ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
Revision: 1.114
Committed: Fri Aug 9 18:43:44 2013 UTC (10 years, 9 months ago) by dl
Branch: MAIN
Changes since 1.113: +1 -1 lines
Log Message:
Typo

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package jsr166e;
8
9 import jsr166e.ForkJoinPool;
10
11 import java.io.ObjectStreamField;
12 import java.io.Serializable;
13 import java.lang.reflect.ParameterizedType;
14 import java.lang.reflect.Type;
15 import java.util.AbstractMap;
16 import java.util.Arrays;
17 import java.util.Collection;
18 import java.util.Comparator;
19 import java.util.ConcurrentModificationException;
20 import java.util.Enumeration;
21 import java.util.HashMap;
22 import java.util.Hashtable;
23 import java.util.Iterator;
24 import java.util.Map;
25 import java.util.NoSuchElementException;
26 import java.util.Set;
27 import java.util.concurrent.ConcurrentMap;
28 import java.util.concurrent.atomic.AtomicReference;
29 import java.util.concurrent.atomic.AtomicInteger;
30 import java.util.concurrent.locks.LockSupport;
31 import java.util.concurrent.locks.ReentrantLock;
32
33 /**
34 * A hash table supporting full concurrency of retrievals and
35 * high expected concurrency for updates. This class obeys the
36 * same functional specification as {@link java.util.Hashtable}, and
37 * includes versions of methods corresponding to each method of
38 * {@code Hashtable}. However, even though all operations are
39 * thread-safe, retrieval operations do <em>not</em> entail locking,
40 * and there is <em>not</em> any support for locking the entire table
41 * in a way that prevents all access. This class is fully
42 * interoperable with {@code Hashtable} in programs that rely on its
43 * thread safety but not on its synchronization details.
44 *
45 * <p>Retrieval operations (including {@code get}) generally do not
46 * block, so may overlap with update operations (including {@code put}
47 * and {@code remove}). Retrievals reflect the results of the most
48 * recently <em>completed</em> update operations holding upon their
49 * onset. (More formally, an update operation for a given key bears a
50 * <em>happens-before</em> relation with any (non-null) retrieval for
51 * that key reporting the updated value.) For aggregate operations
52 * such as {@code putAll} and {@code clear}, concurrent retrievals may
53 * reflect insertion or removal of only some entries. Similarly,
54 * Iterators and Enumerations return elements reflecting the state of
55 * the hash table at some point at or since the creation of the
56 * iterator/enumeration. They do <em>not</em> throw {@link
57 * ConcurrentModificationException}. However, iterators are designed
58 * to be used by only one thread at a time. Bear in mind that the
59 * results of aggregate status methods including {@code size}, {@code
60 * isEmpty}, and {@code containsValue} are typically useful only when
61 * a map is not undergoing concurrent updates in other threads.
62 * Otherwise the results of these methods reflect transient states
63 * that may be adequate for monitoring or estimation purposes, but not
64 * for program control.
65 *
66 * <p>The table is dynamically expanded when there are too many
67 * collisions (i.e., keys that have distinct hash codes but fall into
68 * the same slot modulo the table size), with the expected average
69 * effect of maintaining roughly two bins per mapping (corresponding
70 * to a 0.75 load factor threshold for resizing). There may be much
71 * variance around this average as mappings are added and removed, but
72 * overall, this maintains a commonly accepted time/space tradeoff for
73 * hash tables. However, resizing this or any other kind of hash
74 * table may be a relatively slow operation. When possible, it is a
75 * good idea to provide a size estimate as an optional {@code
76 * initialCapacity} constructor argument. An additional optional
77 * {@code loadFactor} constructor argument provides a further means of
78 * customizing initial table capacity by specifying the table density
79 * to be used in calculating the amount of space to allocate for the
80 * given number of elements. Also, for compatibility with previous
81 * versions of this class, constructors may optionally specify an
82 * expected {@code concurrencyLevel} as an additional hint for
83 * internal sizing. Note that using many keys with exactly the same
84 * {@code hashCode()} is a sure way to slow down performance of any
85 * hash table. To ameliorate impact, when keys are {@link Comparable},
86 * this class may use comparison order among keys to help break ties.
87 *
88 * <p>A {@link Set} projection of a ConcurrentHashMapV8 may be created
89 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
90 * (using {@link #keySet(Object)} when only keys are of interest, and the
91 * mapped values are (perhaps transiently) not used or all take the
92 * same mapping value.
93 *
94 * <p>This class and its views and iterators implement all of the
95 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
96 * interfaces.
97 *
98 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
99 * does <em>not</em> allow {@code null} to be used as a key or value.
100 *
101 * <p>ConcurrentHashMapV8s support a set of sequential and parallel bulk
102 * operations that are designed
103 * to be safely, and often sensibly, applied even with maps that are
104 * being concurrently updated by other threads; for example, when
105 * computing a snapshot summary of the values in a shared registry.
106 * There are three kinds of operation, each with four forms, accepting
107 * functions with Keys, Values, Entries, and (Key, Value) arguments
108 * and/or return values. Because the elements of a ConcurrentHashMapV8
109 * are not ordered in any particular way, and may be processed in
110 * different orders in different parallel executions, the correctness
111 * of supplied functions should not depend on any ordering, or on any
112 * other objects or values that may transiently change while
113 * computation is in progress; and except for forEach actions, should
114 * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
115 * objects do not support method {@code setValue}.
116 *
117 * <ul>
118 * <li> forEach: Perform a given action on each element.
119 * A variant form applies a given transformation on each element
120 * before performing the action.</li>
121 *
122 * <li> search: Return the first available non-null result of
123 * applying a given function on each element; skipping further
124 * search when a result is found.</li>
125 *
126 * <li> reduce: Accumulate each element. The supplied reduction
127 * function cannot rely on ordering (more formally, it should be
128 * both associative and commutative). There are five variants:
129 *
130 * <ul>
131 *
132 * <li> Plain reductions. (There is not a form of this method for
133 * (key, value) function arguments since there is no corresponding
134 * return type.)</li>
135 *
136 * <li> Mapped reductions that accumulate the results of a given
137 * function applied to each element.</li>
138 *
139 * <li> Reductions to scalar doubles, longs, and ints, using a
140 * given basis value.</li>
141 *
142 * </ul>
143 * </li>
144 * </ul>
145 *
146 * <p>These bulk operations accept a {@code parallelismThreshold}
147 * argument. Methods proceed sequentially if the current map size is
148 * estimated to be less than the given threshold. Using a value of
149 * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
150 * of {@code 1} results in maximal parallelism by partitioning into
151 * enough subtasks to fully utilize the {@link
152 * ForkJoinPool#commonPool()} that is used for all parallel
153 * computations. Normally, you would initially choose one of these
154 * extreme values, and then measure performance of using in-between
155 * values that trade off overhead versus throughput.
156 *
157 * <p>The concurrency properties of bulk operations follow
158 * from those of ConcurrentHashMapV8: Any non-null result returned
159 * from {@code get(key)} and related access methods bears a
160 * happens-before relation with the associated insertion or
161 * update. The result of any bulk operation reflects the
162 * composition of these per-element relations (but is not
163 * necessarily atomic with respect to the map as a whole unless it
164 * is somehow known to be quiescent). Conversely, because keys
165 * and values in the map are never null, null serves as a reliable
166 * atomic indicator of the current lack of any result. To
167 * maintain this property, null serves as an implicit basis for
168 * all non-scalar reduction operations. For the double, long, and
169 * int versions, the basis should be one that, when combined with
170 * any other value, returns that other value (more formally, it
171 * should be the identity element for the reduction). Most common
172 * reductions have these properties; for example, computing a sum
173 * with basis 0 or a minimum with basis MAX_VALUE.
174 *
175 * <p>Search and transformation functions provided as arguments
176 * should similarly return null to indicate the lack of any result
177 * (in which case it is not used). In the case of mapped
178 * reductions, this also enables transformations to serve as
179 * filters, returning null (or, in the case of primitive
180 * specializations, the identity basis) if the element should not
181 * be combined. You can create compound transformations and
182 * filterings by composing them yourself under this "null means
183 * there is nothing there now" rule before using them in search or
184 * reduce operations.
185 *
186 * <p>Methods accepting and/or returning Entry arguments maintain
187 * key-value associations. They may be useful for example when
188 * finding the key for the greatest value. Note that "plain" Entry
189 * arguments can be supplied using {@code new
190 * AbstractMap.SimpleEntry(k,v)}.
191 *
192 * <p>Bulk operations may complete abruptly, throwing an
193 * exception encountered in the application of a supplied
194 * function. Bear in mind when handling such exceptions that other
195 * concurrently executing functions could also have thrown
196 * exceptions, or would have done so if the first exception had
197 * not occurred.
198 *
199 * <p>Speedups for parallel compared to sequential forms are common
200 * but not guaranteed. Parallel operations involving brief functions
201 * on small maps may execute more slowly than sequential forms if the
202 * underlying work to parallelize the computation is more expensive
203 * than the computation itself. Similarly, parallelization may not
204 * lead to much actual parallelism if all processors are busy
205 * performing unrelated tasks.
206 *
207 * <p>All arguments to all task methods must be non-null.
208 *
209 * <p><em>jsr166e note: During transition, this class
210 * uses nested functional interfaces with different names but the
211 * same forms as those expected for JDK8.</em>
212 *
213 * <p>This class is a member of the
214 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
215 * Java Collections Framework</a>.
216 *
217 * @since 1.5
218 * @author Doug Lea
219 * @param <K> the type of keys maintained by this map
220 * @param <V> the type of mapped values
221 */
222 public class ConcurrentHashMapV8<K,V> extends AbstractMap<K,V>
223 implements ConcurrentMap<K,V>, Serializable {
224 private static final long serialVersionUID = 7249069246763182397L;
225
226 /**
227 * An object for traversing and partitioning elements of a source.
228 * This interface provides a subset of the functionality of JDK8
229 * java.util.Spliterator.
230 */
231 public static interface ConcurrentHashMapSpliterator<T> {
232 /**
233 * If possible, returns a new spliterator covering
234 * approximately one half of the elements, which will not be
235 * covered by this spliterator. Returns null if cannot be
236 * split.
237 */
238 ConcurrentHashMapSpliterator<T> trySplit();
239 /**
240 * Returns an estimate of the number of elements covered by
241 * this Spliterator.
242 */
243 long estimateSize();
244
245 /** Applies the action to each untraversed element */
246 void forEachRemaining(Action<? super T> action);
247 /** If an element remains, applies the action and returns true. */
248 boolean tryAdvance(Action<? super T> action);
249 }
250
251 // Sams
252 /** Interface describing a void action of one argument */
253 public interface Action<A> { void apply(A a); }
254 /** Interface describing a void action of two arguments */
255 public interface BiAction<A,B> { void apply(A a, B b); }
256 /** Interface describing a function of one argument */
257 public interface Fun<A,T> { T apply(A a); }
258 /** Interface describing a function of two arguments */
259 public interface BiFun<A,B,T> { T apply(A a, B b); }
260 /** Interface describing a function mapping its argument to a double */
261 public interface ObjectToDouble<A> { double apply(A a); }
262 /** Interface describing a function mapping its argument to a long */
263 public interface ObjectToLong<A> { long apply(A a); }
264 /** Interface describing a function mapping its argument to an int */
265 public interface ObjectToInt<A> {int apply(A a); }
266 /** Interface describing a function mapping two arguments to a double */
267 public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
268 /** Interface describing a function mapping two arguments to a long */
269 public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
270 /** Interface describing a function mapping two arguments to an int */
271 public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
272 /** Interface describing a function mapping two doubles to a double */
273 public interface DoubleByDoubleToDouble { double apply(double a, double b); }
274 /** Interface describing a function mapping two longs to a long */
275 public interface LongByLongToLong { long apply(long a, long b); }
276 /** Interface describing a function mapping two ints to an int */
277 public interface IntByIntToInt { int apply(int a, int b); }
278
279 /*
280 * Overview:
281 *
282 * The primary design goal of this hash table is to maintain
283 * concurrent readability (typically method get(), but also
284 * iterators and related methods) while minimizing update
285 * contention. Secondary goals are to keep space consumption about
286 * the same or better than java.util.HashMap, and to support high
287 * initial insertion rates on an empty table by many threads.
288 *
289 * This map usually acts as a binned (bucketed) hash table. Each
290 * key-value mapping is held in a Node. Most nodes are instances
291 * of the basic Node class with hash, key, value, and next
292 * fields. However, various subclasses exist: TreeNodes are
293 * arranged in balanced trees, not lists. TreeBins hold the roots
294 * of sets of TreeNodes. ForwardingNodes are placed at the heads
295 * of bins during resizing. ReservationNodes are used as
296 * placeholders while establishing values in computeIfAbsent and
297 * related methods. The types TreeBin, ForwardingNode, and
298 * ReservationNode do not hold normal user keys, values, or
299 * hashes, and are readily distinguishable during search etc
300 * because they have negative hash fields and null key and value
301 * fields. (These special nodes are either uncommon or transient,
302 * so the impact of carrying around some unused fields is
303 * insignificant.)
304 *
305 * The table is lazily initialized to a power-of-two size upon the
306 * first insertion. Each bin in the table normally contains a
307 * list of Nodes (most often, the list has only zero or one Node).
308 * Table accesses require volatile/atomic reads, writes, and
309 * CASes. Because there is no other way to arrange this without
310 * adding further indirections, we use intrinsics
311 * (sun.misc.Unsafe) operations.
312 *
313 * We use the top (sign) bit of Node hash fields for control
314 * purposes -- it is available anyway because of addressing
315 * constraints. Nodes with negative hash fields are specially
316 * handled or ignored in map methods.
317 *
318 * Insertion (via put or its variants) of the first node in an
319 * empty bin is performed by just CASing it to the bin. This is
320 * by far the most common case for put operations under most
321 * key/hash distributions. Other update operations (insert,
322 * delete, and replace) require locks. We do not want to waste
323 * the space required to associate a distinct lock object with
324 * each bin, so instead use the first node of a bin list itself as
325 * a lock. Locking support for these locks relies on builtin
326 * "synchronized" monitors.
327 *
328 * Using the first node of a list as a lock does not by itself
329 * suffice though: When a node is locked, any update must first
330 * validate that it is still the first node after locking it, and
331 * retry if not. Because new nodes are always appended to lists,
332 * once a node is first in a bin, it remains first until deleted
333 * or the bin becomes invalidated (upon resizing).
334 *
335 * The main disadvantage of per-bin locks is that other update
336 * operations on other nodes in a bin list protected by the same
337 * lock can stall, for example when user equals() or mapping
338 * functions take a long time. However, statistically, under
339 * random hash codes, this is not a common problem. Ideally, the
340 * frequency of nodes in bins follows a Poisson distribution
341 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
342 * parameter of about 0.5 on average, given the resizing threshold
343 * of 0.75, although with a large variance because of resizing
344 * granularity. Ignoring variance, the expected occurrences of
345 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
346 * first values are:
347 *
348 * 0: 0.60653066
349 * 1: 0.30326533
350 * 2: 0.07581633
351 * 3: 0.01263606
352 * 4: 0.00157952
353 * 5: 0.00015795
354 * 6: 0.00001316
355 * 7: 0.00000094
356 * 8: 0.00000006
357 * more: less than 1 in ten million
358 *
359 * Lock contention probability for two threads accessing distinct
360 * elements is roughly 1 / (8 * #elements) under random hashes.
361 *
362 * Actual hash code distributions encountered in practice
363 * sometimes deviate significantly from uniform randomness. This
364 * includes the case when N > (1<<30), so some keys MUST collide.
365 * Similarly for dumb or hostile usages in which multiple keys are
366 * designed to have identical hash codes or ones that differs only
367 * in masked-out high bits. So we use a secondary strategy that
368 * applies when the number of nodes in a bin exceeds a
369 * threshold. These TreeBins use a balanced tree to hold nodes (a
370 * specialized form of red-black trees), bounding search time to
371 * O(log N). Each search step in a TreeBin is at least twice as
372 * slow as in a regular list, but given that N cannot exceed
373 * (1<<64) (before running out of addresses) this bounds search
374 * steps, lock hold times, etc, to reasonable constants (roughly
375 * 100 nodes inspected per operation worst case) so long as keys
376 * are Comparable (which is very common -- String, Long, etc).
377 * TreeBin nodes (TreeNodes) also maintain the same "next"
378 * traversal pointers as regular nodes, so can be traversed in
379 * iterators in the same way.
380 *
381 * The table is resized when occupancy exceeds a percentage
382 * threshold (nominally, 0.75, but see below). Any thread
383 * noticing an overfull bin may assist in resizing after the
384 * initiating thread allocates and sets up the replacement
385 * array. However, rather than stalling, these other threads may
386 * proceed with insertions etc. The use of TreeBins shields us
387 * from the worst case effects of overfilling while resizes are in
388 * progress. Resizing proceeds by transferring bins, one by one,
389 * from the table to the next table. To enable concurrency, the
390 * next table must be (incrementally) prefilled with place-holders
391 * serving as reverse forwarders to the old table. Because we are
392 * using power-of-two expansion, the elements from each bin must
393 * either stay at same index, or move with a power of two
394 * offset. We eliminate unnecessary node creation by catching
395 * cases where old nodes can be reused because their next fields
396 * won't change. On average, only about one-sixth of them need
397 * cloning when a table doubles. The nodes they replace will be
398 * garbage collectable as soon as they are no longer referenced by
399 * any reader thread that may be in the midst of concurrently
400 * traversing table. Upon transfer, the old table bin contains
401 * only a special forwarding node (with hash field "MOVED") that
402 * contains the next table as its key. On encountering a
403 * forwarding node, access and update operations restart, using
404 * the new table.
405 *
406 * Each bin transfer requires its bin lock, which can stall
407 * waiting for locks while resizing. However, because other
408 * threads can join in and help resize rather than contend for
409 * locks, average aggregate waits become shorter as resizing
410 * progresses. The transfer operation must also ensure that all
411 * accessible bins in both the old and new table are usable by any
412 * traversal. This is arranged by proceeding from the last bin
413 * (table.length - 1) up towards the first. Upon seeing a
414 * forwarding node, traversals (see class Traverser) arrange to
415 * move to the new table without revisiting nodes. However, to
416 * ensure that no intervening nodes are skipped, bin splitting can
417 * only begin after the associated reverse-forwarders are in
418 * place.
419 *
420 * The traversal scheme also applies to partial traversals of
421 * ranges of bins (via an alternate Traverser constructor)
422 * to support partitioned aggregate operations. Also, read-only
423 * operations give up if ever forwarded to a null table, which
424 * provides support for shutdown-style clearing, which is also not
425 * currently implemented.
426 *
427 * Lazy table initialization minimizes footprint until first use,
428 * and also avoids resizings when the first operation is from a
429 * putAll, constructor with map argument, or deserialization.
430 * These cases attempt to override the initial capacity settings,
431 * but harmlessly fail to take effect in cases of races.
432 *
433 * The element count is maintained using a specialization of
434 * LongAdder. We need to incorporate a specialization rather than
435 * just use a LongAdder in order to access implicit
436 * contention-sensing that leads to creation of multiple
437 * CounterCells. The counter mechanics avoid contention on
438 * updates but can encounter cache thrashing if read too
439 * frequently during concurrent access. To avoid reading so often,
440 * resizing under contention is attempted only upon adding to a
441 * bin already holding two or more nodes. Under uniform hash
442 * distributions, the probability of this occurring at threshold
443 * is around 13%, meaning that only about 1 in 8 puts check
444 * threshold (and after resizing, many fewer do so).
445 *
446 * TreeBins use a special form of comparison for search and
447 * related operations (which is the main reason we cannot use
448 * existing collections such as TreeMaps). TreeBins contain
449 * Comparable elements, but may contain others, as well as
450 * elements that are Comparable but not necessarily Comparable for
451 * the same T, so we cannot invoke compareTo among them. To handle
452 * this, the tree is ordered primarily by hash value, then by
453 * Comparable.compareTo order if applicable. On lookup at a node,
454 * if elements are not comparable or compare as 0 then both left
455 * and right children may need to be searched in the case of tied
456 * hash values. (This corresponds to the full list search that
457 * would be necessary if all elements were non-Comparable and had
458 * tied hashes.) On insertion, to keep a total ordering (or as
459 * close as is required here) across rebalancings, we compare
460 * classes and identityHashCodes as tie-breakers. The red-black
461 * balancing code is updated from pre-jdk-collections
462 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
463 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
464 * Algorithms" (CLR).
465 *
466 * TreeBins also require an additional locking mechanism. While
467 * list traversal is always possible by readers even during
468 * updates, tree traversal is not, mainly because of tree-rotations
469 * that may change the root node and/or its linkages. TreeBins
470 * include a simple read-write lock mechanism parasitic on the
471 * main bin-synchronization strategy: Structural adjustments
472 * associated with an insertion or removal are already bin-locked
473 * (and so cannot conflict with other writers) but must wait for
474 * ongoing readers to finish. Since there can be only one such
475 * waiter, we use a simple scheme using a single "waiter" field to
476 * block writers. However, readers need never block. If the root
477 * lock is held, they proceed along the slow traversal path (via
478 * next-pointers) until the lock becomes available or the list is
479 * exhausted, whichever comes first. These cases are not fast, but
480 * maximize aggregate expected throughput.
481 *
482 * Maintaining API and serialization compatibility with previous
483 * versions of this class introduces several oddities. Mainly: We
484 * leave untouched but unused constructor arguments refering to
485 * concurrencyLevel. We accept a loadFactor constructor argument,
486 * but apply it only to initial table capacity (which is the only
487 * time that we can guarantee to honor it.) We also declare an
488 * unused "Segment" class that is instantiated in minimal form
489 * only when serializing.
490 *
491 * Also, solely for compatibility with previous versions of this
492 * class, it extends AbstractMap, even though all of its methods
493 * are overridden, so it is just useless baggage.
494 *
495 * This file is organized to make things a little easier to follow
496 * while reading than they might otherwise: First the main static
497 * declarations and utilities, then fields, then main public
498 * methods (with a few factorings of multiple public methods into
499 * internal ones), then sizing methods, trees, traversers, and
500 * bulk operations.
501 */
502
503 /* ---------------- Constants -------------- */
504
505 /**
506 * The largest possible table capacity. This value must be
507 * exactly 1<<30 to stay within Java array allocation and indexing
508 * bounds for power of two table sizes, and is further required
509 * because the top two bits of 32bit hash fields are used for
510 * control purposes.
511 */
512 private static final int MAXIMUM_CAPACITY = 1 << 30;
513
514 /**
515 * The default initial table capacity. Must be a power of 2
516 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
517 */
518 private static final int DEFAULT_CAPACITY = 16;
519
520 /**
521 * The largest possible (non-power of two) array size.
522 * Needed by toArray and related methods.
523 */
524 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
525
526 /**
527 * The default concurrency level for this table. Unused but
528 * defined for compatibility with previous versions of this class.
529 */
530 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
531
532 /**
533 * The load factor for this table. Overrides of this value in
534 * constructors affect only the initial table capacity. The
535 * actual floating point value isn't normally used -- it is
536 * simpler to use expressions such as {@code n - (n >>> 2)} for
537 * the associated resizing threshold.
538 */
539 private static final float LOAD_FACTOR = 0.75f;
540
541 /**
542 * The bin count threshold for using a tree rather than list for a
543 * bin. Bins are converted to trees when adding an element to a
544 * bin with at least this many nodes. The value must be greater
545 * than 2, and should be at least 8 to mesh with assumptions in
546 * tree removal about conversion back to plain bins upon
547 * shrinkage.
548 */
549 static final int TREEIFY_THRESHOLD = 8;
550
551 /**
552 * The bin count threshold for untreeifying a (split) bin during a
553 * resize operation. Should be less than TREEIFY_THRESHOLD, and at
554 * most 6 to mesh with shrinkage detection under removal.
555 */
556 static final int UNTREEIFY_THRESHOLD = 6;
557
558 /**
559 * The smallest table capacity for which bins may be treeified.
560 * (Otherwise the table is resized if too many nodes in a bin.)
561 * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
562 * conflicts between resizing and treeification thresholds.
563 */
564 static final int MIN_TREEIFY_CAPACITY = 64;
565
566 /**
567 * Minimum number of rebinnings per transfer step. Ranges are
568 * subdivided to allow multiple resizer threads. This value
569 * serves as a lower bound to avoid resizers encountering
570 * excessive memory contention. The value should be at least
571 * DEFAULT_CAPACITY.
572 */
573 private static final int MIN_TRANSFER_STRIDE = 16;
574
575 /*
576 * Encodings for Node hash fields. See above for explanation.
577 */
578 static final int MOVED = -1; // hash for forwarding nodes
579 static final int TREEBIN = -2; // hash for roots of trees
580 static final int RESERVED = -3; // hash for transient reservations
581 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
582
583 /** Number of CPUS, to place bounds on some sizings */
584 static final int NCPU = Runtime.getRuntime().availableProcessors();
585
586 /** For serialization compatibility. */
587 private static final ObjectStreamField[] serialPersistentFields = {
588 new ObjectStreamField("segments", Segment[].class),
589 new ObjectStreamField("segmentMask", Integer.TYPE),
590 new ObjectStreamField("segmentShift", Integer.TYPE)
591 };
592
593 /* ---------------- Nodes -------------- */
594
595 /**
596 * Key-value entry. This class is never exported out as a
597 * user-mutable Map.Entry (i.e., one supporting setValue; see
598 * MapEntry below), but can be used for read-only traversals used
599 * in bulk tasks. Subclasses of Node with a negative hash field
600 * are special, and contain null keys and values (but are never
601 * exported). Otherwise, keys and vals are never null.
602 */
603 static class Node<K,V> implements Map.Entry<K,V> {
604 final int hash;
605 final K key;
606 volatile V val;
607 volatile Node<K,V> next;
608
609 Node(int hash, K key, V val, Node<K,V> next) {
610 this.hash = hash;
611 this.key = key;
612 this.val = val;
613 this.next = next;
614 }
615
616 public final K getKey() { return key; }
617 public final V getValue() { return val; }
618 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
619 public final String toString(){ return key + "=" + val; }
620 public final V setValue(V value) {
621 throw new UnsupportedOperationException();
622 }
623
624 public final boolean equals(Object o) {
625 Object k, v, u; Map.Entry<?,?> e;
626 return ((o instanceof Map.Entry) &&
627 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
628 (v = e.getValue()) != null &&
629 (k == key || k.equals(key)) &&
630 (v == (u = val) || v.equals(u)));
631 }
632
633 /**
634 * Virtualized support for map.get(); overridden in subclasses.
635 */
636 Node<K,V> find(int h, Object k) {
637 Node<K,V> e = this;
638 if (k != null) {
639 do {
640 K ek;
641 if (e.hash == h &&
642 ((ek = e.key) == k || (ek != null && k.equals(ek))))
643 return e;
644 } while ((e = e.next) != null);
645 }
646 return null;
647 }
648 }
649
650 /* ---------------- Static utilities -------------- */
651
652 /**
653 * Spreads (XORs) higher bits of hash to lower and also forces top
654 * bit to 0. Because the table uses power-of-two masking, sets of
655 * hashes that vary only in bits above the current mask will
656 * always collide. (Among known examples are sets of Float keys
657 * holding consecutive whole numbers in small tables.) So we
658 * apply a transform that spreads the impact of higher bits
659 * downward. There is a tradeoff between speed, utility, and
660 * quality of bit-spreading. Because many common sets of hashes
661 * are already reasonably distributed (so don't benefit from
662 * spreading), and because we use trees to handle large sets of
663 * collisions in bins, we just XOR some shifted bits in the
664 * cheapest possible way to reduce systematic lossage, as well as
665 * to incorporate impact of the highest bits that would otherwise
666 * never be used in index calculations because of table bounds.
