValuesTask<K,V,U>
6133 >                     (map, this, b, rights, transformer, reducer)).fork();
6134 >                U r = null, u;
6135 >                V v;
6136 >                while ((v = advance()) != null) {
6137 >                    if ((u = transformer.apply(v)) != null)
6138 >                        r = (r == null) ? u : reducer.apply(r, u);
6139 >                }
6140 >                result = r;
6141 >                CountedCompleter<?> c;
6142 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6143 >                    MapReduceValuesTask<K,V,U>
6144 >                        t = (MapReduceValuesTask<K,V,U>)c,
6145 >                        s = t.rights;
6146 >                    while (s != null) {
6147 >                        U tr, sr;
6148 >                        if ((sr = s.result) != null)
6149 >                            t.result = (((tr = t.result) == null) ? sr :
6150 >                                        reducer.apply(tr, sr));
6151 >                        s = t.rights = s.nextRight;
6152 >                    }
6153 >                }
6154 >            }
6155 >        }
6156 >    }
6157 >
6158 >    @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
6159 >        extends Traverser<K,V,U> {
6160 >        final Fun<Map.Entry<K,V>, ? extends U> transformer;
6161 >        final BiFun<? super U, ? super U, ? extends U> reducer;
6162 >        U result;
6163 >        MapReduceEntriesTask<K,V,U> rights, nextRight;
6164 >        MapReduceEntriesTask
6165 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6166 >             MapReduceEntriesTask<K,V,U> nextRight,
6167 >             Fun<Map.Entry<K,V>, ? extends U> transformer,
6168 >             BiFun<? super U, ? super U, ? extends U> reducer) {
6169 >            super(m, p, b); this.nextRight = nextRight;
6170 >            this.transformer = transformer;
6171 >            this.reducer = reducer;
6172 >        }
6173 >        public final U getRawResult() { return result; }
6174 >        @SuppressWarnings("unchecked") public final void compute() {
6175 >            final Fun<Map.Entry<K,V>, ? extends U> transformer;
6176 >            final BiFun<? super U, ? super U, ? extends U> reducer;
6177 >            if ((transformer = this.transformer) != null &&
6178 >                (reducer = this.reducer) != null) {
6179 >                for (int b; (b = preSplit()) > 0;)
6180 >                    (rights = new MapReduceEntriesTask<K,V,U>
6181 >                     (map, this, b, rights, transformer, reducer)).fork();
6182 >                U r = null, u;
6183 >                V v;
6184 >                while ((v = advance()) != null) {
6185 >                    if ((u = transformer.apply(entryFor((K)nextKey,
6186 >                                                        v))) != null)
6187 >                        r = (r == null) ? u : reducer.apply(r, u);
6188 >                }
6189 >                result = r;
6190 >                CountedCompleter<?> c;
6191 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6192 >                    MapReduceEntriesTask<K,V,U>
6193 >                        t = (MapReduceEntriesTask<K,V,U>)c,
6194 >                        s = t.rights;
6195 >                    while (s != null) {
6196 >                        U tr, sr;
6197 >                        if ((sr = s.result) != null)
6198 >                            t.result = (((tr = t.result) == null) ? sr :
6199 >                                        reducer.apply(tr, sr));
6200 >                        s = t.rights = s.nextRight;
6201 >                    }
6202 >                }
6203 >            }
6204 >        }
6205 >    }
6206 >
6207 >    @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
6208 >        extends Traverser<K,V,U> {
6209 >        final BiFun<? super K, ? super V, ? extends U> transformer;
6210 >        final BiFun<? super U, ? super U, ? extends U> reducer;
6211 >        U result;
6212 >        MapReduceMappingsTask<K,V,U> rights, nextRight;
6213 >        MapReduceMappingsTask
6214 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6215 >             MapReduceMappingsTask<K,V,U> nextRight,
6216 >             BiFun<? super K, ? super V, ? extends U> transformer,
6217 >             BiFun<? super U, ? super U, ? extends U> reducer) {
6218 >            super(m, p, b); this.nextRight = nextRight;
6219 >            this.transformer = transformer;
6220 >            this.reducer = reducer;
6221 >        }
6222 >        public final U getRawResult() { return result; }
6223 >        @SuppressWarnings("unchecked") public final void compute() {
6224 >            final BiFun<? super K, ? super V, ? extends U> transformer;
