ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
Revision: 1.61
Committed: Thu Sep 13 10:41:37 2012 UTC (11 years, 7 months ago) by dl
Branch: MAIN
Changes since 1.60: +1023 -1075 lines
Log Message:
Reduce task overhead; incorporate review suggestions

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package jsr166e;
8 import jsr166e.LongAdder;
9 import jsr166e.ForkJoinPool;
10 import jsr166e.ForkJoinTask;
11
12 import java.util.Comparator;
13 import java.util.Arrays;
14 import java.util.Map;
15 import java.util.Set;
16 import java.util.Collection;
17 import java.util.AbstractMap;
18 import java.util.AbstractSet;
19 import java.util.AbstractCollection;
20 import java.util.Hashtable;
21 import java.util.HashMap;
22 import java.util.Iterator;
23 import java.util.Enumeration;
24 import java.util.ConcurrentModificationException;
25 import java.util.NoSuchElementException;
26 import java.util.concurrent.ConcurrentMap;
27 import java.util.concurrent.ThreadLocalRandom;
28 import java.util.concurrent.locks.LockSupport;
29 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
30 import java.util.concurrent.atomic.AtomicReference;
31
32 import java.io.Serializable;
33
34 /**
35 * A hash table supporting full concurrency of retrievals and
36 * high expected concurrency for updates. This class obeys the
37 * same functional specification as {@link java.util.Hashtable}, and
38 * includes versions of methods corresponding to each method of
39 * {@code Hashtable}. However, even though all operations are
40 * thread-safe, retrieval operations do <em>not</em> entail locking,
41 * and there is <em>not</em> any support for locking the entire table
42 * in a way that prevents all access. This class is fully
43 * interoperable with {@code Hashtable} in programs that rely on its
44 * thread safety but not on its synchronization details.
45 *
46 * <p> Retrieval operations (including {@code get}) generally do not
47 * block, so may overlap with update operations (including {@code put}
48 * and {@code remove}). Retrievals reflect the results of the most
49 * recently <em>completed</em> update operations holding upon their
50 * onset. (More formally, an update operation for a given key bears a
51 * <em>happens-before</em> relation with any (non-null) retrieval for
52 * that key reporting the updated value.) For aggregate operations
53 * such as {@code putAll} and {@code clear}, concurrent retrievals may
54 * reflect insertion or removal of only some entries. Similarly,
55 * Iterators and Enumerations return elements reflecting the state of
56 * the hash table at some point at or since the creation of the
57 * iterator/enumeration. They do <em>not</em> throw {@link
58 * ConcurrentModificationException}. However, iterators are designed
59 * to be used by only one thread at a time. Bear in mind that the
60 * results of aggregate status methods including {@code size}, {@code
61 * isEmpty}, and {@code containsValue} are typically useful only when
62 * a map is not undergoing concurrent updates in other threads.
63 * Otherwise the results of these methods reflect transient states
64 * that may be adequate for monitoring or estimation purposes, but not
65 * for program control.
66 *
67 * <p> The table is dynamically expanded when there are too many
68 * collisions (i.e., keys that have distinct hash codes but fall into
69 * the same slot modulo the table size), with the expected average
70 * effect of maintaining roughly two bins per mapping (corresponding
71 * to a 0.75 load factor threshold for resizing). There may be much
72 * variance around this average as mappings are added and removed, but
73 * overall, this maintains a commonly accepted time/space tradeoff for
74 * hash tables. However, resizing this or any other kind of hash
75 * table may be a relatively slow operation. When possible, it is a
76 * good idea to provide a size estimate as an optional {@code
77 * initialCapacity} constructor argument. An additional optional
78 * {@code loadFactor} constructor argument provides a further means of
79 * customizing initial table capacity by specifying the table density
80 * to be used in calculating the amount of space to allocate for the
81 * given number of elements. Also, for compatibility with previous
82 * versions of this class, constructors may optionally specify an
83 * expected {@code concurrencyLevel} as an additional hint for
84 * internal sizing. Note that using many keys with exactly the same
85 * {@code hashCode()} is a sure way to slow down performance of any
86 * hash table.
87 *
88 * <p>This class and its views and iterators implement all of the
89 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
90 * interfaces.
91 *
92 * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
93 * does <em>not</em> allow {@code null} to be used as a key or value.
94 *
95 * <p>This class is a member of the
96 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
97 * Java Collections Framework</a>.
98 *
99 * <p><em>jsr166e note: This class is a candidate replacement for
100 * java.util.concurrent.ConcurrentHashMap. During transition, this
101 * class declares and uses nested functional interfaces with different
102 * names but the same forms as those expected for JDK8.<em>
103 *
104 * @since 1.5
105 * @author Doug Lea
106 * @param <K> the type of keys maintained by this map
107 * @param <V> the type of mapped values
108 */
109 public class ConcurrentHashMapV8<K, V>
110 implements ConcurrentMap<K, V>, Serializable {
111 private static final long serialVersionUID = 7249069246763182397L;
112
113 /**
114 * A partitionable iterator. A Spliterator can be traversed
115 * directly, but can also be partitioned (before traversal) by
116 * creating another Spliterator that covers a non-overlapping
117 * portion of the elements, and so may be amenable to parallel
118 * execution.
119 *
120 * <p> This interface exports a subset of expected JDK8
121 * functionality.
122 *
123 * <p>Sample usage: Here is one (of the several) ways to compute
124 * the sum of the values held in a map using the ForkJoin
125 * framework. As illustrated here, Spliterators are well suited to
126 * designs in which a task repeatedly splits off half its work
127 * into forked subtasks until small enough to process directly,
128 * and then joins these subtasks. Variants of this style can also
129 * be used in completion-based designs.
130 *
131 * <pre>
132 * {@code ConcurrentHashMapV8<String, Long> m = ...
133 * // split as if have 8 * parallelism, for load balance
134 * int n = m.size();
135 * int p = aForkJoinPool.getParallelism() * 8;
136 * int split = (n < p)? n : p;
137 * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
138 * // ...
139 * static class SumValues extends RecursiveTask<Long> {
140 * final Spliterator<Long> s;
141 * final int split; // split while > 1
142 * final SumValues nextJoin; // records forked subtasks to join
143 * SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
144 * this.s = s; this.depth = depth; this.nextJoin = nextJoin;
145 * }
146 * public Long compute() {
147 * long sum = 0;
148 * SumValues subtasks = null; // fork subtasks
149 * for (int s = split >>> 1; s > 0; s >>>= 1)
150 * (subtasks = new SumValues(s.split(), s, subtasks)).fork();
151 * while (s.hasNext()) // directly process remaining elements
152 * sum += s.next();
153 * for (SumValues t = subtasks; t != null; t = t.nextJoin)
154 * sum += t.join(); // collect subtask results
155 * return sum;
156 * }
157 * }
158 * }</pre>
159 */
160 public static interface Spliterator<T> extends Iterator<T> {
161 /**
162 * Returns a Spliterator covering approximately half of the
163 * elements, guaranteed not to overlap with those subsequently
164 * returned by this Spliterator. After invoking this method,
165 * the current Spliterator will <em>not</em> produce any of
166 * the elements of the returned Spliterator, but the two
167 * Spliterators together will produce all of the elements that
168 * would have been produced by this Spliterator had this
169 * method not been called. The exact number of elements
170 * produced by the returned Spliterator is not guaranteed, and
171 * may be zero (i.e., with {@code hasNext()} reporting {@code
172 * false}) if this Spliterator cannot be further split.
173 *
174 * @return a Spliterator covering approximately half of the
175 * elements
176 * @throws IllegalStateException if this Spliterator has
177 * already commenced traversing elements
178 */
179 Spliterator<T> split();
180 }
181
182 /*
183 * Overview:
184 *
185 * The primary design goal of this hash table is to maintain
186 * concurrent readability (typically method get(), but also
187 * iterators and related methods) while minimizing update
188 * contention. Secondary goals are to keep space consumption about
189 * the same or better than java.util.HashMap, and to support high
190 * initial insertion rates on an empty table by many threads.
191 *
192 * Each key-value mapping is held in a Node. Because Node fields
193 * can contain special values, they are defined using plain Object
194 * types. Similarly in turn, all internal methods that use them
195 * work off Object types. And similarly, so do the internal
196 * methods of auxiliary iterator and view classes. All public
197 * generic typed methods relay in/out of these internal methods,
198 * supplying null-checks and casts as needed. This also allows
199 * many of the public methods to be factored into a smaller number
200 * of internal methods (although sadly not so for the five
201 * variants of put-related operations). The validation-based
202 * approach explained below leads to a lot of code sprawl because
203 * retry-control precludes factoring into smaller methods.
204 *
205 * The table is lazily initialized to a power-of-two size upon the
206 * first insertion. Each bin in the table normally contains a
207 * list of Nodes (most often, the list has only zero or one Node).
208 * Table accesses require volatile/atomic reads, writes, and
209 * CASes. Because there is no other way to arrange this without
210 * adding further indirections, we use intrinsics
211 * (sun.misc.Unsafe) operations. The lists of nodes within bins
212 * are always accurately traversable under volatile reads, so long
213 * as lookups check hash code and non-nullness of value before
214 * checking key equality.
215 *
216 * We use the top two bits of Node hash fields for control
217 * purposes -- they are available anyway because of addressing
218 * constraints. As explained further below, these top bits are
219 * used as follows:
220 * 00 - Normal
221 * 01 - Locked
222 * 11 - Locked and may have a thread waiting for lock
223 * 10 - Node is a forwarding node
224 *
225 * The lower 30 bits of each Node's hash field contain a
226 * transformation of the key's hash code, except for forwarding
227 * nodes, for which the lower bits are zero (and so always have
228 * hash field == MOVED).
229 *
230 * Insertion (via put or its variants) of the first node in an
231 * empty bin is performed by just CASing it to the bin. This is
232 * by far the most common case for put operations under most
233 * key/hash distributions. Other update operations (insert,
234 * delete, and replace) require locks. We do not want to waste
235 * the space required to associate a distinct lock object with
236 * each bin, so instead use the first node of a bin list itself as
237 * a lock. Blocking support for these locks relies on the builtin
238 * "synchronized" monitors. However, we also need a tryLock
239 * construction, so we overlay these by using bits of the Node
240 * hash field for lock control (see above), and so normally use
241 * builtin monitors only for blocking and signalling using
242 * wait/notifyAll constructions. See Node.tryAwaitLock.
243 *
244 * Using the first node of a list as a lock does not by itself
245 * suffice though: When a node is locked, any update must first
246 * validate that it is still the first node after locking it, and
247 * retry if not. Because new nodes are always appended to lists,
248 * once a node is first in a bin, it remains first until deleted
249 * or the bin becomes invalidated (upon resizing). However,
250 * operations that only conditionally update may inspect nodes
251 * until the point of update. This is a converse of sorts to the
252 * lazy locking technique described by Herlihy & Shavit.
253 *
254 * The main disadvantage of per-bin locks is that other update
255 * operations on other nodes in a bin list protected by the same
256 * lock can stall, for example when user equals() or mapping
257 * functions take a long time. However, statistically, under
258 * random hash codes, this is not a common problem. Ideally, the
259 * frequency of nodes in bins follows a Poisson distribution
260 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
261 * parameter of about 0.5 on average, given the resizing threshold
262 * of 0.75, although with a large variance because of resizing
263 * granularity. Ignoring variance, the expected occurrences of
264 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
265 * first values are:
266 *
267 * 0: 0.60653066
268 * 1: 0.30326533
269 * 2: 0.07581633
270 * 3: 0.01263606
271 * 4: 0.00157952
272 * 5: 0.00015795
273 * 6: 0.00001316
274 * 7: 0.00000094
275 * 8: 0.00000006
276 * more: less than 1 in ten million
277 *
278 * Lock contention probability for two threads accessing distinct
279 * elements is roughly 1 / (8 * #elements) under random hashes.
280 *
281 * Actual hash code distributions encountered in practice
282 * sometimes deviate significantly from uniform randomness. This
283 * includes the case when N > (1<<30), so some keys MUST collide.
284 * Similarly for dumb or hostile usages in which multiple keys are
285 * designed to have identical hash codes. Also, although we guard
286 * against the worst effects of this (see method spread), sets of
287 * hashes may differ only in bits that do not impact their bin
288 * index for a given power-of-two mask. So we use a secondary
289 * strategy that applies when the number of nodes in a bin exceeds
290 * a threshold, and at least one of the keys implements
291 * Comparable. These TreeBins use a balanced tree to hold nodes
292 * (a specialized form of red-black trees), bounding search time
293 * to O(log N). Each search step in a TreeBin is around twice as
294 * slow as in a regular list, but given that N cannot exceed
295 * (1<<64) (before running out of addresses) this bounds search
296 * steps, lock hold times, etc, to reasonable constants (roughly
297 * 100 nodes inspected per operation worst case) so long as keys
298 * are Comparable (which is very common -- String, Long, etc).
299 * TreeBin nodes (TreeNodes) also maintain the same "next"
300 * traversal pointers as regular nodes, so can be traversed in
301 * iterators in the same way.
302 *
303 * The table is resized when occupancy exceeds a percentage
304 * threshold (nominally, 0.75, but see below). Only a single
305 * thread performs the resize (using field "sizeCtl", to arrange
306 * exclusion), but the table otherwise remains usable for reads
307 * and updates. Resizing proceeds by transferring bins, one by
308 * one, from the table to the next table. Because we are using
309 * power-of-two expansion, the elements from each bin must either
310 * stay at same index, or move with a power of two offset. We
311 * eliminate unnecessary node creation by catching cases where old
312 * nodes can be reused because their next fields won't change. On
313 * average, only about one-sixth of them need cloning when a table
314 * doubles. The nodes they replace will be garbage collectable as
315 * soon as they are no longer referenced by any reader thread that
316 * may be in the midst of concurrently traversing table. Upon
317 * transfer, the old table bin contains only a special forwarding
318 * node (with hash field "MOVED") that contains the next table as
319 * its key. On encountering a forwarding node, access and update
320 * operations restart, using the new table.
321 *
322 * Each bin transfer requires its bin lock. However, unlike other
323 * cases, a transfer can skip a bin if it fails to acquire its
324 * lock, and revisit it later (unless it is a TreeBin). Method
325 * rebuild maintains a buffer of TRANSFER_BUFFER_SIZE bins that
326 * have been skipped because of failure to acquire a lock, and
327 * blocks only if none are available (i.e., only very rarely).
328 * The transfer operation must also ensure that all accessible
329 * bins in both the old and new table are usable by any traversal.
330 * When there are no lock acquisition failures, this is arranged
331 * simply by proceeding from the last bin (table.length - 1) up
332 * towards the first. Upon seeing a forwarding node, traversals
333 * (see class Iter) arrange to move to the new table
334 * without revisiting nodes. However, when any node is skipped
335 * during a transfer, all earlier table bins may have become
336 * visible, so are initialized with a reverse-forwarding node back
337 * to the old table until the new ones are established. (This
338 * sometimes requires transiently locking a forwarding node, which
339 * is possible under the above encoding.) These more expensive
340 * mechanics trigger only when necessary.
341 *
342 * The traversal scheme also applies to partial traversals of
343 * ranges of bins (via an alternate Traverser constructor)
344 * to support partitioned aggregate operations. Also, read-only
345 * operations give up if ever forwarded to a null table, which
346 * provides support for shutdown-style clearing, which is also not
347 * currently implemented.
348 *
349 * Lazy table initialization minimizes footprint until first use,
350 * and also avoids resizings when the first operation is from a
351 * putAll, constructor with map argument, or deserialization.
352 * These cases attempt to override the initial capacity settings,
353 * but harmlessly fail to take effect in cases of races.
354 *
355 * The element count is maintained using a LongAdder, which avoids
356 * contention on updates but can encounter cache thrashing if read
357 * too frequently during concurrent access. To avoid reading so
358 * often, resizing is attempted either when a bin lock is
359 * contended, or upon adding to a bin already holding two or more
360 * nodes (checked before adding in the xIfAbsent methods, after
361 * adding in others). Under uniform hash distributions, the
362 * probability of this occurring at threshold is around 13%,
363 * meaning that only about 1 in 8 puts check threshold (and after
364 * resizing, many fewer do so). But this approximation has high
365 * variance for small table sizes, so we check on any collision
366 * for sizes <= 64. The bulk putAll operation further reduces
367 * contention by only committing count updates upon these size
368 * checks.
369 *
370 * Maintaining API and serialization compatibility with previous
371 * versions of this class introduces several oddities. Mainly: We
372 * leave untouched but unused constructor arguments refering to
373 * concurrencyLevel. We accept a loadFactor constructor argument,
374 * but apply it only to initial table capacity (which is the only
375 * time that we can guarantee to honor it.) We also declare an
376 * unused "Segment" class that is instantiated in minimal form
377 * only when serializing.
378 */
379
380 /* ---------------- Constants -------------- */
381
382 /**
383 * The largest possible table capacity. This value must be
384 * exactly 1<<30 to stay within Java array allocation and indexing
385 * bounds for power of two table sizes, and is further required
386 * because the top two bits of 32bit hash fields are used for
387 * control purposes.
388 */
389 private static final int MAXIMUM_CAPACITY = 1 << 30;
390
391 /**
392 * The default initial table capacity. Must be a power of 2
393 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
394 */
395 private static final int DEFAULT_CAPACITY = 16;
396
397 /**
398 * The largest possible (non-power of two) array size.
399 * Needed by toArray and related methods.
400 */
401 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
402
403 /**
404 * The default concurrency level for this table. Unused but
405 * defined for compatibility with previous versions of this class.
406 */
407 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
408
409 /**
410 * The load factor for this table. Overrides of this value in
411 * constructors affect only the initial table capacity. The
412 * actual floating point value isn't normally used -- it is
413 * simpler to use expressions such as {@code n - (n >>> 2)} for
414 * the associated resizing threshold.
415 */
416 private static final float LOAD_FACTOR = 0.75f;
417
418 /**
419 * The buffer size for skipped bins during transfers. The
420 * value is arbitrary but should be large enough to avoid
421 * most locking stalls during resizes.
422 */
423 private static final int TRANSFER_BUFFER_SIZE = 32;
424
425 /**
426 * The bin count threshold for using a tree rather than list for a
427 * bin. The value reflects the approximate break-even point for
428 * using tree-based operations.
429 */
430 private static final int TREE_THRESHOLD = 8;
431
432 /*
433 * Encodings for special uses of Node hash fields. See above for
434 * explanation.
435 */
436 static final int MOVED = 0x80000000; // hash field for forwarding nodes
437 static final int LOCKED = 0x40000000; // set/tested only as a bit
438 static final int WAITING = 0xc0000000; // both bits set/tested together
439 static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash
440
441 /* ---------------- Fields -------------- */
442
443 /**
444 * The array of bins. Lazily initialized upon first insertion.
445 * Size is always a power of two. Accessed directly by iterators.
446 */
447 transient volatile Node[] table;
448
449 /**
450 * The counter maintaining number of elements.
451 */
452 private transient final LongAdder counter;
453
454 /**
455 * Table initialization and resizing control. When negative, the
456 * table is being initialized or resized. Otherwise, when table is
457 * null, holds the initial table size to use upon creation, or 0
458 * for default. After initialization, holds the next element count
459 * value upon which to resize the table.
460 */
461 private transient volatile int sizeCtl;
462
463 // views
464 private transient KeySet<K,V> keySet;
465 private transient Values<K,V> values;
466 private transient EntrySet<K,V> entrySet;
467
468 /** For serialization compatibility. Null unless serialized; see below */
469 private Segment<K,V>[] segments;
470
471 /* ---------------- Table element access -------------- */
472
473 /*
474 * Volatile access methods are used for table elements as well as
475 * elements of in-progress next table while resizing. Uses are
476 * null checked by callers, and implicitly bounds-checked, relying
477 * on the invariants that tab arrays have non-zero size, and all
478 * indices are masked with (tab.length - 1) which is never
479 * negative and always less than length. Note that, to be correct
480 * wrt arbitrary concurrency errors by users, bounds checks must
481 * operate on local variables, which accounts for some odd-looking
482 * inline assignments below.
483 */
484
485 static final Node tabAt(Node[] tab, int i) { // used by Iter
486 return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
487 }
488
489 private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
490 return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
491 }
492
493 private static final void setTabAt(Node[] tab, int i, Node v) {
494 UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
495 }
496
497 /* ---------------- Nodes -------------- */
498
499 /**
500 * Key-value entry. Note that this is never exported out as a
501 * user-visible Map.Entry (see MapEntry below). Nodes with a hash
502 * field of MOVED are special, and do not contain user keys or
503 * values. Otherwise, keys are never null, and null val fields
504 * indicate that a node is in the process of being deleted or
505 * created. For purposes of read-only access, a key may be read
506 * before a val, but can only be used after checking val to be
507 * non-null.
508 */
509 static class Node {
510 volatile int hash;
511 final Object key;
512 volatile Object val;
513 volatile Node next;
514
515 Node(int hash, Object key, Object val, Node next) {
516 this.hash = hash;
517 this.key = key;
518 this.val = val;
519 this.next = next;
520 }
521
522 /** CompareAndSet the hash field */
523 final boolean casHash(int cmp, int val) {
524 return UNSAFE.compareAndSwapInt(this, hashOffset, cmp, val);
525 }
526
527 /** The number of spins before blocking for a lock */
528 static final int MAX_SPINS =
529 Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
530
531 /**
532 * Spins a while if LOCKED bit set and this node is the first
533 * of its bin, and then sets WAITING bits on hash field and
534 * blocks (once) if they are still set. It is OK for this
535 * method to return even if lock is not available upon exit,
536 * which enables these simple single-wait mechanics.
537 *
538 * The corresponding signalling operation is performed within
539 * callers: Upon detecting that WAITING has been set when
540 * unlocking lock (via a failed CAS from non-waiting LOCKED
541 * state), unlockers acquire the sync lock and perform a
542 * notifyAll.
543 *
544 * The initial sanity check on tab and bounds is not currently
545 * necessary in the only usages of this method, but enables
546 * use in other future contexts.
547 */
548 final void tryAwaitLock(Node[] tab, int i) {
549 if (tab != null && i >= 0 && i < tab.length) { // sanity check
550 int r = ThreadLocalRandom.current().nextInt(); // randomize spins
551 int spins = MAX_SPINS, h;
552 while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) {
553 if (spins >= 0) {
554 r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
555 if (r >= 0 && --spins == 0)
556 Thread.yield(); // yield before block
557 }
558 else if (casHash(h, h | WAITING)) {
559 synchronized (this) {
560 if (tabAt(tab, i) == this &&
561 (hash & WAITING) == WAITING) {
562 try {
563 wait();
564 } catch (InterruptedException ie) {
565 Thread.currentThread().interrupt();
566 }
567 }
568 else
569 notifyAll(); // possibly won race vs signaller
570 }
571 break;
572 }
573 }
574 }
575 }
576
577 // Unsafe mechanics for casHash
578 private static final sun.misc.Unsafe UNSAFE;
579 private static final long hashOffset;
580
581 static {
582 try {
583 UNSAFE = getUnsafe();
584 Class<?> k = Node.class;
585 hashOffset = UNSAFE.objectFieldOffset
586 (k.getDeclaredField("hash"));
587 } catch (Exception e) {
588 throw new Error(e);
589 }
590 }
591 }
592
593 /* ---------------- TreeBins -------------- */
594
595 /**
596 * Nodes for use in TreeBins
597 */
598 static final class TreeNode extends Node {
599 TreeNode parent; // red-black tree links
600 TreeNode left;
601 TreeNode right;
602 TreeNode prev; // needed to unlink next upon deletion
603 boolean red;
604
605 TreeNode(int hash, Object key, Object val, Node next, TreeNode parent) {
606 super(hash, key, val, next);
607 this.parent = parent;
608 }
609 }
610
611 /**
612 * A specialized form of red-black tree for use in bins
613 * whose size exceeds a threshold.
614 *
615 * TreeBins use a special form of comparison for search and
616 * related operations (which is the main reason we cannot use
617 * existing collections such as TreeMaps). TreeBins contain
618 * Comparable elements, but may contain others, as well as
619 * elements that are Comparable but not necessarily Comparable<T>
620 * for the same T, so we cannot invoke compareTo among them. To
621 * handle this, the tree is ordered primarily by hash value, then
622 * by getClass().getName() order, and then by Comparator order
623 * among elements of the same class. On lookup at a node, if
624 * elements are not comparable or compare as 0, both left and
625 * right children may need to be searched in the case of tied hash
626 * values. (This corresponds to the full list search that would be
627 * necessary if all elements were non-Comparable and had tied
628 * hashes.) The red-black balancing code is updated from
629 * pre-jdk-collections
630 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
631 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
632 * Algorithms" (CLR).
633 *
634 * TreeBins also maintain a separate locking discipline than
635 * regular bins. Because they are forwarded via special MOVED
636 * nodes at bin heads (which can never change once established),
637 * we cannot use those nodes as locks. Instead, TreeBin
638 * extends AbstractQueuedSynchronizer to support a simple form of
639 * read-write lock. For update operations and table validation,
640 * the exclusive form of lock behaves in the same way as bin-head
641 * locks. However, lookups use shared read-lock mechanics to allow
642 * multiple readers in the absence of writers. Additionally,
643 * these lookups do not ever block: While the lock is not
644 * available, they proceed along the slow traversal path (via
645 * next-pointers) until the lock becomes available or the list is
646 * exhausted, whichever comes first. (These cases are not fast,
647 * but maximize aggregate expected throughput.) The AQS mechanics
648 * for doing this are straightforward. The lock state is held as
649 * AQS getState(). Read counts are negative; the write count (1)
650 * is positive. There are no signalling preferences among readers
651 * and writers. Since we don't need to export full Lock API, we
652 * just override the minimal AQS methods and use them directly.
653 */
654 static final class TreeBin extends AbstractQueuedSynchronizer {
655 private static final long serialVersionUID = 2249069246763182397L;
656 transient TreeNode root; // root of tree
657 transient TreeNode first; // head of next-pointer list
658
659 /* AQS overrides */
660 public final boolean isHeldExclusively() { return getState() > 0; }
661 public final boolean tryAcquire(int ignore) {
662 if (compareAndSetState(0, 1)) {
663 setExclusiveOwnerThread(Thread.currentThread());
664 return true;
665 }
666 return false;
667 }
668 public final boolean tryRelease(int ignore) {
669 setExclusiveOwnerThread(null);
670 setState(0);
671 return true;
672 }
673 public final int tryAcquireShared(int ignore) {
674 for (int c;;) {
675 if ((c = getState()) > 0)
676 return -1;
677 if (compareAndSetState(c, c -1))
678 return 1;
679 }
680 }
681 public final boolean tryReleaseShared(int ignore) {
682 int c;
683 do {} while (!compareAndSetState(c = getState(), c + 1));
684 return c == -1;
685 }
686
687 /** From CLR */
688 private void rotateLeft(TreeNode p) {
689 if (p != null) {
690 TreeNode r = p.right, pp, rl;
691 if ((rl = p.right = r.left) != null)
692 rl.parent = p;
693 if ((pp = r.parent = p.parent) == null)
694 root = r;
695 else if (pp.left == p)
696 pp.left = r;
697 else
698 pp.right = r;
699 r.left = p;
700 p.parent = r;
701 }
702 }
703
704 /** From CLR */
705 private void rotateRight(TreeNode p) {
706 if (p != null) {
707 TreeNode l = p.left, pp, lr;
708 if ((lr = p.left = l.right) != null)
709 lr.parent = p;
710 if ((pp = l.parent = p.parent) == null)
711 root = l;
712 else if (pp.right == p)
713 pp.right = l;
714 else
715 pp.left = l;
716 l.right = p;
717 p.parent = l;
718 }
719 }
720
721 /**
722 * Returns the TreeNode (or null if not found) for the given key
723 * starting at given root.
724 */
725 @SuppressWarnings("unchecked") final TreeNode getTreeNode
726 (int h, Object k, TreeNode p) {
727 Class<?> c = k.getClass();
728 while (p != null) {
729 int dir, ph; Object pk; Class<?> pc;
730 if ((ph = p.hash) == h) {
731 if ((pk = p.key) == k || k.equals(pk))
732 return p;
733 if (c != (pc = pk.getClass()) ||
734 !(k instanceof Comparable) ||
735 (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
736 dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
737 TreeNode r = null, s = null, pl, pr;
738 if (dir >= 0) {
739 if ((pl = p.left) != null && h <= pl.hash)
740 s = pl;
741 }
742 else if ((pr = p.right) != null && h >= pr.hash)
743 s = pr;
744 if (s != null && (r = getTreeNode(h, k, s)) != null)
745 return r;
746 }
747 }
748 else
749 dir = (h < ph) ? -1 : 1;
750 p = (dir > 0) ? p.right : p.left;
751 }
752 return null;
753 }
754
755 /**
756 * Wrapper for getTreeNode used by CHM.get. Tries to obtain
757 * read-lock to call getTreeNode, but during failure to get
758 * lock, searches along next links.
759 */
760 final Object getValue(int h, Object k) {
761 Node r = null;
762 int c = getState(); // Must read lock state first
763 for (Node e = first; e != null; e = e.next) {
764 if (c <= 0 && compareAndSetState(c, c - 1)) {
765 try {
766 r = getTreeNode(h, k, root);
767 } finally {
768 releaseShared(0);
769 }
770 break;
771 }
772 else if ((e.hash & HASH_BITS) == h && k.equals(e.key)) {
773 r = e;
774 break;
775 }
776 else
777 c = getState();
778 }
779 return r == null ? null : r.val;
780 }
781
782 /**
783 * Finds or adds a node.