667 */
668 static final int spread(int h) {
669 return (h ^ (h >>> 16)) & HASH_BITS;
670 }
671
672 /**
673 * Returns a power of two table size for the given desired capacity.
674 * See Hackers Delight, sec 3.2
675 */
676 private static final int tableSizeFor(int c) {
677 int n = c - 1;
678 n |= n >>> 1;
679 n |= n >>> 2;
680 n |= n >>> 4;
681 n |= n >>> 8;
682 n |= n >>> 16;
683 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
684 }
685
686 /**
687 * Returns x's Class if it is of the form "class C implements
688 * Comparable<C>", else null.
689 */
690 static Class<?> comparableClassFor(Object x) {
691 if (x instanceof Comparable) {
692 Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
693 if ((c = x.getClass()) == String.class) // bypass checks
694 return c;
695 if ((ts = c.getGenericInterfaces()) != null) {
696 for (int i = 0; i < ts.length; ++i) {
697 if (((t = ts[i]) instanceof ParameterizedType) &&
698 ((p = (ParameterizedType)t).getRawType() ==
699 Comparable.class) &&
700 (as = p.getActualTypeArguments()) != null &&
701 as.length == 1 && as[0] == c) // type arg is c
702 return c;
703 }
704 }
705 }
706 return null;
707 }
708
709 /**
710 * Returns k.compareTo(x) if x matches kc (k's screened comparable
711 * class), else 0.
712 */
713 @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
714 static int compareComparables(Class<?> kc, Object k, Object x) {
715 return (x == null || x.getClass() != kc ? 0 :
716 ((Comparable)k).compareTo(x));
717 }
718
719 /* ---------------- Table element access -------------- */
720
721 /*
722 * Volatile access methods are used for table elements as well as
723 * elements of in-progress next table while resizing. All uses of
724 * the tab arguments must be null checked by callers. All callers
725 * also paranoically precheck that tab's length is not zero (or an
726 * equivalent check), thus ensuring that any index argument taking
727 * the form of a hash value anded with (length - 1) is a valid
728 * index. Note that, to be correct wrt arbitrary concurrency
729 * errors by users, these checks must operate on local variables,
730 * which accounts for some odd-looking inline assignments below.
731 * Note that calls to setTabAt always occur within locked regions,
732 * and so in principle require only release ordering, not need
733 * full volatile semantics, but are currently coded as volatile
734 * writes to be conservative.
735 */
736
737 @SuppressWarnings("unchecked")
738 static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
739 return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
740 }
741
742 static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
743 Node<K,V> c, Node<K,V> v) {
744 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
745 }
746
747 static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
748 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
749 }
750
751 /* ---------------- Fields -------------- */
752
753 /**
754 * The array of bins. Lazily initialized upon first insertion.
755 * Size is always a power of two. Accessed directly by iterators.
756 */
757 transient volatile Node<K,V>[] table;
758
759 /**
760 * The next table to use; non-null only while resizing.
761 */
762 private transient volatile Node<K,V>[] nextTable;
763
764 /**
765 * Base counter value, used mainly when there is no contention,
766 * but also as a fallback during table initialization
767 * races. Updated via CAS.
768 */
769 private transient volatile long baseCount;
770
771 /**
772 * Table initialization and resizing control. When negative, the
773 * table is being initialized or resized: -1 for initialization,
774 * else -(1 + the number of active resizing threads). Otherwise,
775 * when table is null, holds the initial table size to use upon
776 * creation, or 0 for default. After initialization, holds the
777 * next element count value upon which to resize the table.
778 */
779 private transient volatile int sizeCtl;
780
781 /**
782 * The next table index (plus one) to split while resizing.
783 */
784 private transient volatile int transferIndex;
785
786 /**
787 * The least available table index to split while resizing.
788 */
789 private transient volatile int transferOrigin;
790
791 /**
792 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
793 */
794 private transient volatile int cellsBusy;
795
796 /**
797 * Table of counter cells. When non-null, size is a power of 2.
798 */
799 private transient volatile CounterCell[] counterCells;
800
801 // views
802 private transient KeySetView<K,V> keySet;
803 private transient ValuesView<K,V> values;
804 private transient EntrySetView<K,V> entrySet;
805
806
807 /* ---------------- Public operations -------------- */
808
809 /**
810 * Creates a new, empty map with the default initial table size (16).
811 */
812 public ConcurrentHashMapV8() {
813 }
814
815 /**
816 * Creates a new, empty map with an initial table size
817 * accommodating the specified number of elements without the need
818 * to dynamically resize.
819 *
820 * @param initialCapacity The implementation performs internal
821 * sizing to accommodate this many elements.
822 * @throws IllegalArgumentException if the initial capacity of
823 * elements is negative
824 */
825 public ConcurrentHashMapV8(int initialCapacity) {
826 if (initialCapacity < 0)
827 throw new IllegalArgumentException();
828 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
829 MAXIMUM_CAPACITY :
830 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
831 this.sizeCtl = cap;
832 }
833
834 /**
835 * Creates a new map with the same mappings as the given map.
836 *
837 * @param m the map
838 */
839 public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
840 this.sizeCtl = DEFAULT_CAPACITY;
841 putAll(m);
842 }
843
844 /**
845 * Creates a new, empty map with an initial table size based on
846 * the given number of elements ({@code initialCapacity}) and
847 * initial table density ({@code loadFactor}).
848 *
849 * @param initialCapacity the initial capacity. The implementation
850 * performs internal sizing to accommodate this many elements,
851 * given the specified load factor.
852 * @param loadFactor the load factor (table density) for
853 * establishing the initial table size
854 * @throws IllegalArgumentException if the initial capacity of
855 * elements is negative or the load factor is nonpositive
856 *
857 * @since 1.6
858 */
859 public ConcurrentHashMapV8(int initialCapacity, float loadFactor) {
860 this(initialCapacity, loadFactor, 1);
861 }
862
863 /**
864 * Creates a new, empty map with an initial table size based on
865 * the given number of elements ({@code initialCapacity}), table
866 * density ({@code loadFactor}), and number of concurrently
867 * updating threads ({@code concurrencyLevel}).
868 *
869 * @param initialCapacity the initial capacity. The implementation
870 * performs internal sizing to accommodate this many elements,
871 * given the specified load factor.
872 * @param loadFactor the load factor (table density) for
873 * establishing the initial table size
874 * @param concurrencyLevel the estimated number of concurrently
875 * updating threads. The implementation may use this value as
876 * a sizing hint.
877 * @throws IllegalArgumentException if the initial capacity is
878 * negative or the load factor or concurrencyLevel are
879 * nonpositive
880 */
881 public ConcurrentHashMapV8(int initialCapacity,
882 float loadFactor, int concurrencyLevel) {
883 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
884 throw new IllegalArgumentException();
885 if (initialCapacity < concurrencyLevel) // Use at least as many bins
886 initialCapacity = concurrencyLevel; // as estimated threads
887 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
888 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
889 MAXIMUM_CAPACITY : tableSizeFor((int)size);
890 this.sizeCtl = cap;
891 }
892
893 // Original (since JDK1.2) Map methods
894
895 /**
896 * {@inheritDoc}
897 */
898 public int size() {
899 long n = sumCount();
900 return ((n < 0L) ? 0 :
901 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
902 (int)n);
903 }
904
905 /**
906 * {@inheritDoc}
907 */
908 public boolean isEmpty() {
909 return sumCount() <= 0L; // ignore transient negative values
910 }
911
912 /**
913 * Returns the value to which the specified key is mapped,
914 * or {@code null} if this map contains no mapping for the key.
915 *
916 * <p>More formally, if this map contains a mapping from a key
917 * {@code k} to a value {@code v} such that {@code key.equals(k)},
918 * then this method returns {@code v}; otherwise it returns
919 * {@code null}. (There can be at most one such mapping.)
920 *
921 * @throws NullPointerException if the specified key is null
922 */
923 public V get(Object key) {
924 Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
925 int h = spread(key.hashCode());
926 if ((tab = table) != null && (n = tab.length) > 0 &&
927 (e = tabAt(tab, (n - 1) & h)) != null) {
928 if ((eh = e.hash) == h) {
929 if ((ek = e.key) == key || (ek != null && key.equals(ek)))
930 return e.val;
931 }
932 else if (eh < 0)
933 return (p = e.find(h, key)) != null ? p.val : null;
934 while ((e = e.next) != null) {
935 if (e.hash == h &&
936 ((ek = e.key) == key || (ek != null && key.equals(ek))))
937 return e.val;
938 }
939 }
940 return null;
941 }
942
943 /**
944 * Tests if the specified object is a key in this table.
945 *
946 * @param key possible key
947 * @return {@code true} if and only if the specified object
948 * is a key in this table, as determined by the
949 * {@code equals} method; {@code false} otherwise
950 * @throws NullPointerException if the specified key is null
951 */
952 public boolean containsKey(Object key) {
953 return get(key) != null;
954 }
955
956 /**
957 * Returns {@code true} if this map maps one or more keys to the
958 * specified value. Note: This method may require a full traversal
959 * of the map, and is much slower than method {@code containsKey}.
960 *
961 * @param value value whose presence in this map is to be tested
962 * @return {@code true} if this map maps one or more keys to the
963 * specified value
964 * @throws NullPointerException if the specified value is null
965 */
966 public boolean containsValue(Object value) {
967 if (value == null)
968 throw new NullPointerException();
969 Node<K,V>[] t;
970 if ((t = table) != null) {
971 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
972 for (Node<K,V> p; (p = it.advance()) != null; ) {
973 V v;
974 if ((v = p.val) == value || (v != null && value.equals(v)))
975 return true;
976 }
977 }
978 return false;
979 }
980
981 /**
982 * Maps the specified key to the specified value in this table.
983 * Neither the key nor the value can be null.
984 *
985 * <p>The value can be retrieved by calling the {@code get} method
986 * with a key that is equal to the original key.
987 *
988 * @param key key with which the specified value is to be associated
989 * @param value value to be associated with the specified key
990 * @return the previous value associated with {@code key}, or
991 * {@code null} if there was no mapping for {@code key}
992 * @throws NullPointerException if the specified key or value is null
993 */
994 public V put(K key, V value) {
995 return putVal(key, value, false);
996 }
997
998 /** Implementation for put and putIfAbsent */
999 final V putVal(K key, V value, boolean onlyIfAbsent) {
1000 if (key == null || value == null) throw new NullPointerException();
1001 int hash = spread(key.hashCode());
1002 int binCount = 0;
1003 for (Node<K,V>[] tab = table;;) {
1004 Node<K,V> f; int n, i, fh;
1005 if (tab == null || (n = tab.length) == 0)
1006 tab = initTable();
1007 else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
1008 if (casTabAt(tab, i, null,
1009 new Node<K,V>(hash, key, value, null)))
1010 break; // no lock when adding to empty bin
1011 }
1012 else if ((fh = f.hash) == MOVED)
1013 tab = helpTransfer(tab, f);
1014 else {
1015 V oldVal = null;
1016 synchronized (f) {
1017 if (tabAt(tab, i) == f) {
1018 if (fh >= 0) {
1019 binCount = 1;
1020 for (Node<K,V> e = f;; ++binCount) {
1021 K ek;
1022 if (e.hash == hash &&
1023 ((ek = e.key) == key ||
1024 (ek != null && key.equals(ek)))) {
1025 oldVal = e.val;
1026 if (!onlyIfAbsent)
1027 e.val = value;
1028 break;
1029 }
1030 Node<K,V> pred = e;
1031 if ((e = e.next) == null) {
1032 pred.next = new Node<K,V>(hash, key,
1033 value, null);
1034 break;
1035 }
1036 }
1037 }
1038 else if (f instanceof TreeBin) {
1039 Node<K,V> p;
1040 binCount = 2;
1041 if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1042 value)) != null) {
1043 oldVal = p.val;
1044 if (!onlyIfAbsent)
1045 p.val = value;
1046 }
1047 }
1048 }
1049 }
1050 if (binCount != 0) {
1051 if (binCount >= TREEIFY_THRESHOLD)
1052 treeifyBin(tab, i);
1053 if (oldVal != null)
1054 return oldVal;
1055 break;
1056 }
1057 }
1058 }
1059 addCount(1L, binCount);
1060 return null;
1061 }
1062
1063 /**
1064 * Copies all of the mappings from the specified map to this one.
1065 * These mappings replace any mappings that this map had for any of the
1066 * keys currently in the specified map.
1067 *
1068 * @param m mappings to be stored in this map
1069 */
1070 public void putAll(Map<? extends K, ? extends V> m) {
1071 tryPresize(m.size());
1072 for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1073 putVal(e.getKey(), e.getValue(), false);
1074 }
1075
1076 /**
1077 * Removes the key (and its corresponding value) from this map.
1078 * This method does nothing if the key is not in the map.
1079 *
1080 * @param key the key that needs to be removed
1081 * @return the previous value associated with {@code key}, or
1082 * {@code null} if there was no mapping for {@code key}
1083 * @throws NullPointerException if the specified key is null
1084 */
1085 public V remove(Object key) {
1086 return replaceNode(key, null, null);
1087 }
1088
1089 /**
1090 * Implementation for the four public remove/replace methods:
1091 * Replaces node value with v, conditional upon match of cv if
1092 * non-null. If resulting value is null, delete.
1093 */
1094 final V replaceNode(Object key, V value, Object cv) {
1095 int hash = spread(key.hashCode());
1096 for (Node<K,V>[] tab = table;;) {
1097 Node<K,V> f; int n, i, fh;
1098 if (tab == null || (n = tab.length) == 0 ||
1099 (f = tabAt(tab, i = (n - 1) & hash)) == null)
1100 break;
1101 else if ((fh = f.hash) == MOVED)
1102 tab = helpTransfer(tab, f);
1103 else {
1104 V oldVal = null;
1105 boolean validated = false;
1106 synchronized (f) {
1107 if (tabAt(tab, i) == f) {
1108 if (fh >= 0) {
1109 validated = true;
1110 for (Node<K,V> e = f, pred = null;;) {
1111 K ek;
1112 if (e.hash == hash &&
1113 ((ek = e.key) == key ||
1114 (ek != null && key.equals(ek)))) {
1115 V ev = e.val;
1116 if (cv == null || cv == ev ||
1117 (ev != null && cv.equals(ev))) {
1118 oldVal = ev;
1119 if (value != null)
1120 e.val = value;
1121 else if (pred != null)
1122 pred.next = e.next;
1123 else
1124 setTabAt(tab, i, e.next);
1125 }
1126 break;
1127 }
1128 pred = e;
1129 if ((e = e.next) == null)
1130 break;
1131 }
1132 }
1133 else if (f instanceof TreeBin) {
1134 validated = true;
1135 TreeBin<K,V> t = (TreeBin<K,V>)f;
1136 TreeNode<K,V> r, p;
1137 if ((r = t.root) != null &&
1138 (p = r.findTreeNode(hash, key, null)) != null) {
1139 V pv = p.val;
1140 if (cv == null || cv == pv ||
1141 (pv != null && cv.equals(pv))) {
1142 oldVal = pv;
1143 if (value != null)
1144 p.val = value;
1145 else if (t.removeTreeNode(p))
1146 setTabAt(tab, i, untreeify(t.first));
1147 }
1148 }
1149 }
1150 }
1151 }
1152 if (validated) {
1153 if (oldVal != null) {
1154 if (value == null)
1155 addCount(-1L, -1);
1156 return oldVal;
1157 }
1158 break;
1159 }
1160 }
1161 }
1162 return null;
1163 }
1164
1165 /**
1166 * Removes all of the mappings from this map.
1167 */
1168 public void clear() {
1169 long delta = 0L; // negative number of deletions
1170 int i = 0;
1171 Node<K,V>[] tab = table;
1172 while (tab != null && i < tab.length) {
1173 int fh;
1174 Node<K,V> f = tabAt(tab, i);
1175 if (f == null)
1176 ++i;
1177 else if ((fh = f.hash) == MOVED) {
1178 tab = helpTransfer(tab, f);
1179 i = 0; // restart
1180 }
1181 else {
1182 synchronized (f) {
1183 if (tabAt(tab, i) == f) {
1184 Node<K,V> p = (fh >= 0 ? f :
1185 (f instanceof TreeBin) ?
1186 ((TreeBin<K,V>)f).first : null);
1187 while (p != null) {
1188 --delta;
1189 p = p.next;
1190 }
1191 setTabAt(tab, i++, null);
1192 }
1193 }
1194 }
1195 }
1196 if (delta != 0L)
1197 addCount(delta, -1);
1198 }
1199
1200 /**
1201 * Returns a {@link Set} view of the keys contained in this map.
1202 * The set is backed by the map, so changes to the map are
1203 * reflected in the set, and vice-versa. The set supports element
1204 * removal, which removes the corresponding mapping from this map,
1205 * via the {@code Iterator.remove}, {@code Set.remove},
1206 * {@code removeAll}, {@code retainAll}, and {@code clear}
1207 * operations. It does not support the {@code add} or
1208 * {@code addAll} operations.
1209 *
1210 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1211 * that will never throw {@link ConcurrentModificationException},
1212 * and guarantees to traverse elements as they existed upon
1213 * construction of the iterator, and may (but is not guaranteed to)
1214 * reflect any modifications subsequent to construction.
1215 *
1216 * @return the set view
1217 */
1218 public KeySetView<K,V> keySet() {
1219 KeySetView<K,V> ks;
1220 return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1221 }
1222
1223 /**
1224 * Returns a {@link Collection} view of the values contained in this map.
1225 * The collection is backed by the map, so changes to the map are
1226 * reflected in the collection, and vice-versa. The collection
1227 * supports element removal, which removes the corresponding
1228 * mapping from this map, via the {@code Iterator.remove},
1229 * {@code Collection.remove}, {@code removeAll},
1230 * {@code retainAll}, and {@code clear} operations. It does not
1231 * support the {@code add} or {@code addAll} operations.
1232 *
1233 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1234 * that will never throw {@link ConcurrentModificationException},
1235 * and guarantees to traverse elements as they existed upon
1236 * construction of the iterator, and may (but is not guaranteed to)
1237 * reflect any modifications subsequent to construction.
1238 *
1239 * @return the collection view
1240 */
1241 public Collection<V> values() {
1242 ValuesView<K,V> vs;
1243 return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1244 }
1245
1246 /**
1247 * Returns a {@link Set} view of the mappings contained in this map.
1248 * The set is backed by the map, so changes to the map are
1249 * reflected in the set, and vice-versa. The set supports element
1250 * removal, which removes the corresponding mapping from the map,
1251 * via the {@code Iterator.remove}, {@code Set.remove},
1252 * {@code removeAll}, {@code retainAll}, and {@code clear}
1253 * operations.
1254 *
1255 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1256 * that will never throw {@link ConcurrentModificationException},
1257 * and guarantees to traverse elements as they existed upon
1258 * construction of the iterator, and may (but is not guaranteed to)
1259 * reflect any modifications subsequent to construction.
1260 *
1261 * @return the set view
1262 */
1263 public Set<Map.Entry<K,V>> entrySet() {
1264 EntrySetView<K,V> es;
1265 return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1266 }
1267
1268 /**
1269 * Returns the hash code value for this {@link Map}, i.e.,
1270 * the sum of, for each key-value pair in the map,
1271 * {@code key.hashCode() ^ value.hashCode()}.
1272 *
1273 * @return the hash code value for this map
1274 */
1275 public int hashCode() {
1276 int h = 0;
1277 Node<K,V>[] t;
1278 if ((t = table) != null) {
1279 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1280 for (Node<K,V> p; (p = it.advance()) != null; )
1281 h += p.key.hashCode() ^ p.val.hashCode();
1282 }
1283 return h;
1284 }
1285
1286 /**
1287 * Returns a string representation of this map. The string
1288 * representation consists of a list of key-value mappings (in no
1289 * particular order) enclosed in braces ("{@code {}}"). Adjacent
1290 * mappings are separated by the characters {@code ", "} (comma
1291 * and space). Each key-value mapping is rendered as the key
1292 * followed by an equals sign ("{@code =}") followed by the
1293 * associated value.
1294 *
1295 * @return a string representation of this map
1296 */
1297 public String toString() {
1298 Node<K,V>[] t;
1299 int f = (t = table) == null ? 0 : t.length;
1300 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1301 StringBuilder sb = new StringBuilder();
1302 sb.append('{');
1303 Node<K,V> p;
1304 if ((p = it.advance()) != null) {
1305 for (;;) {
1306 K k = p.key;
1307 V v = p.val;
1308 sb.append(k == this ? "(this Map)" : k);
1309 sb.append('=');
1310 sb.append(v == this ? "(this Map)" : v);
1311 if ((p = it.advance()) == null)
1312 break;
1313 sb.append(',').append(' ');
1314 }
1315 }
1316 return sb.append('}').toString();
1317 }
1318
1319 /**
1320 * Compares the specified object with this map for equality.
1321 * Returns {@code true} if the given object is a map with the same
1322 * mappings as this map. This operation may return misleading
1323 * results if either map is concurrently modified during execution
1324 * of this method.
1325 *
1326 * @param o object to be compared for equality with this map
1327 * @return {@code true} if the specified object is equal to this map
1328 */
1329 public boolean equals(Object o) {
1330 if (o != this) {
1331 if (!(o instanceof Map))
1332 return false;
1333 Map<?,?> m = (Map<?,?>) o;
1334 Node<K,V>[] t;
1335 int f = (t = table) == null ? 0 : t.length;
1336 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1337 for (Node<K,V> p; (p = it.advance()) != null; ) {
1338 V val = p.val;
1339 Object v = m.get(p.key);
1340 if (v == null || (v != val && !v.equals(val)))
1341 return false;
1342 }
1343 for (Map.Entry<?,?> e : m.entrySet()) {
1344 Object mk, mv, v;
1345 if ((mk = e.getKey()) == null ||
1346 (mv = e.getValue()) == null ||
1347 (v = get(mk)) == null ||
1348 (mv != v && !mv.equals(v)))
1349 return false;
1350 }
1351 }
1352 return true;
1353 }
1354
1355 /**
1356 * Stripped-down version of helper class used in previous version,
1357 * declared for the sake of serialization compatibility
1358 */
1359 static class Segment<K,V> extends ReentrantLock implements Serializable {
1360 private static final long serialVersionUID = 2249069246763182397L;
1361 final float loadFactor;
1362 Segment(float lf) { this.loadFactor = lf; }
1363 }
1364
1365 /**
1366 * Saves the state of the {@code ConcurrentHashMapV8} instance to a
1367 * stream (i.e., serializes it).
1368 * @param s the stream
1369 * @throws java.io.IOException if an I/O error occurs
1370 * @serialData
1371 * the key (Object) and value (Object)
1372 * for each key-value mapping, followed by a null pair.
1373 * The key-value mappings are emitted in no particular order.
1374 */
1375 private void writeObject(java.io.ObjectOutputStream s)
1376 throws java.io.IOException {
1377 // For serialization compatibility
1378 // Emulate segment calculation from previous version of this class
1379 int sshift = 0;
1380 int ssize = 1;
1381 while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1382 ++sshift;
1383 ssize <<= 1;
1384 }
1385 int segmentShift = 32 - sshift;
1386 int segmentMask = ssize - 1;
1387 @SuppressWarnings("unchecked") Segment<K,V>[] segments = (Segment<K,V>[])
1388 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1389 for (int i = 0; i < segments.length; ++i)
1390 segments[i] = new Segment<K,V>(LOAD_FACTOR);
1391 s.putFields().put("segments", segments);
1392 s.putFields().put("segmentShift", segmentShift);
1393 s.putFields().put("segmentMask", segmentMask);
1394 s.writeFields();
1395
1396 Node<K,V>[] t;
1397 if ((t = table) != null) {
1398 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1399 for (Node<K,V> p; (p = it.advance()) != null; ) {
1400 s.writeObject(p.key);
1401 s.writeObject(p.val);
1402 }
1403 }
1404 s.writeObject(null);
1405 s.writeObject(null);
1406 segments = null; // throw away
1407 }
1408
1409 /**
1410 * Reconstitutes the instance from a stream (that is, deserializes it).
1411 * @param s the stream
1412 * @throws ClassNotFoundException if the class of a serialized object
1413 * could not be found
1414 * @throws java.io.IOException if an I/O error occurs
1415 */
1416 private void readObject(java.io.ObjectInputStream s)
1417 throws java.io.IOException, ClassNotFoundException {
1418 /*
1419 * To improve performance in typical cases, we create nodes
1420 * while reading, then place in table once size is known.
1421 * However, we must also validate uniqueness and deal with
1422 * overpopulated bins while doing so, which requires
1423 * specialized versions of putVal mechanics.
1424 */
1425 sizeCtl = -1; // force exclusion for table construction
1426 s.defaultReadObject();
1427 long size = 0L;
1428 Node<K,V> p = null;
1429 for (;;) {
1430 @SuppressWarnings("unchecked") K k = (K) s.readObject();
1431 @SuppressWarnings("unchecked") V v = (V) s.readObject();
1432 if (k != null && v != null) {
1433 p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1434 ++size;
1435 }
1436 else
1437 break;
1438 }
1439 if (size == 0L)
1440 sizeCtl = 0;
1441 else {
1442 int n;
1443 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1444 n = MAXIMUM_CAPACITY;
1445 else {
1446 int sz = (int)size;
1447 n = tableSizeFor(sz + (sz >>> 1) + 1);
1448 }
1449 @SuppressWarnings({"rawtypes","unchecked"})
1450 Node<K,V>[] tab = (Node<K,V>[])new Node[n];
1451 int mask = n - 1;
1452 long added = 0L;
1453 while (p != null) {
1454 boolean insertAtFront;
1455 Node<K,V> next = p.next, first;
1456 int h = p.hash, j = h & mask;
1457 if ((first = tabAt(tab, j)) == null)
1458 insertAtFront = true;
1459 else {
1460 K k = p.key;
1461 if (first.hash < 0) {
1462 TreeBin<K,V> t = (TreeBin<K,V>)first;
1463 if (t.putTreeVal(h, k, p.val) == null)
1464 ++added;
1465 insertAtFront = false;
1466 }
1467 else {
1468 int binCount = 0;
1469 insertAtFront = true;
1470 Node<K,V> q; K qk;
1471 for (q = first; q != null; q = q.next) {
1472 if (q.hash == h &&
1473 ((qk = q.key) == k ||
1474 (qk != null && k.equals(qk)))) {
1475 insertAtFront = false;
1476 break;
1477 }
1478 ++binCount;
1479 }
1480 if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1481 insertAtFront = false;
1482 ++added;
1483 p.next = first;
1484 TreeNode<K,V> hd = null, tl = null;
1485 for (q = p; q != null; q = q.next) {
1486 TreeNode<K,V> t = new TreeNode<K,V>
1487 (q.hash, q.key, q.val, null, null);
1488 if ((t.prev = tl) == null)
1489 hd = t;
1490 else
1491 tl.next = t;
1492 tl = t;
1493 }
1494 setTabAt(tab, j, new TreeBin<K,V>(hd));
1495 }
1496 }
1497 }
1498 if (insertAtFront) {
1499 ++added;
1500 p.next = first;
1501 setTabAt(tab, j, p);
1502 }
1503 p = next;
1504 }
1505 table = tab;
1506 sizeCtl = n - (n >>> 2);
1507 baseCount = added;
1508 }
1509 }
1510
1511 // ConcurrentMap methods
1512
1513 /**
1514 * {@inheritDoc}
1515 *
1516 * @return the previous value associated with the specified key,
1517 * or {@code null} if there was no mapping for the key
1518 * @throws NullPointerException if the specified key or value is null
1519 */
1520 public V putIfAbsent(K key, V value) {
1521 return putVal(key, value, true);
1522 }
1523
1524 /**
1525 * {@inheritDoc}
1526 *
1527 * @throws NullPointerException if the specified key is null
1528 */
1529 public boolean remove(Object key, Object value) {
1530 if (key == null)
1531 throw new NullPointerException();
1532 return value != null && replaceNode(key, null, value) != null;
1533 }
1534
1535 /**
1536 * {@inheritDoc}
1537 *
1538 * @throws NullPointerException if any of the arguments are null
1539 */
1540 public boolean replace(K key, V oldValue, V newValue) {
1541 if (key == null || oldValue == null || newValue == null)
1542 throw new NullPointerException();
1543 return replaceNode(key, newValue, oldValue) != null;
1544 }
1545
1546 /**
1547 * {@inheritDoc}
1548 *
1549 * @return the previous value associated with the specified key,
1550 * or {@code null} if there was no mapping for the key
1551 * @throws NullPointerException if the specified key or value is null
1552 */
1553 public V replace(K key, V value) {
1554 if (key == null || value == null)
1555 throw new NullPointerException();
1556 return replaceNode(key, value, null);
1557 }
1558
1559 // Overrides of JDK8+ Map extension method defaults
1560
1561 /**
1562 * Returns the value to which the specified key is mapped, or the
1563 * given default value if this map contains no mapping for the
1564 * key.