6225 >            final BiFun<? super U, ? super U, ? extends U> reducer;
6226 >            if ((transformer = this.transformer) != null &&
6227 >                (reducer = this.reducer) != null) {
6228 >                for (int b; (b = preSplit()) > 0;)
6229 >                    (rights = new MapReduceMappingsTask<K,V,U>
6230 >                     (map, this, b, rights, transformer, reducer)).fork();
6231 >                U r = null, u;
6232 >                V v;
6233 >                while ((v = advance()) != null) {
6234 >                    if ((u = transformer.apply((K)nextKey, v)) != null)
6235 >                        r = (r == null) ? u : reducer.apply(r, u);
6236 >                }
6237 >                result = r;
6238 >                CountedCompleter<?> c;
6239 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6240 >                    MapReduceMappingsTask<K,V,U>
6241 >                        t = (MapReduceMappingsTask<K,V,U>)c,
6242 >                        s = t.rights;
6243 >                    while (s != null) {
6244 >                        U tr, sr;
6245 >                        if ((sr = s.result) != null)
6246 >                            t.result = (((tr = t.result) == null) ? sr :
6247 >                                        reducer.apply(tr, sr));
6248 >                        s = t.rights = s.nextRight;
6249 >                    }
6250 >                }
6251 >            }
6252 >        }
6253 >    }
6254 >
6255 >    @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
6256 >        extends Traverser<K,V,Double> {
6257 >        final ObjectToDouble<? super K> transformer;
6258 >        final DoubleByDoubleToDouble reducer;
6259 >        final double basis;
6260 >        double result;
6261 >        MapReduceKeysToDoubleTask<K,V> rights, nextRight;
6262 >        MapReduceKeysToDoubleTask
6263 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6264 >             MapReduceKeysToDoubleTask<K,V> nextRight,
6265 >             ObjectToDouble<? super K> transformer,
6266 >             double basis,
6267 >             DoubleByDoubleToDouble reducer) {
6268 >            super(m, p, b); this.nextRight = nextRight;
6269 >            this.transformer = transformer;
6270 >            this.basis = basis; this.reducer = reducer;
6271 >        }
6272 >        public final Double getRawResult() { return result; }
6273 >        @SuppressWarnings("unchecked") public final void compute() {
6274 >            final ObjectToDouble<? super K> transformer;
6275 >            final DoubleByDoubleToDouble reducer;
6276 >            if ((transformer = this.transformer) != null &&
6277 >                (reducer = this.reducer) != null) {
6278 >                double r = this.basis;
6279 >                for (int b; (b = preSplit()) > 0;)
6280 >                    (rights = new MapReduceKeysToDoubleTask<K,V>
6281 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6282 >                while (advance() != null)
6283 >                    r = reducer.apply(r, transformer.apply((K)nextKey));
6284 >                result = r;
6285 >                CountedCompleter<?> c;
6286 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6287 >                    MapReduceKeysToDoubleTask<K,V>
6288 >                        t = (MapReduceKeysToDoubleTask<K,V>)c,
6289 >                        s = t.rights;
6290 >                    while (s != null) {
6291 >                        t.result = reducer.apply(t.result, s.result);
6292 >                        s = t.rights = s.nextRight;
6293 >                    }
6294 >                }
6295 >            }
6296 >        }
6297 >    }
6298 >
6299 >    @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
6300 >        extends Traverser<K,V,Double> {
6301 >        final ObjectToDouble<? super V> transformer;
6302 >        final DoubleByDoubleToDouble reducer;
6303 >        final double basis;
6304 >        double result;
6305 >        MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6306 >        MapReduceValuesToDoubleTask
6307 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6308 >             MapReduceValuesToDoubleTask<K,V> nextRight,
6309 >             ObjectToDouble<? super V> transformer,
6310 >             double basis,
6311 >             DoubleByDoubleToDouble reducer) {
6312 >            super(m, p, b); this.nextRight = nextRight;
6313 >            this.transformer = transformer;
6314 >            this.basis = basis; this.reducer = reducer;
6315 >        }
6316 >        public final Double getRawResult() { return result; }
6317 >        @SuppressWarnings("unchecked") public final void compute() {
