ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
Revision: 1.102
Committed: Wed Jun 19 14:55:40 2013 UTC (10 years, 10 months ago) by dl
Branch: MAIN
Changes since 1.101: +3728 -4410 lines
Log Message:
Sync with jdk8 versions

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package jsr166e;
8
9 import jsr166e.ForkJoinPool;
10
11 import java.io.ObjectStreamField;
12 import java.io.Serializable;
13 import java.lang.reflect.ParameterizedType;
14 import java.lang.reflect.Type;
15 import java.util.Arrays;
16 import java.util.Collection;
17 import java.util.Comparator;
18 import java.util.ConcurrentModificationException;
19 import java.util.Enumeration;
20 import java.util.HashMap;
21 import java.util.Hashtable;
22 import java.util.Iterator;
23 import java.util.Map;
24 import java.util.NoSuchElementException;
25 import java.util.Set;
26 import java.util.concurrent.ConcurrentMap;
27 import java.util.concurrent.atomic.AtomicReference;
28 import java.util.concurrent.atomic.AtomicInteger;
29 import java.util.concurrent.locks.LockSupport;
30 import java.util.concurrent.locks.ReentrantLock;
31
32 /**
33 * A hash table supporting full concurrency of retrievals and
34 * high expected concurrency for updates. This class obeys the
35 * same functional specification as {@link java.util.Hashtable}, and
36 * includes versions of methods corresponding to each method of
37 * {@code Hashtable}. However, even though all operations are
38 * thread-safe, retrieval operations do <em>not</em> entail locking,
39 * and there is <em>not</em> any support for locking the entire table
40 * in a way that prevents all access. This class is fully
41 * interoperable with {@code Hashtable} in programs that rely on its
42 * thread safety but not on its synchronization details.
43 *
44 * <p>Retrieval operations (including {@code get}) generally do not
45 * block, so may overlap with update operations (including {@code put}
46 * and {@code remove}). Retrievals reflect the results of the most
47 * recently <em>completed</em> update operations holding upon their
48 * onset. (More formally, an update operation for a given key bears a
49 * <em>happens-before</em> relation with any (non-null) retrieval for
50 * that key reporting the updated value.) For aggregate operations
51 * such as {@code putAll} and {@code clear}, concurrent retrievals may
52 * reflect insertion or removal of only some entries. Similarly,
53 * Iterators and Enumerations return elements reflecting the state of
54 * the hash table at some point at or since the creation of the
55 * iterator/enumeration. They do <em>not</em> throw {@link
56 * ConcurrentModificationException}. However, iterators are designed
57 * to be used by only one thread at a time. Bear in mind that the
58 * results of aggregate status methods including {@code size}, {@code
59 * isEmpty}, and {@code containsValue} are typically useful only when
60 * a map is not undergoing concurrent updates in other threads.
61 * Otherwise the results of these methods reflect transient states
62 * that may be adequate for monitoring or estimation purposes, but not
63 * for program control.
64 *
65 * <p>The table is dynamically expanded when there are too many
66 * collisions (i.e., keys that have distinct hash codes but fall into
67 * the same slot modulo the table size), with the expected average
68 * effect of maintaining roughly two bins per mapping (corresponding
69 * to a 0.75 load factor threshold for resizing). There may be much
70 * variance around this average as mappings are added and removed, but
71 * overall, this maintains a commonly accepted time/space tradeoff for
72 * hash tables. However, resizing this or any other kind of hash
73 * table may be a relatively slow operation. When possible, it is a
74 * good idea to provide a size estimate as an optional {@code
75 * initialCapacity} constructor argument. An additional optional
76 * {@code loadFactor} constructor argument provides a further means of
77 * customizing initial table capacity by specifying the table density
78 * to be used in calculating the amount of space to allocate for the
79 * given number of elements. Also, for compatibility with previous
80 * versions of this class, constructors may optionally specify an
81 * expected {@code concurrencyLevel} as an additional hint for
82 * internal sizing. Note that using many keys with exactly the same
83 * {@code hashCode()} is a sure way to slow down performance of any
84 * hash table. To ameliorate impact, when keys are {@link Comparable},
85 * this class may use comparison order among keys to help break ties.
86 *
87 * <p>A {@link Set} projection of a ConcurrentHashMapV8 may be created
88 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
89 * (using {@link #keySet(Object)} when only keys are of interest, and the
90 * mapped values are (perhaps transiently) not used or all take the
91 * same mapping value.
92 *
93 * <p>This class and its views and iterators implement all of the
94 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
95 * interfaces.
96 *
97 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
98 * does <em>not</em> allow {@code null} to be used as a key or value.
99 *
100 * <p>ConcurrentHashMapV8s support a set of sequential and parallel bulk
101 * operations that are designed
102 * to be safely, and often sensibly, applied even with maps that are
103 * being concurrently updated by other threads; for example, when
104 * computing a snapshot summary of the values in a shared registry.
105 * There are three kinds of operation, each with four forms, accepting
106 * functions with Keys, Values, Entries, and (Key, Value) arguments
107 * and/or return values. Because the elements of a ConcurrentHashMapV8
108 * are not ordered in any particular way, and may be processed in
109 * different orders in different parallel executions, the correctness
110 * of supplied functions should not depend on any ordering, or on any
111 * other objects or values that may transiently change while
112 * computation is in progress; and except for forEach actions, should
113 * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
114 * objects do not support method {@code setValue}.
115 *
116 * <ul>
117 * <li> forEach: Perform a given action on each element.
118 * A variant form applies a given transformation on each element
119 * before performing the action.</li>
120 *
121 * <li> search: Return the first available non-null result of
122 * applying a given function on each element; skipping further
123 * search when a result is found.</li>
124 *
125 * <li> reduce: Accumulate each element. The supplied reduction
126 * function cannot rely on ordering (more formally, it should be
127 * both associative and commutative). There are five variants:
128 *
129 * <ul>
130 *
131 * <li> Plain reductions. (There is not a form of this method for
132 * (key, value) function arguments since there is no corresponding
133 * return type.)</li>
134 *
135 * <li> Mapped reductions that accumulate the results of a given
136 * function applied to each element.</li>
137 *
138 * <li> Reductions to scalar doubles, longs, and ints, using a
139 * given basis value.</li>
140 *
141 * </ul>
142 * </li>
143 * </ul>
144 *
145 * <p>These bulk operations accept a {@code parallelismThreshold}
146 * argument. Methods proceed sequentially if the current map size is
147 * estimated to be less than the given threshold. Using a value of
148 * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
149 * of {@code 1} results in maximal parallelism by partitioning into
150 * enough subtasks to fully utilize the {@link
151 * ForkJoinPool#commonPool()} that is used for all parallel
152 * computations. Normally, you would initially choose one of these
153 * extreme values, and then measure performance of using in-between
154 * values that trade off overhead versus throughput.
155 *
156 * <p>The concurrency properties of bulk operations follow
157 * from those of ConcurrentHashMapV8: Any non-null result returned
158 * from {@code get(key)} and related access methods bears a
159 * happens-before relation with the associated insertion or
160 * update. The result of any bulk operation reflects the
161 * composition of these per-element relations (but is not
162 * necessarily atomic with respect to the map as a whole unless it
163 * is somehow known to be quiescent). Conversely, because keys
164 * and values in the map are never null, null serves as a reliable
165 * atomic indicator of the current lack of any result. To
166 * maintain this property, null serves as an implicit basis for
167 * all non-scalar reduction operations. For the double, long, and
168 * int versions, the basis should be one that, when combined with
169 * any other value, returns that other value (more formally, it
170 * should be the identity element for the reduction). Most common
171 * reductions have these properties; for example, computing a sum
172 * with basis 0 or a minimum with basis MAX_VALUE.
173 *
174 * <p>Search and transformation functions provided as arguments
175 * should similarly return null to indicate the lack of any result
176 * (in which case it is not used). In the case of mapped
177 * reductions, this also enables transformations to serve as
178 * filters, returning null (or, in the case of primitive
179 * specializations, the identity basis) if the element should not
180 * be combined. You can create compound transformations and
181 * filterings by composing them yourself under this "null means
182 * there is nothing there now" rule before using them in search or
183 * reduce operations.
184 *
185 * <p>Methods accepting and/or returning Entry arguments maintain
186 * key-value associations. They may be useful for example when
187 * finding the key for the greatest value. Note that "plain" Entry
188 * arguments can be supplied using {@code new
189 * AbstractMap.SimpleEntry(k,v)}.
190 *
191 * <p>Bulk operations may complete abruptly, throwing an
192 * exception encountered in the application of a supplied
193 * function. Bear in mind when handling such exceptions that other
194 * concurrently executing functions could also have thrown
195 * exceptions, or would have done so if the first exception had
196 * not occurred.
197 *
198 * <p>Speedups for parallel compared to sequential forms are common
199 * but not guaranteed. Parallel operations involving brief functions
200 * on small maps may execute more slowly than sequential forms if the
201 * underlying work to parallelize the computation is more expensive
202 * than the computation itself. Similarly, parallelization may not
203 * lead to much actual parallelism if all processors are busy
204 * performing unrelated tasks.
205 *
206 * <p>All arguments to all task methods must be non-null.
207 *
208 * <p><em>jsr166e note: During transition, this class
209 * uses nested functional interfaces with different names but the
210 * same forms as those expected for JDK8.</em>
211 *
212 * <p>This class is a member of the
213 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
214 * Java Collections Framework</a>.
215 *
216 * @since 1.5
217 * @author Doug Lea
218 * @param <K> the type of keys maintained by this map
219 * @param <V> the type of mapped values
220 */
221 public class ConcurrentHashMapV8<K,V>
222 implements ConcurrentMap<K,V>, Serializable {
223 private static final long serialVersionUID = 7249069246763182397L;
224
225 /**
226 * An object for traversing and partitioning elements of a source.
227 * This interface provides a subset of the functionality of JDK8
228 * java.util.Spliterator.
229 */
230 public static interface ConcurrentHashMapSpliterator<T> {
231 /**
232 * If possible, returns a new spliterator covering
233 * approximately one half of the elements, which will not be
234 * covered by this spliterator. Returns null if cannot be
235 * split.
236 */
237 ConcurrentHashMapSpliterator<T> trySplit();
238 /**
239 * Returns an estimate of the number of elements covered by
240 * this Spliterator.
241 */
242 long estimateSize();
243
244 /** Applies the action to each untraversed element */
245 void forEachRemaining(Action<? super T> action);
246 /** If an element remains, applies the action and returns true. */
247 boolean tryAdvance(Action<? super T> action);
248 }
249
250 // Sams
251 /** Interface describing a void action of one argument */
252 public interface Action<A> { void apply(A a); }
253 /** Interface describing a void action of two arguments */
254 public interface BiAction<A,B> { void apply(A a, B b); }
255 /** Interface describing a function of one argument */
256 public interface Fun<A,T> { T apply(A a); }
257 /** Interface describing a function of two arguments */
258 public interface BiFun<A,B,T> { T apply(A a, B b); }
259 /** Interface describing a function mapping its argument to a double */
260 public interface ObjectToDouble<A> { double apply(A a); }
261 /** Interface describing a function mapping its argument to a long */
262 public interface ObjectToLong<A> { long apply(A a); }
263 /** Interface describing a function mapping its argument to an int */
264 public interface ObjectToInt<A> {int apply(A a); }
265 /** Interface describing a function mapping two arguments to a double */
266 public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
267 /** Interface describing a function mapping two arguments to a long */
268 public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
269 /** Interface describing a function mapping two arguments to an int */
270 public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
271 /** Interface describing a function mapping two doubles to a double */
272 public interface DoubleByDoubleToDouble { double apply(double a, double b); }
273 /** Interface describing a function mapping two longs to a long */
274 public interface LongByLongToLong { long apply(long a, long b); }
275 /** Interface describing a function mapping two ints to an int */
276 public interface IntByIntToInt { int apply(int a, int b); }
277
278 /*
279 * Overview:
280 *
281 * The primary design goal of this hash table is to maintain
282 * concurrent readability (typically method get(), but also
283 * iterators and related methods) while minimizing update
284 * contention. Secondary goals are to keep space consumption about
285 * the same or better than java.util.HashMap, and to support high
286 * initial insertion rates on an empty table by many threads.
287 *
288 * This map usually acts as a binned (bucketed) hash table. Each
289 * key-value mapping is held in a Node. Most nodes are instances
290 * of the basic Node class with hash, key, value, and next
291 * fields. However, various subclasses exist: TreeNodes are
292 * arranged in balanced trees, not lists. TreeBins hold the roots
293 * of sets of TreeNodes. ForwardingNodes are placed at the heads
294 * of bins during resizing. ReservationNodes are used as
295 * placeholders while establishing values in computeIfAbsent and
296 * related methods. The types TreeBin, ForwardingNode, and
297 * ReservationNode do not hold normal user keys, values, or
298 * hashes, and are readily distinguishable during search etc
299 * because they have negative hash fields and null key and value
300 * fields. (These special nodes are either uncommon or transient,
301 * so the impact of carrying around some unused fields is
302 * insignficant.)
303 *
304 * The table is lazily initialized to a power-of-two size upon the
305 * first insertion. Each bin in the table normally contains a
306 * list of Nodes (most often, the list has only zero or one Node).
307 * Table accesses require volatile/atomic reads, writes, and
308 * CASes. Because there is no other way to arrange this without
309 * adding further indirections, we use intrinsics
310 * (sun.misc.Unsafe) operations.
311 *
312 * We use the top (sign) bit of Node hash fields for control
313 * purposes -- it is available anyway because of addressing
314 * constraints. Nodes with negative hash fields are specially
315 * handled or ignored in map methods.
316 *
317 * Insertion (via put or its variants) of the first node in an
318 * empty bin is performed by just CASing it to the bin. This is
319 * by far the most common case for put operations under most
320 * key/hash distributions. Other update operations (insert,
321 * delete, and replace) require locks. We do not want to waste
322 * the space required to associate a distinct lock object with
323 * each bin, so instead use the first node of a bin list itself as
324 * a lock. Locking support for these locks relies on builtin
325 * "synchronized" monitors.
326 *
327 * Using the first node of a list as a lock does not by itself
328 * suffice though: When a node is locked, any update must first
329 * validate that it is still the first node after locking it, and
330 * retry if not. Because new nodes are always appended to lists,
331 * once a node is first in a bin, it remains first until deleted
332 * or the bin becomes invalidated (upon resizing).
333 *
334 * The main disadvantage of per-bin locks is that other update
335 * operations on other nodes in a bin list protected by the same
336 * lock can stall, for example when user equals() or mapping
337 * functions take a long time. However, statistically, under
338 * random hash codes, this is not a common problem. Ideally, the
339 * frequency of nodes in bins follows a Poisson distribution
340 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
341 * parameter of about 0.5 on average, given the resizing threshold
342 * of 0.75, although with a large variance because of resizing
343 * granularity. Ignoring variance, the expected occurrences of
344 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
345 * first values are:
346 *
347 * 0: 0.60653066
348 * 1: 0.30326533
349 * 2: 0.07581633
350 * 3: 0.01263606
351 * 4: 0.00157952
352 * 5: 0.00015795
353 * 6: 0.00001316
354 * 7: 0.00000094
355 * 8: 0.00000006
356 * more: less than 1 in ten million
357 *
358 * Lock contention probability for two threads accessing distinct
359 * elements is roughly 1 / (8 * #elements) under random hashes.
360 *
361 * Actual hash code distributions encountered in practice
362 * sometimes deviate significantly from uniform randomness. This
363 * includes the case when N > (1<<30), so some keys MUST collide.
364 * Similarly for dumb or hostile usages in which multiple keys are
365 * designed to have identical hash codes or ones that differs only
366 * in masked-out high bits. So we use a secondary strategy that
367 * applies when the number of nodes in a bin exceeds a
368 * threshold. These TreeBins use a balanced tree to hold nodes (a
369 * specialized form of red-black trees), bounding search time to
370 * O(log N). Each search step in a TreeBin is at least twice as
371 * slow as in a regular list, but given that N cannot exceed
372 * (1<<64) (before running out of addresses) this bounds search
373 * steps, lock hold times, etc, to reasonable constants (roughly
374 * 100 nodes inspected per operation worst case) so long as keys
375 * are Comparable (which is very common -- String, Long, etc).
376 * TreeBin nodes (TreeNodes) also maintain the same "next"
377 * traversal pointers as regular nodes, so can be traversed in
378 * iterators in the same way.
379 *
380 * The table is resized when occupancy exceeds a percentage
381 * threshold (nominally, 0.75, but see below). Any thread
382 * noticing an overfull bin may assist in resizing after the
383 * initiating thread allocates and sets up the replacement
384 * array. However, rather than stalling, these other threads may
385 * proceed with insertions etc. The use of TreeBins shields us
386 * from the worst case effects of overfilling while resizes are in
387 * progress. Resizing proceeds by transferring bins, one by one,
388 * from the table to the next table. To enable concurrency, the
389 * next table must be (incrementally) prefilled with place-holders
390 * serving as reverse forwarders to the old table. Because we are
391 * using power-of-two expansion, the elements from each bin must
392 * either stay at same index, or move with a power of two
393 * offset. We eliminate unnecessary node creation by catching
394 * cases where old nodes can be reused because their next fields
395 * won't change. On average, only about one-sixth of them need
396 * cloning when a table doubles. The nodes they replace will be
397 * garbage collectable as soon as they are no longer referenced by
398 * any reader thread that may be in the midst of concurrently
399 * traversing table. Upon transfer, the old table bin contains
400 * only a special forwarding node (with hash field "MOVED") that
401 * contains the next table as its key. On encountering a
402 * forwarding node, access and update operations restart, using
403 * the new table.
404 *
405 * Each bin transfer requires its bin lock, which can stall
406 * waiting for locks while resizing. However, because other
407 * threads can join in and help resize rather than contend for
408 * locks, average aggregate waits become shorter as resizing
409 * progresses. The transfer operation must also ensure that all
410 * accessible bins in both the old and new table are usable by any
411 * traversal. This is arranged by proceeding from the last bin
412 * (table.length - 1) up towards the first. Upon seeing a
413 * forwarding node, traversals (see class Traverser) arrange to
414 * move to the new table without revisiting nodes. However, to
415 * ensure that no intervening nodes are skipped, bin splitting can
416 * only begin after the associated reverse-forwarders are in
417 * place.
418 *
419 * The traversal scheme also applies to partial traversals of
420 * ranges of bins (via an alternate Traverser constructor)
421 * to support partitioned aggregate operations. Also, read-only
422 * operations give up if ever forwarded to a null table, which
423 * provides support for shutdown-style clearing, which is also not
424 * currently implemented.
425 *
426 * Lazy table initialization minimizes footprint until first use,
427 * and also avoids resizings when the first operation is from a
428 * putAll, constructor with map argument, or deserialization.
429 * These cases attempt to override the initial capacity settings,
430 * but harmlessly fail to take effect in cases of races.
431 *
432 * The element count is maintained using a specialization of
433 * LongAdder. We need to incorporate a specialization rather than
434 * just use a LongAdder in order to access implicit
435 * contention-sensing that leads to creation of multiple
436 * CounterCells. The counter mechanics avoid contention on
437 * updates but can encounter cache thrashing if read too
438 * frequently during concurrent access. To avoid reading so often,
439 * resizing under contention is attempted only upon adding to a
440 * bin already holding two or more nodes. Under uniform hash
441 * distributions, the probability of this occurring at threshold
442 * is around 13%, meaning that only about 1 in 8 puts check
443 * threshold (and after resizing, many fewer do so).
444 *
445 * TreeBins use a special form of comparison for search and
446 * related operations (which is the main reason we cannot use
447 * existing collections such as TreeMaps). TreeBins contain
448 * Comparable elements, but may contain others, as well as
449 * elements that are Comparable but not necessarily Comparable
450 * for the same T, so we cannot invoke compareTo among them. To
451 * handle this, the tree is ordered primarily by hash value, then
452 * by Comparable.compareTo order if applicable. On lookup at a
453 * node, if elements are not comparable or compare as 0 then both
454 * left and right children may need to be searched in the case of
455 * tied hash values. (This corresponds to the full list search
456 * that would be necessary if all elements were non-Comparable and
457 * had tied hashes.) The red-black balancing code is updated from
458 * pre-jdk-collections
459 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
460 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
461 * Algorithms" (CLR).
462 *
463 * TreeBins also require an additional locking mechanism. While
464 * list traversal is always possible by readers even during
465 * updates, tree traversal is not, mainly beause of tree-rotations
466 * that may change the root node and/or its linkages. TreeBins
467 * include a simple read-write lock mechanism parasitic on the
468 * main bin-synchronization strategy: Structural adjustments
469 * associated with an insertion or removal are already bin-locked
470 * (and so cannot conflict with other writers) but must wait for
471 * ongoing readers to finish. Since there can be only one such
472 * waiter, we use a simple scheme using a single "waiter" field to
473 * block writers. However, readers need never block. If the root
474 * lock is held, they proceed along the slow traversal path (via
475 * next-pointers) until the lock becomes available or the list is
476 * exhausted, whichever comes first. These cases are not fast, but
477 * maximize aggregate expected throughput.
478 *
479 * Maintaining API and serialization compatibility with previous
480 * versions of this class introduces several oddities. Mainly: We
481 * leave untouched but unused constructor arguments refering to
482 * concurrencyLevel. We accept a loadFactor constructor argument,
483 * but apply it only to initial table capacity (which is the only
484 * time that we can guarantee to honor it.) We also declare an
485 * unused "Segment" class that is instantiated in minimal form
486 * only when serializing.
487 *
488 * This file is organized to make things a little easier to follow
489 * while reading than they might otherwise: First the main static
490 * declarations and utilities, then fields, then main public
491 * methods (with a few factorings of multiple public methods into
492 * internal ones), then sizing methods, trees, traversers, and
493 * bulk operations.
494 */
495
496 /* ---------------- Constants -------------- */
497
498 /**
499 * The largest possible table capacity. This value must be
500 * exactly 1<<30 to stay within Java array allocation and indexing
501 * bounds for power of two table sizes, and is further required
502 * because the top two bits of 32bit hash fields are used for
503 * control purposes.
504 */
505 private static final int MAXIMUM_CAPACITY = 1 << 30;
506
507 /**
508 * The default initial table capacity. Must be a power of 2
509 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
510 */
511 private static final int DEFAULT_CAPACITY = 16;
512
513 /**
514 * The largest possible (non-power of two) array size.
515 * Needed by toArray and related methods.
516 */
517 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
518
519 /**
520 * The default concurrency level for this table. Unused but
521 * defined for compatibility with previous versions of this class.
522 */
523 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
524
525 /**
526 * The load factor for this table. Overrides of this value in
527 * constructors affect only the initial table capacity. The
528 * actual floating point value isn't normally used -- it is
529 * simpler to use expressions such as {@code n - (n >>> 2)} for
530 * the associated resizing threshold.
531 */
532 private static final float LOAD_FACTOR = 0.75f;
533
534 /**
535 * The bin count threshold for using a tree rather than list for a
536 * bin. Bins are converted to trees when adding an element to a
537 * bin with at least this many nodes. The value must be greater
538 * than 2, and should be at least 8 to mesh with assumptions in
539 * tree removal about conversion back to plain bins upon
540 * shrinkage.
541 */
542 static final int TREEIFY_THRESHOLD = 8;
543
544 /**
545 * The bin count threshold for untreeifying a (split) bin during a
546 * resize operation. Should be less than TREEIFY_THRESHOLD, and at
547 * most 6 to mesh with shrinkage detection under removal.
548 */
549 static final int UNTREEIFY_THRESHOLD = 6;
550
551 /**
552 * The smallest table capacity for which bins may be treeified.
553 * (Otherwise the table is resized if too many nodes in a bin.)
554 * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
555 * conflicts between resizing and treeification thresholds.
556 */
557 static final int MIN_TREEIFY_CAPACITY = 64;
558
559 /**
560 * Minimum number of rebinnings per transfer step. Ranges are
561 * subdivided to allow multiple resizer threads. This value
562 * serves as a lower bound to avoid resizers encountering
563 * excessive memory contention. The value should be at least
564 * DEFAULT_CAPACITY.
565 */
566 private static final int MIN_TRANSFER_STRIDE = 16;
567
568 /*
569 * Encodings for Node hash fields. See above for explanation.
570 */
571 static final int MOVED = 0x8fffffff; // (-1) hash for forwarding nodes
572 static final int TREEBIN = 0x80000000; // hash for heads of treea
573 static final int RESERVED = 0x80000001; // hash for transient reservations
574 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
575
576 /** Number of CPUS, to place bounds on some sizings */
577 static final int NCPU = Runtime.getRuntime().availableProcessors();
578
579 /** For serialization compatibility. */
580 private static final ObjectStreamField[] serialPersistentFields = {
581 new ObjectStreamField("segments", Segment[].class),
582 new ObjectStreamField("segmentMask", Integer.TYPE),
583 new ObjectStreamField("segmentShift", Integer.TYPE)
584 };
585
586 /* ---------------- Nodes -------------- */
587
588 /**
589 * Key-value entry. This class is never exported out as a
590 * user-mutable Map.Entry (i.e., one supporting setValue; see
591 * MapEntry below), but can be used for read-only traversals used
592 * in bulk tasks. Subclasses of Node with a negativehash field
593 * are special, and contain null keys and values (but are never
594 * exported). Otherwise, keys and vals are never null.
595 */
596 static class Node<K,V> implements Map.Entry<K,V> {
597 final int hash;
598 final K key;
599 volatile V val;
600 Node<K,V> next;
601
602 Node(int hash, K key, V val, Node<K,V> next) {
603 this.hash = hash;
604 this.key = key;
605 this.val = val;
606 this.next = next;
607 }
608
609 public final K getKey() { return key; }
610 public final V getValue() { return val; }
611 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
612 public final String toString(){ return key + "=" + val; }
613 public final V setValue(V value) {
614 throw new UnsupportedOperationException();
615 }
616
617 public final boolean equals(Object o) {
618 Object k, v, u; Map.Entry<?,?> e;
619 return ((o instanceof Map.Entry) &&
620 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
621 (v = e.getValue()) != null &&
622 (k == key || k.equals(key)) &&
623 (v == (u = val) || v.equals(u)));
624 }
625
626 /**
627 * Virtualized support for map.get(); overridden in subclasses.
628 */
629 Node<K,V> find(int h, Object k) {
630 Node<K,V> e = this;
631 if (k != null) {
632 do {
633 K ek;
634 if (e.hash == h &&
635 ((ek = e.key) == k || (ek != null && k.equals(ek))))
636 return e;
637 } while ((e = e.next) != null);
638 }
639 return null;
640 }
641 }
642
643 /* ---------------- Static utilities -------------- */
644
645 /**
646 * Spreads (XORs) higher bits of hash to lower and also forces top
647 * bit to 0. Because the table uses power-of-two masking, sets of
648 * hashes that vary only in bits above the current mask will
649 * always collide. (Among known examples are sets of Float keys
650 * holding consecutive whole numbers in small tables.) So we
651 * apply a transform that spreads the impact of higher bits
652 * downward. There is a tradeoff between speed, utility, and
653 * quality of bit-spreading. Because many common sets of hashes
654 * are already reasonably distributed (so don't benefit from
655 * spreading), and because we use trees to handle large sets of
656 * collisions in bins, we just XOR some shifted bits in the
657 * cheapest possible way to reduce systematic lossage, as well as
658 * to incorporate impact of the highest bits that would otherwise
659 * never be used in index calculations because of table bounds.
