ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
Revision: 1.124
Committed: Sun Sep 6 00:57:56 2015 UTC (8 years, 8 months ago) by jsr166
Branch: MAIN
Changes since 1.123: +1 -1 lines
Log Message:
spelling

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package jsr166e;
8
9 import jsr166e.ForkJoinPool;
10
11 import java.io.ObjectStreamField;
12 import java.io.Serializable;
13 import java.lang.reflect.ParameterizedType;
14 import java.lang.reflect.Type;
15 import java.util.AbstractMap;
16 import java.util.Arrays;
17 import java.util.Collection;
18 import java.util.ConcurrentModificationException;
19 import java.util.Enumeration;
20 import java.util.HashMap;
21 import java.util.Hashtable;
22 import java.util.Iterator;
23 import java.util.Map;
24 import java.util.NoSuchElementException;
25 import java.util.Set;
26 import java.util.concurrent.ConcurrentMap;
27 import java.util.concurrent.atomic.AtomicReference;
28 import java.util.concurrent.atomic.AtomicInteger;
29 import java.util.concurrent.locks.LockSupport;
30 import java.util.concurrent.locks.ReentrantLock;
31
32 /**
33 * A hash table supporting full concurrency of retrievals and
34 * high expected concurrency for updates. This class obeys the
35 * same functional specification as {@link java.util.Hashtable}, and
36 * includes versions of methods corresponding to each method of
37 * {@code Hashtable}. However, even though all operations are
38 * thread-safe, retrieval operations do <em>not</em> entail locking,
39 * and there is <em>not</em> any support for locking the entire table
40 * in a way that prevents all access. This class is fully
41 * interoperable with {@code Hashtable} in programs that rely on its
42 * thread safety but not on its synchronization details.
43 *
44 * <p>Retrieval operations (including {@code get}) generally do not
45 * block, so may overlap with update operations (including {@code put}
46 * and {@code remove}). Retrievals reflect the results of the most
47 * recently <em>completed</em> update operations holding upon their
48 * onset. (More formally, an update operation for a given key bears a
49 * <em>happens-before</em> relation with any (non-null) retrieval for
50 * that key reporting the updated value.) For aggregate operations
51 * such as {@code putAll} and {@code clear}, concurrent retrievals may
52 * reflect insertion or removal of only some entries. Similarly,
53 * Iterators and Enumerations return elements reflecting the state of
54 * the hash table at some point at or since the creation of the
55 * iterator/enumeration. They do <em>not</em> throw {@link
56 * ConcurrentModificationException}. However, iterators are designed
57 * to be used by only one thread at a time. Bear in mind that the
58 * results of aggregate status methods including {@code size}, {@code
59 * isEmpty}, and {@code containsValue} are typically useful only when
60 * a map is not undergoing concurrent updates in other threads.
61 * Otherwise the results of these methods reflect transient states
62 * that may be adequate for monitoring or estimation purposes, but not
63 * for program control.
64 *
65 * <p>The table is dynamically expanded when there are too many
66 * collisions (i.e., keys that have distinct hash codes but fall into
67 * the same slot modulo the table size), with the expected average
68 * effect of maintaining roughly two bins per mapping (corresponding
69 * to a 0.75 load factor threshold for resizing). There may be much
70 * variance around this average as mappings are added and removed, but
71 * overall, this maintains a commonly accepted time/space tradeoff for
72 * hash tables. However, resizing this or any other kind of hash
73 * table may be a relatively slow operation. When possible, it is a
74 * good idea to provide a size estimate as an optional {@code
75 * initialCapacity} constructor argument. An additional optional
76 * {@code loadFactor} constructor argument provides a further means of
77 * customizing initial table capacity by specifying the table density
78 * to be used in calculating the amount of space to allocate for the
79 * given number of elements. Also, for compatibility with previous
80 * versions of this class, constructors may optionally specify an
81 * expected {@code concurrencyLevel} as an additional hint for
82 * internal sizing. Note that using many keys with exactly the same
83 * {@code hashCode()} is a sure way to slow down performance of any
84 * hash table. To ameliorate impact, when keys are {@link Comparable},
85 * this class may use comparison order among keys to help break ties.
86 *
87 * <p>A {@link Set} projection of a ConcurrentHashMapV8 may be created
88 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
89 * (using {@link #keySet(Object)} when only keys are of interest, and the
90 * mapped values are (perhaps transiently) not used or all take the
91 * same mapping value.
92 *
93 * <p>This class and its views and iterators implement all of the
94 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
95 * interfaces.
96 *
97 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
98 * does <em>not</em> allow {@code null} to be used as a key or value.
99 *
100 * <p>ConcurrentHashMapV8s support a set of sequential and parallel bulk
101 * operations that are designed
102 * to be safely, and often sensibly, applied even with maps that are
103 * being concurrently updated by other threads; for example, when
104 * computing a snapshot summary of the values in a shared registry.
105 * There are three kinds of operation, each with four forms, accepting
106 * functions with Keys, Values, Entries, and (Key, Value) arguments
107 * and/or return values. Because the elements of a ConcurrentHashMapV8
108 * are not ordered in any particular way, and may be processed in
109 * different orders in different parallel executions, the correctness
110 * of supplied functions should not depend on any ordering, or on any
111 * other objects or values that may transiently change while
112 * computation is in progress; and except for forEach actions, should
113 * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
114 * objects do not support method {@code setValue}.
115 *
116 * <ul>
117 * <li> forEach: Perform a given action on each element.
118 * A variant form applies a given transformation on each element
119 * before performing the action.</li>
120 *
121 * <li> search: Return the first available non-null result of
122 * applying a given function on each element; skipping further
123 * search when a result is found.</li>
124 *
125 * <li> reduce: Accumulate each element. The supplied reduction
126 * function cannot rely on ordering (more formally, it should be
127 * both associative and commutative). There are five variants:
128 *
129 * <ul>
130 *
131 * <li> Plain reductions. (There is not a form of this method for
132 * (key, value) function arguments since there is no corresponding
133 * return type.)</li>
134 *
135 * <li> Mapped reductions that accumulate the results of a given
136 * function applied to each element.</li>
137 *
138 * <li> Reductions to scalar doubles, longs, and ints, using a
139 * given basis value.</li>
140 *
141 * </ul>
142 * </li>
143 * </ul>
144 *
145 * <p>These bulk operations accept a {@code parallelismThreshold}
146 * argument. Methods proceed sequentially if the current map size is
147 * estimated to be less than the given threshold. Using a value of
148 * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
149 * of {@code 1} results in maximal parallelism by partitioning into
150 * enough subtasks to fully utilize the {@link
151 * ForkJoinPool#commonPool()} that is used for all parallel
152 * computations. Normally, you would initially choose one of these
153 * extreme values, and then measure performance of using in-between
154 * values that trade off overhead versus throughput.
155 *
156 * <p>The concurrency properties of bulk operations follow
157 * from those of ConcurrentHashMapV8: Any non-null result returned
158 * from {@code get(key)} and related access methods bears a
159 * happens-before relation with the associated insertion or
160 * update. The result of any bulk operation reflects the
161 * composition of these per-element relations (but is not
162 * necessarily atomic with respect to the map as a whole unless it
163 * is somehow known to be quiescent). Conversely, because keys
164 * and values in the map are never null, null serves as a reliable
165 * atomic indicator of the current lack of any result. To
166 * maintain this property, null serves as an implicit basis for
167 * all non-scalar reduction operations. For the double, long, and
168 * int versions, the basis should be one that, when combined with
169 * any other value, returns that other value (more formally, it
170 * should be the identity element for the reduction). Most common
171 * reductions have these properties; for example, computing a sum
172 * with basis 0 or a minimum with basis MAX_VALUE.
173 *
174 * <p>Search and transformation functions provided as arguments
175 * should similarly return null to indicate the lack of any result
176 * (in which case it is not used). In the case of mapped
177 * reductions, this also enables transformations to serve as
178 * filters, returning null (or, in the case of primitive
179 * specializations, the identity basis) if the element should not
180 * be combined. You can create compound transformations and
181 * filterings by composing them yourself under this "null means
182 * there is nothing there now" rule before using them in search or
183 * reduce operations.
184 *
185 * <p>Methods accepting and/or returning Entry arguments maintain
186 * key-value associations. They may be useful for example when
187 * finding the key for the greatest value. Note that "plain" Entry
188 * arguments can be supplied using {@code new
189 * AbstractMap.SimpleEntry(k,v)}.
190 *
191 * <p>Bulk operations may complete abruptly, throwing an
192 * exception encountered in the application of a supplied
193 * function. Bear in mind when handling such exceptions that other
194 * concurrently executing functions could also have thrown
195 * exceptions, or would have done so if the first exception had
196 * not occurred.
197 *
198 * <p>Speedups for parallel compared to sequential forms are common
199 * but not guaranteed. Parallel operations involving brief functions
200 * on small maps may execute more slowly than sequential forms if the
201 * underlying work to parallelize the computation is more expensive
202 * than the computation itself. Similarly, parallelization may not
203 * lead to much actual parallelism if all processors are busy
204 * performing unrelated tasks.
205 *
206 * <p>All arguments to all task methods must be non-null.
207 *
208 * <p><em>jsr166e note: During transition, this class
209 * uses nested functional interfaces with different names but the
210 * same forms as those expected for JDK8.</em>
211 *
212 * <p>This class is a member of the
213 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
214 * Java Collections Framework</a>.
215 *
216 * @since 1.5
217 * @author Doug Lea
218 * @param <K> the type of keys maintained by this map
219 * @param <V> the type of mapped values
220 */
221 public class ConcurrentHashMapV8<K,V> extends AbstractMap<K,V>
222 implements ConcurrentMap<K,V>, Serializable {
223 private static final long serialVersionUID = 7249069246763182397L;
224
225 /**
226 * An object for traversing and partitioning elements of a source.
227 * This interface provides a subset of the functionality of JDK8
228 * java.util.Spliterator.
229 */
230 public static interface ConcurrentHashMapSpliterator<T> {
231 /**
232 * If possible, returns a new spliterator covering
233 * approximately one half of the elements, which will not be
234 * covered by this spliterator. Returns null if cannot be
235 * split.
236 */
237 ConcurrentHashMapSpliterator<T> trySplit();
238 /**
239 * Returns an estimate of the number of elements covered by
240 * this Spliterator.
241 */
242 long estimateSize();
243
244 /** Applies the action to each untraversed element */
245 void forEachRemaining(Action<? super T> action);
246 /** If an element remains, applies the action and returns true. */
247 boolean tryAdvance(Action<? super T> action);
248 }
249
250 // Sams
251 /** Interface describing a void action of one argument */
252 public interface Action<A> { void apply(A a); }
253 /** Interface describing a void action of two arguments */
254 public interface BiAction<A,B> { void apply(A a, B b); }
255 /** Interface describing a function of one argument */
256 public interface Fun<A,T> { T apply(A a); }
257 /** Interface describing a function of two arguments */
258 public interface BiFun<A,B,T> { T apply(A a, B b); }
259 /** Interface describing a function mapping its argument to a double */
260 public interface ObjectToDouble<A> { double apply(A a); }
261 /** Interface describing a function mapping its argument to a long */
262 public interface ObjectToLong<A> { long apply(A a); }
263 /** Interface describing a function mapping its argument to an int */
264 public interface ObjectToInt<A> {int apply(A a); }
265 /** Interface describing a function mapping two arguments to a double */
266 public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
267 /** Interface describing a function mapping two arguments to a long */
268 public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
269 /** Interface describing a function mapping two arguments to an int */
270 public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
271 /** Interface describing a function mapping two doubles to a double */
272 public interface DoubleByDoubleToDouble { double apply(double a, double b); }
273 /** Interface describing a function mapping two longs to a long */
274 public interface LongByLongToLong { long apply(long a, long b); }
275 /** Interface describing a function mapping two ints to an int */
276 public interface IntByIntToInt { int apply(int a, int b); }
277
278
279 /*
280 * Overview:
281 *
282 * The primary design goal of this hash table is to maintain
283 * concurrent readability (typically method get(), but also
284 * iterators and related methods) while minimizing update
285 * contention. Secondary goals are to keep space consumption about
286 * the same or better than java.util.HashMap, and to support high
287 * initial insertion rates on an empty table by many threads.
288 *
289 * This map usually acts as a binned (bucketed) hash table. Each
290 * key-value mapping is held in a Node. Most nodes are instances
291 * of the basic Node class with hash, key, value, and next
292 * fields. However, various subclasses exist: TreeNodes are
293 * arranged in balanced trees, not lists. TreeBins hold the roots
294 * of sets of TreeNodes. ForwardingNodes are placed at the heads
295 * of bins during resizing. ReservationNodes are used as
296 * placeholders while establishing values in computeIfAbsent and
297 * related methods. The types TreeBin, ForwardingNode, and
298 * ReservationNode do not hold normal user keys, values, or
299 * hashes, and are readily distinguishable during search etc
300 * because they have negative hash fields and null key and value
301 * fields. (These special nodes are either uncommon or transient,
302 * so the impact of carrying around some unused fields is
303 * insignificant.)
304 *
305 * The table is lazily initialized to a power-of-two size upon the
306 * first insertion. Each bin in the table normally contains a
307 * list of Nodes (most often, the list has only zero or one Node).
308 * Table accesses require volatile/atomic reads, writes, and
309 * CASes. Because there is no other way to arrange this without
310 * adding further indirections, we use intrinsics
311 * (sun.misc.Unsafe) operations.
312 *
313 * We use the top (sign) bit of Node hash fields for control
314 * purposes -- it is available anyway because of addressing
315 * constraints. Nodes with negative hash fields are specially
316 * handled or ignored in map methods.
317 *
318 * Insertion (via put or its variants) of the first node in an
319 * empty bin is performed by just CASing it to the bin. This is
320 * by far the most common case for put operations under most
321 * key/hash distributions. Other update operations (insert,
322 * delete, and replace) require locks. We do not want to waste
323 * the space required to associate a distinct lock object with
324 * each bin, so instead use the first node of a bin list itself as
325 * a lock. Locking support for these locks relies on builtin
326 * "synchronized" monitors.
327 *
328 * Using the first node of a list as a lock does not by itself
329 * suffice though: When a node is locked, any update must first
330 * validate that it is still the first node after locking it, and
331 * retry if not. Because new nodes are always appended to lists,
332 * once a node is first in a bin, it remains first until deleted
333 * or the bin becomes invalidated (upon resizing).
334 *
335 * The main disadvantage of per-bin locks is that other update
336 * operations on other nodes in a bin list protected by the same
337 * lock can stall, for example when user equals() or mapping
338 * functions take a long time. However, statistically, under
339 * random hash codes, this is not a common problem. Ideally, the
340 * frequency of nodes in bins follows a Poisson distribution
341 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
342 * parameter of about 0.5 on average, given the resizing threshold
343 * of 0.75, although with a large variance because of resizing
344 * granularity. Ignoring variance, the expected occurrences of
345 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
346 * first values are:
347 *
348 * 0: 0.60653066
349 * 1: 0.30326533
350 * 2: 0.07581633
351 * 3: 0.01263606
352 * 4: 0.00157952
353 * 5: 0.00015795
354 * 6: 0.00001316
355 * 7: 0.00000094
356 * 8: 0.00000006
357 * more: less than 1 in ten million
358 *
359 * Lock contention probability for two threads accessing distinct
360 * elements is roughly 1 / (8 * #elements) under random hashes.
361 *
362 * Actual hash code distributions encountered in practice
363 * sometimes deviate significantly from uniform randomness. This
364 * includes the case when N > (1<<30), so some keys MUST collide.
365 * Similarly for dumb or hostile usages in which multiple keys are
366 * designed to have identical hash codes or ones that differs only
367 * in masked-out high bits. So we use a secondary strategy that
368 * applies when the number of nodes in a bin exceeds a
369 * threshold. These TreeBins use a balanced tree to hold nodes (a
370 * specialized form of red-black trees), bounding search time to
371 * O(log N). Each search step in a TreeBin is at least twice as
372 * slow as in a regular list, but given that N cannot exceed
373 * (1<<64) (before running out of addresses) this bounds search
374 * steps, lock hold times, etc, to reasonable constants (roughly
375 * 100 nodes inspected per operation worst case) so long as keys
376 * are Comparable (which is very common -- String, Long, etc).
377 * TreeBin nodes (TreeNodes) also maintain the same "next"
378 * traversal pointers as regular nodes, so can be traversed in
379 * iterators in the same way.
380 *
381 * The table is resized when occupancy exceeds a percentage
382 * threshold (nominally, 0.75, but see below). Any thread
383 * noticing an overfull bin may assist in resizing after the
384 * initiating thread allocates and sets up the replacement array.
385 * However, rather than stalling, these other threads may proceed
386 * with insertions etc. The use of TreeBins shields us from the
387 * worst case effects of overfilling while resizes are in
388 * progress. Resizing proceeds by transferring bins, one by one,
389 * from the table to the next table. However, threads claim small
390 * blocks of indices to transfer (via field transferIndex) before
391 * doing so, reducing contention. A generation stamp in field
392 * sizeCtl ensures that resizings do not overlap. Because we are
393 * using power-of-two expansion, the elements from each bin must
394 * either stay at same index, or move with a power of two
395 * offset. We eliminate unnecessary node creation by catching
396 * cases where old nodes can be reused because their next fields
397 * won't change. On average, only about one-sixth of them need
398 * cloning when a table doubles. The nodes they replace will be
399 * garbage collectable as soon as they are no longer referenced by
400 * any reader thread that may be in the midst of concurrently
401 * traversing table. Upon transfer, the old table bin contains
402 * only a special forwarding node (with hash field "MOVED") that
403 * contains the next table as its key. On encountering a
404 * forwarding node, access and update operations restart, using
405 * the new table.
406 *
407 * Each bin transfer requires its bin lock, which can stall
408 * waiting for locks while resizing. However, because other
409 * threads can join in and help resize rather than contend for
410 * locks, average aggregate waits become shorter as resizing
411 * progresses. The transfer operation must also ensure that all
412 * accessible bins in both the old and new table are usable by any
413 * traversal. This is arranged in part by proceeding from the
414 * last bin (table.length - 1) up towards the first. Upon seeing
415 * a forwarding node, traversals (see class Traverser) arrange to
416 * move to the new table without revisiting nodes. To ensure that
417 * no intervening nodes are skipped even when moved out of order,
418 * a stack (see class TableStack) is created on first encounter of
419 * a forwarding node during a traversal, to maintain its place if
420 * later processing the current table. The need for these
421 * save/restore mechanics is relatively rare, but when one
422 * forwarding node is encountered, typically many more will be.
423 * So Traversers use a simple caching scheme to avoid creating so
424 * many new TableStack nodes. (Thanks to Peter Levart for
425 * suggesting use of a stack here.)
426 *
427 * The traversal scheme also applies to partial traversals of
428 * ranges of bins (via an alternate Traverser constructor)
429 * to support partitioned aggregate operations. Also, read-only
430 * operations give up if ever forwarded to a null table, which
431 * provides support for shutdown-style clearing, which is also not
432 * currently implemented.
433 *
434 * Lazy table initialization minimizes footprint until first use,
435 * and also avoids resizings when the first operation is from a
436 * putAll, constructor with map argument, or deserialization.
437 * These cases attempt to override the initial capacity settings,
438 * but harmlessly fail to take effect in cases of races.
439 *
440 * The element count is maintained using a specialization of
441 * LongAdder. We need to incorporate a specialization rather than
442 * just use a LongAdder in order to access implicit
443 * contention-sensing that leads to creation of multiple
444 * CounterCells. The counter mechanics avoid contention on
445 * updates but can encounter cache thrashing if read too
446 * frequently during concurrent access. To avoid reading so often,
447 * resizing under contention is attempted only upon adding to a
448 * bin already holding two or more nodes. Under uniform hash
449 * distributions, the probability of this occurring at threshold
450 * is around 13%, meaning that only about 1 in 8 puts check
451 * threshold (and after resizing, many fewer do so).
452 *
453 * TreeBins use a special form of comparison for search and
454 * related operations (which is the main reason we cannot use
455 * existing collections such as TreeMaps). TreeBins contain
456 * Comparable elements, but may contain others, as well as
457 * elements that are Comparable but not necessarily Comparable for
458 * the same T, so we cannot invoke compareTo among them. To handle
459 * this, the tree is ordered primarily by hash value, then by
460 * Comparable.compareTo order if applicable. On lookup at a node,
461 * if elements are not comparable or compare as 0 then both left
462 * and right children may need to be searched in the case of tied
463 * hash values. (This corresponds to the full list search that
464 * would be necessary if all elements were non-Comparable and had
465 * tied hashes.) On insertion, to keep a total ordering (or as
466 * close as is required here) across rebalancings, we compare
467 * classes and identityHashCodes as tie-breakers. The red-black
468 * balancing code is updated from pre-jdk-collections
469 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
470 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
471 * Algorithms" (CLR).
472 *
473 * TreeBins also require an additional locking mechanism. While
474 * list traversal is always possible by readers even during
475 * updates, tree traversal is not, mainly because of tree-rotations
476 * that may change the root node and/or its linkages. TreeBins
477 * include a simple read-write lock mechanism parasitic on the
478 * main bin-synchronization strategy: Structural adjustments
479 * associated with an insertion or removal are already bin-locked
480 * (and so cannot conflict with other writers) but must wait for
481 * ongoing readers to finish. Since there can be only one such
482 * waiter, we use a simple scheme using a single "waiter" field to
483 * block writers. However, readers need never block. If the root
484 * lock is held, they proceed along the slow traversal path (via
485 * next-pointers) until the lock becomes available or the list is
486 * exhausted, whichever comes first. These cases are not fast, but
487 * maximize aggregate expected throughput.
488 *
489 * Maintaining API and serialization compatibility with previous
490 * versions of this class introduces several oddities. Mainly: We
491 * leave untouched but unused constructor arguments referring to
492 * concurrencyLevel. We accept a loadFactor constructor argument,
493 * but apply it only to initial table capacity (which is the only
494 * time that we can guarantee to honor it.) We also declare an
495 * unused "Segment" class that is instantiated in minimal form
496 * only when serializing.
497 *
498 * Also, solely for compatibility with previous versions of this
499 * class, it extends AbstractMap, even though all of its methods
500 * are overridden, so it is just useless baggage.
501 *
502 * This file is organized to make things a little easier to follow
503 * while reading than they might otherwise: First the main static
504 * declarations and utilities, then fields, then main public
505 * methods (with a few factorings of multiple public methods into
506 * internal ones), then sizing methods, trees, traversers, and
507 * bulk operations.
508 */
509
510 /* ---------------- Constants -------------- */
511
512 /**
513 * The largest possible table capacity. This value must be
514 * exactly 1<<30 to stay within Java array allocation and indexing
515 * bounds for power of two table sizes, and is further required
516 * because the top two bits of 32bit hash fields are used for
517 * control purposes.
518 */
519 private static final int MAXIMUM_CAPACITY = 1 << 30;
520
521 /**
522 * The default initial table capacity. Must be a power of 2
523 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
524 */
525 private static final int DEFAULT_CAPACITY = 16;
526
527 /**
528 * The largest possible (non-power of two) array size.
529 * Needed by toArray and related methods.
530 */
531 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
532
533 /**
534 * The default concurrency level for this table. Unused but
535 * defined for compatibility with previous versions of this class.
536 */
537 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
538
539 /**
540 * The load factor for this table. Overrides of this value in
541 * constructors affect only the initial table capacity. The
542 * actual floating point value isn't normally used -- it is
543 * simpler to use expressions such as {@code n - (n >>> 2)} for
544 * the associated resizing threshold.
545 */
546 private static final float LOAD_FACTOR = 0.75f;
547
548 /**
549 * The bin count threshold for using a tree rather than list for a
550 * bin. Bins are converted to trees when adding an element to a
551 * bin with at least this many nodes. The value must be greater
552 * than 2, and should be at least 8 to mesh with assumptions in
553 * tree removal about conversion back to plain bins upon
554 * shrinkage.
555 */
556 static final int TREEIFY_THRESHOLD = 8;
557
558 /**
559 * The bin count threshold for untreeifying a (split) bin during a
560 * resize operation. Should be less than TREEIFY_THRESHOLD, and at
561 * most 6 to mesh with shrinkage detection under removal.
562 */
563 static final int UNTREEIFY_THRESHOLD = 6;
564
565 /**
566 * The smallest table capacity for which bins may be treeified.
567 * (Otherwise the table is resized if too many nodes in a bin.)
568 * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
569 * conflicts between resizing and treeification thresholds.
570 */
571 static final int MIN_TREEIFY_CAPACITY = 64;
572
573 /**
574 * Minimum number of rebinnings per transfer step. Ranges are
575 * subdivided to allow multiple resizer threads. This value
576 * serves as a lower bound to avoid resizers encountering
577 * excessive memory contention. The value should be at least
578 * DEFAULT_CAPACITY.
579 */
580 private static final int MIN_TRANSFER_STRIDE = 16;
581
582 /**
583 * The number of bits used for generation stamp in sizeCtl.
584 * Must be at least 6 for 32bit arrays.
585 */
586 private static int RESIZE_STAMP_BITS = 16;
587
588 /**
589 * The maximum number of threads that can help resize.
590 * Must fit in 32 - RESIZE_STAMP_BITS bits.
591 */
592 private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
593
594 /**
595 * The bit shift for recording size stamp in sizeCtl.
596 */
597 private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
598
599 /*
600 * Encodings for Node hash fields. See above for explanation.
601 */
602 static final int MOVED = -1; // hash for forwarding nodes
603 static final int TREEBIN = -2; // hash for roots of trees
604 static final int RESERVED = -3; // hash for transient reservations
605 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
606
607 /** Number of CPUS, to place bounds on some sizings */
608 static final int NCPU = Runtime.getRuntime().availableProcessors();
609
610 /** For serialization compatibility. */
611 private static final ObjectStreamField[] serialPersistentFields = {
612 new ObjectStreamField("segments", Segment[].class),
613 new ObjectStreamField("segmentMask", Integer.TYPE),
614 new ObjectStreamField("segmentShift", Integer.TYPE)
615 };
616
617 /* ---------------- Nodes -------------- */
618
619 /**
620 * Key-value entry. This class is never exported out as a
621 * user-mutable Map.Entry (i.e., one supporting setValue; see
622 * MapEntry below), but can be used for read-only traversals used
623 * in bulk tasks. Subclasses of Node with a negative hash field
624 * are special, and contain null keys and values (but are never
625 * exported). Otherwise, keys and vals are never null.
626 */
627 static class Node<K,V> implements Map.Entry<K,V> {
628 final int hash;
629 final K key;
630 volatile V val;
631 volatile Node<K,V> next;
632
633 Node(int hash, K key, V val, Node<K,V> next) {
634 this.hash = hash;
635 this.key = key;
636 this.val = val;
637 this.next = next;
638 }
639
640 public final K getKey() { return key; }
641 public final V getValue() { return val; }
642 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
643 public final String toString() { return key + "=" + val; }
644 public final V setValue(V value) {
645 throw new UnsupportedOperationException();
646 }
647
648 public final boolean equals(Object o) {
649 Object k, v, u; Map.Entry<?,?> e;
650 return ((o instanceof Map.Entry) &&
651 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
652 (v = e.getValue()) != null &&
653 (k == key || k.equals(key)) &&
654 (v == (u = val) || v.equals(u)));
655 }
656
657 /**
658 * Virtualized support for map.get(); overridden in subclasses.