6318 >            final ObjectToDouble<? super V> transformer;
6319 >            final DoubleByDoubleToDouble reducer;
6320 >            if ((transformer = this.transformer) != null &&
6321 >                (reducer = this.reducer) != null) {
6322 >                double r = this.basis;
6323 >                for (int b; (b = preSplit()) > 0;)
6324 >                    (rights = new MapReduceValuesToDoubleTask<K,V>
6325 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6326 >                V v;
6327 >                while ((v = advance()) != null)
6328 >                    r = reducer.apply(r, transformer.apply(v));
6329 >                result = r;
6330 >                CountedCompleter<?> c;
6331 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6332 >                    MapReduceValuesToDoubleTask<K,V>
6333 >                        t = (MapReduceValuesToDoubleTask<K,V>)c,
6334 >                        s = t.rights;
6335 >                    while (s != null) {
6336 >                        t.result = reducer.apply(t.result, s.result);
6337 >                        s = t.rights = s.nextRight;
6338 >                    }
6339 >                }
6340 >            }
6341 >        }
6342 >    }
6343 >
6344 >    @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6345 >        extends Traverser<K,V,Double> {
6346 >        final ObjectToDouble<Map.Entry<K,V>> transformer;
6347 >        final DoubleByDoubleToDouble reducer;
6348 >        final double basis;
6349 >        double result;
6350 >        MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6351 >        MapReduceEntriesToDoubleTask
6352 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6353 >             MapReduceEntriesToDoubleTask<K,V> nextRight,
6354 >             ObjectToDouble<Map.Entry<K,V>> transformer,
6355 >             double basis,
6356 >             DoubleByDoubleToDouble reducer) {
6357 >            super(m, p, b); this.nextRight = nextRight;
6358 >            this.transformer = transformer;
6359 >            this.basis = basis; this.reducer = reducer;
6360 >        }
6361 >        public final Double getRawResult() { return result; }
6362 >        @SuppressWarnings("unchecked") public final void compute() {
6363 >            final ObjectToDouble<Map.Entry<K,V>> transformer;
6364 >            final DoubleByDoubleToDouble reducer;
6365 >            if ((transformer = this.transformer) != null &&
6366 >                (reducer = this.reducer) != null) {
6367 >                double r = this.basis;
6368 >                for (int b; (b = preSplit()) > 0;)
6369 >                    (rights = new MapReduceEntriesToDoubleTask<K,V>
6370 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6371 >                V v;
6372 >                while ((v = advance()) != null)
6373 >                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
6374 >                                                                    v)));
6375 >                result = r;
6376 >                CountedCompleter<?> c;
6377 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6378 >                    MapReduceEntriesToDoubleTask<K,V>
6379 >                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
6380 >                        s = t.rights;
6381 >                    while (s != null) {
6382 >                        t.result = reducer.apply(t.result, s.result);
6383 >                        s = t.rights = s.nextRight;
6384 >                    }
6385 >                }
6386 >            }
6387 >        }
6388 >    }
6389 >
6390 >    @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6391 >        extends Traverser<K,V,Double> {
6392 >        final ObjectByObjectToDouble<? super K, ? super V> transformer;
6393 >        final DoubleByDoubleToDouble reducer;
6394 >        final double basis;
6395 >        double result;
6396 >        MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6397 >        MapReduceMappingsToDoubleTask
6398 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6399 >             MapReduceMappingsToDoubleTask<K,V> nextRight,
6400 >             ObjectByObjectToDouble<? super K, ? super V> transformer,
6401 >             double basis,
6402 >             DoubleByDoubleToDouble reducer) {
6403 >            super(m, p, b); this.nextRight = nextRight;
6404 >            this.transformer = transformer;
6405 >            this.basis = basis; this.reducer = reducer;
6406 >        }
6407 >        public final Double getRawResult() { return result; }
6408 >        @SuppressWarnings("unchecked") public final void compute() {
6409 >            final ObjectByObjectToDouble<? super K, ? super V> transformer;