660 */
661 static final int spread(int h) {
662 return (h ^ (h >>> 16)) & HASH_BITS;
663 }
664
665 /**
666 * Returns a power of two table size for the given desired capacity.
667 * See Hackers Delight, sec 3.2
668 */
669 private static final int tableSizeFor(int c) {
670 int n = c - 1;
671 n |= n >>> 1;
672 n |= n >>> 2;
673 n |= n >>> 4;
674 n |= n >>> 8;
675 n |= n >>> 16;
676 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
677 }
678
679 /**
680 * Returns x's Class if it is of the form "class C implements
681 * Comparable<C>", else null.
682 */
683 static Class<?> comparableClassFor(Object x) {
684 if (x instanceof Comparable) {
685 Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
686 if ((c = x.getClass()) == String.class) // bypass checks
687 return c;
688 if ((ts = c.getGenericInterfaces()) != null) {
689 for (int i = 0; i < ts.length; ++i) {
690 if (((t = ts[i]) instanceof ParameterizedType) &&
691 ((p = (ParameterizedType)t).getRawType() ==
692 Comparable.class) &&
693 (as = p.getActualTypeArguments()) != null &&
694 as.length == 1 && as[0] == c) // type arg is c
695 return c;
696 }
697 }
698 }
699 return null;
700 }
701
702 /**
703 * Returns k.compareTo(x) if x matches kc (k's screened comparable
704 * class), else 0.
705 */
706 @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
707 static int compareComparables(Class<?> kc, Object k, Object x) {
708 return (x == null || x.getClass() != kc ? 0 :
709 ((Comparable)k).compareTo(x));
710 }
711
712 /* ---------------- Table element access -------------- */
713
714 /*
715 * Volatile access methods are used for table elements as well as
716 * elements of in-progress next table while resizing. All uses of
717 * the tab arguments must be null checked by callers. All callers
718 * also paranoically precheck that tab's length is not zero (or an
719 * equivalent check), thus ensuring that any index argument taking
720 * the form of a hash value anded with (length - 1) is a valid
721 * index. Note that, to be correct wrt arbitrary concurrency
722 * errors by users, these checks must operate on local variables,
723 * which accounts for some odd-looking inline assignments below.
724 * Note that calls to setTabAt always occur within locked regions,
725 * and so do not need full volatile semantics, but still require
726 * ordering to maintain concurrent readability.
727 */
728
729 @SuppressWarnings("unchecked")
730 static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
731 return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
732 }
733
734 static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
735 Node<K,V> c, Node<K,V> v) {
736 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
737 }
738
739 static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
740 U.putOrderedObject(tab, ((long)i << ASHIFT) + ABASE, v);
741 }
742
743 /* ---------------- Fields -------------- */
744
745 /**
746 * The array of bins. Lazily initialized upon first insertion.
747 * Size is always a power of two. Accessed directly by iterators.
748 */
749 transient volatile Node<K,V>[] table;
750
751 /**
752 * The next table to use; non-null only while resizing.
753 */
754 private transient volatile Node<K,V>[] nextTable;
755
756 /**
757 * Base counter value, used mainly when there is no contention,
758 * but also as a fallback during table initialization
759 * races. Updated via CAS.
760 */
761 private transient volatile long baseCount;
762
763 /**
764 * Table initialization and resizing control. When negative, the
765 * table is being initialized or resized: -1 for initialization,
766 * else -(1 + the number of active resizing threads). Otherwise,
767 * when table is null, holds the initial table size to use upon
768 * creation, or 0 for default. After initialization, holds the
769 * next element count value upon which to resize the table.
770 */
771 private transient volatile int sizeCtl;
772
773 /**
774 * The next table index (plus one) to split while resizing.
775 */
776 private transient volatile int transferIndex;
777
778 /**
779 * The least available table index to split while resizing.
780 */
781 private transient volatile int transferOrigin;
782
783 /**
784 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
785 */
786 private transient volatile int cellsBusy;
787
788 /**
789 * Table of counter cells. When non-null, size is a power of 2.
790 */
791 private transient volatile CounterCell[] counterCells;
792
793 // views
794 private transient KeySetView<K,V> keySet;
795 private transient ValuesView<K,V> values;
796 private transient EntrySetView<K,V> entrySet;
797
798
799 /* ---------------- Public operations -------------- */
800
801 /**
802 * Creates a new, empty map with the default initial table size (16).
803 */
804 public ConcurrentHashMapV8() {
805 }
806
807 /**
808 * Creates a new, empty map with an initial table size
809 * accommodating the specified number of elements without the need
810 * to dynamically resize.
811 *
812 * @param initialCapacity The implementation performs internal
813 * sizing to accommodate this many elements.
814 * @throws IllegalArgumentException if the initial capacity of
815 * elements is negative
816 */
817 public ConcurrentHashMapV8(int initialCapacity) {
818 if (initialCapacity < 0)
819 throw new IllegalArgumentException();
820 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
821 MAXIMUM_CAPACITY :
822 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
823 this.sizeCtl = cap;
824 }
825
826 /**
827 * Creates a new map with the same mappings as the given map.
828 *
829 * @param m the map
830 */
831 public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
832 this.sizeCtl = DEFAULT_CAPACITY;
833 putAll(m);
834 }
835
836 /**
837 * Creates a new, empty map with an initial table size based on
838 * the given number of elements ({@code initialCapacity}) and
839 * initial table density ({@code loadFactor}).
840 *
841 * @param initialCapacity the initial capacity. The implementation
842 * performs internal sizing to accommodate this many elements,
843 * given the specified load factor.
844 * @param loadFactor the load factor (table density) for
845 * establishing the initial table size
846 * @throws IllegalArgumentException if the initial capacity of
847 * elements is negative or the load factor is nonpositive
848 *
849 * @since 1.6
850 */
851 public ConcurrentHashMapV8(int initialCapacity, float loadFactor) {
852 this(initialCapacity, loadFactor, 1);
853 }
854
855 /**
856 * Creates a new, empty map with an initial table size based on
857 * the given number of elements ({@code initialCapacity}), table
858 * density ({@code loadFactor}), and number of concurrently
859 * updating threads ({@code concurrencyLevel}).
860 *
861 * @param initialCapacity the initial capacity. The implementation
862 * performs internal sizing to accommodate this many elements,
863 * given the specified load factor.
864 * @param loadFactor the load factor (table density) for
865 * establishing the initial table size
866 * @param concurrencyLevel the estimated number of concurrently
867 * updating threads. The implementation may use this value as
868 * a sizing hint.
869 * @throws IllegalArgumentException if the initial capacity is
870 * negative or the load factor or concurrencyLevel are
871 * nonpositive
872 */
873 public ConcurrentHashMapV8(int initialCapacity,
874 float loadFactor, int concurrencyLevel) {
875 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
876 throw new IllegalArgumentException();
877 if (initialCapacity < concurrencyLevel) // Use at least as many bins
878 initialCapacity = concurrencyLevel; // as estimated threads
879 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
880 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
881 MAXIMUM_CAPACITY : tableSizeFor((int)size);
882 this.sizeCtl = cap;
883 }
884
885 // Original (since JDK1.2) Map methods
886
887 /**
888 * {@inheritDoc}
889 */
890 public int size() {
891 long n = sumCount();
892 return ((n < 0L) ? 0 :
893 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
894 (int)n);
895 }
896
897 /**
898 * {@inheritDoc}
899 */
900 public boolean isEmpty() {
901 return sumCount() <= 0L; // ignore transient negative values
902 }
903
904 /**
905 * Returns the value to which the specified key is mapped,
906 * or {@code null} if this map contains no mapping for the key.
907 *
908 * <p>More formally, if this map contains a mapping from a key
909 * {@code k} to a value {@code v} such that {@code key.equals(k)},
910 * then this method returns {@code v}; otherwise it returns
911 * {@code null}. (There can be at most one such mapping.)
912 *
913 * @throws NullPointerException if the specified key is null
914 */
915 public V get(Object key) {
916 Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
917 int h = spread(key.hashCode());
918 if ((tab = table) != null && (n = tab.length) > 0 &&
919 (e = tabAt(tab, (n - 1) & h)) != null) {
920 if ((eh = e.hash) == h) {
921 if ((ek = e.key) == key || (ek != null && key.equals(ek)))
922 return e.val;
923 }
924 else if (eh < 0)
925 return (p = e.find(h, key)) != null ? p.val : null;
926 while ((e = e.next) != null) {
927 if (e.hash == h &&
928 ((ek = e.key) == key || (ek != null && key.equals(ek))))
929 return e.val;
930 }
931 }
932 return null;
933 }
934
935 /**
936 * Tests if the specified object is a key in this table.
937 *
938 * @param key possible key
939 * @return {@code true} if and only if the specified object
940 * is a key in this table, as determined by the
941 * {@code equals} method; {@code false} otherwise
942 * @throws NullPointerException if the specified key is null
943 */
944 public boolean containsKey(Object key) {
945 return get(key) != null;
946 }
947
948 /**
949 * Returns {@code true} if this map maps one or more keys to the
950 * specified value. Note: This method may require a full traversal
951 * of the map, and is much slower than method {@code containsKey}.
952 *
953 * @param value value whose presence in this map is to be tested
954 * @return {@code true} if this map maps one or more keys to the
955 * specified value
956 * @throws NullPointerException if the specified value is null
957 */
958 public boolean containsValue(Object value) {
959 if (value == null)
960 throw new NullPointerException();
961 Node<K,V>[] t;
962 if ((t = table) != null) {
963 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
964 for (Node<K,V> p; (p = it.advance()) != null; ) {
965 V v;
966 if ((v = p.val) == value || (v != null && value.equals(v)))
967 return true;
968 }
969 }
970 return false;
971 }
972
973 /**
974 * Maps the specified key to the specified value in this table.
975 * Neither the key nor the value can be null.
976 *
977 * <p>The value can be retrieved by calling the {@code get} method
978 * with a key that is equal to the original key.
979 *
980 * @param key key with which the specified value is to be associated
981 * @param value value to be associated with the specified key
982 * @return the previous value associated with {@code key}, or
983 * {@code null} if there was no mapping for {@code key}
984 * @throws NullPointerException if the specified key or value is null
985 */
986 public V put(K key, V value) {
987 return putVal(key, value, false);
988 }
989
990 /** Implementation for put and putIfAbsent */
991 final V putVal(K key, V value, boolean onlyIfAbsent) {
992 if (key == null || value == null) throw new NullPointerException();
993 int hash = spread(key.hashCode());
994 int binCount = 0;
995 for (Node<K,V>[] tab = table;;) {
996 Node<K,V> f; int n, i, fh;
997 if (tab == null || (n = tab.length) == 0)
998 tab = initTable();
999 else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
1000 if (casTabAt(tab, i, null,
1001 new Node<K,V>(hash, key, value, null)))
1002 break; // no lock when adding to empty bin
1003 }
1004 else if ((fh = f.hash) == MOVED)
1005 tab = helpTransfer(tab, f);
1006 else {
1007 V oldVal = null;
1008 synchronized (f) {
1009 if (tabAt(tab, i) == f) {
1010 if (fh >= 0) {
1011 binCount = 1;
1012 for (Node<K,V> e = f;; ++binCount) {
1013 K ek;
1014 if (e.hash == hash &&
1015 ((ek = e.key) == key ||
1016 (ek != null && key.equals(ek)))) {
1017 oldVal = e.val;
1018 if (!onlyIfAbsent)
1019 e.val = value;
1020 break;
1021 }
1022 Node<K,V> pred = e;
1023 if ((e = e.next) == null) {
1024 pred.next = new Node<K,V>(hash, key,
1025 value, null);
1026 break;
1027 }
1028 }
1029 }
1030 else if (f instanceof TreeBin) {
1031 Node<K,V> p;
1032 binCount = 2;
1033 if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1034 value)) != null) {
1035 oldVal = p.val;
1036 if (!onlyIfAbsent)
1037 p.val = value;
1038 }
1039 }
1040 }
1041 }
1042 if (binCount != 0) {
1043 if (binCount >= TREEIFY_THRESHOLD)
1044 treeifyBin(tab, i);
1045 if (oldVal != null)
1046 return oldVal;
1047 break;
1048 }
1049 }
1050 }
1051 addCount(1L, binCount);
1052 return null;
1053 }
1054
1055 /**
1056 * Copies all of the mappings from the specified map to this one.
1057 * These mappings replace any mappings that this map had for any of the
1058 * keys currently in the specified map.
1059 *
1060 * @param m mappings to be stored in this map
1061 */
1062 public void putAll(Map<? extends K, ? extends V> m) {
1063 tryPresize(m.size());
1064 for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1065 putVal(e.getKey(), e.getValue(), false);
1066 }
1067
1068 /**
1069 * Removes the key (and its corresponding value) from this map.
1070 * This method does nothing if the key is not in the map.
1071 *
1072 * @param key the key that needs to be removed
1073 * @return the previous value associated with {@code key}, or
1074 * {@code null} if there was no mapping for {@code key}
1075 * @throws NullPointerException if the specified key is null
1076 */
1077 public V remove(Object key) {
1078 return replaceNode(key, null, null);
1079 }
1080
1081 /**
1082 * Implementation for the four public remove/replace methods:
1083 * Replaces node value with v, conditional upon match of cv if
1084 * non-null. If resulting value is null, delete.
1085 */
1086 final V replaceNode(Object key, V value, Object cv) {
1087 int hash = spread(key.hashCode());
1088 for (Node<K,V>[] tab = table;;) {
1089 Node<K,V> f; int n, i, fh;
1090 if (tab == null || (n = tab.length) == 0 ||
1091 (f = tabAt(tab, i = (n - 1) & hash)) == null)
1092 break;
1093 else if ((fh = f.hash) == MOVED)
1094 tab = helpTransfer(tab, f);
1095 else {
1096 V oldVal = null;
1097 boolean validated = false;
1098 synchronized (f) {
1099 if (tabAt(tab, i) == f) {
1100 if (fh >= 0) {
1101 validated = true;
1102 for (Node<K,V> e = f, pred = null;;) {
1103 K ek;
1104 if (e.hash == hash &&
1105 ((ek = e.key) == key ||
1106 (ek != null && key.equals(ek)))) {
1107 V ev = e.val;
1108 if (cv == null || cv == ev ||
1109 (ev != null && cv.equals(ev))) {
1110 oldVal = ev;
1111 if (value != null)
1112 e.val = value;
1113 else if (pred != null)
1114 pred.next = e.next;
1115 else
1116 setTabAt(tab, i, e.next);
1117 }
1118 break;
1119 }
1120 pred = e;
1121 if ((e = e.next) == null)
1122 break;
1123 }
1124 }
1125 else if (f instanceof TreeBin) {
1126 validated = true;
1127 TreeBin<K,V> t = (TreeBin<K,V>)f;
1128 TreeNode<K,V> r, p;
1129 if ((r = t.root) != null &&
1130 (p = r.findTreeNode(hash, key, null)) != null) {
1131 V pv = p.val;
1132 if (cv == null || cv == pv ||
1133 (pv != null && cv.equals(pv))) {
1134 oldVal = pv;
1135 if (value != null)
1136 p.val = value;
1137 else if (t.removeTreeNode(p))
1138 setTabAt(tab, i, untreeify(t.first));
1139 }
1140 }
1141 }
1142 }
1143 }
1144 if (validated) {
1145 if (oldVal != null) {
1146 if (value == null)
1147 addCount(-1L, -1);
1148 return oldVal;
1149 }
1150 break;
1151 }
1152 }
1153 }
1154 return null;
1155 }
1156
1157 /**
1158 * Removes all of the mappings from this map.
1159 */
1160 public void clear() {
1161 long delta = 0L; // negative number of deletions
1162 int i = 0;
1163 Node<K,V>[] tab = table;
1164 while (tab != null && i < tab.length) {
1165 int fh;
1166 Node<K,V> f = tabAt(tab, i);
1167 if (f == null)
1168 ++i;
1169 else if ((fh = f.hash) == MOVED) {
1170 tab = helpTransfer(tab, f);
1171 i = 0; // restart
1172 }
1173 else {
1174 synchronized (f) {
1175 if (tabAt(tab, i) == f) {
1176 Node<K,V> p = (fh >= 0 ? f :
1177 (f instanceof TreeBin) ?
1178 ((TreeBin<K,V>)f).first : null);
1179 while (p != null) {
1180 --delta;
1181 p = p.next;
1182 }
1183 setTabAt(tab, i++, null);
1184 }
1185 }
1186 }
1187 }
1188 if (delta != 0L)
1189 addCount(delta, -1);
1190 }
1191
1192 /**
1193 * Returns a {@link Set} view of the keys contained in this map.
1194 * The set is backed by the map, so changes to the map are
1195 * reflected in the set, and vice-versa. The set supports element
1196 * removal, which removes the corresponding mapping from this map,
1197 * via the {@code Iterator.remove}, {@code Set.remove},
1198 * {@code removeAll}, {@code retainAll}, and {@code clear}
1199 * operations. It does not support the {@code add} or
1200 * {@code addAll} operations.
1201 *
1202 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1203 * that will never throw {@link ConcurrentModificationException},
1204 * and guarantees to traverse elements as they existed upon
1205 * construction of the iterator, and may (but is not guaranteed to)
1206 * reflect any modifications subsequent to construction.
1207 *
1208 * @return the set view
1209 */
1210 public KeySetView<K,V> keySet() {
1211 KeySetView<K,V> ks;
1212 return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1213 }
1214
1215 /**
1216 * Returns a {@link Collection} view of the values contained in this map.
1217 * The collection is backed by the map, so changes to the map are
1218 * reflected in the collection, and vice-versa. The collection
1219 * supports element removal, which removes the corresponding
1220 * mapping from this map, via the {@code Iterator.remove},
1221 * {@code Collection.remove}, {@code removeAll},
1222 * {@code retainAll}, and {@code clear} operations. It does not
1223 * support the {@code add} or {@code addAll} operations.
1224 *
1225 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1226 * that will never throw {@link ConcurrentModificationException},
1227 * and guarantees to traverse elements as they existed upon
1228 * construction of the iterator, and may (but is not guaranteed to)
1229 * reflect any modifications subsequent to construction.
1230 *
1231 * @return the collection view
1232 */
1233 public Collection<V> values() {
1234 ValuesView<K,V> vs;
1235 return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1236 }
1237
1238 /**
1239 * Returns a {@link Set} view of the mappings contained in this map.
1240 * The set is backed by the map, so changes to the map are
1241 * reflected in the set, and vice-versa. The set supports element
1242 * removal, which removes the corresponding mapping from the map,
1243 * via the {@code Iterator.remove}, {@code Set.remove},
1244 * {@code removeAll}, {@code retainAll}, and {@code clear}
1245 * operations.
1246 *
1247 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1248 * that will never throw {@link ConcurrentModificationException},
1249 * and guarantees to traverse elements as they existed upon
1250 * construction of the iterator, and may (but is not guaranteed to)
1251 * reflect any modifications subsequent to construction.
1252 *
1253 * @return the set view
1254 */
1255 public Set<Map.Entry<K,V>> entrySet() {
1256 EntrySetView<K,V> es;
1257 return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1258 }
1259
1260 /**
1261 * Returns the hash code value for this {@link Map}, i.e.,
1262 * the sum of, for each key-value pair in the map,
1263 * {@code key.hashCode() ^ value.hashCode()}.
1264 *
1265 * @return the hash code value for this map
1266 */
1267 public int hashCode() {
1268 int h = 0;
1269 Node<K,V>[] t;
1270 if ((t = table) != null) {
1271 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1272 for (Node<K,V> p; (p = it.advance()) != null; )
1273 h += p.key.hashCode() ^ p.val.hashCode();
1274 }
1275 return h;
1276 }
1277
1278 /**
1279 * Returns a string representation of this map. The string
1280 * representation consists of a list of key-value mappings (in no
1281 * particular order) enclosed in braces ("{@code {}}"). Adjacent
1282 * mappings are separated by the characters {@code ", "} (comma
1283 * and space). Each key-value mapping is rendered as the key
1284 * followed by an equals sign ("{@code =}") followed by the
1285 * associated value.
1286 *
1287 * @return a string representation of this map
1288 */
1289 public String toString() {
1290 Node<K,V>[] t;
1291 int f = (t = table) == null ? 0 : t.length;
1292 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1293 StringBuilder sb = new StringBuilder();
1294 sb.append('{');
1295 Node<K,V> p;
1296 if ((p = it.advance()) != null) {
1297 for (;;) {
1298 K k = p.key;
1299 V v = p.val;
1300 sb.append(k == this ? "(this Map)" : k);
1301 sb.append('=');
1302 sb.append(v == this ? "(this Map)" : v);
1303 if ((p = it.advance()) == null)
1304 break;
1305 sb.append(',').append(' ');
1306 }
1307 }
1308 return sb.append('}').toString();
1309 }
1310
1311 /**
1312 * Compares the specified object with this map for equality.
1313 * Returns {@code true} if the given object is a map with the same
1314 * mappings as this map. This operation may return misleading
1315 * results if either map is concurrently modified during execution
1316 * of this method.
1317 *
1318 * @param o object to be compared for equality with this map
1319 * @return {@code true} if the specified object is equal to this map
1320 */
1321 public boolean equals(Object o) {
1322 if (o != this) {
1323 if (!(o instanceof Map))
1324 return false;
1325 Map<?,?> m = (Map<?,?>) o;
1326 Node<K,V>[] t;
1327 int f = (t = table) == null ? 0 : t.length;
1328 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1329 for (Node<K,V> p; (p = it.advance()) != null; ) {
1330 V val = p.val;
1331 Object v = m.get(p.key);
1332 if (v == null || (v != val && !v.equals(val)))
1333 return false;
1334 }
1335 for (Map.Entry<?,?> e : m.entrySet()) {
1336 Object mk, mv, v;
1337 if ((mk = e.getKey()) == null ||
1338 (mv = e.getValue()) == null ||
1339 (v = get(mk)) == null ||
1340 (mv != v && !mv.equals(v)))
1341 return false;
1342 }
1343 }
1344 return true;
1345 }
1346
1347 /**
1348 * Stripped-down version of helper class used in previous version,
1349 * declared for the sake of serialization compatibility
1350 */
1351 static class Segment<K,V> extends ReentrantLock implements Serializable {
1352 private static final long serialVersionUID = 2249069246763182397L;
1353 final float loadFactor;
1354 Segment(float lf) { this.loadFactor = lf; }
1355 }
1356
1357 /**
1358 * Saves the state of the {@code ConcurrentHashMapV8} instance to a
1359 * stream (i.e., serializes it).
1360 * @param s the stream
1361 * @serialData
1362 * the key (Object) and value (Object)
1363 * for each key-value mapping, followed by a null pair.
1364 * The key-value mappings are emitted in no particular order.
1365 */
1366 private void writeObject(java.io.ObjectOutputStream s)
1367 throws java.io.IOException {
1368 // For serialization compatibility
1369 // Emulate segment calculation from previous version of this class
1370 int sshift = 0;
1371 int ssize = 1;
1372 while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1373 ++sshift;
1374 ssize <<= 1;
1375 }
1376 int segmentShift = 32 - sshift;
1377 int segmentMask = ssize - 1;
1378 @SuppressWarnings("unchecked") Segment<K,V>[] segments = (Segment<K,V>[])
1379 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1380 for (int i = 0; i < segments.length; ++i)
1381 segments[i] = new Segment<K,V>(LOAD_FACTOR);
1382 s.putFields().put("segments", segments);
1383 s.putFields().put("segmentShift", segmentShift);
1384 s.putFields().put("segmentMask", segmentMask);
1385 s.writeFields();
1386
1387 Node<K,V>[] t;
1388 if ((t = table) != null) {
1389 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1390 for (Node<K,V> p; (p = it.advance()) != null; ) {
1391 s.writeObject(p.key);
1392 s.writeObject(p.val);
1393 }
1394 }
1395 s.writeObject(null);
1396 s.writeObject(null);
1397 segments = null; // throw away
1398 }
1399
1400 /**
1401 * Reconstitutes the instance from a stream (that is, deserializes it).
1402 * @param s the stream
1403 */
1404 private void readObject(java.io.ObjectInputStream s)
1405 throws java.io.IOException, ClassNotFoundException {
1406 /*
1407 * To improve performance in typical cases, we create nodes
1408 * while reading, then place in table once size is known.
1409 * However, we must also validate uniqueness and deal with
1410 * overpopulated bins while doing so, which requires
1411 * specialized versions of putVal mechanics.
1412 */
1413 sizeCtl = -1; // force exclusion for table construction
1414 s.defaultReadObject();
1415 long size = 0L;
1416 Node<K,V> p = null;
1417 for (;;) {
1418 @SuppressWarnings("unchecked") K k = (K) s.readObject();
1419 @SuppressWarnings("unchecked") V v = (V) s.readObject();
1420 if (k != null && v != null) {
1421 p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1422 ++size;
1423 }
1424 else
1425 break;
1426 }
1427 if (size == 0L)
1428 sizeCtl = 0;
1429 else {
1430 int n;
1431 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1432 n = MAXIMUM_CAPACITY;
1433 else {
1434 int sz = (int)size;
1435 n = tableSizeFor(sz + (sz >>> 1) + 1);
1436 }
1437 @SuppressWarnings({"rawtypes","unchecked"})
1438 Node<K,V>[] tab = (Node<K,V>[])new Node[n];
1439 int mask = n - 1;
1440 long added = 0L;
1441 while (p != null) {
1442 boolean insertAtFront;
1443 Node<K,V> next = p.next, first;
1444 int h = p.hash, j = h & mask;
1445 if ((first = tabAt(tab, j)) == null)
1446 insertAtFront = true;
1447 else {
1448 K k = p.key;
1449 if (first.hash < 0) {
1450 TreeBin<K,V> t = (TreeBin<K,V>)first;
1451 if (t.putTreeVal(h, k, p.val) == null)
1452 ++added;
1453 insertAtFront = false;
1454 }
1455 else {
1456 int binCount = 0;
1457 insertAtFront = true;
1458 Node<K,V> q; K qk;
1459 for (q = first; q != null; q = q.next) {
1460 if (q.hash == h &&
1461 ((qk = q.key) == k ||
1462 (qk != null && k.equals(qk)))) {
1463 insertAtFront = false;
1464 break;
1465 }
1466 ++binCount;
1467 }
1468 if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1469 insertAtFront = false;
1470 ++added;
1471 p.next = first;
1472 TreeNode<K,V> hd = null, tl = null;
1473 for (q = p; q != null; q = q.next) {
1474 TreeNode<K,V> t = new TreeNode<K,V>
1475 (q.hash, q.key, q.val, null, null);
1476 if ((t.prev = tl) == null)
1477 hd = t;
1478 else
1479 tl.next = t;
1480 tl = t;
1481 }
1482 setTabAt(tab, j, new TreeBin<K,V>(hd));
1483 }
1484 }
1485 }
1486 if (insertAtFront) {
1487 ++added;
1488 p.next = first;
1489 setTabAt(tab, j, p);
1490 }
1491 p = next;
1492 }
1493 table = tab;
1494 sizeCtl = n - (n >>> 2);
1495 baseCount = added;
1496 }
1497 }
1498
1499 // ConcurrentMap methods
1500
1501 /**
1502 * {@inheritDoc}
1503 *
1504 * @return the previous value associated with the specified key,
1505 * or {@code null} if there was no mapping for the key
1506 * @throws NullPointerException if the specified key or value is null
1507 */
1508 public V putIfAbsent(K key, V value) {
1509 return putVal(key, value, true);
1510 }
1511
1512 /**
1513 * {@inheritDoc}
1514 *
1515 * @throws NullPointerException if the specified key is null
1516 */
1517 public boolean remove(Object key, Object value) {
1518 if (key == null)
1519 throw new NullPointerException();
1520 return value != null && replaceNode(key, null, value) != null;
1521 }
1522
1523 /**
1524 * {@inheritDoc}
1525 *
1526 * @throws NullPointerException if any of the arguments are null
1527 */
1528 public boolean replace(K key, V oldValue, V newValue) {
1529 if (key == null || oldValue == null || newValue == null)
1530 throw new NullPointerException();
1531 return replaceNode(key, newValue, oldValue) != null;
1532 }
1533
1534 /**
1535 * {@inheritDoc}
1536 *
1537 * @return the previous value associated with the specified key,
1538 * or {@code null} if there was no mapping for the key
1539 * @throws NullPointerException if the specified key or value is null
1540 */
1541 public V replace(K key, V value) {
1542 if (key == null || value == null)
1543 throw new NullPointerException();
1544 return replaceNode(key, value, null);
1545 }
1546
1547 // Overrides of JDK8+ Map extension method defaults
1548
1549 /**
1550 * Returns the value to which the specified key is mapped, or the
1551 * given default value if this map contains no mapping for the
1552 * key.
