ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
Revision: 1.69
Committed: Sun Oct 21 06:14:11 2012 UTC (11 years, 6 months ago) by jsr166
Branch: MAIN
Changes since 1.68: +0 -3 lines
Log Message:
delete trailing empty lines of javadoc

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package jsr166e;
8 import jsr166e.LongAdder;
9 import jsr166e.ForkJoinPool;
10 import jsr166e.ForkJoinTask;
11
12 import java.util.Comparator;
13 import java.util.Arrays;
14 import java.util.Map;
15 import java.util.Set;
16 import java.util.Collection;
17 import java.util.AbstractMap;
18 import java.util.AbstractSet;
19 import java.util.AbstractCollection;
20 import java.util.Hashtable;
21 import java.util.HashMap;
22 import java.util.Iterator;
23 import java.util.Enumeration;
24 import java.util.ConcurrentModificationException;
25 import java.util.NoSuchElementException;
26 import java.util.concurrent.ConcurrentMap;
27 import java.util.concurrent.ThreadLocalRandom;
28 import java.util.concurrent.locks.LockSupport;
29 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
30 import java.util.concurrent.atomic.AtomicReference;
31
32 import java.io.Serializable;
33
34 /**
35 * A hash table supporting full concurrency of retrievals and
36 * high expected concurrency for updates. This class obeys the
37 * same functional specification as {@link java.util.Hashtable}, and
38 * includes versions of methods corresponding to each method of
39 * {@code Hashtable}. However, even though all operations are
40 * thread-safe, retrieval operations do <em>not</em> entail locking,
41 * and there is <em>not</em> any support for locking the entire table
42 * in a way that prevents all access. This class is fully
43 * interoperable with {@code Hashtable} in programs that rely on its
44 * thread safety but not on its synchronization details.
45 *
46 * <p> Retrieval operations (including {@code get}) generally do not
47 * block, so may overlap with update operations (including {@code put}
48 * and {@code remove}). Retrievals reflect the results of the most
49 * recently <em>completed</em> update operations holding upon their
50 * onset. (More formally, an update operation for a given key bears a
51 * <em>happens-before</em> relation with any (non-null) retrieval for
52 * that key reporting the updated value.) For aggregate operations
53 * such as {@code putAll} and {@code clear}, concurrent retrievals may
54 * reflect insertion or removal of only some entries. Similarly,
55 * Iterators and Enumerations return elements reflecting the state of
56 * the hash table at some point at or since the creation of the
57 * iterator/enumeration. They do <em>not</em> throw {@link
58 * ConcurrentModificationException}. However, iterators are designed
59 * to be used by only one thread at a time. Bear in mind that the
60 * results of aggregate status methods including {@code size}, {@code
61 * isEmpty}, and {@code containsValue} are typically useful only when
62 * a map is not undergoing concurrent updates in other threads.
63 * Otherwise the results of these methods reflect transient states
64 * that may be adequate for monitoring or estimation purposes, but not
65 * for program control.
66 *
67 * <p> The table is dynamically expanded when there are too many
68 * collisions (i.e., keys that have distinct hash codes but fall into
69 * the same slot modulo the table size), with the expected average
70 * effect of maintaining roughly two bins per mapping (corresponding
71 * to a 0.75 load factor threshold for resizing). There may be much
72 * variance around this average as mappings are added and removed, but
73 * overall, this maintains a commonly accepted time/space tradeoff for
74 * hash tables. However, resizing this or any other kind of hash
75 * table may be a relatively slow operation. When possible, it is a
76 * good idea to provide a size estimate as an optional {@code
77 * initialCapacity} constructor argument. An additional optional
78 * {@code loadFactor} constructor argument provides a further means of
79 * customizing initial table capacity by specifying the table density
80 * to be used in calculating the amount of space to allocate for the
81 * given number of elements. Also, for compatibility with previous
82 * versions of this class, constructors may optionally specify an
83 * expected {@code concurrencyLevel} as an additional hint for
84 * internal sizing. Note that using many keys with exactly the same
85 * {@code hashCode()} is a sure way to slow down performance of any
86 * hash table.
87 *
88 * <p>This class and its views and iterators implement all of the
89 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
90 * interfaces.
91 *
92 * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
93 * does <em>not</em> allow {@code null} to be used as a key or value.
94 *
95 * <p>This class is a member of the
96 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
97 * Java Collections Framework</a>.
