ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
Revision: 1.68
Committed: Sun Oct 21 04:14:30 2012 UTC (11 years, 6 months ago) by jsr166
Branch: MAIN
Changes since 1.67: +16 -16 lines
Log Message:
javadoc typos

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package jsr166e;
8 import jsr166e.LongAdder;
9 import jsr166e.ForkJoinPool;
10 import jsr166e.ForkJoinTask;
11
12 import java.util.Comparator;
13 import java.util.Arrays;
14 import java.util.Map;
15 import java.util.Set;
16 import java.util.Collection;
17 import java.util.AbstractMap;
18 import java.util.AbstractSet;
19 import java.util.AbstractCollection;
20 import java.util.Hashtable;
21 import java.util.HashMap;
22 import java.util.Iterator;
23 import java.util.Enumeration;
24 import java.util.ConcurrentModificationException;
25 import java.util.NoSuchElementException;
26 import java.util.concurrent.ConcurrentMap;
27 import java.util.concurrent.ThreadLocalRandom;
28 import java.util.concurrent.locks.LockSupport;
29 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
30 import java.util.concurrent.atomic.AtomicReference;
31
32 import java.io.Serializable;
33
34 /**
35 * A hash table supporting full concurrency of retrievals and
36 * high expected concurrency for updates. This class obeys the
37 * same functional specification as {@link java.util.Hashtable}, and
38 * includes versions of methods corresponding to each method of
39 * {@code Hashtable}. However, even though all operations are
40 * thread-safe, retrieval operations do <em>not</em> entail locking,
41 * and there is <em>not</em> any support for locking the entire table
42 * in a way that prevents all access. This class is fully
43 * interoperable with {@code Hashtable} in programs that rely on its
44 * thread safety but not on its synchronization details.
45 *
46 * <p> Retrieval operations (including {@code get}) generally do not
47 * block, so may overlap with update operations (including {@code put}
48 * and {@code remove}). Retrievals reflect the results of the most
49 * recently <em>completed</em> update operations holding upon their
50 * onset. (More formally, an update operation for a given key bears a
51 * <em>happens-before</em> relation with any (non-null) retrieval for
52 * that key reporting the updated value.) For aggregate operations
53 * such as {@code putAll} and {@code clear}, concurrent retrievals may
54 * reflect insertion or removal of only some entries. Similarly,
55 * Iterators and Enumerations return elements reflecting the state of
56 * the hash table at some point at or since the creation of the
57 * iterator/enumeration. They do <em>not</em> throw {@link
58 * ConcurrentModificationException}. However, iterators are designed
59 * to be used by only one thread at a time. Bear in mind that the
60 * results of aggregate status methods including {@code size}, {@code
61 * isEmpty}, and {@code containsValue} are typically useful only when
62 * a map is not undergoing concurrent updates in other threads.
63 * Otherwise the results of these methods reflect transient states
64 * that may be adequate for monitoring or estimation purposes, but not
65 * for program control.
66 *
67 * <p> The table is dynamically expanded when there are too many
68 * collisions (i.e., keys that have distinct hash codes but fall into
69 * the same slot modulo the table size), with the expected average
70 * effect of maintaining roughly two bins per mapping (corresponding
71 * to a 0.75 load factor threshold for resizing). There may be much
72 * variance around this average as mappings are added and removed, but
73 * overall, this maintains a commonly accepted time/space tradeoff for
74 * hash tables. However, resizing this or any other kind of hash
75 * table may be a relatively slow operation. When possible, it is a
76 * good idea to provide a size estimate as an optional {@code
77 * initialCapacity} constructor argument. An additional optional
78 * {@code loadFactor} constructor argument provides a further means of
79 * customizing initial table capacity by specifying the table density
80 * to be used in calculating the amount of space to allocate for the
81 * given number of elements. Also, for compatibility with previous
82 * versions of this class, constructors may optionally specify an
83 * expected {@code concurrencyLevel} as an additional hint for
84 * internal sizing. Note that using many keys with exactly the same
85 * {@code hashCode()} is a sure way to slow down performance of any
86 * hash table.
87 *
88 * <p>This class and its views and iterators implement all of the
89 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
90 * interfaces.
91 *
92 * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
93 * does <em>not</em> allow {@code null} to be used as a key or value.
94 *
95 * <p>This class is a member of the
96 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
97 * Java Collections Framework</a>.
98 *
99 * <p><em>jsr166e note: This class is a candidate replacement for
100 * java.util.concurrent.ConcurrentHashMap. During transition, this
101 * class declares and uses nested functional interfaces with different
102 * names but the same forms as those expected for JDK8.<em>
103 *
104 * @since 1.5
105 * @author Doug Lea
106 * @param <K> the type of keys maintained by this map
107 * @param <V> the type of mapped values
108 */
109 public class ConcurrentHashMapV8<K, V>
110 implements ConcurrentMap<K, V>, Serializable {
111 private static final long serialVersionUID = 7249069246763182397L;
112
113 /**
114 * A partitionable iterator. A Spliterator can be traversed
115 * directly, but can also be partitioned (before traversal) by
116 * creating another Spliterator that covers a non-overlapping
117 * portion of the elements, and so may be amenable to parallel
118 * execution.
119 *
120 * <p> This interface exports a subset of expected JDK8
121 * functionality.
122 *
123 * <p>Sample usage: Here is one (of the several) ways to compute
124 * the sum of the values held in a map using the ForkJoin
125 * framework. As illustrated here, Spliterators are well suited to
126 * designs in which a task repeatedly splits off half its work
127 * into forked subtasks until small enough to process directly,
128 * and then joins these subtasks. Variants of this style can also
129 * be used in completion-based designs.
130 *
131 * <pre>
132 * {@code ConcurrentHashMapV8<String, Long> m = ...
133 * // split as if have 8 * parallelism, for load balance
134 * int n = m.size();
135 * int p = aForkJoinPool.getParallelism() * 8;
136 * int split = (n < p)? n : p;
137 * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
138 * // ...
139 * static class SumValues extends RecursiveTask<Long> {
140 * final Spliterator<Long> s;
141 * final int split; // split while > 1
142 * final SumValues nextJoin; // records forked subtasks to join
143 * SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
144 * this.s = s; this.depth = depth; this.nextJoin = nextJoin;
145 * }
146 * public Long compute() {
147 * long sum = 0;
148 * SumValues subtasks = null; // fork subtasks
149 * for (int s = split >>> 1; s > 0; s >>>= 1)
150 * (subtasks = new SumValues(s.split(), s, subtasks)).fork();
151 * while (s.hasNext()) // directly process remaining elements
152 * sum += s.next();
153 * for (SumValues t = subtasks; t != null; t = t.nextJoin)
154 * sum += t.join(); // collect subtask results
155 * return sum;
156 * }
157 * }
158 * }</pre>
159 */
160 public static interface Spliterator<T> extends Iterator<T> {
161 /**
162 * Returns a Spliterator covering approximately half of the
163 * elements, guaranteed not to overlap with those subsequently
164 * returned by this Spliterator. After invoking this method,
165 * the current Spliterator will <em>not</em> produce any of
166 * the elements of the returned Spliterator, but the two
167 * Spliterators together will produce all of the elements that
168 * would have been produced by this Spliterator had this
169 * method not been called. The exact number of elements
170 * produced by the returned Spliterator is not guaranteed, and
171 * may be zero (i.e., with {@code hasNext()} reporting {@code
172 * false}) if this Spliterator cannot be further split.
173 *
174 * @return a Spliterator covering approximately half of the
175 * elements
176 * @throws IllegalStateException if this Spliterator has
177 * already commenced traversing elements
178 */
179 Spliterator<T> split();
180 }
181
182 /*
183 * Overview:
184 *
185 * The primary design goal of this hash table is to maintain
186 * concurrent readability (typically method get(), but also
187 * iterators and related methods) while minimizing update
188 * contention. Secondary goals are to keep space consumption about
189 * the same or better than java.util.HashMap, and to support high
190 * initial insertion rates on an empty table by many threads.
191 *
192 * Each key-value mapping is held in a Node. Because Node fields
193 * can contain special values, they are defined using plain Object
194 * types. Similarly in turn, all internal methods that use them
195 * work off Object types. And similarly, so do the internal
196 * methods of auxiliary iterator and view classes. All public
197 * generic typed methods relay in/out of these internal methods,
198 * supplying null-checks and casts as needed. This also allows
199 * many of the public methods to be factored into a smaller number
200 * of internal methods (although sadly not so for the five
201 * variants of put-related operations). The validation-based
202 * approach explained below leads to a lot of code sprawl because
203 * retry-control precludes factoring into smaller methods.
204 *
205 * The table is lazily initialized to a power-of-two size upon the
206 * first insertion. Each bin in the table normally contains a
207 * list of Nodes (most often, the list has only zero or one Node).
208 * Table accesses require volatile/atomic reads, writes, and
209 * CASes. Because there is no other way to arrange this without
210 * adding further indirections, we use intrinsics
211 * (sun.misc.Unsafe) operations. The lists of nodes within bins
212 * are always accurately traversable under volatile reads, so long
213 * as lookups check hash code and non-nullness of value before
214 * checking key equality.
215 *
216 * We use the top two bits of Node hash fields for control
217 * purposes -- they are available anyway because of addressing
218 * constraints. As explained further below, these top bits are
219 * used as follows:
220 * 00 - Normal
221 * 01 - Locked
222 * 11 - Locked and may have a thread waiting for lock
223 * 10 - Node is a forwarding node
224 *
225 * The lower 30 bits of each Node's hash field contain a
226 * transformation of the key's hash code, except for forwarding
227 * nodes, for which the lower bits are zero (and so always have
228 * hash field == MOVED).
229 *
230 * Insertion (via put or its variants) of the first node in an
231 * empty bin is performed by just CASing it to the bin. This is
232 * by far the most common case for put operations under most
233 * key/hash distributions. Other update operations (insert,
234 * delete, and replace) require locks. We do not want to waste
235 * the space required to associate a distinct lock object with
236 * each bin, so instead use the first node of a bin list itself as
237 * a lock. Blocking support for these locks relies on the builtin
238 * "synchronized" monitors. However, we also need a tryLock
239 * construction, so we overlay these by using bits of the Node
240 * hash field for lock control (see above), and so normally use
241 * builtin monitors only for blocking and signalling using
242 * wait/notifyAll constructions. See Node.tryAwaitLock.
243 *
244 * Using the first node of a list as a lock does not by itself
245 * suffice though: When a node is locked, any update must first
246 * validate that it is still the first node after locking it, and
247 * retry if not. Because new nodes are always appended to lists,
248 * once a node is first in a bin, it remains first until deleted
249 * or the bin becomes invalidated (upon resizing). However,
250 * operations that only conditionally update may inspect nodes
251 * until the point of update. This is a converse of sorts to the
252 * lazy locking technique described by Herlihy & Shavit.
253 *
254 * The main disadvantage of per-bin locks is that other update
255 * operations on other nodes in a bin list protected by the same
256 * lock can stall, for example when user equals() or mapping
257 * functions take a long time. However, statistically, under
258 * random hash codes, this is not a common problem. Ideally, the
259 * frequency of nodes in bins follows a Poisson distribution
260 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
261 * parameter of about 0.5 on average, given the resizing threshold
262 * of 0.75, although with a large variance because of resizing
263 * granularity. Ignoring variance, the expected occurrences of
264 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
265 * first values are:
266 *
267 * 0: 0.60653066
268 * 1: 0.30326533
269 * 2: 0.07581633
270 * 3: 0.01263606
271 * 4: 0.00157952
272 * 5: 0.00015795
273 * 6: 0.00001316
274 * 7: 0.00000094
275 * 8: 0.00000006
276 * more: less than 1 in ten million
277 *
278 * Lock contention probability for two threads accessing distinct
279 * elements is roughly 1 / (8 * #elements) under random hashes.
280 *
281 * Actual hash code distributions encountered in practice
282 * sometimes deviate significantly from uniform randomness. This
283 * includes the case when N > (1<<30), so some keys MUST collide.
284 * Similarly for dumb or hostile usages in which multiple keys are
285 * designed to have identical hash codes. Also, although we guard
286 * against the worst effects of this (see method spread), sets of
287 * hashes may differ only in bits that do not impact their bin
288 * index for a given power-of-two mask. So we use a secondary
289 * strategy that applies when the number of nodes in a bin exceeds
290 * a threshold, and at least one of the keys implements
291 * Comparable. These TreeBins use a balanced tree to hold nodes
292 * (a specialized form of red-black trees), bounding search time
293 * to O(log N). Each search step in a TreeBin is around twice as
294 * slow as in a regular list, but given that N cannot exceed
295 * (1<<64) (before running out of addresses) this bounds search
296 * steps, lock hold times, etc, to reasonable constants (roughly
297 * 100 nodes inspected per operation worst case) so long as keys
298 * are Comparable (which is very common -- String, Long, etc).
299 * TreeBin nodes (TreeNodes) also maintain the same "next"
300 * traversal pointers as regular nodes, so can be traversed in
301 * iterators in the same way.
302 *
303 * The table is resized when occupancy exceeds a percentage
304 * threshold (nominally, 0.75, but see below). Only a single
305 * thread performs the resize (using field "sizeCtl", to arrange
306 * exclusion), but the table otherwise remains usable for reads
307 * and updates. Resizing proceeds by transferring bins, one by
308 * one, from the table to the next table. Because we are using
309 * power-of-two expansion, the elements from each bin must either
310 * stay at same index, or move with a power of two offset. We
311 * eliminate unnecessary node creation by catching cases where old
312 * nodes can be reused because their next fields won't change. On
313 * average, only about one-sixth of them need cloning when a table
314 * doubles. The nodes they replace will be garbage collectable as
315 * soon as they are no longer referenced by any reader thread that
316 * may be in the midst of concurrently traversing table. Upon
317 * transfer, the old table bin contains only a special forwarding
318 * node (with hash field "MOVED") that contains the next table as
319 * its key. On encountering a forwarding node, access and update
320 * operations restart, using the new table.
321 *
322 * Each bin transfer requires its bin lock. However, unlike other
323 * cases, a transfer can skip a bin if it fails to acquire its
324 * lock, and revisit it later (unless it is a TreeBin). Method
325 * rebuild maintains a buffer of TRANSFER_BUFFER_SIZE bins that
326 * have been skipped because of failure to acquire a lock, and
327 * blocks only if none are available (i.e., only very rarely).
328 * The transfer operation must also ensure that all accessible
329 * bins in both the old and new table are usable by any traversal.
330 * When there are no lock acquisition failures, this is arranged
331 * simply by proceeding from the last bin (table.length - 1) up
332 * towards the first. Upon seeing a forwarding node, traversals
333 * (see class Iter) arrange to move to the new table
334 * without revisiting nodes. However, when any node is skipped
335 * during a transfer, all earlier table bins may have become
336 * visible, so are initialized with a reverse-forwarding node back
337 * to the old table until the new ones are established. (This
338 * sometimes requires transiently locking a forwarding node, which
339 * is possible under the above encoding.) These more expensive
340 * mechanics trigger only when necessary.
341 *
342 * The traversal scheme also applies to partial traversals of
343 * ranges of bins (via an alternate Traverser constructor)
344 * to support partitioned aggregate operations. Also, read-only
345 * operations give up if ever forwarded to a null table, which
346 * provides support for shutdown-style clearing, which is also not
347 * currently implemented.
348 *
349 * Lazy table initialization minimizes footprint until first use,
350 * and also avoids resizings when the first operation is from a
351 * putAll, constructor with map argument, or deserialization.
352 * These cases attempt to override the initial capacity settings,
353 * but harmlessly fail to take effect in cases of races.
354 *
355 * The element count is maintained using a LongAdder, which avoids
356 * contention on updates but can encounter cache thrashing if read
357 * too frequently during concurrent access. To avoid reading so
358 * often, resizing is attempted either when a bin lock is
359 * contended, or upon adding to a bin already holding two or more
360 * nodes (checked before adding in the xIfAbsent methods, after
361 * adding in others). Under uniform hash distributions, the
362 * probability of this occurring at threshold is around 13%,
363 * meaning that only about 1 in 8 puts check threshold (and after
364 * resizing, many fewer do so). But this approximation has high
365 * variance for small table sizes, so we check on any collision
366 * for sizes <= 64. The bulk putAll operation further reduces
367 * contention by only committing count updates upon these size
368 * checks.
369 *
370 * Maintaining API and serialization compatibility with previous
371 * versions of this class introduces several oddities. Mainly: We
372 * leave untouched but unused constructor arguments refering to
373 * concurrencyLevel. We accept a loadFactor constructor argument,
374 * but apply it only to initial table capacity (which is the only
375 * time that we can guarantee to honor it.) We also declare an
376 * unused "Segment" class that is instantiated in minimal form
377 * only when serializing.
378 */
379
380 /* ---------------- Constants -------------- */
381
382 /**
383 * The largest possible table capacity. This value must be
384 * exactly 1<<30 to stay within Java array allocation and indexing
385 * bounds for power of two table sizes, and is further required
386 * because the top two bits of 32bit hash fields are used for
387 * control purposes.
388 */
389 private static final int MAXIMUM_CAPACITY = 1 << 30;
390
391 /**
392 * The default initial table capacity. Must be a power of 2
393 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
394 */
395 private static final int DEFAULT_CAPACITY = 16;
396
397 /**
398 * The largest possible (non-power of two) array size.
399 * Needed by toArray and related methods.
400 */
401 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
402
403 /**
404 * The default concurrency level for this table. Unused but
405 * defined for compatibility with previous versions of this class.
406 */
407 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
408
409 /**
410 * The load factor for this table. Overrides of this value in
411 * constructors affect only the initial table capacity. The
412 * actual floating point value isn't normally used -- it is
413 * simpler to use expressions such as {@code n - (n >>> 2)} for
414 * the associated resizing threshold.
415 */
416 private static final float LOAD_FACTOR = 0.75f;
417
418 /**
419 * The buffer size for skipped bins during transfers. The
420 * value is arbitrary but should be large enough to avoid
421 * most locking stalls during resizes.
422 */
423 private static final int TRANSFER_BUFFER_SIZE = 32;
424
425 /**
426 * The bin count threshold for using a tree rather than list for a
427 * bin. The value reflects the approximate break-even point for
428 * using tree-based operations.
429 */
430 private static final int TREE_THRESHOLD = 8;
431
432 /*
433 * Encodings for special uses of Node hash fields. See above for
434 * explanation.
435 */
436 static final int MOVED = 0x80000000; // hash field for forwarding nodes
437 static final int LOCKED = 0x40000000; // set/tested only as a bit
438 static final int WAITING = 0xc0000000; // both bits set/tested together
439 static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash
440
441 /* ---------------- Fields -------------- */
442
443 /**
444 * The array of bins. Lazily initialized upon first insertion.
445 * Size is always a power of two. Accessed directly by iterators.
446 */
447 transient volatile Node[] table;
448
449 /**
450 * The counter maintaining number of elements.
451 */
452 private transient final LongAdder counter;
453
454 /**
455 * Table initialization and resizing control. When negative, the
456 * table is being initialized or resized. Otherwise, when table is
457 * null, holds the initial table size to use upon creation, or 0
458 * for default. After initialization, holds the next element count
459 * value upon which to resize the table.
460 */
461 private transient volatile int sizeCtl;
462
463 // views
464 private transient KeySet<K,V> keySet;
465 private transient Values<K,V> values;
466 private transient EntrySet<K,V> entrySet;
467
468 /** For serialization compatibility. Null unless serialized; see below */
469 private Segment<K,V>[] segments;
470
471 /* ---------------- Table element access -------------- */
472
473 /*
474 * Volatile access methods are used for table elements as well as
475 * elements of in-progress next table while resizing. Uses are
476 * null checked by callers, and implicitly bounds-checked, relying
477 * on the invariants that tab arrays have non-zero size, and all
478 * indices are masked with (tab.length - 1) which is never
479 * negative and always less than length. Note that, to be correct
480 * wrt arbitrary concurrency errors by users, bounds checks must
481 * operate on local variables, which accounts for some odd-looking
482 * inline assignments below.
483 */
484
485 static final Node tabAt(Node[] tab, int i) { // used by Iter
486 return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
487 }
488
489 private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
490 return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
491 }
492
493 private static final void setTabAt(Node[] tab, int i, Node v) {
494 UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
495 }
496
497 /* ---------------- Nodes -------------- */
498
499 /**
500 * Key-value entry. Note that this is never exported out as a
501 * user-visible Map.Entry (see MapEntry below). Nodes with a hash
502 * field of MOVED are special, and do not contain user keys or
503 * values. Otherwise, keys are never null, and null val fields
504 * indicate that a node is in the process of being deleted or
505 * created. For purposes of read-only access, a key may be read
506 * before a val, but can only be used after checking val to be
507 * non-null.
508 */
509 static class Node {
510 volatile int hash;
511 final Object key;
512 volatile Object val;
513 volatile Node next;
514
515 Node(int hash, Object key, Object val, Node next) {
516 this.hash = hash;
517 this.key = key;
518 this.val = val;
519 this.next = next;
520 }
521
522 /** CompareAndSet the hash field */
523 final boolean casHash(int cmp, int val) {
524 return UNSAFE.compareAndSwapInt(this, hashOffset, cmp, val);
525 }
526
527 /** The number of spins before blocking for a lock */
528 static final int MAX_SPINS =
529 Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
530
531 /**
532 * Spins a while if LOCKED bit set and this node is the first
533 * of its bin, and then sets WAITING bits on hash field and
534 * blocks (once) if they are still set. It is OK for this
535 * method to return even if lock is not available upon exit,
536 * which enables these simple single-wait mechanics.
537 *
538 * The corresponding signalling operation is performed within
539 * callers: Upon detecting that WAITING has been set when
540 * unlocking lock (via a failed CAS from non-waiting LOCKED
541 * state), unlockers acquire the sync lock and perform a
542 * notifyAll.
543 *
544 * The initial sanity check on tab and bounds is not currently
545 * necessary in the only usages of this method, but enables
546 * use in other future contexts.
547 */
548 final void tryAwaitLock(Node[] tab, int i) {
549 if (tab != null && i >= 0 && i < tab.length) { // sanity check
550 int r = ThreadLocalRandom.current().nextInt(); // randomize spins
551 int spins = MAX_SPINS, h;
552 while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) {
553 if (spins >= 0) {
554 r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
555 if (r >= 0 && --spins == 0)
556 Thread.yield(); // yield before block
557 }
558 else if (casHash(h, h | WAITING)) {
559 synchronized (this) {
560 if (tabAt(tab, i) == this &&
561 (hash & WAITING) == WAITING) {
562 try {
563 wait();
564 } catch (InterruptedException ie) {
565 Thread.currentThread().interrupt();
566 }
567 }
568 else
569 notifyAll(); // possibly won race vs signaller
570 }
571 break;
572 }
573 }
574 }
575 }
576
577 // Unsafe mechanics for casHash
578 private static final sun.misc.Unsafe UNSAFE;
579 private static final long hashOffset;
580
581 static {
582 try {
583 UNSAFE = getUnsafe();
584 Class<?> k = Node.class;
585 hashOffset = UNSAFE.objectFieldOffset
586 (k.getDeclaredField("hash"));
587 } catch (Exception e) {
588 throw new Error(e);
589 }
590 }
591 }
592
593 /* ---------------- TreeBins -------------- */
594
595 /**
596 * Nodes for use in TreeBins
597 */
598 static final class TreeNode extends Node {
599 TreeNode parent; // red-black tree links
600 TreeNode left;
601 TreeNode right;
602 TreeNode prev; // needed to unlink next upon deletion
603 boolean red;
604
605 TreeNode(int hash, Object key, Object val, Node next, TreeNode parent) {
606 super(hash, key, val, next);
607 this.parent = parent;
608 }
609 }
610
611 /**
612 * A specialized form of red-black tree for use in bins
613 * whose size exceeds a threshold.
614 *
615 * TreeBins use a special form of comparison for search and
616 * related operations (which is the main reason we cannot use
617 * existing collections such as TreeMaps). TreeBins contain
618 * Comparable elements, but may contain others, as well as
619 * elements that are Comparable but not necessarily Comparable<T>
620 * for the same T, so we cannot invoke compareTo among them. To
621 * handle this, the tree is ordered primarily by hash value, then
622 * by getClass().getName() order, and then by Comparator order
623 * among elements of the same class. On lookup at a node, if
624 * elements are not comparable or compare as 0, both left and
625 * right children may need to be searched in the case of tied hash
626 * values. (This corresponds to the full list search that would be
627 * necessary if all elements were non-Comparable and had tied
628 * hashes.) The red-black balancing code is updated from
629 * pre-jdk-collections
630 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
631 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
632 * Algorithms" (CLR).
633 *
634 * TreeBins also maintain a separate locking discipline than
635 * regular bins. Because they are forwarded via special MOVED
636 * nodes at bin heads (which can never change once established),
637 * we cannot use those nodes as locks. Instead, TreeBin
638 * extends AbstractQueuedSynchronizer to support a simple form of
639 * read-write lock. For update operations and table validation,
640 * the exclusive form of lock behaves in the same way as bin-head
641 * locks. However, lookups use shared read-lock mechanics to allow
642 * multiple readers in the absence of writers. Additionally,
643 * these lookups do not ever block: While the lock is not
644 * available, they proceed along the slow traversal path (via
645 * next-pointers) until the lock becomes available or the list is
646 * exhausted, whichever comes first. (These cases are not fast,
647 * but maximize aggregate expected throughput.) The AQS mechanics
648 * for doing this are straightforward. The lock state is held as
649 * AQS getState(). Read counts are negative; the write count (1)
650 * is positive. There are no signalling preferences among readers
651 * and writers. Since we don't need to export full Lock API, we
652 * just override the minimal AQS methods and use them directly.
653 */
654 static final class TreeBin extends AbstractQueuedSynchronizer {
655 private static final long serialVersionUID = 2249069246763182397L;
656 transient TreeNode root; // root of tree
657 transient TreeNode first; // head of next-pointer list
658
659 /* AQS overrides */
660 public final boolean isHeldExclusively() { return getState() > 0; }
661 public final boolean tryAcquire(int ignore) {
662 if (compareAndSetState(0, 1)) {
663 setExclusiveOwnerThread(Thread.currentThread());
664 return true;
665 }
666 return false;
667 }
668 public final boolean tryRelease(int ignore) {
669 setExclusiveOwnerThread(null);
670 setState(0);
671 return true;
672 }
673 public final int tryAcquireShared(int ignore) {
674 for (int c;;) {
675 if ((c = getState()) > 0)
676 return -1;
677 if (compareAndSetState(c, c -1))
678 return 1;
679 }
680 }
681 public final boolean tryReleaseShared(int ignore) {
682 int c;
683 do {} while (!compareAndSetState(c = getState(), c + 1));
684 return c == -1;
685 }
686
687 /** From CLR */
688 private void rotateLeft(TreeNode p) {
689 if (p != null) {
690 TreeNode r = p.right, pp, rl;
691 if ((rl = p.right = r.left) != null)
692 rl.parent = p;
693 if ((pp = r.parent = p.parent) == null)
694 root = r;
695 else if (pp.left == p)
696 pp.left = r;
697 else
698 pp.right = r;
699 r.left = p;
700 p.parent = r;
701 }
702 }
703
704 /** From CLR */
705 private void rotateRight(TreeNode p) {
706 if (p != null) {
707 TreeNode l = p.left, pp, lr;
708 if ((lr = p.left = l.right) != null)
709 lr.parent = p;
710 if ((pp = l.parent = p.parent) == null)
711 root = l;
712 else if (pp.right == p)
713 pp.right = l;
714 else
715 pp.left = l;
716 l.right = p;
717 p.parent = l;
718 }
719 }
720
721 /**
722 * Returns the TreeNode (or null if not found) for the given key
723 * starting at given root.
724 */
725 @SuppressWarnings("unchecked") final TreeNode getTreeNode
726 (int h, Object k, TreeNode p) {
727 Class<?> c = k.getClass();
728 while (p != null) {
729 int dir, ph; Object pk; Class<?> pc;
730 if ((ph = p.hash) == h) {
731 if ((pk = p.key) == k || k.equals(pk))
732 return p;
733 if (c != (pc = pk.getClass()) ||
734 !(k instanceof Comparable) ||
735 (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
736 dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
737 TreeNode r = null, s = null, pl, pr;
738 if (dir >= 0) {
739 if ((pl = p.left) != null && h <= pl.hash)
740 s = pl;
741 }
742 else if ((pr = p.right) != null && h >= pr.hash)
743 s = pr;
744 if (s != null && (r = getTreeNode(h, k, s)) != null)
745 return r;
746 }
747 }
748 else
749 dir = (h < ph) ? -1 : 1;
750 p = (dir > 0) ? p.right : p.left;
751 }
752 return null;
753 }
754
755 /**
756 * Wrapper for getTreeNode used by CHM.get. Tries to obtain
757 * read-lock to call getTreeNode, but during failure to get
758 * lock, searches along next links.