784 * @return null if added
785 */
786 @SuppressWarnings("unchecked") final TreeNode putTreeNode
787 (int h, Object k, Object v) {
788 Class<?> c = k.getClass();
789 TreeNode pp = root, p = null;
790 int dir = 0;
791 while (pp != null) { // find existing node or leaf to insert at
792 int ph; Object pk; Class<?> pc;
793 p = pp;
794 if ((ph = p.hash) == h) {
795 if ((pk = p.key) == k || k.equals(pk))
796 return p;
797 if (c != (pc = pk.getClass()) ||
798 !(k instanceof Comparable) ||
799 (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
800 dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
801 TreeNode r = null, s = null, pl, pr;
802 if (dir >= 0) {
803 if ((pl = p.left) != null && h <= pl.hash)
804 s = pl;
805 }
806 else if ((pr = p.right) != null && h >= pr.hash)
807 s = pr;
808 if (s != null && (r = getTreeNode(h, k, s)) != null)
809 return r;
810 }
811 }
812 else
813 dir = (h < ph) ? -1 : 1;
814 pp = (dir > 0) ? p.right : p.left;
815 }
816
817 TreeNode f = first;
818 TreeNode x = first = new TreeNode(h, k, v, f, p);
819 if (p == null)
820 root = x;
821 else { // attach and rebalance; adapted from CLR
822 TreeNode xp, xpp;
823 if (f != null)
824 f.prev = x;
825 if (dir <= 0)
826 p.left = x;
827 else
828 p.right = x;
829 x.red = true;
830 while (x != null && (xp = x.parent) != null && xp.red &&
831 (xpp = xp.parent) != null) {
832 TreeNode xppl = xpp.left;
833 if (xp == xppl) {
834 TreeNode y = xpp.right;
835 if (y != null && y.red) {
836 y.red = false;
837 xp.red = false;
838 xpp.red = true;
839 x = xpp;
840 }
841 else {
842 if (x == xp.right) {
843 rotateLeft(x = xp);
844 xpp = (xp = x.parent) == null ? null : xp.parent;
845 }
846 if (xp != null) {
847 xp.red = false;
848 if (xpp != null) {
849 xpp.red = true;
850 rotateRight(xpp);
851 }
852 }
853 }
854 }
855 else {
856 TreeNode y = xppl;
857 if (y != null && y.red) {
858 y.red = false;
859 xp.red = false;
860 xpp.red = true;
861 x = xpp;
862 }
863 else {
864 if (x == xp.left) {
865 rotateRight(x = xp);
866 xpp = (xp = x.parent) == null ? null : xp.parent;
867 }
868 if (xp != null) {
869 xp.red = false;
870 if (xpp != null) {
871 xpp.red = true;
872 rotateLeft(xpp);
873 }
874 }
875 }
876 }
877 }
878 TreeNode r = root;
879 if (r != null && r.red)
880 r.red = false;
881 }
882 return null;
883 }
884
885 /**
886 * Removes the given node, that must be present before this
887 * call. This is messier than typical red-black deletion code
888 * because we cannot swap the contents of an interior node
889 * with a leaf successor that is pinned by "next" pointers
890 * that are accessible independently of lock. So instead we
891 * swap the tree linkages.
892 */
893 final void deleteTreeNode(TreeNode p) {
894 TreeNode next = (TreeNode)p.next; // unlink traversal pointers
895 TreeNode pred = p.prev;
896 if (pred == null)
897 first = next;
898 else
899 pred.next = next;
900 if (next != null)
901 next.prev = pred;
902 TreeNode replacement;
903 TreeNode pl = p.left;
904 TreeNode pr = p.right;
905 if (pl != null && pr != null) {
906 TreeNode s = pr, sl;
907 while ((sl = s.left) != null) // find successor
908 s = sl;
909 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
910 TreeNode sr = s.right;
911 TreeNode pp = p.parent;
912 if (s == pr) { // p was s's direct parent
913 p.parent = s;
914 s.right = p;
915 }
916 else {
917 TreeNode sp = s.parent;
918 if ((p.parent = sp) != null) {
919 if (s == sp.left)
920 sp.left = p;
921 else
922 sp.right = p;
923 }
924 if ((s.right = pr) != null)
925 pr.parent = s;
926 }
927 p.left = null;
928 if ((p.right = sr) != null)
929 sr.parent = p;
930 if ((s.left = pl) != null)
931 pl.parent = s;
932 if ((s.parent = pp) == null)
933 root = s;
934 else if (p == pp.left)
935 pp.left = s;
936 else
937 pp.right = s;
938 replacement = sr;
939 }
940 else
941 replacement = (pl != null) ? pl : pr;
942 TreeNode pp = p.parent;
943 if (replacement == null) {
944 if (pp == null) {
945 root = null;
946 return;
947 }
948 replacement = p;
949 }
950 else {
951 replacement.parent = pp;
952 if (pp == null)
953 root = replacement;
954 else if (p == pp.left)
955 pp.left = replacement;
956 else
957 pp.right = replacement;
958 p.left = p.right = p.parent = null;
959 }
960 if (!p.red) { // rebalance, from CLR
961 TreeNode x = replacement;
962 while (x != null) {
963 TreeNode xp, xpl;
964 if (x.red || (xp = x.parent) == null) {
965 x.red = false;
966 break;
967 }
968 if (x == (xpl = xp.left)) {
969 TreeNode sib = xp.right;
970 if (sib != null && sib.red) {
971 sib.red = false;
972 xp.red = true;
973 rotateLeft(xp);
974 sib = (xp = x.parent) == null ? null : xp.right;
975 }
976 if (sib == null)
977 x = xp;
978 else {
979 TreeNode sl = sib.left, sr = sib.right;
980 if ((sr == null || !sr.red) &&
981 (sl == null || !sl.red)) {
982 sib.red = true;
983 x = xp;
984 }
985 else {
986 if (sr == null || !sr.red) {
987 if (sl != null)
988 sl.red = false;
989 sib.red = true;
990 rotateRight(sib);
991 sib = (xp = x.parent) == null ? null : xp.right;
992 }
993 if (sib != null) {
994 sib.red = (xp == null) ? false : xp.red;
995 if ((sr = sib.right) != null)
996 sr.red = false;
997 }
998 if (xp != null) {
999 xp.red = false;
1000 rotateLeft(xp);
1001 }
1002 x = root;
1003 }
1004 }
1005 }
1006 else { // symmetric
1007 TreeNode sib = xpl;
1008 if (sib != null && sib.red) {
1009 sib.red = false;
1010 xp.red = true;
1011 rotateRight(xp);
1012 sib = (xp = x.parent) == null ? null : xp.left;
1013 }
1014 if (sib == null)
1015 x = xp;
1016 else {
1017 TreeNode sl = sib.left, sr = sib.right;
1018 if ((sl == null || !sl.red) &&
1019 (sr == null || !sr.red)) {
1020 sib.red = true;
1021 x = xp;
1022 }
1023 else {
1024 if (sl == null || !sl.red) {
1025 if (sr != null)
1026 sr.red = false;
1027 sib.red = true;
1028 rotateLeft(sib);
1029 sib = (xp = x.parent) == null ? null : xp.left;
1030 }
1031 if (sib != null) {
1032 sib.red = (xp == null) ? false : xp.red;
1033 if ((sl = sib.left) != null)
1034 sl.red = false;
1035 }
1036 if (xp != null) {
1037 xp.red = false;
1038 rotateRight(xp);
1039 }
1040 x = root;
1041 }
1042 }
1043 }
1044 }
1045 }
1046 if (p == replacement && (pp = p.parent) != null) {
1047 if (p == pp.left) // detach pointers
1048 pp.left = null;
1049 else if (p == pp.right)
1050 pp.right = null;
1051 p.parent = null;
1052 }
1053 }
1054 }
1055
1056 /* ---------------- Collision reduction methods -------------- */
1057
1058 /**
1059 * Spreads higher bits to lower, and also forces top 2 bits to 0.
1060 * Because the table uses power-of-two masking, sets of hashes
1061 * that vary only in bits above the current mask will always
1062 * collide. (Among known examples are sets of Float keys holding
1063 * consecutive whole numbers in small tables.) To counter this,
1064 * we apply a transform that spreads the impact of higher bits
1065 * downward. There is a tradeoff between speed, utility, and
1066 * quality of bit-spreading. Because many common sets of hashes
1067 * are already reasonably distributed across bits (so don't benefit
1068 * from spreading), and because we use trees to handle large sets
1069 * of collisions in bins, we don't need excessively high quality.
1070 */
1071 private static final int spread(int h) {
1072 h ^= (h >>> 18) ^ (h >>> 12);
1073 return (h ^ (h >>> 10)) & HASH_BITS;
1074 }
1075
1076 /**
1077 * Replaces a list bin with a tree bin. Call only when locked.
1078 * Fails to replace if the given key is non-comparable or table
1079 * is, or needs, resizing.
1080 */
1081 private final void replaceWithTreeBin(Node[] tab, int index, Object key) {
1082 if ((key instanceof Comparable) &&
1083 (tab.length >= MAXIMUM_CAPACITY || counter.sum() < (long)sizeCtl)) {
1084 TreeBin t = new TreeBin();
1085 for (Node e = tabAt(tab, index); e != null; e = e.next)
1086 t.putTreeNode(e.hash & HASH_BITS, e.key, e.val);
1087 setTabAt(tab, index, new Node(MOVED, t, null, null));
1088 }
1089 }
1090
1091 /* ---------------- Internal access and update methods -------------- */
1092
1093 /** Implementation for get and containsKey */
1094 private final Object internalGet(Object k) {
1095 int h = spread(k.hashCode());
1096 retry: for (Node[] tab = table; tab != null;) {
1097 Node e, p; Object ek, ev; int eh; // locals to read fields once
1098 for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1099 if ((eh = e.hash) == MOVED) {
1100 if ((ek = e.key) instanceof TreeBin) // search TreeBin
1101 return ((TreeBin)ek).getValue(h, k);
1102 else { // restart with new table
1103 tab = (Node[])ek;
1104 continue retry;
1105 }
1106 }
1107 else if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
1108 ((ek = e.key) == k || k.equals(ek)))
1109 return ev;
1110 }
1111 break;
1112 }
1113 return null;
1114 }
1115
1116 /**
1117 * Implementation for the four public remove/replace methods:
1118 * Replaces node value with v, conditional upon match of cv if
1119 * non-null. If resulting value is null, delete.
1120 */
1121 private final Object internalReplace(Object k, Object v, Object cv) {
1122 int h = spread(k.hashCode());
1123 Object oldVal = null;
1124 for (Node[] tab = table;;) {
1125 Node f; int i, fh; Object fk;
1126 if (tab == null ||
1127 (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1128 break;
1129 else if ((fh = f.hash) == MOVED) {
1130 if ((fk = f.key) instanceof TreeBin) {
1131 TreeBin t = (TreeBin)fk;
1132 boolean validated = false;
1133 boolean deleted = false;
1134 t.acquire(0);
1135 try {
1136 if (tabAt(tab, i) == f) {
1137 validated = true;
1138 TreeNode p = t.getTreeNode(h, k, t.root);
1139 if (p != null) {
1140 Object pv = p.val;
1141 if (cv == null || cv == pv || cv.equals(pv)) {
1142 oldVal = pv;
1143 if ((p.val = v) == null) {
1144 deleted = true;
1145 t.deleteTreeNode(p);
1146 }
1147 }
1148 }
1149 }
1150 } finally {
1151 t.release(0);
1152 }
1153 if (validated) {
1154 if (deleted)
1155 counter.add(-1L);
1156 break;
1157 }
1158 }
1159 else
1160 tab = (Node[])fk;
1161 }
1162 else if ((fh & HASH_BITS) != h && f.next == null) // precheck
1163 break; // rules out possible existence
1164 else if ((fh & LOCKED) != 0) {
1165 checkForResize(); // try resizing if can't get lock
1166 f.tryAwaitLock(tab, i);
1167 }
1168 else if (f.casHash(fh, fh | LOCKED)) {
1169 boolean validated = false;
1170 boolean deleted = false;
1171 try {
1172 if (tabAt(tab, i) == f) {
1173 validated = true;
1174 for (Node e = f, pred = null;;) {
1175 Object ek, ev;
1176 if ((e.hash & HASH_BITS) == h &&
1177 ((ev = e.val) != null) &&
1178 ((ek = e.key) == k || k.equals(ek))) {
1179 if (cv == null || cv == ev || cv.equals(ev)) {
1180 oldVal = ev;
1181 if ((e.val = v) == null) {
1182 deleted = true;
1183 Node en = e.next;
1184 if (pred != null)
1185 pred.next = en;
1186 else
1187 setTabAt(tab, i, en);
1188 }
1189 }
1190 break;
1191 }
1192 pred = e;
1193 if ((e = e.next) == null)
1194 break;
1195 }
1196 }
1197 } finally {
1198 if (!f.casHash(fh | LOCKED, fh)) {
1199 f.hash = fh;
1200 synchronized (f) { f.notifyAll(); };
1201 }
1202 }
1203 if (validated) {
1204 if (deleted)
1205 counter.add(-1L);
1206 break;
1207 }
1208 }
1209 }
1210 return oldVal;
1211 }
1212
1213 /*
1214 * Internal versions of the six insertion methods, each a
1215 * little more complicated than the last. All have
1216 * the same basic structure as the first (internalPut):
1217 * 1. If table uninitialized, create
1218 * 2. If bin empty, try to CAS new node
1219 * 3. If bin stale, use new table
1220 * 4. if bin converted to TreeBin, validate and relay to TreeBin methods
1221 * 5. Lock and validate; if valid, scan and add or update
1222 *
1223 * The others interweave other checks and/or alternative actions:
1224 * * Plain put checks for and performs resize after insertion.
1225 * * putIfAbsent prescans for mapping without lock (and fails to add
1226 * if present), which also makes pre-emptive resize checks worthwhile.
1227 * * computeIfAbsent extends form used in putIfAbsent with additional
1228 * mechanics to deal with, calls, potential exceptions and null
1229 * returns from function call.
1230 * * compute uses the same function-call mechanics, but without
1231 * the prescans
1232 * * merge acts as putIfAbsent in the absent case, but invokes the
1233 * update function if present
1234 * * putAll attempts to pre-allocate enough table space
1235 * and more lazily performs count updates and checks.
1236 *
1237 * Someday when details settle down a bit more, it might be worth
1238 * some factoring to reduce sprawl.
1239 */
1240
1241 /** Implementation for put */
1242 private final Object internalPut(Object k, Object v) {
1243 int h = spread(k.hashCode());
1244 int count = 0;
1245 for (Node[] tab = table;;) {
1246 int i; Node f; int fh; Object fk;
1247 if (tab == null)
1248 tab = initTable();
1249 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1250 if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1251 break; // no lock when adding to empty bin
1252 }
1253 else if ((fh = f.hash) == MOVED) {
1254 if ((fk = f.key) instanceof TreeBin) {
1255 TreeBin t = (TreeBin)fk;
1256 Object oldVal = null;
1257 t.acquire(0);
1258 try {
1259 if (tabAt(tab, i) == f) {
1260 count = 2;
1261 TreeNode p = t.putTreeNode(h, k, v);
1262 if (p != null) {
1263 oldVal = p.val;
1264 p.val = v;
1265 }
1266 }
1267 } finally {
1268 t.release(0);
1269 }
1270 if (count != 0) {
1271 if (oldVal != null)
1272 return oldVal;
1273 break;
1274 }
1275 }
1276 else
1277 tab = (Node[])fk;
1278 }
1279 else if ((fh & LOCKED) != 0) {
1280 checkForResize();
1281 f.tryAwaitLock(tab, i);
1282 }
1283 else if (f.casHash(fh, fh | LOCKED)) {
1284 Object oldVal = null;
1285 try { // needed in case equals() throws
1286 if (tabAt(tab, i) == f) {
1287 count = 1;
1288 for (Node e = f;; ++count) {
1289 Object ek, ev;
1290 if ((e.hash & HASH_BITS) == h &&
1291 (ev = e.val) != null &&
1292 ((ek = e.key) == k || k.equals(ek))) {
1293 oldVal = ev;
1294 e.val = v;
1295 break;
1296 }
1297 Node last = e;
1298 if ((e = e.next) == null) {
1299 last.next = new Node(h, k, v, null);
1300 if (count >= TREE_THRESHOLD)
1301 replaceWithTreeBin(tab, i, k);
1302 break;
1303 }
1304 }
1305 }
1306 } finally { // unlock and signal if needed
1307 if (!f.casHash(fh | LOCKED, fh)) {
1308 f.hash = fh;
1309 synchronized (f) { f.notifyAll(); };
1310 }
1311 }
1312 if (count != 0) {
1313 if (oldVal != null)
1314 return oldVal;
1315 if (tab.length <= 64)
1316 count = 2;
1317 break;
1318 }
1319 }
1320 }
1321 counter.add(1L);
1322 if (count > 1)
1323 checkForResize();
1324 return null;
1325 }
1326
1327 /** Implementation for putIfAbsent */
1328 private final Object internalPutIfAbsent(Object k, Object v) {
1329 int h = spread(k.hashCode());
1330 int count = 0;
1331 for (Node[] tab = table;;) {
1332 int i; Node f; int fh; Object fk, fv;
1333 if (tab == null)
1334 tab = initTable();
1335 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1336 if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1337 break;
1338 }
1339 else if ((fh = f.hash) == MOVED) {
1340 if ((fk = f.key) instanceof TreeBin) {
1341 TreeBin t = (TreeBin)fk;
1342 Object oldVal = null;
1343 t.acquire(0);
1344 try {
1345 if (tabAt(tab, i) == f) {
1346 count = 2;
1347 TreeNode p = t.putTreeNode(h, k, v);
1348 if (p != null)
1349 oldVal = p.val;
1350 }
1351 } finally {
1352 t.release(0);
1353 }
1354 if (count != 0) {
1355 if (oldVal != null)
1356 return oldVal;
1357 break;
1358 }
1359 }
1360 else
1361 tab = (Node[])fk;
1362 }
1363 else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1364 ((fk = f.key) == k || k.equals(fk)))
1365 return fv;
1366 else {
1367 Node g = f.next;
1368 if (g != null) { // at least 2 nodes -- search and maybe resize
1369 for (Node e = g;;) {
1370 Object ek, ev;
1371 if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1372 ((ek = e.key) == k || k.equals(ek)))
1373 return ev;
1374 if ((e = e.next) == null) {
1375 checkForResize();
1376 break;
1377 }
1378 }
1379 }
1380 if (((fh = f.hash) & LOCKED) != 0) {
1381 checkForResize();
1382 f.tryAwaitLock(tab, i);
1383 }
1384 else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1385 Object oldVal = null;
1386 try {
1387 if (tabAt(tab, i) == f) {
1388 count = 1;
1389 for (Node e = f;; ++count) {
1390 Object ek, ev;
1391 if ((e.hash & HASH_BITS) == h &&
1392 (ev = e.val) != null &&
1393 ((ek = e.key) == k || k.equals(ek))) {
1394 oldVal = ev;
1395 break;
1396 }
1397 Node last = e;
1398 if ((e = e.next) == null) {
1399 last.next = new Node(h, k, v, null);
1400 if (count >= TREE_THRESHOLD)
1401 replaceWithTreeBin(tab, i, k);
1402 break;
1403 }
1404 }
1405 }
1406 } finally {
1407 if (!f.casHash(fh | LOCKED, fh)) {
1408 f.hash = fh;
1409 synchronized (f) { f.notifyAll(); };
1410 }
1411 }
1412 if (count != 0) {
1413 if (oldVal != null)
1414 return oldVal;
1415 if (tab.length <= 64)
1416 count = 2;
1417 break;
1418 }
1419 }
1420 }
1421 }
1422 counter.add(1L);
1423 if (count > 1)
1424 checkForResize();
1425 return null;
1426 }
1427
1428 /** Implementation for computeIfAbsent */
1429 private final Object internalComputeIfAbsent(K k,
1430 Fun<? super K, ?> mf) {
1431 int h = spread(k.hashCode());
1432 Object val = null;
1433 int count = 0;
1434 for (Node[] tab = table;;) {
1435 Node f; int i, fh; Object fk, fv;
1436 if (tab == null)
1437 tab = initTable();
1438 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1439 Node node = new Node(fh = h | LOCKED, k, null, null);
1440 if (casTabAt(tab, i, null, node)) {
1441 count = 1;
1442 try {
1443 if ((val = mf.apply(k)) != null)
1444 node.val = val;
1445 } finally {
1446 if (val == null)
1447 setTabAt(tab, i, null);
1448 if (!node.casHash(fh, h)) {
1449 node.hash = h;
1450 synchronized (node) { node.notifyAll(); };
1451 }
1452 }
1453 }
1454 if (count != 0)
1455 break;
1456 }
1457 else if ((fh = f.hash) == MOVED) {
1458 if ((fk = f.key) instanceof TreeBin) {
1459 TreeBin t = (TreeBin)fk;
1460 boolean added = false;
1461 t.acquire(0);
1462 try {
1463 if (tabAt(tab, i) == f) {
1464 count = 1;
1465 TreeNode p = t.getTreeNode(h, k, t.root);
1466 if (p != null)
1467 val = p.val;
1468 else if ((val = mf.apply(k)) != null) {
1469 added = true;
1470 count = 2;
1471 t.putTreeNode(h, k, val);
1472 }
1473 }
1474 } finally {
1475 t.release(0);
1476 }
1477 if (count != 0) {
1478 if (!added)
1479 return val;
1480 break;
1481 }
1482 }
1483 else
1484 tab = (Node[])fk;
1485 }
1486 else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1487 ((fk = f.key) == k || k.equals(fk)))
1488 return fv;
1489 else {
1490 Node g = f.next;
1491 if (g != null) {
1492 for (Node e = g;;) {
1493 Object ek, ev;
1494 if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1495 ((ek = e.key) == k || k.equals(ek)))
1496 return ev;
1497 if ((e = e.next) == null) {
1498 checkForResize();
1499 break;
1500 }
1501 }
1502 }
1503 if (((fh = f.hash) & LOCKED) != 0) {
1504 checkForResize();
1505 f.tryAwaitLock(tab, i);
1506 }
1507 else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1508 boolean added = false;
1509 try {
1510 if (tabAt(tab, i) == f) {
1511 count = 1;
1512 for (Node e = f;; ++count) {
1513 Object ek, ev;
1514 if ((e.hash & HASH_BITS) == h &&
1515 (ev = e.val) != null &&
1516 ((ek = e.key) == k || k.equals(ek))) {
1517 val = ev;
1518 break;
1519 }
1520 Node last = e;
1521 if ((e = e.next) == null) {
1522 if ((val = mf.apply(k)) != null) {
1523 added = true;
1524 last.next = new Node(h, k, val, null);
1525 if (count >= TREE_THRESHOLD)
1526 replaceWithTreeBin(tab, i, k);
1527 }
1528 break;
1529 }
1530 }
1531 }
1532 } finally {
1533 if (!f.casHash(fh | LOCKED, fh)) {
1534 f.hash = fh;
1535 synchronized (f) { f.notifyAll(); };
1536 }
1537 }
1538 if (count != 0) {
1539 if (!added)
1540 return val;
1541 if (tab.length <= 64)
1542 count = 2;
1543 break;
1544 }
1545 }
1546 }
1547 }
1548 if (val != null) {
1549 counter.add(1L);
1550 if (count > 1)
1551 checkForResize();
1552 }
1553 return val;
1554 }
1555
1556 /** Implementation for compute */
1557 @SuppressWarnings("unchecked") private final Object internalCompute
1558 (K k, boolean onlyIfPresent, BiFun<? super K, ? super V, ? extends V> mf) {
1559 int h = spread(k.hashCode());
1560 Object val = null;
1561 int delta = 0;
1562 int count = 0;
1563 for (Node[] tab = table;;) {
1564 Node f; int i, fh; Object fk;
1565 if (tab == null)
1566 tab = initTable();
1567 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1568 if (onlyIfPresent)
1569 break;
1570 Node node = new Node(fh = h | LOCKED, k, null, null);
1571 if (casTabAt(tab, i, null, node)) {
1572 try {
1573 count = 1;
1574 if ((val = mf.apply(k, null)) != null) {
1575 node.val = val;
1576 delta = 1;
1577 }
1578 } finally {
1579 if (delta == 0)
1580 setTabAt(tab, i, null);
1581 if (!node.casHash(fh, h)) {
1582 node.hash = h;
1583 synchronized (node) { node.notifyAll(); };
1584 }
1585 }
1586 }
1587 if (count != 0)
1588 break;
1589 }
1590 else if ((fh = f.hash) == MOVED) {
1591 if ((fk = f.key) instanceof TreeBin) {
1592 TreeBin t = (TreeBin)fk;
1593 t.acquire(0);
1594 try {
1595 if (tabAt(tab, i) == f) {
1596 count = 1;
1597 TreeNode p = t.getTreeNode(h, k, t.root);
1598 Object pv = (p == null) ? null : p.val;
1599 if ((val = mf.apply(k, (V)pv)) != null) {
1600 if (p != null)
1601 p.val = val;
1602 else {
1603 count = 2;
1604 delta = 1;
1605 t.putTreeNode(h, k, val);
1606 }
1607 }
1608 else if (p != null) {
1609 delta = -1;
1610 t.deleteTreeNode(p);
1611 }
1612 }
1613 } finally {
1614 t.release(0);
1615 }
1616 if (count != 0)
1617 break;
1618 }
1619 else
1620 tab = (Node[])fk;
1621 }
1622 else if ((fh & LOCKED) != 0) {
1623 checkForResize();
1624 f.tryAwaitLock(tab, i);
1625 }
1626 else if (f.casHash(fh, fh | LOCKED)) {
1627 try {
1628 if (tabAt(tab, i) == f) {
1629 count = 1;
1630 for (Node e = f, pred = null;; ++count) {
1631 Object ek, ev;
1632 if ((e.hash & HASH_BITS) == h &&
1633 (ev = e.val) != null &&
1634 ((ek = e.key) == k || k.equals(ek))) {
1635 val = mf.apply(k, (V)ev);
1636 if (val != null)
1637 e.val = val;
1638 else {
1639 delta = -1;
1640 Node en = e.next;
1641 if (pred != null)
1642 pred.next = en;
1643 else
1644 setTabAt(tab, i, en);
1645 }
1646 break;
1647 }
1648 pred = e;
1649 if ((e = e.next) == null) {
1650 if (!onlyIfPresent && (val = mf.apply(k, null)) != null) {
1651 pred.next = new Node(h, k, val, null);
1652 delta = 1;
1653 if (count >= TREE_THRESHOLD)
1654 replaceWithTreeBin(tab, i, k);
1655 }
1656 break;
1657 }
1658 }
1659 }
1660 } finally {
1661 if (!f.casHash(fh | LOCKED, fh)) {
1662 f.hash = fh;
1663 synchronized (f) { f.notifyAll(); };
1664 }
1665 }
1666 if (count != 0) {
1667 if (tab.length <= 64)
1668 count = 2;
1669 break;
1670 }
1671 }
1672 }
1673 if (delta != 0) {
1674 counter.add((long)delta);
1675 if (count > 1)
1676 checkForResize();
1677 }
1678 return val;
1679 }
1680
1681 /** Implementation for merge */
1682 @SuppressWarnings("unchecked") private final Object internalMerge
1683 (K k, V v, BiFun<? super V, ? super V, ? extends V> mf) {
1684 int h = spread(k.hashCode());
1685 Object val = null;
1686 int delta = 0;
1687 int count = 0;
1688 for (Node[] tab = table;;) {
1689 int i; Node f; int fh; Object fk, fv;
1690 if (tab == null)
1691 tab = initTable();
1692 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1693 if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1694 delta = 1;
1695 val = v;
1696 break;
1697 }
1698 }
1699 else if ((fh = f.hash) == MOVED) {
1700 if ((fk = f.key) instanceof TreeBin) {
1701 TreeBin t = (TreeBin)fk;
1702 t.acquire(0);
1703 try {
1704 if (tabAt(tab, i) == f) {
1705 count = 1;
1706 TreeNode p = t.getTreeNode(h, k, t.root);
1707 val = (p == null) ? v : mf.apply((V)p.val, v);
1708 if (val != null) {
1709 if (p != null)
1710 p.val = val;
1711 else {
1712 count = 2;
1713 delta = 1;
1714 t.putTreeNode(h, k, val);
1715 }
1716 }
1717 else if (p != null) {
1718 delta = -1;
1719 t.deleteTreeNode(p);
1720 }
1721 }
1722 } finally {
1723 t.release(0);
1724 }
1725 if (count != 0)
1726 break;
1727 }
1728 else
1729 tab = (Node[])fk;
1730 }
1731 else if ((fh & LOCKED) != 0) {
1732 checkForResize();
1733 f.tryAwaitLock(tab, i);
1734 }
1735 else if (f.casHash(fh, fh | LOCKED)) {
1736 try {
1737 if (tabAt(tab, i) == f) {
1738 count = 1;
1739 for (Node e = f, pred = null;; ++count) {
1740 Object ek, ev;
1741 if ((e.hash & HASH_BITS) == h &&
1742 (ev = e.val) != null &&
1743 ((ek = e.key) == k || k.equals(ek))) {
1744 val = mf.apply(v, (V)ev);
1745 if (val != null)
1746 e.val = val;
1747 else {
1748 delta = -1;
1749 Node en = e.next;
1750 if (pred != null)
1751 pred.next = en;
1752 else
1753 setTabAt(tab, i, en);
1754 }
1755 break;
1756 }
1757 pred = e;
1758 if ((e = e.next) == null) {
1759 val = v;
1760 pred.next = new Node(h, k, val, null);
1761 delta = 1;
1762 if (count >= TREE_THRESHOLD)
1763 replaceWithTreeBin(tab, i, k);
1764 break;
1765 }
1766 }
1767 }
1768 } finally {
1769 if (!f.casHash(fh | LOCKED, fh)) {
1770 f.hash = fh;
1771 synchronized (f) { f.notifyAll(); };
1772 }
1773 }
1774 if (count != 0) {
1775 if (tab.length <= 64)
1776 count = 2;
1777 break;
1778 }
1779 }
1780 }
1781 if (delta != 0) {
1782 counter.add((long)delta);
1783 if (count > 1)
1784 checkForResize();
1785 }
1786 return val;
1787 }
1788
1789 /** Implementation for putAll */
1790 private final void internalPutAll(Map<?, ?> m) {
1791 tryPresize(m.size());
1792 long delta = 0L; // number of uncommitted additions
1793 boolean npe = false; // to throw exception on exit for nulls
1794 try { // to clean up counts on other exceptions
1795 for (Map.Entry<?, ?> entry : m.entrySet()) {
1796 Object k, v;
1797 if (entry == null || (k = entry.getKey()) == null ||
1798 (v = entry.getValue()) == null) {
1799 npe = true;
1800 break;
1801 }
1802 int h = spread(k.hashCode());
1803 for (Node[] tab = table;;) {
1804 int i; Node f; int fh; Object fk;
1805 if (tab == null)
1806 tab = initTable();
1807 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1808 if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1809 ++delta;
1810 break;
1811 }
1812 }
1813 else if ((fh = f.hash) == MOVED) {
1814 if ((fk = f.key) instanceof TreeBin) {
1815 TreeBin t = (TreeBin)fk;
1816 boolean validated = false;
1817 t.acquire(0);
1818 try {
1819 if (tabAt(tab, i) == f) {
1820 validated = true;
1821 TreeNode p = t.getTreeNode(h, k, t.root);
1822 if (p != null)
1823 p.val = v;
1824 else {
1825 t.putTreeNode(h, k, v);
1826 ++delta;
1827 }
1828 }
1829 } finally {
1830 t.release(0);
1831 }
1832 if (validated)
1833 break;
1834 }
1835 else
1836 tab = (Node[])fk;
1837 }
1838 else if ((fh & LOCKED) != 0) {
1839 counter.add(delta);
1840 delta = 0L;
1841 checkForResize();
1842 f.tryAwaitLock(tab, i);
1843 }
1844 else if (f.casHash(fh, fh | LOCKED)) {
1845 int count = 0;
1846 try {
1847 if (tabAt(tab, i) == f) {
1848 count = 1;
1849 for (Node e = f;; ++count) {
1850 Object ek, ev;
1851 if ((e.hash & HASH_BITS) == h &&
1852 (ev = e.val) != null &&
1853 ((ek = e.key) == k || k.equals(ek))) {
1854 e.val = v;
1855 break;
1856 }
1857 Node last = e;
1858 if ((e = e.next) == null) {
1859 ++delta;
1860 last.next = new Node(h, k, v, null);
1861 if (count >= TREE_THRESHOLD)
1862 replaceWithTreeBin(tab, i, k);
1863 break;
1864 }
1865 }
1866 }
1867 } finally {
1868 if (!f.casHash(fh | LOCKED, fh)) {
1869 f.hash = fh;
1870 synchronized (f) { f.notifyAll(); };
1871 }
1872 }
1873 if (count != 0) {
1874 if (count > 1) {
1875 counter.add(delta);
1876 delta = 0L;
1877 checkForResize();
1878 }
1879 break;
1880 }
1881 }
1882 }
1883 }
1884 } finally {
1885 if (delta != 0)
1886 counter.add(delta);
1887 }
1888 if (npe)
1889 throw new NullPointerException();
1890 }
1891
1892 /* ---------------- Table Initialization and Resizing -------------- */
1893
1894 /**
1895 * Returns a power of two table size for the given desired capacity.