98 *
99 * <p><em>jsr166e note: This class is a candidate replacement for
100 * java.util.concurrent.ConcurrentHashMap. During transition, this
101 * class declares and uses nested functional interfaces with different
102 * names but the same forms as those expected for JDK8.<em>
103 *
104 * @since 1.5
105 * @author Doug Lea
106 * @param <K> the type of keys maintained by this map
107 * @param <V> the type of mapped values
108 */
109 public class ConcurrentHashMapV8<K, V>
110 implements ConcurrentMap<K, V>, Serializable {
111 private static final long serialVersionUID = 7249069246763182397L;
112
113 /**
114 * A partitionable iterator. A Spliterator can be traversed
115 * directly, but can also be partitioned (before traversal) by
116 * creating another Spliterator that covers a non-overlapping
117 * portion of the elements, and so may be amenable to parallel
118 * execution.
119 *
120 * <p> This interface exports a subset of expected JDK8
121 * functionality.
122 *
123 * <p>Sample usage: Here is one (of the several) ways to compute
124 * the sum of the values held in a map using the ForkJoin
125 * framework. As illustrated here, Spliterators are well suited to
126 * designs in which a task repeatedly splits off half its work
127 * into forked subtasks until small enough to process directly,
128 * and then joins these subtasks. Variants of this style can also
129 * be used in completion-based designs.
130 *
131 * <pre>
132 * {@code ConcurrentHashMapV8<String, Long> m = ...
133 * // split as if have 8 * parallelism, for load balance
134 * int n = m.size();
135 * int p = aForkJoinPool.getParallelism() * 8;
136 * int split = (n < p)? n : p;
137 * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
138 * // ...
139 * static class SumValues extends RecursiveTask<Long> {
140 * final Spliterator<Long> s;
141 * final int split; // split while > 1
142 * final SumValues nextJoin; // records forked subtasks to join
143 * SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
144 * this.s = s; this.depth = depth; this.nextJoin = nextJoin;
145 * }
146 * public Long compute() {
147 * long sum = 0;
148 * SumValues subtasks = null; // fork subtasks
149 * for (int s = split >>> 1; s > 0; s >>>= 1)
150 * (subtasks = new SumValues(s.split(), s, subtasks)).fork();
151 * while (s.hasNext()) // directly process remaining elements
152 * sum += s.next();
153 * for (SumValues t = subtasks; t != null; t = t.nextJoin)
154 * sum += t.join(); // collect subtask results
155 * return sum;
156 * }
157 * }
158 * }</pre>
159 */
160 public static interface Spliterator<T> extends Iterator<T> {
161 /**
162 * Returns a Spliterator covering approximately half of the
163 * elements, guaranteed not to overlap with those subsequently
164 * returned by this Spliterator. After invoking this method,
165 * the current Spliterator will <em>not</em> produce any of
166 * the elements of the returned Spliterator, but the two
167 * Spliterators together will produce all of the elements that
168 * would have been produced by this Spliterator had this
169 * method not been called. The exact number of elements
170 * produced by the returned Spliterator is not guaranteed, and
171 * may be zero (i.e., with {@code hasNext()} reporting {@code
172 * false}) if this Spliterator cannot be further split.
173 *
174 * @return a Spliterator covering approximately half of the
175 * elements
176 * @throws IllegalStateException if this Spliterator has
177 * already commenced traversing elements
178 */
179 Spliterator<T> split();
180 }
181
182 /*
183 * Overview:
184 *
185 * The primary design goal of this hash table is to maintain
186 * concurrent readability (typically method get(), but also
187 * iterators and related methods) while minimizing update
188 * contention. Secondary goals are to keep space consumption about
189 * the same or better than java.util.HashMap, and to support high
190 * initial insertion rates on an empty table by many threads.
191 *
192 * Each key-value mapping is held in a Node. Because Node fields
193 * can contain special values, they are defined using plain Object
194 * types. Similarly in turn, all internal methods that use them
195 * work off Object types. And similarly, so do the internal
196 * methods of auxiliary iterator and view classes. All public
197 * generic typed methods relay in/out of these internal methods,
198 * supplying null-checks and casts as needed. This also allows
199 * many of the public methods to be factored into a smaller number
200 * of internal methods (although sadly not so for the five
201 * variants of put-related operations). The validation-based
202 * approach explained below leads to a lot of code sprawl because
203 * retry-control precludes factoring into smaller methods.