759 */
760 final Object getValue(int h, Object k) {
761 Node r = null;
762 int c = getState(); // Must read lock state first
763 for (Node e = first; e != null; e = e.next) {
764 if (c <= 0 && compareAndSetState(c, c - 1)) {
765 try {
766 r = getTreeNode(h, k, root);
767 } finally {
768 releaseShared(0);
769 }
770 break;
771 }
772 else if ((e.hash & HASH_BITS) == h && k.equals(e.key)) {
773 r = e;
774 break;
775 }
776 else
777 c = getState();
778 }
779 return r == null ? null : r.val;
780 }
781
782 /**
783 * Finds or adds a node.
784 * @return null if added
785 */
786 @SuppressWarnings("unchecked") final TreeNode putTreeNode
787 (int h, Object k, Object v) {
788 Class<?> c = k.getClass();
789 TreeNode pp = root, p = null;
790 int dir = 0;
791 while (pp != null) { // find existing node or leaf to insert at
792 int ph; Object pk; Class<?> pc;
793 p = pp;
794 if ((ph = p.hash) == h) {
795 if ((pk = p.key) == k || k.equals(pk))
796 return p;
797 if (c != (pc = pk.getClass()) ||
798 !(k instanceof Comparable) ||
799 (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
800 dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
801 TreeNode r = null, s = null, pl, pr;
802 if (dir >= 0) {
803 if ((pl = p.left) != null && h <= pl.hash)
804 s = pl;
805 }
806 else if ((pr = p.right) != null && h >= pr.hash)
807 s = pr;
808 if (s != null && (r = getTreeNode(h, k, s)) != null)
809 return r;
810 }
811 }
812 else
813 dir = (h < ph) ? -1 : 1;
814 pp = (dir > 0) ? p.right : p.left;
815 }
816
817 TreeNode f = first;
818 TreeNode x = first = new TreeNode(h, k, v, f, p);
819 if (p == null)
820 root = x;
821 else { // attach and rebalance; adapted from CLR
822 TreeNode xp, xpp;
823 if (f != null)
824 f.prev = x;
825 if (dir <= 0)
826 p.left = x;
827 else
828 p.right = x;
829 x.red = true;
830 while (x != null && (xp = x.parent) != null && xp.red &&
831 (xpp = xp.parent) != null) {
832 TreeNode xppl = xpp.left;
833 if (xp == xppl) {
834 TreeNode y = xpp.right;
835 if (y != null && y.red) {
836 y.red = false;
837 xp.red = false;
838 xpp.red = true;
839 x = xpp;
840 }
841 else {
842 if (x == xp.right) {
843 rotateLeft(x = xp);
844 xpp = (xp = x.parent) == null ? null : xp.parent;
845 }
846 if (xp != null) {
847 xp.red = false;
848 if (xpp != null) {
849 xpp.red = true;
850 rotateRight(xpp);
851 }
852 }
853 }
854 }
855 else {
856 TreeNode y = xppl;
857 if (y != null && y.red) {
858 y.red = false;
859 xp.red = false;
860 xpp.red = true;
861 x = xpp;
862 }
863 else {
864 if (x == xp.left) {
865 rotateRight(x = xp);
866 xpp = (xp = x.parent) == null ? null : xp.parent;
867 }
868 if (xp != null) {
869 xp.red = false;
870 if (xpp != null) {
871 xpp.red = true;
872 rotateLeft(xpp);
873 }
874 }
875 }
876 }
877 }
878 TreeNode r = root;
879 if (r != null && r.red)
880 r.red = false;
881 }
882 return null;
883 }
884
885 /**
886 * Removes the given node, that must be present before this
887 * call. This is messier than typical red-black deletion code
888 * because we cannot swap the contents of an interior node
889 * with a leaf successor that is pinned by "next" pointers
890 * that are accessible independently of lock. So instead we
891 * swap the tree linkages.
892 */
893 final void deleteTreeNode(TreeNode p) {
894 TreeNode next = (TreeNode)p.next; // unlink traversal pointers
895 TreeNode pred = p.prev;
896 if (pred == null)
897 first = next;
898 else
899 pred.next = next;
900 if (next != null)
901 next.prev = pred;
902 TreeNode replacement;
903 TreeNode pl = p.left;
904 TreeNode pr = p.right;
905 if (pl != null && pr != null) {
906 TreeNode s = pr, sl;
907 while ((sl = s.left) != null) // find successor
908 s = sl;
909 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
910 TreeNode sr = s.right;
911 TreeNode pp = p.parent;
912 if (s == pr) { // p was s's direct parent
913 p.parent = s;
914 s.right = p;
915 }
916 else {
917 TreeNode sp = s.parent;
918 if ((p.parent = sp) != null) {
919 if (s == sp.left)
920 sp.left = p;
921 else
922 sp.right = p;
923 }
924 if ((s.right = pr) != null)
925 pr.parent = s;
926 }
927 p.left = null;
928 if ((p.right = sr) != null)
929 sr.parent = p;
930 if ((s.left = pl) != null)
931 pl.parent = s;
932 if ((s.parent = pp) == null)
933 root = s;
934 else if (p == pp.left)
935 pp.left = s;
936 else
937 pp.right = s;
938 replacement = sr;
939 }
940 else
941 replacement = (pl != null) ? pl : pr;
942 TreeNode pp = p.parent;
943 if (replacement == null) {
944 if (pp == null) {
945 root = null;
946 return;
947 }
948 replacement = p;
949 }
950 else {
951 replacement.parent = pp;
952 if (pp == null)
953 root = replacement;
954 else if (p == pp.left)
955 pp.left = replacement;
956 else
957 pp.right = replacement;
958 p.left = p.right = p.parent = null;
959 }
960 if (!p.red) { // rebalance, from CLR
961 TreeNode x = replacement;
962 while (x != null) {
963 TreeNode xp, xpl;
964 if (x.red || (xp = x.parent) == null) {
965 x.red = false;
966 break;
967 }
968 if (x == (xpl = xp.left)) {
969 TreeNode sib = xp.right;
970 if (sib != null && sib.red) {
971 sib.red = false;
972 xp.red = true;
973 rotateLeft(xp);
974 sib = (xp = x.parent) == null ? null : xp.right;
975 }
976 if (sib == null)
977 x = xp;
978 else {
979 TreeNode sl = sib.left, sr = sib.right;
980 if ((sr == null || !sr.red) &&
981 (sl == null || !sl.red)) {
982 sib.red = true;
983 x = xp;
984 }
985 else {
986 if (sr == null || !sr.red) {
987 if (sl != null)
988 sl.red = false;
989 sib.red = true;
990 rotateRight(sib);
991 sib = (xp = x.parent) == null ? null : xp.right;
992 }
993 if (sib != null) {
994 sib.red = (xp == null) ? false : xp.red;
995 if ((sr = sib.right) != null)
996 sr.red = false;
997 }
998 if (xp != null) {
999 xp.red = false;
1000 rotateLeft(xp);
1001 }
1002 x = root;
1003 }
1004 }
1005 }
1006 else { // symmetric
1007 TreeNode sib = xpl;
1008 if (sib != null && sib.red) {
1009 sib.red = false;
1010 xp.red = true;
1011 rotateRight(xp);
1012 sib = (xp = x.parent) == null ? null : xp.left;
1013 }
1014 if (sib == null)
1015 x = xp;
1016 else {
1017 TreeNode sl = sib.left, sr = sib.right;
1018 if ((sl == null || !sl.red) &&
1019 (sr == null || !sr.red)) {
1020 sib.red = true;
1021 x = xp;
1022 }
1023 else {
1024 if (sl == null || !sl.red) {
1025 if (sr != null)
1026 sr.red = false;
1027 sib.red = true;
1028 rotateLeft(sib);
1029 sib = (xp = x.parent) == null ? null : xp.left;
1030 }
1031 if (sib != null) {
1032 sib.red = (xp == null) ? false : xp.red;
1033 if ((sl = sib.left) != null)
1034 sl.red = false;
1035 }
1036 if (xp != null) {
1037 xp.red = false;
1038 rotateRight(xp);
1039 }
1040 x = root;
1041 }
1042 }
1043 }
1044 }
1045 }
1046 if (p == replacement && (pp = p.parent) != null) {
1047 if (p == pp.left) // detach pointers
1048 pp.left = null;
1049 else if (p == pp.right)
1050 pp.right = null;
1051 p.parent = null;
1052 }
1053 }
1054 }
1055
1056 /* ---------------- Collision reduction methods -------------- */
1057
1058 /**
1059 * Spreads higher bits to lower, and also forces top 2 bits to 0.
1060 * Because the table uses power-of-two masking, sets of hashes
1061 * that vary only in bits above the current mask will always
1062 * collide. (Among known examples are sets of Float keys holding
1063 * consecutive whole numbers in small tables.) To counter this,
1064 * we apply a transform that spreads the impact of higher bits
1065 * downward. There is a tradeoff between speed, utility, and
1066 * quality of bit-spreading. Because many common sets of hashes
1067 * are already reasonably distributed across bits (so don't benefit
1068 * from spreading), and because we use trees to handle large sets
1069 * of collisions in bins, we don't need excessively high quality.
1070 */
1071 private static final int spread(int h) {
1072 h ^= (h >>> 18) ^ (h >>> 12);
1073 return (h ^ (h >>> 10)) & HASH_BITS;
1074 }
1075
1076 /**
1077 * Replaces a list bin with a tree bin. Call only when locked.
1078 * Fails to replace if the given key is non-comparable or table
1079 * is, or needs, resizing.
1080 */
1081 private final void replaceWithTreeBin(Node[] tab, int index, Object key) {
1082 if ((key instanceof Comparable) &&
1083 (tab.length >= MAXIMUM_CAPACITY || counter.sum() < (long)sizeCtl)) {
1084 TreeBin t = new TreeBin();
1085 for (Node e = tabAt(tab, index); e != null; e = e.next)
1086 t.putTreeNode(e.hash & HASH_BITS, e.key, e.val);
1087 setTabAt(tab, index, new Node(MOVED, t, null, null));
1088 }
1089 }
1090
1091 /* ---------------- Internal access and update methods -------------- */
1092
1093 /** Implementation for get and containsKey */
1094 private final Object internalGet(Object k) {
1095 int h = spread(k.hashCode());
1096 retry: for (Node[] tab = table; tab != null;) {
1097 Node e, p; Object ek, ev; int eh; // locals to read fields once
1098 for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1099 if ((eh = e.hash) == MOVED) {
1100 if ((ek = e.key) instanceof TreeBin) // search TreeBin
1101 return ((TreeBin)ek).getValue(h, k);
1102 else { // restart with new table
1103 tab = (Node[])ek;
1104 continue retry;
1105 }
1106 }
1107 else if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
1108 ((ek = e.key) == k || k.equals(ek)))
1109 return ev;
1110 }
1111 break;
1112 }
1113 return null;
1114 }
1115
1116 /**
1117 * Implementation for the four public remove/replace methods:
1118 * Replaces node value with v, conditional upon match of cv if
1119 * non-null. If resulting value is null, delete.
1120 */
1121 private final Object internalReplace(Object k, Object v, Object cv) {
1122 int h = spread(k.hashCode());
1123 Object oldVal = null;
1124 for (Node[] tab = table;;) {
1125 Node f; int i, fh; Object fk;
1126 if (tab == null ||
1127 (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1128 break;
1129 else if ((fh = f.hash) == MOVED) {
1130 if ((fk = f.key) instanceof TreeBin) {
1131 TreeBin t = (TreeBin)fk;
1132 boolean validated = false;
1133 boolean deleted = false;
1134 t.acquire(0);
1135 try {
1136 if (tabAt(tab, i) == f) {
1137 validated = true;
1138 TreeNode p = t.getTreeNode(h, k, t.root);
1139 if (p != null) {
1140 Object pv = p.val;
1141 if (cv == null || cv == pv || cv.equals(pv)) {
1142 oldVal = pv;
1143 if ((p.val = v) == null) {
1144 deleted = true;
1145 t.deleteTreeNode(p);
1146 }
1147 }
1148 }
1149 }
1150 } finally {
1151 t.release(0);
1152 }
1153 if (validated) {
1154 if (deleted)
1155 counter.add(-1L);
1156 break;
1157 }
1158 }
1159 else
1160 tab = (Node[])fk;
1161 }
1162 else if ((fh & HASH_BITS) != h && f.next == null) // precheck
1163 break; // rules out possible existence
1164 else if ((fh & LOCKED) != 0) {
1165 checkForResize(); // try resizing if can't get lock
1166 f.tryAwaitLock(tab, i);
1167 }
1168 else if (f.casHash(fh, fh | LOCKED)) {
1169 boolean validated = false;
1170 boolean deleted = false;
1171 try {
1172 if (tabAt(tab, i) == f) {
1173 validated = true;
1174 for (Node e = f, pred = null;;) {
1175 Object ek, ev;
1176 if ((e.hash & HASH_BITS) == h &&
1177 ((ev = e.val) != null) &&
1178 ((ek = e.key) == k || k.equals(ek))) {
1179 if (cv == null || cv == ev || cv.equals(ev)) {
1180 oldVal = ev;
1181 if ((e.val = v) == null) {
1182 deleted = true;
1183 Node en = e.next;
1184 if (pred != null)
1185 pred.next = en;
1186 else
1187 setTabAt(tab, i, en);
1188 }
1189 }
1190 break;
1191 }
1192 pred = e;
1193 if ((e = e.next) == null)
1194 break;
1195 }
1196 }
1197 } finally {
1198 if (!f.casHash(fh | LOCKED, fh)) {
1199 f.hash = fh;
1200 synchronized (f) { f.notifyAll(); };
1201 }
1202 }
1203 if (validated) {
1204 if (deleted)
1205 counter.add(-1L);
1206 break;
1207 }
1208 }
1209 }
1210 return oldVal;
1211 }
1212
1213 /*
1214 * Internal versions of the six insertion methods, each a
1215 * little more complicated than the last. All have
1216 * the same basic structure as the first (internalPut):
1217 * 1. If table uninitialized, create
1218 * 2. If bin empty, try to CAS new node
1219 * 3. If bin stale, use new table
1220 * 4. if bin converted to TreeBin, validate and relay to TreeBin methods
1221 * 5. Lock and validate; if valid, scan and add or update
1222 *
1223 * The others interweave other checks and/or alternative actions:
1224 * * Plain put checks for and performs resize after insertion.
1225 * * putIfAbsent prescans for mapping without lock (and fails to add
1226 * if present), which also makes pre-emptive resize checks worthwhile.
1227 * * computeIfAbsent extends form used in putIfAbsent with additional
1228 * mechanics to deal with, calls, potential exceptions and null
1229 * returns from function call.
1230 * * compute uses the same function-call mechanics, but without
1231 * the prescans
1232 * * merge acts as putIfAbsent in the absent case, but invokes the
1233 * update function if present
1234 * * putAll attempts to pre-allocate enough table space
1235 * and more lazily performs count updates and checks.
1236 *
1237 * Someday when details settle down a bit more, it might be worth
1238 * some factoring to reduce sprawl.
1239 */
1240
1241 /** Implementation for put */
1242 private final Object internalPut(Object k, Object v) {
1243 int h = spread(k.hashCode());
1244 int count = 0;
1245 for (Node[] tab = table;;) {
1246 int i; Node f; int fh; Object fk;
1247 if (tab == null)
1248 tab = initTable();
1249 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1250 if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1251 break; // no lock when adding to empty bin
1252 }
1253 else if ((fh = f.hash) == MOVED) {
1254 if ((fk = f.key) instanceof TreeBin) {
1255 TreeBin t = (TreeBin)fk;
1256 Object oldVal = null;
1257 t.acquire(0);
1258 try {
1259 if (tabAt(tab, i) == f) {
1260 count = 2;
1261 TreeNode p = t.putTreeNode(h, k, v);
1262 if (p != null) {
1263 oldVal = p.val;
1264 p.val = v;
1265 }
1266 }
1267 } finally {
1268 t.release(0);
1269 }
1270 if (count != 0) {
1271 if (oldVal != null)
1272 return oldVal;
1273 break;
1274 }
1275 }
1276 else
1277 tab = (Node[])fk;
1278 }
1279 else if ((fh & LOCKED) != 0) {
1280 checkForResize();
1281 f.tryAwaitLock(tab, i);
1282 }
1283 else if (f.casHash(fh, fh | LOCKED)) {
1284 Object oldVal = null;
1285 try { // needed in case equals() throws
1286 if (tabAt(tab, i) == f) {
1287 count = 1;
1288 for (Node e = f;; ++count) {
1289 Object ek, ev;
1290 if ((e.hash & HASH_BITS) == h &&
1291 (ev = e.val) != null &&
1292 ((ek = e.key) == k || k.equals(ek))) {
1293 oldVal = ev;
1294 e.val = v;
1295 break;
1296 }
1297 Node last = e;
1298 if ((e = e.next) == null) {
1299 last.next = new Node(h, k, v, null);
1300 if (count >= TREE_THRESHOLD)
1301 replaceWithTreeBin(tab, i, k);
1302 break;
1303 }
1304 }
1305 }
1306 } finally { // unlock and signal if needed
1307 if (!f.casHash(fh | LOCKED, fh)) {
1308 f.hash = fh;
1309 synchronized (f) { f.notifyAll(); };
1310 }
1311 }
1312 if (count != 0) {
1313 if (oldVal != null)
1314 return oldVal;
1315 if (tab.length <= 64)
1316 count = 2;
1317 break;
1318 }
1319 }
1320 }
1321 counter.add(1L);
1322 if (count > 1)
1323 checkForResize();
1324 return null;
1325 }
1326
1327 /** Implementation for putIfAbsent */
1328 private final Object internalPutIfAbsent(Object k, Object v) {
1329 int h = spread(k.hashCode());
1330 int count = 0;
1331 for (Node[] tab = table;;) {
1332 int i; Node f; int fh; Object fk, fv;
1333 if (tab == null)
1334 tab = initTable();
1335 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1336 if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1337 break;
1338 }
1339 else if ((fh = f.hash) == MOVED) {
1340 if ((fk = f.key) instanceof TreeBin) {
1341 TreeBin t = (TreeBin)fk;
1342 Object oldVal = null;
1343 t.acquire(0);
1344 try {
1345 if (tabAt(tab, i) == f) {
1346 count = 2;
1347 TreeNode p = t.putTreeNode(h, k, v);
1348 if (p != null)
1349 oldVal = p.val;
1350 }
1351 } finally {
1352 t.release(0);
1353 }
1354 if (count != 0) {
1355 if (oldVal != null)
1356 return oldVal;
1357 break;
1358 }
1359 }
1360 else
1361 tab = (Node[])fk;
1362 }
1363 else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1364 ((fk = f.key) == k || k.equals(fk)))
1365 return fv;
1366 else {
1367 Node g = f.next;
1368 if (g != null) { // at least 2 nodes -- search and maybe resize
1369 for (Node e = g;;) {
1370 Object ek, ev;
1371 if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1372 ((ek = e.key) == k || k.equals(ek)))
1373 return ev;
1374 if ((e = e.next) == null) {
1375 checkForResize();
1376 break;
1377 }
1378 }
1379 }
1380 if (((fh = f.hash) & LOCKED) != 0) {
1381 checkForResize();
1382 f.tryAwaitLock(tab, i);
1383 }
1384 else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1385 Object oldVal = null;
1386 try {
1387 if (tabAt(tab, i) == f) {
1388 count = 1;
1389 for (Node e = f;; ++count) {
1390 Object ek, ev;
1391 if ((e.hash & HASH_BITS) == h &&
1392 (ev = e.val) != null &&
1393 ((ek = e.key) == k || k.equals(ek))) {
1394 oldVal = ev;
1395 break;
1396 }
1397 Node last = e;
1398 if ((e = e.next) == null) {
1399 last.next = new Node(h, k, v, null);
1400 if (count >= TREE_THRESHOLD)
1401 replaceWithTreeBin(tab, i, k);
1402 break;
1403 }
1404 }
1405 }
1406 } finally {
1407 if (!f.casHash(fh | LOCKED, fh)) {
1408 f.hash = fh;
1409 synchronized (f) { f.notifyAll(); };
1410 }
1411 }
1412 if (count != 0) {
1413 if (oldVal != null)
1414 return oldVal;
1415 if (tab.length <= 64)
1416 count = 2;
1417 break;
1418 }
1419 }
1420 }
1421 }
1422 counter.add(1L);
1423 if (count > 1)
1424 checkForResize();
1425 return null;
1426 }
1427
1428 /** Implementation for computeIfAbsent */
1429 private final Object internalComputeIfAbsent(K k,
1430 Fun<? super K, ?> mf) {
1431 int h = spread(k.hashCode());
1432 Object val = null;
1433 int count = 0;
1434 for (Node[] tab = table;;) {
1435 Node f; int i, fh; Object fk, fv;
1436 if (tab == null)
1437 tab = initTable();
1438 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1439 Node node = new Node(fh = h | LOCKED, k, null, null);
1440 if (casTabAt(tab, i, null, node)) {
1441 count = 1;
1442 try {
1443 if ((val = mf.apply(k)) != null)
1444 node.val = val;
1445 } finally {
1446 if (val == null)
1447 setTabAt(tab, i, null);
1448 if (!node.casHash(fh, h)) {
1449 node.hash = h;
1450 synchronized (node) { node.notifyAll(); };
1451 }
1452 }
1453 }
1454 if (count != 0)
1455 break;
1456 }
1457 else if ((fh = f.hash) == MOVED) {
1458 if ((fk = f.key) instanceof TreeBin) {
1459 TreeBin t = (TreeBin)fk;
1460 boolean added = false;
1461 t.acquire(0);
1462 try {
1463 if (tabAt(tab, i) == f) {
1464 count = 1;
1465 TreeNode p = t.getTreeNode(h, k, t.root);
1466 if (p != null)
1467 val = p.val;
1468 else if ((val = mf.apply(k)) != null) {
1469 added = true;
1470 count = 2;
1471 t.putTreeNode(h, k, val);
1472 }
1473 }
1474 } finally {
1475 t.release(0);
1476 }
1477 if (count != 0) {
1478 if (!added)
1479 return val;
1480 break;
1481 }
1482 }
1483 else
1484 tab = (Node[])fk;
1485 }
1486 else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1487 ((fk = f.key) == k || k.equals(fk)))
1488 return fv;
1489 else {
1490 Node g = f.next;
1491 if (g != null) {
1492 for (Node e = g;;) {
1493 Object ek, ev;
1494 if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1495 ((ek = e.key) == k || k.equals(ek)))
1496 return ev;
1497 if ((e = e.next) == null) {
1498 checkForResize();
1499 break;
1500 }
1501 }
1502 }
1503 if (((fh = f.hash) & LOCKED) != 0) {
1504 checkForResize();
1505 f.tryAwaitLock(tab, i);
1506 }
1507 else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1508 boolean added = false;
1509 try {
1510 if (tabAt(tab, i) == f) {
1511 count = 1;
1512 for (Node e = f;; ++count) {
1513 Object ek, ev;
1514 if ((e.hash & HASH_BITS) == h &&
1515 (ev = e.val) != null &&
1516 ((ek = e.key) == k || k.equals(ek))) {
1517 val = ev;
1518 break;
1519 }
1520 Node last = e;
1521 if ((e = e.next) == null) {
1522 if ((val = mf.apply(k)) != null) {
1523 added = true;
1524 last.next = new Node(h, k, val, null);
1525 if (count >= TREE_THRESHOLD)
1526 replaceWithTreeBin(tab, i, k);
1527 }
1528 break;
1529 }
1530 }
1531 }
1532 } finally {
1533 if (!f.casHash(fh | LOCKED, fh)) {
1534 f.hash = fh;
1535 synchronized (f) { f.notifyAll(); };
1536 }
1537 }
1538 if (count != 0) {
1539 if (!added)
1540 return val;
1541 if (tab.length <= 64)
1542 count = 2;
1543 break;
1544 }
1545 }
1546 }
1547 }
1548 if (val != null) {
1549 counter.add(1L);
1550 if (count > 1)
1551 checkForResize();
1552 }
1553 return val;
1554 }
1555
1556 /** Implementation for compute */
1557 @SuppressWarnings("unchecked") private final Object internalCompute
1558 (K k, boolean onlyIfPresent, BiFun<? super K, ? super V, ? extends V> mf) {
1559 int h = spread(k.hashCode());
1560 Object val = null;
1561 int delta = 0;
1562 int count = 0;
1563 for (Node[] tab = table;;) {
1564 Node f; int i, fh; Object fk;
1565 if (tab == null)
1566 tab = initTable();
1567 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1568 if (onlyIfPresent)
1569 break;
1570 Node node = new Node(fh = h | LOCKED, k, null, null);
1571 if (casTabAt(tab, i, null, node)) {
1572 try {
1573 count = 1;
1574 if ((val = mf.apply(k, null)) != null) {
1575 node.val = val;
1576 delta = 1;
1577 }
1578 } finally {
1579 if (delta == 0)
1580 setTabAt(tab, i, null);
1581 if (!node.casHash(fh, h)) {
1582 node.hash = h;
1583 synchronized (node) { node.notifyAll(); };
1584 }
1585 }
1586 }
1587 if (count != 0)
1588 break;
1589 }
1590 else if ((fh = f.hash) == MOVED) {
1591 if ((fk = f.key) instanceof TreeBin) {
1592 TreeBin t = (TreeBin)fk;
1593 t.acquire(0);
1594 try {
1595 if (tabAt(tab, i) == f) {
1596 count = 1;
1597 TreeNode p = t.getTreeNode(h, k, t.root);
1598 Object pv = (p == null) ? null : p.val;
1599 if ((val = mf.apply(k, (V)pv)) != null) {
1600 if (p != null)
1601 p.val = val;
1602 else {
1603 count = 2;
1604 delta = 1;
1605 t.putTreeNode(h, k, val);
1606 }
1607 }
1608 else if (p != null) {
1609 delta = -1;
1610 t.deleteTreeNode(p);
1611 }
1612 }
1613 } finally {
1614 t.release(0);
1615 }
1616 if (count != 0)
1617 break;
1618 }
1619 else
1620 tab = (Node[])fk;
1621 }
1622 else if ((fh & LOCKED) != 0) {
1623 checkForResize();
1624 f.tryAwaitLock(tab, i);
1625 }
1626 else if (f.casHash(fh, fh | LOCKED)) {
1627 try {
1628 if (tabAt(tab, i) == f) {
1629 count = 1;
1630 for (Node e = f, pred = null;; ++count) {
1631 Object ek, ev;
1632 if ((e.hash & HASH_BITS) == h &&
1633 (ev = e.val) != null &&
1634 ((ek = e.key) == k || k.equals(ek))) {
1635 val = mf.apply(k, (V)ev);
1636 if (val != null)
1637 e.val = val;
1638 else {
1639 delta = -1;
1640 Node en = e.next;
1641 if (pred != null)
1642 pred.next = en;
1643 else
1644 setTabAt(tab, i, en);
1645 }
1646 break;
1647 }
1648 pred = e;
1649 if ((e = e.next) == null) {
1650 if (!onlyIfPresent && (val = mf.apply(k, null)) != null) {
1651 pred.next = new Node(h, k, val, null);
1652 delta = 1;
1653 if (count >= TREE_THRESHOLD)
1654 replaceWithTreeBin(tab, i, k);
1655 }
1656 break;
1657 }
1658 }
1659 }
1660 } finally {
1661 if (!f.casHash(fh | LOCKED, fh)) {
1662 f.hash = fh;
1663 synchronized (f) { f.notifyAll(); };
1664 }
1665 }
1666 if (count != 0) {
1667 if (tab.length <= 64)
1668 count = 2;
1669 break;
1670 }
1671 }
1672 }
1673 if (delta != 0) {
1674 counter.add((long)delta);
1675 if (count > 1)
1676 checkForResize();
1677 }
1678 return val;
1679 }
1680
1681 /** Implementation for merge */
1682 @SuppressWarnings("unchecked") private final Object internalMerge
1683 (K k, V v, BiFun<? super V, ? super V, ? extends V> mf) {
1684 int h = spread(k.hashCode());
1685 Object val = null;
1686 int delta = 0;
1687 int count = 0;
1688 for (Node[] tab = table;;) {
1689 int i; Node f; int fh; Object fk, fv;
1690 if (tab == null)
1691 tab = initTable();
1692 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1693 if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1694 delta = 1;
1695 val = v;
1696 break;
1697 }
1698 }
1699 else if ((fh = f.hash) == MOVED) {
1700 if ((fk = f.key) instanceof TreeBin) {
1701 TreeBin t = (TreeBin)fk;
1702 t.acquire(0);
1703 try {
1704 if (tabAt(tab, i) == f) {
1705 count = 1;
1706 TreeNode p = t.getTreeNode(h, k, t.root);
1707 val = (p == null) ? v : mf.apply((V)p.val, v);
1708 if (val != null) {
1709 if (p != null)
1710 p.val = val;
1711 else {
1712 count = 2;
1713 delta = 1;
1714 t.putTreeNode(h, k, val);
1715 }
1716 }
1717 else if (p != null) {
1718 delta = -1;
1719 t.deleteTreeNode(p);
1720 }
1721 }
1722 } finally {
1723 t.release(0);
1724 }
1725 if (count != 0)
1726 break;
1727 }
1728 else
1729 tab = (Node[])fk;
1730 }
1731 else if ((fh & LOCKED) != 0) {
1732 checkForResize();
1733 f.tryAwaitLock(tab, i);
1734 }
1735 else if (f.casHash(fh, fh | LOCKED)) {
1736 try {
1737 if (tabAt(tab, i) == f) {
1738 count = 1;
1739 for (Node e = f, pred = null;; ++count) {
1740 Object ek, ev;
1741 if ((e.hash & HASH_BITS) == h &&
1742 (ev = e.val) != null &&
1743 ((ek = e.key) == k || k.equals(ek))) {
1744 val = mf.apply(v, (V)ev);
1745 if (val != null)
1746 e.val = val;
1747 else {
1748 delta = -1;
1749 Node en = e.next;
1750 if (pred != null)
1751 pred.next = en;
1752 else
1753 setTabAt(tab, i, en);
1754 }
1755 break;
1756 }
1757 pred = e;
1758 if ((e = e.next) == null) {
1759 val = v;
1760 pred.next = new Node(h, k, val, null);
1761 delta = 1;
1762 if (count >= TREE_THRESHOLD)
1763 replaceWithTreeBin(tab, i, k);
1764 break;
1765 }
1766 }
1767 }
1768 } finally {
1769 if (!f.casHash(fh | LOCKED, fh)) {
1770 f.hash = fh;
1771 synchronized (f) { f.notifyAll(); };
1772 }
1773 }
1774 if (count != 0) {
1775 if (tab.length <= 64)
1776 count = 2;
1777 break;
1778 }
1779 }
1780 }
1781 if (delta != 0) {
1782 counter.add((long)delta);
1783 if (count > 1)
1784 checkForResize();
1785 }
1786 return val;
1787 }
1788
1789 /** Implementation for putAll */
1790 private final void internalPutAll(Map<?, ?> m) {
1791 tryPresize(m.size());
1792 long delta = 0L; // number of uncommitted additions
1793 boolean npe = false; // to throw exception on exit for nulls
1794 try { // to clean up counts on other exceptions
1795 for (Map.Entry<?, ?> entry : m.entrySet()) {
1796 Object k, v;
1797 if (entry == null || (k = entry.getKey()) == null ||
1798 (v = entry.getValue()) == null) {
1799 npe = true;
1800 break;
1801 }
1802 int h = spread(k.hashCode());
1803 for (Node[] tab = table;;) {
1804 int i; Node f; int fh; Object fk;
1805 if (tab == null)
1806 tab = initTable();
1807 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1808 if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1809 ++delta;
1810 break;
1811 }
1812 }
1813 else if ((fh = f.hash) == MOVED) {
1814 if ((fk = f.key) instanceof TreeBin) {
1815 TreeBin t = (TreeBin)fk;
1816 boolean validated = false;
1817 t.acquire(0);
1818 try {
1819 if (tabAt(tab, i) == f) {
1820 validated = true;
1821 TreeNode p = t.getTreeNode(h, k, t.root);
1822 if (p != null)
1823 p.val = v;
1824 else {
1825 t.putTreeNode(h, k, v);
1826 ++delta;
1827 }
1828 }
1829 } finally {
1830 t.release(0);
1831 }
1832 if (validated)
1833 break;
1834 }
1835 else
1836 tab = (Node[])fk;
1837 }
1838 else if ((fh & LOCKED) != 0) {
1839 counter.add(delta);
1840 delta = 0L;
1841 checkForResize();
1842 f.tryAwaitLock(tab, i);
1843 }
1844 else if (f.casHash(fh, fh | LOCKED)) {
1845 int count = 0;
1846 try {
1847 if (tabAt(tab, i) == f) {
1848 count = 1;
1849 for (Node e = f;; ++count) {
1850 Object ek, ev;
1851 if ((e.hash & HASH_BITS) == h &&
1852 (ev = e.val) != null &&
1853 ((ek = e.key) == k || k.equals(ek))) {
1854 e.val = v;
1855 break;
1856 }
1857 Node last = e;
1858 if ((e = e.next) == null) {
1859 ++delta;
1860 last.next = new Node(h, k, v, null);
1861 if (count >= TREE_THRESHOLD)
1862 replaceWithTreeBin(tab, i, k);
1863 break;
1864 }
1865 }
1866 }
1867 } finally {
1868 if (!f.casHash(fh | LOCKED, fh)) {
1869 f.hash = fh;
1870 synchronized (f) { f.notifyAll(); };
1871 }
1872 }
1873 if (count != 0) {
1874 if (count > 1) {
1875 counter.add(delta);
1876 delta = 0L;
1877 checkForResize();
1878 }
1879 break;
1880 }
1881 }
1882 }
1883 }
1884 } finally {
1885 if (delta != 0)
1886 counter.add(delta);
1887 }
1888 if (npe)
1889 throw new NullPointerException();
1890 }
1891
1892 /* ---------------- Table Initialization and Resizing -------------- */
1893
1894 /**
1895 * Returns a power of two table size for the given desired capacity.