1553 *
1554 * @param key the key whose associated value is to be returned
1555 * @param defaultValue the value to return if this map contains
1556 * no mapping for the given key
1557 * @return the mapping for the key, if present; else the default value
1558 * @throws NullPointerException if the specified key is null
1559 */
1560 public V getOrDefault(Object key, V defaultValue) {
1561 V v;
1562 return (v = get(key)) == null ? defaultValue : v;
1563 }
1564
1565 public void forEach(BiAction<? super K, ? super V> action) {
1566 if (action == null) throw new NullPointerException();
1567 Node<K,V>[] t;
1568 if ((t = table) != null) {
1569 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1570 for (Node<K,V> p; (p = it.advance()) != null; ) {
1571 action.apply(p.key, p.val);
1572 }
1573 }
1574 }
1575
1576 public void replaceAll(BiFun<? super K, ? super V, ? extends V> function) {
1577 if (function == null) throw new NullPointerException();
1578 Node<K,V>[] t;
1579 if ((t = table) != null) {
1580 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1581 for (Node<K,V> p; (p = it.advance()) != null; ) {
1582 V oldValue = p.val;
1583 for (K key = p.key;;) {
1584 V newValue = function.apply(key, oldValue);
1585 if (newValue == null)
1586 throw new NullPointerException();
1587 if (replaceNode(key, newValue, oldValue) != null ||
1588 (oldValue = get(key)) == null)
1589 break;
1590 }
1591 }
1592 }
1593 }
1594
1595 /**
1596 * If the specified key is not already associated with a value,
1597 * attempts to compute its value using the given mapping function
1598 * and enters it into this map unless {@code null}. The entire
1599 * method invocation is performed atomically, so the function is
1600 * applied at most once per key. Some attempted update operations
1601 * on this map by other threads may be blocked while computation
1602 * is in progress, so the computation should be short and simple,
1603 * and must not attempt to update any other mappings of this map.
1604 *
1605 * @param key key with which the specified value is to be associated
1606 * @param mappingFunction the function to compute a value
1607 * @return the current (existing or computed) value associated with
1608 * the specified key, or null if the computed value is null
1609 * @throws NullPointerException if the specified key or mappingFunction
1610 * is null
1611 * @throws IllegalStateException if the computation detectably
1612 * attempts a recursive update to this map that would
1613 * otherwise never complete
1614 * @throws RuntimeException or Error if the mappingFunction does so,
1615 * in which case the mapping is left unestablished
1616 */
1617 public V computeIfAbsent(K key, Fun<? super K, ? extends V> mappingFunction) {
1618 if (key == null || mappingFunction == null)
1619 throw new NullPointerException();
1620 int h = spread(key.hashCode());
1621 V val = null;
1622 int binCount = 0;
1623 for (Node<K,V>[] tab = table;;) {
1624 Node<K,V> f; int n, i, fh;
1625 if (tab == null || (n = tab.length) == 0)
1626 tab = initTable();
1627 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1628 Node<K,V> r = new ReservationNode<K,V>();
1629 synchronized (r) {
1630 if (casTabAt(tab, i, null, r)) {
1631 binCount = 1;
1632 Node<K,V> node = null;
1633 try {
1634 if ((val = mappingFunction.apply(key)) != null)
1635 node = new Node<K,V>(h, key, val, null);
1636 } finally {
1637 setTabAt(tab, i, node);
1638 }
1639 }
1640 }
1641 if (binCount != 0)
1642 break;
1643 }
1644 else if ((fh = f.hash) == MOVED)
1645 tab = helpTransfer(tab, f);
1646 else {
1647 boolean added = false;
1648 synchronized (f) {
1649 if (tabAt(tab, i) == f) {
1650 if (fh >= 0) {
1651 binCount = 1;
1652 for (Node<K,V> e = f;; ++binCount) {
1653 K ek; V ev;
1654 if (e.hash == h &&
1655 ((ek = e.key) == key ||
1656 (ek != null && key.equals(ek)))) {
1657 val = e.val;
1658 break;
1659 }
1660 Node<K,V> pred = e;
1661 if ((e = e.next) == null) {
1662 if ((val = mappingFunction.apply(key)) != null) {
1663 added = true;
1664 pred.next = new Node<K,V>(h, key, val, null);
1665 }
1666 break;
1667 }
1668 }
1669 }
1670 else if (f instanceof TreeBin) {
1671 binCount = 2;
1672 TreeBin<K,V> t = (TreeBin<K,V>)f;
1673 TreeNode<K,V> r, p;
1674 if ((r = t.root) != null &&
1675 (p = r.findTreeNode(h, key, null)) != null)
1676 val = p.val;
1677 else if ((val = mappingFunction.apply(key)) != null) {
1678 added = true;
1679 t.putTreeVal(h, key, val);
1680 }
1681 }
1682 }
1683 }
1684 if (binCount != 0) {
1685 if (binCount >= TREEIFY_THRESHOLD)
1686 treeifyBin(tab, i);
1687 if (!added)
1688 return val;
1689 break;
1690 }
1691 }
1692 }
1693 if (val != null)
1694 addCount(1L, binCount);
1695 return val;
1696 }
1697
1698 /**
1699 * If the value for the specified key is present, attempts to
1700 * compute a new mapping given the key and its current mapped
1701 * value. The entire method invocation is performed atomically.
1702 * Some attempted update operations on this map by other threads
1703 * may be blocked while computation is in progress, so the
1704 * computation should be short and simple, and must not attempt to
1705 * update any other mappings of this map.
1706 *
1707 * @param key key with which a value may be associated
1708 * @param remappingFunction the function to compute a value
1709 * @return the new value associated with the specified key, or null if none
1710 * @throws NullPointerException if the specified key or remappingFunction
1711 * is null
1712 * @throws IllegalStateException if the computation detectably
1713 * attempts a recursive update to this map that would
1714 * otherwise never complete
1715 * @throws RuntimeException or Error if the remappingFunction does so,
1716 * in which case the mapping is unchanged
1717 */
1718 public V computeIfPresent(K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1719 if (key == null || remappingFunction == null)
1720 throw new NullPointerException();
1721 int h = spread(key.hashCode());
1722 V val = null;
1723 int delta = 0;
1724 int binCount = 0;
1725 for (Node<K,V>[] tab = table;;) {
1726 Node<K,V> f; int n, i, fh;
1727 if (tab == null || (n = tab.length) == 0)
1728 tab = initTable();
1729 else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1730 break;
1731 else if ((fh = f.hash) == MOVED)
1732 tab = helpTransfer(tab, f);
1733 else {
1734 synchronized (f) {
1735 if (tabAt(tab, i) == f) {
1736 if (fh >= 0) {
1737 binCount = 1;
1738 for (Node<K,V> e = f, pred = null;; ++binCount) {
1739 K ek;
1740 if (e.hash == h &&
1741 ((ek = e.key) == key ||
1742 (ek != null && key.equals(ek)))) {
1743 val = remappingFunction.apply(key, e.val);
1744 if (val != null)
1745 e.val = val;
1746 else {
1747 delta = -1;
1748 Node<K,V> en = e.next;
1749 if (pred != null)
1750 pred.next = en;
1751 else
1752 setTabAt(tab, i, en);
1753 }
1754 break;
1755 }
1756 pred = e;
1757 if ((e = e.next) == null)
1758 break;
1759 }
1760 }
1761 else if (f instanceof TreeBin) {
1762 binCount = 2;
1763 TreeBin<K,V> t = (TreeBin<K,V>)f;
1764 TreeNode<K,V> r, p;
1765 if ((r = t.root) != null &&
1766 (p = r.findTreeNode(h, key, null)) != null) {
1767 val = remappingFunction.apply(key, p.val);
1768 if (val != null)
1769 p.val = val;
1770 else {
1771 delta = -1;
1772 if (t.removeTreeNode(p))
1773 setTabAt(tab, i, untreeify(t.first));
1774 }
1775 }
1776 }
1777 }
1778 }
1779 if (binCount != 0)
1780 break;
1781 }
1782 }
1783 if (delta != 0)
1784 addCount((long)delta, binCount);
1785 return val;
1786 }
1787
1788 /**
1789 * Attempts to compute a mapping for the specified key and its
1790 * current mapped value (or {@code null} if there is no current
1791 * mapping). The entire method invocation is performed atomically.
1792 * Some attempted update operations on this map by other threads
1793 * may be blocked while computation is in progress, so the
1794 * computation should be short and simple, and must not attempt to
1795 * update any other mappings of this Map.
1796 *
1797 * @param key key with which the specified value is to be associated
1798 * @param remappingFunction the function to compute a value
1799 * @return the new value associated with the specified key, or null if none
1800 * @throws NullPointerException if the specified key or remappingFunction
1801 * is null
1802 * @throws IllegalStateException if the computation detectably
1803 * attempts a recursive update to this map that would
1804 * otherwise never complete
1805 * @throws RuntimeException or Error if the remappingFunction does so,
1806 * in which case the mapping is unchanged
1807 */
1808 public V compute(K key,
1809 BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1810 if (key == null || remappingFunction == null)
1811 throw new NullPointerException();
1812 int h = spread(key.hashCode());
1813 V val = null;
1814 int delta = 0;
1815 int binCount = 0;
1816 for (Node<K,V>[] tab = table;;) {
1817 Node<K,V> f; int n, i, fh;
1818 if (tab == null || (n = tab.length) == 0)
1819 tab = initTable();
1820 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1821 Node<K,V> r = new ReservationNode<K,V>();
1822 synchronized (r) {
1823 if (casTabAt(tab, i, null, r)) {
1824 binCount = 1;
1825 Node<K,V> node = null;
1826 try {
1827 if ((val = remappingFunction.apply(key, null)) != null) {
1828 delta = 1;
1829 node = new Node<K,V>(h, key, val, null);
1830 }
1831 } finally {
1832 setTabAt(tab, i, node);
1833 }
1834 }
1835 }
1836 if (binCount != 0)
1837 break;
1838 }
1839 else if ((fh = f.hash) == MOVED)
1840 tab = helpTransfer(tab, f);
1841 else {
1842 synchronized (f) {
1843 if (tabAt(tab, i) == f) {
1844 if (fh >= 0) {
1845 binCount = 1;
1846 for (Node<K,V> e = f, pred = null;; ++binCount) {
1847 K ek;
1848 if (e.hash == h &&
1849 ((ek = e.key) == key ||
1850 (ek != null && key.equals(ek)))) {
1851 val = remappingFunction.apply(key, e.val);
1852 if (val != null)
1853 e.val = val;
1854 else {
1855 delta = -1;
1856 Node<K,V> en = e.next;
1857 if (pred != null)
1858 pred.next = en;
1859 else
1860 setTabAt(tab, i, en);
1861 }
1862 break;
1863 }
1864 pred = e;
1865 if ((e = e.next) == null) {
1866 val = remappingFunction.apply(key, null);
1867 if (val != null) {
1868 delta = 1;
1869 pred.next =
1870 new Node<K,V>(h, key, val, null);
1871 }
1872 break;
1873 }
1874 }
1875 }
1876 else if (f instanceof TreeBin) {
1877 binCount = 1;
1878 TreeBin<K,V> t = (TreeBin<K,V>)f;
1879 TreeNode<K,V> r, p;
1880 if ((r = t.root) != null)
1881 p = r.findTreeNode(h, key, null);
1882 else
1883 p = null;
1884 V pv = (p == null) ? null : p.val;
1885 val = remappingFunction.apply(key, pv);
1886 if (val != null) {
1887 if (p != null)
1888 p.val = val;
1889 else {
1890 delta = 1;
1891 t.putTreeVal(h, key, val);
1892 }
1893 }
1894 else if (p != null) {
1895 delta = -1;
1896 if (t.removeTreeNode(p))
1897 setTabAt(tab, i, untreeify(t.first));
1898 }
1899 }
1900 }
1901 }
1902 if (binCount != 0) {
1903 if (binCount >= TREEIFY_THRESHOLD)
1904 treeifyBin(tab, i);
1905 break;
1906 }
1907 }
1908 }
1909 if (delta != 0)
1910 addCount((long)delta, binCount);
1911 return val;
1912 }
1913
1914 /**
1915 * If the specified key is not already associated with a
1916 * (non-null) value, associates it with the given value.
1917 * Otherwise, replaces the value with the results of the given
1918 * remapping function, or removes if {@code null}. The entire
1919 * method invocation is performed atomically. Some attempted
1920 * update operations on this map by other threads may be blocked
1921 * while computation is in progress, so the computation should be
1922 * short and simple, and must not attempt to update any other
1923 * mappings of this Map.
1924 *
1925 * @param key key with which the specified value is to be associated
1926 * @param value the value to use if absent
1927 * @param remappingFunction the function to recompute a value if present
1928 * @return the new value associated with the specified key, or null if none
1929 * @throws NullPointerException if the specified key or the
1930 * remappingFunction is null
1931 * @throws RuntimeException or Error if the remappingFunction does so,
1932 * in which case the mapping is unchanged
1933 */
1934 public V merge(K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
1935 if (key == null || value == null || remappingFunction == null)
1936 throw new NullPointerException();
1937 int h = spread(key.hashCode());
1938 V val = null;
1939 int delta = 0;
1940 int binCount = 0;
1941 for (Node<K,V>[] tab = table;;) {
1942 Node<K,V> f; int n, i, fh;
1943 if (tab == null || (n = tab.length) == 0)
1944 tab = initTable();
1945 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1946 if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1947 delta = 1;
1948 val = value;
1949 break;
1950 }
1951 }
1952 else if ((fh = f.hash) == MOVED)
1953 tab = helpTransfer(tab, f);
1954 else {
1955 synchronized (f) {
1956 if (tabAt(tab, i) == f) {
1957 if (fh >= 0) {
1958 binCount = 1;
1959 for (Node<K,V> e = f, pred = null;; ++binCount) {
1960 K ek;
1961 if (e.hash == h &&
1962 ((ek = e.key) == key ||
1963 (ek != null && key.equals(ek)))) {
1964 val = remappingFunction.apply(e.val, value);
1965 if (val != null)
1966 e.val = val;
1967 else {
1968 delta = -1;
1969 Node<K,V> en = e.next;
1970 if (pred != null)
1971 pred.next = en;
1972 else
1973 setTabAt(tab, i, en);
1974 }
1975 break;
1976 }
1977 pred = e;
1978 if ((e = e.next) == null) {
1979 delta = 1;
1980 val = value;
1981 pred.next =
1982 new Node<K,V>(h, key, val, null);
1983 break;
1984 }
1985 }
1986 }
1987 else if (f instanceof TreeBin) {
1988 binCount = 2;
1989 TreeBin<K,V> t = (TreeBin<K,V>)f;
1990 TreeNode<K,V> r = t.root;
1991 TreeNode<K,V> p = (r == null) ? null :
1992 r.findTreeNode(h, key, null);
1993 val = (p == null) ? value :
1994 remappingFunction.apply(p.val, value);
1995 if (val != null) {
1996 if (p != null)
1997 p.val = val;
1998 else {
1999 delta = 1;
2000 t.putTreeVal(h, key, val);
2001 }
2002 }
2003 else if (p != null) {
2004 delta = -1;
2005 if (t.removeTreeNode(p))
2006 setTabAt(tab, i, untreeify(t.first));
2007 }
2008 }
2009 }
2010 }
2011 if (binCount != 0) {
2012 if (binCount >= TREEIFY_THRESHOLD)
2013 treeifyBin(tab, i);
2014 break;
2015 }
2016 }
2017 }
2018 if (delta != 0)
2019 addCount((long)delta, binCount);
2020 return val;
2021 }
2022
2023 // Hashtable legacy methods
2024
2025 /**
2026 * Legacy method testing if some key maps into the specified value
2027 * in this table. This method is identical in functionality to
2028 * {@link #containsValue(Object)}, and exists solely to ensure
2029 * full compatibility with class {@link java.util.Hashtable},
2030 * which supported this method prior to introduction of the
2031 * Java Collections framework.
2032 *
2033 * @param value a value to search for
2034 * @return {@code true} if and only if some key maps to the
2035 * {@code value} argument in this table as
2036 * determined by the {@code equals} method;
2037 * {@code false} otherwise
2038 * @throws NullPointerException if the specified value is null
2039 */
2040 @Deprecated public boolean contains(Object value) {
2041 return containsValue(value);
2042 }
2043
2044 /**
2045 * Returns an enumeration of the keys in this table.
2046 *
2047 * @return an enumeration of the keys in this table
2048 * @see #keySet()
2049 */
2050 public Enumeration<K> keys() {
2051 Node<K,V>[] t;
2052 int f = (t = table) == null ? 0 : t.length;
2053 return new KeyIterator<K,V>(t, f, 0, f, this);
2054 }
2055
2056 /**
2057 * Returns an enumeration of the values in this table.
2058 *
2059 * @return an enumeration of the values in this table
2060 * @see #values()
2061 */
2062 public Enumeration<V> elements() {
2063 Node<K,V>[] t;
2064 int f = (t = table) == null ? 0 : t.length;
2065 return new ValueIterator<K,V>(t, f, 0, f, this);
2066 }
2067
2068 // ConcurrentHashMapV8-only methods
2069
2070 /**
2071 * Returns the number of mappings. This method should be used
2072 * instead of {@link #size} because a ConcurrentHashMapV8 may
2073 * contain more mappings than can be represented as an int. The
2074 * value returned is an estimate; the actual count may differ if
2075 * there are concurrent insertions or removals.
2076 *
2077 * @return the number of mappings
2078 * @since 1.8
2079 */
2080 public long mappingCount() {
2081 long n = sumCount();
2082 return (n < 0L) ? 0L : n; // ignore transient negative values
2083 }
2084
2085 /**
2086 * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2087 * from the given type to {@code Boolean.TRUE}.
2088 *
2089 * @return the new set
2090 * @since 1.8
2091 */
2092 public static <K> KeySetView<K,Boolean> newKeySet() {
2093 return new KeySetView<K,Boolean>
2094 (new ConcurrentHashMapV8<K,Boolean>(), Boolean.TRUE);
2095 }
2096
2097 /**
2098 * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2099 * from the given type to {@code Boolean.TRUE}.
2100 *
2101 * @param initialCapacity The implementation performs internal
2102 * sizing to accommodate this many elements.
2103 * @throws IllegalArgumentException if the initial capacity of
2104 * elements is negative
2105 * @return the new set
2106 * @since 1.8
2107 */
2108 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2109 return new KeySetView<K,Boolean>
2110 (new ConcurrentHashMapV8<K,Boolean>(initialCapacity), Boolean.TRUE);
2111 }
2112
2113 /**
2114 * Returns a {@link Set} view of the keys in this map, using the
2115 * given common mapped value for any additions (i.e., {@link
2116 * Collection#add} and {@link Collection#addAll(Collection)}).
2117 * This is of course only appropriate if it is acceptable to use
2118 * the same value for all additions from this view.
2119 *
2120 * @param mappedValue the mapped value to use for any additions
2121 * @return the set view
2122 * @throws NullPointerException if the mappedValue is null
2123 */
2124 public KeySetView<K,V> keySet(V mappedValue) {
2125 if (mappedValue == null)
2126 throw new NullPointerException();
2127 return new KeySetView<K,V>(this, mappedValue);
2128 }
2129
2130 /* ---------------- Special Nodes -------------- */
2131
2132 /**
2133 * A node inserted at head of bins during transfer operations.
2134 */
2135 static final class ForwardingNode<K,V> extends Node<K,V> {
2136 final Node<K,V>[] nextTable;
2137 ForwardingNode(Node<K,V>[] tab) {
2138 super(MOVED, null, null, null);
2139 this.nextTable = tab;
2140 }
2141
2142 Node<K,V> find(int h, Object k) {
2143 Node<K,V> e; int n;
2144 Node<K,V>[] tab = nextTable;
2145 if (k != null && tab != null && (n = tab.length) > 0 &&
2146 (e = tabAt(tab, (n - 1) & h)) != null) {
2147 do {
2148 int eh; K ek;
2149 if ((eh = e.hash) == h &&
2150 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2151 return e;
2152 if (eh < 0)
2153 return e.find(h, k);
2154 } while ((e = e.next) != null);
2155 }
2156 return null;
2157 }
2158 }
2159
2160 /**
2161 * A place-holder node used in computeIfAbsent and compute
2162 */
2163 static final class ReservationNode<K,V> extends Node<K,V> {
2164 ReservationNode() {
2165 super(RESERVED, null, null, null);
2166 }
2167
2168 Node<K,V> find(int h, Object k) {
2169 return null;
2170 }
2171 }
2172
2173 /* ---------------- Table Initialization and Resizing -------------- */
2174
2175 /**
2176 * Initializes table, using the size recorded in sizeCtl.
2177 */
2178 private final Node<K,V>[] initTable() {
2179 Node<K,V>[] tab; int sc;
2180 while ((tab = table) == null || tab.length == 0) {
2181 if ((sc = sizeCtl) < 0)
2182 Thread.yield(); // lost initialization race; just spin
2183 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2184 try {
2185 if ((tab = table) == null || tab.length == 0) {
2186 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2187 @SuppressWarnings({"rawtypes","unchecked"})
2188 Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2189 table = tab = nt;
2190 sc = n - (n >>> 2);
2191 }
2192 } finally {
2193 sizeCtl = sc;
2194 }
2195 break;
2196 }
2197 }
2198 return tab;
2199 }
2200
2201 /**
2202 * Adds to count, and if table is too small and not already
2203 * resizing, initiates transfer. If already resizing, helps
2204 * perform transfer if work is available. Rechecks occupancy
2205 * after a transfer to see if another resize is already needed
2206 * because resizings are lagging additions.
2207 *
2208 * @param x the count to add
2209 * @param check if <0, don't check resize, if <= 1 only check if uncontended
2210 */
2211 private final void addCount(long x, int check) {
2212 CounterCell[] as; long b, s;
2213 if ((as = counterCells) != null ||
2214 !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2215 CounterHashCode hc; CounterCell a; long v; int m;
2216 boolean uncontended = true;
2217 if ((hc = threadCounterHashCode.get()) == null ||
2218 as == null || (m = as.length - 1) < 0 ||
2219 (a = as[m & hc.code]) == null ||
2220 !(uncontended =
2221 U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2222 fullAddCount(x, hc, uncontended);
2223 return;
2224 }
2225 if (check <= 1)
2226 return;
2227 s = sumCount();
2228 }
2229 if (check >= 0) {
2230 Node<K,V>[] tab, nt; int sc;
2231 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2232 tab.length < MAXIMUM_CAPACITY) {
2233 if (sc < 0) {
2234 if (sc == -1 || transferIndex <= transferOrigin ||
2235 (nt = nextTable) == null)
2236 break;
2237 if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2238 transfer(tab, nt);
2239 }
2240 else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
2241 transfer(tab, null);
2242 s = sumCount();
2243 }
2244 }
2245 }
2246
2247 /**
2248 * Helps transfer if a resize is in progress.
2249 */
2250 final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2251 Node<K,V>[] nextTab; int sc;
2252 if ((f instanceof ForwardingNode) &&
2253 (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2254 if (nextTab == nextTable && tab == table &&
2255 transferIndex > transferOrigin && (sc = sizeCtl) < -1 &&
2256 U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2257 transfer(tab, nextTab);
2258 return nextTab;
2259 }
2260 return table;
2261 }
2262
2263 /**
2264 * Tries to presize table to accommodate the given number of elements.
2265 *
2266 * @param size number of elements (doesn't need to be perfectly accurate)
2267 */
2268 private final void tryPresize(int size) {
2269 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2270 tableSizeFor(size + (size >>> 1) + 1);
2271 int sc;
2272 while ((sc = sizeCtl) >= 0) {
2273 Node<K,V>[] tab = table; int n;
2274 if (tab == null || (n = tab.length) == 0) {
2275 n = (sc > c) ? sc : c;
2276 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2277 try {
2278 if (table == tab) {
2279 @SuppressWarnings({"rawtypes","unchecked"})
2280 Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2281 table = nt;
2282 sc = n - (n >>> 2);
2283 }
2284 } finally {
2285 sizeCtl = sc;
2286 }
2287 }
2288 }
2289 else if (c <= sc || n >= MAXIMUM_CAPACITY)
2290 break;
2291 else if (tab == table &&
2292 U.compareAndSwapInt(this, SIZECTL, sc, -2))
2293 transfer(tab, null);
2294 }
2295 }
2296
2297 /**
2298 * Moves and/or copies the nodes in each bin to new table. See
2299 * above for explanation.
2300 */
2301 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2302 int n = tab.length, stride;
2303 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2304 stride = MIN_TRANSFER_STRIDE; // subdivide range
2305 if (nextTab == null) { // initiating
2306 try {
2307 @SuppressWarnings({"rawtypes","unchecked"})
2308 Node<K,V>[] nt = (Node<K,V>[])new Node[n << 1];
2309 nextTab = nt;
2310 } catch (Throwable ex) { // try to cope with OOME
2311 sizeCtl = Integer.MAX_VALUE;
2312 return;
2313 }
2314 nextTable = nextTab;
2315 transferOrigin = n;
2316 transferIndex = n;
2317 ForwardingNode<K,V> rev = new ForwardingNode<K,V>(tab);
2318 for (int k = n; k > 0;) { // progressively reveal ready slots
2319 int nextk = (k > stride) ? k - stride : 0;
2320 for (int m = nextk; m < k; ++m)
2321 nextTab[m] = rev;
2322 for (int m = n + nextk; m < n + k; ++m)
2323 nextTab[m] = rev;
2324 U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
2325 }
2326 }
2327 int nextn = nextTab.length;
2328 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2329 boolean advance = true;
2330 for (int i = 0, bound = 0;;) {
2331 int nextIndex, nextBound, fh; Node<K,V> f;
2332 while (advance) {
2333 if (--i >= bound)
2334 advance = false;
2335 else if ((nextIndex = transferIndex) <= transferOrigin) {
2336 i = -1;
2337 advance = false;
2338 }
2339 else if (U.compareAndSwapInt
2340 (this, TRANSFERINDEX, nextIndex,
2341 nextBound = (nextIndex > stride ?