6410 >            final DoubleByDoubleToDouble reducer;
6411 >            if ((transformer = this.transformer) != null &&
6412 >                (reducer = this.reducer) != null) {
6413 >                double r = this.basis;
6414 >                for (int b; (b = preSplit()) > 0;)
6415 >                    (rights = new MapReduceMappingsToDoubleTask<K,V>
6416 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6417 >                V v;
6418 >                while ((v = advance()) != null)
6419 >                    r = reducer.apply(r, transformer.apply((K)nextKey, v));
6420 >                result = r;
6421 >                CountedCompleter<?> c;
6422 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6423 >                    MapReduceMappingsToDoubleTask<K,V>
6424 >                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
6425 >                        s = t.rights;
6426 >                    while (s != null) {
6427 >                        t.result = reducer.apply(t.result, s.result);
6428 >                        s = t.rights = s.nextRight;
6429 >                    }
6430 >                }
6431 >            }
6432 >        }
6433 >    }
6434 >
6435 >    @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6436 >        extends Traverser<K,V,Long> {
6437 >        final ObjectToLong<? super K> transformer;
6438 >        final LongByLongToLong reducer;
6439 >        final long basis;
6440 >        long result;
6441 >        MapReduceKeysToLongTask<K,V> rights, nextRight;
6442 >        MapReduceKeysToLongTask
6443 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6444 >             MapReduceKeysToLongTask<K,V> nextRight,
6445 >             ObjectToLong<? super K> transformer,
6446 >             long basis,
6447 >             LongByLongToLong reducer) {
6448 >            super(m, p, b); this.nextRight = nextRight;
6449 >            this.transformer = transformer;
6450 >            this.basis = basis; this.reducer = reducer;
6451 >        }
6452 >        public final Long getRawResult() { return result; }
6453 >        @SuppressWarnings("unchecked") public final void compute() {
6454 >            final ObjectToLong<? super K> transformer;
6455 >            final LongByLongToLong reducer;
6456 >            if ((transformer = this.transformer) != null &&
6457 >                (reducer = this.reducer) != null) {
6458 >                long r = this.basis;
6459 >                for (int b; (b = preSplit()) > 0;)
6460 >                    (rights = new MapReduceKeysToLongTask<K,V>
6461 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6462 >                while (advance() != null)
6463 >                    r = reducer.apply(r, transformer.apply((K)nextKey));
6464 >                result = r;
6465 >                CountedCompleter<?> c;
6466 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6467 >                    MapReduceKeysToLongTask<K,V>
6468 >                        t = (MapReduceKeysToLongTask<K,V>)c,
6469 >                        s = t.rights;
6470 >                    while (s != null) {
6471 >                        t.result = reducer.apply(t.result, s.result);
6472 >                        s = t.rights = s.nextRight;
6473 >                    }
6474 >                }
6475 >            }
6476 >        }
6477 >    }
6478 >
6479 >    @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6480 >        extends Traverser<K,V,Long> {
6481 >        final ObjectToLong<? super V> transformer;
6482 >        final LongByLongToLong reducer;
6483 >        final long basis;
6484 >        long result;
6485 >        MapReduceValuesToLongTask<K,V> rights, nextRight;
6486 >        MapReduceValuesToLongTask
6487 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6488 >             MapReduceValuesToLongTask<K,V> nextRight,
6489 >             ObjectToLong<? super V> transformer,
6490 >             long basis,
6491 >             LongByLongToLong reducer) {
6492 >            super(m, p, b); this.nextRight = nextRight;
6493 >            this.transformer = transformer;
6494 >            this.basis = basis; this.reducer = reducer;
6495 >        }
6496 >        public final Long getRawResult() { return result; }
6497 >        @SuppressWarnings("unchecked") public final void compute() {
6498 >            final ObjectToLong<? super V> transformer;
6499 >            final LongByLongToLong reducer;
6500 >            if ((transformer = this.transformer) != null &&
6501 >                (reducer = this.reducer) != null) {
6502 >                long r = this.basis;
6503 >                for (int b; (b = preSplit()) > 0;)