1896 * See Hackers Delight, sec 3.2
1897 */
1898 private static final int tableSizeFor(int c) {
1899 int n = c - 1;
1900 n |= n >>> 1;
1901 n |= n >>> 2;
1902 n |= n >>> 4;
1903 n |= n >>> 8;
1904 n |= n >>> 16;
1905 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1906 }
1907
1908 /**
1909 * Initializes table, using the size recorded in sizeCtl.
1910 */
1911 private final Node[] initTable() {
1912 Node[] tab; int sc;
1913 while ((tab = table) == null) {
1914 if ((sc = sizeCtl) < 0)
1915 Thread.yield(); // lost initialization race; just spin
1916 else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1917 try {
1918 if ((tab = table) == null) {
1919 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1920 tab = table = new Node[n];
1921 sc = n - (n >>> 2);
1922 }
1923 } finally {
1924 sizeCtl = sc;
1925 }
1926 break;
1927 }
1928 }
1929 return tab;
1930 }
1931
1932 /**
1933 * If table is too small and not already resizing, creates next
1934 * table and transfers bins. Rechecks occupancy after a transfer
1935 * to see if another resize is already needed because resizings
1936 * are lagging additions.
1937 */
1938 private final void checkForResize() {
1939 Node[] tab; int n, sc;
1940 while ((tab = table) != null &&
1941 (n = tab.length) < MAXIMUM_CAPACITY &&
1942 (sc = sizeCtl) >= 0 && counter.sum() >= (long)sc &&
1943 UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1944 try {
1945 if (tab == table) {
1946 table = rebuild(tab);
1947 sc = (n << 1) - (n >>> 1);
1948 }
1949 } finally {
1950 sizeCtl = sc;
1951 }
1952 }
1953 }
1954
1955 /**
1956 * Tries to presize table to accommodate the given number of elements.
1957 *
1958 * @param size number of elements (doesn't need to be perfectly accurate)
1959 */
1960 private final void tryPresize(int size) {
1961 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1962 tableSizeFor(size + (size >>> 1) + 1);
1963 int sc;
1964 while ((sc = sizeCtl) >= 0) {
1965 Node[] tab = table; int n;
1966 if (tab == null || (n = tab.length) == 0) {
1967 n = (sc > c) ? sc : c;
1968 if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1969 try {
1970 if (table == tab) {
1971 table = new Node[n];
1972 sc = n - (n >>> 2);
1973 }
1974 } finally {
1975 sizeCtl = sc;
1976 }
1977 }
1978 }
1979 else if (c <= sc || n >= MAXIMUM_CAPACITY)
1980 break;
1981 else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1982 try {
1983 if (table == tab) {
1984 table = rebuild(tab);
1985 sc = (n << 1) - (n >>> 1);
1986 }
1987 } finally {
1988 sizeCtl = sc;
1989 }
1990 }
1991 }
1992 }
1993
1994 /*
1995 * Moves and/or copies the nodes in each bin to new table. See
1996 * above for explanation.
1997 *
1998 * @return the new table
1999 */
2000 private static final Node[] rebuild(Node[] tab) {
2001 int n = tab.length;
2002 Node[] nextTab = new Node[n << 1];
2003 Node fwd = new Node(MOVED, nextTab, null, null);
2004 int[] buffer = null; // holds bins to revisit; null until needed
2005 Node rev = null; // reverse forwarder; null until needed
2006 int nbuffered = 0; // the number of bins in buffer list
2007 int bufferIndex = 0; // buffer index of current buffered bin
2008 int bin = n - 1; // current non-buffered bin or -1 if none
2009
2010 for (int i = bin;;) { // start upwards sweep
2011 int fh; Node f;
2012 if ((f = tabAt(tab, i)) == null) {
2013 if (bin >= 0) { // Unbuffered; no lock needed (or available)
2014 if (!casTabAt(tab, i, f, fwd))
2015 continue;
2016 }
2017 else { // transiently use a locked forwarding node
2018 Node g = new Node(MOVED|LOCKED, nextTab, null, null);
2019 if (!casTabAt(tab, i, f, g))
2020 continue;
2021 setTabAt(nextTab, i, null);
2022 setTabAt(nextTab, i + n, null);
2023 setTabAt(tab, i, fwd);
2024 if (!g.casHash(MOVED|LOCKED, MOVED)) {
2025 g.hash = MOVED;
2026 synchronized (g) { g.notifyAll(); }
2027 }
2028 }
2029 }
2030 else if ((fh = f.hash) == MOVED) {
2031 Object fk = f.key;
2032 if (fk instanceof TreeBin) {
2033 TreeBin t = (TreeBin)fk;
2034 boolean validated = false;
2035 t.acquire(0);
2036 try {
2037 if (tabAt(tab, i) == f) {
2038 validated = true;
2039 splitTreeBin(nextTab, i, t);
2040 setTabAt(tab, i, fwd);
2041 }
2042 } finally {
2043 t.release(0);
2044 }
2045 if (!validated)
2046 continue;
2047 }
2048 }
2049 else if ((fh & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
2050 boolean validated = false;
2051 try { // split to lo and hi lists; copying as needed
2052 if (tabAt(tab, i) == f) {
2053 validated = true;
2054 splitBin(nextTab, i, f);
2055 setTabAt(tab, i, fwd);
2056 }
2057 } finally {
2058 if (!f.casHash(fh | LOCKED, fh)) {
2059 f.hash = fh;
2060 synchronized (f) { f.notifyAll(); };
2061 }
2062 }
2063 if (!validated)
2064 continue;
2065 }
2066 else {
2067 if (buffer == null) // initialize buffer for revisits
2068 buffer = new int[TRANSFER_BUFFER_SIZE];
2069 if (bin < 0 && bufferIndex > 0) {
2070 int j = buffer[--bufferIndex];
2071 buffer[bufferIndex] = i;
2072 i = j; // swap with another bin
2073 continue;
2074 }
2075 if (bin < 0 || nbuffered >= TRANSFER_BUFFER_SIZE) {
2076 f.tryAwaitLock(tab, i);
2077 continue; // no other options -- block
2078 }
2079 if (rev == null) // initialize reverse-forwarder
2080 rev = new Node(MOVED, tab, null, null);
2081 if (tabAt(tab, i) != f || (f.hash & LOCKED) == 0)
2082 continue; // recheck before adding to list
2083 buffer[nbuffered++] = i;
2084 setTabAt(nextTab, i, rev); // install place-holders
2085 setTabAt(nextTab, i + n, rev);
2086 }
2087
2088 if (bin > 0)
2089 i = --bin;
2090 else if (buffer != null && nbuffered > 0) {
2091 bin = -1;
2092 i = buffer[bufferIndex = --nbuffered];
2093 }
2094 else
2095 return nextTab;
2096 }
2097 }
2098
2099 /**
2100 * Splits a normal bin with list headed by e into lo and hi parts;
2101 * installs in given table.
2102 */
2103 private static void splitBin(Node[] nextTab, int i, Node e) {
2104 int bit = nextTab.length >>> 1; // bit to split on
2105 int runBit = e.hash & bit;
2106 Node lastRun = e, lo = null, hi = null;
2107 for (Node p = e.next; p != null; p = p.next) {
2108 int b = p.hash & bit;
2109 if (b != runBit) {
2110 runBit = b;
2111 lastRun = p;
2112 }
2113 }
2114 if (runBit == 0)
2115 lo = lastRun;
2116 else
2117 hi = lastRun;
2118 for (Node p = e; p != lastRun; p = p.next) {
2119 int ph = p.hash & HASH_BITS;
2120 Object pk = p.key, pv = p.val;
2121 if ((ph & bit) == 0)
2122 lo = new Node(ph, pk, pv, lo);
2123 else
2124 hi = new Node(ph, pk, pv, hi);
2125 }
2126 setTabAt(nextTab, i, lo);
2127 setTabAt(nextTab, i + bit, hi);
2128 }
2129
2130 /**
2131 * Splits a tree bin into lo and hi parts; installs in given table.
2132 */
2133 private static void splitTreeBin(Node[] nextTab, int i, TreeBin t) {
2134 int bit = nextTab.length >>> 1;
2135 TreeBin lt = new TreeBin();
2136 TreeBin ht = new TreeBin();
2137 int lc = 0, hc = 0;
2138 for (Node e = t.first; e != null; e = e.next) {
2139 int h = e.hash & HASH_BITS;
2140 Object k = e.key, v = e.val;
2141 if ((h & bit) == 0) {
2142 ++lc;
2143 lt.putTreeNode(h, k, v);
2144 }
2145 else {
2146 ++hc;
2147 ht.putTreeNode(h, k, v);
2148 }
2149 }
2150 Node ln, hn; // throw away trees if too small
2151 if (lc <= (TREE_THRESHOLD >>> 1)) {
2152 ln = null;
2153 for (Node p = lt.first; p != null; p = p.next)
2154 ln = new Node(p.hash, p.key, p.val, ln);
2155 }
2156 else
2157 ln = new Node(MOVED, lt, null, null);
2158 setTabAt(nextTab, i, ln);
2159 if (hc <= (TREE_THRESHOLD >>> 1)) {
2160 hn = null;
2161 for (Node p = ht.first; p != null; p = p.next)
2162 hn = new Node(p.hash, p.key, p.val, hn);
2163 }
2164 else
2165 hn = new Node(MOVED, ht, null, null);
2166 setTabAt(nextTab, i + bit, hn);
2167 }
2168
2169 /**
2170 * Implementation for clear. Steps through each bin, removing all
2171 * nodes.
2172 */
2173 private final void internalClear() {
2174 long delta = 0L; // negative number of deletions
2175 int i = 0;
2176 Node[] tab = table;
2177 while (tab != null && i < tab.length) {
2178 int fh; Object fk;
2179 Node f = tabAt(tab, i);
2180 if (f == null)
2181 ++i;
2182 else if ((fh = f.hash) == MOVED) {
2183 if ((fk = f.key) instanceof TreeBin) {
2184 TreeBin t = (TreeBin)fk;
2185 t.acquire(0);
2186 try {
2187 if (tabAt(tab, i) == f) {
2188 for (Node p = t.first; p != null; p = p.next) {
2189 if (p.val != null) { // (currently always true)
2190 p.val = null;
2191 --delta;
2192 }
2193 }
2194 t.first = null;
2195 t.root = null;
2196 ++i;
2197 }
2198 } finally {
2199 t.release(0);
2200 }
2201 }
2202 else
2203 tab = (Node[])fk;
2204 }
2205 else if ((fh & LOCKED) != 0) {
2206 counter.add(delta); // opportunistically update count
2207 delta = 0L;
2208 f.tryAwaitLock(tab, i);
2209 }
2210 else if (f.casHash(fh, fh | LOCKED)) {
2211 try {
2212 if (tabAt(tab, i) == f) {
2213 for (Node e = f; e != null; e = e.next) {
2214 if (e.val != null) { // (currently always true)
2215 e.val = null;
2216 --delta;
2217 }
2218 }
2219 setTabAt(tab, i, null);
2220 ++i;
2221 }
2222 } finally {
2223 if (!f.casHash(fh | LOCKED, fh)) {
2224 f.hash = fh;
2225 synchronized (f) { f.notifyAll(); };
2226 }
2227 }
2228 }
2229 }
2230 if (delta != 0)
2231 counter.add(delta);
2232 }
2233
2234 /* ----------------Table Traversal -------------- */
2235
2236 /**
2237 * Encapsulates traversal for methods such as containsValue; also
2238 * serves as a base class for other iterators and bulk tasks.
2239 *
2240 * At each step, the iterator snapshots the key ("nextKey") and
2241 * value ("nextVal") of a valid node (i.e., one that, at point of
2242 * snapshot, has a non-null user value). Because val fields can
2243 * change (including to null, indicating deletion), field nextVal
2244 * might not be accurate at point of use, but still maintains the
2245 * weak consistency property of holding a value that was once
2246 * valid.
2247 *
2248 * Internal traversals directly access these fields, as in:
2249 * {@code while (it.advance() != null) { process(it.nextKey); }}
2250 *
2251 * Exported iterators must track whether the iterator has advanced
2252 * (in hasNext vs next) (by setting/checking/nulling field
2253 * nextVal), and then extract key, value, or key-value pairs as
2254 * return values of next().
2255 *
2256 * The iterator visits once each still-valid node that was
2257 * reachable upon iterator construction. It might miss some that
2258 * were added to a bin after the bin was visited, which is OK wrt
2259 * consistency guarantees. Maintaining this property in the face
2260 * of possible ongoing resizes requires a fair amount of
2261 * bookkeeping state that is difficult to optimize away amidst
2262 * volatile accesses. Even so, traversal maintains reasonable
2263 * throughput.
2264 *
2265 * Normally, iteration proceeds bin-by-bin traversing lists.
2266 * However, if the table has been resized, then all future steps
2267 * must traverse both the bin at the current index as well as at
2268 * (index + baseSize); and so on for further resizings. To
2269 * paranoically cope with potential sharing by users of iterators
2270 * across threads, iteration terminates if a bounds checks fails
2271 * for a table read.
2272 *
2273 * This class extends ForkJoinTask to streamline parallel
2274 * iteration in bulk operations (see BulkTask). This adds only an
2275 * int of space overhead, which is close enough to negligible in
2276 * cases where it is not needed to not worry about it. Because
2277 * ForkJoinTask is Serializable, but iterators need not be, we
2278 * need to add warning suppressions.
2279 */
2280 @SuppressWarnings("serial") static class Traverser<K,V,R> extends ForkJoinTask<R> {
2281 final ConcurrentHashMapV8<K, V> map;
2282 Node next; // the next entry to use
2283 Node last; // the last entry used
2284 Object nextKey; // cached key field of next
2285 Object nextVal; // cached val field of next
2286 Node[] tab; // current table; updated if resized
2287 int index; // index of bin to use next
2288 int baseIndex; // current index of initial table
2289 int baseLimit; // index bound for initial table
2290 int baseSize; // initial table size
2291
2292 /** Creates iterator for all entries in the table. */
2293 Traverser(ConcurrentHashMapV8<K, V> map) {
2294 this.map = map;
2295 }
2296
2297 /** Creates iterator for split() methods */
2298 Traverser(Traverser<K,V,?> it) {
2299 ConcurrentHashMapV8<K, V> m; Node[] t;
2300 if ((m = this.map = it.map) == null)
2301 t = null;
2302 else if ((t = it.tab) == null && // force parent tab initialization
2303 (t = it.tab = m.table) != null)
2304 it.baseLimit = it.baseSize = t.length;
2305 this.tab = t;
2306 this.baseSize = it.baseSize;
2307 it.baseLimit = this.index = this.baseIndex =
2308 ((this.baseLimit = it.baseLimit) + it.baseIndex + 1) >>> 1;
2309 }
2310
2311 /**
2312 * Advances next; returns nextVal or null if terminated.
2313 * See above for explanation.
2314 */
2315 final Object advance() {
2316 Node e = last = next;
2317 Object ev = null;
2318 outer: do {
2319 if (e != null) // advance past used/skipped node
2320 e = e.next;
2321 while (e == null) { // get to next non-null bin
2322 ConcurrentHashMapV8<K, V> m;
2323 Node[] t; int b, i, n; Object ek; // checks must use locals
2324 if ((t = tab) != null)
2325 n = t.length;
2326 else if ((m = map) != null && (t = tab = m.table) != null)
2327 n = baseLimit = baseSize = t.length;
2328 else
2329 break outer;
2330 if ((b = baseIndex) >= baseLimit ||
2331 (i = index) < 0 || i >= n)
2332 break outer;
2333 if ((e = tabAt(t, i)) != null && e.hash == MOVED) {
2334 if ((ek = e.key) instanceof TreeBin)
2335 e = ((TreeBin)ek).first;
2336 else {
2337 tab = (Node[])ek;
2338 continue; // restarts due to null val
2339 }
2340 } // visit upper slots if present
2341 index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2342 }
2343 nextKey = e.key;
2344 } while ((ev = e.val) == null); // skip deleted or special nodes
2345 next = e;
2346 return nextVal = ev;
2347 }
2348
2349 public final void remove() {
2350 if (nextVal == null && last == null)
2351 advance();
2352 Node e = last;
2353 if (e == null)
2354 throw new IllegalStateException();
2355 last = null;
2356 map.remove(e.key);
2357 }
2358
2359 public final boolean hasNext() {
2360 return nextVal != null || advance() != null;
2361 }
2362
2363 public final boolean hasMoreElements() { return hasNext(); }
2364 public final void setRawResult(Object x) { }
2365 public R getRawResult() { return null; }
2366 public boolean exec() { return true; }
2367 }
2368
2369 /* ---------------- Public operations -------------- */
2370
2371 /**
2372 * Creates a new, empty map with the default initial table size (16).
2373 */
2374 public ConcurrentHashMapV8() {
2375 this.counter = new LongAdder();
2376 }
2377
2378 /**
2379 * Creates a new, empty map with an initial table size
2380 * accommodating the specified number of elements without the need
2381 * to dynamically resize.
2382 *
2383 * @param initialCapacity The implementation performs internal
2384 * sizing to accommodate this many elements.
2385 * @throws IllegalArgumentException if the initial capacity of
2386 * elements is negative
2387 */
2388 public ConcurrentHashMapV8(int initialCapacity) {
2389 if (initialCapacity < 0)
2390 throw new IllegalArgumentException();
2391 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2392 MAXIMUM_CAPACITY :
2393 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2394 this.counter = new LongAdder();
2395 this.sizeCtl = cap;
2396 }
2397
2398 /**
2399 * Creates a new map with the same mappings as the given map.
2400 *
2401 * @param m the map
2402 */
2403 public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
2404 this.counter = new LongAdder();
2405 this.sizeCtl = DEFAULT_CAPACITY;
2406 internalPutAll(m);
2407 }
2408
2409 /**
2410 * Creates a new, empty map with an initial table size based on
2411 * the given number of elements ({@code initialCapacity}) and
2412 * initial table density ({@code loadFactor}).
2413 *
2414 * @param initialCapacity the initial capacity. The implementation
2415 * performs internal sizing to accommodate this many elements,
2416 * given the specified load factor.
2417 * @param loadFactor the load factor (table density) for
2418 * establishing the initial table size
2419 * @throws IllegalArgumentException if the initial capacity of
2420 * elements is negative or the load factor is nonpositive
2421 *
2422 * @since 1.6
2423 */
2424 public ConcurrentHashMapV8(int initialCapacity, float loadFactor) {
2425 this(initialCapacity, loadFactor, 1);
2426 }
2427
2428 /**
2429 * Creates a new, empty map with an initial table size based on
2430 * the given number of elements ({@code initialCapacity}), table
2431 * density ({@code loadFactor}), and number of concurrently
2432 * updating threads ({@code concurrencyLevel}).
2433 *
2434 * @param initialCapacity the initial capacity. The implementation
2435 * performs internal sizing to accommodate this many elements,
2436 * given the specified load factor.
2437 * @param loadFactor the load factor (table density) for
2438 * establishing the initial table size
2439 * @param concurrencyLevel the estimated number of concurrently
2440 * updating threads. The implementation may use this value as
2441 * a sizing hint.
2442 * @throws IllegalArgumentException if the initial capacity is
2443 * negative or the load factor or concurrencyLevel are
2444 * nonpositive
2445 */
2446 public ConcurrentHashMapV8(int initialCapacity,
2447 float loadFactor, int concurrencyLevel) {
2448 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2449 throw new IllegalArgumentException();
2450 if (initialCapacity < concurrencyLevel) // Use at least as many bins
2451 initialCapacity = concurrencyLevel; // as estimated threads
2452 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2453 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2454 MAXIMUM_CAPACITY : tableSizeFor((int)size);
2455 this.counter = new LongAdder();
2456 this.sizeCtl = cap;
2457 }
2458
2459 /**
2460 * {@inheritDoc}
2461 */
2462 public boolean isEmpty() {
2463 return counter.sum() <= 0L; // ignore transient negative values
2464 }
2465
2466 /**
2467 * {@inheritDoc}
2468 */
2469 public int size() {
2470 long n = counter.sum();
2471 return ((n < 0L) ? 0 :
2472 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2473 (int)n);
2474 }
2475
2476 /**
2477 * Returns the number of mappings. This method should be used
2478 * instead of {@link #size} because a ConcurrentHashMap may
2479 * contain more mappings than can be represented as an int. The
2480 * value returned is a snapshot; the actual count may differ if
2481 * there are ongoing concurrent insertions or removals.
2482 *
2483 * @return the number of mappings
2484 */
2485 public long mappingCount() {
2486 long n = counter.sum();
2487 return (n < 0L) ? 0L : n; // ignore transient negative values
2488 }
2489
2490 /**
2491 * Returns the value to which the specified key is mapped,
2492 * or {@code null} if this map contains no mapping for the key.
2493 *
2494 * <p>More formally, if this map contains a mapping from a key
2495 * {@code k} to a value {@code v} such that {@code key.equals(k)},
2496 * then this method returns {@code v}; otherwise it returns
2497 * {@code null}. (There can be at most one such mapping.)
2498 *
2499 * @throws NullPointerException if the specified key is null
2500 */
2501 @SuppressWarnings("unchecked") public V get(Object key) {
2502 if (key == null)
2503 throw new NullPointerException();
2504 return (V)internalGet(key);
2505 }
2506
2507 /**
2508 * Returns the value to which the specified key is mapped,
2509 * or the given defaultValue if this map contains no mapping for the key.
2510 *
2511 * @param key the key
2512 * @param defaultValue the value to return if this map contains
2513 * no mapping for the given key
2514 * @return the mapping for the key, if present; else the defaultValue
2515 * @throws NullPointerException if the specified key is null
2516 */
2517 @SuppressWarnings("unchecked") public V getValueOrDefault(Object key, V defaultValue) {
2518 if (key == null)
2519 throw new NullPointerException();
2520 V v = (V) internalGet(key);
2521 return v == null ? defaultValue : v;
2522 }
2523
2524 /**
2525 * Tests if the specified object is a key in this table.
2526 *
2527 * @param key possible key
2528 * @return {@code true} if and only if the specified object
2529 * is a key in this table, as determined by the
2530 * {@code equals} method; {@code false} otherwise
2531 * @throws NullPointerException if the specified key is null
2532 */
2533 public boolean containsKey(Object key) {
2534 if (key == null)
2535 throw new NullPointerException();
2536 return internalGet(key) != null;
2537 }
2538
2539 /**
2540 * Returns {@code true} if this map maps one or more keys to the
2541 * specified value. Note: This method may require a full traversal
2542 * of the map, and is much slower than method {@code containsKey}.