2342 nextIndex - stride : 0))) {
2343 bound = nextBound;
2344 i = nextIndex - 1;
2345 advance = false;
2346 }
2347 }
2348 if (i < 0 || i >= n || i + n >= nextn) {
2349 for (int sc;;) {
2350 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2351 if (sc == -1) {
2352 nextTable = null;
2353 table = nextTab;
2354 sizeCtl = (n << 1) - (n >>> 1);
2355 }
2356 return;
2357 }
2358 }
2359 }
2360 else if ((f = tabAt(tab, i)) == null) {
2361 if (casTabAt(tab, i, null, fwd)) {
2362 setTabAt(nextTab, i, null);
2363 setTabAt(nextTab, i + n, null);
2364 advance = true;
2365 }
2366 }
2367 else if ((fh = f.hash) == MOVED)
2368 advance = true; // already processed
2369 else {
2370 synchronized (f) {
2371 if (tabAt(tab, i) == f) {
2372 Node<K,V> ln, hn;
2373 if (fh >= 0) {
2374 int runBit = fh & n;
2375 Node<K,V> lastRun = f;
2376 for (Node<K,V> p = f.next; p != null; p = p.next) {
2377 int b = p.hash & n;
2378 if (b != runBit) {
2379 runBit = b;
2380 lastRun = p;
2381 }
2382 }
2383 if (runBit == 0) {
2384 ln = lastRun;
2385 hn = null;
2386 }
2387 else {
2388 hn = lastRun;
2389 ln = null;
2390 }
2391 for (Node<K,V> p = f; p != lastRun; p = p.next) {
2392 int ph = p.hash; K pk = p.key; V pv = p.val;
2393 if ((ph & n) == 0)
2394 ln = new Node<K,V>(ph, pk, pv, ln);
2395 else
2396 hn = new Node<K,V>(ph, pk, pv, hn);
2397 }
2398 }
2399 else if (f instanceof TreeBin) {
2400 TreeBin<K,V> t = (TreeBin<K,V>)f;
2401 TreeNode<K,V> lo = null, loTail = null;
2402 TreeNode<K,V> hi = null, hiTail = null;
2403 int lc = 0, hc = 0;
2404 for (Node<K,V> e = t.first; e != null; e = e.next) {
2405 int h = e.hash;
2406 TreeNode<K,V> p = new TreeNode<K,V>
2407 (h, e.key, e.val, null, null);
2408 if ((h & n) == 0) {
2409 if ((p.prev = loTail) == null)
2410 lo = p;
2411 else
2412 loTail.next = p;
2413 loTail = p;
2414 ++lc;
2415 }
2416 else {
2417 if ((p.prev = hiTail) == null)
2418 hi = p;
2419 else
2420 hiTail.next = p;
2421 hiTail = p;
2422 ++hc;
2423 }
2424 }
2425 ln = (lc <= UNTREEIFY_THRESHOLD ? untreeify(lo) :
2426 (hc != 0) ? new TreeBin<K,V>(lo) : t);
2427 hn = (hc <= UNTREEIFY_THRESHOLD ? untreeify(hi) :
2428 (lc != 0) ? new TreeBin<K,V>(hi) : t);
2429 }
2430 else
2431 ln = hn = null;
2432 setTabAt(nextTab, i, ln);
2433 setTabAt(nextTab, i + n, hn);
2434 setTabAt(tab, i, fwd);
2435 advance = true;
2436 }
2437 }
2438 }
2439 }
2440 }
2441
2442 /* ---------------- Conversion from/to TreeBins -------------- */
2443
2444 /**
2445 * Replaces all linked nodes in bin at given index unless table is
2446 * too small, in which case resizes instead.
2447 */
2448 private final void treeifyBin(Node<K,V>[] tab, int index) {
2449 Node<K,V> b; int n, sc;
2450 if (tab != null) {
2451 if ((n = tab.length) < MIN_TREEIFY_CAPACITY) {
2452 if (tab == table && (sc = sizeCtl) >= 0 &&
2453 U.compareAndSwapInt(this, SIZECTL, sc, -2))
2454 transfer(tab, null);
2455 }
2456 else if ((b = tabAt(tab, index)) != null) {
2457 synchronized (b) {
2458 if (tabAt(tab, index) == b) {
2459 TreeNode<K,V> hd = null, tl = null;
2460 for (Node<K,V> e = b; e != null; e = e.next) {
2461 TreeNode<K,V> p =
2462 new TreeNode<K,V>(e.hash, e.key, e.val,
2463 null, null);
2464 if ((p.prev = tl) == null)
2465 hd = p;
2466 else
2467 tl.next = p;
2468 tl = p;
2469 }
2470 setTabAt(tab, index, new TreeBin<K,V>(hd));
2471 }
2472 }
2473 }
2474 }
2475 }
2476
2477 /**
2478 * Returns a list on non-TreeNodes replacing those in given list
2479 */
2480 static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2481 Node<K,V> hd = null, tl = null;
2482 for (Node<K,V> q = b; q != null; q = q.next) {
2483 Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2484 if (tl == null)
2485 hd = p;
2486 else
2487 tl.next = p;
2488 tl = p;
2489 }
2490 return hd;
2491 }
2492
2493 /* ---------------- TreeNodes -------------- */
2494
2495 /**
2496 * Nodes for use in TreeBins
2497 */
2498 static final class TreeNode<K,V> extends Node<K,V> {
2499 TreeNode<K,V> parent; // red-black tree links
2500 TreeNode<K,V> left;
2501 TreeNode<K,V> right;
2502 TreeNode<K,V> prev; // needed to unlink next upon deletion
2503 boolean red;
2504
2505 TreeNode(int hash, K key, V val, Node<K,V> next,
2506 TreeNode<K,V> parent) {
2507 super(hash, key, val, next);
2508 this.parent = parent;
2509 }
2510
2511 Node<K,V> find(int h, Object k) {
2512 return findTreeNode(h, k, null);
2513 }
2514
2515 /**
2516 * Returns the TreeNode (or null if not found) for the given key
2517 * starting at given root.
2518 */
2519 final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2520 if (k != null) {
2521 TreeNode<K,V> p = this;
2522 do {
2523 int ph, dir; K pk; TreeNode<K,V> q;
2524 TreeNode<K,V> pl = p.left, pr = p.right;
2525 if ((ph = p.hash) > h)
2526 p = pl;
2527 else if (ph < h)
2528 p = pr;
2529 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2530 return p;
2531 else if (pl == null && pr == null)
2532 break;
2533 else if ((kc != null ||
2534 (kc = comparableClassFor(k)) != null) &&
2535 (dir = compareComparables(kc, k, pk)) != 0)
2536 p = (dir < 0) ? pl : pr;
2537 else if (pl == null)
2538 p = pr;
2539 else if (pr == null ||
2540 (q = pr.findTreeNode(h, k, kc)) == null)
2541 p = pl;
2542 else
2543 return q;
2544 } while (p != null);
2545 }
2546 return null;
2547 }
2548 }
2549
2550 /* ---------------- TreeBins -------------- */
2551
2552 /**
2553 * TreeNodes used at the heads of bins. TreeBins do not hold user
2554 * keys or values, but instead point to list of TreeNodes and
2555 * their root. They also maintain a parasitic read-write lock
2556 * forcing writers (who hold bin lock) to wait for readers (who do
2557 * not) to complete before tree restructuring operations.
2558 */
2559 static final class TreeBin<K,V> extends Node<K,V> {
2560 TreeNode<K,V> root;
2561 volatile TreeNode<K,V> first;
2562 volatile Thread waiter;
2563 volatile int lockState;
2564 // values for lockState
2565 static final int WRITER = 1; // set while holding write lock
2566 static final int WAITER = 2; // set when waiting for write lock
2567 static final int READER = 4; // increment value for setting read lock
2568
2569 /**
2570 * Creates bin with initial set of nodes headed by b.
2571 */
2572 TreeBin(TreeNode<K,V> b) {
2573 super(TREEBIN, null, null, null);
2574 this.first = b;
2575 TreeNode<K,V> r = null;
2576 for (TreeNode<K,V> x = b, next; x != null; x = next) {
2577 next = (TreeNode<K,V>)x.next;
2578 x.left = x.right = null;
2579 if (r == null) {
2580 x.parent = null;
2581 x.red = false;
2582 r = x;
2583 }
2584 else {
2585 Object key = x.key;
2586 int hash = x.hash;
2587 Class<?> kc = null;
2588 for (TreeNode<K,V> p = r;;) {
2589 int dir, ph;
2590 if ((ph = p.hash) > hash)
2591 dir = -1;
2592 else if (ph < hash)
2593 dir = 1;
2594 else if ((kc != null ||
2595 (kc = comparableClassFor(key)) != null))
2596 dir = compareComparables(kc, key, p.key);
2597 else
2598 dir = 0;
2599 TreeNode<K,V> xp = p;
2600 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2601 x.parent = xp;
2602 if (dir <= 0)
2603 xp.left = x;
2604 else
2605 xp.right = x;
2606 r = balanceInsertion(r, x);
2607 break;
2608 }
2609 }
2610 }
2611 }
2612 this.root = r;
2613 }
2614
2615 /**
2616 * Acquires write lock for tree restructuring
2617 */
2618 private final void lockRoot() {
2619 if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2620 contendedLock(); // offload to separate method
2621 }
2622
2623 /**
2624 * Releases write lock for tree restructuring
2625 */
2626 private final void unlockRoot() {
2627 lockState = 0;
2628 }
2629
2630 /**
2631 * Possibly blocks awaiting root lock
2632 */
2633 private final void contendedLock() {
2634 boolean waiting = false;
2635 for (int s;;) {
2636 if (((s = lockState) & WRITER) == 0) {
2637 if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2638 if (waiting)
2639 waiter = null;
2640 return;
2641 }
2642 }
2643 else if ((s | WAITER) == 0) {
2644 if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2645 waiting = true;
2646 waiter = Thread.currentThread();
2647 }
2648 }
2649 else if (waiting)
2650 LockSupport.park(this);
2651 }
2652 }
2653
2654 /**
2655 * Returns matching node or null if none. Tries to search
2656 * using tree compareisons from root, but continues linear
2657 * search when lock not available.
2658 */
2659 final Node<K,V> find(int h, Object k) {
2660 if (k != null) {
2661 for (Node<K,V> e = first; e != null; e = e.next) {
2662 int s; K ek;
2663 if (((s = lockState) & (WAITER|WRITER)) != 0) {
2664 if (e.hash == h &&
2665 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2666 return e;
2667 }
2668 else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2669 s + READER)) {
2670 TreeNode<K,V> r, p;
2671 try {
2672 p = ((r = root) == null ? null :
2673 r.findTreeNode(h, k, null));
2674 } finally {
2675 Thread w;
2676 int ls;
2677 do {} while (!U.compareAndSwapInt
2678 (this, LOCKSTATE,
2679 ls = lockState, ls - READER));
2680 if (ls == (READER|WAITER) && (w = waiter) != null)
2681 LockSupport.unpark(w);
2682 }
2683 return p;
2684 }
2685 }
2686 }
2687 return null;
2688 }
2689
2690 /**
2691 * Finds or adds a node.
2692 * @return null if added
2693 */
2694 final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2695 Class<?> kc = null;
2696 for (TreeNode<K,V> p = root;;) {
2697 int dir, ph; K pk; TreeNode<K,V> q, pr;
2698 if (p == null) {
2699 first = root = new TreeNode<K,V>(h, k, v, null, null);
2700 break;
2701 }
2702 else if ((ph = p.hash) > h)
2703 dir = -1;
2704 else if (ph < h)
2705 dir = 1;
2706 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2707 return p;
2708 else if ((kc == null &&
2709 (kc = comparableClassFor(k)) == null) ||
2710 (dir = compareComparables(kc, k, pk)) == 0) {
2711 if (p.left == null)
2712 dir = 1;
2713 else if ((pr = p.right) == null ||
2714 (q = pr.findTreeNode(h, k, kc)) == null)
2715 dir = -1;
2716 else
2717 return q;
2718 }
2719 TreeNode<K,V> xp = p;
2720 if ((p = (dir < 0) ? p.left : p.right) == null) {
2721 TreeNode<K,V> x, f = first;
2722 first = x = new TreeNode<K,V>(h, k, v, f, xp);
2723 if (f != null)
2724 f.prev = x;
2725 if (dir < 0)
2726 xp.left = x;
2727 else
2728 xp.right = x;
2729 if (!xp.red)
2730 x.red = true;
2731 else {
2732 lockRoot();
2733 try {
2734 root = balanceInsertion(root, x);
2735 } finally {
2736 unlockRoot();
2737 }
2738 }
2739 break;
2740 }
2741 }
2742 assert checkInvariants(root);
2743 return null;
2744 }
2745
2746 /**
2747 * Removes the given node, that must be present before this
2748 * call. This is messier than typical red-black deletion code
2749 * because we cannot swap the contents of an interior node
2750 * with a leaf successor that is pinned by "next" pointers
2751 * that are accessible independently of lock. So instead we
2752 * swap the tree linkages.
2753 *
2754 * @return true if now too small so should be untreeified.
2755 */
2756 final boolean removeTreeNode(TreeNode<K,V> p) {
2757 TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2758 TreeNode<K,V> pred = p.prev; // unlink traversal pointers
2759 TreeNode<K,V> r, rl;
2760 if (pred == null)
2761 first = next;
2762 else
2763 pred.next = next;
2764 if (next != null)
2765 next.prev = pred;
2766 if (first == null) {
2767 root = null;
2768 return true;
2769 }
2770 if ((r = root) == null || r.right == null || // too small
2771 (rl = r.left) == null || rl.left == null)
2772 return true;
2773 lockRoot();
2774 try {
2775 TreeNode<K,V> replacement;
2776 TreeNode<K,V> pl = p.left;
2777 TreeNode<K,V> pr = p.right;
2778 if (pl != null && pr != null) {
2779 TreeNode<K,V> s = pr, sl;
2780 while ((sl = s.left) != null) // find successor
2781 s = sl;
2782 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2783 TreeNode<K,V> sr = s.right;
2784 TreeNode<K,V> pp = p.parent;
2785 if (s == pr) { // p was s's direct parent
2786 p.parent = s;
2787 s.right = p;
2788 }
2789 else {
2790 TreeNode<K,V> sp = s.parent;
2791 if ((p.parent = sp) != null) {
2792 if (s == sp.left)
2793 sp.left = p;
2794 else
2795 sp.right = p;
2796 }
2797 if ((s.right = pr) != null)
2798 pr.parent = s;
2799 }
2800 p.left = null;
2801 if ((p.right = sr) != null)
2802 sr.parent = p;
2803 if ((s.left = pl) != null)
2804 pl.parent = s;
2805 if ((s.parent = pp) == null)
2806 r = s;
2807 else if (p == pp.left)
2808 pp.left = s;
2809 else
2810 pp.right = s;
2811 if (sr != null)
2812 replacement = sr;
2813 else
2814 replacement = p;
2815 }
2816 else if (pl != null)
2817 replacement = pl;
2818 else if (pr != null)
2819 replacement = pr;
2820 else
2821 replacement = p;
2822 if (replacement != p) {
2823 TreeNode<K,V> pp = replacement.parent = p.parent;
2824 if (pp == null)
2825 r = replacement;
2826 else if (p == pp.left)
2827 pp.left = replacement;
2828 else
2829 pp.right = replacement;
2830 p.left = p.right = p.parent = null;
2831 }
2832
2833 root = (p.red) ? r : balanceDeletion(r, replacement);
2834
2835 if (p == replacement) { // detach pointers
2836 TreeNode<K,V> pp;
2837 if ((pp = p.parent) != null) {
2838 if (p == pp.left)
2839 pp.left = null;
2840 else if (p == pp.right)
2841 pp.right = null;
2842 p.parent = null;
2843 }
2844 }
2845 } finally {
2846 unlockRoot();
2847 }
2848 assert checkInvariants(root);
2849 return false;
2850 }
2851
2852 /* ------------------------------------------------------------ */
2853 // Red-black tree methods, all adapted from CLR
2854
2855 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2856 TreeNode<K,V> p) {
2857 TreeNode<K,V> r, pp, rl;
2858 if (p != null && (r = p.right) != null) {
2859 if ((rl = p.right = r.left) != null)
2860 rl.parent = p;
2861 if ((pp = r.parent = p.parent) == null)
2862 (root = r).red = false;
2863 else if (pp.left == p)
2864 pp.left = r;
2865 else
2866 pp.right = r;
2867 r.left = p;
2868 p.parent = r;
2869 }
2870 return root;
2871 }
2872
2873 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2874 TreeNode<K,V> p) {
2875 TreeNode<K,V> l, pp, lr;
2876 if (p != null && (l = p.left) != null) {
2877 if ((lr = p.left = l.right) != null)
2878 lr.parent = p;
2879 if ((pp = l.parent = p.parent) == null)
2880 (root = l).red = false;
2881 else if (pp.right == p)
2882 pp.right = l;
2883 else
2884 pp.left = l;
2885 l.right = p;
2886 p.parent = l;
2887 }
2888 return root;
2889 }
2890
2891 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2892 TreeNode<K,V> x) {
2893 x.red = true;
2894 for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2895 if ((xp = x.parent) == null) {
2896 x.red = false;
2897 return x;
2898 }
2899 else if (!xp.red || (xpp = xp.parent) == null)
2900 return root;
2901 if (xp == (xppl = xpp.left)) {
2902 if ((xppr = xpp.right) != null && xppr.red) {
2903 xppr.red = false;
2904 xp.red = false;
2905 xpp.red = true;
2906 x = xpp;
2907 }
2908 else {
2909 if (x == xp.right) {
2910 root = rotateLeft(root, x = xp);
2911 xpp = (xp = x.parent) == null ? null : xp.parent;
2912 }
2913 if (xp != null) {
2914 xp.red = false;
2915 if (xpp != null) {
2916 xpp.red = true;
2917 root = rotateRight(root, xpp);
2918 }
2919 }
2920 }
2921 }
2922 else {
2923 if (xppl != null && xppl.red) {
2924 xppl.red = false;
2925 xp.red = false;
2926 xpp.red = true;
2927 x = xpp;
2928 }
2929 else {
2930 if (x == xp.left) {
2931 root = rotateRight(root, x = xp);
2932 xpp = (xp = x.parent) == null ? null : xp.parent;
2933 }
2934 if (xp != null) {
2935 xp.red = false;
2936 if (xpp != null) {
2937 xpp.red = true;
2938 root = rotateLeft(root, xpp);
2939 }
2940 }
2941 }
2942 }
2943 }
2944 }
2945
2946 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
2947 TreeNode<K,V> x) {
2948 for (TreeNode<K,V> xp, xpl, xpr;;) {
2949 if (x == null || x == root)
2950 return root;
2951 else if ((xp = x.parent) == null) {
2952 x.red = false;
2953 return x;
2954 }
2955 else if (x.red) {
2956 x.red = false;
2957 return root;
2958 }
2959 else if ((xpl = xp.left) == x) {
2960 if ((xpr = xp.right) != null && xpr.red) {
2961 xpr.red = false;
2962 xp.red = true;
2963 root = rotateLeft(root, xp);
2964 xpr = (xp = x.parent) == null ? null : xp.right;
2965 }
2966 if (xpr == null)
2967 x = xp;
2968 else {
2969 TreeNode<K,V> sl = xpr.left, sr = xpr.right;
2970 if ((sr == null || !sr.red) &&
2971 (sl == null || !sl.red)) {
2972 xpr.red = true;
2973 x = xp;
2974 }
2975 else {
2976 if (sr == null || !sr.red) {
2977 if (sl != null)
2978 sl.red = false;
2979 xpr.red = true;
2980 root = rotateRight(root, xpr);
2981 xpr = (xp = x.parent) == null ?
2982 null : xp.right;
2983 }
2984 if (xpr != null) {
2985 xpr.red = (xp == null) ? false : xp.red;
2986 if ((sr = xpr.right) != null)
2987 sr.red = false;
2988 }
2989 if (xp != null) {
2990 xp.red = false;
2991 root = rotateLeft(root, xp);
2992 }
2993 x = root;
2994 }
2995 }
2996 }
2997 else { // symmetric
2998 if (xpl != null && xpl.red) {
2999 xpl.red = false;
3000 xp.red = true;
3001 root = rotateRight(root, xp);
3002 xpl = (xp = x.parent) == null ? null : xp.left;
3003 }
3004 if (xpl == null)
3005 x = xp;
3006 else {
3007 TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3008 if ((sl == null || !sl.red) &&
3009 (sr == null || !sr.red)) {
3010 xpl.red = true;
3011 x = xp;
3012 }
3013 else {
3014 if (sl == null || !sl.red) {
3015 if (sr != null)
3016 sr.red = false;
3017 xpl.red = true;
3018 root = rotateLeft(root, xpl);
3019 xpl = (xp = x.parent) == null ?
3020 null : xp.left;
3021 }
3022 if (xpl != null) {
3023 xpl.red = (xp == null) ? false : xp.red;
3024 if ((sl = xpl.left) != null)
3025 sl.red = false;
3026 }
3027 if (xp != null) {
3028 xp.red = false;
3029 root = rotateRight(root, xp);
3030 }
3031 x = root;
3032 }
3033 }
3034 }
3035 }
3036 }
3037 /**
3038 * Recursive invariant check
3039 */
3040 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3041 TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3042 tb = t.prev, tn = (TreeNode<K,V>)t.next;
3043 if (tb != null && tb.next != t)
3044 return false;
3045 if (tn != null && tn.prev != t)
3046 return false;
3047 if (tp != null && t != tp.left && t != tp.right)
3048 return false;
3049 if (tl != null && (tl.parent != t || tl.hash > t.hash))
3050 return false;
3051 if (tr != null && (tr.parent != t || tr.hash < t.hash))
3052 return false;
3053 if (t.red && tl != null && tl.red && tr != null && tr.red)
3054 return false;
3055 if (tl != null && !checkInvariants(tl))
3056 return false;
3057 if (tr != null && !checkInvariants(tr))
3058 return false;
3059 return true;
3060 }
3061
3062 private static final sun.misc.Unsafe U;
3063 private static final long LOCKSTATE;
3064 static {
3065 try {
3066 U = getUnsafe();
3067 Class<?> k = TreeBin.class;
3068 LOCKSTATE = U.objectFieldOffset
3069 (k.getDeclaredField("lockState"));
3070 } catch (Exception e) {
3071 throw new Error(e);
3072 }
3073 }
3074 }
3075
3076 /* ----------------Table Traversal -------------- */
3077
3078 /**
3079 * Encapsulates traversal for methods such as containsValue; also
3080 * serves as a base class for other iterators and spliterators.
3081 *
3082 * Method advance visits once each still-valid node that was
3083 * reachable upon iterator construction. It might miss some that
3084 * were added to a bin after the bin was visited, which is OK wrt
3085 * consistency guarantees. Maintaining this property in the face
3086 * of possible ongoing resizes requires a fair amount of
3087 * bookkeeping state that is difficult to optimize away amidst
3088 * volatile accesses. Even so, traversal maintains reasonable
3089 * throughput.
3090 *
3091 * Normally, iteration proceeds bin-by-bin traversing lists.
3092 * However, if the table has been resized, then all future steps
3093 * must traverse both the bin at the current index as well as at
3094 * (index + baseSize); and so on for further resizings. To
3095 * paranoically cope with potential sharing by users of iterators
3096 * across threads, iteration terminates if a bounds checks fails
3097 * for a table read.
3098 */
3099 static class Traverser<K,V> {
3100 Node<K,V>[] tab; // current table; updated if resized
3101 Node<K,V> next; // the next entry to use
3102 int index; // index of bin to use next
3103 int baseIndex; // current index of initial table
3104 int baseLimit; // index bound for initial table
3105 final int baseSize; // initial table size
3106
3107 Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3108 this.tab = tab;
3109 this.baseSize = size;
3110 this.baseIndex = this.index = index;
3111 this.baseLimit = limit;
3112 this.next = null;
3113 }
3114
3115 /**
3116 * Advances if possible, returning next valid node, or null if none.
3117 */
3118 final Node<K,V> advance() {
3119 Node<K,V> e;
3120 if ((e = next) != null)
3121 e = e.next;
3122 for (;;) {
3123 Node<K,V>[] t; int i, n; K ek; // must use locals in checks
3124 if (e != null)
3125 return next = e;
3126 if (baseIndex >= baseLimit || (t = tab) == null ||
3127 (n = t.length) <= (i = index) || i < 0)
3128 return next = null;
3129 if ((e = tabAt(t, index)) != null && e.hash < 0) {
3130 if (e instanceof ForwardingNode) {
3131 tab = ((ForwardingNode<K,V>)e).nextTable;
3132 e = null;
3133 continue;
3134 }
3135 else if (e instanceof TreeBin)
3136 e = ((TreeBin<K,V>)e).first;
3137 else
3138 e = null;
3139 }
3140 if ((index += baseSize) >= n)
3141 index = ++baseIndex; // visit upper slots if present
3142 }
3143 }
3144 }
3145
3146 /**
3147 * Base of key, value, and entry Iterators. Adds fields to
3148 * Traverser to support iterator.remove
3149 */
3150 static class BaseIterator<K,V> extends Traverser<K,V> {
3151 final ConcurrentHashMapV8<K,V> map;
3152 Node<K,V> lastReturned;
3153 BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3154 ConcurrentHashMapV8<K,V> map) {
3155 super(tab, size, index, limit);
3156 this.map = map;
3157 advance();
3158 }
3159
3160 public final boolean hasNext() { return next != null; }
3161 public final boolean hasMoreElements() { return next != null; }
3162
3163 public final void remove() {
3164 Node<K,V> p;
3165 if ((p = lastReturned) == null)
3166 throw new IllegalStateException();
3167 lastReturned = null;
3168 map.replaceNode(p.key, null, null);
3169 }
3170 }
3171
3172 static final class KeyIterator<K,V> extends BaseIterator<K,V>
3173 implements Iterator<K>, Enumeration<K> {
3174 KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3175 ConcurrentHashMapV8<K,V> map) {
3176 super(tab, index, size, limit, map);
3177 }
3178
3179 public final K next() {
3180 Node<K,V> p;
3181 if ((p = next) == null)
3182 throw new NoSuchElementException();
3183 K k = p.key;
3184 lastReturned = p;
3185 advance();
3186 return k;
3187 }
3188
3189 public final K nextElement() { return next(); }
3190 }
3191
3192 static final class ValueIterator<K,V> extends BaseIterator<K,V>
3193 implements Iterator<V>, Enumeration<V> {
3194 ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3195 ConcurrentHashMapV8<K,V> map) {
3196 super(tab, index, size, limit, map);
3197 }
3198
3199 public final V next() {
3200 Node<K,V> p;
3201 if ((p = next) == null)
3202 throw new NoSuchElementException();
3203 V v = p.val;
3204 lastReturned = p;
3205 advance();
3206 return v;
3207 }
3208
3209 public final V nextElement() { return next(); }
3210 }
3211
3212 static final class EntryIterator<K,V> extends BaseIterator<K,V>
3213 implements Iterator<Map.Entry<K,V>> {
3214 EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3215 ConcurrentHashMapV8<K,V> map) {
3216 super(tab, index, size, limit, map);
3217 }
3218
3219 public final Map.Entry<K,V> next() {
3220 Node<K,V> p;
3221 if ((p = next) == null)
3222 throw new NoSuchElementException();
3223 K k = p.key;
3224 V v = p.val;
3225 lastReturned = p;
3226 advance();
3227 return new MapEntry<K,V>(k, v, map);
3228 }
3229 }
3230
3231 /**
3232 * Exported Entry for EntryIterator
3233 */
3234 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3235 final K key; // non-null
3236 V val; // non-null
3237 final ConcurrentHashMapV8<K,V> map;
3238 MapEntry(K key, V val, ConcurrentHashMapV8<K,V> map) {
3239 this.key = key;
3240 this.val = val;
3241 this.map = map;
3242 }
3243 public K getKey() { return key; }
3244 public V getValue() { return val; }
3245 public int hashCode() { return key.hashCode() ^ val.hashCode(); }
3246 public String toString() { return key + "=" + val; }
3247
3248 public boolean equals(Object o) {
3249 Object k, v; Map.Entry<?,?> e;
3250 return ((o instanceof Map.Entry) &&
3251 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3252 (v = e.getValue()) != null &&
3253 (k == key || k.equals(key)) &&
3254 (v == val || v.equals(val)));
3255 }
3256
3257 /**
3258 * Sets our entry's value and writes through to the map. The
3259 * value to return is somewhat arbitrary here. Since we do not
3260 * necessarily track asynchronous changes, the most recent
3261 * "previous" value could be different from what we return (or
3262 * could even have been removed, in which case the put will
3263 * re-establish). We do not and cannot guarantee more.