659 */
660 Node<K,V> find(int h, Object k) {
661 Node<K,V> e = this;
662 if (k != null) {
663 do {
664 K ek;
665 if (e.hash == h &&
666 ((ek = e.key) == k || (ek != null && k.equals(ek))))
667 return e;
668 } while ((e = e.next) != null);
669 }
670 return null;
671 }
672 }
673
674 /* ---------------- Static utilities -------------- */
675
676 /**
677 * Spreads (XORs) higher bits of hash to lower and also forces top
678 * bit to 0. Because the table uses power-of-two masking, sets of
679 * hashes that vary only in bits above the current mask will
680 * always collide. (Among known examples are sets of Float keys
681 * holding consecutive whole numbers in small tables.) So we
682 * apply a transform that spreads the impact of higher bits
683 * downward. There is a tradeoff between speed, utility, and
684 * quality of bit-spreading. Because many common sets of hashes
685 * are already reasonably distributed (so don't benefit from
686 * spreading), and because we use trees to handle large sets of
687 * collisions in bins, we just XOR some shifted bits in the
688 * cheapest possible way to reduce systematic lossage, as well as
689 * to incorporate impact of the highest bits that would otherwise
690 * never be used in index calculations because of table bounds.
691 */
692 static final int spread(int h) {
693 return (h ^ (h >>> 16)) & HASH_BITS;
694 }
695
696 /**
697 * Returns a power of two table size for the given desired capacity.
698 * See Hackers Delight, sec 3.2
699 */
700 private static final int tableSizeFor(int c) {
701 int n = c - 1;
702 n |= n >>> 1;
703 n |= n >>> 2;
704 n |= n >>> 4;
705 n |= n >>> 8;
706 n |= n >>> 16;
707 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
708 }
709
710 /**
711 * Returns x's Class if it is of the form "class C implements
712 * Comparable<C>", else null.
713 */
714 static Class<?> comparableClassFor(Object x) {
715 if (x instanceof Comparable) {
716 Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
717 if ((c = x.getClass()) == String.class) // bypass checks
718 return c;
719 if ((ts = c.getGenericInterfaces()) != null) {
720 for (int i = 0; i < ts.length; ++i) {
721 if (((t = ts[i]) instanceof ParameterizedType) &&
722 ((p = (ParameterizedType)t).getRawType() ==
723 Comparable.class) &&
724 (as = p.getActualTypeArguments()) != null &&
725 as.length == 1 && as[0] == c) // type arg is c
726 return c;
727 }
728 }
729 }
730 return null;
731 }
732
733 /**
734 * Returns k.compareTo(x) if x matches kc (k's screened comparable
735 * class), else 0.
736 */
737 @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
738 static int compareComparables(Class<?> kc, Object k, Object x) {
739 return (x == null || x.getClass() != kc ? 0 :
740 ((Comparable)k).compareTo(x));
741 }
742
743 /* ---------------- Table element access -------------- */
744
745 /*
746 * Volatile access methods are used for table elements as well as
747 * elements of in-progress next table while resizing. All uses of
748 * the tab arguments must be null checked by callers. All callers
749 * also paranoically precheck that tab's length is not zero (or an
750 * equivalent check), thus ensuring that any index argument taking
751 * the form of a hash value anded with (length - 1) is a valid
752 * index. Note that, to be correct wrt arbitrary concurrency
753 * errors by users, these checks must operate on local variables,
754 * which accounts for some odd-looking inline assignments below.
755 * Note that calls to setTabAt always occur within locked regions,
756 * and so in principle require only release ordering, not
757 * full volatile semantics, but are currently coded as volatile
758 * writes to be conservative.
759 */
760
761 @SuppressWarnings("unchecked")
762 static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
763 return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
764 }
765
766 static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
767 Node<K,V> c, Node<K,V> v) {
768 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
769 }
770
771 static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
772 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
773 }
774
775 /* ---------------- Fields -------------- */
776
777 /**
778 * The array of bins. Lazily initialized upon first insertion.
779 * Size is always a power of two. Accessed directly by iterators.
780 */
781 transient volatile Node<K,V>[] table;
782
783 /**
784 * The next table to use; non-null only while resizing.
785 */
786 private transient volatile Node<K,V>[] nextTable;
787
788 /**
789 * Base counter value, used mainly when there is no contention,
790 * but also as a fallback during table initialization
791 * races. Updated via CAS.
792 */
793 private transient volatile long baseCount;
794
795 /**
796 * Table initialization and resizing control. When negative, the
797 * table is being initialized or resized: -1 for initialization,
798 * else -(1 + the number of active resizing threads). Otherwise,
799 * when table is null, holds the initial table size to use upon
800 * creation, or 0 for default. After initialization, holds the
801 * next element count value upon which to resize the table.
802 */
803 private transient volatile int sizeCtl;
804
805 /**
806 * The next table index (plus one) to split while resizing.
807 */
808 private transient volatile int transferIndex;
809
810 /**
811 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
812 */
813 private transient volatile int cellsBusy;
814
815 /**
816 * Table of counter cells. When non-null, size is a power of 2.
817 */
818 private transient volatile CounterCell[] counterCells;
819
820 // views
821 private transient KeySetView<K,V> keySet;
822 private transient ValuesView<K,V> values;
823 private transient EntrySetView<K,V> entrySet;
824
825
826 /* ---------------- Public operations -------------- */
827
828 /**
829 * Creates a new, empty map with the default initial table size (16).
830 */
831 public ConcurrentHashMapV8() {
832 }
833
834 /**
835 * Creates a new, empty map with an initial table size
836 * accommodating the specified number of elements without the need
837 * to dynamically resize.
838 *
839 * @param initialCapacity The implementation performs internal
840 * sizing to accommodate this many elements.
841 * @throws IllegalArgumentException if the initial capacity of
842 * elements is negative
843 */
844 public ConcurrentHashMapV8(int initialCapacity) {
845 if (initialCapacity < 0)
846 throw new IllegalArgumentException();
847 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
848 MAXIMUM_CAPACITY :
849 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
850 this.sizeCtl = cap;
851 }
852
853 /**
854 * Creates a new map with the same mappings as the given map.
855 *
856 * @param m the map
857 */
858 public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
859 this.sizeCtl = DEFAULT_CAPACITY;
860 putAll(m);
861 }
862
863 /**
864 * Creates a new, empty map with an initial table size based on
865 * the given number of elements ({@code initialCapacity}) and
866 * initial table density ({@code loadFactor}).
867 *
868 * @param initialCapacity the initial capacity. The implementation
869 * performs internal sizing to accommodate this many elements,
870 * given the specified load factor.
871 * @param loadFactor the load factor (table density) for
872 * establishing the initial table size
873 * @throws IllegalArgumentException if the initial capacity of
874 * elements is negative or the load factor is nonpositive
875 *
876 * @since 1.6
877 */
878 public ConcurrentHashMapV8(int initialCapacity, float loadFactor) {
879 this(initialCapacity, loadFactor, 1);
880 }
881
882 /**
883 * Creates a new, empty map with an initial table size based on
884 * the given number of elements ({@code initialCapacity}), table
885 * density ({@code loadFactor}), and number of concurrently
886 * updating threads ({@code concurrencyLevel}).
887 *
888 * @param initialCapacity the initial capacity. The implementation
889 * performs internal sizing to accommodate this many elements,
890 * given the specified load factor.
891 * @param loadFactor the load factor (table density) for
892 * establishing the initial table size
893 * @param concurrencyLevel the estimated number of concurrently
894 * updating threads. The implementation may use this value as
895 * a sizing hint.
896 * @throws IllegalArgumentException if the initial capacity is
897 * negative or the load factor or concurrencyLevel are
898 * nonpositive
899 */
900 public ConcurrentHashMapV8(int initialCapacity,
901 float loadFactor, int concurrencyLevel) {
902 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
903 throw new IllegalArgumentException();
904 if (initialCapacity < concurrencyLevel) // Use at least as many bins
905 initialCapacity = concurrencyLevel; // as estimated threads
906 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
907 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
908 MAXIMUM_CAPACITY : tableSizeFor((int)size);
909 this.sizeCtl = cap;
910 }
911
912 // Original (since JDK1.2) Map methods
913
914 /**
915 * {@inheritDoc}
916 */
917 public int size() {
918 long n = sumCount();
919 return ((n < 0L) ? 0 :
920 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
921 (int)n);
922 }
923
924 /**
925 * {@inheritDoc}
926 */
927 public boolean isEmpty() {
928 return sumCount() <= 0L; // ignore transient negative values
929 }
930
931 /**
932 * Returns the value to which the specified key is mapped,
933 * or {@code null} if this map contains no mapping for the key.
934 *
935 * <p>More formally, if this map contains a mapping from a key
936 * {@code k} to a value {@code v} such that {@code key.equals(k)},
937 * then this method returns {@code v}; otherwise it returns
938 * {@code null}. (There can be at most one such mapping.)
939 *
940 * @throws NullPointerException if the specified key is null
941 */
942 public V get(Object key) {
943 Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
944 int h = spread(key.hashCode());
945 if ((tab = table) != null && (n = tab.length) > 0 &&
946 (e = tabAt(tab, (n - 1) & h)) != null) {
947 if ((eh = e.hash) == h) {
948 if ((ek = e.key) == key || (ek != null && key.equals(ek)))
949 return e.val;
950 }
951 else if (eh < 0)
952 return (p = e.find(h, key)) != null ? p.val : null;
953 while ((e = e.next) != null) {
954 if (e.hash == h &&
955 ((ek = e.key) == key || (ek != null && key.equals(ek))))
956 return e.val;
957 }
958 }
959 return null;
960 }
961
962 /**
963 * Tests if the specified object is a key in this table.
964 *
965 * @param key possible key
966 * @return {@code true} if and only if the specified object
967 * is a key in this table, as determined by the
968 * {@code equals} method; {@code false} otherwise
969 * @throws NullPointerException if the specified key is null
970 */
971 public boolean containsKey(Object key) {
972 return get(key) != null;
973 }
974
975 /**
976 * Returns {@code true} if this map maps one or more keys to the
977 * specified value. Note: This method may require a full traversal
978 * of the map, and is much slower than method {@code containsKey}.
979 *
980 * @param value value whose presence in this map is to be tested
981 * @return {@code true} if this map maps one or more keys to the
982 * specified value
983 * @throws NullPointerException if the specified value is null
984 */
985 public boolean containsValue(Object value) {
986 if (value == null)
987 throw new NullPointerException();
988 Node<K,V>[] t;
989 if ((t = table) != null) {
990 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
991 for (Node<K,V> p; (p = it.advance()) != null; ) {
992 V v;
993 if ((v = p.val) == value || (v != null && value.equals(v)))
994 return true;
995 }
996 }
997 return false;
998 }
999
1000 /**
1001 * Maps the specified key to the specified value in this table.
1002 * Neither the key nor the value can be null.
1003 *
1004 * <p>The value can be retrieved by calling the {@code get} method
1005 * with a key that is equal to the original key.
1006 *
1007 * @param key key with which the specified value is to be associated
1008 * @param value value to be associated with the specified key
1009 * @return the previous value associated with {@code key}, or
1010 * {@code null} if there was no mapping for {@code key}
1011 * @throws NullPointerException if the specified key or value is null
1012 */
1013 public V put(K key, V value) {
1014 return putVal(key, value, false);
1015 }
1016
1017 /** Implementation for put and putIfAbsent */
1018 final V putVal(K key, V value, boolean onlyIfAbsent) {
1019 if (key == null || value == null) throw new NullPointerException();
1020 int hash = spread(key.hashCode());
1021 int binCount = 0;
1022 for (Node<K,V>[] tab = table;;) {
1023 Node<K,V> f; int n, i, fh;
1024 if (tab == null || (n = tab.length) == 0)
1025 tab = initTable();
1026 else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
1027 if (casTabAt(tab, i, null,
1028 new Node<K,V>(hash, key, value, null)))
1029 break; // no lock when adding to empty bin
1030 }
1031 else if ((fh = f.hash) == MOVED)
1032 tab = helpTransfer(tab, f);
1033 else {
1034 V oldVal = null;
1035 synchronized (f) {
1036 if (tabAt(tab, i) == f) {
1037 if (fh >= 0) {
1038 binCount = 1;
1039 for (Node<K,V> e = f;; ++binCount) {
1040 K ek;
1041 if (e.hash == hash &&
1042 ((ek = e.key) == key ||
1043 (ek != null && key.equals(ek)))) {
1044 oldVal = e.val;
1045 if (!onlyIfAbsent)
1046 e.val = value;
1047 break;
1048 }
1049 Node<K,V> pred = e;
1050 if ((e = e.next) == null) {
1051 pred.next = new Node<K,V>(hash, key,
1052 value, null);
1053 break;
1054 }
1055 }
1056 }
1057 else if (f instanceof TreeBin) {
1058 Node<K,V> p;
1059 binCount = 2;
1060 if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1061 value)) != null) {
1062 oldVal = p.val;
1063 if (!onlyIfAbsent)
1064 p.val = value;
1065 }
1066 }
1067 }
1068 }
1069 if (binCount != 0) {
1070 if (binCount >= TREEIFY_THRESHOLD)
1071 treeifyBin(tab, i);
1072 if (oldVal != null)
1073 return oldVal;
1074 break;
1075 }
1076 }
1077 }
1078 addCount(1L, binCount);
1079 return null;
1080 }
1081
1082 /**
1083 * Copies all of the mappings from the specified map to this one.
1084 * These mappings replace any mappings that this map had for any of the
1085 * keys currently in the specified map.
1086 *
1087 * @param m mappings to be stored in this map
1088 */
1089 public void putAll(Map<? extends K, ? extends V> m) {
1090 tryPresize(m.size());
1091 for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1092 putVal(e.getKey(), e.getValue(), false);
1093 }
1094
1095 /**
1096 * Removes the key (and its corresponding value) from this map.
1097 * This method does nothing if the key is not in the map.
1098 *
1099 * @param key the key that needs to be removed
1100 * @return the previous value associated with {@code key}, or
1101 * {@code null} if there was no mapping for {@code key}
1102 * @throws NullPointerException if the specified key is null
1103 */
1104 public V remove(Object key) {
1105 return replaceNode(key, null, null);
1106 }
1107
1108 /**
1109 * Implementation for the four public remove/replace methods:
1110 * Replaces node value with v, conditional upon match of cv if
1111 * non-null. If resulting value is null, delete.
1112 */
1113 final V replaceNode(Object key, V value, Object cv) {
1114 int hash = spread(key.hashCode());
1115 for (Node<K,V>[] tab = table;;) {
1116 Node<K,V> f; int n, i, fh;
1117 if (tab == null || (n = tab.length) == 0 ||
1118 (f = tabAt(tab, i = (n - 1) & hash)) == null)
1119 break;
1120 else if ((fh = f.hash) == MOVED)
1121 tab = helpTransfer(tab, f);
1122 else {
1123 V oldVal = null;
1124 boolean validated = false;
1125 synchronized (f) {
1126 if (tabAt(tab, i) == f) {
1127 if (fh >= 0) {
1128 validated = true;
1129 for (Node<K,V> e = f, pred = null;;) {
1130 K ek;
1131 if (e.hash == hash &&
1132 ((ek = e.key) == key ||
1133 (ek != null && key.equals(ek)))) {
1134 V ev = e.val;
1135 if (cv == null || cv == ev ||
1136 (ev != null && cv.equals(ev))) {
1137 oldVal = ev;
1138 if (value != null)
1139 e.val = value;
1140 else if (pred != null)
1141 pred.next = e.next;
1142 else
1143 setTabAt(tab, i, e.next);
1144 }
1145 break;
1146 }
1147 pred = e;
1148 if ((e = e.next) == null)
1149 break;
1150 }
1151 }
1152 else if (f instanceof TreeBin) {
1153 validated = true;
1154 TreeBin<K,V> t = (TreeBin<K,V>)f;
1155 TreeNode<K,V> r, p;
1156 if ((r = t.root) != null &&
1157 (p = r.findTreeNode(hash, key, null)) != null) {
1158 V pv = p.val;
1159 if (cv == null || cv == pv ||
1160 (pv != null && cv.equals(pv))) {
1161 oldVal = pv;
1162 if (value != null)
1163 p.val = value;
1164 else if (t.removeTreeNode(p))
1165 setTabAt(tab, i, untreeify(t.first));
1166 }
1167 }
1168 }
1169 }
1170 }
1171 if (validated) {
1172 if (oldVal != null) {
1173 if (value == null)
1174 addCount(-1L, -1);
1175 return oldVal;
1176 }
1177 break;
1178 }
1179 }
1180 }
1181 return null;
1182 }
1183
1184 /**
1185 * Removes all of the mappings from this map.
1186 */
1187 public void clear() {
1188 long delta = 0L; // negative number of deletions
1189 int i = 0;
1190 Node<K,V>[] tab = table;
1191 while (tab != null && i < tab.length) {
1192 int fh;
1193 Node<K,V> f = tabAt(tab, i);
1194 if (f == null)
1195 ++i;
1196 else if ((fh = f.hash) == MOVED) {
1197 tab = helpTransfer(tab, f);
1198 i = 0; // restart
1199 }
1200 else {
1201 synchronized (f) {
1202 if (tabAt(tab, i) == f) {
1203 Node<K,V> p = (fh >= 0 ? f :
1204 (f instanceof TreeBin) ?
1205 ((TreeBin<K,V>)f).first : null);
1206 while (p != null) {
1207 --delta;
1208 p = p.next;
1209 }
1210 setTabAt(tab, i++, null);
1211 }
1212 }
1213 }
1214 }
1215 if (delta != 0L)
1216 addCount(delta, -1);
1217 }
1218
1219 /**
1220 * Returns a {@link Set} view of the keys contained in this map.
1221 * The set is backed by the map, so changes to the map are
1222 * reflected in the set, and vice-versa. The set supports element
1223 * removal, which removes the corresponding mapping from this map,
1224 * via the {@code Iterator.remove}, {@code Set.remove},
1225 * {@code removeAll}, {@code retainAll}, and {@code clear}
1226 * operations. It does not support the {@code add} or
1227 * {@code addAll} operations.
1228 *
1229 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1230 * that will never throw {@link ConcurrentModificationException},
1231 * and guarantees to traverse elements as they existed upon
1232 * construction of the iterator, and may (but is not guaranteed to)
1233 * reflect any modifications subsequent to construction.
1234 *
1235 * @return the set view
1236 */
1237 public KeySetView<K,V> keySet() {
1238 KeySetView<K,V> ks;
1239 return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1240 }
1241
1242 /**
1243 * Returns a {@link Collection} view of the values contained in this map.
1244 * The collection is backed by the map, so changes to the map are
1245 * reflected in the collection, and vice-versa. The collection
1246 * supports element removal, which removes the corresponding
1247 * mapping from this map, via the {@code Iterator.remove},
1248 * {@code Collection.remove}, {@code removeAll},
1249 * {@code retainAll}, and {@code clear} operations. It does not
1250 * support the {@code add} or {@code addAll} operations.
1251 *
1252 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1253 * that will never throw {@link ConcurrentModificationException},
1254 * and guarantees to traverse elements as they existed upon
1255 * construction of the iterator, and may (but is not guaranteed to)
1256 * reflect any modifications subsequent to construction.
1257 *
1258 * @return the collection view
1259 */
1260 public Collection<V> values() {
1261 ValuesView<K,V> vs;
1262 return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1263 }
1264
1265 /**
1266 * Returns a {@link Set} view of the mappings contained in this map.
1267 * The set is backed by the map, so changes to the map are
1268 * reflected in the set, and vice-versa. The set supports element
1269 * removal, which removes the corresponding mapping from the map,
1270 * via the {@code Iterator.remove}, {@code Set.remove},
1271 * {@code removeAll}, {@code retainAll}, and {@code clear}
1272 * operations.
1273 *
1274 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1275 * that will never throw {@link ConcurrentModificationException},
1276 * and guarantees to traverse elements as they existed upon
1277 * construction of the iterator, and may (but is not guaranteed to)
1278 * reflect any modifications subsequent to construction.
1279 *
1280 * @return the set view
1281 */
1282 public Set<Map.Entry<K,V>> entrySet() {
1283 EntrySetView<K,V> es;
1284 return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1285 }
1286
1287 /**
1288 * Returns the hash code value for this {@link Map}, i.e.,
1289 * the sum of, for each key-value pair in the map,
1290 * {@code key.hashCode() ^ value.hashCode()}.
1291 *
1292 * @return the hash code value for this map
1293 */
1294 public int hashCode() {
1295 int h = 0;
1296 Node<K,V>[] t;
1297 if ((t = table) != null) {
1298 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1299 for (Node<K,V> p; (p = it.advance()) != null; )
1300 h += p.key.hashCode() ^ p.val.hashCode();
1301 }
1302 return h;
1303 }
1304
1305 /**
1306 * Returns a string representation of this map. The string
1307 * representation consists of a list of key-value mappings (in no
1308 * particular order) enclosed in braces ("{@code {}}"). Adjacent
1309 * mappings are separated by the characters {@code ", "} (comma
1310 * and space). Each key-value mapping is rendered as the key
1311 * followed by an equals sign ("{@code =}") followed by the
1312 * associated value.
1313 *
1314 * @return a string representation of this map
1315 */
1316 public String toString() {
1317 Node<K,V>[] t;
1318 int f = (t = table) == null ? 0 : t.length;
1319 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1320 StringBuilder sb = new StringBuilder();
1321 sb.append('{');
1322 Node<K,V> p;
1323 if ((p = it.advance()) != null) {
1324 for (;;) {
1325 K k = p.key;
1326 V v = p.val;
1327 sb.append(k == this ? "(this Map)" : k);
1328 sb.append('=');
1329 sb.append(v == this ? "(this Map)" : v);
1330 if ((p = it.advance()) == null)
1331 break;
1332 sb.append(',').append(' ');
1333 }
1334 }
1335 return sb.append('}').toString();
1336 }
1337
1338 /**
1339 * Compares the specified object with this map for equality.
1340 * Returns {@code true} if the given object is a map with the same
1341 * mappings as this map. This operation may return misleading
1342 * results if either map is concurrently modified during execution
1343 * of this method.
1344 *
1345 * @param o object to be compared for equality with this map
1346 * @return {@code true} if the specified object is equal to this map
1347 */
1348 public boolean equals(Object o) {
1349 if (o != this) {
1350 if (!(o instanceof Map))
1351 return false;
1352 Map<?,?> m = (Map<?,?>) o;
1353 Node<K,V>[] t;
1354 int f = (t = table) == null ? 0 : t.length;
1355 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1356 for (Node<K,V> p; (p = it.advance()) != null; ) {
1357 V val = p.val;
1358 Object v = m.get(p.key);
1359 if (v == null || (v != val && !v.equals(val)))
1360 return false;
1361 }
1362 for (Map.Entry<?,?> e : m.entrySet()) {
1363 Object mk, mv, v;
1364 if ((mk = e.getKey()) == null ||
1365 (mv = e.getValue()) == null ||
1366 (v = get(mk)) == null ||
1367 (mv != v && !mv.equals(v)))
1368 return false;
1369 }
1370 }
1371 return true;
1372 }
1373
1374 /**
1375 * Stripped-down version of helper class used in previous version,
1376 * declared for the sake of serialization compatibility
1377 */
1378 static class Segment<K,V> extends ReentrantLock implements Serializable {
1379 private static final long serialVersionUID = 2249069246763182397L;
1380 final float loadFactor;
1381 Segment(float lf) { this.loadFactor = lf; }
1382 }
1383
1384 /**
1385 * Saves the state of the {@code ConcurrentHashMapV8} instance to a
1386 * stream (i.e., serializes it).
1387 * @param s the stream
1388 * @throws java.io.IOException if an I/O error occurs
1389 * @serialData
1390 * the key (Object) and value (Object)
1391 * for each key-value mapping, followed by a null pair.
1392 * The key-value mappings are emitted in no particular order.
1393 */
1394 private void writeObject(java.io.ObjectOutputStream s)
1395 throws java.io.IOException {
1396 // For serialization compatibility
1397 // Emulate segment calculation from previous version of this class
1398 int sshift = 0;
1399 int ssize = 1;
1400 while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1401 ++sshift;
1402 ssize <<= 1;
1403 }
1404 int segmentShift = 32 - sshift;
1405 int segmentMask = ssize - 1;
1406 @SuppressWarnings("unchecked") Segment<K,V>[] segments = (Segment<K,V>[])
1407 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1408 for (int i = 0; i < segments.length; ++i)
1409 segments[i] = new Segment<K,V>(LOAD_FACTOR);
1410 s.putFields().put("segments", segments);
1411 s.putFields().put("segmentShift", segmentShift);
1412 s.putFields().put("segmentMask", segmentMask);
1413 s.writeFields();
1414
1415 Node<K,V>[] t;
1416 if ((t = table) != null) {
1417 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1418 for (Node<K,V> p; (p = it.advance()) != null; ) {
1419 s.writeObject(p.key);
1420 s.writeObject(p.val);
1421 }
1422 }
1423 s.writeObject(null);
1424 s.writeObject(null);
1425 segments = null; // throw away
1426 }
1427
1428 /**
1429 * Reconstitutes the instance from a stream (that is, deserializes it).
1430 * @param s the stream
1431 * @throws ClassNotFoundException if the class of a serialized object
1432 * could not be found
1433 * @throws java.io.IOException if an I/O error occurs
1434 */
1435 private void readObject(java.io.ObjectInputStream s)
1436 throws java.io.IOException, ClassNotFoundException {
1437 /*
1438 * To improve performance in typical cases, we create nodes
1439 * while reading, then place in table once size is known.
1440 * However, we must also validate uniqueness and deal with
1441 * overpopulated bins while doing so, which requires
1442 * specialized versions of putVal mechanics.
1443 */
1444 sizeCtl = -1; // force exclusion for table construction
1445 s.defaultReadObject();
1446 long size = 0L;
1447 Node<K,V> p = null;
1448 for (;;) {
1449 @SuppressWarnings("unchecked") K k = (K) s.readObject();
1450 @SuppressWarnings("unchecked") V v = (V) s.readObject();
1451 if (k != null && v != null) {
1452 p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1453 ++size;
1454 }
1455 else
1456 break;
1457 }
1458 if (size == 0L)
1459 sizeCtl = 0;
1460 else {
1461 int n;
1462 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1463 n = MAXIMUM_CAPACITY;
1464 else {
1465 int sz = (int)size;
1466 n = tableSizeFor(sz + (sz >>> 1) + 1);
1467 }
1468 @SuppressWarnings("unchecked")
1469 Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1470 int mask = n - 1;
1471 long added = 0L;
1472 while (p != null) {
1473 boolean insertAtFront;
1474 Node<K,V> next = p.next, first;
1475 int h = p.hash, j = h & mask;
1476 if ((first = tabAt(tab, j)) == null)
1477 insertAtFront = true;
1478 else {
1479 K k = p.key;
1480 if (first.hash < 0) {
1481 TreeBin<K,V> t = (TreeBin<K,V>)first;
1482 if (t.putTreeVal(h, k, p.val) == null)
1483 ++added;
1484 insertAtFront = false;
1485 }
1486 else {
1487 int binCount = 0;
1488 insertAtFront = true;
1489 Node<K,V> q; K qk;
1490 for (q = first; q != null; q = q.next) {
1491 if (q.hash == h &&
1492 ((qk = q.key) == k ||
1493 (qk != null && k.equals(qk)))) {
1494 insertAtFront = false;
1495 break;
1496 }
1497 ++binCount;
1498 }
1499 if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1500 insertAtFront = false;
1501 ++added;
1502 p.next = first;
1503 TreeNode<K,V> hd = null, tl = null;
1504 for (q = p; q != null; q = q.next) {
1505 TreeNode<K,V> t = new TreeNode<K,V>
1506 (q.hash, q.key, q.val, null, null);
1507 if ((t.prev = tl) == null)
1508 hd = t;
1509 else
1510 tl.next = t;
1511 tl = t;
1512 }
1513 setTabAt(tab, j, new TreeBin<K,V>(hd));
1514 }
1515 }
1516 }
1517 if (insertAtFront) {
1518 ++added;
1519 p.next = first;
1520 setTabAt(tab, j, p);
1521 }
1522 p = next;
1523 }
1524 table = tab;
1525 sizeCtl = n - (n >>> 2);
1526 baseCount = added;
1527 }
1528 }
1529
1530 // ConcurrentMap methods
1531
1532 /**
1533 * {@inheritDoc}
1534 *
1535 * @return the previous value associated with the specified key,
1536 * or {@code null} if there was no mapping for the key
1537 * @throws NullPointerException if the specified key or value is null
1538 */
1539 public V putIfAbsent(K key, V value) {
1540 return putVal(key, value, true);
1541 }
1542
1543 /**
1544 * {@inheritDoc}
1545 *
1546 * @throws NullPointerException if the specified key is null
1547 */
1548 public boolean remove(Object key, Object value) {
1549 if (key == null)
1550 throw new NullPointerException();
1551 return value != null && replaceNode(key, null, value) != null;
1552 }
1553
1554 /**
1555 * {@inheritDoc}
1556 *
1557 * @throws NullPointerException if any of the arguments are null
1558 */
1559 public boolean replace(K key, V oldValue, V newValue) {
1560 if (key == null || oldValue == null || newValue == null)
1561 throw new NullPointerException();
1562 return replaceNode(key, newValue, oldValue) != null;
1563 }
1564
1565 /**
1566 * {@inheritDoc}
1567 *
1568 * @return the previous value associated with the specified key,
1569 * or {@code null} if there was no mapping for the key
1570 * @throws NullPointerException if the specified key or value is null
1571 */
1572 public V replace(K key, V value) {
1573 if (key == null || value == null)
1574 throw new NullPointerException();
1575 return replaceNode(key, value, null);
1576 }
1577
1578 // Overrides of JDK8+ Map extension method defaults
1579
1580 /**
1581 * Returns the value to which the specified key is mapped, or the
1582 * given default value if this map contains no mapping for the
1583 * key.