2543 *
2544 * @param value value whose presence in this map is to be tested
2545 * @return {@code true} if this map maps one or more keys to the
2546 * specified value
2547 * @throws NullPointerException if the specified value is null
2548 */
2549 public boolean containsValue(Object value) {
2550 if (value == null)
2551 throw new NullPointerException();
2552 Object v;
2553 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2554 while ((v = it.advance()) != null) {
2555 if (v == value || value.equals(v))
2556 return true;
2557 }
2558 return false;
2559 }
2560
2561 /**
2562 * Legacy method testing if some key maps into the specified value
2563 * in this table. This method is identical in functionality to
2564 * {@link #containsValue}, and exists solely to ensure
2565 * full compatibility with class {@link java.util.Hashtable},
2566 * which supported this method prior to introduction of the
2567 * Java Collections framework.
2568 *
2569 * @param value a value to search for
2570 * @return {@code true} if and only if some key maps to the
2571 * {@code value} argument in this table as
2572 * determined by the {@code equals} method;
2573 * {@code false} otherwise
2574 * @throws NullPointerException if the specified value is null
2575 */
2576 public boolean contains(Object value) {
2577 return containsValue(value);
2578 }
2579
2580 /**
2581 * Maps the specified key to the specified value in this table.
2582 * Neither the key nor the value can be null.
2583 *
2584 * <p> The value can be retrieved by calling the {@code get} method
2585 * with a key that is equal to the original key.
2586 *
2587 * @param key key with which the specified value is to be associated
2588 * @param value value to be associated with the specified key
2589 * @return the previous value associated with {@code key}, or
2590 * {@code null} if there was no mapping for {@code key}
2591 * @throws NullPointerException if the specified key or value is null
2592 */
2593 @SuppressWarnings("unchecked") public V put(K key, V value) {
2594 if (key == null || value == null)
2595 throw new NullPointerException();
2596 return (V)internalPut(key, value);
2597 }
2598
2599 /**
2600 * {@inheritDoc}
2601 *
2602 * @return the previous value associated with the specified key,
2603 * or {@code null} if there was no mapping for the key
2604 * @throws NullPointerException if the specified key or value is null
2605 */
2606 @SuppressWarnings("unchecked") public V putIfAbsent(K key, V value) {
2607 if (key == null || value == null)
2608 throw new NullPointerException();
2609 return (V)internalPutIfAbsent(key, value);
2610 }
2611
2612 /**
2613 * Copies all of the mappings from the specified map to this one.
2614 * These mappings replace any mappings that this map had for any of the
2615 * keys currently in the specified map.
2616 *
2617 * @param m mappings to be stored in this map
2618 */
2619 public void putAll(Map<? extends K, ? extends V> m) {
2620 internalPutAll(m);
2621 }
2622
2623 /**
2624 * If the specified key is not already associated with a value,
2625 * computes its value using the given mappingFunction and enters
2626 * it into the map unless null. This is equivalent to
2627 * <pre> {@code
2628 * if (map.containsKey(key))
2629 * return map.get(key);
2630 * value = mappingFunction.apply(key);
2631 * if (value != null)
2632 * map.put(key, value);
2633 * return value;}</pre>
2634 *
2635 * except that the action is performed atomically. If the
2636 * function returns {@code null} no mapping is recorded. If the
2637 * function itself throws an (unchecked) exception, the exception
2638 * is rethrown to its caller, and no mapping is recorded. Some
2639 * attempted update operations on this map by other threads may be
2640 * blocked while computation is in progress, so the computation
2641 * should be short and simple, and must not attempt to update any
2642 * other mappings of this Map. The most appropriate usage is to
2643 * construct a new object serving as an initial mapped value, or
2644 * memoized result, as in:
2645 *
2646 * <pre> {@code
2647 * map.computeIfAbsent(key, new Fun<K, V>() {
2648 * public V map(K k) { return new Value(f(k)); }});}</pre>
2649 *
2650 * @param key key with which the specified value is to be associated
2651 * @param mappingFunction the function to compute a value
2652 * @return the current (existing or computed) value associated with
2653 * the specified key, or null if the computed value is null
2654 * @throws NullPointerException if the specified key or mappingFunction
2655 * is null
2656 * @throws IllegalStateException if the computation detectably
2657 * attempts a recursive update to this map that would
2658 * otherwise never complete
2659 * @throws RuntimeException or Error if the mappingFunction does so,
2660 * in which case the mapping is left unestablished
2661 */
2662 @SuppressWarnings("unchecked") public V computeIfAbsent
2663 (K key, Fun<? super K, ? extends V> mappingFunction) {
2664 if (key == null || mappingFunction == null)
2665 throw new NullPointerException();
2666 return (V)internalComputeIfAbsent(key, mappingFunction);
2667 }
2668
2669 /**
2670 * If the given key is present, computes a new mapping value given a key and
2671 * its current mapped value. This is equivalent to
2672 * <pre> {@code
2673 * if (map.containsKey(key)) {
2674 * value = remappingFunction.apply(key, map.get(key));
2675 * if (value != null)
2676 * map.put(key, value);
2677 * else
2678 * map.remove(key);
2679 * }
2680 * }</pre>
2681 *
2682 * except that the action is performed atomically. If the
2683 * function returns {@code null}, the mapping is removed. If the
2684 * function itself throws an (unchecked) exception, the exception
2685 * is rethrown to its caller, and the current mapping is left
2686 * unchanged. Some attempted update operations on this map by
2687 * other threads may be blocked while computation is in progress,
2688 * so the computation should be short and simple, and must not
2689 * attempt to update any other mappings of this Map. For example,
2690 * to either create or append new messages to a value mapping:
2691 *
2692 * @param key key with which the specified value is to be associated
2693 * @param remappingFunction the function to compute a value
2694 * @return the new value associated with the specified key, or null if none
2695 * @throws NullPointerException if the specified key or remappingFunction
2696 * is null
2697 * @throws IllegalStateException if the computation detectably
2698 * attempts a recursive update to this map that would
2699 * otherwise never complete
2700 * @throws RuntimeException or Error if the remappingFunction does so,
2701 * in which case the mapping is unchanged
2702 */
2703 @SuppressWarnings("unchecked") public V computeIfPresent
2704 (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2705 if (key == null || remappingFunction == null)
2706 throw new NullPointerException();
2707 return (V)internalCompute(key, true, remappingFunction);
2708 }
2709
2710 /**
2711 * Computes a new mapping value given a key and
2712 * its current mapped value (or {@code null} if there is no current
2713 * mapping). This is equivalent to
2714 * <pre> {@code
2715 * value = remappingFunction.apply(key, map.get(key));
2716 * if (value != null)
2717 * map.put(key, value);
2718 * else
2719 * map.remove(key);
2720 * }</pre>
2721 *
2722 * except that the action is performed atomically. If the
2723 * function returns {@code null}, the mapping is removed. If the
2724 * function itself throws an (unchecked) exception, the exception
2725 * is rethrown to its caller, and the current mapping is left
2726 * unchanged. Some attempted update operations on this map by
2727 * other threads may be blocked while computation is in progress,
2728 * so the computation should be short and simple, and must not
2729 * attempt to update any other mappings of this Map. For example,
2730 * to either create or append new messages to a value mapping:
2731 *
2732 * <pre> {@code
2733 * Map<Key, String> map = ...;
2734 * final String msg = ...;
2735 * map.compute(key, new BiFun<Key, String, String>() {
2736 * public String apply(Key k, String v) {
2737 * return (v == null) ? msg : v + msg;});}}</pre>
2738 *
2739 * @param key key with which the specified value is to be associated
2740 * @param remappingFunction the function to compute a value
2741 * @return the new value associated with the specified key, or null if none
2742 * @throws NullPointerException if the specified key or remappingFunction
2743 * is null
2744 * @throws IllegalStateException if the computation detectably
2745 * attempts a recursive update to this map that would
2746 * otherwise never complete
2747 * @throws RuntimeException or Error if the remappingFunction does so,
2748 * in which case the mapping is unchanged
2749 */
2750 @SuppressWarnings("unchecked") public V compute
2751 (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2752 if (key == null || remappingFunction == null)
2753 throw new NullPointerException();
2754 return (V)internalCompute(key, false, remappingFunction);
2755 }
2756
2757 /**
2758 * If the specified key is not already associated
2759 * with a value, associate it with the given value.
2760 * Otherwise, replace the value with the results of
2761 * the given remapping function. This is equivalent to:
2762 * <pre> {@code
2763 * if (!map.containsKey(key))
2764 * map.put(value);
2765 * else {
2766 * newValue = remappingFunction.apply(map.get(key), value);
2767 * if (value != null)
2768 * map.put(key, value);
2769 * else
2770 * map.remove(key);
2771 * }
2772 * }</pre>
2773 * except that the action is performed atomically. If the
2774 * function returns {@code null}, the mapping is removed. If the
2775 * function itself throws an (unchecked) exception, the exception
2776 * is rethrown to its caller, and the current mapping is left
2777 * unchanged. Some attempted update operations on this map by
2778 * other threads may be blocked while computation is in progress,
2779 * so the computation should be short and simple, and must not
2780 * attempt to update any other mappings of this Map.
2781 */
2782 @SuppressWarnings("unchecked") public V merge
2783 (K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
2784 if (key == null || value == null || remappingFunction == null)
2785 throw new NullPointerException();
2786 return (V)internalMerge(key, value, remappingFunction);
2787 }
2788
2789 /**
2790 * Removes the key (and its corresponding value) from this map.
2791 * This method does nothing if the key is not in the map.
2792 *
2793 * @param key the key that needs to be removed
2794 * @return the previous value associated with {@code key}, or
2795 * {@code null} if there was no mapping for {@code key}
2796 * @throws NullPointerException if the specified key is null
2797 */
2798 @SuppressWarnings("unchecked") public V remove(Object key) {
2799 if (key == null)
2800 throw new NullPointerException();
2801 return (V)internalReplace(key, null, null);
2802 }
2803
2804 /**
2805 * {@inheritDoc}
2806 *
2807 * @throws NullPointerException if the specified key is null
2808 */
2809 public boolean remove(Object key, Object value) {
2810 if (key == null)
2811 throw new NullPointerException();
2812 if (value == null)
2813 return false;
2814 return internalReplace(key, null, value) != null;
2815 }
2816
2817 /**
2818 * {@inheritDoc}
2819 *
2820 * @throws NullPointerException if any of the arguments are null
2821 */
2822 public boolean replace(K key, V oldValue, V newValue) {
2823 if (key == null || oldValue == null || newValue == null)
2824 throw new NullPointerException();
2825 return internalReplace(key, newValue, oldValue) != null;
2826 }
2827
2828 /**
2829 * {@inheritDoc}
2830 *
2831 * @return the previous value associated with the specified key,
2832 * or {@code null} if there was no mapping for the key
2833 * @throws NullPointerException if the specified key or value is null
2834 */
2835 @SuppressWarnings("unchecked") public V replace(K key, V value) {
2836 if (key == null || value == null)
2837 throw new NullPointerException();
2838 return (V)internalReplace(key, value, null);
2839 }
2840
2841 /**
2842 * Removes all of the mappings from this map.
2843 */
2844 public void clear() {
2845 internalClear();
2846 }
2847
2848 /**
2849 * Returns a {@link Set} view of the keys contained in this map.
2850 * The set is backed by the map, so changes to the map are
2851 * reflected in the set, and vice-versa. The set supports element
2852 * removal, which removes the corresponding mapping from this map,
2853 * via the {@code Iterator.remove}, {@code Set.remove},
2854 * {@code removeAll}, {@code retainAll}, and {@code clear}
2855 * operations. It does not support the {@code add} or
2856 * {@code addAll} operations.
2857 *
2858 * <p>The view's {@code iterator} is a "weakly consistent" iterator
2859 * that will never throw {@link ConcurrentModificationException},
2860 * and guarantees to traverse elements as they existed upon
2861 * construction of the iterator, and may (but is not guaranteed to)
2862 * reflect any modifications subsequent to construction.
2863 */
2864 public Set<K> keySet() {
2865 KeySet<K,V> ks = keySet;
2866 return (ks != null) ? ks : (keySet = new KeySet<K,V>(this));
2867 }
2868
2869 /**
2870 * Returns a {@link Collection} view of the values contained in this map.
2871 * The collection is backed by the map, so changes to the map are
2872 * reflected in the collection, and vice-versa. The collection
2873 * supports element removal, which removes the corresponding
2874 * mapping from this map, via the {@code Iterator.remove},
2875 * {@code Collection.remove}, {@code removeAll},
2876 * {@code retainAll}, and {@code clear} operations. It does not
2877 * support the {@code add} or {@code addAll} operations.
2878 *
2879 * <p>The view's {@code iterator} is a "weakly consistent" iterator
2880 * that will never throw {@link ConcurrentModificationException},
2881 * and guarantees to traverse elements as they existed upon
2882 * construction of the iterator, and may (but is not guaranteed to)
2883 * reflect any modifications subsequent to construction.
2884 */
2885 public Collection<V> values() {
2886 Values<K,V> vs = values;
2887 return (vs != null) ? vs : (values = new Values<K,V>(this));
2888 }
2889
2890 /**
2891 * Returns a {@link Set} view of the mappings contained in this map.
2892 * The set is backed by the map, so changes to the map are
2893 * reflected in the set, and vice-versa. The set supports element
2894 * removal, which removes the corresponding mapping from the map,
2895 * via the {@code Iterator.remove}, {@code Set.remove},
2896 * {@code removeAll}, {@code retainAll}, and {@code clear}
2897 * operations. It does not support the {@code add} or
2898 * {@code addAll} operations.
2899 *
2900 * <p>The view's {@code iterator} is a "weakly consistent" iterator
2901 * that will never throw {@link ConcurrentModificationException},
2902 * and guarantees to traverse elements as they existed upon
2903 * construction of the iterator, and may (but is not guaranteed to)
2904 * reflect any modifications subsequent to construction.
2905 */
2906 public Set<Map.Entry<K,V>> entrySet() {
2907 EntrySet<K,V> es = entrySet;
2908 return (es != null) ? es : (entrySet = new EntrySet<K,V>(this));
2909 }
2910
2911 /**
2912 * Returns an enumeration of the keys in this table.
2913 *
2914 * @return an enumeration of the keys in this table
2915 * @see #keySet()
2916 */
2917 public Enumeration<K> keys() {
2918 return new KeyIterator<K,V>(this);
2919 }
2920
2921 /**
2922 * Returns an enumeration of the values in this table.
2923 *
2924 * @return an enumeration of the values in this table
2925 * @see #values()
2926 */
2927 public Enumeration<V> elements() {
2928 return new ValueIterator<K,V>(this);
2929 }
2930
2931 /**
2932 * Returns a partitionable iterator of the keys in this map.
2933 *
2934 * @return a partitionable iterator of the keys in this map
2935 */
2936 public Spliterator<K> keySpliterator() {
2937 return new KeyIterator<K,V>(this);
2938 }
2939
2940 /**
2941 * Returns a partitionable iterator of the values in this map.
2942 *
2943 * @return a partitionable iterator of the values in this map
2944 */
2945 public Spliterator<V> valueSpliterator() {
2946 return new ValueIterator<K,V>(this);
2947 }
2948
2949 /**
2950 * Returns a partitionable iterator of the entries in this map.
2951 *
2952 * @return a partitionable iterator of the entries in this map
2953 */
2954 public Spliterator<Map.Entry<K,V>> entrySpliterator() {
2955 return new EntryIterator<K,V>(this);
2956 }
2957
2958 /**
2959 * Returns the hash code value for this {@link Map}, i.e.,
2960 * the sum of, for each key-value pair in the map,
2961 * {@code key.hashCode() ^ value.hashCode()}.
2962 *
2963 * @return the hash code value for this map
2964 */
2965 public int hashCode() {
2966 int h = 0;
2967 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2968 Object v;
2969 while ((v = it.advance()) != null) {
2970 h += it.nextKey.hashCode() ^ v.hashCode();
2971 }
2972 return h;
2973 }
2974
2975 /**
2976 * Returns a string representation of this map. The string
2977 * representation consists of a list of key-value mappings (in no
2978 * particular order) enclosed in braces ("{@code {}}"). Adjacent
2979 * mappings are separated by the characters {@code ", "} (comma
2980 * and space). Each key-value mapping is rendered as the key
2981 * followed by an equals sign ("{@code =}") followed by the
2982 * associated value.
2983 *
2984 * @return a string representation of this map
2985 */
2986 public String toString() {
2987 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2988 StringBuilder sb = new StringBuilder();
2989 sb.append('{');
2990 Object v;
2991 if ((v = it.advance()) != null) {
2992 for (;;) {
2993 Object k = it.nextKey;
2994 sb.append(k == this ? "(this Map)" : k);
2995 sb.append('=');
2996 sb.append(v == this ? "(this Map)" : v);
2997 if ((v = it.advance()) == null)
2998 break;
2999 sb.append(',').append(' ');
3000 }
3001 }
3002 return sb.append('}').toString();
3003 }
3004
3005 /**
3006 * Compares the specified object with this map for equality.
3007 * Returns {@code true} if the given object is a map with the same
3008 * mappings as this map. This operation may return misleading
3009 * results if either map is concurrently modified during execution
3010 * of this method.
3011 *
3012 * @param o object to be compared for equality with this map
3013 * @return {@code true} if the specified object is equal to this map
3014 */
3015 public boolean equals(Object o) {
3016 if (o != this) {
3017 if (!(o instanceof Map))
3018 return false;
3019 Map<?,?> m = (Map<?,?>) o;
3020 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3021 Object val;
3022 while ((val = it.advance()) != null) {
3023 Object v = m.get(it.nextKey);
3024 if (v == null || (v != val && !v.equals(val)))
3025 return false;
3026 }
3027 for (Map.Entry<?,?> e : m.entrySet()) {
3028 Object mk, mv, v;
3029 if ((mk = e.getKey()) == null ||
3030 (mv = e.getValue()) == null ||
3031 (v = internalGet(mk)) == null ||
3032 (mv != v && !mv.equals(v)))
3033 return false;
3034 }
3035 }
3036 return true;
3037 }
3038
3039 /* ----------------Iterators -------------- */
3040
3041 @SuppressWarnings("serial") static final class KeyIterator<K,V> extends Traverser<K,V,Object>
3042 implements Spliterator<K>, Enumeration<K> {
3043 KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3044 KeyIterator(Traverser<K,V,Object> it) {
3045 super(it);
3046 }
3047 public KeyIterator<K,V> split() {
3048 if (last != null || (next != null && nextVal == null))
3049 throw new IllegalStateException();
3050 return new KeyIterator<K,V>(this);
3051 }
3052 @SuppressWarnings("unchecked") public final K next() {
3053 if (nextVal == null && advance() == null)
3054 throw new NoSuchElementException();
3055 Object k = nextKey;
3056 nextVal = null;
3057 return (K) k;
3058 }
3059
3060 public final K nextElement() { return next(); }
3061 }
3062
3063 @SuppressWarnings("serial") static final class ValueIterator<K,V> extends Traverser<K,V,Object>
3064 implements Spliterator<V>, Enumeration<V> {
3065 ValueIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3066 ValueIterator(Traverser<K,V,Object> it) {
3067 super(it);
3068 }
3069 public ValueIterator<K,V> split() {
3070 if (last != null || (next != null && nextVal == null))
3071 throw new IllegalStateException();
3072 return new ValueIterator<K,V>(this);
3073 }
3074
3075 @SuppressWarnings("unchecked") public final V next() {
3076 Object v;
3077 if ((v = nextVal) == null && (v = advance()) == null)
3078 throw new NoSuchElementException();
3079 nextVal = null;
3080 return (V) v;
3081 }
3082
3083 public final V nextElement() { return next(); }
3084 }
3085
3086 @SuppressWarnings("serial") static final class EntryIterator<K,V> extends Traverser<K,V,Object>
3087 implements Spliterator<Map.Entry<K,V>> {
3088 EntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3089 EntryIterator(Traverser<K,V,Object> it) {
3090 super(it);
3091 }
3092 public EntryIterator<K,V> split() {
3093 if (last != null || (next != null && nextVal == null))
3094 throw new IllegalStateException();
3095 return new EntryIterator<K,V>(this);
3096 }
3097
3098 @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3099 Object v;
3100 if ((v = nextVal) == null && (v = advance()) == null)
3101 throw new NoSuchElementException();
3102 Object k = nextKey;
3103 nextVal = null;
3104 return new MapEntry<K,V>((K)k, (V)v, map);
3105 }
3106 }
3107
3108 /**
3109 * Exported Entry for iterators
3110 */
3111 static final class MapEntry<K,V> implements Map.Entry<K, V> {
3112 final K key; // non-null
3113 V val; // non-null
3114 final ConcurrentHashMapV8<K, V> map;
3115 MapEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
3116 this.key = key;
3117 this.val = val;
3118 this.map = map;
3119 }
3120 public final K getKey() { return key; }
3121 public final V getValue() { return val; }
3122 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
3123 public final String toString(){ return key + "=" + val; }
3124
3125 public final boolean equals(Object o) {
3126 Object k, v; Map.Entry<?,?> e;
3127 return ((o instanceof Map.Entry) &&
3128 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3129 (v = e.getValue()) != null &&
3130 (k == key || k.equals(key)) &&
3131 (v == val || v.equals(val)));
3132 }
3133
3134 /**
3135 * Sets our entry's value and writes through to the map. The
3136 * value to return is somewhat arbitrary here. Since we do not
3137 * necessarily track asynchronous changes, the most recent
3138 * "previous" value could be different from what we return (or
3139 * could even have been removed in which case the put will
3140 * re-establish). We do not and cannot guarantee more.
3141 */
3142 public final V setValue(V value) {
3143 if (value == null) throw new NullPointerException();
3144 V v = val;
3145 val = value;
3146 map.put(key, value);
3147 return v;
3148 }
3149 }
3150
3151 /* ----------------Views -------------- */
3152
3153 /**
3154 * Base class for views.
3155 */
3156 static abstract class CHMView<K, V> {
3157 final ConcurrentHashMapV8<K, V> map;
3158 CHMView(ConcurrentHashMapV8<K, V> map) { this.map = map; }
3159 public final int size() { return map.size(); }
3160 public final boolean isEmpty() { return map.isEmpty(); }
3161 public final void clear() { map.clear(); }
3162
3163 // implementations below rely on concrete classes supplying these
3164 abstract public Iterator<?> iterator();
3165 abstract public boolean contains(Object o);
3166 abstract public boolean remove(Object o);
3167
3168 private static final String oomeMsg = "Required array size too large";
3169
3170 public final Object[] toArray() {
3171 long sz = map.mappingCount();
3172 if (sz > (long)(MAX_ARRAY_SIZE))
3173 throw new OutOfMemoryError(oomeMsg);
3174 int n = (int)sz;
3175 Object[] r = new Object[n];
3176 int i = 0;
3177 Iterator<?> it = iterator();
3178 while (it.hasNext()) {
3179 if (i == n) {
3180 if (n >= MAX_ARRAY_SIZE)
3181 throw new OutOfMemoryError(oomeMsg);
3182 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
3183 n = MAX_ARRAY_SIZE;
3184 else
3185 n += (n >>> 1) + 1;
3186 r = Arrays.copyOf(r, n);
3187 }
3188 r[i++] = it.next();
3189 }
3190 return (i == n) ? r : Arrays.copyOf(r, i);
3191 }
3192
3193 @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
3194 long sz = map.mappingCount();
3195 if (sz > (long)(MAX_ARRAY_SIZE))
3196 throw new OutOfMemoryError(oomeMsg);
3197 int m = (int)sz;
3198 T[] r = (a.length >= m) ? a :
3199 (T[])java.lang.reflect.Array
3200 .newInstance(a.getClass().getComponentType(), m);
3201 int n = r.length;
3202 int i = 0;
3203 Iterator<?> it = iterator();
3204 while (it.hasNext()) {
3205 if (i == n) {
3206 if (n >= MAX_ARRAY_SIZE)
3207 throw new OutOfMemoryError(oomeMsg);
3208 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
3209 n = MAX_ARRAY_SIZE;
3210 else
3211 n += (n >>> 1) + 1;
3212 r = Arrays.copyOf(r, n);
3213 }
3214 r[i++] = (T)it.next();
3215 }
3216 if (a == r && i < n) {
3217 r[i] = null; // null-terminate
3218 return r;
3219 }
3220 return (i == n) ? r : Arrays.copyOf(r, i);
3221 }
3222
3223 public final int hashCode() {
3224 int h = 0;
3225 for (Iterator<?> it = iterator(); it.hasNext();)
3226 h += it.next().hashCode();
3227 return h;
3228 }
3229
3230 public final String toString() {
3231 StringBuilder sb = new StringBuilder();
3232 sb.append('[');
3233 Iterator<?> it = iterator();
3234 if (it.hasNext()) {
3235 for (;;) {
3236 Object e = it.next();
3237 sb.append(e == this ? "(this Collection)" : e);
3238 if (!it.hasNext())
3239 break;
3240 sb.append(',').append(' ');
3241 }
3242 }
3243 return sb.append(']').toString();
3244 }
3245
3246 public final boolean containsAll(Collection<?> c) {
3247 if (c != this) {
3248 for (Iterator<?> it = c.iterator(); it.hasNext();) {
3249 Object e = it.next();
3250 if (e == null || !contains(e))
3251 return false;
3252 }
3253 }
3254 return true;
3255 }
3256
3257 public final boolean removeAll(Collection<?> c) {
3258 boolean modified = false;
3259 for (Iterator<?> it = iterator(); it.hasNext();) {
3260 if (c.contains(it.next())) {
3261 it.remove();
3262 modified = true;
3263 }
3264 }
3265 return modified;
3266 }
3267
3268 public final boolean retainAll(Collection<?> c) {
3269 boolean modified = false;
3270 for (Iterator<?> it = iterator(); it.hasNext();) {
3271 if (!c.contains(it.next())) {
3272 it.remove();
3273 modified = true;
3274 }
3275 }
3276 return modified;
3277 }
3278
3279 }
3280
3281 static final class KeySet<K,V> extends CHMView<K,V> implements Set<K> {
3282 KeySet(ConcurrentHashMapV8<K, V> map) {
3283 super(map);
3284 }
3285 public final boolean contains(Object o) { return map.containsKey(o); }
3286 public final boolean remove(Object o) { return map.remove(o) != null; }
3287 public final Iterator<K> iterator() {
3288 return new KeyIterator<K,V>(map);
3289 }
3290 public final boolean add(K e) {
3291 throw new UnsupportedOperationException();
3292 }
3293 public final boolean addAll(Collection<? extends K> c) {
3294 throw new UnsupportedOperationException();
3295 }
3296 public boolean equals(Object o) {
3297 Set<?> c;
3298 return ((o instanceof Set) &&
3299 ((c = (Set<?>)o) == this ||
3300 (containsAll(c) && c.containsAll(this))));
3301 }
3302 }
3303
3304
3305 static final class Values<K,V> extends CHMView<K,V>
3306 implements Collection<V> {
3307 Values(ConcurrentHashMapV8<K, V> map) { super(map); }
3308 public final boolean contains(Object o) { return map.containsValue(o); }
3309 public final boolean remove(Object o) {
3310 if (o != null) {
3311 Iterator<V> it = new ValueIterator<K,V>(map);
3312 while (it.hasNext()) {
3313 if (o.equals(it.next())) {
3314 it.remove();
3315 return true;
3316 }
3317 }
3318 }
3319 return false;
3320 }
3321 public final Iterator<V> iterator() {
3322 return new ValueIterator<K,V>(map);
3323 }
3324 public final boolean add(V e) {
3325 throw new UnsupportedOperationException();
3326 }
3327 public final boolean addAll(Collection<? extends V> c) {
3328 throw new UnsupportedOperationException();
3329 }
3330
3331 }
3332
3333 static final class EntrySet<K,V> extends CHMView<K,V>
3334 implements Set<Map.Entry<K,V>> {
3335 EntrySet(ConcurrentHashMapV8<K, V> map) { super(map); }
3336 public final boolean contains(Object o) {
3337 Object k, v, r; Map.Entry<?,?> e;
3338 return ((o instanceof Map.Entry) &&
3339 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3340 (r = map.get(k)) != null &&
3341 (v = e.getValue()) != null &&
3342 (v == r || v.equals(r)));
3343 }
3344 public final boolean remove(Object o) {
3345 Object k, v; Map.Entry<?,?> e;
3346 return ((o instanceof Map.Entry) &&
3347 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3348 (v = e.getValue()) != null &&
3349 map.remove(k, v));
3350 }
3351 public final Iterator<Map.Entry<K,V>> iterator() {
3352 return new EntryIterator<K,V>(map);
3353 }
3354 public final boolean add(Entry<K,V> e) {
3355 throw new UnsupportedOperationException();
3356 }
3357 public final boolean addAll(Collection<? extends Entry<K,V>> c) {
3358 throw new UnsupportedOperationException();
3359 }
3360 public boolean equals(Object o) {
3361 Set<?> c;
3362 return ((o instanceof Set) &&
3363 ((c = (Set<?>)o) == this ||
3364 (containsAll(c) && c.containsAll(this))));
3365 }
3366 }
3367
3368 /* ---------------- Serialization Support -------------- */
3369
3370 /**
3371 * Stripped-down version of helper class used in previous version,
3372 * declared for the sake of serialization compatibility
3373 */
3374 static class Segment<K,V> implements Serializable {
3375 private static final long serialVersionUID = 2249069246763182397L;
3376 final float loadFactor;
3377 Segment(float lf) { this.loadFactor = lf; }
3378 }
3379
3380 /**
3381 * Saves the state of the {@code ConcurrentHashMapV8} instance to a
3382 * stream (i.e., serializes it).