1565 *
1566 * @param key the key whose associated value is to be returned
1567 * @param defaultValue the value to return if this map contains
1568 * no mapping for the given key
1569 * @return the mapping for the key, if present; else the default value
1570 * @throws NullPointerException if the specified key is null
1571 */
1572 public V getOrDefault(Object key, V defaultValue) {
1573 V v;
1574 return (v = get(key)) == null ? defaultValue : v;
1575 }
1576
1577 public void forEach(BiAction<? super K, ? super V> action) {
1578 if (action == null) throw new NullPointerException();
1579 Node<K,V>[] t;
1580 if ((t = table) != null) {
1581 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1582 for (Node<K,V> p; (p = it.advance()) != null; ) {
1583 action.apply(p.key, p.val);
1584 }
1585 }
1586 }
1587
1588 public void replaceAll(BiFun<? super K, ? super V, ? extends V> function) {
1589 if (function == null) throw new NullPointerException();
1590 Node<K,V>[] t;
1591 if ((t = table) != null) {
1592 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1593 for (Node<K,V> p; (p = it.advance()) != null; ) {
1594 V oldValue = p.val;
1595 for (K key = p.key;;) {
1596 V newValue = function.apply(key, oldValue);
1597 if (newValue == null)
1598 throw new NullPointerException();
1599 if (replaceNode(key, newValue, oldValue) != null ||
1600 (oldValue = get(key)) == null)
1601 break;
1602 }
1603 }
1604 }
1605 }
1606
1607 /**
1608 * If the specified key is not already associated with a value,
1609 * attempts to compute its value using the given mapping function
1610 * and enters it into this map unless {@code null}. The entire
1611 * method invocation is performed atomically, so the function is
1612 * applied at most once per key. Some attempted update operations
1613 * on this map by other threads may be blocked while computation
1614 * is in progress, so the computation should be short and simple,
1615 * and must not attempt to update any other mappings of this map.
1616 *
1617 * @param key key with which the specified value is to be associated
1618 * @param mappingFunction the function to compute a value
1619 * @return the current (existing or computed) value associated with
1620 * the specified key, or null if the computed value is null
1621 * @throws NullPointerException if the specified key or mappingFunction
1622 * is null
1623 * @throws IllegalStateException if the computation detectably
1624 * attempts a recursive update to this map that would
1625 * otherwise never complete
1626 * @throws RuntimeException or Error if the mappingFunction does so,
1627 * in which case the mapping is left unestablished
1628 */
1629 public V computeIfAbsent(K key, Fun<? super K, ? extends V> mappingFunction) {
1630 if (key == null || mappingFunction == null)
1631 throw new NullPointerException();
1632 int h = spread(key.hashCode());
1633 V val = null;
1634 int binCount = 0;
1635 for (Node<K,V>[] tab = table;;) {
1636 Node<K,V> f; int n, i, fh;
1637 if (tab == null || (n = tab.length) == 0)
1638 tab = initTable();
1639 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1640 Node<K,V> r = new ReservationNode<K,V>();
1641 synchronized (r) {
1642 if (casTabAt(tab, i, null, r)) {
1643 binCount = 1;
1644 Node<K,V> node = null;
1645 try {
1646 if ((val = mappingFunction.apply(key)) != null)
1647 node = new Node<K,V>(h, key, val, null);
1648 } finally {
1649 setTabAt(tab, i, node);
1650 }
1651 }
1652 }
1653 if (binCount != 0)
1654 break;
1655 }
1656 else if ((fh = f.hash) == MOVED)
1657 tab = helpTransfer(tab, f);
1658 else {
1659 boolean added = false;
1660 synchronized (f) {
1661 if (tabAt(tab, i) == f) {
1662 if (fh >= 0) {
1663 binCount = 1;
1664 for (Node<K,V> e = f;; ++binCount) {
1665 K ek; V ev;
1666 if (e.hash == h &&
1667 ((ek = e.key) == key ||
1668 (ek != null && key.equals(ek)))) {
1669 val = e.val;
1670 break;
1671 }
1672 Node<K,V> pred = e;
1673 if ((e = e.next) == null) {
1674 if ((val = mappingFunction.apply(key)) != null) {
1675 added = true;
1676 pred.next = new Node<K,V>(h, key, val, null);
1677 }
1678 break;
1679 }
1680 }
1681 }
1682 else if (f instanceof TreeBin) {
1683 binCount = 2;
1684 TreeBin<K,V> t = (TreeBin<K,V>)f;
1685 TreeNode<K,V> r, p;
1686 if ((r = t.root) != null &&
1687 (p = r.findTreeNode(h, key, null)) != null)
1688 val = p.val;
1689 else if ((val = mappingFunction.apply(key)) != null) {
1690 added = true;
1691 t.putTreeVal(h, key, val);
1692 }
1693 }
1694 }
1695 }
1696 if (binCount != 0) {
1697 if (binCount >= TREEIFY_THRESHOLD)
1698 treeifyBin(tab, i);
1699 if (!added)
1700 return val;
1701 break;
1702 }
1703 }
1704 }
1705 if (val != null)
1706 addCount(1L, binCount);
1707 return val;
1708 }
1709
1710 /**
1711 * If the value for the specified key is present, attempts to
1712 * compute a new mapping given the key and its current mapped
1713 * value. The entire method invocation is performed atomically.
1714 * Some attempted update operations on this map by other threads
1715 * may be blocked while computation is in progress, so the
1716 * computation should be short and simple, and must not attempt to
1717 * update any other mappings of this map.
1718 *
1719 * @param key key with which a value may be associated
1720 * @param remappingFunction the function to compute a value
1721 * @return the new value associated with the specified key, or null if none
1722 * @throws NullPointerException if the specified key or remappingFunction
1723 * is null
1724 * @throws IllegalStateException if the computation detectably
1725 * attempts a recursive update to this map that would
1726 * otherwise never complete
1727 * @throws RuntimeException or Error if the remappingFunction does so,
1728 * in which case the mapping is unchanged
1729 */
1730 public V computeIfPresent(K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1731 if (key == null || remappingFunction == null)
1732 throw new NullPointerException();
1733 int h = spread(key.hashCode());
1734 V val = null;
1735 int delta = 0;
1736 int binCount = 0;
1737 for (Node<K,V>[] tab = table;;) {
1738 Node<K,V> f; int n, i, fh;
1739 if (tab == null || (n = tab.length) == 0)
1740 tab = initTable();
1741 else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1742 break;
1743 else if ((fh = f.hash) == MOVED)
1744 tab = helpTransfer(tab, f);
1745 else {
1746 synchronized (f) {
1747 if (tabAt(tab, i) == f) {
1748 if (fh >= 0) {
1749 binCount = 1;
1750 for (Node<K,V> e = f, pred = null;; ++binCount) {
1751 K ek;
1752 if (e.hash == h &&
1753 ((ek = e.key) == key ||
1754 (ek != null && key.equals(ek)))) {
1755 val = remappingFunction.apply(key, e.val);
1756 if (val != null)
1757 e.val = val;
1758 else {
1759 delta = -1;
1760 Node<K,V> en = e.next;
1761 if (pred != null)
1762 pred.next = en;
1763 else
1764 setTabAt(tab, i, en);
1765 }
1766 break;
1767 }
1768 pred = e;
1769 if ((e = e.next) == null)
1770 break;
1771 }
1772 }
1773 else if (f instanceof TreeBin) {
1774 binCount = 2;
1775 TreeBin<K,V> t = (TreeBin<K,V>)f;
1776 TreeNode<K,V> r, p;
1777 if ((r = t.root) != null &&
1778 (p = r.findTreeNode(h, key, null)) != null) {
1779 val = remappingFunction.apply(key, p.val);
1780 if (val != null)
1781 p.val = val;
1782 else {
1783 delta = -1;
1784 if (t.removeTreeNode(p))
1785 setTabAt(tab, i, untreeify(t.first));
1786 }
1787 }
1788 }
1789 }
1790 }
1791 if (binCount != 0)
1792 break;
1793 }
1794 }
1795 if (delta != 0)
1796 addCount((long)delta, binCount);
1797 return val;
1798 }
1799
1800 /**
1801 * Attempts to compute a mapping for the specified key and its
1802 * current mapped value (or {@code null} if there is no current
1803 * mapping). The entire method invocation is performed atomically.
1804 * Some attempted update operations on this map by other threads
1805 * may be blocked while computation is in progress, so the
1806 * computation should be short and simple, and must not attempt to
1807 * update any other mappings of this Map.
1808 *
1809 * @param key key with which the specified value is to be associated
1810 * @param remappingFunction the function to compute a value
1811 * @return the new value associated with the specified key, or null if none
1812 * @throws NullPointerException if the specified key or remappingFunction
1813 * is null
1814 * @throws IllegalStateException if the computation detectably
1815 * attempts a recursive update to this map that would
1816 * otherwise never complete
1817 * @throws RuntimeException or Error if the remappingFunction does so,
1818 * in which case the mapping is unchanged
1819 */
1820 public V compute(K key,
1821 BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1822 if (key == null || remappingFunction == null)
1823 throw new NullPointerException();
1824 int h = spread(key.hashCode());
1825 V val = null;
1826 int delta = 0;
1827 int binCount = 0;
1828 for (Node<K,V>[] tab = table;;) {
1829 Node<K,V> f; int n, i, fh;
1830 if (tab == null || (n = tab.length) == 0)
1831 tab = initTable();
1832 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1833 Node<K,V> r = new ReservationNode<K,V>();
1834 synchronized (r) {
1835 if (casTabAt(tab, i, null, r)) {
1836 binCount = 1;
1837 Node<K,V> node = null;
1838 try {
1839 if ((val = remappingFunction.apply(key, null)) != null) {
1840 delta = 1;
1841 node = new Node<K,V>(h, key, val, null);
1842 }
1843 } finally {
1844 setTabAt(tab, i, node);
1845 }
1846 }
1847 }
1848 if (binCount != 0)
1849 break;
1850 }
1851 else if ((fh = f.hash) == MOVED)
1852 tab = helpTransfer(tab, f);
1853 else {
1854 synchronized (f) {
1855 if (tabAt(tab, i) == f) {
1856 if (fh >= 0) {
1857 binCount = 1;
1858 for (Node<K,V> e = f, pred = null;; ++binCount) {
1859 K ek;
1860 if (e.hash == h &&
1861 ((ek = e.key) == key ||
1862 (ek != null && key.equals(ek)))) {
1863 val = remappingFunction.apply(key, e.val);
1864 if (val != null)
1865 e.val = val;
1866 else {
1867 delta = -1;
1868 Node<K,V> en = e.next;
1869 if (pred != null)
1870 pred.next = en;
1871 else
1872 setTabAt(tab, i, en);
1873 }
1874 break;
1875 }
1876 pred = e;
1877 if ((e = e.next) == null) {
1878 val = remappingFunction.apply(key, null);
1879 if (val != null) {
1880 delta = 1;
1881 pred.next =
1882 new Node<K,V>(h, key, val, null);
1883 }
1884 break;
1885 }
1886 }
1887 }
1888 else if (f instanceof TreeBin) {
1889 binCount = 1;
1890 TreeBin<K,V> t = (TreeBin<K,V>)f;
1891 TreeNode<K,V> r, p;
1892 if ((r = t.root) != null)
1893 p = r.findTreeNode(h, key, null);
1894 else
1895 p = null;
1896 V pv = (p == null) ? null : p.val;
1897 val = remappingFunction.apply(key, pv);
1898 if (val != null) {
1899 if (p != null)
1900 p.val = val;
1901 else {
1902 delta = 1;
1903 t.putTreeVal(h, key, val);
1904 }
1905 }
1906 else if (p != null) {
1907 delta = -1;
1908 if (t.removeTreeNode(p))
1909 setTabAt(tab, i, untreeify(t.first));
1910 }
1911 }
1912 }
1913 }
1914 if (binCount != 0) {
1915 if (binCount >= TREEIFY_THRESHOLD)
1916 treeifyBin(tab, i);
1917 break;
1918 }
1919 }
1920 }
1921 if (delta != 0)
1922 addCount((long)delta, binCount);
1923 return val;
1924 }
1925
1926 /**
1927 * If the specified key is not already associated with a
1928 * (non-null) value, associates it with the given value.
1929 * Otherwise, replaces the value with the results of the given
1930 * remapping function, or removes if {@code null}. The entire
1931 * method invocation is performed atomically. Some attempted
1932 * update operations on this map by other threads may be blocked
1933 * while computation is in progress, so the computation should be
1934 * short and simple, and must not attempt to update any other
1935 * mappings of this Map.
1936 *
1937 * @param key key with which the specified value is to be associated
1938 * @param value the value to use if absent
1939 * @param remappingFunction the function to recompute a value if present
1940 * @return the new value associated with the specified key, or null if none
1941 * @throws NullPointerException if the specified key or the
1942 * remappingFunction is null
1943 * @throws RuntimeException or Error if the remappingFunction does so,
1944 * in which case the mapping is unchanged
1945 */
1946 public V merge(K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
1947 if (key == null || value == null || remappingFunction == null)
1948 throw new NullPointerException();
1949 int h = spread(key.hashCode());
1950 V val = null;
1951 int delta = 0;
1952 int binCount = 0;
1953 for (Node<K,V>[] tab = table;;) {
1954 Node<K,V> f; int n, i, fh;
1955 if (tab == null || (n = tab.length) == 0)
1956 tab = initTable();
1957 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1958 if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1959 delta = 1;
1960 val = value;
1961 break;
1962 }
1963 }
1964 else if ((fh = f.hash) == MOVED)
1965 tab = helpTransfer(tab, f);
1966 else {
1967 synchronized (f) {
1968 if (tabAt(tab, i) == f) {
1969 if (fh >= 0) {
1970 binCount = 1;
1971 for (Node<K,V> e = f, pred = null;; ++binCount) {
1972 K ek;
1973 if (e.hash == h &&
1974 ((ek = e.key) == key ||
1975 (ek != null && key.equals(ek)))) {
1976 val = remappingFunction.apply(e.val, value);
1977 if (val != null)
1978 e.val = val;
1979 else {
1980 delta = -1;
1981 Node<K,V> en = e.next;
1982 if (pred != null)
1983 pred.next = en;
1984 else
1985 setTabAt(tab, i, en);
1986 }
1987 break;
1988 }
1989 pred = e;
1990 if ((e = e.next) == null) {
1991 delta = 1;
1992 val = value;
1993 pred.next =
1994 new Node<K,V>(h, key, val, null);
1995 break;
1996 }
1997 }
1998 }
1999 else if (f instanceof TreeBin) {
2000 binCount = 2;
2001 TreeBin<K,V> t = (TreeBin<K,V>)f;
2002 TreeNode<K,V> r = t.root;
2003 TreeNode<K,V> p = (r == null) ? null :
2004 r.findTreeNode(h, key, null);
2005 val = (p == null) ? value :
2006 remappingFunction.apply(p.val, value);
2007 if (val != null) {
2008 if (p != null)
2009 p.val = val;
2010 else {
2011 delta = 1;
2012 t.putTreeVal(h, key, val);
2013 }
2014 }
2015 else if (p != null) {
2016 delta = -1;
2017 if (t.removeTreeNode(p))
2018 setTabAt(tab, i, untreeify(t.first));
2019 }
2020 }
2021 }
2022 }
2023 if (binCount != 0) {
2024 if (binCount >= TREEIFY_THRESHOLD)
2025 treeifyBin(tab, i);
2026 break;
2027 }
2028 }
2029 }
2030 if (delta != 0)
2031 addCount((long)delta, binCount);
2032 return val;
2033 }
2034
2035 // Hashtable legacy methods
2036
2037 /**
2038 * Legacy method testing if some key maps into the specified value
2039 * in this table. This method is identical in functionality to
2040 * {@link #containsValue(Object)}, and exists solely to ensure
2041 * full compatibility with class {@link java.util.Hashtable},
2042 * which supported this method prior to introduction of the
2043 * Java Collections framework.
2044 *
2045 * @param value a value to search for
2046 * @return {@code true} if and only if some key maps to the
2047 * {@code value} argument in this table as
2048 * determined by the {@code equals} method;
2049 * {@code false} otherwise
2050 * @throws NullPointerException if the specified value is null
2051 */
2052 @Deprecated public boolean contains(Object value) {
2053 return containsValue(value);
2054 }
2055
2056 /**
2057 * Returns an enumeration of the keys in this table.
2058 *
2059 * @return an enumeration of the keys in this table
2060 * @see #keySet()
2061 */
2062 public Enumeration<K> keys() {
2063 Node<K,V>[] t;
2064 int f = (t = table) == null ? 0 : t.length;
2065 return new KeyIterator<K,V>(t, f, 0, f, this);
2066 }
2067
2068 /**
2069 * Returns an enumeration of the values in this table.
2070 *
2071 * @return an enumeration of the values in this table
2072 * @see #values()
2073 */
2074 public Enumeration<V> elements() {
2075 Node<K,V>[] t;
2076 int f = (t = table) == null ? 0 : t.length;
2077 return new ValueIterator<K,V>(t, f, 0, f, this);
2078 }
2079
2080 // ConcurrentHashMapV8-only methods
2081
2082 /**
2083 * Returns the number of mappings. This method should be used
2084 * instead of {@link #size} because a ConcurrentHashMapV8 may
2085 * contain more mappings than can be represented as an int. The
2086 * value returned is an estimate; the actual count may differ if
2087 * there are concurrent insertions or removals.
2088 *
2089 * @return the number of mappings
2090 * @since 1.8
2091 */
2092 public long mappingCount() {
2093 long n = sumCount();
2094 return (n < 0L) ? 0L : n; // ignore transient negative values
2095 }
2096
2097 /**
2098 * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2099 * from the given type to {@code Boolean.TRUE}.
2100 *
2101 * @return the new set
2102 * @since 1.8
2103 */
2104 public static <K> KeySetView<K,Boolean> newKeySet() {
2105 return new KeySetView<K,Boolean>
2106 (new ConcurrentHashMapV8<K,Boolean>(), Boolean.TRUE);
2107 }
2108
2109 /**
2110 * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2111 * from the given type to {@code Boolean.TRUE}.
2112 *
2113 * @param initialCapacity The implementation performs internal
2114 * sizing to accommodate this many elements.
2115 * @return the new set
2116 * @throws IllegalArgumentException if the initial capacity of
2117 * elements is negative
2118 * @since 1.8
2119 */
2120 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2121 return new KeySetView<K,Boolean>
2122 (new ConcurrentHashMapV8<K,Boolean>(initialCapacity), Boolean.TRUE);
2123 }
2124
2125 /**
2126 * Returns a {@link Set} view of the keys in this map, using the
2127 * given common mapped value for any additions (i.e., {@link
2128 * Collection#add} and {@link Collection#addAll(Collection)}).
2129 * This is of course only appropriate if it is acceptable to use
2130 * the same value for all additions from this view.
2131 *
2132 * @param mappedValue the mapped value to use for any additions
2133 * @return the set view
2134 * @throws NullPointerException if the mappedValue is null
2135 */
2136 public KeySetView<K,V> keySet(V mappedValue) {
2137 if (mappedValue == null)
2138 throw new NullPointerException();
2139 return new KeySetView<K,V>(this, mappedValue);
2140 }
2141
2142 /* ---------------- Special Nodes -------------- */
2143
2144 /**
2145 * A node inserted at head of bins during transfer operations.
2146 */
2147 static final class ForwardingNode<K,V> extends Node<K,V> {
2148 final Node<K,V>[] nextTable;
2149 ForwardingNode(Node<K,V>[] tab) {
2150 super(MOVED, null, null, null);
2151 this.nextTable = tab;
2152 }
2153
2154 Node<K,V> find(int h, Object k) {
2155 // loop to avoid arbitrarily deep recursion on forwarding nodes
2156 outer: for (Node<K,V>[] tab = nextTable;;) {
2157 Node<K,V> e; int n;
2158 if (k == null || tab == null || (n = tab.length) == 0 ||
2159 (e = tabAt(tab, (n - 1) & h)) == null)
2160 return null;
2161 for (;;) {
2162 int eh; K ek;
2163 if ((eh = e.hash) == h &&
2164 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2165 return e;
2166 if (eh < 0) {
2167 if (e instanceof ForwardingNode) {
2168 tab = ((ForwardingNode<K,V>)e).nextTable;
2169 continue outer;
2170 }
2171 else
2172 return e.find(h, k);
2173 }
2174 if ((e = e.next) == null)
2175 return null;
2176 }
2177 }
2178 }
2179 }
2180
2181 /**
2182 * A place-holder node used in computeIfAbsent and compute
2183 */
2184 static final class ReservationNode<K,V> extends Node<K,V> {
2185 ReservationNode() {
2186 super(RESERVED, null, null, null);
2187 }
2188
2189 Node<K,V> find(int h, Object k) {
2190 return null;
2191 }
2192 }
2193
2194 /* ---------------- Table Initialization and Resizing -------------- */
2195
2196 /**
2197 * Initializes table, using the size recorded in sizeCtl.
2198 */
2199 private final Node<K,V>[] initTable() {
2200 Node<K,V>[] tab; int sc;
2201 while ((tab = table) == null || tab.length == 0) {
2202 if ((sc = sizeCtl) < 0)
2203 Thread.yield(); // lost initialization race; just spin
2204 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2205 try {
2206 if ((tab = table) == null || tab.length == 0) {
2207 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2208 @SuppressWarnings({"rawtypes","unchecked"})
2209 Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2210 table = tab = nt;
2211 sc = n - (n >>> 2);
2212 }
2213 } finally {
2214 sizeCtl = sc;
2215 }
2216 break;
2217 }
2218 }
2219 return tab;
2220 }
2221
2222 /**
2223 * Adds to count, and if table is too small and not already
2224 * resizing, initiates transfer. If already resizing, helps
2225 * perform transfer if work is available. Rechecks occupancy
2226 * after a transfer to see if another resize is already needed
2227 * because resizings are lagging additions.
2228 *
2229 * @param x the count to add
2230 * @param check if <0, don't check resize, if <= 1 only check if uncontended
2231 */
2232 private final void addCount(long x, int check) {
2233 CounterCell[] as; long b, s;
2234 if ((as = counterCells) != null ||
2235 !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2236 CounterHashCode hc; CounterCell a; long v; int m;
2237 boolean uncontended = true;
2238 if ((hc = threadCounterHashCode.get()) == null ||
2239 as == null || (m = as.length - 1) < 0 ||
2240 (a = as[m & hc.code]) == null ||
2241 !(uncontended =
2242 U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2243 fullAddCount(x, hc, uncontended);
2244 return;
2245 }
2246 if (check <= 1)
2247 return;
2248 s = sumCount();
2249 }
2250 if (check >= 0) {
2251 Node<K,V>[] tab, nt; int sc;
2252 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2253 tab.length < MAXIMUM_CAPACITY) {
2254 if (sc < 0) {
2255 if (sc == -1 || transferIndex <= transferOrigin ||
2256 (nt = nextTable) == null)
2257 break;
2258 if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2259 transfer(tab, nt);
2260 }
2261 else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
2262 transfer(tab, null);
2263 s = sumCount();
2264 }
2265 }
2266 }
2267
2268 /**
2269 * Helps transfer if a resize is in progress.
2270 */
2271 final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2272 Node<K,V>[] nextTab; int sc;
2273 if ((f instanceof ForwardingNode) &&
2274 (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2275 if (nextTab == nextTable && tab == table &&
2276 transferIndex > transferOrigin && (sc = sizeCtl) < -1 &&
2277 U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2278 transfer(tab, nextTab);
2279 return nextTab;
2280 }
2281 return table;
2282 }
2283
2284 /**
2285 * Tries to presize table to accommodate the given number of elements.
2286 *
2287 * @param size number of elements (doesn't need to be perfectly accurate)
2288 */
2289 private final void tryPresize(int size) {
2290 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2291 tableSizeFor(size + (size >>> 1) + 1);
2292 int sc;
2293 while ((sc = sizeCtl) >= 0) {
2294 Node<K,V>[] tab = table; int n;
2295 if (tab == null || (n = tab.length) == 0) {
2296 n = (sc > c) ? sc : c;
2297 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2298 try {
2299 if (table == tab) {
2300 @SuppressWarnings({"rawtypes","unchecked"})
2301 Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2302 table = nt;
2303 sc = n - (n >>> 2);
2304 }
2305 } finally {
2306 sizeCtl = sc;
2307 }
2308 }
2309 }
2310 else if (c <= sc || n >= MAXIMUM_CAPACITY)
2311 break;
2312 else if (tab == table &&
2313 U.compareAndSwapInt(this, SIZECTL, sc, -2))
2314 transfer(tab, null);
2315 }
2316 }
2317
2318 /**
2319 * Moves and/or copies the nodes in each bin to new table. See
2320 * above for explanation.
2321 */
2322 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2323 int n = tab.length, stride;
2324 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2325 stride = MIN_TRANSFER_STRIDE; // subdivide range
2326 if (nextTab == null) { // initiating
2327 try {
2328 @SuppressWarnings({"rawtypes","unchecked"})
2329 Node<K,V>[] nt = (Node<K,V>[])new Node[n << 1];
2330 nextTab = nt;
2331 } catch (Throwable ex) { // try to cope with OOME
2332 sizeCtl = Integer.MAX_VALUE;
2333 return;
2334 }
2335 nextTable = nextTab;
2336 transferOrigin = n;
2337 transferIndex = n;
2338 ForwardingNode<K,V> rev = new ForwardingNode<K,V>(tab);
2339 for (int k = n; k > 0;) { // progressively reveal ready slots
2340 int nextk = (k > stride) ? k - stride : 0;
2341 for (int m = nextk; m < k; ++m)
2342 nextTab[m] = rev;
2343 for (int m = n + nextk; m < n + k; ++m)
2344 nextTab[m] = rev;
2345 U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
2346 }
2347 }
2348 int nextn = nextTab.length;
2349 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2350 boolean advance = true;
2351 boolean finishing = false; // to ensure sweep before committing nextTab
2352 for (int i = 0, bound = 0;;) {
2353 int nextIndex, nextBound, fh; Node<K,V> f;
2354 while (advance) {
2355 if (--i >= bound || finishing)
2356 advance = false;
2357 else if ((nextIndex = transferIndex) <= transferOrigin) {
2358 i = -1;
2359 advance = false;
2360 }
2361 else if (U.compareAndSwapInt
2362 (this, TRANSFERINDEX, nextIndex,
2363 nextBound = (nextIndex > stride ?