6504 >                    (rights = new MapReduceValuesToLongTask<K,V>
6505 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6506 >                V v;
6507 >                while ((v = advance()) != null)
6508 >                    r = reducer.apply(r, transformer.apply(v));
6509 >                result = r;
6510 >                CountedCompleter<?> c;
6511 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6512 >                    MapReduceValuesToLongTask<K,V>
6513 >                        t = (MapReduceValuesToLongTask<K,V>)c,
6514 >                        s = t.rights;
6515 >                    while (s != null) {
6516 >                        t.result = reducer.apply(t.result, s.result);
6517 >                        s = t.rights = s.nextRight;
6518 >                    }
6519 >                }
6520 >            }
6521 >        }
6522 >    }
6523 >
6524 >    @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6525 >        extends Traverser<K,V,Long> {
6526 >        final ObjectToLong<Map.Entry<K,V>> transformer;
6527 >        final LongByLongToLong reducer;
6528 >        final long basis;
6529 >        long result;
6530 >        MapReduceEntriesToLongTask<K,V> rights, nextRight;
6531 >        MapReduceEntriesToLongTask
6532 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6533 >             MapReduceEntriesToLongTask<K,V> nextRight,
6534 >             ObjectToLong<Map.Entry<K,V>> transformer,
6535 >             long basis,
6536 >             LongByLongToLong reducer) {
6537 >            super(m, p, b); this.nextRight = nextRight;
6538 >            this.transformer = transformer;
6539 >            this.basis = basis; this.reducer = reducer;
6540 >        }
6541 >        public final Long getRawResult() { return result; }
6542 >        @SuppressWarnings("unchecked") public final void compute() {
6543 >            final ObjectToLong<Map.Entry<K,V>> transformer;
6544 >            final LongByLongToLong reducer;
6545 >            if ((transformer = this.transformer) != null &&
6546 >                (reducer = this.reducer) != null) {
6547 >                long r = this.basis;
6548 >                for (int b; (b = preSplit()) > 0;)
6549 >                    (rights = new MapReduceEntriesToLongTask<K,V>
6550 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6551 >                V v;
6552 >                while ((v = advance()) != null)
6553 >                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
6554 >                                                                    v)));
6555 >                result = r;
6556 >                CountedCompleter<?> c;
6557 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6558 >                    MapReduceEntriesToLongTask<K,V>
6559 >                        t = (MapReduceEntriesToLongTask<K,V>)c,
6560 >                        s = t.rights;
6561 >                    while (s != null) {
6562 >                        t.result = reducer.apply(t.result, s.result);
6563 >                        s = t.rights = s.nextRight;
6564 >                    }
6565 >                }
6566 >            }
6567 >        }
6568 >    }
6569 >
6570 >    @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6571 >        extends Traverser<K,V,Long> {
6572 >        final ObjectByObjectToLong<? super K, ? super V> transformer;
6573 >        final LongByLongToLong reducer;
6574 >        final long basis;
6575 >        long result;
6576 >        MapReduceMappingsToLongTask<K,V> rights, nextRight;
6577 >        MapReduceMappingsToLongTask
6578 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6579 >             MapReduceMappingsToLongTask<K,V> nextRight,
6580 >             ObjectByObjectToLong<? super K, ? super V> transformer,
6581 >             long basis,
6582 >             LongByLongToLong reducer) {
6583 >            super(m, p, b); this.nextRight = nextRight;
6584 >            this.transformer = transformer;
6585 >            this.basis = basis; this.reducer = reducer;
6586 >        }
6587 >        public final Long getRawResult() { return result; }
6588 >        @SuppressWarnings("unchecked") public final void compute() {
6589 >            final ObjectByObjectToLong<? super K, ? super V> transformer;
6590 >            final LongByLongToLong reducer;
6591 >            if ((transformer = this.transformer) != null &&
6592 >                (reducer = this.reducer) != null) {
6593 >                long r = this.basis;
6594 >                for (int b; (b = preSplit()) > 0;)
6595 >                    (rights = new MapReduceMappingsToLongTask<K,V>
6596 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6597 >                V v;