3383 * @param s the stream
3384 * @serialData
3385 * the key (Object) and value (Object)
3386 * for each key-value mapping, followed by a null pair.
3387 * The key-value mappings are emitted in no particular order.
3388 */
3389 @SuppressWarnings("unchecked") private void writeObject(java.io.ObjectOutputStream s)
3390 throws java.io.IOException {
3391 if (segments == null) { // for serialization compatibility
3392 segments = (Segment<K,V>[])
3393 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3394 for (int i = 0; i < segments.length; ++i)
3395 segments[i] = new Segment<K,V>(LOAD_FACTOR);
3396 }
3397 s.defaultWriteObject();
3398 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3399 Object v;
3400 while ((v = it.advance()) != null) {
3401 s.writeObject(it.nextKey);
3402 s.writeObject(v);
3403 }
3404 s.writeObject(null);
3405 s.writeObject(null);
3406 segments = null; // throw away
3407 }
3408
3409 /**
3410 * Reconstitutes the instance from a stream (that is, deserializes it).
3411 * @param s the stream
3412 */
3413 @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s)
3414 throws java.io.IOException, ClassNotFoundException {
3415 s.defaultReadObject();
3416 this.segments = null; // unneeded
3417 // initialize transient final field
3418 UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
3419
3420 // Create all nodes, then place in table once size is known
3421 long size = 0L;
3422 Node p = null;
3423 for (;;) {
3424 K k = (K) s.readObject();
3425 V v = (V) s.readObject();
3426 if (k != null && v != null) {
3427 int h = spread(k.hashCode());
3428 p = new Node(h, k, v, p);
3429 ++size;
3430 }
3431 else
3432 break;
3433 }
3434 if (p != null) {
3435 boolean init = false;
3436 int n;
3437 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3438 n = MAXIMUM_CAPACITY;
3439 else {
3440 int sz = (int)size;
3441 n = tableSizeFor(sz + (sz >>> 1) + 1);
3442 }
3443 int sc = sizeCtl;
3444 boolean collide = false;
3445 if (n > sc &&
3446 UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
3447 try {
3448 if (table == null) {
3449 init = true;
3450 Node[] tab = new Node[n];
3451 int mask = n - 1;
3452 while (p != null) {
3453 int j = p.hash & mask;
3454 Node next = p.next;
3455 Node q = p.next = tabAt(tab, j);
3456 setTabAt(tab, j, p);
3457 if (!collide && q != null && q.hash == p.hash)
3458 collide = true;
3459 p = next;
3460 }
3461 table = tab;
3462 counter.add(size);
3463 sc = n - (n >>> 2);
3464 }
3465 } finally {
3466 sizeCtl = sc;
3467 }
3468 if (collide) { // rescan and convert to TreeBins
3469 Node[] tab = table;
3470 for (int i = 0; i < tab.length; ++i) {
3471 int c = 0;
3472 for (Node e = tabAt(tab, i); e != null; e = e.next) {
3473 if (++c > TREE_THRESHOLD &&
3474 (e.key instanceof Comparable)) {
3475 replaceWithTreeBin(tab, i, e.key);
3476 break;
3477 }
3478 }
3479 }
3480 }
3481 }
3482 if (!init) { // Can only happen if unsafely published.
3483 while (p != null) {
3484 internalPut(p.key, p.val);
3485 p = p.next;
3486 }
3487 }
3488 }
3489 }
3490
3491
3492 // -------------------------------------------------------
3493
3494 // Sams
3495 /** Interface describing a void action of one argument */
3496 public interface Action<A> { void apply(A a); }
3497 /** Interface describing a void action of two arguments */
3498 public interface BiAction<A,B> { void apply(A a, B b); }
3499 /** Interface describing a function of one argument */
3500 public interface Fun<A,T> { T apply(A a); }
3501 /** Interface describing a function of two arguments */
3502 public interface BiFun<A,B,T> { T apply(A a, B b); }
3503 /** Interface describing a function of no arguments */
3504 public interface Generator<T> { T apply(); }
3505 /** Interface describing a function mapping its argument to a double */
3506 public interface ObjectToDouble<A> { double apply(A a); }
3507 /** Interface describing a function mapping its argument to a long */
3508 public interface ObjectToLong<A> { long apply(A a); }
3509 /** Interface describing a function mapping its argument to an int */
3510 public interface ObjectToInt<A> {int apply(A a); }
3511 /** Interface describing a function mapping two arguments to a double */
3512 public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3513 /** Interface describing a function mapping two arguments to a long */
3514 public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3515 /** Interface describing a function mapping two arguments to an int */
3516 public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3517 /** Interface describing a function mapping a double to a double */
3518 public interface DoubleToDouble { double apply(double a); }
3519 /** Interface describing a function mapping a long to a long */
3520 public interface LongToLong { long apply(long a); }
3521 /** Interface describing a function mapping an int to an int */
3522 public interface IntToInt { int apply(int a); }
3523 /** Interface describing a function mapping two doubles to a double */
3524 public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3525 /** Interface describing a function mapping two longs to a long */
3526 public interface LongByLongToLong { long apply(long a, long b); }
3527 /** Interface describing a function mapping two ints to an int */
3528 public interface IntByIntToInt { int apply(int a, int b); }
3529
3530
3531 // -------------------------------------------------------
3532
3533 /**
3534 * Returns an extended {@link Parallel} view of this map using the
3535 * given executor for bulk parallel operations.
3536 *
3537 * @param executor the executor
3538 * @return a parallel view
3539 */
3540 public Parallel parallel(ForkJoinPool executor) {
3541 return new Parallel(executor);
3542 }
3543
3544 /**
3545 * An extended view of a ConcurrentHashMap supporting bulk
3546 * parallel operations. These operations are designed to be
3547 * safely, and often sensibly, applied even with maps that are
3548 * being concurrently updated by other threads; for example, when
3549 * computing a snapshot summary of the values in a shared
3550 * registry. There are three kinds of operation, each with four
3551 * forms, accepting functions with Keys, Values, Entries, and
3552 * (Key, Value) arguments and/or return values. Because the
3553 * elements of a ConcurrentHashMap are not ordered in any
3554 * particular way, and may be processed in different orders in
3555 * different parallel executions, the correctness of supplied
3556 * functions should not depend on any ordering, or on any other
3557 * objects or values that may transiently change while computation
3558 * is in progress; and except for forEach actions, should ideally
3559 * be side-effect-free.
3560 *
3561 * <ul>
3562 * <li> forEach: Perform a given action on each element.
3563 * A variant form applies a given transformation on each element
3564 * before performing the action.</li>
3565 *
3566 * <li> search: Return the first available non-null result of
3567 * applying a given function on each element; skipping further
3568 * search when a result is found.</li>
3569 *
3570 * <li> reduce: Accumulate each element. The supplied reduction
3571 * function cannot rely on ordering (more formally, it should be
3572 * both associative and commutative). There are five variants:
3573 *
3574 * <ul>
3575 *
3576 * <li> Plain reductions. (There is not a form of this method for
3577 * (key, value) function arguments since there is no corresponding
3578 * return type.)</li>
3579 *
3580 * <li> Mapped reductions that accumulate the results of a given
3581 * function applied to each element.</li>
3582 *
3583 * <li> Reductions to scalar doubles, longs, and ints, using a
3584 * given basis value.</li>
3585 *
3586 * </li>
3587 * </ul>
3588 * </ul>
3589 *
3590 * <p>The concurrency properties of the bulk operations follow
3591 * from those of ConcurrentHashMap: Any non-null result returned
3592 * from {@code get(key)} and related access methods bears a
3593 * happens-before relation with the associated insertion or
3594 * update. The result of any bulk operation reflects the
3595 * composition of these per-element relations (but is not
3596 * necessarily atomic with respect to the map as a whole unless it
3597 * is somehow known to be quiescent). Conversely, because keys
3598 * and values in the map are never null, null serves as a reliable
3599 * atomic indicator of the current lack of any result. To
3600 * maintain this property, null serves as an implicit basis for
3601 * all non-scalar reduction operations. For the double, long, and
3602 * int versions, the basis should be one that, when combined with
3603 * any other value, returns that other value (more formally, it
3604 * should be the identity element for the reduction). Most common
3605 * reductions have these properties; for example, computing a sum
3606 * with basis 0 or a minimum with basis MAX_VALUE.
3607 *
3608 * <p>Search and transformation functions provided as arguments
3609 * should similarly return null to indicate the lack of any result
3610 * (in which case it is not used). In the case of mapped
3611 * reductions, this also enables transformations to serve as
3612 * filters, returning null (or, in the case of primitive
3613 * specializations, the identity basis) if the element should not
3614 * be combined. You can create compound transformations and
3615 * filterings by composing them yourself under this "null means
3616 * there is nothing there now" rule before using them in search or
3617 * reduce operations.
3618 *
3619 * <p>Methods accepting and/or returning Entry arguments maintain
3620 * key-value associations. They may be useful for example when
3621 * finding the key for the greatest value. Note that "plain" Entry
3622 * arguments can be supplied using {@code new
3623 * AbstractMap.SimpleEntry(k,v)}.
3624 *
3625 * <p> Bulk operations may complete abruptly, throwing an
3626 * exception encountered in the application of a supplied
3627 * function. Bear in mind when handling such exceptions that other
3628 * concurrently executing functions could also have thrown
3629 * exceptions, or would have done so if the first exception had
3630 * not occurred.
3631 *
3632 * <p>Parallel speedups compared to sequential processing are
3633 * common but not guaranteed. Operations involving brief
3634 * functions on small maps may execute more slowly than sequential
3635 * loops if the underlying work to parallelize the computation is
3636 * more expensive than the computation itself. Similarly,
3637 * parallelization may not lead to much actual parallelism if all
3638 * processors are busy performing unrelated tasks.
3639 *
3640 * <p> All arguments to all task methods must be non-null.
3641 *
3642 * <p><em>jsr166e note: During transition, this class
3643 * uses nested functional interfaces with different names but the
3644 * same forms as those expected for JDK8.<em>
3645 */
3646 public class Parallel {
3647 final ForkJoinPool fjp;
3648
3649 /**
3650 * Returns an extended view of this map using the given
3651 * executor for bulk parallel operations.
3652 *
3653 * @param executor the executor
3654 */
3655 public Parallel(ForkJoinPool executor) {
3656 this.fjp = executor;
3657 }
3658
3659 /**
3660 * Performs the given action for each (key, value).
3661 *
3662 * @param action the action
3663 */
3664 public void forEach(BiAction<K,V> action) {
3665 fjp.invoke(ForkJoinTasks.forEach
3666 (ConcurrentHashMapV8.this, action));
3667 }
3668
3669 /**
3670 * Performs the given action for each non-null transformation
3671 * of each (key, value).
3672 *
3673 * @param transformer a function returning the transformation
3674 * for an element, or null if there is no transformation (in
3675 * which case the action is not applied)
3676 * @param action the action
3677 */
3678 public <U> void forEach(BiFun<? super K, ? super V, ? extends U> transformer,
3679 Action<U> action) {
3680 fjp.invoke(ForkJoinTasks.forEach
3681 (ConcurrentHashMapV8.this, transformer, action));
3682 }
3683
3684 /**
3685 * Returns a non-null result from applying the given search
3686 * function on each (key, value), or null if none. Upon
3687 * success, further element processing is suppressed and the
3688 * results of any other parallel invocations of the search
3689 * function are ignored.
3690 *
3691 * @param searchFunction a function returning a non-null
3692 * result on success, else null
3693 * @return a non-null result from applying the given search
3694 * function on each (key, value), or null if none
3695 */
3696 public <U> U search(BiFun<? super K, ? super V, ? extends U> searchFunction) {
3697 return fjp.invoke(ForkJoinTasks.search
3698 (ConcurrentHashMapV8.this, searchFunction));
3699 }
3700
3701 /**
3702 * Returns the result of accumulating the given transformation
3703 * of all (key, value) pairs using the given reducer to
3704 * combine values, or null if none.
3705 *
3706 * @param transformer a function returning the transformation
3707 * for an element, or null if there is no transformation (in
3708 * which case it is not combined)
3709 * @param reducer a commutative associative combining function
3710 * @return the result of accumulating the given transformation
3711 * of all (key, value) pairs
3712 */
3713 public <U> U reduce(BiFun<? super K, ? super V, ? extends U> transformer,
3714 BiFun<? super U, ? super U, ? extends U> reducer) {
3715 return fjp.invoke(ForkJoinTasks.reduce
3716 (ConcurrentHashMapV8.this, transformer, reducer));
3717 }
3718
3719 /**
3720 * Returns the result of accumulating the given transformation
3721 * of all (key, value) pairs using the given reducer to
3722 * combine values, and the given basis as an identity value.
3723 *
3724 * @param transformer a function returning the transformation
3725 * for an element
3726 * @param basis the identity (initial default value) for the reduction
3727 * @param reducer a commutative associative combining function
3728 * @return the result of accumulating the given transformation
3729 * of all (key, value) pairs
3730 */
3731 public double reduceToDouble(ObjectByObjectToDouble<? super K, ? super V> transformer,
3732 double basis,
3733 DoubleByDoubleToDouble reducer) {
3734 return fjp.invoke(ForkJoinTasks.reduceToDouble
3735 (ConcurrentHashMapV8.this, transformer, basis, reducer));
3736 }
3737
3738 /**
3739 * Returns the result of accumulating the given transformation
3740 * of all (key, value) pairs using the given reducer to
3741 * combine values, and the given basis as an identity value.
3742 *
3743 * @param transformer a function returning the transformation
3744 * for an element
3745 * @param basis the identity (initial default value) for the reduction
3746 * @param reducer a commutative associative combining function
3747 * @return the result of accumulating the given transformation
3748 * of all (key, value) pairs
3749 */
3750 public long reduceToLong(ObjectByObjectToLong<? super K, ? super V> transformer,
3751 long basis,
3752 LongByLongToLong reducer) {
3753 return fjp.invoke(ForkJoinTasks.reduceToLong
3754 (ConcurrentHashMapV8.this, transformer, basis, reducer));
3755 }
3756
3757 /**
3758 * Returns the result of accumulating the given transformation
3759 * of all (key, value) pairs using the given reducer to
3760 * combine values, and the given basis as an identity value.
3761 *
3762 * @param transformer a function returning the transformation
3763 * for an element
3764 * @param basis the identity (initial default value) for the reduction
3765 * @param reducer a commutative associative combining function
3766 * @return the result of accumulating the given transformation
3767 * of all (key, value) pairs
3768 */
3769 public int reduceToInt(ObjectByObjectToInt<? super K, ? super V> transformer,
3770 int basis,
3771 IntByIntToInt reducer) {
3772 return fjp.invoke(ForkJoinTasks.reduceToInt
3773 (ConcurrentHashMapV8.this, transformer, basis, reducer));
3774 }
3775
3776 /**
3777 * Performs the given action for each key.
3778 *
3779 * @param action the action
3780 */
3781 public void forEachKey(Action<K> action) {
3782 fjp.invoke(ForkJoinTasks.forEachKey
3783 (ConcurrentHashMapV8.this, action));
3784 }
3785
3786 /**
3787 * Performs the given action for each non-null transformation
3788 * of each key.
3789 *
3790 * @param transformer a function returning the transformation
3791 * for an element, or null if there is no transformation (in
3792 * which case the action is not applied)
3793 * @param action the action
3794 */
3795 public <U> void forEachKey(Fun<? super K, ? extends U> transformer,
3796 Action<U> action) {
3797 fjp.invoke(ForkJoinTasks.forEachKey
3798 (ConcurrentHashMapV8.this, transformer, action));
3799 }
3800
3801 /**
3802 * Returns a non-null result from applying the given search
3803 * function on each key, or null if none. Upon success,
3804 * further element processing is suppressed and the results of
3805 * any other parallel invocations of the search function are
3806 * ignored.
3807 *
3808 * @param searchFunction a function returning a non-null
3809 * result on success, else null
3810 * @return a non-null result from applying the given search
3811 * function on each key, or null if none
3812 */
3813 public <U> U searchKeys(Fun<? super K, ? extends U> searchFunction) {
3814 return fjp.invoke(ForkJoinTasks.searchKeys
3815 (ConcurrentHashMapV8.this, searchFunction));
3816 }
3817
3818 /**
3819 * Returns the result of accumulating all keys using the given
3820 * reducer to combine values, or null if none.
3821 *
3822 * @param reducer a commutative associative combining function
3823 * @return the result of accumulating all keys using the given
3824 * reducer to combine values, or null if none
3825 */
3826 public K reduceKeys(BiFun<? super K, ? super K, ? extends K> reducer) {
3827 return fjp.invoke(ForkJoinTasks.reduceKeys
3828 (ConcurrentHashMapV8.this, reducer));
3829 }
3830
3831 /**
3832 * Returns the result of accumulating the given transformation
3833 * of all keys using the given reducer to combine values, or
3834 * null if none.
3835 *
3836 * @param transformer a function returning the transformation
3837 * for an element, or null if there is no transformation (in
3838 * which case it is not combined)
3839 * @param reducer a commutative associative combining function
3840 * @return the result of accumulating the given transformation
3841 * of all keys
3842 */
3843 public <U> U reduceKeys(Fun<? super K, ? extends U> transformer,
3844 BiFun<? super U, ? super U, ? extends U> reducer) {
3845 return fjp.invoke(ForkJoinTasks.reduceKeys
3846 (ConcurrentHashMapV8.this, transformer, reducer));
3847 }
3848
3849 /**
3850 * Returns the result of accumulating the given transformation
3851 * of all keys using the given reducer to combine values, and
3852 * the given basis as an identity value.
3853 *
3854 * @param transformer a function returning the transformation
3855 * for an element
3856 * @param basis the identity (initial default value) for the reduction
3857 * @param reducer a commutative associative combining function
3858 * @return the result of accumulating the given transformation
3859 * of all keys
3860 */
3861 public double reduceKeysToDouble(ObjectToDouble<? super K> transformer,
3862 double basis,
3863 DoubleByDoubleToDouble reducer) {
3864 return fjp.invoke(ForkJoinTasks.reduceKeysToDouble
3865 (ConcurrentHashMapV8.this, transformer, basis, reducer));
3866 }
3867
3868 /**
3869 * Returns the result of accumulating the given transformation
3870 * of all keys using the given reducer to combine values, and
3871 * the given basis as an identity value.
3872 *
3873 * @param transformer a function returning the transformation
3874 * for an element
3875 * @param basis the identity (initial default value) for the reduction
3876 * @param reducer a commutative associative combining function
3877 * @return the result of accumulating the given transformation
3878 * of all keys
3879 */
3880 public long reduceKeysToLong(ObjectToLong<? super K> transformer,
3881 long basis,
3882 LongByLongToLong reducer) {
3883 return fjp.invoke(ForkJoinTasks.reduceKeysToLong
3884 (ConcurrentHashMapV8.this, transformer, basis, reducer));
3885 }
3886
3887 /**
3888 * Returns the result of accumulating the given transformation
3889 * of all keys using the given reducer to combine values, and
3890 * the given basis as an identity value.
3891 *
3892 * @param transformer a function returning the transformation
3893 * for an element
3894 * @param basis the identity (initial default value) for the reduction
3895 * @param reducer a commutative associative combining function
3896 * @return the result of accumulating the given transformation
3897 * of all keys
3898 */
3899 public int reduceKeysToInt(ObjectToInt<? super K> transformer,
3900 int basis,
3901 IntByIntToInt reducer) {
3902 return fjp.invoke(ForkJoinTasks.reduceKeysToInt
3903 (ConcurrentHashMapV8.this, transformer, basis, reducer));
3904 }
3905
3906 /**
3907 * Performs the given action for each value.
3908 *
3909 * @param action the action
3910 */
3911 public void forEachValue(Action<V> action) {
3912 fjp.invoke(ForkJoinTasks.forEachValue
3913 (ConcurrentHashMapV8.this, action));
3914 }
3915
3916 /**
3917 * Performs the given action for each non-null transformation
3918 * of each value.
3919 *
3920 * @param transformer a function returning the transformation
3921 * for an element, or null if there is no transformation (in
3922 * which case the action is not applied)
3923 */
3924 public <U> void forEachValue(Fun<? super V, ? extends U> transformer,
3925 Action<U> action) {
3926 fjp.invoke(ForkJoinTasks.forEachValue
3927 (ConcurrentHashMapV8.this, transformer, action));
3928 }
3929
3930 /**
3931 * Returns a non-null result from applying the given search
3932 * function on each value, or null if none. Upon success,
3933 * further element processing is suppressed and the results of
3934 * any other parallel invocations of the search function are
3935 * ignored.
3936 *
3937 * @param searchFunction a function returning a non-null
3938 * result on success, else null
3939 * @return a non-null result from applying the given search
3940 * function on each value, or null if none
3941 *
3942 */
3943 public <U> U searchValues(Fun<? super V, ? extends U> searchFunction) {
3944 return fjp.invoke(ForkJoinTasks.searchValues
3945 (ConcurrentHashMapV8.this, searchFunction));
3946 }
3947
3948 /**
3949 * Returns the result of accumulating all values using the
3950 * given reducer to combine values, or null if none.
3951 *
3952 * @param reducer a commutative associative combining function
3953 * @return the result of accumulating all values
3954 */
3955 public V reduceValues(BiFun<? super V, ? super V, ? extends V> reducer) {
3956 return fjp.invoke(ForkJoinTasks.reduceValues
3957 (ConcurrentHashMapV8.this, reducer));
3958 }
3959
3960 /**
3961 * Returns the result of accumulating the given transformation
3962 * of all values using the given reducer to combine values, or
3963 * null if none.
3964 *
3965 * @param transformer a function returning the transformation
3966 * for an element, or null if there is no transformation (in
3967 * which case it is not combined)
3968 * @param reducer a commutative associative combining function
3969 * @return the result of accumulating the given transformation
3970 * of all values
3971 */
3972 public <U> U reduceValues(Fun<? super V, ? extends U> transformer,
3973 BiFun<? super U, ? super U, ? extends U> reducer) {
3974 return fjp.invoke(ForkJoinTasks.reduceValues
3975 (ConcurrentHashMapV8.this, transformer, reducer));
3976 }
3977
3978 /**
3979 * Returns the result of accumulating the given transformation
3980 * of all values using the given reducer to combine values,
3981 * and the given basis as an identity value.
3982 *
3983 * @param transformer a function returning the transformation
3984 * for an element
3985 * @param basis the identity (initial default value) for the reduction
3986 * @param reducer a commutative associative combining function
3987 * @return the result of accumulating the given transformation
3988 * of all values
3989 */
3990 public double reduceValuesToDouble(ObjectToDouble<? super V> transformer,
3991 double basis,
3992 DoubleByDoubleToDouble reducer) {
3993 return fjp.invoke(ForkJoinTasks.reduceValuesToDouble
3994 (ConcurrentHashMapV8.this, transformer, basis, reducer));
3995 }
3996
3997 /**
3998 * Returns the result of accumulating the given transformation
3999 * of all values using the given reducer to combine values,
4000 * and the given basis as an identity value.
4001 *
4002 * @param transformer a function returning the transformation
4003 * for an element
4004 * @param basis the identity (initial default value) for the reduction
4005 * @param reducer a commutative associative combining function
4006 * @return the result of accumulating the given transformation
4007 * of all values
4008 */
4009 public long reduceValuesToLong(ObjectToLong<? super V> transformer,
4010 long basis,
4011 LongByLongToLong reducer) {
4012 return fjp.invoke(ForkJoinTasks.reduceValuesToLong
4013 (ConcurrentHashMapV8.this, transformer, basis, reducer));
4014 }
4015
4016 /**
4017 * Returns the result of accumulating the given transformation
4018 * of all values using the given reducer to combine values,
4019 * and the given basis as an identity value.
4020 *
4021 * @param transformer a function returning the transformation
4022 * for an element
4023 * @param basis the identity (initial default value) for the reduction
4024 * @param reducer a commutative associative combining function
4025 * @return the result of accumulating the given transformation
4026 * of all values
4027 */
4028 public int reduceValuesToInt(ObjectToInt<? super V> transformer,
4029 int basis,
4030 IntByIntToInt reducer) {
4031 return fjp.invoke(ForkJoinTasks.reduceValuesToInt
4032 (ConcurrentHashMapV8.this, transformer, basis, reducer));
4033 }
4034
4035 /**
4036 * Performs the given action for each entry.
4037 *
4038 * @param action the action
4039 */
4040 public void forEachEntry(Action<Map.Entry<K,V>> action) {
4041 fjp.invoke(ForkJoinTasks.forEachEntry
4042 (ConcurrentHashMapV8.this, action));
4043 }
4044
4045 /**
4046 * Performs the given action for each non-null transformation
4047 * of each entry.
4048 *
4049 * @param transformer a function returning the transformation
4050 * for an element, or null if there is no transformation (in
4051 * which case the action is not applied)
4052 * @param action the action
4053 */
4054 public <U> void forEachEntry(Fun<Map.Entry<K,V>, ? extends U> transformer,
4055 Action<U> action) {
4056 fjp.invoke(ForkJoinTasks.forEachEntry
4057 (ConcurrentHashMapV8.this, transformer, action));
4058 }
4059
4060 /**
4061 * Returns a non-null result from applying the given search
4062 * function on each entry, or null if none. Upon success,
4063 * further element processing is suppressed and the results of
4064 * any other parallel invocations of the search function are
4065 * ignored.
4066 *
4067 * @param searchFunction a function returning a non-null
4068 * result on success, else null
4069 * @return a non-null result from applying the given search
4070 * function on each entry, or null if none
4071 */
4072 public <U> U searchEntries(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4073 return fjp.invoke(ForkJoinTasks.searchEntries
4074 (ConcurrentHashMapV8.this, searchFunction));
4075 }
4076
4077 /**
4078 * Returns the result of accumulating all entries using the
4079 * given reducer to combine values, or null if none.
4080 *
4081 * @param reducer a commutative associative combining function
4082 * @return the result of accumulating all entries
4083 */
4084 public Map.Entry<K,V> reduceEntries(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4085 return fjp.invoke(ForkJoinTasks.reduceEntries
4086 (ConcurrentHashMapV8.this, reducer));
4087 }
4088
4089 /**
4090 * Returns the result of accumulating the given transformation
4091 * of all entries using the given reducer to combine values,
4092 * or null if none.
4093 *
4094 * @param transformer a function returning the transformation
4095 * for an element, or null if there is no transformation (in
4096 * which case it is not combined).
4097 * @param reducer a commutative associative combining function
4098 * @return the result of accumulating the given transformation
4099 * of all entries
4100 */
4101 public <U> U reduceEntries(Fun<Map.Entry<K,V>, ? extends U> transformer,
4102 BiFun<? super U, ? super U, ? extends U> reducer) {
4103 return fjp.invoke(ForkJoinTasks.reduceEntries
4104 (ConcurrentHashMapV8.this, transformer, reducer));
4105 }
4106
4107 /**
4108 * Returns the result of accumulating the given transformation
4109 * of all entries using the given reducer to combine values,
4110 * and the given basis as an identity value.
4111 *
4112 * @param transformer a function returning the transformation
4113 * for an element
4114 * @param basis the identity (initial default value) for the reduction
4115 * @param reducer a commutative associative combining function
4116 * @return the result of accumulating the given transformation
4117 * of all entries
4118 */
4119 public double reduceEntriesToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4120 double basis,
4121 DoubleByDoubleToDouble reducer) {
4122 return fjp.invoke(ForkJoinTasks.reduceEntriesToDouble
4123 (ConcurrentHashMapV8.this, transformer, basis, reducer));
4124 }
4125
4126 /**
4127 * Returns the result of accumulating the given transformation
4128 * of all entries using the given reducer to combine values,
4129 * and the given basis as an identity value.