1584 *
1585 * @param key the key whose associated value is to be returned
1586 * @param defaultValue the value to return if this map contains
1587 * no mapping for the given key
1588 * @return the mapping for the key, if present; else the default value
1589 * @throws NullPointerException if the specified key is null
1590 */
1591 public V getOrDefault(Object key, V defaultValue) {
1592 V v;
1593 return (v = get(key)) == null ? defaultValue : v;
1594 }
1595
1596 public void forEach(BiAction<? super K, ? super V> action) {
1597 if (action == null) throw new NullPointerException();
1598 Node<K,V>[] t;
1599 if ((t = table) != null) {
1600 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1601 for (Node<K,V> p; (p = it.advance()) != null; ) {
1602 action.apply(p.key, p.val);
1603 }
1604 }
1605 }
1606
1607 public void replaceAll(BiFun<? super K, ? super V, ? extends V> function) {
1608 if (function == null) throw new NullPointerException();
1609 Node<K,V>[] t;
1610 if ((t = table) != null) {
1611 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1612 for (Node<K,V> p; (p = it.advance()) != null; ) {
1613 V oldValue = p.val;
1614 for (K key = p.key;;) {
1615 V newValue = function.apply(key, oldValue);
1616 if (newValue == null)
1617 throw new NullPointerException();
1618 if (replaceNode(key, newValue, oldValue) != null ||
1619 (oldValue = get(key)) == null)
1620 break;
1621 }
1622 }
1623 }
1624 }
1625
1626 /**
1627 * If the specified key is not already associated with a value,
1628 * attempts to compute its value using the given mapping function
1629 * and enters it into this map unless {@code null}. The entire
1630 * method invocation is performed atomically, so the function is
1631 * applied at most once per key. Some attempted update operations
1632 * on this map by other threads may be blocked while computation
1633 * is in progress, so the computation should be short and simple,
1634 * and must not attempt to update any other mappings of this map.
1635 *
1636 * @param key key with which the specified value is to be associated
1637 * @param mappingFunction the function to compute a value
1638 * @return the current (existing or computed) value associated with
1639 * the specified key, or null if the computed value is null
1640 * @throws NullPointerException if the specified key or mappingFunction
1641 * is null
1642 * @throws IllegalStateException if the computation detectably
1643 * attempts a recursive update to this map that would
1644 * otherwise never complete
1645 * @throws RuntimeException or Error if the mappingFunction does so,
1646 * in which case the mapping is left unestablished
1647 */
1648 public V computeIfAbsent(K key, Fun<? super K, ? extends V> mappingFunction) {
1649 if (key == null || mappingFunction == null)
1650 throw new NullPointerException();
1651 int h = spread(key.hashCode());
1652 V val = null;
1653 int binCount = 0;
1654 for (Node<K,V>[] tab = table;;) {
1655 Node<K,V> f; int n, i, fh;
1656 if (tab == null || (n = tab.length) == 0)
1657 tab = initTable();
1658 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1659 Node<K,V> r = new ReservationNode<K,V>();
1660 synchronized (r) {
1661 if (casTabAt(tab, i, null, r)) {
1662 binCount = 1;
1663 Node<K,V> node = null;
1664 try {
1665 if ((val = mappingFunction.apply(key)) != null)
1666 node = new Node<K,V>(h, key, val, null);
1667 } finally {
1668 setTabAt(tab, i, node);
1669 }
1670 }
1671 }
1672 if (binCount != 0)
1673 break;
1674 }
1675 else if ((fh = f.hash) == MOVED)
1676 tab = helpTransfer(tab, f);
1677 else {
1678 boolean added = false;
1679 synchronized (f) {
1680 if (tabAt(tab, i) == f) {
1681 if (fh >= 0) {
1682 binCount = 1;
1683 for (Node<K,V> e = f;; ++binCount) {
1684 K ek; V ev;
1685 if (e.hash == h &&
1686 ((ek = e.key) == key ||
1687 (ek != null && key.equals(ek)))) {
1688 val = e.val;
1689 break;
1690 }
1691 Node<K,V> pred = e;
1692 if ((e = e.next) == null) {
1693 if ((val = mappingFunction.apply(key)) != null) {
1694 added = true;
1695 pred.next = new Node<K,V>(h, key, val, null);
1696 }
1697 break;
1698 }
1699 }
1700 }
1701 else if (f instanceof TreeBin) {
1702 binCount = 2;
1703 TreeBin<K,V> t = (TreeBin<K,V>)f;
1704 TreeNode<K,V> r, p;
1705 if ((r = t.root) != null &&
1706 (p = r.findTreeNode(h, key, null)) != null)
1707 val = p.val;
1708 else if ((val = mappingFunction.apply(key)) != null) {
1709 added = true;
1710 t.putTreeVal(h, key, val);
1711 }
1712 }
1713 }
1714 }
1715 if (binCount != 0) {
1716 if (binCount >= TREEIFY_THRESHOLD)
1717 treeifyBin(tab, i);
1718 if (!added)
1719 return val;
1720 break;
1721 }
1722 }
1723 }
1724 if (val != null)
1725 addCount(1L, binCount);
1726 return val;
1727 }
1728
1729 /**
1730 * If the value for the specified key is present, attempts to
1731 * compute a new mapping given the key and its current mapped
1732 * value. The entire method invocation is performed atomically.
1733 * Some attempted update operations on this map by other threads
1734 * may be blocked while computation is in progress, so the
1735 * computation should be short and simple, and must not attempt to
1736 * update any other mappings of this map.
1737 *
1738 * @param key key with which a value may be associated
1739 * @param remappingFunction the function to compute a value
1740 * @return the new value associated with the specified key, or null if none
1741 * @throws NullPointerException if the specified key or remappingFunction
1742 * is null
1743 * @throws IllegalStateException if the computation detectably
1744 * attempts a recursive update to this map that would
1745 * otherwise never complete
1746 * @throws RuntimeException or Error if the remappingFunction does so,
1747 * in which case the mapping is unchanged
1748 */
1749 public V computeIfPresent(K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1750 if (key == null || remappingFunction == null)
1751 throw new NullPointerException();
1752 int h = spread(key.hashCode());
1753 V val = null;
1754 int delta = 0;
1755 int binCount = 0;
1756 for (Node<K,V>[] tab = table;;) {
1757 Node<K,V> f; int n, i, fh;
1758 if (tab == null || (n = tab.length) == 0)
1759 tab = initTable();
1760 else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1761 break;
1762 else if ((fh = f.hash) == MOVED)
1763 tab = helpTransfer(tab, f);
1764 else {
1765 synchronized (f) {
1766 if (tabAt(tab, i) == f) {
1767 if (fh >= 0) {
1768 binCount = 1;
1769 for (Node<K,V> e = f, pred = null;; ++binCount) {
1770 K ek;
1771 if (e.hash == h &&
1772 ((ek = e.key) == key ||
1773 (ek != null && key.equals(ek)))) {
1774 val = remappingFunction.apply(key, e.val);
1775 if (val != null)
1776 e.val = val;
1777 else {
1778 delta = -1;
1779 Node<K,V> en = e.next;
1780 if (pred != null)
1781 pred.next = en;
1782 else
1783 setTabAt(tab, i, en);
1784 }
1785 break;
1786 }
1787 pred = e;
1788 if ((e = e.next) == null)
1789 break;
1790 }
1791 }
1792 else if (f instanceof TreeBin) {
1793 binCount = 2;
1794 TreeBin<K,V> t = (TreeBin<K,V>)f;
1795 TreeNode<K,V> r, p;
1796 if ((r = t.root) != null &&
1797 (p = r.findTreeNode(h, key, null)) != null) {
1798 val = remappingFunction.apply(key, p.val);
1799 if (val != null)
1800 p.val = val;
1801 else {
1802 delta = -1;
1803 if (t.removeTreeNode(p))
1804 setTabAt(tab, i, untreeify(t.first));
1805 }
1806 }
1807 }
1808 }
1809 }
1810 if (binCount != 0)
1811 break;
1812 }
1813 }
1814 if (delta != 0)
1815 addCount((long)delta, binCount);
1816 return val;
1817 }
1818
1819 /**
1820 * Attempts to compute a mapping for the specified key and its
1821 * current mapped value (or {@code null} if there is no current
1822 * mapping). The entire method invocation is performed atomically.
1823 * Some attempted update operations on this map by other threads
1824 * may be blocked while computation is in progress, so the
1825 * computation should be short and simple, and must not attempt to
1826 * update any other mappings of this Map.
1827 *
1828 * @param key key with which the specified value is to be associated
1829 * @param remappingFunction the function to compute a value
1830 * @return the new value associated with the specified key, or null if none
1831 * @throws NullPointerException if the specified key or remappingFunction
1832 * is null
1833 * @throws IllegalStateException if the computation detectably
1834 * attempts a recursive update to this map that would
1835 * otherwise never complete
1836 * @throws RuntimeException or Error if the remappingFunction does so,
1837 * in which case the mapping is unchanged
1838 */
1839 public V compute(K key,
1840 BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1841 if (key == null || remappingFunction == null)
1842 throw new NullPointerException();
1843 int h = spread(key.hashCode());
1844 V val = null;
1845 int delta = 0;
1846 int binCount = 0;
1847 for (Node<K,V>[] tab = table;;) {
1848 Node<K,V> f; int n, i, fh;
1849 if (tab == null || (n = tab.length) == 0)
1850 tab = initTable();
1851 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1852 Node<K,V> r = new ReservationNode<K,V>();
1853 synchronized (r) {
1854 if (casTabAt(tab, i, null, r)) {
1855 binCount = 1;
1856 Node<K,V> node = null;
1857 try {
1858 if ((val = remappingFunction.apply(key, null)) != null) {
1859 delta = 1;
1860 node = new Node<K,V>(h, key, val, null);
1861 }
1862 } finally {
1863 setTabAt(tab, i, node);
1864 }
1865 }
1866 }
1867 if (binCount != 0)
1868 break;
1869 }
1870 else if ((fh = f.hash) == MOVED)
1871 tab = helpTransfer(tab, f);
1872 else {
1873 synchronized (f) {
1874 if (tabAt(tab, i) == f) {
1875 if (fh >= 0) {
1876 binCount = 1;
1877 for (Node<K,V> e = f, pred = null;; ++binCount) {
1878 K ek;
1879 if (e.hash == h &&
1880 ((ek = e.key) == key ||
1881 (ek != null && key.equals(ek)))) {
1882 val = remappingFunction.apply(key, e.val);
1883 if (val != null)
1884 e.val = val;
1885 else {
1886 delta = -1;
1887 Node<K,V> en = e.next;
1888 if (pred != null)
1889 pred.next = en;
1890 else
1891 setTabAt(tab, i, en);
1892 }
1893 break;
1894 }
1895 pred = e;
1896 if ((e = e.next) == null) {
1897 val = remappingFunction.apply(key, null);
1898 if (val != null) {
1899 delta = 1;
1900 pred.next =
1901 new Node<K,V>(h, key, val, null);
1902 }
1903 break;
1904 }
1905 }
1906 }
1907 else if (f instanceof TreeBin) {
1908 binCount = 1;
1909 TreeBin<K,V> t = (TreeBin<K,V>)f;
1910 TreeNode<K,V> r, p;
1911 if ((r = t.root) != null)
1912 p = r.findTreeNode(h, key, null);
1913 else
1914 p = null;
1915 V pv = (p == null) ? null : p.val;
1916 val = remappingFunction.apply(key, pv);
1917 if (val != null) {
1918 if (p != null)
1919 p.val = val;
1920 else {
1921 delta = 1;
1922 t.putTreeVal(h, key, val);
1923 }
1924 }
1925 else if (p != null) {
1926 delta = -1;
1927 if (t.removeTreeNode(p))
1928 setTabAt(tab, i, untreeify(t.first));
1929 }
1930 }
1931 }
1932 }
1933 if (binCount != 0) {
1934 if (binCount >= TREEIFY_THRESHOLD)
1935 treeifyBin(tab, i);
1936 break;
1937 }
1938 }
1939 }
1940 if (delta != 0)
1941 addCount((long)delta, binCount);
1942 return val;
1943 }
1944
1945 /**
1946 * If the specified key is not already associated with a
1947 * (non-null) value, associates it with the given value.
1948 * Otherwise, replaces the value with the results of the given
1949 * remapping function, or removes if {@code null}. The entire
1950 * method invocation is performed atomically. Some attempted
1951 * update operations on this map by other threads may be blocked
1952 * while computation is in progress, so the computation should be
1953 * short and simple, and must not attempt to update any other
1954 * mappings of this Map.
1955 *
1956 * @param key key with which the specified value is to be associated
1957 * @param value the value to use if absent
1958 * @param remappingFunction the function to recompute a value if present
1959 * @return the new value associated with the specified key, or null if none
1960 * @throws NullPointerException if the specified key or the
1961 * remappingFunction is null
1962 * @throws RuntimeException or Error if the remappingFunction does so,
1963 * in which case the mapping is unchanged
1964 */
1965 public V merge(K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
1966 if (key == null || value == null || remappingFunction == null)
1967 throw new NullPointerException();
1968 int h = spread(key.hashCode());
1969 V val = null;
1970 int delta = 0;
1971 int binCount = 0;
1972 for (Node<K,V>[] tab = table;;) {
1973 Node<K,V> f; int n, i, fh;
1974 if (tab == null || (n = tab.length) == 0)
1975 tab = initTable();
1976 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1977 if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1978 delta = 1;
1979 val = value;
1980 break;
1981 }
1982 }
1983 else if ((fh = f.hash) == MOVED)
1984 tab = helpTransfer(tab, f);
1985 else {
1986 synchronized (f) {
1987 if (tabAt(tab, i) == f) {
1988 if (fh >= 0) {
1989 binCount = 1;
1990 for (Node<K,V> e = f, pred = null;; ++binCount) {
1991 K ek;
1992 if (e.hash == h &&
1993 ((ek = e.key) == key ||
1994 (ek != null && key.equals(ek)))) {
1995 val = remappingFunction.apply(e.val, value);
1996 if (val != null)
1997 e.val = val;
1998 else {
1999 delta = -1;
2000 Node<K,V> en = e.next;
2001 if (pred != null)
2002 pred.next = en;
2003 else
2004 setTabAt(tab, i, en);
2005 }
2006 break;
2007 }
2008 pred = e;
2009 if ((e = e.next) == null) {
2010 delta = 1;
2011 val = value;
2012 pred.next =
2013 new Node<K,V>(h, key, val, null);
2014 break;
2015 }
2016 }
2017 }
2018 else if (f instanceof TreeBin) {
2019 binCount = 2;
2020 TreeBin<K,V> t = (TreeBin<K,V>)f;
2021 TreeNode<K,V> r = t.root;
2022 TreeNode<K,V> p = (r == null) ? null :
2023 r.findTreeNode(h, key, null);
2024 val = (p == null) ? value :
2025 remappingFunction.apply(p.val, value);
2026 if (val != null) {
2027 if (p != null)
2028 p.val = val;
2029 else {
2030 delta = 1;
2031 t.putTreeVal(h, key, val);
2032 }
2033 }
2034 else if (p != null) {
2035 delta = -1;
2036 if (t.removeTreeNode(p))
2037 setTabAt(tab, i, untreeify(t.first));
2038 }
2039 }
2040 }
2041 }
2042 if (binCount != 0) {
2043 if (binCount >= TREEIFY_THRESHOLD)
2044 treeifyBin(tab, i);
2045 break;
2046 }
2047 }
2048 }
2049 if (delta != 0)
2050 addCount((long)delta, binCount);
2051 return val;
2052 }
2053
2054 // Hashtable legacy methods
2055
2056 /**
2057 * Legacy method testing if some key maps into the specified value
2058 * in this table. This method is identical in functionality to
2059 * {@link #containsValue(Object)}, and exists solely to ensure
2060 * full compatibility with class {@link java.util.Hashtable},
2061 * which supported this method prior to introduction of the
2062 * Java Collections framework.
2063 *
2064 * @param value a value to search for
2065 * @return {@code true} if and only if some key maps to the
2066 * {@code value} argument in this table as
2067 * determined by the {@code equals} method;
2068 * {@code false} otherwise
2069 * @throws NullPointerException if the specified value is null
2070 */
2071 @Deprecated public boolean contains(Object value) {
2072 return containsValue(value);
2073 }
2074
2075 /**
2076 * Returns an enumeration of the keys in this table.
2077 *
2078 * @return an enumeration of the keys in this table
2079 * @see #keySet()
2080 */
2081 public Enumeration<K> keys() {
2082 Node<K,V>[] t;
2083 int f = (t = table) == null ? 0 : t.length;
2084 return new KeyIterator<K,V>(t, f, 0, f, this);
2085 }
2086
2087 /**
2088 * Returns an enumeration of the values in this table.
2089 *
2090 * @return an enumeration of the values in this table
2091 * @see #values()
2092 */
2093 public Enumeration<V> elements() {
2094 Node<K,V>[] t;
2095 int f = (t = table) == null ? 0 : t.length;
2096 return new ValueIterator<K,V>(t, f, 0, f, this);
2097 }
2098
2099 // ConcurrentHashMapV8-only methods
2100
2101 /**
2102 * Returns the number of mappings. This method should be used
2103 * instead of {@link #size} because a ConcurrentHashMapV8 may
2104 * contain more mappings than can be represented as an int. The
2105 * value returned is an estimate; the actual count may differ if
2106 * there are concurrent insertions or removals.
2107 *
2108 * @return the number of mappings
2109 * @since 1.8
2110 */
2111 public long mappingCount() {
2112 long n = sumCount();
2113 return (n < 0L) ? 0L : n; // ignore transient negative values
2114 }
2115
2116 /**
2117 * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2118 * from the given type to {@code Boolean.TRUE}.
2119 *
2120 * @return the new set
2121 * @since 1.8
2122 */
2123 public static <K> KeySetView<K,Boolean> newKeySet() {
2124 return new KeySetView<K,Boolean>
2125 (new ConcurrentHashMapV8<K,Boolean>(), Boolean.TRUE);
2126 }
2127
2128 /**
2129 * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2130 * from the given type to {@code Boolean.TRUE}.
2131 *
2132 * @param initialCapacity The implementation performs internal
2133 * sizing to accommodate this many elements.
2134 * @return the new set
2135 * @throws IllegalArgumentException if the initial capacity of
2136 * elements is negative
2137 * @since 1.8
2138 */
2139 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2140 return new KeySetView<K,Boolean>
2141 (new ConcurrentHashMapV8<K,Boolean>(initialCapacity), Boolean.TRUE);
2142 }
2143
2144 /**
2145 * Returns a {@link Set} view of the keys in this map, using the
2146 * given common mapped value for any additions (i.e., {@link
2147 * Collection#add} and {@link Collection#addAll(Collection)}).
2148 * This is of course only appropriate if it is acceptable to use
2149 * the same value for all additions from this view.
2150 *
2151 * @param mappedValue the mapped value to use for any additions
2152 * @return the set view
2153 * @throws NullPointerException if the mappedValue is null
2154 */
2155 public KeySetView<K,V> keySet(V mappedValue) {
2156 if (mappedValue == null)
2157 throw new NullPointerException();
2158 return new KeySetView<K,V>(this, mappedValue);
2159 }
2160
2161 /* ---------------- Special Nodes -------------- */
2162
2163 /**
2164 * A node inserted at head of bins during transfer operations.
2165 */
2166 static final class ForwardingNode<K,V> extends Node<K,V> {
2167 final Node<K,V>[] nextTable;
2168 ForwardingNode(Node<K,V>[] tab) {
2169 super(MOVED, null, null, null);
2170 this.nextTable = tab;
2171 }
2172
2173 Node<K,V> find(int h, Object k) {
2174 // loop to avoid arbitrarily deep recursion on forwarding nodes
2175 outer: for (Node<K,V>[] tab = nextTable;;) {
2176 Node<K,V> e; int n;
2177 if (k == null || tab == null || (n = tab.length) == 0 ||
2178 (e = tabAt(tab, (n - 1) & h)) == null)
2179 return null;
2180 for (;;) {
2181 int eh; K ek;
2182 if ((eh = e.hash) == h &&
2183 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2184 return e;
2185 if (eh < 0) {
2186 if (e instanceof ForwardingNode) {
2187 tab = ((ForwardingNode<K,V>)e).nextTable;
2188 continue outer;
2189 }
2190 else
2191 return e.find(h, k);
2192 }
2193 if ((e = e.next) == null)
2194 return null;
2195 }
2196 }
2197 }
2198 }
2199
2200 /**
2201 * A place-holder node used in computeIfAbsent and compute
2202 */
2203 static final class ReservationNode<K,V> extends Node<K,V> {
2204 ReservationNode() {
2205 super(RESERVED, null, null, null);
2206 }
2207
2208 Node<K,V> find(int h, Object k) {
2209 return null;
2210 }
2211 }
2212
2213 /* ---------------- Table Initialization and Resizing -------------- */
2214
2215 /**
2216 * Returns the stamp bits for resizing a table of size n.
2217 * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2218 */
2219 static final int resizeStamp(int n) {
2220 return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2221 }
2222
2223 /**
2224 * Initializes table, using the size recorded in sizeCtl.
2225 */
2226 private final Node<K,V>[] initTable() {
2227 Node<K,V>[] tab; int sc;
2228 while ((tab = table) == null || tab.length == 0) {
2229 if ((sc = sizeCtl) < 0)
2230 Thread.yield(); // lost initialization race; just spin
2231 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2232 try {
2233 if ((tab = table) == null || tab.length == 0) {
2234 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2235 @SuppressWarnings("unchecked")
2236 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2237 table = tab = nt;
2238 sc = n - (n >>> 2);
2239 }
2240 } finally {
2241 sizeCtl = sc;
2242 }
2243 break;
2244 }
2245 }
2246 return tab;
2247 }
2248
2249 /**
2250 * Adds to count, and if table is too small and not already
2251 * resizing, initiates transfer. If already resizing, helps
2252 * perform transfer if work is available. Rechecks occupancy
2253 * after a transfer to see if another resize is already needed
2254 * because resizings are lagging additions.
2255 *
2256 * @param x the count to add
2257 * @param check if <0, don't check resize, if <= 1 only check if uncontended
2258 */
2259 private final void addCount(long x, int check) {
2260 CounterCell[] as; long b, s;
2261 if ((as = counterCells) != null ||
2262 !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2263 CounterHashCode hc; CounterCell a; long v; int m;
2264 boolean uncontended = true;
2265 if ((hc = threadCounterHashCode.get()) == null ||
2266 as == null || (m = as.length - 1) < 0 ||
2267 (a = as[m & hc.code]) == null ||
2268 !(uncontended =
2269 U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2270 fullAddCount(x, hc, uncontended);
2271 return;
2272 }
2273 if (check <= 1)
2274 return;
2275 s = sumCount();
2276 }
2277 if (check >= 0) {
2278 Node<K,V>[] tab, nt; int n, sc;
2279 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2280 (n = tab.length) < MAXIMUM_CAPACITY) {
2281 int rs = resizeStamp(n);
2282 if (sc < 0) {
2283 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2284 sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2285 transferIndex <= 0)
2286 break;
2287 if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2288 transfer(tab, nt);
2289 }
2290 else if (U.compareAndSwapInt(this, SIZECTL, sc,
2291 (rs << RESIZE_STAMP_SHIFT) + 2))
2292 transfer(tab, null);
2293 s = sumCount();
2294 }
2295 }
2296 }
2297
2298 /**
2299 * Helps transfer if a resize is in progress.
2300 */
2301 final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2302 Node<K,V>[] nextTab; int sc;
2303 if (tab != null && (f instanceof ForwardingNode) &&
2304 (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2305 int rs = resizeStamp(tab.length);
2306 while (nextTab == nextTable && table == tab &&
2307 (sc = sizeCtl) < 0) {
2308 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2309 sc == rs + MAX_RESIZERS || transferIndex <= 0)
2310 break;
2311 if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
2312 transfer(tab, nextTab);
2313 break;
2314 }
2315 }
2316 return nextTab;
2317 }
2318 return table;
2319 }
2320
2321 /**
2322 * Tries to presize table to accommodate the given number of elements.
2323 *
2324 * @param size number of elements (doesn't need to be perfectly accurate)
2325 */
2326 private final void tryPresize(int size) {
2327 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2328 tableSizeFor(size + (size >>> 1) + 1);
2329 int sc;
2330 while ((sc = sizeCtl) >= 0) {
2331 Node<K,V>[] tab = table; int n;
2332 if (tab == null || (n = tab.length) == 0) {
2333 n = (sc > c) ? sc : c;
2334 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2335 try {
2336 if (table == tab) {
2337 @SuppressWarnings("unchecked")
2338 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2339 table = nt;
2340 sc = n - (n >>> 2);
2341 }
2342 } finally {
2343 sizeCtl = sc;
2344 }
2345 }
2346 }
2347 else if (c <= sc || n >= MAXIMUM_CAPACITY)
2348 break;
2349 else if (tab == table) {
2350 int rs = resizeStamp(n);
2351 if (sc < 0) {
2352 Node<K,V>[] nt;
2353 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2354 sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2355 transferIndex <= 0)
2356 break;
2357 if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2358 transfer(tab, nt);
2359 }
2360 else if (U.compareAndSwapInt(this, SIZECTL, sc,
2361 (rs << RESIZE_STAMP_SHIFT) + 2))
2362 transfer(tab, null);
2363 }
2364 }
2365 }
2366
2367 /**
2368 * Moves and/or copies the nodes in each bin to new table. See
2369 * above for explanation.
