ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
Revision: 1.60
Committed: Thu Aug 16 12:24:58 2012 UTC (11 years, 8 months ago) by dl
Branch: MAIN
Changes since 1.59: +1 -1 lines
Log Message:
Parameterize CountedCompleters

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package jsr166e;
8 import jsr166e.LongAdder;
9 import jsr166e.ForkJoinPool;
10 import jsr166e.ForkJoinTask;
11
12 import java.util.Comparator;
13 import java.util.Arrays;
14 import java.util.Map;
15 import java.util.Set;
16 import java.util.Collection;
17 import java.util.AbstractMap;
18 import java.util.AbstractSet;
19 import java.util.AbstractCollection;
20 import java.util.Hashtable;
21 import java.util.HashMap;
22 import java.util.Iterator;
23 import java.util.Enumeration;
24 import java.util.ConcurrentModificationException;
25 import java.util.NoSuchElementException;
26 import java.util.concurrent.ConcurrentMap;
27 import java.util.concurrent.ThreadLocalRandom;
28 import java.util.concurrent.locks.LockSupport;
29 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
30 import java.util.concurrent.atomic.AtomicReference;
31
32 import java.io.Serializable;
33
34 /**
35 * A hash table supporting full concurrency of retrievals and
36 * high expected concurrency for updates. This class obeys the
37 * same functional specification as {@link java.util.Hashtable}, and
38 * includes versions of methods corresponding to each method of
39 * {@code Hashtable}. However, even though all operations are
40 * thread-safe, retrieval operations do <em>not</em> entail locking,
41 * and there is <em>not</em> any support for locking the entire table
42 * in a way that prevents all access. This class is fully
43 * interoperable with {@code Hashtable} in programs that rely on its
44 * thread safety but not on its synchronization details.
45 *
46 * <p> Retrieval operations (including {@code get}) generally do not
47 * block, so may overlap with update operations (including {@code put}
48 * and {@code remove}). Retrievals reflect the results of the most
49 * recently <em>completed</em> update operations holding upon their
50 * onset. (More formally, an update operation for a given key bears a
51 * <em>happens-before</em> relation with any (non-null) retrieval for
52 * that key reporting the updated value.) For aggregate operations
53 * such as {@code putAll} and {@code clear}, concurrent retrievals may
54 * reflect insertion or removal of only some entries. Similarly,
55 * Iterators and Enumerations return elements reflecting the state of
56 * the hash table at some point at or since the creation of the
57 * iterator/enumeration. They do <em>not</em> throw {@link
58 * ConcurrentModificationException}. However, iterators are designed
59 * to be used by only one thread at a time. Bear in mind that the
60 * results of aggregate status methods including {@code size}, {@code
61 * isEmpty}, and {@code containsValue} are typically useful only when
62 * a map is not undergoing concurrent updates in other threads.
63 * Otherwise the results of these methods reflect transient states
64 * that may be adequate for monitoring or estimation purposes, but not
65 * for program control.
66 *
67 * <p> The table is dynamically expanded when there are too many
68 * collisions (i.e., keys that have distinct hash codes but fall into
69 * the same slot modulo the table size), with the expected average
70 * effect of maintaining roughly two bins per mapping (corresponding
71 * to a 0.75 load factor threshold for resizing). There may be much
72 * variance around this average as mappings are added and removed, but
73 * overall, this maintains a commonly accepted time/space tradeoff for
74 * hash tables. However, resizing this or any other kind of hash
75 * table may be a relatively slow operation. When possible, it is a
76 * good idea to provide a size estimate as an optional {@code
77 * initialCapacity} constructor argument. An additional optional
78 * {@code loadFactor} constructor argument provides a further means of
79 * customizing initial table capacity by specifying the table density
80 * to be used in calculating the amount of space to allocate for the
81 * given number of elements. Also, for compatibility with previous
82 * versions of this class, constructors may optionally specify an
83 * expected {@code concurrencyLevel} as an additional hint for
84 * internal sizing. Note that using many keys with exactly the same
85 * {@code hashCode()} is a sure way to slow down performance of any
86 * hash table.
87 *
88 * <p>This class and its views and iterators implement all of the
89 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
90 * interfaces.
91 *
92 * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
93 * does <em>not</em> allow {@code null} to be used as a key or value.
94 *
95 * <p>This class is a member of the
96 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
97 * Java Collections Framework</a>.
98 *
99 * <p><em>jsr166e note: This class is a candidate replacement for
100 * java.util.concurrent.ConcurrentHashMap. During transition, this
101 * class declares and uses nested functional interfaces with different
102 * names but the same forms as those expected for JDK8.<em>
103 *
104 * @since 1.5
105 * @author Doug Lea
106 * @param <K> the type of keys maintained by this map
107 * @param <V> the type of mapped values
108 */
109 public class ConcurrentHashMapV8<K, V>
110 implements ConcurrentMap<K, V>, Serializable {
111 private static final long serialVersionUID = 7249069246763182397L;
112
113 /**
114 * A partitionable iterator. A Spliterator can be traversed
115 * directly, but can also be partitioned (before traversal) by
116 * creating another Spliterator that covers a non-overlapping
117 * portion of the elements, and so may be amenable to parallel
118 * execution.
119 *
120 * <p> This interface exports a subset of expected JDK8
121 * functionality.
122 *
123 * <p>Sample usage: Here is one (of the several) ways to compute
124 * the sum of the values held in a map using the ForkJoin
125 * framework. As illustrated here, Spliterators are well suited to
126 * designs in which a task repeatedly splits off half its work
127 * into forked subtasks until small enough to process directly,
128 * and then joins these subtasks. Variants of this style can also
129 * be used in completion-based designs.
130 *
131 * <pre>
132 * {@code ConcurrentHashMapV8<String, Long> m = ...
133 * // split as if have 8 * parallelism, for load balance
134 * int n = m.size();
135 * int p = aForkJoinPool.getParallelism() * 8;
136 * int split = (n < p)? n : p;
137 * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
138 * // ...
139 * static class SumValues extends RecursiveTask<Long> {
140 * final Spliterator<Long> s;
141 * final int split; // split while > 1
142 * final SumValues nextJoin; // records forked subtasks to join
143 * SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
144 * this.s = s; this.depth = depth; this.nextJoin = nextJoin;
145 * }
146 * public Long compute() {
147 * long sum = 0;
148 * SumValues subtasks = null; // fork subtasks
149 * for (int s = split >>> 1; s > 0; s >>>= 1)
150 * (subtasks = new SumValues(s.split(), s, subtasks)).fork();
151 * while (s.hasNext()) // directly process remaining elements
152 * sum += s.next();
153 * for (SumValues t = subtasks; t != null; t = t.nextJoin)
154 * sum += t.join(); // collect subtask results
155 * return sum;
156 * }
157 * }
158 * }</pre>
159 */
160 public static interface Spliterator<T> extends Iterator<T> {
161 /**
162 * Returns a Spliterator covering approximately half of the
163 * elements, guaranteed not to overlap with those subsequently
164 * returned by this Spliterator. After invoking this method,
165 * the current Spliterator will <em>not</em> produce any of
166 * the elements of the returned Spliterator, but the two
167 * Spliterators together will produce all of the elements that
168 * would have been produced by this Spliterator had this
169 * method not been called. The exact number of elements
170 * produced by the returned Spliterator is not guaranteed, and
171 * may be zero (i.e., with {@code hasNext()} reporting {@code
172 * false}) if this Spliterator cannot be further split.
173 *
174 * @return a Spliterator covering approximately half of the
175 * elements
176 * @throws IllegalStateException if this Spliterator has
177 * already commenced traversing elements
178 */
179 Spliterator<T> split();
180 }
181
182 /*
183 * Overview:
184 *
185 * The primary design goal of this hash table is to maintain
186 * concurrent readability (typically method get(), but also
187 * iterators and related methods) while minimizing update
188 * contention. Secondary goals are to keep space consumption about
189 * the same or better than java.util.HashMap, and to support high
190 * initial insertion rates on an empty table by many threads.
191 *
192 * Each key-value mapping is held in a Node. Because Node fields
193 * can contain special values, they are defined using plain Object
194 * types. Similarly in turn, all internal methods that use them
195 * work off Object types. And similarly, so do the internal
196 * methods of auxiliary iterator and view classes. All public
197 * generic typed methods relay in/out of these internal methods,
198 * supplying null-checks and casts as needed. This also allows
199 * many of the public methods to be factored into a smaller number
200 * of internal methods (although sadly not so for the five
201 * variants of put-related operations). The validation-based
202 * approach explained below leads to a lot of code sprawl because
203 * retry-control precludes factoring into smaller methods.
204 *
205 * The table is lazily initialized to a power-of-two size upon the
206 * first insertion. Each bin in the table normally contains a
207 * list of Nodes (most often, the list has only zero or one Node).
208 * Table accesses require volatile/atomic reads, writes, and
209 * CASes. Because there is no other way to arrange this without
210 * adding further indirections, we use intrinsics
211 * (sun.misc.Unsafe) operations. The lists of nodes within bins
212 * are always accurately traversable under volatile reads, so long
213 * as lookups check hash code and non-nullness of value before
214 * checking key equality.
215 *
216 * We use the top two bits of Node hash fields for control
217 * purposes -- they are available anyway because of addressing
218 * constraints. As explained further below, these top bits are
219 * used as follows:
220 * 00 - Normal
221 * 01 - Locked
222 * 11 - Locked and may have a thread waiting for lock
223 * 10 - Node is a forwarding node
224 *
225 * The lower 30 bits of each Node's hash field contain a
226 * transformation of the key's hash code, except for forwarding
227 * nodes, for which the lower bits are zero (and so always have
228 * hash field == MOVED).
229 *
230 * Insertion (via put or its variants) of the first node in an
231 * empty bin is performed by just CASing it to the bin. This is
232 * by far the most common case for put operations under most
233 * key/hash distributions. Other update operations (insert,
234 * delete, and replace) require locks. We do not want to waste
235 * the space required to associate a distinct lock object with
236 * each bin, so instead use the first node of a bin list itself as
237 * a lock. Blocking support for these locks relies on the builtin
238 * "synchronized" monitors. However, we also need a tryLock
239 * construction, so we overlay these by using bits of the Node
240 * hash field for lock control (see above), and so normally use
241 * builtin monitors only for blocking and signalling using
242 * wait/notifyAll constructions. See Node.tryAwaitLock.
243 *
244 * Using the first node of a list as a lock does not by itself
245 * suffice though: When a node is locked, any update must first
246 * validate that it is still the first node after locking it, and
247 * retry if not. Because new nodes are always appended to lists,
248 * once a node is first in a bin, it remains first until deleted
249 * or the bin becomes invalidated (upon resizing). However,
250 * operations that only conditionally update may inspect nodes
251 * until the point of update. This is a converse of sorts to the
252 * lazy locking technique described by Herlihy & Shavit.
253 *
254 * The main disadvantage of per-bin locks is that other update
255 * operations on other nodes in a bin list protected by the same
256 * lock can stall, for example when user equals() or mapping
257 * functions take a long time. However, statistically, under
258 * random hash codes, this is not a common problem. Ideally, the
259 * frequency of nodes in bins follows a Poisson distribution
260 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
261 * parameter of about 0.5 on average, given the resizing threshold
262 * of 0.75, although with a large variance because of resizing
263 * granularity. Ignoring variance, the expected occurrences of
264 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
265 * first values are:
266 *
267 * 0: 0.60653066
268 * 1: 0.30326533
269 * 2: 0.07581633
270 * 3: 0.01263606
271 * 4: 0.00157952
272 * 5: 0.00015795
273 * 6: 0.00001316
274 * 7: 0.00000094
275 * 8: 0.00000006
276 * more: less than 1 in ten million
277 *
278 * Lock contention probability for two threads accessing distinct
279 * elements is roughly 1 / (8 * #elements) under random hashes.
280 *
281 * Actual hash code distributions encountered in practice
282 * sometimes deviate significantly from uniform randomness. This
283 * includes the case when N > (1<<30), so some keys MUST collide.
284 * Similarly for dumb or hostile usages in which multiple keys are
285 * designed to have identical hash codes. Also, although we guard
286 * against the worst effects of this (see method spread), sets of
287 * hashes may differ only in bits that do not impact their bin
288 * index for a given power-of-two mask. So we use a secondary
289 * strategy that applies when the number of nodes in a bin exceeds
290 * a threshold, and at least one of the keys implements
291 * Comparable. These TreeBins use a balanced tree to hold nodes
292 * (a specialized form of red-black trees), bounding search time
293 * to O(log N). Each search step in a TreeBin is around twice as
294 * slow as in a regular list, but given that N cannot exceed
295 * (1<<64) (before running out of addresses) this bounds search
296 * steps, lock hold times, etc, to reasonable constants (roughly
297 * 100 nodes inspected per operation worst case) so long as keys
298 * are Comparable (which is very common -- String, Long, etc).
299 * TreeBin nodes (TreeNodes) also maintain the same "next"
300 * traversal pointers as regular nodes, so can be traversed in
301 * iterators in the same way.
302 *
303 * The table is resized when occupancy exceeds a percentage
304 * threshold (nominally, 0.75, but see below). Only a single
305 * thread performs the resize (using field "sizeCtl", to arrange
306 * exclusion), but the table otherwise remains usable for reads
307 * and updates. Resizing proceeds by transferring bins, one by
308 * one, from the table to the next table. Because we are using
309 * power-of-two expansion, the elements from each bin must either
310 * stay at same index, or move with a power of two offset. We
311 * eliminate unnecessary node creation by catching cases where old
312 * nodes can be reused because their next fields won't change. On
313 * average, only about one-sixth of them need cloning when a table
314 * doubles. The nodes they replace will be garbage collectable as
315 * soon as they are no longer referenced by any reader thread that
316 * may be in the midst of concurrently traversing table. Upon
317 * transfer, the old table bin contains only a special forwarding
318 * node (with hash field "MOVED") that contains the next table as
319 * its key. On encountering a forwarding node, access and update
320 * operations restart, using the new table.
321 *
322 * Each bin transfer requires its bin lock. However, unlike other
323 * cases, a transfer can skip a bin if it fails to acquire its
324 * lock, and revisit it later (unless it is a TreeBin). Method
325 * rebuild maintains a buffer of TRANSFER_BUFFER_SIZE bins that
326 * have been skipped because of failure to acquire a lock, and
327 * blocks only if none are available (i.e., only very rarely).
328 * The transfer operation must also ensure that all accessible
329 * bins in both the old and new table are usable by any traversal.
330 * When there are no lock acquisition failures, this is arranged
331 * simply by proceeding from the last bin (table.length - 1) up
332 * towards the first. Upon seeing a forwarding node, traversals
333 * (see class Iter) arrange to move to the new table
334 * without revisiting nodes. However, when any node is skipped
335 * during a transfer, all earlier table bins may have become
336 * visible, so are initialized with a reverse-forwarding node back
337 * to the old table until the new ones are established. (This
338 * sometimes requires transiently locking a forwarding node, which
339 * is possible under the above encoding.) These more expensive
340 * mechanics trigger only when necessary.
341 *
342 * The traversal scheme also applies to partial traversals of
343 * ranges of bins (via an alternate Traverser constructor)
344 * to support partitioned aggregate operations. Also, read-only
345 * operations give up if ever forwarded to a null table, which
346 * provides support for shutdown-style clearing, which is also not
347 * currently implemented.
348 *
349 * Lazy table initialization minimizes footprint until first use,
350 * and also avoids resizings when the first operation is from a
351 * putAll, constructor with map argument, or deserialization.
352 * These cases attempt to override the initial capacity settings,
353 * but harmlessly fail to take effect in cases of races.
354 *
355 * The element count is maintained using a LongAdder, which avoids
356 * contention on updates but can encounter cache thrashing if read
357 * too frequently during concurrent access. To avoid reading so
358 * often, resizing is attempted either when a bin lock is
359 * contended, or upon adding to a bin already holding two or more
360 * nodes (checked before adding in the xIfAbsent methods, after
361 * adding in others). Under uniform hash distributions, the
362 * probability of this occurring at threshold is around 13%,
363 * meaning that only about 1 in 8 puts check threshold (and after
364 * resizing, many fewer do so). But this approximation has high
365 * variance for small table sizes, so we check on any collision
366 * for sizes <= 64. The bulk putAll operation further reduces
367 * contention by only committing count updates upon these size
368 * checks.
369 *
370 * Maintaining API and serialization compatibility with previous
371 * versions of this class introduces several oddities. Mainly: We
372 * leave untouched but unused constructor arguments refering to
373 * concurrencyLevel. We accept a loadFactor constructor argument,
374 * but apply it only to initial table capacity (which is the only
375 * time that we can guarantee to honor it.) We also declare an
376 * unused "Segment" class that is instantiated in minimal form
377 * only when serializing.
378 */
379
380 /* ---------------- Constants -------------- */
381
382 /**
383 * The largest possible table capacity. This value must be
384 * exactly 1<<30 to stay within Java array allocation and indexing
385 * bounds for power of two table sizes, and is further required
386 * because the top two bits of 32bit hash fields are used for
387 * control purposes.
388 */
389 private static final int MAXIMUM_CAPACITY = 1 << 30;
390
391 /**
392 * The default initial table capacity. Must be a power of 2
393 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
394 */
395 private static final int DEFAULT_CAPACITY = 16;
396
397 /**
398 * The largest possible (non-power of two) array size.
399 * Needed by toArray and related methods.
400 */
401 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
402
403 /**
404 * The default concurrency level for this table. Unused but
405 * defined for compatibility with previous versions of this class.
406 */
407 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
408
409 /**
410 * The load factor for this table. Overrides of this value in
411 * constructors affect only the initial table capacity. The
412 * actual floating point value isn't normally used -- it is
413 * simpler to use expressions such as {@code n - (n >>> 2)} for
414 * the associated resizing threshold.
415 */
416 private static final float LOAD_FACTOR = 0.75f;
417
418 /**
419 * The buffer size for skipped bins during transfers. The
420 * value is arbitrary but should be large enough to avoid
421 * most locking stalls during resizes.
422 */
423 private static final int TRANSFER_BUFFER_SIZE = 32;
424
425 /**
426 * The bin count threshold for using a tree rather than list for a
427 * bin. The value reflects the approximate break-even point for
428 * using tree-based operations.
429 */
430 private static final int TREE_THRESHOLD = 8;
431
432 /*
433 * Encodings for special uses of Node hash fields. See above for
434 * explanation.
435 */
436 static final int MOVED = 0x80000000; // hash field for forwarding nodes
437 static final int LOCKED = 0x40000000; // set/tested only as a bit
438 static final int WAITING = 0xc0000000; // both bits set/tested together
439 static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash
440
441 /* ---------------- Fields -------------- */
442
443 /**
444 * The array of bins. Lazily initialized upon first insertion.
445 * Size is always a power of two. Accessed directly by iterators.
446 */
447 transient volatile Node[] table;
448
449 /**
450 * The counter maintaining number of elements.
451 */
452 private transient final LongAdder counter;
453
454 /**
455 * Table initialization and resizing control. When negative, the
456 * table is being initialized or resized. Otherwise, when table is
457 * null, holds the initial table size to use upon creation, or 0
458 * for default. After initialization, holds the next element count
459 * value upon which to resize the table.
460 */
461 private transient volatile int sizeCtl;
462
463 // views
464 private transient KeySet<K,V> keySet;
465 private transient Values<K,V> values;
466 private transient EntrySet<K,V> entrySet;
467
468 /** For serialization compatibility. Null unless serialized; see below */
469 private Segment<K,V>[] segments;
470
471 /* ---------------- Table element access -------------- */
472
473 /*
474 * Volatile access methods are used for table elements as well as
475 * elements of in-progress next table while resizing. Uses are
476 * null checked by callers, and implicitly bounds-checked, relying
477 * on the invariants that tab arrays have non-zero size, and all
478 * indices are masked with (tab.length - 1) which is never
479 * negative and always less than length. Note that, to be correct
480 * wrt arbitrary concurrency errors by users, bounds checks must
481 * operate on local variables, which accounts for some odd-looking
482 * inline assignments below.
483 */
484
485 static final Node tabAt(Node[] tab, int i) { // used by Iter
486 return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
487 }
488
489 private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
490 return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
491 }
492
493 private static final void setTabAt(Node[] tab, int i, Node v) {
494 UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
495 }
496
497 /* ---------------- Nodes -------------- */
498
499 /**
500 * Key-value entry. Note that this is never exported out as a
501 * user-visible Map.Entry (see MapEntry below). Nodes with a hash
502 * field of MOVED are special, and do not contain user keys or
503 * values. Otherwise, keys are never null, and null val fields
504 * indicate that a node is in the process of being deleted or
505 * created. For purposes of read-only access, a key may be read
506 * before a val, but can only be used after checking val to be
507 * non-null.
508 */
509 static class Node {
510 volatile int hash;
511 final Object key;
512 volatile Object val;
513 volatile Node next;
514
515 Node(int hash, Object key, Object val, Node next) {
516 this.hash = hash;
517 this.key = key;
518 this.val = val;
519 this.next = next;
520 }
521
522 /** CompareAndSet the hash field */
523 final boolean casHash(int cmp, int val) {
524 return UNSAFE.compareAndSwapInt(this, hashOffset, cmp, val);
525 }
526
527 /** The number of spins before blocking for a lock */
528 static final int MAX_SPINS =
529 Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
530
531 /**
532 * Spins a while if LOCKED bit set and this node is the first
533 * of its bin, and then sets WAITING bits on hash field and
534 * blocks (once) if they are still set. It is OK for this
535 * method to return even if lock is not available upon exit,
536 * which enables these simple single-wait mechanics.
537 *
538 * The corresponding signalling operation is performed within
539 * callers: Upon detecting that WAITING has been set when
540 * unlocking lock (via a failed CAS from non-waiting LOCKED
541 * state), unlockers acquire the sync lock and perform a
542 * notifyAll.
543 */
544 final void tryAwaitLock(Node[] tab, int i) {
545 if (tab != null && i >= 0 && i < tab.length) { // bounds check
546 int r = ThreadLocalRandom.current().nextInt(); // randomize spins
547 int spins = MAX_SPINS, h;
548 while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) {
549 if (spins >= 0) {
550 r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
551 if (r >= 0 && --spins == 0)
552 Thread.yield(); // yield before block
553 }
554 else if (casHash(h, h | WAITING)) {
555 synchronized (this) {
556 if (tabAt(tab, i) == this &&
557 (hash & WAITING) == WAITING) {
558 try {
559 wait();
560 } catch (InterruptedException ie) {
561 Thread.currentThread().interrupt();
562 }
563 }
564 else
565 notifyAll(); // possibly won race vs signaller
566 }
567 break;
568 }
569 }
570 }
571 }
572
573 // Unsafe mechanics for casHash
574 private static final sun.misc.Unsafe UNSAFE;
575 private static final long hashOffset;
576
577 static {
578 try {
579 UNSAFE = getUnsafe();
580 Class<?> k = Node.class;
581 hashOffset = UNSAFE.objectFieldOffset
582 (k.getDeclaredField("hash"));
583 } catch (Exception e) {
584 throw new Error(e);
585 }
586 }
587 }
588
589 /* ---------------- TreeBins -------------- */
590
591 /**
592 * Nodes for use in TreeBins
593 */
594 static final class TreeNode extends Node {
595 TreeNode parent; // red-black tree links
596 TreeNode left;
597 TreeNode right;
598 TreeNode prev; // needed to unlink next upon deletion
599 boolean red;
600
601 TreeNode(int hash, Object key, Object val, Node next, TreeNode parent) {
602 super(hash, key, val, next);
603 this.parent = parent;
604 }
605 }
606
607 /**
608 * A specialized form of red-black tree for use in bins
609 * whose size exceeds a threshold.
610 *
611 * TreeBins use a special form of comparison for search and
612 * related operations (which is the main reason we cannot use
613 * existing collections such as TreeMaps). TreeBins contain
614 * Comparable elements, but may contain others, as well as
615 * elements that are Comparable but not necessarily Comparable<T>
616 * for the same T, so we cannot invoke compareTo among them. To
617 * handle this, the tree is ordered primarily by hash value, then
618 * by getClass().getName() order, and then by Comparator order
619 * among elements of the same class. On lookup at a node, if
620 * elements are not comparable or compare as 0, both left and
621 * right children may need to be searched in the case of tied hash
622 * values. (This corresponds to the full list search that would be
623 * necessary if all elements were non-Comparable and had tied
624 * hashes.) The red-black balancing code is updated from
625 * pre-jdk-collections
626 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
627 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
628 * Algorithms" (CLR).
629 *
630 * TreeBins also maintain a separate locking discipline than
631 * regular bins. Because they are forwarded via special MOVED
632 * nodes at bin heads (which can never change once established),
633 * we cannot use those nodes as locks. Instead, TreeBin
634 * extends AbstractQueuedSynchronizer to support a simple form of
635 * read-write lock. For update operations and table validation,
636 * the exclusive form of lock behaves in the same way as bin-head
637 * locks. However, lookups use shared read-lock mechanics to allow
638 * multiple readers in the absence of writers. Additionally,
639 * these lookups do not ever block: While the lock is not
640 * available, they proceed along the slow traversal path (via
641 * next-pointers) until the lock becomes available or the list is
642 * exhausted, whichever comes first. (These cases are not fast,
643 * but maximize aggregate expected throughput.) The AQS mechanics
644 * for doing this are straightforward. The lock state is held as
645 * AQS getState(). Read counts are negative; the write count (1)
646 * is positive. There are no signalling preferences among readers
647 * and writers. Since we don't need to export full Lock API, we
648 * just override the minimal AQS methods and use them directly.
649 */
650 static final class TreeBin extends AbstractQueuedSynchronizer {
651 private static final long serialVersionUID = 2249069246763182397L;
652 transient TreeNode root; // root of tree
653 transient TreeNode first; // head of next-pointer list
654
655 /* AQS overrides */
656 public final boolean isHeldExclusively() { return getState() > 0; }
657 public final boolean tryAcquire(int ignore) {
658 if (compareAndSetState(0, 1)) {
659 setExclusiveOwnerThread(Thread.currentThread());
660 return true;
661 }
662 return false;
663 }
664 public final boolean tryRelease(int ignore) {
665 setExclusiveOwnerThread(null);
666 setState(0);
667 return true;
668 }
669 public final int tryAcquireShared(int ignore) {
670 for (int c;;) {
671 if ((c = getState()) > 0)
672 return -1;
673 if (compareAndSetState(c, c -1))
674 return 1;
675 }
676 }
677 public final boolean tryReleaseShared(int ignore) {
678 int c;
679 do {} while (!compareAndSetState(c = getState(), c + 1));
680 return c == -1;
681 }
682
683 /** From CLR */
684 private void rotateLeft(TreeNode p) {
685 if (p != null) {
686 TreeNode r = p.right, pp, rl;
687 if ((rl = p.right = r.left) != null)
688 rl.parent = p;
689 if ((pp = r.parent = p.parent) == null)
690 root = r;
691 else if (pp.left == p)
692 pp.left = r;
693 else
694 pp.right = r;
695 r.left = p;
696 p.parent = r;
697 }
698 }
699
700 /** From CLR */
701 private void rotateRight(TreeNode p) {
702 if (p != null) {
703 TreeNode l = p.left, pp, lr;
704 if ((lr = p.left = l.right) != null)
705 lr.parent = p;
706 if ((pp = l.parent = p.parent) == null)
707 root = l;
708 else if (pp.right == p)
709 pp.right = l;
710 else
711 pp.left = l;
712 l.right = p;
713 p.parent = l;
714 }
715 }
716
717 /**
718 * Returns the TreeNode (or null if not found) for the given key
719 * starting at given root.
720 */
721 @SuppressWarnings("unchecked") // suppress Comparable cast warning
722 final TreeNode getTreeNode(int h, Object k, TreeNode p) {
723 Class<?> c = k.getClass();
724 while (p != null) {
725 int dir, ph; Object pk; Class<?> pc;
726 if ((ph = p.hash) == h) {
727 if ((pk = p.key) == k || k.equals(pk))
728 return p;
729 if (c != (pc = pk.getClass()) ||
730 !(k instanceof Comparable) ||
731 (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
732 dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
733 TreeNode r = null, s = null, pl, pr;
734 if (dir >= 0) {
735 if ((pl = p.left) != null && h <= pl.hash)
736 s = pl;
737 }
738 else if ((pr = p.right) != null && h >= pr.hash)
739 s = pr;
740 if (s != null && (r = getTreeNode(h, k, s)) != null)
741 return r;
742 }
743 }
744 else
745 dir = (h < ph) ? -1 : 1;
746 p = (dir > 0) ? p.right : p.left;
747 }
748 return null;
749 }
750
751 /**
752 * Wrapper for getTreeNode used by CHM.get. Tries to obtain
753 * read-lock to call getTreeNode, but during failure to get
754 * lock, searches along next links.
755 */
756 final Object getValue(int h, Object k) {
757 Node r = null;
758 int c = getState(); // Must read lock state first
759 for (Node e = first; e != null; e = e.next) {
760 if (c <= 0 && compareAndSetState(c, c - 1)) {
761 try {
762 r = getTreeNode(h, k, root);
763 } finally {
764 releaseShared(0);
765 }
766 break;
767 }
768 else if ((e.hash & HASH_BITS) == h && k.equals(e.key)) {
769 r = e;
770 break;
771 }
772 else
773 c = getState();
774 }
775 return r == null ? null : r.val;
776 }
777
778 /**
779 * Finds or adds a node.