1896 * See Hackers Delight, sec 3.2
1897 */
1898 private static final int tableSizeFor(int c) {
1899 int n = c - 1;
1900 n |= n >>> 1;
1901 n |= n >>> 2;
1902 n |= n >>> 4;
1903 n |= n >>> 8;
1904 n |= n >>> 16;
1905 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1906 }
1907
1908 /**
1909 * Initializes table, using the size recorded in sizeCtl.
1910 */
1911 private final Node[] initTable() {
1912 Node[] tab; int sc;
1913 while ((tab = table) == null) {
1914 if ((sc = sizeCtl) < 0)
1915 Thread.yield(); // lost initialization race; just spin
1916 else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1917 try {
1918 if ((tab = table) == null) {
1919 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1920 tab = table = new Node[n];
1921 sc = n - (n >>> 2);
1922 }
1923 } finally {
1924 sizeCtl = sc;
1925 }
1926 break;
1927 }
1928 }
1929 return tab;
1930 }
1931
1932 /**
1933 * If table is too small and not already resizing, creates next
1934 * table and transfers bins. Rechecks occupancy after a transfer
1935 * to see if another resize is already needed because resizings
1936 * are lagging additions.
1937 */
1938 private final void checkForResize() {
1939 Node[] tab; int n, sc;
1940 while ((tab = table) != null &&
1941 (n = tab.length) < MAXIMUM_CAPACITY &&
1942 (sc = sizeCtl) >= 0 && counter.sum() >= (long)sc &&
1943 UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1944 try {
1945 if (tab == table) {
1946 table = rebuild(tab);
1947 sc = (n << 1) - (n >>> 1);
1948 }
1949 } finally {
1950 sizeCtl = sc;
1951 }
1952 }
1953 }
1954
1955 /**
1956 * Tries to presize table to accommodate the given number of elements.
1957 *
1958 * @param size number of elements (doesn't need to be perfectly accurate)
1959 */
1960 private final void tryPresize(int size) {
1961 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1962 tableSizeFor(size + (size >>> 1) + 1);
1963 int sc;
1964 while ((sc = sizeCtl) >= 0) {
1965 Node[] tab = table; int n;
1966 if (tab == null || (n = tab.length) == 0) {
1967 n = (sc > c) ? sc : c;
1968 if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1969 try {
1970 if (table == tab) {
1971 table = new Node[n];
1972 sc = n - (n >>> 2);
1973 }
1974 } finally {
1975 sizeCtl = sc;
1976 }
1977 }
1978 }
1979 else if (c <= sc || n >= MAXIMUM_CAPACITY)
1980 break;
1981 else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1982 try {
1983 if (table == tab) {
1984 table = rebuild(tab);
1985 sc = (n << 1) - (n >>> 1);
1986 }
1987 } finally {
1988 sizeCtl = sc;
1989 }
1990 }
1991 }
1992 }
1993
1994 /*
1995 * Moves and/or copies the nodes in each bin to new table. See
1996 * above for explanation.
1997 *
1998 * @return the new table
1999 */
2000 private static final Node[] rebuild(Node[] tab) {
2001 int n = tab.length;
2002 Node[] nextTab = new Node[n << 1];
2003 Node fwd = new Node(MOVED, nextTab, null, null);
2004 int[] buffer = null; // holds bins to revisit; null until needed
2005 Node rev = null; // reverse forwarder; null until needed
2006 int nbuffered = 0; // the number of bins in buffer list
2007 int bufferIndex = 0; // buffer index of current buffered bin
2008 int bin = n - 1; // current non-buffered bin or -1 if none
2009
2010 for (int i = bin;;) { // start upwards sweep
2011 int fh; Node f;
2012 if ((f = tabAt(tab, i)) == null) {
2013 if (bin >= 0) { // Unbuffered; no lock needed (or available)
2014 if (!casTabAt(tab, i, f, fwd))
2015 continue;
2016 }
2017 else { // transiently use a locked forwarding node
2018 Node g = new Node(MOVED|LOCKED, nextTab, null, null);
2019 if (!casTabAt(tab, i, f, g))
2020 continue;
2021 setTabAt(nextTab, i, null);
2022 setTabAt(nextTab, i + n, null);
2023 setTabAt(tab, i, fwd);
2024 if (!g.casHash(MOVED|LOCKED, MOVED)) {
2025 g.hash = MOVED;
2026 synchronized (g) { g.notifyAll(); }
2027 }
2028 }
2029 }
2030 else if ((fh = f.hash) == MOVED) {
2031 Object fk = f.key;
2032 if (fk instanceof TreeBin) {
2033 TreeBin t = (TreeBin)fk;
2034 boolean validated = false;
2035 t.acquire(0);
2036 try {
2037 if (tabAt(tab, i) == f) {
2038 validated = true;
2039 splitTreeBin(nextTab, i, t);
2040 setTabAt(tab, i, fwd);
2041 }
2042 } finally {
2043 t.release(0);
2044 }
2045 if (!validated)
2046 continue;
2047 }
2048 }
2049 else if ((fh & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
2050 boolean validated = false;
2051 try { // split to lo and hi lists; copying as needed
2052 if (tabAt(tab, i) == f) {
2053 validated = true;
2054 splitBin(nextTab, i, f);
2055 setTabAt(tab, i, fwd);
2056 }
2057 } finally {
2058 if (!f.casHash(fh | LOCKED, fh)) {
2059 f.hash = fh;
2060 synchronized (f) { f.notifyAll(); };
2061 }
2062 }
2063 if (!validated)
2064 continue;
2065 }
2066 else {
2067 if (buffer == null) // initialize buffer for revisits
2068 buffer = new int[TRANSFER_BUFFER_SIZE];
2069 if (bin < 0 && bufferIndex > 0) {
2070 int j = buffer[--bufferIndex];
2071 buffer[bufferIndex] = i;
2072 i = j; // swap with another bin
2073 continue;
2074 }
2075 if (bin < 0 || nbuffered >= TRANSFER_BUFFER_SIZE) {
2076 f.tryAwaitLock(tab, i);
2077 continue; // no other options -- block
2078 }
2079 if (rev == null) // initialize reverse-forwarder
2080 rev = new Node(MOVED, tab, null, null);
2081 if (tabAt(tab, i) != f || (f.hash & LOCKED) == 0)
2082 continue; // recheck before adding to list
2083 buffer[nbuffered++] = i;
2084 setTabAt(nextTab, i, rev); // install place-holders
2085 setTabAt(nextTab, i + n, rev);
2086 }
2087
2088 if (bin > 0)
2089 i = --bin;
2090 else if (buffer != null && nbuffered > 0) {
2091 bin = -1;
2092 i = buffer[bufferIndex = --nbuffered];
2093 }
2094 else
2095 return nextTab;
2096 }
2097 }
2098
2099 /**
2100 * Splits a normal bin with list headed by e into lo and hi parts;
2101 * installs in given table.
2102 */
2103 private static void splitBin(Node[] nextTab, int i, Node e) {
2104 int bit = nextTab.length >>> 1; // bit to split on
2105 int runBit = e.hash & bit;
2106 Node lastRun = e, lo = null, hi = null;
2107 for (Node p = e.next; p != null; p = p.next) {
2108 int b = p.hash & bit;
2109 if (b != runBit) {
2110 runBit = b;
2111 lastRun = p;
2112 }
2113 }
2114 if (runBit == 0)
2115 lo = lastRun;
2116 else
2117 hi = lastRun;
2118 for (Node p = e; p != lastRun; p = p.next) {
2119 int ph = p.hash & HASH_BITS;
2120 Object pk = p.key, pv = p.val;
2121 if ((ph & bit) == 0)
2122 lo = new Node(ph, pk, pv, lo);
2123 else
2124 hi = new Node(ph, pk, pv, hi);
2125 }
2126 setTabAt(nextTab, i, lo);
2127 setTabAt(nextTab, i + bit, hi);
2128 }
2129
2130 /**
2131 * Splits a tree bin into lo and hi parts; installs in given table.
2132 */
2133 private static void splitTreeBin(Node[] nextTab, int i, TreeBin t) {
2134 int bit = nextTab.length >>> 1;
2135 TreeBin lt = new TreeBin();
2136 TreeBin ht = new TreeBin();
2137 int lc = 0, hc = 0;
2138 for (Node e = t.first; e != null; e = e.next) {
2139 int h = e.hash & HASH_BITS;
2140 Object k = e.key, v = e.val;
2141 if ((h & bit) == 0) {
2142 ++lc;
2143 lt.putTreeNode(h, k, v);
2144 }
2145 else {
2146 ++hc;
2147 ht.putTreeNode(h, k, v);
2148 }
2149 }
2150 Node ln, hn; // throw away trees if too small
2151 if (lc <= (TREE_THRESHOLD >>> 1)) {
2152 ln = null;
2153 for (Node p = lt.first; p != null; p = p.next)
2154 ln = new Node(p.hash, p.key, p.val, ln);
2155 }
2156 else
2157 ln = new Node(MOVED, lt, null, null);
2158 setTabAt(nextTab, i, ln);
2159 if (hc <= (TREE_THRESHOLD >>> 1)) {
2160 hn = null;
2161 for (Node p = ht.first; p != null; p = p.next)
2162 hn = new Node(p.hash, p.key, p.val, hn);
2163 }
2164 else
2165 hn = new Node(MOVED, ht, null, null);
2166 setTabAt(nextTab, i + bit, hn);
2167 }
2168
2169 /**
2170 * Implementation for clear. Steps through each bin, removing all
2171 * nodes.
2172 */
2173 private final void internalClear() {
2174 long delta = 0L; // negative number of deletions
2175 int i = 0;
2176 Node[] tab = table;
2177 while (tab != null && i < tab.length) {
2178 int fh; Object fk;
2179 Node f = tabAt(tab, i);
2180 if (f == null)
2181 ++i;
2182 else if ((fh = f.hash) == MOVED) {
2183 if ((fk = f.key) instanceof TreeBin) {
2184 TreeBin t = (TreeBin)fk;
2185 t.acquire(0);
2186 try {
2187 if (tabAt(tab, i) == f) {
2188 for (Node p = t.first; p != null; p = p.next) {
2189 if (p.val != null) { // (currently always true)
2190 p.val = null;
2191 --delta;
2192 }
2193 }
2194 t.first = null;
2195 t.root = null;
2196 ++i;
2197 }
2198 } finally {
2199 t.release(0);
2200 }
2201 }
2202 else
2203 tab = (Node[])fk;
2204 }
2205 else if ((fh & LOCKED) != 0) {
2206 counter.add(delta); // opportunistically update count
2207 delta = 0L;
2208 f.tryAwaitLock(tab, i);
2209 }
2210 else if (f.casHash(fh, fh | LOCKED)) {
2211 try {
2212 if (tabAt(tab, i) == f) {
2213 for (Node e = f; e != null; e = e.next) {
2214 if (e.val != null) { // (currently always true)
2215 e.val = null;
2216 --delta;
2217 }
2218 }
2219 setTabAt(tab, i, null);
2220 ++i;
2221 }
2222 } finally {
2223 if (!f.casHash(fh | LOCKED, fh)) {
2224 f.hash = fh;
2225 synchronized (f) { f.notifyAll(); };
2226 }
2227 }
2228 }
2229 }
2230 if (delta != 0)
2231 counter.add(delta);
2232 }
2233
2234 /* ----------------Table Traversal -------------- */
2235
2236 /**
2237 * Encapsulates traversal for methods such as containsValue; also
2238 * serves as a base class for other iterators and bulk tasks.
2239 *
2240 * At each step, the iterator snapshots the key ("nextKey") and
2241 * value ("nextVal") of a valid node (i.e., one that, at point of
2242 * snapshot, has a non-null user value). Because val fields can
2243 * change (including to null, indicating deletion), field nextVal
2244 * might not be accurate at point of use, but still maintains the
2245 * weak consistency property of holding a value that was once
2246 * valid.
2247 *
2248 * Internal traversals directly access these fields, as in:
2249 * {@code while (it.advance() != null) { process(it.nextKey); }}
2250 *
2251 * Exported iterators must track whether the iterator has advanced
2252 * (in hasNext vs next) (by setting/checking/nulling field
2253 * nextVal), and then extract key, value, or key-value pairs as
2254 * return values of next().
2255 *
2256 * The iterator visits once each still-valid node that was
2257 * reachable upon iterator construction. It might miss some that
2258 * were added to a bin after the bin was visited, which is OK wrt
2259 * consistency guarantees. Maintaining this property in the face
2260 * of possible ongoing resizes requires a fair amount of
2261 * bookkeeping state that is difficult to optimize away amidst
2262 * volatile accesses. Even so, traversal maintains reasonable
2263 * throughput.
2264 *
2265 * Normally, iteration proceeds bin-by-bin traversing lists.
2266 * However, if the table has been resized, then all future steps
2267 * must traverse both the bin at the current index as well as at
2268 * (index + baseSize); and so on for further resizings. To
2269 * paranoically cope with potential sharing by users of iterators
2270 * across threads, iteration terminates if a bounds checks fails
2271 * for a table read.
2272 *
2273 * This class extends ForkJoinTask to streamline parallel
2274 * iteration in bulk operations (see BulkTask). This adds only an
2275 * int of space overhead, which is close enough to negligible in
2276 * cases where it is not needed to not worry about it. Because
2277 * ForkJoinTask is Serializable, but iterators need not be, we
2278 * need to add warning suppressions.
2279 */
2280 @SuppressWarnings("serial") static class Traverser<K,V,R> extends ForkJoinTask<R> {
2281 final ConcurrentHashMapV8<K, V> map;
2282 Node next; // the next entry to use
2283 Node last; // the last entry used
2284 Object nextKey; // cached key field of next
2285 Object nextVal; // cached val field of next
2286 Node[] tab; // current table; updated if resized
2287 int index; // index of bin to use next
2288 int baseIndex; // current index of initial table
2289 int baseLimit; // index bound for initial table
2290 final int baseSize; // initial table size
2291
2292 /** Creates iterator for all entries in the table. */
2293 Traverser(ConcurrentHashMapV8<K, V> map) {
2294 this.tab = (this.map = map).table;
2295 baseLimit = baseSize = (tab == null) ? 0 : tab.length;
2296 }
2297
2298 /** Creates iterator for split() methods */
2299 Traverser(Traverser<K,V,?> it) {
2300 this.map = it.map;
2301 this.tab = it.tab;
2302 this.baseSize = it.baseSize;
2303 it.baseLimit = this.index = this.baseIndex =
2304 ((this.baseLimit = it.baseLimit) + it.baseIndex + 1) >>> 1;
2305 }
2306
2307 /**
2308 * Advances next; returns nextVal or null if terminated.
2309 * See above for explanation.
2310 */
2311 final Object advance() {
2312 Node e = last = next;
2313 Object ev = null;
2314 outer: do {
2315 if (e != null) // advance past used/skipped node
2316 e = e.next;
2317 while (e == null) { // get to next non-null bin
2318 Node[] t; int b, i, n; Object ek; // checks must use locals
2319 if ((b = baseIndex) >= baseLimit || (i = index) < 0 ||
2320 (t = tab) == null || i >= (n = t.length))
2321 break outer;
2322 else if ((e = tabAt(t, i)) != null && e.hash == MOVED) {
2323 if ((ek = e.key) instanceof TreeBin)
2324 e = ((TreeBin)ek).first;
2325 else {
2326 tab = (Node[])ek;
2327 continue; // restarts due to null val
2328 }
2329 } // visit upper slots if present
2330 index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2331 }
2332 nextKey = e.key;
2333 } while ((ev = e.val) == null); // skip deleted or special nodes
2334 next = e;
2335 return nextVal = ev;
2336 }
2337
2338 public final void remove() {
2339 if (nextVal == null && last == null)
2340 advance();
2341 Node e = last;
2342 if (e == null)
2343 throw new IllegalStateException();
2344 last = null;
2345 map.remove(e.key);
2346 }
2347
2348 public final boolean hasNext() {
2349 return nextVal != null || advance() != null;
2350 }
2351
2352 public final boolean hasMoreElements() { return hasNext(); }
2353 public final void setRawResult(Object x) { }
2354 public R getRawResult() { return null; }
2355 public boolean exec() { return true; }
2356 }
2357
2358 /* ---------------- Public operations -------------- */
2359
2360 /**
2361 * Creates a new, empty map with the default initial table size (16).
2362 */
2363 public ConcurrentHashMapV8() {
2364 this.counter = new LongAdder();
2365 }
2366
2367 /**
2368 * Creates a new, empty map with an initial table size
2369 * accommodating the specified number of elements without the need
2370 * to dynamically resize.
2371 *
2372 * @param initialCapacity The implementation performs internal
2373 * sizing to accommodate this many elements.
2374 * @throws IllegalArgumentException if the initial capacity of
2375 * elements is negative
2376 */
2377 public ConcurrentHashMapV8(int initialCapacity) {
2378 if (initialCapacity < 0)
2379 throw new IllegalArgumentException();
2380 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2381 MAXIMUM_CAPACITY :
2382 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2383 this.counter = new LongAdder();
2384 this.sizeCtl = cap;
2385 }
2386
2387 /**
2388 * Creates a new map with the same mappings as the given map.
2389 *
2390 * @param m the map
2391 */
2392 public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
2393 this.counter = new LongAdder();
2394 this.sizeCtl = DEFAULT_CAPACITY;
2395 internalPutAll(m);
2396 }
2397
2398 /**
2399 * Creates a new, empty map with an initial table size based on
2400 * the given number of elements ({@code initialCapacity}) and
2401 * initial table density ({@code loadFactor}).
2402 *
2403 * @param initialCapacity the initial capacity. The implementation
2404 * performs internal sizing to accommodate this many elements,
2405 * given the specified load factor.
2406 * @param loadFactor the load factor (table density) for
2407 * establishing the initial table size
2408 * @throws IllegalArgumentException if the initial capacity of
2409 * elements is negative or the load factor is nonpositive
2410 *
2411 * @since 1.6
2412 */
2413 public ConcurrentHashMapV8(int initialCapacity, float loadFactor) {
2414 this(initialCapacity, loadFactor, 1);
2415 }
2416
2417 /**
2418 * Creates a new, empty map with an initial table size based on
2419 * the given number of elements ({@code initialCapacity}), table
2420 * density ({@code loadFactor}), and number of concurrently
2421 * updating threads ({@code concurrencyLevel}).
2422 *
2423 * @param initialCapacity the initial capacity. The implementation
2424 * performs internal sizing to accommodate this many elements,
2425 * given the specified load factor.
2426 * @param loadFactor the load factor (table density) for
2427 * establishing the initial table size
2428 * @param concurrencyLevel the estimated number of concurrently
2429 * updating threads. The implementation may use this value as
2430 * a sizing hint.
2431 * @throws IllegalArgumentException if the initial capacity is
2432 * negative or the load factor or concurrencyLevel are
2433 * nonpositive
2434 */
2435 public ConcurrentHashMapV8(int initialCapacity,
2436 float loadFactor, int concurrencyLevel) {
2437 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2438 throw new IllegalArgumentException();
2439 if (initialCapacity < concurrencyLevel) // Use at least as many bins
2440 initialCapacity = concurrencyLevel; // as estimated threads
2441 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2442 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2443 MAXIMUM_CAPACITY : tableSizeFor((int)size);
2444 this.counter = new LongAdder();
2445 this.sizeCtl = cap;
2446 }
2447
2448 /**
2449 * {@inheritDoc}
2450 */
2451 public boolean isEmpty() {
2452 return counter.sum() <= 0L; // ignore transient negative values
2453 }
2454
2455 /**
2456 * {@inheritDoc}
2457 */
2458 public int size() {
2459 long n = counter.sum();
2460 return ((n < 0L) ? 0 :
2461 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2462 (int)n);
2463 }
2464
2465 /**
2466 * Returns the number of mappings. This method should be used
2467 * instead of {@link #size} because a ConcurrentHashMap may
2468 * contain more mappings than can be represented as an int. The
2469 * value returned is a snapshot; the actual count may differ if
2470 * there are ongoing concurrent insertions or removals.
2471 *
2472 * @return the number of mappings
2473 */
2474 public long mappingCount() {
2475 long n = counter.sum();
2476 return (n < 0L) ? 0L : n; // ignore transient negative values
2477 }
2478
2479 /**
2480 * Returns the value to which the specified key is mapped,
2481 * or {@code null} if this map contains no mapping for the key.
2482 *
2483 * <p>More formally, if this map contains a mapping from a key
2484 * {@code k} to a value {@code v} such that {@code key.equals(k)},
2485 * then this method returns {@code v}; otherwise it returns
2486 * {@code null}. (There can be at most one such mapping.)
2487 *
2488 * @throws NullPointerException if the specified key is null
2489 */
2490 @SuppressWarnings("unchecked") public V get(Object key) {
2491 if (key == null)
2492 throw new NullPointerException();
2493 return (V)internalGet(key);
2494 }
2495
2496 /**
2497 * Tests if the specified object is a key in this table.
2498 *
2499 * @param key possible key
2500 * @return {@code true} if and only if the specified object
2501 * is a key in this table, as determined by the
2502 * {@code equals} method; {@code false} otherwise
2503 * @throws NullPointerException if the specified key is null
2504 */
2505 public boolean containsKey(Object key) {
2506 if (key == null)
2507 throw new NullPointerException();
2508 return internalGet(key) != null;
2509 }
2510
2511 /**
2512 * Returns {@code true} if this map maps one or more keys to the
2513 * specified value. Note: This method may require a full traversal
2514 * of the map, and is much slower than method {@code containsKey}.
2515 *
2516 * @param value value whose presence in this map is to be tested
2517 * @return {@code true} if this map maps one or more keys to the
2518 * specified value
2519 * @throws NullPointerException if the specified value is null
2520 */
2521 public boolean containsValue(Object value) {
2522 if (value == null)
2523 throw new NullPointerException();
2524 Object v;
2525 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2526 while ((v = it.advance()) != null) {
2527 if (v == value || value.equals(v))
2528 return true;
2529 }
2530 return false;
2531 }
2532
2533 /**
2534 * Legacy method testing if some key maps into the specified value
2535 * in this table. This method is identical in functionality to
2536 * {@link #containsValue}, and exists solely to ensure
2537 * full compatibility with class {@link java.util.Hashtable},
2538 * which supported this method prior to introduction of the
2539 * Java Collections framework.
2540 *
2541 * @param value a value to search for
2542 * @return {@code true} if and only if some key maps to the
2543 * {@code value} argument in this table as
2544 * determined by the {@code equals} method;
2545 * {@code false} otherwise
2546 * @throws NullPointerException if the specified value is null
2547 */
2548 public boolean contains(Object value) {
2549 return containsValue(value);
2550 }
2551
2552 /**
2553 * Maps the specified key to the specified value in this table.
2554 * Neither the key nor the value can be null.
2555 *
2556 * <p> The value can be retrieved by calling the {@code get} method
2557 * with a key that is equal to the original key.
2558 *
2559 * @param key key with which the specified value is to be associated
2560 * @param value value to be associated with the specified key
2561 * @return the previous value associated with {@code key}, or
2562 * {@code null} if there was no mapping for {@code key}
2563 * @throws NullPointerException if the specified key or value is null
2564 */
2565 @SuppressWarnings("unchecked") public V put(K key, V value) {
2566 if (key == null || value == null)
2567 throw new NullPointerException();
2568 return (V)internalPut(key, value);
2569 }
2570
2571 /**
2572 * {@inheritDoc}
2573 *
2574 * @return the previous value associated with the specified key,
2575 * or {@code null} if there was no mapping for the key
2576 * @throws NullPointerException if the specified key or value is null
2577 */
2578 @SuppressWarnings("unchecked") public V putIfAbsent(K key, V value) {
2579 if (key == null || value == null)
2580 throw new NullPointerException();
2581 return (V)internalPutIfAbsent(key, value);
2582 }
2583
2584 /**
2585 * Copies all of the mappings from the specified map to this one.
2586 * These mappings replace any mappings that this map had for any of the
2587 * keys currently in the specified map.
2588 *
2589 * @param m mappings to be stored in this map
2590 */
2591 public void putAll(Map<? extends K, ? extends V> m) {
2592 internalPutAll(m);
2593 }
2594
2595 /**
2596 * If the specified key is not already associated with a value,
2597 * computes its value using the given mappingFunction and enters
2598 * it into the map unless null. This is equivalent to
2599 * <pre> {@code
2600 * if (map.containsKey(key))
2601 * return map.get(key);
2602 * value = mappingFunction.apply(key);
2603 * if (value != null)
2604 * map.put(key, value);
2605 * return value;}</pre>
2606 *
2607 * except that the action is performed atomically. If the
2608 * function returns {@code null} no mapping is recorded. If the
2609 * function itself throws an (unchecked) exception, the exception
2610 * is rethrown to its caller, and no mapping is recorded. Some
2611 * attempted update operations on this map by other threads may be
2612 * blocked while computation is in progress, so the computation
2613 * should be short and simple, and must not attempt to update any
2614 * other mappings of this Map. The most appropriate usage is to
2615 * construct a new object serving as an initial mapped value, or
2616 * memoized result, as in:
2617 *
2618 * <pre> {@code
2619 * map.computeIfAbsent(key, new Fun<K, V>() {
2620 * public V map(K k) { return new Value(f(k)); }});}</pre>
2621 *
2622 * @param key key with which the specified value is to be associated
2623 * @param mappingFunction the function to compute a value
2624 * @return the current (existing or computed) value associated with
2625 * the specified key, or null if the computed value is null.