2370 */
2371 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2372 int n = tab.length, stride;
2373 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2374 stride = MIN_TRANSFER_STRIDE; // subdivide range
2375 if (nextTab == null) { // initiating
2376 try {
2377 @SuppressWarnings("unchecked")
2378 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2379 nextTab = nt;
2380 } catch (Throwable ex) { // try to cope with OOME
2381 sizeCtl = Integer.MAX_VALUE;
2382 return;
2383 }
2384 nextTable = nextTab;
2385 transferIndex = n;
2386 }
2387 int nextn = nextTab.length;
2388 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2389 boolean advance = true;
2390 boolean finishing = false; // to ensure sweep before committing nextTab
2391 for (int i = 0, bound = 0;;) {
2392 Node<K,V> f; int fh;
2393 while (advance) {
2394 int nextIndex, nextBound;
2395 if (--i >= bound || finishing)
2396 advance = false;
2397 else if ((nextIndex = transferIndex) <= 0) {
2398 i = -1;
2399 advance = false;
2400 }
2401 else if (U.compareAndSwapInt
2402 (this, TRANSFERINDEX, nextIndex,
2403 nextBound = (nextIndex > stride ?
2404 nextIndex - stride : 0))) {
2405 bound = nextBound;
2406 i = nextIndex - 1;
2407 advance = false;
2408 }
2409 }
2410 if (i < 0 || i >= n || i + n >= nextn) {
2411 int sc;
2412 if (finishing) {
2413 nextTable = null;
2414 table = nextTab;
2415 sizeCtl = (n << 1) - (n >>> 1);
2416 return;
2417 }
2418 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2419 if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
2420 return;
2421 finishing = advance = true;
2422 i = n; // recheck before commit
2423 }
2424 }
2425 else if ((f = tabAt(tab, i)) == null)
2426 advance = casTabAt(tab, i, null, fwd);
2427 else if ((fh = f.hash) == MOVED)
2428 advance = true; // already processed
2429 else {
2430 synchronized (f) {
2431 if (tabAt(tab, i) == f) {
2432 Node<K,V> ln, hn;
2433 if (fh >= 0) {
2434 int runBit = fh & n;
2435 Node<K,V> lastRun = f;
2436 for (Node<K,V> p = f.next; p != null; p = p.next) {
2437 int b = p.hash & n;
2438 if (b != runBit) {
2439 runBit = b;
2440 lastRun = p;
2441 }
2442 }
2443 if (runBit == 0) {
2444 ln = lastRun;
2445 hn = null;
2446 }
2447 else {
2448 hn = lastRun;
2449 ln = null;
2450 }
2451 for (Node<K,V> p = f; p != lastRun; p = p.next) {
2452 int ph = p.hash; K pk = p.key; V pv = p.val;
2453 if ((ph & n) == 0)
2454 ln = new Node<K,V>(ph, pk, pv, ln);
2455 else
2456 hn = new Node<K,V>(ph, pk, pv, hn);
2457 }
2458 setTabAt(nextTab, i, ln);
2459 setTabAt(nextTab, i + n, hn);
2460 setTabAt(tab, i, fwd);
2461 advance = true;
2462 }
2463 else if (f instanceof TreeBin) {
2464 TreeBin<K,V> t = (TreeBin<K,V>)f;
2465 TreeNode<K,V> lo = null, loTail = null;
2466 TreeNode<K,V> hi = null, hiTail = null;
2467 int lc = 0, hc = 0;
2468 for (Node<K,V> e = t.first; e != null; e = e.next) {
2469 int h = e.hash;
2470 TreeNode<K,V> p = new TreeNode<K,V>
2471 (h, e.key, e.val, null, null);
2472 if ((h & n) == 0) {
2473 if ((p.prev = loTail) == null)
2474 lo = p;
2475 else
2476 loTail.next = p;
2477 loTail = p;
2478 ++lc;
2479 }
2480 else {
2481 if ((p.prev = hiTail) == null)
2482 hi = p;
2483 else
2484 hiTail.next = p;
2485 hiTail = p;
2486 ++hc;
2487 }
2488 }
2489 ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2490 (hc != 0) ? new TreeBin<K,V>(lo) : t;
2491 hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2492 (lc != 0) ? new TreeBin<K,V>(hi) : t;
2493 setTabAt(nextTab, i, ln);
2494 setTabAt(nextTab, i + n, hn);
2495 setTabAt(tab, i, fwd);
2496 advance = true;
2497 }
2498 }
2499 }
2500 }
2501 }
2502 }
2503
2504 /* ---------------- Conversion from/to TreeBins -------------- */
2505
2506 /**
2507 * Replaces all linked nodes in bin at given index unless table is
2508 * too small, in which case resizes instead.
2509 */
2510 private final void treeifyBin(Node<K,V>[] tab, int index) {
2511 Node<K,V> b; int n, sc;
2512 if (tab != null) {
2513 if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2514 tryPresize(n << 1);
2515 else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2516 synchronized (b) {
2517 if (tabAt(tab, index) == b) {
2518 TreeNode<K,V> hd = null, tl = null;
2519 for (Node<K,V> e = b; e != null; e = e.next) {
2520 TreeNode<K,V> p =
2521 new TreeNode<K,V>(e.hash, e.key, e.val,
2522 null, null);
2523 if ((p.prev = tl) == null)
2524 hd = p;
2525 else
2526 tl.next = p;
2527 tl = p;
2528 }
2529 setTabAt(tab, index, new TreeBin<K,V>(hd));
2530 }
2531 }
2532 }
2533 }
2534 }
2535
2536 /**
2537 * Returns a list on non-TreeNodes replacing those in given list.
2538 */
2539 static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2540 Node<K,V> hd = null, tl = null;
2541 for (Node<K,V> q = b; q != null; q = q.next) {
2542 Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2543 if (tl == null)
2544 hd = p;
2545 else
2546 tl.next = p;
2547 tl = p;
2548 }
2549 return hd;
2550 }
2551
2552 /* ---------------- TreeNodes -------------- */
2553
2554 /**
2555 * Nodes for use in TreeBins
2556 */
2557 static final class TreeNode<K,V> extends Node<K,V> {
2558 TreeNode<K,V> parent; // red-black tree links
2559 TreeNode<K,V> left;
2560 TreeNode<K,V> right;
2561 TreeNode<K,V> prev; // needed to unlink next upon deletion
2562 boolean red;
2563
2564 TreeNode(int hash, K key, V val, Node<K,V> next,
2565 TreeNode<K,V> parent) {
2566 super(hash, key, val, next);
2567 this.parent = parent;
2568 }
2569
2570 Node<K,V> find(int h, Object k) {
2571 return findTreeNode(h, k, null);
2572 }
2573
2574 /**
2575 * Returns the TreeNode (or null if not found) for the given key
2576 * starting at given root.
2577 */
2578 final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2579 if (k != null) {
2580 TreeNode<K,V> p = this;
2581 do {
2582 int ph, dir; K pk; TreeNode<K,V> q;
2583 TreeNode<K,V> pl = p.left, pr = p.right;
2584 if ((ph = p.hash) > h)
2585 p = pl;
2586 else if (ph < h)
2587 p = pr;
2588 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2589 return p;
2590 else if (pl == null)
2591 p = pr;
2592 else if (pr == null)
2593 p = pl;
2594 else if ((kc != null ||
2595 (kc = comparableClassFor(k)) != null) &&
2596 (dir = compareComparables(kc, k, pk)) != 0)
2597 p = (dir < 0) ? pl : pr;
2598 else if ((q = pr.findTreeNode(h, k, kc)) != null)
2599 return q;
2600 else
2601 p = pl;
2602 } while (p != null);
2603 }
2604 return null;
2605 }
2606 }
2607
2608 /* ---------------- TreeBins -------------- */
2609
2610 /**
2611 * TreeNodes used at the heads of bins. TreeBins do not hold user
2612 * keys or values, but instead point to list of TreeNodes and
2613 * their root. They also maintain a parasitic read-write lock
2614 * forcing writers (who hold bin lock) to wait for readers (who do
2615 * not) to complete before tree restructuring operations.
2616 */
2617 static final class TreeBin<K,V> extends Node<K,V> {
2618 TreeNode<K,V> root;
2619 volatile TreeNode<K,V> first;
2620 volatile Thread waiter;
2621 volatile int lockState;
2622 // values for lockState
2623 static final int WRITER = 1; // set while holding write lock
2624 static final int WAITER = 2; // set when waiting for write lock
2625 static final int READER = 4; // increment value for setting read lock
2626
2627 /**
2628 * Tie-breaking utility for ordering insertions when equal
2629 * hashCodes and non-comparable. We don't require a total
2630 * order, just a consistent insertion rule to maintain
2631 * equivalence across rebalancings. Tie-breaking further than
2632 * necessary simplifies testing a bit.
2633 */
2634 static int tieBreakOrder(Object a, Object b) {
2635 int d;
2636 if (a == null || b == null ||
2637 (d = a.getClass().getName().
2638 compareTo(b.getClass().getName())) == 0)
2639 d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2640 -1 : 1);
2641 return d;
2642 }
2643
2644 /**
2645 * Creates bin with initial set of nodes headed by b.
2646 */
2647 TreeBin(TreeNode<K,V> b) {
2648 super(TREEBIN, null, null, null);
2649 this.first = b;
2650 TreeNode<K,V> r = null;
2651 for (TreeNode<K,V> x = b, next; x != null; x = next) {
2652 next = (TreeNode<K,V>)x.next;
2653 x.left = x.right = null;
2654 if (r == null) {
2655 x.parent = null;
2656 x.red = false;
2657 r = x;
2658 }
2659 else {
2660 K k = x.key;
2661 int h = x.hash;
2662 Class<?> kc = null;
2663 for (TreeNode<K,V> p = r;;) {
2664 int dir, ph;
2665 K pk = p.key;
2666 if ((ph = p.hash) > h)
2667 dir = -1;
2668 else if (ph < h)
2669 dir = 1;
2670 else if ((kc == null &&
2671 (kc = comparableClassFor(k)) == null) ||
2672 (dir = compareComparables(kc, k, pk)) == 0)
2673 dir = tieBreakOrder(k, pk);
2674 TreeNode<K,V> xp = p;
2675 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2676 x.parent = xp;
2677 if (dir <= 0)
2678 xp.left = x;
2679 else
2680 xp.right = x;
2681 r = balanceInsertion(r, x);
2682 break;
2683 }
2684 }
2685 }
2686 }
2687 this.root = r;
2688 assert checkInvariants(root);
2689 }
2690
2691 /**
2692 * Acquires write lock for tree restructuring.
2693 */
2694 private final void lockRoot() {
2695 if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2696 contendedLock(); // offload to separate method
2697 }
2698
2699 /**
2700 * Releases write lock for tree restructuring.
2701 */
2702 private final void unlockRoot() {
2703 lockState = 0;
2704 }
2705
2706 /**
2707 * Possibly blocks awaiting root lock.
2708 */
2709 private final void contendedLock() {
2710 boolean waiting = false;
2711 for (int s;;) {
2712 if (((s = lockState) & ~WAITER) == 0) {
2713 if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2714 if (waiting)
2715 waiter = null;
2716 return;
2717 }
2718 }
2719 else if ((s & WAITER) == 0) {
2720 if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2721 waiting = true;
2722 waiter = Thread.currentThread();
2723 }
2724 }
2725 else if (waiting)
2726 LockSupport.park(this);
2727 }
2728 }
2729
2730 /**
2731 * Returns matching node or null if none. Tries to search
2732 * using tree comparisons from root, but continues linear
2733 * search when lock not available.
2734 */
2735 final Node<K,V> find(int h, Object k) {
2736 if (k != null) {
2737 for (Node<K,V> e = first; e != null; ) {
2738 int s; K ek;
2739 if (((s = lockState) & (WAITER|WRITER)) != 0) {
2740 if (e.hash == h &&
2741 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2742 return e;
2743 e = e.next;
2744 }
2745 else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2746 s + READER)) {
2747 TreeNode<K,V> r, p;
2748 try {
2749 p = ((r = root) == null ? null :
2750 r.findTreeNode(h, k, null));
2751 } finally {
2752 Thread w;
2753 int ls;
2754 do {} while (!U.compareAndSwapInt
2755 (this, LOCKSTATE,
2756 ls = lockState, ls - READER));
2757 if (ls == (READER|WAITER) && (w = waiter) != null)
2758 LockSupport.unpark(w);
2759 }
2760 return p;
2761 }
2762 }
2763 }
2764 return null;
2765 }
2766
2767 /**
2768 * Finds or adds a node.
2769 * @return null if added
2770 */
2771 final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2772 Class<?> kc = null;
2773 boolean searched = false;
2774 for (TreeNode<K,V> p = root;;) {
2775 int dir, ph; K pk;
2776 if (p == null) {
2777 first = root = new TreeNode<K,V>(h, k, v, null, null);
2778 break;
2779 }
2780 else if ((ph = p.hash) > h)
2781 dir = -1;
2782 else if (ph < h)
2783 dir = 1;
2784 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2785 return p;
2786 else if ((kc == null &&
2787 (kc = comparableClassFor(k)) == null) ||
2788 (dir = compareComparables(kc, k, pk)) == 0) {
2789 if (!searched) {
2790 TreeNode<K,V> q, ch;
2791 searched = true;
2792 if (((ch = p.left) != null &&
2793 (q = ch.findTreeNode(h, k, kc)) != null) ||
2794 ((ch = p.right) != null &&
2795 (q = ch.findTreeNode(h, k, kc)) != null))
2796 return q;
2797 }
2798 dir = tieBreakOrder(k, pk);
2799 }
2800
2801 TreeNode<K,V> xp = p;
2802 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2803 TreeNode<K,V> x, f = first;
2804 first = x = new TreeNode<K,V>(h, k, v, f, xp);
2805 if (f != null)
2806 f.prev = x;
2807 if (dir <= 0)
2808 xp.left = x;
2809 else
2810 xp.right = x;
2811 if (!xp.red)
2812 x.red = true;
2813 else {
2814 lockRoot();
2815 try {
2816 root = balanceInsertion(root, x);
2817 } finally {
2818 unlockRoot();
2819 }
2820 }
2821 break;
2822 }
2823 }
2824 assert checkInvariants(root);
2825 return null;
2826 }
2827
2828 /**
2829 * Removes the given node, that must be present before this
2830 * call. This is messier than typical red-black deletion code
2831 * because we cannot swap the contents of an interior node
2832 * with a leaf successor that is pinned by "next" pointers
2833 * that are accessible independently of lock. So instead we
2834 * swap the tree linkages.
2835 *
2836 * @return true if now too small, so should be untreeified
2837 */
2838 final boolean removeTreeNode(TreeNode<K,V> p) {
2839 TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2840 TreeNode<K,V> pred = p.prev; // unlink traversal pointers
2841 TreeNode<K,V> r, rl;
2842 if (pred == null)
2843 first = next;
2844 else
2845 pred.next = next;
2846 if (next != null)
2847 next.prev = pred;
2848 if (first == null) {
2849 root = null;
2850 return true;
2851 }
2852 if ((r = root) == null || r.right == null || // too small
2853 (rl = r.left) == null || rl.left == null)
2854 return true;
2855 lockRoot();
2856 try {
2857 TreeNode<K,V> replacement;
2858 TreeNode<K,V> pl = p.left;
2859 TreeNode<K,V> pr = p.right;
2860 if (pl != null && pr != null) {
2861 TreeNode<K,V> s = pr, sl;
2862 while ((sl = s.left) != null) // find successor
2863 s = sl;
2864 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2865 TreeNode<K,V> sr = s.right;
2866 TreeNode<K,V> pp = p.parent;
2867 if (s == pr) { // p was s's direct parent
2868 p.parent = s;
2869 s.right = p;
2870 }
2871 else {
2872 TreeNode<K,V> sp = s.parent;
2873 if ((p.parent = sp) != null) {
2874 if (s == sp.left)
2875 sp.left = p;
2876 else
2877 sp.right = p;
2878 }
2879 if ((s.right = pr) != null)
2880 pr.parent = s;
2881 }
2882 p.left = null;
2883 if ((p.right = sr) != null)
2884 sr.parent = p;
2885 if ((s.left = pl) != null)
2886 pl.parent = s;
2887 if ((s.parent = pp) == null)
2888 r = s;
2889 else if (p == pp.left)
2890 pp.left = s;
2891 else
2892 pp.right = s;
2893 if (sr != null)
2894 replacement = sr;
2895 else
2896 replacement = p;
2897 }
2898 else if (pl != null)
2899 replacement = pl;
2900 else if (pr != null)
2901 replacement = pr;
2902 else
2903 replacement = p;
2904 if (replacement != p) {
2905 TreeNode<K,V> pp = replacement.parent = p.parent;
2906 if (pp == null)
2907 r = replacement;
2908 else if (p == pp.left)
2909 pp.left = replacement;
2910 else
2911 pp.right = replacement;
2912 p.left = p.right = p.parent = null;
2913 }
2914
2915 root = (p.red) ? r : balanceDeletion(r, replacement);
2916
2917 if (p == replacement) { // detach pointers
2918 TreeNode<K,V> pp;
2919 if ((pp = p.parent) != null) {
2920 if (p == pp.left)
2921 pp.left = null;
2922 else if (p == pp.right)
2923 pp.right = null;
2924 p.parent = null;
2925 }
2926 }
2927 } finally {
2928 unlockRoot();
2929 }
2930 assert checkInvariants(root);
2931 return false;
2932 }
2933
2934 /* ------------------------------------------------------------ */
2935 // Red-black tree methods, all adapted from CLR
2936
2937 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2938 TreeNode<K,V> p) {
2939 TreeNode<K,V> r, pp, rl;
2940 if (p != null && (r = p.right) != null) {
2941 if ((rl = p.right = r.left) != null)
2942 rl.parent = p;
2943 if ((pp = r.parent = p.parent) == null)
2944 (root = r).red = false;
2945 else if (pp.left == p)
2946 pp.left = r;
2947 else
2948 pp.right = r;
2949 r.left = p;
2950 p.parent = r;
2951 }
2952 return root;
2953 }
2954
2955 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2956 TreeNode<K,V> p) {
2957 TreeNode<K,V> l, pp, lr;
2958 if (p != null && (l = p.left) != null) {
2959 if ((lr = p.left = l.right) != null)
2960 lr.parent = p;
2961 if ((pp = l.parent = p.parent) == null)
2962 (root = l).red = false;
2963 else if (pp.right == p)
2964 pp.right = l;
2965 else
2966 pp.left = l;
2967 l.right = p;
2968 p.parent = l;
2969 }
2970 return root;
2971 }
2972
2973 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2974 TreeNode<K,V> x) {
2975 x.red = true;
2976 for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2977 if ((xp = x.parent) == null) {
2978 x.red = false;
2979 return x;
2980 }
2981 else if (!xp.red || (xpp = xp.parent) == null)
2982 return root;
2983 if (xp == (xppl = xpp.left)) {
2984 if ((xppr = xpp.right) != null && xppr.red) {
2985 xppr.red = false;
2986 xp.red = false;
2987 xpp.red = true;
2988 x = xpp;
2989 }
2990 else {
2991 if (x == xp.right) {
2992 root = rotateLeft(root, x = xp);
2993 xpp = (xp = x.parent) == null ? null : xp.parent;
2994 }
2995 if (xp != null) {
2996 xp.red = false;
2997 if (xpp != null) {
2998 xpp.red = true;
2999 root = rotateRight(root, xpp);
3000 }
3001 }
3002 }
3003 }
3004 else {
3005 if (xppl != null && xppl.red) {
3006 xppl.red = false;
3007 xp.red = false;
3008 xpp.red = true;
3009 x = xpp;
3010 }
3011 else {
3012 if (x == xp.left) {
3013 root = rotateRight(root, x = xp);
3014 xpp = (xp = x.parent) == null ? null : xp.parent;
3015 }
3016 if (xp != null) {
3017 xp.red = false;
3018 if (xpp != null) {
3019 xpp.red = true;
3020 root = rotateLeft(root, xpp);
3021 }
3022 }
3023 }
3024 }
3025 }
3026 }
3027
3028 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3029 TreeNode<K,V> x) {
3030 for (TreeNode<K,V> xp, xpl, xpr;;) {
3031 if (x == null || x == root)
3032 return root;
3033 else if ((xp = x.parent) == null) {
3034 x.red = false;
3035 return x;
3036 }
3037 else if (x.red) {
3038 x.red = false;
3039 return root;
3040 }
3041 else if ((xpl = xp.left) == x) {
3042 if ((xpr = xp.right) != null && xpr.red) {
3043 xpr.red = false;
3044 xp.red = true;
3045 root = rotateLeft(root, xp);
3046 xpr = (xp = x.parent) == null ? null : xp.right;
3047 }
3048 if (xpr == null)
3049 x = xp;
3050 else {
3051 TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3052 if ((sr == null || !sr.red) &&
3053 (sl == null || !sl.red)) {
3054 xpr.red = true;
3055 x = xp;
3056 }
3057 else {
3058 if (sr == null || !sr.red) {
3059 if (sl != null)
3060 sl.red = false;
3061 xpr.red = true;
3062 root = rotateRight(root, xpr);
3063 xpr = (xp = x.parent) == null ?
3064 null : xp.right;
3065 }
3066 if (xpr != null) {
3067 xpr.red = (xp == null) ? false : xp.red;
3068 if ((sr = xpr.right) != null)
3069 sr.red = false;
3070 }
3071 if (xp != null) {
3072 xp.red = false;
3073 root = rotateLeft(root, xp);
3074 }
3075 x = root;
3076 }
3077 }
3078 }
3079 else { // symmetric
3080 if (xpl != null && xpl.red) {
3081 xpl.red = false;
3082 xp.red = true;
3083 root = rotateRight(root, xp);
3084 xpl = (xp = x.parent) == null ? null : xp.left;
3085 }
3086 if (xpl == null)
3087 x = xp;
3088 else {
3089 TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3090 if ((sl == null || !sl.red) &&
3091 (sr == null || !sr.red)) {
3092 xpl.red = true;
3093 x = xp;
3094 }
3095 else {
3096 if (sl == null || !sl.red) {
3097 if (sr != null)
3098 sr.red = false;
3099 xpl.red = true;
3100 root = rotateLeft(root, xpl);
3101 xpl = (xp = x.parent) == null ?
3102 null : xp.left;
3103 }
3104 if (xpl != null) {
3105 xpl.red = (xp == null) ? false : xp.red;
3106 if ((sl = xpl.left) != null)
3107 sl.red = false;
3108 }
3109 if (xp != null) {
3110 xp.red = false;
3111 root = rotateRight(root, xp);
3112 }
3113 x = root;
3114 }
3115 }
3116 }
3117 }
3118 }
3119
3120 /**
3121 * Recursive invariant check
3122 */
3123 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3124 TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3125 tb = t.prev, tn = (TreeNode<K,V>)t.next;
3126 if (tb != null && tb.next != t)
3127 return false;
3128 if (tn != null && tn.prev != t)
3129 return false;
3130 if (tp != null && t != tp.left && t != tp.right)
3131 return false;
3132 if (tl != null && (tl.parent != t || tl.hash > t.hash))
3133 return false;
3134 if (tr != null && (tr.parent != t || tr.hash < t.hash))
3135 return false;
3136 if (t.red && tl != null && tl.red && tr != null && tr.red)
3137 return false;
3138 if (tl != null && !checkInvariants(tl))
3139 return false;
3140 if (tr != null && !checkInvariants(tr))
3141 return false;
3142 return true;
3143 }
3144
3145 private static final sun.misc.Unsafe U;
3146 private static final long LOCKSTATE;
3147 static {
3148 try {
3149 U = getUnsafe();
3150 Class<?> k = TreeBin.class;
3151 LOCKSTATE = U.objectFieldOffset
3152 (k.getDeclaredField("lockState"));
3153 } catch (Exception e) {
3154 throw new Error(e);
3155 }
3156 }
3157 }
3158
3159 /* ----------------Table Traversal -------------- */
3160
3161 /**
3162 * Records the table, its length, and current traversal index for a
3163 * traverser that must process a region of a forwarded table before
3164 * proceeding with current table.
3165 */
3166 static final class TableStack<K,V> {
3167 int length;
3168 int index;
3169 Node<K,V>[] tab;
3170 TableStack<K,V> next;
3171 }
3172
3173 /**
3174 * Encapsulates traversal for methods such as containsValue; also
3175 * serves as a base class for other iterators and spliterators.
3176 *
3177 * Method advance visits once each still-valid node that was
3178 * reachable upon iterator construction. It might miss some that
3179 * were added to a bin after the bin was visited, which is OK wrt
3180 * consistency guarantees. Maintaining this property in the face
3181 * of possible ongoing resizes requires a fair amount of
3182 * bookkeeping state that is difficult to optimize away amidst
3183 * volatile accesses. Even so, traversal maintains reasonable
3184 * throughput.
3185 *
3186 * Normally, iteration proceeds bin-by-bin traversing lists.
3187 * However, if the table has been resized, then all future steps
3188 * must traverse both the bin at the current index as well as at
3189 * (index + baseSize); and so on for further resizings. To
3190 * paranoically cope with potential sharing by users of iterators
3191 * across threads, iteration terminates if a bounds checks fails
3192 * for a table read.
3193 */
3194 static class Traverser<K,V> {
3195 Node<K,V>[] tab; // current table; updated if resized
3196 Node<K,V> next; // the next entry to use
3197 TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3198 int index; // index of bin to use next
3199 int baseIndex; // current index of initial table
3200 int baseLimit; // index bound for initial table
3201 final int baseSize; // initial table size
3202
3203 Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3204 this.tab = tab;
3205 this.baseSize = size;
3206 this.baseIndex = this.index = index;
3207 this.baseLimit = limit;
3208 this.next = null;
3209 }
3210
3211 /**
3212 * Advances if possible, returning next valid node, or null if none.
3213 */
3214 final Node<K,V> advance() {
3215 Node<K,V> e;
3216 if ((e = next) != null)
3217 e = e.next;
3218 for (;;) {
3219 Node<K,V>[] t; int i, n; // must use locals in checks
3220 if (e != null)
3221 return next = e;
3222 if (baseIndex >= baseLimit || (t = tab) == null ||
3223 (n = t.length) <= (i = index) || i < 0)
3224 return next = null;
3225 if ((e = tabAt(t, i)) != null && e.hash < 0) {
3226 if (e instanceof ForwardingNode) {
3227 tab = ((ForwardingNode<K,V>)e).nextTable;
3228 e = null;
3229 pushState(t, i, n);
3230 continue;
3231 }
3232 else if (e instanceof TreeBin)
3233 e = ((TreeBin<K,V>)e).first;
3234 else
3235 e = null;
3236 }
3237 if (stack != null)
3238 recoverState(n);
3239 else if ((index = i + baseSize) >= n)
3240 index = ++baseIndex; // visit upper slots if present
3241 }
3242 }
3243
3244 /**
3245 * Saves traversal state upon encountering a forwarding node.
3246 */
3247 private void pushState(Node<K,V>[] t, int i, int n) {
3248 TableStack<K,V> s = spare; // reuse if possible
3249 if (s != null)
3250 spare = s.next;
3251 else
3252 s = new TableStack<K,V>();
3253 s.tab = t;
3254 s.length = n;
3255 s.index = i;
3256 s.next = stack;
3257 stack = s;
3258 }
3259
3260 /**
3261 * Possibly pops traversal state.
3262 *
3263 * @param n length of current table
3264 */
3265 private void recoverState(int n) {
3266 TableStack<K,V> s; int len;
3267 while ((s = stack) != null && (index += (len = s.length)) >= n) {
3268 n = len;
3269 index = s.index;
3270 tab = s.tab;
3271 s.tab = null;
3272 TableStack<K,V> next = s.next;
3273 s.next = spare; // save for reuse
3274 stack = next;
3275 spare = s;
3276 }
3277 if (s == null && (index += baseSize) >= n)
3278 index = ++baseIndex;
3279 }
3280 }
3281
3282 /**
3283 * Base of key, value, and entry Iterators. Adds fields to
3284 * Traverser to support iterator.remove.