780 * @return null if added
781 */
782 @SuppressWarnings("unchecked") // suppress Comparable cast warning
783 final TreeNode putTreeNode(int h, Object k, Object v) {
784 Class<?> c = k.getClass();
785 TreeNode pp = root, p = null;
786 int dir = 0;
787 while (pp != null) { // find existing node or leaf to insert at
788 int ph; Object pk; Class<?> pc;
789 p = pp;
790 if ((ph = p.hash) == h) {
791 if ((pk = p.key) == k || k.equals(pk))
792 return p;
793 if (c != (pc = pk.getClass()) ||
794 !(k instanceof Comparable) ||
795 (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
796 dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
797 TreeNode r = null, s = null, pl, pr;
798 if (dir >= 0) {
799 if ((pl = p.left) != null && h <= pl.hash)
800 s = pl;
801 }
802 else if ((pr = p.right) != null && h >= pr.hash)
803 s = pr;
804 if (s != null && (r = getTreeNode(h, k, s)) != null)
805 return r;
806 }
807 }
808 else
809 dir = (h < ph) ? -1 : 1;
810 pp = (dir > 0) ? p.right : p.left;
811 }
812
813 TreeNode f = first;
814 TreeNode x = first = new TreeNode(h, k, v, f, p);
815 if (p == null)
816 root = x;
817 else { // attach and rebalance; adapted from CLR
818 TreeNode xp, xpp;
819 if (f != null)
820 f.prev = x;
821 if (dir <= 0)
822 p.left = x;
823 else
824 p.right = x;
825 x.red = true;
826 while (x != null && (xp = x.parent) != null && xp.red &&
827 (xpp = xp.parent) != null) {
828 TreeNode xppl = xpp.left;
829 if (xp == xppl) {
830 TreeNode y = xpp.right;
831 if (y != null && y.red) {
832 y.red = false;
833 xp.red = false;
834 xpp.red = true;
835 x = xpp;
836 }
837 else {
838 if (x == xp.right) {
839 rotateLeft(x = xp);
840 xpp = (xp = x.parent) == null ? null : xp.parent;
841 }
842 if (xp != null) {
843 xp.red = false;
844 if (xpp != null) {
845 xpp.red = true;
846 rotateRight(xpp);
847 }
848 }
849 }
850 }
851 else {
852 TreeNode y = xppl;
853 if (y != null && y.red) {
854 y.red = false;
855 xp.red = false;
856 xpp.red = true;
857 x = xpp;
858 }
859 else {
860 if (x == xp.left) {
861 rotateRight(x = xp);
862 xpp = (xp = x.parent) == null ? null : xp.parent;
863 }
864 if (xp != null) {
865 xp.red = false;
866 if (xpp != null) {
867 xpp.red = true;
868 rotateLeft(xpp);
869 }
870 }
871 }
872 }
873 }
874 TreeNode r = root;
875 if (r != null && r.red)
876 r.red = false;
877 }
878 return null;
879 }
880
881 /**
882 * Removes the given node, that must be present before this
883 * call. This is messier than typical red-black deletion code
884 * because we cannot swap the contents of an interior node
885 * with a leaf successor that is pinned by "next" pointers
886 * that are accessible independently of lock. So instead we
887 * swap the tree linkages.
888 */
889 final void deleteTreeNode(TreeNode p) {
890 TreeNode next = (TreeNode)p.next; // unlink traversal pointers
891 TreeNode pred = p.prev;
892 if (pred == null)
893 first = next;
894 else
895 pred.next = next;
896 if (next != null)
897 next.prev = pred;
898 TreeNode replacement;
899 TreeNode pl = p.left;
900 TreeNode pr = p.right;
901 if (pl != null && pr != null) {
902 TreeNode s = pr, sl;
903 while ((sl = s.left) != null) // find successor
904 s = sl;
905 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
906 TreeNode sr = s.right;
907 TreeNode pp = p.parent;
908 if (s == pr) { // p was s's direct parent
909 p.parent = s;
910 s.right = p;
911 }
912 else {
913 TreeNode sp = s.parent;
914 if ((p.parent = sp) != null) {
915 if (s == sp.left)
916 sp.left = p;
917 else
918 sp.right = p;
919 }
920 if ((s.right = pr) != null)
921 pr.parent = s;
922 }
923 p.left = null;
924 if ((p.right = sr) != null)
925 sr.parent = p;
926 if ((s.left = pl) != null)
927 pl.parent = s;
928 if ((s.parent = pp) == null)
929 root = s;
930 else if (p == pp.left)
931 pp.left = s;
932 else
933 pp.right = s;
934 replacement = sr;
935 }
936 else
937 replacement = (pl != null) ? pl : pr;
938 TreeNode pp = p.parent;
939 if (replacement == null) {
940 if (pp == null) {
941 root = null;
942 return;
943 }
944 replacement = p;
945 }
946 else {
947 replacement.parent = pp;
948 if (pp == null)
949 root = replacement;
950 else if (p == pp.left)
951 pp.left = replacement;
952 else
953 pp.right = replacement;
954 p.left = p.right = p.parent = null;
955 }
956 if (!p.red) { // rebalance, from CLR
957 TreeNode x = replacement;
958 while (x != null) {
959 TreeNode xp, xpl;
960 if (x.red || (xp = x.parent) == null) {
961 x.red = false;
962 break;
963 }
964 if (x == (xpl = xp.left)) {
965 TreeNode sib = xp.right;
966 if (sib != null && sib.red) {
967 sib.red = false;
968 xp.red = true;
969 rotateLeft(xp);
970 sib = (xp = x.parent) == null ? null : xp.right;
971 }
972 if (sib == null)
973 x = xp;
974 else {
975 TreeNode sl = sib.left, sr = sib.right;
976 if ((sr == null || !sr.red) &&
977 (sl == null || !sl.red)) {
978 sib.red = true;
979 x = xp;
980 }
981 else {
982 if (sr == null || !sr.red) {
983 if (sl != null)
984 sl.red = false;
985 sib.red = true;
986 rotateRight(sib);
987 sib = (xp = x.parent) == null ? null : xp.right;
988 }
989 if (sib != null) {
990 sib.red = (xp == null) ? false : xp.red;
991 if ((sr = sib.right) != null)
992 sr.red = false;
993 }
994 if (xp != null) {
995 xp.red = false;
996 rotateLeft(xp);
997 }
998 x = root;
999 }
1000 }
1001 }
1002 else { // symmetric
1003 TreeNode sib = xpl;
1004 if (sib != null && sib.red) {
1005 sib.red = false;
1006 xp.red = true;
1007 rotateRight(xp);
1008 sib = (xp = x.parent) == null ? null : xp.left;
1009 }
1010 if (sib == null)
1011 x = xp;
1012 else {
1013 TreeNode sl = sib.left, sr = sib.right;
1014 if ((sl == null || !sl.red) &&
1015 (sr == null || !sr.red)) {
1016 sib.red = true;
1017 x = xp;
1018 }
1019 else {
1020 if (sl == null || !sl.red) {
1021 if (sr != null)
1022 sr.red = false;
1023 sib.red = true;
1024 rotateLeft(sib);
1025 sib = (xp = x.parent) == null ? null : xp.left;
1026 }
1027 if (sib != null) {
1028 sib.red = (xp == null) ? false : xp.red;
1029 if ((sl = sib.left) != null)
1030 sl.red = false;
1031 }
1032 if (xp != null) {
1033 xp.red = false;
1034 rotateRight(xp);
1035 }
1036 x = root;
1037 }
1038 }
1039 }
1040 }
1041 }
1042 if (p == replacement && (pp = p.parent) != null) {
1043 if (p == pp.left) // detach pointers
1044 pp.left = null;
1045 else if (p == pp.right)
1046 pp.right = null;
1047 p.parent = null;
1048 }
1049 }
1050 }
1051
1052 /* ---------------- Collision reduction methods -------------- */
1053
1054 /**
1055 * Spreads higher bits to lower, and also forces top 2 bits to 0.
1056 * Because the table uses power-of-two masking, sets of hashes
1057 * that vary only in bits above the current mask will always
1058 * collide. (Among known examples are sets of Float keys holding
1059 * consecutive whole numbers in small tables.) To counter this,
1060 * we apply a transform that spreads the impact of higher bits
1061 * downward. There is a tradeoff between speed, utility, and
1062 * quality of bit-spreading. Because many common sets of hashes
1063 * are already reasonably distributed across bits (so don't benefit
1064 * from spreading), and because we use trees to handle large sets
1065 * of collisions in bins, we don't need excessively high quality.
1066 */
1067 private static final int spread(int h) {
1068 h ^= (h >>> 18) ^ (h >>> 12);
1069 return (h ^ (h >>> 10)) & HASH_BITS;
1070 }
1071
1072 /**
1073 * Replaces a list bin with a tree bin. Call only when locked.
1074 * Fails to replace if the given key is non-comparable or table
1075 * is, or needs, resizing.
1076 */
1077 private final void replaceWithTreeBin(Node[] tab, int index, Object key) {
1078 if ((key instanceof Comparable) &&
1079 (tab.length >= MAXIMUM_CAPACITY || counter.sum() < (long)sizeCtl)) {
1080 TreeBin t = new TreeBin();
1081 for (Node e = tabAt(tab, index); e != null; e = e.next)
1082 t.putTreeNode(e.hash & HASH_BITS, e.key, e.val);
1083 setTabAt(tab, index, new Node(MOVED, t, null, null));
1084 }
1085 }
1086
1087 /* ---------------- Internal access and update methods -------------- */
1088
1089 /** Implementation for get and containsKey */
1090 private final Object internalGet(Object k) {
1091 int h = spread(k.hashCode());
1092 retry: for (Node[] tab = table; tab != null;) {
1093 Node e, p; Object ek, ev; int eh; // locals to read fields once
1094 for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1095 if ((eh = e.hash) == MOVED) {
1096 if ((ek = e.key) instanceof TreeBin) // search TreeBin
1097 return ((TreeBin)ek).getValue(h, k);
1098 else { // restart with new table
1099 tab = (Node[])ek;
1100 continue retry;
1101 }
1102 }
1103 else if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
1104 ((ek = e.key) == k || k.equals(ek)))
1105 return ev;
1106 }
1107 break;
1108 }
1109 return null;
1110 }
1111
1112 /**
1113 * Implementation for the four public remove/replace methods:
1114 * Replaces node value with v, conditional upon match of cv if
1115 * non-null. If resulting value is null, delete.
1116 */
1117 private final Object internalReplace(Object k, Object v, Object cv) {
1118 int h = spread(k.hashCode());
1119 Object oldVal = null;
1120 for (Node[] tab = table;;) {
1121 Node f; int i, fh; Object fk;
1122 if (tab == null ||
1123 (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1124 break;
1125 else if ((fh = f.hash) == MOVED) {
1126 if ((fk = f.key) instanceof TreeBin) {
1127 TreeBin t = (TreeBin)fk;
1128 boolean validated = false;
1129 boolean deleted = false;
1130 t.acquire(0);
1131 try {
1132 if (tabAt(tab, i) == f) {
1133 validated = true;
1134 TreeNode p = t.getTreeNode(h, k, t.root);
1135 if (p != null) {
1136 Object pv = p.val;
1137 if (cv == null || cv == pv || cv.equals(pv)) {
1138 oldVal = pv;
1139 if ((p.val = v) == null) {
1140 deleted = true;
1141 t.deleteTreeNode(p);
1142 }
1143 }
1144 }
1145 }
1146 } finally {
1147 t.release(0);
1148 }
1149 if (validated) {
1150 if (deleted)
1151 counter.add(-1L);
1152 break;
1153 }
1154 }
1155 else
1156 tab = (Node[])fk;
1157 }
1158 else if ((fh & HASH_BITS) != h && f.next == null) // precheck
1159 break; // rules out possible existence
1160 else if ((fh & LOCKED) != 0) {
1161 checkForResize(); // try resizing if can't get lock
1162 f.tryAwaitLock(tab, i);
1163 }
1164 else if (f.casHash(fh, fh | LOCKED)) {
1165 boolean validated = false;
1166 boolean deleted = false;
1167 try {
1168 if (tabAt(tab, i) == f) {
1169 validated = true;
1170 for (Node e = f, pred = null;;) {
1171 Object ek, ev;
1172 if ((e.hash & HASH_BITS) == h &&
1173 ((ev = e.val) != null) &&
1174 ((ek = e.key) == k || k.equals(ek))) {
1175 if (cv == null || cv == ev || cv.equals(ev)) {
1176 oldVal = ev;
1177 if ((e.val = v) == null) {
1178 deleted = true;
1179 Node en = e.next;
1180 if (pred != null)
1181 pred.next = en;
1182 else
1183 setTabAt(tab, i, en);
1184 }
1185 }
1186 break;
1187 }
1188 pred = e;
1189 if ((e = e.next) == null)
1190 break;
1191 }
1192 }
1193 } finally {
1194 if (!f.casHash(fh | LOCKED, fh)) {
1195 f.hash = fh;
1196 synchronized (f) { f.notifyAll(); };
1197 }
1198 }
1199 if (validated) {
1200 if (deleted)
1201 counter.add(-1L);
1202 break;
1203 }
1204 }
1205 }
1206 return oldVal;
1207 }
1208
1209 /*
1210 * Internal versions of the six insertion methods, each a
1211 * little more complicated than the last. All have
1212 * the same basic structure as the first (internalPut):
1213 * 1. If table uninitialized, create
1214 * 2. If bin empty, try to CAS new node
1215 * 3. If bin stale, use new table
1216 * 4. if bin converted to TreeBin, validate and relay to TreeBin methods
1217 * 5. Lock and validate; if valid, scan and add or update
1218 *
1219 * The others interweave other checks and/or alternative actions:
1220 * * Plain put checks for and performs resize after insertion.
1221 * * putIfAbsent prescans for mapping without lock (and fails to add
1222 * if present), which also makes pre-emptive resize checks worthwhile.
1223 * * computeIfAbsent extends form used in putIfAbsent with additional
1224 * mechanics to deal with, calls, potential exceptions and null
1225 * returns from function call.
1226 * * compute uses the same function-call mechanics, but without
1227 * the prescans
1228 * * merge acts as putIfAbsent in the absent case, but invokes the
1229 * update function if present
1230 * * putAll attempts to pre-allocate enough table space
1231 * and more lazily performs count updates and checks.
1232 *
1233 * Someday when details settle down a bit more, it might be worth
1234 * some factoring to reduce sprawl.
1235 */
1236
1237 /** Implementation for put */
1238 private final Object internalPut(Object k, Object v) {
1239 int h = spread(k.hashCode());
1240 int count = 0;
1241 for (Node[] tab = table;;) {
1242 int i; Node f; int fh; Object fk;
1243 if (tab == null)
1244 tab = initTable();
1245 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1246 if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1247 break; // no lock when adding to empty bin
1248 }
1249 else if ((fh = f.hash) == MOVED) {
1250 if ((fk = f.key) instanceof TreeBin) {
1251 TreeBin t = (TreeBin)fk;
1252 Object oldVal = null;
1253 t.acquire(0);
1254 try {
1255 if (tabAt(tab, i) == f) {
1256 count = 2;
1257 TreeNode p = t.putTreeNode(h, k, v);
1258 if (p != null) {
1259 oldVal = p.val;
1260 p.val = v;
1261 }
1262 }
1263 } finally {
1264 t.release(0);
1265 }
1266 if (count != 0) {
1267 if (oldVal != null)
1268 return oldVal;
1269 break;
1270 }
1271 }
1272 else
1273 tab = (Node[])fk;
1274 }
1275 else if ((fh & LOCKED) != 0) {
1276 checkForResize();
1277 f.tryAwaitLock(tab, i);
1278 }
1279 else if (f.casHash(fh, fh | LOCKED)) {
1280 Object oldVal = null;
1281 try { // needed in case equals() throws
1282 if (tabAt(tab, i) == f) {
1283 count = 1;
1284 for (Node e = f;; ++count) {
1285 Object ek, ev;
1286 if ((e.hash & HASH_BITS) == h &&
1287 (ev = e.val) != null &&
1288 ((ek = e.key) == k || k.equals(ek))) {
1289 oldVal = ev;
1290 e.val = v;
1291 break;
1292 }
1293 Node last = e;
1294 if ((e = e.next) == null) {
1295 last.next = new Node(h, k, v, null);
1296 if (count >= TREE_THRESHOLD)
1297 replaceWithTreeBin(tab, i, k);
1298 break;
1299 }
1300 }
1301 }
1302 } finally { // unlock and signal if needed
1303 if (!f.casHash(fh | LOCKED, fh)) {
1304 f.hash = fh;
1305 synchronized (f) { f.notifyAll(); };
1306 }
1307 }
1308 if (count != 0) {
1309 if (oldVal != null)
1310 return oldVal;
1311 if (tab.length <= 64)
1312 count = 2;
1313 break;
1314 }
1315 }
1316 }
1317 counter.add(1L);
1318 if (count > 1)
1319 checkForResize();
1320 return null;
1321 }
1322
1323 /** Implementation for putIfAbsent */
1324 private final Object internalPutIfAbsent(Object k, Object v) {
1325 int h = spread(k.hashCode());
1326 int count = 0;
1327 for (Node[] tab = table;;) {
1328 int i; Node f; int fh; Object fk, fv;
1329 if (tab == null)
1330 tab = initTable();
1331 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1332 if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1333 break;
1334 }
1335 else if ((fh = f.hash) == MOVED) {
1336 if ((fk = f.key) instanceof TreeBin) {
1337 TreeBin t = (TreeBin)fk;
1338 Object oldVal = null;
1339 t.acquire(0);
1340 try {
1341 if (tabAt(tab, i) == f) {
1342 count = 2;
1343 TreeNode p = t.putTreeNode(h, k, v);
1344 if (p != null)
1345 oldVal = p.val;
1346 }
1347 } finally {
1348 t.release(0);
1349 }
1350 if (count != 0) {
1351 if (oldVal != null)
1352 return oldVal;
1353 break;
1354 }
1355 }
1356 else
1357 tab = (Node[])fk;
1358 }
1359 else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1360 ((fk = f.key) == k || k.equals(fk)))
1361 return fv;
1362 else {
1363 Node g = f.next;
1364 if (g != null) { // at least 2 nodes -- search and maybe resize
1365 for (Node e = g;;) {
1366 Object ek, ev;
1367 if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1368 ((ek = e.key) == k || k.equals(ek)))
1369 return ev;
1370 if ((e = e.next) == null) {
1371 checkForResize();
1372 break;
1373 }
1374 }
1375 }
1376 if (((fh = f.hash) & LOCKED) != 0) {
1377 checkForResize();
1378 f.tryAwaitLock(tab, i);
1379 }
1380 else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1381 Object oldVal = null;
1382 try {
1383 if (tabAt(tab, i) == f) {
1384 count = 1;
1385 for (Node e = f;; ++count) {
1386 Object ek, ev;
1387 if ((e.hash & HASH_BITS) == h &&
1388 (ev = e.val) != null &&
1389 ((ek = e.key) == k || k.equals(ek))) {
1390 oldVal = ev;
1391 break;
1392 }
1393 Node last = e;
1394 if ((e = e.next) == null) {
1395 last.next = new Node(h, k, v, null);
1396 if (count >= TREE_THRESHOLD)
1397 replaceWithTreeBin(tab, i, k);
1398 break;
1399 }
1400 }
1401 }
1402 } finally {
1403 if (!f.casHash(fh | LOCKED, fh)) {
1404 f.hash = fh;
1405 synchronized (f) { f.notifyAll(); };
1406 }
1407 }
1408 if (count != 0) {
1409 if (oldVal != null)
1410 return oldVal;
1411 if (tab.length <= 64)
1412 count = 2;
1413 break;
1414 }
1415 }
1416 }
1417 }
1418 counter.add(1L);
1419 if (count > 1)
1420 checkForResize();
1421 return null;
1422 }
1423
1424 /** Implementation for computeIfAbsent */
1425 private final Object internalComputeIfAbsent(K k,
1426 Fun<? super K, ?> mf) {
1427 int h = spread(k.hashCode());
1428 Object val = null;
1429 int count = 0;
1430 for (Node[] tab = table;;) {
1431 Node f; int i, fh; Object fk, fv;
1432 if (tab == null)
1433 tab = initTable();
1434 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1435 Node node = new Node(fh = h | LOCKED, k, null, null);
1436 if (casTabAt(tab, i, null, node)) {
1437 count = 1;
1438 try {
1439 if ((val = mf.apply(k)) != null)
1440 node.val = val;
1441 } finally {
1442 if (val == null)
1443 setTabAt(tab, i, null);
1444 if (!node.casHash(fh, h)) {
1445 node.hash = h;
1446 synchronized (node) { node.notifyAll(); };
1447 }
1448 }
1449 }
1450 if (count != 0)
1451 break;
1452 }
1453 else if ((fh = f.hash) == MOVED) {
1454 if ((fk = f.key) instanceof TreeBin) {
1455 TreeBin t = (TreeBin)fk;
1456 boolean added = false;
1457 t.acquire(0);
1458 try {
1459 if (tabAt(tab, i) == f) {
1460 count = 1;
1461 TreeNode p = t.getTreeNode(h, k, t.root);
1462 if (p != null)
1463 val = p.val;
1464 else if ((val = mf.apply(k)) != null) {
1465 added = true;
1466 count = 2;
1467 t.putTreeNode(h, k, val);
1468 }
1469 }
1470 } finally {
1471 t.release(0);
1472 }
1473 if (count != 0) {
1474 if (!added)
1475 return val;
1476 break;
1477 }
1478 }
1479 else
1480 tab = (Node[])fk;
1481 }
1482 else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1483 ((fk = f.key) == k || k.equals(fk)))
1484 return fv;
1485 else {
1486 Node g = f.next;
1487 if (g != null) {
1488 for (Node e = g;;) {
1489 Object ek, ev;
1490 if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1491 ((ek = e.key) == k || k.equals(ek)))
1492 return ev;
1493 if ((e = e.next) == null) {
1494 checkForResize();
1495 break;
1496 }
1497 }
1498 }
1499 if (((fh = f.hash) & LOCKED) != 0) {
1500 checkForResize();
1501 f.tryAwaitLock(tab, i);
1502 }
1503 else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1504 boolean added = false;
1505 try {
1506 if (tabAt(tab, i) == f) {
1507 count = 1;
1508 for (Node e = f;; ++count) {
1509 Object ek, ev;
1510 if ((e.hash & HASH_BITS) == h &&
1511 (ev = e.val) != null &&
1512 ((ek = e.key) == k || k.equals(ek))) {
1513 val = ev;
1514 break;
1515 }
1516 Node last = e;
1517 if ((e = e.next) == null) {
1518 if ((val = mf.apply(k)) != null) {
1519 added = true;
1520 last.next = new Node(h, k, val, null);
1521 if (count >= TREE_THRESHOLD)
1522 replaceWithTreeBin(tab, i, k);
1523 }
1524 break;
1525 }
1526 }
1527 }
1528 } finally {
1529 if (!f.casHash(fh | LOCKED, fh)) {
1530 f.hash = fh;
1531 synchronized (f) { f.notifyAll(); };
1532 }
1533 }
1534 if (count != 0) {
1535 if (!added)
1536 return val;
1537 if (tab.length <= 64)
1538 count = 2;
1539 break;
1540 }
1541 }
1542 }
1543 }
1544 if (val != null) {
1545 counter.add(1L);
1546 if (count > 1)
1547 checkForResize();
1548 }
1549 return val;
1550 }
1551
1552 /** Implementation for compute */
1553 @SuppressWarnings("unchecked")
1554 private final Object internalCompute(K k, boolean onlyIfPresent,
1555 BiFun<? super K, ? super V, ? extends V> mf) {
1556 int h = spread(k.hashCode());
1557 Object val = null;
1558 int delta = 0;
1559 int count = 0;
1560 for (Node[] tab = table;;) {
1561 Node f; int i, fh; Object fk;
1562 if (tab == null)
1563 tab = initTable();
1564 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1565 if (onlyIfPresent)
1566 break;
1567 Node node = new Node(fh = h | LOCKED, k, null, null);
1568 if (casTabAt(tab, i, null, node)) {
1569 try {
1570 count = 1;
1571 if ((val = mf.apply(k, null)) != null) {
1572 node.val = val;
1573 delta = 1;
1574 }
1575 } finally {
1576 if (delta == 0)
1577 setTabAt(tab, i, null);
1578 if (!node.casHash(fh, h)) {
1579 node.hash = h;
1580 synchronized (node) { node.notifyAll(); };
1581 }
1582 }
1583 }
1584 if (count != 0)
1585 break;
1586 }
1587 else if ((fh = f.hash) == MOVED) {
1588 if ((fk = f.key) instanceof TreeBin) {
1589 TreeBin t = (TreeBin)fk;
1590 t.acquire(0);
1591 try {
1592 if (tabAt(tab, i) == f) {
1593 count = 1;
1594 TreeNode p = t.getTreeNode(h, k, t.root);
1595 Object pv = (p == null) ? null : p.val;
1596 if ((val = mf.apply(k, (V)pv)) != null) {
1597 if (p != null)
1598 p.val = val;
1599 else {
1600 count = 2;
1601 delta = 1;
1602 t.putTreeNode(h, k, val);
1603 }
1604 }
1605 else if (p != null) {
1606 delta = -1;
1607 t.deleteTreeNode(p);
1608 }
1609 }
1610 } finally {
1611 t.release(0);
1612 }
1613 if (count != 0)
1614 break;
1615 }
1616 else
1617 tab = (Node[])fk;
1618 }
1619 else if ((fh & LOCKED) != 0) {
1620 checkForResize();
1621 f.tryAwaitLock(tab, i);
1622 }
1623 else if (f.casHash(fh, fh | LOCKED)) {
1624 try {
1625 if (tabAt(tab, i) == f) {
1626 count = 1;
1627 for (Node e = f, pred = null;; ++count) {
1628 Object ek, ev;
1629 if ((e.hash & HASH_BITS) == h &&
1630 (ev = e.val) != null &&
1631 ((ek = e.key) == k || k.equals(ek))) {
1632 val = mf.apply(k, (V)ev);
1633 if (val != null)
1634 e.val = val;
1635 else {
1636 delta = -1;
1637 Node en = e.next;
1638 if (pred != null)
1639 pred.next = en;
1640 else
1641 setTabAt(tab, i, en);
1642 }
1643 break;
1644 }
1645 pred = e;
1646 if ((e = e.next) == null) {
1647 if (!onlyIfPresent && (val = mf.apply(k, null)) != null) {
1648 pred.next = new Node(h, k, val, null);
1649 delta = 1;
1650 if (count >= TREE_THRESHOLD)
1651 replaceWithTreeBin(tab, i, k);
1652 }
1653 break;
1654 }
1655 }
1656 }
1657 } finally {
1658 if (!f.casHash(fh | LOCKED, fh)) {
1659 f.hash = fh;
1660 synchronized (f) { f.notifyAll(); };
1661 }
1662 }
1663 if (count != 0) {
1664 if (tab.length <= 64)
1665 count = 2;
1666 break;
1667 }
1668 }
1669 }
1670 if (delta != 0) {
1671 counter.add((long)delta);
1672 if (count > 1)
1673 checkForResize();
1674 }
1675 return val;
1676 }
1677
1678 /** Implementation for merge */
1679 @SuppressWarnings("unchecked")
1680 private final Object internalMerge(K k, V v,
1681 BiFun<? super V, ? super V, ? extends V> mf) {
1682 int h = spread(k.hashCode());
1683 Object val = null;
1684 int delta = 0;
1685 int count = 0;
1686 for (Node[] tab = table;;) {
1687 int i; Node f; int fh; Object fk, fv;
1688 if (tab == null)
1689 tab = initTable();
1690 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1691 if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1692 delta = 1;
1693 val = v;
1694 break;
1695 }
1696 }
1697 else if ((fh = f.hash) == MOVED) {
1698 if ((fk = f.key) instanceof TreeBin) {
1699 TreeBin t = (TreeBin)fk;
1700 t.acquire(0);
1701 try {
1702 if (tabAt(tab, i) == f) {
1703 count = 1;
1704 TreeNode p = t.getTreeNode(h, k, t.root);
1705 val = (p == null) ? v : mf.apply((V)p.val, v);
1706 if (val != null) {
1707 if (p != null)
1708 p.val = val;
1709 else {
1710 count = 2;
1711 delta = 1;
1712 t.putTreeNode(h, k, val);
1713 }
1714 }
1715 else if (p != null) {
1716 delta = -1;
1717 t.deleteTreeNode(p);
1718 }
1719 }
1720 } finally {
1721 t.release(0);
1722 }
1723 if (count != 0)
1724 break;
1725 }
1726 else
1727 tab = (Node[])fk;
1728 }
1729 else if ((fh & LOCKED) != 0) {
1730 checkForResize();
1731 f.tryAwaitLock(tab, i);
1732 }
1733 else if (f.casHash(fh, fh | LOCKED)) {
1734 try {
1735 if (tabAt(tab, i) == f) {
1736 count = 1;
1737 for (Node e = f, pred = null;; ++count) {
1738 Object ek, ev;
1739 if ((e.hash & HASH_BITS) == h &&
1740 (ev = e.val) != null &&
1741 ((ek = e.key) == k || k.equals(ek))) {
1742 val = mf.apply(v, (V)ev);
1743 if (val != null)
1744 e.val = val;
1745 else {
1746 delta = -1;
1747 Node en = e.next;
1748 if (pred != null)
1749 pred.next = en;
1750 else
1751 setTabAt(tab, i, en);
1752 }
1753 break;
1754 }
1755 pred = e;
1756 if ((e = e.next) == null) {
1757 val = v;
1758 pred.next = new Node(h, k, val, null);
1759 delta = 1;
1760 if (count >= TREE_THRESHOLD)
1761 replaceWithTreeBin(tab, i, k);
1762 break;
1763 }
1764 }
1765 }
1766 } finally {
1767 if (!f.casHash(fh | LOCKED, fh)) {
1768 f.hash = fh;
1769 synchronized (f) { f.notifyAll(); };
1770 }
1771 }
1772 if (count != 0) {
1773 if (tab.length <= 64)
1774 count = 2;
1775 break;
1776 }
1777 }
1778 }
1779 if (delta != 0) {
1780 counter.add((long)delta);
1781 if (count > 1)
1782 checkForResize();
1783 }
1784 return val;
1785 }
1786
1787 /** Implementation for putAll */
1788 private final void internalPutAll(Map<?, ?> m) {
1789 tryPresize(m.size());
1790 long delta = 0L; // number of uncommitted additions
1791 boolean npe = false; // to throw exception on exit for nulls
1792 try { // to clean up counts on other exceptions
1793 for (Map.Entry<?, ?> entry : m.entrySet()) {
1794 Object k, v;
1795 if (entry == null || (k = entry.getKey()) == null ||
1796 (v = entry.getValue()) == null) {
1797 npe = true;
1798 break;
1799 }
1800 int h = spread(k.hashCode());
1801 for (Node[] tab = table;;) {
1802 int i; Node f; int fh; Object fk;
1803 if (tab == null)
1804 tab = initTable();
1805 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1806 if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1807 ++delta;
1808 break;
1809 }
1810 }
1811 else if ((fh = f.hash) == MOVED) {
1812 if ((fk = f.key) instanceof TreeBin) {
1813 TreeBin t = (TreeBin)fk;
1814 boolean validated = false;
1815 t.acquire(0);
1816 try {
1817 if (tabAt(tab, i) == f) {
1818 validated = true;
1819 TreeNode p = t.getTreeNode(h, k, t.root);
1820 if (p != null)
1821 p.val = v;
1822 else {
1823 t.putTreeNode(h, k, v);
1824 ++delta;
1825 }
1826 }
1827 } finally {
1828 t.release(0);
1829 }
1830 if (validated)
1831 break;
1832 }
1833 else
1834 tab = (Node[])fk;
1835 }
1836 else if ((fh & LOCKED) != 0) {
1837 counter.add(delta);
1838 delta = 0L;
1839 checkForResize();
1840 f.tryAwaitLock(tab, i);
1841 }
1842 else if (f.casHash(fh, fh | LOCKED)) {
1843 int count = 0;
1844 try {
1845 if (tabAt(tab, i) == f) {
1846 count = 1;
1847 for (Node e = f;; ++count) {
1848 Object ek, ev;
1849 if ((e.hash & HASH_BITS) == h &&
1850 (ev = e.val) != null &&
1851 ((ek = e.key) == k || k.equals(ek))) {
1852 e.val = v;
1853 break;
1854 }
1855 Node last = e;
1856 if ((e = e.next) == null) {
1857 ++delta;
1858 last.next = new Node(h, k, v, null);
1859 if (count >= TREE_THRESHOLD)
1860 replaceWithTreeBin(tab, i, k);
1861 break;
1862 }
1863 }
1864 }
1865 } finally {
1866 if (!f.casHash(fh | LOCKED, fh)) {
1867 f.hash = fh;
1868 synchronized (f) { f.notifyAll(); };
1869 }
1870 }
1871 if (count != 0) {
1872 if (count > 1) {
1873 counter.add(delta);
1874 delta = 0L;
1875 checkForResize();
1876 }
1877 break;
1878 }
1879 }
1880 }
1881 }
1882 } finally {
1883 if (delta != 0)
1884 counter.add(delta);
1885 }
1886 if (npe)
1887 throw new NullPointerException();
1888 }
1889
1890 /* ---------------- Table Initialization and Resizing -------------- */
1891
1892 /**
1893 * Returns a power of two table size for the given desired capacity.