3264 */
3265 public V setValue(V value) {
3266 if (value == null) throw new NullPointerException();
3267 V v = val;
3268 val = value;
3269 map.put(key, value);
3270 return v;
3271 }
3272 }
3273
3274 static final class KeySpliterator<K,V> extends Traverser<K,V>
3275 implements ConcurrentHashMapSpliterator<K> {
3276 long est; // size estimate
3277 KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3278 long est) {
3279 super(tab, size, index, limit);
3280 this.est = est;
3281 }
3282
3283 public ConcurrentHashMapSpliterator<K> trySplit() {
3284 int i, f, h;
3285 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3286 new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3287 f, est >>>= 1);
3288 }
3289
3290 public void forEachRemaining(Action<? super K> action) {
3291 if (action == null) throw new NullPointerException();
3292 for (Node<K,V> p; (p = advance()) != null;)
3293 action.apply(p.key);
3294 }
3295
3296 public boolean tryAdvance(Action<? super K> action) {
3297 if (action == null) throw new NullPointerException();
3298 Node<K,V> p;
3299 if ((p = advance()) == null)
3300 return false;
3301 action.apply(p.key);
3302 return true;
3303 }
3304
3305 public long estimateSize() { return est; }
3306
3307 }
3308
3309 static final class ValueSpliterator<K,V> extends Traverser<K,V>
3310 implements ConcurrentHashMapSpliterator<V> {
3311 long est; // size estimate
3312 ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3313 long est) {
3314 super(tab, size, index, limit);
3315 this.est = est;
3316 }
3317
3318 public ConcurrentHashMapSpliterator<V> trySplit() {
3319 int i, f, h;
3320 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3321 new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3322 f, est >>>= 1);
3323 }
3324
3325 public void forEachRemaining(Action<? super V> action) {
3326 if (action == null) throw new NullPointerException();
3327 for (Node<K,V> p; (p = advance()) != null;)
3328 action.apply(p.val);
3329 }
3330
3331 public boolean tryAdvance(Action<? super V> action) {
3332 if (action == null) throw new NullPointerException();
3333 Node<K,V> p;
3334 if ((p = advance()) == null)
3335 return false;
3336 action.apply(p.val);
3337 return true;
3338 }
3339
3340 public long estimateSize() { return est; }
3341
3342 }
3343
3344 static final class EntrySpliterator<K,V> extends Traverser<K,V>
3345 implements ConcurrentHashMapSpliterator<Map.Entry<K,V>> {
3346 final ConcurrentHashMapV8<K,V> map; // To export MapEntry
3347 long est; // size estimate
3348 EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3349 long est, ConcurrentHashMapV8<K,V> map) {
3350 super(tab, size, index, limit);
3351 this.map = map;
3352 this.est = est;
3353 }
3354
3355 public ConcurrentHashMapSpliterator<Map.Entry<K,V>> trySplit() {
3356 int i, f, h;
3357 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3358 new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3359 f, est >>>= 1, map);
3360 }
3361
3362 public void forEachRemaining(Action<? super Map.Entry<K,V>> action) {
3363 if (action == null) throw new NullPointerException();
3364 for (Node<K,V> p; (p = advance()) != null; )
3365 action.apply(new MapEntry<K,V>(p.key, p.val, map));
3366 }
3367
3368 public boolean tryAdvance(Action<? super Map.Entry<K,V>> action) {
3369 if (action == null) throw new NullPointerException();
3370 Node<K,V> p;
3371 if ((p = advance()) == null)
3372 return false;
3373 action.apply(new MapEntry<K,V>(p.key, p.val, map));
3374 return true;
3375 }
3376
3377 public long estimateSize() { return est; }
3378
3379 }
3380
3381 // Parallel bulk operations
3382
3383 /**
3384 * Computes initial batch value for bulk tasks. The returned value
3385 * is approximately exp2 of the number of times (minus one) to
3386 * split task by two before executing leaf action. This value is
3387 * faster to compute and more convenient to use as a guide to
3388 * splitting than is the depth, since it is used while dividing by
3389 * two anyway.
3390 */
3391 final int batchFor(long b) {
3392 long n;
3393 if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3394 return 0;
3395 int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3396 return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3397 }
3398
3399 /**
3400 * Performs the given action for each (key, value).
3401 *
3402 * @param parallelismThreshold the (estimated) number of elements
3403 * needed for this operation to be executed in parallel
3404 * @param action the action
3405 * @since 1.8
3406 */
3407 public void forEach(long parallelismThreshold,
3408 BiAction<? super K,? super V> action) {
3409 if (action == null) throw new NullPointerException();
3410 new ForEachMappingTask<K,V>
3411 (null, batchFor(parallelismThreshold), 0, 0, table,
3412 action).invoke();
3413 }
3414
3415 /**
3416 * Performs the given action for each non-null transformation
3417 * of each (key, value).
3418 *
3419 * @param parallelismThreshold the (estimated) number of elements
3420 * needed for this operation to be executed in parallel
3421 * @param transformer a function returning the transformation
3422 * for an element, or null if there is no transformation (in
3423 * which case the action is not applied)
3424 * @param action the action
3425 * @since 1.8
3426 */
3427 public <U> void forEach(long parallelismThreshold,
3428 BiFun<? super K, ? super V, ? extends U> transformer,
3429 Action<? super U> action) {
3430 if (transformer == null || action == null)
3431 throw new NullPointerException();
3432 new ForEachTransformedMappingTask<K,V,U>
3433 (null, batchFor(parallelismThreshold), 0, 0, table,
3434 transformer, action).invoke();
3435 }
3436
3437 /**
3438 * Returns a non-null result from applying the given search
3439 * function on each (key, value), or null if none. Upon
3440 * success, further element processing is suppressed and the
3441 * results of any other parallel invocations of the search
3442 * function are ignored.
3443 *
3444 * @param parallelismThreshold the (estimated) number of elements
3445 * needed for this operation to be executed in parallel
3446 * @param searchFunction a function returning a non-null
3447 * result on success, else null
3448 * @return a non-null result from applying the given search
3449 * function on each (key, value), or null if none
3450 * @since 1.8
3451 */
3452 public <U> U search(long parallelismThreshold,
3453 BiFun<? super K, ? super V, ? extends U> searchFunction) {
3454 if (searchFunction == null) throw new NullPointerException();
3455 return new SearchMappingsTask<K,V,U>
3456 (null, batchFor(parallelismThreshold), 0, 0, table,
3457 searchFunction, new AtomicReference<U>()).invoke();
3458 }
3459
3460 /**
3461 * Returns the result of accumulating the given transformation
3462 * of all (key, value) pairs using the given reducer to
3463 * combine values, or null if none.
3464 *
3465 * @param parallelismThreshold the (estimated) number of elements
3466 * needed for this operation to be executed in parallel
3467 * @param transformer a function returning the transformation
3468 * for an element, or null if there is no transformation (in
3469 * which case it is not combined)
3470 * @param reducer a commutative associative combining function
3471 * @return the result of accumulating the given transformation
3472 * of all (key, value) pairs
3473 * @since 1.8
3474 */
3475 public <U> U reduce(long parallelismThreshold,
3476 BiFun<? super K, ? super V, ? extends U> transformer,
3477 BiFun<? super U, ? super U, ? extends U> reducer) {
3478 if (transformer == null || reducer == null)
3479 throw new NullPointerException();
3480 return new MapReduceMappingsTask<K,V,U>
3481 (null, batchFor(parallelismThreshold), 0, 0, table,
3482 null, transformer, reducer).invoke();
3483 }
3484
3485 /**
3486 * Returns the result of accumulating the given transformation
3487 * of all (key, value) pairs using the given reducer to
3488 * combine values, and the given basis as an identity value.
3489 *
3490 * @param parallelismThreshold the (estimated) number of elements
3491 * needed for this operation to be executed in parallel
3492 * @param transformer a function returning the transformation
3493 * for an element
3494 * @param basis the identity (initial default value) for the reduction
3495 * @param reducer a commutative associative combining function
3496 * @return the result of accumulating the given transformation
3497 * of all (key, value) pairs
3498 * @since 1.8
3499 */
3500 public double reduceToDoubleIn(long parallelismThreshold,
3501 ObjectByObjectToDouble<? super K, ? super V> transformer,
3502 double basis,
3503 DoubleByDoubleToDouble reducer) {
3504 if (transformer == null || reducer == null)
3505 throw new NullPointerException();
3506 return new MapReduceMappingsToDoubleTask<K,V>
3507 (null, batchFor(parallelismThreshold), 0, 0, table,
3508 null, transformer, basis, reducer).invoke();
3509 }
3510
3511 /**
3512 * Returns the result of accumulating the given transformation
3513 * of all (key, value) pairs using the given reducer to
3514 * combine values, and the given basis as an identity value.
3515 *
3516 * @param parallelismThreshold the (estimated) number of elements
3517 * needed for this operation to be executed in parallel
3518 * @param transformer a function returning the transformation
3519 * for an element
3520 * @param basis the identity (initial default value) for the reduction
3521 * @param reducer a commutative associative combining function
3522 * @return the result of accumulating the given transformation
3523 * of all (key, value) pairs
3524 * @since 1.8
3525 */
3526 public long reduceToLong(long parallelismThreshold,
3527 ObjectByObjectToLong<? super K, ? super V> transformer,
3528 long basis,
3529 LongByLongToLong reducer) {
3530 if (transformer == null || reducer == null)
3531 throw new NullPointerException();
3532 return new MapReduceMappingsToLongTask<K,V>
3533 (null, batchFor(parallelismThreshold), 0, 0, table,
3534 null, transformer, basis, reducer).invoke();
3535 }
3536
3537 /**
3538 * Returns the result of accumulating the given transformation
3539 * of all (key, value) pairs using the given reducer to
3540 * combine values, and the given basis as an identity value.
3541 *
3542 * @param parallelismThreshold the (estimated) number of elements
3543 * needed for this operation to be executed in parallel
3544 * @param transformer a function returning the transformation
3545 * for an element
3546 * @param basis the identity (initial default value) for the reduction
3547 * @param reducer a commutative associative combining function
3548 * @return the result of accumulating the given transformation
3549 * of all (key, value) pairs
3550 * @since 1.8
3551 */
3552 public int reduceToInt(long parallelismThreshold,
3553 ObjectByObjectToInt<? super K, ? super V> transformer,
3554 int basis,
3555 IntByIntToInt reducer) {
3556 if (transformer == null || reducer == null)
3557 throw new NullPointerException();
3558 return new MapReduceMappingsToIntTask<K,V>
3559 (null, batchFor(parallelismThreshold), 0, 0, table,
3560 null, transformer, basis, reducer).invoke();
3561 }
3562
3563 /**
3564 * Performs the given action for each key.
3565 *
3566 * @param parallelismThreshold the (estimated) number of elements
3567 * needed for this operation to be executed in parallel
3568 * @param action the action
3569 * @since 1.8
3570 */
3571 public void forEachKey(long parallelismThreshold,
3572 Action<? super K> action) {
3573 if (action == null) throw new NullPointerException();
3574 new ForEachKeyTask<K,V>
3575 (null, batchFor(parallelismThreshold), 0, 0, table,
3576 action).invoke();
3577 }
3578
3579 /**
3580 * Performs the given action for each non-null transformation
3581 * of each key.
3582 *
3583 * @param parallelismThreshold the (estimated) number of elements
3584 * needed for this operation to be executed in parallel
3585 * @param transformer a function returning the transformation
3586 * for an element, or null if there is no transformation (in
3587 * which case the action is not applied)
3588 * @param action the action
3589 * @since 1.8
3590 */
3591 public <U> void forEachKey(long parallelismThreshold,
3592 Fun<? super K, ? extends U> transformer,
3593 Action<? super U> action) {
3594 if (transformer == null || action == null)
3595 throw new NullPointerException();
3596 new ForEachTransformedKeyTask<K,V,U>
3597 (null, batchFor(parallelismThreshold), 0, 0, table,
3598 transformer, action).invoke();
3599 }
3600
3601 /**
3602 * Returns a non-null result from applying the given search
3603 * function on each key, or null if none. Upon success,
3604 * further element processing is suppressed and the results of
3605 * any other parallel invocations of the search function are
3606 * ignored.
3607 *
3608 * @param parallelismThreshold the (estimated) number of elements
3609 * needed for this operation to be executed in parallel
3610 * @param searchFunction a function returning a non-null
3611 * result on success, else null
3612 * @return a non-null result from applying the given search
3613 * function on each key, or null if none
3614 * @since 1.8
3615 */
3616 public <U> U searchKeys(long parallelismThreshold,
3617 Fun<? super K, ? extends U> searchFunction) {
3618 if (searchFunction == null) throw new NullPointerException();
3619 return new SearchKeysTask<K,V,U>
3620 (null, batchFor(parallelismThreshold), 0, 0, table,
3621 searchFunction, new AtomicReference<U>()).invoke();
3622 }
3623
3624 /**
3625 * Returns the result of accumulating all keys using the given
3626 * reducer to combine values, or null if none.
3627 *
3628 * @param parallelismThreshold the (estimated) number of elements
3629 * needed for this operation to be executed in parallel
3630 * @param reducer a commutative associative combining function
3631 * @return the result of accumulating all keys using the given
3632 * reducer to combine values, or null if none
3633 * @since 1.8
3634 */
3635 public K reduceKeys(long parallelismThreshold,
3636 BiFun<? super K, ? super K, ? extends K> reducer) {
3637 if (reducer == null) throw new NullPointerException();
3638 return new ReduceKeysTask<K,V>
3639 (null, batchFor(parallelismThreshold), 0, 0, table,
3640 null, reducer).invoke();
3641 }
3642
3643 /**
3644 * Returns the result of accumulating the given transformation
3645 * of all keys using the given reducer to combine values, or
3646 * null if none.
3647 *
3648 * @param parallelismThreshold the (estimated) number of elements
3649 * needed for this operation to be executed in parallel
3650 * @param transformer a function returning the transformation
3651 * for an element, or null if there is no transformation (in
3652 * which case it is not combined)
3653 * @param reducer a commutative associative combining function
3654 * @return the result of accumulating the given transformation
3655 * of all keys
3656 * @since 1.8
3657 */
3658 public <U> U reduceKeys(long parallelismThreshold,
3659 Fun<? super K, ? extends U> transformer,
3660 BiFun<? super U, ? super U, ? extends U> reducer) {
3661 if (transformer == null || reducer == null)
3662 throw new NullPointerException();
3663 return new MapReduceKeysTask<K,V,U>
3664 (null, batchFor(parallelismThreshold), 0, 0, table,
3665 null, transformer, reducer).invoke();
3666 }
3667
3668 /**
3669 * Returns the result of accumulating the given transformation
3670 * of all keys using the given reducer to combine values, and
3671 * the given basis as an identity value.
3672 *
3673 * @param parallelismThreshold the (estimated) number of elements
3674 * needed for this operation to be executed in parallel
3675 * @param transformer a function returning the transformation
3676 * for an element
3677 * @param basis the identity (initial default value) for the reduction
3678 * @param reducer a commutative associative combining function
3679 * @return the result of accumulating the given transformation
3680 * of all keys
3681 * @since 1.8
3682 */
3683 public double reduceKeysToDouble(long parallelismThreshold,
3684 ObjectToDouble<? super K> transformer,
3685 double basis,
3686 DoubleByDoubleToDouble reducer) {
3687 if (transformer == null || reducer == null)
3688 throw new NullPointerException();
3689 return new MapReduceKeysToDoubleTask<K,V>
3690 (null, batchFor(parallelismThreshold), 0, 0, table,
3691 null, transformer, basis, reducer).invoke();
3692 }
3693
3694 /**
3695 * Returns the result of accumulating the given transformation
3696 * of all keys using the given reducer to combine values, and
3697 * the given basis as an identity value.
3698 *
3699 * @param parallelismThreshold the (estimated) number of elements
3700 * needed for this operation to be executed in parallel
3701 * @param transformer a function returning the transformation
3702 * for an element
3703 * @param basis the identity (initial default value) for the reduction
3704 * @param reducer a commutative associative combining function
3705 * @return the result of accumulating the given transformation
3706 * of all keys
3707 * @since 1.8
3708 */
3709 public long reduceKeysToLong(long parallelismThreshold,
3710 ObjectToLong<? super K> transformer,
3711 long basis,
3712 LongByLongToLong reducer) {
3713 if (transformer == null || reducer == null)
3714 throw new NullPointerException();
3715 return new MapReduceKeysToLongTask<K,V>
3716 (null, batchFor(parallelismThreshold), 0, 0, table,
3717 null, transformer, basis, reducer).invoke();
3718 }
3719
3720 /**
3721 * Returns the result of accumulating the given transformation
3722 * of all keys using the given reducer to combine values, and
3723 * the given basis as an identity value.
3724 *
3725 * @param parallelismThreshold the (estimated) number of elements
3726 * needed for this operation to be executed in parallel
3727 * @param transformer a function returning the transformation
3728 * for an element
3729 * @param basis the identity (initial default value) for the reduction
3730 * @param reducer a commutative associative combining function
3731 * @return the result of accumulating the given transformation
3732 * of all keys
3733 * @since 1.8
3734 */
3735 public int reduceKeysToInt(long parallelismThreshold,
3736 ObjectToInt<? super K> transformer,
3737 int basis,
3738 IntByIntToInt reducer) {
3739 if (transformer == null || reducer == null)
3740 throw new NullPointerException();
3741 return new MapReduceKeysToIntTask<K,V>
3742 (null, batchFor(parallelismThreshold), 0, 0, table,
3743 null, transformer, basis, reducer).invoke();
3744 }
3745
3746 /**
3747 * Performs the given action for each value.
3748 *
3749 * @param parallelismThreshold the (estimated) number of elements
3750 * needed for this operation to be executed in parallel
3751 * @param action the action
3752 * @since 1.8
3753 */
3754 public void forEachValue(long parallelismThreshold,
3755 Action<? super V> action) {
3756 if (action == null)
3757 throw new NullPointerException();
3758 new ForEachValueTask<K,V>
3759 (null, batchFor(parallelismThreshold), 0, 0, table,
3760 action).invoke();
3761 }
3762
3763 /**
3764 * Performs the given action for each non-null transformation
3765 * of each value.
3766 *
3767 * @param parallelismThreshold the (estimated) number of elements
3768 * needed for this operation to be executed in parallel
3769 * @param transformer a function returning the transformation
3770 * for an element, or null if there is no transformation (in
3771 * which case the action is not applied)
3772 * @param action the action
3773 * @since 1.8
3774 */
3775 public <U> void forEachValue(long parallelismThreshold,
3776 Fun<? super V, ? extends U> transformer,
3777 Action<? super U> action) {
3778 if (transformer == null || action == null)
3779 throw new NullPointerException();
3780 new ForEachTransformedValueTask<K,V,U>
3781 (null, batchFor(parallelismThreshold), 0, 0, table,
3782 transformer, action).invoke();
3783 }
3784
3785 /**
3786 * Returns a non-null result from applying the given search
3787 * function on each value, or null if none. Upon success,
3788 * further element processing is suppressed and the results of
3789 * any other parallel invocations of the search function are
3790 * ignored.
3791 *
3792 * @param parallelismThreshold the (estimated) number of elements
3793 * needed for this operation to be executed in parallel
3794 * @param searchFunction a function returning a non-null
3795 * result on success, else null
3796 * @return a non-null result from applying the given search
3797 * function on each value, or null if none
3798 * @since 1.8
3799 */
3800 public <U> U searchValues(long parallelismThreshold,
3801 Fun<? super V, ? extends U> searchFunction) {
3802 if (searchFunction == null) throw new NullPointerException();
3803 return new SearchValuesTask<K,V,U>
3804 (null, batchFor(parallelismThreshold), 0, 0, table,
3805 searchFunction, new AtomicReference<U>()).invoke();
3806 }
3807
3808 /**
3809 * Returns the result of accumulating all values using the
3810 * given reducer to combine values, or null if none.
3811 *
3812 * @param parallelismThreshold the (estimated) number of elements
3813 * needed for this operation to be executed in parallel
3814 * @param reducer a commutative associative combining function
3815 * @return the result of accumulating all values
3816 * @since 1.8
3817 */
3818 public V reduceValues(long parallelismThreshold,
3819 BiFun<? super V, ? super V, ? extends V> reducer) {
3820 if (reducer == null) throw new NullPointerException();
3821 return new ReduceValuesTask<K,V>
3822 (null, batchFor(parallelismThreshold), 0, 0, table,
3823 null, reducer).invoke();
3824 }
3825
3826 /**
3827 * Returns the result of accumulating the given transformation
3828 * of all values using the given reducer to combine values, or
3829 * null if none.
3830 *
3831 * @param parallelismThreshold the (estimated) number of elements
3832 * needed for this operation to be executed in parallel
3833 * @param transformer a function returning the transformation
3834 * for an element, or null if there is no transformation (in
3835 * which case it is not combined)
3836 * @param reducer a commutative associative combining function
3837 * @return the result of accumulating the given transformation
3838 * of all values
3839 * @since 1.8
3840 */
3841 public <U> U reduceValues(long parallelismThreshold,
3842 Fun<? super V, ? extends U> transformer,
3843 BiFun<? super U, ? super U, ? extends U> reducer) {
3844 if (transformer == null || reducer == null)
3845 throw new NullPointerException();
3846 return new MapReduceValuesTask<K,V,U>
3847 (null, batchFor(parallelismThreshold), 0, 0, table,
3848 null, transformer, reducer).invoke();
3849 }
3850
3851 /**
3852 * Returns the result of accumulating the given transformation
3853 * of all values using the given reducer to combine values,
3854 * and the given basis as an identity value.
3855 *
3856 * @param parallelismThreshold the (estimated) number of elements
3857 * needed for this operation to be executed in parallel
3858 * @param transformer a function returning the transformation
3859 * for an element
3860 * @param basis the identity (initial default value) for the reduction
3861 * @param reducer a commutative associative combining function
3862 * @return the result of accumulating the given transformation
3863 * of all values
3864 * @since 1.8
3865 */
3866 public double reduceValuesToDouble(long parallelismThreshold,
3867 ObjectToDouble<? super V> transformer,
3868 double basis,
3869 DoubleByDoubleToDouble reducer) {
3870 if (transformer == null || reducer == null)
3871 throw new NullPointerException();
3872 return new MapReduceValuesToDoubleTask<K,V>
3873 (null, batchFor(parallelismThreshold), 0, 0, table,
3874 null, transformer, basis, reducer).invoke();
3875 }
3876
3877 /**
3878 * Returns the result of accumulating the given transformation
3879 * of all values using the given reducer to combine values,
3880 * and the given basis as an identity value.
3881 *
3882 * @param parallelismThreshold the (estimated) number of elements
3883 * needed for this operation to be executed in parallel
3884 * @param transformer a function returning the transformation
3885 * for an element
3886 * @param basis the identity (initial default value) for the reduction
3887 * @param reducer a commutative associative combining function
3888 * @return the result of accumulating the given transformation
3889 * of all values
3890 * @since 1.8
3891 */
3892 public long reduceValuesToLong(long parallelismThreshold,
3893 ObjectToLong<? super V> transformer,
3894 long basis,
3895 LongByLongToLong reducer) {
3896 if (transformer == null || reducer == null)
3897 throw new NullPointerException();
3898 return new MapReduceValuesToLongTask<K,V>
3899 (null, batchFor(parallelismThreshold), 0, 0, table,
3900 null, transformer, basis, reducer).invoke();
3901 }
3902
3903 /**
3904 * Returns the result of accumulating the given transformation
3905 * of all values using the given reducer to combine values,
3906 * and the given basis as an identity value.
3907 *
3908 * @param parallelismThreshold the (estimated) number of elements
3909 * needed for this operation to be executed in parallel
3910 * @param transformer a function returning the transformation
3911 * for an element
3912 * @param basis the identity (initial default value) for the reduction
3913 * @param reducer a commutative associative combining function
3914 * @return the result of accumulating the given transformation
3915 * of all values
3916 * @since 1.8
3917 */
3918 public int reduceValuesToInt(long parallelismThreshold,
3919 ObjectToInt<? super V> transformer,
3920 int basis,
3921 IntByIntToInt reducer) {
3922 if (transformer == null || reducer == null)
3923 throw new NullPointerException();
3924 return new MapReduceValuesToIntTask<K,V>
3925 (null, batchFor(parallelismThreshold), 0, 0, table,
3926 null, transformer, basis, reducer).invoke();
3927 }
3928
3929 /**
3930 * Performs the given action for each entry.
3931 *
3932 * @param parallelismThreshold the (estimated) number of elements
3933 * needed for this operation to be executed in parallel
3934 * @param action the action
3935 * @since 1.8
3936 */
3937 public void forEachEntry(long parallelismThreshold,
3938 Action<? super Map.Entry<K,V>> action) {
3939 if (action == null) throw new NullPointerException();
3940 new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
3941 action).invoke();
3942 }
3943
3944 /**
3945 * Performs the given action for each non-null transformation
3946 * of each entry.