4130 *
4131 * @param transformer a function returning the transformation
4132 * for an element
4133 * @param basis the identity (initial default value) for the reduction
4134 * @param reducer a commutative associative combining function
4135 * @return the result of accumulating the given transformation
4136 * of all entries
4137 */
4138 public long reduceEntriesToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4139 long basis,
4140 LongByLongToLong reducer) {
4141 return fjp.invoke(ForkJoinTasks.reduceEntriesToLong
4142 (ConcurrentHashMapV8.this, transformer, basis, reducer));
4143 }
4144
4145 /**
4146 * Returns the result of accumulating the given transformation
4147 * of all entries using the given reducer to combine values,
4148 * and the given basis as an identity value.
4149 *
4150 * @param transformer a function returning the transformation
4151 * for an element
4152 * @param basis the identity (initial default value) for the reduction
4153 * @param reducer a commutative associative combining function
4154 * @return the result of accumulating the given transformation
4155 * of all entries
4156 */
4157 public int reduceEntriesToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4158 int basis,
4159 IntByIntToInt reducer) {
4160 return fjp.invoke(ForkJoinTasks.reduceEntriesToInt
4161 (ConcurrentHashMapV8.this, transformer, basis, reducer));
4162 }
4163 }
4164
4165 // ---------------------------------------------------------------------
4166
4167 /**
4168 * Predefined tasks for performing bulk parallel operations on
4169 * ConcurrentHashMaps. These tasks follow the forms and rules used
4170 * in class {@link Parallel}. Each method has the same name, but
4171 * returns a task rather than invoking it. These methods may be
4172 * useful in custom applications such as submitting a task without
4173 * waiting for completion, or combining with other tasks.
4174 */
4175 public static class ForkJoinTasks {
4176 private ForkJoinTasks() {}
4177
4178 /**
4179 * Returns a task that when invoked, performs the given
4180 * action for each (key, value)
4181 *
4182 * @param map the map
4183 * @param action the action
4184 * @return the task
4185 */
4186 public static <K,V> ForkJoinTask<Void> forEach
4187 (ConcurrentHashMapV8<K,V> map,
4188 BiAction<K,V> action) {
4189 if (action == null) throw new NullPointerException();
4190 return new ForEachMappingTask<K,V>(map, null, -1, action);
4191 }
4192
4193 /**
4194 * Returns a task that when invoked, performs the given
4195 * action for each non-null transformation of each (key, value)
4196 *
4197 * @param map the map
4198 * @param transformer a function returning the transformation
4199 * for an element, or null if there is no transformation (in
4200 * which case the action is not applied)
4201 * @param action the action
4202 * @return the task
4203 */
4204 public static <K,V,U> ForkJoinTask<Void> forEach
4205 (ConcurrentHashMapV8<K,V> map,
4206 BiFun<? super K, ? super V, ? extends U> transformer,
4207 Action<U> action) {
4208 if (transformer == null || action == null)
4209 throw new NullPointerException();
4210 return new ForEachTransformedMappingTask<K,V,U>
4211 (map, null, -1, transformer, action);
4212 }
4213
4214 /**
4215 * Returns a task that when invoked, returns a non-null result
4216 * from applying the given search function on each (key,
4217 * value), or null if none. Upon success, further element
4218 * processing is suppressed and the results of any other
4219 * parallel invocations of the search function are ignored.
4220 *
4221 * @param map the map
4222 * @param searchFunction a function returning a non-null
4223 * result on success, else null
4224 * @return the task
4225 */
4226 public static <K,V,U> ForkJoinTask<U> search
4227 (ConcurrentHashMapV8<K,V> map,
4228 BiFun<? super K, ? super V, ? extends U> searchFunction) {
4229 if (searchFunction == null) throw new NullPointerException();
4230 return new SearchMappingsTask<K,V,U>
4231 (map, null, -1, searchFunction,
4232 new AtomicReference<U>());
4233 }
4234
4235 /**
4236 * Returns a task that when invoked, returns the result of
4237 * accumulating the given transformation of all (key, value) pairs
4238 * using the given reducer to combine values, or null if none.
4239 *
4240 * @param map the map
4241 * @param transformer a function returning the transformation
4242 * for an element, or null if there is no transformation (in
4243 * which case it is not combined).
4244 * @param reducer a commutative associative combining function
4245 * @return the task
4246 */
4247 public static <K,V,U> ForkJoinTask<U> reduce
4248 (ConcurrentHashMapV8<K,V> map,
4249 BiFun<? super K, ? super V, ? extends U> transformer,
4250 BiFun<? super U, ? super U, ? extends U> reducer) {
4251 if (transformer == null || reducer == null)
4252 throw new NullPointerException();
4253 return new MapReduceMappingsTask<K,V,U>
4254 (map, null, -1, null, transformer, reducer);
4255 }
4256
4257 /**
4258 * Returns a task that when invoked, returns the result of
4259 * accumulating the given transformation of all (key, value) pairs
4260 * using the given reducer to combine values, and the given
4261 * basis as an identity value.
4262 *
4263 * @param map the map
4264 * @param transformer a function returning the transformation
4265 * for an element
4266 * @param basis the identity (initial default value) for the reduction
4267 * @param reducer a commutative associative combining function
4268 * @return the task
4269 */
4270 public static <K,V> ForkJoinTask<Double> reduceToDouble
4271 (ConcurrentHashMapV8<K,V> map,
4272 ObjectByObjectToDouble<? super K, ? super V> transformer,
4273 double basis,
4274 DoubleByDoubleToDouble reducer) {
4275 if (transformer == null || reducer == null)
4276 throw new NullPointerException();
4277 return new MapReduceMappingsToDoubleTask<K,V>
4278 (map, null, -1, null, transformer, basis, reducer);
4279 }
4280
4281 /**
4282 * Returns a task that when invoked, returns the result of
4283 * accumulating the given transformation of all (key, value) pairs
4284 * using the given reducer to combine values, and the given
4285 * basis as an identity value.
4286 *
4287 * @param map the map
4288 * @param transformer a function returning the transformation
4289 * for an element
4290 * @param basis the identity (initial default value) for the reduction
4291 * @param reducer a commutative associative combining function
4292 * @return the task
4293 */
4294 public static <K,V> ForkJoinTask<Long> reduceToLong
4295 (ConcurrentHashMapV8<K,V> map,
4296 ObjectByObjectToLong<? super K, ? super V> transformer,
4297 long basis,
4298 LongByLongToLong reducer) {
4299 if (transformer == null || reducer == null)
4300 throw new NullPointerException();
4301 return new MapReduceMappingsToLongTask<K,V>
4302 (map, null, -1, null, transformer, basis, reducer);
4303 }
4304
4305 /**
4306 * Returns a task that when invoked, returns the result of
4307 * accumulating the given transformation of all (key, value) pairs
4308 * using the given reducer to combine values, and the given
4309 * basis as an identity value.
4310 *
4311 * @param transformer a function returning the transformation
4312 * for an element
4313 * @param basis the identity (initial default value) for the reduction
4314 * @param reducer a commutative associative combining function
4315 * @return the task
4316 */
4317 public static <K,V> ForkJoinTask<Integer> reduceToInt
4318 (ConcurrentHashMapV8<K,V> map,
4319 ObjectByObjectToInt<? super K, ? super V> transformer,
4320 int basis,
4321 IntByIntToInt reducer) {
4322 if (transformer == null || reducer == null)
4323 throw new NullPointerException();
4324 return new MapReduceMappingsToIntTask<K,V>
4325 (map, null, -1, null, transformer, basis, reducer);
4326 }
4327
4328 /**
4329 * Returns a task that when invoked, performs the given action
4330 * for each key.
4331 *
4332 * @param map the map
4333 * @param action the action
4334 * @return the task
4335 */
4336 public static <K,V> ForkJoinTask<Void> forEachKey
4337 (ConcurrentHashMapV8<K,V> map,
4338 Action<K> action) {
4339 if (action == null) throw new NullPointerException();
4340 return new ForEachKeyTask<K,V>(map, null, -1, action);
4341 }
4342
4343 /**
4344 * Returns a task that when invoked, performs the given action
4345 * for each non-null transformation of each key.
4346 *
4347 * @param map the map
4348 * @param transformer a function returning the transformation
4349 * for an element, or null if there is no transformation (in
4350 * which case the action is not applied)
4351 * @param action the action
4352 * @return the task
4353 */
4354 public static <K,V,U> ForkJoinTask<Void> forEachKey
4355 (ConcurrentHashMapV8<K,V> map,
4356 Fun<? super K, ? extends U> transformer,
4357 Action<U> action) {
4358 if (transformer == null || action == null)
4359 throw new NullPointerException();
4360 return new ForEachTransformedKeyTask<K,V,U>
4361 (map, null, -1, transformer, action);
4362 }
4363
4364 /**
4365 * Returns a task that when invoked, returns a non-null result
4366 * from applying the given search function on each key, or
4367 * null if none. Upon success, further element processing is
4368 * suppressed and the results of any other parallel
4369 * invocations of the search function are ignored.
4370 *
4371 * @param map the map
4372 * @param searchFunction a function returning a non-null
4373 * result on success, else null
4374 * @return the task
4375 */
4376 public static <K,V,U> ForkJoinTask<U> searchKeys
4377 (ConcurrentHashMapV8<K,V> map,
4378 Fun<? super K, ? extends U> searchFunction) {
4379 if (searchFunction == null) throw new NullPointerException();
4380 return new SearchKeysTask<K,V,U>
4381 (map, null, -1, searchFunction,
4382 new AtomicReference<U>());
4383 }
4384
4385 /**
4386 * Returns a task that when invoked, returns the result of
4387 * accumulating all keys using the given reducer to combine
4388 * values, or null if none.
4389 *
4390 * @param map the map
4391 * @param reducer a commutative associative combining function
4392 * @return the task
4393 */
4394 public static <K,V> ForkJoinTask<K> reduceKeys
4395 (ConcurrentHashMapV8<K,V> map,
4396 BiFun<? super K, ? super K, ? extends K> reducer) {
4397 if (reducer == null) throw new NullPointerException();
4398 return new ReduceKeysTask<K,V>
4399 (map, null, -1, null, reducer);
4400 }
4401
4402 /**
4403 * Returns a task that when invoked, returns the result of
4404 * accumulating the given transformation of all keys using the given
4405 * reducer to combine values, or null if none.
4406 *
4407 * @param map the map
4408 * @param transformer a function returning the transformation
4409 * for an element, or null if there is no transformation (in
4410 * which case it is not combined).
4411 * @param reducer a commutative associative combining function
4412 * @return the task
4413 */
4414 public static <K,V,U> ForkJoinTask<U> reduceKeys
4415 (ConcurrentHashMapV8<K,V> map,
4416 Fun<? super K, ? extends U> transformer,
4417 BiFun<? super U, ? super U, ? extends U> reducer) {
4418 if (transformer == null || reducer == null)
4419 throw new NullPointerException();
4420 return new MapReduceKeysTask<K,V,U>
4421 (map, null, -1, null, transformer, reducer);
4422 }
4423
4424 /**
4425 * Returns a task that when invoked, returns the result of
4426 * accumulating the given transformation of all keys using the given
4427 * reducer to combine values, and the given basis as an
4428 * identity value.
4429 *
4430 * @param map the map
4431 * @param transformer a function returning the transformation
4432 * for an element
4433 * @param basis the identity (initial default value) for the reduction
4434 * @param reducer a commutative associative combining function
4435 * @return the task
4436 */
4437 public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
4438 (ConcurrentHashMapV8<K,V> map,
4439 ObjectToDouble<? super K> transformer,
4440 double basis,
4441 DoubleByDoubleToDouble reducer) {
4442 if (transformer == null || reducer == null)
4443 throw new NullPointerException();
4444 return new MapReduceKeysToDoubleTask<K,V>
4445 (map, null, -1, null, transformer, basis, reducer);
4446 }
4447
4448 /**
4449 * Returns a task that when invoked, returns the result of
4450 * accumulating the given transformation of all keys using the given
4451 * reducer to combine values, and the given basis as an
4452 * identity value.
4453 *
4454 * @param map the map
4455 * @param transformer a function returning the transformation
4456 * for an element
4457 * @param basis the identity (initial default value) for the reduction
4458 * @param reducer a commutative associative combining function
4459 * @return the task
4460 */
4461 public static <K,V> ForkJoinTask<Long> reduceKeysToLong
4462 (ConcurrentHashMapV8<K,V> map,
4463 ObjectToLong<? super K> transformer,
4464 long basis,
4465 LongByLongToLong reducer) {
4466 if (transformer == null || reducer == null)
4467 throw new NullPointerException();
4468 return new MapReduceKeysToLongTask<K,V>
4469 (map, null, -1, null, transformer, basis, reducer);
4470 }
4471
4472 /**
4473 * Returns a task that when invoked, returns the result of
4474 * accumulating the given transformation of all keys using the given
4475 * reducer to combine values, and the given basis as an
4476 * identity value.
4477 *
4478 * @param map the map
4479 * @param transformer a function returning the transformation
4480 * for an element
4481 * @param basis the identity (initial default value) for the reduction
4482 * @param reducer a commutative associative combining function
4483 * @return the task
4484 */
4485 public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
4486 (ConcurrentHashMapV8<K,V> map,
4487 ObjectToInt<? super K> transformer,
4488 int basis,
4489 IntByIntToInt reducer) {
4490 if (transformer == null || reducer == null)
4491 throw new NullPointerException();
4492 return new MapReduceKeysToIntTask<K,V>
4493 (map, null, -1, null, transformer, basis, reducer);
4494 }
4495
4496 /**
4497 * Returns a task that when invoked, performs the given action
4498 * for each value.
4499 *
4500 * @param map the map
4501 * @param action the action
4502 */
4503 public static <K,V> ForkJoinTask<Void> forEachValue
4504 (ConcurrentHashMapV8<K,V> map,
4505 Action<V> action) {
4506 if (action == null) throw new NullPointerException();
4507 return new ForEachValueTask<K,V>(map, null, -1, action);
4508 }
4509
4510 /**
4511 * Returns a task that when invoked, performs the given action
4512 * for each non-null transformation of each value.
4513 *
4514 * @param map the map
4515 * @param transformer a function returning the transformation
4516 * for an element, or null if there is no transformation (in
4517 * which case the action is not applied)
4518 * @param action the action
4519 */
4520 public static <K,V,U> ForkJoinTask<Void> forEachValue
4521 (ConcurrentHashMapV8<K,V> map,
4522 Fun<? super V, ? extends U> transformer,
4523 Action<U> action) {
4524 if (transformer == null || action == null)
4525 throw new NullPointerException();
4526 return new ForEachTransformedValueTask<K,V,U>
4527 (map, null, -1, transformer, action);
4528 }
4529
4530 /**
4531 * Returns a task that when invoked, returns a non-null result
4532 * from applying the given search function on each value, or
4533 * null if none. Upon success, further element processing is
4534 * suppressed and the results of any other parallel
4535 * invocations of the search function are ignored.
4536 *
4537 * @param map the map
4538 * @param searchFunction a function returning a non-null
4539 * result on success, else null
4540 * @return the task
4541 *
4542 */
4543 public static <K,V,U> ForkJoinTask<U> searchValues
4544 (ConcurrentHashMapV8<K,V> map,
4545 Fun<? super V, ? extends U> searchFunction) {
4546 if (searchFunction == null) throw new NullPointerException();
4547 return new SearchValuesTask<K,V,U>
4548 (map, null, -1, searchFunction,
4549 new AtomicReference<U>());
4550 }
4551
4552 /**
4553 * Returns a task that when invoked, returns the result of
4554 * accumulating all values using the given reducer to combine
4555 * values, or null if none.
4556 *
4557 * @param map the map
4558 * @param reducer a commutative associative combining function
4559 * @return the task
4560 */
4561 public static <K,V> ForkJoinTask<V> reduceValues
4562 (ConcurrentHashMapV8<K,V> map,
4563 BiFun<? super V, ? super V, ? extends V> reducer) {
4564 if (reducer == null) throw new NullPointerException();
4565 return new ReduceValuesTask<K,V>
4566 (map, null, -1, null, reducer);
4567 }
4568
4569 /**
4570 * Returns a task that when invoked, returns the result of
4571 * accumulating the given transformation of all values using the
4572 * given reducer to combine values, or null if none.
4573 *
4574 * @param map the map
4575 * @param transformer a function returning the transformation
4576 * for an element, or null if there is no transformation (in
4577 * which case it is not combined).
4578 * @param reducer a commutative associative combining function
4579 * @return the task
4580 */
4581 public static <K,V,U> ForkJoinTask<U> reduceValues
4582 (ConcurrentHashMapV8<K,V> map,
4583 Fun<? super V, ? extends U> transformer,
4584 BiFun<? super U, ? super U, ? extends U> reducer) {
4585 if (transformer == null || reducer == null)
4586 throw new NullPointerException();
4587 return new MapReduceValuesTask<K,V,U>
4588 (map, null, -1, null, transformer, reducer);
4589 }
4590
4591 /**
4592 * Returns a task that when invoked, returns the result of
4593 * accumulating the given transformation of all values using the
4594 * given reducer to combine values, and the given basis as an
4595 * identity value.
4596 *
4597 * @param map the map
4598 * @param transformer a function returning the transformation
4599 * for an element
4600 * @param basis the identity (initial default value) for the reduction
4601 * @param reducer a commutative associative combining function
4602 * @return the task
4603 */
4604 public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
4605 (ConcurrentHashMapV8<K,V> map,
4606 ObjectToDouble<? super V> transformer,
4607 double basis,
4608 DoubleByDoubleToDouble reducer) {
4609 if (transformer == null || reducer == null)
4610 throw new NullPointerException();
4611 return new MapReduceValuesToDoubleTask<K,V>
4612 (map, null, -1, null, transformer, basis, reducer);
4613 }
4614
4615 /**
4616 * Returns a task that when invoked, returns the result of
4617 * accumulating the given transformation of all values using the
4618 * given reducer to combine values, and the given basis as an
4619 * identity value.
4620 *
4621 * @param map the map
4622 * @param transformer a function returning the transformation
4623 * for an element
4624 * @param basis the identity (initial default value) for the reduction
4625 * @param reducer a commutative associative combining function
4626 * @return the task
4627 */
4628 public static <K,V> ForkJoinTask<Long> reduceValuesToLong
4629 (ConcurrentHashMapV8<K,V> map,
4630 ObjectToLong<? super V> transformer,
4631 long basis,
4632 LongByLongToLong reducer) {
4633 if (transformer == null || reducer == null)
4634 throw new NullPointerException();
4635 return new MapReduceValuesToLongTask<K,V>
4636 (map, null, -1, null, transformer, basis, reducer);
4637 }
4638
4639 /**
4640 * Returns a task that when invoked, returns the result of
4641 * accumulating the given transformation of all values using the
4642 * given reducer to combine values, and the given basis as an
4643 * identity value.
4644 *
4645 * @param map the map
4646 * @param transformer a function returning the transformation
4647 * for an element
4648 * @param basis the identity (initial default value) for the reduction
4649 * @param reducer a commutative associative combining function
4650 * @return the task
4651 */
4652 public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
4653 (ConcurrentHashMapV8<K,V> map,
4654 ObjectToInt<? super V> transformer,
4655 int basis,
4656 IntByIntToInt reducer) {
4657 if (transformer == null || reducer == null)
4658 throw new NullPointerException();
4659 return new MapReduceValuesToIntTask<K,V>
4660 (map, null, -1, null, transformer, basis, reducer);
4661 }
4662
4663 /**
4664 * Returns a task that when invoked, perform the given action
4665 * for each entry.
4666 *
4667 * @param map the map
4668 * @param action the action
4669 */
4670 public static <K,V> ForkJoinTask<Void> forEachEntry
4671 (ConcurrentHashMapV8<K,V> map,
4672 Action<Map.Entry<K,V>> action) {
4673 if (action == null) throw new NullPointerException();
4674 return new ForEachEntryTask<K,V>(map, null, -1, action);
4675 }
4676
4677 /**
4678 * Returns a task that when invoked, perform the given action
4679 * for each non-null transformation of each entry.
4680 *
4681 * @param map the map
4682 * @param transformer a function returning the transformation
4683 * for an element, or null if there is no transformation (in
4684 * which case the action is not applied)
4685 * @param action the action
4686 */
4687 public static <K,V,U> ForkJoinTask<Void> forEachEntry
4688 (ConcurrentHashMapV8<K,V> map,
4689 Fun<Map.Entry<K,V>, ? extends U> transformer,
4690 Action<U> action) {
4691 if (transformer == null || action == null)
4692 throw new NullPointerException();
4693 return new ForEachTransformedEntryTask<K,V,U>
4694 (map, null, -1, transformer, action);
4695 }
4696
4697 /**
4698 * Returns a task that when invoked, returns a non-null result
4699 * from applying the given search function on each entry, or
4700 * null if none. Upon success, further element processing is
4701 * suppressed and the results of any other parallel
4702 * invocations of the search function are ignored.
4703 *
4704 * @param map the map
4705 * @param searchFunction a function returning a non-null
4706 * result on success, else null
4707 * @return the task
4708 *
4709 */
4710 public static <K,V,U> ForkJoinTask<U> searchEntries
4711 (ConcurrentHashMapV8<K,V> map,
4712 Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4713 if (searchFunction == null) throw new NullPointerException();
4714 return new SearchEntriesTask<K,V,U>
4715 (map, null, -1, searchFunction,
4716 new AtomicReference<U>());
4717 }
4718
4719 /**
4720 * Returns a task that when invoked, returns the result of
4721 * accumulating all entries using the given reducer to combine
4722 * values, or null if none.
4723 *
4724 * @param map the map
4725 * @param reducer a commutative associative combining function
4726 * @return the task
4727 */
4728 public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
4729 (ConcurrentHashMapV8<K,V> map,
4730 BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4731 if (reducer == null) throw new NullPointerException();
4732 return new ReduceEntriesTask<K,V>
4733 (map, null, -1, null, reducer);
4734 }
4735
4736 /**
4737 * Returns a task that when invoked, returns the result of
4738 * accumulating the given transformation of all entries using the
4739 * given reducer to combine values, or null if none.
4740 *
4741 * @param map the map
4742 * @param transformer a function returning the transformation
4743 * for an element, or null if there is no transformation (in
4744 * which case it is not combined).
4745 * @param reducer a commutative associative combining function
4746 * @return the task
4747 */
4748 public static <K,V,U> ForkJoinTask<U> reduceEntries
4749 (ConcurrentHashMapV8<K,V> map,
4750 Fun<Map.Entry<K,V>, ? extends U> transformer,
4751 BiFun<? super U, ? super U, ? extends U> reducer) {
4752 if (transformer == null || reducer == null)
4753 throw new NullPointerException();
4754 return new MapReduceEntriesTask<K,V,U>
4755 (map, null, -1, null, transformer, reducer);
4756 }
4757
4758 /**
4759 * Returns a task that when invoked, returns the result of
4760 * accumulating the given transformation of all entries using the
4761 * given reducer to combine values, and the given basis as an
4762 * identity value.
4763 *
4764 * @param map the map
4765 * @param transformer a function returning the transformation
4766 * for an element
4767 * @param basis the identity (initial default value) for the reduction
4768 * @param reducer a commutative associative combining function
4769 * @return the task
4770 */
4771 public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
4772 (ConcurrentHashMapV8<K,V> map,
4773 ObjectToDouble<Map.Entry<K,V>> transformer,
4774 double basis,
4775 DoubleByDoubleToDouble reducer) {
4776 if (transformer == null || reducer == null)
4777 throw new NullPointerException();
4778 return new MapReduceEntriesToDoubleTask<K,V>
4779 (map, null, -1, null, transformer, basis, reducer);
4780 }
4781
4782 /**
4783 * Returns a task that when invoked, returns the result of
4784 * accumulating the given transformation of all entries using the
4785 * given reducer to combine values, and the given basis as an
4786 * identity value.
4787 *
4788 * @param map the map
4789 * @param transformer a function returning the transformation
4790 * for an element
4791 * @param basis the identity (initial default value) for the reduction
4792 * @param reducer a commutative associative combining function
4793 * @return the task
4794 */
4795 public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
4796 (ConcurrentHashMapV8<K,V> map,
4797 ObjectToLong<Map.Entry<K,V>> transformer,
4798 long basis,
4799 LongByLongToLong reducer) {
4800 if (transformer == null || reducer == null)
4801 throw new NullPointerException();
4802 return new MapReduceEntriesToLongTask<K,V>
4803 (map, null, -1, null, transformer, basis, reducer);
4804 }
4805
4806 /**
4807 * Returns a task that when invoked, returns the result of
4808 * accumulating the given transformation of all entries using the
4809 * given reducer to combine values, and the given basis as an
4810 * identity value.
4811 *
4812 * @param map the map
4813 * @param transformer a function returning the transformation
4814 * for an element
4815 * @param basis the identity (initial default value) for the reduction
4816 * @param reducer a commutative associative combining function
4817 * @return the task
4818 */
4819 public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
4820 (ConcurrentHashMapV8<K,V> map,
4821 ObjectToInt<Map.Entry<K,V>> transformer,
4822 int basis,
4823 IntByIntToInt reducer) {
4824 if (transformer == null || reducer == null)
4825 throw new NullPointerException();
4826 return new MapReduceEntriesToIntTask<K,V>
4827 (map, null, -1, null, transformer, basis, reducer);
4828 }
4829 }
4830
4831 // -------------------------------------------------------
4832
4833 /**
4834 * Base for FJ tasks for bulk operations. This adds a variant of
4835 * CountedCompleters and some split and merge bookkeeping to
4836 * iterator functionality. The forEach and reduce methods are
4837 * similar to those illustrated in CountedCompleter documentation,
4838 * except that bottom-up reduction completions perform them within
4839 * their compute methods. The search methods are like forEach
4840 * except they continually poll for success and exit early. Also,
4841 * exceptions are handled in a simpler manner, by just trying to
4842 * complete root task exceptionally.
4843 */
4844 @SuppressWarnings("serial") static abstract class BulkTask<K,V,R> extends Traverser<K,V,R> {
4845 final BulkTask<K,V,?> parent; // completion target
4846 int batch; // split control; -1 for unknown
4847 int pending; // completion control
4848
4849 BulkTask(ConcurrentHashMapV8<K,V> map, BulkTask<K,V,?> parent,
4850 int batch) {
4851 super(map);
4852 this.parent = parent;
4853 this.batch = batch;
4854 if (parent != null && map != null) { // split parent
4855 Node[] t;
4856 if ((t = parent.tab) == null &&
4857 (t = parent.tab = map.table) != null)
4858 parent.baseLimit = parent.baseSize = t.length;
4859 this.tab = t;
4860 this.baseSize = parent.baseSize;
4861 int hi = this.baseLimit = parent.baseLimit;
4862 parent.baseLimit = this.index = this.baseIndex =
4863 (hi + parent.baseIndex + 1) >>> 1;
4864 }
4865 }
4866
4867 // FJ methods
4868
4869 /**
4870 * Propagates completion. Note that all reduce actions
4871 * bypass this method to combine while completing.
4872 */
4873 final void tryComplete() {
4874 BulkTask<K,V,?> a = this, s = a;
4875 for (int c;;) {
4876 if ((c = a.pending) == 0) {
4877 if ((a = (s = a).parent) == null) {
4878 s.quietlyComplete();
4879 break;
4880 }
4881 }
4882 else if (U.compareAndSwapInt(a, PENDING, c, c - 1))
4883 break;
4884 }
4885 }
4886
4887 /**
4888 * Forces root task to complete.
4889 * @param ex if null, complete normally, else exceptionally
4890 * @return false to simplify use
4891 */
4892 final boolean tryCompleteComputation(Throwable ex) {
4893 for (BulkTask<K,V,?> a = this;;) {
4894 BulkTask<K,V,?> p = a.parent;
4895 if (p == null) {
4896 if (ex != null)
4897 a.completeExceptionally(ex);
4898 else
4899 a.quietlyComplete();
4900 return false;
4901 }
4902 a = p;
4903 }
4904 }
4905
4906 /**
4907 * Version of tryCompleteComputation for function screening checks
4908 */
4909 final boolean abortOnNullFunction() {
4910 return tryCompleteComputation(new Error("Unexpected null function"));
4911 }
4912
4913 // utilities
4914
4915 /** CompareAndSet pending count */
4916 final boolean casPending(int cmp, int val) {
4917 return U.compareAndSwapInt(this, PENDING, cmp, val);
4918 }
4919
4920 /**
4921 * Returns approx exp2 of the number of times (minus one) to
4922 * split task by two before executing leaf action. This value
4923 * is faster to compute and more convenient to use as a guide
4924 * to splitting than is the depth, since it is used while
4925 * dividing by two anyway.