1894 * See Hackers Delight, sec 3.2
1895 */
1896 private static final int tableSizeFor(int c) {
1897 int n = c - 1;
1898 n |= n >>> 1;
1899 n |= n >>> 2;
1900 n |= n >>> 4;
1901 n |= n >>> 8;
1902 n |= n >>> 16;
1903 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1904 }
1905
1906 /**
1907 * Initializes table, using the size recorded in sizeCtl.
1908 */
1909 private final Node[] initTable() {
1910 Node[] tab; int sc;
1911 while ((tab = table) == null) {
1912 if ((sc = sizeCtl) < 0)
1913 Thread.yield(); // lost initialization race; just spin
1914 else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1915 try {
1916 if ((tab = table) == null) {
1917 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1918 tab = table = new Node[n];
1919 sc = n - (n >>> 2);
1920 }
1921 } finally {
1922 sizeCtl = sc;
1923 }
1924 break;
1925 }
1926 }
1927 return tab;
1928 }
1929
1930 /**
1931 * If table is too small and not already resizing, creates next
1932 * table and transfers bins. Rechecks occupancy after a transfer
1933 * to see if another resize is already needed because resizings
1934 * are lagging additions.
1935 */
1936 private final void checkForResize() {
1937 Node[] tab; int n, sc;
1938 while ((tab = table) != null &&
1939 (n = tab.length) < MAXIMUM_CAPACITY &&
1940 (sc = sizeCtl) >= 0 && counter.sum() >= (long)sc &&
1941 UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1942 try {
1943 if (tab == table) {
1944 table = rebuild(tab);
1945 sc = (n << 1) - (n >>> 1);
1946 }
1947 } finally {
1948 sizeCtl = sc;
1949 }
1950 }
1951 }
1952
1953 /**
1954 * Tries to presize table to accommodate the given number of elements.
1955 *
1956 * @param size number of elements (doesn't need to be perfectly accurate)
1957 */
1958 private final void tryPresize(int size) {
1959 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1960 tableSizeFor(size + (size >>> 1) + 1);
1961 int sc;
1962 while ((sc = sizeCtl) >= 0) {
1963 Node[] tab = table; int n;
1964 if (tab == null || (n = tab.length) == 0) {
1965 n = (sc > c) ? sc : c;
1966 if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1967 try {
1968 if (table == tab) {
1969 table = new Node[n];
1970 sc = n - (n >>> 2);
1971 }
1972 } finally {
1973 sizeCtl = sc;
1974 }
1975 }
1976 }
1977 else if (c <= sc || n >= MAXIMUM_CAPACITY)
1978 break;
1979 else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1980 try {
1981 if (table == tab) {
1982 table = rebuild(tab);
1983 sc = (n << 1) - (n >>> 1);
1984 }
1985 } finally {
1986 sizeCtl = sc;
1987 }
1988 }
1989 }
1990 }
1991
1992 /*
1993 * Moves and/or copies the nodes in each bin to new table. See
1994 * above for explanation.
1995 *
1996 * @return the new table
1997 */
1998 private static final Node[] rebuild(Node[] tab) {
1999 int n = tab.length;
2000 Node[] nextTab = new Node[n << 1];
2001 Node fwd = new Node(MOVED, nextTab, null, null);
2002 int[] buffer = null; // holds bins to revisit; null until needed
2003 Node rev = null; // reverse forwarder; null until needed
2004 int nbuffered = 0; // the number of bins in buffer list
2005 int bufferIndex = 0; // buffer index of current buffered bin
2006 int bin = n - 1; // current non-buffered bin or -1 if none
2007
2008 for (int i = bin;;) { // start upwards sweep
2009 int fh; Node f;
2010 if ((f = tabAt(tab, i)) == null) {
2011 if (bin >= 0) { // no lock needed (or available)
2012 if (!casTabAt(tab, i, f, fwd))
2013 continue;
2014 }
2015 else { // transiently use a locked forwarding node
2016 Node g = new Node(MOVED|LOCKED, nextTab, null, null);
2017 if (!casTabAt(tab, i, f, g))
2018 continue;
2019 setTabAt(nextTab, i, null);
2020 setTabAt(nextTab, i + n, null);
2021 setTabAt(tab, i, fwd);
2022 if (!g.casHash(MOVED|LOCKED, MOVED)) {
2023 g.hash = MOVED;
2024 synchronized (g) { g.notifyAll(); }
2025 }
2026 }
2027 }
2028 else if ((fh = f.hash) == MOVED) {
2029 Object fk = f.key;
2030 if (fk instanceof TreeBin) {
2031 TreeBin t = (TreeBin)fk;
2032 boolean validated = false;
2033 t.acquire(0);
2034 try {
2035 if (tabAt(tab, i) == f) {
2036 validated = true;
2037 splitTreeBin(nextTab, i, t);
2038 setTabAt(tab, i, fwd);
2039 }
2040 } finally {
2041 t.release(0);
2042 }
2043 if (!validated)
2044 continue;
2045 }
2046 }
2047 else if ((fh & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
2048 boolean validated = false;
2049 try { // split to lo and hi lists; copying as needed
2050 if (tabAt(tab, i) == f) {
2051 validated = true;
2052 splitBin(nextTab, i, f);
2053 setTabAt(tab, i, fwd);
2054 }
2055 } finally {
2056 if (!f.casHash(fh | LOCKED, fh)) {
2057 f.hash = fh;
2058 synchronized (f) { f.notifyAll(); };
2059 }
2060 }
2061 if (!validated)
2062 continue;
2063 }
2064 else {
2065 if (buffer == null) // initialize buffer for revisits
2066 buffer = new int[TRANSFER_BUFFER_SIZE];
2067 if (bin < 0 && bufferIndex > 0) {
2068 int j = buffer[--bufferIndex];
2069 buffer[bufferIndex] = i;
2070 i = j; // swap with another bin
2071 continue;
2072 }
2073 if (bin < 0 || nbuffered >= TRANSFER_BUFFER_SIZE) {
2074 f.tryAwaitLock(tab, i);
2075 continue; // no other options -- block
2076 }
2077 if (rev == null) // initialize reverse-forwarder
2078 rev = new Node(MOVED, tab, null, null);
2079 if (tabAt(tab, i) != f || (f.hash & LOCKED) == 0)
2080 continue; // recheck before adding to list
2081 buffer[nbuffered++] = i;
2082 setTabAt(nextTab, i, rev); // install place-holders
2083 setTabAt(nextTab, i + n, rev);
2084 }
2085
2086 if (bin > 0)
2087 i = --bin;
2088 else if (buffer != null && nbuffered > 0) {
2089 bin = -1;
2090 i = buffer[bufferIndex = --nbuffered];
2091 }
2092 else
2093 return nextTab;
2094 }
2095 }
2096
2097 /**
2098 * Splits a normal bin with list headed by e into lo and hi parts;
2099 * installs in given table.
2100 */
2101 private static void splitBin(Node[] nextTab, int i, Node e) {
2102 int bit = nextTab.length >>> 1; // bit to split on
2103 int runBit = e.hash & bit;
2104 Node lastRun = e, lo = null, hi = null;
2105 for (Node p = e.next; p != null; p = p.next) {
2106 int b = p.hash & bit;
2107 if (b != runBit) {
2108 runBit = b;
2109 lastRun = p;
2110 }
2111 }
2112 if (runBit == 0)
2113 lo = lastRun;
2114 else
2115 hi = lastRun;
2116 for (Node p = e; p != lastRun; p = p.next) {
2117 int ph = p.hash & HASH_BITS;
2118 Object pk = p.key, pv = p.val;
2119 if ((ph & bit) == 0)
2120 lo = new Node(ph, pk, pv, lo);
2121 else
2122 hi = new Node(ph, pk, pv, hi);
2123 }
2124 setTabAt(nextTab, i, lo);
2125 setTabAt(nextTab, i + bit, hi);
2126 }
2127
2128 /**
2129 * Splits a tree bin into lo and hi parts; installs in given table.
2130 */
2131 private static void splitTreeBin(Node[] nextTab, int i, TreeBin t) {
2132 int bit = nextTab.length >>> 1;
2133 TreeBin lt = new TreeBin();
2134 TreeBin ht = new TreeBin();
2135 int lc = 0, hc = 0;
2136 for (Node e = t.first; e != null; e = e.next) {
2137 int h = e.hash & HASH_BITS;
2138 Object k = e.key, v = e.val;
2139 if ((h & bit) == 0) {
2140 ++lc;
2141 lt.putTreeNode(h, k, v);
2142 }
2143 else {
2144 ++hc;
2145 ht.putTreeNode(h, k, v);
2146 }
2147 }
2148 Node ln, hn; // throw away trees if too small
2149 if (lc <= (TREE_THRESHOLD >>> 1)) {
2150 ln = null;
2151 for (Node p = lt.first; p != null; p = p.next)
2152 ln = new Node(p.hash, p.key, p.val, ln);
2153 }
2154 else
2155 ln = new Node(MOVED, lt, null, null);
2156 setTabAt(nextTab, i, ln);
2157 if (hc <= (TREE_THRESHOLD >>> 1)) {
2158 hn = null;
2159 for (Node p = ht.first; p != null; p = p.next)
2160 hn = new Node(p.hash, p.key, p.val, hn);
2161 }
2162 else
2163 hn = new Node(MOVED, ht, null, null);
2164 setTabAt(nextTab, i + bit, hn);
2165 }
2166
2167 /**
2168 * Implementation for clear. Steps through each bin, removing all
2169 * nodes.
2170 */
2171 private final void internalClear() {
2172 long delta = 0L; // negative number of deletions
2173 int i = 0;
2174 Node[] tab = table;
2175 while (tab != null && i < tab.length) {
2176 int fh; Object fk;
2177 Node f = tabAt(tab, i);
2178 if (f == null)
2179 ++i;
2180 else if ((fh = f.hash) == MOVED) {
2181 if ((fk = f.key) instanceof TreeBin) {
2182 TreeBin t = (TreeBin)fk;
2183 t.acquire(0);
2184 try {
2185 if (tabAt(tab, i) == f) {
2186 for (Node p = t.first; p != null; p = p.next) {
2187 p.val = null;
2188 --delta;
2189 }
2190 t.first = null;
2191 t.root = null;
2192 ++i;
2193 }
2194 } finally {
2195 t.release(0);
2196 }
2197 }
2198 else
2199 tab = (Node[])fk;
2200 }
2201 else if ((fh & LOCKED) != 0) {
2202 counter.add(delta); // opportunistically update count
2203 delta = 0L;
2204 f.tryAwaitLock(tab, i);
2205 }
2206 else if (f.casHash(fh, fh | LOCKED)) {
2207 try {
2208 if (tabAt(tab, i) == f) {
2209 for (Node e = f; e != null; e = e.next) {
2210 e.val = null;
2211 --delta;
2212 }
2213 setTabAt(tab, i, null);
2214 ++i;
2215 }
2216 } finally {
2217 if (!f.casHash(fh | LOCKED, fh)) {
2218 f.hash = fh;
2219 synchronized (f) { f.notifyAll(); };
2220 }
2221 }
2222 }
2223 }
2224 if (delta != 0)
2225 counter.add(delta);
2226 }
2227
2228 /* ----------------Table Traversal -------------- */
2229
2230 /**
2231 * Encapsulates traversal for methods such as containsValue; also
2232 * serves as a base class for other iterators and bulk tasks.
2233 *
2234 * At each step, the iterator snapshots the key ("nextKey") and
2235 * value ("nextVal") of a valid node (i.e., one that, at point of
2236 * snapshot, has a non-null user value). Because val fields can
2237 * change (including to null, indicating deletion), field nextVal
2238 * might not be accurate at point of use, but still maintains the
2239 * weak consistency property of holding a value that was once
2240 * valid.
2241 *
2242 * Internal traversals directly access these fields, as in:
2243 * {@code while (it.advance() != null) { process(it.nextKey); }}
2244 *
2245 * Exported iterators must track whether the iterator has advanced
2246 * (in hasNext vs next) (by setting/checking/nulling field
2247 * nextVal), and then extract key, value, or key-value pairs as
2248 * return values of next().
2249 *
2250 * The iterator visits once each still-valid node that was
2251 * reachable upon iterator construction. It might miss some that
2252 * were added to a bin after the bin was visited, which is OK wrt
2253 * consistency guarantees. Maintaining this property in the face
2254 * of possible ongoing resizes requires a fair amount of
2255 * bookkeeping state that is difficult to optimize away amidst
2256 * volatile accesses. Even so, traversal maintains reasonable
2257 * throughput.
2258 *
2259 * Normally, iteration proceeds bin-by-bin traversing lists.
2260 * However, if the table has been resized, then all future steps
2261 * must traverse both the bin at the current index as well as at
2262 * (index + baseSize); and so on for further resizings. To
2263 * paranoically cope with potential sharing by users of iterators
2264 * across threads, iteration terminates if a bounds checks fails
2265 * for a table read.
2266 *
2267 * This class extends ForkJoinTask to streamline parallel
2268 * iteration in bulk operations (see BulkTask). This adds only an
2269 * int of space overhead, which is close enough to negligible in
2270 * cases where it is not needed to not worry about it. Because
2271 * ForkJoinTask is Serializable, but iterators need not be, we
2272 * need to add warning suppressions.
2273 */
2274 @SuppressWarnings("serial")
2275 static class Traverser<K,V,R> extends ForkJoinTask<R> {
2276 final ConcurrentHashMapV8<K, V> map;
2277 Node next; // the next entry to use
2278 Node last; // the last entry used
2279 Object nextKey; // cached key field of next
2280 Object nextVal; // cached val field of next
2281 Node[] tab; // current table; updated if resized
2282 int index; // index of bin to use next
2283 int baseIndex; // current index of initial table
2284 int baseLimit; // index bound for initial table
2285 final int baseSize; // initial table size
2286
2287 /** Creates iterator for all entries in the table. */
2288 Traverser(ConcurrentHashMapV8<K, V> map) {
2289 this.tab = (this.map = map).table;
2290 baseLimit = baseSize = (tab == null) ? 0 : tab.length;
2291 }
2292
2293 /** Creates iterator for split() methods */
2294 Traverser(Traverser<K,V,?> it, boolean split) {
2295 this.map = it.map;
2296 this.tab = it.tab;
2297 this.baseSize = it.baseSize;
2298 int lo = it.baseIndex;
2299 int hi = this.baseLimit = it.baseLimit;
2300 int i;
2301 if (split) // adjust parent
2302 i = it.baseLimit = (lo + hi + 1) >>> 1;
2303 else // clone parent
2304 i = lo;
2305 this.index = this.baseIndex = i;
2306 }
2307
2308 /**
2309 * Advances next; returns nextVal or null if terminated.
2310 * See above for explanation.
2311 */
2312 final Object advance() {
2313 Node e = last = next;
2314 Object ev = null;
2315 outer: do {
2316 if (e != null) // advance past used/skipped node
2317 e = e.next;
2318 while (e == null) { // get to next non-null bin
2319 Node[] t; int b, i, n; Object ek; // checks must use locals
2320 if ((b = baseIndex) >= baseLimit || (i = index) < 0 ||
2321 (t = tab) == null || i >= (n = t.length))
2322 break outer;
2323 else if ((e = tabAt(t, i)) != null && e.hash == MOVED) {
2324 if ((ek = e.key) instanceof TreeBin)
2325 e = ((TreeBin)ek).first;
2326 else {
2327 tab = (Node[])ek;
2328 continue; // restarts due to null val
2329 }
2330 } // visit upper slots if present
2331 index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2332 }
2333 nextKey = e.key;
2334 } while ((ev = e.val) == null); // skip deleted or special nodes
2335 next = e;
2336 return nextVal = ev;
2337 }
2338
2339 public final void remove() {
2340 if (nextVal == null && last == null)
2341 advance();
2342 Node e = last;
2343 if (e == null)
2344 throw new IllegalStateException();
2345 last = null;
2346 map.remove(e.key);
2347 }
2348
2349 public final boolean hasNext() {
2350 return nextVal != null || advance() != null;
2351 }
2352
2353 public final boolean hasMoreElements() { return hasNext(); }
2354 public final void setRawResult(Object x) { }
2355 public R getRawResult() { return null; }
2356 public boolean exec() { return true; }
2357 }
2358
2359 /* ---------------- Public operations -------------- */
2360
2361 /**
2362 * Creates a new, empty map with the default initial table size (16).
2363 */
2364 public ConcurrentHashMapV8() {
2365 this.counter = new LongAdder();
2366 }
2367
2368 /**
2369 * Creates a new, empty map with an initial table size
2370 * accommodating the specified number of elements without the need
2371 * to dynamically resize.
2372 *
2373 * @param initialCapacity The implementation performs internal
2374 * sizing to accommodate this many elements.
2375 * @throws IllegalArgumentException if the initial capacity of
2376 * elements is negative
2377 */
2378 public ConcurrentHashMapV8(int initialCapacity) {
2379 if (initialCapacity < 0)
2380 throw new IllegalArgumentException();
2381 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2382 MAXIMUM_CAPACITY :
2383 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2384 this.counter = new LongAdder();
2385 this.sizeCtl = cap;
2386 }
2387
2388 /**
2389 * Creates a new map with the same mappings as the given map.
2390 *
2391 * @param m the map
2392 */
2393 public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
2394 this.counter = new LongAdder();
2395 this.sizeCtl = DEFAULT_CAPACITY;
2396 internalPutAll(m);
2397 }
2398
2399 /**
2400 * Creates a new, empty map with an initial table size based on
2401 * the given number of elements ({@code initialCapacity}) and
2402 * initial table density ({@code loadFactor}).
2403 *
2404 * @param initialCapacity the initial capacity. The implementation
2405 * performs internal sizing to accommodate this many elements,
2406 * given the specified load factor.
2407 * @param loadFactor the load factor (table density) for
2408 * establishing the initial table size
2409 * @throws IllegalArgumentException if the initial capacity of
2410 * elements is negative or the load factor is nonpositive
2411 *
2412 * @since 1.6
2413 */
2414 public ConcurrentHashMapV8(int initialCapacity, float loadFactor) {
2415 this(initialCapacity, loadFactor, 1);
2416 }
2417
2418 /**
2419 * Creates a new, empty map with an initial table size based on
2420 * the given number of elements ({@code initialCapacity}), table
2421 * density ({@code loadFactor}), and number of concurrently
2422 * updating threads ({@code concurrencyLevel}).
2423 *
2424 * @param initialCapacity the initial capacity. The implementation
2425 * performs internal sizing to accommodate this many elements,
2426 * given the specified load factor.
2427 * @param loadFactor the load factor (table density) for
2428 * establishing the initial table size
2429 * @param concurrencyLevel the estimated number of concurrently
2430 * updating threads. The implementation may use this value as
2431 * a sizing hint.
2432 * @throws IllegalArgumentException if the initial capacity is
2433 * negative or the load factor or concurrencyLevel are
2434 * nonpositive
2435 */
2436 public ConcurrentHashMapV8(int initialCapacity,
2437 float loadFactor, int concurrencyLevel) {
2438 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2439 throw new IllegalArgumentException();
2440 if (initialCapacity < concurrencyLevel) // Use at least as many bins
2441 initialCapacity = concurrencyLevel; // as estimated threads
2442 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2443 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2444 MAXIMUM_CAPACITY : tableSizeFor((int)size);
2445 this.counter = new LongAdder();
2446 this.sizeCtl = cap;
2447 }
2448
2449 /**
2450 * {@inheritDoc}
2451 */
2452 public boolean isEmpty() {
2453 return counter.sum() <= 0L; // ignore transient negative values
2454 }
2455
2456 /**
2457 * {@inheritDoc}
2458 */
2459 public int size() {
2460 long n = counter.sum();
2461 return ((n < 0L) ? 0 :
2462 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2463 (int)n);
2464 }
2465
2466 /**
2467 * Returns the number of mappings. This method should be used
2468 * instead of {@link #size} because a ConcurrentHashMap may
2469 * contain more mappings than can be represented as an int. The
2470 * value returned is a snapshot; the actual count may differ if
2471 * there are ongoing concurrent insertions or removals.
2472 *
2473 * @return the number of mappings
2474 */
2475 public long mappingCount() {
2476 long n = counter.sum();
2477 return (n < 0L) ? 0L : n; // ignore transient negative values
2478 }
2479
2480 /**
2481 * Returns the value to which the specified key is mapped,
2482 * or {@code null} if this map contains no mapping for the key.
2483 *
2484 * <p>More formally, if this map contains a mapping from a key
2485 * {@code k} to a value {@code v} such that {@code key.equals(k)},
2486 * then this method returns {@code v}; otherwise it returns
2487 * {@code null}. (There can be at most one such mapping.)
2488 *
2489 * @throws NullPointerException if the specified key is null
2490 */
2491 @SuppressWarnings("unchecked")
2492 public V get(Object key) {
2493 if (key == null)
2494 throw new NullPointerException();
2495 return (V)internalGet(key);
2496 }
2497
2498 /**
2499 * Tests if the specified object is a key in this table.
2500 *
2501 * @param key possible key
2502 * @return {@code true} if and only if the specified object
2503 * is a key in this table, as determined by the
2504 * {@code equals} method; {@code false} otherwise
2505 * @throws NullPointerException if the specified key is null
2506 */
2507 public boolean containsKey(Object key) {
2508 if (key == null)
2509 throw new NullPointerException();
2510 return internalGet(key) != null;
2511 }
2512
2513 /**
2514 * Returns {@code true} if this map maps one or more keys to the
2515 * specified value. Note: This method may require a full traversal
2516 * of the map, and is much slower than method {@code containsKey}.
2517 *
2518 * @param value value whose presence in this map is to be tested
2519 * @return {@code true} if this map maps one or more keys to the
2520 * specified value
2521 * @throws NullPointerException if the specified value is null
2522 */
2523 public boolean containsValue(Object value) {
2524 if (value == null)
2525 throw new NullPointerException();
2526 Object v;
2527 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2528 while ((v = it.advance()) != null) {
2529 if (v == value || value.equals(v))
2530 return true;
2531 }
2532 return false;
2533 }
2534
2535 /**
2536 * Legacy method testing if some key maps into the specified value
2537 * in this table. This method is identical in functionality to
2538 * {@link #containsValue}, and exists solely to ensure
2539 * full compatibility with class {@link java.util.Hashtable},
2540 * which supported this method prior to introduction of the
2541 * Java Collections framework.
2542 *
2543 * @param value a value to search for
2544 * @return {@code true} if and only if some key maps to the
2545 * {@code value} argument in this table as
2546 * determined by the {@code equals} method;
2547 * {@code false} otherwise
2548 * @throws NullPointerException if the specified value is null
2549 */
2550 public boolean contains(Object value) {
2551 return containsValue(value);
2552 }
2553
2554 /**
2555 * Maps the specified key to the specified value in this table.
2556 * Neither the key nor the value can be null.
2557 *
2558 * <p> The value can be retrieved by calling the {@code get} method
2559 * with a key that is equal to the original key.
2560 *
2561 * @param key key with which the specified value is to be associated
2562 * @param value value to be associated with the specified key
2563 * @return the previous value associated with {@code key}, or
2564 * {@code null} if there was no mapping for {@code key}
2565 * @throws NullPointerException if the specified key or value is null
2566 */
2567 @SuppressWarnings("unchecked")
2568 public V put(K key, V value) {
2569 if (key == null || value == null)
2570 throw new NullPointerException();
2571 return (V)internalPut(key, value);
2572 }
2573
2574 /**
2575 * {@inheritDoc}
2576 *
2577 * @return the previous value associated with the specified key,
2578 * or {@code null} if there was no mapping for the key
2579 * @throws NullPointerException if the specified key or value is null
2580 */
2581 @SuppressWarnings("unchecked")
2582 public V putIfAbsent(K key, V value) {
2583 if (key == null || value == null)
2584 throw new NullPointerException();
2585 return (V)internalPutIfAbsent(key, value);
2586 }
2587
2588 /**
2589 * Copies all of the mappings from the specified map to this one.
2590 * These mappings replace any mappings that this map had for any of the
2591 * keys currently in the specified map.
2592 *
2593 * @param m mappings to be stored in this map
2594 */
2595 public void putAll(Map<? extends K, ? extends V> m) {
2596 internalPutAll(m);
2597 }
2598
2599 /**
2600 * If the specified key is not already associated with a value,
2601 * computes its value using the given mappingFunction and enters
2602 * it into the map unless null. This is equivalent to
2603 * <pre> {@code
2604 * if (map.containsKey(key))
2605 * return map.get(key);
2606 * value = mappingFunction.apply(key);
2607 * if (value != null)
2608 * map.put(key, value);
2609 * return value;}</pre>
2610 *
2611 * except that the action is performed atomically. If the
2612 * function returns {@code null} no mapping is recorded. If the
2613 * function itself throws an (unchecked) exception, the exception
2614 * is rethrown to its caller, and no mapping is recorded. Some
2615 * attempted update operations on this map by other threads may be
2616 * blocked while computation is in progress, so the computation
2617 * should be short and simple, and must not attempt to update any
2618 * other mappings of this Map. The most appropriate usage is to
2619 * construct a new object serving as an initial mapped value, or
2620 * memoized result, as in:
2621 *
2622 * <pre> {@code
2623 * map.computeIfAbsent(key, new Fun<K, V>() {
2624 * public V map(K k) { return new Value(f(k)); }});}</pre>
2625 *
2626 * @param key key with which the specified value is to be associated
2627 * @param mappingFunction the function to compute a value
2628 * @return the current (existing or computed) value associated with
2629 * the specified key, or null if the computed value is null.
2630 * @throws NullPointerException if the specified key or mappingFunction
2631 * is null
2632 * @throws IllegalStateException if the computation detectably
2633 * attempts a recursive update to this map that would
2634 * otherwise never complete
2635 * @throws RuntimeException or Error if the mappingFunction does so,
2636 * in which case the mapping is left unestablished
2637 */
2638 @SuppressWarnings("unchecked")
2639 public V computeIfAbsent(K key, Fun<? super K, ? extends V> mappingFunction) {
2640 if (key == null || mappingFunction == null)
2641 throw new NullPointerException();
2642 return (V)internalComputeIfAbsent(key, mappingFunction);
2643 }
2644
2645 /**
2646 * If the given key is present, computes a new mapping value given a key and
2647 * its current mapped value. This is equivalent to
2648 * <pre> {@code
2649 * if (map.containsKey(key)) {
2650 * value = remappingFunction.apply(key, map.get(key));
2651 * if (value != null)
2652 * map.put(key, value);
2653 * else
2654 * map.remove(key);
2655 * }
2656 * }</pre>
2657 *
2658 * except that the action is performed atomically. If the
2659 * function returns {@code null}, the mapping is removed. If the
2660 * function itself throws an (unchecked) exception, the exception
2661 * is rethrown to its caller, and the current mapping is left
2662 * unchanged. Some attempted update operations on this map by
2663 * other threads may be blocked while computation is in progress,
2664 * so the computation should be short and simple, and must not
2665 * attempt to update any other mappings of this Map. For example,
2666 * to either create or append new messages to a value mapping:
2667 *
2668 * @param key key with which the specified value is to be associated
2669 * @param remappingFunction the function to compute a value
2670 * @return the new value associated with the specified key, or null if none
2671 * @throws NullPointerException if the specified key or remappingFunction
2672 * is null
2673 * @throws IllegalStateException if the computation detectably
2674 * attempts a recursive update to this map that would
2675 * otherwise never complete
2676 * @throws RuntimeException or Error if the remappingFunction does so,
2677 * in which case the mapping is unchanged
2678 */
2679 @SuppressWarnings("unchecked")
2680 public V computeIfPresent(K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2681 if (key == null || remappingFunction == null)
2682 throw new NullPointerException();
2683 return (V)internalCompute(key, true, remappingFunction);
2684 }
2685
2686 /**
2687 * Computes a new mapping value given a key and
2688 * its current mapped value (or {@code null} if there is no current
2689 * mapping). This is equivalent to
2690 * <pre> {@code
2691 * value = remappingFunction.apply(key, map.get(key));
2692 * if (value != null)
2693 * map.put(key, value);
2694 * else
2695 * map.remove(key);
2696 * }</pre>
2697 *
2698 * except that the action is performed atomically. If the
2699 * function returns {@code null}, the mapping is removed. If the
2700 * function itself throws an (unchecked) exception, the exception
2701 * is rethrown to its caller, and the current mapping is left
2702 * unchanged. Some attempted update operations on this map by
2703 * other threads may be blocked while computation is in progress,
2704 * so the computation should be short and simple, and must not
2705 * attempt to update any other mappings of this Map. For example,
2706 * to either create or append new messages to a value mapping:
2707 *
2708 * <pre> {@code
2709 * Map<Key, String> map = ...;
2710 * final String msg = ...;
2711 * map.compute(key, new BiFun<Key, String, String>() {
2712 * public String apply(Key k, String v) {
2713 * return (v == null) ? msg : v + msg;});}}</pre>
2714 *
2715 * @param key key with which the specified value is to be associated
2716 * @param remappingFunction the function to compute a value
2717 * @return the new value associated with the specified key, or null if none
2718 * @throws NullPointerException if the specified key or remappingFunction
2719 * is null
2720 * @throws IllegalStateException if the computation detectably
2721 * attempts a recursive update to this map that would
2722 * otherwise never complete
2723 * @throws RuntimeException or Error if the remappingFunction does so,
2724 * in which case the mapping is unchanged
2725 */
2726 @SuppressWarnings("unchecked")
2727 public V compute(K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2728 if (key == null || remappingFunction == null)
2729 throw new NullPointerException();
2730 return (V)internalCompute(key, false, remappingFunction);
2731 }
2732
2733 /**
2734 * If the specified key is not already associated
2735 * with a value, associate it with the given value.