2364 nextIndex - stride : 0))) {
2365 bound = nextBound;
2366 i = nextIndex - 1;
2367 advance = false;
2368 }
2369 }
2370 if (i < 0 || i >= n || i + n >= nextn) {
2371 if (finishing) {
2372 nextTable = null;
2373 table = nextTab;
2374 sizeCtl = (n << 1) - (n >>> 1);
2375 return;
2376 }
2377 for (int sc;;) {
2378 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2379 if (sc != -1)
2380 return;
2381 finishing = advance = true;
2382 i = n; // recheck before commit
2383 break;
2384 }
2385 }
2386 }
2387 else if ((f = tabAt(tab, i)) == null) {
2388 if (casTabAt(tab, i, null, fwd)) {
2389 setTabAt(nextTab, i, null);
2390 setTabAt(nextTab, i + n, null);
2391 advance = true;
2392 }
2393 }
2394 else if ((fh = f.hash) == MOVED)
2395 advance = true; // already processed
2396 else {
2397 synchronized (f) {
2398 if (tabAt(tab, i) == f) {
2399 Node<K,V> ln, hn;
2400 if (fh >= 0) {
2401 int runBit = fh & n;
2402 Node<K,V> lastRun = f;
2403 for (Node<K,V> p = f.next; p != null; p = p.next) {
2404 int b = p.hash & n;
2405 if (b != runBit) {
2406 runBit = b;
2407 lastRun = p;
2408 }
2409 }
2410 if (runBit == 0) {
2411 ln = lastRun;
2412 hn = null;
2413 }
2414 else {
2415 hn = lastRun;
2416 ln = null;
2417 }
2418 for (Node<K,V> p = f; p != lastRun; p = p.next) {
2419 int ph = p.hash; K pk = p.key; V pv = p.val;
2420 if ((ph & n) == 0)
2421 ln = new Node<K,V>(ph, pk, pv, ln);
2422 else
2423 hn = new Node<K,V>(ph, pk, pv, hn);
2424 }
2425 setTabAt(nextTab, i, ln);
2426 setTabAt(nextTab, i + n, hn);
2427 setTabAt(tab, i, fwd);
2428 advance = true;
2429 }
2430 else if (f instanceof TreeBin) {
2431 TreeBin<K,V> t = (TreeBin<K,V>)f;
2432 TreeNode<K,V> lo = null, loTail = null;
2433 TreeNode<K,V> hi = null, hiTail = null;
2434 int lc = 0, hc = 0;
2435 for (Node<K,V> e = t.first; e != null; e = e.next) {
2436 int h = e.hash;
2437 TreeNode<K,V> p = new TreeNode<K,V>
2438 (h, e.key, e.val, null, null);
2439 if ((h & n) == 0) {
2440 if ((p.prev = loTail) == null)
2441 lo = p;
2442 else
2443 loTail.next = p;
2444 loTail = p;
2445 ++lc;
2446 }
2447 else {
2448 if ((p.prev = hiTail) == null)
2449 hi = p;
2450 else
2451 hiTail.next = p;
2452 hiTail = p;
2453 ++hc;
2454 }
2455 }
2456 ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2457 (hc != 0) ? new TreeBin<K,V>(lo) : t;
2458 hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2459 (lc != 0) ? new TreeBin<K,V>(hi) : t;
2460 setTabAt(nextTab, i, ln);
2461 setTabAt(nextTab, i + n, hn);
2462 setTabAt(tab, i, fwd);
2463 advance = true;
2464 }
2465 }
2466 }
2467 }
2468 }
2469 }
2470
2471 /* ---------------- Conversion from/to TreeBins -------------- */
2472
2473 /**
2474 * Replaces all linked nodes in bin at given index unless table is
2475 * too small, in which case resizes instead.
2476 */
2477 private final void treeifyBin(Node<K,V>[] tab, int index) {
2478 Node<K,V> b; int n, sc;
2479 if (tab != null) {
2480 if ((n = tab.length) < MIN_TREEIFY_CAPACITY) {
2481 if (tab == table && (sc = sizeCtl) >= 0 &&
2482 U.compareAndSwapInt(this, SIZECTL, sc, -2))
2483 transfer(tab, null);
2484 }
2485 else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2486 synchronized (b) {
2487 if (tabAt(tab, index) == b) {
2488 TreeNode<K,V> hd = null, tl = null;
2489 for (Node<K,V> e = b; e != null; e = e.next) {
2490 TreeNode<K,V> p =
2491 new TreeNode<K,V>(e.hash, e.key, e.val,
2492 null, null);
2493 if ((p.prev = tl) == null)
2494 hd = p;
2495 else
2496 tl.next = p;
2497 tl = p;
2498 }
2499 setTabAt(tab, index, new TreeBin<K,V>(hd));
2500 }
2501 }
2502 }
2503 }
2504 }
2505
2506 /**
2507 * Returns a list on non-TreeNodes replacing those in given list.
2508 */
2509 static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2510 Node<K,V> hd = null, tl = null;
2511 for (Node<K,V> q = b; q != null; q = q.next) {
2512 Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2513 if (tl == null)
2514 hd = p;
2515 else
2516 tl.next = p;
2517 tl = p;
2518 }
2519 return hd;
2520 }
2521
2522 /* ---------------- TreeNodes -------------- */
2523
2524 /**
2525 * Nodes for use in TreeBins
2526 */
2527 static final class TreeNode<K,V> extends Node<K,V> {
2528 TreeNode<K,V> parent; // red-black tree links
2529 TreeNode<K,V> left;
2530 TreeNode<K,V> right;
2531 TreeNode<K,V> prev; // needed to unlink next upon deletion
2532 boolean red;
2533
2534 TreeNode(int hash, K key, V val, Node<K,V> next,
2535 TreeNode<K,V> parent) {
2536 super(hash, key, val, next);
2537 this.parent = parent;
2538 }
2539
2540 Node<K,V> find(int h, Object k) {
2541 return findTreeNode(h, k, null);
2542 }
2543
2544 /**
2545 * Returns the TreeNode (or null if not found) for the given key
2546 * starting at given root.
2547 */
2548 final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2549 if (k != null) {
2550 TreeNode<K,V> p = this;
2551 do {
2552 int ph, dir; K pk; TreeNode<K,V> q;
2553 TreeNode<K,V> pl = p.left, pr = p.right;
2554 if ((ph = p.hash) > h)
2555 p = pl;
2556 else if (ph < h)
2557 p = pr;
2558 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2559 return p;
2560 else if (pl == null)
2561 p = pr;
2562 else if (pr == null)
2563 p = pl;
2564 else if ((kc != null ||
2565 (kc = comparableClassFor(k)) != null) &&
2566 (dir = compareComparables(kc, k, pk)) != 0)
2567 p = (dir < 0) ? pl : pr;
2568 else if ((q = pr.findTreeNode(h, k, kc)) != null)
2569 return q;
2570 else
2571 p = pl;
2572 } while (p != null);
2573 }
2574 return null;
2575 }
2576 }
2577
2578 /* ---------------- TreeBins -------------- */
2579
2580 /**
2581 * TreeNodes used at the heads of bins. TreeBins do not hold user
2582 * keys or values, but instead point to list of TreeNodes and
2583 * their root. They also maintain a parasitic read-write lock
2584 * forcing writers (who hold bin lock) to wait for readers (who do
2585 * not) to complete before tree restructuring operations.
2586 */
2587 static final class TreeBin<K,V> extends Node<K,V> {
2588 TreeNode<K,V> root;
2589 volatile TreeNode<K,V> first;
2590 volatile Thread waiter;
2591 volatile int lockState;
2592 // values for lockState
2593 static final int WRITER = 1; // set while holding write lock
2594 static final int WAITER = 2; // set when waiting for write lock
2595 static final int READER = 4; // increment value for setting read lock
2596
2597 /**
2598 * Tie-breaking utility for ordering insertions when equal
2599 * hashCodes and non-comparable. We don't require a total
2600 * order, just a consistent insertion rule to maintain
2601 * equivalence across rebalancings. Tie-breaking further than
2602 * necessary simplifies testing a bit.
2603 */
2604 static int tieBreakOrder(Object a, Object b) {
2605 int d;
2606 if (a == null || b == null ||
2607 (d = a.getClass().getName().
2608 compareTo(b.getClass().getName())) == 0)
2609 d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2610 -1 : 1);
2611 return d;
2612 }
2613
2614 /**
2615 * Creates bin with initial set of nodes headed by b.
2616 */
2617 TreeBin(TreeNode<K,V> b) {
2618 super(TREEBIN, null, null, null);
2619 this.first = b;
2620 TreeNode<K,V> r = null;
2621 for (TreeNode<K,V> x = b, next; x != null; x = next) {
2622 next = (TreeNode<K,V>)x.next;
2623 x.left = x.right = null;
2624 if (r == null) {
2625 x.parent = null;
2626 x.red = false;
2627 r = x;
2628 }
2629 else {
2630 K k = x.key;
2631 int h = x.hash;
2632 Class<?> kc = null;
2633 for (TreeNode<K,V> p = r;;) {
2634 int dir, ph;
2635 K pk = p.key;
2636 if ((ph = p.hash) > h)
2637 dir = -1;
2638 else if (ph < h)
2639 dir = 1;
2640 else if ((kc == null &&
2641 (kc = comparableClassFor(k)) == null) ||
2642 (dir = compareComparables(kc, k, pk)) == 0)
2643 dir = tieBreakOrder(k, pk);
2644 TreeNode<K,V> xp = p;
2645 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2646 x.parent = xp;
2647 if (dir <= 0)
2648 xp.left = x;
2649 else
2650 xp.right = x;
2651 r = balanceInsertion(r, x);
2652 break;
2653 }
2654 }
2655 }
2656 }
2657 this.root = r;
2658 assert checkInvariants(root);
2659 }
2660
2661 /**
2662 * Acquires write lock for tree restructuring.
2663 */
2664 private final void lockRoot() {
2665 if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2666 contendedLock(); // offload to separate method
2667 }
2668
2669 /**
2670 * Releases write lock for tree restructuring.
2671 */
2672 private final void unlockRoot() {
2673 lockState = 0;
2674 }
2675
2676 /**
2677 * Possibly blocks awaiting root lock.
2678 */
2679 private final void contendedLock() {
2680 boolean waiting = false;
2681 for (int s;;) {
2682 if (((s = lockState) & WRITER) == 0) {
2683 if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2684 if (waiting)
2685 waiter = null;
2686 return;
2687 }
2688 }
2689 else if ((s & WAITER) == 0) {
2690 if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2691 waiting = true;
2692 waiter = Thread.currentThread();
2693 }
2694 }
2695 else if (waiting)
2696 LockSupport.park(this);
2697 }
2698 }
2699
2700 /**
2701 * Returns matching node or null if none. Tries to search
2702 * using tree comparisons from root, but continues linear
2703 * search when lock not available.
2704 */
2705 final Node<K,V> find(int h, Object k) {
2706 if (k != null) {
2707 for (Node<K,V> e = first; e != null; e = e.next) {
2708 int s; K ek;
2709 if (((s = lockState) & (WAITER|WRITER)) != 0) {
2710 if (e.hash == h &&
2711 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2712 return e;
2713 }
2714 else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2715 s + READER)) {
2716 TreeNode<K,V> r, p;
2717 try {
2718 p = ((r = root) == null ? null :
2719 r.findTreeNode(h, k, null));
2720 } finally {
2721 Thread w;
2722 int ls;
2723 do {} while (!U.compareAndSwapInt
2724 (this, LOCKSTATE,
2725 ls = lockState, ls - READER));
2726 if (ls == (READER|WAITER) && (w = waiter) != null)
2727 LockSupport.unpark(w);
2728 }
2729 return p;
2730 }
2731 }
2732 }
2733 return null;
2734 }
2735
2736 /**
2737 * Finds or adds a node.
2738 * @return null if added
2739 */
2740 final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2741 Class<?> kc = null;
2742 boolean searched = false;
2743 for (TreeNode<K,V> p = root;;) {
2744 int dir, ph; K pk;
2745 if (p == null) {
2746 first = root = new TreeNode<K,V>(h, k, v, null, null);
2747 break;
2748 }
2749 else if ((ph = p.hash) > h)
2750 dir = -1;
2751 else if (ph < h)
2752 dir = 1;
2753 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2754 return p;
2755 else if ((kc == null &&
2756 (kc = comparableClassFor(k)) == null) ||
2757 (dir = compareComparables(kc, k, pk)) == 0) {
2758 if (!searched) {
2759 TreeNode<K,V> q, ch;
2760 searched = true;
2761 if (((ch = p.left) != null &&
2762 (q = ch.findTreeNode(h, k, kc)) != null) ||
2763 ((ch = p.right) != null &&
2764 (q = ch.findTreeNode(h, k, kc)) != null))
2765 return q;
2766 }
2767 dir = tieBreakOrder(k, pk);
2768 }
2769
2770 TreeNode<K,V> xp = p;
2771 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2772 TreeNode<K,V> x, f = first;
2773 first = x = new TreeNode<K,V>(h, k, v, f, xp);
2774 if (f != null)
2775 f.prev = x;
2776 if (dir <= 0)
2777 xp.left = x;
2778 else
2779 xp.right = x;
2780 if (!xp.red)
2781 x.red = true;
2782 else {
2783 lockRoot();
2784 try {
2785 root = balanceInsertion(root, x);
2786 } finally {
2787 unlockRoot();
2788 }
2789 }
2790 break;
2791 }
2792 }
2793 assert checkInvariants(root);
2794 return null;
2795 }
2796
2797 /**
2798 * Removes the given node, that must be present before this
2799 * call. This is messier than typical red-black deletion code
2800 * because we cannot swap the contents of an interior node
2801 * with a leaf successor that is pinned by "next" pointers
2802 * that are accessible independently of lock. So instead we
2803 * swap the tree linkages.
2804 *
2805 * @return true if now too small, so should be untreeified
2806 */
2807 final boolean removeTreeNode(TreeNode<K,V> p) {
2808 TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2809 TreeNode<K,V> pred = p.prev; // unlink traversal pointers
2810 TreeNode<K,V> r, rl;
2811 if (pred == null)
2812 first = next;
2813 else
2814 pred.next = next;
2815 if (next != null)
2816 next.prev = pred;
2817 if (first == null) {
2818 root = null;
2819 return true;
2820 }
2821 if ((r = root) == null || r.right == null || // too small
2822 (rl = r.left) == null || rl.left == null)
2823 return true;
2824 lockRoot();
2825 try {
2826 TreeNode<K,V> replacement;
2827 TreeNode<K,V> pl = p.left;
2828 TreeNode<K,V> pr = p.right;
2829 if (pl != null && pr != null) {
2830 TreeNode<K,V> s = pr, sl;
2831 while ((sl = s.left) != null) // find successor
2832 s = sl;
2833 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2834 TreeNode<K,V> sr = s.right;
2835 TreeNode<K,V> pp = p.parent;
2836 if (s == pr) { // p was s's direct parent
2837 p.parent = s;
2838 s.right = p;
2839 }
2840 else {
2841 TreeNode<K,V> sp = s.parent;
2842 if ((p.parent = sp) != null) {
2843 if (s == sp.left)
2844 sp.left = p;
2845 else
2846 sp.right = p;
2847 }
2848 if ((s.right = pr) != null)
2849 pr.parent = s;
2850 }
2851 p.left = null;
2852 if ((p.right = sr) != null)
2853 sr.parent = p;
2854 if ((s.left = pl) != null)
2855 pl.parent = s;
2856 if ((s.parent = pp) == null)
2857 r = s;
2858 else if (p == pp.left)
2859 pp.left = s;
2860 else
2861 pp.right = s;
2862 if (sr != null)
2863 replacement = sr;
2864 else
2865 replacement = p;
2866 }
2867 else if (pl != null)
2868 replacement = pl;
2869 else if (pr != null)
2870 replacement = pr;
2871 else
2872 replacement = p;
2873 if (replacement != p) {
2874 TreeNode<K,V> pp = replacement.parent = p.parent;
2875 if (pp == null)
2876 r = replacement;
2877 else if (p == pp.left)
2878 pp.left = replacement;
2879 else
2880 pp.right = replacement;
2881 p.left = p.right = p.parent = null;
2882 }
2883
2884 root = (p.red) ? r : balanceDeletion(r, replacement);
2885
2886 if (p == replacement) { // detach pointers
2887 TreeNode<K,V> pp;
2888 if ((pp = p.parent) != null) {
2889 if (p == pp.left)
2890 pp.left = null;
2891 else if (p == pp.right)
2892 pp.right = null;
2893 p.parent = null;
2894 }
2895 }
2896 } finally {
2897 unlockRoot();
2898 }
2899 assert checkInvariants(root);
2900 return false;
2901 }
2902
2903 /* ------------------------------------------------------------ */
2904 // Red-black tree methods, all adapted from CLR
2905
2906 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2907 TreeNode<K,V> p) {
2908 TreeNode<K,V> r, pp, rl;
2909 if (p != null && (r = p.right) != null) {
2910 if ((rl = p.right = r.left) != null)
2911 rl.parent = p;
2912 if ((pp = r.parent = p.parent) == null)
2913 (root = r).red = false;
2914 else if (pp.left == p)
2915 pp.left = r;
2916 else
2917 pp.right = r;
2918 r.left = p;
2919 p.parent = r;
2920 }
2921 return root;
2922 }
2923
2924 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2925 TreeNode<K,V> p) {
2926 TreeNode<K,V> l, pp, lr;
2927 if (p != null && (l = p.left) != null) {
2928 if ((lr = p.left = l.right) != null)
2929 lr.parent = p;
2930 if ((pp = l.parent = p.parent) == null)
2931 (root = l).red = false;
2932 else if (pp.right == p)
2933 pp.right = l;
2934 else
2935 pp.left = l;
2936 l.right = p;
2937 p.parent = l;
2938 }
2939 return root;
2940 }
2941
2942 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2943 TreeNode<K,V> x) {
2944 x.red = true;
2945 for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2946 if ((xp = x.parent) == null) {
2947 x.red = false;
2948 return x;
2949 }
2950 else if (!xp.red || (xpp = xp.parent) == null)
2951 return root;
2952 if (xp == (xppl = xpp.left)) {
2953 if ((xppr = xpp.right) != null && xppr.red) {
2954 xppr.red = false;
2955 xp.red = false;
2956 xpp.red = true;
2957 x = xpp;
2958 }
2959 else {
2960 if (x == xp.right) {
2961 root = rotateLeft(root, x = xp);
2962 xpp = (xp = x.parent) == null ? null : xp.parent;
2963 }
2964 if (xp != null) {
2965 xp.red = false;
2966 if (xpp != null) {
2967 xpp.red = true;
2968 root = rotateRight(root, xpp);
2969 }
2970 }
2971 }
2972 }
2973 else {
2974 if (xppl != null && xppl.red) {
2975 xppl.red = false;
2976 xp.red = false;
2977 xpp.red = true;
2978 x = xpp;
2979 }
2980 else {
2981 if (x == xp.left) {
2982 root = rotateRight(root, x = xp);
2983 xpp = (xp = x.parent) == null ? null : xp.parent;
2984 }
2985 if (xp != null) {
2986 xp.red = false;
2987 if (xpp != null) {
2988 xpp.red = true;
2989 root = rotateLeft(root, xpp);
2990 }
2991 }
2992 }
2993 }
2994 }
2995 }
2996
2997 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
2998 TreeNode<K,V> x) {
2999 for (TreeNode<K,V> xp, xpl, xpr;;) {
3000 if (x == null || x == root)
3001 return root;
3002 else if ((xp = x.parent) == null) {
3003 x.red = false;
3004 return x;
3005 }
3006 else if (x.red) {
3007 x.red = false;
3008 return root;
3009 }
3010 else if ((xpl = xp.left) == x) {
3011 if ((xpr = xp.right) != null && xpr.red) {
3012 xpr.red = false;
3013 xp.red = true;
3014 root = rotateLeft(root, xp);
3015 xpr = (xp = x.parent) == null ? null : xp.right;
3016 }
3017 if (xpr == null)
3018 x = xp;
3019 else {
3020 TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3021 if ((sr == null || !sr.red) &&
3022 (sl == null || !sl.red)) {
3023 xpr.red = true;
3024 x = xp;
3025 }
3026 else {
3027 if (sr == null || !sr.red) {
3028 if (sl != null)
3029 sl.red = false;
3030 xpr.red = true;
3031 root = rotateRight(root, xpr);
3032 xpr = (xp = x.parent) == null ?
3033 null : xp.right;
3034 }
3035 if (xpr != null) {
3036 xpr.red = (xp == null) ? false : xp.red;
3037 if ((sr = xpr.right) != null)
3038 sr.red = false;
3039 }
3040 if (xp != null) {
3041 xp.red = false;
3042 root = rotateLeft(root, xp);
3043 }
3044 x = root;
3045 }
3046 }
3047 }
3048 else { // symmetric
3049 if (xpl != null && xpl.red) {
3050 xpl.red = false;
3051 xp.red = true;
3052 root = rotateRight(root, xp);
3053 xpl = (xp = x.parent) == null ? null : xp.left;
3054 }
3055 if (xpl == null)
3056 x = xp;
3057 else {
3058 TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3059 if ((sl == null || !sl.red) &&
3060 (sr == null || !sr.red)) {
3061 xpl.red = true;
3062 x = xp;
3063 }
3064 else {
3065 if (sl == null || !sl.red) {
3066 if (sr != null)
3067 sr.red = false;
3068 xpl.red = true;
3069 root = rotateLeft(root, xpl);
3070 xpl = (xp = x.parent) == null ?
3071 null : xp.left;
3072 }
3073 if (xpl != null) {
3074 xpl.red = (xp == null) ? false : xp.red;
3075 if ((sl = xpl.left) != null)
3076 sl.red = false;
3077 }
3078 if (xp != null) {
3079 xp.red = false;
3080 root = rotateRight(root, xp);
3081 }
3082 x = root;
3083 }
3084 }
3085 }
3086 }
3087 }
3088
3089 /**
3090 * Recursive invariant check
3091 */
3092 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3093 TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3094 tb = t.prev, tn = (TreeNode<K,V>)t.next;
3095 if (tb != null && tb.next != t)
3096 return false;
3097 if (tn != null && tn.prev != t)
3098 return false;
3099 if (tp != null && t != tp.left && t != tp.right)
3100 return false;
3101 if (tl != null && (tl.parent != t || tl.hash > t.hash))
3102 return false;
3103 if (tr != null && (tr.parent != t || tr.hash < t.hash))
3104 return false;
3105 if (t.red && tl != null && tl.red && tr != null && tr.red)
3106 return false;
3107 if (tl != null && !checkInvariants(tl))
3108 return false;
3109 if (tr != null && !checkInvariants(tr))
3110 return false;
3111 return true;
3112 }
3113
3114 private static final sun.misc.Unsafe U;
3115 private static final long LOCKSTATE;
3116 static {
3117 try {
3118 U = getUnsafe();
3119 Class<?> k = TreeBin.class;
3120 LOCKSTATE = U.objectFieldOffset
3121 (k.getDeclaredField("lockState"));
3122 } catch (Exception e) {
3123 throw new Error(e);
3124 }
3125 }
3126 }
3127
3128 /* ----------------Table Traversal -------------- */
3129
3130 /**
3131 * Encapsulates traversal for methods such as containsValue; also
3132 * serves as a base class for other iterators and spliterators.
3133 *
3134 * Method advance visits once each still-valid node that was
3135 * reachable upon iterator construction. It might miss some that
3136 * were added to a bin after the bin was visited, which is OK wrt
3137 * consistency guarantees. Maintaining this property in the face
3138 * of possible ongoing resizes requires a fair amount of
3139 * bookkeeping state that is difficult to optimize away amidst
3140 * volatile accesses. Even so, traversal maintains reasonable
3141 * throughput.
3142 *
3143 * Normally, iteration proceeds bin-by-bin traversing lists.
3144 * However, if the table has been resized, then all future steps
3145 * must traverse both the bin at the current index as well as at
3146 * (index + baseSize); and so on for further resizings. To
3147 * paranoically cope with potential sharing by users of iterators
3148 * across threads, iteration terminates if a bounds checks fails
3149 * for a table read.
3150 */
3151 static class Traverser<K,V> {
3152 Node<K,V>[] tab; // current table; updated if resized
3153 Node<K,V> next; // the next entry to use
3154 int index; // index of bin to use next
3155 int baseIndex; // current index of initial table
3156 int baseLimit; // index bound for initial table
3157 final int baseSize; // initial table size
3158
3159 Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3160 this.tab = tab;
3161 this.baseSize = size;
3162 this.baseIndex = this.index = index;
3163 this.baseLimit = limit;
3164 this.next = null;
3165 }
3166
3167 /**
3168 * Advances if possible, returning next valid node, or null if none.
3169 */
3170 final Node<K,V> advance() {
3171 Node<K,V> e;
3172 if ((e = next) != null)
3173 e = e.next;
3174 for (;;) {
3175 Node<K,V>[] t; int i, n; K ek; // must use locals in checks
3176 if (e != null)
3177 return next = e;
3178 if (baseIndex >= baseLimit || (t = tab) == null ||
3179 (n = t.length) <= (i = index) || i < 0)
3180 return next = null;
3181 if ((e = tabAt(t, index)) != null && e.hash < 0) {
3182 if (e instanceof ForwardingNode) {
3183 tab = ((ForwardingNode<K,V>)e).nextTable;
3184 e = null;
3185 continue;
3186 }
3187 else if (e instanceof TreeBin)
3188 e = ((TreeBin<K,V>)e).first;
3189 else
3190 e = null;
3191 }
3192 if ((index += baseSize) >= n)
3193 index = ++baseIndex; // visit upper slots if present
3194 }
3195 }
3196 }
3197
3198 /**
3199 * Base of key, value, and entry Iterators. Adds fields to
3200 * Traverser to support iterator.remove.