2626 * @throws NullPointerException if the specified key or mappingFunction
2627 * is null
2628 * @throws IllegalStateException if the computation detectably
2629 * attempts a recursive update to this map that would
2630 * otherwise never complete
2631 * @throws RuntimeException or Error if the mappingFunction does so,
2632 * in which case the mapping is left unestablished
2633 */
2634 @SuppressWarnings("unchecked") public V computeIfAbsent
2635 (K key, Fun<? super K, ? extends V> mappingFunction) {
2636 if (key == null || mappingFunction == null)
2637 throw new NullPointerException();
2638 return (V)internalComputeIfAbsent(key, mappingFunction);
2639 }
2640
2641 /**
2642 * If the given key is present, computes a new mapping value given a key and
2643 * its current mapped value. This is equivalent to
2644 * <pre> {@code
2645 * if (map.containsKey(key)) {
2646 * value = remappingFunction.apply(key, map.get(key));
2647 * if (value != null)
2648 * map.put(key, value);
2649 * else
2650 * map.remove(key);
2651 * }
2652 * }</pre>
2653 *
2654 * except that the action is performed atomically. If the
2655 * function returns {@code null}, the mapping is removed. If the
2656 * function itself throws an (unchecked) exception, the exception
2657 * is rethrown to its caller, and the current mapping is left
2658 * unchanged. Some attempted update operations on this map by
2659 * other threads may be blocked while computation is in progress,
2660 * so the computation should be short and simple, and must not
2661 * attempt to update any other mappings of this Map. For example,
2662 * to either create or append new messages to a value mapping:
2663 *
2664 * @param key key with which the specified value is to be associated
2665 * @param remappingFunction the function to compute a value
2666 * @return the new value associated with the specified key, or null if none
2667 * @throws NullPointerException if the specified key or remappingFunction
2668 * is null
2669 * @throws IllegalStateException if the computation detectably
2670 * attempts a recursive update to this map that would
2671 * otherwise never complete
2672 * @throws RuntimeException or Error if the remappingFunction does so,
2673 * in which case the mapping is unchanged
2674 */
2675 @SuppressWarnings("unchecked") public V computeIfPresent
2676 (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2677 if (key == null || remappingFunction == null)
2678 throw new NullPointerException();
2679 return (V)internalCompute(key, true, remappingFunction);
2680 }
2681
2682 /**
2683 * Computes a new mapping value given a key and
2684 * its current mapped value (or {@code null} if there is no current
2685 * mapping). This is equivalent to
2686 * <pre> {@code
2687 * value = remappingFunction.apply(key, map.get(key));
2688 * if (value != null)
2689 * map.put(key, value);
2690 * else
2691 * map.remove(key);
2692 * }</pre>
2693 *
2694 * except that the action is performed atomically. If the
2695 * function returns {@code null}, the mapping is removed. If the
2696 * function itself throws an (unchecked) exception, the exception
2697 * is rethrown to its caller, and the current mapping is left
2698 * unchanged. Some attempted update operations on this map by
2699 * other threads may be blocked while computation is in progress,
2700 * so the computation should be short and simple, and must not
2701 * attempt to update any other mappings of this Map. For example,
2702 * to either create or append new messages to a value mapping:
2703 *
2704 * <pre> {@code
2705 * Map<Key, String> map = ...;
2706 * final String msg = ...;
2707 * map.compute(key, new BiFun<Key, String, String>() {
2708 * public String apply(Key k, String v) {
2709 * return (v == null) ? msg : v + msg;});}}</pre>
2710 *
2711 * @param key key with which the specified value is to be associated
2712 * @param remappingFunction the function to compute a value
2713 * @return the new value associated with the specified key, or null if none
2714 * @throws NullPointerException if the specified key or remappingFunction
2715 * is null
2716 * @throws IllegalStateException if the computation detectably
2717 * attempts a recursive update to this map that would
2718 * otherwise never complete
2719 * @throws RuntimeException or Error if the remappingFunction does so,
2720 * in which case the mapping is unchanged
2721 */
2722 @SuppressWarnings("unchecked") public V compute
2723 (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2724 if (key == null || remappingFunction == null)
2725 throw new NullPointerException();
2726 return (V)internalCompute(key, false, remappingFunction);
2727 }
2728
2729 /**
2730 * If the specified key is not already associated
2731 * with a value, associate it with the given value.
2732 * Otherwise, replace the value with the results of
2733 * the given remapping function. This is equivalent to:
2734 * <pre> {@code
2735 * if (!map.containsKey(key))
2736 * map.put(value);
2737 * else {
2738 * newValue = remappingFunction.apply(map.get(key), value);
2739 * if (value != null)
2740 * map.put(key, value);
2741 * else
2742 * map.remove(key);
2743 * }
2744 * }</pre>
2745 * except that the action is performed atomically. If the
2746 * function returns {@code null}, the mapping is removed. If the
2747 * function itself throws an (unchecked) exception, the exception
2748 * is rethrown to its caller, and the current mapping is left
2749 * unchanged. Some attempted update operations on this map by
2750 * other threads may be blocked while computation is in progress,
2751 * so the computation should be short and simple, and must not
2752 * attempt to update any other mappings of this Map.
2753 */
2754 @SuppressWarnings("unchecked") public V merge
2755 (K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
2756 if (key == null || value == null || remappingFunction == null)
2757 throw new NullPointerException();
2758 return (V)internalMerge(key, value, remappingFunction);
2759 }
2760
2761 /**
2762 * Removes the key (and its corresponding value) from this map.
2763 * This method does nothing if the key is not in the map.
2764 *
2765 * @param key the key that needs to be removed
2766 * @return the previous value associated with {@code key}, or
2767 * {@code null} if there was no mapping for {@code key}
2768 * @throws NullPointerException if the specified key is null
2769 */
2770 @SuppressWarnings("unchecked") public V remove(Object key) {
2771 if (key == null)
2772 throw new NullPointerException();
2773 return (V)internalReplace(key, null, null);
2774 }
2775
2776 /**
2777 * {@inheritDoc}
2778 *
2779 * @throws NullPointerException if the specified key is null
2780 */
2781 public boolean remove(Object key, Object value) {
2782 if (key == null)
2783 throw new NullPointerException();
2784 if (value == null)
2785 return false;
2786 return internalReplace(key, null, value) != null;
2787 }
2788
2789 /**
2790 * {@inheritDoc}
2791 *
2792 * @throws NullPointerException if any of the arguments are null
2793 */
2794 public boolean replace(K key, V oldValue, V newValue) {
2795 if (key == null || oldValue == null || newValue == null)
2796 throw new NullPointerException();
2797 return internalReplace(key, newValue, oldValue) != null;
2798 }
2799
2800 /**
2801 * {@inheritDoc}
2802 *
2803 * @return the previous value associated with the specified key,
2804 * or {@code null} if there was no mapping for the key
2805 * @throws NullPointerException if the specified key or value is null
2806 */
2807 @SuppressWarnings("unchecked") public V replace(K key, V value) {
2808 if (key == null || value == null)
2809 throw new NullPointerException();
2810 return (V)internalReplace(key, value, null);
2811 }
2812
2813 /**
2814 * Removes all of the mappings from this map.
2815 */
2816 public void clear() {
2817 internalClear();
2818 }
2819
2820 /**
2821 * Returns a {@link Set} view of the keys contained in this map.
2822 * The set is backed by the map, so changes to the map are
2823 * reflected in the set, and vice-versa. The set supports element
2824 * removal, which removes the corresponding mapping from this map,
2825 * via the {@code Iterator.remove}, {@code Set.remove},
2826 * {@code removeAll}, {@code retainAll}, and {@code clear}
2827 * operations. It does not support the {@code add} or
2828 * {@code addAll} operations.
2829 *
2830 * <p>The view's {@code iterator} is a "weakly consistent" iterator
2831 * that will never throw {@link ConcurrentModificationException},
2832 * and guarantees to traverse elements as they existed upon
2833 * construction of the iterator, and may (but is not guaranteed to)
2834 * reflect any modifications subsequent to construction.
2835 */
2836 public Set<K> keySet() {
2837 KeySet<K,V> ks = keySet;
2838 return (ks != null) ? ks : (keySet = new KeySet<K,V>(this));
2839 }
2840
2841 /**
2842 * Returns a {@link Collection} view of the values contained in this map.
2843 * The collection is backed by the map, so changes to the map are
2844 * reflected in the collection, and vice-versa. The collection
2845 * supports element removal, which removes the corresponding
2846 * mapping from this map, via the {@code Iterator.remove},
2847 * {@code Collection.remove}, {@code removeAll},
2848 * {@code retainAll}, and {@code clear} operations. It does not
2849 * support the {@code add} or {@code addAll} operations.
2850 *
2851 * <p>The view's {@code iterator} is a "weakly consistent" iterator
2852 * that will never throw {@link ConcurrentModificationException},
2853 * and guarantees to traverse elements as they existed upon
2854 * construction of the iterator, and may (but is not guaranteed to)
2855 * reflect any modifications subsequent to construction.
2856 */
2857 public Collection<V> values() {
2858 Values<K,V> vs = values;
2859 return (vs != null) ? vs : (values = new Values<K,V>(this));
2860 }
2861
2862 /**
2863 * Returns a {@link Set} view of the mappings contained in this map.
2864 * The set is backed by the map, so changes to the map are
2865 * reflected in the set, and vice-versa. The set supports element
2866 * removal, which removes the corresponding mapping from the map,
2867 * via the {@code Iterator.remove}, {@code Set.remove},
2868 * {@code removeAll}, {@code retainAll}, and {@code clear}
2869 * operations. It does not support the {@code add} or
2870 * {@code addAll} operations.
2871 *
2872 * <p>The view's {@code iterator} is a "weakly consistent" iterator
2873 * that will never throw {@link ConcurrentModificationException},
2874 * and guarantees to traverse elements as they existed upon
2875 * construction of the iterator, and may (but is not guaranteed to)
2876 * reflect any modifications subsequent to construction.
2877 */
2878 public Set<Map.Entry<K,V>> entrySet() {
2879 EntrySet<K,V> es = entrySet;
2880 return (es != null) ? es : (entrySet = new EntrySet<K,V>(this));
2881 }
2882
2883 /**
2884 * Returns an enumeration of the keys in this table.
2885 *
2886 * @return an enumeration of the keys in this table
2887 * @see #keySet()
2888 */
2889 public Enumeration<K> keys() {
2890 return new KeyIterator<K,V>(this);
2891 }
2892
2893 /**
2894 * Returns an enumeration of the values in this table.
2895 *
2896 * @return an enumeration of the values in this table
2897 * @see #values()
2898 */
2899 public Enumeration<V> elements() {
2900 return new ValueIterator<K,V>(this);
2901 }
2902
2903 /**
2904 * Returns a partitionable iterator of the keys in this map.
2905 *
2906 * @return a partitionable iterator of the keys in this map
2907 */
2908 public Spliterator<K> keySpliterator() {
2909 return new KeyIterator<K,V>(this);
2910 }
2911
2912 /**
2913 * Returns a partitionable iterator of the values in this map.
2914 *
2915 * @return a partitionable iterator of the values in this map
2916 */
2917 public Spliterator<V> valueSpliterator() {
2918 return new ValueIterator<K,V>(this);
2919 }
2920
2921 /**
2922 * Returns a partitionable iterator of the entries in this map.
2923 *
2924 * @return a partitionable iterator of the entries in this map
2925 */
2926 public Spliterator<Map.Entry<K,V>> entrySpliterator() {
2927 return new EntryIterator<K,V>(this);
2928 }
2929
2930 /**
2931 * Returns the hash code value for this {@link Map}, i.e.,
2932 * the sum of, for each key-value pair in the map,
2933 * {@code key.hashCode() ^ value.hashCode()}.
2934 *
2935 * @return the hash code value for this map
2936 */
2937 public int hashCode() {
2938 int h = 0;
2939 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2940 Object v;
2941 while ((v = it.advance()) != null) {
2942 h += it.nextKey.hashCode() ^ v.hashCode();
2943 }
2944 return h;
2945 }
2946
2947 /**
2948 * Returns a string representation of this map. The string
2949 * representation consists of a list of key-value mappings (in no
2950 * particular order) enclosed in braces ("{@code {}}"). Adjacent
2951 * mappings are separated by the characters {@code ", "} (comma
2952 * and space). Each key-value mapping is rendered as the key
2953 * followed by an equals sign ("{@code =}") followed by the
2954 * associated value.
2955 *
2956 * @return a string representation of this map
2957 */
2958 public String toString() {
2959 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2960 StringBuilder sb = new StringBuilder();
2961 sb.append('{');
2962 Object v;
2963 if ((v = it.advance()) != null) {
2964 for (;;) {
2965 Object k = it.nextKey;
2966 sb.append(k == this ? "(this Map)" : k);
2967 sb.append('=');
2968 sb.append(v == this ? "(this Map)" : v);
2969 if ((v = it.advance()) == null)
2970 break;
2971 sb.append(',').append(' ');
2972 }
2973 }
2974 return sb.append('}').toString();
2975 }
2976
2977 /**
2978 * Compares the specified object with this map for equality.
2979 * Returns {@code true} if the given object is a map with the same
2980 * mappings as this map. This operation may return misleading
2981 * results if either map is concurrently modified during execution
2982 * of this method.
2983 *
2984 * @param o object to be compared for equality with this map
2985 * @return {@code true} if the specified object is equal to this map
2986 */
2987 public boolean equals(Object o) {
2988 if (o != this) {
2989 if (!(o instanceof Map))
2990 return false;
2991 Map<?,?> m = (Map<?,?>) o;
2992 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2993 Object val;
2994 while ((val = it.advance()) != null) {
2995 Object v = m.get(it.nextKey);
2996 if (v == null || (v != val && !v.equals(val)))
2997 return false;
2998 }
2999 for (Map.Entry<?,?> e : m.entrySet()) {
3000 Object mk, mv, v;
3001 if ((mk = e.getKey()) == null ||
3002 (mv = e.getValue()) == null ||
3003 (v = internalGet(mk)) == null ||
3004 (mv != v && !mv.equals(v)))
3005 return false;
3006 }
3007 }
3008 return true;
3009 }
3010
3011 /* ----------------Iterators -------------- */
3012
3013 @SuppressWarnings("serial") static final class KeyIterator<K,V> extends Traverser<K,V,Object>
3014 implements Spliterator<K>, Enumeration<K> {
3015 KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3016 KeyIterator(Traverser<K,V,Object> it) {
3017 super(it);
3018 }
3019 public KeyIterator<K,V> split() {
3020 if (last != null || (next != null && nextVal == null))
3021 throw new IllegalStateException();
3022 return new KeyIterator<K,V>(this);
3023 }
3024 @SuppressWarnings("unchecked") public final K next() {
3025 if (nextVal == null && advance() == null)
3026 throw new NoSuchElementException();
3027 Object k = nextKey;
3028 nextVal = null;
3029 return (K) k;
3030 }
3031
3032 public final K nextElement() { return next(); }
3033 }
3034
3035 @SuppressWarnings("serial") static final class ValueIterator<K,V> extends Traverser<K,V,Object>
3036 implements Spliterator<V>, Enumeration<V> {
3037 ValueIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3038 ValueIterator(Traverser<K,V,Object> it) {
3039 super(it);
3040 }
3041 public ValueIterator<K,V> split() {
3042 if (last != null || (next != null && nextVal == null))
3043 throw new IllegalStateException();
3044 return new ValueIterator<K,V>(this);
3045 }
3046
3047 @SuppressWarnings("unchecked") public final V next() {
3048 Object v;
3049 if ((v = nextVal) == null && (v = advance()) == null)
3050 throw new NoSuchElementException();
3051 nextVal = null;
3052 return (V) v;
3053 }
3054
3055 public final V nextElement() { return next(); }
3056 }
3057
3058 @SuppressWarnings("serial") static final class EntryIterator<K,V> extends Traverser<K,V,Object>
3059 implements Spliterator<Map.Entry<K,V>> {
3060 EntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3061 EntryIterator(Traverser<K,V,Object> it) {
3062 super(it);
3063 }
3064 public EntryIterator<K,V> split() {
3065 if (last != null || (next != null && nextVal == null))
3066 throw new IllegalStateException();
3067 return new EntryIterator<K,V>(this);
3068 }
3069
3070 @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3071 Object v;
3072 if ((v = nextVal) == null && (v = advance()) == null)
3073 throw new NoSuchElementException();
3074 Object k = nextKey;
3075 nextVal = null;
3076 return new MapEntry<K,V>((K)k, (V)v, map);
3077 }
3078 }
3079
3080 /**
3081 * Exported Entry for iterators
3082 */
3083 static final class MapEntry<K,V> implements Map.Entry<K, V> {
3084 final K key; // non-null
3085 V val; // non-null
3086 final ConcurrentHashMapV8<K, V> map;
3087 MapEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
3088 this.key = key;
3089 this.val = val;
3090 this.map = map;
3091 }
3092 public final K getKey() { return key; }
3093 public final V getValue() { return val; }
3094 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
3095 public final String toString(){ return key + "=" + val; }
3096
3097 public final boolean equals(Object o) {
3098 Object k, v; Map.Entry<?,?> e;
3099 return ((o instanceof Map.Entry) &&
3100 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3101 (v = e.getValue()) != null &&
3102 (k == key || k.equals(key)) &&
3103 (v == val || v.equals(val)));
3104 }
3105
3106 /**
3107 * Sets our entry's value and writes through to the map. The
3108 * value to return is somewhat arbitrary here. Since we do not
3109 * necessarily track asynchronous changes, the most recent
3110 * "previous" value could be different from what we return (or
3111 * could even have been removed in which case the put will
3112 * re-establish). We do not and cannot guarantee more.
3113 */
3114 public final V setValue(V value) {
3115 if (value == null) throw new NullPointerException();
3116 V v = val;
3117 val = value;
3118 map.put(key, value);
3119 return v;
3120 }
3121 }
3122
3123 /* ----------------Views -------------- */
3124
3125 /**
3126 * Base class for views.
3127 */
3128 static abstract class CHMView<K, V> {
3129 final ConcurrentHashMapV8<K, V> map;
3130 CHMView(ConcurrentHashMapV8<K, V> map) { this.map = map; }
3131 public final int size() { return map.size(); }
3132 public final boolean isEmpty() { return map.isEmpty(); }
3133 public final void clear() { map.clear(); }
3134
3135 // implementations below rely on concrete classes supplying these
3136 abstract public Iterator<?> iterator();
3137 abstract public boolean contains(Object o);
3138 abstract public boolean remove(Object o);
3139
3140 private static final String oomeMsg = "Required array size too large";
3141
3142 public final Object[] toArray() {
3143 long sz = map.mappingCount();
3144 if (sz > (long)(MAX_ARRAY_SIZE))
3145 throw new OutOfMemoryError(oomeMsg);
3146 int n = (int)sz;
3147 Object[] r = new Object[n];
3148 int i = 0;
3149 Iterator<?> it = iterator();
3150 while (it.hasNext()) {
3151 if (i == n) {
3152 if (n >= MAX_ARRAY_SIZE)
3153 throw new OutOfMemoryError(oomeMsg);
3154 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
3155 n = MAX_ARRAY_SIZE;
3156 else
3157 n += (n >>> 1) + 1;
3158 r = Arrays.copyOf(r, n);
3159 }
3160 r[i++] = it.next();
3161 }
3162 return (i == n) ? r : Arrays.copyOf(r, i);
3163 }
3164
3165 @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
3166 long sz = map.mappingCount();
3167 if (sz > (long)(MAX_ARRAY_SIZE))
3168 throw new OutOfMemoryError(oomeMsg);
3169 int m = (int)sz;
3170 T[] r = (a.length >= m) ? a :
3171 (T[])java.lang.reflect.Array
3172 .newInstance(a.getClass().getComponentType(), m);
3173 int n = r.length;
3174 int i = 0;
3175 Iterator<?> it = iterator();
3176 while (it.hasNext()) {
3177 if (i == n) {
3178 if (n >= MAX_ARRAY_SIZE)
3179 throw new OutOfMemoryError(oomeMsg);
3180 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
3181 n = MAX_ARRAY_SIZE;
3182 else
3183 n += (n >>> 1) + 1;
3184 r = Arrays.copyOf(r, n);
3185 }
3186 r[i++] = (T)it.next();
3187 }
3188 if (a == r && i < n) {
3189 r[i] = null; // null-terminate
3190 return r;
3191 }
3192 return (i == n) ? r : Arrays.copyOf(r, i);
3193 }
3194
3195 public final int hashCode() {
3196 int h = 0;
3197 for (Iterator<?> it = iterator(); it.hasNext();)
3198 h += it.next().hashCode();
3199 return h;
3200 }
3201
3202 public final String toString() {
3203 StringBuilder sb = new StringBuilder();
3204 sb.append('[');
3205 Iterator<?> it = iterator();
3206 if (it.hasNext()) {
3207 for (;;) {
3208 Object e = it.next();
3209 sb.append(e == this ? "(this Collection)" : e);
3210 if (!it.hasNext())
3211 break;
3212 sb.append(',').append(' ');
3213 }
3214 }
3215 return sb.append(']').toString();
3216 }
3217
3218 public final boolean containsAll(Collection<?> c) {
3219 if (c != this) {
3220 for (Iterator<?> it = c.iterator(); it.hasNext();) {
3221 Object e = it.next();
3222 if (e == null || !contains(e))
3223 return false;
3224 }
3225 }
3226 return true;
3227 }
3228
3229 public final boolean removeAll(Collection<?> c) {
3230 boolean modified = false;
3231 for (Iterator<?> it = iterator(); it.hasNext();) {
3232 if (c.contains(it.next())) {
3233 it.remove();
3234 modified = true;
3235 }
3236 }
3237 return modified;
3238 }
3239
3240 public final boolean retainAll(Collection<?> c) {
3241 boolean modified = false;
3242 for (Iterator<?> it = iterator(); it.hasNext();) {
3243 if (!c.contains(it.next())) {
3244 it.remove();
3245 modified = true;
3246 }
3247 }
3248 return modified;
3249 }
3250
3251 }
3252
3253 static final class KeySet<K,V> extends CHMView<K,V> implements Set<K> {
3254 KeySet(ConcurrentHashMapV8<K, V> map) {
3255 super(map);
3256 }
3257 public final boolean contains(Object o) { return map.containsKey(o); }
3258 public final boolean remove(Object o) { return map.remove(o) != null; }
3259 public final Iterator<K> iterator() {
3260 return new KeyIterator<K,V>(map);
3261 }
3262 public final boolean add(K e) {
3263 throw new UnsupportedOperationException();
3264 }
3265 public final boolean addAll(Collection<? extends K> c) {
3266 throw new UnsupportedOperationException();
3267 }
3268 public boolean equals(Object o) {
3269 Set<?> c;
3270 return ((o instanceof Set) &&
3271 ((c = (Set<?>)o) == this ||
3272 (containsAll(c) && c.containsAll(this))));
3273 }
3274 }
3275
3276
3277 static final class Values<K,V> extends CHMView<K,V>
3278 implements Collection<V> {
3279 Values(ConcurrentHashMapV8<K, V> map) { super(map); }
3280 public final boolean contains(Object o) { return map.containsValue(o); }
3281 public final boolean remove(Object o) {
3282 if (o != null) {
3283 Iterator<V> it = new ValueIterator<K,V>(map);
3284 while (it.hasNext()) {
3285 if (o.equals(it.next())) {
3286 it.remove();
3287 return true;
3288 }
3289 }
3290 }
3291 return false;
3292 }
3293 public final Iterator<V> iterator() {
3294 return new ValueIterator<K,V>(map);
3295 }
3296 public final boolean add(V e) {
3297 throw new UnsupportedOperationException();
3298 }
3299 public final boolean addAll(Collection<? extends V> c) {
3300 throw new UnsupportedOperationException();
3301 }
3302
3303 }
3304
3305 static final class EntrySet<K,V> extends CHMView<K,V>
3306 implements Set<Map.Entry<K,V>> {
3307 EntrySet(ConcurrentHashMapV8<K, V> map) { super(map); }
3308 public final boolean contains(Object o) {
3309 Object k, v, r; Map.Entry<?,?> e;
3310 return ((o instanceof Map.Entry) &&
3311 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3312 (r = map.get(k)) != null &&
3313 (v = e.getValue()) != null &&
3314 (v == r || v.equals(r)));
3315 }
3316 public final boolean remove(Object o) {
3317 Object k, v; Map.Entry<?,?> e;
3318 return ((o instanceof Map.Entry) &&
3319 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3320 (v = e.getValue()) != null &&
3321 map.remove(k, v));
3322 }
3323 public final Iterator<Map.Entry<K,V>> iterator() {
3324 return new EntryIterator<K,V>(map);
3325 }
3326 public final boolean add(Entry<K,V> e) {
3327 throw new UnsupportedOperationException();
3328 }
3329 public final boolean addAll(Collection<? extends Entry<K,V>> c) {
3330 throw new UnsupportedOperationException();
3331 }
3332 public boolean equals(Object o) {
3333 Set<?> c;
3334 return ((o instanceof Set) &&
3335 ((c = (Set<?>)o) == this ||
3336 (containsAll(c) && c.containsAll(this))));
3337 }
3338 }
3339
3340 /* ---------------- Serialization Support -------------- */
3341
3342 /**
3343 * Stripped-down version of helper class used in previous version,
3344 * declared for the sake of serialization compatibility
3345 */
3346 static class Segment<K,V> implements Serializable {
3347 private static final long serialVersionUID = 2249069246763182397L;
3348 final float loadFactor;
3349 Segment(float lf) { this.loadFactor = lf; }
3350 }
3351
3352 /**
3353 * Saves the state of the {@code ConcurrentHashMapV8} instance to a
3354 * stream (i.e., serializes it).
3355 * @param s the stream
3356 * @serialData
3357 * the key (Object) and value (Object)
3358 * for each key-value mapping, followed by a null pair.
3359 * The key-value mappings are emitted in no particular order.
3360 */
3361 @SuppressWarnings("unchecked") private void writeObject(java.io.ObjectOutputStream s)
3362 throws java.io.IOException {
3363 if (segments == null) { // for serialization compatibility
3364 segments = (Segment<K,V>[])
3365 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3366 for (int i = 0; i < segments.length; ++i)
3367 segments[i] = new Segment<K,V>(LOAD_FACTOR);
3368 }
3369 s.defaultWriteObject();
3370 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3371 Object v;
3372 while ((v = it.advance()) != null) {
3373 s.writeObject(it.nextKey);
3374 s.writeObject(v);
3375 }
3376 s.writeObject(null);
3377 s.writeObject(null);
3378 segments = null; // throw away
3379 }
3380
3381 /**
3382 * Reconstitutes the instance from a stream (that is, deserializes it).
3383 * @param s the stream
3384 */
3385 @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s)
3386 throws java.io.IOException, ClassNotFoundException {
3387 s.defaultReadObject();
3388 this.segments = null; // unneeded
3389 // initialize transient final field
3390 UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
3391
3392 // Create all nodes, then place in table once size is known
3393 long size = 0L;
3394 Node p = null;
3395 for (;;) {
3396 K k = (K) s.readObject();
3397 V v = (V) s.readObject();
3398 if (k != null && v != null) {
3399 int h = spread(k.hashCode());
3400 p = new Node(h, k, v, p);
3401 ++size;
3402 }
3403 else
3404 break;
3405 }
3406 if (p != null) {
3407 boolean init = false;
3408 int n;
3409 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3410 n = MAXIMUM_CAPACITY;
3411 else {
3412 int sz = (int)size;
3413 n = tableSizeFor(sz + (sz >>> 1) + 1);
3414 }
3415 int sc = sizeCtl;
3416 boolean collide = false;
3417 if (n > sc &&
3418 UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
3419 try {
3420 if (table == null) {
3421 init = true;
3422 Node[] tab = new Node[n];
3423 int mask = n - 1;
3424 while (p != null) {
3425 int j = p.hash & mask;
3426 Node next = p.next;
3427 Node q = p.next = tabAt(tab, j);
3428 setTabAt(tab, j, p);
3429 if (!collide && q != null && q.hash == p.hash)
3430 collide = true;
3431 p = next;
3432 }
3433 table = tab;
3434 counter.add(size);
3435 sc = n - (n >>> 2);
3436 }
3437 } finally {
3438 sizeCtl = sc;
3439 }
3440 if (collide) { // rescan and convert to TreeBins
3441 Node[] tab = table;
3442 for (int i = 0; i < tab.length; ++i) {
3443 int c = 0;
3444 for (Node e = tabAt(tab, i); e != null; e = e.next) {
3445 if (++c > TREE_THRESHOLD &&
3446 (e.key instanceof Comparable)) {
3447 replaceWithTreeBin(tab, i, e.key);
3448 break;
3449 }
3450 }
3451 }
3452 }
3453 }
3454 if (!init) { // Can only happen if unsafely published.
3455 while (p != null) {
3456 internalPut(p.key, p.val);
3457 p = p.next;
3458 }
3459 }
3460 }
3461 }
3462
3463
3464 // -------------------------------------------------------
3465
3466 // Sams
3467 /** Interface describing a void action of one argument */
3468 public interface Action<A> { void apply(A a); }
3469 /** Interface describing a void action of two arguments */
3470 public interface BiAction<A,B> { void apply(A a, B b); }
3471 /** Interface describing a function of one argument */
3472 public interface Fun<A,T> { T apply(A a); }
3473 /** Interface describing a function of two arguments */
3474 public interface BiFun<A,B,T> { T apply(A a, B b); }
3475 /** Interface describing a function of no arguments */
3476 public interface Generator<T> { T apply(); }
3477 /** Interface describing a function mapping its argument to a double */
3478 public interface ObjectToDouble<A> { double apply(A a); }
3479 /** Interface describing a function mapping its argument to a long */
3480 public interface ObjectToLong<A> { long apply(A a); }
3481 /** Interface describing a function mapping its argument to an int */
3482 public interface ObjectToInt<A> {int apply(A a); }
3483 /** Interface describing a function mapping two arguments to a double */
3484 public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3485 /** Interface describing a function mapping two arguments to a long */
3486 public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3487 /** Interface describing a function mapping two arguments to an int */
3488 public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3489 /** Interface describing a function mapping a double to a double */
3490 public interface DoubleToDouble { double apply(double a); }
3491 /** Interface describing a function mapping a long to a long */
3492 public interface LongToLong { long apply(long a); }
3493 /** Interface describing a function mapping an int to an int */
3494 public interface IntToInt { int apply(int a); }
3495 /** Interface describing a function mapping two doubles to a double */
3496 public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3497 /** Interface describing a function mapping two longs to a long */
3498 public interface LongByLongToLong { long apply(long a, long b); }
3499 /** Interface describing a function mapping two ints to an int */
3500 public interface IntByIntToInt { int apply(int a, int b); }
3501
3502
3503 // -------------------------------------------------------
3504
3505 /**
3506 * Returns an extended {@link Parallel} view of this map using the
3507 * given executor for bulk parallel operations.