2736 * Otherwise, replace the value with the results of
2737 * the given remapping function. This is equivalent to:
2738 * <pre> {@code
2739 * if (!map.containsKey(key))
2740 * map.put(value);
2741 * else {
2742 * newValue = remappingFunction.apply(map.get(key), value);
2743 * if (value != null)
2744 * map.put(key, value);
2745 * else
2746 * map.remove(key);
2747 * }
2748 * }</pre>
2749 * except that the action is performed atomically. If the
2750 * function returns {@code null}, the mapping is removed. If the
2751 * function itself throws an (unchecked) exception, the exception
2752 * is rethrown to its caller, and the current mapping is left
2753 * unchanged. Some attempted update operations on this map by
2754 * other threads may be blocked while computation is in progress,
2755 * so the computation should be short and simple, and must not
2756 * attempt to update any other mappings of this Map.
2757 */
2758 @SuppressWarnings("unchecked")
2759 public V merge(K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
2760 if (key == null || value == null || remappingFunction == null)
2761 throw new NullPointerException();
2762 return (V)internalMerge(key, value, remappingFunction);
2763 }
2764
2765 /**
2766 * Removes the key (and its corresponding value) from this map.
2767 * This method does nothing if the key is not in the map.
2768 *
2769 * @param key the key that needs to be removed
2770 * @return the previous value associated with {@code key}, or
2771 * {@code null} if there was no mapping for {@code key}
2772 * @throws NullPointerException if the specified key is null
2773 */
2774 @SuppressWarnings("unchecked")
2775 public V remove(Object key) {
2776 if (key == null)
2777 throw new NullPointerException();
2778 return (V)internalReplace(key, null, null);
2779 }
2780
2781 /**
2782 * {@inheritDoc}
2783 *
2784 * @throws NullPointerException if the specified key is null
2785 */
2786 public boolean remove(Object key, Object value) {
2787 if (key == null)
2788 throw new NullPointerException();
2789 if (value == null)
2790 return false;
2791 return internalReplace(key, null, value) != null;
2792 }
2793
2794 /**
2795 * {@inheritDoc}
2796 *
2797 * @throws NullPointerException if any of the arguments are null
2798 */
2799 public boolean replace(K key, V oldValue, V newValue) {
2800 if (key == null || oldValue == null || newValue == null)
2801 throw new NullPointerException();
2802 return internalReplace(key, newValue, oldValue) != null;
2803 }
2804
2805 /**
2806 * {@inheritDoc}
2807 *
2808 * @return the previous value associated with the specified key,
2809 * or {@code null} if there was no mapping for the key
2810 * @throws NullPointerException if the specified key or value is null
2811 */
2812 @SuppressWarnings("unchecked")
2813 public V replace(K key, V value) {
2814 if (key == null || value == null)
2815 throw new NullPointerException();
2816 return (V)internalReplace(key, value, null);
2817 }
2818
2819 /**
2820 * Removes all of the mappings from this map.
2821 */
2822 public void clear() {
2823 internalClear();
2824 }
2825
2826 /**
2827 * Returns a {@link Set} view of the keys contained in this map.
2828 * The set is backed by the map, so changes to the map are
2829 * reflected in the set, and vice-versa. The set supports element
2830 * removal, which removes the corresponding mapping from this map,
2831 * via the {@code Iterator.remove}, {@code Set.remove},
2832 * {@code removeAll}, {@code retainAll}, and {@code clear}
2833 * operations. It does not support the {@code add} or
2834 * {@code addAll} operations.
2835 *
2836 * <p>The view's {@code iterator} is a "weakly consistent" iterator
2837 * that will never throw {@link ConcurrentModificationException},
2838 * and guarantees to traverse elements as they existed upon
2839 * construction of the iterator, and may (but is not guaranteed to)
2840 * reflect any modifications subsequent to construction.
2841 */
2842 public Set<K> keySet() {
2843 KeySet<K,V> ks = keySet;
2844 return (ks != null) ? ks : (keySet = new KeySet<K,V>(this));
2845 }
2846
2847 /**
2848 * Returns a {@link Collection} view of the values contained in this map.
2849 * The collection is backed by the map, so changes to the map are
2850 * reflected in the collection, and vice-versa. The collection
2851 * supports element removal, which removes the corresponding
2852 * mapping from this map, via the {@code Iterator.remove},
2853 * {@code Collection.remove}, {@code removeAll},
2854 * {@code retainAll}, and {@code clear} operations. It does not
2855 * support the {@code add} or {@code addAll} operations.
2856 *
2857 * <p>The view's {@code iterator} is a "weakly consistent" iterator
2858 * that will never throw {@link ConcurrentModificationException},
2859 * and guarantees to traverse elements as they existed upon
2860 * construction of the iterator, and may (but is not guaranteed to)
2861 * reflect any modifications subsequent to construction.
2862 */
2863 public Collection<V> values() {
2864 Values<K,V> vs = values;
2865 return (vs != null) ? vs : (values = new Values<K,V>(this));
2866 }
2867
2868 /**
2869 * Returns a {@link Set} view of the mappings contained in this map.
2870 * The set is backed by the map, so changes to the map are
2871 * reflected in the set, and vice-versa. The set supports element
2872 * removal, which removes the corresponding mapping from the map,
2873 * via the {@code Iterator.remove}, {@code Set.remove},
2874 * {@code removeAll}, {@code retainAll}, and {@code clear}
2875 * operations. It does not support the {@code add} or
2876 * {@code addAll} operations.
2877 *
2878 * <p>The view's {@code iterator} is a "weakly consistent" iterator
2879 * that will never throw {@link ConcurrentModificationException},
2880 * and guarantees to traverse elements as they existed upon
2881 * construction of the iterator, and may (but is not guaranteed to)
2882 * reflect any modifications subsequent to construction.
2883 */
2884 public Set<Map.Entry<K,V>> entrySet() {
2885 EntrySet<K,V> es = entrySet;
2886 return (es != null) ? es : (entrySet = new EntrySet<K,V>(this));
2887 }
2888
2889 /**
2890 * Returns an enumeration of the keys in this table.
2891 *
2892 * @return an enumeration of the keys in this table
2893 * @see #keySet()
2894 */
2895 public Enumeration<K> keys() {
2896 return new KeyIterator<K,V>(this);
2897 }
2898
2899 /**
2900 * Returns an enumeration of the values in this table.
2901 *
2902 * @return an enumeration of the values in this table
2903 * @see #values()
2904 */
2905 public Enumeration<V> elements() {
2906 return new ValueIterator<K,V>(this);
2907 }
2908
2909 /**
2910 * Returns a partitionable iterator of the keys in this map.
2911 *
2912 * @return a partitionable iterator of the keys in this map
2913 */
2914 public Spliterator<K> keySpliterator() {
2915 return new KeyIterator<K,V>(this);
2916 }
2917
2918 /**
2919 * Returns a partitionable iterator of the values in this map.
2920 *
2921 * @return a partitionable iterator of the values in this map
2922 */
2923 public Spliterator<V> valueSpliterator() {
2924 return new ValueIterator<K,V>(this);
2925 }
2926
2927 /**
2928 * Returns a partitionable iterator of the entries in this map.
2929 *
2930 * @return a partitionable iterator of the entries in this map
2931 */
2932 public Spliterator<Map.Entry<K,V>> entrySpliterator() {
2933 return new EntryIterator<K,V>(this);
2934 }
2935
2936 /**
2937 * Returns the hash code value for this {@link Map}, i.e.,
2938 * the sum of, for each key-value pair in the map,
2939 * {@code key.hashCode() ^ value.hashCode()}.
2940 *
2941 * @return the hash code value for this map
2942 */
2943 public int hashCode() {
2944 int h = 0;
2945 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2946 Object v;
2947 while ((v = it.advance()) != null) {
2948 h += it.nextKey.hashCode() ^ v.hashCode();
2949 }
2950 return h;
2951 }
2952
2953 /**
2954 * Returns a string representation of this map. The string
2955 * representation consists of a list of key-value mappings (in no
2956 * particular order) enclosed in braces ("{@code {}}"). Adjacent
2957 * mappings are separated by the characters {@code ", "} (comma
2958 * and space). Each key-value mapping is rendered as the key
2959 * followed by an equals sign ("{@code =}") followed by the
2960 * associated value.
2961 *
2962 * @return a string representation of this map
2963 */
2964 public String toString() {
2965 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2966 StringBuilder sb = new StringBuilder();
2967 sb.append('{');
2968 Object v;
2969 if ((v = it.advance()) != null) {
2970 for (;;) {
2971 Object k = it.nextKey;
2972 sb.append(k == this ? "(this Map)" : k);
2973 sb.append('=');
2974 sb.append(v == this ? "(this Map)" : v);
2975 if ((v = it.advance()) == null)
2976 break;
2977 sb.append(',').append(' ');
2978 }
2979 }
2980 return sb.append('}').toString();
2981 }
2982
2983 /**
2984 * Compares the specified object with this map for equality.
2985 * Returns {@code true} if the given object is a map with the same
2986 * mappings as this map. This operation may return misleading
2987 * results if either map is concurrently modified during execution
2988 * of this method.
2989 *
2990 * @param o object to be compared for equality with this map
2991 * @return {@code true} if the specified object is equal to this map
2992 */
2993 public boolean equals(Object o) {
2994 if (o != this) {
2995 if (!(o instanceof Map))
2996 return false;
2997 Map<?,?> m = (Map<?,?>) o;
2998 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2999 Object val;
3000 while ((val = it.advance()) != null) {
3001 Object v = m.get(it.nextKey);
3002 if (v == null || (v != val && !v.equals(val)))
3003 return false;
3004 }
3005 for (Map.Entry<?,?> e : m.entrySet()) {
3006 Object mk, mv, v;
3007 if ((mk = e.getKey()) == null ||
3008 (mv = e.getValue()) == null ||
3009 (v = internalGet(mk)) == null ||
3010 (mv != v && !mv.equals(v)))
3011 return false;
3012 }
3013 }
3014 return true;
3015 }
3016
3017 /* ----------------Iterators -------------- */
3018
3019 @SuppressWarnings("serial")
3020 static final class KeyIterator<K,V> extends Traverser<K,V,Object>
3021 implements Spliterator<K>, Enumeration<K> {
3022 KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3023 KeyIterator(Traverser<K,V,Object> it, boolean split) {
3024 super(it, split);
3025 }
3026 public KeyIterator<K,V> split() {
3027 if (last != null || (next != null && nextVal == null))
3028 throw new IllegalStateException();
3029 return new KeyIterator<K,V>(this, true);
3030 }
3031 @SuppressWarnings("unchecked")
3032 public final K next() {
3033 if (nextVal == null && advance() == null)
3034 throw new NoSuchElementException();
3035 Object k = nextKey;
3036 nextVal = null;
3037 return (K) k;
3038 }
3039
3040 public final K nextElement() { return next(); }
3041 }
3042
3043 @SuppressWarnings("serial")
3044 static final class ValueIterator<K,V> extends Traverser<K,V,Object>
3045 implements Spliterator<V>, Enumeration<V> {
3046 ValueIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3047 ValueIterator(Traverser<K,V,Object> it, boolean split) {
3048 super(it, split);
3049 }
3050 public ValueIterator<K,V> split() {
3051 if (last != null || (next != null && nextVal == null))
3052 throw new IllegalStateException();
3053 return new ValueIterator<K,V>(this, true);
3054 }
3055
3056 @SuppressWarnings("unchecked")
3057 public final V next() {
3058 Object v;
3059 if ((v = nextVal) == null && (v = advance()) == null)
3060 throw new NoSuchElementException();
3061 nextVal = null;
3062 return (V) v;
3063 }
3064
3065 public final V nextElement() { return next(); }
3066 }
3067
3068 @SuppressWarnings("serial")
3069 static final class EntryIterator<K,V> extends Traverser<K,V,Object>
3070 implements Spliterator<Map.Entry<K,V>> {
3071 EntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3072 EntryIterator(Traverser<K,V,Object> it, boolean split) {
3073 super(it, split);
3074 }
3075 public EntryIterator<K,V> split() {
3076 if (last != null || (next != null && nextVal == null))
3077 throw new IllegalStateException();
3078 return new EntryIterator<K,V>(this, true);
3079 }
3080
3081 @SuppressWarnings("unchecked")
3082 public final Map.Entry<K,V> next() {
3083 Object v;
3084 if ((v = nextVal) == null && (v = advance()) == null)
3085 throw new NoSuchElementException();
3086 Object k = nextKey;
3087 nextVal = null;
3088 return new MapEntry<K,V>((K)k, (V)v, map);
3089 }
3090 }
3091
3092 /**
3093 * Exported Entry for iterators
3094 */
3095 static final class MapEntry<K,V> implements Map.Entry<K, V> {
3096 final K key; // non-null
3097 V val; // non-null
3098 final ConcurrentHashMapV8<K, V> map;
3099 MapEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
3100 this.key = key;
3101 this.val = val;
3102 this.map = map;
3103 }
3104 public final K getKey() { return key; }
3105 public final V getValue() { return val; }
3106 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
3107 public final String toString(){ return key + "=" + val; }
3108
3109 public final boolean equals(Object o) {
3110 Object k, v; Map.Entry<?,?> e;
3111 return ((o instanceof Map.Entry) &&
3112 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3113 (v = e.getValue()) != null &&
3114 (k == key || k.equals(key)) &&
3115 (v == val || v.equals(val)));
3116 }
3117
3118 /**
3119 * Sets our entry's value and writes through to the map. The
3120 * value to return is somewhat arbitrary here. Since we do not
3121 * necessarily track asynchronous changes, the most recent
3122 * "previous" value could be different from what we return (or
3123 * could even have been removed in which case the put will
3124 * re-establish). We do not and cannot guarantee more.
3125 */
3126 public final V setValue(V value) {
3127 if (value == null) throw new NullPointerException();
3128 V v = val;
3129 val = value;
3130 map.put(key, value);
3131 return v;
3132 }
3133 }
3134
3135 /* ----------------Views -------------- */
3136
3137 /**
3138 * Base class for views.
3139 */
3140 static abstract class CHMView<K, V> {
3141 final ConcurrentHashMapV8<K, V> map;
3142 CHMView(ConcurrentHashMapV8<K, V> map) { this.map = map; }
3143 public final int size() { return map.size(); }
3144 public final boolean isEmpty() { return map.isEmpty(); }
3145 public final void clear() { map.clear(); }
3146
3147 // implementations below rely on concrete classes supplying these
3148 abstract public Iterator<?> iterator();
3149 abstract public boolean contains(Object o);
3150 abstract public boolean remove(Object o);
3151
3152 private static final String oomeMsg = "Required array size too large";
3153
3154 public final Object[] toArray() {
3155 long sz = map.mappingCount();
3156 if (sz > (long)(MAX_ARRAY_SIZE))
3157 throw new OutOfMemoryError(oomeMsg);
3158 int n = (int)sz;
3159 Object[] r = new Object[n];
3160 int i = 0;
3161 Iterator<?> it = iterator();
3162 while (it.hasNext()) {
3163 if (i == n) {
3164 if (n >= MAX_ARRAY_SIZE)
3165 throw new OutOfMemoryError(oomeMsg);
3166 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
3167 n = MAX_ARRAY_SIZE;
3168 else
3169 n += (n >>> 1) + 1;
3170 r = Arrays.copyOf(r, n);
3171 }
3172 r[i++] = it.next();
3173 }
3174 return (i == n) ? r : Arrays.copyOf(r, i);
3175 }
3176
3177 @SuppressWarnings("unchecked")
3178 public final <T> T[] toArray(T[] a) {
3179 long sz = map.mappingCount();
3180 if (sz > (long)(MAX_ARRAY_SIZE))
3181 throw new OutOfMemoryError(oomeMsg);
3182 int m = (int)sz;
3183 T[] r = (a.length >= m) ? a :
3184 (T[])java.lang.reflect.Array
3185 .newInstance(a.getClass().getComponentType(), m);
3186 int n = r.length;
3187 int i = 0;
3188 Iterator<?> it = iterator();
3189 while (it.hasNext()) {
3190 if (i == n) {
3191 if (n >= MAX_ARRAY_SIZE)
3192 throw new OutOfMemoryError(oomeMsg);
3193 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
3194 n = MAX_ARRAY_SIZE;
3195 else
3196 n += (n >>> 1) + 1;
3197 r = Arrays.copyOf(r, n);
3198 }
3199 r[i++] = (T)it.next();
3200 }
3201 if (a == r && i < n) {
3202 r[i] = null; // null-terminate
3203 return r;
3204 }
3205 return (i == n) ? r : Arrays.copyOf(r, i);
3206 }
3207
3208 public final int hashCode() {
3209 int h = 0;
3210 for (Iterator<?> it = iterator(); it.hasNext();)
3211 h += it.next().hashCode();
3212 return h;
3213 }
3214
3215 public final String toString() {
3216 StringBuilder sb = new StringBuilder();
3217 sb.append('[');
3218 Iterator<?> it = iterator();
3219 if (it.hasNext()) {
3220 for (;;) {
3221 Object e = it.next();
3222 sb.append(e == this ? "(this Collection)" : e);
3223 if (!it.hasNext())
3224 break;
3225 sb.append(',').append(' ');
3226 }
3227 }
3228 return sb.append(']').toString();
3229 }
3230
3231 public final boolean containsAll(Collection<?> c) {
3232 if (c != this) {
3233 for (Iterator<?> it = c.iterator(); it.hasNext();) {
3234 Object e = it.next();
3235 if (e == null || !contains(e))
3236 return false;
3237 }
3238 }
3239 return true;
3240 }
3241
3242 public final boolean removeAll(Collection<?> c) {
3243 boolean modified = false;
3244 for (Iterator<?> it = iterator(); it.hasNext();) {
3245 if (c.contains(it.next())) {
3246 it.remove();
3247 modified = true;
3248 }
3249 }
3250 return modified;
3251 }
3252
3253 public final boolean retainAll(Collection<?> c) {
3254 boolean modified = false;
3255 for (Iterator<?> it = iterator(); it.hasNext();) {
3256 if (!c.contains(it.next())) {
3257 it.remove();
3258 modified = true;
3259 }
3260 }
3261 return modified;
3262 }
3263
3264 }
3265
3266 static final class KeySet<K,V> extends CHMView<K,V> implements Set<K> {
3267 KeySet(ConcurrentHashMapV8<K, V> map) {
3268 super(map);
3269 }
3270 public final boolean contains(Object o) { return map.containsKey(o); }
3271 public final boolean remove(Object o) { return map.remove(o) != null; }
3272 public final Iterator<K> iterator() {
3273 return new KeyIterator<K,V>(map);
3274 }
3275 public final boolean add(K e) {
3276 throw new UnsupportedOperationException();
3277 }
3278 public final boolean addAll(Collection<? extends K> c) {
3279 throw new UnsupportedOperationException();
3280 }
3281 public boolean equals(Object o) {
3282 Set<?> c;
3283 return ((o instanceof Set) &&
3284 ((c = (Set<?>)o) == this ||
3285 (containsAll(c) && c.containsAll(this))));
3286 }
3287 }
3288
3289
3290 static final class Values<K,V> extends CHMView<K,V>
3291 implements Collection<V> {
3292 Values(ConcurrentHashMapV8<K, V> map) { super(map); }
3293 public final boolean contains(Object o) { return map.containsValue(o); }
3294 public final boolean remove(Object o) {
3295 if (o != null) {
3296 Iterator<V> it = new ValueIterator<K,V>(map);
3297 while (it.hasNext()) {
3298 if (o.equals(it.next())) {
3299 it.remove();
3300 return true;
3301 }
3302 }
3303 }
3304 return false;
3305 }
3306 public final Iterator<V> iterator() {
3307 return new ValueIterator<K,V>(map);
3308 }
3309 public final boolean add(V e) {
3310 throw new UnsupportedOperationException();
3311 }
3312 public final boolean addAll(Collection<? extends V> c) {
3313 throw new UnsupportedOperationException();
3314 }
3315
3316 }
3317
3318 static final class EntrySet<K,V> extends CHMView<K,V>
3319 implements Set<Map.Entry<K,V>> {
3320 EntrySet(ConcurrentHashMapV8<K, V> map) { super(map); }
3321 public final boolean contains(Object o) {
3322 Object k, v, r; Map.Entry<?,?> e;
3323 return ((o instanceof Map.Entry) &&
3324 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3325 (r = map.get(k)) != null &&
3326 (v = e.getValue()) != null &&
3327 (v == r || v.equals(r)));
3328 }
3329 public final boolean remove(Object o) {
3330 Object k, v; Map.Entry<?,?> e;
3331 return ((o instanceof Map.Entry) &&
3332 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3333 (v = e.getValue()) != null &&
3334 map.remove(k, v));
3335 }
3336 public final Iterator<Map.Entry<K,V>> iterator() {
3337 return new EntryIterator<K,V>(map);
3338 }
3339 public final boolean add(Entry<K,V> e) {
3340 throw new UnsupportedOperationException();
3341 }
3342 public final boolean addAll(Collection<? extends Entry<K,V>> c) {
3343 throw new UnsupportedOperationException();
3344 }
3345 public boolean equals(Object o) {
3346 Set<?> c;
3347 return ((o instanceof Set) &&
3348 ((c = (Set<?>)o) == this ||
3349 (containsAll(c) && c.containsAll(this))));
3350 }
3351 }
3352
3353 /* ---------------- Serialization Support -------------- */
3354
3355 /**
3356 * Stripped-down version of helper class used in previous version,
3357 * declared for the sake of serialization compatibility
3358 */
3359 static class Segment<K,V> implements Serializable {
3360 private static final long serialVersionUID = 2249069246763182397L;
3361 final float loadFactor;
3362 Segment(float lf) { this.loadFactor = lf; }
3363 }
3364
3365 /**
3366 * Saves the state of the {@code ConcurrentHashMapV8} instance to a
3367 * stream (i.e., serializes it).
3368 * @param s the stream
3369 * @serialData
3370 * the key (Object) and value (Object)
3371 * for each key-value mapping, followed by a null pair.
3372 * The key-value mappings are emitted in no particular order.
3373 */
3374 @SuppressWarnings("unchecked")
3375 private void writeObject(java.io.ObjectOutputStream s)
3376 throws java.io.IOException {
3377 if (segments == null) { // for serialization compatibility
3378 segments = (Segment<K,V>[])
3379 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3380 for (int i = 0; i < segments.length; ++i)
3381 segments[i] = new Segment<K,V>(LOAD_FACTOR);
3382 }
3383 s.defaultWriteObject();
3384 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3385 Object v;
3386 while ((v = it.advance()) != null) {
3387 s.writeObject(it.nextKey);
3388 s.writeObject(v);
3389 }
3390 s.writeObject(null);
3391 s.writeObject(null);
3392 segments = null; // throw away
3393 }
3394
3395 /**
3396 * Reconstitutes the instance from a stream (that is, deserializes it).
3397 * @param s the stream
3398 */
3399 @SuppressWarnings("unchecked")
3400 private void readObject(java.io.ObjectInputStream s)
3401 throws java.io.IOException, ClassNotFoundException {
3402 s.defaultReadObject();
3403 this.segments = null; // unneeded
3404 // initialize transient final field
3405 UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
3406
3407 // Create all nodes, then place in table once size is known
3408 long size = 0L;
3409 Node p = null;
3410 for (;;) {
3411 K k = (K) s.readObject();
3412 V v = (V) s.readObject();
3413 if (k != null && v != null) {
3414 int h = spread(k.hashCode());
3415 p = new Node(h, k, v, p);
3416 ++size;
3417 }
3418 else
3419 break;
3420 }
3421 if (p != null) {
3422 boolean init = false;
3423 int n;
3424 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3425 n = MAXIMUM_CAPACITY;
3426 else {
3427 int sz = (int)size;
3428 n = tableSizeFor(sz + (sz >>> 1) + 1);
3429 }
3430 int sc = sizeCtl;
3431 boolean collide = false;
3432 if (n > sc &&
3433 UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
3434 try {
3435 if (table == null) {
3436 init = true;
3437 Node[] tab = new Node[n];
3438 int mask = n - 1;
3439 while (p != null) {
3440 int j = p.hash & mask;
3441 Node next = p.next;
3442 Node q = p.next = tabAt(tab, j);
3443 setTabAt(tab, j, p);
3444 if (!collide && q != null && q.hash == p.hash)
3445 collide = true;
3446 p = next;
3447 }
3448 table = tab;
3449 counter.add(size);
3450 sc = n - (n >>> 2);
3451 }
3452 } finally {
3453 sizeCtl = sc;
3454 }
3455 if (collide) { // rescan and convert to TreeBins
3456 Node[] tab = table;
3457 for (int i = 0; i < tab.length; ++i) {
3458 int c = 0;
3459 for (Node e = tabAt(tab, i); e != null; e = e.next) {
3460 if (++c > TREE_THRESHOLD &&
3461 (e.key instanceof Comparable)) {
3462 replaceWithTreeBin(tab, i, e.key);
3463 break;
3464 }
3465 }
3466 }
3467 }
3468 }
3469 if (!init) { // Can only happen if unsafely published.
3470 while (p != null) {
3471 internalPut(p.key, p.val);
3472 p = p.next;
3473 }
3474 }
3475 }
3476 }
3477
3478
3479 // -------------------------------------------------------
3480
3481 // Sams
3482 /** Interface describing a void action of one argument */
3483 public interface Action<A> { void apply(A a); }
3484 /** Interface describing a void action of two arguments */
3485 public interface BiAction<A,B> { void apply(A a, B b); }
3486 /** Interface describing a function of one argument */
3487 public interface Fun<A,T> { T apply(A a); }
3488 /** Interface describing a function of two arguments */
3489 public interface BiFun<A,B,T> { T apply(A a, B b); }
3490 /** Interface describing a function of no arguments */
3491 public interface Generator<T> { T apply(); }
3492 /** Interface describing a function mapping its argument to a double */
3493 public interface ObjectToDouble<A> { double apply(A a); }
3494 /** Interface describing a function mapping its argument to a long */
3495 public interface ObjectToLong<A> { long apply(A a); }
3496 /** Interface describing a function mapping its argument to an int */
3497 public interface ObjectToInt<A> {int apply(A a); }
3498 /** Interface describing a function mapping two arguments to a double */
3499 public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3500 /** Interface describing a function mapping two arguments to a long */
3501 public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3502 /** Interface describing a function mapping two arguments to an int */
3503 public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3504 /** Interface describing a function mapping a double to a double */
3505 public interface DoubleToDouble { double apply(double a); }
3506 /** Interface describing a function mapping a long to a long */
3507 public interface LongToLong { long apply(long a); }
3508 /** Interface describing a function mapping an int to an int */
3509 public interface IntToInt { int apply(int a); }
3510 /** Interface describing a function mapping two doubles to a double */
3511 public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3512 /** Interface describing a function mapping two longs to a long */
3513 public interface LongByLongToLong { long apply(long a, long b); }
3514 /** Interface describing a function mapping two ints to an int */
3515 public interface IntByIntToInt { int apply(int a, int b); }
3516
3517
3518 // -------------------------------------------------------
3519
3520 /**
3521 * Returns an extended {@link Parallel} view of this map using the
3522 * given executor for bulk parallel operations.
3523 *
3524 * @param executor the executor
3525 * @return a parallel view
3526 */
3527 public Parallel parallel(ForkJoinPool executor) {
3528 return new Parallel(executor);
3529 }
3530
3531 /**
3532 * An extended view of a ConcurrentHashMap supporting bulk
3533 * parallel operations. These operations are designed to be
3534 * safely, and often sensibly, applied even with maps that are
3535 * being concurrently updated by other threads; for example, when
3536 * computing a snapshot summary of the values in a shared
3537 * registry. There are three kinds of operation, each with four
3538 * forms, accepting functions with Keys, Values, Entries, and
3539 * (Key, Value) arguments and/or return values. Because the
3540 * elements of a ConcurrentHashMap are not ordered in any
3541 * particular way, and may be processed in different orders in
3542 * different parallel executions, the correctness of supplied
3543 * functions should not depend on any ordering, or on any other
3544 * objects or values that may transiently change while computation
3545 * is in progress; and except for forEach actions, should ideally
3546 * be side-effect-free.
3547 *
3548 * <ul>
3549 * <li> forEach: Perform a given action on each element.
3550 * A variant form applies a given transformation on each element
3551 * before performing the action.</li>
3552 *
3553 * <li> search: Return the first available non-null result of
3554 * applying a given function on each element; skipping further
3555 * search when a result is found.</li>
3556 *
3557 * <li> reduce: Accumulate each element. The supplied reduction
3558 * function cannot rely on ordering (more formally, it should be
3559 * both associative and commutative). There are five variants:
3560 *
3561 * <ul>
3562 *
3563 * <li> Plain reductions. (There is not a form of this method for
3564 * (key, value) function arguments since there is no corresponding
3565 * return type.)</li>
3566 *
3567 * <li> Mapped reductions that accumulate the results of a given
3568 * function applied to each element.</li>
3569 *
3570 * <li> Reductions to scalar doubles, longs, and ints, using a
3571 * given basis value.</li>
3572 *
3573 * </li>
3574 * </ul>
3575 * </ul>
3576 *
3577 * <p>The concurrency properties of the bulk operations follow
3578 * from those of ConcurrentHashMap: Any non-null result returned
3579 * from {@code get(key)} and related access methods bears a
3580 * happens-before relation with the associated insertion or
3581 * update. The result of any bulk operation reflects the
3582 * composition of these per-element relations (but is not
3583 * necessarily atomic with respect to the map as a whole unless it
3584 * is somehow known to be quiescent). Conversely, because keys
3585 * and values in the map are never null, null serves as a reliable
3586 * atomic indicator of the current lack of any result. To
3587 * maintain this property, null serves as an implicit basis for
3588 * all non-scalar reduction operations. For the double, long, and
3589 * int versions, the basis should be one that, when combined with
3590 * any other value, returns that other value (more formally, it
3591 * should be the identity element for the reduction). Most common
3592 * reductions have these properties; for example, computing a sum
3593 * with basis 0 or a minimum with basis MAX_VALUE.