3947 *
3948 * @param parallelismThreshold the (estimated) number of elements
3949 * needed for this operation to be executed in parallel
3950 * @param transformer a function returning the transformation
3951 * for an element, or null if there is no transformation (in
3952 * which case the action is not applied)
3953 * @param action the action
3954 * @since 1.8
3955 */
3956 public <U> void forEachEntry(long parallelismThreshold,
3957 Fun<Map.Entry<K,V>, ? extends U> transformer,
3958 Action<? super U> action) {
3959 if (transformer == null || action == null)
3960 throw new NullPointerException();
3961 new ForEachTransformedEntryTask<K,V,U>
3962 (null, batchFor(parallelismThreshold), 0, 0, table,
3963 transformer, action).invoke();
3964 }
3965
3966 /**
3967 * Returns a non-null result from applying the given search
3968 * function on each entry, or null if none. Upon success,
3969 * further element processing is suppressed and the results of
3970 * any other parallel invocations of the search function are
3971 * ignored.
3972 *
3973 * @param parallelismThreshold the (estimated) number of elements
3974 * needed for this operation to be executed in parallel
3975 * @param searchFunction a function returning a non-null
3976 * result on success, else null
3977 * @return a non-null result from applying the given search
3978 * function on each entry, or null if none
3979 * @since 1.8
3980 */
3981 public <U> U searchEntries(long parallelismThreshold,
3982 Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
3983 if (searchFunction == null) throw new NullPointerException();
3984 return new SearchEntriesTask<K,V,U>
3985 (null, batchFor(parallelismThreshold), 0, 0, table,
3986 searchFunction, new AtomicReference<U>()).invoke();
3987 }
3988
3989 /**
3990 * Returns the result of accumulating all entries using the
3991 * given reducer to combine values, or null if none.
3992 *
3993 * @param parallelismThreshold the (estimated) number of elements
3994 * needed for this operation to be executed in parallel
3995 * @param reducer a commutative associative combining function
3996 * @return the result of accumulating all entries
3997 * @since 1.8
3998 */
3999 public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4000 BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4001 if (reducer == null) throw new NullPointerException();
4002 return new ReduceEntriesTask<K,V>
4003 (null, batchFor(parallelismThreshold), 0, 0, table,
4004 null, reducer).invoke();
4005 }
4006
4007 /**
4008 * Returns the result of accumulating the given transformation
4009 * of all entries using the given reducer to combine values,
4010 * or null if none.
4011 *
4012 * @param parallelismThreshold the (estimated) number of elements
4013 * needed for this operation to be executed in parallel
4014 * @param transformer a function returning the transformation
4015 * for an element, or null if there is no transformation (in
4016 * which case it is not combined)
4017 * @param reducer a commutative associative combining function
4018 * @return the result of accumulating the given transformation
4019 * of all entries
4020 * @since 1.8
4021 */
4022 public <U> U reduceEntries(long parallelismThreshold,
4023 Fun<Map.Entry<K,V>, ? extends U> transformer,
4024 BiFun<? super U, ? super U, ? extends U> reducer) {
4025 if (transformer == null || reducer == null)
4026 throw new NullPointerException();
4027 return new MapReduceEntriesTask<K,V,U>
4028 (null, batchFor(parallelismThreshold), 0, 0, table,
4029 null, transformer, reducer).invoke();
4030 }
4031
4032 /**
4033 * Returns the result of accumulating the given transformation
4034 * of all entries using the given reducer to combine values,
4035 * and the given basis as an identity value.
4036 *
4037 * @param parallelismThreshold the (estimated) number of elements
4038 * needed for this operation to be executed in parallel
4039 * @param transformer a function returning the transformation
4040 * for an element
4041 * @param basis the identity (initial default value) for the reduction
4042 * @param reducer a commutative associative combining function
4043 * @return the result of accumulating the given transformation
4044 * of all entries
4045 * @since 1.8
4046 */
4047 public double reduceEntriesToDouble(long parallelismThreshold,
4048 ObjectToDouble<Map.Entry<K,V>> transformer,
4049 double basis,
4050 DoubleByDoubleToDouble reducer) {
4051 if (transformer == null || reducer == null)
4052 throw new NullPointerException();
4053 return new MapReduceEntriesToDoubleTask<K,V>
4054 (null, batchFor(parallelismThreshold), 0, 0, table,
4055 null, transformer, basis, reducer).invoke();
4056 }
4057
4058 /**
4059 * Returns the result of accumulating the given transformation
4060 * of all entries using the given reducer to combine values,
4061 * and the given basis as an identity value.
4062 *
4063 * @param parallelismThreshold the (estimated) number of elements
4064 * needed for this operation to be executed in parallel
4065 * @param transformer a function returning the transformation
4066 * for an element
4067 * @param basis the identity (initial default value) for the reduction
4068 * @param reducer a commutative associative combining function
4069 * @return the result of accumulating the given transformation
4070 * of all entries
4071 * @since 1.8
4072 */
4073 public long reduceEntriesToLong(long parallelismThreshold,
4074 ObjectToLong<Map.Entry<K,V>> transformer,
4075 long basis,
4076 LongByLongToLong reducer) {
4077 if (transformer == null || reducer == null)
4078 throw new NullPointerException();
4079 return new MapReduceEntriesToLongTask<K,V>
4080 (null, batchFor(parallelismThreshold), 0, 0, table,
4081 null, transformer, basis, reducer).invoke();
4082 }
4083
4084 /**
4085 * Returns the result of accumulating the given transformation
4086 * of all entries using the given reducer to combine values,
4087 * and the given basis as an identity value.
4088 *
4089 * @param parallelismThreshold the (estimated) number of elements
4090 * needed for this operation to be executed in parallel
4091 * @param transformer a function returning the transformation
4092 * for an element
4093 * @param basis the identity (initial default value) for the reduction
4094 * @param reducer a commutative associative combining function
4095 * @return the result of accumulating the given transformation
4096 * of all entries
4097 * @since 1.8
4098 */
4099 public int reduceEntriesToInt(long parallelismThreshold,
4100 ObjectToInt<Map.Entry<K,V>> transformer,
4101 int basis,
4102 IntByIntToInt reducer) {
4103 if (transformer == null || reducer == null)
4104 throw new NullPointerException();
4105 return new MapReduceEntriesToIntTask<K,V>
4106 (null, batchFor(parallelismThreshold), 0, 0, table,
4107 null, transformer, basis, reducer).invoke();
4108 }
4109
4110
4111 /* ----------------Views -------------- */
4112
4113 /**
4114 * Base class for views.
4115 */
4116 abstract static class CollectionView<K,V,E>
4117 implements Collection<E>, java.io.Serializable {
4118 private static final long serialVersionUID = 7249069246763182397L;
4119 final ConcurrentHashMapV8<K,V> map;
4120 CollectionView(ConcurrentHashMapV8<K,V> map) { this.map = map; }
4121
4122 /**
4123 * Returns the map backing this view.
4124 *
4125 * @return the map backing this view
4126 */
4127 public ConcurrentHashMapV8<K,V> getMap() { return map; }
4128
4129 /**
4130 * Removes all of the elements from this view, by removing all
4131 * the mappings from the map backing this view.
4132 */
4133 public final void clear() { map.clear(); }
4134 public final int size() { return map.size(); }
4135 public final boolean isEmpty() { return map.isEmpty(); }
4136
4137 // implementations below rely on concrete classes supplying these
4138 // abstract methods
4139 /**
4140 * Returns a "weakly consistent" iterator that will never
4141 * throw {@link ConcurrentModificationException}, and
4142 * guarantees to traverse elements as they existed upon
4143 * construction of the iterator, and may (but is not
4144 * guaranteed to) reflect any modifications subsequent to
4145 * construction.
4146 */
4147 public abstract Iterator<E> iterator();
4148 public abstract boolean contains(Object o);
4149 public abstract boolean remove(Object o);
4150
4151 private static final String oomeMsg = "Required array size too large";
4152
4153 public final Object[] toArray() {
4154 long sz = map.mappingCount();
4155 if (sz > MAX_ARRAY_SIZE)
4156 throw new OutOfMemoryError(oomeMsg);
4157 int n = (int)sz;
4158 Object[] r = new Object[n];
4159 int i = 0;
4160 for (E e : this) {
4161 if (i == n) {
4162 if (n >= MAX_ARRAY_SIZE)
4163 throw new OutOfMemoryError(oomeMsg);
4164 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4165 n = MAX_ARRAY_SIZE;
4166 else
4167 n += (n >>> 1) + 1;
4168 r = Arrays.copyOf(r, n);
4169 }
4170 r[i++] = e;
4171 }
4172 return (i == n) ? r : Arrays.copyOf(r, i);
4173 }
4174
4175 @SuppressWarnings("unchecked")
4176 public final <T> T[] toArray(T[] a) {
4177 long sz = map.mappingCount();
4178 if (sz > MAX_ARRAY_SIZE)
4179 throw new OutOfMemoryError(oomeMsg);
4180 int m = (int)sz;
4181 T[] r = (a.length >= m) ? a :
4182 (T[])java.lang.reflect.Array
4183 .newInstance(a.getClass().getComponentType(), m);
4184 int n = r.length;
4185 int i = 0;
4186 for (E e : this) {
4187 if (i == n) {
4188 if (n >= MAX_ARRAY_SIZE)
4189 throw new OutOfMemoryError(oomeMsg);
4190 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4191 n = MAX_ARRAY_SIZE;
4192 else
4193 n += (n >>> 1) + 1;
4194 r = Arrays.copyOf(r, n);
4195 }
4196 r[i++] = (T)e;
4197 }
4198 if (a == r && i < n) {
4199 r[i] = null; // null-terminate
4200 return r;
4201 }
4202 return (i == n) ? r : Arrays.copyOf(r, i);
4203 }
4204
4205 /**
4206 * Returns a string representation of this collection.
4207 * The string representation consists of the string representations
4208 * of the collection's elements in the order they are returned by
4209 * its iterator, enclosed in square brackets ({@code "[]"}).
4210 * Adjacent elements are separated by the characters {@code ", "}
4211 * (comma and space). Elements are converted to strings as by
4212 * {@link String#valueOf(Object)}.
4213 *
4214 * @return a string representation of this collection
4215 */
4216 public final String toString() {
4217 StringBuilder sb = new StringBuilder();
4218 sb.append('[');
4219 Iterator<E> it = iterator();
4220 if (it.hasNext()) {
4221 for (;;) {
4222 Object e = it.next();
4223 sb.append(e == this ? "(this Collection)" : e);
4224 if (!it.hasNext())
4225 break;
4226 sb.append(',').append(' ');
4227 }
4228 }
4229 return sb.append(']').toString();
4230 }
4231
4232 public final boolean containsAll(Collection<?> c) {
4233 if (c != this) {
4234 for (Object e : c) {
4235 if (e == null || !contains(e))
4236 return false;
4237 }
4238 }
4239 return true;
4240 }
4241
4242 public final boolean removeAll(Collection<?> c) {
4243 boolean modified = false;
4244 for (Iterator<E> it = iterator(); it.hasNext();) {
4245 if (c.contains(it.next())) {
4246 it.remove();
4247 modified = true;
4248 }
4249 }
4250 return modified;
4251 }
4252
4253 public final boolean retainAll(Collection<?> c) {
4254 boolean modified = false;
4255 for (Iterator<E> it = iterator(); it.hasNext();) {
4256 if (!c.contains(it.next())) {
4257 it.remove();
4258 modified = true;
4259 }
4260 }
4261 return modified;
4262 }
4263
4264 }
4265
4266 /**
4267 * A view of a ConcurrentHashMapV8 as a {@link Set} of keys, in
4268 * which additions may optionally be enabled by mapping to a
4269 * common value. This class cannot be directly instantiated.
4270 * See {@link #keySet() keySet()},
4271 * {@link #keySet(Object) keySet(V)},
4272 * {@link #newKeySet() newKeySet()},
4273 * {@link #newKeySet(int) newKeySet(int)}.
4274 *
4275 * @since 1.8
4276 */
4277 public static class KeySetView<K,V> extends CollectionView<K,V,K>
4278 implements Set<K>, java.io.Serializable {
4279 private static final long serialVersionUID = 7249069246763182397L;
4280 private final V value;
4281 KeySetView(ConcurrentHashMapV8<K,V> map, V value) { // non-public
4282 super(map);
4283 this.value = value;
4284 }
4285
4286 /**
4287 * Returns the default mapped value for additions,
4288 * or {@code null} if additions are not supported.
4289 *
4290 * @return the default mapped value for additions, or {@code null}
4291 * if not supported
4292 */
4293 public V getMappedValue() { return value; }
4294
4295 /**
4296 * {@inheritDoc}
4297 * @throws NullPointerException if the specified key is null
4298 */
4299 public boolean contains(Object o) { return map.containsKey(o); }
4300
4301 /**
4302 * Removes the key from this map view, by removing the key (and its
4303 * corresponding value) from the backing map. This method does
4304 * nothing if the key is not in the map.
4305 *
4306 * @param o the key to be removed from the backing map
4307 * @return {@code true} if the backing map contained the specified key
4308 * @throws NullPointerException if the specified key is null
4309 */
4310 public boolean remove(Object o) { return map.remove(o) != null; }
4311
4312 /**
4313 * @return an iterator over the keys of the backing map
4314 */
4315 public Iterator<K> iterator() {
4316 Node<K,V>[] t;
4317 ConcurrentHashMapV8<K,V> m = map;
4318 int f = (t = m.table) == null ? 0 : t.length;
4319 return new KeyIterator<K,V>(t, f, 0, f, m);
4320 }
4321
4322 /**
4323 * Adds the specified key to this set view by mapping the key to
4324 * the default mapped value in the backing map, if defined.
4325 *
4326 * @param e key to be added
4327 * @return {@code true} if this set changed as a result of the call
4328 * @throws NullPointerException if the specified key is null
4329 * @throws UnsupportedOperationException if no default mapped value
4330 * for additions was provided
4331 */
4332 public boolean add(K e) {
4333 V v;
4334 if ((v = value) == null)
4335 throw new UnsupportedOperationException();
4336 return map.putVal(e, v, true) == null;
4337 }
4338
4339 /**
4340 * Adds all of the elements in the specified collection to this set,
4341 * as if by calling {@link #add} on each one.
4342 *
4343 * @param c the elements to be inserted into this set
4344 * @return {@code true} if this set changed as a result of the call
4345 * @throws NullPointerException if the collection or any of its
4346 * elements are {@code null}
4347 * @throws UnsupportedOperationException if no default mapped value
4348 * for additions was provided
4349 */
4350 public boolean addAll(Collection<? extends K> c) {
4351 boolean added = false;
4352 V v;
4353 if ((v = value) == null)
4354 throw new UnsupportedOperationException();
4355 for (K e : c) {
4356 if (map.putVal(e, v, true) == null)
4357 added = true;
4358 }
4359 return added;
4360 }
4361
4362 public int hashCode() {
4363 int h = 0;
4364 for (K e : this)
4365 h += e.hashCode();
4366 return h;
4367 }
4368
4369 public boolean equals(Object o) {
4370 Set<?> c;
4371 return ((o instanceof Set) &&
4372 ((c = (Set<?>)o) == this ||
4373 (containsAll(c) && c.containsAll(this))));
4374 }
4375
4376 public ConcurrentHashMapSpliterator<K> spliterator() {
4377 Node<K,V>[] t;
4378 ConcurrentHashMapV8<K,V> m = map;
4379 long n = m.sumCount();
4380 int f = (t = m.table) == null ? 0 : t.length;
4381 return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4382 }
4383
4384 public void forEach(Action<? super K> action) {
4385 if (action == null) throw new NullPointerException();
4386 Node<K,V>[] t;
4387 if ((t = map.table) != null) {
4388 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4389 for (Node<K,V> p; (p = it.advance()) != null; )
4390 action.apply(p.key);
4391 }
4392 }
4393 }
4394
4395 /**
4396 * A view of a ConcurrentHashMapV8 as a {@link Collection} of
4397 * values, in which additions are disabled. This class cannot be
4398 * directly instantiated. See {@link #values()}.
4399 */
4400 static final class ValuesView<K,V> extends CollectionView<K,V,V>
4401 implements Collection<V>, java.io.Serializable {
4402 private static final long serialVersionUID = 2249069246763182397L;
4403 ValuesView(ConcurrentHashMapV8<K,V> map) { super(map); }
4404 public final boolean contains(Object o) {
4405 return map.containsValue(o);
4406 }
4407
4408 public final boolean remove(Object o) {
4409 if (o != null) {
4410 for (Iterator<V> it = iterator(); it.hasNext();) {
4411 if (o.equals(it.next())) {
4412 it.remove();
4413 return true;
4414 }
4415 }
4416 }
4417 return false;
4418 }
4419
4420 public final Iterator<V> iterator() {
4421 ConcurrentHashMapV8<K,V> m = map;
4422 Node<K,V>[] t;
4423 int f = (t = m.table) == null ? 0 : t.length;
4424 return new ValueIterator<K,V>(t, f, 0, f, m);
4425 }
4426
4427 public final boolean add(V e) {
4428 throw new UnsupportedOperationException();
4429 }
4430 public final boolean addAll(Collection<? extends V> c) {
4431 throw new UnsupportedOperationException();
4432 }
4433
4434 public ConcurrentHashMapSpliterator<V> spliterator() {
4435 Node<K,V>[] t;
4436 ConcurrentHashMapV8<K,V> m = map;
4437 long n = m.sumCount();
4438 int f = (t = m.table) == null ? 0 : t.length;
4439 return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4440 }
4441
4442 public void forEach(Action<? super V> action) {
4443 if (action == null) throw new NullPointerException();
4444 Node<K,V>[] t;
4445 if ((t = map.table) != null) {
4446 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4447 for (Node<K,V> p; (p = it.advance()) != null; )
4448 action.apply(p.val);
4449 }
4450 }
4451 }
4452
4453 /**
4454 * A view of a ConcurrentHashMapV8 as a {@link Set} of (key, value)
4455 * entries. This class cannot be directly instantiated. See
4456 * {@link #entrySet()}.
4457 */
4458 static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4459 implements Set<Map.Entry<K,V>>, java.io.Serializable {
4460 private static final long serialVersionUID = 2249069246763182397L;
4461 EntrySetView(ConcurrentHashMapV8<K,V> map) { super(map); }
4462
4463 public boolean contains(Object o) {
4464 Object k, v, r; Map.Entry<?,?> e;
4465 return ((o instanceof Map.Entry) &&
4466 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4467 (r = map.get(k)) != null &&
4468 (v = e.getValue()) != null &&
4469 (v == r || v.equals(r)));
4470 }
4471
4472 public boolean remove(Object o) {
4473 Object k, v; Map.Entry<?,?> e;
4474 return ((o instanceof Map.Entry) &&
4475 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4476 (v = e.getValue()) != null &&
4477 map.remove(k, v));
4478 }
4479
4480 /**
4481 * @return an iterator over the entries of the backing map
4482 */
4483 public Iterator<Map.Entry<K,V>> iterator() {
4484 ConcurrentHashMapV8<K,V> m = map;
4485 Node<K,V>[] t;
4486 int f = (t = m.table) == null ? 0 : t.length;
4487 return new EntryIterator<K,V>(t, f, 0, f, m);
4488 }
4489
4490 public boolean add(Entry<K,V> e) {
4491 return map.putVal(e.getKey(), e.getValue(), false) == null;
4492 }
4493
4494 public boolean addAll(Collection<? extends Entry<K,V>> c) {
4495 boolean added = false;
4496 for (Entry<K,V> e : c) {
4497 if (add(e))
4498 added = true;
4499 }
4500 return added;
4501 }
4502
4503 public final int hashCode() {
4504 int h = 0;
4505 Node<K,V>[] t;
4506 if ((t = map.table) != null) {
4507 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4508 for (Node<K,V> p; (p = it.advance()) != null; ) {
4509 h += p.hashCode();
4510 }
4511 }
4512 return h;
4513 }
4514
4515 public final boolean equals(Object o) {
4516 Set<?> c;
4517 return ((o instanceof Set) &&
4518 ((c = (Set<?>)o) == this ||
4519 (containsAll(c) && c.containsAll(this))));
4520 }
4521
4522 public ConcurrentHashMapSpliterator<Map.Entry<K,V>> spliterator() {
4523 Node<K,V>[] t;
4524 ConcurrentHashMapV8<K,V> m = map;
4525 long n = m.sumCount();
4526 int f = (t = m.table) == null ? 0 : t.length;
4527 return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4528 }
4529
4530 public void forEach(Action<? super Map.Entry<K,V>> action) {
4531 if (action == null) throw new NullPointerException();
4532 Node<K,V>[] t;
4533 if ((t = map.table) != null) {
4534 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4535 for (Node<K,V> p; (p = it.advance()) != null; )
4536 action.apply(new MapEntry<K,V>(p.key, p.val, map));
4537 }
4538 }
4539
4540 }
4541
4542 // -------------------------------------------------------
4543
4544 /**
4545 * Base class for bulk tasks. Repeats some fields and code from
4546 * class Traverser, because we need to subclass CountedCompleter.
4547 */
4548 abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4549 Node<K,V>[] tab; // same as Traverser
4550 Node<K,V> next;
4551 int index;
4552 int baseIndex;
4553 int baseLimit;
4554 final int baseSize;
4555 int batch; // split control
4556
4557 BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4558 super(par);
4559 this.batch = b;
4560 this.index = this.baseIndex = i;
4561 if ((this.tab = t) == null)
4562 this.baseSize = this.baseLimit = 0;
4563 else if (par == null)
4564 this.baseSize = this.baseLimit = t.length;
4565 else {
4566 this.baseLimit = f;
4567 this.baseSize = par.baseSize;
4568 }
4569 }
4570
4571 /**
4572 * Same as Traverser version
4573 */
4574 final Node<K,V> advance() {
4575 Node<K,V> e;
4576 if ((e = next) != null)
4577 e = e.next;
4578 for (;;) {
4579 Node<K,V>[] t; int i, n; K ek; // must use locals in checks
4580 if (e != null)
4581 return next = e;
4582 if (baseIndex >= baseLimit || (t = tab) == null ||
4583 (n = t.length) <= (i = index) || i < 0)
4584 return next = null;
4585 if ((e = tabAt(t, index)) != null && e.hash < 0) {
4586 if (e instanceof ForwardingNode) {
4587 tab = ((ForwardingNode<K,V>)e).nextTable;
4588 e = null;
4589 continue;
4590 }
4591 else if (e instanceof TreeBin)
4592 e = ((TreeBin<K,V>)e).first;
4593 else
4594 e = null;
4595 }
4596 if ((index += baseSize) >= n)
4597 index = ++baseIndex; // visit upper slots if present
4598 }
4599 }
4600 }
4601
4602 /*
4603 * Task classes. Coded in a regular but ugly format/style to
4604 * simplify checks that each variant differs in the right way from
4605 * others. The null screenings exist because compilers cannot tell
4606 * that we've already null-checked task arguments, so we force
4607 * simplest hoisted bypass to help avoid convoluted traps.