3508 *
3509 * @param executor the executor
3510 * @return a parallel view
3511 */
3512 public Parallel parallel(ForkJoinPool executor) {
3513 return new Parallel(executor);
3514 }
3515
3516 /**
3517 * An extended view of a ConcurrentHashMap supporting bulk
3518 * parallel operations. These operations are designed to be
3519 * safely, and often sensibly, applied even with maps that are
3520 * being concurrently updated by other threads; for example, when
3521 * computing a snapshot summary of the values in a shared
3522 * registry. There are three kinds of operation, each with four
3523 * forms, accepting functions with Keys, Values, Entries, and
3524 * (Key, Value) arguments and/or return values. Because the
3525 * elements of a ConcurrentHashMap are not ordered in any
3526 * particular way, and may be processed in different orders in
3527 * different parallel executions, the correctness of supplied
3528 * functions should not depend on any ordering, or on any other
3529 * objects or values that may transiently change while computation
3530 * is in progress; and except for forEach actions, should ideally
3531 * be side-effect-free.
3532 *
3533 * <ul>
3534 * <li> forEach: Perform a given action on each element.
3535 * A variant form applies a given transformation on each element
3536 * before performing the action.</li>
3537 *
3538 * <li> search: Return the first available non-null result of
3539 * applying a given function on each element; skipping further
3540 * search when a result is found.</li>
3541 *
3542 * <li> reduce: Accumulate each element. The supplied reduction
3543 * function cannot rely on ordering (more formally, it should be
3544 * both associative and commutative). There are five variants:
3545 *
3546 * <ul>
3547 *
3548 * <li> Plain reductions. (There is not a form of this method for
3549 * (key, value) function arguments since there is no corresponding
3550 * return type.)</li>
3551 *
3552 * <li> Mapped reductions that accumulate the results of a given
3553 * function applied to each element.</li>
3554 *
3555 * <li> Reductions to scalar doubles, longs, and ints, using a
3556 * given basis value.</li>
3557 *
3558 * </li>
3559 * </ul>
3560 * </ul>
3561 *
3562 * <p>The concurrency properties of the bulk operations follow
3563 * from those of ConcurrentHashMap: Any non-null result returned
3564 * from {@code get(key)} and related access methods bears a
3565 * happens-before relation with the associated insertion or
3566 * update. The result of any bulk operation reflects the
3567 * composition of these per-element relations (but is not
3568 * necessarily atomic with respect to the map as a whole unless it
3569 * is somehow known to be quiescent). Conversely, because keys
3570 * and values in the map are never null, null serves as a reliable
3571 * atomic indicator of the current lack of any result. To
3572 * maintain this property, null serves as an implicit basis for
3573 * all non-scalar reduction operations. For the double, long, and
3574 * int versions, the basis should be one that, when combined with
3575 * any other value, returns that other value (more formally, it
3576 * should be the identity element for the reduction). Most common
3577 * reductions have these properties; for example, computing a sum
3578 * with basis 0 or a minimum with basis MAX_VALUE.
3579 *
3580 * <p>Search and transformation functions provided as arguments
3581 * should similarly return null to indicate the lack of any result
3582 * (in which case it is not used). In the case of mapped
3583 * reductions, this also enables transformations to serve as
3584 * filters, returning null (or, in the case of primitive
3585 * specializations, the identity basis) if the element should not
3586 * be combined. You can create compound transformations and
3587 * filterings by composing them yourself under this "null means
3588 * there is nothing there now" rule before using them in search or
3589 * reduce operations.
3590 *
3591 * <p>Methods accepting and/or returning Entry arguments maintain
3592 * key-value associations. They may be useful for example when
3593 * finding the key for the greatest value. Note that "plain" Entry
3594 * arguments can be supplied using {@code new
3595 * AbstractMap.SimpleEntry(k,v)}.
3596 *
3597 * <p> Bulk operations may complete abruptly, throwing an
3598 * exception encountered in the application of a supplied
3599 * function. Bear in mind when handling such exceptions that other
3600 * concurrently executing functions could also have thrown
3601 * exceptions, or would have done so if the first exception had
3602 * not occurred.
3603 *
3604 * <p>Parallel speedups compared to sequential processing are
3605 * common but not guaranteed. Operations involving brief
3606 * functions on small maps may execute more slowly than sequential
3607 * loops if the underlying work to parallelize the computation is
3608 * more expensive than the computation itself. Similarly,
3609 * parallelization may not lead to much actual parallelism if all
3610 * processors are busy performing unrelated tasks.
3611 *
3612 * <p> All arguments to all task methods must be non-null.
3613 *
3614 * <p><em>jsr166e note: During transition, this class
3615 * uses nested functional interfaces with different names but the
3616 * same forms as those expected for JDK8.<em>
3617 */
3618 public class Parallel {
3619 final ForkJoinPool fjp;
3620
3621 /**
3622 * Returns an extended view of this map using the given
3623 * executor for bulk parallel operations.
3624 *
3625 * @param executor the executor
3626 */
3627 public Parallel(ForkJoinPool executor) {
3628 this.fjp = executor;
3629 }
3630
3631 /**
3632 * Performs the given action for each (key, value).
3633 *
3634 * @param action the action
3635 */
3636 public void forEach(BiAction<K,V> action) {
3637 fjp.invoke(ForkJoinTasks.forEach
3638 (ConcurrentHashMapV8.this, action));
3639 }
3640
3641 /**
3642 * Performs the given action for each non-null transformation
3643 * of each (key, value).
3644 *
3645 * @param transformer a function returning the transformation
3646 * for an element, or null of there is no transformation (in
3647 * which case the action is not applied).
3648 * @param action the action
3649 */
3650 public <U> void forEach(BiFun<? super K, ? super V, ? extends U> transformer,
3651 Action<U> action) {
3652 fjp.invoke(ForkJoinTasks.forEach
3653 (ConcurrentHashMapV8.this, transformer, action));
3654 }
3655
3656 /**
3657 * Returns a non-null result from applying the given search
3658 * function on each (key, value), or null if none. Upon
3659 * success, further element processing is suppressed and the
3660 * results of any other parallel invocations of the search
3661 * function are ignored.
3662 *
3663 * @param searchFunction a function returning a non-null
3664 * result on success, else null
3665 * @return a non-null result from applying the given search
3666 * function on each (key, value), or null if none
3667 */
3668 public <U> U search(BiFun<? super K, ? super V, ? extends U> searchFunction) {
3669 return fjp.invoke(ForkJoinTasks.search
3670 (ConcurrentHashMapV8.this, searchFunction));
3671 }
3672
3673 /**
3674 * Returns the result of accumulating the given transformation
3675 * of all (key, value) pairs using the given reducer to
3676 * combine values, or null if none.
3677 *
3678 * @param transformer a function returning the transformation
3679 * for an element, or null of there is no transformation (in
3680 * which case it is not combined).
3681 * @param reducer a commutative associative combining function
3682 * @return the result of accumulating the given transformation
3683 * of all (key, value) pairs
3684 */
3685 public <U> U reduce(BiFun<? super K, ? super V, ? extends U> transformer,
3686 BiFun<? super U, ? super U, ? extends U> reducer) {
3687 return fjp.invoke(ForkJoinTasks.reduce
3688 (ConcurrentHashMapV8.this, transformer, reducer));
3689 }
3690
3691 /**
3692 * Returns the result of accumulating the given transformation
3693 * of all (key, value) pairs using the given reducer to
3694 * combine values, and the given basis as an identity value.
3695 *
3696 * @param transformer a function returning the transformation
3697 * for an element
3698 * @param basis the identity (initial default value) for the reduction
3699 * @param reducer a commutative associative combining function
3700 * @return the result of accumulating the given transformation
3701 * of all (key, value) pairs
3702 */
3703 public double reduceToDouble(ObjectByObjectToDouble<? super K, ? super V> transformer,
3704 double basis,
3705 DoubleByDoubleToDouble reducer) {
3706 return fjp.invoke(ForkJoinTasks.reduceToDouble
3707 (ConcurrentHashMapV8.this, transformer, basis, reducer));
3708 }
3709
3710 /**
3711 * Returns the result of accumulating the given transformation
3712 * of all (key, value) pairs using the given reducer to
3713 * combine values, and the given basis as an identity value.
3714 *
3715 * @param transformer a function returning the transformation
3716 * for an element
3717 * @param basis the identity (initial default value) for the reduction
3718 * @param reducer a commutative associative combining function
3719 * @return the result of accumulating the given transformation
3720 * of all (key, value) pairs
3721 */
3722 public long reduceToLong(ObjectByObjectToLong<? super K, ? super V> transformer,
3723 long basis,
3724 LongByLongToLong reducer) {
3725 return fjp.invoke(ForkJoinTasks.reduceToLong
3726 (ConcurrentHashMapV8.this, transformer, basis, reducer));
3727 }
3728
3729 /**
3730 * Returns the result of accumulating the given transformation
3731 * of all (key, value) pairs using the given reducer to
3732 * combine values, and the given basis as an identity value.
3733 *
3734 * @param transformer a function returning the transformation
3735 * for an element
3736 * @param basis the identity (initial default value) for the reduction
3737 * @param reducer a commutative associative combining function
3738 * @return the result of accumulating the given transformation
3739 * of all (key, value) pairs
3740 */
3741 public int reduceToInt(ObjectByObjectToInt<? super K, ? super V> transformer,
3742 int basis,
3743 IntByIntToInt reducer) {
3744 return fjp.invoke(ForkJoinTasks.reduceToInt
3745 (ConcurrentHashMapV8.this, transformer, basis, reducer));
3746 }
3747
3748 /**
3749 * Performs the given action for each key.
3750 *
3751 * @param action the action
3752 */
3753 public void forEachKey(Action<K> action) {
3754 fjp.invoke(ForkJoinTasks.forEachKey
3755 (ConcurrentHashMapV8.this, action));
3756 }
3757
3758 /**
3759 * Performs the given action for each non-null transformation
3760 * of each key.
3761 *
3762 * @param transformer a function returning the transformation
3763 * for an element, or null of there is no transformation (in
3764 * which case the action is not applied).
3765 * @param action the action
3766 */
3767 public <U> void forEachKey(Fun<? super K, ? extends U> transformer,
3768 Action<U> action) {
3769 fjp.invoke(ForkJoinTasks.forEachKey
3770 (ConcurrentHashMapV8.this, transformer, action));
3771 }
3772
3773 /**
3774 * Returns a non-null result from applying the given search
3775 * function on each key, or null if none. Upon success,
3776 * further element processing is suppressed and the results of
3777 * any other parallel invocations of the search function are
3778 * ignored.
3779 *
3780 * @param searchFunction a function returning a non-null
3781 * result on success, else null
3782 * @return a non-null result from applying the given search
3783 * function on each key, or null if none
3784 */
3785 public <U> U searchKeys(Fun<? super K, ? extends U> searchFunction) {
3786 return fjp.invoke(ForkJoinTasks.searchKeys
3787 (ConcurrentHashMapV8.this, searchFunction));
3788 }
3789
3790 /**
3791 * Returns the result of accumulating all keys using the given
3792 * reducer to combine values, or null if none.
3793 *
3794 * @param reducer a commutative associative combining function
3795 * @return the result of accumulating all keys using the given
3796 * reducer to combine values, or null if none
3797 */
3798 public K reduceKeys(BiFun<? super K, ? super K, ? extends K> reducer) {
3799 return fjp.invoke(ForkJoinTasks.reduceKeys
3800 (ConcurrentHashMapV8.this, reducer));
3801 }
3802
3803 /**
3804 * Returns the result of accumulating the given transformation
3805 * of all keys using the given reducer to combine values, or
3806 * null if none.
3807 *
3808 * @param transformer a function returning the transformation
3809 * for an element, or null of there is no transformation (in
3810 * which case it is not combined).
3811 * @param reducer a commutative associative combining function
3812 * @return the result of accumulating the given transformation
3813 * of all keys
3814 */
3815 public <U> U reduceKeys(Fun<? super K, ? extends U> transformer,
3816 BiFun<? super U, ? super U, ? extends U> reducer) {
3817 return fjp.invoke(ForkJoinTasks.reduceKeys
3818 (ConcurrentHashMapV8.this, transformer, reducer));
3819 }
3820
3821 /**
3822 * Returns the result of accumulating the given transformation
3823 * of all keys using the given reducer to combine values, and
3824 * the given basis as an identity value.
3825 *
3826 * @param transformer a function returning the transformation
3827 * for an element
3828 * @param basis the identity (initial default value) for the reduction
3829 * @param reducer a commutative associative combining function
3830 * @return the result of accumulating the given transformation
3831 * of all keys
3832 */
3833 public double reduceKeysToDouble(ObjectToDouble<? super K> transformer,
3834 double basis,
3835 DoubleByDoubleToDouble reducer) {
3836 return fjp.invoke(ForkJoinTasks.reduceKeysToDouble
3837 (ConcurrentHashMapV8.this, transformer, basis, reducer));
3838 }
3839
3840 /**
3841 * Returns the result of accumulating the given transformation
3842 * of all keys using the given reducer to combine values, and
3843 * the given basis as an identity value.
3844 *
3845 * @param transformer a function returning the transformation
3846 * for an element
3847 * @param basis the identity (initial default value) for the reduction
3848 * @param reducer a commutative associative combining function
3849 * @return the result of accumulating the given transformation
3850 * of all keys
3851 */
3852 public long reduceKeysToLong(ObjectToLong<? super K> transformer,
3853 long basis,
3854 LongByLongToLong reducer) {
3855 return fjp.invoke(ForkJoinTasks.reduceKeysToLong
3856 (ConcurrentHashMapV8.this, transformer, basis, reducer));
3857 }
3858
3859 /**
3860 * Returns the result of accumulating the given transformation
3861 * of all keys using the given reducer to combine values, and
3862 * the given basis as an identity value.
3863 *
3864 * @param transformer a function returning the transformation
3865 * for an element
3866 * @param basis the identity (initial default value) for the reduction
3867 * @param reducer a commutative associative combining function
3868 * @return the result of accumulating the given transformation
3869 * of all keys
3870 */
3871 public int reduceKeysToInt(ObjectToInt<? super K> transformer,
3872 int basis,
3873 IntByIntToInt reducer) {
3874 return fjp.invoke(ForkJoinTasks.reduceKeysToInt
3875 (ConcurrentHashMapV8.this, transformer, basis, reducer));
3876 }
3877
3878 /**
3879 * Performs the given action for each value.
3880 *
3881 * @param action the action
3882 */
3883 public void forEachValue(Action<V> action) {
3884 fjp.invoke(ForkJoinTasks.forEachValue
3885 (ConcurrentHashMapV8.this, action));
3886 }
3887
3888 /**
3889 * Performs the given action for each non-null transformation
3890 * of each value.
3891 *
3892 * @param transformer a function returning the transformation
3893 * for an element, or null of there is no transformation (in
3894 * which case the action is not applied).
3895 */
3896 public <U> void forEachValue(Fun<? super V, ? extends U> transformer,
3897 Action<U> action) {
3898 fjp.invoke(ForkJoinTasks.forEachValue
3899 (ConcurrentHashMapV8.this, transformer, action));
3900 }
3901
3902 /**
3903 * Returns a non-null result from applying the given search
3904 * function on each value, or null if none. Upon success,
3905 * further element processing is suppressed and the results of
3906 * any other parallel invocations of the search function are
3907 * ignored.
3908 *
3909 * @param searchFunction a function returning a non-null
3910 * result on success, else null
3911 * @return a non-null result from applying the given search
3912 * function on each value, or null if none
3913 *
3914 */
3915 public <U> U searchValues(Fun<? super V, ? extends U> searchFunction) {
3916 return fjp.invoke(ForkJoinTasks.searchValues
3917 (ConcurrentHashMapV8.this, searchFunction));
3918 }
3919
3920 /**
3921 * Returns the result of accumulating all values using the
3922 * given reducer to combine values, or null if none.
3923 *
3924 * @param reducer a commutative associative combining function
3925 * @return the result of accumulating all values
3926 */
3927 public V reduceValues(BiFun<? super V, ? super V, ? extends V> reducer) {
3928 return fjp.invoke(ForkJoinTasks.reduceValues
3929 (ConcurrentHashMapV8.this, reducer));
3930 }
3931
3932 /**
3933 * Returns the result of accumulating the given transformation
3934 * of all values using the given reducer to combine values, or
3935 * null if none.
3936 *
3937 * @param transformer a function returning the transformation
3938 * for an element, or null of there is no transformation (in
3939 * which case it is not combined).
3940 * @param reducer a commutative associative combining function
3941 * @return the result of accumulating the given transformation
3942 * of all values
3943 */
3944 public <U> U reduceValues(Fun<? super V, ? extends U> transformer,
3945 BiFun<? super U, ? super U, ? extends U> reducer) {
3946 return fjp.invoke(ForkJoinTasks.reduceValues
3947 (ConcurrentHashMapV8.this, transformer, reducer));
3948 }
3949
3950 /**
3951 * Returns the result of accumulating the given transformation
3952 * of all values using the given reducer to combine values,
3953 * and the given basis as an identity value.
3954 *
3955 * @param transformer a function returning the transformation
3956 * for an element
3957 * @param basis the identity (initial default value) for the reduction
3958 * @param reducer a commutative associative combining function
3959 * @return the result of accumulating the given transformation
3960 * of all values
3961 */
3962 public double reduceValuesToDouble(ObjectToDouble<? super V> transformer,
3963 double basis,
3964 DoubleByDoubleToDouble reducer) {
3965 return fjp.invoke(ForkJoinTasks.reduceValuesToDouble
3966 (ConcurrentHashMapV8.this, transformer, basis, reducer));
3967 }
3968
3969 /**
3970 * Returns the result of accumulating the given transformation
3971 * of all values using the given reducer to combine values,
3972 * and the given basis as an identity value.
3973 *
3974 * @param transformer a function returning the transformation
3975 * for an element
3976 * @param basis the identity (initial default value) for the reduction
3977 * @param reducer a commutative associative combining function
3978 * @return the result of accumulating the given transformation
3979 * of all values
3980 */
3981 public long reduceValuesToLong(ObjectToLong<? super V> transformer,
3982 long basis,
3983 LongByLongToLong reducer) {
3984 return fjp.invoke(ForkJoinTasks.reduceValuesToLong
3985 (ConcurrentHashMapV8.this, transformer, basis, reducer));
3986 }
3987
3988 /**
3989 * Returns the result of accumulating the given transformation
3990 * of all values using the given reducer to combine values,
3991 * and the given basis as an identity value.
3992 *
3993 * @param transformer a function returning the transformation
3994 * for an element
3995 * @param basis the identity (initial default value) for the reduction
3996 * @param reducer a commutative associative combining function
3997 * @return the result of accumulating the given transformation
3998 * of all values
3999 */
4000 public int reduceValuesToInt(ObjectToInt<? super V> transformer,
4001 int basis,
4002 IntByIntToInt reducer) {
4003 return fjp.invoke(ForkJoinTasks.reduceValuesToInt
4004 (ConcurrentHashMapV8.this, transformer, basis, reducer));
4005 }
4006
4007 /**
4008 * Performs the given action for each entry.
4009 *
4010 * @param action the action
4011 */
4012 public void forEachEntry(Action<Map.Entry<K,V>> action) {
4013 fjp.invoke(ForkJoinTasks.forEachEntry
4014 (ConcurrentHashMapV8.this, action));
4015 }
4016
4017 /**
4018 * Performs the given action for each non-null transformation
4019 * of each entry.
4020 *
4021 * @param transformer a function returning the transformation
4022 * for an element, or null of there is no transformation (in
4023 * which case the action is not applied).
4024 * @param action the action
4025 */
4026 public <U> void forEachEntry(Fun<Map.Entry<K,V>, ? extends U> transformer,
4027 Action<U> action) {
4028 fjp.invoke(ForkJoinTasks.forEachEntry
4029 (ConcurrentHashMapV8.this, transformer, action));
4030 }
4031
4032 /**
4033 * Returns a non-null result from applying the given search
4034 * function on each entry, or null if none. Upon success,
4035 * further element processing is suppressed and the results of
4036 * any other parallel invocations of the search function are
4037 * ignored.
4038 *
4039 * @param searchFunction a function returning a non-null
4040 * result on success, else null
4041 * @return a non-null result from applying the given search
4042 * function on each entry, or null if none
4043 */
4044 public <U> U searchEntries(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4045 return fjp.invoke(ForkJoinTasks.searchEntries
4046 (ConcurrentHashMapV8.this, searchFunction));
4047 }
4048
4049 /**
4050 * Returns the result of accumulating all entries using the
4051 * given reducer to combine values, or null if none.
4052 *
4053 * @param reducer a commutative associative combining function
4054 * @return the result of accumulating all entries
4055 */
4056 public Map.Entry<K,V> reduceEntries(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4057 return fjp.invoke(ForkJoinTasks.reduceEntries
4058 (ConcurrentHashMapV8.this, reducer));
4059 }
4060
4061 /**
4062 * Returns the result of accumulating the given transformation
4063 * of all entries using the given reducer to combine values,
4064 * or null if none.
4065 *
4066 * @param transformer a function returning the transformation
4067 * for an element, or null of there is no transformation (in
4068 * which case it is not combined).
4069 * @param reducer a commutative associative combining function
4070 * @return the result of accumulating the given transformation
4071 * of all entries
4072 */
4073 public <U> U reduceEntries(Fun<Map.Entry<K,V>, ? extends U> transformer,
4074 BiFun<? super U, ? super U, ? extends U> reducer) {
4075 return fjp.invoke(ForkJoinTasks.reduceEntries
4076 (ConcurrentHashMapV8.this, transformer, reducer));
4077 }
4078
4079 /**
4080 * Returns the result of accumulating the given transformation
4081 * of all entries using the given reducer to combine values,
4082 * and the given basis as an identity value.
4083 *
4084 * @param transformer a function returning the transformation
4085 * for an element
4086 * @param basis the identity (initial default value) for the reduction
4087 * @param reducer a commutative associative combining function
4088 * @return the result of accumulating the given transformation
4089 * of all entries
4090 */
4091 public double reduceEntriesToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4092 double basis,
4093 DoubleByDoubleToDouble reducer) {
4094 return fjp.invoke(ForkJoinTasks.reduceEntriesToDouble
4095 (ConcurrentHashMapV8.this, transformer, basis, reducer));
4096 }
4097
4098 /**
4099 * Returns the result of accumulating the given transformation
4100 * of all entries using the given reducer to combine values,
4101 * and the given basis as an identity value.
4102 *
4103 * @param transformer a function returning the transformation
4104 * for an element
4105 * @param basis the identity (initial default value) for the reduction
4106 * @param reducer a commutative associative combining function
4107 * @return the result of accumulating the given transformation
4108 * of all entries
4109 */
4110 public long reduceEntriesToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4111 long basis,
4112 LongByLongToLong reducer) {
4113 return fjp.invoke(ForkJoinTasks.reduceEntriesToLong
4114 (ConcurrentHashMapV8.this, transformer, basis, reducer));
4115 }
4116
4117 /**
4118 * Returns the result of accumulating the given transformation
4119 * of all entries using the given reducer to combine values,
4120 * and the given basis as an identity value.
4121 *
4122 * @param transformer a function returning the transformation
4123 * for an element
4124 * @param basis the identity (initial default value) for the reduction
4125 * @param reducer a commutative associative combining function
4126 * @return the result of accumulating the given transformation
4127 * of all entries
4128 */
4129 public int reduceEntriesToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4130 int basis,
4131 IntByIntToInt reducer) {
4132 return fjp.invoke(ForkJoinTasks.reduceEntriesToInt
4133 (ConcurrentHashMapV8.this, transformer, basis, reducer));
4134 }
4135 }
4136
4137 // ---------------------------------------------------------------------
4138
4139 /**
4140 * Predefined tasks for performing bulk parallel operations on
4141 * ConcurrentHashMaps. These tasks follow the forms and rules used
4142 * in class {@link Parallel}. Each method has the same name, but
4143 * returns a task rather than invoking it. These methods may be
4144 * useful in custom applications such as submitting a task without
4145 * waiting for completion, or combining with other tasks.
4146 */
4147 public static class ForkJoinTasks {
4148 private ForkJoinTasks() {}
4149
4150 /**
4151 * Returns a task that when invoked, performs the given
4152 * action for each (key, value)
4153 *
4154 * @param map the map
4155 * @param action the action
4156 * @return the task
4157 */
4158 public static <K,V> ForkJoinTask<Void> forEach
4159 (ConcurrentHashMapV8<K,V> map,
4160 BiAction<K,V> action) {
4161 if (action == null) throw new NullPointerException();
4162 return new ForEachMappingTask<K,V>(map, action);
4163 }
4164
4165 /**
4166 * Returns a task that when invoked, performs the given
4167 * action for each non-null transformation of each (key, value)
4168 *
4169 * @param map the map
4170 * @param transformer a function returning the transformation
4171 * for an element, or null of there is no transformation (in
4172 * which case the action is not applied).
4173 * @param action the action
4174 * @return the task
4175 */
4176 public static <K,V,U> ForkJoinTask<Void> forEach
4177 (ConcurrentHashMapV8<K,V> map,
4178 BiFun<? super K, ? super V, ? extends U> transformer,
4179 Action<U> action) {
4180 if (transformer == null || action == null)
4181 throw new NullPointerException();
4182 return new ForEachTransformedMappingTask<K,V,U>
4183 (map, transformer, action);
4184 }
4185
4186 /**
4187 * Returns a task that when invoked, returns a non-null result
4188 * from applying the given search function on each (key,
4189 * value), or null if none. Upon success, further element
4190 * processing is suppressed and the results of any other
4191 * parallel invocations of the search function are ignored.
4192 *
4193 * @param map the map
4194 * @param searchFunction a function returning a non-null
4195 * result on success, else null
4196 * @return the task
4197 */
4198 public static <K,V,U> ForkJoinTask<U> search
4199 (ConcurrentHashMapV8<K,V> map,
4200 BiFun<? super K, ? super V, ? extends U> searchFunction) {
4201 if (searchFunction == null) throw new NullPointerException();
4202 return new SearchMappingsTask<K,V,U>
4203 (map, searchFunction,
4204 new AtomicReference<U>());
4205 }
4206
4207 /**
4208 * Returns a task that when invoked, returns the result of
4209 * accumulating the given transformation of all (key, value) pairs
4210 * using the given reducer to combine values, or null if none.
4211 *
4212 * @param map the map
4213 * @param transformer a function returning the transformation
4214 * for an element, or null of there is no transformation (in
4215 * which case it is not combined).
4216 * @param reducer a commutative associative combining function
4217 * @return the task
4218 */
4219 public static <K,V,U> ForkJoinTask<U> reduce
4220 (ConcurrentHashMapV8<K,V> map,
4221 BiFun<? super K, ? super V, ? extends U> transformer,
4222 BiFun<? super U, ? super U, ? extends U> reducer) {
4223 if (transformer == null || reducer == null)
4224 throw new NullPointerException();
4225 return new MapReduceMappingsTask<K,V,U>
4226 (map, transformer, reducer);
4227 }
4228
4229 /**
4230 * Returns a task that when invoked, returns the result of
4231 * accumulating the given transformation of all (key, value) pairs
4232 * using the given reducer to combine values, and the given
4233 * basis as an identity value.
4234 *
4235 * @param map the map
4236 * @param transformer a function returning the transformation
4237 * for an element
4238 * @param basis the identity (initial default value) for the reduction
4239 * @param reducer a commutative associative combining function
4240 * @return the task
4241 */
4242 public static <K,V> ForkJoinTask<Double> reduceToDouble
4243 (ConcurrentHashMapV8<K,V> map,
4244 ObjectByObjectToDouble<? super K, ? super V> transformer,
4245 double basis,
4246 DoubleByDoubleToDouble reducer) {
4247 if (transformer == null || reducer == null)
4248 throw new NullPointerException();
4249 return new MapReduceMappingsToDoubleTask<K,V>
4250 (map, transformer, basis, reducer);
4251 }
4252
4253 /**
4254 * Returns a task that when invoked, returns the result of
4255 * accumulating the given transformation of all (key, value) pairs
4256 * using the given reducer to combine values, and the given
4257 * basis as an identity value.
4258 *
4259 * @param map the map
4260 * @param transformer a function returning the transformation
4261 * for an element
4262 * @param basis the identity (initial default value) for the reduction
4263 * @param reducer a commutative associative combining function
4264 * @return the task
4265 */
4266 public static <K,V> ForkJoinTask<Long> reduceToLong
4267 (ConcurrentHashMapV8<K,V> map,
4268 ObjectByObjectToLong<? super K, ? super V> transformer,
4269 long basis,
4270 LongByLongToLong reducer) {
4271 if (transformer == null || reducer == null)
4272 throw new NullPointerException();
4273 return new MapReduceMappingsToLongTask<K,V>
4274 (map, transformer, basis, reducer);
4275 }
4276
4277 /**
4278 * Returns a task that when invoked, returns the result of
4279 * accumulating the given transformation of all (key, value) pairs
4280 * using the given reducer to combine values, and the given
4281 * basis as an identity value.