3594 *
3595 * <p>Search and transformation functions provided as arguments
3596 * should similarly return null to indicate the lack of any result
3597 * (in which case it is not used). In the case of mapped
3598 * reductions, this also enables transformations to serve as
3599 * filters, returning null (or, in the case of primitive
3600 * specializations, the identity basis) if the element should not
3601 * be combined. You can create compound transformations and
3602 * filterings by composing them yourself under this "null means
3603 * there is nothing there now" rule before using them in search or
3604 * reduce operations.
3605 *
3606 * <p>Methods accepting and/or returning Entry arguments maintain
3607 * key-value associations. They may be useful for example when
3608 * finding the key for the greatest value. Note that "plain" Entry
3609 * arguments can be supplied using {@code new
3610 * AbstractMap.SimpleEntry(k,v)}.
3611 *
3612 * <p> Bulk operations may complete abruptly, throwing an
3613 * exception encountered in the application of a supplied
3614 * function. Bear in mind when handling such exceptions that other
3615 * concurrently executing functions could also have thrown
3616 * exceptions, or would have done so if the first exception had
3617 * not occurred.
3618 *
3619 * <p>Parallel speedups compared to sequential processing are
3620 * common but not guaranteed. Operations involving brief
3621 * functions on small maps may execute more slowly than sequential
3622 * loops if the underlying work to parallelize the computation is
3623 * more expensive than the computation itself. Similarly,
3624 * parallelization may not lead to much actual parallelism if all
3625 * processors are busy performing unrelated tasks.
3626 *
3627 * <p> All arguments to all task methods must be non-null.
3628 *
3629 * <p><em>jsr166e note: During transition, this class
3630 * uses nested functional interfaces with different names but the
3631 * same forms as those expected for JDK8.<em>
3632 */
3633 public class Parallel {
3634 final ForkJoinPool fjp;
3635
3636 /**
3637 * Returns an extended view of this map using the given
3638 * executor for bulk parallel operations.
3639 *
3640 * @param executor the executor
3641 */
3642 public Parallel(ForkJoinPool executor) {
3643 this.fjp = executor;
3644 }
3645
3646 /**
3647 * Performs the given action for each (key, value).
3648 *
3649 * @param action the action
3650 */
3651 public void forEach(BiAction<K,V> action) {
3652 fjp.invoke(ForkJoinTasks.forEach
3653 (ConcurrentHashMapV8.this, action));
3654 }
3655
3656 /**
3657 * Performs the given action for each non-null transformation
3658 * of each (key, value).
3659 *
3660 * @param transformer a function returning the transformation
3661 * for an element, or null of there is no transformation (in
3662 * which case the action is not applied).
3663 * @param action the action
3664 */
3665 public <U> void forEach(BiFun<? super K, ? super V, ? extends U> transformer,
3666 Action<U> action) {
3667 fjp.invoke(ForkJoinTasks.forEach
3668 (ConcurrentHashMapV8.this, transformer, action));
3669 }
3670
3671 /**
3672 * Returns a non-null result from applying the given search
3673 * function on each (key, value), or null if none. Upon
3674 * success, further element processing is suppressed and the
3675 * results of any other parallel invocations of the search
3676 * function are ignored.
3677 *
3678 * @param searchFunction a function returning a non-null
3679 * result on success, else null
3680 * @return a non-null result from applying the given search
3681 * function on each (key, value), or null if none
3682 */
3683 public <U> U search(BiFun<? super K, ? super V, ? extends U> searchFunction) {
3684 return fjp.invoke(ForkJoinTasks.search
3685 (ConcurrentHashMapV8.this, searchFunction));
3686 }
3687
3688 /**
3689 * Returns the result of accumulating the given transformation
3690 * of all (key, value) pairs using the given reducer to
3691 * combine values, or null if none.
3692 *
3693 * @param transformer a function returning the transformation
3694 * for an element, or null of there is no transformation (in
3695 * which case it is not combined).
3696 * @param reducer a commutative associative combining function
3697 * @return the result of accumulating the given transformation
3698 * of all (key, value) pairs
3699 */
3700 public <U> U reduce(BiFun<? super K, ? super V, ? extends U> transformer,
3701 BiFun<? super U, ? super U, ? extends U> reducer) {
3702 return fjp.invoke(ForkJoinTasks.reduce
3703 (ConcurrentHashMapV8.this, transformer, reducer));
3704 }
3705
3706 /**
3707 * Returns the result of accumulating the given transformation
3708 * of all (key, value) pairs using the given reducer to
3709 * combine values, and the given basis as an identity value.
3710 *
3711 * @param transformer a function returning the transformation
3712 * for an element
3713 * @param basis the identity (initial default value) for the reduction
3714 * @param reducer a commutative associative combining function
3715 * @return the result of accumulating the given transformation
3716 * of all (key, value) pairs
3717 */
3718 public double reduceToDouble(ObjectByObjectToDouble<? super K, ? super V> transformer,
3719 double basis,
3720 DoubleByDoubleToDouble reducer) {
3721 return fjp.invoke(ForkJoinTasks.reduceToDouble
3722 (ConcurrentHashMapV8.this, transformer, basis, reducer));
3723 }
3724
3725 /**
3726 * Returns the result of accumulating the given transformation
3727 * of all (key, value) pairs using the given reducer to
3728 * combine values, and the given basis as an identity value.
3729 *
3730 * @param transformer a function returning the transformation
3731 * for an element
3732 * @param basis the identity (initial default value) for the reduction
3733 * @param reducer a commutative associative combining function
3734 * @return the result of accumulating the given transformation
3735 * of all (key, value) pairs
3736 */
3737 public long reduceToLong(ObjectByObjectToLong<? super K, ? super V> transformer,
3738 long basis,
3739 LongByLongToLong reducer) {
3740 return fjp.invoke(ForkJoinTasks.reduceToLong
3741 (ConcurrentHashMapV8.this, transformer, basis, reducer));
3742 }
3743
3744 /**
3745 * Returns the result of accumulating the given transformation
3746 * of all (key, value) pairs using the given reducer to
3747 * combine values, and the given basis as an identity value.
3748 *
3749 * @param transformer a function returning the transformation
3750 * for an element
3751 * @param basis the identity (initial default value) for the reduction
3752 * @param reducer a commutative associative combining function
3753 * @return the result of accumulating the given transformation
3754 * of all (key, value) pairs
3755 */
3756 public int reduceToInt(ObjectByObjectToInt<? super K, ? super V> transformer,
3757 int basis,
3758 IntByIntToInt reducer) {
3759 return fjp.invoke(ForkJoinTasks.reduceToInt
3760 (ConcurrentHashMapV8.this, transformer, basis, reducer));
3761 }
3762
3763 /**
3764 * Performs the given action for each key.
3765 *
3766 * @param action the action
3767 */
3768 public void forEachKey(Action<K> action) {
3769 fjp.invoke(ForkJoinTasks.forEachKey
3770 (ConcurrentHashMapV8.this, action));
3771 }
3772
3773 /**
3774 * Performs the given action for each non-null transformation
3775 * of each key.
3776 *
3777 * @param transformer a function returning the transformation
3778 * for an element, or null of there is no transformation (in
3779 * which case the action is not applied).
3780 * @param action the action
3781 */
3782 public <U> void forEachKey(Fun<? super K, ? extends U> transformer,
3783 Action<U> action) {
3784 fjp.invoke(ForkJoinTasks.forEachKey
3785 (ConcurrentHashMapV8.this, transformer, action));
3786 }
3787
3788 /**
3789 * Returns a non-null result from applying the given search
3790 * function on each key, or null if none. Upon success,
3791 * further element processing is suppressed and the results of
3792 * any other parallel invocations of the search function are
3793 * ignored.
3794 *
3795 * @param searchFunction a function returning a non-null
3796 * result on success, else null
3797 * @return a non-null result from applying the given search
3798 * function on each key, or null if none
3799 */
3800 public <U> U searchKeys(Fun<? super K, ? extends U> searchFunction) {
3801 return fjp.invoke(ForkJoinTasks.searchKeys
3802 (ConcurrentHashMapV8.this, searchFunction));
3803 }
3804
3805 /**
3806 * Returns the result of accumulating all keys using the given
3807 * reducer to combine values, or null if none.
3808 *
3809 * @param reducer a commutative associative combining function
3810 * @return the result of accumulating all keys using the given
3811 * reducer to combine values, or null if none
3812 */
3813 public K reduceKeys(BiFun<? super K, ? super K, ? extends K> reducer) {
3814 return fjp.invoke(ForkJoinTasks.reduceKeys
3815 (ConcurrentHashMapV8.this, reducer));
3816 }
3817
3818 /**
3819 * Returns the result of accumulating the given transformation
3820 * of all keys using the given reducer to combine values, or
3821 * null if none.
3822 *
3823 * @param transformer a function returning the transformation
3824 * for an element, or null of there is no transformation (in
3825 * which case it is not combined).
3826 * @param reducer a commutative associative combining function
3827 * @return the result of accumulating the given transformation
3828 * of all keys
3829 */
3830 public <U> U reduceKeys(Fun<? super K, ? extends U> transformer,
3831 BiFun<? super U, ? super U, ? extends U> reducer) {
3832 return fjp.invoke(ForkJoinTasks.reduceKeys
3833 (ConcurrentHashMapV8.this, transformer, reducer));
3834 }
3835
3836 /**
3837 * Returns the result of accumulating the given transformation
3838 * of all keys using the given reducer to combine values, and
3839 * the given basis as an identity value.
3840 *
3841 * @param transformer a function returning the transformation
3842 * for an element
3843 * @param basis the identity (initial default value) for the reduction
3844 * @param reducer a commutative associative combining function
3845 * @return the result of accumulating the given transformation
3846 * of all keys
3847 */
3848 public double reduceKeysToDouble(ObjectToDouble<? super K> transformer,
3849 double basis,
3850 DoubleByDoubleToDouble reducer) {
3851 return fjp.invoke(ForkJoinTasks.reduceKeysToDouble
3852 (ConcurrentHashMapV8.this, transformer, basis, reducer));
3853 }
3854
3855 /**
3856 * Returns the result of accumulating the given transformation
3857 * of all keys using the given reducer to combine values, and
3858 * the given basis as an identity value.
3859 *
3860 * @param transformer a function returning the transformation
3861 * for an element
3862 * @param basis the identity (initial default value) for the reduction
3863 * @param reducer a commutative associative combining function
3864 * @return the result of accumulating the given transformation
3865 * of all keys
3866 */
3867 public long reduceKeysToLong(ObjectToLong<? super K> transformer,
3868 long basis,
3869 LongByLongToLong reducer) {
3870 return fjp.invoke(ForkJoinTasks.reduceKeysToLong
3871 (ConcurrentHashMapV8.this, transformer, basis, reducer));
3872 }
3873
3874 /**
3875 * Returns the result of accumulating the given transformation
3876 * of all keys using the given reducer to combine values, and
3877 * the given basis as an identity value.
3878 *
3879 * @param transformer a function returning the transformation
3880 * for an element
3881 * @param basis the identity (initial default value) for the reduction
3882 * @param reducer a commutative associative combining function
3883 * @return the result of accumulating the given transformation
3884 * of all keys
3885 */
3886 public int reduceKeysToInt(ObjectToInt<? super K> transformer,
3887 int basis,
3888 IntByIntToInt reducer) {
3889 return fjp.invoke(ForkJoinTasks.reduceKeysToInt
3890 (ConcurrentHashMapV8.this, transformer, basis, reducer));
3891 }
3892
3893 /**
3894 * Performs the given action for each value.
3895 *
3896 * @param action the action
3897 */
3898 public void forEachValue(Action<V> action) {
3899 fjp.invoke(ForkJoinTasks.forEachValue
3900 (ConcurrentHashMapV8.this, action));
3901 }
3902
3903 /**
3904 * Performs the given action for each non-null transformation
3905 * of each value.
3906 *
3907 * @param transformer a function returning the transformation
3908 * for an element, or null of there is no transformation (in
3909 * which case the action is not applied).
3910 */
3911 public <U> void forEachValue(Fun<? super V, ? extends U> transformer,
3912 Action<U> action) {
3913 fjp.invoke(ForkJoinTasks.forEachValue
3914 (ConcurrentHashMapV8.this, transformer, action));
3915 }
3916
3917 /**
3918 * Returns a non-null result from applying the given search
3919 * function on each value, or null if none. Upon success,
3920 * further element processing is suppressed and the results of
3921 * any other parallel invocations of the search function are
3922 * ignored.
3923 *
3924 * @param searchFunction a function returning a non-null
3925 * result on success, else null
3926 * @return a non-null result from applying the given search
3927 * function on each value, or null if none
3928 *
3929 */
3930 public <U> U searchValues(Fun<? super V, ? extends U> searchFunction) {
3931 return fjp.invoke(ForkJoinTasks.searchValues
3932 (ConcurrentHashMapV8.this, searchFunction));
3933 }
3934
3935 /**
3936 * Returns the result of accumulating all values using the
3937 * given reducer to combine values, or null if none.
3938 *
3939 * @param reducer a commutative associative combining function
3940 * @return the result of accumulating all values
3941 */
3942 public V reduceValues(BiFun<? super V, ? super V, ? extends V> reducer) {
3943 return fjp.invoke(ForkJoinTasks.reduceValues
3944 (ConcurrentHashMapV8.this, reducer));
3945 }
3946
3947 /**
3948 * Returns the result of accumulating the given transformation
3949 * of all values using the given reducer to combine values, or
3950 * null if none.
3951 *
3952 * @param transformer a function returning the transformation
3953 * for an element, or null of there is no transformation (in
3954 * which case it is not combined).
3955 * @param reducer a commutative associative combining function
3956 * @return the result of accumulating the given transformation
3957 * of all values
3958 */
3959 public <U> U reduceValues(Fun<? super V, ? extends U> transformer,
3960 BiFun<? super U, ? super U, ? extends U> reducer) {
3961 return fjp.invoke(ForkJoinTasks.reduceValues
3962 (ConcurrentHashMapV8.this, transformer, reducer));
3963 }
3964
3965 /**
3966 * Returns the result of accumulating the given transformation
3967 * of all values using the given reducer to combine values,
3968 * and the given basis as an identity value.
3969 *
3970 * @param transformer a function returning the transformation
3971 * for an element
3972 * @param basis the identity (initial default value) for the reduction
3973 * @param reducer a commutative associative combining function
3974 * @return the result of accumulating the given transformation
3975 * of all values
3976 */
3977 public double reduceValuesToDouble(ObjectToDouble<? super V> transformer,
3978 double basis,
3979 DoubleByDoubleToDouble reducer) {
3980 return fjp.invoke(ForkJoinTasks.reduceValuesToDouble
3981 (ConcurrentHashMapV8.this, transformer, basis, reducer));
3982 }
3983
3984 /**
3985 * Returns the result of accumulating the given transformation
3986 * of all values using the given reducer to combine values,
3987 * and the given basis as an identity value.
3988 *
3989 * @param transformer a function returning the transformation
3990 * for an element
3991 * @param basis the identity (initial default value) for the reduction
3992 * @param reducer a commutative associative combining function
3993 * @return the result of accumulating the given transformation
3994 * of all values
3995 */
3996 public long reduceValuesToLong(ObjectToLong<? super V> transformer,
3997 long basis,
3998 LongByLongToLong reducer) {
3999 return fjp.invoke(ForkJoinTasks.reduceValuesToLong
4000 (ConcurrentHashMapV8.this, transformer, basis, reducer));
4001 }
4002
4003 /**
4004 * Returns the result of accumulating the given transformation
4005 * of all values using the given reducer to combine values,
4006 * and the given basis as an identity value.
4007 *
4008 * @param transformer a function returning the transformation
4009 * for an element
4010 * @param basis the identity (initial default value) for the reduction
4011 * @param reducer a commutative associative combining function
4012 * @return the result of accumulating the given transformation
4013 * of all values
4014 */
4015 public int reduceValuesToInt(ObjectToInt<? super V> transformer,
4016 int basis,
4017 IntByIntToInt reducer) {
4018 return fjp.invoke(ForkJoinTasks.reduceValuesToInt
4019 (ConcurrentHashMapV8.this, transformer, basis, reducer));
4020 }
4021
4022 /**
4023 * Performs the given action for each entry.
4024 *
4025 * @param action the action
4026 */
4027 public void forEachEntry(Action<Map.Entry<K,V>> action) {
4028 fjp.invoke(ForkJoinTasks.forEachEntry
4029 (ConcurrentHashMapV8.this, action));
4030 }
4031
4032 /**
4033 * Performs the given action for each non-null transformation
4034 * of each entry.
4035 *
4036 * @param transformer a function returning the transformation
4037 * for an element, or null of there is no transformation (in
4038 * which case the action is not applied).
4039 * @param action the action
4040 */
4041 public <U> void forEachEntry(Fun<Map.Entry<K,V>, ? extends U> transformer,
4042 Action<U> action) {
4043 fjp.invoke(ForkJoinTasks.forEachEntry
4044 (ConcurrentHashMapV8.this, transformer, action));
4045 }
4046
4047 /**
4048 * Returns a non-null result from applying the given search
4049 * function on each entry, or null if none. Upon success,
4050 * further element processing is suppressed and the results of
4051 * any other parallel invocations of the search function are
4052 * ignored.
4053 *
4054 * @param searchFunction a function returning a non-null
4055 * result on success, else null
4056 * @return a non-null result from applying the given search
4057 * function on each entry, or null if none
4058 */
4059 public <U> U searchEntries(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4060 return fjp.invoke(ForkJoinTasks.searchEntries
4061 (ConcurrentHashMapV8.this, searchFunction));
4062 }
4063
4064 /**
4065 * Returns the result of accumulating all entries using the
4066 * given reducer to combine values, or null if none.
4067 *
4068 * @param reducer a commutative associative combining function
4069 * @return the result of accumulating all entries
4070 */
4071 public Map.Entry<K,V> reduceEntries(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4072 return fjp.invoke(ForkJoinTasks.reduceEntries
4073 (ConcurrentHashMapV8.this, reducer));
4074 }
4075
4076 /**
4077 * Returns the result of accumulating the given transformation
4078 * of all entries using the given reducer to combine values,
4079 * or null if none.
4080 *
4081 * @param transformer a function returning the transformation
4082 * for an element, or null of there is no transformation (in
4083 * which case it is not combined).
4084 * @param reducer a commutative associative combining function
4085 * @return the result of accumulating the given transformation
4086 * of all entries
4087 */
4088 public <U> U reduceEntries(Fun<Map.Entry<K,V>, ? extends U> transformer,
4089 BiFun<? super U, ? super U, ? extends U> reducer) {
4090 return fjp.invoke(ForkJoinTasks.reduceEntries
4091 (ConcurrentHashMapV8.this, transformer, reducer));
4092 }
4093
4094 /**
4095 * Returns the result of accumulating the given transformation
4096 * of all entries using the given reducer to combine values,
4097 * and the given basis as an identity value.
4098 *
4099 * @param transformer a function returning the transformation
4100 * for an element
4101 * @param basis the identity (initial default value) for the reduction
4102 * @param reducer a commutative associative combining function
4103 * @return the result of accumulating the given transformation
4104 * of all entries
4105 */
4106 public double reduceEntriesToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4107 double basis,
4108 DoubleByDoubleToDouble reducer) {
4109 return fjp.invoke(ForkJoinTasks.reduceEntriesToDouble
4110 (ConcurrentHashMapV8.this, transformer, basis, reducer));
4111 }
4112
4113 /**
4114 * Returns the result of accumulating the given transformation
4115 * of all entries using the given reducer to combine values,
4116 * and the given basis as an identity value.
4117 *
4118 * @param transformer a function returning the transformation
4119 * for an element
4120 * @param basis the identity (initial default value) for the reduction
4121 * @param reducer a commutative associative combining function
4122 * @return the result of accumulating the given transformation
4123 * of all entries
4124 */
4125 public long reduceEntriesToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4126 long basis,
4127 LongByLongToLong reducer) {
4128 return fjp.invoke(ForkJoinTasks.reduceEntriesToLong
4129 (ConcurrentHashMapV8.this, transformer, basis, reducer));
4130 }
4131
4132 /**
4133 * Returns the result of accumulating the given transformation
4134 * of all entries using the given reducer to combine values,
4135 * and the given basis as an identity value.
4136 *
4137 * @param transformer a function returning the transformation
4138 * for an element
4139 * @param basis the identity (initial default value) for the reduction
4140 * @param reducer a commutative associative combining function
4141 * @return the result of accumulating the given transformation
4142 * of all entries
4143 */
4144 public int reduceEntriesToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4145 int basis,
4146 IntByIntToInt reducer) {
4147 return fjp.invoke(ForkJoinTasks.reduceEntriesToInt
4148 (ConcurrentHashMapV8.this, transformer, basis, reducer));
4149 }
4150 }
4151
4152 // ---------------------------------------------------------------------
4153
4154 /**
4155 * Predefined tasks for performing bulk parallel operations on
4156 * ConcurrentHashMaps. These tasks follow the forms and rules used
4157 * in class {@link Parallel}. Each method has the same name, but
4158 * returns a task rather than invoking it. These methods may be
4159 * useful in custom applications such as submitting a task without
4160 * waiting for completion, or combining with other tasks.
4161 */
4162 public static class ForkJoinTasks {
4163 private ForkJoinTasks() {}
4164
4165 /**
4166 * Returns a task that when invoked, performs the given
4167 * action for each (key, value)
4168 *
4169 * @param map the map
4170 * @param action the action
4171 * @return the task
4172 */
4173 public static <K,V> ForkJoinTask<Void> forEach
4174 (ConcurrentHashMapV8<K,V> map,
4175 BiAction<K,V> action) {
4176 if (action == null) throw new NullPointerException();
4177 return new ForEachMappingTask<K,V>(map, action);
4178 }
4179
4180 /**
4181 * Returns a task that when invoked, performs the given
4182 * action for each non-null transformation of each (key, value)
4183 *
4184 * @param map the map
4185 * @param transformer a function returning the transformation
4186 * for an element, or null of there is no transformation (in
4187 * which case the action is not applied).
4188 * @param action the action
4189 * @return the task
4190 */
4191 public static <K,V,U> ForkJoinTask<Void> forEach
4192 (ConcurrentHashMapV8<K,V> map,
4193 BiFun<? super K, ? super V, ? extends U> transformer,
4194 Action<U> action) {
4195 if (transformer == null || action == null)
4196 throw new NullPointerException();
4197 return new ForEachTransformedMappingTask<K,V,U>
4198 (map, transformer, action);
4199 }
4200
4201 /**
4202 * Returns a task that when invoked, returns a non-null result
4203 * from applying the given search function on each (key,
4204 * value), or null if none. Upon success, further element
4205 * processing is suppressed and the results of any other
4206 * parallel invocations of the search function are ignored.
4207 *
4208 * @param map the map
4209 * @param searchFunction a function returning a non-null
4210 * result on success, else null
4211 * @return the task
4212 */
4213 public static <K,V,U> ForkJoinTask<U> search
4214 (ConcurrentHashMapV8<K,V> map,
4215 BiFun<? super K, ? super V, ? extends U> searchFunction) {
4216 if (searchFunction == null) throw new NullPointerException();
4217 return new SearchMappingsTask<K,V,U>
4218 (map, searchFunction,
4219 new AtomicReference<U>());
4220 }
4221
4222 /**
4223 * Returns a task that when invoked, returns the result of
4224 * accumulating the given transformation of all (key, value) pairs
4225 * using the given reducer to combine values, or null if none.
4226 *
4227 * @param map the map
4228 * @param transformer a function returning the transformation
4229 * for an element, or null of there is no transformation (in
4230 * which case it is not combined).
4231 * @param reducer a commutative associative combining function
4232 * @return the task
4233 */
4234 public static <K,V,U> ForkJoinTask<U> reduce
4235 (ConcurrentHashMapV8<K,V> map,
4236 BiFun<? super K, ? super V, ? extends U> transformer,
4237 BiFun<? super U, ? super U, ? extends U> reducer) {
4238 if (transformer == null || reducer == null)
4239 throw new NullPointerException();
4240 return new MapReduceMappingsTask<K,V,U>
4241 (map, transformer, reducer);
4242 }
4243
4244 /**
4245 * Returns a task that when invoked, returns the result of
4246 * accumulating the given transformation of all (key, value) pairs
4247 * using the given reducer to combine values, and the given
4248 * basis as an identity value.
4249 *
4250 * @param map the map
4251 * @param transformer a function returning the transformation
4252 * for an element
4253 * @param basis the identity (initial default value) for the reduction
4254 * @param reducer a commutative associative combining function
4255 * @return the task
4256 */
4257 public static <K,V> ForkJoinTask<Double> reduceToDouble
4258 (ConcurrentHashMapV8<K,V> map,
4259 ObjectByObjectToDouble<? super K, ? super V> transformer,
4260 double basis,
4261 DoubleByDoubleToDouble reducer) {
4262 if (transformer == null || reducer == null)
4263 throw new NullPointerException();
4264 return new MapReduceMappingsToDoubleTask<K,V>
4265 (map, transformer, basis, reducer);
4266 }
4267
4268 /**
4269 * Returns a task that when invoked, returns the result of
4270 * accumulating the given transformation of all (key, value) pairs
4271 * using the given reducer to combine values, and the given
4272 * basis as an identity value.
4273 *
4274 * @param map the map
4275 * @param transformer a function returning the transformation
4276 * for an element
4277 * @param basis the identity (initial default value) for the reduction
4278 * @param reducer a commutative associative combining function
4279 * @return the task
4280 */
4281 public static <K,V> ForkJoinTask<Long> reduceToLong
4282 (ConcurrentHashMapV8<K,V> map,
4283 ObjectByObjectToLong<? super K, ? super V> transformer,
4284 long basis,
4285 LongByLongToLong reducer) {
4286 if (transformer == null || reducer == null)
4287 throw new NullPointerException();
4288 return new MapReduceMappingsToLongTask<K,V>
4289 (map, transformer, basis, reducer);
4290 }
4291
4292 /**
4293 * Returns a task that when invoked, returns the result of
4294 * accumulating the given transformation of all (key, value) pairs
4295 * using the given reducer to combine values, and the given
4296 * basis as an identity value.
4297 *
4298 * @param transformer a function returning the transformation
4299 * for an element
4300 * @param basis the identity (initial default value) for the reduction
4301 * @param reducer a commutative associative combining function
4302 * @return the task
4303 */
4304 public static <K,V> ForkJoinTask<Integer> reduceToInt
4305 (ConcurrentHashMapV8<K,V> map,
4306 ObjectByObjectToInt<? super K, ? super V> transformer,
4307 int basis,
4308 IntByIntToInt reducer) {
4309 if (transformer == null || reducer == null)
4310 throw new NullPointerException();
4311 return new MapReduceMappingsToIntTask<K,V>
4312 (map, transformer, basis, reducer);
4313 }
4314
4315 /**
4316 * Returns a task that when invoked, performs the given action
4317 * for each key.
4318 *
4319 * @param map the map
4320 * @param action the action
4321 * @return the task
4322 */
4323 public static <K,V> ForkJoinTask<Void> forEachKey
4324 (ConcurrentHashMapV8<K,V> map,
4325 Action<K> action) {
4326 if (action == null) throw new NullPointerException();
4327 return new ForEachKeyTask<K,V>(map, action);
4328 }
4329
4330 /**
4331 * Returns a task that when invoked, performs the given action
4332 * for each non-null transformation of each key.
4333 *
4334 * @param map the map
4335 * @param transformer a function returning the transformation
4336 * for an element, or null of there is no transformation (in
4337 * which case the action is not applied).
4338 * @param action the action
4339 * @return the task
4340 */
4341 public static <K,V,U> ForkJoinTask<Void> forEachKey
4342 (ConcurrentHashMapV8<K,V> map,
4343 Fun<? super K, ? extends U> transformer,
4344 Action<U> action) {
4345 if (transformer == null || action == null)
4346 throw new NullPointerException();
4347 return new ForEachTransformedKeyTask<K,V,U>
4348 (map, transformer, action);
4349 }
4350
4351 /**
4352 * Returns a task that when invoked, returns a non-null result
4353 * from applying the given search function on each key, or
4354 * null if none. Upon success, further element processing is
4355 * suppressed and the results of any other parallel
4356 * invocations of the search function are ignored.
4357 *
4358 * @param map the map
4359 * @param searchFunction a function returning a non-null
4360 * result on success, else null
4361 * @return the task
4362 */
4363 public static <K,V,U> ForkJoinTask<U> searchKeys
4364 (ConcurrentHashMapV8<K,V> map,
4365 Fun<? super K, ? extends U> searchFunction) {
4366 if (searchFunction == null) throw new NullPointerException();
4367 return new SearchKeysTask<K,V,U>
4368 (map, searchFunction,
4369 new AtomicReference<U>());
4370 }
4371
4372 /**
4373 * Returns a task that when invoked, returns the result of
4374 * accumulating all keys using the given reducer to combine
4375 * values, or null if none.
4376 *
4377 * @param map the map
4378 * @param reducer a commutative associative combining function
4379 * @return the task
4380 */
4381 public static <K,V> ForkJoinTask<K> reduceKeys
4382 (ConcurrentHashMapV8<K,V> map,
4383 BiFun<? super K, ? super K, ? extends K> reducer) {
4384 if (reducer == null) throw new NullPointerException();
4385 return new ReduceKeysTask<K,V>
4386 (map, reducer);
4387 }
4388
4389 /**
4390 * Returns a task that when invoked, returns the result of
4391 * accumulating the given transformation of all keys using the given
4392 * reducer to combine values, or null if none.
4393 *
4394 * @param map the map
4395 * @param transformer a function returning the transformation
4396 * for an element, or null of there is no transformation (in
4397 * which case it is not combined).
4398 * @param reducer a commutative associative combining function
4399 * @return the task
4400 */
4401 public static <K,V,U> ForkJoinTask<U> reduceKeys
4402 (ConcurrentHashMapV8<K,V> map,
4403 Fun<? super K, ? extends U> transformer,
4404 BiFun<? super U, ? super U, ? extends U> reducer) {
4405 if (transformer == null || reducer == null)
4406 throw new NullPointerException();
4407 return new MapReduceKeysTask<K,V,U>
4408 (map, transformer, reducer);
4409 }
4410
4411 /**
4412 * Returns a task that when invoked, returns the result of
4413 * accumulating the given transformation of all keys using the given
4414 * reducer to combine values, and the given basis as an
4415 * identity value.