3285 */
3286 static class BaseIterator<K,V> extends Traverser<K,V> {
3287 final ConcurrentHashMapV8<K,V> map;
3288 Node<K,V> lastReturned;
3289 BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3290 ConcurrentHashMapV8<K,V> map) {
3291 super(tab, size, index, limit);
3292 this.map = map;
3293 advance();
3294 }
3295
3296 public final boolean hasNext() { return next != null; }
3297 public final boolean hasMoreElements() { return next != null; }
3298
3299 public final void remove() {
3300 Node<K,V> p;
3301 if ((p = lastReturned) == null)
3302 throw new IllegalStateException();
3303 lastReturned = null;
3304 map.replaceNode(p.key, null, null);
3305 }
3306 }
3307
3308 static final class KeyIterator<K,V> extends BaseIterator<K,V>
3309 implements Iterator<K>, Enumeration<K> {
3310 KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3311 ConcurrentHashMapV8<K,V> map) {
3312 super(tab, index, size, limit, map);
3313 }
3314
3315 public final K next() {
3316 Node<K,V> p;
3317 if ((p = next) == null)
3318 throw new NoSuchElementException();
3319 K k = p.key;
3320 lastReturned = p;
3321 advance();
3322 return k;
3323 }
3324
3325 public final K nextElement() { return next(); }
3326 }
3327
3328 static final class ValueIterator<K,V> extends BaseIterator<K,V>
3329 implements Iterator<V>, Enumeration<V> {
3330 ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3331 ConcurrentHashMapV8<K,V> map) {
3332 super(tab, index, size, limit, map);
3333 }
3334
3335 public final V next() {
3336 Node<K,V> p;
3337 if ((p = next) == null)
3338 throw new NoSuchElementException();
3339 V v = p.val;
3340 lastReturned = p;
3341 advance();
3342 return v;
3343 }
3344
3345 public final V nextElement() { return next(); }
3346 }
3347
3348 static final class EntryIterator<K,V> extends BaseIterator<K,V>
3349 implements Iterator<Map.Entry<K,V>> {
3350 EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3351 ConcurrentHashMapV8<K,V> map) {
3352 super(tab, index, size, limit, map);
3353 }
3354
3355 public final Map.Entry<K,V> next() {
3356 Node<K,V> p;
3357 if ((p = next) == null)
3358 throw new NoSuchElementException();
3359 K k = p.key;
3360 V v = p.val;
3361 lastReturned = p;
3362 advance();
3363 return new MapEntry<K,V>(k, v, map);
3364 }
3365 }
3366
3367 /**
3368 * Exported Entry for EntryIterator
3369 */
3370 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3371 final K key; // non-null
3372 V val; // non-null
3373 final ConcurrentHashMapV8<K,V> map;
3374 MapEntry(K key, V val, ConcurrentHashMapV8<K,V> map) {
3375 this.key = key;
3376 this.val = val;
3377 this.map = map;
3378 }
3379 public K getKey() { return key; }
3380 public V getValue() { return val; }
3381 public int hashCode() { return key.hashCode() ^ val.hashCode(); }
3382 public String toString() { return key + "=" + val; }
3383
3384 public boolean equals(Object o) {
3385 Object k, v; Map.Entry<?,?> e;
3386 return ((o instanceof Map.Entry) &&
3387 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3388 (v = e.getValue()) != null &&
3389 (k == key || k.equals(key)) &&
3390 (v == val || v.equals(val)));
3391 }
3392
3393 /**
3394 * Sets our entry's value and writes through to the map. The
3395 * value to return is somewhat arbitrary here. Since we do not
3396 * necessarily track asynchronous changes, the most recent
3397 * "previous" value could be different from what we return (or
3398 * could even have been removed, in which case the put will
3399 * re-establish). We do not and cannot guarantee more.
3400 */
3401 public V setValue(V value) {
3402 if (value == null) throw new NullPointerException();
3403 V v = val;
3404 val = value;
3405 map.put(key, value);
3406 return v;
3407 }
3408 }
3409
3410 static final class KeySpliterator<K,V> extends Traverser<K,V>
3411 implements ConcurrentHashMapSpliterator<K> {
3412 long est; // size estimate
3413 KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3414 long est) {
3415 super(tab, size, index, limit);
3416 this.est = est;
3417 }
3418
3419 public ConcurrentHashMapSpliterator<K> trySplit() {
3420 int i, f, h;
3421 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3422 new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3423 f, est >>>= 1);
3424 }
3425
3426 public void forEachRemaining(Action<? super K> action) {
3427 if (action == null) throw new NullPointerException();
3428 for (Node<K,V> p; (p = advance()) != null;)
3429 action.apply(p.key);
3430 }
3431
3432 public boolean tryAdvance(Action<? super K> action) {
3433 if (action == null) throw new NullPointerException();
3434 Node<K,V> p;
3435 if ((p = advance()) == null)
3436 return false;
3437 action.apply(p.key);
3438 return true;
3439 }
3440
3441 public long estimateSize() { return est; }
3442
3443 }
3444
3445 static final class ValueSpliterator<K,V> extends Traverser<K,V>
3446 implements ConcurrentHashMapSpliterator<V> {
3447 long est; // size estimate
3448 ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3449 long est) {
3450 super(tab, size, index, limit);
3451 this.est = est;
3452 }
3453
3454 public ConcurrentHashMapSpliterator<V> trySplit() {
3455 int i, f, h;
3456 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3457 new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3458 f, est >>>= 1);
3459 }
3460
3461 public void forEachRemaining(Action<? super V> action) {
3462 if (action == null) throw new NullPointerException();
3463 for (Node<K,V> p; (p = advance()) != null;)
3464 action.apply(p.val);
3465 }
3466
3467 public boolean tryAdvance(Action<? super V> action) {
3468 if (action == null) throw new NullPointerException();
3469 Node<K,V> p;
3470 if ((p = advance()) == null)
3471 return false;
3472 action.apply(p.val);
3473 return true;
3474 }
3475
3476 public long estimateSize() { return est; }
3477
3478 }
3479
3480 static final class EntrySpliterator<K,V> extends Traverser<K,V>
3481 implements ConcurrentHashMapSpliterator<Map.Entry<K,V>> {
3482 final ConcurrentHashMapV8<K,V> map; // To export MapEntry
3483 long est; // size estimate
3484 EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3485 long est, ConcurrentHashMapV8<K,V> map) {
3486 super(tab, size, index, limit);
3487 this.map = map;
3488 this.est = est;
3489 }
3490
3491 public ConcurrentHashMapSpliterator<Map.Entry<K,V>> trySplit() {
3492 int i, f, h;
3493 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3494 new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3495 f, est >>>= 1, map);
3496 }
3497
3498 public void forEachRemaining(Action<? super Map.Entry<K,V>> action) {
3499 if (action == null) throw new NullPointerException();
3500 for (Node<K,V> p; (p = advance()) != null; )
3501 action.apply(new MapEntry<K,V>(p.key, p.val, map));
3502 }
3503
3504 public boolean tryAdvance(Action<? super Map.Entry<K,V>> action) {
3505 if (action == null) throw new NullPointerException();
3506 Node<K,V> p;
3507 if ((p = advance()) == null)
3508 return false;
3509 action.apply(new MapEntry<K,V>(p.key, p.val, map));
3510 return true;
3511 }
3512
3513 public long estimateSize() { return est; }
3514
3515 }
3516
3517 // Parallel bulk operations
3518
3519 /**
3520 * Computes initial batch value for bulk tasks. The returned value
3521 * is approximately exp2 of the number of times (minus one) to
3522 * split task by two before executing leaf action. This value is
3523 * faster to compute and more convenient to use as a guide to
3524 * splitting than is the depth, since it is used while dividing by
3525 * two anyway.
3526 */
3527 final int batchFor(long b) {
3528 long n;
3529 if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3530 return 0;
3531 int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3532 return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3533 }
3534
3535 /**
3536 * Performs the given action for each (key, value).
3537 *
3538 * @param parallelismThreshold the (estimated) number of elements
3539 * needed for this operation to be executed in parallel
3540 * @param action the action
3541 * @since 1.8
3542 */
3543 public void forEach(long parallelismThreshold,
3544 BiAction<? super K,? super V> action) {
3545 if (action == null) throw new NullPointerException();
3546 new ForEachMappingTask<K,V>
3547 (null, batchFor(parallelismThreshold), 0, 0, table,
3548 action).invoke();
3549 }
3550
3551 /**
3552 * Performs the given action for each non-null transformation
3553 * of each (key, value).
3554 *
3555 * @param parallelismThreshold the (estimated) number of elements
3556 * needed for this operation to be executed in parallel
3557 * @param transformer a function returning the transformation
3558 * for an element, or null if there is no transformation (in
3559 * which case the action is not applied)
3560 * @param action the action
3561 * @since 1.8
3562 */
3563 public <U> void forEach(long parallelismThreshold,
3564 BiFun<? super K, ? super V, ? extends U> transformer,
3565 Action<? super U> action) {
3566 if (transformer == null || action == null)
3567 throw new NullPointerException();
3568 new ForEachTransformedMappingTask<K,V,U>
3569 (null, batchFor(parallelismThreshold), 0, 0, table,
3570 transformer, action).invoke();
3571 }
3572
3573 /**
3574 * Returns a non-null result from applying the given search
3575 * function on each (key, value), or null if none. Upon
3576 * success, further element processing is suppressed and the
3577 * results of any other parallel invocations of the search
3578 * function are ignored.
3579 *
3580 * @param parallelismThreshold the (estimated) number of elements
3581 * needed for this operation to be executed in parallel
3582 * @param searchFunction a function returning a non-null
3583 * result on success, else null
3584 * @return a non-null result from applying the given search
3585 * function on each (key, value), or null if none
3586 * @since 1.8
3587 */
3588 public <U> U search(long parallelismThreshold,
3589 BiFun<? super K, ? super V, ? extends U> searchFunction) {
3590 if (searchFunction == null) throw new NullPointerException();
3591 return new SearchMappingsTask<K,V,U>
3592 (null, batchFor(parallelismThreshold), 0, 0, table,
3593 searchFunction, new AtomicReference<U>()).invoke();
3594 }
3595
3596 /**
3597 * Returns the result of accumulating the given transformation
3598 * of all (key, value) pairs using the given reducer to
3599 * combine values, or null if none.
3600 *
3601 * @param parallelismThreshold the (estimated) number of elements
3602 * needed for this operation to be executed in parallel
3603 * @param transformer a function returning the transformation
3604 * for an element, or null if there is no transformation (in
3605 * which case it is not combined)
3606 * @param reducer a commutative associative combining function
3607 * @return the result of accumulating the given transformation
3608 * of all (key, value) pairs
3609 * @since 1.8
3610 */
3611 public <U> U reduce(long parallelismThreshold,
3612 BiFun<? super K, ? super V, ? extends U> transformer,
3613 BiFun<? super U, ? super U, ? extends U> reducer) {
3614 if (transformer == null || reducer == null)
3615 throw new NullPointerException();
3616 return new MapReduceMappingsTask<K,V,U>
3617 (null, batchFor(parallelismThreshold), 0, 0, table,
3618 null, transformer, reducer).invoke();
3619 }
3620
3621 /**
3622 * Returns the result of accumulating the given transformation
3623 * of all (key, value) pairs using the given reducer to
3624 * combine values, and the given basis as an identity value.
3625 *
3626 * @param parallelismThreshold the (estimated) number of elements
3627 * needed for this operation to be executed in parallel
3628 * @param transformer a function returning the transformation
3629 * for an element
3630 * @param basis the identity (initial default value) for the reduction
3631 * @param reducer a commutative associative combining function
3632 * @return the result of accumulating the given transformation
3633 * of all (key, value) pairs
3634 * @since 1.8
3635 */
3636 public double reduceToDouble(long parallelismThreshold,
3637 ObjectByObjectToDouble<? super K, ? super V> transformer,
3638 double basis,
3639 DoubleByDoubleToDouble reducer) {
3640 if (transformer == null || reducer == null)
3641 throw new NullPointerException();
3642 return new MapReduceMappingsToDoubleTask<K,V>
3643 (null, batchFor(parallelismThreshold), 0, 0, table,
3644 null, transformer, basis, reducer).invoke();
3645 }
3646
3647 /**
3648 * Returns the result of accumulating the given transformation
3649 * of all (key, value) pairs using the given reducer to
3650 * combine values, and the given basis as an identity value.
3651 *
3652 * @param parallelismThreshold the (estimated) number of elements
3653 * needed for this operation to be executed in parallel
3654 * @param transformer a function returning the transformation
3655 * for an element
3656 * @param basis the identity (initial default value) for the reduction
3657 * @param reducer a commutative associative combining function
3658 * @return the result of accumulating the given transformation
3659 * of all (key, value) pairs
3660 * @since 1.8
3661 */
3662 public long reduceToLong(long parallelismThreshold,
3663 ObjectByObjectToLong<? super K, ? super V> transformer,
3664 long basis,
3665 LongByLongToLong reducer) {
3666 if (transformer == null || reducer == null)
3667 throw new NullPointerException();
3668 return new MapReduceMappingsToLongTask<K,V>
3669 (null, batchFor(parallelismThreshold), 0, 0, table,
3670 null, transformer, basis, reducer).invoke();
3671 }
3672
3673 /**
3674 * Returns the result of accumulating the given transformation
3675 * of all (key, value) pairs using the given reducer to
3676 * combine values, and the given basis as an identity value.
3677 *
3678 * @param parallelismThreshold the (estimated) number of elements
3679 * needed for this operation to be executed in parallel
3680 * @param transformer a function returning the transformation
3681 * for an element
3682 * @param basis the identity (initial default value) for the reduction
3683 * @param reducer a commutative associative combining function
3684 * @return the result of accumulating the given transformation
3685 * of all (key, value) pairs
3686 * @since 1.8
3687 */
3688 public int reduceToInt(long parallelismThreshold,
3689 ObjectByObjectToInt<? super K, ? super V> transformer,
3690 int basis,
3691 IntByIntToInt reducer) {
3692 if (transformer == null || reducer == null)
3693 throw new NullPointerException();
3694 return new MapReduceMappingsToIntTask<K,V>
3695 (null, batchFor(parallelismThreshold), 0, 0, table,
3696 null, transformer, basis, reducer).invoke();
3697 }
3698
3699 /**
3700 * Performs the given action for each key.
3701 *
3702 * @param parallelismThreshold the (estimated) number of elements
3703 * needed for this operation to be executed in parallel
3704 * @param action the action
3705 * @since 1.8
3706 */
3707 public void forEachKey(long parallelismThreshold,
3708 Action<? super K> action) {
3709 if (action == null) throw new NullPointerException();
3710 new ForEachKeyTask<K,V>
3711 (null, batchFor(parallelismThreshold), 0, 0, table,
3712 action).invoke();
3713 }
3714
3715 /**
3716 * Performs the given action for each non-null transformation
3717 * of each key.
3718 *
3719 * @param parallelismThreshold the (estimated) number of elements
3720 * needed for this operation to be executed in parallel
3721 * @param transformer a function returning the transformation
3722 * for an element, or null if there is no transformation (in
3723 * which case the action is not applied)
3724 * @param action the action
3725 * @since 1.8
3726 */
3727 public <U> void forEachKey(long parallelismThreshold,
3728 Fun<? super K, ? extends U> transformer,
3729 Action<? super U> action) {
3730 if (transformer == null || action == null)
3731 throw new NullPointerException();
3732 new ForEachTransformedKeyTask<K,V,U>
3733 (null, batchFor(parallelismThreshold), 0, 0, table,
3734 transformer, action).invoke();
3735 }
3736
3737 /**
3738 * Returns a non-null result from applying the given search
3739 * function on each key, or null if none. Upon success,
3740 * further element processing is suppressed and the results of
3741 * any other parallel invocations of the search function are
3742 * ignored.
3743 *
3744 * @param parallelismThreshold the (estimated) number of elements
3745 * needed for this operation to be executed in parallel
3746 * @param searchFunction a function returning a non-null
3747 * result on success, else null
3748 * @return a non-null result from applying the given search
3749 * function on each key, or null if none
3750 * @since 1.8
3751 */
3752 public <U> U searchKeys(long parallelismThreshold,
3753 Fun<? super K, ? extends U> searchFunction) {
3754 if (searchFunction == null) throw new NullPointerException();
3755 return new SearchKeysTask<K,V,U>
3756 (null, batchFor(parallelismThreshold), 0, 0, table,
3757 searchFunction, new AtomicReference<U>()).invoke();
3758 }
3759
3760 /**
3761 * Returns the result of accumulating all keys using the given
3762 * reducer to combine values, or null if none.
3763 *
3764 * @param parallelismThreshold the (estimated) number of elements
3765 * needed for this operation to be executed in parallel
3766 * @param reducer a commutative associative combining function
3767 * @return the result of accumulating all keys using the given
3768 * reducer to combine values, or null if none
3769 * @since 1.8
3770 */
3771 public K reduceKeys(long parallelismThreshold,
3772 BiFun<? super K, ? super K, ? extends K> reducer) {
3773 if (reducer == null) throw new NullPointerException();
3774 return new ReduceKeysTask<K,V>
3775 (null, batchFor(parallelismThreshold), 0, 0, table,
3776 null, reducer).invoke();
3777 }
3778
3779 /**
3780 * Returns the result of accumulating the given transformation
3781 * of all keys using the given reducer to combine values, or
3782 * null if none.
3783 *
3784 * @param parallelismThreshold the (estimated) number of elements
3785 * needed for this operation to be executed in parallel
3786 * @param transformer a function returning the transformation
3787 * for an element, or null if there is no transformation (in
3788 * which case it is not combined)
3789 * @param reducer a commutative associative combining function
3790 * @return the result of accumulating the given transformation
3791 * of all keys
3792 * @since 1.8
3793 */
3794 public <U> U reduceKeys(long parallelismThreshold,
3795 Fun<? super K, ? extends U> transformer,
3796 BiFun<? super U, ? super U, ? extends U> reducer) {
3797 if (transformer == null || reducer == null)
3798 throw new NullPointerException();
3799 return new MapReduceKeysTask<K,V,U>
3800 (null, batchFor(parallelismThreshold), 0, 0, table,
3801 null, transformer, reducer).invoke();
3802 }
3803
3804 /**
3805 * Returns the result of accumulating the given transformation
3806 * of all keys using the given reducer to combine values, and
3807 * the given basis as an identity value.
3808 *
3809 * @param parallelismThreshold the (estimated) number of elements
3810 * needed for this operation to be executed in parallel
3811 * @param transformer a function returning the transformation
3812 * for an element
3813 * @param basis the identity (initial default value) for the reduction
3814 * @param reducer a commutative associative combining function
3815 * @return the result of accumulating the given transformation
3816 * of all keys
3817 * @since 1.8
3818 */
3819 public double reduceKeysToDouble(long parallelismThreshold,
3820 ObjectToDouble<? super K> transformer,
3821 double basis,
3822 DoubleByDoubleToDouble reducer) {
3823 if (transformer == null || reducer == null)
3824 throw new NullPointerException();
3825 return new MapReduceKeysToDoubleTask<K,V>
3826 (null, batchFor(parallelismThreshold), 0, 0, table,
3827 null, transformer, basis, reducer).invoke();
3828 }
3829
3830 /**
3831 * Returns the result of accumulating the given transformation
3832 * of all keys using the given reducer to combine values, and
3833 * the given basis as an identity value.
3834 *
3835 * @param parallelismThreshold the (estimated) number of elements
3836 * needed for this operation to be executed in parallel
3837 * @param transformer a function returning the transformation
3838 * for an element
3839 * @param basis the identity (initial default value) for the reduction
3840 * @param reducer a commutative associative combining function
3841 * @return the result of accumulating the given transformation
3842 * of all keys
3843 * @since 1.8
3844 */
3845 public long reduceKeysToLong(long parallelismThreshold,
3846 ObjectToLong<? super K> transformer,
3847 long basis,
3848 LongByLongToLong reducer) {
3849 if (transformer == null || reducer == null)
3850 throw new NullPointerException();
3851 return new MapReduceKeysToLongTask<K,V>
3852 (null, batchFor(parallelismThreshold), 0, 0, table,
3853 null, transformer, basis, reducer).invoke();
3854 }
3855
3856 /**
3857 * Returns the result of accumulating the given transformation
3858 * of all keys using the given reducer to combine values, and
3859 * the given basis as an identity value.
3860 *
3861 * @param parallelismThreshold the (estimated) number of elements
3862 * needed for this operation to be executed in parallel
3863 * @param transformer a function returning the transformation
3864 * for an element
3865 * @param basis the identity (initial default value) for the reduction
3866 * @param reducer a commutative associative combining function
3867 * @return the result of accumulating the given transformation
3868 * of all keys
3869 * @since 1.8
3870 */
3871 public int reduceKeysToInt(long parallelismThreshold,
3872 ObjectToInt<? super K> transformer,
3873 int basis,
3874 IntByIntToInt reducer) {
3875 if (transformer == null || reducer == null)
3876 throw new NullPointerException();
3877 return new MapReduceKeysToIntTask<K,V>
3878 (null, batchFor(parallelismThreshold), 0, 0, table,
3879 null, transformer, basis, reducer).invoke();
3880 }
3881
3882 /**
3883 * Performs the given action for each value.
3884 *
3885 * @param parallelismThreshold the (estimated) number of elements
3886 * needed for this operation to be executed in parallel
3887 * @param action the action
3888 * @since 1.8
3889 */
3890 public void forEachValue(long parallelismThreshold,
3891 Action<? super V> action) {
3892 if (action == null)
3893 throw new NullPointerException();
3894 new ForEachValueTask<K,V>
3895 (null, batchFor(parallelismThreshold), 0, 0, table,
3896 action).invoke();
3897 }
3898
3899 /**
3900 * Performs the given action for each non-null transformation
3901 * of each value.
3902 *
3903 * @param parallelismThreshold the (estimated) number of elements
3904 * needed for this operation to be executed in parallel
3905 * @param transformer a function returning the transformation
3906 * for an element, or null if there is no transformation (in
3907 * which case the action is not applied)
3908 * @param action the action
3909 * @since 1.8
3910 */
3911 public <U> void forEachValue(long parallelismThreshold,
3912 Fun<? super V, ? extends U> transformer,
3913 Action<? super U> action) {
3914 if (transformer == null || action == null)
3915 throw new NullPointerException();
3916 new ForEachTransformedValueTask<K,V,U>
3917 (null, batchFor(parallelismThreshold), 0, 0, table,
3918 transformer, action).invoke();
3919 }
3920
3921 /**
3922 * Returns a non-null result from applying the given search
3923 * function on each value, or null if none. Upon success,
3924 * further element processing is suppressed and the results of
3925 * any other parallel invocations of the search function are
3926 * ignored.
3927 *
3928 * @param parallelismThreshold the (estimated) number of elements
3929 * needed for this operation to be executed in parallel
3930 * @param searchFunction a function returning a non-null
3931 * result on success, else null
3932 * @return a non-null result from applying the given search
3933 * function on each value, or null if none
3934 * @since 1.8
3935 */
3936 public <U> U searchValues(long parallelismThreshold,
3937 Fun<? super V, ? extends U> searchFunction) {
3938 if (searchFunction == null) throw new NullPointerException();
3939 return new SearchValuesTask<K,V,U>
3940 (null, batchFor(parallelismThreshold), 0, 0, table,
3941 searchFunction, new AtomicReference<U>()).invoke();
3942 }
3943
3944 /**
3945 * Returns the result of accumulating all values using the
3946 * given reducer to combine values, or null if none.
3947 *
3948 * @param parallelismThreshold the (estimated) number of elements
3949 * needed for this operation to be executed in parallel
3950 * @param reducer a commutative associative combining function
3951 * @return the result of accumulating all values
3952 * @since 1.8
3953 */
3954 public V reduceValues(long parallelismThreshold,
3955 BiFun<? super V, ? super V, ? extends V> reducer) {
3956 if (reducer == null) throw new NullPointerException();
3957 return new ReduceValuesTask<K,V>
3958 (null, batchFor(parallelismThreshold), 0, 0, table,
3959 null, reducer).invoke();
3960 }
3961
3962 /**
3963 * Returns the result of accumulating the given transformation
3964 * of all values using the given reducer to combine values, or
3965 * null if none.
3966 *
3967 * @param parallelismThreshold the (estimated) number of elements
3968 * needed for this operation to be executed in parallel
3969 * @param transformer a function returning the transformation
3970 * for an element, or null if there is no transformation (in
3971 * which case it is not combined)
3972 * @param reducer a commutative associative combining function
3973 * @return the result of accumulating the given transformation
3974 * of all values
3975 * @since 1.8
3976 */
3977 public <U> U reduceValues(long parallelismThreshold,
3978 Fun<? super V, ? extends U> transformer,
3979 BiFun<? super U, ? super U, ? extends U> reducer) {
3980 if (transformer == null || reducer == null)
3981 throw new NullPointerException();
3982 return new MapReduceValuesTask<K,V,U>
3983 (null, batchFor(parallelismThreshold), 0, 0, table,
3984 null, transformer, reducer).invoke();
3985 }
3986
3987 /**
3988 * Returns the result of accumulating the given transformation
3989 * of all values using the given reducer to combine values,
3990 * and the given basis as an identity value.
3991 *
3992 * @param parallelismThreshold the (estimated) number of elements
3993 * needed for this operation to be executed in parallel
3994 * @param transformer a function returning the transformation
3995 * for an element
3996 * @param basis the identity (initial default value) for the reduction
3997 * @param reducer a commutative associative combining function
3998 * @return the result of accumulating the given transformation
3999 * of all values
4000 * @since 1.8
4001 */
4002 public double reduceValuesToDouble(long parallelismThreshold,
4003 ObjectToDouble<? super V> transformer,
4004 double basis,
4005 DoubleByDoubleToDouble reducer) {
4006 if (transformer == null || reducer == null)
4007 throw new NullPointerException();
4008 return new MapReduceValuesToDoubleTask<K,V>
4009 (null, batchFor(parallelismThreshold), 0, 0, table,
4010 null, transformer, basis, reducer).invoke();
4011 }
4012
4013 /**
4014 * Returns the result of accumulating the given transformation
4015 * of all values using the given reducer to combine values,
4016 * and the given basis as an identity value.
4017 *
4018 * @param parallelismThreshold the (estimated) number of elements
4019 * needed for this operation to be executed in parallel
4020 * @param transformer a function returning the transformation
4021 * for an element
4022 * @param basis the identity (initial default value) for the reduction
4023 * @param reducer a commutative associative combining function
4024 * @return the result of accumulating the given transformation
4025 * of all values
4026 * @since 1.8
4027 */
4028 public long reduceValuesToLong(long parallelismThreshold,
4029 ObjectToLong<? super V> transformer,
4030 long basis,
4031 LongByLongToLong reducer) {
4032 if (transformer == null || reducer == null)
4033 throw new NullPointerException();
4034 return new MapReduceValuesToLongTask<K,V>
4035 (null, batchFor(parallelismThreshold), 0, 0, table,
4036 null, transformer, basis, reducer).invoke();
4037 }
4038
4039 /**
4040 * Returns the result of accumulating the given transformation
4041 * of all values using the given reducer to combine values,
4042 * and the given basis as an identity value.