4282 *
4283 * @param transformer a function returning the transformation
4284 * for an element
4285 * @param basis the identity (initial default value) for the reduction
4286 * @param reducer a commutative associative combining function
4287 * @return the task
4288 */
4289 public static <K,V> ForkJoinTask<Integer> reduceToInt
4290 (ConcurrentHashMapV8<K,V> map,
4291 ObjectByObjectToInt<? super K, ? super V> transformer,
4292 int basis,
4293 IntByIntToInt reducer) {
4294 if (transformer == null || reducer == null)
4295 throw new NullPointerException();
4296 return new MapReduceMappingsToIntTask<K,V>
4297 (map, transformer, basis, reducer);
4298 }
4299
4300 /**
4301 * Returns a task that when invoked, performs the given action
4302 * for each key.
4303 *
4304 * @param map the map
4305 * @param action the action
4306 * @return the task
4307 */
4308 public static <K,V> ForkJoinTask<Void> forEachKey
4309 (ConcurrentHashMapV8<K,V> map,
4310 Action<K> action) {
4311 if (action == null) throw new NullPointerException();
4312 return new ForEachKeyTask<K,V>(map, action);
4313 }
4314
4315 /**
4316 * Returns a task that when invoked, performs the given action
4317 * for each non-null transformation of each key.
4318 *
4319 * @param map the map
4320 * @param transformer a function returning the transformation
4321 * for an element, or null of there is no transformation (in
4322 * which case the action is not applied).
4323 * @param action the action
4324 * @return the task
4325 */
4326 public static <K,V,U> ForkJoinTask<Void> forEachKey
4327 (ConcurrentHashMapV8<K,V> map,
4328 Fun<? super K, ? extends U> transformer,
4329 Action<U> action) {
4330 if (transformer == null || action == null)
4331 throw new NullPointerException();
4332 return new ForEachTransformedKeyTask<K,V,U>
4333 (map, transformer, action);
4334 }
4335
4336 /**
4337 * Returns a task that when invoked, returns a non-null result
4338 * from applying the given search function on each key, or
4339 * null if none. Upon success, further element processing is
4340 * suppressed and the results of any other parallel
4341 * invocations of the search function are ignored.
4342 *
4343 * @param map the map
4344 * @param searchFunction a function returning a non-null
4345 * result on success, else null
4346 * @return the task
4347 */
4348 public static <K,V,U> ForkJoinTask<U> searchKeys
4349 (ConcurrentHashMapV8<K,V> map,
4350 Fun<? super K, ? extends U> searchFunction) {
4351 if (searchFunction == null) throw new NullPointerException();
4352 return new SearchKeysTask<K,V,U>
4353 (map, searchFunction,
4354 new AtomicReference<U>());
4355 }
4356
4357 /**
4358 * Returns a task that when invoked, returns the result of
4359 * accumulating all keys using the given reducer to combine
4360 * values, or null if none.
4361 *
4362 * @param map the map
4363 * @param reducer a commutative associative combining function
4364 * @return the task
4365 */
4366 public static <K,V> ForkJoinTask<K> reduceKeys
4367 (ConcurrentHashMapV8<K,V> map,
4368 BiFun<? super K, ? super K, ? extends K> reducer) {
4369 if (reducer == null) throw new NullPointerException();
4370 return new ReduceKeysTask<K,V>
4371 (map, reducer);
4372 }
4373
4374 /**
4375 * Returns a task that when invoked, returns the result of
4376 * accumulating the given transformation of all keys using the given
4377 * reducer to combine values, or null if none.
4378 *
4379 * @param map the map
4380 * @param transformer a function returning the transformation
4381 * for an element, or null of there is no transformation (in
4382 * which case it is not combined).
4383 * @param reducer a commutative associative combining function
4384 * @return the task
4385 */
4386 public static <K,V,U> ForkJoinTask<U> reduceKeys
4387 (ConcurrentHashMapV8<K,V> map,
4388 Fun<? super K, ? extends U> transformer,
4389 BiFun<? super U, ? super U, ? extends U> reducer) {
4390 if (transformer == null || reducer == null)
4391 throw new NullPointerException();
4392 return new MapReduceKeysTask<K,V,U>
4393 (map, transformer, reducer);
4394 }
4395
4396 /**
4397 * Returns a task that when invoked, returns the result of
4398 * accumulating the given transformation of all keys using the given
4399 * reducer to combine values, and the given basis as an
4400 * identity value.
4401 *
4402 * @param map the map
4403 * @param transformer a function returning the transformation
4404 * for an element
4405 * @param basis the identity (initial default value) for the reduction
4406 * @param reducer a commutative associative combining function
4407 * @return the task
4408 */
4409 public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
4410 (ConcurrentHashMapV8<K,V> map,
4411 ObjectToDouble<? super K> transformer,
4412 double basis,
4413 DoubleByDoubleToDouble reducer) {
4414 if (transformer == null || reducer == null)
4415 throw new NullPointerException();
4416 return new MapReduceKeysToDoubleTask<K,V>
4417 (map, transformer, basis, reducer);
4418 }
4419
4420 /**
4421 * Returns a task that when invoked, returns the result of
4422 * accumulating the given transformation of all keys using the given
4423 * reducer to combine values, and the given basis as an
4424 * identity value.
4425 *
4426 * @param map the map
4427 * @param transformer a function returning the transformation
4428 * for an element
4429 * @param basis the identity (initial default value) for the reduction
4430 * @param reducer a commutative associative combining function
4431 * @return the task
4432 */
4433 public static <K,V> ForkJoinTask<Long> reduceKeysToLong
4434 (ConcurrentHashMapV8<K,V> map,
4435 ObjectToLong<? super K> transformer,
4436 long basis,
4437 LongByLongToLong reducer) {
4438 if (transformer == null || reducer == null)
4439 throw new NullPointerException();
4440 return new MapReduceKeysToLongTask<K,V>
4441 (map, transformer, basis, reducer);
4442 }
4443
4444 /**
4445 * Returns a task that when invoked, returns the result of
4446 * accumulating the given transformation of all keys using the given
4447 * reducer to combine values, and the given basis as an
4448 * identity value.
4449 *
4450 * @param map the map
4451 * @param transformer a function returning the transformation
4452 * for an element
4453 * @param basis the identity (initial default value) for the reduction
4454 * @param reducer a commutative associative combining function
4455 * @return the task
4456 */
4457 public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
4458 (ConcurrentHashMapV8<K,V> map,
4459 ObjectToInt<? super K> transformer,
4460 int basis,
4461 IntByIntToInt reducer) {
4462 if (transformer == null || reducer == null)
4463 throw new NullPointerException();
4464 return new MapReduceKeysToIntTask<K,V>
4465 (map, transformer, basis, reducer);
4466 }
4467
4468 /**
4469 * Returns a task that when invoked, performs the given action
4470 * for each value.
4471 *
4472 * @param map the map
4473 * @param action the action
4474 */
4475 public static <K,V> ForkJoinTask<Void> forEachValue
4476 (ConcurrentHashMapV8<K,V> map,
4477 Action<V> action) {
4478 if (action == null) throw new NullPointerException();
4479 return new ForEachValueTask<K,V>(map, action);
4480 }
4481
4482 /**
4483 * Returns a task that when invoked, performs the given action
4484 * for each non-null transformation of each value.
4485 *
4486 * @param map the map
4487 * @param transformer a function returning the transformation
4488 * for an element, or null of there is no transformation (in
4489 * which case the action is not applied).
4490 * @param action the action
4491 */
4492 public static <K,V,U> ForkJoinTask<Void> forEachValue
4493 (ConcurrentHashMapV8<K,V> map,
4494 Fun<? super V, ? extends U> transformer,
4495 Action<U> action) {
4496 if (transformer == null || action == null)
4497 throw new NullPointerException();
4498 return new ForEachTransformedValueTask<K,V,U>
4499 (map, transformer, action);
4500 }
4501
4502 /**
4503 * Returns a task that when invoked, returns a non-null result
4504 * from applying the given search function on each value, or
4505 * null if none. Upon success, further element processing is
4506 * suppressed and the results of any other parallel
4507 * invocations of the search function are ignored.
4508 *
4509 * @param map the map
4510 * @param searchFunction a function returning a non-null
4511 * result on success, else null
4512 * @return the task
4513 *
4514 */
4515 public static <K,V,U> ForkJoinTask<U> searchValues
4516 (ConcurrentHashMapV8<K,V> map,
4517 Fun<? super V, ? extends U> searchFunction) {
4518 if (searchFunction == null) throw new NullPointerException();
4519 return new SearchValuesTask<K,V,U>
4520 (map, searchFunction,
4521 new AtomicReference<U>());
4522 }
4523
4524 /**
4525 * Returns a task that when invoked, returns the result of
4526 * accumulating all values using the given reducer to combine
4527 * values, or null if none.
4528 *
4529 * @param map the map
4530 * @param reducer a commutative associative combining function
4531 * @return the task
4532 */
4533 public static <K,V> ForkJoinTask<V> reduceValues
4534 (ConcurrentHashMapV8<K,V> map,
4535 BiFun<? super V, ? super V, ? extends V> reducer) {
4536 if (reducer == null) throw new NullPointerException();
4537 return new ReduceValuesTask<K,V>
4538 (map, reducer);
4539 }
4540
4541 /**
4542 * Returns a task that when invoked, returns the result of
4543 * accumulating the given transformation of all values using the
4544 * given reducer to combine values, or null if none.
4545 *
4546 * @param map the map
4547 * @param transformer a function returning the transformation
4548 * for an element, or null of there is no transformation (in
4549 * which case it is not combined).
4550 * @param reducer a commutative associative combining function
4551 * @return the task
4552 */
4553 public static <K,V,U> ForkJoinTask<U> reduceValues
4554 (ConcurrentHashMapV8<K,V> map,
4555 Fun<? super V, ? extends U> transformer,
4556 BiFun<? super U, ? super U, ? extends U> reducer) {
4557 if (transformer == null || reducer == null)
4558 throw new NullPointerException();
4559 return new MapReduceValuesTask<K,V,U>
4560 (map, transformer, reducer);
4561 }
4562
4563 /**
4564 * Returns a task that when invoked, returns the result of
4565 * accumulating the given transformation of all values using the
4566 * given reducer to combine values, and the given basis as an
4567 * identity value.
4568 *
4569 * @param map the map
4570 * @param transformer a function returning the transformation
4571 * for an element
4572 * @param basis the identity (initial default value) for the reduction
4573 * @param reducer a commutative associative combining function
4574 * @return the task
4575 */
4576 public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
4577 (ConcurrentHashMapV8<K,V> map,
4578 ObjectToDouble<? super V> transformer,
4579 double basis,
4580 DoubleByDoubleToDouble reducer) {
4581 if (transformer == null || reducer == null)
4582 throw new NullPointerException();
4583 return new MapReduceValuesToDoubleTask<K,V>
4584 (map, transformer, basis, reducer);
4585 }
4586
4587 /**
4588 * Returns a task that when invoked, returns the result of
4589 * accumulating the given transformation of all values using the
4590 * given reducer to combine values, and the given basis as an
4591 * identity value.
4592 *
4593 * @param map the map
4594 * @param transformer a function returning the transformation
4595 * for an element
4596 * @param basis the identity (initial default value) for the reduction
4597 * @param reducer a commutative associative combining function
4598 * @return the task
4599 */
4600 public static <K,V> ForkJoinTask<Long> reduceValuesToLong
4601 (ConcurrentHashMapV8<K,V> map,
4602 ObjectToLong<? super V> transformer,
4603 long basis,
4604 LongByLongToLong reducer) {
4605 if (transformer == null || reducer == null)
4606 throw new NullPointerException();
4607 return new MapReduceValuesToLongTask<K,V>
4608 (map, transformer, basis, reducer);
4609 }
4610
4611 /**
4612 * Returns a task that when invoked, returns the result of
4613 * accumulating the given transformation of all values using the
4614 * given reducer to combine values, and the given basis as an
4615 * identity value.
4616 *
4617 * @param map the map
4618 * @param transformer a function returning the transformation
4619 * for an element
4620 * @param basis the identity (initial default value) for the reduction
4621 * @param reducer a commutative associative combining function
4622 * @return the task
4623 */
4624 public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
4625 (ConcurrentHashMapV8<K,V> map,
4626 ObjectToInt<? super V> transformer,
4627 int basis,
4628 IntByIntToInt reducer) {
4629 if (transformer == null || reducer == null)
4630 throw new NullPointerException();
4631 return new MapReduceValuesToIntTask<K,V>
4632 (map, transformer, basis, reducer);
4633 }
4634
4635 /**
4636 * Returns a task that when invoked, perform the given action
4637 * for each entry.
4638 *
4639 * @param map the map
4640 * @param action the action
4641 */
4642 public static <K,V> ForkJoinTask<Void> forEachEntry
4643 (ConcurrentHashMapV8<K,V> map,
4644 Action<Map.Entry<K,V>> action) {
4645 if (action == null) throw new NullPointerException();
4646 return new ForEachEntryTask<K,V>(map, action);
4647 }
4648
4649 /**
4650 * Returns a task that when invoked, perform the given action
4651 * for each non-null transformation of each entry.
4652 *
4653 * @param map the map
4654 * @param transformer a function returning the transformation
4655 * for an element, or null of there is no transformation (in
4656 * which case the action is not applied).
4657 * @param action the action
4658 */
4659 public static <K,V,U> ForkJoinTask<Void> forEachEntry
4660 (ConcurrentHashMapV8<K,V> map,
4661 Fun<Map.Entry<K,V>, ? extends U> transformer,
4662 Action<U> action) {
4663 if (transformer == null || action == null)
4664 throw new NullPointerException();
4665 return new ForEachTransformedEntryTask<K,V,U>
4666 (map, transformer, action);
4667 }
4668
4669 /**
4670 * Returns a task that when invoked, returns a non-null result
4671 * from applying the given search function on each entry, or
4672 * null if none. Upon success, further element processing is
4673 * suppressed and the results of any other parallel
4674 * invocations of the search function are ignored.
4675 *
4676 * @param map the map
4677 * @param searchFunction a function returning a non-null
4678 * result on success, else null
4679 * @return the task
4680 *
4681 */
4682 public static <K,V,U> ForkJoinTask<U> searchEntries
4683 (ConcurrentHashMapV8<K,V> map,
4684 Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4685 if (searchFunction == null) throw new NullPointerException();
4686 return new SearchEntriesTask<K,V,U>
4687 (map, searchFunction,
4688 new AtomicReference<U>());
4689 }
4690
4691 /**
4692 * Returns a task that when invoked, returns the result of
4693 * accumulating all entries using the given reducer to combine
4694 * values, or null if none.
4695 *
4696 * @param map the map
4697 * @param reducer a commutative associative combining function
4698 * @return the task
4699 */
4700 public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
4701 (ConcurrentHashMapV8<K,V> map,
4702 BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4703 if (reducer == null) throw new NullPointerException();
4704 return new ReduceEntriesTask<K,V>
4705 (map, reducer);
4706 }
4707
4708 /**
4709 * Returns a task that when invoked, returns the result of
4710 * accumulating the given transformation of all entries using the
4711 * given reducer to combine values, or null if none.
4712 *
4713 * @param map the map
4714 * @param transformer a function returning the transformation
4715 * for an element, or null of there is no transformation (in
4716 * which case it is not combined).
4717 * @param reducer a commutative associative combining function
4718 * @return the task
4719 */
4720 public static <K,V,U> ForkJoinTask<U> reduceEntries
4721 (ConcurrentHashMapV8<K,V> map,
4722 Fun<Map.Entry<K,V>, ? extends U> transformer,
4723 BiFun<? super U, ? super U, ? extends U> reducer) {
4724 if (transformer == null || reducer == null)
4725 throw new NullPointerException();
4726 return new MapReduceEntriesTask<K,V,U>
4727 (map, transformer, reducer);
4728 }
4729
4730 /**
4731 * Returns a task that when invoked, returns the result of
4732 * accumulating the given transformation of all entries using the
4733 * given reducer to combine values, and the given basis as an
4734 * identity value.
4735 *
4736 * @param map the map
4737 * @param transformer a function returning the transformation
4738 * for an element
4739 * @param basis the identity (initial default value) for the reduction
4740 * @param reducer a commutative associative combining function
4741 * @return the task
4742 */
4743 public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
4744 (ConcurrentHashMapV8<K,V> map,
4745 ObjectToDouble<Map.Entry<K,V>> transformer,
4746 double basis,
4747 DoubleByDoubleToDouble reducer) {
4748 if (transformer == null || reducer == null)
4749 throw new NullPointerException();
4750 return new MapReduceEntriesToDoubleTask<K,V>
4751 (map, transformer, basis, reducer);
4752 }
4753
4754 /**
4755 * Returns a task that when invoked, returns the result of
4756 * accumulating the given transformation of all entries using the
4757 * given reducer to combine values, and the given basis as an
4758 * identity value.
4759 *
4760 * @param map the map
4761 * @param transformer a function returning the transformation
4762 * for an element
4763 * @param basis the identity (initial default value) for the reduction
4764 * @param reducer a commutative associative combining function
4765 * @return the task
4766 */
4767 public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
4768 (ConcurrentHashMapV8<K,V> map,
4769 ObjectToLong<Map.Entry<K,V>> transformer,
4770 long basis,
4771 LongByLongToLong reducer) {
4772 if (transformer == null || reducer == null)
4773 throw new NullPointerException();
4774 return new MapReduceEntriesToLongTask<K,V>
4775 (map, transformer, basis, reducer);
4776 }
4777
4778 /**
4779 * Returns a task that when invoked, returns the result of
4780 * accumulating the given transformation of all entries using the
4781 * given reducer to combine values, and the given basis as an
4782 * identity value.
4783 *
4784 * @param map the map
4785 * @param transformer a function returning the transformation
4786 * for an element
4787 * @param basis the identity (initial default value) for the reduction
4788 * @param reducer a commutative associative combining function
4789 * @return the task
4790 */
4791 public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
4792 (ConcurrentHashMapV8<K,V> map,
4793 ObjectToInt<Map.Entry<K,V>> transformer,
4794 int basis,
4795 IntByIntToInt reducer) {
4796 if (transformer == null || reducer == null)
4797 throw new NullPointerException();
4798 return new MapReduceEntriesToIntTask<K,V>
4799 (map, transformer, basis, reducer);
4800 }
4801 }
4802
4803 // -------------------------------------------------------
4804
4805 /**
4806 * Base for FJ tasks for bulk operations. This adds a variant of
4807 * CountedCompleters and some split and merge bookkeeping to
4808 * iterator functionality. The forEach and reduce methods are
4809 * similar to those illustrated in CountedCompleter documentation,
4810 * except that bottom-up reduction completions perform them within
4811 * their compute methods. The search methods are like forEach
4812 * except they continually poll for success and exit early. Also,
4813 * exceptions are handled in a simpler manner, by just trying to
4814 * complete root task exceptionally.
4815 */
4816 @SuppressWarnings("serial") static abstract class BulkTask<K,V,R> extends Traverser<K,V,R> {
4817 final BulkTask<K,V,?> parent; // completion target
4818 int batch; // split control
4819 int pending; // completion control
4820
4821 /** Constructor for root tasks */
4822 BulkTask(ConcurrentHashMapV8<K,V> map) {
4823 super(map);
4824 this.parent = null;
4825 this.batch = -1; // force call to batch() on execution
4826 }
4827
4828 /** Constructor for subtasks */
4829 BulkTask(BulkTask<K,V,?> parent, int batch) {
4830 super(parent);
4831 this.parent = parent;
4832 this.batch = batch;
4833 }
4834
4835 // FJ methods
4836
4837 /**
4838 * Propagates completion. Note that all reduce actions
4839 * bypass this method to combine while completing.
4840 */
4841 final void tryComplete() {
4842 BulkTask<K,V,?> a = this, s = a;
4843 for (int c;;) {
4844 if ((c = a.pending) == 0) {
4845 if ((a = (s = a).parent) == null) {
4846 s.quietlyComplete();
4847 break;
4848 }
4849 }
4850 else if (U.compareAndSwapInt(a, PENDING, c, c - 1))
4851 break;
4852 }
4853 }
4854
4855 /**
4856 * Forces root task to complete.
4857 * @param ex if null, complete normally, else exceptionally
4858 * @return false to simplify use
4859 */
4860 final boolean tryCompleteComputation(Throwable ex) {
4861 for (BulkTask<K,V,?> a = this;;) {
4862 BulkTask<K,V,?> p = a.parent;
4863 if (p == null) {
4864 if (ex != null)
4865 a.completeExceptionally(ex);
4866 else
4867 a.quietlyComplete();
4868 return false;
4869 }
4870 a = p;
4871 }
4872 }
4873
4874 /**
4875 * Version of tryCompleteComputation for function screening checks
4876 */
4877 final boolean abortOnNullFunction() {
4878 return tryCompleteComputation(new Error("Unexpected null function"));
4879 }
4880
4881 // utilities
4882
4883 /** CompareAndSet pending count */
4884 final boolean casPending(int cmp, int val) {
4885 return U.compareAndSwapInt(this, PENDING, cmp, val);
4886 }
4887
4888 /**
4889 * Returns approx exp2 of the number of times (minus one) to
4890 * split task by two before executing leaf action. This value
4891 * is faster to compute and more convenient to use as a guide
4892 * to splitting than is the depth, since it is used while
4893 * dividing by two anyway.
4894 */
4895 final int batch() {
4896 int b = batch;
4897 if (b < 0) {
4898 long n = map.counter.sum();
4899 int sp = getPool().getParallelism() << 3; // slack of 8
4900 b = batch = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
4901 }
4902 return b;
4903 }
4904
4905 /**
4906 * Returns exportable snapshot entry.
4907 */
4908 static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
4909 return new AbstractMap.SimpleEntry<K,V>(k, v);
4910 }
4911
4912 // Unsafe mechanics
4913 private static final sun.misc.Unsafe U;
4914 private static final long PENDING;
4915 static {
4916 try {
4917 U = getUnsafe();
4918 PENDING = U.objectFieldOffset
4919 (BulkTask.class.getDeclaredField("pending"));
4920 } catch (Exception e) {
4921 throw new Error(e);
4922 }
4923 }
4924 }
4925
4926 /*
4927 * Task classes. Coded in a regular but ugly format/style to
4928 * simplify checks that each variant differs in the right way from
4929 * others.