4416 *
4417 * @param map the map
4418 * @param transformer a function returning the transformation
4419 * for an element
4420 * @param basis the identity (initial default value) for the reduction
4421 * @param reducer a commutative associative combining function
4422 * @return the task
4423 */
4424 public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
4425 (ConcurrentHashMapV8<K,V> map,
4426 ObjectToDouble<? super K> transformer,
4427 double basis,
4428 DoubleByDoubleToDouble reducer) {
4429 if (transformer == null || reducer == null)
4430 throw new NullPointerException();
4431 return new MapReduceKeysToDoubleTask<K,V>
4432 (map, transformer, basis, reducer);
4433 }
4434
4435 /**
4436 * Returns a task that when invoked, returns the result of
4437 * accumulating the given transformation of all keys using the given
4438 * reducer to combine values, and the given basis as an
4439 * identity value.
4440 *
4441 * @param map the map
4442 * @param transformer a function returning the transformation
4443 * for an element
4444 * @param basis the identity (initial default value) for the reduction
4445 * @param reducer a commutative associative combining function
4446 * @return the task
4447 */
4448 public static <K,V> ForkJoinTask<Long> reduceKeysToLong
4449 (ConcurrentHashMapV8<K,V> map,
4450 ObjectToLong<? super K> transformer,
4451 long basis,
4452 LongByLongToLong reducer) {
4453 if (transformer == null || reducer == null)
4454 throw new NullPointerException();
4455 return new MapReduceKeysToLongTask<K,V>
4456 (map, transformer, basis, reducer);
4457 }
4458
4459 /**
4460 * Returns a task that when invoked, returns the result of
4461 * accumulating the given transformation of all keys using the given
4462 * reducer to combine values, and the given basis as an
4463 * identity value.
4464 *
4465 * @param map the map
4466 * @param transformer a function returning the transformation
4467 * for an element
4468 * @param basis the identity (initial default value) for the reduction
4469 * @param reducer a commutative associative combining function
4470 * @return the task
4471 */
4472 public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
4473 (ConcurrentHashMapV8<K,V> map,
4474 ObjectToInt<? super K> transformer,
4475 int basis,
4476 IntByIntToInt reducer) {
4477 if (transformer == null || reducer == null)
4478 throw new NullPointerException();
4479 return new MapReduceKeysToIntTask<K,V>
4480 (map, transformer, basis, reducer);
4481 }
4482
4483 /**
4484 * Returns a task that when invoked, performs the given action
4485 * for each value.
4486 *
4487 * @param map the map
4488 * @param action the action
4489 */
4490 public static <K,V> ForkJoinTask<Void> forEachValue
4491 (ConcurrentHashMapV8<K,V> map,
4492 Action<V> action) {
4493 if (action == null) throw new NullPointerException();
4494 return new ForEachValueTask<K,V>(map, action);
4495 }
4496
4497 /**
4498 * Returns a task that when invoked, performs the given action
4499 * for each non-null transformation of each value.
4500 *
4501 * @param map the map
4502 * @param transformer a function returning the transformation
4503 * for an element, or null of there is no transformation (in
4504 * which case the action is not applied).
4505 * @param action the action
4506 */
4507 public static <K,V,U> ForkJoinTask<Void> forEachValue
4508 (ConcurrentHashMapV8<K,V> map,
4509 Fun<? super V, ? extends U> transformer,
4510 Action<U> action) {
4511 if (transformer == null || action == null)
4512 throw new NullPointerException();
4513 return new ForEachTransformedValueTask<K,V,U>
4514 (map, transformer, action);
4515 }
4516
4517 /**
4518 * Returns a task that when invoked, returns a non-null result
4519 * from applying the given search function on each value, or
4520 * null if none. Upon success, further element processing is
4521 * suppressed and the results of any other parallel
4522 * invocations of the search function are ignored.
4523 *
4524 * @param map the map
4525 * @param searchFunction a function returning a non-null
4526 * result on success, else null
4527 * @return the task
4528 *
4529 */
4530 public static <K,V,U> ForkJoinTask<U> searchValues
4531 (ConcurrentHashMapV8<K,V> map,
4532 Fun<? super V, ? extends U> searchFunction) {
4533 if (searchFunction == null) throw new NullPointerException();
4534 return new SearchValuesTask<K,V,U>
4535 (map, searchFunction,
4536 new AtomicReference<U>());
4537 }
4538
4539 /**
4540 * Returns a task that when invoked, returns the result of
4541 * accumulating all values using the given reducer to combine
4542 * values, or null if none.
4543 *
4544 * @param map the map
4545 * @param reducer a commutative associative combining function
4546 * @return the task
4547 */
4548 public static <K,V> ForkJoinTask<V> reduceValues
4549 (ConcurrentHashMapV8<K,V> map,
4550 BiFun<? super V, ? super V, ? extends V> reducer) {
4551 if (reducer == null) throw new NullPointerException();
4552 return new ReduceValuesTask<K,V>
4553 (map, reducer);
4554 }
4555
4556 /**
4557 * Returns a task that when invoked, returns the result of
4558 * accumulating the given transformation of all values using the
4559 * given reducer to combine values, or null if none.
4560 *
4561 * @param map the map
4562 * @param transformer a function returning the transformation
4563 * for an element, or null of there is no transformation (in
4564 * which case it is not combined).
4565 * @param reducer a commutative associative combining function
4566 * @return the task
4567 */
4568 public static <K,V,U> ForkJoinTask<U> reduceValues
4569 (ConcurrentHashMapV8<K,V> map,
4570 Fun<? super V, ? extends U> transformer,
4571 BiFun<? super U, ? super U, ? extends U> reducer) {
4572 if (transformer == null || reducer == null)
4573 throw new NullPointerException();
4574 return new MapReduceValuesTask<K,V,U>
4575 (map, transformer, reducer);
4576 }
4577
4578 /**
4579 * Returns a task that when invoked, returns the result of
4580 * accumulating the given transformation of all values using the
4581 * given reducer to combine values, and the given basis as an
4582 * identity value.
4583 *
4584 * @param map the map
4585 * @param transformer a function returning the transformation
4586 * for an element
4587 * @param basis the identity (initial default value) for the reduction
4588 * @param reducer a commutative associative combining function
4589 * @return the task
4590 */
4591 public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
4592 (ConcurrentHashMapV8<K,V> map,
4593 ObjectToDouble<? super V> transformer,
4594 double basis,
4595 DoubleByDoubleToDouble reducer) {
4596 if (transformer == null || reducer == null)
4597 throw new NullPointerException();
4598 return new MapReduceValuesToDoubleTask<K,V>
4599 (map, transformer, basis, reducer);
4600 }
4601
4602 /**
4603 * Returns a task that when invoked, returns the result of
4604 * accumulating the given transformation of all values using the
4605 * given reducer to combine values, and the given basis as an
4606 * identity value.
4607 *
4608 * @param map the map
4609 * @param transformer a function returning the transformation
4610 * for an element
4611 * @param basis the identity (initial default value) for the reduction
4612 * @param reducer a commutative associative combining function
4613 * @return the task
4614 */
4615 public static <K,V> ForkJoinTask<Long> reduceValuesToLong
4616 (ConcurrentHashMapV8<K,V> map,
4617 ObjectToLong<? super V> transformer,
4618 long basis,
4619 LongByLongToLong reducer) {
4620 if (transformer == null || reducer == null)
4621 throw new NullPointerException();
4622 return new MapReduceValuesToLongTask<K,V>
4623 (map, transformer, basis, reducer);
4624 }
4625
4626 /**
4627 * Returns a task that when invoked, returns the result of
4628 * accumulating the given transformation of all values using the
4629 * given reducer to combine values, and the given basis as an
4630 * identity value.
4631 *
4632 * @param map the map
4633 * @param transformer a function returning the transformation
4634 * for an element
4635 * @param basis the identity (initial default value) for the reduction
4636 * @param reducer a commutative associative combining function
4637 * @return the task
4638 */
4639 public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
4640 (ConcurrentHashMapV8<K,V> map,
4641 ObjectToInt<? super V> transformer,
4642 int basis,
4643 IntByIntToInt reducer) {
4644 if (transformer == null || reducer == null)
4645 throw new NullPointerException();
4646 return new MapReduceValuesToIntTask<K,V>
4647 (map, transformer, basis, reducer);
4648 }
4649
4650 /**
4651 * Returns a task that when invoked, perform the given action
4652 * for each entry.
4653 *
4654 * @param map the map
4655 * @param action the action
4656 */
4657 public static <K,V> ForkJoinTask<Void> forEachEntry
4658 (ConcurrentHashMapV8<K,V> map,
4659 Action<Map.Entry<K,V>> action) {
4660 if (action == null) throw new NullPointerException();
4661 return new ForEachEntryTask<K,V>(map, action);
4662 }
4663
4664 /**
4665 * Returns a task that when invoked, perform the given action
4666 * for each non-null transformation of each entry.
4667 *
4668 * @param map the map
4669 * @param transformer a function returning the transformation
4670 * for an element, or null of there is no transformation (in
4671 * which case the action is not applied).
4672 * @param action the action
4673 */
4674 public static <K,V,U> ForkJoinTask<Void> forEachEntry
4675 (ConcurrentHashMapV8<K,V> map,
4676 Fun<Map.Entry<K,V>, ? extends U> transformer,
4677 Action<U> action) {
4678 if (transformer == null || action == null)
4679 throw new NullPointerException();
4680 return new ForEachTransformedEntryTask<K,V,U>
4681 (map, transformer, action);
4682 }
4683
4684 /**
4685 * Returns a task that when invoked, returns a non-null result
4686 * from applying the given search function on each entry, or
4687 * null if none. Upon success, further element processing is
4688 * suppressed and the results of any other parallel
4689 * invocations of the search function are ignored.
4690 *
4691 * @param map the map
4692 * @param searchFunction a function returning a non-null
4693 * result on success, else null
4694 * @return the task
4695 *
4696 */
4697 public static <K,V,U> ForkJoinTask<U> searchEntries
4698 (ConcurrentHashMapV8<K,V> map,
4699 Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4700 if (searchFunction == null) throw new NullPointerException();
4701 return new SearchEntriesTask<K,V,U>
4702 (map, searchFunction,
4703 new AtomicReference<U>());
4704 }
4705
4706 /**
4707 * Returns a task that when invoked, returns the result of
4708 * accumulating all entries using the given reducer to combine
4709 * values, or null if none.
4710 *
4711 * @param map the map
4712 * @param reducer a commutative associative combining function
4713 * @return the task
4714 */
4715 public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
4716 (ConcurrentHashMapV8<K,V> map,
4717 BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4718 if (reducer == null) throw new NullPointerException();
4719 return new ReduceEntriesTask<K,V>
4720 (map, reducer);
4721 }
4722
4723 /**
4724 * Returns a task that when invoked, returns the result of
4725 * accumulating the given transformation of all entries using the
4726 * given reducer to combine values, or null if none.
4727 *
4728 * @param map the map
4729 * @param transformer a function returning the transformation
4730 * for an element, or null of there is no transformation (in
4731 * which case it is not combined).
4732 * @param reducer a commutative associative combining function
4733 * @return the task
4734 */
4735 public static <K,V,U> ForkJoinTask<U> reduceEntries
4736 (ConcurrentHashMapV8<K,V> map,
4737 Fun<Map.Entry<K,V>, ? extends U> transformer,
4738 BiFun<? super U, ? super U, ? extends U> reducer) {
4739 if (transformer == null || reducer == null)
4740 throw new NullPointerException();
4741 return new MapReduceEntriesTask<K,V,U>
4742 (map, transformer, reducer);
4743 }
4744
4745 /**
4746 * Returns a task that when invoked, returns the result of
4747 * accumulating the given transformation of all entries using the
4748 * given reducer to combine values, and the given basis as an
4749 * identity value.
4750 *
4751 * @param map the map
4752 * @param transformer a function returning the transformation
4753 * for an element
4754 * @param basis the identity (initial default value) for the reduction
4755 * @param reducer a commutative associative combining function
4756 * @return the task
4757 */
4758 public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
4759 (ConcurrentHashMapV8<K,V> map,
4760 ObjectToDouble<Map.Entry<K,V>> transformer,
4761 double basis,
4762 DoubleByDoubleToDouble reducer) {
4763 if (transformer == null || reducer == null)
4764 throw new NullPointerException();
4765 return new MapReduceEntriesToDoubleTask<K,V>
4766 (map, transformer, basis, reducer);
4767 }
4768
4769 /**
4770 * Returns a task that when invoked, returns the result of
4771 * accumulating the given transformation of all entries using the
4772 * given reducer to combine values, and the given basis as an
4773 * identity value.
4774 *
4775 * @param map the map
4776 * @param transformer a function returning the transformation
4777 * for an element
4778 * @param basis the identity (initial default value) for the reduction
4779 * @param reducer a commutative associative combining function
4780 * @return the task
4781 */
4782 public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
4783 (ConcurrentHashMapV8<K,V> map,
4784 ObjectToLong<Map.Entry<K,V>> transformer,
4785 long basis,
4786 LongByLongToLong reducer) {
4787 if (transformer == null || reducer == null)
4788 throw new NullPointerException();
4789 return new MapReduceEntriesToLongTask<K,V>
4790 (map, transformer, basis, reducer);
4791 }
4792
4793 /**
4794 * Returns a task that when invoked, returns the result of
4795 * accumulating the given transformation of all entries using the
4796 * given reducer to combine values, and the given basis as an
4797 * identity value.
4798 *
4799 * @param map the map
4800 * @param transformer a function returning the transformation
4801 * for an element
4802 * @param basis the identity (initial default value) for the reduction
4803 * @param reducer a commutative associative combining function
4804 * @return the task
4805 */
4806 public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
4807 (ConcurrentHashMapV8<K,V> map,
4808 ObjectToInt<Map.Entry<K,V>> transformer,
4809 int basis,
4810 IntByIntToInt reducer) {
4811 if (transformer == null || reducer == null)
4812 throw new NullPointerException();
4813 return new MapReduceEntriesToIntTask<K,V>
4814 (map, transformer, basis, reducer);
4815 }
4816 }
4817
4818 // -------------------------------------------------------
4819
4820 /**
4821 * Base for FJ tasks for bulk operations. This adds a variant of
4822 * CountedCompleters and some split and merge bookkeeping to
4823 * iterator functionality. The forEach and reduce methods are
4824 * similar to those illustrated in CountedCompleter documentation,
4825 * except that bottom-up reduction completions perform them within
4826 * their compute methods. The search methods are like forEach
4827 * except they continually poll for success and exit early. Also,
4828 * exceptions are handled in a simpler manner, by just trying to
4829 * complete root task exceptionally.
4830 */
4831 @SuppressWarnings("serial")
4832 static abstract class BulkTask<K,V,R> extends Traverser<K,V,R> {
4833 final BulkTask<K,V,?> parent; // completion target
4834 int batch; // split control
4835 int pending; // completion control
4836
4837 /** Constructor for root tasks */
4838 BulkTask(ConcurrentHashMapV8<K,V> map) {
4839 super(map);
4840 this.parent = null;
4841 this.batch = -1; // force call to batch() on execution
4842 }
4843
4844 /** Constructor for subtasks */
4845 BulkTask(BulkTask<K,V,?> parent, int batch, boolean split) {
4846 super(parent, split);
4847 this.parent = parent;
4848 this.batch = batch;
4849 }
4850
4851 // FJ methods
4852
4853 /**
4854 * Propagates completion. Note that all reduce actions
4855 * bypass this method to combine while completing.
4856 */
4857 final void tryComplete() {
4858 BulkTask<K,V,?> a = this, s = a;
4859 for (int c;;) {
4860 if ((c = a.pending) == 0) {
4861 if ((a = (s = a).parent) == null) {
4862 s.quietlyComplete();
4863 break;
4864 }
4865 }
4866 else if (U.compareAndSwapInt(a, PENDING, c, c - 1))
4867 break;
4868 }
4869 }
4870
4871 /**
4872 * Forces root task to throw exception unless already complete.
4873 */
4874 final void tryAbortComputation(Throwable ex) {
4875 for (BulkTask<K,V,?> a = this;;) {
4876 BulkTask<K,V,?> p = a.parent;
4877 if (p == null) {
4878 a.completeExceptionally(ex);
4879 break;
4880 }
4881 a = p;
4882 }
4883 }
4884
4885 public final boolean exec() {
4886 try {
4887 compute();
4888 }
4889 catch (Throwable ex) {
4890 tryAbortComputation(ex);
4891 }
4892 return false;
4893 }
4894
4895 public abstract void compute();
4896
4897 // utilities
4898
4899 /** CompareAndSet pending count */
4900 final boolean casPending(int cmp, int val) {
4901 return U.compareAndSwapInt(this, PENDING, cmp, val);
4902 }
4903
4904 /**
4905 * Returns approx exp2 of the number of times (minus one) to
4906 * split task by two before executing leaf action. This value
4907 * is faster to compute and more convenient to use as a guide
4908 * to splitting than is the depth, since it is used while
4909 * dividing by two anyway.
4910 */
4911 final int batch() {
4912 int b = batch;
4913 if (b < 0) {
4914 long n = map.counter.sum();
4915 int sp = getPool().getParallelism() << 3; // slack of 8
4916 b = batch = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
4917 }
4918 return b;
4919 }
4920
4921 /**
4922 * Error message for hoisted null checks of functions
4923 */
4924 static final String NullFunctionMessage =
4925 "Unexpected null function";
4926
4927 /**
4928 * Returns exportable snapshot entry.
4929 */
4930 static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
4931 return new AbstractMap.SimpleEntry<K,V>(k, v);
4932 }
4933
4934 // Unsafe mechanics
4935 private static final sun.misc.Unsafe U;
4936 private static final long PENDING;
4937 static {
4938 try {
4939 U = getUnsafe();
4940 PENDING = U.objectFieldOffset
4941 (BulkTask.class.getDeclaredField("pending"));
4942 } catch (Exception e) {
4943 throw new Error(e);
4944 }
4945 }
4946 }
4947
4948 /*
4949 * Task classes. Coded in a regular but ugly format/style to
4950 * simplify checks that each variant differs in the right way from
4951 * others.
4952 */
4953
4954 @SuppressWarnings("serial")
4955 static final class ForEachKeyTask<K,V>
4956 extends BulkTask<K,V,Void> {
4957 final Action<K> action;
4958 ForEachKeyTask
4959 (ConcurrentHashMapV8<K,V> m,
4960 Action<K> action) {
4961 super(m);
4962 this.action = action;
4963 }
4964 ForEachKeyTask
4965 (BulkTask<K,V,?> p, int b, boolean split,
4966 Action<K> action) {
4967 super(p, b, split);
4968 this.action = action;
4969 }
4970 @SuppressWarnings("unchecked") public final void compute() {
4971 final Action<K> action = this.action;
4972 if (action == null)
4973 throw new Error(NullFunctionMessage);
4974 int b = batch(), c;
4975 while (b > 1 && baseIndex != baseLimit) {
4976 do {} while (!casPending(c = pending, c+1));
4977 new ForEachKeyTask<K,V>(this, b >>>= 1, true, action).fork();
4978 }
4979 while (advance() != null)
4980 action.apply((K)nextKey);
4981 tryComplete();
4982 }
4983 }
4984
4985 @SuppressWarnings("serial")
4986 static final class ForEachValueTask<K,V>
4987 extends BulkTask<K,V,Void> {
4988 final Action<V> action;
4989 ForEachValueTask
4990 (ConcurrentHashMapV8<K,V> m,
4991 Action<V> action) {
4992 super(m);
4993 this.action = action;
4994 }
4995 ForEachValueTask
4996 (BulkTask<K,V,?> p, int b, boolean split,
4997 Action<V> action) {
4998 super(p, b, split);
4999 this.action = action;
5000 }
5001 @SuppressWarnings("unchecked") public final void compute() {
5002 final Action<V> action = this.action;
5003 if (action == null)
5004 throw new Error(NullFunctionMessage);
5005 int b = batch(), c;
5006 while (b > 1 && baseIndex != baseLimit) {
5007 do {} while (!casPending(c = pending, c+1));
5008 new ForEachValueTask<K,V>(this, b >>>= 1, true, action).fork();
5009 }
5010 Object v;
5011 while ((v = advance()) != null)
5012 action.apply((V)v);
5013 tryComplete();
5014 }
5015 }
5016
5017 @SuppressWarnings("serial")
5018 static final class ForEachEntryTask<K,V>
5019 extends BulkTask<K,V,Void> {
5020 final Action<Entry<K,V>> action;
5021 ForEachEntryTask
5022 (ConcurrentHashMapV8<K,V> m,
5023 Action<Entry<K,V>> action) {
5024 super(m);
5025 this.action = action;
5026 }
5027 ForEachEntryTask
5028 (BulkTask<K,V,?> p, int b, boolean split,
5029 Action<Entry<K,V>> action) {
5030 super(p, b, split);
5031 this.action = action;
5032 }
5033 @SuppressWarnings("unchecked") public final void compute() {
5034 final Action<Entry<K,V>> action = this.action;
5035 if (action == null)
5036 throw new Error(NullFunctionMessage);
5037 int b = batch(), c;
5038 while (b > 1 && baseIndex != baseLimit) {
5039 do {} while (!casPending(c = pending, c+1));
5040 new ForEachEntryTask<K,V>(this, b >>>= 1, true, action).fork();
5041 }
5042 Object v;
5043 while ((v = advance()) != null)
5044 action.apply(entryFor((K)nextKey, (V)v));
5045 tryComplete();
5046 }
5047 }
5048
5049 @SuppressWarnings("serial")
5050 static final class ForEachMappingTask<K,V>
5051 extends BulkTask<K,V,Void> {
5052 final BiAction<K,V> action;
5053 ForEachMappingTask
5054 (ConcurrentHashMapV8<K,V> m,
5055 BiAction<K,V> action) {
5056 super(m);
5057 this.action = action;
5058 }
5059 ForEachMappingTask
5060 (BulkTask<K,V,?> p, int b, boolean split,
5061 BiAction<K,V> action) {
5062 super(p, b, split);
5063 this.action = action;
5064 }
5065
5066 @SuppressWarnings("unchecked") public final void compute() {
5067 final BiAction<K,V> action = this.action;
5068 if (action == null)
5069 throw new Error(NullFunctionMessage);
5070 int b = batch(), c;
5071 while (b > 1 && baseIndex != baseLimit) {
5072 do {} while (!casPending(c = pending, c+1));
5073 new ForEachMappingTask<K,V>(this, b >>>= 1, true,
5074 action).fork();
5075 }
5076 Object v;
5077 while ((v = advance()) != null)
5078 action.apply((K)nextKey, (V)v);
5079 tryComplete();
5080 }
5081 }
5082
5083 @SuppressWarnings("serial")
5084 static final class ForEachTransformedKeyTask<K,V,U>
5085 extends BulkTask<K,V,Void> {
5086 final Fun<? super K, ? extends U> transformer;
5087 final Action<U> action;
5088 ForEachTransformedKeyTask
5089 (ConcurrentHashMapV8<K,V> m,
5090 Fun<? super K, ? extends U> transformer,
5091 Action<U> action) {
5092 super(m);
5093 this.transformer = transformer;
5094 this.action = action;
5095
5096 }
5097 ForEachTransformedKeyTask
5098 (BulkTask<K,V,?> p, int b, boolean split,
5099 Fun<? super K, ? extends U> transformer,
5100 Action<U> action) {
5101 super(p, b, split);
5102 this.transformer = transformer;
5103 this.action = action;
5104 }
5105 @SuppressWarnings("unchecked") public final void compute() {
5106 final Fun<? super K, ? extends U> transformer =
5107 this.transformer;
5108 final Action<U> action = this.action;
5109 if (transformer == null || action == null)
5110 throw new Error(NullFunctionMessage);
5111 int b = batch(), c;
5112 while (b > 1 && baseIndex != baseLimit) {
5113 do {} while (!casPending(c = pending, c+1));
5114 new ForEachTransformedKeyTask<K,V,U>
5115 (this, b >>>= 1, true, transformer, action).fork();
5116 }
5117 U u;
5118 while (advance() != null) {
5119 if ((u = transformer.apply((K)nextKey)) != null)
5120 action.apply(u);
5121 }
5122 tryComplete();
5123 }
5124 }
5125
5126 @SuppressWarnings("serial")
5127 static final class ForEachTransformedValueTask<K,V,U>
5128 extends BulkTask<K,V,Void> {
5129 final Fun<? super V, ? extends U> transformer;
5130 final Action<U> action;
5131 ForEachTransformedValueTask
5132 (ConcurrentHashMapV8<K,V> m,
5133 Fun<? super V, ? extends U> transformer,
5134 Action<U> action) {
5135 super(m);
5136 this.transformer = transformer;
5137 this.action = action;
5138
5139 }
5140 ForEachTransformedValueTask
5141 (BulkTask<K,V,?> p, int b, boolean split,
5142 Fun<? super V, ? extends U> transformer,
5143 Action<U> action) {
5144 super(p, b, split);
5145 this.transformer = transformer;
5146 this.action = action;
5147 }
5148 @SuppressWarnings("unchecked") public final void compute() {
5149 final Fun<? super V, ? extends U> transformer =
5150 this.transformer;
5151 final Action<U> action = this.action;
5152 if (transformer == null || action == null)
5153 throw new Error(NullFunctionMessage);
5154 int b = batch(), c;
5155 while (b > 1 && baseIndex != baseLimit) {
5156 do {} while (!casPending(c = pending, c+1));
5157 new ForEachTransformedValueTask<K,V,U>
5158 (this, b >>>= 1, true, transformer, action).fork();
5159 }
5160 Object v; U u;
5161 while ((v = advance()) != null) {
5162 if ((u = transformer.apply((V)v)) != null)
5163 action.apply(u);
5164 }
5165 tryComplete();
5166 }
5167 }
5168
5169 @SuppressWarnings("serial")
5170 static final class ForEachTransformedEntryTask<K,V,U>
5171 extends BulkTask<K,V,Void> {
5172 final Fun<Map.Entry<K,V>, ? extends U> transformer;
5173 final Action<U> action;
5174 ForEachTransformedEntryTask
5175 (ConcurrentHashMapV8<K,V> m,
5176 Fun<Map.Entry<K,V>, ? extends U> transformer,
5177 Action<U> action) {
5178 super(m);
5179 this.transformer = transformer;
5180 this.action = action;
5181
5182 }
5183 ForEachTransformedEntryTask
5184 (BulkTask<K,V,?> p, int b, boolean split,
5185 Fun<Map.Entry<K,V>, ? extends U> transformer,
5186 Action<U> action) {
5187 super(p, b, split);
5188 this.transformer = transformer;
5189 this.action = action;
5190 }
5191 @SuppressWarnings("unchecked") public final void compute() {
5192 final Fun<Map.Entry<K,V>, ? extends U> transformer =
5193 this.transformer;
5194 final Action<U> action = this.action;
5195 if (transformer == null || action == null)
5196 throw new Error(NullFunctionMessage);
5197 int b = batch(), c;
5198 while (b > 1 && baseIndex != baseLimit) {
5199 do {} while (!casPending(c = pending, c+1));
5200 new ForEachTransformedEntryTask<K,V,U>
5201 (this, b >>>= 1, true, transformer, action).fork();
5202 }
5203 Object v; U u;
5204 while ((v = advance()) != null) {
5205 if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
5206 action.apply(u);
5207 }
5208 tryComplete();
5209 }
5210 }
5211
5212 @SuppressWarnings("serial")
5213 static final class ForEachTransformedMappingTask<K,V,U>
5214 extends BulkTask<K,V,Void> {
5215 final BiFun<? super K, ? super V, ? extends U> transformer;
5216 final Action<U> action;
5217 ForEachTransformedMappingTask
5218 (ConcurrentHashMapV8<K,V> m,
5219 BiFun<? super K, ? super V, ? extends U> transformer,
5220 Action<U> action) {
5221 super(m);
5222 this.transformer = transformer;
5223 this.action = action;
5224
5225 }
5226 ForEachTransformedMappingTask
5227 (BulkTask<K,V,?> p, int b, boolean split,
5228 BiFun<? super K, ? super V, ? extends U> transformer,
5229 Action<U> action) {
5230 super(p, b, split);
5231 this.transformer = transformer;
5232 this.action = action;
5233 }
5234 @SuppressWarnings("unchecked") public final void compute() {
5235 final BiFun<? super K, ? super V, ? extends U> transformer =
5236 this.transformer;
5237 final Action<U> action = this.action;
5238 if (transformer == null || action == null)
5239 throw new Error(NullFunctionMessage);
5240 int b = batch(), c;
5241 while (b > 1 && baseIndex != baseLimit) {
5242 do {} while (!casPending(c = pending, c+1));
5243 new ForEachTransformedMappingTask<K,V,U>
5244 (this, b >>>= 1, true, transformer, action).fork();
5245 }
5246 Object v; U u;
5247 while ((v = advance()) != null) {
5248 if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5249 action.apply(u);
5250 }
5251 tryComplete();
5252 }
5253 }
5254
5255 @SuppressWarnings("serial")
5256 static final class SearchKeysTask<K,V,U>
5257 extends BulkTask<K,V,U> {
5258 final Fun<? super K, ? extends U> searchFunction;
5259 final AtomicReference<U> result;
5260 SearchKeysTask
5261 (ConcurrentHashMapV8<K,V> m,
5262 Fun<? super K, ? extends U> searchFunction,
5263 AtomicReference<U> result) {
5264 super(m);
5265 this.searchFunction = searchFunction; this.result = result;
5266 }
5267 SearchKeysTask
5268 (BulkTask<K,V,?> p, int b, boolean split,
5269 Fun<? super K, ? extends U> searchFunction,
5270 AtomicReference<U> result) {
5271 super(p, b, split);
5272 this.searchFunction = searchFunction; this.result = result;
5273 }
5274 @SuppressWarnings("unchecked") public final void compute() {
5275 AtomicReference<U> result = this.result;
5276 final Fun<? super K, ? extends U> searchFunction =
5277 this.searchFunction;
5278 if (searchFunction == null || result == null)
5279 throw new Error(NullFunctionMessage);
5280 int b = batch(), c;
5281 while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5282 do {} while (!casPending(c = pending, c+1));
5283 new SearchKeysTask<K,V,U>(this, b >>>= 1, true,
5284 searchFunction, result).fork();
5285 }
5286 U u;
5287 while (result.get() == null && advance() != null) {
5288 if ((u = searchFunction.apply((K)nextKey)) != null) {
5289 if (result.compareAndSet(null, u)) {
5290 for (BulkTask<K,V,?> a = this, p;;) {
5291 if ((p = a.parent) == null) {
5292 a.quietlyComplete();
5293 break;
5294 }
5295 a = p;
5296 }
5297 }
5298 break;
5299 }
5300 }
5301 tryComplete();
5302 }
5303 public final U getRawResult() { return result.get(); }
5304 }
5305
5306 @SuppressWarnings("serial")
5307 static final class SearchValuesTask<K,V,U>
5308 extends BulkTask<K,V,U> {
5309 final Fun<? super V, ? extends U> searchFunction;
5310 final AtomicReference<U> result;
5311 SearchValuesTask
5312 (ConcurrentHashMapV8<K,V> m,
5313 Fun<? super V, ? extends U> searchFunction,
5314 AtomicReference<U> result) {
5315 super(m);
5316 this.searchFunction = searchFunction; this.result = result;
5317 }
5318 SearchValuesTask
5319 (BulkTask<K,V,?> p, int b, boolean split,
5320 Fun<? super V, ? extends U> searchFunction,
5321 AtomicReference<U> result) {
5322 super(p, b, split);
5323 this.searchFunction = searchFunction; this.result = result;
5324 }
5325 @SuppressWarnings("unchecked") public final void compute() {
5326 AtomicReference<U> result = this.result;
5327 final Fun<? super V, ? extends U> searchFunction =
5328 this.searchFunction;
5329 if (searchFunction == null || result == null)
5330 throw new Error(NullFunctionMessage);
5331 int b = batch(), c;
5332 while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5333 do {} while (!casPending(c = pending, c+1));
5334 new SearchValuesTask<K,V,U>(this, b >>>= 1, true,
5335 searchFunction, result).fork();
5336 }
5337 Object v; U u;
5338 while (result.get() == null && (v = advance()) != null) {
5339 if ((u = searchFunction.apply((V)v)) != null) {
5340 if (result.compareAndSet(null, u)) {
5341 for (BulkTask<K,V,?> a = this, p;;) {
5342 if ((p = a.parent) == null) {
5343 a.quietlyComplete();
5344 break;
5345 }
5346 a = p;
5347 }
5348 }
5349 break;
5350 }
5351 }
5352 tryComplete();
5353 }
5354 public final U getRawResult() { return result.get(); }
5355 }
5356
5357 @SuppressWarnings("serial")
5358 static final class SearchEntriesTask<K,V,U>
5359 extends BulkTask<K,V,U> {
5360 final Fun<Entry<K,V>, ? extends U> searchFunction;
5361 final AtomicReference<U> result;
5362 SearchEntriesTask
5363 (ConcurrentHashMapV8<K,V> m,
5364 Fun<Entry<K,V>, ? extends U> searchFunction,
5365 AtomicReference<U> result) {
5366 super(m);
5367 this.searchFunction = searchFunction; this.result = result;
5368 }
5369 SearchEntriesTask
5370 (BulkTask<K,V,?> p, int b, boolean split,
5371 Fun<Entry<K,V>, ? extends U> searchFunction,
5372 AtomicReference<U> result) {
5373 super(p, b, split);
5374 this.searchFunction = searchFunction; this.result = result;
5375 }
5376 @SuppressWarnings("unchecked") public final void compute() {
5377 AtomicReference<U> result = this.result;
5378 final Fun<Entry<K,V>, ? extends U> searchFunction =
5379 this.searchFunction;
5380 if (searchFunction == null || result == null)
5381 throw new Error(NullFunctionMessage);
5382 int b = batch(), c;
5383 while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5384 do {} while (!casPending(c = pending, c+1));
5385 new SearchEntriesTask<K,V,U>(this, b >>>= 1, true,
5386 searchFunction, result).fork();
5387 }
5388 Object v; U u;
5389 while (result.get() == null && (v = advance()) != null) {
5390 if ((u = searchFunction.apply(entryFor((K)nextKey, (V)v))) != null) {
5391 if (result.compareAndSet(null, u)) {
5392 for (BulkTask<K,V,?> a = this, p;;) {
5393 if ((p = a.parent) == null) {
5394 a.quietlyComplete();
5395 break;
5396 }
5397 a = p;
5398 }
5399 }
5400 break;
5401 }
5402 }
5403 tryComplete();
5404 }
5405 public final U getRawResult() { return result.get(); }
5406 }
5407
5408 @SuppressWarnings("serial")
5409 static final class SearchMappingsTask<K,V,U>
5410 extends BulkTask<K,V,U> {
5411 final BiFun<? super K, ? super V, ? extends U> searchFunction;
5412 final AtomicReference<U> result;
5413 SearchMappingsTask
5414 (ConcurrentHashMapV8<K,V> m,
5415 BiFun<? super K, ? super V, ? extends U> searchFunction,
5416 AtomicReference<U> result) {
5417 super(m);
5418 this.searchFunction = searchFunction; this.result = result;
5419 }
5420 SearchMappingsTask
5421 (BulkTask<K,V,?> p, int b, boolean split,
5422 BiFun<? super K, ? super V, ? extends U> searchFunction,
5423 AtomicReference<U> result) {
5424 super(p, b, split);
5425 this.searchFunction = searchFunction; this.result = result;
5426 }
5427 @SuppressWarnings("unchecked") public final void compute() {
5428 AtomicReference<U> result = this.result;
5429 final BiFun<? super K, ? super V, ? extends U> searchFunction =
5430 this.searchFunction;
5431 if (searchFunction == null || result == null)
5432 throw new Error(NullFunctionMessage);
5433 int b = batch(), c;
5434 while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5435 do {} while (!casPending(c = pending, c+1));
5436 new SearchMappingsTask<K,V,U>(this, b >>>= 1, true,
5437 searchFunction, result).fork();
5438 }
5439 Object v; U u;
5440 while (result.get() == null && (v = advance()) != null) {
5441 if ((u = searchFunction.apply((K)nextKey, (V)v)) != null) {
5442 if (result.compareAndSet(null, u)) {
5443 for (BulkTask<K,V,?> a = this, p;;) {
5444 if ((p = a.parent) == null) {
5445 a.quietlyComplete();
5446 break;
5447 }
5448 a = p;
5449 }
5450 }
5451 break;
5452 }
5453 }
5454 tryComplete();
5455 }
5456 public final U getRawResult() { return result.get(); }
5457 }
5458
5459 @SuppressWarnings("serial")
5460 static final class ReduceKeysTask<K,V>
5461 extends BulkTask<K,V,K> {
5462 final BiFun<? super K, ? super K, ? extends K> reducer;
5463 K result;
5464 ReduceKeysTask<K,V> sibling;
5465 ReduceKeysTask
5466 (ConcurrentHashMapV8<K,V> m,
5467 BiFun<? super K, ? super K, ? extends K> reducer) {
5468 super(m);
5469 this.reducer = reducer;
5470 }
5471 ReduceKeysTask
5472 (BulkTask<K,V,?> p, int b, boolean split,
5473 BiFun<? super K, ? super K, ? extends K> reducer) {
5474 super(p, b, split);
5475 this.reducer = reducer;
5476 }
5477
5478 @SuppressWarnings("unchecked") public final void compute() {
5479 ReduceKeysTask<K,V> t = this;
5480 final BiFun<? super K, ? super K, ? extends K> reducer =
5481 this.reducer;
5482 if (reducer == null)
5483 throw new Error(NullFunctionMessage);
5484 int b = batch();
5485 while (b > 1 && t.baseIndex != t.baseLimit) {
5486 b >>>= 1;
5487 t.pending = 1;
5488 ReduceKeysTask<K,V> rt =
5489 new ReduceKeysTask<K,V>
5490 (t, b, true, reducer);
5491 t = new ReduceKeysTask<K,V>
5492 (t, b, false, reducer);
5493 t.sibling = rt;
5494 rt.sibling = t;
5495 rt.fork();
5496 }
5497 K r = null;
5498 while (t.advance() != null) {
5499 K u = (K)t.nextKey;
5500 r = (r == null) ? u : reducer.apply(r, u);
5501 }
5502 t.result = r;
5503 for (;;) {
5504 int c; BulkTask<K,V,?> par; ReduceKeysTask<K,V> s, p; K u;
5505 if ((par = t.parent) == null ||
5506 !(par instanceof ReduceKeysTask)) {
5507 t.quietlyComplete();
5508 break;
5509 }
5510 else if ((c = (p = (ReduceKeysTask<K,V>)par).pending) == 0) {
5511 if ((s = t.sibling) != null && (u = s.result) != null)
5512 r = (r == null) ? u : reducer.apply(r, u);
5513 (t = p).result = r;
5514 }
5515 else if (p.casPending(c, 0))
5516 break;
5517 }
5518 }
5519 public final K getRawResult() { return result; }
5520 }
5521
5522 @SuppressWarnings("serial")
5523 static final class ReduceValuesTask<K,V>
5524 extends BulkTask<K,V,V> {
5525 final BiFun<? super V, ? super V, ? extends V> reducer;
5526 V result;
5527 ReduceValuesTask<K,V> sibling;
5528 ReduceValuesTask
5529 (ConcurrentHashMapV8<K,V> m,
5530 BiFun<? super V, ? super V, ? extends V> reducer) {
5531 super(m);
5532 this.reducer = reducer;
5533 }
5534 ReduceValuesTask
5535 (BulkTask<K,V,?> p, int b, boolean split,
5536 BiFun<? super V, ? super V, ? extends V> reducer) {
5537 super(p, b, split);
5538 this.reducer = reducer;
5539 }
5540
5541 @SuppressWarnings("unchecked") public final void compute() {
5542 ReduceValuesTask<K,V> t = this;
5543 final BiFun<? super V, ? super V, ? extends V> reducer =
5544 this.reducer;
5545 if (reducer == null)
5546 throw new Error(NullFunctionMessage);
5547 int b = batch();
5548 while (b > 1 && t.baseIndex != t.baseLimit) {
5549 b >>>= 1;
5550 t.pending = 1;
5551 ReduceValuesTask<K,V> rt =
5552 new ReduceValuesTask<K,V>
5553 (t, b, true, reducer);
5554 t = new ReduceValuesTask<K,V>
5555 (t, b, false, reducer);
5556 t.sibling = rt;
5557 rt.sibling = t;
5558 rt.fork();
5559 }
5560 V r = null;
5561 Object v;
5562 while ((v = t.advance()) != null) {
5563 V u = (V)v;
5564 r = (r == null) ? u : reducer.apply(r, u);
5565 }
5566 t.result = r;
5567 for (;;) {
5568 int c; BulkTask<K,V,?> par; ReduceValuesTask<K,V> s, p; V u;
5569 if ((par = t.parent) == null ||
5570 !(par instanceof ReduceValuesTask)) {
5571 t.quietlyComplete();
5572 break;
5573 }
5574 else if ((c = (p = (ReduceValuesTask<K,V>)par).pending) == 0) {
5575 if ((s = t.sibling) != null && (u = s.result) != null)
5576 r = (r == null) ? u : reducer.apply(r, u);
5577 (t = p).result = r;
5578 }
5579 else if (p.casPending(c, 0))
5580 break;
5581 }
5582 }
5583 public final V getRawResult() { return result; }
5584 }
5585
5586 @SuppressWarnings("serial")
5587 static final class ReduceEntriesTask<K,V>
5588 extends BulkTask<K,V,Map.Entry<K,V>> {
5589 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5590 Map.Entry<K,V> result;
5591 ReduceEntriesTask<K,V> sibling;
5592 ReduceEntriesTask
5593 (ConcurrentHashMapV8<K,V> m,
5594 BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5595 super(m);
5596 this.reducer = reducer;
5597 }
5598 ReduceEntriesTask
5599 (BulkTask<K,V,?> p, int b, boolean split,
5600 BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5601 super(p, b, split);
5602 this.reducer = reducer;
5603 }
5604
5605 @SuppressWarnings("unchecked") public final void compute() {
5606 ReduceEntriesTask<K,V> t = this;
5607 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer =
5608 this.reducer;
5609 if (reducer == null)
5610 throw new Error(NullFunctionMessage);
5611 int b = batch();
5612 while (b > 1 && t.baseIndex != t.baseLimit) {
5613 b >>>= 1;
5614 t.pending = 1;
5615 ReduceEntriesTask<K,V> rt =
5616 new ReduceEntriesTask<K,V>
5617 (t, b, true, reducer);
5618 t = new ReduceEntriesTask<K,V>
5619 (t, b, false, reducer);
5620 t.sibling = rt;
5621 rt.sibling = t;
5622 rt.fork();
5623 }
5624 Map.Entry<K,V> r = null;
5625 Object v;
5626 while ((v = t.advance()) != null) {
5627 Map.Entry<K,V> u = entryFor((K)t.nextKey, (V)v);
5628 r = (r == null) ? u : reducer.apply(r, u);
5629 }
5630 t.result = r;
5631 for (;;) {
5632 int c; BulkTask<K,V,?> par; ReduceEntriesTask<K,V> s, p;
5633 Map.Entry<K,V> u;
5634 if ((par = t.parent) == null ||
5635 !(par instanceof ReduceEntriesTask)) {
5636 t.quietlyComplete();
5637 break;
5638 }
5639 else if ((c = (p = (ReduceEntriesTask<K,V>)par).pending) == 0) {
5640 if ((s = t.sibling) != null && (u = s.result) != null)
5641 r = (r == null) ? u : reducer.apply(r, u);
5642 (t = p).result = r;
5643 }
5644 else if (p.casPending(c, 0))
5645 break;
5646 }
5647 }
5648 public final Map.Entry<K,V> getRawResult() { return result; }
5649 }
5650
5651 @SuppressWarnings("serial")
5652 static final class MapReduceKeysTask<K,V,U>
5653 extends BulkTask<K,V,U> {
5654 final Fun<? super K, ? extends U> transformer;
5655 final BiFun<? super U, ? super U, ? extends U> reducer;
5656 U result;
5657 MapReduceKeysTask<K,V,U> sibling;
5658 MapReduceKeysTask
5659 (ConcurrentHashMapV8<K,V> m,
5660 Fun<? super K, ? extends U> transformer,
5661 BiFun<? super U, ? super U, ? extends U> reducer) {
5662 super(m);
5663 this.transformer = transformer;
5664 this.reducer = reducer;
5665 }
5666 MapReduceKeysTask
5667 (BulkTask<K,V,?> p, int b, boolean split,
5668 Fun<? super K, ? extends U> transformer,
5669 BiFun<? super U, ? super U, ? extends U> reducer) {
5670 super(p, b, split);
5671 this.transformer = transformer;
5672 this.reducer = reducer;
5673 }
5674 @SuppressWarnings("unchecked") public final void compute() {
5675 MapReduceKeysTask<K,V,U> t = this;
5676 final Fun<? super K, ? extends U> transformer =
5677 this.transformer;
5678 final BiFun<? super U, ? super U, ? extends U> reducer =
5679 this.reducer;
5680 if (transformer == null || reducer == null)
5681 throw new Error(NullFunctionMessage);
5682 int b = batch();
5683 while (b > 1 && t.baseIndex != t.baseLimit) {
5684 b >>>= 1;
5685 t.pending = 1;
5686 MapReduceKeysTask<K,V,U> rt =
5687 new MapReduceKeysTask<K,V,U>
5688 (t, b, true, transformer, reducer);
5689 t = new MapReduceKeysTask<K,V,U>
5690 (t, b, false, transformer, reducer);
5691 t.sibling = rt;
5692 rt.sibling = t;
5693 rt.fork();
5694 }
5695 U r = null, u;
5696 while (t.advance() != null) {
5697 if ((u = transformer.apply((K)t.nextKey)) != null)
5698 r = (r == null) ? u : reducer.apply(r, u);
5699 }
5700 t.result = r;
5701 for (;;) {
5702 int c; BulkTask<K,V,?> par; MapReduceKeysTask<K,V,U> s, p;
5703 if ((par = t.parent) == null ||
5704 !(par instanceof MapReduceKeysTask)) {
5705 t.quietlyComplete();
5706 break;
5707 }
5708 else if ((c = (p = (MapReduceKeysTask<K,V,U>)par).pending) == 0) {
5709 if ((s = t.sibling) != null && (u = s.result) != null)
5710 r = (r == null) ? u : reducer.apply(r, u);
5711 (t = p).result = r;
5712 }
5713 else if (p.casPending(c, 0))
5714 break;
5715 }
5716 }
5717 public final U getRawResult() { return result; }
5718 }
5719
5720 @SuppressWarnings("serial")
5721 static final class MapReduceValuesTask<K,V,U>
5722 extends BulkTask<K,V,U> {
5723 final Fun<? super V, ? extends U> transformer;
5724 final BiFun<? super U, ? super U, ? extends U> reducer;
5725 U result;
5726 MapReduceValuesTask<K,V,U> sibling;
5727 MapReduceValuesTask
5728 (ConcurrentHashMapV8<K,V> m,
5729 Fun<? super V, ? extends U> transformer,
5730 BiFun<? super U, ? super U, ? extends U> reducer) {
5731 super(m);
5732 this.transformer = transformer;
5733 this.reducer = reducer;
5734 }
5735 MapReduceValuesTask
5736 (BulkTask<K,V,?> p, int b, boolean split,
5737 Fun<? super V, ? extends U> transformer,
5738 BiFun<? super U, ? super U, ? extends U> reducer) {
5739 super(p, b, split);
5740 this.transformer = transformer;
5741 this.reducer = reducer;
5742 }
5743 @SuppressWarnings("unchecked") public final void compute() {
5744 MapReduceValuesTask<K,V,U> t = this;
5745 final Fun<? super V, ? extends U> transformer =
5746 this.transformer;
5747 final BiFun<? super U, ? super U, ? extends U> reducer =
5748 this.reducer;
5749 if (transformer == null || reducer == null)
5750 throw new Error(NullFunctionMessage);
5751 int b = batch();
5752 while (b > 1 && t.baseIndex != t.baseLimit) {
5753 b >>>= 1;
5754 t.pending = 1;
5755 MapReduceValuesTask<K,V,U> rt =
5756 new MapReduceValuesTask<K,V,U>
5757 (t, b, true, transformer, reducer);
5758 t = new MapReduceValuesTask<K,V,U>
5759 (t, b, false, transformer, reducer);
5760 t.sibling = rt;
5761 rt.sibling = t;
5762 rt.fork();
5763 }
5764 U r = null, u;
5765 Object v;
5766 while ((v = t.advance()) != null) {
5767 if ((u = transformer.apply((V)v)) != null)
5768 r = (r == null) ? u : reducer.apply(r, u);
5769 }
5770 t.result = r;
5771 for (;;) {
5772 int c; BulkTask<K,V,?> par; MapReduceValuesTask<K,V,U> s, p;
5773 if ((par = t.parent) == null ||
5774 !(par instanceof MapReduceValuesTask)) {
5775 t.quietlyComplete();
5776 break;
5777 }
5778 else if ((c = (p = (MapReduceValuesTask<K,V,U>)par).pending) == 0) {
5779 if ((s = t.sibling) != null && (u = s.result) != null)
5780 r = (r == null) ? u : reducer.apply(r, u);
5781 (t = p).result = r;
5782 }
5783 else if (p.casPending(c, 0))
5784 break;
5785 }
5786 }
5787 public final U getRawResult() { return result; }
5788 }
5789
5790 @SuppressWarnings("serial")
5791 static final class MapReduceEntriesTask<K,V,U>
5792 extends BulkTask<K,V,U> {
5793 final Fun<Map.Entry<K,V>, ? extends U> transformer;
5794 final BiFun<? super U, ? super U, ? extends U> reducer;
5795 U result;
5796 MapReduceEntriesTask<K,V,U> sibling;
5797 MapReduceEntriesTask
5798 (ConcurrentHashMapV8<K,V> m,
5799 Fun<Map.Entry<K,V>, ? extends U> transformer,
5800 BiFun<? super U, ? super U, ? extends U> reducer) {
5801 super(m);
5802 this.transformer = transformer;
5803 this.reducer = reducer;
5804 }
5805 MapReduceEntriesTask
5806 (BulkTask<K,V,?> p, int b, boolean split,
5807 Fun<Map.Entry<K,V>, ? extends U> transformer,
5808 BiFun<? super U, ? super U, ? extends U> reducer) {
5809 super(p, b, split);
5810 this.transformer = transformer;
5811 this.reducer = reducer;
5812 }
5813 @SuppressWarnings("unchecked") public final void compute() {
5814 MapReduceEntriesTask<K,V,U> t = this;
5815 final Fun<Map.Entry<K,V>, ? extends U> transformer =
5816 this.transformer;
5817 final BiFun<? super U, ? super U, ? extends U> reducer =
5818 this.reducer;
5819 if (transformer == null || reducer == null)
5820 throw new Error(NullFunctionMessage);
5821 int b = batch();
5822 while (b > 1 && t.baseIndex != t.baseLimit) {
5823 b >>>= 1;
5824 t.pending = 1;
5825 MapReduceEntriesTask<K,V,U> rt =
5826 new MapReduceEntriesTask<K,V,U>
5827 (t, b, true, transformer, reducer);
5828 t = new MapReduceEntriesTask<K,V,U>
5829 (t, b, false, transformer, reducer);
5830 t.sibling = rt;
5831 rt.sibling = t;
5832 rt.fork();
5833 }
5834 U r = null, u;
5835 Object v;
5836 while ((v = t.advance()) != null) {
5837 if ((u = transformer.apply(entryFor((K)t.nextKey, (V)v))) != null)
5838 r = (r == null) ? u : reducer.apply(r, u);
5839 }
5840 t.result = r;
5841 for (;;) {
5842 int c; BulkTask<K,V,?> par; MapReduceEntriesTask<K,V,U> s, p;
5843 if ((par = t.parent) == null ||
5844 !(par instanceof MapReduceEntriesTask)) {
5845 t.quietlyComplete();
5846 break;
5847 }
5848 else if ((c = (p = (MapReduceEntriesTask<K,V,U>)par).pending) == 0) {
5849 if ((s = t.sibling) != null && (u = s.result) != null)
5850 r = (r == null) ? u : reducer.apply(r, u);
5851 (t = p).result = r;
5852 }
5853 else if (p.casPending(c, 0))
5854 break;
5855 }
5856 }
5857 public final U getRawResult() { return result; }
5858 }
5859
5860 @SuppressWarnings("serial")
5861 static final class MapReduceMappingsTask<K,V,U>
5862 extends BulkTask<K,V,U> {
5863 final BiFun<? super K, ? super V, ? extends U> transformer;
5864 final BiFun<? super U, ? super U, ? extends U> reducer;
5865 U result;
5866 MapReduceMappingsTask<K,V,U> sibling;
5867 MapReduceMappingsTask
5868 (ConcurrentHashMapV8<K,V> m,
5869 BiFun<? super K, ? super V, ? extends U> transformer,
5870 BiFun<? super U, ? super U, ? extends U> reducer) {
5871 super(m);
5872 this.transformer = transformer;
5873 this.reducer = reducer;
5874 }
5875 MapReduceMappingsTask
5876 (BulkTask<K,V,?> p, int b, boolean split,
5877 BiFun<? super K, ? super V, ? extends U> transformer,
5878 BiFun<? super U, ? super U, ? extends U> reducer) {
5879 super(p, b, split);
5880 this.transformer = transformer;
5881 this.reducer = reducer;
5882 }
5883 @SuppressWarnings("unchecked") public final void compute() {
5884 MapReduceMappingsTask<K,V,U> t = this;
5885 final BiFun<? super K, ? super V, ? extends U> transformer =
5886 this.transformer;
5887 final BiFun<? super U, ? super U, ? extends U> reducer =
5888 this.reducer;
5889 if (transformer == null || reducer == null)
5890 throw new Error(NullFunctionMessage);
5891 int b = batch();
5892 while (b > 1 && t.baseIndex != t.baseLimit) {
5893 b >>>= 1;
5894 t.pending = 1;
5895 MapReduceMappingsTask<K,V,U> rt =
5896 new MapReduceMappingsTask<K,V,U>
5897 (t, b, true, transformer, reducer);
5898 t = new MapReduceMappingsTask<K,V,U>
5899 (t, b, false, transformer, reducer);
5900 t.sibling = rt;
5901 rt.sibling = t;
5902 rt.fork();
5903 }
5904 U r = null, u;
5905 Object v;
5906 while ((v = t.advance()) != null) {
5907 if ((u = transformer.apply((K)t.nextKey, (V)v)) != null)
5908 r = (r == null) ? u : reducer.apply(r, u);
5909 }
5910 for (;;) {
5911 int c; BulkTask<K,V,?> par; MapReduceMappingsTask<K,V,U> s, p;
5912 if ((par = t.parent) == null ||
5913 !(par instanceof MapReduceMappingsTask)) {
5914 t.quietlyComplete();
5915 break;
5916 }
5917 else if ((c = (p = (MapReduceMappingsTask<K,V,U>)par).pending) == 0) {
5918 if ((s = t.sibling) != null && (u = s.result) != null)
5919 r = (r == null) ? u : reducer.apply(r, u);
5920 (t = p).result = r;
5921 }
5922 else if (p.casPending(c, 0))
5923 break;
5924 }
5925 }
5926 public final U getRawResult() { return result; }
5927 }
5928
5929 @SuppressWarnings("serial")
5930 static final class MapReduceKeysToDoubleTask<K,V>
5931 extends BulkTask<K,V,Double> {
5932 final ObjectToDouble<? super K> transformer;
5933 final DoubleByDoubleToDouble reducer;
5934 final double basis;
5935 double result;
5936 MapReduceKeysToDoubleTask<K,V> sibling;
5937 MapReduceKeysToDoubleTask
5938 (ConcurrentHashMapV8<K,V> m,
5939 ObjectToDouble<? super K> transformer,
5940 double basis,
5941 DoubleByDoubleToDouble reducer) {
5942 super(m);
5943 this.transformer = transformer;
5944 this.basis = basis; this.reducer = reducer;
5945 }
5946 MapReduceKeysToDoubleTask
5947 (BulkTask<K,V,?> p, int b, boolean split,
5948 ObjectToDouble<? super K> transformer,
5949 double basis,
5950 DoubleByDoubleToDouble reducer) {
5951 super(p, b, split);
5952 this.transformer = transformer;
5953 this.basis = basis; this.reducer = reducer;
5954 }
5955 @SuppressWarnings("unchecked") public final void compute() {
5956 MapReduceKeysToDoubleTask<K,V> t = this;
5957 final ObjectToDouble<? super K> transformer =
5958 this.transformer;
5959 final DoubleByDoubleToDouble reducer = this.reducer;
5960 if (transformer == null || reducer == null)
5961 throw new Error(NullFunctionMessage);
5962 final double id = this.basis;
5963 int b = batch();
5964 while (b > 1 && t.baseIndex != t.baseLimit) {
5965 b >>>= 1;
5966 t.pending = 1;
5967 MapReduceKeysToDoubleTask<K,V> rt =
5968 new MapReduceKeysToDoubleTask<K,V>
5969 (t, b, true, transformer, id, reducer);
5970 t = new MapReduceKeysToDoubleTask<K,V>
5971 (t, b, false, transformer, id, reducer);
5972 t.sibling = rt;
5973 rt.sibling = t;
5974 rt.fork();
5975 }
5976 double r = id;
5977 while (t.advance() != null)
5978 r = reducer.apply(r, transformer.apply((K)t.nextKey));
5979 t.result = r;
5980 for (;;) {
5981 int c; BulkTask<K,V,?> par; MapReduceKeysToDoubleTask<K,V> s, p;
5982 if ((par = t.parent) == null ||
5983 !(par instanceof MapReduceKeysToDoubleTask)) {
5984 t.quietlyComplete();
5985 break;
5986 }
5987 else if ((c = (p = (MapReduceKeysToDoubleTask<K,V>)par).pending) == 0) {
5988 if ((s = t.sibling) != null)
5989 r = reducer.apply(r, s.result);
5990 (t = p).result = r;
5991 }
5992 else if (p.casPending(c, 0))
5993 break;
5994 }
5995 }
5996 public final Double getRawResult() { return result; }
5997 }
5998
5999 @SuppressWarnings("serial")
6000 static final class MapReduceValuesToDoubleTask<K,V>
6001 extends BulkTask<K,V,Double> {
6002 final ObjectToDouble<? super V> transformer;
6003 final DoubleByDoubleToDouble reducer;
6004 final double basis;
6005 double result;
6006 MapReduceValuesToDoubleTask<K,V> sibling;
6007 MapReduceValuesToDoubleTask
6008 (ConcurrentHashMapV8<K,V> m,
6009 ObjectToDouble<? super V> transformer,
6010 double basis,
6011 DoubleByDoubleToDouble reducer) {
6012 super(m);
6013 this.transformer = transformer;
6014 this.basis = basis; this.reducer = reducer;
6015 }
6016 MapReduceValuesToDoubleTask
6017 (BulkTask<K,V,?> p, int b, boolean split,
6018 ObjectToDouble<? super V> transformer,
6019 double basis,
6020 DoubleByDoubleToDouble reducer) {
6021 super(p, b, split);
6022 this.transformer = transformer;
6023 this.basis = basis; this.reducer = reducer;