4043 *
4044 * @param parallelismThreshold the (estimated) number of elements
4045 * needed for this operation to be executed in parallel
4046 * @param transformer a function returning the transformation
4047 * for an element
4048 * @param basis the identity (initial default value) for the reduction
4049 * @param reducer a commutative associative combining function
4050 * @return the result of accumulating the given transformation
4051 * of all values
4052 * @since 1.8
4053 */
4054 public int reduceValuesToInt(long parallelismThreshold,
4055 ObjectToInt<? super V> transformer,
4056 int basis,
4057 IntByIntToInt reducer) {
4058 if (transformer == null || reducer == null)
4059 throw new NullPointerException();
4060 return new MapReduceValuesToIntTask<K,V>
4061 (null, batchFor(parallelismThreshold), 0, 0, table,
4062 null, transformer, basis, reducer).invoke();
4063 }
4064
4065 /**
4066 * Performs the given action for each entry.
4067 *
4068 * @param parallelismThreshold the (estimated) number of elements
4069 * needed for this operation to be executed in parallel
4070 * @param action the action
4071 * @since 1.8
4072 */
4073 public void forEachEntry(long parallelismThreshold,
4074 Action<? super Map.Entry<K,V>> action) {
4075 if (action == null) throw new NullPointerException();
4076 new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4077 action).invoke();
4078 }
4079
4080 /**
4081 * Performs the given action for each non-null transformation
4082 * of each entry.
4083 *
4084 * @param parallelismThreshold the (estimated) number of elements
4085 * needed for this operation to be executed in parallel
4086 * @param transformer a function returning the transformation
4087 * for an element, or null if there is no transformation (in
4088 * which case the action is not applied)
4089 * @param action the action
4090 * @since 1.8
4091 */
4092 public <U> void forEachEntry(long parallelismThreshold,
4093 Fun<Map.Entry<K,V>, ? extends U> transformer,
4094 Action<? super U> action) {
4095 if (transformer == null || action == null)
4096 throw new NullPointerException();
4097 new ForEachTransformedEntryTask<K,V,U>
4098 (null, batchFor(parallelismThreshold), 0, 0, table,
4099 transformer, action).invoke();
4100 }
4101
4102 /**
4103 * Returns a non-null result from applying the given search
4104 * function on each entry, or null if none. Upon success,
4105 * further element processing is suppressed and the results of
4106 * any other parallel invocations of the search function are
4107 * ignored.
4108 *
4109 * @param parallelismThreshold the (estimated) number of elements
4110 * needed for this operation to be executed in parallel
4111 * @param searchFunction a function returning a non-null
4112 * result on success, else null
4113 * @return a non-null result from applying the given search
4114 * function on each entry, or null if none
4115 * @since 1.8
4116 */
4117 public <U> U searchEntries(long parallelismThreshold,
4118 Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4119 if (searchFunction == null) throw new NullPointerException();
4120 return new SearchEntriesTask<K,V,U>
4121 (null, batchFor(parallelismThreshold), 0, 0, table,
4122 searchFunction, new AtomicReference<U>()).invoke();
4123 }
4124
4125 /**
4126 * Returns the result of accumulating all entries using the
4127 * given reducer to combine values, or null if none.
4128 *
4129 * @param parallelismThreshold the (estimated) number of elements
4130 * needed for this operation to be executed in parallel
4131 * @param reducer a commutative associative combining function
4132 * @return the result of accumulating all entries
4133 * @since 1.8
4134 */
4135 public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4136 BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4137 if (reducer == null) throw new NullPointerException();
4138 return new ReduceEntriesTask<K,V>
4139 (null, batchFor(parallelismThreshold), 0, 0, table,
4140 null, reducer).invoke();
4141 }
4142
4143 /**
4144 * Returns the result of accumulating the given transformation
4145 * of all entries using the given reducer to combine values,
4146 * or null if none.
4147 *
4148 * @param parallelismThreshold the (estimated) number of elements
4149 * needed for this operation to be executed in parallel
4150 * @param transformer a function returning the transformation
4151 * for an element, or null if there is no transformation (in
4152 * which case it is not combined)
4153 * @param reducer a commutative associative combining function
4154 * @return the result of accumulating the given transformation
4155 * of all entries
4156 * @since 1.8
4157 */
4158 public <U> U reduceEntries(long parallelismThreshold,
4159 Fun<Map.Entry<K,V>, ? extends U> transformer,
4160 BiFun<? super U, ? super U, ? extends U> reducer) {
4161 if (transformer == null || reducer == null)
4162 throw new NullPointerException();
4163 return new MapReduceEntriesTask<K,V,U>
4164 (null, batchFor(parallelismThreshold), 0, 0, table,
4165 null, transformer, reducer).invoke();
4166 }
4167
4168 /**
4169 * Returns the result of accumulating the given transformation
4170 * of all entries using the given reducer to combine values,
4171 * and the given basis as an identity value.
4172 *
4173 * @param parallelismThreshold the (estimated) number of elements
4174 * needed for this operation to be executed in parallel
4175 * @param transformer a function returning the transformation
4176 * for an element
4177 * @param basis the identity (initial default value) for the reduction
4178 * @param reducer a commutative associative combining function
4179 * @return the result of accumulating the given transformation
4180 * of all entries
4181 * @since 1.8
4182 */
4183 public double reduceEntriesToDouble(long parallelismThreshold,
4184 ObjectToDouble<Map.Entry<K,V>> transformer,
4185 double basis,
4186 DoubleByDoubleToDouble reducer) {
4187 if (transformer == null || reducer == null)
4188 throw new NullPointerException();
4189 return new MapReduceEntriesToDoubleTask<K,V>
4190 (null, batchFor(parallelismThreshold), 0, 0, table,
4191 null, transformer, basis, reducer).invoke();
4192 }
4193
4194 /**
4195 * Returns the result of accumulating the given transformation
4196 * of all entries using the given reducer to combine values,
4197 * and the given basis as an identity value.
4198 *
4199 * @param parallelismThreshold the (estimated) number of elements
4200 * needed for this operation to be executed in parallel
4201 * @param transformer a function returning the transformation
4202 * for an element
4203 * @param basis the identity (initial default value) for the reduction
4204 * @param reducer a commutative associative combining function
4205 * @return the result of accumulating the given transformation
4206 * of all entries
4207 * @since 1.8
4208 */
4209 public long reduceEntriesToLong(long parallelismThreshold,
4210 ObjectToLong<Map.Entry<K,V>> transformer,
4211 long basis,
4212 LongByLongToLong reducer) {
4213 if (transformer == null || reducer == null)
4214 throw new NullPointerException();
4215 return new MapReduceEntriesToLongTask<K,V>
4216 (null, batchFor(parallelismThreshold), 0, 0, table,
4217 null, transformer, basis, reducer).invoke();
4218 }
4219
4220 /**
4221 * Returns the result of accumulating the given transformation
4222 * of all entries using the given reducer to combine values,
4223 * and the given basis as an identity value.
4224 *
4225 * @param parallelismThreshold the (estimated) number of elements
4226 * needed for this operation to be executed in parallel
4227 * @param transformer a function returning the transformation
4228 * for an element
4229 * @param basis the identity (initial default value) for the reduction
4230 * @param reducer a commutative associative combining function
4231 * @return the result of accumulating the given transformation
4232 * of all entries
4233 * @since 1.8
4234 */
4235 public int reduceEntriesToInt(long parallelismThreshold,
4236 ObjectToInt<Map.Entry<K,V>> transformer,
4237 int basis,
4238 IntByIntToInt reducer) {
4239 if (transformer == null || reducer == null)
4240 throw new NullPointerException();
4241 return new MapReduceEntriesToIntTask<K,V>
4242 (null, batchFor(parallelismThreshold), 0, 0, table,
4243 null, transformer, basis, reducer).invoke();
4244 }
4245
4246
4247 /* ----------------Views -------------- */
4248
4249 /**
4250 * Base class for views.
4251 */
4252 abstract static class CollectionView<K,V,E>
4253 implements Collection<E>, java.io.Serializable {
4254 private static final long serialVersionUID = 7249069246763182397L;
4255 final ConcurrentHashMapV8<K,V> map;
4256 CollectionView(ConcurrentHashMapV8<K,V> map) { this.map = map; }
4257
4258 /**
4259 * Returns the map backing this view.
4260 *
4261 * @return the map backing this view
4262 */
4263 public ConcurrentHashMapV8<K,V> getMap() { return map; }
4264
4265 /**
4266 * Removes all of the elements from this view, by removing all
4267 * the mappings from the map backing this view.
4268 */
4269 public final void clear() { map.clear(); }
4270 public final int size() { return map.size(); }
4271 public final boolean isEmpty() { return map.isEmpty(); }
4272
4273 // implementations below rely on concrete classes supplying these
4274 // abstract methods
4275 /**
4276 * Returns a "weakly consistent" iterator that will never
4277 * throw {@link ConcurrentModificationException}, and
4278 * guarantees to traverse elements as they existed upon
4279 * construction of the iterator, and may (but is not
4280 * guaranteed to) reflect any modifications subsequent to
4281 * construction.
4282 */
4283 public abstract Iterator<E> iterator();
4284 public abstract boolean contains(Object o);
4285 public abstract boolean remove(Object o);
4286
4287 private static final String oomeMsg = "Required array size too large";
4288
4289 public final Object[] toArray() {
4290 long sz = map.mappingCount();
4291 if (sz > MAX_ARRAY_SIZE)
4292 throw new OutOfMemoryError(oomeMsg);
4293 int n = (int)sz;
4294 Object[] r = new Object[n];
4295 int i = 0;
4296 for (E e : this) {
4297 if (i == n) {
4298 if (n >= MAX_ARRAY_SIZE)
4299 throw new OutOfMemoryError(oomeMsg);
4300 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4301 n = MAX_ARRAY_SIZE;
4302 else
4303 n += (n >>> 1) + 1;
4304 r = Arrays.copyOf(r, n);
4305 }
4306 r[i++] = e;
4307 }
4308 return (i == n) ? r : Arrays.copyOf(r, i);
4309 }
4310
4311 @SuppressWarnings("unchecked")
4312 public final <T> T[] toArray(T[] a) {
4313 long sz = map.mappingCount();
4314 if (sz > MAX_ARRAY_SIZE)
4315 throw new OutOfMemoryError(oomeMsg);
4316 int m = (int)sz;
4317 T[] r = (a.length >= m) ? a :
4318 (T[])java.lang.reflect.Array
4319 .newInstance(a.getClass().getComponentType(), m);
4320 int n = r.length;
4321 int i = 0;
4322 for (E e : this) {
4323 if (i == n) {
4324 if (n >= MAX_ARRAY_SIZE)
4325 throw new OutOfMemoryError(oomeMsg);
4326 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4327 n = MAX_ARRAY_SIZE;
4328 else
4329 n += (n >>> 1) + 1;
4330 r = Arrays.copyOf(r, n);
4331 }
4332 r[i++] = (T)e;
4333 }
4334 if (a == r && i < n) {
4335 r[i] = null; // null-terminate
4336 return r;
4337 }
4338 return (i == n) ? r : Arrays.copyOf(r, i);
4339 }
4340
4341 /**
4342 * Returns a string representation of this collection.
4343 * The string representation consists of the string representations
4344 * of the collection's elements in the order they are returned by
4345 * its iterator, enclosed in square brackets ({@code "[]"}).
4346 * Adjacent elements are separated by the characters {@code ", "}
4347 * (comma and space). Elements are converted to strings as by
4348 * {@link String#valueOf(Object)}.
4349 *
4350 * @return a string representation of this collection
4351 */
4352 public final String toString() {
4353 StringBuilder sb = new StringBuilder();
4354 sb.append('[');
4355 Iterator<E> it = iterator();
4356 if (it.hasNext()) {
4357 for (;;) {
4358 Object e = it.next();
4359 sb.append(e == this ? "(this Collection)" : e);
4360 if (!it.hasNext())
4361 break;
4362 sb.append(',').append(' ');
4363 }
4364 }
4365 return sb.append(']').toString();
4366 }
4367
4368 public final boolean containsAll(Collection<?> c) {
4369 if (c != this) {
4370 for (Object e : c) {
4371 if (e == null || !contains(e))
4372 return false;
4373 }
4374 }
4375 return true;
4376 }
4377
4378 public final boolean removeAll(Collection<?> c) {
4379 boolean modified = false;
4380 for (Iterator<E> it = iterator(); it.hasNext();) {
4381 if (c.contains(it.next())) {
4382 it.remove();
4383 modified = true;
4384 }
4385 }
4386 return modified;
4387 }
4388
4389 public final boolean retainAll(Collection<?> c) {
4390 boolean modified = false;
4391 for (Iterator<E> it = iterator(); it.hasNext();) {
4392 if (!c.contains(it.next())) {
4393 it.remove();
4394 modified = true;
4395 }
4396 }
4397 return modified;
4398 }
4399
4400 }
4401
4402 /**
4403 * A view of a ConcurrentHashMapV8 as a {@link Set} of keys, in
4404 * which additions may optionally be enabled by mapping to a
4405 * common value. This class cannot be directly instantiated.
4406 * See {@link #keySet() keySet()},
4407 * {@link #keySet(Object) keySet(V)},
4408 * {@link #newKeySet() newKeySet()},
4409 * {@link #newKeySet(int) newKeySet(int)}.
4410 *
4411 * @since 1.8
4412 */
4413 public static class KeySetView<K,V> extends CollectionView<K,V,K>
4414 implements Set<K>, java.io.Serializable {
4415 private static final long serialVersionUID = 7249069246763182397L;
4416 private final V value;
4417 KeySetView(ConcurrentHashMapV8<K,V> map, V value) { // non-public
4418 super(map);
4419 this.value = value;
4420 }
4421
4422 /**
4423 * Returns the default mapped value for additions,
4424 * or {@code null} if additions are not supported.
4425 *
4426 * @return the default mapped value for additions, or {@code null}
4427 * if not supported
4428 */
4429 public V getMappedValue() { return value; }
4430
4431 /**
4432 * {@inheritDoc}
4433 * @throws NullPointerException if the specified key is null
4434 */
4435 public boolean contains(Object o) { return map.containsKey(o); }
4436
4437 /**
4438 * Removes the key from this map view, by removing the key (and its
4439 * corresponding value) from the backing map. This method does
4440 * nothing if the key is not in the map.
4441 *
4442 * @param o the key to be removed from the backing map
4443 * @return {@code true} if the backing map contained the specified key
4444 * @throws NullPointerException if the specified key is null
4445 */
4446 public boolean remove(Object o) { return map.remove(o) != null; }
4447
4448 /**
4449 * @return an iterator over the keys of the backing map
4450 */
4451 public Iterator<K> iterator() {
4452 Node<K,V>[] t;
4453 ConcurrentHashMapV8<K,V> m = map;
4454 int f = (t = m.table) == null ? 0 : t.length;
4455 return new KeyIterator<K,V>(t, f, 0, f, m);
4456 }
4457
4458 /**
4459 * Adds the specified key to this set view by mapping the key to
4460 * the default mapped value in the backing map, if defined.
4461 *
4462 * @param e key to be added
4463 * @return {@code true} if this set changed as a result of the call
4464 * @throws NullPointerException if the specified key is null
4465 * @throws UnsupportedOperationException if no default mapped value
4466 * for additions was provided
4467 */
4468 public boolean add(K e) {
4469 V v;
4470 if ((v = value) == null)
4471 throw new UnsupportedOperationException();
4472 return map.putVal(e, v, true) == null;
4473 }
4474
4475 /**
4476 * Adds all of the elements in the specified collection to this set,
4477 * as if by calling {@link #add} on each one.
4478 *
4479 * @param c the elements to be inserted into this set
4480 * @return {@code true} if this set changed as a result of the call
4481 * @throws NullPointerException if the collection or any of its
4482 * elements are {@code null}
4483 * @throws UnsupportedOperationException if no default mapped value
4484 * for additions was provided
4485 */
4486 public boolean addAll(Collection<? extends K> c) {
4487 boolean added = false;
4488 V v;
4489 if ((v = value) == null)
4490 throw new UnsupportedOperationException();
4491 for (K e : c) {
4492 if (map.putVal(e, v, true) == null)
4493 added = true;
4494 }
4495 return added;
4496 }
4497
4498 public int hashCode() {
4499 int h = 0;
4500 for (K e : this)
4501 h += e.hashCode();
4502 return h;
4503 }
4504
4505 public boolean equals(Object o) {
4506 Set<?> c;
4507 return ((o instanceof Set) &&
4508 ((c = (Set<?>)o) == this ||
4509 (containsAll(c) && c.containsAll(this))));
4510 }
4511
4512 public ConcurrentHashMapSpliterator<K> spliterator() {
4513 Node<K,V>[] t;
4514 ConcurrentHashMapV8<K,V> m = map;
4515 long n = m.sumCount();
4516 int f = (t = m.table) == null ? 0 : t.length;
4517 return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4518 }
4519
4520 public void forEach(Action<? super K> action) {
4521 if (action == null) throw new NullPointerException();
4522 Node<K,V>[] t;
4523 if ((t = map.table) != null) {
4524 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4525 for (Node<K,V> p; (p = it.advance()) != null; )
4526 action.apply(p.key);
4527 }
4528 }
4529 }
4530
4531 /**
4532 * A view of a ConcurrentHashMapV8 as a {@link Collection} of
4533 * values, in which additions are disabled. This class cannot be
4534 * directly instantiated. See {@link #values()}.
4535 */
4536 static final class ValuesView<K,V> extends CollectionView<K,V,V>
4537 implements Collection<V>, java.io.Serializable {
4538 private static final long serialVersionUID = 2249069246763182397L;
4539 ValuesView(ConcurrentHashMapV8<K,V> map) { super(map); }
4540 public final boolean contains(Object o) {
4541 return map.containsValue(o);
4542 }
4543
4544 public final boolean remove(Object o) {
4545 if (o != null) {
4546 for (Iterator<V> it = iterator(); it.hasNext();) {
4547 if (o.equals(it.next())) {
4548 it.remove();
4549 return true;
4550 }
4551 }
4552 }
4553 return false;
4554 }
4555
4556 public final Iterator<V> iterator() {
4557 ConcurrentHashMapV8<K,V> m = map;
4558 Node<K,V>[] t;
4559 int f = (t = m.table) == null ? 0 : t.length;
4560 return new ValueIterator<K,V>(t, f, 0, f, m);
4561 }
4562
4563 public final boolean add(V e) {
4564 throw new UnsupportedOperationException();
4565 }
4566 public final boolean addAll(Collection<? extends V> c) {
4567 throw new UnsupportedOperationException();
4568 }
4569
4570 public ConcurrentHashMapSpliterator<V> spliterator() {
4571 Node<K,V>[] t;
4572 ConcurrentHashMapV8<K,V> m = map;
4573 long n = m.sumCount();
4574 int f = (t = m.table) == null ? 0 : t.length;
4575 return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4576 }
4577
4578 public void forEach(Action<? super V> action) {
4579 if (action == null) throw new NullPointerException();
4580 Node<K,V>[] t;
4581 if ((t = map.table) != null) {
4582 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4583 for (Node<K,V> p; (p = it.advance()) != null; )
4584 action.apply(p.val);
4585 }
4586 }
4587 }
4588
4589 /**
4590 * A view of a ConcurrentHashMapV8 as a {@link Set} of (key, value)
4591 * entries. This class cannot be directly instantiated. See
4592 * {@link #entrySet()}.
4593 */
4594 static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4595 implements Set<Map.Entry<K,V>>, java.io.Serializable {
4596 private static final long serialVersionUID = 2249069246763182397L;
4597 EntrySetView(ConcurrentHashMapV8<K,V> map) { super(map); }
4598
4599 public boolean contains(Object o) {
4600 Object k, v, r; Map.Entry<?,?> e;
4601 return ((o instanceof Map.Entry) &&
4602 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4603 (r = map.get(k)) != null &&
4604 (v = e.getValue()) != null &&
4605 (v == r || v.equals(r)));
4606 }
4607
4608 public boolean remove(Object o) {
4609 Object k, v; Map.Entry<?,?> e;
4610 return ((o instanceof Map.Entry) &&
4611 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4612 (v = e.getValue()) != null &&
4613 map.remove(k, v));
4614 }
4615
4616 /**
4617 * @return an iterator over the entries of the backing map
4618 */
4619 public Iterator<Map.Entry<K,V>> iterator() {
4620 ConcurrentHashMapV8<K,V> m = map;
4621 Node<K,V>[] t;
4622 int f = (t = m.table) == null ? 0 : t.length;
4623 return new EntryIterator<K,V>(t, f, 0, f, m);
4624 }
4625
4626 public boolean add(Entry<K,V> e) {
4627 return map.putVal(e.getKey(), e.getValue(), false) == null;
4628 }
4629
4630 public boolean addAll(Collection<? extends Entry<K,V>> c) {
4631 boolean added = false;
4632 for (Entry<K,V> e : c) {
4633 if (add(e))
4634 added = true;
4635 }
4636 return added;
4637 }
4638
4639 public final int hashCode() {
4640 int h = 0;
4641 Node<K,V>[] t;
4642 if ((t = map.table) != null) {
4643 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4644 for (Node<K,V> p; (p = it.advance()) != null; ) {
4645 h += p.hashCode();
4646 }
4647 }
4648 return h;
4649 }
4650
4651 public final boolean equals(Object o) {
4652 Set<?> c;
4653 return ((o instanceof Set) &&
4654 ((c = (Set<?>)o) == this ||
4655 (containsAll(c) && c.containsAll(this))));
4656 }
4657
4658 public ConcurrentHashMapSpliterator<Map.Entry<K,V>> spliterator() {
4659 Node<K,V>[] t;
4660 ConcurrentHashMapV8<K,V> m = map;
4661 long n = m.sumCount();
4662 int f = (t = m.table) == null ? 0 : t.length;
4663 return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4664 }
4665
4666 public void forEach(Action<? super Map.Entry<K,V>> action) {
4667 if (action == null) throw new NullPointerException();
4668 Node<K,V>[] t;
4669 if ((t = map.table) != null) {
4670 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4671 for (Node<K,V> p; (p = it.advance()) != null; )
4672 action.apply(new MapEntry<K,V>(p.key, p.val, map));
4673 }
4674 }
4675
4676 }
4677
4678 // -------------------------------------------------------
4679
4680 /**
4681 * Base class for bulk tasks. Repeats some fields and code from
4682 * class Traverser, because we need to subclass CountedCompleter.
4683 */
4684 abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4685 Node<K,V>[] tab; // same as Traverser
4686 Node<K,V> next;
4687 int index;
4688 int baseIndex;
4689 int baseLimit;
4690 final int baseSize;
4691 int batch; // split control
4692
4693 BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4694 super(par);
4695 this.batch = b;
4696 this.index = this.baseIndex = i;
4697 if ((this.tab = t) == null)
4698 this.baseSize = this.baseLimit = 0;
4699 else if (par == null)
4700 this.baseSize = this.baseLimit = t.length;
4701 else {
4702 this.baseLimit = f;
4703 this.baseSize = par.baseSize;
4704 }
4705 }
4706
4707 /**
4708 * Same as Traverser version
4709 */
4710 final Node<K,V> advance() {
4711 Node<K,V> e;
4712 if ((e = next) != null)
4713 e = e.next;
4714 for (;;) {
4715 Node<K,V>[] t; int i, n; K ek; // must use locals in checks
4716 if (e != null)
4717 return next = e;
4718 if (baseIndex >= baseLimit || (t = tab) == null ||
4719 (n = t.length) <= (i = index) || i < 0)
4720 return next = null;
4721 if ((e = tabAt(t, index)) != null && e.hash < 0) {
4722 if (e instanceof ForwardingNode) {
4723 tab = ((ForwardingNode<K,V>)e).nextTable;
4724 e = null;
4725 continue;
4726 }
4727 else if (e instanceof TreeBin)
4728 e = ((TreeBin<K,V>)e).first;
4729 else
4730 e = null;
4731 }
4732 if ((index += baseSize) >= n)
4733 index = ++baseIndex; // visit upper slots if present
4734 }
4735 }
4736 }
4737
4738 /*
4739 * Task classes. Coded in a regular but ugly format/style to
4740 * simplify checks that each variant differs in the right way from
4741 * others. The null screenings exist because compilers cannot tell
4742 * that we've already null-checked task arguments, so we force
4743 * simplest hoisted bypass to help avoid convoluted traps.