4926 */
4927 final int batch() {
4928 ConcurrentHashMapV8<K, V> m; int b; Node[] t;
4929 if ((b = batch) < 0 && (m = map) != null) { // force initialization
4930 if ((t = tab) == null && (t = tab = m.table) != null)
4931 baseLimit = baseSize = t.length;
4932 if (t != null) {
4933 long n = m.counter.sum();
4934 int sp = getPool().getParallelism() << 3; // slack of 8
4935 b = batch = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
4936 }
4937 }
4938 return b;
4939 }
4940
4941 /**
4942 * Returns exportable snapshot entry.
4943 */
4944 static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
4945 return new AbstractMap.SimpleEntry<K,V>(k, v);
4946 }
4947
4948 // Unsafe mechanics
4949 private static final sun.misc.Unsafe U;
4950 private static final long PENDING;
4951 static {
4952 try {
4953 U = getUnsafe();
4954 PENDING = U.objectFieldOffset
4955 (BulkTask.class.getDeclaredField("pending"));
4956 } catch (Exception e) {
4957 throw new Error(e);
4958 }
4959 }
4960 }
4961
4962 /*
4963 * Task classes. Coded in a regular but ugly format/style to
4964 * simplify checks that each variant differs in the right way from
4965 * others.
4966 */
4967
4968 @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
4969 extends BulkTask<K,V,Void> {
4970 final Action<K> action;
4971 ForEachKeyTask
4972 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
4973 Action<K> action) {
4974 super(m, p, b);
4975 this.action = action;
4976 }
4977 @SuppressWarnings("unchecked") public final boolean exec() {
4978 final Action<K> action = this.action;
4979 if (action == null)
4980 return abortOnNullFunction();
4981 try {
4982 int b = batch(), c;
4983 while (b > 1 && baseIndex != baseLimit) {
4984 do {} while (!casPending(c = pending, c+1));
4985 new ForEachKeyTask<K,V>(map, this, b >>>= 1, action).fork();
4986 }
4987 while (advance() != null)
4988 action.apply((K)nextKey);
4989 tryComplete();
4990 } catch (Throwable ex) {
4991 return tryCompleteComputation(ex);
4992 }
4993 return false;
4994 }
4995 }
4996
4997 @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
4998 extends BulkTask<K,V,Void> {
4999 final Action<V> action;
5000 ForEachValueTask
5001 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5002 Action<V> action) {
5003 super(m, p, b);
5004 this.action = action;
5005 }
5006 @SuppressWarnings("unchecked") public final boolean exec() {
5007 final Action<V> action = this.action;
5008 if (action == null)
5009 return abortOnNullFunction();
5010 try {
5011 int b = batch(), c;
5012 while (b > 1 && baseIndex != baseLimit) {
5013 do {} while (!casPending(c = pending, c+1));
5014 new ForEachValueTask<K,V>(map, this, b >>>= 1, action).fork();
5015 }
5016 Object v;
5017 while ((v = advance()) != null)
5018 action.apply((V)v);
5019 tryComplete();
5020 } catch (Throwable ex) {
5021 return tryCompleteComputation(ex);
5022 }
5023 return false;
5024 }
5025 }
5026
5027 @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5028 extends BulkTask<K,V,Void> {
5029 final Action<Entry<K,V>> action;
5030 ForEachEntryTask
5031 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5032 Action<Entry<K,V>> action) {
5033 super(m, p, b);
5034 this.action = action;
5035 }
5036 @SuppressWarnings("unchecked") public final boolean exec() {
5037 final Action<Entry<K,V>> action = this.action;
5038 if (action == null)
5039 return abortOnNullFunction();
5040 try {
5041 int b = batch(), c;
5042 while (b > 1 && baseIndex != baseLimit) {
5043 do {} while (!casPending(c = pending, c+1));
5044 new ForEachEntryTask<K,V>(map, this, b >>>= 1, action).fork();
5045 }
5046 Object v;
5047 while ((v = advance()) != null)
5048 action.apply(entryFor((K)nextKey, (V)v));
5049 tryComplete();
5050 } catch (Throwable ex) {
5051 return tryCompleteComputation(ex);
5052 }
5053 return false;
5054 }
5055 }
5056
5057 @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5058 extends BulkTask<K,V,Void> {
5059 final BiAction<K,V> action;
5060 ForEachMappingTask
5061 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5062 BiAction<K,V> action) {
5063 super(m, p, b);
5064 this.action = action;
5065 }
5066 @SuppressWarnings("unchecked") public final boolean exec() {
5067 final BiAction<K,V> action = this.action;
5068 if (action == null)
5069 return abortOnNullFunction();
5070 try {
5071 int b = batch(), c;
5072 while (b > 1 && baseIndex != baseLimit) {
5073 do {} while (!casPending(c = pending, c+1));
5074 new ForEachMappingTask<K,V>(map, this, b >>>= 1,
5075 action).fork();
5076 }
5077 Object v;
5078 while ((v = advance()) != null)
5079 action.apply((K)nextKey, (V)v);
5080 tryComplete();
5081 } catch (Throwable ex) {
5082 return tryCompleteComputation(ex);
5083 }
5084 return false;
5085 }
5086 }
5087
5088 @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5089 extends BulkTask<K,V,Void> {
5090 final Fun<? super K, ? extends U> transformer;
5091 final Action<U> action;
5092 ForEachTransformedKeyTask
5093 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5094 Fun<? super K, ? extends U> transformer,
5095 Action<U> action) {
5096 super(m, p, b);
5097 this.transformer = transformer;
5098 this.action = action;
5099
5100 }
5101 @SuppressWarnings("unchecked") public final boolean exec() {
5102 final Fun<? super K, ? extends U> transformer =
5103 this.transformer;
5104 final Action<U> action = this.action;
5105 if (transformer == null || action == null)
5106 return abortOnNullFunction();
5107 try {
5108 int b = batch(), c;
5109 while (b > 1 && baseIndex != baseLimit) {
5110 do {} while (!casPending(c = pending, c+1));
5111 new ForEachTransformedKeyTask<K,V,U>
5112 (map, this, b >>>= 1, transformer, action).fork();
5113 }
5114 U u;
5115 while (advance() != null) {
5116 if ((u = transformer.apply((K)nextKey)) != null)
5117 action.apply(u);
5118 }
5119 tryComplete();
5120 } catch (Throwable ex) {
5121 return tryCompleteComputation(ex);
5122 }
5123 return false;
5124 }
5125 }
5126
5127 @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5128 extends BulkTask<K,V,Void> {
5129 final Fun<? super V, ? extends U> transformer;
5130 final Action<U> action;
5131 ForEachTransformedValueTask
5132 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5133 Fun<? super V, ? extends U> transformer,
5134 Action<U> action) {
5135 super(m, p, b);
5136 this.transformer = transformer;
5137 this.action = action;
5138
5139 }
5140 @SuppressWarnings("unchecked") public final boolean exec() {
5141 final Fun<? super V, ? extends U> transformer =
5142 this.transformer;
5143 final Action<U> action = this.action;
5144 if (transformer == null || action == null)
5145 return abortOnNullFunction();
5146 try {
5147 int b = batch(), c;
5148 while (b > 1 && baseIndex != baseLimit) {
5149 do {} while (!casPending(c = pending, c+1));
5150 new ForEachTransformedValueTask<K,V,U>
5151 (map, this, b >>>= 1, transformer, action).fork();
5152 }
5153 Object v; U u;
5154 while ((v = advance()) != null) {
5155 if ((u = transformer.apply((V)v)) != null)
5156 action.apply(u);
5157 }
5158 tryComplete();
5159 } catch (Throwable ex) {
5160 return tryCompleteComputation(ex);
5161 }
5162 return false;
5163 }
5164 }
5165
5166 @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5167 extends BulkTask<K,V,Void> {
5168 final Fun<Map.Entry<K,V>, ? extends U> transformer;
5169 final Action<U> action;
5170 ForEachTransformedEntryTask
5171 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5172 Fun<Map.Entry<K,V>, ? extends U> transformer,
5173 Action<U> action) {
5174 super(m, p, b);
5175 this.transformer = transformer;
5176 this.action = action;
5177
5178 }
5179 @SuppressWarnings("unchecked") public final boolean exec() {
5180 final Fun<Map.Entry<K,V>, ? extends U> transformer =
5181 this.transformer;
5182 final Action<U> action = this.action;
5183 if (transformer == null || action == null)
5184 return abortOnNullFunction();
5185 try {
5186 int b = batch(), c;
5187 while (b > 1 && baseIndex != baseLimit) {
5188 do {} while (!casPending(c = pending, c+1));
5189 new ForEachTransformedEntryTask<K,V,U>
5190 (map, this, b >>>= 1, transformer, action).fork();
5191 }
5192 Object v; U u;
5193 while ((v = advance()) != null) {
5194 if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
5195 action.apply(u);
5196 }
5197 tryComplete();
5198 } catch (Throwable ex) {
5199 return tryCompleteComputation(ex);
5200 }
5201 return false;
5202 }
5203 }
5204
5205 @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5206 extends BulkTask<K,V,Void> {
5207 final BiFun<? super K, ? super V, ? extends U> transformer;
5208 final Action<U> action;
5209 ForEachTransformedMappingTask
5210 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5211 BiFun<? super K, ? super V, ? extends U> transformer,
5212 Action<U> action) {
5213 super(m, p, b);
5214 this.transformer = transformer;
5215 this.action = action;
5216
5217 }
5218 @SuppressWarnings("unchecked") public final boolean exec() {
5219 final BiFun<? super K, ? super V, ? extends U> transformer =
5220 this.transformer;
5221 final Action<U> action = this.action;
5222 if (transformer == null || action == null)
5223 return abortOnNullFunction();
5224 try {
5225 int b = batch(), c;
5226 while (b > 1 && baseIndex != baseLimit) {
5227 do {} while (!casPending(c = pending, c+1));
5228 new ForEachTransformedMappingTask<K,V,U>
5229 (map, this, b >>>= 1, transformer, action).fork();
5230 }
5231 Object v; U u;
5232 while ((v = advance()) != null) {
5233 if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5234 action.apply(u);
5235 }
5236 tryComplete();
5237 } catch (Throwable ex) {
5238 return tryCompleteComputation(ex);
5239 }
5240 return false;
5241 }
5242 }
5243
5244 @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5245 extends BulkTask<K,V,U> {
5246 final Fun<? super K, ? extends U> searchFunction;
5247 final AtomicReference<U> result;
5248 SearchKeysTask
5249 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5250 Fun<? super K, ? extends U> searchFunction,
5251 AtomicReference<U> result) {
5252 super(m, p, b);
5253 this.searchFunction = searchFunction; this.result = result;
5254 }
5255 @SuppressWarnings("unchecked") public final boolean exec() {
5256 AtomicReference<U> result = this.result;
5257 final Fun<? super K, ? extends U> searchFunction =
5258 this.searchFunction;
5259 if (searchFunction == null || result == null)
5260 return abortOnNullFunction();
5261 try {
5262 int b = batch(), c;
5263 while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5264 do {} while (!casPending(c = pending, c+1));
5265 new SearchKeysTask<K,V,U>(map, this, b >>>= 1,
5266 searchFunction, result).fork();
5267 }
5268 U u;
5269 while (result.get() == null && advance() != null) {
5270 if ((u = searchFunction.apply((K)nextKey)) != null) {
5271 if (result.compareAndSet(null, u))
5272 tryCompleteComputation(null);
5273 break;
5274 }
5275 }
5276 tryComplete();
5277 } catch (Throwable ex) {
5278 return tryCompleteComputation(ex);
5279 }
5280 return false;
5281 }
5282 public final U getRawResult() { return result.get(); }
5283 }
5284
5285 @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5286 extends BulkTask<K,V,U> {
5287 final Fun<? super V, ? extends U> searchFunction;
5288 final AtomicReference<U> result;
5289 SearchValuesTask
5290 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5291 Fun<? super V, ? extends U> searchFunction,
5292 AtomicReference<U> result) {
5293 super(m, p, b);
5294 this.searchFunction = searchFunction; this.result = result;
5295 }
5296 @SuppressWarnings("unchecked") public final boolean exec() {
5297 AtomicReference<U> result = this.result;
5298 final Fun<? super V, ? extends U> searchFunction =
5299 this.searchFunction;
5300 if (searchFunction == null || result == null)
5301 return abortOnNullFunction();
5302 try {
5303 int b = batch(), c;
5304 while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5305 do {} while (!casPending(c = pending, c+1));
5306 new SearchValuesTask<K,V,U>(map, this, b >>>= 1,
5307 searchFunction, result).fork();
5308 }
5309 Object v; U u;
5310 while (result.get() == null && (v = advance()) != null) {
5311 if ((u = searchFunction.apply((V)v)) != null) {
5312 if (result.compareAndSet(null, u))
5313 tryCompleteComputation(null);
5314 break;
5315 }
5316 }
5317 tryComplete();
5318 } catch (Throwable ex) {
5319 return tryCompleteComputation(ex);
5320 }
5321 return false;
5322 }
5323 public final U getRawResult() { return result.get(); }
5324 }
5325
5326 @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5327 extends BulkTask<K,V,U> {
5328 final Fun<Entry<K,V>, ? extends U> searchFunction;
5329 final AtomicReference<U> result;
5330 SearchEntriesTask
5331 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5332 Fun<Entry<K,V>, ? extends U> searchFunction,
5333 AtomicReference<U> result) {
5334 super(m, p, b);
5335 this.searchFunction = searchFunction; this.result = result;
5336 }
5337 @SuppressWarnings("unchecked") public final boolean exec() {
5338 AtomicReference<U> result = this.result;
5339 final Fun<Entry<K,V>, ? extends U> searchFunction =
5340 this.searchFunction;
5341 if (searchFunction == null || result == null)
5342 return abortOnNullFunction();
5343 try {
5344 int b = batch(), c;
5345 while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5346 do {} while (!casPending(c = pending, c+1));
5347 new SearchEntriesTask<K,V,U>(map, this, b >>>= 1,
5348 searchFunction, result).fork();
5349 }
5350 Object v; U u;
5351 while (result.get() == null && (v = advance()) != null) {
5352 if ((u = searchFunction.apply(entryFor((K)nextKey, (V)v))) != null) {
5353 if (result.compareAndSet(null, u))
5354 tryCompleteComputation(null);
5355 break;
5356 }
5357 }
5358 tryComplete();
5359 } catch (Throwable ex) {
5360 return tryCompleteComputation(ex);
5361 }
5362 return false;
5363 }
5364 public final U getRawResult() { return result.get(); }
5365 }
5366
5367 @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5368 extends BulkTask<K,V,U> {
5369 final BiFun<? super K, ? super V, ? extends U> searchFunction;
5370 final AtomicReference<U> result;
5371 SearchMappingsTask
5372 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5373 BiFun<? super K, ? super V, ? extends U> searchFunction,
5374 AtomicReference<U> result) {
5375 super(m, p, b);
5376 this.searchFunction = searchFunction; this.result = result;
5377 }
5378 @SuppressWarnings("unchecked") public final boolean exec() {
5379 AtomicReference<U> result = this.result;
5380 final BiFun<? super K, ? super V, ? extends U> searchFunction =
5381 this.searchFunction;
5382 if (searchFunction == null || result == null)
5383 return abortOnNullFunction();
5384 try {
5385 int b = batch(), c;
5386 while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5387 do {} while (!casPending(c = pending, c+1));
5388 new SearchMappingsTask<K,V,U>(map, this, b >>>= 1,
5389 searchFunction, result).fork();
5390 }
5391 Object v; U u;
5392 while (result.get() == null && (v = advance()) != null) {
5393 if ((u = searchFunction.apply((K)nextKey, (V)v)) != null) {
5394 if (result.compareAndSet(null, u))
5395 tryCompleteComputation(null);
5396 break;
5397 }
5398 }
5399 tryComplete();
5400 } catch (Throwable ex) {
5401 return tryCompleteComputation(ex);
5402 }
5403 return false;
5404 }
5405 public final U getRawResult() { return result.get(); }
5406 }
5407
5408 @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5409 extends BulkTask<K,V,K> {
5410 final BiFun<? super K, ? super K, ? extends K> reducer;
5411 K result;
5412 ReduceKeysTask<K,V> rights, nextRight;
5413 ReduceKeysTask
5414 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5415 ReduceKeysTask<K,V> nextRight,
5416 BiFun<? super K, ? super K, ? extends K> reducer) {
5417 super(m, p, b); this.nextRight = nextRight;
5418 this.reducer = reducer;
5419 }
5420 @SuppressWarnings("unchecked") public final boolean exec() {
5421 final BiFun<? super K, ? super K, ? extends K> reducer =
5422 this.reducer;
5423 if (reducer == null)
5424 return abortOnNullFunction();
5425 try {
5426 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5427 do {} while (!casPending(c = pending, c+1));
5428 (rights = new ReduceKeysTask<K,V>
5429 (map, this, b >>>= 1, rights, reducer)).fork();
5430 }
5431 K r = null;
5432 while (advance() != null) {
5433 K u = (K)nextKey;
5434 r = (r == null) ? u : reducer.apply(r, u);
5435 }
5436 result = r;
5437 for (ReduceKeysTask<K,V> t = this, s;;) {
5438 int c; BulkTask<K,V,?> par; K tr, sr;
5439 if ((c = t.pending) == 0) {
5440 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5441 if ((sr = s.result) != null)
5442 t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5443 }
5444 if ((par = t.parent) == null ||
5445 !(par instanceof ReduceKeysTask)) {
5446 t.quietlyComplete();
5447 break;
5448 }
5449 t = (ReduceKeysTask<K,V>)par;
5450 }
5451 else if (t.casPending(c, c - 1))
5452 break;
5453 }
5454 } catch (Throwable ex) {
5455 return tryCompleteComputation(ex);
5456 }
5457 return false;
5458 }
5459 public final K getRawResult() { return result; }
5460 }
5461
5462 @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5463 extends BulkTask<K,V,V> {
5464 final BiFun<? super V, ? super V, ? extends V> reducer;
5465 V result;
5466 ReduceValuesTask<K,V> rights, nextRight;
5467 ReduceValuesTask
5468 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5469 ReduceValuesTask<K,V> nextRight,
5470 BiFun<? super V, ? super V, ? extends V> reducer) {
5471 super(m, p, b); this.nextRight = nextRight;
5472 this.reducer = reducer;
5473 }
5474 @SuppressWarnings("unchecked") public final boolean exec() {
5475 final BiFun<? super V, ? super V, ? extends V> reducer =
5476 this.reducer;
5477 if (reducer == null)
5478 return abortOnNullFunction();
5479 try {
5480 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5481 do {} while (!casPending(c = pending, c+1));
5482 (rights = new ReduceValuesTask<K,V>
5483 (map, this, b >>>= 1, rights, reducer)).fork();
5484 }
5485 V r = null;
5486 Object v;
5487 while ((v = advance()) != null) {
5488 V u = (V)v;
5489 r = (r == null) ? u : reducer.apply(r, u);
5490 }
5491 result = r;
5492 for (ReduceValuesTask<K,V> t = this, s;;) {
5493 int c; BulkTask<K,V,?> par; V tr, sr;
5494 if ((c = t.pending) == 0) {
5495 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5496 if ((sr = s.result) != null)
5497 t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5498 }
5499 if ((par = t.parent) == null ||
5500 !(par instanceof ReduceValuesTask)) {
5501 t.quietlyComplete();
5502 break;
5503 }
5504 t = (ReduceValuesTask<K,V>)par;
5505 }
5506 else if (t.casPending(c, c - 1))
5507 break;
5508 }
5509 } catch (Throwable ex) {
5510 return tryCompleteComputation(ex);
5511 }
5512 return false;
5513 }
5514 public final V getRawResult() { return result; }
5515 }
5516
5517 @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
5518 extends BulkTask<K,V,Map.Entry<K,V>> {
5519 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5520 Map.Entry<K,V> result;
5521 ReduceEntriesTask<K,V> rights, nextRight;
5522 ReduceEntriesTask
5523 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5524 ReduceEntriesTask<K,V> nextRight,
5525 BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5526 super(m, p, b); this.nextRight = nextRight;
5527 this.reducer = reducer;
5528 }
5529 @SuppressWarnings("unchecked") public final boolean exec() {
5530 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer =
5531 this.reducer;
5532 if (reducer == null)
5533 return abortOnNullFunction();
5534 try {
5535 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5536 do {} while (!casPending(c = pending, c+1));
5537 (rights = new ReduceEntriesTask<K,V>
5538 (map, this, b >>>= 1, rights, reducer)).fork();
5539 }
5540 Map.Entry<K,V> r = null;
5541 Object v;
5542 while ((v = advance()) != null) {
5543 Map.Entry<K,V> u = entryFor((K)nextKey, (V)v);
5544 r = (r == null) ? u : reducer.apply(r, u);
5545 }
5546 result = r;
5547 for (ReduceEntriesTask<K,V> t = this, s;;) {
5548 int c; BulkTask<K,V,?> par; Map.Entry<K,V> tr, sr;
5549 if ((c = t.pending) == 0) {
5550 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5551 if ((sr = s.result) != null)
5552 t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5553 }
5554 if ((par = t.parent) == null ||
5555 !(par instanceof ReduceEntriesTask)) {
5556 t.quietlyComplete();
5557 break;
5558 }
5559 t = (ReduceEntriesTask<K,V>)par;
5560 }
5561 else if (t.casPending(c, c - 1))
5562 break;
5563 }
5564 } catch (Throwable ex) {
5565 return tryCompleteComputation(ex);
5566 }
5567 return false;
5568 }
5569 public final Map.Entry<K,V> getRawResult() { return result; }
5570 }
5571
5572 @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
5573 extends BulkTask<K,V,U> {
5574 final Fun<? super K, ? extends U> transformer;
5575 final BiFun<? super U, ? super U, ? extends U> reducer;
5576 U result;
5577 MapReduceKeysTask<K,V,U> rights, nextRight;
5578 MapReduceKeysTask
5579 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5580 MapReduceKeysTask<K,V,U> nextRight,
5581 Fun<? super K, ? extends U> transformer,
5582 BiFun<? super U, ? super U, ? extends U> reducer) {
5583 super(m, p, b); this.nextRight = nextRight;
5584 this.transformer = transformer;
5585 this.reducer = reducer;
5586 }
5587 @SuppressWarnings("unchecked") public final boolean exec() {
5588 final Fun<? super K, ? extends U> transformer =
5589 this.transformer;
5590 final BiFun<? super U, ? super U, ? extends U> reducer =
5591 this.reducer;
5592 if (transformer == null || reducer == null)
5593 return abortOnNullFunction();
5594 try {
5595 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5596 do {} while (!casPending(c = pending, c+1));
5597 (rights = new MapReduceKeysTask<K,V,U>
5598 (map, this, b >>>= 1, rights, transformer, reducer)).fork();
5599 }
5600 U r = null, u;
5601 while (advance() != null) {
5602 if ((u = transformer.apply((K)nextKey)) != null)
5603 r = (r == null) ? u : reducer.apply(r, u);
5604 }
5605 result = r;
5606 for (MapReduceKeysTask<K,V,U> t = this, s;;) {
5607 int c; BulkTask<K,V,?> par; U tr, sr;
5608 if ((c = t.pending) == 0) {
5609 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5610 if ((sr = s.result) != null)
5611 t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5612 }
5613 if ((par = t.parent) == null ||
5614 !(par instanceof MapReduceKeysTask)) {
5615 t.quietlyComplete();
5616 break;
5617 }
5618 t = (MapReduceKeysTask<K,V,U>)par;
5619 }
5620 else if (t.casPending(c, c - 1))
5621 break;
5622 }
5623 } catch (Throwable ex) {
5624 return tryCompleteComputation(ex);
5625 }
5626 return false;
5627 }
5628 public final U getRawResult() { return result; }
5629 }
5630
5631 @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
5632 extends BulkTask<K,V,U> {
5633 final Fun<? super V, ? extends U> transformer;
5634 final BiFun<? super U, ? super U, ? extends U> reducer;
5635 U result;
5636 MapReduceValuesTask<K,V,U> rights, nextRight;
5637 MapReduceValuesTask
5638 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5639 MapReduceValuesTask<K,V,U> nextRight,
5640 Fun<? super V, ? extends U> transformer,
5641 BiFun<? super U, ? super U, ? extends U> reducer) {
5642 super(m, p, b); this.nextRight = nextRight;
5643 this.transformer = transformer;
5644 this.reducer = reducer;
5645 }
5646 @SuppressWarnings("unchecked") public final boolean exec() {
5647 final Fun<? super V, ? extends U> transformer =
5648 this.transformer;
5649 final BiFun<? super U, ? super U, ? extends U> reducer =
5650 this.reducer;
5651 if (transformer == null || reducer == null)
5652 return abortOnNullFunction();
5653 try {
5654 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5655 do {} while (!casPending(c = pending, c+1));
5656 (rights = new MapReduceValuesTask<K,V,U>
5657 (map, this, b >>>= 1, rights, transformer, reducer)).fork();
5658 }
5659 U r = null, u;
5660 Object v;
5661 while ((v = advance()) != null) {
5662 if ((u = transformer.apply((V)v)) != null)
5663 r = (r == null) ? u : reducer.apply(r, u);
5664 }
5665 result = r;
5666 for (MapReduceValuesTask<K,V,U> t = this, s;;) {
5667 int c; BulkTask<K,V,?> par; U tr, sr;
5668 if ((c = t.pending) == 0) {
5669 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5670 if ((sr = s.result) != null)
5671 t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5672 }
5673 if ((par = t.parent) == null ||
5674 !(par instanceof MapReduceValuesTask)) {
5675 t.quietlyComplete();
5676 break;
5677 }
5678 t = (MapReduceValuesTask<K,V,U>)par;
5679 }
5680 else if (t.casPending(c, c - 1))
5681 break;
5682 }
5683 } catch (Throwable ex) {
5684 return tryCompleteComputation(ex);
5685 }
5686 return false;
5687 }
5688 public final U getRawResult() { return result; }
5689 }
5690
5691 @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
5692 extends BulkTask<K,V,U> {
5693 final Fun<Map.Entry<K,V>, ? extends U> transformer;
5694 final BiFun<? super U, ? super U, ? extends U> reducer;
5695 U result;
5696 MapReduceEntriesTask<K,V,U> rights, nextRight;
5697 MapReduceEntriesTask
5698 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5699 MapReduceEntriesTask<K,V,U> nextRight,
5700 Fun<Map.Entry<K,V>, ? extends U> transformer,
5701 BiFun<? super U, ? super U, ? extends U> reducer) {
5702 super(m, p, b); this.nextRight = nextRight;
5703 this.transformer = transformer;
5704 this.reducer = reducer;
5705 }
5706 @SuppressWarnings("unchecked") public final boolean exec() {
5707 final Fun<Map.Entry<K,V>, ? extends U> transformer =
5708 this.transformer;
5709 final BiFun<? super U, ? super U, ? extends U> reducer =
5710 this.reducer;
5711 if (transformer == null || reducer == null)
5712 return abortOnNullFunction();
5713 try {
5714 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5715 do {} while (!casPending(c = pending, c+1));
5716 (rights = new MapReduceEntriesTask<K,V,U>
5717 (map, this, b >>>= 1, rights, transformer, reducer)).fork();
5718 }
5719 U r = null, u;
5720 Object v;
5721 while ((v = advance()) != null) {
5722 if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
5723 r = (r == null) ? u : reducer.apply(r, u);
5724 }
5725 result = r;
5726 for (MapReduceEntriesTask<K,V,U> t = this, s;;) {
5727 int c; BulkTask<K,V,?> par; U tr, sr;
5728 if ((c = t.pending) == 0) {
5729 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5730 if ((sr = s.result) != null)
5731 t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5732 }
5733 if ((par = t.parent) == null ||
5734 !(par instanceof MapReduceEntriesTask)) {
5735 t.quietlyComplete();
5736 break;
5737 }
5738 t = (MapReduceEntriesTask<K,V,U>)par;
5739 }
5740 else if (t.casPending(c, c - 1))
5741 break;
5742 }
5743 } catch (Throwable ex) {
5744 return tryCompleteComputation(ex);
5745 }
5746 return false;
5747 }
5748 public final U getRawResult() { return result; }
5749 }
5750
5751 @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
5752 extends BulkTask<K,V,U> {
5753 final BiFun<? super K, ? super V, ? extends U> transformer;
5754 final BiFun<? super U, ? super U, ? extends U> reducer;
5755 U result;
5756 MapReduceMappingsTask<K,V,U> rights, nextRight;
5757 MapReduceMappingsTask
5758 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5759 MapReduceMappingsTask<K,V,U> nextRight,
5760 BiFun<? super K, ? super V, ? extends U> transformer,
5761 BiFun<? super U, ? super U, ? extends U> reducer) {
5762 super(m, p, b); this.nextRight = nextRight;
5763 this.transformer = transformer;
5764 this.reducer = reducer;