3201 */
3202 static class BaseIterator<K,V> extends Traverser<K,V> {
3203 final ConcurrentHashMapV8<K,V> map;
3204 Node<K,V> lastReturned;
3205 BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3206 ConcurrentHashMapV8<K,V> map) {
3207 super(tab, size, index, limit);
3208 this.map = map;
3209 advance();
3210 }
3211
3212 public final boolean hasNext() { return next != null; }
3213 public final boolean hasMoreElements() { return next != null; }
3214
3215 public final void remove() {
3216 Node<K,V> p;
3217 if ((p = lastReturned) == null)
3218 throw new IllegalStateException();
3219 lastReturned = null;
3220 map.replaceNode(p.key, null, null);
3221 }
3222 }
3223
3224 static final class KeyIterator<K,V> extends BaseIterator<K,V>
3225 implements Iterator<K>, Enumeration<K> {
3226 KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3227 ConcurrentHashMapV8<K,V> map) {
3228 super(tab, index, size, limit, map);
3229 }
3230
3231 public final K next() {
3232 Node<K,V> p;
3233 if ((p = next) == null)
3234 throw new NoSuchElementException();
3235 K k = p.key;
3236 lastReturned = p;
3237 advance();
3238 return k;
3239 }
3240
3241 public final K nextElement() { return next(); }
3242 }
3243
3244 static final class ValueIterator<K,V> extends BaseIterator<K,V>
3245 implements Iterator<V>, Enumeration<V> {
3246 ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3247 ConcurrentHashMapV8<K,V> map) {
3248 super(tab, index, size, limit, map);
3249 }
3250
3251 public final V next() {
3252 Node<K,V> p;
3253 if ((p = next) == null)
3254 throw new NoSuchElementException();
3255 V v = p.val;
3256 lastReturned = p;
3257 advance();
3258 return v;
3259 }
3260
3261 public final V nextElement() { return next(); }
3262 }
3263
3264 static final class EntryIterator<K,V> extends BaseIterator<K,V>
3265 implements Iterator<Map.Entry<K,V>> {
3266 EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3267 ConcurrentHashMapV8<K,V> map) {
3268 super(tab, index, size, limit, map);
3269 }
3270
3271 public final Map.Entry<K,V> next() {
3272 Node<K,V> p;
3273 if ((p = next) == null)
3274 throw new NoSuchElementException();
3275 K k = p.key;
3276 V v = p.val;
3277 lastReturned = p;
3278 advance();
3279 return new MapEntry<K,V>(k, v, map);
3280 }
3281 }
3282
3283 /**
3284 * Exported Entry for EntryIterator
3285 */
3286 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3287 final K key; // non-null
3288 V val; // non-null
3289 final ConcurrentHashMapV8<K,V> map;
3290 MapEntry(K key, V val, ConcurrentHashMapV8<K,V> map) {
3291 this.key = key;
3292 this.val = val;
3293 this.map = map;
3294 }
3295 public K getKey() { return key; }
3296 public V getValue() { return val; }
3297 public int hashCode() { return key.hashCode() ^ val.hashCode(); }
3298 public String toString() { return key + "=" + val; }
3299
3300 public boolean equals(Object o) {
3301 Object k, v; Map.Entry<?,?> e;
3302 return ((o instanceof Map.Entry) &&
3303 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3304 (v = e.getValue()) != null &&
3305 (k == key || k.equals(key)) &&
3306 (v == val || v.equals(val)));
3307 }
3308
3309 /**
3310 * Sets our entry's value and writes through to the map. The
3311 * value to return is somewhat arbitrary here. Since we do not
3312 * necessarily track asynchronous changes, the most recent
3313 * "previous" value could be different from what we return (or
3314 * could even have been removed, in which case the put will
3315 * re-establish). We do not and cannot guarantee more.
3316 */
3317 public V setValue(V value) {
3318 if (value == null) throw new NullPointerException();
3319 V v = val;
3320 val = value;
3321 map.put(key, value);
3322 return v;
3323 }
3324 }
3325
3326 static final class KeySpliterator<K,V> extends Traverser<K,V>
3327 implements ConcurrentHashMapSpliterator<K> {
3328 long est; // size estimate
3329 KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3330 long est) {
3331 super(tab, size, index, limit);
3332 this.est = est;
3333 }
3334
3335 public ConcurrentHashMapSpliterator<K> trySplit() {
3336 int i, f, h;
3337 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3338 new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3339 f, est >>>= 1);
3340 }
3341
3342 public void forEachRemaining(Action<? super K> action) {
3343 if (action == null) throw new NullPointerException();
3344 for (Node<K,V> p; (p = advance()) != null;)
3345 action.apply(p.key);
3346 }
3347
3348 public boolean tryAdvance(Action<? super K> action) {
3349 if (action == null) throw new NullPointerException();
3350 Node<K,V> p;
3351 if ((p = advance()) == null)
3352 return false;
3353 action.apply(p.key);
3354 return true;
3355 }
3356
3357 public long estimateSize() { return est; }
3358
3359 }
3360
3361 static final class ValueSpliterator<K,V> extends Traverser<K,V>
3362 implements ConcurrentHashMapSpliterator<V> {
3363 long est; // size estimate
3364 ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3365 long est) {
3366 super(tab, size, index, limit);
3367 this.est = est;
3368 }
3369
3370 public ConcurrentHashMapSpliterator<V> trySplit() {
3371 int i, f, h;
3372 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3373 new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3374 f, est >>>= 1);
3375 }
3376
3377 public void forEachRemaining(Action<? super V> action) {
3378 if (action == null) throw new NullPointerException();
3379 for (Node<K,V> p; (p = advance()) != null;)
3380 action.apply(p.val);
3381 }
3382
3383 public boolean tryAdvance(Action<? super V> action) {
3384 if (action == null) throw new NullPointerException();
3385 Node<K,V> p;
3386 if ((p = advance()) == null)
3387 return false;
3388 action.apply(p.val);
3389 return true;
3390 }
3391
3392 public long estimateSize() { return est; }
3393
3394 }
3395
3396 static final class EntrySpliterator<K,V> extends Traverser<K,V>
3397 implements ConcurrentHashMapSpliterator<Map.Entry<K,V>> {
3398 final ConcurrentHashMapV8<K,V> map; // To export MapEntry
3399 long est; // size estimate
3400 EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3401 long est, ConcurrentHashMapV8<K,V> map) {
3402 super(tab, size, index, limit);
3403 this.map = map;
3404 this.est = est;
3405 }
3406
3407 public ConcurrentHashMapSpliterator<Map.Entry<K,V>> trySplit() {
3408 int i, f, h;
3409 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3410 new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3411 f, est >>>= 1, map);
3412 }
3413
3414 public void forEachRemaining(Action<? super Map.Entry<K,V>> action) {
3415 if (action == null) throw new NullPointerException();
3416 for (Node<K,V> p; (p = advance()) != null; )
3417 action.apply(new MapEntry<K,V>(p.key, p.val, map));
3418 }
3419
3420 public boolean tryAdvance(Action<? super Map.Entry<K,V>> action) {
3421 if (action == null) throw new NullPointerException();
3422 Node<K,V> p;
3423 if ((p = advance()) == null)
3424 return false;
3425 action.apply(new MapEntry<K,V>(p.key, p.val, map));
3426 return true;
3427 }
3428
3429 public long estimateSize() { return est; }
3430
3431 }
3432
3433 // Parallel bulk operations
3434
3435 /**
3436 * Computes initial batch value for bulk tasks. The returned value
3437 * is approximately exp2 of the number of times (minus one) to
3438 * split task by two before executing leaf action. This value is
3439 * faster to compute and more convenient to use as a guide to
3440 * splitting than is the depth, since it is used while dividing by
3441 * two anyway.
3442 */
3443 final int batchFor(long b) {
3444 long n;
3445 if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3446 return 0;
3447 int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3448 return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3449 }
3450
3451 /**
3452 * Performs the given action for each (key, value).
3453 *
3454 * @param parallelismThreshold the (estimated) number of elements
3455 * needed for this operation to be executed in parallel
3456 * @param action the action
3457 * @since 1.8
3458 */
3459 public void forEach(long parallelismThreshold,
3460 BiAction<? super K,? super V> action) {
3461 if (action == null) throw new NullPointerException();
3462 new ForEachMappingTask<K,V>
3463 (null, batchFor(parallelismThreshold), 0, 0, table,
3464 action).invoke();
3465 }
3466
3467 /**
3468 * Performs the given action for each non-null transformation
3469 * of each (key, value).
3470 *
3471 * @param parallelismThreshold the (estimated) number of elements
3472 * needed for this operation to be executed in parallel
3473 * @param transformer a function returning the transformation
3474 * for an element, or null if there is no transformation (in
3475 * which case the action is not applied)
3476 * @param action the action
3477 * @since 1.8
3478 */
3479 public <U> void forEach(long parallelismThreshold,
3480 BiFun<? super K, ? super V, ? extends U> transformer,
3481 Action<? super U> action) {
3482 if (transformer == null || action == null)
3483 throw new NullPointerException();
3484 new ForEachTransformedMappingTask<K,V,U>
3485 (null, batchFor(parallelismThreshold), 0, 0, table,
3486 transformer, action).invoke();
3487 }
3488
3489 /**
3490 * Returns a non-null result from applying the given search
3491 * function on each (key, value), or null if none. Upon
3492 * success, further element processing is suppressed and the
3493 * results of any other parallel invocations of the search
3494 * function are ignored.
3495 *
3496 * @param parallelismThreshold the (estimated) number of elements
3497 * needed for this operation to be executed in parallel
3498 * @param searchFunction a function returning a non-null
3499 * result on success, else null
3500 * @return a non-null result from applying the given search
3501 * function on each (key, value), or null if none
3502 * @since 1.8
3503 */
3504 public <U> U search(long parallelismThreshold,
3505 BiFun<? super K, ? super V, ? extends U> searchFunction) {
3506 if (searchFunction == null) throw new NullPointerException();
3507 return new SearchMappingsTask<K,V,U>
3508 (null, batchFor(parallelismThreshold), 0, 0, table,
3509 searchFunction, new AtomicReference<U>()).invoke();
3510 }
3511
3512 /**
3513 * Returns the result of accumulating the given transformation
3514 * of all (key, value) pairs using the given reducer to
3515 * combine values, or null if none.
3516 *
3517 * @param parallelismThreshold the (estimated) number of elements
3518 * needed for this operation to be executed in parallel
3519 * @param transformer a function returning the transformation
3520 * for an element, or null if there is no transformation (in
3521 * which case it is not combined)
3522 * @param reducer a commutative associative combining function
3523 * @return the result of accumulating the given transformation
3524 * of all (key, value) pairs
3525 * @since 1.8
3526 */
3527 public <U> U reduce(long parallelismThreshold,
3528 BiFun<? super K, ? super V, ? extends U> transformer,
3529 BiFun<? super U, ? super U, ? extends U> reducer) {
3530 if (transformer == null || reducer == null)
3531 throw new NullPointerException();
3532 return new MapReduceMappingsTask<K,V,U>
3533 (null, batchFor(parallelismThreshold), 0, 0, table,
3534 null, transformer, reducer).invoke();
3535 }
3536
3537 /**
3538 * Returns the result of accumulating the given transformation
3539 * of all (key, value) pairs using the given reducer to
3540 * combine values, and the given basis as an identity value.
3541 *
3542 * @param parallelismThreshold the (estimated) number of elements
3543 * needed for this operation to be executed in parallel
3544 * @param transformer a function returning the transformation
3545 * for an element
3546 * @param basis the identity (initial default value) for the reduction
3547 * @param reducer a commutative associative combining function
3548 * @return the result of accumulating the given transformation
3549 * of all (key, value) pairs
3550 * @since 1.8
3551 */
3552 public double reduceToDouble(long parallelismThreshold,
3553 ObjectByObjectToDouble<? super K, ? super V> transformer,
3554 double basis,
3555 DoubleByDoubleToDouble reducer) {
3556 if (transformer == null || reducer == null)
3557 throw new NullPointerException();
3558 return new MapReduceMappingsToDoubleTask<K,V>
3559 (null, batchFor(parallelismThreshold), 0, 0, table,
3560 null, transformer, basis, reducer).invoke();
3561 }
3562
3563 /**
3564 * Returns the result of accumulating the given transformation
3565 * of all (key, value) pairs using the given reducer to
3566 * combine values, and the given basis as an identity value.
3567 *
3568 * @param parallelismThreshold the (estimated) number of elements
3569 * needed for this operation to be executed in parallel
3570 * @param transformer a function returning the transformation
3571 * for an element
3572 * @param basis the identity (initial default value) for the reduction
3573 * @param reducer a commutative associative combining function
3574 * @return the result of accumulating the given transformation
3575 * of all (key, value) pairs
3576 * @since 1.8
3577 */
3578 public long reduceToLong(long parallelismThreshold,
3579 ObjectByObjectToLong<? super K, ? super V> transformer,
3580 long basis,
3581 LongByLongToLong reducer) {
3582 if (transformer == null || reducer == null)
3583 throw new NullPointerException();
3584 return new MapReduceMappingsToLongTask<K,V>
3585 (null, batchFor(parallelismThreshold), 0, 0, table,
3586 null, transformer, basis, reducer).invoke();
3587 }
3588
3589 /**
3590 * Returns the result of accumulating the given transformation
3591 * of all (key, value) pairs using the given reducer to
3592 * combine values, and the given basis as an identity value.
3593 *
3594 * @param parallelismThreshold the (estimated) number of elements
3595 * needed for this operation to be executed in parallel
3596 * @param transformer a function returning the transformation
3597 * for an element
3598 * @param basis the identity (initial default value) for the reduction
3599 * @param reducer a commutative associative combining function
3600 * @return the result of accumulating the given transformation
3601 * of all (key, value) pairs
3602 * @since 1.8
3603 */
3604 public int reduceToInt(long parallelismThreshold,
3605 ObjectByObjectToInt<? super K, ? super V> transformer,
3606 int basis,
3607 IntByIntToInt reducer) {
3608 if (transformer == null || reducer == null)
3609 throw new NullPointerException();
3610 return new MapReduceMappingsToIntTask<K,V>
3611 (null, batchFor(parallelismThreshold), 0, 0, table,
3612 null, transformer, basis, reducer).invoke();
3613 }
3614
3615 /**
3616 * Performs the given action for each key.
3617 *
3618 * @param parallelismThreshold the (estimated) number of elements
3619 * needed for this operation to be executed in parallel
3620 * @param action the action
3621 * @since 1.8
3622 */
3623 public void forEachKey(long parallelismThreshold,
3624 Action<? super K> action) {
3625 if (action == null) throw new NullPointerException();
3626 new ForEachKeyTask<K,V>
3627 (null, batchFor(parallelismThreshold), 0, 0, table,
3628 action).invoke();
3629 }
3630
3631 /**
3632 * Performs the given action for each non-null transformation
3633 * of each key.
3634 *
3635 * @param parallelismThreshold the (estimated) number of elements
3636 * needed for this operation to be executed in parallel
3637 * @param transformer a function returning the transformation
3638 * for an element, or null if there is no transformation (in
3639 * which case the action is not applied)
3640 * @param action the action
3641 * @since 1.8
3642 */
3643 public <U> void forEachKey(long parallelismThreshold,
3644 Fun<? super K, ? extends U> transformer,
3645 Action<? super U> action) {
3646 if (transformer == null || action == null)
3647 throw new NullPointerException();
3648 new ForEachTransformedKeyTask<K,V,U>
3649 (null, batchFor(parallelismThreshold), 0, 0, table,
3650 transformer, action).invoke();
3651 }
3652
3653 /**
3654 * Returns a non-null result from applying the given search
3655 * function on each key, or null if none. Upon success,
3656 * further element processing is suppressed and the results of
3657 * any other parallel invocations of the search function are
3658 * ignored.
3659 *
3660 * @param parallelismThreshold the (estimated) number of elements
3661 * needed for this operation to be executed in parallel
3662 * @param searchFunction a function returning a non-null
3663 * result on success, else null
3664 * @return a non-null result from applying the given search
3665 * function on each key, or null if none
3666 * @since 1.8
3667 */
3668 public <U> U searchKeys(long parallelismThreshold,
3669 Fun<? super K, ? extends U> searchFunction) {
3670 if (searchFunction == null) throw new NullPointerException();
3671 return new SearchKeysTask<K,V,U>
3672 (null, batchFor(parallelismThreshold), 0, 0, table,
3673 searchFunction, new AtomicReference<U>()).invoke();
3674 }
3675
3676 /**
3677 * Returns the result of accumulating all keys using the given
3678 * reducer to combine values, or null if none.
3679 *
3680 * @param parallelismThreshold the (estimated) number of elements
3681 * needed for this operation to be executed in parallel
3682 * @param reducer a commutative associative combining function
3683 * @return the result of accumulating all keys using the given
3684 * reducer to combine values, or null if none
3685 * @since 1.8
3686 */
3687 public K reduceKeys(long parallelismThreshold,
3688 BiFun<? super K, ? super K, ? extends K> reducer) {
3689 if (reducer == null) throw new NullPointerException();
3690 return new ReduceKeysTask<K,V>
3691 (null, batchFor(parallelismThreshold), 0, 0, table,
3692 null, reducer).invoke();
3693 }
3694
3695 /**
3696 * Returns the result of accumulating the given transformation
3697 * of all keys using the given reducer to combine values, or
3698 * null if none.
3699 *
3700 * @param parallelismThreshold the (estimated) number of elements
3701 * needed for this operation to be executed in parallel
3702 * @param transformer a function returning the transformation
3703 * for an element, or null if there is no transformation (in
3704 * which case it is not combined)
3705 * @param reducer a commutative associative combining function
3706 * @return the result of accumulating the given transformation
3707 * of all keys
3708 * @since 1.8
3709 */
3710 public <U> U reduceKeys(long parallelismThreshold,
3711 Fun<? super K, ? extends U> transformer,
3712 BiFun<? super U, ? super U, ? extends U> reducer) {
3713 if (transformer == null || reducer == null)
3714 throw new NullPointerException();
3715 return new MapReduceKeysTask<K,V,U>
3716 (null, batchFor(parallelismThreshold), 0, 0, table,
3717 null, transformer, reducer).invoke();
3718 }
3719
3720 /**
3721 * Returns the result of accumulating the given transformation
3722 * of all keys using the given reducer to combine values, and
3723 * the given basis as an identity value.
3724 *
3725 * @param parallelismThreshold the (estimated) number of elements
3726 * needed for this operation to be executed in parallel
3727 * @param transformer a function returning the transformation
3728 * for an element
3729 * @param basis the identity (initial default value) for the reduction
3730 * @param reducer a commutative associative combining function
3731 * @return the result of accumulating the given transformation
3732 * of all keys
3733 * @since 1.8
3734 */
3735 public double reduceKeysToDouble(long parallelismThreshold,
3736 ObjectToDouble<? super K> transformer,
3737 double basis,
3738 DoubleByDoubleToDouble reducer) {
3739 if (transformer == null || reducer == null)
3740 throw new NullPointerException();
3741 return new MapReduceKeysToDoubleTask<K,V>
3742 (null, batchFor(parallelismThreshold), 0, 0, table,
3743 null, transformer, basis, reducer).invoke();
3744 }
3745
3746 /**
3747 * Returns the result of accumulating the given transformation
3748 * of all keys using the given reducer to combine values, and
3749 * the given basis as an identity value.
3750 *
3751 * @param parallelismThreshold the (estimated) number of elements
3752 * needed for this operation to be executed in parallel
3753 * @param transformer a function returning the transformation
3754 * for an element
3755 * @param basis the identity (initial default value) for the reduction
3756 * @param reducer a commutative associative combining function
3757 * @return the result of accumulating the given transformation
3758 * of all keys
3759 * @since 1.8
3760 */
3761 public long reduceKeysToLong(long parallelismThreshold,
3762 ObjectToLong<? super K> transformer,
3763 long basis,
3764 LongByLongToLong reducer) {
3765 if (transformer == null || reducer == null)
3766 throw new NullPointerException();
3767 return new MapReduceKeysToLongTask<K,V>
3768 (null, batchFor(parallelismThreshold), 0, 0, table,
3769 null, transformer, basis, reducer).invoke();
3770 }
3771
3772 /**
3773 * Returns the result of accumulating the given transformation
3774 * of all keys using the given reducer to combine values, and
3775 * the given basis as an identity value.
3776 *
3777 * @param parallelismThreshold the (estimated) number of elements
3778 * needed for this operation to be executed in parallel
3779 * @param transformer a function returning the transformation
3780 * for an element
3781 * @param basis the identity (initial default value) for the reduction
3782 * @param reducer a commutative associative combining function
3783 * @return the result of accumulating the given transformation
3784 * of all keys
3785 * @since 1.8
3786 */
3787 public int reduceKeysToInt(long parallelismThreshold,
3788 ObjectToInt<? super K> transformer,
3789 int basis,
3790 IntByIntToInt reducer) {
3791 if (transformer == null || reducer == null)
3792 throw new NullPointerException();
3793 return new MapReduceKeysToIntTask<K,V>
3794 (null, batchFor(parallelismThreshold), 0, 0, table,
3795 null, transformer, basis, reducer).invoke();
3796 }
3797
3798 /**
3799 * Performs the given action for each value.
3800 *
3801 * @param parallelismThreshold the (estimated) number of elements
3802 * needed for this operation to be executed in parallel
3803 * @param action the action
3804 * @since 1.8
3805 */
3806 public void forEachValue(long parallelismThreshold,
3807 Action<? super V> action) {
3808 if (action == null)
3809 throw new NullPointerException();
3810 new ForEachValueTask<K,V>
3811 (null, batchFor(parallelismThreshold), 0, 0, table,
3812 action).invoke();
3813 }
3814
3815 /**
3816 * Performs the given action for each non-null transformation
3817 * of each value.
3818 *
3819 * @param parallelismThreshold the (estimated) number of elements
3820 * needed for this operation to be executed in parallel
3821 * @param transformer a function returning the transformation
3822 * for an element, or null if there is no transformation (in
3823 * which case the action is not applied)
3824 * @param action the action
3825 * @since 1.8
3826 */
3827 public <U> void forEachValue(long parallelismThreshold,
3828 Fun<? super V, ? extends U> transformer,
3829 Action<? super U> action) {
3830 if (transformer == null || action == null)
3831 throw new NullPointerException();
3832 new ForEachTransformedValueTask<K,V,U>
3833 (null, batchFor(parallelismThreshold), 0, 0, table,
3834 transformer, action).invoke();
3835 }
3836
3837 /**
3838 * Returns a non-null result from applying the given search
3839 * function on each value, or null if none. Upon success,
3840 * further element processing is suppressed and the results of
3841 * any other parallel invocations of the search function are
3842 * ignored.
3843 *
3844 * @param parallelismThreshold the (estimated) number of elements
3845 * needed for this operation to be executed in parallel
3846 * @param searchFunction a function returning a non-null
3847 * result on success, else null
3848 * @return a non-null result from applying the given search
3849 * function on each value, or null if none
3850 * @since 1.8
3851 */
3852 public <U> U searchValues(long parallelismThreshold,
3853 Fun<? super V, ? extends U> searchFunction) {
3854 if (searchFunction == null) throw new NullPointerException();
3855 return new SearchValuesTask<K,V,U>
3856 (null, batchFor(parallelismThreshold), 0, 0, table,
3857 searchFunction, new AtomicReference<U>()).invoke();
3858 }
3859
3860 /**
3861 * Returns the result of accumulating all values using the
3862 * given reducer to combine values, or null if none.
3863 *
3864 * @param parallelismThreshold the (estimated) number of elements
3865 * needed for this operation to be executed in parallel
3866 * @param reducer a commutative associative combining function
3867 * @return the result of accumulating all values
3868 * @since 1.8
3869 */
3870 public V reduceValues(long parallelismThreshold,
3871 BiFun<? super V, ? super V, ? extends V> reducer) {
3872 if (reducer == null) throw new NullPointerException();
3873 return new ReduceValuesTask<K,V>
3874 (null, batchFor(parallelismThreshold), 0, 0, table,
3875 null, reducer).invoke();
3876 }
3877
3878 /**
3879 * Returns the result of accumulating the given transformation
3880 * of all values using the given reducer to combine values, or
3881 * null if none.
3882 *
3883 * @param parallelismThreshold the (estimated) number of elements
3884 * needed for this operation to be executed in parallel
3885 * @param transformer a function returning the transformation
3886 * for an element, or null if there is no transformation (in
3887 * which case it is not combined)
3888 * @param reducer a commutative associative combining function
3889 * @return the result of accumulating the given transformation
3890 * of all values
3891 * @since 1.8
3892 */
3893 public <U> U reduceValues(long parallelismThreshold,
3894 Fun<? super V, ? extends U> transformer,
3895 BiFun<? super U, ? super U, ? extends U> reducer) {
3896 if (transformer == null || reducer == null)
3897 throw new NullPointerException();
3898 return new MapReduceValuesTask<K,V,U>
3899 (null, batchFor(parallelismThreshold), 0, 0, table,
3900 null, transformer, reducer).invoke();
3901 }
3902
3903 /**
3904 * Returns the result of accumulating the given transformation
3905 * of all values using the given reducer to combine values,
3906 * and the given basis as an identity value.
3907 *
3908 * @param parallelismThreshold the (estimated) number of elements
3909 * needed for this operation to be executed in parallel
3910 * @param transformer a function returning the transformation
3911 * for an element
3912 * @param basis the identity (initial default value) for the reduction
3913 * @param reducer a commutative associative combining function
3914 * @return the result of accumulating the given transformation
3915 * of all values
3916 * @since 1.8
3917 */
3918 public double reduceValuesToDouble(long parallelismThreshold,
3919 ObjectToDouble<? super V> transformer,
3920 double basis,
3921 DoubleByDoubleToDouble reducer) {
3922 if (transformer == null || reducer == null)
3923 throw new NullPointerException();
3924 return new MapReduceValuesToDoubleTask<K,V>
3925 (null, batchFor(parallelismThreshold), 0, 0, table,
3926 null, transformer, basis, reducer).invoke();
3927 }
3928
3929 /**
3930 * Returns the result of accumulating the given transformation
3931 * of all values using the given reducer to combine values,
3932 * and the given basis as an identity value.
3933 *
3934 * @param parallelismThreshold the (estimated) number of elements
3935 * needed for this operation to be executed in parallel
3936 * @param transformer a function returning the transformation
3937 * for an element
3938 * @param basis the identity (initial default value) for the reduction
3939 * @param reducer a commutative associative combining function
3940 * @return the result of accumulating the given transformation
3941 * of all values
3942 * @since 1.8
3943 */
3944 public long reduceValuesToLong(long parallelismThreshold,
3945 ObjectToLong<? super V> transformer,
3946 long basis,
3947 LongByLongToLong reducer) {
3948 if (transformer == null || reducer == null)
3949 throw new NullPointerException();
3950 return new MapReduceValuesToLongTask<K,V>
3951 (null, batchFor(parallelismThreshold), 0, 0, table,
3952 null, transformer, basis, reducer).invoke();
3953 }
3954
3955 /**
3956 * Returns the result of accumulating the given transformation
3957 * of all values using the given reducer to combine values,
3958 * and the given basis as an identity value.
3959 *
3960 * @param parallelismThreshold the (estimated) number of elements
3961 * needed for this operation to be executed in parallel
3962 * @param transformer a function returning the transformation
3963 * for an element
3964 * @param basis the identity (initial default value) for the reduction
3965 * @param reducer a commutative associative combining function
3966 * @return the result of accumulating the given transformation
3967 * of all values
3968 * @since 1.8
3969 */
3970 public int reduceValuesToInt(long parallelismThreshold,
3971 ObjectToInt<? super V> transformer,
3972 int basis,
3973 IntByIntToInt reducer) {
3974 if (transformer == null || reducer == null)
3975 throw new NullPointerException();
3976 return new MapReduceValuesToIntTask<K,V>
3977 (null, batchFor(parallelismThreshold), 0, 0, table,
3978 null, transformer, basis, reducer).invoke();
3979 }
3980
3981 /**
3982 * Performs the given action for each entry.