6598 >                while ((v = advance()) != null)
6599 >                    r = reducer.apply(r, transformer.apply((K)nextKey, v));
6600 >                result = r;
6601 >                CountedCompleter<?> c;
6602 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6603 >                    MapReduceMappingsToLongTask<K,V>
6604 >                        t = (MapReduceMappingsToLongTask<K,V>)c,
6605 >                        s = t.rights;
6606 >                    while (s != null) {
6607 >                        t.result = reducer.apply(t.result, s.result);
6608 >                        s = t.rights = s.nextRight;
6609 >                    }
6610 >                }
6611 >            }
6612 >        }
6613 >    }
6614 >
6615 >    @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6616 >        extends Traverser<K,V,Integer> {
6617 >        final ObjectToInt<? super K> transformer;
6618 >        final IntByIntToInt reducer;
6619 >        final int basis;
6620 >        int result;
6621 >        MapReduceKeysToIntTask<K,V> rights, nextRight;
6622 >        MapReduceKeysToIntTask
6623 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6624 >             MapReduceKeysToIntTask<K,V> nextRight,
6625 >             ObjectToInt<? super K> transformer,
6626 >             int basis,
6627 >             IntByIntToInt reducer) {
6628 >            super(m, p, b); this.nextRight = nextRight;
6629 >            this.transformer = transformer;
6630 >            this.basis = basis; this.reducer = reducer;
6631 >        }
6632 >        public final Integer getRawResult() { return result; }
6633 >        @SuppressWarnings("unchecked") public final void compute() {
6634 >            final ObjectToInt<? super K> transformer;
6635 >            final IntByIntToInt reducer;
6636 >            if ((transformer = this.transformer) != null &&
6637 >                (reducer = this.reducer) != null) {
6638 >                int r = this.basis;
6639 >                for (int b; (b = preSplit()) > 0;)
6640 >                    (rights = new MapReduceKeysToIntTask<K,V>
6641 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6642 >                while (advance() != null)
6643 >                    r = reducer.apply(r, transformer.apply((K)nextKey));
6644 >                result = r;
6645 >                CountedCompleter<?> c;
6646 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6647 >                    MapReduceKeysToIntTask<K,V>
6648 >                        t = (MapReduceKeysToIntTask<K,V>)c,
6649 >                        s = t.rights;
6650 >                    while (s != null) {
6651 >                        t.result = reducer.apply(t.result, s.result);
6652 >                        s = t.rights = s.nextRight;
6653 >                    }
6654 >                }
6655 >            }
6656 >        }
6657 >    }
6658 >
6659 >    @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6660 >        extends Traverser<K,V,Integer> {
6661 >        final ObjectToInt<? super V> transformer;
6662 >        final IntByIntToInt reducer;
6663 >        final int basis;
6664 >        int result;
6665 >        MapReduceValuesToIntTask<K,V> rights, nextRight;
6666 >        MapReduceValuesToIntTask
6667 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6668 >             MapReduceValuesToIntTask<K,V> nextRight,
6669 >             ObjectToInt<? super V> transformer,
6670 >             int basis,
6671 >             IntByIntToInt reducer) {
6672 >            super(m, p, b); this.nextRight = nextRight;
6673 >            this.transformer = transformer;
6674 >            this.basis = basis; this.reducer = reducer;
6675 >        }
6676 >        public final Integer getRawResult() { return result; }
6677 >        @SuppressWarnings("unchecked") public final void compute() {
6678 >            final ObjectToInt<? super V> transformer;
6679 >            final IntByIntToInt reducer;
6680 >            if ((transformer = this.transformer) != null &&
6681 >                (reducer = this.reducer) != null) {
6682 >                int r = this.basis;
6683 >                for (int b; (b = preSplit()) > 0;)
6684 >                    (rights = new MapReduceValuesToIntTask<K,V>
6685 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6686 >                V v;
6687 >                while ((v = advance()) != null)
6688 >                    r = reducer.apply(r, transformer.apply(v));
6689 >                result = r;
6690 >                CountedCompleter<?> c;
6691 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6692 >                    MapReduceValuesToIntTask<K,V>
6693 >                        t = (MapReduceValuesToIntTask<K,V>)c,