4608 */
4609 @SuppressWarnings("serial")
4610 static final class ForEachKeyTask<K,V>
4611 extends BulkTask<K,V,Void> {
4612 final Action<? super K> action;
4613 ForEachKeyTask
4614 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4615 Action<? super K> action) {
4616 super(p, b, i, f, t);
4617 this.action = action;
4618 }
4619 public final void compute() {
4620 final Action<? super K> action;
4621 if ((action = this.action) != null) {
4622 for (int i = baseIndex, f, h; batch > 0 &&
4623 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4624 addToPendingCount(1);
4625 new ForEachKeyTask<K,V>
4626 (this, batch >>>= 1, baseLimit = h, f, tab,
4627 action).fork();
4628 }
4629 for (Node<K,V> p; (p = advance()) != null;)
4630 action.apply(p.key);
4631 propagateCompletion();
4632 }
4633 }
4634 }
4635
4636 @SuppressWarnings("serial")
4637 static final class ForEachValueTask<K,V>
4638 extends BulkTask<K,V,Void> {
4639 final Action<? super V> action;
4640 ForEachValueTask
4641 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4642 Action<? super V> action) {
4643 super(p, b, i, f, t);
4644 this.action = action;
4645 }
4646 public final void compute() {
4647 final Action<? super V> action;
4648 if ((action = this.action) != null) {
4649 for (int i = baseIndex, f, h; batch > 0 &&
4650 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4651 addToPendingCount(1);
4652 new ForEachValueTask<K,V>
4653 (this, batch >>>= 1, baseLimit = h, f, tab,
4654 action).fork();
4655 }
4656 for (Node<K,V> p; (p = advance()) != null;)
4657 action.apply(p.val);
4658 propagateCompletion();
4659 }
4660 }
4661 }
4662
4663 @SuppressWarnings("serial")
4664 static final class ForEachEntryTask<K,V>
4665 extends BulkTask<K,V,Void> {
4666 final Action<? super Entry<K,V>> action;
4667 ForEachEntryTask
4668 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4669 Action<? super Entry<K,V>> action) {
4670 super(p, b, i, f, t);
4671 this.action = action;
4672 }
4673 public final void compute() {
4674 final Action<? super Entry<K,V>> action;
4675 if ((action = this.action) != null) {
4676 for (int i = baseIndex, f, h; batch > 0 &&
4677 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4678 addToPendingCount(1);
4679 new ForEachEntryTask<K,V>
4680 (this, batch >>>= 1, baseLimit = h, f, tab,
4681 action).fork();
4682 }
4683 for (Node<K,V> p; (p = advance()) != null; )
4684 action.apply(p);
4685 propagateCompletion();
4686 }
4687 }
4688 }
4689
4690 @SuppressWarnings("serial")
4691 static final class ForEachMappingTask<K,V>
4692 extends BulkTask<K,V,Void> {
4693 final BiAction<? super K, ? super V> action;
4694 ForEachMappingTask
4695 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4696 BiAction<? super K,? super V> action) {
4697 super(p, b, i, f, t);
4698 this.action = action;
4699 }
4700 public final void compute() {
4701 final BiAction<? super K, ? super V> action;
4702 if ((action = this.action) != null) {
4703 for (int i = baseIndex, f, h; batch > 0 &&
4704 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4705 addToPendingCount(1);
4706 new ForEachMappingTask<K,V>
4707 (this, batch >>>= 1, baseLimit = h, f, tab,
4708 action).fork();
4709 }
4710 for (Node<K,V> p; (p = advance()) != null; )
4711 action.apply(p.key, p.val);
4712 propagateCompletion();
4713 }
4714 }
4715 }
4716
4717 @SuppressWarnings("serial")
4718 static final class ForEachTransformedKeyTask<K,V,U>
4719 extends BulkTask<K,V,Void> {
4720 final Fun<? super K, ? extends U> transformer;
4721 final Action<? super U> action;
4722 ForEachTransformedKeyTask
4723 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4724 Fun<? super K, ? extends U> transformer, Action<? super U> action) {
4725 super(p, b, i, f, t);
4726 this.transformer = transformer; this.action = action;
4727 }
4728 public final void compute() {
4729 final Fun<? super K, ? extends U> transformer;
4730 final Action<? super U> action;
4731 if ((transformer = this.transformer) != null &&
4732 (action = this.action) != null) {
4733 for (int i = baseIndex, f, h; batch > 0 &&
4734 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4735 addToPendingCount(1);
4736 new ForEachTransformedKeyTask<K,V,U>
4737 (this, batch >>>= 1, baseLimit = h, f, tab,
4738 transformer, action).fork();
4739 }
4740 for (Node<K,V> p; (p = advance()) != null; ) {
4741 U u;
4742 if ((u = transformer.apply(p.key)) != null)
4743 action.apply(u);
4744 }
4745 propagateCompletion();
4746 }
4747 }
4748 }
4749
4750 @SuppressWarnings("serial")
4751 static final class ForEachTransformedValueTask<K,V,U>
4752 extends BulkTask<K,V,Void> {
4753 final Fun<? super V, ? extends U> transformer;
4754 final Action<? super U> action;
4755 ForEachTransformedValueTask
4756 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4757 Fun<? super V, ? extends U> transformer, Action<? super U> action) {
4758 super(p, b, i, f, t);
4759 this.transformer = transformer; this.action = action;
4760 }
4761 public final void compute() {
4762 final Fun<? super V, ? extends U> transformer;
4763 final Action<? super U> action;
4764 if ((transformer = this.transformer) != null &&
4765 (action = this.action) != null) {
4766 for (int i = baseIndex, f, h; batch > 0 &&
4767 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4768 addToPendingCount(1);
4769 new ForEachTransformedValueTask<K,V,U>
4770 (this, batch >>>= 1, baseLimit = h, f, tab,
4771 transformer, action).fork();
4772 }
4773 for (Node<K,V> p; (p = advance()) != null; ) {
4774 U u;
4775 if ((u = transformer.apply(p.val)) != null)
4776 action.apply(u);
4777 }
4778 propagateCompletion();
4779 }
4780 }
4781 }
4782
4783 @SuppressWarnings("serial")
4784 static final class ForEachTransformedEntryTask<K,V,U>
4785 extends BulkTask<K,V,Void> {
4786 final Fun<Map.Entry<K,V>, ? extends U> transformer;
4787 final Action<? super U> action;
4788 ForEachTransformedEntryTask
4789 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4790 Fun<Map.Entry<K,V>, ? extends U> transformer, Action<? super U> action) {
4791 super(p, b, i, f, t);
4792 this.transformer = transformer; this.action = action;
4793 }
4794 public final void compute() {
4795 final Fun<Map.Entry<K,V>, ? extends U> transformer;
4796 final Action<? super U> action;
4797 if ((transformer = this.transformer) != null &&
4798 (action = this.action) != null) {
4799 for (int i = baseIndex, f, h; batch > 0 &&
4800 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4801 addToPendingCount(1);
4802 new ForEachTransformedEntryTask<K,V,U>
4803 (this, batch >>>= 1, baseLimit = h, f, tab,
4804 transformer, action).fork();
4805 }
4806 for (Node<K,V> p; (p = advance()) != null; ) {
4807 U u;
4808 if ((u = transformer.apply(p)) != null)
4809 action.apply(u);
4810 }
4811 propagateCompletion();
4812 }
4813 }
4814 }
4815
4816 @SuppressWarnings("serial")
4817 static final class ForEachTransformedMappingTask<K,V,U>
4818 extends BulkTask<K,V,Void> {
4819 final BiFun<? super K, ? super V, ? extends U> transformer;
4820 final Action<? super U> action;
4821 ForEachTransformedMappingTask
4822 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4823 BiFun<? super K, ? super V, ? extends U> transformer,
4824 Action<? super U> action) {
4825 super(p, b, i, f, t);
4826 this.transformer = transformer; this.action = action;
4827 }
4828 public final void compute() {
4829 final BiFun<? super K, ? super V, ? extends U> transformer;
4830 final Action<? super U> action;
4831 if ((transformer = this.transformer) != null &&
4832 (action = this.action) != null) {
4833 for (int i = baseIndex, f, h; batch > 0 &&
4834 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4835 addToPendingCount(1);
4836 new ForEachTransformedMappingTask<K,V,U>
4837 (this, batch >>>= 1, baseLimit = h, f, tab,
4838 transformer, action).fork();
4839 }
4840 for (Node<K,V> p; (p = advance()) != null; ) {
4841 U u;
4842 if ((u = transformer.apply(p.key, p.val)) != null)
4843 action.apply(u);
4844 }
4845 propagateCompletion();
4846 }
4847 }
4848 }
4849
4850 @SuppressWarnings("serial")
4851 static final class SearchKeysTask<K,V,U>
4852 extends BulkTask<K,V,U> {
4853 final Fun<? super K, ? extends U> searchFunction;
4854 final AtomicReference<U> result;
4855 SearchKeysTask
4856 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4857 Fun<? super K, ? extends U> searchFunction,
4858 AtomicReference<U> result) {
4859 super(p, b, i, f, t);
4860 this.searchFunction = searchFunction; this.result = result;
4861 }
4862 public final U getRawResult() { return result.get(); }
4863 public final void compute() {
4864 final Fun<? super K, ? extends U> searchFunction;
4865 final AtomicReference<U> result;
4866 if ((searchFunction = this.searchFunction) != null &&
4867 (result = this.result) != null) {
4868 for (int i = baseIndex, f, h; batch > 0 &&
4869 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4870 if (result.get() != null)
4871 return;
4872 addToPendingCount(1);
4873 new SearchKeysTask<K,V,U>
4874 (this, batch >>>= 1, baseLimit = h, f, tab,
4875 searchFunction, result).fork();
4876 }
4877 while (result.get() == null) {
4878 U u;
4879 Node<K,V> p;
4880 if ((p = advance()) == null) {
4881 propagateCompletion();
4882 break;
4883 }
4884 if ((u = searchFunction.apply(p.key)) != null) {
4885 if (result.compareAndSet(null, u))
4886 quietlyCompleteRoot();
4887 break;
4888 }
4889 }
4890 }
4891 }
4892 }
4893
4894 @SuppressWarnings("serial")
4895 static final class SearchValuesTask<K,V,U>
4896 extends BulkTask<K,V,U> {
4897 final Fun<? super V, ? extends U> searchFunction;
4898 final AtomicReference<U> result;
4899 SearchValuesTask
4900 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4901 Fun<? super V, ? extends U> searchFunction,
4902 AtomicReference<U> result) {
4903 super(p, b, i, f, t);
4904 this.searchFunction = searchFunction; this.result = result;
4905 }
4906 public final U getRawResult() { return result.get(); }
4907 public final void compute() {
4908 final Fun<? super V, ? extends U> searchFunction;
4909 final AtomicReference<U> result;
4910 if ((searchFunction = this.searchFunction) != null &&
4911 (result = this.result) != null) {
4912 for (int i = baseIndex, f, h; batch > 0 &&
4913 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4914 if (result.get() != null)
4915 return;
4916 addToPendingCount(1);
4917 new SearchValuesTask<K,V,U>
4918 (this, batch >>>= 1, baseLimit = h, f, tab,
4919 searchFunction, result).fork();
4920 }
4921 while (result.get() == null) {
4922 U u;
4923 Node<K,V> p;
4924 if ((p = advance()) == null) {
4925 propagateCompletion();
4926 break;
4927 }
4928 if ((u = searchFunction.apply(p.val)) != null) {
4929 if (result.compareAndSet(null, u))
4930 quietlyCompleteRoot();
4931 break;
4932 }
4933 }
4934 }
4935 }
4936 }
4937
4938 @SuppressWarnings("serial")
4939 static final class SearchEntriesTask<K,V,U>
4940 extends BulkTask<K,V,U> {
4941 final Fun<Entry<K,V>, ? extends U> searchFunction;
4942 final AtomicReference<U> result;
4943 SearchEntriesTask
4944 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4945 Fun<Entry<K,V>, ? extends U> searchFunction,
4946 AtomicReference<U> result) {
4947 super(p, b, i, f, t);
4948 this.searchFunction = searchFunction; this.result = result;
4949 }
4950 public final U getRawResult() { return result.get(); }
4951 public final void compute() {
4952 final Fun<Entry<K,V>, ? extends U> searchFunction;
4953 final AtomicReference<U> result;
4954 if ((searchFunction = this.searchFunction) != null &&
4955 (result = this.result) != null) {
4956 for (int i = baseIndex, f, h; batch > 0 &&
4957 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4958 if (result.get() != null)
4959 return;
4960 addToPendingCount(1);
4961 new SearchEntriesTask<K,V,U>
4962 (this, batch >>>= 1, baseLimit = h, f, tab,
4963 searchFunction, result).fork();
4964 }
4965 while (result.get() == null) {
4966 U u;
4967 Node<K,V> p;
4968 if ((p = advance()) == null) {
4969 propagateCompletion();
4970 break;
4971 }
4972 if ((u = searchFunction.apply(p)) != null) {
4973 if (result.compareAndSet(null, u))
4974 quietlyCompleteRoot();
4975 return;
4976 }
4977 }
4978 }
4979 }
4980 }
4981
4982 @SuppressWarnings("serial")
4983 static final class SearchMappingsTask<K,V,U>
4984 extends BulkTask<K,V,U> {
4985 final BiFun<? super K, ? super V, ? extends U> searchFunction;
4986 final AtomicReference<U> result;
4987 SearchMappingsTask
4988 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4989 BiFun<? super K, ? super V, ? extends U> searchFunction,
4990 AtomicReference<U> result) {
4991 super(p, b, i, f, t);
4992 this.searchFunction = searchFunction; this.result = result;
4993 }
4994 public final U getRawResult() { return result.get(); }
4995 public final void compute() {
4996 final BiFun<? super K, ? super V, ? extends U> searchFunction;
4997 final AtomicReference<U> result;
4998 if ((searchFunction = this.searchFunction) != null &&
4999 (result = this.result) != null) {
5000 for (int i = baseIndex, f, h; batch > 0 &&
5001 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5002 if (result.get() != null)
5003 return;
5004 addToPendingCount(1);
5005 new SearchMappingsTask<K,V,U>
5006 (this, batch >>>= 1, baseLimit = h, f, tab,
5007 searchFunction, result).fork();
5008 }
5009 while (result.get() == null) {
5010 U u;
5011 Node<K,V> p;
5012 if ((p = advance()) == null) {
5013 propagateCompletion();
5014 break;
5015 }
5016 if ((u = searchFunction.apply(p.key, p.val)) != null) {
5017 if (result.compareAndSet(null, u))
5018 quietlyCompleteRoot();
5019 break;
5020 }
5021 }
5022 }
5023 }
5024 }
5025
5026 @SuppressWarnings("serial")
5027 static final class ReduceKeysTask<K,V>
5028 extends BulkTask<K,V,K> {
5029 final BiFun<? super K, ? super K, ? extends K> reducer;
5030 K result;
5031 ReduceKeysTask<K,V> rights, nextRight;
5032 ReduceKeysTask
5033 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5034 ReduceKeysTask<K,V> nextRight,
5035 BiFun<? super K, ? super K, ? extends K> reducer) {
5036 super(p, b, i, f, t); this.nextRight = nextRight;
5037 this.reducer = reducer;
5038 }
5039 public final K getRawResult() { return result; }
5040 public final void compute() {
5041 final BiFun<? super K, ? super K, ? extends K> reducer;
5042 if ((reducer = this.reducer) != null) {
5043 for (int i = baseIndex, f, h; batch > 0 &&
5044 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5045 addToPendingCount(1);
5046 (rights = new ReduceKeysTask<K,V>
5047 (this, batch >>>= 1, baseLimit = h, f, tab,
5048 rights, reducer)).fork();
5049 }
5050 K r = null;
5051 for (Node<K,V> p; (p = advance()) != null; ) {
5052 K u = p.key;
5053 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5054 }
5055 result = r;
5056 CountedCompleter<?> c;
5057 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5058 @SuppressWarnings("unchecked") ReduceKeysTask<K,V>
5059 t = (ReduceKeysTask<K,V>)c,
5060 s = t.rights;
5061 while (s != null) {
5062 K tr, sr;
5063 if ((sr = s.result) != null)
5064 t.result = (((tr = t.result) == null) ? sr :
5065 reducer.apply(tr, sr));
5066 s = t.rights = s.nextRight;
5067 }
5068 }
5069 }
5070 }
5071 }
5072
5073 @SuppressWarnings("serial")
5074 static final class ReduceValuesTask<K,V>
5075 extends BulkTask<K,V,V> {
5076 final BiFun<? super V, ? super V, ? extends V> reducer;
5077 V result;
5078 ReduceValuesTask<K,V> rights, nextRight;
5079 ReduceValuesTask
5080 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5081 ReduceValuesTask<K,V> nextRight,
5082 BiFun<? super V, ? super V, ? extends V> reducer) {
5083 super(p, b, i, f, t); this.nextRight = nextRight;
5084 this.reducer = reducer;
5085 }
5086 public final V getRawResult() { return result; }
5087 public final void compute() {
5088 final BiFun<? super V, ? super V, ? extends V> reducer;
5089 if ((reducer = this.reducer) != null) {
5090 for (int i = baseIndex, f, h; batch > 0 &&
5091 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5092 addToPendingCount(1);
5093 (rights = new ReduceValuesTask<K,V>
5094 (this, batch >>>= 1, baseLimit = h, f, tab,
5095 rights, reducer)).fork();
5096 }
5097 V r = null;
5098 for (Node<K,V> p; (p = advance()) != null; ) {
5099 V v = p.val;
5100 r = (r == null) ? v : reducer.apply(r, v);
5101 }
5102 result = r;
5103 CountedCompleter<?> c;
5104 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5105 @SuppressWarnings("unchecked") ReduceValuesTask<K,V>
5106 t = (ReduceValuesTask<K,V>)c,
5107 s = t.rights;
5108 while (s != null) {
5109 V tr, sr;
5110 if ((sr = s.result) != null)
5111 t.result = (((tr = t.result) == null) ? sr :
5112 reducer.apply(tr, sr));
5113 s = t.rights = s.nextRight;
5114 }
5115 }
5116 }
5117 }
5118 }
5119
5120 @SuppressWarnings("serial")
5121 static final class ReduceEntriesTask<K,V>
5122 extends BulkTask<K,V,Map.Entry<K,V>> {
5123 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5124 Map.Entry<K,V> result;
5125 ReduceEntriesTask<K,V> rights, nextRight;
5126 ReduceEntriesTask
5127 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5128 ReduceEntriesTask<K,V> nextRight,
5129 BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5130 super(p, b, i, f, t); this.nextRight = nextRight;
5131 this.reducer = reducer;
5132 }
5133 public final Map.Entry<K,V> getRawResult() { return result; }
5134 public final void compute() {
5135 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5136 if ((reducer = this.reducer) != null) {
5137 for (int i = baseIndex, f, h; batch > 0 &&
5138 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5139 addToPendingCount(1);
5140 (rights = new ReduceEntriesTask<K,V>
5141 (this, batch >>>= 1, baseLimit = h, f, tab,
5142 rights, reducer)).fork();
5143 }
5144 Map.Entry<K,V> r = null;
5145 for (Node<K,V> p; (p = advance()) != null; )
5146 r = (r == null) ? p : reducer.apply(r, p);
5147 result = r;
5148 CountedCompleter<?> c;
5149 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5150 @SuppressWarnings("unchecked") ReduceEntriesTask<K,V>
5151 t = (ReduceEntriesTask<K,V>)c,
5152 s = t.rights;
5153 while (s != null) {
5154 Map.Entry<K,V> tr, sr;
5155 if ((sr = s.result) != null)
5156 t.result = (((tr = t.result) == null) ? sr :
5157 reducer.apply(tr, sr));
5158 s = t.rights = s.nextRight;
5159 }
5160 }
5161 }
5162 }
5163 }
5164
5165 @SuppressWarnings("serial")
5166 static final class MapReduceKeysTask<K,V,U>
5167 extends BulkTask<K,V,U> {
5168 final Fun<? super K, ? extends U> transformer;
5169 final BiFun<? super U, ? super U, ? extends U> reducer;
5170 U result;
5171 MapReduceKeysTask<K,V,U> rights, nextRight;
5172 MapReduceKeysTask
5173 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5174 MapReduceKeysTask<K,V,U> nextRight,
5175 Fun<? super K, ? extends U> transformer,
5176 BiFun<? super U, ? super U, ? extends U> reducer) {
5177 super(p, b, i, f, t); this.nextRight = nextRight;
5178 this.transformer = transformer;
5179 this.reducer = reducer;
5180 }
5181 public final U getRawResult() { return result; }
5182 public final void compute() {
5183 final Fun<? super K, ? extends U> transformer;
5184 final BiFun<? super U, ? super U, ? extends U> reducer;
5185 if ((transformer = this.transformer) != null &&
5186 (reducer = this.reducer) != null) {
5187 for (int i = baseIndex, f, h; batch > 0 &&
5188 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5189 addToPendingCount(1);
5190 (rights = new MapReduceKeysTask<K,V,U>
5191 (this, batch >>>= 1, baseLimit = h, f, tab,
5192 rights, transformer, reducer)).fork();
5193 }
5194 U r = null;
5195 for (Node<K,V> p; (p = advance()) != null; ) {
5196 U u;
5197 if ((u = transformer.apply(p.key)) != null)
5198 r = (r == null) ? u : reducer.apply(r, u);
5199 }
5200 result = r;
5201 CountedCompleter<?> c;
5202 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5203 @SuppressWarnings("unchecked") MapReduceKeysTask<K,V,U>
5204 t = (MapReduceKeysTask<K,V,U>)c,
5205 s = t.rights;
5206 while (s != null) {
5207 U tr, sr;
5208 if ((sr = s.result) != null)
5209 t.result = (((tr = t.result) == null) ? sr :
5210 reducer.apply(tr, sr));
5211 s = t.rights = s.nextRight;
5212 }
5213 }
5214 }
5215 }
5216 }
5217
5218 @SuppressWarnings("serial")
5219 static final class MapReduceValuesTask<K,V,U>
5220 extends BulkTask<K,V,U> {
5221 final Fun<? super V, ? extends U> transformer;
5222 final BiFun<? super U, ? super U, ? extends U> reducer;
5223 U result;
5224 MapReduceValuesTask<K,V,U> rights, nextRight;
5225 MapReduceValuesTask
5226 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5227 MapReduceValuesTask<K,V,U> nextRight,
5228 Fun<? super V, ? extends U> transformer,
5229 BiFun<? super U, ? super U, ? extends U> reducer) {
5230 super(p, b, i, f, t); this.nextRight = nextRight;
5231 this.transformer = transformer;
5232 this.reducer = reducer;
5233 }
5234 public final U getRawResult() { return result; }
5235 public final void compute() {
5236 final Fun<? super V, ? extends U> transformer;
5237 final BiFun<? super U, ? super U, ? extends U> reducer;
5238 if ((transformer = this.transformer) != null &&
5239 (reducer = this.reducer) != null) {
5240 for (int i = baseIndex, f, h; batch > 0 &&
5241 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5242 addToPendingCount(1);
5243 (rights = new MapReduceValuesTask<K,V,U>
5244 (this, batch >>>= 1, baseLimit = h, f, tab,
5245 rights, transformer, reducer)).fork();
5246 }
5247 U r = null;
5248 for (Node<K,V> p; (p = advance()) != null; ) {
5249 U u;
5250 if ((u = transformer.apply(p.val)) != null)
5251 r = (r == null) ? u : reducer.apply(r, u);
5252 }
5253 result = r;
5254 CountedCompleter<?> c;
5255 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5256 @SuppressWarnings("unchecked") MapReduceValuesTask<K,V,U>
5257 t = (MapReduceValuesTask<K,V,U>)c,
5258 s = t.rights;
5259 while (s != null) {
5260 U tr, sr;
5261 if ((sr = s.result) != null)
5262 t.result = (((tr = t.result) == null) ? sr :
5263 reducer.apply(tr, sr));
5264 s = t.rights = s.nextRight;
5265 }
5266 }
5267 }
5268 }
5269 }
5270
5271 @SuppressWarnings("serial")
5272 static final class MapReduceEntriesTask<K,V,U>
5273 extends BulkTask<K,V,U> {
5274 final Fun<Map.Entry<K,V>, ? extends U> transformer;
5275 final BiFun<? super U, ? super U, ? extends U> reducer;
5276 U result;
5277 MapReduceEntriesTask<K,V,U> rights, nextRight;
5278 MapReduceEntriesTask
5279 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5280 MapReduceEntriesTask<K,V,U> nextRight,
5281 Fun<Map.Entry<K,V>, ? extends U> transformer,
5282 BiFun<? super U, ? super U, ? extends U> reducer) {
5283 super(p, b, i, f, t); this.nextRight = nextRight;
5284 this.transformer = transformer;
5285 this.reducer = reducer;
5286 }
5287 public final U getRawResult() { return result; }
5288 public final void compute() {
5289 final Fun<Map.Entry<K,V>, ? extends U> transformer;
5290 final BiFun<? super U, ? super U, ? extends U> reducer;
5291 if ((transformer = this.transformer) != null &&
5292 (reducer = this.reducer) != null) {
5293 for (int i = baseIndex, f, h; batch > 0 &&
5294 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5295 addToPendingCount(1);
5296 (rights = new MapReduceEntriesTask<K,V,U>
5297 (this, batch >>>= 1, baseLimit = h, f, tab,
5298 rights, transformer, reducer)).fork();
5299 }
5300 U r = null;
5301 for (Node<K,V> p; (p = advance()) != null; ) {
5302 U u;
5303 if ((u = transformer.apply(p)) != null)
5304 r = (r == null) ? u : reducer.apply(r, u);
5305 }
5306 result = r;
5307 CountedCompleter<?> c;
5308 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5309 @SuppressWarnings("unchecked") MapReduceEntriesTask<K,V,U>
5310 t = (MapReduceEntriesTask<K,V,U>)c,
5311 s = t.rights;
5312 while (s != null) {
5313 U tr, sr;
5314 if ((sr = s.result) != null)
5315 t.result = (((tr = t.result) == null) ? sr :
5316 reducer.apply(tr, sr));
5317 s = t.rights = s.nextRight;
5318 }
5319 }
5320 }
5321 }
5322 }
5323
5324 @SuppressWarnings("serial")
5325 static final class MapReduceMappingsTask<K,V,U>
5326 extends BulkTask<K,V,U> {
5327 final BiFun<? super K, ? super V, ? extends U> transformer;
5328 final BiFun<? super U, ? super U, ? extends U> reducer;
5329 U result;
5330 MapReduceMappingsTask<K,V,U> rights, nextRight;
5331 MapReduceMappingsTask
5332 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5333 MapReduceMappingsTask<K,V,U> nextRight,
5334 BiFun<? super K, ? super V, ? extends U> transformer,
5335 BiFun<? super U, ? super U, ? extends U> reducer) {
5336 super(p, b, i, f, t); this.nextRight = nextRight;
5337 this.transformer = transformer;
5338 this.reducer = reducer;
5339 }
5340 public final U getRawResult() { return result; }
5341 public final void compute() {
5342 final BiFun<? super K, ? super V, ? extends U> transformer;
5343 final BiFun<? super U, ? super U, ? extends U> reducer;
5344 if ((transformer = this.transformer) != null &&
5345 (reducer = this.reducer) != null) {
5346 for (int i = baseIndex, f, h; batch > 0 &&
5347 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5348 addToPendingCount(1);
5349 (rights = new MapReduceMappingsTask<K,V,U>
5350 (this, batch >>>= 1, baseLimit = h, f, tab,
5351 rights, transformer, reducer)).fork();
5352 }
5353 U r = null;
5354 for (Node<K,V> p; (p = advance()) != null; ) {
5355 U u;
5356 if ((u = transformer.apply(p.key, p.val)) != null)
5357 r = (r == null) ? u : reducer.apply(r, u);
5358 }
5359 result = r;
5360 CountedCompleter<?> c;
5361 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5362 @SuppressWarnings("unchecked") MapReduceMappingsTask<K,V,U>
5363 t = (MapReduceMappingsTask<K,V,U>)c,
5364 s = t.rights;
5365 while (s != null) {
5366 U tr, sr;
5367 if ((sr = s.result) != null)
5368 t.result = (((tr = t.result) == null) ? sr :
5369 reducer.apply(tr, sr));
5370 s = t.rights = s.nextRight;
5371 }
5372 }
5373 }
5374 }
5375 }
5376
5377 @SuppressWarnings("serial")
5378 static final class MapReduceKeysToDoubleTask<K,V>
5379 extends BulkTask<K,V,Double> {
5380 final ObjectToDouble<? super K> transformer;
5381 final DoubleByDoubleToDouble reducer;
5382 final double basis;
5383 double result;
5384 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5385 MapReduceKeysToDoubleTask
5386 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5387 MapReduceKeysToDoubleTask<K,V> nextRight,
5388 ObjectToDouble<? super K> transformer,
5389 double basis,
5390 DoubleByDoubleToDouble reducer) {
5391 super(p, b, i, f, t); this.nextRight = nextRight;
5392 this.transformer = transformer;
5393 this.basis = basis; this.reducer = reducer;
5394 }
5395 public final Double getRawResult() { return result; }
5396 public final void compute() {
5397 final ObjectToDouble<? super K> transformer;
5398 final DoubleByDoubleToDouble reducer;
5399 if ((transformer = this.transformer) != null &&
5400 (reducer = this.reducer) != null) {
5401 double r = this.basis;
5402 for (int i = baseIndex, f, h; batch > 0 &&