3983 *
3984 * @param parallelismThreshold the (estimated) number of elements
3985 * needed for this operation to be executed in parallel
3986 * @param action the action
3987 * @since 1.8
3988 */
3989 public void forEachEntry(long parallelismThreshold,
3990 Action<? super Map.Entry<K,V>> action) {
3991 if (action == null) throw new NullPointerException();
3992 new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
3993 action).invoke();
3994 }
3995
3996 /**
3997 * Performs the given action for each non-null transformation
3998 * of each entry.
3999 *
4000 * @param parallelismThreshold the (estimated) number of elements
4001 * needed for this operation to be executed in parallel
4002 * @param transformer a function returning the transformation
4003 * for an element, or null if there is no transformation (in
4004 * which case the action is not applied)
4005 * @param action the action
4006 * @since 1.8
4007 */
4008 public <U> void forEachEntry(long parallelismThreshold,
4009 Fun<Map.Entry<K,V>, ? extends U> transformer,
4010 Action<? super U> action) {
4011 if (transformer == null || action == null)
4012 throw new NullPointerException();
4013 new ForEachTransformedEntryTask<K,V,U>
4014 (null, batchFor(parallelismThreshold), 0, 0, table,
4015 transformer, action).invoke();
4016 }
4017
4018 /**
4019 * Returns a non-null result from applying the given search
4020 * function on each entry, or null if none. Upon success,
4021 * further element processing is suppressed and the results of
4022 * any other parallel invocations of the search function are
4023 * ignored.
4024 *
4025 * @param parallelismThreshold the (estimated) number of elements
4026 * needed for this operation to be executed in parallel
4027 * @param searchFunction a function returning a non-null
4028 * result on success, else null
4029 * @return a non-null result from applying the given search
4030 * function on each entry, or null if none
4031 * @since 1.8
4032 */
4033 public <U> U searchEntries(long parallelismThreshold,
4034 Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4035 if (searchFunction == null) throw new NullPointerException();
4036 return new SearchEntriesTask<K,V,U>
4037 (null, batchFor(parallelismThreshold), 0, 0, table,
4038 searchFunction, new AtomicReference<U>()).invoke();
4039 }
4040
4041 /**
4042 * Returns the result of accumulating all entries using the
4043 * given reducer to combine values, or null if none.
4044 *
4045 * @param parallelismThreshold the (estimated) number of elements
4046 * needed for this operation to be executed in parallel
4047 * @param reducer a commutative associative combining function
4048 * @return the result of accumulating all entries
4049 * @since 1.8
4050 */
4051 public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4052 BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4053 if (reducer == null) throw new NullPointerException();
4054 return new ReduceEntriesTask<K,V>
4055 (null, batchFor(parallelismThreshold), 0, 0, table,
4056 null, reducer).invoke();
4057 }
4058
4059 /**
4060 * Returns the result of accumulating the given transformation
4061 * of all entries using the given reducer to combine values,
4062 * or null if none.
4063 *
4064 * @param parallelismThreshold the (estimated) number of elements
4065 * needed for this operation to be executed in parallel
4066 * @param transformer a function returning the transformation
4067 * for an element, or null if there is no transformation (in
4068 * which case it is not combined)
4069 * @param reducer a commutative associative combining function
4070 * @return the result of accumulating the given transformation
4071 * of all entries
4072 * @since 1.8
4073 */
4074 public <U> U reduceEntries(long parallelismThreshold,
4075 Fun<Map.Entry<K,V>, ? extends U> transformer,
4076 BiFun<? super U, ? super U, ? extends U> reducer) {
4077 if (transformer == null || reducer == null)
4078 throw new NullPointerException();
4079 return new MapReduceEntriesTask<K,V,U>
4080 (null, batchFor(parallelismThreshold), 0, 0, table,
4081 null, transformer, reducer).invoke();
4082 }
4083
4084 /**
4085 * Returns the result of accumulating the given transformation
4086 * of all entries using the given reducer to combine values,
4087 * and the given basis as an identity value.
4088 *
4089 * @param parallelismThreshold the (estimated) number of elements
4090 * needed for this operation to be executed in parallel
4091 * @param transformer a function returning the transformation
4092 * for an element
4093 * @param basis the identity (initial default value) for the reduction
4094 * @param reducer a commutative associative combining function
4095 * @return the result of accumulating the given transformation
4096 * of all entries
4097 * @since 1.8
4098 */
4099 public double reduceEntriesToDouble(long parallelismThreshold,
4100 ObjectToDouble<Map.Entry<K,V>> transformer,
4101 double basis,
4102 DoubleByDoubleToDouble reducer) {
4103 if (transformer == null || reducer == null)
4104 throw new NullPointerException();
4105 return new MapReduceEntriesToDoubleTask<K,V>
4106 (null, batchFor(parallelismThreshold), 0, 0, table,
4107 null, transformer, basis, reducer).invoke();
4108 }
4109
4110 /**
4111 * Returns the result of accumulating the given transformation
4112 * of all entries using the given reducer to combine values,
4113 * and the given basis as an identity value.
4114 *
4115 * @param parallelismThreshold the (estimated) number of elements
4116 * needed for this operation to be executed in parallel
4117 * @param transformer a function returning the transformation
4118 * for an element
4119 * @param basis the identity (initial default value) for the reduction
4120 * @param reducer a commutative associative combining function
4121 * @return the result of accumulating the given transformation
4122 * of all entries
4123 * @since 1.8
4124 */
4125 public long reduceEntriesToLong(long parallelismThreshold,
4126 ObjectToLong<Map.Entry<K,V>> transformer,
4127 long basis,
4128 LongByLongToLong reducer) {
4129 if (transformer == null || reducer == null)
4130 throw new NullPointerException();
4131 return new MapReduceEntriesToLongTask<K,V>
4132 (null, batchFor(parallelismThreshold), 0, 0, table,
4133 null, transformer, basis, reducer).invoke();
4134 }
4135
4136 /**
4137 * Returns the result of accumulating the given transformation
4138 * of all entries using the given reducer to combine values,
4139 * and the given basis as an identity value.
4140 *
4141 * @param parallelismThreshold the (estimated) number of elements
4142 * needed for this operation to be executed in parallel
4143 * @param transformer a function returning the transformation
4144 * for an element
4145 * @param basis the identity (initial default value) for the reduction
4146 * @param reducer a commutative associative combining function
4147 * @return the result of accumulating the given transformation
4148 * of all entries
4149 * @since 1.8
4150 */
4151 public int reduceEntriesToInt(long parallelismThreshold,
4152 ObjectToInt<Map.Entry<K,V>> transformer,
4153 int basis,
4154 IntByIntToInt reducer) {
4155 if (transformer == null || reducer == null)
4156 throw new NullPointerException();
4157 return new MapReduceEntriesToIntTask<K,V>
4158 (null, batchFor(parallelismThreshold), 0, 0, table,
4159 null, transformer, basis, reducer).invoke();
4160 }
4161
4162
4163 /* ----------------Views -------------- */
4164
4165 /**
4166 * Base class for views.
4167 */
4168 abstract static class CollectionView<K,V,E>
4169 implements Collection<E>, java.io.Serializable {
4170 private static final long serialVersionUID = 7249069246763182397L;
4171 final ConcurrentHashMapV8<K,V> map;
4172 CollectionView(ConcurrentHashMapV8<K,V> map) { this.map = map; }
4173
4174 /**
4175 * Returns the map backing this view.
4176 *
4177 * @return the map backing this view
4178 */
4179 public ConcurrentHashMapV8<K,V> getMap() { return map; }
4180
4181 /**
4182 * Removes all of the elements from this view, by removing all
4183 * the mappings from the map backing this view.
4184 */
4185 public final void clear() { map.clear(); }
4186 public final int size() { return map.size(); }
4187 public final boolean isEmpty() { return map.isEmpty(); }
4188
4189 // implementations below rely on concrete classes supplying these
4190 // abstract methods
4191 /**
4192 * Returns a "weakly consistent" iterator that will never
4193 * throw {@link ConcurrentModificationException}, and
4194 * guarantees to traverse elements as they existed upon
4195 * construction of the iterator, and may (but is not
4196 * guaranteed to) reflect any modifications subsequent to
4197 * construction.
4198 */
4199 public abstract Iterator<E> iterator();
4200 public abstract boolean contains(Object o);
4201 public abstract boolean remove(Object o);
4202
4203 private static final String oomeMsg = "Required array size too large";
4204
4205 public final Object[] toArray() {
4206 long sz = map.mappingCount();
4207 if (sz > MAX_ARRAY_SIZE)
4208 throw new OutOfMemoryError(oomeMsg);
4209 int n = (int)sz;
4210 Object[] r = new Object[n];
4211 int i = 0;
4212 for (E e : this) {
4213 if (i == n) {
4214 if (n >= MAX_ARRAY_SIZE)
4215 throw new OutOfMemoryError(oomeMsg);
4216 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4217 n = MAX_ARRAY_SIZE;
4218 else
4219 n += (n >>> 1) + 1;
4220 r = Arrays.copyOf(r, n);
4221 }
4222 r[i++] = e;
4223 }
4224 return (i == n) ? r : Arrays.copyOf(r, i);
4225 }
4226
4227 @SuppressWarnings("unchecked")
4228 public final <T> T[] toArray(T[] a) {
4229 long sz = map.mappingCount();
4230 if (sz > MAX_ARRAY_SIZE)
4231 throw new OutOfMemoryError(oomeMsg);
4232 int m = (int)sz;
4233 T[] r = (a.length >= m) ? a :
4234 (T[])java.lang.reflect.Array
4235 .newInstance(a.getClass().getComponentType(), m);
4236 int n = r.length;
4237 int i = 0;
4238 for (E e : this) {
4239 if (i == n) {
4240 if (n >= MAX_ARRAY_SIZE)
4241 throw new OutOfMemoryError(oomeMsg);
4242 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4243 n = MAX_ARRAY_SIZE;
4244 else
4245 n += (n >>> 1) + 1;
4246 r = Arrays.copyOf(r, n);
4247 }
4248 r[i++] = (T)e;
4249 }
4250 if (a == r && i < n) {
4251 r[i] = null; // null-terminate
4252 return r;
4253 }
4254 return (i == n) ? r : Arrays.copyOf(r, i);
4255 }
4256
4257 /**
4258 * Returns a string representation of this collection.
4259 * The string representation consists of the string representations
4260 * of the collection's elements in the order they are returned by
4261 * its iterator, enclosed in square brackets ({@code "[]"}).
4262 * Adjacent elements are separated by the characters {@code ", "}
4263 * (comma and space). Elements are converted to strings as by
4264 * {@link String#valueOf(Object)}.
4265 *
4266 * @return a string representation of this collection
4267 */
4268 public final String toString() {
4269 StringBuilder sb = new StringBuilder();
4270 sb.append('[');
4271 Iterator<E> it = iterator();
4272 if (it.hasNext()) {
4273 for (;;) {
4274 Object e = it.next();
4275 sb.append(e == this ? "(this Collection)" : e);
4276 if (!it.hasNext())
4277 break;
4278 sb.append(',').append(' ');
4279 }
4280 }
4281 return sb.append(']').toString();
4282 }
4283
4284 public final boolean containsAll(Collection<?> c) {
4285 if (c != this) {
4286 for (Object e : c) {
4287 if (e == null || !contains(e))
4288 return false;
4289 }
4290 }
4291 return true;
4292 }
4293
4294 public final boolean removeAll(Collection<?> c) {
4295 boolean modified = false;
4296 for (Iterator<E> it = iterator(); it.hasNext();) {
4297 if (c.contains(it.next())) {
4298 it.remove();
4299 modified = true;
4300 }
4301 }
4302 return modified;
4303 }
4304
4305 public final boolean retainAll(Collection<?> c) {
4306 boolean modified = false;
4307 for (Iterator<E> it = iterator(); it.hasNext();) {
4308 if (!c.contains(it.next())) {
4309 it.remove();
4310 modified = true;
4311 }
4312 }
4313 return modified;
4314 }
4315
4316 }
4317
4318 /**
4319 * A view of a ConcurrentHashMapV8 as a {@link Set} of keys, in
4320 * which additions may optionally be enabled by mapping to a
4321 * common value. This class cannot be directly instantiated.
4322 * See {@link #keySet() keySet()},
4323 * {@link #keySet(Object) keySet(V)},
4324 * {@link #newKeySet() newKeySet()},
4325 * {@link #newKeySet(int) newKeySet(int)}.
4326 *
4327 * @since 1.8
4328 */
4329 public static class KeySetView<K,V> extends CollectionView<K,V,K>
4330 implements Set<K>, java.io.Serializable {
4331 private static final long serialVersionUID = 7249069246763182397L;
4332 private final V value;
4333 KeySetView(ConcurrentHashMapV8<K,V> map, V value) { // non-public
4334 super(map);
4335 this.value = value;
4336 }
4337
4338 /**
4339 * Returns the default mapped value for additions,
4340 * or {@code null} if additions are not supported.
4341 *
4342 * @return the default mapped value for additions, or {@code null}
4343 * if not supported
4344 */
4345 public V getMappedValue() { return value; }
4346
4347 /**
4348 * {@inheritDoc}
4349 * @throws NullPointerException if the specified key is null
4350 */
4351 public boolean contains(Object o) { return map.containsKey(o); }
4352
4353 /**
4354 * Removes the key from this map view, by removing the key (and its
4355 * corresponding value) from the backing map. This method does
4356 * nothing if the key is not in the map.
4357 *
4358 * @param o the key to be removed from the backing map
4359 * @return {@code true} if the backing map contained the specified key
4360 * @throws NullPointerException if the specified key is null
4361 */
4362 public boolean remove(Object o) { return map.remove(o) != null; }
4363
4364 /**
4365 * @return an iterator over the keys of the backing map
4366 */
4367 public Iterator<K> iterator() {
4368 Node<K,V>[] t;
4369 ConcurrentHashMapV8<K,V> m = map;
4370 int f = (t = m.table) == null ? 0 : t.length;
4371 return new KeyIterator<K,V>(t, f, 0, f, m);
4372 }
4373
4374 /**
4375 * Adds the specified key to this set view by mapping the key to
4376 * the default mapped value in the backing map, if defined.
4377 *
4378 * @param e key to be added
4379 * @return {@code true} if this set changed as a result of the call
4380 * @throws NullPointerException if the specified key is null
4381 * @throws UnsupportedOperationException if no default mapped value
4382 * for additions was provided
4383 */
4384 public boolean add(K e) {
4385 V v;
4386 if ((v = value) == null)
4387 throw new UnsupportedOperationException();
4388 return map.putVal(e, v, true) == null;
4389 }
4390
4391 /**
4392 * Adds all of the elements in the specified collection to this set,
4393 * as if by calling {@link #add} on each one.
4394 *
4395 * @param c the elements to be inserted into this set
4396 * @return {@code true} if this set changed as a result of the call
4397 * @throws NullPointerException if the collection or any of its
4398 * elements are {@code null}
4399 * @throws UnsupportedOperationException if no default mapped value
4400 * for additions was provided
4401 */
4402 public boolean addAll(Collection<? extends K> c) {
4403 boolean added = false;
4404 V v;
4405 if ((v = value) == null)
4406 throw new UnsupportedOperationException();
4407 for (K e : c) {
4408 if (map.putVal(e, v, true) == null)
4409 added = true;
4410 }
4411 return added;
4412 }
4413
4414 public int hashCode() {
4415 int h = 0;
4416 for (K e : this)
4417 h += e.hashCode();
4418 return h;
4419 }
4420
4421 public boolean equals(Object o) {
4422 Set<?> c;
4423 return ((o instanceof Set) &&
4424 ((c = (Set<?>)o) == this ||
4425 (containsAll(c) && c.containsAll(this))));
4426 }
4427
4428 public ConcurrentHashMapSpliterator<K> spliterator() {
4429 Node<K,V>[] t;
4430 ConcurrentHashMapV8<K,V> m = map;
4431 long n = m.sumCount();
4432 int f = (t = m.table) == null ? 0 : t.length;
4433 return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4434 }
4435
4436 public void forEach(Action<? super K> action) {
4437 if (action == null) throw new NullPointerException();
4438 Node<K,V>[] t;
4439 if ((t = map.table) != null) {
4440 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4441 for (Node<K,V> p; (p = it.advance()) != null; )
4442 action.apply(p.key);
4443 }
4444 }
4445 }
4446
4447 /**
4448 * A view of a ConcurrentHashMapV8 as a {@link Collection} of
4449 * values, in which additions are disabled. This class cannot be
4450 * directly instantiated. See {@link #values()}.
4451 */
4452 static final class ValuesView<K,V> extends CollectionView<K,V,V>
4453 implements Collection<V>, java.io.Serializable {
4454 private static final long serialVersionUID = 2249069246763182397L;
4455 ValuesView(ConcurrentHashMapV8<K,V> map) { super(map); }
4456 public final boolean contains(Object o) {
4457 return map.containsValue(o);
4458 }
4459
4460 public final boolean remove(Object o) {
4461 if (o != null) {
4462 for (Iterator<V> it = iterator(); it.hasNext();) {
4463 if (o.equals(it.next())) {
4464 it.remove();
4465 return true;
4466 }
4467 }
4468 }
4469 return false;
4470 }
4471
4472 public final Iterator<V> iterator() {
4473 ConcurrentHashMapV8<K,V> m = map;
4474 Node<K,V>[] t;
4475 int f = (t = m.table) == null ? 0 : t.length;
4476 return new ValueIterator<K,V>(t, f, 0, f, m);
4477 }
4478
4479 public final boolean add(V e) {
4480 throw new UnsupportedOperationException();
4481 }
4482 public final boolean addAll(Collection<? extends V> c) {
4483 throw new UnsupportedOperationException();
4484 }
4485
4486 public ConcurrentHashMapSpliterator<V> spliterator() {
4487 Node<K,V>[] t;
4488 ConcurrentHashMapV8<K,V> m = map;
4489 long n = m.sumCount();
4490 int f = (t = m.table) == null ? 0 : t.length;
4491 return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4492 }
4493
4494 public void forEach(Action<? super V> action) {
4495 if (action == null) throw new NullPointerException();
4496 Node<K,V>[] t;
4497 if ((t = map.table) != null) {
4498 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4499 for (Node<K,V> p; (p = it.advance()) != null; )
4500 action.apply(p.val);
4501 }
4502 }
4503 }
4504
4505 /**
4506 * A view of a ConcurrentHashMapV8 as a {@link Set} of (key, value)
4507 * entries. This class cannot be directly instantiated. See
4508 * {@link #entrySet()}.
4509 */
4510 static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4511 implements Set<Map.Entry<K,V>>, java.io.Serializable {
4512 private static final long serialVersionUID = 2249069246763182397L;
4513 EntrySetView(ConcurrentHashMapV8<K,V> map) { super(map); }
4514
4515 public boolean contains(Object o) {
4516 Object k, v, r; Map.Entry<?,?> e;
4517 return ((o instanceof Map.Entry) &&
4518 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4519 (r = map.get(k)) != null &&
4520 (v = e.getValue()) != null &&
4521 (v == r || v.equals(r)));
4522 }
4523
4524 public boolean remove(Object o) {
4525 Object k, v; Map.Entry<?,?> e;
4526 return ((o instanceof Map.Entry) &&
4527 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4528 (v = e.getValue()) != null &&
4529 map.remove(k, v));
4530 }
4531
4532 /**
4533 * @return an iterator over the entries of the backing map
4534 */
4535 public Iterator<Map.Entry<K,V>> iterator() {
4536 ConcurrentHashMapV8<K,V> m = map;
4537 Node<K,V>[] t;
4538 int f = (t = m.table) == null ? 0 : t.length;
4539 return new EntryIterator<K,V>(t, f, 0, f, m);
4540 }
4541
4542 public boolean add(Entry<K,V> e) {
4543 return map.putVal(e.getKey(), e.getValue(), false) == null;
4544 }
4545
4546 public boolean addAll(Collection<? extends Entry<K,V>> c) {
4547 boolean added = false;
4548 for (Entry<K,V> e : c) {
4549 if (add(e))
4550 added = true;
4551 }
4552 return added;
4553 }
4554
4555 public final int hashCode() {
4556 int h = 0;
4557 Node<K,V>[] t;
4558 if ((t = map.table) != null) {
4559 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4560 for (Node<K,V> p; (p = it.advance()) != null; ) {
4561 h += p.hashCode();
4562 }
4563 }
4564 return h;
4565 }
4566
4567 public final boolean equals(Object o) {
4568 Set<?> c;
4569 return ((o instanceof Set) &&
4570 ((c = (Set<?>)o) == this ||
4571 (containsAll(c) && c.containsAll(this))));
4572 }
4573
4574 public ConcurrentHashMapSpliterator<Map.Entry<K,V>> spliterator() {
4575 Node<K,V>[] t;
4576 ConcurrentHashMapV8<K,V> m = map;
4577 long n = m.sumCount();
4578 int f = (t = m.table) == null ? 0 : t.length;
4579 return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4580 }
4581
4582 public void forEach(Action<? super Map.Entry<K,V>> action) {
4583 if (action == null) throw new NullPointerException();
4584 Node<K,V>[] t;
4585 if ((t = map.table) != null) {
4586 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4587 for (Node<K,V> p; (p = it.advance()) != null; )
4588 action.apply(new MapEntry<K,V>(p.key, p.val, map));
4589 }
4590 }
4591
4592 }
4593
4594 // -------------------------------------------------------
4595
4596 /**
4597 * Base class for bulk tasks. Repeats some fields and code from
4598 * class Traverser, because we need to subclass CountedCompleter.
4599 */
4600 abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4601 Node<K,V>[] tab; // same as Traverser
4602 Node<K,V> next;
4603 int index;
4604 int baseIndex;
4605 int baseLimit;
4606 final int baseSize;
4607 int batch; // split control
4608
4609 BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4610 super(par);
4611 this.batch = b;
4612 this.index = this.baseIndex = i;
4613 if ((this.tab = t) == null)
4614 this.baseSize = this.baseLimit = 0;
4615 else if (par == null)
4616 this.baseSize = this.baseLimit = t.length;
4617 else {
4618 this.baseLimit = f;
4619 this.baseSize = par.baseSize;
4620 }
4621 }
4622
4623 /**
4624 * Same as Traverser version
4625 */
4626 final Node<K,V> advance() {
4627 Node<K,V> e;
4628 if ((e = next) != null)
4629 e = e.next;
4630 for (;;) {
4631 Node<K,V>[] t; int i, n; K ek; // must use locals in checks
4632 if (e != null)
4633 return next = e;
4634 if (baseIndex >= baseLimit || (t = tab) == null ||
4635 (n = t.length) <= (i = index) || i < 0)
4636 return next = null;
4637 if ((e = tabAt(t, index)) != null && e.hash < 0) {
4638 if (e instanceof ForwardingNode) {
4639 tab = ((ForwardingNode<K,V>)e).nextTable;
4640 e = null;
4641 continue;
4642 }
4643 else if (e instanceof TreeBin)
4644 e = ((TreeBin<K,V>)e).first;
4645 else
4646 e = null;
4647 }
4648 if ((index += baseSize) >= n)
4649 index = ++baseIndex; // visit upper slots if present
4650 }
4651 }
4652 }
4653
4654 /*
4655 * Task classes. Coded in a regular but ugly format/style to
4656 * simplify checks that each variant differs in the right way from
4657 * others. The null screenings exist because compilers cannot tell
4658 * that we've already null-checked task arguments, so we force
4659 * simplest hoisted bypass to help avoid convoluted traps.