4930 */
4931
4932 @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
4933 extends BulkTask<K,V,Void> {
4934 final Action<K> action;
4935 ForEachKeyTask
4936 (ConcurrentHashMapV8<K,V> m,
4937 Action<K> action) {
4938 super(m);
4939 this.action = action;
4940 }
4941 ForEachKeyTask
4942 (BulkTask<K,V,?> p, int b,
4943 Action<K> action) {
4944 super(p, b);
4945 this.action = action;
4946 }
4947 @SuppressWarnings("unchecked") public final boolean exec() {
4948 final Action<K> action = this.action;
4949 if (action == null)
4950 return abortOnNullFunction();
4951 try {
4952 int b = batch(), c;
4953 while (b > 1 && baseIndex != baseLimit) {
4954 do {} while (!casPending(c = pending, c+1));
4955 new ForEachKeyTask<K,V>(this, b >>>= 1, action).fork();
4956 }
4957 while (advance() != null)
4958 action.apply((K)nextKey);
4959 tryComplete();
4960 } catch (Throwable ex) {
4961 return tryCompleteComputation(ex);
4962 }
4963 return false;
4964 }
4965 }
4966
4967 @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
4968 extends BulkTask<K,V,Void> {
4969 final Action<V> action;
4970 ForEachValueTask
4971 (ConcurrentHashMapV8<K,V> m,
4972 Action<V> action) {
4973 super(m);
4974 this.action = action;
4975 }
4976 ForEachValueTask
4977 (BulkTask<K,V,?> p, int b,
4978 Action<V> action) {
4979 super(p, b);
4980 this.action = action;
4981 }
4982 @SuppressWarnings("unchecked") public final boolean exec() {
4983 final Action<V> action = this.action;
4984 if (action == null)
4985 return abortOnNullFunction();
4986 try {
4987 int b = batch(), c;
4988 while (b > 1 && baseIndex != baseLimit) {
4989 do {} while (!casPending(c = pending, c+1));
4990 new ForEachValueTask<K,V>(this, b >>>= 1, action).fork();
4991 }
4992 Object v;
4993 while ((v = advance()) != null)
4994 action.apply((V)v);
4995 tryComplete();
4996 } catch (Throwable ex) {
4997 return tryCompleteComputation(ex);
4998 }
4999 return false;
5000 }
5001 }
5002
5003 @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5004 extends BulkTask<K,V,Void> {
5005 final Action<Entry<K,V>> action;
5006 ForEachEntryTask
5007 (ConcurrentHashMapV8<K,V> m,
5008 Action<Entry<K,V>> action) {
5009 super(m);
5010 this.action = action;
5011 }
5012 ForEachEntryTask
5013 (BulkTask<K,V,?> p, int b,
5014 Action<Entry<K,V>> action) {
5015 super(p, b);
5016 this.action = action;
5017 }
5018 @SuppressWarnings("unchecked") public final boolean exec() {
5019 final Action<Entry<K,V>> action = this.action;
5020 if (action == null)
5021 return abortOnNullFunction();
5022 try {
5023 int b = batch(), c;
5024 while (b > 1 && baseIndex != baseLimit) {
5025 do {} while (!casPending(c = pending, c+1));
5026 new ForEachEntryTask<K,V>(this, b >>>= 1, action).fork();
5027 }
5028 Object v;
5029 while ((v = advance()) != null)
5030 action.apply(entryFor((K)nextKey, (V)v));
5031 tryComplete();
5032 } catch (Throwable ex) {
5033 return tryCompleteComputation(ex);
5034 }
5035 return false;
5036 }
5037 }
5038
5039 @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5040 extends BulkTask<K,V,Void> {
5041 final BiAction<K,V> action;
5042 ForEachMappingTask
5043 (ConcurrentHashMapV8<K,V> m,
5044 BiAction<K,V> action) {
5045 super(m);
5046 this.action = action;
5047 }
5048 ForEachMappingTask
5049 (BulkTask<K,V,?> p, int b,
5050 BiAction<K,V> action) {
5051 super(p, b);
5052 this.action = action;
5053 }
5054
5055 @SuppressWarnings("unchecked") public final boolean exec() {
5056 final BiAction<K,V> action = this.action;
5057 if (action == null)
5058 return abortOnNullFunction();
5059 try {
5060 int b = batch(), c;
5061 while (b > 1 && baseIndex != baseLimit) {
5062 do {} while (!casPending(c = pending, c+1));
5063 new ForEachMappingTask<K,V>(this, b >>>= 1,
5064 action).fork();
5065 }
5066 Object v;
5067 while ((v = advance()) != null)
5068 action.apply((K)nextKey, (V)v);
5069 tryComplete();
5070 } catch (Throwable ex) {
5071 return tryCompleteComputation(ex);
5072 }
5073 return false;
5074 }
5075 }
5076
5077 @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5078 extends BulkTask<K,V,Void> {
5079 final Fun<? super K, ? extends U> transformer;
5080 final Action<U> action;
5081 ForEachTransformedKeyTask
5082 (ConcurrentHashMapV8<K,V> m,
5083 Fun<? super K, ? extends U> transformer,
5084 Action<U> action) {
5085 super(m);
5086 this.transformer = transformer;
5087 this.action = action;
5088
5089 }
5090 ForEachTransformedKeyTask
5091 (BulkTask<K,V,?> p, int b,
5092 Fun<? super K, ? extends U> transformer,
5093 Action<U> action) {
5094 super(p, b);
5095 this.transformer = transformer;
5096 this.action = action;
5097 }
5098 @SuppressWarnings("unchecked") public final boolean exec() {
5099 final Fun<? super K, ? extends U> transformer =
5100 this.transformer;
5101 final Action<U> action = this.action;
5102 if (transformer == null || action == null)
5103 return abortOnNullFunction();
5104 try {
5105 int b = batch(), c;
5106 while (b > 1 && baseIndex != baseLimit) {
5107 do {} while (!casPending(c = pending, c+1));
5108 new ForEachTransformedKeyTask<K,V,U>
5109 (this, b >>>= 1, transformer, action).fork();
5110 }
5111 U u;
5112 while (advance() != null) {
5113 if ((u = transformer.apply((K)nextKey)) != null)
5114 action.apply(u);
5115 }
5116 tryComplete();
5117 } catch (Throwable ex) {
5118 return tryCompleteComputation(ex);
5119 }
5120 return false;
5121 }
5122 }
5123
5124 @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5125 extends BulkTask<K,V,Void> {
5126 final Fun<? super V, ? extends U> transformer;
5127 final Action<U> action;
5128 ForEachTransformedValueTask
5129 (ConcurrentHashMapV8<K,V> m,
5130 Fun<? super V, ? extends U> transformer,
5131 Action<U> action) {
5132 super(m);
5133 this.transformer = transformer;
5134 this.action = action;
5135
5136 }
5137 ForEachTransformedValueTask
5138 (BulkTask<K,V,?> p, int b,
5139 Fun<? super V, ? extends U> transformer,
5140 Action<U> action) {
5141 super(p, b);
5142 this.transformer = transformer;
5143 this.action = action;
5144 }
5145 @SuppressWarnings("unchecked") public final boolean exec() {
5146 final Fun<? super V, ? extends U> transformer =
5147 this.transformer;
5148 final Action<U> action = this.action;
5149 if (transformer == null || action == null)
5150 return abortOnNullFunction();
5151 try {
5152 int b = batch(), c;
5153 while (b > 1 && baseIndex != baseLimit) {
5154 do {} while (!casPending(c = pending, c+1));
5155 new ForEachTransformedValueTask<K,V,U>
5156 (this, b >>>= 1, transformer, action).fork();
5157 }
5158 Object v; U u;
5159 while ((v = advance()) != null) {
5160 if ((u = transformer.apply((V)v)) != null)
5161 action.apply(u);
5162 }
5163 tryComplete();
5164 } catch (Throwable ex) {
5165 return tryCompleteComputation(ex);
5166 }
5167 return false;
5168 }
5169 }
5170
5171 @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5172 extends BulkTask<K,V,Void> {
5173 final Fun<Map.Entry<K,V>, ? extends U> transformer;
5174 final Action<U> action;
5175 ForEachTransformedEntryTask
5176 (ConcurrentHashMapV8<K,V> m,
5177 Fun<Map.Entry<K,V>, ? extends U> transformer,
5178 Action<U> action) {
5179 super(m);
5180 this.transformer = transformer;
5181 this.action = action;
5182
5183 }
5184 ForEachTransformedEntryTask
5185 (BulkTask<K,V,?> p, int b,
5186 Fun<Map.Entry<K,V>, ? extends U> transformer,
5187 Action<U> action) {
5188 super(p, b);
5189 this.transformer = transformer;
5190 this.action = action;
5191 }
5192 @SuppressWarnings("unchecked") public final boolean exec() {
5193 final Fun<Map.Entry<K,V>, ? extends U> transformer =
5194 this.transformer;
5195 final Action<U> action = this.action;
5196 if (transformer == null || action == null)
5197 return abortOnNullFunction();
5198 try {
5199 int b = batch(), c;
5200 while (b > 1 && baseIndex != baseLimit) {
5201 do {} while (!casPending(c = pending, c+1));
5202 new ForEachTransformedEntryTask<K,V,U>
5203 (this, b >>>= 1, transformer, action).fork();
5204 }
5205 Object v; U u;
5206 while ((v = advance()) != null) {
5207 if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
5208 action.apply(u);
5209 }
5210 tryComplete();
5211 } catch (Throwable ex) {
5212 return tryCompleteComputation(ex);
5213 }
5214 return false;
5215 }
5216 }
5217
5218 @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5219 extends BulkTask<K,V,Void> {
5220 final BiFun<? super K, ? super V, ? extends U> transformer;
5221 final Action<U> action;
5222 ForEachTransformedMappingTask
5223 (ConcurrentHashMapV8<K,V> m,
5224 BiFun<? super K, ? super V, ? extends U> transformer,
5225 Action<U> action) {
5226 super(m);
5227 this.transformer = transformer;
5228 this.action = action;
5229
5230 }
5231 ForEachTransformedMappingTask
5232 (BulkTask<K,V,?> p, int b,
5233 BiFun<? super K, ? super V, ? extends U> transformer,
5234 Action<U> action) {
5235 super(p, b);
5236 this.transformer = transformer;
5237 this.action = action;
5238 }
5239 @SuppressWarnings("unchecked") public final boolean exec() {
5240 final BiFun<? super K, ? super V, ? extends U> transformer =
5241 this.transformer;
5242 final Action<U> action = this.action;
5243 if (transformer == null || action == null)
5244 return abortOnNullFunction();
5245 try {
5246 int b = batch(), c;
5247 while (b > 1 && baseIndex != baseLimit) {
5248 do {} while (!casPending(c = pending, c+1));
5249 new ForEachTransformedMappingTask<K,V,U>
5250 (this, b >>>= 1, transformer, action).fork();
5251 }
5252 Object v; U u;
5253 while ((v = advance()) != null) {
5254 if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5255 action.apply(u);
5256 }
5257 tryComplete();
5258 } catch (Throwable ex) {
5259 return tryCompleteComputation(ex);
5260 }
5261 return false;
5262 }
5263 }
5264
5265 @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5266 extends BulkTask<K,V,U> {
5267 final Fun<? super K, ? extends U> searchFunction;
5268 final AtomicReference<U> result;
5269 SearchKeysTask
5270 (ConcurrentHashMapV8<K,V> m,
5271 Fun<? super K, ? extends U> searchFunction,
5272 AtomicReference<U> result) {
5273 super(m);
5274 this.searchFunction = searchFunction; this.result = result;
5275 }
5276 SearchKeysTask
5277 (BulkTask<K,V,?> p, int b,
5278 Fun<? super K, ? extends U> searchFunction,
5279 AtomicReference<U> result) {
5280 super(p, b);
5281 this.searchFunction = searchFunction; this.result = result;
5282 }
5283 @SuppressWarnings("unchecked") public final boolean exec() {
5284 AtomicReference<U> result = this.result;
5285 final Fun<? super K, ? extends U> searchFunction =
5286 this.searchFunction;
5287 if (searchFunction == null || result == null)
5288 return abortOnNullFunction();
5289 try {
5290 int b = batch(), c;
5291 while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5292 do {} while (!casPending(c = pending, c+1));
5293 new SearchKeysTask<K,V,U>(this, b >>>= 1,
5294 searchFunction, result).fork();
5295 }
5296 U u;
5297 while (result.get() == null && advance() != null) {
5298 if ((u = searchFunction.apply((K)nextKey)) != null) {
5299 if (result.compareAndSet(null, u))
5300 tryCompleteComputation(null);
5301 break;
5302 }
5303 }
5304 tryComplete();
5305 } catch (Throwable ex) {
5306 return tryCompleteComputation(ex);
5307 }
5308 return false;
5309 }
5310 public final U getRawResult() { return result.get(); }
5311 }
5312
5313 @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5314 extends BulkTask<K,V,U> {
5315 final Fun<? super V, ? extends U> searchFunction;
5316 final AtomicReference<U> result;
5317 SearchValuesTask
5318 (ConcurrentHashMapV8<K,V> m,
5319 Fun<? super V, ? extends U> searchFunction,
5320 AtomicReference<U> result) {
5321 super(m);
5322 this.searchFunction = searchFunction; this.result = result;
5323 }
5324 SearchValuesTask
5325 (BulkTask<K,V,?> p, int b,
5326 Fun<? super V, ? extends U> searchFunction,
5327 AtomicReference<U> result) {
5328 super(p, b);
5329 this.searchFunction = searchFunction; this.result = result;
5330 }
5331 @SuppressWarnings("unchecked") public final boolean exec() {
5332 AtomicReference<U> result = this.result;
5333 final Fun<? super V, ? extends U> searchFunction =
5334 this.searchFunction;
5335 if (searchFunction == null || result == null)
5336 return abortOnNullFunction();
5337 try {
5338 int b = batch(), c;
5339 while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5340 do {} while (!casPending(c = pending, c+1));
5341 new SearchValuesTask<K,V,U>(this, b >>>= 1,
5342 searchFunction, result).fork();
5343 }
5344 Object v; U u;
5345 while (result.get() == null && (v = advance()) != null) {
5346 if ((u = searchFunction.apply((V)v)) != null) {
5347 if (result.compareAndSet(null, u))
5348 tryCompleteComputation(null);
5349 break;
5350 }
5351 }
5352 tryComplete();
5353 } catch (Throwable ex) {
5354 return tryCompleteComputation(ex);
5355 }
5356 return false;
5357 }
5358 public final U getRawResult() { return result.get(); }
5359 }
5360
5361 @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5362 extends BulkTask<K,V,U> {
5363 final Fun<Entry<K,V>, ? extends U> searchFunction;
5364 final AtomicReference<U> result;
5365 SearchEntriesTask
5366 (ConcurrentHashMapV8<K,V> m,
5367 Fun<Entry<K,V>, ? extends U> searchFunction,
5368 AtomicReference<U> result) {
5369 super(m);
5370 this.searchFunction = searchFunction; this.result = result;
5371 }
5372 SearchEntriesTask
5373 (BulkTask<K,V,?> p, int b,
5374 Fun<Entry<K,V>, ? extends U> searchFunction,
5375 AtomicReference<U> result) {
5376 super(p, b);
5377 this.searchFunction = searchFunction; this.result = result;
5378 }
5379 @SuppressWarnings("unchecked") public final boolean exec() {
5380 AtomicReference<U> result = this.result;
5381 final Fun<Entry<K,V>, ? extends U> searchFunction =
5382 this.searchFunction;
5383 if (searchFunction == null || result == null)
5384 return abortOnNullFunction();
5385 try {
5386 int b = batch(), c;
5387 while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5388 do {} while (!casPending(c = pending, c+1));
5389 new SearchEntriesTask<K,V,U>(this, b >>>= 1,
5390 searchFunction, result).fork();
5391 }
5392 Object v; U u;
5393 while (result.get() == null && (v = advance()) != null) {
5394 if ((u = searchFunction.apply(entryFor((K)nextKey, (V)v))) != null) {
5395 if (result.compareAndSet(null, u))
5396 tryCompleteComputation(null);
5397 break;
5398 }
5399 }
5400 tryComplete();
5401 } catch (Throwable ex) {
5402 return tryCompleteComputation(ex);
5403 }
5404 return false;
5405 }
5406 public final U getRawResult() { return result.get(); }
5407 }
5408
5409 @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5410 extends BulkTask<K,V,U> {
5411 final BiFun<? super K, ? super V, ? extends U> searchFunction;
5412 final AtomicReference<U> result;
5413 SearchMappingsTask
5414 (ConcurrentHashMapV8<K,V> m,
5415 BiFun<? super K, ? super V, ? extends U> searchFunction,
5416 AtomicReference<U> result) {
5417 super(m);
5418 this.searchFunction = searchFunction; this.result = result;
5419 }
5420 SearchMappingsTask
5421 (BulkTask<K,V,?> p, int b,
5422 BiFun<? super K, ? super V, ? extends U> searchFunction,
5423 AtomicReference<U> result) {
5424 super(p, b);
5425 this.searchFunction = searchFunction; this.result = result;
5426 }
5427 @SuppressWarnings("unchecked") public final boolean exec() {
5428 AtomicReference<U> result = this.result;
5429 final BiFun<? super K, ? super V, ? extends U> searchFunction =
5430 this.searchFunction;
5431 if (searchFunction == null || result == null)
5432 return abortOnNullFunction();
5433 try {
5434 int b = batch(), c;
5435 while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5436 do {} while (!casPending(c = pending, c+1));
5437 new SearchMappingsTask<K,V,U>(this, b >>>= 1,
5438 searchFunction, result).fork();
5439 }
5440 Object v; U u;
5441 while (result.get() == null && (v = advance()) != null) {
5442 if ((u = searchFunction.apply((K)nextKey, (V)v)) != null) {
5443 if (result.compareAndSet(null, u))
5444 tryCompleteComputation(null);
5445 break;
5446 }
5447 }
5448 tryComplete();
5449 } catch (Throwable ex) {
5450 return tryCompleteComputation(ex);
5451 }
5452 return false;
5453 }
5454 public final U getRawResult() { return result.get(); }
5455 }
5456
5457 @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5458 extends BulkTask<K,V,K> {
5459 final BiFun<? super K, ? super K, ? extends K> reducer;
5460 K result;
5461 ReduceKeysTask<K,V> rights, nextRight;
5462 ReduceKeysTask
5463 (ConcurrentHashMapV8<K,V> m,
5464 BiFun<? super K, ? super K, ? extends K> reducer) {
5465 super(m);
5466 this.reducer = reducer;
5467 }
5468 ReduceKeysTask
5469 (BulkTask<K,V,?> p, int b,
5470 ReduceKeysTask<K,V> nextRight,
5471 BiFun<? super K, ? super K, ? extends K> reducer) {
5472 super(p, b); this.nextRight = nextRight;
5473 this.reducer = reducer;
5474 }
5475
5476 @SuppressWarnings("unchecked") public final boolean exec() {
5477 final BiFun<? super K, ? super K, ? extends K> reducer =
5478 this.reducer;
5479 if (reducer == null)
5480 return abortOnNullFunction();
5481 try {
5482 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5483 do {} while (!casPending(c = pending, c+1));
5484 (rights = new ReduceKeysTask<K,V>
5485 (this, b >>>= 1, rights, reducer)).fork();
5486 }
5487 K r = null;
5488 while (advance() != null) {
5489 K u = (K)nextKey;
5490 r = (r == null) ? u : reducer.apply(r, u);
5491 }
5492 result = r;
5493 for (ReduceKeysTask<K,V> t = this, s;;) {
5494 int c; BulkTask<K,V,?> par; K tr, sr;
5495 if ((c = t.pending) == 0) {
5496 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5497 if ((sr = s.result) != null)
5498 t.result = (tr = t.result) == null? sr : reducer.apply(tr, sr);
5499 }
5500 if ((par = t.parent) == null ||
5501 !(par instanceof ReduceKeysTask)) {
5502 t.quietlyComplete();
5503 break;
5504 }
5505 t = (ReduceKeysTask<K,V>)par;
5506 }
5507 else if (t.casPending(c, c - 1))
5508 break;
5509 }
5510 } catch (Throwable ex) {
5511 return tryCompleteComputation(ex);
5512 }
5513 return false;
5514 }
5515 public final K getRawResult() { return result; }
5516 }
5517
5518 @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5519 extends BulkTask<K,V,V> {
5520 final BiFun<? super V, ? super V, ? extends V> reducer;
5521 V result;
5522 ReduceValuesTask<K,V> rights, nextRight;
5523 ReduceValuesTask
5524 (ConcurrentHashMapV8<K,V> m,
5525 BiFun<? super V, ? super V, ? extends V> reducer) {
5526 super(m);
5527 this.reducer = reducer;
5528 }
5529 ReduceValuesTask
5530 (BulkTask<K,V,?> p, int b,
5531 ReduceValuesTask<K,V> nextRight,
5532 BiFun<? super V, ? super V, ? extends V> reducer) {
5533 super(p, b); this.nextRight = nextRight;
5534 this.reducer = reducer;
5535 }
5536
5537 @SuppressWarnings("unchecked") public final boolean exec() {
5538 final BiFun<? super V, ? super V, ? extends V> reducer =
5539 this.reducer;
5540 if (reducer == null)
5541 return abortOnNullFunction();
5542 try {
5543 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5544 do {} while (!casPending(c = pending, c+1));
5545 (rights = new ReduceValuesTask<K,V>
5546 (this, b >>>= 1, rights, reducer)).fork();
5547 }
5548 V r = null;
5549 Object v;
5550 while ((v = advance()) != null) {
5551 V u = (V)v;
5552 r = (r == null) ? u : reducer.apply(r, u);
5553 }
5554 result = r;
5555 for (ReduceValuesTask<K,V> t = this, s;;) {
5556 int c; BulkTask<K,V,?> par; V tr, sr;
5557 if ((c = t.pending) == 0) {
5558 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5559 if ((sr = s.result) != null)
5560 t.result = (tr = t.result) == null? sr : reducer.apply(tr, sr);
5561 }
5562 if ((par = t.parent) == null ||
5563 !(par instanceof ReduceValuesTask)) {
5564 t.quietlyComplete();
5565 break;
5566 }
5567 t = (ReduceValuesTask<K,V>)par;
5568 }
5569 else if (t.casPending(c, c - 1))
5570 break;
5571 }
5572 } catch (Throwable ex) {
5573 return tryCompleteComputation(ex);
5574 }
5575 return false;
5576 }
5577 public final V getRawResult() { return result; }
5578 }
5579
5580 @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
5581 extends BulkTask<K,V,Map.Entry<K,V>> {
5582 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5583 Map.Entry<K,V> result;
5584 ReduceEntriesTask<K,V> rights, nextRight;
5585 ReduceEntriesTask
5586 (ConcurrentHashMapV8<K,V> m,
5587 BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5588 super(m);
5589 this.reducer = reducer;
5590 }
5591 ReduceEntriesTask
5592 (BulkTask<K,V,?> p, int b,
5593 ReduceEntriesTask<K,V> nextRight,
5594 BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5595 super(p, b); this.nextRight = nextRight;
5596 this.reducer = reducer;
5597 }
5598
5599 @SuppressWarnings("unchecked") public final boolean exec() {
5600 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer =
5601 this.reducer;
5602 if (reducer == null)
5603 return abortOnNullFunction();
5604 try {
5605 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5606 do {} while (!casPending(c = pending, c+1));
5607 (rights = new ReduceEntriesTask<K,V>
5608 (this, b >>>= 1, rights, reducer)).fork();
5609 }
5610 Map.Entry<K,V> r = null;
5611 Object v;
5612 while ((v = advance()) != null) {
5613 Map.Entry<K,V> u = entryFor((K)nextKey, (V)v);
5614 r = (r == null) ? u : reducer.apply(r, u);
5615 }
5616 result = r;
5617 for (ReduceEntriesTask<K,V> t = this, s;;) {
5618 int c; BulkTask<K,V,?> par; Map.Entry<K,V> tr, sr;
5619 if ((c = t.pending) == 0) {
5620 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5621 if ((sr = s.result) != null)
5622 t.result = (tr = t.result) == null? sr : reducer.apply(tr, sr);
5623 }
5624 if ((par = t.parent) == null ||
5625 !(par instanceof ReduceEntriesTask)) {
5626 t.quietlyComplete();
5627 break;
5628 }
5629 t = (ReduceEntriesTask<K,V>)par;
5630 }
5631 else if (t.casPending(c, c - 1))
5632 break;
5633 }
5634 } catch (Throwable ex) {
5635 return tryCompleteComputation(ex);
5636 }
5637 return false;
5638 }
5639 public final Map.Entry<K,V> getRawResult() { return result; }
5640 }
5641
5642 @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
5643 extends BulkTask<K,V,U> {
5644 final Fun<? super K, ? extends U> transformer;
5645 final BiFun<? super U, ? super U, ? extends U> reducer;
5646 U result;
5647 MapReduceKeysTask<K,V,U> rights, nextRight;
5648 MapReduceKeysTask
5649 (ConcurrentHashMapV8<K,V> m,
5650 Fun<? super K, ? extends U> transformer,
5651 BiFun<? super U, ? super U, ? extends U> reducer) {
5652 super(m);
5653 this.transformer = transformer;
5654 this.reducer = reducer;
5655 }
5656 MapReduceKeysTask
5657 (BulkTask<K,V,?> p, int b,
5658 MapReduceKeysTask<K,V,U> nextRight,
5659 Fun<? super K, ? extends U> transformer,
5660 BiFun<? super U, ? super U, ? extends U> reducer) {
5661 super(p, b); this.nextRight = nextRight;
5662 this.transformer = transformer;
5663 this.reducer = reducer;
5664 }
5665 @SuppressWarnings("unchecked") public final boolean exec() {
5666 final Fun<? super K, ? extends U> transformer =
5667 this.transformer;
5668 final BiFun<? super U, ? super U, ? extends U> reducer =
5669 this.reducer;
5670 if (transformer == null || reducer == null)
5671 return abortOnNullFunction();
5672 try {
5673 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5674 do {} while (!casPending(c = pending, c+1));
5675 (rights = new MapReduceKeysTask<K,V,U>
5676 (this, b >>>= 1, rights, transformer, reducer)).fork();
5677 }
5678 U r = null, u;
5679 while (advance() != null) {
5680 if ((u = transformer.apply((K)nextKey)) != null)
5681 r = (r == null) ? u : reducer.apply(r, u);
5682 }
5683 result = r;
5684 for (MapReduceKeysTask<K,V,U> t = this, s;;) {
5685 int c; BulkTask<K,V,?> par; U tr, sr;
5686 if ((c = t.pending) == 0) {
5687 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5688 if ((sr = s.result) != null)
5689 t.result = (tr = t.result) == null? sr : reducer.apply(tr, sr);
5690 }
5691 if ((par = t.parent) == null ||
5692 !(par instanceof MapReduceKeysTask)) {
5693 t.quietlyComplete();
5694 break;
5695 }
5696 t = (MapReduceKeysTask<K,V,U>)par;
5697 }
5698 else if (t.casPending(c, c - 1))
5699 break;
5700 }
5701 } catch (Throwable ex) {
5702 return tryCompleteComputation(ex);
5703 }
5704 return false;
5705 }
5706 public final U getRawResult() { return result; }
5707 }
5708
5709 @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
5710 extends BulkTask<K,V,U> {
5711 final Fun<? super V, ? extends U> transformer;
5712 final BiFun<? super U, ? super U, ? extends U> reducer;
5713 U result;
5714 MapReduceValuesTask<K,V,U> rights, nextRight;
5715 MapReduceValuesTask
5716 (ConcurrentHashMapV8<K,V> m,
5717 Fun<? super V, ? extends U> transformer,
5718 BiFun<? super U, ? super U, ? extends U> reducer) {
5719 super(m);
5720 this.transformer = transformer;
5721 this.reducer = reducer;
5722 }
5723 MapReduceValuesTask
5724 (BulkTask<K,V,?> p, int b,
5725 MapReduceValuesTask<K,V,U> nextRight,
5726 Fun<? super V, ? extends U> transformer,
5727 BiFun<? super U, ? super U, ? extends U> reducer) {
5728 super(p, b); this.nextRight = nextRight;
5729 this.transformer = transformer;
5730 this.reducer = reducer;
5731 }
5732 @SuppressWarnings("unchecked") public final boolean exec() {
5733 final Fun<? super V, ? extends U> transformer =
5734 this.transformer;
5735 final BiFun<? super U, ? super U, ? extends U> reducer =
5736 this.reducer;
5737 if (transformer == null || reducer == null)
5738 return abortOnNullFunction();
5739 try {
5740 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5741 do {} while (!casPending(c = pending, c+1));
5742 (rights = new MapReduceValuesTask<K,V,U>
5743 (this, b >>>= 1, rights, transformer, reducer)).fork();
5744 }
5745 U r = null, u;
5746 Object v;
5747 while ((v = advance()) != null) {
5748 if ((u = transformer.apply((V)v)) != null)
5749 r = (r == null) ? u : reducer.apply(r, u);
5750 }
5751 result = r;
5752 for (MapReduceValuesTask<K,V,U> t = this, s;;) {
5753 int c; BulkTask<K,V,?> par; U tr, sr;
5754 if ((c = t.pending) == 0) {
5755 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5756 if ((sr = s.result) != null)
5757 t.result = (tr = t.result) == null? sr : reducer.apply(tr, sr);
5758 }
5759 if ((par = t.parent) == null ||
5760 !(par instanceof MapReduceValuesTask)) {
5761 t.quietlyComplete();
5762 break;
5763 }
5764 t = (MapReduceValuesTask<K,V,U>)par;
5765 }
5766 else if (t.casPending(c, c - 1))
5767 break;
5768 }
5769 } catch (Throwable ex) {
5770 return tryCompleteComputation(ex);
5771 }
5772 return false;
5773 }
5774 public final U getRawResult() { return result; }
5775 }
5776
5777 @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
5778 extends BulkTask<K,V,U> {
5779 final Fun<Map.Entry<K,V>, ? extends U> transformer;
5780 final BiFun<? super U, ? super U, ? extends U> reducer;
5781 U result;
5782 MapReduceEntriesTask<K,V,U> rights, nextRight;
5783 MapReduceEntriesTask
5784 (ConcurrentHashMapV8<K,V> m,
5785 Fun<Map.Entry<K,V>, ? extends U> transformer,
5786 BiFun<? super U, ? super U, ? extends U> reducer) {
5787 super(m);
5788 this.transformer = transformer;
5789 this.reducer = reducer;
5790 }
5791 MapReduceEntriesTask
5792 (BulkTask<K,V,?> p, int b,
5793 MapReduceEntriesTask<K,V,U> nextRight,
5794 Fun<Map.Entry<K,V>, ? extends U> transformer,
5795 BiFun<? super U, ? super U, ? extends U> reducer) {
5796 super(p, b); this.nextRight = nextRight;
5797 this.transformer = transformer;
5798 this.reducer = reducer;
5799 }
5800 @SuppressWarnings("unchecked") public final boolean exec() {
5801 final Fun<Map.Entry<K,V>, ? extends U> transformer =
5802 this.transformer;
5803 final BiFun<? super U, ? super U, ? extends U> reducer =
5804 this.reducer;
5805 if (transformer == null || reducer == null)
5806 return abortOnNullFunction();
5807 try {
5808 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5809 do {} while (!casPending(c = pending, c+1));
5810 (rights = new MapReduceEntriesTask<K,V,U>
5811 (this, b >>>= 1, rights, transformer, reducer)).fork();
5812 }
5813 U r = null, u;
5814 Object v;
5815 while ((v = advance()) != null) {
5816 if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
5817 r = (r == null) ? u : reducer.apply(r, u);
5818 }
5819 result = r;
5820 for (MapReduceEntriesTask<K,V,U> t = this, s;;) {
5821 int c; BulkTask<K,V,?> par; U tr, sr;
5822 if ((c = t.pending) == 0) {
5823 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5824 if ((sr = s.result) != null)
5825 t.result = (tr = t.result) == null? sr : reducer.apply(tr, sr);
5826 }
5827 if ((par = t.parent) == null ||
5828 !(par instanceof MapReduceEntriesTask)) {
5829 t.quietlyComplete();
5830 break;
5831 }
5832 t = (MapReduceEntriesTask<K,V,U>)par;
5833 }
5834 else if (t.casPending(c, c - 1))
5835 break;
5836 }
5837 } catch (Throwable ex) {
5838 return tryCompleteComputation(ex);
5839 }
5840 return false;
5841 }
5842 public final U getRawResult() { return result; }
5843 }
5844
5845 @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
5846 extends BulkTask<K,V,U> {
5847 final BiFun<? super K, ? super V, ? extends U> transformer;
5848 final BiFun<? super U, ? super U, ? extends U> reducer;
5849 U result;
5850 MapReduceMappingsTask<K,V,U> rights, nextRight;
5851 MapReduceMappingsTask
5852 (ConcurrentHashMapV8<K,V> m,
5853 BiFun<? super K, ? super V, ? extends U> transformer,
5854 BiFun<? super U, ? super U, ? extends U> reducer) {
5855 super(m);
5856 this.transformer = transformer;
5857 this.reducer = reducer;
5858 }
5859 MapReduceMappingsTask
5860 (BulkTask<K,V,?> p, int b,
5861 MapReduceMappingsTask<K,V,U> nextRight,
5862 BiFun<? super K, ? super V, ? extends U> transformer,
5863 BiFun<? super U, ? super U, ? extends U> reducer) {
5864 super(p, b); this.nextRight = nextRight;
5865 this.transformer = transformer;
5866 this.reducer = reducer;
5867 }
5868 @SuppressWarnings("unchecked") public final boolean exec() {
5869 final BiFun<? super K, ? super V, ? extends U> transformer =
5870 this.transformer;
5871 final BiFun<? super U, ? super U, ? extends U> reducer =
5872 this.reducer;
5873 if (transformer == null || reducer == null)
5874 return abortOnNullFunction();
5875 try {
5876 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5877 do {} while (!casPending(c = pending, c+1));