5403 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5404 addToPendingCount(1);
5405 (rights = new MapReduceKeysToDoubleTask<K,V>
5406 (this, batch >>>= 1, baseLimit = h, f, tab,
5407 rights, transformer, r, reducer)).fork();
5408 }
5409 for (Node<K,V> p; (p = advance()) != null; )
5410 r = reducer.apply(r, transformer.apply(p.key));
5411 result = r;
5412 CountedCompleter<?> c;
5413 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5414 @SuppressWarnings("unchecked") MapReduceKeysToDoubleTask<K,V>
5415 t = (MapReduceKeysToDoubleTask<K,V>)c,
5416 s = t.rights;
5417 while (s != null) {
5418 t.result = reducer.apply(t.result, s.result);
5419 s = t.rights = s.nextRight;
5420 }
5421 }
5422 }
5423 }
5424 }
5425
5426 @SuppressWarnings("serial")
5427 static final class MapReduceValuesToDoubleTask<K,V>
5428 extends BulkTask<K,V,Double> {
5429 final ObjectToDouble<? super V> transformer;
5430 final DoubleByDoubleToDouble reducer;
5431 final double basis;
5432 double result;
5433 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5434 MapReduceValuesToDoubleTask
5435 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5436 MapReduceValuesToDoubleTask<K,V> nextRight,
5437 ObjectToDouble<? super V> transformer,
5438 double basis,
5439 DoubleByDoubleToDouble reducer) {
5440 super(p, b, i, f, t); this.nextRight = nextRight;
5441 this.transformer = transformer;
5442 this.basis = basis; this.reducer = reducer;
5443 }
5444 public final Double getRawResult() { return result; }
5445 public final void compute() {
5446 final ObjectToDouble<? super V> transformer;
5447 final DoubleByDoubleToDouble reducer;
5448 if ((transformer = this.transformer) != null &&
5449 (reducer = this.reducer) != null) {
5450 double r = this.basis;
5451 for (int i = baseIndex, f, h; batch > 0 &&
5452 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5453 addToPendingCount(1);
5454 (rights = new MapReduceValuesToDoubleTask<K,V>
5455 (this, batch >>>= 1, baseLimit = h, f, tab,
5456 rights, transformer, r, reducer)).fork();
5457 }
5458 for (Node<K,V> p; (p = advance()) != null; )
5459 r = reducer.apply(r, transformer.apply(p.val));
5460 result = r;
5461 CountedCompleter<?> c;
5462 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5463 @SuppressWarnings("unchecked") MapReduceValuesToDoubleTask<K,V>
5464 t = (MapReduceValuesToDoubleTask<K,V>)c,
5465 s = t.rights;
5466 while (s != null) {
5467 t.result = reducer.apply(t.result, s.result);
5468 s = t.rights = s.nextRight;
5469 }
5470 }
5471 }
5472 }
5473 }
5474
5475 @SuppressWarnings("serial")
5476 static final class MapReduceEntriesToDoubleTask<K,V>
5477 extends BulkTask<K,V,Double> {
5478 final ObjectToDouble<Map.Entry<K,V>> transformer;
5479 final DoubleByDoubleToDouble reducer;
5480 final double basis;
5481 double result;
5482 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5483 MapReduceEntriesToDoubleTask
5484 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5485 MapReduceEntriesToDoubleTask<K,V> nextRight,
5486 ObjectToDouble<Map.Entry<K,V>> transformer,
5487 double basis,
5488 DoubleByDoubleToDouble reducer) {
5489 super(p, b, i, f, t); this.nextRight = nextRight;
5490 this.transformer = transformer;
5491 this.basis = basis; this.reducer = reducer;
5492 }
5493 public final Double getRawResult() { return result; }
5494 public final void compute() {
5495 final ObjectToDouble<Map.Entry<K,V>> transformer;
5496 final DoubleByDoubleToDouble reducer;
5497 if ((transformer = this.transformer) != null &&
5498 (reducer = this.reducer) != null) {
5499 double r = this.basis;
5500 for (int i = baseIndex, f, h; batch > 0 &&
5501 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5502 addToPendingCount(1);
5503 (rights = new MapReduceEntriesToDoubleTask<K,V>
5504 (this, batch >>>= 1, baseLimit = h, f, tab,
5505 rights, transformer, r, reducer)).fork();
5506 }
5507 for (Node<K,V> p; (p = advance()) != null; )
5508 r = reducer.apply(r, transformer.apply(p));
5509 result = r;
5510 CountedCompleter<?> c;
5511 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5512 @SuppressWarnings("unchecked") MapReduceEntriesToDoubleTask<K,V>
5513 t = (MapReduceEntriesToDoubleTask<K,V>)c,
5514 s = t.rights;
5515 while (s != null) {
5516 t.result = reducer.apply(t.result, s.result);
5517 s = t.rights = s.nextRight;
5518 }
5519 }
5520 }
5521 }
5522 }
5523
5524 @SuppressWarnings("serial")
5525 static final class MapReduceMappingsToDoubleTask<K,V>
5526 extends BulkTask<K,V,Double> {
5527 final ObjectByObjectToDouble<? super K, ? super V> transformer;
5528 final DoubleByDoubleToDouble reducer;
5529 final double basis;
5530 double result;
5531 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5532 MapReduceMappingsToDoubleTask
5533 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5534 MapReduceMappingsToDoubleTask<K,V> nextRight,
5535 ObjectByObjectToDouble<? super K, ? super V> transformer,
5536 double basis,
5537 DoubleByDoubleToDouble reducer) {
5538 super(p, b, i, f, t); this.nextRight = nextRight;
5539 this.transformer = transformer;
5540 this.basis = basis; this.reducer = reducer;
5541 }
5542 public final Double getRawResult() { return result; }
5543 public final void compute() {
5544 final ObjectByObjectToDouble<? super K, ? super V> transformer;
5545 final DoubleByDoubleToDouble reducer;
5546 if ((transformer = this.transformer) != null &&
5547 (reducer = this.reducer) != null) {
5548 double r = this.basis;
5549 for (int i = baseIndex, f, h; batch > 0 &&
5550 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5551 addToPendingCount(1);
5552 (rights = new MapReduceMappingsToDoubleTask<K,V>
5553 (this, batch >>>= 1, baseLimit = h, f, tab,
5554 rights, transformer, r, reducer)).fork();
5555 }
5556 for (Node<K,V> p; (p = advance()) != null; )
5557 r = reducer.apply(r, transformer.apply(p.key, p.val));
5558 result = r;
5559 CountedCompleter<?> c;
5560 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5561 @SuppressWarnings("unchecked") MapReduceMappingsToDoubleTask<K,V>
5562 t = (MapReduceMappingsToDoubleTask<K,V>)c,
5563 s = t.rights;
5564 while (s != null) {
5565 t.result = reducer.apply(t.result, s.result);
5566 s = t.rights = s.nextRight;
5567 }
5568 }
5569 }
5570 }
5571 }
5572
5573 @SuppressWarnings("serial")
5574 static final class MapReduceKeysToLongTask<K,V>
5575 extends BulkTask<K,V,Long> {
5576 final ObjectToLong<? super K> transformer;
5577 final LongByLongToLong reducer;
5578 final long basis;
5579 long result;
5580 MapReduceKeysToLongTask<K,V> rights, nextRight;
5581 MapReduceKeysToLongTask
5582 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5583 MapReduceKeysToLongTask<K,V> nextRight,
5584 ObjectToLong<? super K> transformer,
5585 long basis,
5586 LongByLongToLong reducer) {
5587 super(p, b, i, f, t); this.nextRight = nextRight;
5588 this.transformer = transformer;
5589 this.basis = basis; this.reducer = reducer;
5590 }
5591 public final Long getRawResult() { return result; }
5592 public final void compute() {
5593 final ObjectToLong<? super K> transformer;
5594 final LongByLongToLong reducer;
5595 if ((transformer = this.transformer) != null &&
5596 (reducer = this.reducer) != null) {
5597 long r = this.basis;
5598 for (int i = baseIndex, f, h; batch > 0 &&
5599 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5600 addToPendingCount(1);
5601 (rights = new MapReduceKeysToLongTask<K,V>
5602 (this, batch >>>= 1, baseLimit = h, f, tab,
5603 rights, transformer, r, reducer)).fork();
5604 }
5605 for (Node<K,V> p; (p = advance()) != null; )
5606 r = reducer.apply(r, transformer.apply(p.key));
5607 result = r;
5608 CountedCompleter<?> c;
5609 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5610 @SuppressWarnings("unchecked") MapReduceKeysToLongTask<K,V>
5611 t = (MapReduceKeysToLongTask<K,V>)c,
5612 s = t.rights;
5613 while (s != null) {
5614 t.result = reducer.apply(t.result, s.result);
5615 s = t.rights = s.nextRight;
5616 }
5617 }
5618 }
5619 }
5620 }
5621
5622 @SuppressWarnings("serial")
5623 static final class MapReduceValuesToLongTask<K,V>
5624 extends BulkTask<K,V,Long> {
5625 final ObjectToLong<? super V> transformer;
5626 final LongByLongToLong reducer;
5627 final long basis;
5628 long result;
5629 MapReduceValuesToLongTask<K,V> rights, nextRight;
5630 MapReduceValuesToLongTask
5631 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5632 MapReduceValuesToLongTask<K,V> nextRight,
5633 ObjectToLong<? super V> transformer,
5634 long basis,
5635 LongByLongToLong reducer) {
5636 super(p, b, i, f, t); this.nextRight = nextRight;
5637 this.transformer = transformer;
5638 this.basis = basis; this.reducer = reducer;
5639 }
5640 public final Long getRawResult() { return result; }
5641 public final void compute() {
5642 final ObjectToLong<? super V> transformer;
5643 final LongByLongToLong reducer;
5644 if ((transformer = this.transformer) != null &&
5645 (reducer = this.reducer) != null) {
5646 long r = this.basis;
5647 for (int i = baseIndex, f, h; batch > 0 &&
5648 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5649 addToPendingCount(1);
5650 (rights = new MapReduceValuesToLongTask<K,V>
5651 (this, batch >>>= 1, baseLimit = h, f, tab,
5652 rights, transformer, r, reducer)).fork();
5653 }
5654 for (Node<K,V> p; (p = advance()) != null; )
5655 r = reducer.apply(r, transformer.apply(p.val));
5656 result = r;
5657 CountedCompleter<?> c;
5658 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5659 @SuppressWarnings("unchecked") MapReduceValuesToLongTask<K,V>
5660 t = (MapReduceValuesToLongTask<K,V>)c,
5661 s = t.rights;
5662 while (s != null) {
5663 t.result = reducer.apply(t.result, s.result);
5664 s = t.rights = s.nextRight;
5665 }
5666 }
5667 }
5668 }
5669 }
5670
5671 @SuppressWarnings("serial")
5672 static final class MapReduceEntriesToLongTask<K,V>
5673 extends BulkTask<K,V,Long> {
5674 final ObjectToLong<Map.Entry<K,V>> transformer;
5675 final LongByLongToLong reducer;
5676 final long basis;
5677 long result;
5678 MapReduceEntriesToLongTask<K,V> rights, nextRight;
5679 MapReduceEntriesToLongTask
5680 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5681 MapReduceEntriesToLongTask<K,V> nextRight,
5682 ObjectToLong<Map.Entry<K,V>> transformer,
5683 long basis,
5684 LongByLongToLong reducer) {
5685 super(p, b, i, f, t); this.nextRight = nextRight;
5686 this.transformer = transformer;
5687 this.basis = basis; this.reducer = reducer;
5688 }
5689 public final Long getRawResult() { return result; }
5690 public final void compute() {
5691 final ObjectToLong<Map.Entry<K,V>> transformer;
5692 final LongByLongToLong reducer;
5693 if ((transformer = this.transformer) != null &&
5694 (reducer = this.reducer) != null) {
5695 long r = this.basis;
5696 for (int i = baseIndex, f, h; batch > 0 &&
5697 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5698 addToPendingCount(1);
5699 (rights = new MapReduceEntriesToLongTask<K,V>
5700 (this, batch >>>= 1, baseLimit = h, f, tab,
5701 rights, transformer, r, reducer)).fork();
5702 }
5703 for (Node<K,V> p; (p = advance()) != null; )
5704 r = reducer.apply(r, transformer.apply(p));
5705 result = r;
5706 CountedCompleter<?> c;
5707 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5708 @SuppressWarnings("unchecked") MapReduceEntriesToLongTask<K,V>
5709 t = (MapReduceEntriesToLongTask<K,V>)c,
5710 s = t.rights;
5711 while (s != null) {
5712 t.result = reducer.apply(t.result, s.result);
5713 s = t.rights = s.nextRight;
5714 }
5715 }
5716 }
5717 }
5718 }
5719
5720 @SuppressWarnings("serial")
5721 static final class MapReduceMappingsToLongTask<K,V>
5722 extends BulkTask<K,V,Long> {
5723 final ObjectByObjectToLong<? super K, ? super V> transformer;
5724 final LongByLongToLong reducer;
5725 final long basis;
5726 long result;
5727 MapReduceMappingsToLongTask<K,V> rights, nextRight;
5728 MapReduceMappingsToLongTask
5729 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5730 MapReduceMappingsToLongTask<K,V> nextRight,
5731 ObjectByObjectToLong<? super K, ? super V> transformer,
5732 long basis,
5733 LongByLongToLong reducer) {
5734 super(p, b, i, f, t); this.nextRight = nextRight;
5735 this.transformer = transformer;
5736 this.basis = basis; this.reducer = reducer;
5737 }
5738 public final Long getRawResult() { return result; }
5739 public final void compute() {
5740 final ObjectByObjectToLong<? super K, ? super V> transformer;
5741 final LongByLongToLong reducer;
5742 if ((transformer = this.transformer) != null &&
5743 (reducer = this.reducer) != null) {
5744 long r = this.basis;
5745 for (int i = baseIndex, f, h; batch > 0 &&
5746 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5747 addToPendingCount(1);
5748 (rights = new MapReduceMappingsToLongTask<K,V>
5749 (this, batch >>>= 1, baseLimit = h, f, tab,
5750 rights, transformer, r, reducer)).fork();
5751 }
5752 for (Node<K,V> p; (p = advance()) != null; )
5753 r = reducer.apply(r, transformer.apply(p.key, p.val));
5754 result = r;
5755 CountedCompleter<?> c;
5756 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5757 @SuppressWarnings("unchecked") MapReduceMappingsToLongTask<K,V>
5758 t = (MapReduceMappingsToLongTask<K,V>)c,
5759 s = t.rights;
5760 while (s != null) {
5761 t.result = reducer.apply(t.result, s.result);
5762 s = t.rights = s.nextRight;
5763 }
5764 }
5765 }
5766 }
5767 }
5768
5769 @SuppressWarnings("serial")
5770 static final class MapReduceKeysToIntTask<K,V>
5771 extends BulkTask<K,V,Integer> {
5772 final ObjectToInt<? super K> transformer;
5773 final IntByIntToInt reducer;
5774 final int basis;
5775 int result;
5776 MapReduceKeysToIntTask<K,V> rights, nextRight;
5777 MapReduceKeysToIntTask
5778 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5779 MapReduceKeysToIntTask<K,V> nextRight,
5780 ObjectToInt<? super K> transformer,
5781 int basis,
5782 IntByIntToInt reducer) {
5783 super(p, b, i, f, t); this.nextRight = nextRight;
5784 this.transformer = transformer;
5785 this.basis = basis; this.reducer = reducer;
5786 }
5787 public final Integer getRawResult() { return result; }
5788 public final void compute() {
5789 final ObjectToInt<? super K> transformer;
5790 final IntByIntToInt reducer;
5791 if ((transformer = this.transformer) != null &&
5792 (reducer = this.reducer) != null) {
5793 int r = this.basis;
5794 for (int i = baseIndex, f, h; batch > 0 &&
5795 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5796 addToPendingCount(1);
5797 (rights = new MapReduceKeysToIntTask<K,V>
5798 (this, batch >>>= 1, baseLimit = h, f, tab,
5799 rights, transformer, r, reducer)).fork();
5800 }
5801 for (Node<K,V> p; (p = advance()) != null; )
5802 r = reducer.apply(r, transformer.apply(p.key));
5803 result = r;
5804 CountedCompleter<?> c;
5805 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5806 @SuppressWarnings("unchecked") MapReduceKeysToIntTask<K,V>
5807 t = (MapReduceKeysToIntTask<K,V>)c,
5808 s = t.rights;
5809 while (s != null) {
5810 t.result = reducer.apply(t.result, s.result);
5811 s = t.rights = s.nextRight;
5812 }
5813 }
5814 }
5815 }
5816 }
5817
5818 @SuppressWarnings("serial")
5819 static final class MapReduceValuesToIntTask<K,V>
5820 extends BulkTask<K,V,Integer> {
5821 final ObjectToInt<? super V> transformer;
5822 final IntByIntToInt reducer;
5823 final int basis;
5824 int result;
5825 MapReduceValuesToIntTask<K,V> rights, nextRight;
5826 MapReduceValuesToIntTask
5827 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5828 MapReduceValuesToIntTask<K,V> nextRight,
5829 ObjectToInt<? super V> transformer,
5830 int basis,
5831 IntByIntToInt reducer) {
5832 super(p, b, i, f, t); this.nextRight = nextRight;
5833 this.transformer = transformer;
5834 this.basis = basis; this.reducer = reducer;
5835 }
5836 public final Integer getRawResult() { return result; }
5837 public final void compute() {
5838 final ObjectToInt<? super V> transformer;
5839 final IntByIntToInt reducer;
5840 if ((transformer = this.transformer) != null &&
5841 (reducer = this.reducer) != null) {
5842 int r = this.basis;
5843 for (int i = baseIndex, f, h; batch > 0 &&
5844 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5845 addToPendingCount(1);
5846 (rights = new MapReduceValuesToIntTask<K,V>
5847 (this, batch >>>= 1, baseLimit = h, f, tab,
5848 rights, transformer, r, reducer)).fork();
5849 }
5850 for (Node<K,V> p; (p = advance()) != null; )
5851 r = reducer.apply(r, transformer.apply(p.val));
5852 result = r;
5853 CountedCompleter<?> c;
5854 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5855 @SuppressWarnings("unchecked") MapReduceValuesToIntTask<K,V>
5856 t = (MapReduceValuesToIntTask<K,V>)c,
5857 s = t.rights;
5858 while (s != null) {
5859 t.result = reducer.apply(t.result, s.result);
5860 s = t.rights = s.nextRight;
5861 }
5862 }
5863 }
5864 }
5865 }
5866
5867 @SuppressWarnings("serial")
5868 static final class MapReduceEntriesToIntTask<K,V>
5869 extends BulkTask<K,V,Integer> {
5870 final ObjectToInt<Map.Entry<K,V>> transformer;
5871 final IntByIntToInt reducer;
5872 final int basis;
5873 int result;
5874 MapReduceEntriesToIntTask<K,V> rights, nextRight;
5875 MapReduceEntriesToIntTask
5876 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5877 MapReduceEntriesToIntTask<K,V> nextRight,
5878 ObjectToInt<Map.Entry<K,V>> transformer,
5879 int basis,
5880 IntByIntToInt reducer) {
5881 super(p, b, i, f, t); this.nextRight = nextRight;
5882 this.transformer = transformer;
5883 this.basis = basis; this.reducer = reducer;
5884 }
5885 public final Integer getRawResult() { return result; }
5886 public final void compute() {
5887 final ObjectToInt<Map.Entry<K,V>> transformer;
5888 final IntByIntToInt reducer;
5889 if ((transformer = this.transformer) != null &&
5890 (reducer = this.reducer) != null) {
5891 int r = this.basis;
5892 for (int i = baseIndex, f, h; batch > 0 &&
5893 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5894 addToPendingCount(1);
5895 (rights = new MapReduceEntriesToIntTask<K,V>
5896 (this, batch >>>= 1, baseLimit = h, f, tab,
5897 rights, transformer, r, reducer)).fork();
5898 }
5899 for (Node<K,V> p; (p = advance()) != null; )
5900 r = reducer.apply(r, transformer.apply(p));
5901 result = r;
5902 CountedCompleter<?> c;
5903 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5904 @SuppressWarnings("unchecked") MapReduceEntriesToIntTask<K,V>
5905 t = (MapReduceEntriesToIntTask<K,V>)c,
5906 s = t.rights;
5907 while (s != null) {
5908 t.result = reducer.apply(t.result, s.result);
5909 s = t.rights = s.nextRight;
5910 }
5911 }
5912 }
5913 }
5914 }
5915
5916 @SuppressWarnings("serial")
5917 static final class MapReduceMappingsToIntTask<K,V>
5918 extends BulkTask<K,V,Integer> {
5919 final ObjectByObjectToInt<? super K, ? super V> transformer;
5920 final IntByIntToInt reducer;
5921 final int basis;
5922 int result;
5923 MapReduceMappingsToIntTask<K,V> rights, nextRight;
5924 MapReduceMappingsToIntTask
5925 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5926 MapReduceMappingsToIntTask<K,V> nextRight,
5927 ObjectByObjectToInt<? super K, ? super V> transformer,
5928 int basis,
5929 IntByIntToInt reducer) {
5930 super(p, b, i, f, t); this.nextRight = nextRight;
5931 this.transformer = transformer;
5932 this.basis = basis; this.reducer = reducer;
5933 }
5934 public final Integer getRawResult() { return result; }
5935 public final void compute() {
5936 final ObjectByObjectToInt<? super K, ? super V> transformer;
5937 final IntByIntToInt reducer;
5938 if ((transformer = this.transformer) != null &&
5939 (reducer = this.reducer) != null) {
5940 int r = this.basis;
5941 for (int i = baseIndex, f, h; batch > 0 &&
5942 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5943 addToPendingCount(1);
5944 (rights = new MapReduceMappingsToIntTask<K,V>
5945 (this, batch >>>= 1, baseLimit = h, f, tab,
5946 rights, transformer, r, reducer)).fork();
5947 }
5948 for (Node<K,V> p; (p = advance()) != null; )
5949 r = reducer.apply(r, transformer.apply(p.key, p.val));
5950 result = r;
5951 CountedCompleter<?> c;
5952 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5953 @SuppressWarnings("unchecked") MapReduceMappingsToIntTask<K,V>
5954 t = (MapReduceMappingsToIntTask<K,V>)c,
5955 s = t.rights;
5956 while (s != null) {
5957 t.result = reducer.apply(t.result, s.result);
5958 s = t.rights = s.nextRight;
5959 }
5960 }
5961 }
5962 }
5963 }
5964
5965 /* ---------------- Counters -------------- */
5966
5967 // Adapted from LongAdder and Striped64.
5968 // See their internal docs for explanation.
5969
5970 // A padded cell for distributing counts
5971 static final class CounterCell {
5972 volatile long p0, p1, p2, p3, p4, p5, p6;
5973 volatile long value;
5974 volatile long q0, q1, q2, q3, q4, q5, q6;
5975 CounterCell(long x) { value = x; }
5976 }
5977
5978 /**
5979 * Holder for the thread-local hash code determining which
5980 * CounterCell to use. The code is initialized via the
5981 * counterHashCodeGenerator, but may be moved upon collisions.
5982 */
5983 static final class CounterHashCode {
5984 int code;
5985 }
5986
5987 /**
5988 * Generates initial value for per-thread CounterHashCodes
5989 */
5990 static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
5991
5992 /**
5993 * Increment for counterHashCodeGenerator. See class ThreadLocal
5994 * for explanation.
5995 */
5996 static final int SEED_INCREMENT = 0x61c88647;
5997
5998 /**
5999 * Per-thread counter hash codes. Shared across all instances.
6000 */
6001 static final ThreadLocal<CounterHashCode> threadCounterHashCode =
6002 new ThreadLocal<CounterHashCode>();
6003
6004
6005 final long sumCount() {
6006 CounterCell[] as = counterCells; CounterCell a;
6007 long sum = baseCount;
6008 if (as != null) {
6009 for (int i = 0; i < as.length; ++i) {
6010 if ((a = as[i]) != null)
6011 sum += a.value;
6012 }
6013 }
6014 return sum;
6015 }
6016
6017 // See LongAdder version for explanation
6018 private final void fullAddCount(long x, CounterHashCode hc,
6019 boolean wasUncontended) {
6020 int h;
6021 if (hc == null) {
6022 hc = new CounterHashCode();
6023 int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
6024 h = hc.code = (s == 0) ? 1 : s; // Avoid zero
6025 threadCounterHashCode.set(hc);
6026 }
6027 else
6028 h = hc.code;
6029 boolean collide = false; // True if last slot nonempty
6030 for (;;) {
6031 CounterCell[] as; CounterCell a; int n; long v;
6032 if ((as = counterCells) != null && (n = as.length) > 0) {
6033 if ((a = as[(n - 1) & h]) == null) {
6034 if (cellsBusy == 0) { // Try to attach new Cell
6035 CounterCell r = new CounterCell(x); // Optimistic create
6036 if (cellsBusy == 0 &&
6037 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6038 boolean created = false;
6039 try { // Recheck under lock
6040 CounterCell[] rs; int m, j;
6041 if ((rs = counterCells) != null &&
6042 (m = rs.length) > 0 &&
6043 rs[j = (m - 1) & h] == null) {
6044 rs[j] = r;
6045 created = true;
6046 }
6047 } finally {
6048 cellsBusy = 0;
6049 }
6050 if (created)
6051 break;
6052 continue; // Slot is now non-empty
6053 }
6054 }
6055 collide = false;
6056 }
6057 else if (!wasUncontended) // CAS already known to fail
6058 wasUncontended = true; // Continue after rehash
6059 else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
6060 break;
6061 else if (counterCells != as || n >= NCPU)
6062 collide = false; // At max size or stale
6063 else if (!collide)
6064 collide = true;
6065 else if (cellsBusy == 0 &&
6066 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6067 try {
6068 if (counterCells == as) {// Expand table unless stale
6069 CounterCell[] rs = new CounterCell[n << 1];
6070 for (int i = 0; i < n; ++i)
6071 rs[i] = as[i];
6072 counterCells = rs;
6073 }
6074 } finally {
6075 cellsBusy = 0;
6076 }
6077 collide = false;
6078 continue; // Retry with expanded table
6079 }
6080 h ^= h << 13; // Rehash
6081 h ^= h >>> 17;
6082 h ^= h << 5;
6083 }
6084 else if (cellsBusy == 0 && counterCells == as &&
6085 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6086 boolean init = false;
6087 try { // Initialize table
6088 if (counterCells == as) {
6089 CounterCell[] rs = new CounterCell[2];
6090 rs[h & 1] = new CounterCell(x);
6091 counterCells = rs;
6092 init = true;
6093 }
6094 } finally {
6095 cellsBusy = 0;
6096 }
6097 if (init)
6098 break;
6099 }
6100 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
6101 break; // Fall back on using base
6102 }
6103 hc.code = h; // Record index for next time
6104 }
6105
6106 // Unsafe mechanics
6107 private static final sun.misc.Unsafe U;
6108 private static final long SIZECTL;
6109 private static final long TRANSFERINDEX;
6110 private static final long TRANSFERORIGIN;
6111 private static final long BASECOUNT;
6112 private static final long CELLSBUSY;
6113 private static final long CELLVALUE;
6114 private static final long ABASE;
6115 private static final int ASHIFT;
6116
6117 static {
6118 try {
6119 U = getUnsafe();
6120 Class<?> k = ConcurrentHashMapV8.class;
6121 SIZECTL = U.objectFieldOffset
6122 (k.getDeclaredField("sizeCtl"));
6123 TRANSFERINDEX = U.objectFieldOffset
6124 (k.getDeclaredField("transferIndex"));
6125 TRANSFERORIGIN = U.objectFieldOffset
6126 (k.getDeclaredField("transferOrigin"));
6127 BASECOUNT = U.objectFieldOffset
6128 (k.getDeclaredField("baseCount"));
6129 CELLSBUSY = U.objectFieldOffset
6130 (k.getDeclaredField("cellsBusy"));
6131 Class<?> ck = CounterCell.class;
6132 CELLVALUE = U.objectFieldOffset
6133 (ck.getDeclaredField("value"));
6134 Class<?> ak = Node[].class;
6135 ABASE = U.arrayBaseOffset(ak);
6136 int scale = U.arrayIndexScale(ak);
6137 if ((scale & (scale - 1)) != 0)
6138 throw new Error("data type scale not a power of two");
6139 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6140 } catch (Exception e) {
6141 throw new Error(e);
6142 }
6143 }
6144
6145 /**
6146 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
6147 * Replace with a simple call to Unsafe.getUnsafe when integrating
6148 * into a jdk.
6149 *
6150 * @return a sun.misc.Unsafe
6151 */
6152 private static sun.misc.Unsafe getUnsafe() {
6153 try {
6154 return sun.misc.Unsafe.getUnsafe();
6155 } catch (SecurityException tryReflectionInstead) {}
6156 try {
6157 return java.security.AccessController.doPrivileged
6158 (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
6159 public sun.misc.Unsafe run() throws Exception {
6160 Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
6161 for (java.lang.reflect.Field f : k.getDeclaredFields()) {
6162 f.setAccessible(true);
6163 Object x = f.get(null);
6164 if (k.isInstance(x))
6165 return k.cast(x);
6166 }
6167 throw new NoSuchFieldError("the Unsafe");
6168 }});
6169 } catch (java.security.PrivilegedActionException e) {
6170 throw new RuntimeException("Could not initialize intrinsics",
6171 e.getCause());
6172 }
6173 }
6174 }