4744 */
4745 @SuppressWarnings("serial")
4746 static final class ForEachKeyTask<K,V>
4747 extends BulkTask<K,V,Void> {
4748 final Action<? super K> action;
4749 ForEachKeyTask
4750 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4751 Action<? super K> action) {
4752 super(p, b, i, f, t);
4753 this.action = action;
4754 }
4755 public final void compute() {
4756 final Action<? super K> action;
4757 if ((action = this.action) != null) {
4758 for (int i = baseIndex, f, h; batch > 0 &&
4759 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4760 addToPendingCount(1);
4761 new ForEachKeyTask<K,V>
4762 (this, batch >>>= 1, baseLimit = h, f, tab,
4763 action).fork();
4764 }
4765 for (Node<K,V> p; (p = advance()) != null;)
4766 action.apply(p.key);
4767 propagateCompletion();
4768 }
4769 }
4770 }
4771
4772 @SuppressWarnings("serial")
4773 static final class ForEachValueTask<K,V>
4774 extends BulkTask<K,V,Void> {
4775 final Action<? super V> action;
4776 ForEachValueTask
4777 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4778 Action<? super V> action) {
4779 super(p, b, i, f, t);
4780 this.action = action;
4781 }
4782 public final void compute() {
4783 final Action<? super V> action;
4784 if ((action = this.action) != null) {
4785 for (int i = baseIndex, f, h; batch > 0 &&
4786 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4787 addToPendingCount(1);
4788 new ForEachValueTask<K,V>
4789 (this, batch >>>= 1, baseLimit = h, f, tab,
4790 action).fork();
4791 }
4792 for (Node<K,V> p; (p = advance()) != null;)
4793 action.apply(p.val);
4794 propagateCompletion();
4795 }
4796 }
4797 }
4798
4799 @SuppressWarnings("serial")
4800 static final class ForEachEntryTask<K,V>
4801 extends BulkTask<K,V,Void> {
4802 final Action<? super Entry<K,V>> action;
4803 ForEachEntryTask
4804 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4805 Action<? super Entry<K,V>> action) {
4806 super(p, b, i, f, t);
4807 this.action = action;
4808 }
4809 public final void compute() {
4810 final Action<? super Entry<K,V>> action;
4811 if ((action = this.action) != null) {
4812 for (int i = baseIndex, f, h; batch > 0 &&
4813 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4814 addToPendingCount(1);
4815 new ForEachEntryTask<K,V>
4816 (this, batch >>>= 1, baseLimit = h, f, tab,
4817 action).fork();
4818 }
4819 for (Node<K,V> p; (p = advance()) != null; )
4820 action.apply(p);
4821 propagateCompletion();
4822 }
4823 }
4824 }
4825
4826 @SuppressWarnings("serial")
4827 static final class ForEachMappingTask<K,V>
4828 extends BulkTask<K,V,Void> {
4829 final BiAction<? super K, ? super V> action;
4830 ForEachMappingTask
4831 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4832 BiAction<? super K,? super V> action) {
4833 super(p, b, i, f, t);
4834 this.action = action;
4835 }
4836 public final void compute() {
4837 final BiAction<? super K, ? super V> action;
4838 if ((action = this.action) != null) {
4839 for (int i = baseIndex, f, h; batch > 0 &&
4840 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4841 addToPendingCount(1);
4842 new ForEachMappingTask<K,V>
4843 (this, batch >>>= 1, baseLimit = h, f, tab,
4844 action).fork();
4845 }
4846 for (Node<K,V> p; (p = advance()) != null; )
4847 action.apply(p.key, p.val);
4848 propagateCompletion();
4849 }
4850 }
4851 }
4852
4853 @SuppressWarnings("serial")
4854 static final class ForEachTransformedKeyTask<K,V,U>
4855 extends BulkTask<K,V,Void> {
4856 final Fun<? super K, ? extends U> transformer;
4857 final Action<? super U> action;
4858 ForEachTransformedKeyTask
4859 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4860 Fun<? super K, ? extends U> transformer, Action<? super U> action) {
4861 super(p, b, i, f, t);
4862 this.transformer = transformer; this.action = action;
4863 }
4864 public final void compute() {
4865 final Fun<? super K, ? extends U> transformer;
4866 final Action<? super U> action;
4867 if ((transformer = this.transformer) != null &&
4868 (action = this.action) != null) {
4869 for (int i = baseIndex, f, h; batch > 0 &&
4870 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4871 addToPendingCount(1);
4872 new ForEachTransformedKeyTask<K,V,U>
4873 (this, batch >>>= 1, baseLimit = h, f, tab,
4874 transformer, action).fork();
4875 }
4876 for (Node<K,V> p; (p = advance()) != null; ) {
4877 U u;
4878 if ((u = transformer.apply(p.key)) != null)
4879 action.apply(u);
4880 }
4881 propagateCompletion();
4882 }
4883 }
4884 }
4885
4886 @SuppressWarnings("serial")
4887 static final class ForEachTransformedValueTask<K,V,U>
4888 extends BulkTask<K,V,Void> {
4889 final Fun<? super V, ? extends U> transformer;
4890 final Action<? super U> action;
4891 ForEachTransformedValueTask
4892 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4893 Fun<? super V, ? extends U> transformer, Action<? super U> action) {
4894 super(p, b, i, f, t);
4895 this.transformer = transformer; this.action = action;
4896 }
4897 public final void compute() {
4898 final Fun<? super V, ? extends U> transformer;
4899 final Action<? super U> action;
4900 if ((transformer = this.transformer) != null &&
4901 (action = this.action) != null) {
4902 for (int i = baseIndex, f, h; batch > 0 &&
4903 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4904 addToPendingCount(1);
4905 new ForEachTransformedValueTask<K,V,U>
4906 (this, batch >>>= 1, baseLimit = h, f, tab,
4907 transformer, action).fork();
4908 }
4909 for (Node<K,V> p; (p = advance()) != null; ) {
4910 U u;
4911 if ((u = transformer.apply(p.val)) != null)
4912 action.apply(u);
4913 }
4914 propagateCompletion();
4915 }
4916 }
4917 }
4918
4919 @SuppressWarnings("serial")
4920 static final class ForEachTransformedEntryTask<K,V,U>
4921 extends BulkTask<K,V,Void> {
4922 final Fun<Map.Entry<K,V>, ? extends U> transformer;
4923 final Action<? super U> action;
4924 ForEachTransformedEntryTask
4925 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4926 Fun<Map.Entry<K,V>, ? extends U> transformer, Action<? super U> action) {
4927 super(p, b, i, f, t);
4928 this.transformer = transformer; this.action = action;
4929 }
4930 public final void compute() {
4931 final Fun<Map.Entry<K,V>, ? extends U> transformer;
4932 final Action<? super U> action;
4933 if ((transformer = this.transformer) != null &&
4934 (action = this.action) != null) {
4935 for (int i = baseIndex, f, h; batch > 0 &&
4936 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4937 addToPendingCount(1);
4938 new ForEachTransformedEntryTask<K,V,U>
4939 (this, batch >>>= 1, baseLimit = h, f, tab,
4940 transformer, action).fork();
4941 }
4942 for (Node<K,V> p; (p = advance()) != null; ) {
4943 U u;
4944 if ((u = transformer.apply(p)) != null)
4945 action.apply(u);
4946 }
4947 propagateCompletion();
4948 }
4949 }
4950 }
4951
4952 @SuppressWarnings("serial")
4953 static final class ForEachTransformedMappingTask<K,V,U>
4954 extends BulkTask<K,V,Void> {
4955 final BiFun<? super K, ? super V, ? extends U> transformer;
4956 final Action<? super U> action;
4957 ForEachTransformedMappingTask
4958 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4959 BiFun<? super K, ? super V, ? extends U> transformer,
4960 Action<? super U> action) {
4961 super(p, b, i, f, t);
4962 this.transformer = transformer; this.action = action;
4963 }
4964 public final void compute() {
4965 final BiFun<? super K, ? super V, ? extends U> transformer;
4966 final Action<? super U> action;
4967 if ((transformer = this.transformer) != null &&
4968 (action = this.action) != null) {
4969 for (int i = baseIndex, f, h; batch > 0 &&
4970 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4971 addToPendingCount(1);
4972 new ForEachTransformedMappingTask<K,V,U>
4973 (this, batch >>>= 1, baseLimit = h, f, tab,
4974 transformer, action).fork();
4975 }
4976 for (Node<K,V> p; (p = advance()) != null; ) {
4977 U u;
4978 if ((u = transformer.apply(p.key, p.val)) != null)
4979 action.apply(u);
4980 }
4981 propagateCompletion();
4982 }
4983 }
4984 }
4985
4986 @SuppressWarnings("serial")
4987 static final class SearchKeysTask<K,V,U>
4988 extends BulkTask<K,V,U> {
4989 final Fun<? super K, ? extends U> searchFunction;
4990 final AtomicReference<U> result;
4991 SearchKeysTask
4992 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4993 Fun<? super K, ? extends U> searchFunction,
4994 AtomicReference<U> result) {
4995 super(p, b, i, f, t);
4996 this.searchFunction = searchFunction; this.result = result;
4997 }
4998 public final U getRawResult() { return result.get(); }
4999 public final void compute() {
5000 final Fun<? super K, ? extends U> searchFunction;
5001 final AtomicReference<U> result;
5002 if ((searchFunction = this.searchFunction) != null &&
5003 (result = this.result) != null) {
5004 for (int i = baseIndex, f, h; batch > 0 &&
5005 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5006 if (result.get() != null)
5007 return;
5008 addToPendingCount(1);
5009 new SearchKeysTask<K,V,U>
5010 (this, batch >>>= 1, baseLimit = h, f, tab,
5011 searchFunction, result).fork();
5012 }
5013 while (result.get() == null) {
5014 U u;
5015 Node<K,V> p;
5016 if ((p = advance()) == null) {
5017 propagateCompletion();
5018 break;
5019 }
5020 if ((u = searchFunction.apply(p.key)) != null) {
5021 if (result.compareAndSet(null, u))
5022 quietlyCompleteRoot();
5023 break;
5024 }
5025 }
5026 }
5027 }
5028 }
5029
5030 @SuppressWarnings("serial")
5031 static final class SearchValuesTask<K,V,U>
5032 extends BulkTask<K,V,U> {
5033 final Fun<? super V, ? extends U> searchFunction;
5034 final AtomicReference<U> result;
5035 SearchValuesTask
5036 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5037 Fun<? super V, ? extends U> searchFunction,
5038 AtomicReference<U> result) {
5039 super(p, b, i, f, t);
5040 this.searchFunction = searchFunction; this.result = result;
5041 }
5042 public final U getRawResult() { return result.get(); }
5043 public final void compute() {
5044 final Fun<? super V, ? extends U> searchFunction;
5045 final AtomicReference<U> result;
5046 if ((searchFunction = this.searchFunction) != null &&
5047 (result = this.result) != null) {
5048 for (int i = baseIndex, f, h; batch > 0 &&
5049 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5050 if (result.get() != null)
5051 return;
5052 addToPendingCount(1);
5053 new SearchValuesTask<K,V,U>
5054 (this, batch >>>= 1, baseLimit = h, f, tab,
5055 searchFunction, result).fork();
5056 }
5057 while (result.get() == null) {
5058 U u;
5059 Node<K,V> p;
5060 if ((p = advance()) == null) {
5061 propagateCompletion();
5062 break;
5063 }
5064 if ((u = searchFunction.apply(p.val)) != null) {
5065 if (result.compareAndSet(null, u))
5066 quietlyCompleteRoot();
5067 break;
5068 }
5069 }
5070 }
5071 }
5072 }
5073
5074 @SuppressWarnings("serial")
5075 static final class SearchEntriesTask<K,V,U>
5076 extends BulkTask<K,V,U> {
5077 final Fun<Entry<K,V>, ? extends U> searchFunction;
5078 final AtomicReference<U> result;
5079 SearchEntriesTask
5080 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5081 Fun<Entry<K,V>, ? extends U> searchFunction,
5082 AtomicReference<U> result) {
5083 super(p, b, i, f, t);
5084 this.searchFunction = searchFunction; this.result = result;
5085 }
5086 public final U getRawResult() { return result.get(); }
5087 public final void compute() {
5088 final Fun<Entry<K,V>, ? extends U> searchFunction;
5089 final AtomicReference<U> result;
5090 if ((searchFunction = this.searchFunction) != null &&
5091 (result = this.result) != null) {
5092 for (int i = baseIndex, f, h; batch > 0 &&
5093 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5094 if (result.get() != null)
5095 return;
5096 addToPendingCount(1);
5097 new SearchEntriesTask<K,V,U>
5098 (this, batch >>>= 1, baseLimit = h, f, tab,
5099 searchFunction, result).fork();
5100 }
5101 while (result.get() == null) {
5102 U u;
5103 Node<K,V> p;
5104 if ((p = advance()) == null) {
5105 propagateCompletion();
5106 break;
5107 }
5108 if ((u = searchFunction.apply(p)) != null) {
5109 if (result.compareAndSet(null, u))
5110 quietlyCompleteRoot();
5111 return;
5112 }
5113 }
5114 }
5115 }
5116 }
5117
5118 @SuppressWarnings("serial")
5119 static final class SearchMappingsTask<K,V,U>
5120 extends BulkTask<K,V,U> {
5121 final BiFun<? super K, ? super V, ? extends U> searchFunction;
5122 final AtomicReference<U> result;
5123 SearchMappingsTask
5124 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5125 BiFun<? super K, ? super V, ? extends U> searchFunction,
5126 AtomicReference<U> result) {
5127 super(p, b, i, f, t);
5128 this.searchFunction = searchFunction; this.result = result;
5129 }
5130 public final U getRawResult() { return result.get(); }
5131 public final void compute() {
5132 final BiFun<? super K, ? super V, ? extends U> searchFunction;
5133 final AtomicReference<U> result;
5134 if ((searchFunction = this.searchFunction) != null &&
5135 (result = this.result) != null) {
5136 for (int i = baseIndex, f, h; batch > 0 &&
5137 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5138 if (result.get() != null)
5139 return;
5140 addToPendingCount(1);
5141 new SearchMappingsTask<K,V,U>
5142 (this, batch >>>= 1, baseLimit = h, f, tab,
5143 searchFunction, result).fork();
5144 }
5145 while (result.get() == null) {
5146 U u;
5147 Node<K,V> p;
5148 if ((p = advance()) == null) {
5149 propagateCompletion();
5150 break;
5151 }
5152 if ((u = searchFunction.apply(p.key, p.val)) != null) {
5153 if (result.compareAndSet(null, u))
5154 quietlyCompleteRoot();
5155 break;
5156 }
5157 }
5158 }
5159 }
5160 }
5161
5162 @SuppressWarnings("serial")
5163 static final class ReduceKeysTask<K,V>
5164 extends BulkTask<K,V,K> {
5165 final BiFun<? super K, ? super K, ? extends K> reducer;
5166 K result;
5167 ReduceKeysTask<K,V> rights, nextRight;
5168 ReduceKeysTask
5169 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5170 ReduceKeysTask<K,V> nextRight,
5171 BiFun<? super K, ? super K, ? extends K> reducer) {
5172 super(p, b, i, f, t); this.nextRight = nextRight;
5173 this.reducer = reducer;
5174 }
5175 public final K getRawResult() { return result; }
5176 public final void compute() {
5177 final BiFun<? super K, ? super K, ? extends K> reducer;
5178 if ((reducer = this.reducer) != null) {
5179 for (int i = baseIndex, f, h; batch > 0 &&
5180 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5181 addToPendingCount(1);
5182 (rights = new ReduceKeysTask<K,V>
5183 (this, batch >>>= 1, baseLimit = h, f, tab,
5184 rights, reducer)).fork();
5185 }
5186 K r = null;
5187 for (Node<K,V> p; (p = advance()) != null; ) {
5188 K u = p.key;
5189 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5190 }
5191 result = r;
5192 CountedCompleter<?> c;
5193 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5194 @SuppressWarnings("unchecked") ReduceKeysTask<K,V>
5195 t = (ReduceKeysTask<K,V>)c,
5196 s = t.rights;
5197 while (s != null) {
5198 K tr, sr;
5199 if ((sr = s.result) != null)
5200 t.result = (((tr = t.result) == null) ? sr :
5201 reducer.apply(tr, sr));
5202 s = t.rights = s.nextRight;
5203 }
5204 }
5205 }
5206 }
5207 }
5208
5209 @SuppressWarnings("serial")
5210 static final class ReduceValuesTask<K,V>
5211 extends BulkTask<K,V,V> {
5212 final BiFun<? super V, ? super V, ? extends V> reducer;
5213 V result;
5214 ReduceValuesTask<K,V> rights, nextRight;
5215 ReduceValuesTask
5216 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5217 ReduceValuesTask<K,V> nextRight,
5218 BiFun<? super V, ? super V, ? extends V> reducer) {
5219 super(p, b, i, f, t); this.nextRight = nextRight;
5220 this.reducer = reducer;
5221 }
5222 public final V getRawResult() { return result; }
5223 public final void compute() {
5224 final BiFun<? super V, ? super V, ? extends V> reducer;
5225 if ((reducer = this.reducer) != null) {
5226 for (int i = baseIndex, f, h; batch > 0 &&
5227 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5228 addToPendingCount(1);
5229 (rights = new ReduceValuesTask<K,V>
5230 (this, batch >>>= 1, baseLimit = h, f, tab,
5231 rights, reducer)).fork();
5232 }
5233 V r = null;
5234 for (Node<K,V> p; (p = advance()) != null; ) {
5235 V v = p.val;
5236 r = (r == null) ? v : reducer.apply(r, v);
5237 }
5238 result = r;
5239 CountedCompleter<?> c;
5240 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5241 @SuppressWarnings("unchecked") ReduceValuesTask<K,V>
5242 t = (ReduceValuesTask<K,V>)c,
5243 s = t.rights;
5244 while (s != null) {
5245 V tr, sr;
5246 if ((sr = s.result) != null)
5247 t.result = (((tr = t.result) == null) ? sr :
5248 reducer.apply(tr, sr));
5249 s = t.rights = s.nextRight;
5250 }
5251 }
5252 }
5253 }
5254 }
5255
5256 @SuppressWarnings("serial")
5257 static final class ReduceEntriesTask<K,V>
5258 extends BulkTask<K,V,Map.Entry<K,V>> {
5259 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5260 Map.Entry<K,V> result;
5261 ReduceEntriesTask<K,V> rights, nextRight;
5262 ReduceEntriesTask
5263 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5264 ReduceEntriesTask<K,V> nextRight,
5265 BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5266 super(p, b, i, f, t); this.nextRight = nextRight;
5267 this.reducer = reducer;
5268 }
5269 public final Map.Entry<K,V> getRawResult() { return result; }
5270 public final void compute() {
5271 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5272 if ((reducer = this.reducer) != null) {
5273 for (int i = baseIndex, f, h; batch > 0 &&
5274 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5275 addToPendingCount(1);
5276 (rights = new ReduceEntriesTask<K,V>
5277 (this, batch >>>= 1, baseLimit = h, f, tab,
5278 rights, reducer)).fork();
5279 }
5280 Map.Entry<K,V> r = null;
5281 for (Node<K,V> p; (p = advance()) != null; )
5282 r = (r == null) ? p : reducer.apply(r, p);
5283 result = r;
5284 CountedCompleter<?> c;
5285 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5286 @SuppressWarnings("unchecked") ReduceEntriesTask<K,V>
5287 t = (ReduceEntriesTask<K,V>)c,
5288 s = t.rights;
5289 while (s != null) {
5290 Map.Entry<K,V> tr, sr;
5291 if ((sr = s.result) != null)
5292 t.result = (((tr = t.result) == null) ? sr :
5293 reducer.apply(tr, sr));
5294 s = t.rights = s.nextRight;
5295 }
5296 }
5297 }
5298 }
5299 }
5300
5301 @SuppressWarnings("serial")
5302 static final class MapReduceKeysTask<K,V,U>
5303 extends BulkTask<K,V,U> {
5304 final Fun<? super K, ? extends U> transformer;
5305 final BiFun<? super U, ? super U, ? extends U> reducer;
5306 U result;
5307 MapReduceKeysTask<K,V,U> rights, nextRight;
5308 MapReduceKeysTask
5309 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5310 MapReduceKeysTask<K,V,U> nextRight,
5311 Fun<? super K, ? extends U> transformer,
5312 BiFun<? super U, ? super U, ? extends U> reducer) {
5313 super(p, b, i, f, t); this.nextRight = nextRight;
5314 this.transformer = transformer;
5315 this.reducer = reducer;
5316 }
5317 public final U getRawResult() { return result; }
5318 public final void compute() {
5319 final Fun<? super K, ? extends U> transformer;
5320 final BiFun<? super U, ? super U, ? extends U> reducer;
5321 if ((transformer = this.transformer) != null &&
5322 (reducer = this.reducer) != null) {
5323 for (int i = baseIndex, f, h; batch > 0 &&
5324 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5325 addToPendingCount(1);
5326 (rights = new MapReduceKeysTask<K,V,U>
5327 (this, batch >>>= 1, baseLimit = h, f, tab,
5328 rights, transformer, reducer)).fork();
5329 }
5330 U r = null;
5331 for (Node<K,V> p; (p = advance()) != null; ) {
5332 U u;
5333 if ((u = transformer.apply(p.key)) != null)
5334 r = (r == null) ? u : reducer.apply(r, u);
5335 }
5336 result = r;
5337 CountedCompleter<?> c;
5338 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5339 @SuppressWarnings("unchecked") MapReduceKeysTask<K,V,U>
5340 t = (MapReduceKeysTask<K,V,U>)c,
5341 s = t.rights;
5342 while (s != null) {
5343 U tr, sr;
5344 if ((sr = s.result) != null)
5345 t.result = (((tr = t.result) == null) ? sr :
5346 reducer.apply(tr, sr));
5347 s = t.rights = s.nextRight;
5348 }
5349 }
5350 }
5351 }
5352 }
5353
5354 @SuppressWarnings("serial")
5355 static final class MapReduceValuesTask<K,V,U>
5356 extends BulkTask<K,V,U> {
5357 final Fun<? super V, ? extends U> transformer;
5358 final BiFun<? super U, ? super U, ? extends U> reducer;
5359 U result;
5360 MapReduceValuesTask<K,V,U> rights, nextRight;
5361 MapReduceValuesTask
5362 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5363 MapReduceValuesTask<K,V,U> nextRight,
5364 Fun<? super V, ? extends U> transformer,
5365 BiFun<? super U, ? super U, ? extends U> reducer) {
5366 super(p, b, i, f, t); this.nextRight = nextRight;
5367 this.transformer = transformer;
5368 this.reducer = reducer;
5369 }
5370 public final U getRawResult() { return result; }
5371 public final void compute() {
5372 final Fun<? super V, ? extends U> transformer;
5373 final BiFun<? super U, ? super U, ? extends U> reducer;
5374 if ((transformer = this.transformer) != null &&
5375 (reducer = this.reducer) != null) {
5376 for (int i = baseIndex, f, h; batch > 0 &&
5377 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5378 addToPendingCount(1);
5379 (rights = new MapReduceValuesTask<K,V,U>
5380 (this, batch >>>= 1, baseLimit = h, f, tab,
5381 rights, transformer, reducer)).fork();
5382 }
5383 U r = null;
5384 for (Node<K,V> p; (p = advance()) != null; ) {
5385 U u;
5386 if ((u = transformer.apply(p.val)) != null)
5387 r = (r == null) ? u : reducer.apply(r, u);
5388 }
5389 result = r;
5390 CountedCompleter<?> c;
5391 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5392 @SuppressWarnings("unchecked") MapReduceValuesTask<K,V,U>
5393 t = (MapReduceValuesTask<K,V,U>)c,
5394 s = t.rights;
5395 while (s != null) {
5396 U tr, sr;
5397 if ((sr = s.result) != null)
5398 t.result = (((tr = t.result) == null) ? sr :
5399 reducer.apply(tr, sr));
5400 s = t.rights = s.nextRight;
5401 }
5402 }
5403 }
5404 }
5405 }
5406
5407 @SuppressWarnings("serial")
5408 static final class MapReduceEntriesTask<K,V,U>
5409 extends BulkTask<K,V,U> {
5410 final Fun<Map.Entry<K,V>, ? extends U> transformer;
5411 final BiFun<? super U, ? super U, ? extends U> reducer;
5412 U result;
5413 MapReduceEntriesTask<K,V,U> rights, nextRight;
5414 MapReduceEntriesTask
5415 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5416 MapReduceEntriesTask<K,V,U> nextRight,
5417 Fun<Map.Entry<K,V>, ? extends U> transformer,
5418 BiFun<? super U, ? super U, ? extends U> reducer) {
5419 super(p, b, i, f, t); this.nextRight = nextRight;
5420 this.transformer = transformer;
5421 this.reducer = reducer;
5422 }
5423 public final U getRawResult() { return result; }
5424 public final void compute() {
5425 final Fun<Map.Entry<K,V>, ? extends U> transformer;
5426 final BiFun<? super U, ? super U, ? extends U> reducer;
5427 if ((transformer = this.transformer) != null &&
5428 (reducer = this.reducer) != null) {
5429 for (int i = baseIndex, f, h; batch > 0 &&
5430 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5431 addToPendingCount(1);
5432 (rights = new MapReduceEntriesTask<K,V,U>
5433 (this, batch >>>= 1, baseLimit = h, f, tab,
5434 rights, transformer, reducer)).fork();
5435 }
5436 U r = null;
5437 for (Node<K,V> p; (p = advance()) != null; ) {
5438 U u;
5439 if ((u = transformer.apply(p)) != null)
5440 r = (r == null) ? u : reducer.apply(r, u);
5441 }
5442 result = r;
5443 CountedCompleter<?> c;
5444 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5445 @SuppressWarnings("unchecked") MapReduceEntriesTask<K,V,U>
5446 t = (MapReduceEntriesTask<K,V,U>)c,
5447 s = t.rights;
5448 while (s != null) {
5449 U tr, sr;
5450 if ((sr = s.result) != null)
5451 t.result = (((tr = t.result) == null) ? sr :
5452 reducer.apply(tr, sr));
5453 s = t.rights = s.nextRight;
5454 }
5455 }
5456 }
5457 }
5458 }
5459
5460 @SuppressWarnings("serial")
5461 static final class MapReduceMappingsTask<K,V,U>
5462 extends BulkTask<K,V,U> {
5463 final BiFun<? super K, ? super V, ? extends U> transformer;
5464 final BiFun<? super U, ? super U, ? extends U> reducer;
5465 U result;
5466 MapReduceMappingsTask<K,V,U> rights, nextRight;
5467 MapReduceMappingsTask
5468 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5469 MapReduceMappingsTask<K,V,U> nextRight,
5470 BiFun<? super K, ? super V, ? extends U> transformer,
5471 BiFun<? super U, ? super U, ? extends U> reducer) {
5472 super(p, b, i, f, t); this.nextRight = nextRight;
5473 this.transformer = transformer;
5474 this.reducer = reducer;
5475 }
5476 public final U getRawResult() { return result; }
5477 public final void compute() {
5478 final BiFun<? super K, ? super V, ? extends U> transformer;
5479 final BiFun<? super U, ? super U, ? extends U> reducer;
5480 if ((transformer = this.transformer) != null &&
5481 (reducer = this.reducer) != null) {
5482 for (int i = baseIndex, f, h; batch > 0 &&
5483 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5484 addToPendingCount(1);
5485 (rights = new MapReduceMappingsTask<K,V,U>
5486 (this, batch >>>= 1, baseLimit = h, f, tab,
5487 rights, transformer, reducer)).fork();
5488 }
5489 U r = null;
5490 for (Node<K,V> p; (p = advance()) != null; ) {
5491 U u;
5492 if ((u = transformer.apply(p.key, p.val)) != null)
5493 r = (r == null) ? u : reducer.apply(r, u);
5494 }
5495 result = r;
5496 CountedCompleter<?> c;
5497 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5498 @SuppressWarnings("unchecked") MapReduceMappingsTask<K,V,U>
5499 t = (MapReduceMappingsTask<K,V,U>)c,
5500 s = t.rights;
5501 while (s != null) {
5502 U tr, sr;
5503 if ((sr = s.result) != null)
5504 t.result = (((tr = t.result) == null) ? sr :
5505 reducer.apply(tr, sr));
5506 s = t.rights = s.nextRight;
5507 }
5508 }
5509 }
5510 }
5511 }
5512
5513 @SuppressWarnings("serial")
5514 static final class MapReduceKeysToDoubleTask<K,V>
5515 extends BulkTask<K,V,Double> {
5516 final ObjectToDouble<? super K> transformer;
5517 final DoubleByDoubleToDouble reducer;
5518 final double basis;
5519 double result;
5520 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5521 MapReduceKeysToDoubleTask
5522 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5523 MapReduceKeysToDoubleTask<K,V> nextRight,
5524 ObjectToDouble<? super K> transformer,
5525 double basis,
5526 DoubleByDoubleToDouble reducer) {
5527 super(p, b, i, f, t); this.nextRight = nextRight;
5528 this.transformer = transformer;
5529 this.basis = basis; this.reducer = reducer;
5530 }
5531 public final Double getRawResult() { return result; }
5532 public final void compute() {
5533 final ObjectToDouble<? super K> transformer;
5534 final DoubleByDoubleToDouble reducer;
5535 if ((transformer = this.transformer) != null &&
5536 (reducer = this.reducer) != null) {