5878 (rights = new MapReduceMappingsTask<K,V,U>
5879 (this, b >>>= 1, rights, transformer, reducer)).fork();
5880 }
5881 U r = null, u;
5882 Object v;
5883 while ((v = advance()) != null) {
5884 if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5885 r = (r == null) ? u : reducer.apply(r, u);
5886 }
5887 result = r;
5888 for (MapReduceMappingsTask<K,V,U> t = this, s;;) {
5889 int c; BulkTask<K,V,?> par; U tr, sr;
5890 if ((c = t.pending) == 0) {
5891 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5892 if ((sr = s.result) != null)
5893 t.result = (tr = t.result) == null? sr : reducer.apply(tr, sr);
5894 }
5895 if ((par = t.parent) == null ||
5896 !(par instanceof MapReduceMappingsTask)) {
5897 t.quietlyComplete();
5898 break;
5899 }
5900 t = (MapReduceMappingsTask<K,V,U>)par;
5901 }
5902 else if (t.casPending(c, c - 1))
5903 break;
5904 }
5905 } catch (Throwable ex) {
5906 return tryCompleteComputation(ex);
5907 }
5908 return false;
5909 }
5910 public final U getRawResult() { return result; }
5911 }
5912
5913 @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
5914 extends BulkTask<K,V,Double> {
5915 final ObjectToDouble<? super K> transformer;
5916 final DoubleByDoubleToDouble reducer;
5917 final double basis;
5918 double result;
5919 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5920 MapReduceKeysToDoubleTask
5921 (ConcurrentHashMapV8<K,V> m,
5922 ObjectToDouble<? super K> transformer,
5923 double basis,
5924 DoubleByDoubleToDouble reducer) {
5925 super(m);
5926 this.transformer = transformer;
5927 this.basis = basis; this.reducer = reducer;
5928 }
5929 MapReduceKeysToDoubleTask
5930 (BulkTask<K,V,?> p, int b,
5931 MapReduceKeysToDoubleTask<K,V> nextRight,
5932 ObjectToDouble<? super K> transformer,
5933 double basis,
5934 DoubleByDoubleToDouble reducer) {
5935 super(p, b); this.nextRight = nextRight;
5936 this.transformer = transformer;
5937 this.basis = basis; this.reducer = reducer;
5938 }
5939 @SuppressWarnings("unchecked") public final boolean exec() {
5940 final ObjectToDouble<? super K> transformer =
5941 this.transformer;
5942 final DoubleByDoubleToDouble reducer = this.reducer;
5943 if (transformer == null || reducer == null)
5944 return abortOnNullFunction();
5945 try {
5946 final double id = this.basis;
5947 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5948 do {} while (!casPending(c = pending, c+1));
5949 (rights = new MapReduceKeysToDoubleTask<K,V>
5950 (this, b >>>= 1, rights, transformer, id, reducer)).fork();
5951 }
5952 double r = id;
5953 while (advance() != null)
5954 r = reducer.apply(r, transformer.apply((K)nextKey));
5955 result = r;
5956 for (MapReduceKeysToDoubleTask<K,V> t = this, s;;) {
5957 int c; BulkTask<K,V,?> par;
5958 if ((c = t.pending) == 0) {
5959 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5960 t.result = reducer.apply(t.result, s.result);
5961 }
5962 if ((par = t.parent) == null ||
5963 !(par instanceof MapReduceKeysToDoubleTask)) {
5964 t.quietlyComplete();
5965 break;
5966 }
5967 t = (MapReduceKeysToDoubleTask<K,V>)par;
5968 }
5969 else if (t.casPending(c, c - 1))
5970 break;
5971 }
5972 } catch (Throwable ex) {
5973 return tryCompleteComputation(ex);
5974 }
5975 return false;
5976 }
5977 public final Double getRawResult() { return result; }
5978 }
5979
5980 @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
5981 extends BulkTask<K,V,Double> {
5982 final ObjectToDouble<? super V> transformer;
5983 final DoubleByDoubleToDouble reducer;
5984 final double basis;
5985 double result;
5986 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5987 MapReduceValuesToDoubleTask
5988 (ConcurrentHashMapV8<K,V> m,
5989 ObjectToDouble<? super V> transformer,
5990 double basis,
5991 DoubleByDoubleToDouble reducer) {
5992 super(m);
5993 this.transformer = transformer;
5994 this.basis = basis; this.reducer = reducer;
5995 }
5996 MapReduceValuesToDoubleTask
5997 (BulkTask<K,V,?> p, int b,
5998 MapReduceValuesToDoubleTask<K,V> nextRight,
5999 ObjectToDouble<? super V> transformer,
6000 double basis,
6001 DoubleByDoubleToDouble reducer) {
6002 super(p, b); this.nextRight = nextRight;
6003 this.transformer = transformer;
6004 this.basis = basis; this.reducer = reducer;
6005 }
6006 @SuppressWarnings("unchecked") public final boolean exec() {
6007 final ObjectToDouble<? super V> transformer =
6008 this.transformer;
6009 final DoubleByDoubleToDouble reducer = this.reducer;
6010 if (transformer == null || reducer == null)
6011 return abortOnNullFunction();
6012 try {
6013 final double id = this.basis;
6014 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6015 do {} while (!casPending(c = pending, c+1));
6016 (rights = new MapReduceValuesToDoubleTask<K,V>
6017 (this, b >>>= 1, rights, transformer, id, reducer)).fork();
6018 }
6019 double r = id;
6020 Object v;
6021 while ((v = advance()) != null)
6022 r = reducer.apply(r, transformer.apply((V)v));
6023 result = r;
6024 for (MapReduceValuesToDoubleTask<K,V> t = this, s;;) {
6025 int c; BulkTask<K,V,?> par;
6026 if ((c = t.pending) == 0) {
6027 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6028 t.result = reducer.apply(t.result, s.result);
6029 }
6030 if ((par = t.parent) == null ||
6031 !(par instanceof MapReduceValuesToDoubleTask)) {
6032 t.quietlyComplete();
6033 break;
6034 }
6035 t = (MapReduceValuesToDoubleTask<K,V>)par;
6036 }
6037 else if (t.casPending(c, c - 1))
6038 break;
6039 }
6040 } catch (Throwable ex) {
6041 return tryCompleteComputation(ex);
6042 }
6043 return false;
6044 }
6045 public final Double getRawResult() { return result; }
6046 }
6047
6048 @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6049 extends BulkTask<K,V,Double> {
6050 final ObjectToDouble<Map.Entry<K,V>> transformer;
6051 final DoubleByDoubleToDouble reducer;
6052 final double basis;
6053 double result;
6054 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6055 MapReduceEntriesToDoubleTask
6056 (ConcurrentHashMapV8<K,V> m,
6057 ObjectToDouble<Map.Entry<K,V>> transformer,
6058 double basis,
6059 DoubleByDoubleToDouble reducer) {
6060 super(m);
6061 this.transformer = transformer;
6062 this.basis = basis; this.reducer = reducer;
6063 }
6064 MapReduceEntriesToDoubleTask
6065 (BulkTask<K,V,?> p, int b,
6066 MapReduceEntriesToDoubleTask<K,V> nextRight,
6067 ObjectToDouble<Map.Entry<K,V>> transformer,
6068 double basis,
6069 DoubleByDoubleToDouble reducer) {
6070 super(p, b); this.nextRight = nextRight;
6071 this.transformer = transformer;
6072 this.basis = basis; this.reducer = reducer;
6073 }
6074 @SuppressWarnings("unchecked") public final boolean exec() {
6075 final ObjectToDouble<Map.Entry<K,V>> transformer =
6076 this.transformer;
6077 final DoubleByDoubleToDouble reducer = this.reducer;
6078 if (transformer == null || reducer == null)
6079 return abortOnNullFunction();
6080 try {
6081 final double id = this.basis;
6082 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6083 do {} while (!casPending(c = pending, c+1));
6084 (rights = new MapReduceEntriesToDoubleTask<K,V>
6085 (this, b >>>= 1, rights, transformer, id, reducer)).fork();
6086 }
6087 double r = id;
6088 Object v;
6089 while ((v = advance()) != null)
6090 r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6091 result = r;
6092 for (MapReduceEntriesToDoubleTask<K,V> t = this, s;;) {
6093 int c; BulkTask<K,V,?> par;
6094 if ((c = t.pending) == 0) {
6095 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6096 t.result = reducer.apply(t.result, s.result);
6097 }
6098 if ((par = t.parent) == null ||
6099 !(par instanceof MapReduceEntriesToDoubleTask)) {
6100 t.quietlyComplete();
6101 break;
6102 }
6103 t = (MapReduceEntriesToDoubleTask<K,V>)par;
6104 }
6105 else if (t.casPending(c, c - 1))
6106 break;
6107 }
6108 } catch (Throwable ex) {
6109 return tryCompleteComputation(ex);
6110 }
6111 return false;
6112 }
6113 public final Double getRawResult() { return result; }
6114 }
6115
6116 @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6117 extends BulkTask<K,V,Double> {
6118 final ObjectByObjectToDouble<? super K, ? super V> transformer;
6119 final DoubleByDoubleToDouble reducer;
6120 final double basis;
6121 double result;
6122 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6123 MapReduceMappingsToDoubleTask
6124 (ConcurrentHashMapV8<K,V> m,
6125 ObjectByObjectToDouble<? super K, ? super V> transformer,
6126 double basis,
6127 DoubleByDoubleToDouble reducer) {
6128 super(m);
6129 this.transformer = transformer;
6130 this.basis = basis; this.reducer = reducer;
6131 }
6132 MapReduceMappingsToDoubleTask
6133 (BulkTask<K,V,?> p, int b,
6134 MapReduceMappingsToDoubleTask<K,V> nextRight,
6135 ObjectByObjectToDouble<? super K, ? super V> transformer,
6136 double basis,
6137 DoubleByDoubleToDouble reducer) {
6138 super(p, b); this.nextRight = nextRight;
6139 this.transformer = transformer;
6140 this.basis = basis; this.reducer = reducer;
6141 }
6142 @SuppressWarnings("unchecked") public final boolean exec() {
6143 final ObjectByObjectToDouble<? super K, ? super V> transformer =
6144 this.transformer;
6145 final DoubleByDoubleToDouble reducer = this.reducer;
6146 if (transformer == null || reducer == null)
6147 return abortOnNullFunction();
6148 try {
6149 final double id = this.basis;
6150 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6151 do {} while (!casPending(c = pending, c+1));
6152 (rights = new MapReduceMappingsToDoubleTask<K,V>
6153 (this, b >>>= 1, rights, transformer, id, reducer)).fork();
6154 }
6155 double r = id;
6156 Object v;
6157 while ((v = advance()) != null)
6158 r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6159 result = r;
6160 for (MapReduceMappingsToDoubleTask<K,V> t = this, s;;) {
6161 int c; BulkTask<K,V,?> par;
6162 if ((c = t.pending) == 0) {
6163 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6164 t.result = reducer.apply(t.result, s.result);
6165 }
6166 if ((par = t.parent) == null ||
6167 !(par instanceof MapReduceMappingsToDoubleTask)) {
6168 t.quietlyComplete();
6169 break;
6170 }
6171 t = (MapReduceMappingsToDoubleTask<K,V>)par;
6172 }
6173 else if (t.casPending(c, c - 1))
6174 break;
6175 }
6176 } catch (Throwable ex) {
6177 return tryCompleteComputation(ex);
6178 }
6179 return false;
6180 }
6181 public final Double getRawResult() { return result; }
6182 }
6183
6184 @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6185 extends BulkTask<K,V,Long> {
6186 final ObjectToLong<? super K> transformer;
6187 final LongByLongToLong reducer;
6188 final long basis;
6189 long result;
6190 MapReduceKeysToLongTask<K,V> rights, nextRight;
6191 MapReduceKeysToLongTask
6192 (ConcurrentHashMapV8<K,V> m,
6193 ObjectToLong<? super K> transformer,
6194 long basis,
6195 LongByLongToLong reducer) {
6196 super(m);
6197 this.transformer = transformer;
6198 this.basis = basis; this.reducer = reducer;
6199 }
6200 MapReduceKeysToLongTask
6201 (BulkTask<K,V,?> p, int b,
6202 MapReduceKeysToLongTask<K,V> nextRight,
6203 ObjectToLong<? super K> transformer,
6204 long basis,
6205 LongByLongToLong reducer) {
6206 super(p, b); this.nextRight = nextRight;
6207 this.transformer = transformer;
6208 this.basis = basis; this.reducer = reducer;
6209 }
6210 @SuppressWarnings("unchecked") public final boolean exec() {
6211 final ObjectToLong<? super K> transformer =
6212 this.transformer;
6213 final LongByLongToLong reducer = this.reducer;
6214 if (transformer == null || reducer == null)
6215 return abortOnNullFunction();
6216 try {
6217 final long id = this.basis;
6218 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6219 do {} while (!casPending(c = pending, c+1));
6220 (rights = new MapReduceKeysToLongTask<K,V>
6221 (this, b >>>= 1, rights, transformer, id, reducer)).fork();
6222 }
6223 long r = id;
6224 while (advance() != null)
6225 r = reducer.apply(r, transformer.apply((K)nextKey));
6226 result = r;
6227 for (MapReduceKeysToLongTask<K,V> t = this, s;;) {
6228 int c; BulkTask<K,V,?> par;
6229 if ((c = t.pending) == 0) {
6230 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6231 t.result = reducer.apply(t.result, s.result);
6232 }
6233 if ((par = t.parent) == null ||
6234 !(par instanceof MapReduceKeysToLongTask)) {
6235 t.quietlyComplete();
6236 break;
6237 }
6238 t = (MapReduceKeysToLongTask<K,V>)par;
6239 }
6240 else if (t.casPending(c, c - 1))
6241 break;
6242 }
6243 } catch (Throwable ex) {
6244 return tryCompleteComputation(ex);
6245 }
6246 return false;
6247 }
6248 public final Long getRawResult() { return result; }
6249 }
6250
6251 @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6252 extends BulkTask<K,V,Long> {
6253 final ObjectToLong<? super V> transformer;
6254 final LongByLongToLong reducer;
6255 final long basis;
6256 long result;
6257 MapReduceValuesToLongTask<K,V> rights, nextRight;
6258 MapReduceValuesToLongTask
6259 (ConcurrentHashMapV8<K,V> m,
6260 ObjectToLong<? super V> transformer,
6261 long basis,
6262 LongByLongToLong reducer) {
6263 super(m);
6264 this.transformer = transformer;
6265 this.basis = basis; this.reducer = reducer;
6266 }
6267 MapReduceValuesToLongTask
6268 (BulkTask<K,V,?> p, int b,
6269 MapReduceValuesToLongTask<K,V> nextRight,
6270 ObjectToLong<? super V> transformer,
6271 long basis,
6272 LongByLongToLong reducer) {
6273 super(p, b); this.nextRight = nextRight;
6274 this.transformer = transformer;
6275 this.basis = basis; this.reducer = reducer;
6276 }
6277 @SuppressWarnings("unchecked") public final boolean exec() {
6278 final ObjectToLong<? super V> transformer =
6279 this.transformer;
6280 final LongByLongToLong reducer = this.reducer;
6281 if (transformer == null || reducer == null)
6282 return abortOnNullFunction();
6283 try {
6284 final long id = this.basis;
6285 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6286 do {} while (!casPending(c = pending, c+1));
6287 (rights = new MapReduceValuesToLongTask<K,V>
6288 (this, b >>>= 1, rights, transformer, id, reducer)).fork();
6289 }
6290 long r = id;
6291 Object v;
6292 while ((v = advance()) != null)
6293 r = reducer.apply(r, transformer.apply((V)v));
6294 result = r;
6295 for (MapReduceValuesToLongTask<K,V> t = this, s;;) {
6296 int c; BulkTask<K,V,?> par;
6297 if ((c = t.pending) == 0) {
6298 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6299 t.result = reducer.apply(t.result, s.result);
6300 }
6301 if ((par = t.parent) == null ||
6302 !(par instanceof MapReduceValuesToLongTask)) {
6303 t.quietlyComplete();
6304 break;
6305 }
6306 t = (MapReduceValuesToLongTask<K,V>)par;
6307 }
6308 else if (t.casPending(c, c - 1))
6309 break;
6310 }
6311 } catch (Throwable ex) {
6312 return tryCompleteComputation(ex);
6313 }
6314 return false;
6315 }
6316 public final Long getRawResult() { return result; }
6317 }
6318
6319 @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6320 extends BulkTask<K,V,Long> {
6321 final ObjectToLong<Map.Entry<K,V>> transformer;
6322 final LongByLongToLong reducer;
6323 final long basis;
6324 long result;
6325 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6326 MapReduceEntriesToLongTask
6327 (ConcurrentHashMapV8<K,V> m,
6328 ObjectToLong<Map.Entry<K,V>> transformer,
6329 long basis,
6330 LongByLongToLong reducer) {
6331 super(m);
6332 this.transformer = transformer;
6333 this.basis = basis; this.reducer = reducer;
6334 }
6335 MapReduceEntriesToLongTask
6336 (BulkTask<K,V,?> p, int b,
6337 MapReduceEntriesToLongTask<K,V> nextRight,
6338 ObjectToLong<Map.Entry<K,V>> transformer,
6339 long basis,
6340 LongByLongToLong reducer) {
6341 super(p, b); this.nextRight = nextRight;
6342 this.transformer = transformer;
6343 this.basis = basis; this.reducer = reducer;
6344 }
6345 @SuppressWarnings("unchecked") public final boolean exec() {
6346 final ObjectToLong<Map.Entry<K,V>> transformer =
6347 this.transformer;
6348 final LongByLongToLong reducer = this.reducer;
6349 if (transformer == null || reducer == null)
6350 return abortOnNullFunction();
6351 try {
6352 final long id = this.basis;
6353 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6354 do {} while (!casPending(c = pending, c+1));
6355 (rights = new MapReduceEntriesToLongTask<K,V>
6356 (this, b >>>= 1, rights, transformer, id, reducer)).fork();
6357 }
6358 long r = id;
6359 Object v;
6360 while ((v = advance()) != null)
6361 r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6362 result = r;
6363 for (MapReduceEntriesToLongTask<K,V> t = this, s;;) {
6364 int c; BulkTask<K,V,?> par;
6365 if ((c = t.pending) == 0) {
6366 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6367 t.result = reducer.apply(t.result, s.result);
6368 }
6369 if ((par = t.parent) == null ||
6370 !(par instanceof MapReduceEntriesToLongTask)) {
6371 t.quietlyComplete();
6372 break;
6373 }
6374 t = (MapReduceEntriesToLongTask<K,V>)par;
6375 }
6376 else if (t.casPending(c, c - 1))
6377 break;
6378 }
6379 } catch (Throwable ex) {
6380 return tryCompleteComputation(ex);
6381 }
6382 return false;
6383 }
6384 public final Long getRawResult() { return result; }
6385 }
6386
6387 @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6388 extends BulkTask<K,V,Long> {
6389 final ObjectByObjectToLong<? super K, ? super V> transformer;
6390 final LongByLongToLong reducer;
6391 final long basis;
6392 long result;
6393 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6394 MapReduceMappingsToLongTask
6395 (ConcurrentHashMapV8<K,V> m,
6396 ObjectByObjectToLong<? super K, ? super V> transformer,
6397 long basis,
6398 LongByLongToLong reducer) {
6399 super(m);
6400 this.transformer = transformer;
6401 this.basis = basis; this.reducer = reducer;
6402 }
6403 MapReduceMappingsToLongTask
6404 (BulkTask<K,V,?> p, int b,
6405 MapReduceMappingsToLongTask<K,V> nextRight,
6406 ObjectByObjectToLong<? super K, ? super V> transformer,
6407 long basis,
6408 LongByLongToLong reducer) {
6409 super(p, b); this.nextRight = nextRight;
6410 this.transformer = transformer;
6411 this.basis = basis; this.reducer = reducer;
6412 }
6413 @SuppressWarnings("unchecked") public final boolean exec() {
6414 final ObjectByObjectToLong<? super K, ? super V> transformer =
6415 this.transformer;
6416 final LongByLongToLong reducer = this.reducer;
6417 if (transformer == null || reducer == null)
6418 return abortOnNullFunction();
6419 try {
6420 final long id = this.basis;
6421 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6422 do {} while (!casPending(c = pending, c+1));
6423 (rights = new MapReduceMappingsToLongTask<K,V>
6424 (this, b >>>= 1, rights, transformer, id, reducer)).fork();
6425 }
6426 long r = id;
6427 Object v;
6428 while ((v = advance()) != null)
6429 r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6430 result = r;
6431 for (MapReduceMappingsToLongTask<K,V> t = this, s;;) {
6432 int c; BulkTask<K,V,?> par;
6433 if ((c = t.pending) == 0) {
6434 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6435 t.result = reducer.apply(t.result, s.result);
6436 }
6437 if ((par = t.parent) == null ||
6438 !(par instanceof MapReduceMappingsToLongTask)) {
6439 t.quietlyComplete();
6440 break;
6441 }
6442 t = (MapReduceMappingsToLongTask<K,V>)par;
6443 }
6444 else if (t.casPending(c, c - 1))
6445 break;
6446 }
6447 } catch (Throwable ex) {
6448 return tryCompleteComputation(ex);
6449 }
6450 return false;
6451 }
6452 public final Long getRawResult() { return result; }
6453 }
6454
6455 @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6456 extends BulkTask<K,V,Integer> {
6457 final ObjectToInt<? super K> transformer;
6458 final IntByIntToInt reducer;
6459 final int basis;
6460 int result;
6461 MapReduceKeysToIntTask<K,V> rights, nextRight;
6462 MapReduceKeysToIntTask
6463 (ConcurrentHashMapV8<K,V> m,
6464 ObjectToInt<? super K> transformer,
6465 int basis,
6466 IntByIntToInt reducer) {
6467 super(m);
6468 this.transformer = transformer;
6469 this.basis = basis; this.reducer = reducer;
6470 }
6471 MapReduceKeysToIntTask
6472 (BulkTask<K,V,?> p, int b,
6473 MapReduceKeysToIntTask<K,V> nextRight,
6474 ObjectToInt<? super K> transformer,
6475 int basis,
6476 IntByIntToInt reducer) {
6477 super(p, b); this.nextRight = nextRight;
6478 this.transformer = transformer;
6479 this.basis = basis; this.reducer = reducer;
6480 }
6481 @SuppressWarnings("unchecked") public final boolean exec() {
6482 final ObjectToInt<? super K> transformer =
6483 this.transformer;
6484 final IntByIntToInt reducer = this.reducer;
6485 if (transformer == null || reducer == null)
6486 return abortOnNullFunction();
6487 try {
6488 final int id = this.basis;
6489 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6490 do {} while (!casPending(c = pending, c+1));
6491 (rights = new MapReduceKeysToIntTask<K,V>
6492 (this, b >>>= 1, rights, transformer, id, reducer)).fork();
6493 }
6494 int r = id;
6495 while (advance() != null)
6496 r = reducer.apply(r, transformer.apply((K)nextKey));
6497 result = r;
6498 for (MapReduceKeysToIntTask<K,V> t = this, s;;) {
6499 int c; BulkTask<K,V,?> par;
6500 if ((c = t.pending) == 0) {
6501 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6502 t.result = reducer.apply(t.result, s.result);
6503 }
6504 if ((par = t.parent) == null ||
6505 !(par instanceof MapReduceKeysToIntTask)) {
6506 t.quietlyComplete();
6507 break;
6508 }
6509 t = (MapReduceKeysToIntTask<K,V>)par;
6510 }
6511 else if (t.casPending(c, c - 1))
6512 break;
6513 }
6514 } catch (Throwable ex) {
6515 return tryCompleteComputation(ex);
6516 }
6517 return false;
6518 }
6519 public final Integer getRawResult() { return result; }
6520 }
6521
6522 @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6523 extends BulkTask<K,V,Integer> {
6524 final ObjectToInt<? super V> transformer;
6525 final IntByIntToInt reducer;
6526 final int basis;
6527 int result;
6528 MapReduceValuesToIntTask<K,V> rights, nextRight;
6529 MapReduceValuesToIntTask
6530 (ConcurrentHashMapV8<K,V> m,
6531 ObjectToInt<? super V> transformer,
6532 int basis,
6533 IntByIntToInt reducer) {
6534 super(m);
6535 this.transformer = transformer;
6536 this.basis = basis; this.reducer = reducer;
6537 }
6538 MapReduceValuesToIntTask
6539 (BulkTask<K,V,?> p, int b,
6540 MapReduceValuesToIntTask<K,V> nextRight,
6541 ObjectToInt<? super V> transformer,
6542 int basis,
6543 IntByIntToInt reducer) {
6544 super(p, b); this.nextRight = nextRight;
6545 this.transformer = transformer;
6546 this.basis = basis; this.reducer = reducer;
6547 }
6548 @SuppressWarnings("unchecked") public final boolean exec() {
6549 final ObjectToInt<? super V> transformer =
6550 this.transformer;
6551 final IntByIntToInt reducer = this.reducer;
6552 if (transformer == null || reducer == null)
6553 return abortOnNullFunction();
6554 try {
6555 final int id = this.basis;
6556 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6557 do {} while (!casPending(c = pending, c+1));
6558 (rights = new MapReduceValuesToIntTask<K,V>
6559 (this, b >>>= 1, rights, transformer, id, reducer)).fork();
6560 }
6561 int r = id;
6562 Object v;
6563 while ((v = advance()) != null)
6564 r = reducer.apply(r, transformer.apply((V)v));
6565 result = r;
6566 for (MapReduceValuesToIntTask<K,V> t = this, s;;) {
6567 int c; BulkTask<K,V,?> par;
6568 if ((c = t.pending) == 0) {
6569 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6570 t.result = reducer.apply(t.result, s.result);
6571 }
6572 if ((par = t.parent) == null ||
6573 !(par instanceof MapReduceValuesToIntTask)) {
6574 t.quietlyComplete();
6575 break;
6576 }
6577 t = (MapReduceValuesToIntTask<K,V>)par;
6578 }
6579 else if (t.casPending(c, c - 1))
6580 break;
6581 }
6582 } catch (Throwable ex) {
6583 return tryCompleteComputation(ex);
6584 }
6585 return false;
6586 }
6587 public final Integer getRawResult() { return result; }
6588 }
6589
6590 @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6591 extends BulkTask<K,V,Integer> {
6592 final ObjectToInt<Map.Entry<K,V>> transformer;
6593 final IntByIntToInt reducer;
6594 final int basis;
6595 int result;
6596 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6597 MapReduceEntriesToIntTask
6598 (ConcurrentHashMapV8<K,V> m,
6599 ObjectToInt<Map.Entry<K,V>> transformer,
6600 int basis,
6601 IntByIntToInt reducer) {
6602 super(m);
6603 this.transformer = transformer;
6604 this.basis = basis; this.reducer = reducer;
6605 }
6606 MapReduceEntriesToIntTask
6607 (BulkTask<K,V,?> p, int b,
6608 MapReduceEntriesToIntTask<K,V> nextRight,
6609 ObjectToInt<Map.Entry<K,V>> transformer,
6610 int basis,
6611 IntByIntToInt reducer) {
6612 super(p, b); this.nextRight = nextRight;
6613 this.transformer = transformer;
6614 this.basis = basis; this.reducer = reducer;
6615 }
6616 @SuppressWarnings("unchecked") public final boolean exec() {
6617 final ObjectToInt<Map.Entry<K,V>> transformer =
6618 this.transformer;
6619 final IntByIntToInt reducer = this.reducer;
6620 if (transformer == null || reducer == null)
6621 return abortOnNullFunction();
6622 try {
6623 final int id = this.basis;
6624 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6625 do {} while (!casPending(c = pending, c+1));
6626 (rights = new MapReduceEntriesToIntTask<K,V>
6627 (this, b >>>= 1, rights, transformer, id, reducer)).fork();
6628 }
6629 int r = id;
6630 Object v;
6631 while ((v = advance()) != null)
6632 r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6633 result = r;
6634 for (MapReduceEntriesToIntTask<K,V> t = this, s;;) {
6635 int c; BulkTask<K,V,?> par;
6636 if ((c = t.pending) == 0) {
6637 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6638 t.result = reducer.apply(t.result, s.result);
6639 }
6640 if ((par = t.parent) == null ||
6641 !(par instanceof MapReduceEntriesToIntTask)) {
6642 t.quietlyComplete();
6643 break;
6644 }
6645 t = (MapReduceEntriesToIntTask<K,V>)par;
6646 }
6647 else if (t.casPending(c, c - 1))
6648 break;
6649 }
6650 } catch (Throwable ex) {
6651 return tryCompleteComputation(ex);
6652 }
6653 return false;
6654 }
6655 public final Integer getRawResult() { return result; }
6656 }
6657
6658 @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6659 extends BulkTask<K,V,Integer> {
6660 final ObjectByObjectToInt<? super K, ? super V> transformer;
6661 final IntByIntToInt reducer;
6662 final int basis;
6663 int result;
6664 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6665 MapReduceMappingsToIntTask
6666 (ConcurrentHashMapV8<K,V> m,
6667 ObjectByObjectToInt<? super K, ? super V> transformer,
6668 int basis,
6669 IntByIntToInt reducer) {
6670 super(m);
6671 this.transformer = transformer;
6672 this.basis = basis; this.reducer = reducer;
6673 }
6674 MapReduceMappingsToIntTask
6675 (BulkTask<K,V,?> p, int b,
6676 MapReduceMappingsToIntTask<K,V> nextRight,
6677 ObjectByObjectToInt<? super K, ? super V> transformer,
6678 int basis,
6679 IntByIntToInt reducer) {
6680 super(p, b); this.nextRight = nextRight;
6681 this.transformer = transformer;
6682 this.basis = basis; this.reducer = reducer;
6683 }
6684 @SuppressWarnings("unchecked") public final boolean exec() {
6685 final ObjectByObjectToInt<? super K, ? super V> transformer =
6686 this.transformer;
6687 final IntByIntToInt reducer = this.reducer;
6688 if (transformer == null || reducer == null)
6689 return abortOnNullFunction();
6690 try {
6691 final int id = this.basis;
6692 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6693 do {} while (!casPending(c = pending, c+1));
6694 (rights = new MapReduceMappingsToIntTask<K,V>
6695 (this, b >>>= 1, rights, transformer, id, reducer)).fork();
6696 }
6697 int r = id;
6698 Object v;
6699 while ((v = advance()) != null)
6700 r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6701 result = r;
6702 for (MapReduceMappingsToIntTask<K,V> t = this, s;;) {
6703 int c; BulkTask<K,V,?> par;
6704 if ((c = t.pending) == 0) {
6705 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6706 t.result = reducer.apply(t.result, s.result);
6707 }
6708 if ((par = t.parent) == null ||
6709 !(par instanceof MapReduceMappingsToIntTask)) {
6710 t.quietlyComplete();
6711 break;
6712 }
6713 t = (MapReduceMappingsToIntTask<K,V>)par;
6714 }
6715 else if (t.casPending(c, c - 1))
6716 break;
6717 }
6718 } catch (Throwable ex) {
6719 return tryCompleteComputation(ex);
6720 }
6721 return false;
6722 }
6723 public final Integer getRawResult() { return result; }
6724 }
6725
6726
6727 // Unsafe mechanics
6728 private static final sun.misc.Unsafe UNSAFE;
6729 private static final long counterOffset;
6730 private static final long sizeCtlOffset;
6731 private static final long ABASE;
6732 private static final int ASHIFT;
6733
6734 static {
6735 int ss;
6736 try {
6737 UNSAFE = getUnsafe();
6738 Class<?> k = ConcurrentHashMapV8.class;
6739 counterOffset = UNSAFE.objectFieldOffset
6740 (k.getDeclaredField("counter"));
6741 sizeCtlOffset = UNSAFE.objectFieldOffset
6742 (k.getDeclaredField("sizeCtl"));
6743 Class<?> sc = Node[].class;
6744 ABASE = UNSAFE.arrayBaseOffset(sc);
6745 ss = UNSAFE.arrayIndexScale(sc);
6746 } catch (Exception e) {
6747 throw new Error(e);
6748 }
6749 if ((ss & (ss-1)) != 0)
6750 throw new Error("data type scale not a power of two");
6751 ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6752 }
6753
6754 /**
6755 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
6756 * Replace with a simple call to Unsafe.getUnsafe when integrating
6757 * into a jdk.
6758 *
6759 * @return a sun.misc.Unsafe
6760 */
6761 private static sun.misc.Unsafe getUnsafe() {
6762 try {
6763 return sun.misc.Unsafe.getUnsafe();
6764 } catch (SecurityException se) {
6765 try {
6766 return java.security.AccessController.doPrivileged
6767 (new java.security
6768 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
6769 public sun.misc.Unsafe run() throws Exception {
6770 java.lang.reflect.Field f = sun.misc
6771 .Unsafe.class.getDeclaredField("theUnsafe");
6772 f.setAccessible(true);
6773 return (sun.misc.Unsafe) f.get(null);
6774 }});
6775 } catch (java.security.PrivilegedActionException e) {
6776 throw new RuntimeException("Could not initialize intrinsics",
6777 e.getCause());
6778 }
6779 }
6780 }
6781 }