6694 >                        s = t.rights;
6695 >                    while (s != null) {
6696 >                        t.result = reducer.apply(t.result, s.result);
6697 >                        s = t.rights = s.nextRight;
6698 >                    }
6699 >                }
6700 >            }
6701 >        }
6702 >    }
6703 >
6704 >    @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6705 >        extends Traverser<K,V,Integer> {
6706 >        final ObjectToInt<Map.Entry<K,V>> transformer;
6707 >        final IntByIntToInt reducer;
6708 >        final int basis;
6709 >        int result;
6710 >        MapReduceEntriesToIntTask<K,V> rights, nextRight;
6711 >        MapReduceEntriesToIntTask
6712 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6713 >             MapReduceEntriesToIntTask<K,V> nextRight,
6714 >             ObjectToInt<Map.Entry<K,V>> transformer,
6715 >             int basis,
6716 >             IntByIntToInt reducer) {
6717 >            super(m, p, b); this.nextRight = nextRight;
6718 >            this.transformer = transformer;
6719 >            this.basis = basis; this.reducer = reducer;
6720 >        }
6721 >        public final Integer getRawResult() { return result; }
6722 >        @SuppressWarnings("unchecked") public final void compute() {
6723 >            final ObjectToInt<Map.Entry<K,V>> transformer;
6724 >            final IntByIntToInt reducer;
6725 >            if ((transformer = this.transformer) != null &&
6726 >                (reducer = this.reducer) != null) {
6727 >                int r = this.basis;
6728 >                for (int b; (b = preSplit()) > 0;)
6729 >                    (rights = new MapReduceEntriesToIntTask<K,V>
6730 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6731 >                V v;
6732 >                while ((v = advance()) != null)
6733 >                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
6734 >                                                                    v)));
6735 >                result = r;
6736 >                CountedCompleter<?> c;
6737 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6738 >                    MapReduceEntriesToIntTask<K,V>
6739 >                        t = (MapReduceEntriesToIntTask<K,V>)c,
6740 >                        s = t.rights;
6741 >                    while (s != null) {
6742 >                        t.result = reducer.apply(t.result, s.result);
6743 >                        s = t.rights = s.nextRight;
6744 >                    }
6745 >                }
6746 >            }
6747 >        }
6748 >    }
6749 >
6750 >    @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6751 >        extends Traverser<K,V,Integer> {
6752 >        final ObjectByObjectToInt<? super K, ? super V> transformer;
6753 >        final IntByIntToInt reducer;
6754 >        final int basis;
6755 >        int result;
6756 >        MapReduceMappingsToIntTask<K,V> rights, nextRight;
6757 >        MapReduceMappingsToIntTask
6758 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6759 >             MapReduceMappingsToIntTask<K,V> nextRight,
6760 >             ObjectByObjectToInt<? super K, ? super V> transformer,
6761 >             int basis,
6762 >             IntByIntToInt reducer) {
6763 >            super(m, p, b); this.nextRight = nextRight;
6764 >            this.transformer = transformer;
6765 >            this.basis = basis; this.reducer = reducer;
6766 >        }
6767 >        public final Integer getRawResult() { return result; }
6768 >        @SuppressWarnings("unchecked") public final void compute() {
6769 >            final ObjectByObjectToInt<? super K, ? super V> transformer;
6770 >            final IntByIntToInt reducer;
6771 >            if ((transformer = this.transformer) != null &&
6772 >                (reducer = this.reducer) != null) {
6773 >                int r = this.basis;
6774 >                for (int b; (b = preSplit()) > 0;)
6775 >                    (rights = new MapReduceMappingsToIntTask<K,V>
6776 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6777 >                V v;
6778 >                while ((v = advance()) != null)
6779 >                    r = reducer.apply(r, transformer.apply((K)nextKey, v));
6780 >                result = r;
6781 >                CountedCompleter<?> c;
6782 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6783 >                    MapReduceMappingsToIntTask<K,V>
6784 >                        t = (MapReduceMappingsToIntTask<K,V>)c,
6785 >                        s = t.rights;
6786 >                    while (s != null) {
6787 >                        t.result = reducer.apply(t.result, s.result);