6024 }
6025 @SuppressWarnings("unchecked") public final void compute() {
6026 MapReduceValuesToDoubleTask<K,V> t = this;
6027 final ObjectToDouble<? super V> transformer =
6028 this.transformer;
6029 final DoubleByDoubleToDouble reducer = this.reducer;
6030 if (transformer == null || reducer == null)
6031 throw new Error(NullFunctionMessage);
6032 final double id = this.basis;
6033 int b = batch();
6034 while (b > 1 && t.baseIndex != t.baseLimit) {
6035 b >>>= 1;
6036 t.pending = 1;
6037 MapReduceValuesToDoubleTask<K,V> rt =
6038 new MapReduceValuesToDoubleTask<K,V>
6039 (t, b, true, transformer, id, reducer);
6040 t = new MapReduceValuesToDoubleTask<K,V>
6041 (t, b, false, transformer, id, reducer);
6042 t.sibling = rt;
6043 rt.sibling = t;
6044 rt.fork();
6045 }
6046 double r = id;
6047 Object v;
6048 while ((v = t.advance()) != null)
6049 r = reducer.apply(r, transformer.apply((V)v));
6050 t.result = r;
6051 for (;;) {
6052 int c; BulkTask<K,V,?> par; MapReduceValuesToDoubleTask<K,V> s, p;
6053 if ((par = t.parent) == null ||
6054 !(par instanceof MapReduceValuesToDoubleTask)) {
6055 t.quietlyComplete();
6056 break;
6057 }
6058 else if ((c = (p = (MapReduceValuesToDoubleTask<K,V>)par).pending) == 0) {
6059 if ((s = t.sibling) != null)
6060 r = reducer.apply(r, s.result);
6061 (t = p).result = r;
6062 }
6063 else if (p.casPending(c, 0))
6064 break;
6065 }
6066 }
6067 public final Double getRawResult() { return result; }
6068 }
6069
6070 @SuppressWarnings("serial")
6071 static final class MapReduceEntriesToDoubleTask<K,V>
6072 extends BulkTask<K,V,Double> {
6073 final ObjectToDouble<Map.Entry<K,V>> transformer;
6074 final DoubleByDoubleToDouble reducer;
6075 final double basis;
6076 double result;
6077 MapReduceEntriesToDoubleTask<K,V> sibling;
6078 MapReduceEntriesToDoubleTask
6079 (ConcurrentHashMapV8<K,V> m,
6080 ObjectToDouble<Map.Entry<K,V>> transformer,
6081 double basis,
6082 DoubleByDoubleToDouble reducer) {
6083 super(m);
6084 this.transformer = transformer;
6085 this.basis = basis; this.reducer = reducer;
6086 }
6087 MapReduceEntriesToDoubleTask
6088 (BulkTask<K,V,?> p, int b, boolean split,
6089 ObjectToDouble<Map.Entry<K,V>> transformer,
6090 double basis,
6091 DoubleByDoubleToDouble reducer) {
6092 super(p, b, split);
6093 this.transformer = transformer;
6094 this.basis = basis; this.reducer = reducer;
6095 }
6096 @SuppressWarnings("unchecked") public final void compute() {
6097 MapReduceEntriesToDoubleTask<K,V> t = this;
6098 final ObjectToDouble<Map.Entry<K,V>> transformer =
6099 this.transformer;
6100 final DoubleByDoubleToDouble reducer = this.reducer;
6101 if (transformer == null || reducer == null)
6102 throw new Error(NullFunctionMessage);
6103 final double id = this.basis;
6104 int b = batch();
6105 while (b > 1 && t.baseIndex != t.baseLimit) {
6106 b >>>= 1;
6107 t.pending = 1;
6108 MapReduceEntriesToDoubleTask<K,V> rt =
6109 new MapReduceEntriesToDoubleTask<K,V>
6110 (t, b, true, transformer, id, reducer);
6111 t = new MapReduceEntriesToDoubleTask<K,V>
6112 (t, b, false, transformer, id, reducer);
6113 t.sibling = rt;
6114 rt.sibling = t;
6115 rt.fork();
6116 }
6117 double r = id;
6118 Object v;
6119 while ((v = t.advance()) != null)
6120 r = reducer.apply(r, transformer.apply(entryFor((K)t.nextKey, (V)v)));
6121 t.result = r;
6122 for (;;) {
6123 int c; BulkTask<K,V,?> par; MapReduceEntriesToDoubleTask<K,V> s, p;
6124 if ((par = t.parent) == null ||
6125 !(par instanceof MapReduceEntriesToDoubleTask)) {
6126 t.quietlyComplete();
6127 break;
6128 }
6129 else if ((c = (p = (MapReduceEntriesToDoubleTask<K,V>)par).pending) == 0) {
6130 if ((s = t.sibling) != null)
6131 r = reducer.apply(r, s.result);
6132 (t = p).result = r;
6133 }
6134 else if (p.casPending(c, 0))
6135 break;
6136 }
6137 }
6138 public final Double getRawResult() { return result; }
6139 }
6140
6141 @SuppressWarnings("serial")
6142 static final class MapReduceMappingsToDoubleTask<K,V>
6143 extends BulkTask<K,V,Double> {
6144 final ObjectByObjectToDouble<? super K, ? super V> transformer;
6145 final DoubleByDoubleToDouble reducer;
6146 final double basis;
6147 double result;
6148 MapReduceMappingsToDoubleTask<K,V> sibling;
6149 MapReduceMappingsToDoubleTask
6150 (ConcurrentHashMapV8<K,V> m,
6151 ObjectByObjectToDouble<? super K, ? super V> transformer,
6152 double basis,
6153 DoubleByDoubleToDouble reducer) {
6154 super(m);
6155 this.transformer = transformer;
6156 this.basis = basis; this.reducer = reducer;
6157 }
6158 MapReduceMappingsToDoubleTask
6159 (BulkTask<K,V,?> p, int b, boolean split,
6160 ObjectByObjectToDouble<? super K, ? super V> transformer,
6161 double basis,
6162 DoubleByDoubleToDouble reducer) {
6163 super(p, b, split);
6164 this.transformer = transformer;
6165 this.basis = basis; this.reducer = reducer;
6166 }
6167 @SuppressWarnings("unchecked") public final void compute() {
6168 MapReduceMappingsToDoubleTask<K,V> t = this;
6169 final ObjectByObjectToDouble<? super K, ? super V> transformer =
6170 this.transformer;
6171 final DoubleByDoubleToDouble reducer = this.reducer;
6172 if (transformer == null || reducer == null)
6173 throw new Error(NullFunctionMessage);
6174 final double id = this.basis;
6175 int b = batch();
6176 while (b > 1 && t.baseIndex != t.baseLimit) {
6177 b >>>= 1;
6178 t.pending = 1;
6179 MapReduceMappingsToDoubleTask<K,V> rt =
6180 new MapReduceMappingsToDoubleTask<K,V>
6181 (t, b, true, transformer, id, reducer);
6182 t = new MapReduceMappingsToDoubleTask<K,V>
6183 (t, b, false, transformer, id, reducer);
6184 t.sibling = rt;
6185 rt.sibling = t;
6186 rt.fork();
6187 }
6188 double r = id;
6189 Object v;
6190 while ((v = t.advance()) != null)
6191 r = reducer.apply(r, transformer.apply((K)t.nextKey, (V)v));
6192 t.result = r;
6193 for (;;) {
6194 int c; BulkTask<K,V,?> par; MapReduceMappingsToDoubleTask<K,V> s, p;
6195 if ((par = t.parent) == null ||
6196 !(par instanceof MapReduceMappingsToDoubleTask)) {
6197 t.quietlyComplete();
6198 break;
6199 }
6200 else if ((c = (p = (MapReduceMappingsToDoubleTask<K,V>)par).pending) == 0) {
6201 if ((s = t.sibling) != null)
6202 r = reducer.apply(r, s.result);
6203 (t = p).result = r;
6204 }
6205 else if (p.casPending(c, 0))
6206 break;
6207 }
6208 }
6209 public final Double getRawResult() { return result; }
6210 }
6211
6212 @SuppressWarnings("serial")
6213 static final class MapReduceKeysToLongTask<K,V>
6214 extends BulkTask<K,V,Long> {
6215 final ObjectToLong<? super K> transformer;
6216 final LongByLongToLong reducer;
6217 final long basis;
6218 long result;
6219 MapReduceKeysToLongTask<K,V> sibling;
6220 MapReduceKeysToLongTask
6221 (ConcurrentHashMapV8<K,V> m,
6222 ObjectToLong<? super K> transformer,
6223 long basis,
6224 LongByLongToLong reducer) {
6225 super(m);
6226 this.transformer = transformer;
6227 this.basis = basis; this.reducer = reducer;
6228 }
6229 MapReduceKeysToLongTask
6230 (BulkTask<K,V,?> p, int b, boolean split,
6231 ObjectToLong<? super K> transformer,
6232 long basis,
6233 LongByLongToLong reducer) {
6234 super(p, b, split);
6235 this.transformer = transformer;
6236 this.basis = basis; this.reducer = reducer;
6237 }
6238 @SuppressWarnings("unchecked") public final void compute() {
6239 MapReduceKeysToLongTask<K,V> t = this;
6240 final ObjectToLong<? super K> transformer =
6241 this.transformer;
6242 final LongByLongToLong reducer = this.reducer;
6243 if (transformer == null || reducer == null)
6244 throw new Error(NullFunctionMessage);
6245 final long id = this.basis;
6246 int b = batch();
6247 while (b > 1 && t.baseIndex != t.baseLimit) {
6248 b >>>= 1;
6249 t.pending = 1;
6250 MapReduceKeysToLongTask<K,V> rt =
6251 new MapReduceKeysToLongTask<K,V>
6252 (t, b, true, transformer, id, reducer);
6253 t = new MapReduceKeysToLongTask<K,V>
6254 (t, b, false, transformer, id, reducer);
6255 t.sibling = rt;
6256 rt.sibling = t;
6257 rt.fork();
6258 }
6259 long r = id;
6260 while (t.advance() != null)
6261 r = reducer.apply(r, transformer.apply((K)t.nextKey));
6262 t.result = r;
6263 for (;;) {
6264 int c; BulkTask<K,V,?> par; MapReduceKeysToLongTask<K,V> s, p;
6265 if ((par = t.parent) == null ||
6266 !(par instanceof MapReduceKeysToLongTask)) {
6267 t.quietlyComplete();
6268 break;
6269 }
6270 else if ((c = (p = (MapReduceKeysToLongTask<K,V>)par).pending) == 0) {
6271 if ((s = t.sibling) != null)
6272 r = reducer.apply(r, s.result);
6273 (t = p).result = r;
6274 }
6275 else if (p.casPending(c, 0))
6276 break;
6277 }
6278 }
6279 public final Long getRawResult() { return result; }
6280 }
6281
6282 @SuppressWarnings("serial")
6283 static final class MapReduceValuesToLongTask<K,V>
6284 extends BulkTask<K,V,Long> {
6285 final ObjectToLong<? super V> transformer;
6286 final LongByLongToLong reducer;
6287 final long basis;
6288 long result;
6289 MapReduceValuesToLongTask<K,V> sibling;
6290 MapReduceValuesToLongTask
6291 (ConcurrentHashMapV8<K,V> m,
6292 ObjectToLong<? super V> transformer,
6293 long basis,
6294 LongByLongToLong reducer) {
6295 super(m);
6296 this.transformer = transformer;
6297 this.basis = basis; this.reducer = reducer;
6298 }
6299 MapReduceValuesToLongTask
6300 (BulkTask<K,V,?> p, int b, boolean split,
6301 ObjectToLong<? super V> transformer,
6302 long basis,
6303 LongByLongToLong reducer) {
6304 super(p, b, split);
6305 this.transformer = transformer;
6306 this.basis = basis; this.reducer = reducer;
6307 }
6308 @SuppressWarnings("unchecked") public final void compute() {
6309 MapReduceValuesToLongTask<K,V> t = this;
6310 final ObjectToLong<? super V> transformer =
6311 this.transformer;
6312 final LongByLongToLong reducer = this.reducer;
6313 if (transformer == null || reducer == null)
6314 throw new Error(NullFunctionMessage);
6315 final long id = this.basis;
6316 int b = batch();
6317 while (b > 1 && t.baseIndex != t.baseLimit) {
6318 b >>>= 1;
6319 t.pending = 1;
6320 MapReduceValuesToLongTask<K,V> rt =
6321 new MapReduceValuesToLongTask<K,V>
6322 (t, b, true, transformer, id, reducer);
6323 t = new MapReduceValuesToLongTask<K,V>
6324 (t, b, false, transformer, id, reducer);
6325 t.sibling = rt;
6326 rt.sibling = t;
6327 rt.fork();
6328 }
6329 long r = id;
6330 Object v;
6331 while ((v = t.advance()) != null)
6332 r = reducer.apply(r, transformer.apply((V)v));
6333 t.result = r;
6334 for (;;) {
6335 int c; BulkTask<K,V,?> par; MapReduceValuesToLongTask<K,V> s, p;
6336 if ((par = t.parent) == null ||
6337 !(par instanceof MapReduceValuesToLongTask)) {
6338 t.quietlyComplete();
6339 break;
6340 }
6341 else if ((c = (p = (MapReduceValuesToLongTask<K,V>)par).pending) == 0) {
6342 if ((s = t.sibling) != null)
6343 r = reducer.apply(r, s.result);
6344 (t = p).result = r;
6345 }
6346 else if (p.casPending(c, 0))
6347 break;
6348 }
6349 }
6350 public final Long getRawResult() { return result; }
6351 }
6352
6353 @SuppressWarnings("serial")
6354 static final class MapReduceEntriesToLongTask<K,V>
6355 extends BulkTask<K,V,Long> {
6356 final ObjectToLong<Map.Entry<K,V>> transformer;
6357 final LongByLongToLong reducer;
6358 final long basis;
6359 long result;
6360 MapReduceEntriesToLongTask<K,V> sibling;
6361 MapReduceEntriesToLongTask
6362 (ConcurrentHashMapV8<K,V> m,
6363 ObjectToLong<Map.Entry<K,V>> transformer,
6364 long basis,
6365 LongByLongToLong reducer) {
6366 super(m);
6367 this.transformer = transformer;
6368 this.basis = basis; this.reducer = reducer;
6369 }
6370 MapReduceEntriesToLongTask
6371 (BulkTask<K,V,?> p, int b, boolean split,
6372 ObjectToLong<Map.Entry<K,V>> transformer,
6373 long basis,
6374 LongByLongToLong reducer) {
6375 super(p, b, split);
6376 this.transformer = transformer;
6377 this.basis = basis; this.reducer = reducer;
6378 }
6379 @SuppressWarnings("unchecked") public final void compute() {
6380 MapReduceEntriesToLongTask<K,V> t = this;
6381 final ObjectToLong<Map.Entry<K,V>> transformer =
6382 this.transformer;
6383 final LongByLongToLong reducer = this.reducer;
6384 if (transformer == null || reducer == null)
6385 throw new Error(NullFunctionMessage);
6386 final long id = this.basis;
6387 int b = batch();
6388 while (b > 1 && t.baseIndex != t.baseLimit) {
6389 b >>>= 1;
6390 t.pending = 1;
6391 MapReduceEntriesToLongTask<K,V> rt =
6392 new MapReduceEntriesToLongTask<K,V>
6393 (t, b, true, transformer, id, reducer);
6394 t = new MapReduceEntriesToLongTask<K,V>
6395 (t, b, false, transformer, id, reducer);
6396 t.sibling = rt;
6397 rt.sibling = t;
6398 rt.fork();
6399 }
6400 long r = id;
6401 Object v;
6402 while ((v = t.advance()) != null)
6403 r = reducer.apply(r, transformer.apply(entryFor((K)t.nextKey, (V)v)));
6404 t.result = r;
6405 for (;;) {
6406 int c; BulkTask<K,V,?> par; MapReduceEntriesToLongTask<K,V> s, p;
6407 if ((par = t.parent) == null ||
6408 !(par instanceof MapReduceEntriesToLongTask)) {
6409 t.quietlyComplete();
6410 break;
6411 }
6412 else if ((c = (p = (MapReduceEntriesToLongTask<K,V>)par).pending) == 0) {
6413 if ((s = t.sibling) != null)
6414 r = reducer.apply(r, s.result);
6415 (t = p).result = r;
6416 }
6417 else if (p.casPending(c, 0))
6418 break;
6419 }
6420 }
6421 public final Long getRawResult() { return result; }
6422 }
6423
6424 @SuppressWarnings("serial")
6425 static final class MapReduceMappingsToLongTask<K,V>
6426 extends BulkTask<K,V,Long> {
6427 final ObjectByObjectToLong<? super K, ? super V> transformer;
6428 final LongByLongToLong reducer;
6429 final long basis;
6430 long result;
6431 MapReduceMappingsToLongTask<K,V> sibling;
6432 MapReduceMappingsToLongTask
6433 (ConcurrentHashMapV8<K,V> m,
6434 ObjectByObjectToLong<? super K, ? super V> transformer,
6435 long basis,
6436 LongByLongToLong reducer) {
6437 super(m);
6438 this.transformer = transformer;
6439 this.basis = basis; this.reducer = reducer;
6440 }
6441 MapReduceMappingsToLongTask
6442 (BulkTask<K,V,?> p, int b, boolean split,
6443 ObjectByObjectToLong<? super K, ? super V> transformer,
6444 long basis,
6445 LongByLongToLong reducer) {
6446 super(p, b, split);
6447 this.transformer = transformer;
6448 this.basis = basis; this.reducer = reducer;
6449 }
6450 @SuppressWarnings("unchecked") public final void compute() {
6451 MapReduceMappingsToLongTask<K,V> t = this;
6452 final ObjectByObjectToLong<? super K, ? super V> transformer =
6453 this.transformer;
6454 final LongByLongToLong reducer = this.reducer;
6455 if (transformer == null || reducer == null)
6456 throw new Error(NullFunctionMessage);
6457 final long id = this.basis;
6458 int b = batch();
6459 while (b > 1 && t.baseIndex != t.baseLimit) {
6460 b >>>= 1;
6461 t.pending = 1;
6462 MapReduceMappingsToLongTask<K,V> rt =
6463 new MapReduceMappingsToLongTask<K,V>
6464 (t, b, true, transformer, id, reducer);
6465 t = new MapReduceMappingsToLongTask<K,V>
6466 (t, b, false, transformer, id, reducer);
6467 t.sibling = rt;
6468 rt.sibling = t;
6469 rt.fork();
6470 }
6471 long r = id;
6472 Object v;
6473 while ((v = t.advance()) != null)
6474 r = reducer.apply(r, transformer.apply((K)t.nextKey, (V)v));
6475 t.result = r;
6476 for (;;) {
6477 int c; BulkTask<K,V,?> par; MapReduceMappingsToLongTask<K,V> s, p;
6478 if ((par = t.parent) == null ||
6479 !(par instanceof MapReduceMappingsToLongTask)) {
6480 t.quietlyComplete();
6481 break;
6482 }
6483 else if ((c = (p = (MapReduceMappingsToLongTask<K,V>)par).pending) == 0) {
6484 if ((s = t.sibling) != null)
6485 r = reducer.apply(r, s.result);
6486 (t = p).result = r;
6487 }
6488 else if (p.casPending(c, 0))
6489 break;
6490 }
6491 }
6492 public final Long getRawResult() { return result; }
6493 }
6494
6495 @SuppressWarnings("serial")
6496 static final class MapReduceKeysToIntTask<K,V>
6497 extends BulkTask<K,V,Integer> {
6498 final ObjectToInt<? super K> transformer;
6499 final IntByIntToInt reducer;
6500 final int basis;
6501 int result;
6502 MapReduceKeysToIntTask<K,V> sibling;
6503 MapReduceKeysToIntTask
6504 (ConcurrentHashMapV8<K,V> m,
6505 ObjectToInt<? super K> transformer,
6506 int basis,
6507 IntByIntToInt reducer) {
6508 super(m);
6509 this.transformer = transformer;
6510 this.basis = basis; this.reducer = reducer;
6511 }
6512 MapReduceKeysToIntTask
6513 (BulkTask<K,V,?> p, int b, boolean split,
6514 ObjectToInt<? super K> transformer,
6515 int basis,
6516 IntByIntToInt reducer) {
6517 super(p, b, split);
6518 this.transformer = transformer;
6519 this.basis = basis; this.reducer = reducer;
6520 }
6521 @SuppressWarnings("unchecked") public final void compute() {
6522 MapReduceKeysToIntTask<K,V> t = this;
6523 final ObjectToInt<? super K> transformer =
6524 this.transformer;
6525 final IntByIntToInt reducer = this.reducer;
6526 if (transformer == null || reducer == null)
6527 throw new Error(NullFunctionMessage);
6528 final int id = this.basis;
6529 int b = batch();
6530 while (b > 1 && t.baseIndex != t.baseLimit) {
6531 b >>>= 1;
6532 t.pending = 1;
6533 MapReduceKeysToIntTask<K,V> rt =
6534 new MapReduceKeysToIntTask<K,V>
6535 (t, b, true, transformer, id, reducer);
6536 t = new MapReduceKeysToIntTask<K,V>
6537 (t, b, false, transformer, id, reducer);
6538 t.sibling = rt;
6539 rt.sibling = t;
6540 rt.fork();
6541 }
6542 int r = id;
6543 while (t.advance() != null)
6544 r = reducer.apply(r, transformer.apply((K)t.nextKey));
6545 t.result = r;
6546 for (;;) {
6547 int c; BulkTask<K,V,?> par; MapReduceKeysToIntTask<K,V> s, p;
6548 if ((par = t.parent) == null ||
6549 !(par instanceof MapReduceKeysToIntTask)) {
6550 t.quietlyComplete();
6551 break;
6552 }
6553 else if ((c = (p = (MapReduceKeysToIntTask<K,V>)par).pending) == 0) {
6554 if ((s = t.sibling) != null)
6555 r = reducer.apply(r, s.result);
6556 (t = p).result = r;
6557 }
6558 else if (p.casPending(c, 0))
6559 break;
6560 }
6561 }
6562 public final Integer getRawResult() { return result; }
6563 }
6564
6565 @SuppressWarnings("serial")
6566 static final class MapReduceValuesToIntTask<K,V>
6567 extends BulkTask<K,V,Integer> {
6568 final ObjectToInt<? super V> transformer;
6569 final IntByIntToInt reducer;
6570 final int basis;
6571 int result;
6572 MapReduceValuesToIntTask<K,V> sibling;
6573 MapReduceValuesToIntTask
6574 (ConcurrentHashMapV8<K,V> m,
6575 ObjectToInt<? super V> transformer,
6576 int basis,
6577 IntByIntToInt reducer) {
6578 super(m);
6579 this.transformer = transformer;
6580 this.basis = basis; this.reducer = reducer;
6581 }
6582 MapReduceValuesToIntTask
6583 (BulkTask<K,V,?> p, int b, boolean split,
6584 ObjectToInt<? super V> transformer,
6585 int basis,
6586 IntByIntToInt reducer) {
6587 super(p, b, split);
6588 this.transformer = transformer;
6589 this.basis = basis; this.reducer = reducer;
6590 }
6591 @SuppressWarnings("unchecked") public final void compute() {
6592 MapReduceValuesToIntTask<K,V> t = this;
6593 final ObjectToInt<? super V> transformer =
6594 this.transformer;
6595 final IntByIntToInt reducer = this.reducer;
6596 if (transformer == null || reducer == null)
6597 throw new Error(NullFunctionMessage);
6598 final int id = this.basis;
6599 int b = batch();
6600 while (b > 1 && t.baseIndex != t.baseLimit) {
6601 b >>>= 1;
6602 t.pending = 1;
6603 MapReduceValuesToIntTask<K,V> rt =
6604 new MapReduceValuesToIntTask<K,V>
6605 (t, b, true, transformer, id, reducer);
6606 t = new MapReduceValuesToIntTask<K,V>
6607 (t, b, false, transformer, id, reducer);
6608 t.sibling = rt;
6609 rt.sibling = t;
6610 rt.fork();
6611 }
6612 int r = id;
6613 Object v;
6614 while ((v = t.advance()) != null)
6615 r = reducer.apply(r, transformer.apply((V)v));
6616 t.result = r;
6617 for (;;) {
6618 int c; BulkTask<K,V,?> par; MapReduceValuesToIntTask<K,V> s, p;
6619 if ((par = t.parent) == null ||
6620 !(par instanceof MapReduceValuesToIntTask)) {
6621 t.quietlyComplete();
6622 break;
6623 }
6624 else if ((c = (p = (MapReduceValuesToIntTask<K,V>)par).pending) == 0) {
6625 if ((s = t.sibling) != null)
6626 r = reducer.apply(r, s.result);
6627 (t = p).result = r;
6628 }
6629 else if (p.casPending(c, 0))
6630 break;
6631 }
6632 }
6633 public final Integer getRawResult() { return result; }
6634 }
6635
6636 @SuppressWarnings("serial")
6637 static final class MapReduceEntriesToIntTask<K,V>
6638 extends BulkTask<K,V,Integer> {
6639 final ObjectToInt<Map.Entry<K,V>> transformer;
6640 final IntByIntToInt reducer;
6641 final int basis;
6642 int result;
6643 MapReduceEntriesToIntTask<K,V> sibling;
6644 MapReduceEntriesToIntTask
6645 (ConcurrentHashMapV8<K,V> m,
6646 ObjectToInt<Map.Entry<K,V>> transformer,
6647 int basis,
6648 IntByIntToInt reducer) {
6649 super(m);
6650 this.transformer = transformer;
6651 this.basis = basis; this.reducer = reducer;
6652 }
6653 MapReduceEntriesToIntTask
6654 (BulkTask<K,V,?> p, int b, boolean split,
6655 ObjectToInt<Map.Entry<K,V>> transformer,
6656 int basis,
6657 IntByIntToInt reducer) {
6658 super(p, b, split);
6659 this.transformer = transformer;
6660 this.basis = basis; this.reducer = reducer;
6661 }
6662 @SuppressWarnings("unchecked") public final void compute() {
6663 MapReduceEntriesToIntTask<K,V> t = this;
6664 final ObjectToInt<Map.Entry<K,V>> transformer =
6665 this.transformer;
6666 final IntByIntToInt reducer = this.reducer;
6667 if (transformer == null || reducer == null)
6668 throw new Error(NullFunctionMessage);
6669 final int id = this.basis;
6670 int b = batch();
6671 while (b > 1 && t.baseIndex != t.baseLimit) {
6672 b >>>= 1;
6673 t.pending = 1;
6674 MapReduceEntriesToIntTask<K,V> rt =
6675 new MapReduceEntriesToIntTask<K,V>
6676 (t, b, true, transformer, id, reducer);
6677 t = new MapReduceEntriesToIntTask<K,V>
6678 (t, b, false, transformer, id, reducer);
6679 t.sibling = rt;
6680 rt.sibling = t;
6681 rt.fork();
6682 }
6683 int r = id;
6684 Object v;
6685 while ((v = t.advance()) != null)
6686 r = reducer.apply(r, transformer.apply(entryFor((K)t.nextKey, (V)v)));
6687 t.result = r;
6688 for (;;) {
6689 int c; BulkTask<K,V,?> par; MapReduceEntriesToIntTask<K,V> s, p;
6690 if ((par = t.parent) == null ||
6691 !(par instanceof MapReduceEntriesToIntTask)) {
6692 t.quietlyComplete();
6693 break;
6694 }
6695 else if ((c = (p = (MapReduceEntriesToIntTask<K,V>)par).pending) == 0) {
6696 if ((s = t.sibling) != null)
6697 r = reducer.apply(r, s.result);
6698 (t = p).result = r;
6699 }
6700 else if (p.casPending(c, 0))
6701 break;
6702 }
6703 }
6704 public final Integer getRawResult() { return result; }
6705 }
6706
6707 @SuppressWarnings("serial")
6708 static final class MapReduceMappingsToIntTask<K,V>
6709 extends BulkTask<K,V,Integer> {
6710 final ObjectByObjectToInt<? super K, ? super V> transformer;
6711 final IntByIntToInt reducer;
6712 final int basis;
6713 int result;
6714 MapReduceMappingsToIntTask<K,V> sibling;
6715 MapReduceMappingsToIntTask
6716 (ConcurrentHashMapV8<K,V> m,
6717 ObjectByObjectToInt<? super K, ? super V> transformer,
6718 int basis,
6719 IntByIntToInt reducer) {
6720 super(m);
6721 this.transformer = transformer;
6722 this.basis = basis; this.reducer = reducer;
6723 }
6724 MapReduceMappingsToIntTask
6725 (BulkTask<K,V,?> p, int b, boolean split,
6726 ObjectByObjectToInt<? super K, ? super V> transformer,
6727 int basis,
6728 IntByIntToInt reducer) {
6729 super(p, b, split);
6730 this.transformer = transformer;
6731 this.basis = basis; this.reducer = reducer;
6732 }
6733 @SuppressWarnings("unchecked") public final void compute() {
6734 MapReduceMappingsToIntTask<K,V> t = this;
6735 final ObjectByObjectToInt<? super K, ? super V> transformer =
6736 this.transformer;
6737 final IntByIntToInt reducer = this.reducer;
6738 if (transformer == null || reducer == null)
6739 throw new Error(NullFunctionMessage);
6740 final int id = this.basis;
6741 int b = batch();
6742 while (b > 1 && t.baseIndex != t.baseLimit) {
6743 b >>>= 1;
6744 t.pending = 1;
6745 MapReduceMappingsToIntTask<K,V> rt =
6746 new MapReduceMappingsToIntTask<K,V>
6747 (t, b, true, transformer, id, reducer);
6748 t = new MapReduceMappingsToIntTask<K,V>
6749 (t, b, false, transformer, id, reducer);
6750 t.sibling = rt;
6751 rt.sibling = t;
6752 rt.fork();
6753 }
6754 int r = id;
6755 Object v;
6756 while ((v = t.advance()) != null)
6757 r = reducer.apply(r, transformer.apply((K)t.nextKey, (V)v));
6758 t.result = r;
6759 for (;;) {
6760 int c; BulkTask<K,V,?> par; MapReduceMappingsToIntTask<K,V> s, p;
6761 if ((par = t.parent) == null ||
6762 !(par instanceof MapReduceMappingsToIntTask)) {
6763 t.quietlyComplete();
6764 break;
6765 }
6766 else if ((c = (p = (MapReduceMappingsToIntTask<K,V>)par).pending) == 0) {
6767 if ((s = t.sibling) != null)
6768 r = reducer.apply(r, s.result);
6769 (t = p).result = r;
6770 }
6771 else if (p.casPending(c, 0))
6772 break;
6773 }
6774 }
6775 public final Integer getRawResult() { return result; }
6776 }
6777
6778
6779 // Unsafe mechanics
6780 private static final sun.misc.Unsafe UNSAFE;
6781 private static final long counterOffset;
6782 private static final long sizeCtlOffset;
6783 private static final long ABASE;
6784 private static final int ASHIFT;
6785
6786 static {
6787 int ss;
6788 try {
6789 UNSAFE = getUnsafe();
6790 Class<?> k = ConcurrentHashMapV8.class;
6791 counterOffset = UNSAFE.objectFieldOffset
6792 (k.getDeclaredField("counter"));
6793 sizeCtlOffset = UNSAFE.objectFieldOffset
6794 (k.getDeclaredField("sizeCtl"));
6795 Class<?> sc = Node[].class;
6796 ABASE = UNSAFE.arrayBaseOffset(sc);
6797 ss = UNSAFE.arrayIndexScale(sc);
6798 } catch (Exception e) {
6799 throw new Error(e);
6800 }
6801 if ((ss & (ss-1)) != 0)
6802 throw new Error("data type scale not a power of two");
6803 ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6804 }
6805
6806 /**
6807 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
6808 * Replace with a simple call to Unsafe.getUnsafe when integrating
6809 * into a jdk.
6810 *
6811 * @return a sun.misc.Unsafe
6812 */
6813 private static sun.misc.Unsafe getUnsafe() {
6814 try {
6815 return sun.misc.Unsafe.getUnsafe();
6816 } catch (SecurityException se) {
6817 try {
6818 return java.security.AccessController.doPrivileged
6819 (new java.security
6820 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
6821 public sun.misc.Unsafe run() throws Exception {
6822 java.lang.reflect.Field f = sun.misc
6823 .Unsafe.class.getDeclaredField("theUnsafe");
6824 f.setAccessible(true);
6825 return (sun.misc.Unsafe) f.get(null);
6826 }});
6827 } catch (java.security.PrivilegedActionException e) {
6828 throw new RuntimeException("Could not initialize intrinsics",
6829 e.getCause());
6830 }
6831 }
6832 }
6833 }