5765 }
5766 @SuppressWarnings("unchecked") public final boolean exec() {
5767 final BiFun<? super K, ? super V, ? extends U> transformer =
5768 this.transformer;
5769 final BiFun<? super U, ? super U, ? extends U> reducer =
5770 this.reducer;
5771 if (transformer == null || reducer == null)
5772 return abortOnNullFunction();
5773 try {
5774 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5775 do {} while (!casPending(c = pending, c+1));
5776 (rights = new MapReduceMappingsTask<K,V,U>
5777 (map, this, b >>>= 1, rights, transformer, reducer)).fork();
5778 }
5779 U r = null, u;
5780 Object v;
5781 while ((v = advance()) != null) {
5782 if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5783 r = (r == null) ? u : reducer.apply(r, u);
5784 }
5785 result = r;
5786 for (MapReduceMappingsTask<K,V,U> t = this, s;;) {
5787 int c; BulkTask<K,V,?> par; U tr, sr;
5788 if ((c = t.pending) == 0) {
5789 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5790 if ((sr = s.result) != null)
5791 t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5792 }
5793 if ((par = t.parent) == null ||
5794 !(par instanceof MapReduceMappingsTask)) {
5795 t.quietlyComplete();
5796 break;
5797 }
5798 t = (MapReduceMappingsTask<K,V,U>)par;
5799 }
5800 else if (t.casPending(c, c - 1))
5801 break;
5802 }
5803 } catch (Throwable ex) {
5804 return tryCompleteComputation(ex);
5805 }
5806 return false;
5807 }
5808 public final U getRawResult() { return result; }
5809 }
5810
5811 @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
5812 extends BulkTask<K,V,Double> {
5813 final ObjectToDouble<? super K> transformer;
5814 final DoubleByDoubleToDouble reducer;
5815 final double basis;
5816 double result;
5817 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5818 MapReduceKeysToDoubleTask
5819 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5820 MapReduceKeysToDoubleTask<K,V> nextRight,
5821 ObjectToDouble<? super K> transformer,
5822 double basis,
5823 DoubleByDoubleToDouble reducer) {
5824 super(m, p, b); this.nextRight = nextRight;
5825 this.transformer = transformer;
5826 this.basis = basis; this.reducer = reducer;
5827 }
5828 @SuppressWarnings("unchecked") public final boolean exec() {
5829 final ObjectToDouble<? super K> transformer =
5830 this.transformer;
5831 final DoubleByDoubleToDouble reducer = this.reducer;
5832 if (transformer == null || reducer == null)
5833 return abortOnNullFunction();
5834 try {
5835 final double id = this.basis;
5836 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5837 do {} while (!casPending(c = pending, c+1));
5838 (rights = new MapReduceKeysToDoubleTask<K,V>
5839 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5840 }
5841 double r = id;
5842 while (advance() != null)
5843 r = reducer.apply(r, transformer.apply((K)nextKey));
5844 result = r;
5845 for (MapReduceKeysToDoubleTask<K,V> t = this, s;;) {
5846 int c; BulkTask<K,V,?> par;
5847 if ((c = t.pending) == 0) {
5848 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5849 t.result = reducer.apply(t.result, s.result);
5850 }
5851 if ((par = t.parent) == null ||
5852 !(par instanceof MapReduceKeysToDoubleTask)) {
5853 t.quietlyComplete();
5854 break;
5855 }
5856 t = (MapReduceKeysToDoubleTask<K,V>)par;
5857 }
5858 else if (t.casPending(c, c - 1))
5859 break;
5860 }
5861 } catch (Throwable ex) {
5862 return tryCompleteComputation(ex);
5863 }
5864 return false;
5865 }
5866 public final Double getRawResult() { return result; }
5867 }
5868
5869 @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
5870 extends BulkTask<K,V,Double> {
5871 final ObjectToDouble<? super V> transformer;
5872 final DoubleByDoubleToDouble reducer;
5873 final double basis;
5874 double result;
5875 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5876 MapReduceValuesToDoubleTask
5877 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5878 MapReduceValuesToDoubleTask<K,V> nextRight,
5879 ObjectToDouble<? super V> transformer,
5880 double basis,
5881 DoubleByDoubleToDouble reducer) {
5882 super(m, p, b); this.nextRight = nextRight;
5883 this.transformer = transformer;
5884 this.basis = basis; this.reducer = reducer;
5885 }
5886 @SuppressWarnings("unchecked") public final boolean exec() {
5887 final ObjectToDouble<? super V> transformer =
5888 this.transformer;
5889 final DoubleByDoubleToDouble reducer = this.reducer;
5890 if (transformer == null || reducer == null)
5891 return abortOnNullFunction();
5892 try {
5893 final double id = this.basis;
5894 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5895 do {} while (!casPending(c = pending, c+1));
5896 (rights = new MapReduceValuesToDoubleTask<K,V>
5897 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5898 }
5899 double r = id;
5900 Object v;
5901 while ((v = advance()) != null)
5902 r = reducer.apply(r, transformer.apply((V)v));
5903 result = r;
5904 for (MapReduceValuesToDoubleTask<K,V> t = this, s;;) {
5905 int c; BulkTask<K,V,?> par;
5906 if ((c = t.pending) == 0) {
5907 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5908 t.result = reducer.apply(t.result, s.result);
5909 }
5910 if ((par = t.parent) == null ||
5911 !(par instanceof MapReduceValuesToDoubleTask)) {
5912 t.quietlyComplete();
5913 break;
5914 }
5915 t = (MapReduceValuesToDoubleTask<K,V>)par;
5916 }
5917 else if (t.casPending(c, c - 1))
5918 break;
5919 }
5920 } catch (Throwable ex) {
5921 return tryCompleteComputation(ex);
5922 }
5923 return false;
5924 }
5925 public final Double getRawResult() { return result; }
5926 }
5927
5928 @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
5929 extends BulkTask<K,V,Double> {
5930 final ObjectToDouble<Map.Entry<K,V>> transformer;
5931 final DoubleByDoubleToDouble reducer;
5932 final double basis;
5933 double result;
5934 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5935 MapReduceEntriesToDoubleTask
5936 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5937 MapReduceEntriesToDoubleTask<K,V> nextRight,
5938 ObjectToDouble<Map.Entry<K,V>> transformer,
5939 double basis,
5940 DoubleByDoubleToDouble reducer) {
5941 super(m, p, b); this.nextRight = nextRight;
5942 this.transformer = transformer;
5943 this.basis = basis; this.reducer = reducer;
5944 }
5945 @SuppressWarnings("unchecked") public final boolean exec() {
5946 final ObjectToDouble<Map.Entry<K,V>> transformer =
5947 this.transformer;
5948 final DoubleByDoubleToDouble reducer = this.reducer;
5949 if (transformer == null || reducer == null)
5950 return abortOnNullFunction();
5951 try {
5952 final double id = this.basis;
5953 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5954 do {} while (!casPending(c = pending, c+1));
5955 (rights = new MapReduceEntriesToDoubleTask<K,V>
5956 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5957 }
5958 double r = id;
5959 Object v;
5960 while ((v = advance()) != null)
5961 r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
5962 result = r;
5963 for (MapReduceEntriesToDoubleTask<K,V> t = this, s;;) {
5964 int c; BulkTask<K,V,?> par;
5965 if ((c = t.pending) == 0) {
5966 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5967 t.result = reducer.apply(t.result, s.result);
5968 }
5969 if ((par = t.parent) == null ||
5970 !(par instanceof MapReduceEntriesToDoubleTask)) {
5971 t.quietlyComplete();
5972 break;
5973 }
5974 t = (MapReduceEntriesToDoubleTask<K,V>)par;
5975 }
5976 else if (t.casPending(c, c - 1))
5977 break;
5978 }
5979 } catch (Throwable ex) {
5980 return tryCompleteComputation(ex);
5981 }
5982 return false;
5983 }
5984 public final Double getRawResult() { return result; }
5985 }
5986
5987 @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
5988 extends BulkTask<K,V,Double> {
5989 final ObjectByObjectToDouble<? super K, ? super V> transformer;
5990 final DoubleByDoubleToDouble reducer;
5991 final double basis;
5992 double result;
5993 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5994 MapReduceMappingsToDoubleTask
5995 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5996 MapReduceMappingsToDoubleTask<K,V> nextRight,
5997 ObjectByObjectToDouble<? super K, ? super V> transformer,
5998 double basis,
5999 DoubleByDoubleToDouble reducer) {
6000 super(m, p, b); this.nextRight = nextRight;
6001 this.transformer = transformer;
6002 this.basis = basis; this.reducer = reducer;
6003 }
6004 @SuppressWarnings("unchecked") public final boolean exec() {
6005 final ObjectByObjectToDouble<? super K, ? super V> transformer =
6006 this.transformer;
6007 final DoubleByDoubleToDouble reducer = this.reducer;
6008 if (transformer == null || reducer == null)
6009 return abortOnNullFunction();
6010 try {
6011 final double id = this.basis;
6012 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6013 do {} while (!casPending(c = pending, c+1));
6014 (rights = new MapReduceMappingsToDoubleTask<K,V>
6015 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6016 }
6017 double r = id;
6018 Object v;
6019 while ((v = advance()) != null)
6020 r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6021 result = r;
6022 for (MapReduceMappingsToDoubleTask<K,V> t = this, s;;) {
6023 int c; BulkTask<K,V,?> par;
6024 if ((c = t.pending) == 0) {
6025 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6026 t.result = reducer.apply(t.result, s.result);
6027 }
6028 if ((par = t.parent) == null ||
6029 !(par instanceof MapReduceMappingsToDoubleTask)) {
6030 t.quietlyComplete();
6031 break;
6032 }
6033 t = (MapReduceMappingsToDoubleTask<K,V>)par;
6034 }
6035 else if (t.casPending(c, c - 1))
6036 break;
6037 }
6038 } catch (Throwable ex) {
6039 return tryCompleteComputation(ex);
6040 }
6041 return false;
6042 }
6043 public final Double getRawResult() { return result; }
6044 }
6045
6046 @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6047 extends BulkTask<K,V,Long> {
6048 final ObjectToLong<? super K> transformer;
6049 final LongByLongToLong reducer;
6050 final long basis;
6051 long result;
6052 MapReduceKeysToLongTask<K,V> rights, nextRight;
6053 MapReduceKeysToLongTask
6054 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6055 MapReduceKeysToLongTask<K,V> nextRight,
6056 ObjectToLong<? super K> transformer,
6057 long basis,
6058 LongByLongToLong reducer) {
6059 super(m, p, b); this.nextRight = nextRight;
6060 this.transformer = transformer;
6061 this.basis = basis; this.reducer = reducer;
6062 }
6063 @SuppressWarnings("unchecked") public final boolean exec() {
6064 final ObjectToLong<? super K> transformer =
6065 this.transformer;
6066 final LongByLongToLong reducer = this.reducer;
6067 if (transformer == null || reducer == null)
6068 return abortOnNullFunction();
6069 try {
6070 final long id = this.basis;
6071 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6072 do {} while (!casPending(c = pending, c+1));
6073 (rights = new MapReduceKeysToLongTask<K,V>
6074 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6075 }
6076 long r = id;
6077 while (advance() != null)
6078 r = reducer.apply(r, transformer.apply((K)nextKey));
6079 result = r;
6080 for (MapReduceKeysToLongTask<K,V> t = this, s;;) {
6081 int c; BulkTask<K,V,?> par;
6082 if ((c = t.pending) == 0) {
6083 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6084 t.result = reducer.apply(t.result, s.result);
6085 }
6086 if ((par = t.parent) == null ||
6087 !(par instanceof MapReduceKeysToLongTask)) {
6088 t.quietlyComplete();
6089 break;
6090 }
6091 t = (MapReduceKeysToLongTask<K,V>)par;
6092 }
6093 else if (t.casPending(c, c - 1))
6094 break;
6095 }
6096 } catch (Throwable ex) {
6097 return tryCompleteComputation(ex);
6098 }
6099 return false;
6100 }
6101 public final Long getRawResult() { return result; }
6102 }
6103
6104 @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6105 extends BulkTask<K,V,Long> {
6106 final ObjectToLong<? super V> transformer;
6107 final LongByLongToLong reducer;
6108 final long basis;
6109 long result;
6110 MapReduceValuesToLongTask<K,V> rights, nextRight;
6111 MapReduceValuesToLongTask
6112 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6113 MapReduceValuesToLongTask<K,V> nextRight,
6114 ObjectToLong<? super V> transformer,
6115 long basis,
6116 LongByLongToLong reducer) {
6117 super(m, p, b); this.nextRight = nextRight;
6118 this.transformer = transformer;
6119 this.basis = basis; this.reducer = reducer;
6120 }
6121 @SuppressWarnings("unchecked") public final boolean exec() {
6122 final ObjectToLong<? super V> transformer =
6123 this.transformer;
6124 final LongByLongToLong reducer = this.reducer;
6125 if (transformer == null || reducer == null)
6126 return abortOnNullFunction();
6127 try {
6128 final long id = this.basis;
6129 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6130 do {} while (!casPending(c = pending, c+1));
6131 (rights = new MapReduceValuesToLongTask<K,V>
6132 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6133 }
6134 long r = id;
6135 Object v;
6136 while ((v = advance()) != null)
6137 r = reducer.apply(r, transformer.apply((V)v));
6138 result = r;
6139 for (MapReduceValuesToLongTask<K,V> t = this, s;;) {
6140 int c; BulkTask<K,V,?> par;
6141 if ((c = t.pending) == 0) {
6142 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6143 t.result = reducer.apply(t.result, s.result);
6144 }
6145 if ((par = t.parent) == null ||
6146 !(par instanceof MapReduceValuesToLongTask)) {
6147 t.quietlyComplete();
6148 break;
6149 }
6150 t = (MapReduceValuesToLongTask<K,V>)par;
6151 }
6152 else if (t.casPending(c, c - 1))
6153 break;
6154 }
6155 } catch (Throwable ex) {
6156 return tryCompleteComputation(ex);
6157 }
6158 return false;
6159 }
6160 public final Long getRawResult() { return result; }
6161 }
6162
6163 @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6164 extends BulkTask<K,V,Long> {
6165 final ObjectToLong<Map.Entry<K,V>> transformer;
6166 final LongByLongToLong reducer;
6167 final long basis;
6168 long result;
6169 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6170 MapReduceEntriesToLongTask
6171 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6172 MapReduceEntriesToLongTask<K,V> nextRight,
6173 ObjectToLong<Map.Entry<K,V>> transformer,
6174 long basis,
6175 LongByLongToLong reducer) {
6176 super(m, p, b); this.nextRight = nextRight;
6177 this.transformer = transformer;
6178 this.basis = basis; this.reducer = reducer;
6179 }
6180 @SuppressWarnings("unchecked") public final boolean exec() {
6181 final ObjectToLong<Map.Entry<K,V>> transformer =
6182 this.transformer;
6183 final LongByLongToLong reducer = this.reducer;
6184 if (transformer == null || reducer == null)
6185 return abortOnNullFunction();
6186 try {
6187 final long id = this.basis;
6188 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6189 do {} while (!casPending(c = pending, c+1));
6190 (rights = new MapReduceEntriesToLongTask<K,V>
6191 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6192 }
6193 long r = id;
6194 Object v;
6195 while ((v = advance()) != null)
6196 r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6197 result = r;
6198 for (MapReduceEntriesToLongTask<K,V> t = this, s;;) {
6199 int c; BulkTask<K,V,?> par;
6200 if ((c = t.pending) == 0) {
6201 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6202 t.result = reducer.apply(t.result, s.result);
6203 }
6204 if ((par = t.parent) == null ||
6205 !(par instanceof MapReduceEntriesToLongTask)) {
6206 t.quietlyComplete();
6207 break;
6208 }
6209 t = (MapReduceEntriesToLongTask<K,V>)par;
6210 }
6211 else if (t.casPending(c, c - 1))
6212 break;
6213 }
6214 } catch (Throwable ex) {
6215 return tryCompleteComputation(ex);
6216 }
6217 return false;
6218 }
6219 public final Long getRawResult() { return result; }
6220 }
6221
6222 @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6223 extends BulkTask<K,V,Long> {
6224 final ObjectByObjectToLong<? super K, ? super V> transformer;
6225 final LongByLongToLong reducer;
6226 final long basis;
6227 long result;
6228 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6229 MapReduceMappingsToLongTask
6230 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6231 MapReduceMappingsToLongTask<K,V> nextRight,
6232 ObjectByObjectToLong<? super K, ? super V> transformer,
6233 long basis,
6234 LongByLongToLong reducer) {
6235 super(m, p, b); this.nextRight = nextRight;
6236 this.transformer = transformer;
6237 this.basis = basis; this.reducer = reducer;
6238 }
6239 @SuppressWarnings("unchecked") public final boolean exec() {
6240 final ObjectByObjectToLong<? super K, ? super V> transformer =
6241 this.transformer;
6242 final LongByLongToLong reducer = this.reducer;
6243 if (transformer == null || reducer == null)
6244 return abortOnNullFunction();
6245 try {
6246 final long id = this.basis;
6247 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6248 do {} while (!casPending(c = pending, c+1));
6249 (rights = new MapReduceMappingsToLongTask<K,V>
6250 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6251 }
6252 long r = id;
6253 Object v;
6254 while ((v = advance()) != null)
6255 r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6256 result = r;
6257 for (MapReduceMappingsToLongTask<K,V> t = this, s;;) {
6258 int c; BulkTask<K,V,?> par;
6259 if ((c = t.pending) == 0) {
6260 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6261 t.result = reducer.apply(t.result, s.result);
6262 }
6263 if ((par = t.parent) == null ||
6264 !(par instanceof MapReduceMappingsToLongTask)) {
6265 t.quietlyComplete();
6266 break;
6267 }
6268 t = (MapReduceMappingsToLongTask<K,V>)par;
6269 }
6270 else if (t.casPending(c, c - 1))
6271 break;
6272 }
6273 } catch (Throwable ex) {
6274 return tryCompleteComputation(ex);
6275 }
6276 return false;
6277 }
6278 public final Long getRawResult() { return result; }
6279 }
6280
6281 @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6282 extends BulkTask<K,V,Integer> {
6283 final ObjectToInt<? super K> transformer;
6284 final IntByIntToInt reducer;
6285 final int basis;
6286 int result;
6287 MapReduceKeysToIntTask<K,V> rights, nextRight;
6288 MapReduceKeysToIntTask
6289 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6290 MapReduceKeysToIntTask<K,V> nextRight,
6291 ObjectToInt<? super K> transformer,
6292 int basis,
6293 IntByIntToInt reducer) {
6294 super(m, p, b); this.nextRight = nextRight;
6295 this.transformer = transformer;
6296 this.basis = basis; this.reducer = reducer;
6297 }
6298 @SuppressWarnings("unchecked") public final boolean exec() {
6299 final ObjectToInt<? super K> transformer =
6300 this.transformer;
6301 final IntByIntToInt reducer = this.reducer;
6302 if (transformer == null || reducer == null)
6303 return abortOnNullFunction();
6304 try {
6305 final int id = this.basis;
6306 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6307 do {} while (!casPending(c = pending, c+1));
6308 (rights = new MapReduceKeysToIntTask<K,V>
6309 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6310 }
6311 int r = id;
6312 while (advance() != null)
6313 r = reducer.apply(r, transformer.apply((K)nextKey));
6314 result = r;
6315 for (MapReduceKeysToIntTask<K,V> t = this, s;;) {
6316 int c; BulkTask<K,V,?> par;
6317 if ((c = t.pending) == 0) {
6318 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6319 t.result = reducer.apply(t.result, s.result);
6320 }
6321 if ((par = t.parent) == null ||
6322 !(par instanceof MapReduceKeysToIntTask)) {
6323 t.quietlyComplete();
6324 break;
6325 }
6326 t = (MapReduceKeysToIntTask<K,V>)par;
6327 }
6328 else if (t.casPending(c, c - 1))
6329 break;
6330 }
6331 } catch (Throwable ex) {
6332 return tryCompleteComputation(ex);
6333 }
6334 return false;
6335 }
6336 public final Integer getRawResult() { return result; }
6337 }
6338
6339 @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6340 extends BulkTask<K,V,Integer> {
6341 final ObjectToInt<? super V> transformer;
6342 final IntByIntToInt reducer;
6343 final int basis;
6344 int result;
6345 MapReduceValuesToIntTask<K,V> rights, nextRight;
6346 MapReduceValuesToIntTask
6347 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6348 MapReduceValuesToIntTask<K,V> nextRight,
6349 ObjectToInt<? super V> transformer,
6350 int basis,
6351 IntByIntToInt reducer) {
6352 super(m, p, b); this.nextRight = nextRight;
6353 this.transformer = transformer;
6354 this.basis = basis; this.reducer = reducer;
6355 }
6356 @SuppressWarnings("unchecked") public final boolean exec() {
6357 final ObjectToInt<? super V> transformer =
6358 this.transformer;
6359 final IntByIntToInt reducer = this.reducer;
6360 if (transformer == null || reducer == null)
6361 return abortOnNullFunction();
6362 try {
6363 final int id = this.basis;
6364 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6365 do {} while (!casPending(c = pending, c+1));
6366 (rights = new MapReduceValuesToIntTask<K,V>
6367 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6368 }
6369 int r = id;
6370 Object v;
6371 while ((v = advance()) != null)
6372 r = reducer.apply(r, transformer.apply((V)v));
6373 result = r;
6374 for (MapReduceValuesToIntTask<K,V> t = this, s;;) {
6375 int c; BulkTask<K,V,?> par;
6376 if ((c = t.pending) == 0) {
6377 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6378 t.result = reducer.apply(t.result, s.result);
6379 }
6380 if ((par = t.parent) == null ||
6381 !(par instanceof MapReduceValuesToIntTask)) {
6382 t.quietlyComplete();
6383 break;
6384 }
6385 t = (MapReduceValuesToIntTask<K,V>)par;
6386 }
6387 else if (t.casPending(c, c - 1))
6388 break;
6389 }
6390 } catch (Throwable ex) {
6391 return tryCompleteComputation(ex);
6392 }
6393 return false;
6394 }
6395 public final Integer getRawResult() { return result; }
6396 }
6397
6398 @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6399 extends BulkTask<K,V,Integer> {
6400 final ObjectToInt<Map.Entry<K,V>> transformer;
6401 final IntByIntToInt reducer;
6402 final int basis;
6403 int result;
6404 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6405 MapReduceEntriesToIntTask
6406 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6407 MapReduceEntriesToIntTask<K,V> nextRight,
6408 ObjectToInt<Map.Entry<K,V>> transformer,
6409 int basis,
6410 IntByIntToInt reducer) {
6411 super(m, p, b); this.nextRight = nextRight;
6412 this.transformer = transformer;
6413 this.basis = basis; this.reducer = reducer;
6414 }
6415 @SuppressWarnings("unchecked") public final boolean exec() {
6416 final ObjectToInt<Map.Entry<K,V>> transformer =
6417 this.transformer;
6418 final IntByIntToInt reducer = this.reducer;
6419 if (transformer == null || reducer == null)
6420 return abortOnNullFunction();
6421 try {
6422 final int id = this.basis;
6423 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6424 do {} while (!casPending(c = pending, c+1));
6425 (rights = new MapReduceEntriesToIntTask<K,V>
6426 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6427 }
6428 int r = id;
6429 Object v;
6430 while ((v = advance()) != null)
6431 r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6432 result = r;
6433 for (MapReduceEntriesToIntTask<K,V> t = this, s;;) {
6434 int c; BulkTask<K,V,?> par;
6435 if ((c = t.pending) == 0) {
6436 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6437 t.result = reducer.apply(t.result, s.result);
6438 }
6439 if ((par = t.parent) == null ||
6440 !(par instanceof MapReduceEntriesToIntTask)) {
6441 t.quietlyComplete();
6442 break;
6443 }
6444 t = (MapReduceEntriesToIntTask<K,V>)par;
6445 }
6446 else if (t.casPending(c, c - 1))
6447 break;
6448 }
6449 } catch (Throwable ex) {
6450 return tryCompleteComputation(ex);
6451 }
6452 return false;
6453 }
6454 public final Integer getRawResult() { return result; }
6455 }
6456
6457 @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6458 extends BulkTask<K,V,Integer> {
6459 final ObjectByObjectToInt<? super K, ? super V> transformer;
6460 final IntByIntToInt reducer;
6461 final int basis;
6462 int result;
6463 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6464 MapReduceMappingsToIntTask
6465 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6466 MapReduceMappingsToIntTask<K,V> rights,
6467 ObjectByObjectToInt<? super K, ? super V> transformer,
6468 int basis,
6469 IntByIntToInt reducer) {
6470 super(m, p, b); this.nextRight = nextRight;
6471 this.transformer = transformer;
6472 this.basis = basis; this.reducer = reducer;
6473 }
6474 @SuppressWarnings("unchecked") public final boolean exec() {
6475 final ObjectByObjectToInt<? super K, ? super V> transformer =
6476 this.transformer;
6477 final IntByIntToInt reducer = this.reducer;
6478 if (transformer == null || reducer == null)
6479 return abortOnNullFunction();
6480 try {
6481 final int id = this.basis;
6482 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6483 do {} while (!casPending(c = pending, c+1));
6484 (rights = new MapReduceMappingsToIntTask<K,V>
6485 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6486 }
6487 int r = id;
6488 Object v;
6489 while ((v = advance()) != null)
6490 r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6491 result = r;
6492 for (MapReduceMappingsToIntTask<K,V> t = this, s;;) {
6493 int c; BulkTask<K,V,?> par;
6494 if ((c = t.pending) == 0) {
6495 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6496 t.result = reducer.apply(t.result, s.result);
6497 }
6498 if ((par = t.parent) == null ||
6499 !(par instanceof MapReduceMappingsToIntTask)) {
6500 t.quietlyComplete();
6501 break;
6502 }
6503 t = (MapReduceMappingsToIntTask<K,V>)par;
6504 }
6505 else if (t.casPending(c, c - 1))
6506 break;
6507 }
6508 } catch (Throwable ex) {
6509 return tryCompleteComputation(ex);
6510 }
6511 return false;
6512 }
6513 public final Integer getRawResult() { return result; }
6514 }
6515
6516
6517 // Unsafe mechanics
6518 private static final sun.misc.Unsafe UNSAFE;
6519 private static final long counterOffset;
6520 private static final long sizeCtlOffset;
6521 private static final long ABASE;
6522 private static final int ASHIFT;
6523
6524 static {
6525 int ss;
6526 try {
6527 UNSAFE = getUnsafe();
6528 Class<?> k = ConcurrentHashMapV8.class;
6529 counterOffset = UNSAFE.objectFieldOffset
6530 (k.getDeclaredField("counter"));
6531 sizeCtlOffset = UNSAFE.objectFieldOffset
6532 (k.getDeclaredField("sizeCtl"));
6533 Class<?> sc = Node[].class;
6534 ABASE = UNSAFE.arrayBaseOffset(sc);
6535 ss = UNSAFE.arrayIndexScale(sc);
6536 } catch (Exception e) {
6537 throw new Error(e);
6538 }
6539 if ((ss & (ss-1)) != 0)
6540 throw new Error("data type scale not a power of two");
6541 ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6542 }
6543
6544 /**
6545 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
6546 * Replace with a simple call to Unsafe.getUnsafe when integrating
6547 * into a jdk.
6548 *
6549 * @return a sun.misc.Unsafe
6550 */
6551 private static sun.misc.Unsafe getUnsafe() {
6552 try {
6553 return sun.misc.Unsafe.getUnsafe();
6554 } catch (SecurityException se) {
6555 try {
6556 return java.security.AccessController.doPrivileged
6557 (new java.security
6558 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
6559 public sun.misc.Unsafe run() throws Exception {
6560 java.lang.reflect.Field f = sun.misc
6561 .Unsafe.class.getDeclaredField("theUnsafe");
6562 f.setAccessible(true);
6563 return (sun.misc.Unsafe) f.get(null);
6564 }});
6565 } catch (java.security.PrivilegedActionException e) {
6566 throw new RuntimeException("Could not initialize intrinsics",
6567 e.getCause());
6568 }
6569 }
6570 }
6571 }