6788 >                        s = t.rights = s.nextRight;
6789 >                    }
6790                  }
6791              }
6792          }
6793      }
6794  
6795      // Unsafe mechanics
6796 <    private static final sun.misc.Unsafe UNSAFE;
6797 <    private static final long counterOffset;
6798 <    private static final long sizeCtlOffset;
6796 >    private static final sun.misc.Unsafe U;
6797 >    private static final long SIZECTL;
6798 >    private static final long TRANSFERINDEX;
6799 >    private static final long TRANSFERORIGIN;
6800 >    private static final long BASECOUNT;
6801 >    private static final long COUNTERBUSY;
6802 >    private static final long CELLVALUE;
6803      private static final long ABASE;
6804      private static final int ASHIFT;
6805  
6806      static {
6807          int ss;
6808          try {
6809 <            UNSAFE = getUnsafe();
6809 >            U = getUnsafe();
6810              Class<?> k = ConcurrentHashMapV8.class;
6811 <            counterOffset = UNSAFE.objectFieldOffset
2432 <                (k.getDeclaredField("counter"));
2433 <            sizeCtlOffset = UNSAFE.objectFieldOffset
6811 >            SIZECTL = U.objectFieldOffset
6812                  (k.getDeclaredField("sizeCtl"));
6813 +            TRANSFERINDEX = U.objectFieldOffset
6814 +                (k.getDeclaredField("transferIndex"));
6815 +            TRANSFERORIGIN = U.objectFieldOffset
6816 +                (k.getDeclaredField("transferOrigin"));
6817 +            BASECOUNT = U.objectFieldOffset
6818 +                (k.getDeclaredField("baseCount"));
6819 +            COUNTERBUSY = U.objectFieldOffset
6820 +                (k.getDeclaredField("counterBusy"));
6821 +            Class<?> ck = CounterCell.class;
6822 +            CELLVALUE = U.objectFieldOffset
6823 +                (ck.getDeclaredField("value"));
6824              Class<?> sc = Node[].class;
6825 <            ABASE = UNSAFE.arrayBaseOffset(sc);
6826 <            ss = UNSAFE.arrayIndexScale(sc);
6825 >            ABASE = U.arrayBaseOffset(sc);
6826 >            ss = U.arrayIndexScale(sc);
6827 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6828          } catch (Exception e) {
6829              throw new Error(e);
6830          }
6831          if ((ss & (ss-1)) != 0)
6832              throw new Error("data type scale not a power of two");
2443        ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6833      }
6834  
6835      /**
# Line 2453 | Line 6842 | public class ConcurrentHashMapV8<K, V>
6842      private static sun.misc.Unsafe getUnsafe() {
6843          try {
6844              return sun.misc.Unsafe.getUnsafe();
6845 <        } catch (SecurityException se) {
6846 <            try {
6847 <                return java.security.AccessController.doPrivileged
6848 <                    (new java.security
6849 <                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
6850 <                        public sun.misc.Unsafe run() throws Exception {
6851 <                            java.lang.reflect.Field f = sun.misc
6852 <                                .Unsafe.class.getDeclaredField("theUnsafe");
6853 <                            f.setAccessible(true);
6854 <                            return (sun.misc.Unsafe) f.get(null);
6855 <                        }});
6856 <            } catch (java.security.PrivilegedActionException e) {
6857 <                throw new RuntimeException("Could not initialize intrinsics",
6858 <                                           e.getCause());
6859 <            }
6845 >        } catch (SecurityException tryReflectionInstead) {}
6846 >        try {
6847 >            return java.security.AccessController.doPrivileged
6848 >            (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
6849 >                public sun.misc.Unsafe run() throws Exception {
6850 >                    Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
6851 >                    for (java.lang.reflect.Field f : k.getDeclaredFields()) {
6852 >                        f.setAccessible(true);
6853 >                        Object x = f.get(null);
6854 >                        if (k.isInstance(x))
6855 >                            return k.cast(x);
6856 >                    }
6857 >                    throw new NoSuchFieldError("the Unsafe");
6858 >                }});
6859 >        } catch (java.security.PrivilegedActionException e) {
6860 >            throw new RuntimeException("Could not initialize intrinsics",
6861 >                                       e.getCause());
6862          }
6863      }
2473
6864   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines