ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
Revision: 1.37
Committed: Sun Mar 4 20:34:27 2012 UTC (12 years, 2 months ago) by dl
Branch: MAIN
Changes since 1.36: +5 -2 lines
Log Message:
Better spin control

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package jsr166e;
8 import jsr166e.LongAdder;
9 import java.util.Arrays;
10 import java.util.Map;
11 import java.util.Set;
12 import java.util.Collection;
13 import java.util.AbstractMap;
14 import java.util.AbstractSet;
15 import java.util.AbstractCollection;
16 import java.util.Hashtable;
17 import java.util.HashMap;
18 import java.util.Iterator;
19 import java.util.Enumeration;
20 import java.util.ConcurrentModificationException;
21 import java.util.NoSuchElementException;
22 import java.util.concurrent.ConcurrentMap;
23 import java.util.concurrent.ThreadLocalRandom;
24 import java.util.concurrent.locks.LockSupport;
25 import java.io.Serializable;
26
27 /**
28 * A hash table supporting full concurrency of retrievals and
29 * high expected concurrency for updates. This class obeys the
30 * same functional specification as {@link java.util.Hashtable}, and
31 * includes versions of methods corresponding to each method of
32 * {@code Hashtable}. However, even though all operations are
33 * thread-safe, retrieval operations do <em>not</em> entail locking,
34 * and there is <em>not</em> any support for locking the entire table
35 * in a way that prevents all access. This class is fully
36 * interoperable with {@code Hashtable} in programs that rely on its
37 * thread safety but not on its synchronization details.
38 *
39 * <p> Retrieval operations (including {@code get}) generally do not
40 * block, so may overlap with update operations (including {@code put}
41 * and {@code remove}). Retrievals reflect the results of the most
42 * recently <em>completed</em> update operations holding upon their
43 * onset. For aggregate operations such as {@code putAll} and {@code
44 * clear}, concurrent retrievals may reflect insertion or removal of
45 * only some entries. Similarly, Iterators and Enumerations return
46 * elements reflecting the state of the hash table at some point at or
47 * since the creation of the iterator/enumeration. They do
48 * <em>not</em> throw {@link ConcurrentModificationException}.
49 * However, iterators are designed to be used by only one thread at a
50 * time. Bear in mind that the results of aggregate status methods
51 * including {@code size}, {@code isEmpty}, and {@code containsValue}
52 * are typically useful only when a map is not undergoing concurrent
53 * updates in other threads. Otherwise the results of these methods
54 * reflect transient states that may be adequate for monitoring
55 * or estimation purposes, but not for program control.
56 *
57 * <p> The table is dynamically expanded when there are too many
58 * collisions (i.e., keys that have distinct hash codes but fall into
59 * the same slot modulo the table size), with the expected average
60 * effect of maintaining roughly two bins per mapping (corresponding
61 * to a 0.75 load factor threshold for resizing). There may be much
62 * variance around this average as mappings are added and removed, but
63 * overall, this maintains a commonly accepted time/space tradeoff for
64 * hash tables. However, resizing this or any other kind of hash
65 * table may be a relatively slow operation. When possible, it is a
66 * good idea to provide a size estimate as an optional {@code
67 * initialCapacity} constructor argument. An additional optional
68 * {@code loadFactor} constructor argument provides a further means of
69 * customizing initial table capacity by specifying the table density
70 * to be used in calculating the amount of space to allocate for the
71 * given number of elements. Also, for compatibility with previous
72 * versions of this class, constructors may optionally specify an
73 * expected {@code concurrencyLevel} as an additional hint for
74 * internal sizing. Note that using many keys with exactly the same
75 * {@code hashCode()} is a sure way to slow down performance of any
76 * hash table.
77 *
78 * <p>This class and its views and iterators implement all of the
79 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
80 * interfaces.
81 *
82 * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
83 * does <em>not</em> allow {@code null} to be used as a key or value.
84 *
85 * <p>This class is a member of the
86 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
87 * Java Collections Framework</a>.
88 *
89 * <p><em>jsr166e note: This class is a candidate replacement for
90 * java.util.concurrent.ConcurrentHashMap.<em>
91 *
92 * @since 1.5
93 * @author Doug Lea
94 * @param <K> the type of keys maintained by this map
95 * @param <V> the type of mapped values
96 */
97 public class ConcurrentHashMapV8<K, V>
98 implements ConcurrentMap<K, V>, Serializable {
99 private static final long serialVersionUID = 7249069246763182397L;
100
101 /**
102 * A function computing a mapping from the given key to a value.
103 * This is a place-holder for an upcoming JDK8 interface.
104 */
105 public static interface MappingFunction<K, V> {
106 /**
107 * Returns a non-null value for the given key.
108 *
109 * @param key the (non-null) key
110 * @return a non-null value
111 */
112 V map(K key);
113 }
114
115 /**
116 * A function computing a new mapping given a key and its current
117 * mapped value (or {@code null} if there is no current
118 * mapping). This is a place-holder for an upcoming JDK8
119 * interface.
120 */
121 public static interface RemappingFunction<K, V> {
122 /**
123 * Returns a new value given a key and its current value.
124 *
125 * @param key the (non-null) key
126 * @param value the current value, or null if there is no mapping
127 * @return a non-null value
128 */
129 V remap(K key, V value);
130 }
131
132 /*
133 * Overview:
134 *
135 * The primary design goal of this hash table is to maintain
136 * concurrent readability (typically method get(), but also
137 * iterators and related methods) while minimizing update
138 * contention. Secondary goals are to keep space consumption about
139 * the same or better than java.util.HashMap, and to support high
140 * initial insertion rates on an empty table by many threads.
141 *
142 * Each key-value mapping is held in a Node. Because Node fields
143 * can contain special values, they are defined using plain Object
144 * types. Similarly in turn, all internal methods that use them
145 * work off Object types. And similarly, so do the internal
146 * methods of auxiliary iterator and view classes. All public
147 * generic typed methods relay in/out of these internal methods,
148 * supplying null-checks and casts as needed. This also allows
149 * many of the public methods to be factored into a smaller number
150 * of internal methods (although sadly not so for the five
151 * sprawling variants of put-related operations).
152 *
153 * The table is lazily initialized to a power-of-two size upon the
154 * first insertion. Each bin in the table contains a list of
155 * Nodes (most often, the list has only zero or one Node). Table
156 * accesses require volatile/atomic reads, writes, and CASes.
157 * Because there is no other way to arrange this without adding
158 * further indirections, we use intrinsics (sun.misc.Unsafe)
159 * operations. The lists of nodes within bins are always
160 * accurately traversable under volatile reads, so long as lookups
161 * check hash code and non-nullness of value before checking key
162 * equality.
163 *
164 * We use the top two bits of Node hash fields for control
165 * purposes -- they are available anyway because of addressing
166 * constraints. As explained further below, these top bits are
167 * used as follows:
168 * 00 - Normal
169 * 01 - Locked
170 * 11 - Locked and may have a thread waiting for lock
171 * 10 - Node is a forwarding node
172 *
173 * The lower 30 bits of each Node's hash field contain a
174 * transformation (for better randomization -- method "spread") of
175 * the key's hash code, except for forwarding nodes, for which the
176 * lower bits are zero (and so always have hash field == MOVED).
177 *
178 * Insertion (via put or its variants) of the first node in an
179 * empty bin is performed by just CASing it to the bin. This is
180 * by far the most common case for put operations. Other update
181 * operations (insert, delete, and replace) require locks. We do
182 * not want to waste the space required to associate a distinct
183 * lock object with each bin, so instead use the first node of a
184 * bin list itself as a lock. Blocking support for these locks
185 * relies on the builtin "synchronized" monitors. However, we
186 * also need a tryLock construction, so we overlay these by using
187 * bits of the Node hash field for lock control (see above), and
188 * so normally use builtin monitors only for blocking and
189 * signalling using wait/notifyAll constructions. See
190 * Node.tryAwaitLock.
191 *
192 * Using the first node of a list as a lock does not by itself
193 * suffice though: When a node is locked, any update must first
194 * validate that it is still the first node after locking it, and
195 * retry if not. Because new nodes are always appended to lists,
196 * once a node is first in a bin, it remains first until deleted
197 * or the bin becomes invalidated (upon resizing). However,
198 * operations that only conditionally update may inspect nodes
199 * until the point of update. This is a converse of sorts to the
200 * lazy locking technique described by Herlihy & Shavit.
201 *
202 * The main disadvantage of per-bin locks is that other update
203 * operations on other nodes in a bin list protected by the same
204 * lock can stall, for example when user equals() or mapping
205 * functions take a long time. However, statistically, this is
206 * not a common enough problem to outweigh the time/space overhead
207 * of alternatives: Under random hash codes, the frequency of
208 * nodes in bins follows a Poisson distribution
209 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
210 * parameter of about 0.5 on average, given the resizing threshold
211 * of 0.75, although with a large variance because of resizing
212 * granularity. Ignoring variance, the expected occurrences of
213 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
214 * first few values are:
215 *
216 * 0: 0.607
217 * 1: 0.303
218 * 2: 0.076
219 * 3: 0.012
220 * more: 0.002
221 *
222 * Lock contention probability for two threads accessing distinct
223 * elements is roughly 1 / (8 * #elements). Function "spread"
224 * performs hashCode randomization that improves the likelihood
225 * that these assumptions hold unless users define exactly the
226 * same value for too many hashCodes.
227 *
228 * The table is resized when occupancy exceeds an occupancy
229 * threshold (nominally, 0.75, but see below). Only a single
230 * thread performs the resize (using field "sizeCtl", to arrange
231 * exclusion), but the table otherwise remains usable for reads
232 * and updates. Resizing proceeds by transferring bins, one by
233 * one, from the table to the next table. Because we are using
234 * power-of-two expansion, the elements from each bin must either
235 * stay at same index, or move with a power of two offset. We
236 * eliminate unnecessary node creation by catching cases where old
237 * nodes can be reused because their next fields won't change. On
238 * average, only about one-sixth of them need cloning when a table
239 * doubles. The nodes they replace will be garbage collectable as
240 * soon as they are no longer referenced by any reader thread that
241 * may be in the midst of concurrently traversing table. Upon
242 * transfer, the old table bin contains only a special forwarding
243 * node (with hash field "MOVED") that contains the next table as
244 * its key. On encountering a forwarding node, access and update
245 * operations restart, using the new table.
246 *
247 * Each bin transfer requires its bin lock. However, unlike other
248 * cases, a transfer can skip a bin if it fails to acquire its
249 * lock, and revisit it later. Method rebuild maintains a buffer
250 * of TRANSFER_BUFFER_SIZE bins that have been skipped because of
251 * failure to acquire a lock, and blocks only if none are
252 * available (i.e., only very rarely). The transfer operation
253 * must also ensure that all accessible bins in both the old and
254 * new table are usable by any traversal. When there are no lock
255 * acquisition failures, this is arranged simply by proceeding
256 * from the last bin (table.length - 1) up towards the first.
257 * Upon seeing a forwarding node, traversals (see class
258 * InternalIterator) arrange to move to the new table without
259 * revisiting nodes. However, when any node is skipped during a
260 * transfer, all earlier table bins may have become visible, so
261 * are initialized with a reverse-forwarding node back to the old
262 * table until the new ones are established. (This sometimes
263 * requires transiently locking a forwarding node, which is
264 * possible under the above encoding.) These more expensive
265 * mechanics trigger only when necessary.
266 *
267 * The traversal scheme also applies to partial traversals of
268 * ranges of bins (via an alternate InternalIterator constructor)
269 * to support partitioned aggregate operations (that are not
270 * otherwise implemented yet). Also, read-only operations give up
271 * if ever forwarded to a null table, which provides support for
272 * shutdown-style clearing, which is also not currently
273 * implemented.
274 *
275 * Lazy table initialization minimizes footprint until first use,
276 * and also avoids resizings when the first operation is from a
277 * putAll, constructor with map argument, or deserialization.
278 * These cases attempt to override the initial capacity settings,
279 * but harmlessly fail to take effect in cases of races.
280 *
281 * The element count is maintained using a LongAdder, which avoids
282 * contention on updates but can encounter cache thrashing if read
283 * too frequently during concurrent access. To avoid reading so
284 * often, resizing is attempted either when a bin lock is
285 * contended, or upon adding to a bin already holding two or more
286 * nodes (checked before adding in the xIfAbsent methods, after
287 * adding in others). Under uniform hash distributions, the
288 * probability of this occurring at threshold is around 13%,
289 * meaning that only about 1 in 8 puts check threshold (and after
290 * resizing, many fewer do so). But this approximation has high
291 * variance for small table sizes, so we check on any collision
292 * for sizes <= 64. The bulk putAll operation further reduces
293 * contention by only committing count updates upon these size
294 * checks.
295 *
296 * Maintaining API and serialization compatibility with previous
297 * versions of this class introduces several oddities. Mainly: We
298 * leave untouched but unused constructor arguments refering to
299 * concurrencyLevel. We accept a loadFactor constructor argument,
300 * but apply it only to initial table capacity (which is the only
301 * time that we can guarantee to honor it.) We also declare an
302 * unused "Segment" class that is instantiated in minimal form
303 * only when serializing.
304 */
305
306 /* ---------------- Constants -------------- */
307
308 /**
309 * The largest possible table capacity. This value must be
310 * exactly 1<<30 to stay within Java array allocation and indexing
311 * bounds for power of two table sizes, and is further required
312 * because the top two bits of 32bit hash fields are used for
313 * control purposes.
314 */
315 private static final int MAXIMUM_CAPACITY = 1 << 30;
316
317 /**
318 * The default initial table capacity. Must be a power of 2
319 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
320 */
321 private static final int DEFAULT_CAPACITY = 16;
322
323 /**
324 * The largest possible (non-power of two) array size.
325 * Needed by toArray and related methods.
326 */
327 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
328
329 /**
330 * The default concurrency level for this table. Unused but
331 * defined for compatibility with previous versions of this class.
332 */
333 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
334
335 /**
336 * The load factor for this table. Overrides of this value in
337 * constructors affect only the initial table capacity. The
338 * actual floating point value isn't normally used -- it is
339 * simpler to use expressions such as {@code n - (n >>> 2)} for
340 * the associated resizing threshold.
341 */
342 private static final float LOAD_FACTOR = 0.75f;
343
344 /**
345 * The buffer size for skipped bins during transfers. The
346 * value is arbitrary but should be large enough to avoid
347 * most locking stalls during resizes.
348 */
349 private static final int TRANSFER_BUFFER_SIZE = 32;
350
351 /*
352 * Encodings for special uses of Node hash fields. See above for
353 * explanation.
354 */
355 static final int MOVED = 0x80000000; // hash field for forwarding nodes
356 static final int LOCKED = 0x40000000; // set/tested only as a bit
357 static final int WAITING = 0xc0000000; // both bits set/tested together
358 static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash
359
360 /* ---------------- Fields -------------- */
361
362 /**
363 * The array of bins. Lazily initialized upon first insertion.
364 * Size is always a power of two. Accessed directly by iterators.
365 */
366 transient volatile Node[] table;
367
368 /**
369 * The counter maintaining number of elements.
370 */
371 private transient final LongAdder counter;
372
373 /**
374 * Table initialization and resizing control. When negative, the
375 * table is being initialized or resized. Otherwise, when table is
376 * null, holds the initial table size to use upon creation, or 0
377 * for default. After initialization, holds the next element count
378 * value upon which to resize the table.
379 */
380 private transient volatile int sizeCtl;
381
382 // views
383 private transient KeySet<K,V> keySet;
384 private transient Values<K,V> values;
385 private transient EntrySet<K,V> entrySet;
386
387 /** For serialization compatibility. Null unless serialized; see below */
388 private Segment<K,V>[] segments;
389
390 /* ---------------- Nodes -------------- */
391
392 /**
393 * Key-value entry. Note that this is never exported out as a
394 * user-visible Map.Entry (see WriteThroughEntry and SnapshotEntry
395 * below). Nodes with a hash field of MOVED are special, and do
396 * not contain user keys or values. Otherwise, keys are never
397 * null, and null val fields indicate that a node is in the
398 * process of being deleted or created. For purposes of read-only
399 * access, a key may be read before a val, but can only be used
400 * after checking val to be non-null.
401 */
402 static final class Node {
403 volatile int hash;
404 final Object key;
405 volatile Object val;
406 volatile Node next;
407
408 Node(int hash, Object key, Object val, Node next) {
409 this.hash = hash;
410 this.key = key;
411 this.val = val;
412 this.next = next;
413 }
414
415 /** CompareAndSet the hash field */
416 final boolean casHash(int cmp, int val) {
417 return UNSAFE.compareAndSwapInt(this, hashOffset, cmp, val);
418 }
419
420 /** The number of spins before blocking for a lock */
421 static final int MAX_SPINS =
422 Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
423
424 /**
425 * Spins a while if LOCKED bit set and this node is the first
426 * of its bin, and then sets WAITING bits on hash field and
427 * blocks (once) if they are still set. It is OK for this
428 * method to return even if lock is not available upon exit,
429 * which enables these simple single-wait mechanics.
430 *
431 * The corresponding signalling operation is performed within
432 * callers: Upon detecting that WAITING has been set when
433 * unlocking lock (via a failed CAS from non-waiting LOCKED
434 * state), unlockers acquire the sync lock and perform a
435 * notifyAll.
436 */
437 final void tryAwaitLock(Node[] tab, int i) {
438 if (tab != null && i >= 0 && i < tab.length) { // bounds check
439 int r = ThreadLocalRandom.current().nextInt(); // randomize spins
440 int spins = MAX_SPINS, h;
441 while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) {
442 if (spins >= 0) {
443 r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
444 if (r >= 0 && --spins == 0)
445 Thread.yield(); // yield before block
446 }
447 else if (casHash(h, h | WAITING)) {
448 synchronized (this) {
449 if (tabAt(tab, i) == this &&
450 (hash & WAITING) == WAITING) {
451 try {
452 wait();
453 } catch (InterruptedException ie) {
454 Thread.currentThread().interrupt();
455 }
456 }
457 else
458 notifyAll(); // possibly won race vs signaller
459 }
460 break;
461 }
462 }
463 }
464 }
465
466 // Unsafe mechanics for casHash
467 private static final sun.misc.Unsafe UNSAFE;
468 private static final long hashOffset;
469
470 static {
471 try {
472 UNSAFE = getUnsafe();
473 Class<?> k = Node.class;
474 hashOffset = UNSAFE.objectFieldOffset
475 (k.getDeclaredField("hash"));
476 } catch (Exception e) {
477 throw new Error(e);
478 }
479 }
480 }
481
482 /* ---------------- Table element access -------------- */
483
484 /*
485 * Volatile access methods are used for table elements as well as
486 * elements of in-progress next table while resizing. Uses are
487 * null checked by callers, and implicitly bounds-checked, relying
488 * on the invariants that tab arrays have non-zero size, and all
489 * indices are masked with (tab.length - 1) which is never
490 * negative and always less than length. Note that, to be correct
491 * wrt arbitrary concurrency errors by users, bounds checks must
492 * operate on local variables, which accounts for some odd-looking
493 * inline assignments below.
494 */
495
496 static final Node tabAt(Node[] tab, int i) { // used by InternalIterator
497 return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
498 }
499
500 private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
501 return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
502 }
503
504 private static final void setTabAt(Node[] tab, int i, Node v) {
505 UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
506 }
507
508 /* ---------------- Internal access and update methods -------------- */
509
510 /**
511 * Applies a supplemental hash function to a given hashCode, which
512 * defends against poor quality hash functions. The result must
513 * be have the top 2 bits clear. For reasonable performance, this
514 * function must have good avalanche properties; i.e., that each
515 * bit of the argument affects each bit of the result. (Although
516 * we don't care about the unused top 2 bits.)
517 */
518 private static final int spread(int h) {
519 // Apply base step of MurmurHash; see http://code.google.com/p/smhasher/
520 // Despite two multiplies, this is often faster than others
521 // with comparable bit-spread properties.
522 h ^= h >>> 16;
523 h *= 0x85ebca6b;
524 h ^= h >>> 13;
525 h *= 0xc2b2ae35;
526 return ((h >>> 16) ^ h) & HASH_BITS; // mask out top bits
527 }
528
529 /** Implementation for get and containsKey */
530 private final Object internalGet(Object k) {
531 int h = spread(k.hashCode());
532 retry: for (Node[] tab = table; tab != null;) {
533 Node e; Object ek, ev; int eh; // locals to read fields once
534 for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
535 if ((eh = e.hash) == MOVED) {
536 tab = (Node[])e.key; // restart with new table
537 continue retry;
538 }
539 if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
540 ((ek = e.key) == k || k.equals(ek)))
541 return ev;
542 }
543 break;
544 }
545 return null;
546 }
547
548 /**
549 * Implementation for the four public remove/replace methods:
550 * Replaces node value with v, conditional upon match of cv if
551 * non-null. If resulting value is null, delete.
552 */
553 private final Object internalReplace(Object k, Object v, Object cv) {
554 int h = spread(k.hashCode());
555 Object oldVal = null;
556 for (Node[] tab = table;;) {
557 Node f; int i, fh;
558 if (tab == null ||
559 (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
560 break;
561 else if ((fh = f.hash) == MOVED)
562 tab = (Node[])f.key;
563 else if ((fh & HASH_BITS) != h && f.next == null) // precheck
564 break; // rules out possible existence
565 else if ((fh & LOCKED) != 0) {
566 checkForResize(); // try resizing if can't get lock
567 f.tryAwaitLock(tab, i);
568 }
569 else if (f.casHash(fh, fh | LOCKED)) {
570 boolean validated = false;
571 boolean deleted = false;
572 try {
573 if (tabAt(tab, i) == f) {
574 validated = true;
575 for (Node e = f, pred = null;;) {
576 Object ek, ev;
577 if ((e.hash & HASH_BITS) == h &&
578 ((ev = e.val) != null) &&
579 ((ek = e.key) == k || k.equals(ek))) {
580 if (cv == null || cv == ev || cv.equals(ev)) {
581 oldVal = ev;
582 if ((e.val = v) == null) {
583 deleted = true;
584 Node en = e.next;
585 if (pred != null)
586 pred.next = en;
587 else
588 setTabAt(tab, i, en);
589 }
590 }
591 break;
592 }
593 pred = e;
594 if ((e = e.next) == null)
595 break;
596 }
597 }
598 } finally {
599 if (!f.casHash(fh | LOCKED, fh)) {
600 f.hash = fh;
601 synchronized (f) { f.notifyAll(); };
602 }
603 }
604 if (validated) {
605 if (deleted)
606 counter.add(-1L);
607 break;
608 }
609 }
610 }
611 return oldVal;
612 }
613
614 /*
615 * Internal versions of the five insertion methods, each a
616 * little more complicated than the last. All have
617 * the same basic structure as the first (internalPut):
618 * 1. If table uninitialized, create
619 * 2. If bin empty, try to CAS new node
620 * 3. If bin stale, use new table
621 * 4. Lock and validate; if valid, scan and add or update
622 *
623 * The others interweave other checks and/or alternative actions:
624 * * Plain put checks for and performs resize after insertion.
625 * * putIfAbsent prescans for mapping without lock (and fails to add
626 * if present), which also makes pre-emptive resize checks worthwhile.
627 * * computeIfAbsent extends form used in putIfAbsent with additional
628 * mechanics to deal with, calls, potential exceptions and null
629 * returns from function call.
630 * * compute uses the same function-call mechanics, but without
631 * the prescans
632 * * putAll attempts to pre-allocate enough table space
633 * and more lazily performs count updates and checks.
634 *
635 * Someday when details settle down a bit more, it might be worth
636 * some factoring to reduce sprawl.
637 */
638
639 /** Implementation for put */
640 private final Object internalPut(Object k, Object v) {
641 int h = spread(k.hashCode());
642 boolean checkSize = false;
643 for (Node[] tab = table;;) {
644 int i; Node f; int fh;
645 if (tab == null)
646 tab = initTable();
647 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
648 if (casTabAt(tab, i, null, new Node(h, k, v, null)))
649 break; // no lock when adding to empty bin
650 }
651 else if ((fh = f.hash) == MOVED)
652 tab = (Node[])f.key;
653 else if ((fh & LOCKED) != 0) {
654 checkForResize();
655 f.tryAwaitLock(tab, i);
656 }
657 else if (f.casHash(fh, fh | LOCKED)) {
658 Object oldVal = null;
659 boolean validated = false;
660 try { // needed in case equals() throws
661 if (tabAt(tab, i) == f) {
662 validated = true; // retry if 1st already deleted
663 for (Node e = f;;) {
664 Object ek, ev;
665 if ((e.hash & HASH_BITS) == h &&
666 (ev = e.val) != null &&
667 ((ek = e.key) == k || k.equals(ek))) {
668 oldVal = ev;
669 e.val = v;
670 break;
671 }
672 Node last = e;
673 if ((e = e.next) == null) {
674 last.next = new Node(h, k, v, null);
675 if (last != f || tab.length <= 64)
676 checkSize = true;
677 break;
678 }
679 }
680 }
681 } finally { // unlock and signal if needed
682 if (!f.casHash(fh | LOCKED, fh)) {
683 f.hash = fh;
684 synchronized (f) { f.notifyAll(); };
685 }
686 }
687 if (validated) {
688 if (oldVal != null)
689 return oldVal;
690 break;
691 }
692 }
693 }
694 counter.add(1L);
695 if (checkSize)
696 checkForResize();
697 return null;
698 }
699
700 /** Implementation for putIfAbsent */
701 private final Object internalPutIfAbsent(Object k, Object v) {
702 int h = spread(k.hashCode());
703 for (Node[] tab = table;;) {
704 int i; Node f; int fh; Object fk, fv;
705 if (tab == null)
706 tab = initTable();
707 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
708 if (casTabAt(tab, i, null, new Node(h, k, v, null)))
709 break;
710 }
711 else if ((fh = f.hash) == MOVED)
712 tab = (Node[])f.key;
713 else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
714 ((fk = f.key) == k || k.equals(fk)))
715 return fv;
716 else {
717 Node g = f.next;
718 if (g != null) { // at least 2 nodes -- search and maybe resize
719 for (Node e = g;;) {
720 Object ek, ev;
721 if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
722 ((ek = e.key) == k || k.equals(ek)))
723 return ev;
724 if ((e = e.next) == null) {
725 checkForResize();
726 break;
727 }
728 }
729 }
730 if (((fh = f.hash) & LOCKED) != 0) {
731 checkForResize();
732 f.tryAwaitLock(tab, i);
733 }
734 else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
735 Object oldVal = null;
736 boolean validated = false;
737 try {
738 if (tabAt(tab, i) == f) {
739 validated = true;
740 for (Node e = f;;) {
741 Object ek, ev;
742 if ((e.hash & HASH_BITS) == h &&
743 (ev = e.val) != null &&
744 ((ek = e.key) == k || k.equals(ek))) {
745 oldVal = ev;
746 break;
747 }
748 Node last = e;
749 if ((e = e.next) == null) {
750 last.next = new Node(h, k, v, null);
751 break;
752 }
753 }
754 }
755 } finally {
756 if (!f.casHash(fh | LOCKED, fh)) {
757 f.hash = fh;
758 synchronized (f) { f.notifyAll(); };
759 }
760 }
761 if (validated) {
762 if (oldVal != null)
763 return oldVal;
764 break;
765 }
766 }
767 }
768 }
769 counter.add(1L);
770 return null;
771 }
772
773 /** Implementation for computeIfAbsent */
774 private final Object internalComputeIfAbsent(K k,
775 MappingFunction<? super K, ?> mf) {
776 int h = spread(k.hashCode());
777 Object val = null;
778 for (Node[] tab = table;;) {
779 Node f; int i, fh; Object fk, fv;
780 if (tab == null)
781 tab = initTable();
782 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
783 Node node = new Node(fh = h | LOCKED, k, null, null);
784 boolean validated = false;
785 if (casTabAt(tab, i, null, node)) {
786 validated = true;
787 try {
788 if ((val = mf.map(k)) != null)
789 node.val = val;
790 } finally {
791 if (val == null)
792 setTabAt(tab, i, null);
793 if (!node.casHash(fh, h)) {
794 node.hash = h;
795 synchronized (node) { node.notifyAll(); };
796 }
797 }
798 }
799 if (validated)
800 break;
801 }
802 else if ((fh = f.hash) == MOVED)
803 tab = (Node[])f.key;
804 else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
805 ((fk = f.key) == k || k.equals(fk)))
806 return fv;
807 else {
808 Node g = f.next;
809 if (g != null) {
810 for (Node e = g;;) {
811 Object ek, ev;
812 if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
813 ((ek = e.key) == k || k.equals(ek)))
814 return ev;
815 if ((e = e.next) == null) {
816 checkForResize();
817 break;
818 }
819 }
820 }
821 if (((fh = f.hash) & LOCKED) != 0) {
822 checkForResize();
823 f.tryAwaitLock(tab, i);
824 }
825 else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
826 boolean validated = false;
827 try {
828 if (tabAt(tab, i) == f) {
829 validated = true;
830 for (Node e = f;;) {
831 Object ek, ev;
832 if ((e.hash & HASH_BITS) == h &&
833 (ev = e.val) != null &&
834 ((ek = e.key) == k || k.equals(ek))) {
835 val = ev;
836 break;
837 }
838 Node last = e;
839 if ((e = e.next) == null) {
840 if ((val = mf.map(k)) != null)
841 last.next = new Node(h, k, val, null);
842 break;
843 }
844 }
845 }
846 } finally {
847 if (!f.casHash(fh | LOCKED, fh)) {
848 f.hash = fh;
849 synchronized (f) { f.notifyAll(); };
850 }
851 }
852 if (validated)
853 break;
854 }
855 }
856 }
857 if (val == null)
858 throw new NullPointerException();
859 counter.add(1L);
860 return val;
861 }
862
863 /** Implementation for compute */
864 @SuppressWarnings("unchecked")
865 private final Object internalCompute(K k,
866 RemappingFunction<? super K, V> mf) {
867 int h = spread(k.hashCode());
868 Object val = null;
869 boolean added = false;
870 boolean checkSize = false;
871 for (Node[] tab = table;;) {
872 Node f; int i, fh;
873 if (tab == null)
874 tab = initTable();
875 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
876 Node node = new Node(fh = h | LOCKED, k, null, null);
877 boolean validated = false;
878 if (casTabAt(tab, i, null, node)) {
879 validated = true;
880 try {
881 if ((val = mf.remap(k, null)) != null) {
882 node.val = val;
883 added = true;
884 }
885 } finally {
886 if (!added)
887 setTabAt(tab, i, null);
888 if (!node.casHash(fh, h)) {
889 node.hash = h;
890 synchronized (node) { node.notifyAll(); };
891 }
892 }
893 }
894 if (validated)
895 break;
896 }
897 else if ((fh = f.hash) == MOVED)
898 tab = (Node[])f.key;
899 else if ((fh & LOCKED) != 0) {
900 checkForResize();
901 f.tryAwaitLock(tab, i);
902 }
903 else if (f.casHash(fh, fh | LOCKED)) {
904 boolean validated = false;
905 try {
906 if (tabAt(tab, i) == f) {
907 validated = true;
908 for (Node e = f;;) {
909 Object ek, ev;
910 if ((e.hash & HASH_BITS) == h &&
911 (ev = e.val) != null &&
912 ((ek = e.key) == k || k.equals(ek))) {
913 val = mf.remap(k, (V)ev);
914 if (val != null)
915 e.val = val;
916 break;
917 }
918 Node last = e;
919 if ((e = e.next) == null) {
920 if ((val = mf.remap(k, null)) != null) {
921 last.next = new Node(h, k, val, null);
922 added = true;
923 if (last != f || tab.length <= 64)
924 checkSize = true;
925 }
926 break;
927 }
928 }
929 }
930 } finally {
931 if (!f.casHash(fh | LOCKED, fh)) {
932 f.hash = fh;
933 synchronized (f) { f.notifyAll(); };
934 }
935 }
936 if (validated)
937 break;
938 }
939 }
940 if (val == null)
941 throw new NullPointerException();
942 if (added) {
943 counter.add(1L);
944 if (checkSize)
945 checkForResize();
946 }
947 return val;
948 }
949
950 /** Implementation for putAll */
951 private final void internalPutAll(Map<?, ?> m) {
952 tryPresize(m.size());
953 long delta = 0L; // number of uncommitted additions
954 boolean npe = false; // to throw exception on exit for nulls
955 try { // to clean up counts on other exceptions
956 for (Map.Entry<?, ?> entry : m.entrySet()) {
957 Object k, v;
958 if (entry == null || (k = entry.getKey()) == null ||
959 (v = entry.getValue()) == null) {
960 npe = true;
961 break;
962 }
963 int h = spread(k.hashCode());
964 for (Node[] tab = table;;) {
965 int i; Node f; int fh;
966 if (tab == null)
967 tab = initTable();
968 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
969 if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
970 ++delta;
971 break;
972 }
973 }
974 else if ((fh = f.hash) == MOVED)
975 tab = (Node[])f.key;
976 else if ((fh & LOCKED) != 0) {
977 counter.add(delta);
978 delta = 0L;
979 checkForResize();
980 f.tryAwaitLock(tab, i);
981 }
982 else if (f.casHash(fh, fh | LOCKED)) {
983 boolean validated = false;
984 boolean tooLong = false;
985 try {
986 if (tabAt(tab, i) == f) {
987 validated = true;
988 for (Node e = f;;) {
989 Object ek, ev;
990 if ((e.hash & HASH_BITS) == h &&
991 (ev = e.val) != null &&
992 ((ek = e.key) == k || k.equals(ek))) {
993 e.val = v;
994 break;
995 }
996 Node last = e;
997 if ((e = e.next) == null) {
998 ++delta;
999 last.next = new Node(h, k, v, null);
1000 break;
1001 }
1002 tooLong = true;
1003 }
1004 }
1005 } finally {
1006 if (!f.casHash(fh | LOCKED, fh)) {
1007 f.hash = fh;
1008 synchronized (f) { f.notifyAll(); };
1009 }
1010 }
1011 if (validated) {
1012 if (tooLong) {
1013 counter.add(delta);
1014 delta = 0L;
1015 checkForResize();
1016 }
1017 break;
1018 }
1019 }
1020 }
1021 }
1022 } finally {
1023 if (delta != 0)
1024 counter.add(delta);
1025 }
1026 if (npe)
1027 throw new NullPointerException();
1028 }
1029
1030 /* ---------------- Table Initialization and Resizing -------------- */
1031
1032 /**
1033 * Returns a power of two table size for the given desired capacity.
1034 * See Hackers Delight, sec 3.2
1035 */
1036 private static final int tableSizeFor(int c) {
1037 int n = c - 1;
1038 n |= n >>> 1;
1039 n |= n >>> 2;
1040 n |= n >>> 4;
1041 n |= n >>> 8;
1042 n |= n >>> 16;
1043 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1044 }
1045
1046 /**
1047 * Initializes table, using the size recorded in sizeCtl.
1048 */
1049 private final Node[] initTable() {
1050 Node[] tab; int sc;
1051 while ((tab = table) == null) {
1052 if ((sc = sizeCtl) < 0)
1053 Thread.yield(); // lost initialization race; just spin
1054 else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1055 try {
1056 if ((tab = table) == null) {
1057 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1058 tab = table = new Node[n];
1059 sc = n - (n >>> 2);
1060 }
1061 } finally {
1062 sizeCtl = sc;
1063 }
1064 break;
1065 }
1066 }
1067 return tab;
1068 }
1069
1070 /**
1071 * If table is too small and not already resizing, creates next
1072 * table and transfers bins. Rechecks occupancy after a transfer
1073 * to see if another resize is already needed because resizings
1074 * are lagging additions.
1075 */
1076 private final void checkForResize() {
1077 Node[] tab; int n, sc;
1078 while ((tab = table) != null &&
1079 (n = tab.length) < MAXIMUM_CAPACITY &&
1080 (sc = sizeCtl) >= 0 && counter.sum() >= (long)sc &&
1081 UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1082 try {
1083 if (tab == table) {
1084 table = rebuild(tab);
1085 sc = (n << 1) - (n >>> 1);
1086 }
1087 } finally {
1088 sizeCtl = sc;
1089 }
1090 }
1091 }
1092
1093 /**
1094 * Tries to presize table to accommodate the given number of elements.
1095 *
1096 * @param size number of elements (doesn't need to be perfectly accurate)
1097 */
1098 private final void tryPresize(int size) {
1099 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1100 tableSizeFor(size + (size >>> 1) + 1);
1101 int sc;
1102 while ((sc = sizeCtl) >= 0) {
1103 Node[] tab = table; int n;
1104 if (tab == null || (n = tab.length) == 0) {
1105 n = (sc > c) ? sc : c;
1106 if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1107 try {
1108 if (table == tab) {
1109 table = new Node[n];
1110 sc = n - (n >>> 2);
1111 }
1112 } finally {
1113 sizeCtl = sc;
1114 }
1115 }
1116 }
1117 else if (c <= sc || n >= MAXIMUM_CAPACITY)
1118 break;
1119 else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1120 try {
1121 if (table == tab) {
1122 table = rebuild(tab);
1123 sc = (n << 1) - (n >>> 1);
1124 }
1125 } finally {
1126 sizeCtl = sc;
1127 }
1128 }
1129 }
1130 }
1131
1132 /*
1133 * Moves and/or copies the nodes in each bin to new table. See
1134 * above for explanation.
1135 *
1136 * @return the new table
1137 */
1138 private static final Node[] rebuild(Node[] tab) {
1139 int n = tab.length;
1140 Node[] nextTab = new Node[n << 1];
1141 Node fwd = new Node(MOVED, nextTab, null, null);
1142 int[] buffer = null; // holds bins to revisit; null until needed
1143 Node rev = null; // reverse forwarder; null until needed
1144 int nbuffered = 0; // the number of bins in buffer list
1145 int bufferIndex = 0; // buffer index of current buffered bin
1146 int bin = n - 1; // current non-buffered bin or -1 if none
1147
1148 for (int i = bin;;) { // start upwards sweep
1149 int fh; Node f;
1150 if ((f = tabAt(tab, i)) == null) {
1151 if (bin >= 0) { // no lock needed (or available)
1152 if (!casTabAt(tab, i, f, fwd))
1153 continue;
1154 }
1155 else { // transiently use a locked forwarding node
1156 Node g = new Node(MOVED|LOCKED, nextTab, null, null);
1157 if (!casTabAt(tab, i, f, g))
1158 continue;
1159 setTabAt(nextTab, i, null);
1160 setTabAt(nextTab, i + n, null);
1161 setTabAt(tab, i, fwd);
1162 if (!g.casHash(MOVED|LOCKED, MOVED)) {
1163 g.hash = MOVED;
1164 synchronized (g) { g.notifyAll(); }
1165 }
1166 }
1167 }
1168 else if (((fh = f.hash) & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
1169 boolean validated = false;
1170 try { // split to lo and hi lists; copying as needed
1171 if (tabAt(tab, i) == f) {
1172 validated = true;
1173 Node e = f, lastRun = f;
1174 Node lo = null, hi = null;
1175 int runBit = e.hash & n;
1176 for (Node p = e.next; p != null; p = p.next) {
1177 int b = p.hash & n;
1178 if (b != runBit) {
1179 runBit = b;
1180 lastRun = p;
1181 }
1182 }
1183 if (runBit == 0)
1184 lo = lastRun;
1185 else
1186 hi = lastRun;
1187 for (Node p = e; p != lastRun; p = p.next) {
1188 int ph = p.hash & HASH_BITS;
1189 Object pk = p.key, pv = p.val;
1190 if ((ph & n) == 0)
1191 lo = new Node(ph, pk, pv, lo);
1192 else
1193 hi = new Node(ph, pk, pv, hi);
1194 }
1195 setTabAt(nextTab, i, lo);
1196 setTabAt(nextTab, i + n, hi);
1197 setTabAt(tab, i, fwd);
1198 }
1199 } finally {
1200 if (!f.casHash(fh | LOCKED, fh)) {
1201 f.hash = fh;
1202 synchronized (f) { f.notifyAll(); };
1203 }
1204 }
1205 if (!validated)
1206 continue;
1207 }
1208 else {
1209 if (buffer == null) // initialize buffer for revisits
1210 buffer = new int[TRANSFER_BUFFER_SIZE];
1211 if (bin < 0 && bufferIndex > 0) {
1212 int j = buffer[--bufferIndex];
1213 buffer[bufferIndex] = i;
1214 i = j; // swap with another bin
1215 continue;
1216 }
1217 if (bin < 0 || nbuffered >= TRANSFER_BUFFER_SIZE) {
1218 f.tryAwaitLock(tab, i);
1219 continue; // no other options -- block
1220 }
1221 if (rev == null) // initialize reverse-forwarder
1222 rev = new Node(MOVED, tab, null, null);
1223 if (tabAt(tab, i) != f || (f.hash & LOCKED) == 0)
1224 continue; // recheck before adding to list
1225 buffer[nbuffered++] = i;
1226 setTabAt(nextTab, i, rev); // install place-holders
1227 setTabAt(nextTab, i + n, rev);
1228 }
1229
1230 if (bin > 0)
1231 i = --bin;
1232 else if (buffer != null && nbuffered > 0) {
1233 bin = -1;
1234 i = buffer[bufferIndex = --nbuffered];
1235 }
1236 else
1237 return nextTab;
1238 }
1239 }
1240
1241 /**
1242 * Implementation for clear. Steps through each bin, removing all
1243 * nodes.
1244 */
1245 private final void internalClear() {
1246 long delta = 0L; // negative number of deletions
1247 int i = 0;
1248 Node[] tab = table;
1249 while (tab != null && i < tab.length) {
1250 int fh;
1251 Node f = tabAt(tab, i);
1252 if (f == null)
1253 ++i;
1254 else if ((fh = f.hash) == MOVED)
1255 tab = (Node[])f.key;
1256 else if ((fh & LOCKED) != 0) {
1257 counter.add(delta); // opportunistically update count
1258 delta = 0L;
1259 f.tryAwaitLock(tab, i);
1260 }
1261 else if (f.casHash(fh, fh | LOCKED)) {
1262 boolean validated = false;
1263 try {
1264 if (tabAt(tab, i) == f) {
1265 validated = true;
1266 for (Node e = f; e != null; e = e.next) {
1267 if (e.val != null) { // currently always true
1268 e.val = null;
1269 --delta;
1270 }
1271 }
1272 setTabAt(tab, i, null);
1273 }
1274 } finally {
1275 if (!f.casHash(fh | LOCKED, fh)) {
1276 f.hash = fh;
1277 synchronized (f) { f.notifyAll(); };
1278 }
1279 }
1280 if (validated)
1281 ++i;
1282 }
1283 }
1284 if (delta != 0)
1285 counter.add(delta);
1286 }
1287
1288
1289 /* ----------------Table Traversal -------------- */
1290
1291 /**
1292 * Encapsulates traversal for methods such as containsValue; also
1293 * serves as a base class for other iterators.
1294 *
1295 * At each step, the iterator snapshots the key ("nextKey") and
1296 * value ("nextVal") of a valid node (i.e., one that, at point of
1297 * snapshot, has a non-null user value). Because val fields can
1298 * change (including to null, indicating deletion), field nextVal
1299 * might not be accurate at point of use, but still maintains the
1300 * weak consistency property of holding a value that was once
1301 * valid.
1302 *
1303 * Internal traversals directly access these fields, as in:
1304 * {@code while (it.next != null) { process(it.nextKey); it.advance(); }}
1305 *
1306 * Exported iterators (subclasses of ViewIterator) extract key,
1307 * value, or key-value pairs as return values of Iterator.next(),
1308 * and encapsulate the it.next check as hasNext();
1309 *
1310 * The iterator visits once each still-valid node that was
1311 * reachable upon iterator construction. It might miss some that
1312 * were added to a bin after the bin was visited, which is OK wrt
1313 * consistency guarantees. Maintaining this property in the face
1314 * of possible ongoing resizes requires a fair amount of
1315 * bookkeeping state that is difficult to optimize away amidst
1316 * volatile accesses. Even so, traversal maintains reasonable
1317 * throughput.
1318 *
1319 * Normally, iteration proceeds bin-by-bin traversing lists.
1320 * However, if the table has been resized, then all future steps
1321 * must traverse both the bin at the current index as well as at
1322 * (index + baseSize); and so on for further resizings. To
1323 * paranoically cope with potential sharing by users of iterators
1324 * across threads, iteration terminates if a bounds checks fails
1325 * for a table read.
1326 *
1327 * The range-based constructor enables creation of parallel
1328 * range-splitting traversals. (Not yet implemented.)
1329 */
1330 static class InternalIterator {
1331 Node next; // the next entry to use
1332 Node last; // the last entry used
1333 Object nextKey; // cached key field of next
1334 Object nextVal; // cached val field of next
1335 Node[] tab; // current table; updated if resized
1336 int index; // index of bin to use next
1337 int baseIndex; // current index of initial table
1338 final int baseLimit; // index bound for initial table
1339 final int baseSize; // initial table size
1340
1341 /** Creates iterator for all entries in the table. */
1342 InternalIterator(Node[] tab) {
1343 this.tab = tab;
1344 baseLimit = baseSize = (tab == null) ? 0 : tab.length;
1345 index = baseIndex = 0;
1346 next = null;
1347 advance();
1348 }
1349
1350 /** Creates iterator for the given range of the table */
1351 InternalIterator(Node[] tab, int lo, int hi) {
1352 this.tab = tab;
1353 baseSize = (tab == null) ? 0 : tab.length;
1354 baseLimit = (hi <= baseSize) ? hi : baseSize;
1355 index = baseIndex = (lo >= 0) ? lo : 0;
1356 next = null;
1357 advance();
1358 }
1359
1360 /** Advances next. See above for explanation. */
1361 final void advance() {
1362 Node e = last = next;
1363 outer: do {
1364 if (e != null) // advance past used/skipped node
1365 e = e.next;
1366 while (e == null) { // get to next non-null bin
1367 Node[] t; int b, i, n; // checks must use locals
1368 if ((b = baseIndex) >= baseLimit || (i = index) < 0 ||
1369 (t = tab) == null || i >= (n = t.length))
1370 break outer;
1371 else if ((e = tabAt(t, i)) != null && e.hash == MOVED)
1372 tab = (Node[])e.key; // restarts due to null val
1373 else // visit upper slots if present
1374 index = (i += baseSize) < n ? i : (baseIndex = b + 1);
1375 }
1376 nextKey = e.key;
1377 } while ((nextVal = e.val) == null);// skip deleted or special nodes
1378 next = e;
1379 }
1380 }
1381
1382 /* ---------------- Public operations -------------- */
1383
1384 /**
1385 * Creates a new, empty map with the default initial table size (16),
1386 */
1387 public ConcurrentHashMapV8() {
1388 this.counter = new LongAdder();
1389 }
1390
1391 /**
1392 * Creates a new, empty map with an initial table size
1393 * accommodating the specified number of elements without the need
1394 * to dynamically resize.
1395 *
1396 * @param initialCapacity The implementation performs internal
1397 * sizing to accommodate this many elements.
1398 * @throws IllegalArgumentException if the initial capacity of
1399 * elements is negative
1400 */
1401 public ConcurrentHashMapV8(int initialCapacity) {
1402 if (initialCapacity < 0)
1403 throw new IllegalArgumentException();
1404 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
1405 MAXIMUM_CAPACITY :
1406 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
1407 this.counter = new LongAdder();
1408 this.sizeCtl = cap;
1409 }
1410
1411 /**
1412 * Creates a new map with the same mappings as the given map.
1413 *
1414 * @param m the map
1415 */
1416 public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
1417 this.counter = new LongAdder();
1418 this.sizeCtl = DEFAULT_CAPACITY;
1419 internalPutAll(m);
1420 }
1421
1422 /**
1423 * Creates a new, empty map with an initial table size based on
1424 * the given number of elements ({@code initialCapacity}) and
1425 * initial table density ({@code loadFactor}).
1426 *
1427 * @param initialCapacity the initial capacity. The implementation
1428 * performs internal sizing to accommodate this many elements,
1429 * given the specified load factor.
1430 * @param loadFactor the load factor (table density) for
1431 * establishing the initial table size
1432 * @throws IllegalArgumentException if the initial capacity of
1433 * elements is negative or the load factor is nonpositive
1434 *
1435 * @since 1.6
1436 */
1437 public ConcurrentHashMapV8(int initialCapacity, float loadFactor) {
1438 this(initialCapacity, loadFactor, 1);
1439 }
1440
1441 /**
1442 * Creates a new, empty map with an initial table size based on
1443 * the given number of elements ({@code initialCapacity}), table
1444 * density ({@code loadFactor}), and number of concurrently
1445 * updating threads ({@code concurrencyLevel}).
1446 *
1447 * @param initialCapacity the initial capacity. The implementation
1448 * performs internal sizing to accommodate this many elements,
1449 * given the specified load factor.
1450 * @param loadFactor the load factor (table density) for
1451 * establishing the initial table size
1452 * @param concurrencyLevel the estimated number of concurrently
1453 * updating threads. The implementation may use this value as
1454 * a sizing hint.
1455 * @throws IllegalArgumentException if the initial capacity is
1456 * negative or the load factor or concurrencyLevel are
1457 * nonpositive
1458 */
1459 public ConcurrentHashMapV8(int initialCapacity,
1460 float loadFactor, int concurrencyLevel) {
1461 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
1462 throw new IllegalArgumentException();
1463 if (initialCapacity < concurrencyLevel) // Use at least as many bins
1464 initialCapacity = concurrencyLevel; // as estimated threads
1465 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
1466 int cap = ((size >= (long)MAXIMUM_CAPACITY) ?
1467 MAXIMUM_CAPACITY: tableSizeFor((int)size));
1468 this.counter = new LongAdder();
1469 this.sizeCtl = cap;
1470 }
1471
1472 /**
1473 * {@inheritDoc}
1474 */
1475 public boolean isEmpty() {
1476 return counter.sum() <= 0L; // ignore transient negative values
1477 }
1478
1479 /**
1480 * {@inheritDoc}
1481 */
1482 public int size() {
1483 long n = counter.sum();
1484 return ((n < 0L) ? 0 :
1485 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
1486 (int)n);
1487 }
1488
1489 final long longSize() { // accurate version of size needed for views
1490 long n = counter.sum();
1491 return (n < 0L) ? 0L : n;
1492 }
1493
1494 /**
1495 * Returns the value to which the specified key is mapped,
1496 * or {@code null} if this map contains no mapping for the key.
1497 *
1498 * <p>More formally, if this map contains a mapping from a key
1499 * {@code k} to a value {@code v} such that {@code key.equals(k)},
1500 * then this method returns {@code v}; otherwise it returns
1501 * {@code null}. (There can be at most one such mapping.)
1502 *
1503 * @throws NullPointerException if the specified key is null
1504 */
1505 @SuppressWarnings("unchecked")
1506 public V get(Object key) {
1507 if (key == null)
1508 throw new NullPointerException();
1509 return (V)internalGet(key);
1510 }
1511
1512 /**
1513 * Tests if the specified object is a key in this table.
1514 *
1515 * @param key possible key
1516 * @return {@code true} if and only if the specified object
1517 * is a key in this table, as determined by the
1518 * {@code equals} method; {@code false} otherwise
1519 * @throws NullPointerException if the specified key is null
1520 */
1521 public boolean containsKey(Object key) {
1522 if (key == null)
1523 throw new NullPointerException();
1524 return internalGet(key) != null;
1525 }
1526
1527 /**
1528 * Returns {@code true} if this map maps one or more keys to the
1529 * specified value. Note: This method may require a full traversal
1530 * of the map, and is much slower than method {@code containsKey}.
1531 *
1532 * @param value value whose presence in this map is to be tested
1533 * @return {@code true} if this map maps one or more keys to the
1534 * specified value
1535 * @throws NullPointerException if the specified value is null
1536 */
1537 public boolean containsValue(Object value) {
1538 if (value == null)
1539 throw new NullPointerException();
1540 Object v;
1541 InternalIterator it = new InternalIterator(table);
1542 while (it.next != null) {
1543 if ((v = it.nextVal) == value || value.equals(v))
1544 return true;
1545 it.advance();
1546 }
1547 return false;
1548 }
1549
1550 /**
1551 * Legacy method testing if some key maps into the specified value
1552 * in this table. This method is identical in functionality to
1553 * {@link #containsValue}, and exists solely to ensure
1554 * full compatibility with class {@link java.util.Hashtable},
1555 * which supported this method prior to introduction of the
1556 * Java Collections framework.
1557 *
1558 * @param value a value to search for
1559 * @return {@code true} if and only if some key maps to the
1560 * {@code value} argument in this table as
1561 * determined by the {@code equals} method;
1562 * {@code false} otherwise
1563 * @throws NullPointerException if the specified value is null
1564 */
1565 public boolean contains(Object value) {
1566 return containsValue(value);
1567 }
1568
1569 /**
1570 * Maps the specified key to the specified value in this table.
1571 * Neither the key nor the value can be null.
1572 *
1573 * <p> The value can be retrieved by calling the {@code get} method
1574 * with a key that is equal to the original key.
1575 *
1576 * @param key key with which the specified value is to be associated
1577 * @param value value to be associated with the specified key
1578 * @return the previous value associated with {@code key}, or
1579 * {@code null} if there was no mapping for {@code key}
1580 * @throws NullPointerException if the specified key or value is null
1581 */
1582 @SuppressWarnings("unchecked")
1583 public V put(K key, V value) {
1584 if (key == null || value == null)
1585 throw new NullPointerException();
1586 return (V)internalPut(key, value);
1587 }
1588
1589 /**
1590 * {@inheritDoc}
1591 *
1592 * @return the previous value associated with the specified key,
1593 * or {@code null} if there was no mapping for the key
1594 * @throws NullPointerException if the specified key or value is null
1595 */
1596 @SuppressWarnings("unchecked")
1597 public V putIfAbsent(K key, V value) {
1598 if (key == null || value == null)
1599 throw new NullPointerException();
1600 return (V)internalPutIfAbsent(key, value);
1601 }
1602
1603 /**
1604 * Copies all of the mappings from the specified map to this one.
1605 * These mappings replace any mappings that this map had for any of the
1606 * keys currently in the specified map.
1607 *
1608 * @param m mappings to be stored in this map
1609 */
1610 public void putAll(Map<? extends K, ? extends V> m) {
1611 internalPutAll(m);
1612 }
1613
1614 /**
1615 * If the specified key is not already associated with a value,
1616 * computes its value using the given mappingFunction and
1617 * enters it into the map. This is equivalent to
1618 * <pre> {@code
1619 * if (map.containsKey(key))
1620 * return map.get(key);
1621 * value = mappingFunction.map(key);
1622 * map.put(key, value);
1623 * return value;}</pre>
1624 *
1625 * except that the action is performed atomically. If the
1626 * function returns {@code null} (in which case a {@code
1627 * NullPointerException} is thrown), or the function itself throws
1628 * an (unchecked) exception, the exception is rethrown to its
1629 * caller, and no mapping is recorded. Some attempted update
1630 * operations on this map by other threads may be blocked while
1631 * computation is in progress, so the computation should be short
1632 * and simple, and must not attempt to update any other mappings
1633 * of this Map. The most appropriate usage is to construct a new
1634 * object serving as an initial mapped value, or memoized result,
1635 * as in:
1636 *
1637 * <pre> {@code
1638 * map.computeIfAbsent(key, new MappingFunction<K, V>() {
1639 * public V map(K k) { return new Value(f(k)); }});}</pre>
1640 *
1641 * @param key key with which the specified value is to be associated
1642 * @param mappingFunction the function to compute a value
1643 * @return the current (existing or computed) value associated with
1644 * the specified key.
1645 * @throws NullPointerException if the specified key, mappingFunction,
1646 * or computed value is null
1647 * @throws IllegalStateException if the computation detectably
1648 * attempts a recursive update to this map that would
1649 * otherwise never complete
1650 * @throws RuntimeException or Error if the mappingFunction does so,
1651 * in which case the mapping is left unestablished
1652 */
1653 @SuppressWarnings("unchecked")
1654 public V computeIfAbsent(K key, MappingFunction<? super K, ? extends V> mappingFunction) {
1655 if (key == null || mappingFunction == null)
1656 throw new NullPointerException();
1657 return (V)internalComputeIfAbsent(key, mappingFunction);
1658 }
1659
1660 /**
1661 * Computes and enters a new mapping value given a key and
1662 * its current mapped value (or {@code null} if there is no current
1663 * mapping). This is equivalent to
1664 * <pre> {@code
1665 * map.put(key, remappingFunction.remap(key, map.get(key));
1666 * }</pre>
1667 *
1668 * except that the action is performed atomically. If the
1669 * function returns {@code null} (in which case a {@code
1670 * NullPointerException} is thrown), or the function itself throws
1671 * an (unchecked) exception, the exception is rethrown to its
1672 * caller, and current mapping is left unchanged. Some attempted
1673 * update operations on this map by other threads may be blocked
1674 * while computation is in progress, so the computation should be
1675 * short and simple, and must not attempt to update any other
1676 * mappings of this Map. For example, to either create or
1677 * append new messages to a value mapping:
1678 *
1679 * <pre> {@code
1680 * Map<Key, String> map = ...;
1681 * final String msg = ...;
1682 * map.compute(key, new RemappingFunction<Key, String>() {
1683 * public String remap(Key k, String v) {
1684 * return (v == null) ? msg : v + msg;});}}</pre>
1685 *
1686 * @param key key with which the specified value is to be associated
1687 * @param remappingFunction the function to compute a value
1688 * @return the new value associated with
1689 * the specified key.
1690 * @throws NullPointerException if the specified key or remappingFunction
1691 * or computed value is null
1692 * @throws IllegalStateException if the computation detectably
1693 * attempts a recursive update to this map that would
1694 * otherwise never complete
1695 * @throws RuntimeException or Error if the remappingFunction does so,
1696 * in which case the mapping is unchanged
1697 */
1698 @SuppressWarnings("unchecked")
1699 public V compute(K key, RemappingFunction<? super K, V> remappingFunction) {
1700 if (key == null || remappingFunction == null)
1701 throw new NullPointerException();
1702 return (V)internalCompute(key, remappingFunction);
1703 }
1704
1705 /**
1706 * Removes the key (and its corresponding value) from this map.
1707 * This method does nothing if the key is not in the map.
1708 *
1709 * @param key the key that needs to be removed
1710 * @return the previous value associated with {@code key}, or
1711 * {@code null} if there was no mapping for {@code key}
1712 * @throws NullPointerException if the specified key is null
1713 */
1714 @SuppressWarnings("unchecked")
1715 public V remove(Object key) {
1716 if (key == null)
1717 throw new NullPointerException();
1718 return (V)internalReplace(key, null, null);
1719 }
1720
1721 /**
1722 * {@inheritDoc}
1723 *
1724 * @throws NullPointerException if the specified key is null
1725 */
1726 public boolean remove(Object key, Object value) {
1727 if (key == null)
1728 throw new NullPointerException();
1729 if (value == null)
1730 return false;
1731 return internalReplace(key, null, value) != null;
1732 }
1733
1734 /**
1735 * {@inheritDoc}
1736 *
1737 * @throws NullPointerException if any of the arguments are null
1738 */
1739 public boolean replace(K key, V oldValue, V newValue) {
1740 if (key == null || oldValue == null || newValue == null)
1741 throw new NullPointerException();
1742 return internalReplace(key, newValue, oldValue) != null;
1743 }
1744
1745 /**
1746 * {@inheritDoc}
1747 *
1748 * @return the previous value associated with the specified key,
1749 * or {@code null} if there was no mapping for the key
1750 * @throws NullPointerException if the specified key or value is null
1751 */
1752 @SuppressWarnings("unchecked")
1753 public V replace(K key, V value) {
1754 if (key == null || value == null)
1755 throw new NullPointerException();
1756 return (V)internalReplace(key, value, null);
1757 }
1758
1759 /**
1760 * Removes all of the mappings from this map.
1761 */
1762 public void clear() {
1763 internalClear();
1764 }
1765
1766 /**
1767 * Returns a {@link Set} view of the keys contained in this map.
1768 * The set is backed by the map, so changes to the map are
1769 * reflected in the set, and vice-versa. The set supports element
1770 * removal, which removes the corresponding mapping from this map,
1771 * via the {@code Iterator.remove}, {@code Set.remove},
1772 * {@code removeAll}, {@code retainAll}, and {@code clear}
1773 * operations. It does not support the {@code add} or
1774 * {@code addAll} operations.
1775 *
1776 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1777 * that will never throw {@link ConcurrentModificationException},
1778 * and guarantees to traverse elements as they existed upon
1779 * construction of the iterator, and may (but is not guaranteed to)
1780 * reflect any modifications subsequent to construction.
1781 */
1782 public Set<K> keySet() {
1783 KeySet<K,V> ks = keySet;
1784 return (ks != null) ? ks : (keySet = new KeySet<K,V>(this));
1785 }
1786
1787 /**
1788 * Returns a {@link Collection} view of the values contained in this map.
1789 * The collection is backed by the map, so changes to the map are
1790 * reflected in the collection, and vice-versa. The collection
1791 * supports element removal, which removes the corresponding
1792 * mapping from this map, via the {@code Iterator.remove},
1793 * {@code Collection.remove}, {@code removeAll},
1794 * {@code retainAll}, and {@code clear} operations. It does not
1795 * support the {@code add} or {@code addAll} operations.
1796 *
1797 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1798 * that will never throw {@link ConcurrentModificationException},
1799 * and guarantees to traverse elements as they existed upon
1800 * construction of the iterator, and may (but is not guaranteed to)
1801 * reflect any modifications subsequent to construction.
1802 */
1803 public Collection<V> values() {
1804 Values<K,V> vs = values;
1805 return (vs != null) ? vs : (values = new Values<K,V>(this));
1806 }
1807
1808 /**
1809 * Returns a {@link Set} view of the mappings contained in this map.
1810 * The set is backed by the map, so changes to the map are
1811 * reflected in the set, and vice-versa. The set supports element
1812 * removal, which removes the corresponding mapping from the map,
1813 * via the {@code Iterator.remove}, {@code Set.remove},
1814 * {@code removeAll}, {@code retainAll}, and {@code clear}
1815 * operations. It does not support the {@code add} or
1816 * {@code addAll} operations.
1817 *
1818 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1819 * that will never throw {@link ConcurrentModificationException},
1820 * and guarantees to traverse elements as they existed upon
1821 * construction of the iterator, and may (but is not guaranteed to)
1822 * reflect any modifications subsequent to construction.
1823 */
1824 public Set<Map.Entry<K,V>> entrySet() {
1825 EntrySet<K,V> es = entrySet;
1826 return (es != null) ? es : (entrySet = new EntrySet<K,V>(this));
1827 }
1828
1829 /**
1830 * Returns an enumeration of the keys in this table.
1831 *
1832 * @return an enumeration of the keys in this table
1833 * @see #keySet()
1834 */
1835 public Enumeration<K> keys() {
1836 return new KeyIterator<K,V>(this);
1837 }
1838
1839 /**
1840 * Returns an enumeration of the values in this table.
1841 *
1842 * @return an enumeration of the values in this table
1843 * @see #values()
1844 */
1845 public Enumeration<V> elements() {
1846 return new ValueIterator<K,V>(this);
1847 }
1848
1849 /**
1850 * Returns the hash code value for this {@link Map}, i.e.,
1851 * the sum of, for each key-value pair in the map,
1852 * {@code key.hashCode() ^ value.hashCode()}.
1853 *
1854 * @return the hash code value for this map
1855 */
1856 public int hashCode() {
1857 int h = 0;
1858 InternalIterator it = new InternalIterator(table);
1859 while (it.next != null) {
1860 h += it.nextKey.hashCode() ^ it.nextVal.hashCode();
1861 it.advance();
1862 }
1863 return h;
1864 }
1865
1866 /**
1867 * Returns a string representation of this map. The string
1868 * representation consists of a list of key-value mappings (in no
1869 * particular order) enclosed in braces ("{@code {}}"). Adjacent
1870 * mappings are separated by the characters {@code ", "} (comma
1871 * and space). Each key-value mapping is rendered as the key
1872 * followed by an equals sign ("{@code =}") followed by the
1873 * associated value.
1874 *
1875 * @return a string representation of this map
1876 */
1877 public String toString() {
1878 InternalIterator it = new InternalIterator(table);
1879 StringBuilder sb = new StringBuilder();
1880 sb.append('{');
1881 if (it.next != null) {
1882 for (;;) {
1883 Object k = it.nextKey, v = it.nextVal;
1884 sb.append(k == this ? "(this Map)" : k);
1885 sb.append('=');
1886 sb.append(v == this ? "(this Map)" : v);
1887 it.advance();
1888 if (it.next == null)
1889 break;
1890 sb.append(',').append(' ');
1891 }
1892 }
1893 return sb.append('}').toString();
1894 }
1895
1896 /**
1897 * Compares the specified object with this map for equality.
1898 * Returns {@code true} if the given object is a map with the same
1899 * mappings as this map. This operation may return misleading
1900 * results if either map is concurrently modified during execution
1901 * of this method.
1902 *
1903 * @param o object to be compared for equality with this map
1904 * @return {@code true} if the specified object is equal to this map
1905 */
1906 public boolean equals(Object o) {
1907 if (o != this) {
1908 if (!(o instanceof Map))
1909 return false;
1910 Map<?,?> m = (Map<?,?>) o;
1911 InternalIterator it = new InternalIterator(table);
1912 while (it.next != null) {
1913 Object val = it.nextVal;
1914 Object v = m.get(it.nextKey);
1915 if (v == null || (v != val && !v.equals(val)))
1916 return false;
1917 it.advance();
1918 }
1919 for (Map.Entry<?,?> e : m.entrySet()) {
1920 Object mk, mv, v;
1921 if ((mk = e.getKey()) == null ||
1922 (mv = e.getValue()) == null ||
1923 (v = internalGet(mk)) == null ||
1924 (mv != v && !mv.equals(v)))
1925 return false;
1926 }
1927 }
1928 return true;
1929 }
1930
1931 /* ----------------Iterators -------------- */
1932
1933 /**
1934 * Base class for key, value, and entry iterators. Adds a map
1935 * reference to InternalIterator to support Iterator.remove.
1936 */
1937 static abstract class ViewIterator<K,V> extends InternalIterator {
1938 final ConcurrentHashMapV8<K, V> map;
1939 ViewIterator(ConcurrentHashMapV8<K, V> map) {
1940 super(map.table);
1941 this.map = map;
1942 }
1943
1944 public final void remove() {
1945 if (last == null)
1946 throw new IllegalStateException();
1947 map.remove(last.key);
1948 last = null;
1949 }
1950
1951 public final boolean hasNext() { return next != null; }
1952 public final boolean hasMoreElements() { return next != null; }
1953 }
1954
1955 static final class KeyIterator<K,V> extends ViewIterator<K,V>
1956 implements Iterator<K>, Enumeration<K> {
1957 KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
1958
1959 @SuppressWarnings("unchecked")
1960 public final K next() {
1961 if (next == null)
1962 throw new NoSuchElementException();
1963 Object k = nextKey;
1964 advance();
1965 return (K)k;
1966 }
1967
1968 public final K nextElement() { return next(); }
1969 }
1970
1971 static final class ValueIterator<K,V> extends ViewIterator<K,V>
1972 implements Iterator<V>, Enumeration<V> {
1973 ValueIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
1974
1975 @SuppressWarnings("unchecked")
1976 public final V next() {
1977 if (next == null)
1978 throw new NoSuchElementException();
1979 Object v = nextVal;
1980 advance();
1981 return (V)v;
1982 }
1983
1984 public final V nextElement() { return next(); }
1985 }
1986
1987 static final class EntryIterator<K,V> extends ViewIterator<K,V>
1988 implements Iterator<Map.Entry<K,V>> {
1989 EntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
1990
1991 @SuppressWarnings("unchecked")
1992 public final Map.Entry<K,V> next() {
1993 if (next == null)
1994 throw new NoSuchElementException();
1995 Object k = nextKey;
1996 Object v = nextVal;
1997 advance();
1998 return new WriteThroughEntry<K,V>((K)k, (V)v, map);
1999 }
2000 }
2001
2002 static final class SnapshotEntryIterator<K,V> extends ViewIterator<K,V>
2003 implements Iterator<Map.Entry<K,V>> {
2004 SnapshotEntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
2005
2006 @SuppressWarnings("unchecked")
2007 public final Map.Entry<K,V> next() {
2008 if (next == null)
2009 throw new NoSuchElementException();
2010 Object k = nextKey;
2011 Object v = nextVal;
2012 advance();
2013 return new SnapshotEntry<K,V>((K)k, (V)v);
2014 }
2015 }
2016
2017 /**
2018 * Base of writeThrough and Snapshot entry classes
2019 */
2020 static abstract class MapEntry<K,V> implements Map.Entry<K, V> {
2021 final K key; // non-null
2022 V val; // non-null
2023 MapEntry(K key, V val) { this.key = key; this.val = val; }
2024 public final K getKey() { return key; }
2025 public final V getValue() { return val; }
2026 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
2027 public final String toString(){ return key + "=" + val; }
2028
2029 public final boolean equals(Object o) {
2030 Object k, v; Map.Entry<?,?> e;
2031 return ((o instanceof Map.Entry) &&
2032 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
2033 (v = e.getValue()) != null &&
2034 (k == key || k.equals(key)) &&
2035 (v == val || v.equals(val)));
2036 }
2037
2038 public abstract V setValue(V value);
2039 }
2040
2041 /**
2042 * Entry used by EntryIterator.next(), that relays setValue
2043 * changes to the underlying map.
2044 */
2045 static final class WriteThroughEntry<K,V> extends MapEntry<K,V>
2046 implements Map.Entry<K, V> {
2047 final ConcurrentHashMapV8<K, V> map;
2048 WriteThroughEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
2049 super(key, val);
2050 this.map = map;
2051 }
2052
2053 /**
2054 * Sets our entry's value and writes through to the map. The
2055 * value to return is somewhat arbitrary here. Since a
2056 * WriteThroughEntry does not necessarily track asynchronous
2057 * changes, the most recent "previous" value could be
2058 * different from what we return (or could even have been
2059 * removed in which case the put will re-establish). We do not
2060 * and cannot guarantee more.
2061 */
2062 public final V setValue(V value) {
2063 if (value == null) throw new NullPointerException();
2064 V v = val;
2065 val = value;
2066 map.put(key, value);
2067 return v;
2068 }
2069 }
2070
2071 /**
2072 * Internal version of entry, that doesn't write though changes
2073 */
2074 static final class SnapshotEntry<K,V> extends MapEntry<K,V>
2075 implements Map.Entry<K, V> {
2076 SnapshotEntry(K key, V val) { super(key, val); }
2077 public final V setValue(V value) { // only locally update
2078 if (value == null) throw new NullPointerException();
2079 V v = val;
2080 val = value;
2081 return v;
2082 }
2083 }
2084
2085 /* ----------------Views -------------- */
2086
2087 /**
2088 * Base class for views. This is done mainly to allow adding
2089 * customized parallel traversals (not yet implemented.)
2090 */
2091 static abstract class MapView<K, V> {
2092 final ConcurrentHashMapV8<K, V> map;
2093 MapView(ConcurrentHashMapV8<K, V> map) { this.map = map; }
2094 public final int size() { return map.size(); }
2095 public final boolean isEmpty() { return map.isEmpty(); }
2096 public final void clear() { map.clear(); }
2097
2098 // implementations below rely on concrete classes supplying these
2099 abstract Iterator<?> iter();
2100 abstract public boolean contains(Object o);
2101 abstract public boolean remove(Object o);
2102
2103 private static final String oomeMsg = "Required array size too large";
2104
2105 public final Object[] toArray() {
2106 long sz = map.longSize();
2107 if (sz > (long)(MAX_ARRAY_SIZE))
2108 throw new OutOfMemoryError(oomeMsg);
2109 int n = (int)sz;
2110 Object[] r = new Object[n];
2111 int i = 0;
2112 Iterator<?> it = iter();
2113 while (it.hasNext()) {
2114 if (i == n) {
2115 if (n >= MAX_ARRAY_SIZE)
2116 throw new OutOfMemoryError(oomeMsg);
2117 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
2118 n = MAX_ARRAY_SIZE;
2119 else
2120 n += (n >>> 1) + 1;
2121 r = Arrays.copyOf(r, n);
2122 }
2123 r[i++] = it.next();
2124 }
2125 return (i == n) ? r : Arrays.copyOf(r, i);
2126 }
2127
2128 @SuppressWarnings("unchecked")
2129 public final <T> T[] toArray(T[] a) {
2130 long sz = map.longSize();
2131 if (sz > (long)(MAX_ARRAY_SIZE))
2132 throw new OutOfMemoryError(oomeMsg);
2133 int m = (int)sz;
2134 T[] r = (a.length >= m) ? a :
2135 (T[])java.lang.reflect.Array
2136 .newInstance(a.getClass().getComponentType(), m);
2137 int n = r.length;
2138 int i = 0;
2139 Iterator<?> it = iter();
2140 while (it.hasNext()) {
2141 if (i == n) {
2142 if (n >= MAX_ARRAY_SIZE)
2143 throw new OutOfMemoryError(oomeMsg);
2144 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
2145 n = MAX_ARRAY_SIZE;
2146 else
2147 n += (n >>> 1) + 1;
2148 r = Arrays.copyOf(r, n);
2149 }
2150 r[i++] = (T)it.next();
2151 }
2152 if (a == r && i < n) {
2153 r[i] = null; // null-terminate
2154 return r;
2155 }
2156 return (i == n) ? r : Arrays.copyOf(r, i);
2157 }
2158
2159 public final int hashCode() {
2160 int h = 0;
2161 for (Iterator<?> it = iter(); it.hasNext();)
2162 h += it.next().hashCode();
2163 return h;
2164 }
2165
2166 public final String toString() {
2167 StringBuilder sb = new StringBuilder();
2168 sb.append('[');
2169 Iterator<?> it = iter();
2170 if (it.hasNext()) {
2171 for (;;) {
2172 Object e = it.next();
2173 sb.append(e == this ? "(this Collection)" : e);
2174 if (!it.hasNext())
2175 break;
2176 sb.append(',').append(' ');
2177 }
2178 }
2179 return sb.append(']').toString();
2180 }
2181
2182 public final boolean containsAll(Collection<?> c) {
2183 if (c != this) {
2184 for (Iterator<?> it = c.iterator(); it.hasNext();) {
2185 Object e = it.next();
2186 if (e == null || !contains(e))
2187 return false;
2188 }
2189 }
2190 return true;
2191 }
2192
2193 public final boolean removeAll(Collection<?> c) {
2194 boolean modified = false;
2195 for (Iterator<?> it = iter(); it.hasNext();) {
2196 if (c.contains(it.next())) {
2197 it.remove();
2198 modified = true;
2199 }
2200 }
2201 return modified;
2202 }
2203
2204 public final boolean retainAll(Collection<?> c) {
2205 boolean modified = false;
2206 for (Iterator<?> it = iter(); it.hasNext();) {
2207 if (!c.contains(it.next())) {
2208 it.remove();
2209 modified = true;
2210 }
2211 }
2212 return modified;
2213 }
2214
2215 }
2216
2217 static final class KeySet<K,V> extends MapView<K,V> implements Set<K> {
2218 KeySet(ConcurrentHashMapV8<K, V> map) { super(map); }
2219 public final boolean contains(Object o) { return map.containsKey(o); }
2220 public final boolean remove(Object o) { return map.remove(o) != null; }
2221
2222 public final Iterator<K> iterator() {
2223 return new KeyIterator<K,V>(map);
2224 }
2225 final Iterator<?> iter() {
2226 return new KeyIterator<K,V>(map);
2227 }
2228 public final boolean add(K e) {
2229 throw new UnsupportedOperationException();
2230 }
2231 public final boolean addAll(Collection<? extends K> c) {
2232 throw new UnsupportedOperationException();
2233 }
2234 public boolean equals(Object o) {
2235 Set<?> c;
2236 return ((o instanceof Set) &&
2237 ((c = (Set<?>)o) == this ||
2238 (containsAll(c) && c.containsAll(this))));
2239 }
2240 }
2241
2242 static final class Values<K,V> extends MapView<K,V>
2243 implements Collection<V> {
2244 Values(ConcurrentHashMapV8<K, V> map) { super(map); }
2245 public final boolean contains(Object o) { return map.containsValue(o); }
2246
2247 public final boolean remove(Object o) {
2248 if (o != null) {
2249 Iterator<V> it = new ValueIterator<K,V>(map);
2250 while (it.hasNext()) {
2251 if (o.equals(it.next())) {
2252 it.remove();
2253 return true;
2254 }
2255 }
2256 }
2257 return false;
2258 }
2259 public final Iterator<V> iterator() {
2260 return new ValueIterator<K,V>(map);
2261 }
2262 final Iterator<?> iter() {
2263 return new ValueIterator<K,V>(map);
2264 }
2265 public final boolean add(V e) {
2266 throw new UnsupportedOperationException();
2267 }
2268 public final boolean addAll(Collection<? extends V> c) {
2269 throw new UnsupportedOperationException();
2270 }
2271 }
2272
2273 static final class EntrySet<K,V> extends MapView<K,V>
2274 implements Set<Map.Entry<K,V>> {
2275 EntrySet(ConcurrentHashMapV8<K, V> map) { super(map); }
2276
2277 public final boolean contains(Object o) {
2278 Object k, v, r; Map.Entry<?,?> e;
2279 return ((o instanceof Map.Entry) &&
2280 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
2281 (r = map.get(k)) != null &&
2282 (v = e.getValue()) != null &&
2283 (v == r || v.equals(r)));
2284 }
2285
2286 public final boolean remove(Object o) {
2287 Object k, v; Map.Entry<?,?> e;
2288 return ((o instanceof Map.Entry) &&
2289 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
2290 (v = e.getValue()) != null &&
2291 map.remove(k, v));
2292 }
2293
2294 public final Iterator<Map.Entry<K,V>> iterator() {
2295 return new EntryIterator<K,V>(map);
2296 }
2297 final Iterator<?> iter() {
2298 return new SnapshotEntryIterator<K,V>(map);
2299 }
2300 public final boolean add(Entry<K,V> e) {
2301 throw new UnsupportedOperationException();
2302 }
2303 public final boolean addAll(Collection<? extends Entry<K,V>> c) {
2304 throw new UnsupportedOperationException();
2305 }
2306 public boolean equals(Object o) {
2307 Set<?> c;
2308 return ((o instanceof Set) &&
2309 ((c = (Set<?>)o) == this ||
2310 (containsAll(c) && c.containsAll(this))));
2311 }
2312 }
2313
2314 /* ---------------- Serialization Support -------------- */
2315
2316 /**
2317 * Stripped-down version of helper class used in previous version,
2318 * declared for the sake of serialization compatibility
2319 */
2320 static class Segment<K,V> implements Serializable {
2321 private static final long serialVersionUID = 2249069246763182397L;
2322 final float loadFactor;
2323 Segment(float lf) { this.loadFactor = lf; }
2324 }
2325
2326 /**
2327 * Saves the state of the {@code ConcurrentHashMapV8} instance to a
2328 * stream (i.e., serializes it).
2329 * @param s the stream
2330 * @serialData
2331 * the key (Object) and value (Object)
2332 * for each key-value mapping, followed by a null pair.
2333 * The key-value mappings are emitted in no particular order.
2334 */
2335 @SuppressWarnings("unchecked")
2336 private void writeObject(java.io.ObjectOutputStream s)
2337 throws java.io.IOException {
2338 if (segments == null) { // for serialization compatibility
2339 segments = (Segment<K,V>[])
2340 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
2341 for (int i = 0; i < segments.length; ++i)
2342 segments[i] = new Segment<K,V>(LOAD_FACTOR);
2343 }
2344 s.defaultWriteObject();
2345 InternalIterator it = new InternalIterator(table);
2346 while (it.next != null) {
2347 s.writeObject(it.nextKey);
2348 s.writeObject(it.nextVal);
2349 it.advance();
2350 }
2351 s.writeObject(null);
2352 s.writeObject(null);
2353 segments = null; // throw away
2354 }
2355
2356 /**
2357 * Reconstitutes the instance from a stream (that is, deserializes it).
2358 * @param s the stream
2359 */
2360 @SuppressWarnings("unchecked")
2361 private void readObject(java.io.ObjectInputStream s)
2362 throws java.io.IOException, ClassNotFoundException {
2363 s.defaultReadObject();
2364 this.segments = null; // unneeded
2365 // initialize transient final field
2366 UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
2367
2368 // Create all nodes, then place in table once size is known
2369 long size = 0L;
2370 Node p = null;
2371 for (;;) {
2372 K k = (K) s.readObject();
2373 V v = (V) s.readObject();
2374 if (k != null && v != null) {
2375 p = new Node(spread(k.hashCode()), k, v, p);
2376 ++size;
2377 }
2378 else
2379 break;
2380 }
2381 if (p != null) {
2382 boolean init = false;
2383 int n;
2384 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
2385 n = MAXIMUM_CAPACITY;
2386 else {
2387 int sz = (int)size;
2388 n = tableSizeFor(sz + (sz >>> 1) + 1);
2389 }
2390 int sc = sizeCtl;
2391 if (n > sc &&
2392 UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2393 try {
2394 if (table == null) {
2395 init = true;
2396 Node[] tab = new Node[n];
2397 int mask = n - 1;
2398 while (p != null) {
2399 int j = p.hash & mask;
2400 Node next = p.next;
2401 p.next = tabAt(tab, j);
2402 setTabAt(tab, j, p);
2403 p = next;
2404 }
2405 table = tab;
2406 counter.add(size);
2407 sc = n - (n >>> 2);
2408 }
2409 } finally {
2410 sizeCtl = sc;
2411 }
2412 }
2413 if (!init) { // Can only happen if unsafely published.
2414 while (p != null) {
2415 internalPut(p.key, p.val);
2416 p = p.next;
2417 }
2418 }
2419 }
2420 }
2421
2422 // Unsafe mechanics
2423 private static final sun.misc.Unsafe UNSAFE;
2424 private static final long counterOffset;
2425 private static final long sizeCtlOffset;
2426 private static final long ABASE;
2427 private static final int ASHIFT;
2428
2429 static {
2430 int ss;
2431 try {
2432 UNSAFE = getUnsafe();
2433 Class<?> k = ConcurrentHashMapV8.class;
2434 counterOffset = UNSAFE.objectFieldOffset
2435 (k.getDeclaredField("counter"));
2436 sizeCtlOffset = UNSAFE.objectFieldOffset
2437 (k.getDeclaredField("sizeCtl"));
2438 Class<?> sc = Node[].class;
2439 ABASE = UNSAFE.arrayBaseOffset(sc);
2440 ss = UNSAFE.arrayIndexScale(sc);
2441 } catch (Exception e) {
2442 throw new Error(e);
2443 }
2444 if ((ss & (ss-1)) != 0)
2445 throw new Error("data type scale not a power of two");
2446 ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
2447 }
2448
2449 /**
2450 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
2451 * Replace with a simple call to Unsafe.getUnsafe when integrating
2452 * into a jdk.
2453 *
2454 * @return a sun.misc.Unsafe
2455 */
2456 private static sun.misc.Unsafe getUnsafe() {
2457 try {
2458 return sun.misc.Unsafe.getUnsafe();
2459 } catch (SecurityException se) {
2460 try {
2461 return java.security.AccessController.doPrivileged
2462 (new java.security
2463 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
2464 public sun.misc.Unsafe run() throws Exception {
2465 java.lang.reflect.Field f = sun.misc
2466 .Unsafe.class.getDeclaredField("theUnsafe");
2467 f.setAccessible(true);
2468 return (sun.misc.Unsafe) f.get(null);
2469 }});
2470 } catch (java.security.PrivilegedActionException e) {
2471 throw new RuntimeException("Could not initialize intrinsics",
2472 e.getCause());
2473 }
2474 }
2475 }
2476
2477 }