5537 double r = this.basis;
5538 for (int i = baseIndex, f, h; batch > 0 &&
5539 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5540 addToPendingCount(1);
5541 (rights = new MapReduceKeysToDoubleTask<K,V>
5542 (this, batch >>>= 1, baseLimit = h, f, tab,
5543 rights, transformer, r, reducer)).fork();
5544 }
5545 for (Node<K,V> p; (p = advance()) != null; )
5546 r = reducer.apply(r, transformer.apply(p.key));
5547 result = r;
5548 CountedCompleter<?> c;
5549 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5550 @SuppressWarnings("unchecked") MapReduceKeysToDoubleTask<K,V>
5551 t = (MapReduceKeysToDoubleTask<K,V>)c,
5552 s = t.rights;
5553 while (s != null) {
5554 t.result = reducer.apply(t.result, s.result);
5555 s = t.rights = s.nextRight;
5556 }
5557 }
5558 }
5559 }
5560 }
5561
5562 @SuppressWarnings("serial")
5563 static final class MapReduceValuesToDoubleTask<K,V>
5564 extends BulkTask<K,V,Double> {
5565 final ObjectToDouble<? super V> transformer;
5566 final DoubleByDoubleToDouble reducer;
5567 final double basis;
5568 double result;
5569 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5570 MapReduceValuesToDoubleTask
5571 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5572 MapReduceValuesToDoubleTask<K,V> nextRight,
5573 ObjectToDouble<? super V> transformer,
5574 double basis,
5575 DoubleByDoubleToDouble reducer) {
5576 super(p, b, i, f, t); this.nextRight = nextRight;
5577 this.transformer = transformer;
5578 this.basis = basis; this.reducer = reducer;
5579 }
5580 public final Double getRawResult() { return result; }
5581 public final void compute() {
5582 final ObjectToDouble<? super V> transformer;
5583 final DoubleByDoubleToDouble reducer;
5584 if ((transformer = this.transformer) != null &&
5585 (reducer = this.reducer) != null) {
5586 double r = this.basis;
5587 for (int i = baseIndex, f, h; batch > 0 &&
5588 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5589 addToPendingCount(1);
5590 (rights = new MapReduceValuesToDoubleTask<K,V>
5591 (this, batch >>>= 1, baseLimit = h, f, tab,
5592 rights, transformer, r, reducer)).fork();
5593 }
5594 for (Node<K,V> p; (p = advance()) != null; )
5595 r = reducer.apply(r, transformer.apply(p.val));
5596 result = r;
5597 CountedCompleter<?> c;
5598 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5599 @SuppressWarnings("unchecked") MapReduceValuesToDoubleTask<K,V>
5600 t = (MapReduceValuesToDoubleTask<K,V>)c,
5601 s = t.rights;
5602 while (s != null) {
5603 t.result = reducer.apply(t.result, s.result);
5604 s = t.rights = s.nextRight;
5605 }
5606 }
5607 }
5608 }
5609 }
5610
5611 @SuppressWarnings("serial")
5612 static final class MapReduceEntriesToDoubleTask<K,V>
5613 extends BulkTask<K,V,Double> {
5614 final ObjectToDouble<Map.Entry<K,V>> transformer;
5615 final DoubleByDoubleToDouble reducer;
5616 final double basis;
5617 double result;
5618 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5619 MapReduceEntriesToDoubleTask
5620 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5621 MapReduceEntriesToDoubleTask<K,V> nextRight,
5622 ObjectToDouble<Map.Entry<K,V>> transformer,
5623 double basis,
5624 DoubleByDoubleToDouble reducer) {
5625 super(p, b, i, f, t); this.nextRight = nextRight;
5626 this.transformer = transformer;
5627 this.basis = basis; this.reducer = reducer;
5628 }
5629 public final Double getRawResult() { return result; }
5630 public final void compute() {
5631 final ObjectToDouble<Map.Entry<K,V>> transformer;
5632 final DoubleByDoubleToDouble reducer;
5633 if ((transformer = this.transformer) != null &&
5634 (reducer = this.reducer) != null) {
5635 double r = this.basis;
5636 for (int i = baseIndex, f, h; batch > 0 &&
5637 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5638 addToPendingCount(1);
5639 (rights = new MapReduceEntriesToDoubleTask<K,V>
5640 (this, batch >>>= 1, baseLimit = h, f, tab,
5641 rights, transformer, r, reducer)).fork();
5642 }
5643 for (Node<K,V> p; (p = advance()) != null; )
5644 r = reducer.apply(r, transformer.apply(p));
5645 result = r;
5646 CountedCompleter<?> c;
5647 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5648 @SuppressWarnings("unchecked") MapReduceEntriesToDoubleTask<K,V>
5649 t = (MapReduceEntriesToDoubleTask<K,V>)c,
5650 s = t.rights;
5651 while (s != null) {
5652 t.result = reducer.apply(t.result, s.result);
5653 s = t.rights = s.nextRight;
5654 }
5655 }
5656 }
5657 }
5658 }
5659
5660 @SuppressWarnings("serial")
5661 static final class MapReduceMappingsToDoubleTask<K,V>
5662 extends BulkTask<K,V,Double> {
5663 final ObjectByObjectToDouble<? super K, ? super V> transformer;
5664 final DoubleByDoubleToDouble reducer;
5665 final double basis;
5666 double result;
5667 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5668 MapReduceMappingsToDoubleTask
5669 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5670 MapReduceMappingsToDoubleTask<K,V> nextRight,
5671 ObjectByObjectToDouble<? super K, ? super V> transformer,
5672 double basis,
5673 DoubleByDoubleToDouble reducer) {
5674 super(p, b, i, f, t); this.nextRight = nextRight;
5675 this.transformer = transformer;
5676 this.basis = basis; this.reducer = reducer;
5677 }
5678 public final Double getRawResult() { return result; }
5679 public final void compute() {
5680 final ObjectByObjectToDouble<? super K, ? super V> transformer;
5681 final DoubleByDoubleToDouble reducer;
5682 if ((transformer = this.transformer) != null &&
5683 (reducer = this.reducer) != null) {
5684 double r = this.basis;
5685 for (int i = baseIndex, f, h; batch > 0 &&
5686 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5687 addToPendingCount(1);
5688 (rights = new MapReduceMappingsToDoubleTask<K,V>
5689 (this, batch >>>= 1, baseLimit = h, f, tab,
5690 rights, transformer, r, reducer)).fork();
5691 }
5692 for (Node<K,V> p; (p = advance()) != null; )
5693 r = reducer.apply(r, transformer.apply(p.key, p.val));
5694 result = r;
5695 CountedCompleter<?> c;
5696 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5697 @SuppressWarnings("unchecked") MapReduceMappingsToDoubleTask<K,V>
5698 t = (MapReduceMappingsToDoubleTask<K,V>)c,
5699 s = t.rights;
5700 while (s != null) {
5701 t.result = reducer.apply(t.result, s.result);
5702 s = t.rights = s.nextRight;
5703 }
5704 }
5705 }
5706 }
5707 }
5708
5709 @SuppressWarnings("serial")
5710 static final class MapReduceKeysToLongTask<K,V>
5711 extends BulkTask<K,V,Long> {
5712 final ObjectToLong<? super K> transformer;
5713 final LongByLongToLong reducer;
5714 final long basis;
5715 long result;
5716 MapReduceKeysToLongTask<K,V> rights, nextRight;
5717 MapReduceKeysToLongTask
5718 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5719 MapReduceKeysToLongTask<K,V> nextRight,
5720 ObjectToLong<? super K> transformer,
5721 long basis,
5722 LongByLongToLong reducer) {
5723 super(p, b, i, f, t); this.nextRight = nextRight;
5724 this.transformer = transformer;
5725 this.basis = basis; this.reducer = reducer;
5726 }
5727 public final Long getRawResult() { return result; }
5728 public final void compute() {
5729 final ObjectToLong<? super K> transformer;
5730 final LongByLongToLong reducer;
5731 if ((transformer = this.transformer) != null &&
5732 (reducer = this.reducer) != null) {
5733 long r = this.basis;
5734 for (int i = baseIndex, f, h; batch > 0 &&
5735 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5736 addToPendingCount(1);
5737 (rights = new MapReduceKeysToLongTask<K,V>
5738 (this, batch >>>= 1, baseLimit = h, f, tab,
5739 rights, transformer, r, reducer)).fork();
5740 }
5741 for (Node<K,V> p; (p = advance()) != null; )
5742 r = reducer.apply(r, transformer.apply(p.key));
5743 result = r;
5744 CountedCompleter<?> c;
5745 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5746 @SuppressWarnings("unchecked") MapReduceKeysToLongTask<K,V>
5747 t = (MapReduceKeysToLongTask<K,V>)c,
5748 s = t.rights;
5749 while (s != null) {
5750 t.result = reducer.apply(t.result, s.result);
5751 s = t.rights = s.nextRight;
5752 }
5753 }
5754 }
5755 }
5756 }
5757
5758 @SuppressWarnings("serial")
5759 static final class MapReduceValuesToLongTask<K,V>
5760 extends BulkTask<K,V,Long> {
5761 final ObjectToLong<? super V> transformer;
5762 final LongByLongToLong reducer;
5763 final long basis;
5764 long result;
5765 MapReduceValuesToLongTask<K,V> rights, nextRight;
5766 MapReduceValuesToLongTask
5767 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5768 MapReduceValuesToLongTask<K,V> nextRight,
5769 ObjectToLong<? super V> transformer,
5770 long basis,
5771 LongByLongToLong reducer) {
5772 super(p, b, i, f, t); this.nextRight = nextRight;
5773 this.transformer = transformer;
5774 this.basis = basis; this.reducer = reducer;
5775 }
5776 public final Long getRawResult() { return result; }
5777 public final void compute() {
5778 final ObjectToLong<? super V> transformer;
5779 final LongByLongToLong reducer;
5780 if ((transformer = this.transformer) != null &&
5781 (reducer = this.reducer) != null) {
5782 long r = this.basis;
5783 for (int i = baseIndex, f, h; batch > 0 &&
5784 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5785 addToPendingCount(1);
5786 (rights = new MapReduceValuesToLongTask<K,V>
5787 (this, batch >>>= 1, baseLimit = h, f, tab,
5788 rights, transformer, r, reducer)).fork();
5789 }
5790 for (Node<K,V> p; (p = advance()) != null; )
5791 r = reducer.apply(r, transformer.apply(p.val));
5792 result = r;
5793 CountedCompleter<?> c;
5794 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5795 @SuppressWarnings("unchecked") MapReduceValuesToLongTask<K,V>
5796 t = (MapReduceValuesToLongTask<K,V>)c,
5797 s = t.rights;
5798 while (s != null) {
5799 t.result = reducer.apply(t.result, s.result);
5800 s = t.rights = s.nextRight;
5801 }
5802 }
5803 }
5804 }
5805 }
5806
5807 @SuppressWarnings("serial")
5808 static final class MapReduceEntriesToLongTask<K,V>
5809 extends BulkTask<K,V,Long> {
5810 final ObjectToLong<Map.Entry<K,V>> transformer;
5811 final LongByLongToLong reducer;
5812 final long basis;
5813 long result;
5814 MapReduceEntriesToLongTask<K,V> rights, nextRight;
5815 MapReduceEntriesToLongTask
5816 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5817 MapReduceEntriesToLongTask<K,V> nextRight,
5818 ObjectToLong<Map.Entry<K,V>> transformer,
5819 long basis,
5820 LongByLongToLong reducer) {
5821 super(p, b, i, f, t); this.nextRight = nextRight;
5822 this.transformer = transformer;
5823 this.basis = basis; this.reducer = reducer;
5824 }
5825 public final Long getRawResult() { return result; }
5826 public final void compute() {
5827 final ObjectToLong<Map.Entry<K,V>> transformer;
5828 final LongByLongToLong reducer;
5829 if ((transformer = this.transformer) != null &&
5830 (reducer = this.reducer) != null) {
5831 long r = this.basis;
5832 for (int i = baseIndex, f, h; batch > 0 &&
5833 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5834 addToPendingCount(1);
5835 (rights = new MapReduceEntriesToLongTask<K,V>
5836 (this, batch >>>= 1, baseLimit = h, f, tab,
5837 rights, transformer, r, reducer)).fork();
5838 }
5839 for (Node<K,V> p; (p = advance()) != null; )
5840 r = reducer.apply(r, transformer.apply(p));
5841 result = r;
5842 CountedCompleter<?> c;
5843 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5844 @SuppressWarnings("unchecked") MapReduceEntriesToLongTask<K,V>
5845 t = (MapReduceEntriesToLongTask<K,V>)c,
5846 s = t.rights;
5847 while (s != null) {
5848 t.result = reducer.apply(t.result, s.result);
5849 s = t.rights = s.nextRight;
5850 }
5851 }
5852 }
5853 }
5854 }
5855
5856 @SuppressWarnings("serial")
5857 static final class MapReduceMappingsToLongTask<K,V>
5858 extends BulkTask<K,V,Long> {
5859 final ObjectByObjectToLong<? super K, ? super V> transformer;
5860 final LongByLongToLong reducer;
5861 final long basis;
5862 long result;
5863 MapReduceMappingsToLongTask<K,V> rights, nextRight;
5864 MapReduceMappingsToLongTask
5865 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5866 MapReduceMappingsToLongTask<K,V> nextRight,
5867 ObjectByObjectToLong<? super K, ? super V> transformer,
5868 long basis,
5869 LongByLongToLong reducer) {
5870 super(p, b, i, f, t); this.nextRight = nextRight;
5871 this.transformer = transformer;
5872 this.basis = basis; this.reducer = reducer;
5873 }
5874 public final Long getRawResult() { return result; }
5875 public final void compute() {
5876 final ObjectByObjectToLong<? super K, ? super V> transformer;
5877 final LongByLongToLong reducer;
5878 if ((transformer = this.transformer) != null &&
5879 (reducer = this.reducer) != null) {
5880 long r = this.basis;
5881 for (int i = baseIndex, f, h; batch > 0 &&
5882 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5883 addToPendingCount(1);
5884 (rights = new MapReduceMappingsToLongTask<K,V>
5885 (this, batch >>>= 1, baseLimit = h, f, tab,
5886 rights, transformer, r, reducer)).fork();
5887 }
5888 for (Node<K,V> p; (p = advance()) != null; )
5889 r = reducer.apply(r, transformer.apply(p.key, p.val));
5890 result = r;
5891 CountedCompleter<?> c;
5892 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5893 @SuppressWarnings("unchecked") MapReduceMappingsToLongTask<K,V>
5894 t = (MapReduceMappingsToLongTask<K,V>)c,
5895 s = t.rights;
5896 while (s != null) {
5897 t.result = reducer.apply(t.result, s.result);
5898 s = t.rights = s.nextRight;
5899 }
5900 }
5901 }
5902 }
5903 }
5904
5905 @SuppressWarnings("serial")
5906 static final class MapReduceKeysToIntTask<K,V>
5907 extends BulkTask<K,V,Integer> {
5908 final ObjectToInt<? super K> transformer;
5909 final IntByIntToInt reducer;
5910 final int basis;
5911 int result;
5912 MapReduceKeysToIntTask<K,V> rights, nextRight;
5913 MapReduceKeysToIntTask
5914 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5915 MapReduceKeysToIntTask<K,V> nextRight,
5916 ObjectToInt<? super K> transformer,
5917 int basis,
5918 IntByIntToInt reducer) {
5919 super(p, b, i, f, t); this.nextRight = nextRight;
5920 this.transformer = transformer;
5921 this.basis = basis; this.reducer = reducer;
5922 }
5923 public final Integer getRawResult() { return result; }
5924 public final void compute() {
5925 final ObjectToInt<? super K> transformer;
5926 final IntByIntToInt reducer;
5927 if ((transformer = this.transformer) != null &&
5928 (reducer = this.reducer) != null) {
5929 int r = this.basis;
5930 for (int i = baseIndex, f, h; batch > 0 &&
5931 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5932 addToPendingCount(1);
5933 (rights = new MapReduceKeysToIntTask<K,V>
5934 (this, batch >>>= 1, baseLimit = h, f, tab,
5935 rights, transformer, r, reducer)).fork();
5936 }
5937 for (Node<K,V> p; (p = advance()) != null; )
5938 r = reducer.apply(r, transformer.apply(p.key));
5939 result = r;
5940 CountedCompleter<?> c;
5941 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5942 @SuppressWarnings("unchecked") MapReduceKeysToIntTask<K,V>
5943 t = (MapReduceKeysToIntTask<K,V>)c,
5944 s = t.rights;
5945 while (s != null) {
5946 t.result = reducer.apply(t.result, s.result);
5947 s = t.rights = s.nextRight;
5948 }
5949 }
5950 }
5951 }
5952 }
5953
5954 @SuppressWarnings("serial")
5955 static final class MapReduceValuesToIntTask<K,V>
5956 extends BulkTask<K,V,Integer> {
5957 final ObjectToInt<? super V> transformer;
5958 final IntByIntToInt reducer;
5959 final int basis;
5960 int result;
5961 MapReduceValuesToIntTask<K,V> rights, nextRight;
5962 MapReduceValuesToIntTask
5963 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5964 MapReduceValuesToIntTask<K,V> nextRight,
5965 ObjectToInt<? super V> transformer,
5966 int basis,
5967 IntByIntToInt reducer) {
5968 super(p, b, i, f, t); this.nextRight = nextRight;
5969 this.transformer = transformer;
5970 this.basis = basis; this.reducer = reducer;
5971 }
5972 public final Integer getRawResult() { return result; }
5973 public final void compute() {
5974 final ObjectToInt<? super V> transformer;
5975 final IntByIntToInt reducer;
5976 if ((transformer = this.transformer) != null &&
5977 (reducer = this.reducer) != null) {
5978 int r = this.basis;
5979 for (int i = baseIndex, f, h; batch > 0 &&
5980 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5981 addToPendingCount(1);
5982 (rights = new MapReduceValuesToIntTask<K,V>
5983 (this, batch >>>= 1, baseLimit = h, f, tab,
5984 rights, transformer, r, reducer)).fork();
5985 }
5986 for (Node<K,V> p; (p = advance()) != null; )
5987 r = reducer.apply(r, transformer.apply(p.val));
5988 result = r;
5989 CountedCompleter<?> c;
5990 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5991 @SuppressWarnings("unchecked") MapReduceValuesToIntTask<K,V>
5992 t = (MapReduceValuesToIntTask<K,V>)c,
5993 s = t.rights;
5994 while (s != null) {
5995 t.result = reducer.apply(t.result, s.result);
5996 s = t.rights = s.nextRight;
5997 }
5998 }
5999 }
6000 }
6001 }
6002
6003 @SuppressWarnings("serial")
6004 static final class MapReduceEntriesToIntTask<K,V>
6005 extends BulkTask<K,V,Integer> {
6006 final ObjectToInt<Map.Entry<K,V>> transformer;
6007 final IntByIntToInt reducer;
6008 final int basis;
6009 int result;
6010 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6011 MapReduceEntriesToIntTask
6012 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6013 MapReduceEntriesToIntTask<K,V> nextRight,
6014 ObjectToInt<Map.Entry<K,V>> transformer,
6015 int basis,
6016 IntByIntToInt reducer) {
6017 super(p, b, i, f, t); this.nextRight = nextRight;
6018 this.transformer = transformer;
6019 this.basis = basis; this.reducer = reducer;
6020 }
6021 public final Integer getRawResult() { return result; }
6022 public final void compute() {
6023 final ObjectToInt<Map.Entry<K,V>> transformer;
6024 final IntByIntToInt reducer;
6025 if ((transformer = this.transformer) != null &&
6026 (reducer = this.reducer) != null) {
6027 int r = this.basis;
6028 for (int i = baseIndex, f, h; batch > 0 &&
6029 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6030 addToPendingCount(1);
6031 (rights = new MapReduceEntriesToIntTask<K,V>
6032 (this, batch >>>= 1, baseLimit = h, f, tab,
6033 rights, transformer, r, reducer)).fork();
6034 }
6035 for (Node<K,V> p; (p = advance()) != null; )
6036 r = reducer.apply(r, transformer.apply(p));
6037 result = r;
6038 CountedCompleter<?> c;
6039 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6040 @SuppressWarnings("unchecked") MapReduceEntriesToIntTask<K,V>
6041 t = (MapReduceEntriesToIntTask<K,V>)c,
6042 s = t.rights;
6043 while (s != null) {
6044 t.result = reducer.apply(t.result, s.result);
6045 s = t.rights = s.nextRight;
6046 }
6047 }
6048 }
6049 }
6050 }
6051
6052 @SuppressWarnings("serial")
6053 static final class MapReduceMappingsToIntTask<K,V>
6054 extends BulkTask<K,V,Integer> {
6055 final ObjectByObjectToInt<? super K, ? super V> transformer;
6056 final IntByIntToInt reducer;
6057 final int basis;
6058 int result;
6059 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6060 MapReduceMappingsToIntTask
6061 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6062 MapReduceMappingsToIntTask<K,V> nextRight,
6063 ObjectByObjectToInt<? super K, ? super V> transformer,
6064 int basis,
6065 IntByIntToInt reducer) {
6066 super(p, b, i, f, t); this.nextRight = nextRight;
6067 this.transformer = transformer;
6068 this.basis = basis; this.reducer = reducer;
6069 }
6070 public final Integer getRawResult() { return result; }
6071 public final void compute() {
6072 final ObjectByObjectToInt<? super K, ? super V> transformer;
6073 final IntByIntToInt reducer;
6074 if ((transformer = this.transformer) != null &&
6075 (reducer = this.reducer) != null) {
6076 int r = this.basis;
6077 for (int i = baseIndex, f, h; batch > 0 &&
6078 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6079 addToPendingCount(1);
6080 (rights = new MapReduceMappingsToIntTask<K,V>
6081 (this, batch >>>= 1, baseLimit = h, f, tab,
6082 rights, transformer, r, reducer)).fork();
6083 }
6084 for (Node<K,V> p; (p = advance()) != null; )
6085 r = reducer.apply(r, transformer.apply(p.key, p.val));
6086 result = r;
6087 CountedCompleter<?> c;
6088 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6089 @SuppressWarnings("unchecked") MapReduceMappingsToIntTask<K,V>
6090 t = (MapReduceMappingsToIntTask<K,V>)c,
6091 s = t.rights;
6092 while (s != null) {
6093 t.result = reducer.apply(t.result, s.result);
6094 s = t.rights = s.nextRight;
6095 }
6096 }
6097 }
6098 }
6099 }
6100
6101 /* ---------------- Counters -------------- */
6102
6103 // Adapted from LongAdder and Striped64.
6104 // See their internal docs for explanation.
6105
6106 // A padded cell for distributing counts
6107 static final class CounterCell {
6108 volatile long p0, p1, p2, p3, p4, p5, p6;
6109 volatile long value;
6110 volatile long q0, q1, q2, q3, q4, q5, q6;
6111 CounterCell(long x) { value = x; }
6112 }
6113
6114 /**
6115 * Holder for the thread-local hash code determining which
6116 * CounterCell to use. The code is initialized via the
6117 * counterHashCodeGenerator, but may be moved upon collisions.
6118 */
6119 static final class CounterHashCode {
6120 int code;
6121 }
6122
6123 /**
6124 * Generates initial value for per-thread CounterHashCodes.
6125 */
6126 static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
6127
6128 /**
6129 * Increment for counterHashCodeGenerator. See class ThreadLocal
6130 * for explanation.
6131 */
6132 static final int SEED_INCREMENT = 0x61c88647;
6133
6134 /**
6135 * Per-thread counter hash codes. Shared across all instances.
6136 */
6137 static final ThreadLocal<CounterHashCode> threadCounterHashCode =
6138 new ThreadLocal<CounterHashCode>();
6139
6140
6141 final long sumCount() {
6142 CounterCell[] as = counterCells; CounterCell a;
6143 long sum = baseCount;
6144 if (as != null) {
6145 for (int i = 0; i < as.length; ++i) {
6146 if ((a = as[i]) != null)
6147 sum += a.value;
6148 }
6149 }
6150 return sum;
6151 }
6152
6153 // See LongAdder version for explanation
6154 private final void fullAddCount(long x, CounterHashCode hc,
6155 boolean wasUncontended) {
6156 int h;
6157 if (hc == null) {
6158 hc = new CounterHashCode();
6159 int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
6160 h = hc.code = (s == 0) ? 1 : s; // Avoid zero
6161 threadCounterHashCode.set(hc);
6162 }
6163 else
6164 h = hc.code;
6165 boolean collide = false; // True if last slot nonempty
6166 for (;;) {
6167 CounterCell[] as; CounterCell a; int n; long v;
6168 if ((as = counterCells) != null && (n = as.length) > 0) {
6169 if ((a = as[(n - 1) & h]) == null) {
6170 if (cellsBusy == 0) { // Try to attach new Cell
6171 CounterCell r = new CounterCell(x); // Optimistic create
6172 if (cellsBusy == 0 &&
6173 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6174 boolean created = false;
6175 try { // Recheck under lock
6176 CounterCell[] rs; int m, j;
6177 if ((rs = counterCells) != null &&
6178 (m = rs.length) > 0 &&
6179 rs[j = (m - 1) & h] == null) {
6180 rs[j] = r;
6181 created = true;
6182 }
6183 } finally {
6184 cellsBusy = 0;
6185 }
6186 if (created)
6187 break;
6188 continue; // Slot is now non-empty
6189 }
6190 }
6191 collide = false;
6192 }
6193 else if (!wasUncontended) // CAS already known to fail
6194 wasUncontended = true; // Continue after rehash
6195 else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
6196 break;
6197 else if (counterCells != as || n >= NCPU)
6198 collide = false; // At max size or stale
6199 else if (!collide)
6200 collide = true;
6201 else if (cellsBusy == 0 &&
6202 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6203 try {
6204 if (counterCells == as) {// Expand table unless stale
6205 CounterCell[] rs = new CounterCell[n << 1];
6206 for (int i = 0; i < n; ++i)
6207 rs[i] = as[i];
6208 counterCells = rs;
6209 }
6210 } finally {
6211 cellsBusy = 0;
6212 }
6213 collide = false;
6214 continue; // Retry with expanded table
6215 }
6216 h ^= h << 13; // Rehash
6217 h ^= h >>> 17;
6218 h ^= h << 5;
6219 }
6220 else if (cellsBusy == 0 && counterCells == as &&
6221 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6222 boolean init = false;
6223 try { // Initialize table
6224 if (counterCells == as) {
6225 CounterCell[] rs = new CounterCell[2];
6226 rs[h & 1] = new CounterCell(x);
6227 counterCells = rs;
6228 init = true;
6229 }
6230 } finally {
6231 cellsBusy = 0;
6232 }
6233 if (init)
6234 break;
6235 }
6236 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
6237 break; // Fall back on using base
6238 }
6239 hc.code = h; // Record index for next time
6240 }
6241
6242 // Unsafe mechanics
6243 private static final sun.misc.Unsafe U;
6244 private static final long SIZECTL;
6245 private static final long TRANSFERINDEX;
6246 private static final long BASECOUNT;
6247 private static final long CELLSBUSY;
6248 private static final long CELLVALUE;
6249 private static final long ABASE;
6250 private static final int ASHIFT;
6251
6252 static {
6253 try {
6254 U = getUnsafe();
6255 Class<?> k = ConcurrentHashMapV8.class;
6256 SIZECTL = U.objectFieldOffset
6257 (k.getDeclaredField("sizeCtl"));
6258 TRANSFERINDEX = U.objectFieldOffset
6259 (k.getDeclaredField("transferIndex"));
6260 BASECOUNT = U.objectFieldOffset
6261 (k.getDeclaredField("baseCount"));
6262 CELLSBUSY = U.objectFieldOffset
6263 (k.getDeclaredField("cellsBusy"));
6264 Class<?> ck = CounterCell.class;
6265 CELLVALUE = U.objectFieldOffset
6266 (ck.getDeclaredField("value"));
6267 Class<?> ak = Node[].class;
6268 ABASE = U.arrayBaseOffset(ak);
6269 int scale = U.arrayIndexScale(ak);
6270 if ((scale & (scale - 1)) != 0)
6271 throw new Error("data type scale not a power of two");
6272 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6273 } catch (Exception e) {
6274 throw new Error(e);
6275 }
6276 }
6277
6278 /**
6279 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
6280 * Replace with a simple call to Unsafe.getUnsafe when integrating
6281 * into a jdk.
6282 *
6283 * @return a sun.misc.Unsafe
6284 */
6285 private static sun.misc.Unsafe getUnsafe() {
6286 try {
6287 return sun.misc.Unsafe.getUnsafe();
6288 } catch (SecurityException tryReflectionInstead) {}
6289 try {
6290 return java.security.AccessController.doPrivileged
6291 (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
6292 public sun.misc.Unsafe run() throws Exception {
6293 Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
6294 for (java.lang.reflect.Field f : k.getDeclaredFields()) {
6295 f.setAccessible(true);
6296 Object x = f.get(null);
6297 if (k.isInstance(x))
6298 return k.cast(x);
6299 }
6300 throw new NoSuchFieldError("the Unsafe");
6301 }});
6302 } catch (java.security.PrivilegedActionException e) {
6303 throw new RuntimeException("Could not initialize intrinsics",
6304 e.getCause());
6305 }
6306 }
6307 }