4660 */
4661 @SuppressWarnings("serial")
4662 static final class ForEachKeyTask<K,V>
4663 extends BulkTask<K,V,Void> {
4664 final Action<? super K> action;
4665 ForEachKeyTask
4666 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4667 Action<? super K> action) {
4668 super(p, b, i, f, t);
4669 this.action = action;
4670 }
4671 public final void compute() {
4672 final Action<? super K> action;
4673 if ((action = this.action) != null) {
4674 for (int i = baseIndex, f, h; batch > 0 &&
4675 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4676 addToPendingCount(1);
4677 new ForEachKeyTask<K,V>
4678 (this, batch >>>= 1, baseLimit = h, f, tab,
4679 action).fork();
4680 }
4681 for (Node<K,V> p; (p = advance()) != null;)
4682 action.apply(p.key);
4683 propagateCompletion();
4684 }
4685 }
4686 }
4687
4688 @SuppressWarnings("serial")
4689 static final class ForEachValueTask<K,V>
4690 extends BulkTask<K,V,Void> {
4691 final Action<? super V> action;
4692 ForEachValueTask
4693 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4694 Action<? super V> action) {
4695 super(p, b, i, f, t);
4696 this.action = action;
4697 }
4698 public final void compute() {
4699 final Action<? super V> action;
4700 if ((action = this.action) != null) {
4701 for (int i = baseIndex, f, h; batch > 0 &&
4702 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4703 addToPendingCount(1);
4704 new ForEachValueTask<K,V>
4705 (this, batch >>>= 1, baseLimit = h, f, tab,
4706 action).fork();
4707 }
4708 for (Node<K,V> p; (p = advance()) != null;)
4709 action.apply(p.val);
4710 propagateCompletion();
4711 }
4712 }
4713 }
4714
4715 @SuppressWarnings("serial")
4716 static final class ForEachEntryTask<K,V>
4717 extends BulkTask<K,V,Void> {
4718 final Action<? super Entry<K,V>> action;
4719 ForEachEntryTask
4720 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4721 Action<? super Entry<K,V>> action) {
4722 super(p, b, i, f, t);
4723 this.action = action;
4724 }
4725 public final void compute() {
4726 final Action<? super Entry<K,V>> action;
4727 if ((action = this.action) != null) {
4728 for (int i = baseIndex, f, h; batch > 0 &&
4729 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4730 addToPendingCount(1);
4731 new ForEachEntryTask<K,V>
4732 (this, batch >>>= 1, baseLimit = h, f, tab,
4733 action).fork();
4734 }
4735 for (Node<K,V> p; (p = advance()) != null; )
4736 action.apply(p);
4737 propagateCompletion();
4738 }
4739 }
4740 }
4741
4742 @SuppressWarnings("serial")
4743 static final class ForEachMappingTask<K,V>
4744 extends BulkTask<K,V,Void> {
4745 final BiAction<? super K, ? super V> action;
4746 ForEachMappingTask
4747 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4748 BiAction<? super K,? super V> action) {
4749 super(p, b, i, f, t);
4750 this.action = action;
4751 }
4752 public final void compute() {
4753 final BiAction<? super K, ? super V> action;
4754 if ((action = this.action) != null) {
4755 for (int i = baseIndex, f, h; batch > 0 &&
4756 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4757 addToPendingCount(1);
4758 new ForEachMappingTask<K,V>
4759 (this, batch >>>= 1, baseLimit = h, f, tab,
4760 action).fork();
4761 }
4762 for (Node<K,V> p; (p = advance()) != null; )
4763 action.apply(p.key, p.val);
4764 propagateCompletion();
4765 }
4766 }
4767 }
4768
4769 @SuppressWarnings("serial")
4770 static final class ForEachTransformedKeyTask<K,V,U>
4771 extends BulkTask<K,V,Void> {
4772 final Fun<? super K, ? extends U> transformer;
4773 final Action<? super U> action;
4774 ForEachTransformedKeyTask
4775 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4776 Fun<? super K, ? extends U> transformer, Action<? super U> action) {
4777 super(p, b, i, f, t);
4778 this.transformer = transformer; this.action = action;
4779 }
4780 public final void compute() {
4781 final Fun<? super K, ? extends U> transformer;
4782 final Action<? super U> action;
4783 if ((transformer = this.transformer) != null &&
4784 (action = this.action) != null) {
4785 for (int i = baseIndex, f, h; batch > 0 &&
4786 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4787 addToPendingCount(1);
4788 new ForEachTransformedKeyTask<K,V,U>
4789 (this, batch >>>= 1, baseLimit = h, f, tab,
4790 transformer, action).fork();
4791 }
4792 for (Node<K,V> p; (p = advance()) != null; ) {
4793 U u;
4794 if ((u = transformer.apply(p.key)) != null)
4795 action.apply(u);
4796 }
4797 propagateCompletion();
4798 }
4799 }
4800 }
4801
4802 @SuppressWarnings("serial")
4803 static final class ForEachTransformedValueTask<K,V,U>
4804 extends BulkTask<K,V,Void> {
4805 final Fun<? super V, ? extends U> transformer;
4806 final Action<? super U> action;
4807 ForEachTransformedValueTask
4808 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4809 Fun<? super V, ? extends U> transformer, Action<? super U> action) {
4810 super(p, b, i, f, t);
4811 this.transformer = transformer; this.action = action;
4812 }
4813 public final void compute() {
4814 final Fun<? super V, ? extends U> transformer;
4815 final Action<? super U> action;
4816 if ((transformer = this.transformer) != null &&
4817 (action = this.action) != null) {
4818 for (int i = baseIndex, f, h; batch > 0 &&
4819 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4820 addToPendingCount(1);
4821 new ForEachTransformedValueTask<K,V,U>
4822 (this, batch >>>= 1, baseLimit = h, f, tab,
4823 transformer, action).fork();
4824 }
4825 for (Node<K,V> p; (p = advance()) != null; ) {
4826 U u;
4827 if ((u = transformer.apply(p.val)) != null)
4828 action.apply(u);
4829 }
4830 propagateCompletion();
4831 }
4832 }
4833 }
4834
4835 @SuppressWarnings("serial")
4836 static final class ForEachTransformedEntryTask<K,V,U>
4837 extends BulkTask<K,V,Void> {
4838 final Fun<Map.Entry<K,V>, ? extends U> transformer;
4839 final Action<? super U> action;
4840 ForEachTransformedEntryTask
4841 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4842 Fun<Map.Entry<K,V>, ? extends U> transformer, Action<? super U> action) {
4843 super(p, b, i, f, t);
4844 this.transformer = transformer; this.action = action;
4845 }
4846 public final void compute() {
4847 final Fun<Map.Entry<K,V>, ? extends U> transformer;
4848 final Action<? super U> action;
4849 if ((transformer = this.transformer) != null &&
4850 (action = this.action) != null) {
4851 for (int i = baseIndex, f, h; batch > 0 &&
4852 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4853 addToPendingCount(1);
4854 new ForEachTransformedEntryTask<K,V,U>
4855 (this, batch >>>= 1, baseLimit = h, f, tab,
4856 transformer, action).fork();
4857 }
4858 for (Node<K,V> p; (p = advance()) != null; ) {
4859 U u;
4860 if ((u = transformer.apply(p)) != null)
4861 action.apply(u);
4862 }
4863 propagateCompletion();
4864 }
4865 }
4866 }
4867
4868 @SuppressWarnings("serial")
4869 static final class ForEachTransformedMappingTask<K,V,U>
4870 extends BulkTask<K,V,Void> {
4871 final BiFun<? super K, ? super V, ? extends U> transformer;
4872 final Action<? super U> action;
4873 ForEachTransformedMappingTask
4874 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4875 BiFun<? super K, ? super V, ? extends U> transformer,
4876 Action<? super U> action) {
4877 super(p, b, i, f, t);
4878 this.transformer = transformer; this.action = action;
4879 }
4880 public final void compute() {
4881 final BiFun<? super K, ? super V, ? extends U> transformer;
4882 final Action<? super U> action;
4883 if ((transformer = this.transformer) != null &&
4884 (action = this.action) != null) {
4885 for (int i = baseIndex, f, h; batch > 0 &&
4886 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4887 addToPendingCount(1);
4888 new ForEachTransformedMappingTask<K,V,U>
4889 (this, batch >>>= 1, baseLimit = h, f, tab,
4890 transformer, action).fork();
4891 }
4892 for (Node<K,V> p; (p = advance()) != null; ) {
4893 U u;
4894 if ((u = transformer.apply(p.key, p.val)) != null)
4895 action.apply(u);
4896 }
4897 propagateCompletion();
4898 }
4899 }
4900 }
4901
4902 @SuppressWarnings("serial")
4903 static final class SearchKeysTask<K,V,U>
4904 extends BulkTask<K,V,U> {
4905 final Fun<? super K, ? extends U> searchFunction;
4906 final AtomicReference<U> result;
4907 SearchKeysTask
4908 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4909 Fun<? super K, ? extends U> searchFunction,
4910 AtomicReference<U> result) {
4911 super(p, b, i, f, t);
4912 this.searchFunction = searchFunction; this.result = result;
4913 }
4914 public final U getRawResult() { return result.get(); }
4915 public final void compute() {
4916 final Fun<? super K, ? extends U> searchFunction;
4917 final AtomicReference<U> result;
4918 if ((searchFunction = this.searchFunction) != null &&
4919 (result = this.result) != null) {
4920 for (int i = baseIndex, f, h; batch > 0 &&
4921 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4922 if (result.get() != null)
4923 return;
4924 addToPendingCount(1);
4925 new SearchKeysTask<K,V,U>
4926 (this, batch >>>= 1, baseLimit = h, f, tab,
4927 searchFunction, result).fork();
4928 }
4929 while (result.get() == null) {
4930 U u;
4931 Node<K,V> p;
4932 if ((p = advance()) == null) {
4933 propagateCompletion();
4934 break;
4935 }
4936 if ((u = searchFunction.apply(p.key)) != null) {
4937 if (result.compareAndSet(null, u))
4938 quietlyCompleteRoot();
4939 break;
4940 }
4941 }
4942 }
4943 }
4944 }
4945
4946 @SuppressWarnings("serial")
4947 static final class SearchValuesTask<K,V,U>
4948 extends BulkTask<K,V,U> {
4949 final Fun<? super V, ? extends U> searchFunction;
4950 final AtomicReference<U> result;
4951 SearchValuesTask
4952 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4953 Fun<? super V, ? extends U> searchFunction,
4954 AtomicReference<U> result) {
4955 super(p, b, i, f, t);
4956 this.searchFunction = searchFunction; this.result = result;
4957 }
4958 public final U getRawResult() { return result.get(); }
4959 public final void compute() {
4960 final Fun<? super V, ? extends U> searchFunction;
4961 final AtomicReference<U> result;
4962 if ((searchFunction = this.searchFunction) != null &&
4963 (result = this.result) != null) {
4964 for (int i = baseIndex, f, h; batch > 0 &&
4965 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4966 if (result.get() != null)
4967 return;
4968 addToPendingCount(1);
4969 new SearchValuesTask<K,V,U>
4970 (this, batch >>>= 1, baseLimit = h, f, tab,
4971 searchFunction, result).fork();
4972 }
4973 while (result.get() == null) {
4974 U u;
4975 Node<K,V> p;
4976 if ((p = advance()) == null) {
4977 propagateCompletion();
4978 break;
4979 }
4980 if ((u = searchFunction.apply(p.val)) != null) {
4981 if (result.compareAndSet(null, u))
4982 quietlyCompleteRoot();
4983 break;
4984 }
4985 }
4986 }
4987 }
4988 }
4989
4990 @SuppressWarnings("serial")
4991 static final class SearchEntriesTask<K,V,U>
4992 extends BulkTask<K,V,U> {
4993 final Fun<Entry<K,V>, ? extends U> searchFunction;
4994 final AtomicReference<U> result;
4995 SearchEntriesTask
4996 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4997 Fun<Entry<K,V>, ? extends U> searchFunction,
4998 AtomicReference<U> result) {
4999 super(p, b, i, f, t);
5000 this.searchFunction = searchFunction; this.result = result;
5001 }
5002 public final U getRawResult() { return result.get(); }
5003 public final void compute() {
5004 final Fun<Entry<K,V>, ? extends U> searchFunction;
5005 final AtomicReference<U> result;
5006 if ((searchFunction = this.searchFunction) != null &&
5007 (result = this.result) != null) {
5008 for (int i = baseIndex, f, h; batch > 0 &&
5009 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5010 if (result.get() != null)
5011 return;
5012 addToPendingCount(1);
5013 new SearchEntriesTask<K,V,U>
5014 (this, batch >>>= 1, baseLimit = h, f, tab,
5015 searchFunction, result).fork();
5016 }
5017 while (result.get() == null) {
5018 U u;
5019 Node<K,V> p;
5020 if ((p = advance()) == null) {
5021 propagateCompletion();
5022 break;
5023 }
5024 if ((u = searchFunction.apply(p)) != null) {
5025 if (result.compareAndSet(null, u))
5026 quietlyCompleteRoot();
5027 return;
5028 }
5029 }
5030 }
5031 }
5032 }
5033
5034 @SuppressWarnings("serial")
5035 static final class SearchMappingsTask<K,V,U>
5036 extends BulkTask<K,V,U> {
5037 final BiFun<? super K, ? super V, ? extends U> searchFunction;
5038 final AtomicReference<U> result;
5039 SearchMappingsTask
5040 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5041 BiFun<? super K, ? super V, ? extends U> searchFunction,
5042 AtomicReference<U> result) {
5043 super(p, b, i, f, t);
5044 this.searchFunction = searchFunction; this.result = result;
5045 }
5046 public final U getRawResult() { return result.get(); }
5047 public final void compute() {
5048 final BiFun<? super K, ? super V, ? extends U> searchFunction;
5049 final AtomicReference<U> result;
5050 if ((searchFunction = this.searchFunction) != null &&
5051 (result = this.result) != null) {
5052 for (int i = baseIndex, f, h; batch > 0 &&
5053 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5054 if (result.get() != null)
5055 return;
5056 addToPendingCount(1);
5057 new SearchMappingsTask<K,V,U>
5058 (this, batch >>>= 1, baseLimit = h, f, tab,
5059 searchFunction, result).fork();
5060 }
5061 while (result.get() == null) {
5062 U u;
5063 Node<K,V> p;
5064 if ((p = advance()) == null) {
5065 propagateCompletion();
5066 break;
5067 }
5068 if ((u = searchFunction.apply(p.key, p.val)) != null) {
5069 if (result.compareAndSet(null, u))
5070 quietlyCompleteRoot();
5071 break;
5072 }
5073 }
5074 }
5075 }
5076 }
5077
5078 @SuppressWarnings("serial")
5079 static final class ReduceKeysTask<K,V>
5080 extends BulkTask<K,V,K> {
5081 final BiFun<? super K, ? super K, ? extends K> reducer;
5082 K result;
5083 ReduceKeysTask<K,V> rights, nextRight;
5084 ReduceKeysTask
5085 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5086 ReduceKeysTask<K,V> nextRight,
5087 BiFun<? super K, ? super K, ? extends K> reducer) {
5088 super(p, b, i, f, t); this.nextRight = nextRight;
5089 this.reducer = reducer;
5090 }
5091 public final K getRawResult() { return result; }
5092 public final void compute() {
5093 final BiFun<? super K, ? super K, ? extends K> reducer;
5094 if ((reducer = this.reducer) != null) {
5095 for (int i = baseIndex, f, h; batch > 0 &&
5096 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5097 addToPendingCount(1);
5098 (rights = new ReduceKeysTask<K,V>
5099 (this, batch >>>= 1, baseLimit = h, f, tab,
5100 rights, reducer)).fork();
5101 }
5102 K r = null;
5103 for (Node<K,V> p; (p = advance()) != null; ) {
5104 K u = p.key;
5105 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5106 }
5107 result = r;
5108 CountedCompleter<?> c;
5109 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5110 @SuppressWarnings("unchecked") ReduceKeysTask<K,V>
5111 t = (ReduceKeysTask<K,V>)c,
5112 s = t.rights;
5113 while (s != null) {
5114 K tr, sr;
5115 if ((sr = s.result) != null)
5116 t.result = (((tr = t.result) == null) ? sr :
5117 reducer.apply(tr, sr));
5118 s = t.rights = s.nextRight;
5119 }
5120 }
5121 }
5122 }
5123 }
5124
5125 @SuppressWarnings("serial")
5126 static final class ReduceValuesTask<K,V>
5127 extends BulkTask<K,V,V> {
5128 final BiFun<? super V, ? super V, ? extends V> reducer;
5129 V result;
5130 ReduceValuesTask<K,V> rights, nextRight;
5131 ReduceValuesTask
5132 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5133 ReduceValuesTask<K,V> nextRight,
5134 BiFun<? super V, ? super V, ? extends V> reducer) {
5135 super(p, b, i, f, t); this.nextRight = nextRight;
5136 this.reducer = reducer;
5137 }
5138 public final V getRawResult() { return result; }
5139 public final void compute() {
5140 final BiFun<? super V, ? super V, ? extends V> reducer;
5141 if ((reducer = this.reducer) != null) {
5142 for (int i = baseIndex, f, h; batch > 0 &&
5143 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5144 addToPendingCount(1);
5145 (rights = new ReduceValuesTask<K,V>
5146 (this, batch >>>= 1, baseLimit = h, f, tab,
5147 rights, reducer)).fork();
5148 }
5149 V r = null;
5150 for (Node<K,V> p; (p = advance()) != null; ) {
5151 V v = p.val;
5152 r = (r == null) ? v : reducer.apply(r, v);
5153 }
5154 result = r;
5155 CountedCompleter<?> c;
5156 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5157 @SuppressWarnings("unchecked") ReduceValuesTask<K,V>
5158 t = (ReduceValuesTask<K,V>)c,
5159 s = t.rights;
5160 while (s != null) {
5161 V tr, sr;
5162 if ((sr = s.result) != null)
5163 t.result = (((tr = t.result) == null) ? sr :
5164 reducer.apply(tr, sr));
5165 s = t.rights = s.nextRight;
5166 }
5167 }
5168 }
5169 }
5170 }
5171
5172 @SuppressWarnings("serial")
5173 static final class ReduceEntriesTask<K,V>
5174 extends BulkTask<K,V,Map.Entry<K,V>> {
5175 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5176 Map.Entry<K,V> result;
5177 ReduceEntriesTask<K,V> rights, nextRight;
5178 ReduceEntriesTask
5179 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5180 ReduceEntriesTask<K,V> nextRight,
5181 BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5182 super(p, b, i, f, t); this.nextRight = nextRight;
5183 this.reducer = reducer;
5184 }
5185 public final Map.Entry<K,V> getRawResult() { return result; }
5186 public final void compute() {
5187 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5188 if ((reducer = this.reducer) != null) {
5189 for (int i = baseIndex, f, h; batch > 0 &&
5190 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5191 addToPendingCount(1);
5192 (rights = new ReduceEntriesTask<K,V>
5193 (this, batch >>>= 1, baseLimit = h, f, tab,
5194 rights, reducer)).fork();
5195 }
5196 Map.Entry<K,V> r = null;
5197 for (Node<K,V> p; (p = advance()) != null; )
5198 r = (r == null) ? p : reducer.apply(r, p);
5199 result = r;
5200 CountedCompleter<?> c;
5201 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5202 @SuppressWarnings("unchecked") ReduceEntriesTask<K,V>
5203 t = (ReduceEntriesTask<K,V>)c,
5204 s = t.rights;
5205 while (s != null) {
5206 Map.Entry<K,V> tr, sr;
5207 if ((sr = s.result) != null)
5208 t.result = (((tr = t.result) == null) ? sr :
5209 reducer.apply(tr, sr));
5210 s = t.rights = s.nextRight;
5211 }
5212 }
5213 }
5214 }
5215 }
5216
5217 @SuppressWarnings("serial")
5218 static final class MapReduceKeysTask<K,V,U>
5219 extends BulkTask<K,V,U> {
5220 final Fun<? super K, ? extends U> transformer;
5221 final BiFun<? super U, ? super U, ? extends U> reducer;
5222 U result;
5223 MapReduceKeysTask<K,V,U> rights, nextRight;
5224 MapReduceKeysTask
5225 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5226 MapReduceKeysTask<K,V,U> nextRight,
5227 Fun<? super K, ? extends U> transformer,
5228 BiFun<? super U, ? super U, ? extends U> reducer) {
5229 super(p, b, i, f, t); this.nextRight = nextRight;
5230 this.transformer = transformer;
5231 this.reducer = reducer;
5232 }
5233 public final U getRawResult() { return result; }
5234 public final void compute() {
5235 final Fun<? super K, ? extends U> transformer;
5236 final BiFun<? super U, ? super U, ? extends U> reducer;
5237 if ((transformer = this.transformer) != null &&
5238 (reducer = this.reducer) != null) {
5239 for (int i = baseIndex, f, h; batch > 0 &&
5240 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5241 addToPendingCount(1);
5242 (rights = new MapReduceKeysTask<K,V,U>
5243 (this, batch >>>= 1, baseLimit = h, f, tab,
5244 rights, transformer, reducer)).fork();
5245 }
5246 U r = null;
5247 for (Node<K,V> p; (p = advance()) != null; ) {
5248 U u;
5249 if ((u = transformer.apply(p.key)) != null)
5250 r = (r == null) ? u : reducer.apply(r, u);
5251 }
5252 result = r;
5253 CountedCompleter<?> c;
5254 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5255 @SuppressWarnings("unchecked") MapReduceKeysTask<K,V,U>
5256 t = (MapReduceKeysTask<K,V,U>)c,
5257 s = t.rights;
5258 while (s != null) {
5259 U tr, sr;
5260 if ((sr = s.result) != null)
5261 t.result = (((tr = t.result) == null) ? sr :
5262 reducer.apply(tr, sr));
5263 s = t.rights = s.nextRight;
5264 }
5265 }
5266 }
5267 }
5268 }
5269
5270 @SuppressWarnings("serial")
5271 static final class MapReduceValuesTask<K,V,U>
5272 extends BulkTask<K,V,U> {
5273 final Fun<? super V, ? extends U> transformer;
5274 final BiFun<? super U, ? super U, ? extends U> reducer;
5275 U result;
5276 MapReduceValuesTask<K,V,U> rights, nextRight;
5277 MapReduceValuesTask
5278 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5279 MapReduceValuesTask<K,V,U> nextRight,
5280 Fun<? super V, ? extends U> transformer,
5281 BiFun<? super U, ? super U, ? extends U> reducer) {
5282 super(p, b, i, f, t); this.nextRight = nextRight;
5283 this.transformer = transformer;
5284 this.reducer = reducer;
5285 }
5286 public final U getRawResult() { return result; }
5287 public final void compute() {
5288 final Fun<? super V, ? extends U> transformer;
5289 final BiFun<? super U, ? super U, ? extends U> reducer;
5290 if ((transformer = this.transformer) != null &&
5291 (reducer = this.reducer) != null) {
5292 for (int i = baseIndex, f, h; batch > 0 &&
5293 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5294 addToPendingCount(1);
5295 (rights = new MapReduceValuesTask<K,V,U>
5296 (this, batch >>>= 1, baseLimit = h, f, tab,
5297 rights, transformer, reducer)).fork();
5298 }
5299 U r = null;
5300 for (Node<K,V> p; (p = advance()) != null; ) {
5301 U u;
5302 if ((u = transformer.apply(p.val)) != null)
5303 r = (r == null) ? u : reducer.apply(r, u);
5304 }
5305 result = r;
5306 CountedCompleter<?> c;
5307 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5308 @SuppressWarnings("unchecked") MapReduceValuesTask<K,V,U>
5309 t = (MapReduceValuesTask<K,V,U>)c,
5310 s = t.rights;
5311 while (s != null) {
5312 U tr, sr;
5313 if ((sr = s.result) != null)
5314 t.result = (((tr = t.result) == null) ? sr :
5315 reducer.apply(tr, sr));
5316 s = t.rights = s.nextRight;
5317 }
5318 }
5319 }
5320 }
5321 }
5322
5323 @SuppressWarnings("serial")
5324 static final class MapReduceEntriesTask<K,V,U>
5325 extends BulkTask<K,V,U> {
5326 final Fun<Map.Entry<K,V>, ? extends U> transformer;
5327 final BiFun<? super U, ? super U, ? extends U> reducer;
5328 U result;
5329 MapReduceEntriesTask<K,V,U> rights, nextRight;
5330 MapReduceEntriesTask
5331 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5332 MapReduceEntriesTask<K,V,U> nextRight,
5333 Fun<Map.Entry<K,V>, ? extends U> transformer,
5334 BiFun<? super U, ? super U, ? extends U> reducer) {
5335 super(p, b, i, f, t); this.nextRight = nextRight;
5336 this.transformer = transformer;
5337 this.reducer = reducer;
5338 }
5339 public final U getRawResult() { return result; }
5340 public final void compute() {
5341 final Fun<Map.Entry<K,V>, ? extends U> transformer;
5342 final BiFun<? super U, ? super U, ? extends U> reducer;
5343 if ((transformer = this.transformer) != null &&
5344 (reducer = this.reducer) != null) {
5345 for (int i = baseIndex, f, h; batch > 0 &&
5346 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5347 addToPendingCount(1);
5348 (rights = new MapReduceEntriesTask<K,V,U>
5349 (this, batch >>>= 1, baseLimit = h, f, tab,
5350 rights, transformer, reducer)).fork();
5351 }
5352 U r = null;
5353 for (Node<K,V> p; (p = advance()) != null; ) {
5354 U u;
5355 if ((u = transformer.apply(p)) != null)
5356 r = (r == null) ? u : reducer.apply(r, u);
5357 }
5358 result = r;
5359 CountedCompleter<?> c;
5360 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5361 @SuppressWarnings("unchecked") MapReduceEntriesTask<K,V,U>
5362 t = (MapReduceEntriesTask<K,V,U>)c,
5363 s = t.rights;
5364 while (s != null) {
5365 U tr, sr;
5366 if ((sr = s.result) != null)
5367 t.result = (((tr = t.result) == null) ? sr :
5368 reducer.apply(tr, sr));
5369 s = t.rights = s.nextRight;
5370 }
5371 }
5372 }
5373 }
5374 }
5375
5376 @SuppressWarnings("serial")
5377 static final class MapReduceMappingsTask<K,V,U>
5378 extends BulkTask<K,V,U> {
5379 final BiFun<? super K, ? super V, ? extends U> transformer;
5380 final BiFun<? super U, ? super U, ? extends U> reducer;
5381 U result;
5382 MapReduceMappingsTask<K,V,U> rights, nextRight;
5383 MapReduceMappingsTask
5384 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5385 MapReduceMappingsTask<K,V,U> nextRight,
5386 BiFun<? super K, ? super V, ? extends U> transformer,
5387 BiFun<? super U, ? super U, ? extends U> reducer) {
5388 super(p, b, i, f, t); this.nextRight = nextRight;
5389 this.transformer = transformer;
5390 this.reducer = reducer;
5391 }
5392 public final U getRawResult() { return result; }
5393 public final void compute() {
5394 final BiFun<? super K, ? super V, ? extends U> transformer;
5395 final BiFun<? super U, ? super U, ? extends U> reducer;
5396 if ((transformer = this.transformer) != null &&
5397 (reducer = this.reducer) != null) {
5398 for (int i = baseIndex, f, h; batch > 0 &&
5399 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5400 addToPendingCount(1);
5401 (rights = new MapReduceMappingsTask<K,V,U>
5402 (this, batch >>>= 1, baseLimit = h, f, tab,
5403 rights, transformer, reducer)).fork();
5404 }
5405 U r = null;
5406 for (Node<K,V> p; (p = advance()) != null; ) {
5407 U u;
5408 if ((u = transformer.apply(p.key, p.val)) != null)
5409 r = (r == null) ? u : reducer.apply(r, u);
5410 }
5411 result = r;
5412 CountedCompleter<?> c;
5413 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5414 @SuppressWarnings("unchecked") MapReduceMappingsTask<K,V,U>
5415 t = (MapReduceMappingsTask<K,V,U>)c,
5416 s = t.rights;
5417 while (s != null) {
5418 U tr, sr;
5419 if ((sr = s.result) != null)
5420 t.result = (((tr = t.result) == null) ? sr :
5421 reducer.apply(tr, sr));
5422 s = t.rights = s.nextRight;
5423 }
5424 }
5425 }
5426 }
5427 }
5428
5429 @SuppressWarnings("serial")
5430 static final class MapReduceKeysToDoubleTask<K,V>
5431 extends BulkTask<K,V,Double> {
5432 final ObjectToDouble<? super K> transformer;
5433 final DoubleByDoubleToDouble reducer;
5434 final double basis;
5435 double result;
5436 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5437 MapReduceKeysToDoubleTask
5438 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5439 MapReduceKeysToDoubleTask<K,V> nextRight,
5440 ObjectToDouble<? super K> transformer,
5441 double basis,
5442 DoubleByDoubleToDouble reducer) {
5443 super(p, b, i, f, t); this.nextRight = nextRight;
5444 this.transformer = transformer;
5445 this.basis = basis; this.reducer = reducer;
5446 }
5447 public final Double getRawResult() { return result; }
5448 public final void compute() {
5449 final ObjectToDouble<? super K> transformer;
5450 final DoubleByDoubleToDouble reducer;
5451 if ((transformer = this.transformer) != null &&
5452 (reducer = this.reducer) != null) {
5453 double r = this.basis;
5454 for (int i = baseIndex, f, h; batch > 0 &&
5455 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5456 addToPendingCount(1);
5457 (rights = new MapReduceKeysToDoubleTask<K,V>
5458 (this, batch >>>= 1, baseLimit = h, f, tab,
5459 rights, transformer, r, reducer)).fork();
5460 }
5461 for (Node<K,V> p; (p = advance()) != null; )
5462 r = reducer.apply(r, transformer.apply(p.key));
5463 result = r;
5464 CountedCompleter<?> c;
5465 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5466 @SuppressWarnings("unchecked") MapReduceKeysToDoubleTask<K,V>
5467 t = (MapReduceKeysToDoubleTask<K,V>)c,
5468 s = t.rights;
5469 while (s != null) {
5470 t.result = reducer.apply(t.result, s.result);
5471 s = t.rights = s.nextRight;
5472 }
5473 }
5474 }
5475 }
5476 }
5477
5478 @SuppressWarnings("serial")
5479 static final class MapReduceValuesToDoubleTask<K,V>
5480 extends BulkTask<K,V,Double> {
5481 final ObjectToDouble<? super V> transformer;
5482 final DoubleByDoubleToDouble reducer;
5483 final double basis;
5484 double result;
5485 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5486 MapReduceValuesToDoubleTask
5487 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5488 MapReduceValuesToDoubleTask<K,V> nextRight,
5489 ObjectToDouble<? super V> transformer,
5490 double basis,
5491 DoubleByDoubleToDouble reducer) {
5492 super(p, b, i, f, t); this.nextRight = nextRight;
5493 this.transformer = transformer;
5494 this.basis = basis; this.reducer = reducer;
5495 }
5496 public final Double getRawResult() { return result; }
5497 public final void compute() {
5498 final ObjectToDouble<? super V> transformer;
5499 final DoubleByDoubleToDouble reducer;
5500 if ((transformer = this.transformer) != null &&
5501 (reducer = this.reducer) != null) {
5502 double r = this.basis;
5503 for (int i = baseIndex, f, h; batch > 0 &&
5504 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5505 addToPendingCount(1);
5506 (rights = new MapReduceValuesToDoubleTask<K,V>
5507 (this, batch >>>= 1, baseLimit = h, f, tab,
5508 rights, transformer, r, reducer)).fork();
5509 }
5510 for (Node<K,V> p; (p = advance()) != null; )
5511 r = reducer.apply(r, transformer.apply(p.val));
5512 result = r;
5513 CountedCompleter<?> c;
5514 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5515 @SuppressWarnings("unchecked") MapReduceValuesToDoubleTask<K,V>
5516 t = (MapReduceValuesToDoubleTask<K,V>)c,
5517 s = t.rights;
5518 while (s != null) {
5519 t.result = reducer.apply(t.result, s.result);
5520 s = t.rights = s.nextRight;
5521 }
5522 }
5523 }
5524 }
5525 }
5526
5527 @SuppressWarnings("serial")
5528 static final class MapReduceEntriesToDoubleTask<K,V>
5529 extends BulkTask<K,V,Double> {
5530 final ObjectToDouble<Map.Entry<K,V>> transformer;
5531 final DoubleByDoubleToDouble reducer;
5532 final double basis;
5533 double result;
5534 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5535 MapReduceEntriesToDoubleTask
5536 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5537 MapReduceEntriesToDoubleTask<K,V> nextRight,
5538 ObjectToDouble<Map.Entry<K,V>> transformer,
5539 double basis,
5540 DoubleByDoubleToDouble reducer) {
5541 super(p, b, i, f, t); this.nextRight = nextRight;
5542 this.transformer = transformer;
5543 this.basis = basis; this.reducer = reducer;
5544 }
5545 public final Double getRawResult() { return result; }
5546 public final void compute() {
5547 final ObjectToDouble<Map.Entry<K,V>> transformer;
5548 final DoubleByDoubleToDouble reducer;
5549 if ((transformer = this.transformer) != null &&
5550 (reducer = this.reducer) != null) {
5551 double r = this.basis;
5552 for (int i = baseIndex, f, h; batch > 0 &&
5553 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5554 addToPendingCount(1);
5555 (rights = new MapReduceEntriesToDoubleTask<K,V>
5556 (this, batch >>>= 1, baseLimit = h, f, tab,
5557 rights, transformer, r, reducer)).fork();
5558 }
5559 for (Node<K,V> p; (p = advance()) != null; )
5560 r = reducer.apply(r, transformer.apply(p));
5561 result = r;
5562 CountedCompleter<?> c;
5563 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5564 @SuppressWarnings("unchecked") MapReduceEntriesToDoubleTask<K,V>
5565 t = (MapReduceEntriesToDoubleTask<K,V>)c,
5566 s = t.rights;
5567 while (s != null) {
5568 t.result = reducer.apply(t.result, s.result);
5569 s = t.rights = s.nextRight;
5570 }
5571 }
5572 }
5573 }
5574 }
5575
5576 @SuppressWarnings("serial")
5577 static final class MapReduceMappingsToDoubleTask<K,V>
5578 extends BulkTask<K,V,Double> {
5579 final ObjectByObjectToDouble<? super K, ? super V> transformer;
5580 final DoubleByDoubleToDouble reducer;
5581 final double basis;
5582 double result;
5583 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5584 MapReduceMappingsToDoubleTask
5585 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5586 MapReduceMappingsToDoubleTask<K,V> nextRight,
5587 ObjectByObjectToDouble<? super K, ? super V> transformer,
5588 double basis,
5589 DoubleByDoubleToDouble reducer) {
5590 super(p, b, i, f, t); this.nextRight = nextRight;
5591 this.transformer = transformer;
5592 this.basis = basis; this.reducer = reducer;
5593 }
5594 public final Double getRawResult() { return result; }
5595 public final void compute() {
5596 final ObjectByObjectToDouble<? super K, ? super V> transformer;
5597 final DoubleByDoubleToDouble reducer;
5598 if ((transformer = this.transformer) != null &&
5599 (reducer = this.reducer) != null) {
5600 double r = this.basis;
5601 for (int i = baseIndex, f, h; batch > 0 &&
5602 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5603 addToPendingCount(1);
5604 (rights = new MapReduceMappingsToDoubleTask<K,V>
5605 (this, batch >>>= 1, baseLimit = h, f, tab,
5606 rights, transformer, r, reducer)).fork();
5607 }
5608 for (Node<K,V> p; (p = advance()) != null; )
5609 r = reducer.apply(r, transformer.apply(p.key, p.val));
5610 result = r;
5611 CountedCompleter<?> c;
5612 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5613 @SuppressWarnings("unchecked") MapReduceMappingsToDoubleTask<K,V>
5614 t = (MapReduceMappingsToDoubleTask<K,V>)c,
5615 s = t.rights;
5616 while (s != null) {
5617 t.result = reducer.apply(t.result, s.result);
5618 s = t.rights = s.nextRight;
5619 }
5620 }
5621 }
5622 }
5623 }
5624
5625 @SuppressWarnings("serial")
5626 static final class MapReduceKeysToLongTask<K,V>
5627 extends BulkTask<K,V,Long> {
5628 final ObjectToLong<? super K> transformer;
5629 final LongByLongToLong reducer;
5630 final long basis;
5631 long result;
5632 MapReduceKeysToLongTask<K,V> rights, nextRight;
5633 MapReduceKeysToLongTask
5634 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5635 MapReduceKeysToLongTask<K,V> nextRight,
5636 ObjectToLong<? super K> transformer,
5637 long basis,
5638 LongByLongToLong reducer) {
5639 super(p, b, i, f, t); this.nextRight = nextRight;
5640 this.transformer = transformer;
5641 this.basis = basis; this.reducer = reducer;
5642 }
5643 public final Long getRawResult() { return result; }
5644 public final void compute() {
5645 final ObjectToLong<? super K> transformer;
5646 final LongByLongToLong reducer;
5647 if ((transformer = this.transformer) != null &&
5648 (reducer = this.reducer) != null) {
5649 long r = this.basis;
5650 for (int i = baseIndex, f, h; batch > 0 &&
5651 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5652 addToPendingCount(1);
5653 (rights = new MapReduceKeysToLongTask<K,V>
5654 (this, batch >>>= 1, baseLimit = h, f, tab,
5655 rights, transformer, r, reducer)).fork();
5656 }
5657 for (Node<K,V> p; (p = advance()) != null; )
5658 r = reducer.apply(r, transformer.apply(p.key));
5659 result = r;
5660 CountedCompleter<?> c;
5661 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5662 @SuppressWarnings("unchecked") MapReduceKeysToLongTask<K,V>
5663 t = (MapReduceKeysToLongTask<K,V>)c,
5664 s = t.rights;
5665 while (s != null) {
5666 t.result = reducer.apply(t.result, s.result);
5667 s = t.rights = s.nextRight;
5668 }
5669 }
5670 }
5671 }
5672 }
5673
5674 @SuppressWarnings("serial")
5675 static final class MapReduceValuesToLongTask<K,V>
5676 extends BulkTask<K,V,Long> {
5677 final ObjectToLong<? super V> transformer;
5678 final LongByLongToLong reducer;
5679 final long basis;
5680 long result;
5681 MapReduceValuesToLongTask<K,V> rights, nextRight;
5682 MapReduceValuesToLongTask
5683 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5684 MapReduceValuesToLongTask<K,V> nextRight,
5685 ObjectToLong<? super V> transformer,
5686 long basis,
5687 LongByLongToLong reducer) {
5688 super(p, b, i, f, t); this.nextRight = nextRight;
5689 this.transformer = transformer;
5690 this.basis = basis; this.reducer = reducer;
5691 }
5692 public final Long getRawResult() { return result; }
5693 public final void compute() {
5694 final ObjectToLong<? super V> transformer;
5695 final LongByLongToLong reducer;
5696 if ((transformer = this.transformer) != null &&
5697 (reducer = this.reducer) != null) {
5698 long r = this.basis;
5699 for (int i = baseIndex, f, h; batch > 0 &&
5700 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5701 addToPendingCount(1);
5702 (rights = new MapReduceValuesToLongTask<K,V>
5703 (this, batch >>>= 1, baseLimit = h, f, tab,
5704 rights, transformer, r, reducer)).fork();
5705 }
5706 for (Node<K,V> p; (p = advance()) != null; )
5707 r = reducer.apply(r, transformer.apply(p.val));
5708 result = r;
5709 CountedCompleter<?> c;
5710 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5711 @SuppressWarnings("unchecked") MapReduceValuesToLongTask<K,V>
5712 t = (MapReduceValuesToLongTask<K,V>)c,
5713 s = t.rights;
5714 while (s != null) {
5715 t.result = reducer.apply(t.result, s.result);
5716 s = t.rights = s.nextRight;
5717 }
5718 }
5719 }
5720 }
5721 }
5722
5723 @SuppressWarnings("serial")
5724 static final class MapReduceEntriesToLongTask<K,V>
5725 extends BulkTask<K,V,Long> {
5726 final ObjectToLong<Map.Entry<K,V>> transformer;
5727 final LongByLongToLong reducer;
5728 final long basis;
5729 long result;
5730 MapReduceEntriesToLongTask<K,V> rights, nextRight;
5731 MapReduceEntriesToLongTask
5732 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5733 MapReduceEntriesToLongTask<K,V> nextRight,
5734 ObjectToLong<Map.Entry<K,V>> transformer,
5735 long basis,
5736 LongByLongToLong reducer) {
5737 super(p, b, i, f, t); this.nextRight = nextRight;
5738 this.transformer = transformer;
5739 this.basis = basis; this.reducer = reducer;
5740 }
5741 public final Long getRawResult() { return result; }
5742 public final void compute() {
5743 final ObjectToLong<Map.Entry<K,V>> transformer;
5744 final LongByLongToLong reducer;
5745 if ((transformer = this.transformer) != null &&
5746 (reducer = this.reducer) != null) {
5747 long r = this.basis;
5748 for (int i = baseIndex, f, h; batch > 0 &&
5749 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5750 addToPendingCount(1);
5751 (rights = new MapReduceEntriesToLongTask<K,V>
5752 (this, batch >>>= 1, baseLimit = h, f, tab,
5753 rights, transformer, r, reducer)).fork();
5754 }
5755 for (Node<K,V> p; (p = advance()) != null; )
5756 r = reducer.apply(r, transformer.apply(p));
5757 result = r;
5758 CountedCompleter<?> c;
5759 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5760 @SuppressWarnings("unchecked") MapReduceEntriesToLongTask<K,V>
5761 t = (MapReduceEntriesToLongTask<K,V>)c,
5762 s = t.rights;
5763 while (s != null) {
5764 t.result = reducer.apply(t.result, s.result);
5765 s = t.rights = s.nextRight;
5766 }
5767 }
5768 }
5769 }
5770 }
5771
5772 @SuppressWarnings("serial")
5773 static final class MapReduceMappingsToLongTask<K,V>
5774 extends BulkTask<K,V,Long> {
5775 final ObjectByObjectToLong<? super K, ? super V> transformer;
5776 final LongByLongToLong reducer;
5777 final long basis;
5778 long result;
5779 MapReduceMappingsToLongTask<K,V> rights, nextRight;
5780 MapReduceMappingsToLongTask
5781 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5782 MapReduceMappingsToLongTask<K,V> nextRight,
5783 ObjectByObjectToLong<? super K, ? super V> transformer,
5784 long basis,
5785 LongByLongToLong reducer) {
5786 super(p, b, i, f, t); this.nextRight = nextRight;
5787 this.transformer = transformer;
5788 this.basis = basis; this.reducer = reducer;
5789 }
5790 public final Long getRawResult() { return result; }
5791 public final void compute() {
5792 final ObjectByObjectToLong<? super K, ? super V> transformer;
5793 final LongByLongToLong reducer;
5794 if ((transformer = this.transformer) != null &&
5795 (reducer = this.reducer) != null) {
5796 long r = this.basis;
5797 for (int i = baseIndex, f, h; batch > 0 &&
5798 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5799 addToPendingCount(1);
5800 (rights = new MapReduceMappingsToLongTask<K,V>
5801 (this, batch >>>= 1, baseLimit = h, f, tab,
5802 rights, transformer, r, reducer)).fork();
5803 }
5804 for (Node<K,V> p; (p = advance()) != null; )
5805 r = reducer.apply(r, transformer.apply(p.key, p.val));
5806 result = r;
5807 CountedCompleter<?> c;
5808 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5809 @SuppressWarnings("unchecked") MapReduceMappingsToLongTask<K,V>
5810 t = (MapReduceMappingsToLongTask<K,V>)c,
5811 s = t.rights;
5812 while (s != null) {
5813 t.result = reducer.apply(t.result, s.result);
5814 s = t.rights = s.nextRight;
5815 }
5816 }
5817 }
5818 }
5819 }
5820
5821 @SuppressWarnings("serial")
5822 static final class MapReduceKeysToIntTask<K,V>
5823 extends BulkTask<K,V,Integer> {
5824 final ObjectToInt<? super K> transformer;
5825 final IntByIntToInt reducer;
5826 final int basis;
5827 int result;
5828 MapReduceKeysToIntTask<K,V> rights, nextRight;
5829 MapReduceKeysToIntTask
5830 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5831 MapReduceKeysToIntTask<K,V> nextRight,
5832 ObjectToInt<? super K> transformer,
5833 int basis,
5834 IntByIntToInt reducer) {
5835 super(p, b, i, f, t); this.nextRight = nextRight;
5836 this.transformer = transformer;
5837 this.basis = basis; this.reducer = reducer;
5838 }
5839 public final Integer getRawResult() { return result; }
5840 public final void compute() {
5841 final ObjectToInt<? super K> transformer;
5842 final IntByIntToInt reducer;
5843 if ((transformer = this.transformer) != null &&
5844 (reducer = this.reducer) != null) {
5845 int r = this.basis;
5846 for (int i = baseIndex, f, h; batch > 0 &&
5847 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5848 addToPendingCount(1);
5849 (rights = new MapReduceKeysToIntTask<K,V>
5850 (this, batch >>>= 1, baseLimit = h, f, tab,
5851 rights, transformer, r, reducer)).fork();
5852 }
5853 for (Node<K,V> p; (p = advance()) != null; )
5854 r = reducer.apply(r, transformer.apply(p.key));
5855 result = r;
5856 CountedCompleter<?> c;
5857 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5858 @SuppressWarnings("unchecked") MapReduceKeysToIntTask<K,V>
5859 t = (MapReduceKeysToIntTask<K,V>)c,
5860 s = t.rights;
5861 while (s != null) {
5862 t.result = reducer.apply(t.result, s.result);
5863 s = t.rights = s.nextRight;
5864 }
5865 }
5866 }
5867 }
5868 }
5869
5870 @SuppressWarnings("serial")
5871 static final class MapReduceValuesToIntTask<K,V>
5872 extends BulkTask<K,V,Integer> {
5873 final ObjectToInt<? super V> transformer;
5874 final IntByIntToInt reducer;
5875 final int basis;
5876 int result;
5877 MapReduceValuesToIntTask<K,V> rights, nextRight;
5878 MapReduceValuesToIntTask
5879 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5880 MapReduceValuesToIntTask<K,V> nextRight,
5881 ObjectToInt<? super V> transformer,
5882 int basis,
5883 IntByIntToInt reducer) {
5884 super(p, b, i, f, t); this.nextRight = nextRight;
5885 this.transformer = transformer;
5886 this.basis = basis; this.reducer = reducer;
5887 }
5888 public final Integer getRawResult() { return result; }
5889 public final void compute() {
5890 final ObjectToInt<? super V> transformer;
5891 final IntByIntToInt reducer;
5892 if ((transformer = this.transformer) != null &&
5893 (reducer = this.reducer) != null) {
5894 int r = this.basis;
5895 for (int i = baseIndex, f, h; batch > 0 &&
5896 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5897 addToPendingCount(1);
5898 (rights = new MapReduceValuesToIntTask<K,V>
5899 (this, batch >>>= 1, baseLimit = h, f, tab,
5900 rights, transformer, r, reducer)).fork();
5901 }
5902 for (Node<K,V> p; (p = advance()) != null; )
5903 r = reducer.apply(r, transformer.apply(p.val));
5904 result = r;
5905 CountedCompleter<?> c;
5906 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5907 @SuppressWarnings("unchecked") MapReduceValuesToIntTask<K,V>
5908 t = (MapReduceValuesToIntTask<K,V>)c,
5909 s = t.rights;
5910 while (s != null) {
5911 t.result = reducer.apply(t.result, s.result);
5912 s = t.rights = s.nextRight;
5913 }
5914 }
5915 }
5916 }
5917 }
5918
5919 @SuppressWarnings("serial")
5920 static final class MapReduceEntriesToIntTask<K,V>
5921 extends BulkTask<K,V,Integer> {
5922 final ObjectToInt<Map.Entry<K,V>> transformer;
5923 final IntByIntToInt reducer;
5924 final int basis;
5925 int result;
5926 MapReduceEntriesToIntTask<K,V> rights, nextRight;
5927 MapReduceEntriesToIntTask
5928 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5929 MapReduceEntriesToIntTask<K,V> nextRight,
5930 ObjectToInt<Map.Entry<K,V>> transformer,
5931 int basis,
5932 IntByIntToInt reducer) {
5933 super(p, b, i, f, t); this.nextRight = nextRight;
5934 this.transformer = transformer;
5935 this.basis = basis; this.reducer = reducer;
5936 }
5937 public final Integer getRawResult() { return result; }
5938 public final void compute() {
5939 final ObjectToInt<Map.Entry<K,V>> transformer;
5940 final IntByIntToInt reducer;
5941 if ((transformer = this.transformer) != null &&
5942 (reducer = this.reducer) != null) {
5943 int r = this.basis;
5944 for (int i = baseIndex, f, h; batch > 0 &&
5945 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5946 addToPendingCount(1);
5947 (rights = new MapReduceEntriesToIntTask<K,V>
5948 (this, batch >>>= 1, baseLimit = h, f, tab,
5949 rights, transformer, r, reducer)).fork();
5950 }
5951 for (Node<K,V> p; (p = advance()) != null; )
5952 r = reducer.apply(r, transformer.apply(p));
5953 result = r;
5954 CountedCompleter<?> c;
5955 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5956 @SuppressWarnings("unchecked") MapReduceEntriesToIntTask<K,V>
5957 t = (MapReduceEntriesToIntTask<K,V>)c,
5958 s = t.rights;
5959 while (s != null) {
5960 t.result = reducer.apply(t.result, s.result);
5961 s = t.rights = s.nextRight;
5962 }
5963 }
5964 }
5965 }
5966 }
5967
5968 @SuppressWarnings("serial")
5969 static final class MapReduceMappingsToIntTask<K,V>
5970 extends BulkTask<K,V,Integer> {
5971 final ObjectByObjectToInt<? super K, ? super V> transformer;
5972 final IntByIntToInt reducer;
5973 final int basis;
5974 int result;
5975 MapReduceMappingsToIntTask<K,V> rights, nextRight;
5976 MapReduceMappingsToIntTask
5977 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5978 MapReduceMappingsToIntTask<K,V> nextRight,
5979 ObjectByObjectToInt<? super K, ? super V> transformer,
5980 int basis,
5981 IntByIntToInt reducer) {
5982 super(p, b, i, f, t); this.nextRight = nextRight;
5983 this.transformer = transformer;
5984 this.basis = basis; this.reducer = reducer;
5985 }
5986 public final Integer getRawResult() { return result; }
5987 public final void compute() {
5988 final ObjectByObjectToInt<? super K, ? super V> transformer;
5989 final IntByIntToInt reducer;
5990 if ((transformer = this.transformer) != null &&
5991 (reducer = this.reducer) != null) {
5992 int r = this.basis;
5993 for (int i = baseIndex, f, h; batch > 0 &&
5994 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5995 addToPendingCount(1);
5996 (rights = new MapReduceMappingsToIntTask<K,V>
5997 (this, batch >>>= 1, baseLimit = h, f, tab,
5998 rights, transformer, r, reducer)).fork();
5999 }
6000 for (Node<K,V> p; (p = advance()) != null; )
6001 r = reducer.apply(r, transformer.apply(p.key, p.val));
6002 result = r;
6003 CountedCompleter<?> c;
6004 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6005 @SuppressWarnings("unchecked") MapReduceMappingsToIntTask<K,V>
6006 t = (MapReduceMappingsToIntTask<K,V>)c,
6007 s = t.rights;
6008 while (s != null) {
6009 t.result = reducer.apply(t.result, s.result);
6010 s = t.rights = s.nextRight;
6011 }
6012 }
6013 }
6014 }
6015 }
6016
6017 /* ---------------- Counters -------------- */
6018
6019 // Adapted from LongAdder and Striped64.
6020 // See their internal docs for explanation.
6021
6022 // A padded cell for distributing counts
6023 static final class CounterCell {
6024 volatile long p0, p1, p2, p3, p4, p5, p6;
6025 volatile long value;
6026 volatile long q0, q1, q2, q3, q4, q5, q6;
6027 CounterCell(long x) { value = x; }
6028 }
6029
6030 /**
6031 * Holder for the thread-local hash code determining which
6032 * CounterCell to use. The code is initialized via the
6033 * counterHashCodeGenerator, but may be moved upon collisions.
6034 */
6035 static final class CounterHashCode {
6036 int code;
6037 }
6038
6039 /**
6040 * Generates initial value for per-thread CounterHashCodes.
6041 */
6042 static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
6043
6044 /**
6045 * Increment for counterHashCodeGenerator. See class ThreadLocal
6046 * for explanation.
6047 */
6048 static final int SEED_INCREMENT = 0x61c88647;
6049
6050 /**
6051 * Per-thread counter hash codes. Shared across all instances.
6052 */
6053 static final ThreadLocal<CounterHashCode> threadCounterHashCode =
6054 new ThreadLocal<CounterHashCode>();
6055
6056
6057 final long sumCount() {
6058 CounterCell[] as = counterCells; CounterCell a;
6059 long sum = baseCount;
6060 if (as != null) {
6061 for (int i = 0; i < as.length; ++i) {
6062 if ((a = as[i]) != null)
6063 sum += a.value;
6064 }
6065 }
6066 return sum;
6067 }
6068
6069 // See LongAdder version for explanation
6070 private final void fullAddCount(long x, CounterHashCode hc,
6071 boolean wasUncontended) {
6072 int h;
6073 if (hc == null) {
6074 hc = new CounterHashCode();
6075 int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
6076 h = hc.code = (s == 0) ? 1 : s; // Avoid zero
6077 threadCounterHashCode.set(hc);
6078 }
6079 else
6080 h = hc.code;
6081 boolean collide = false; // True if last slot nonempty
6082 for (;;) {
6083 CounterCell[] as; CounterCell a; int n; long v;
6084 if ((as = counterCells) != null && (n = as.length) > 0) {
6085 if ((a = as[(n - 1) & h]) == null) {
6086 if (cellsBusy == 0) { // Try to attach new Cell
6087 CounterCell r = new CounterCell(x); // Optimistic create
6088 if (cellsBusy == 0 &&
6089 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6090 boolean created = false;
6091 try { // Recheck under lock
6092 CounterCell[] rs; int m, j;
6093 if ((rs = counterCells) != null &&
6094 (m = rs.length) > 0 &&
6095 rs[j = (m - 1) & h] == null) {
6096 rs[j] = r;
6097 created = true;
6098 }
6099 } finally {
6100 cellsBusy = 0;
6101 }
6102 if (created)
6103 break;
6104 continue; // Slot is now non-empty
6105 }
6106 }
6107 collide = false;
6108 }
6109 else if (!wasUncontended) // CAS already known to fail
6110 wasUncontended = true; // Continue after rehash
6111 else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
6112 break;
6113 else if (counterCells != as || n >= NCPU)
6114 collide = false; // At max size or stale
6115 else if (!collide)
6116 collide = true;
6117 else if (cellsBusy == 0 &&
6118 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6119 try {
6120 if (counterCells == as) {// Expand table unless stale
6121 CounterCell[] rs = new CounterCell[n << 1];
6122 for (int i = 0; i < n; ++i)
6123 rs[i] = as[i];
6124 counterCells = rs;
6125 }
6126 } finally {
6127 cellsBusy = 0;
6128 }
6129 collide = false;
6130 continue; // Retry with expanded table
6131 }
6132 h ^= h << 13; // Rehash
6133 h ^= h >>> 17;
6134 h ^= h << 5;
6135 }
6136 else if (cellsBusy == 0 && counterCells == as &&
6137 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6138 boolean init = false;
6139 try { // Initialize table
6140 if (counterCells == as) {
6141 CounterCell[] rs = new CounterCell[2];
6142 rs[h & 1] = new CounterCell(x);
6143 counterCells = rs;
6144 init = true;
6145 }
6146 } finally {
6147 cellsBusy = 0;
6148 }
6149 if (init)
6150 break;
6151 }
6152 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
6153 break; // Fall back on using base
6154 }
6155 hc.code = h; // Record index for next time
6156 }
6157
6158 // Unsafe mechanics
6159 private static final sun.misc.Unsafe U;
6160 private static final long SIZECTL;
6161 private static final long TRANSFERINDEX;
6162 private static final long TRANSFERORIGIN;
6163 private static final long BASECOUNT;
6164 private static final long CELLSBUSY;
6165 private static final long CELLVALUE;
6166 private static final long ABASE;
6167 private static final int ASHIFT;
6168
6169 static {
6170 try {
6171 U = getUnsafe();
6172 Class<?> k = ConcurrentHashMapV8.class;
6173 SIZECTL = U.objectFieldOffset
6174 (k.getDeclaredField("sizeCtl"));
6175 TRANSFERINDEX = U.objectFieldOffset
6176 (k.getDeclaredField("transferIndex"));
6177 TRANSFERORIGIN = U.objectFieldOffset
6178 (k.getDeclaredField("transferOrigin"));
6179 BASECOUNT = U.objectFieldOffset
6180 (k.getDeclaredField("baseCount"));
6181 CELLSBUSY = U.objectFieldOffset
6182 (k.getDeclaredField("cellsBusy"));
6183 Class<?> ck = CounterCell.class;
6184 CELLVALUE = U.objectFieldOffset
6185 (ck.getDeclaredField("value"));
6186 Class<?> ak = Node[].class;
6187 ABASE = U.arrayBaseOffset(ak);
6188 int scale = U.arrayIndexScale(ak);
6189 if ((scale & (scale - 1)) != 0)
6190 throw new Error("data type scale not a power of two");
6191 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6192 } catch (Exception e) {
6193 throw new Error(e);
6194 }
6195 }
6196
6197 /**
6198 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
6199 * Replace with a simple call to Unsafe.getUnsafe when integrating
6200 * into a jdk.
6201 *
6202 * @return a sun.misc.Unsafe
6203 */
6204 private static sun.misc.Unsafe getUnsafe() {
6205 try {
6206 return sun.misc.Unsafe.getUnsafe();
6207 } catch (SecurityException tryReflectionInstead) {}
6208 try {
6209 return java.security.AccessController.doPrivileged
6210 (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
6211 public sun.misc.Unsafe run() throws Exception {
6212 Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
6213 for (java.lang.reflect.Field f : k.getDeclaredFields()) {
6214 f.setAccessible(true);
6215 Object x = f.get(null);
6216 if (k.isInstance(x))
6217 return k.cast(x);
6218 }
6219 throw new NoSuchFieldError("the Unsafe");
6220 }});
6221 } catch (java.security.PrivilegedActionException e) {
6222 throw new RuntimeException("Could not initialize intrinsics",
6223 e.getCause());
6224 }
6225 }
6226 }