204 *
205 * The table is lazily initialized to a power-of-two size upon the
206 * first insertion. Each bin in the table normally contains a
207 * list of Nodes (most often, the list has only zero or one Node).
208 * Table accesses require volatile/atomic reads, writes, and
209 * CASes. Because there is no other way to arrange this without
210 * adding further indirections, we use intrinsics
211 * (sun.misc.Unsafe) operations. The lists of nodes within bins
212 * are always accurately traversable under volatile reads, so long
213 * as lookups check hash code and non-nullness of value before
214 * checking key equality.
215 *
216 * We use the top two bits of Node hash fields for control
217 * purposes -- they are available anyway because of addressing
218 * constraints. As explained further below, these top bits are
219 * used as follows:
220 * 00 - Normal
221 * 01 - Locked
222 * 11 - Locked and may have a thread waiting for lock
223 * 10 - Node is a forwarding node
224 *
225 * The lower 30 bits of each Node's hash field contain a
226 * transformation of the key's hash code, except for forwarding
227 * nodes, for which the lower bits are zero (and so always have
228 * hash field == MOVED).
229 *
230 * Insertion (via put or its variants) of the first node in an
231 * empty bin is performed by just CASing it to the bin. This is
232 * by far the most common case for put operations under most
233 * key/hash distributions. Other update operations (insert,
234 * delete, and replace) require locks. We do not want to waste
235 * the space required to associate a distinct lock object with
236 * each bin, so instead use the first node of a bin list itself as
237 * a lock. Blocking support for these locks relies on the builtin
238 * "synchronized" monitors. However, we also need a tryLock
239 * construction, so we overlay these by using bits of the Node
240 * hash field for lock control (see above), and so normally use
241 * builtin monitors only for blocking and signalling using
242 * wait/notifyAll constructions. See Node.tryAwaitLock.
243 *
244 * Using the first node of a list as a lock does not by itself
245 * suffice though: When a node is locked, any update must first
246 * validate that it is still the first node after locking it, and
247 * retry if not. Because new nodes are always appended to lists,
248 * once a node is first in a bin, it remains first until deleted
249 * or the bin becomes invalidated (upon resizing). However,
250 * operations that only conditionally update may inspect nodes
251 * until the point of update. This is a converse of sorts to the
252 * lazy locking technique described by Herlihy & Shavit.
253 *
254 * The main disadvantage of per-bin locks is that other update
255 * operations on other nodes in a bin list protected by the same
256 * lock can stall, for example when user equals() or mapping
257 * functions take a long time. However, statistically, under
258 * random hash codes, this is not a common problem. Ideally, the
259 * frequency of nodes in bins follows a Poisson distribution
260 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
261 * parameter of about 0.5 on average, given the resizing threshold
262 * of 0.75, although with a large variance because of resizing
263 * granularity. Ignoring variance, the expected occurrences of
264 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
265 * first values are:
266 *
267 * 0: 0.60653066
268 * 1: 0.30326533
269 * 2: 0.07581633
270 * 3: 0.01263606
271 * 4: 0.00157952
272 * 5: 0.00015795
273 * 6: 0.00001316
274 * 7: 0.00000094
275 * 8: 0.00000006
276 * more: less than 1 in ten million
277 *
278 * Lock contention probability for two threads accessing distinct
279 * elements is roughly 1 / (8 * #elements) under random hashes.
280 *
281 * Actual hash code distributions encountered in practice
282 * sometimes deviate significantly from uniform randomness. This
283 * includes the case when N > (1<<30), so some keys MUST collide.
284 * Similarly for dumb or hostile usages in which multiple keys are
285 * designed to have identical hash codes. Also, although we guard
286 * against the worst effects of this (see method spread), sets of
287 * hashes may differ only in bits that do not impact their bin
288 * index for a given power-of-two mask. So we use a secondary
289 * strategy that applies when the number of nodes in a bin exceeds
290 * a threshold, and at least one of the keys implements
291 * Comparable. These TreeBins use a balanced tree to hold nodes
292 * (a specialized form of red-black trees), bounding search time
293 * to O(log N). Each search step in a TreeBin is around twice as
294 * slow as in a regular list, but given that N cannot exceed
295 * (1<<64) (before running out of addresses) this bounds search
296 * steps, lock hold times, etc, to reasonable constants (roughly
297 * 100 nodes inspected per operation worst case) so long as keys
298 * are Comparable (which is very common -- String, Long, etc).
299 * TreeBin nodes (TreeNodes) also maintain the same "next"
300 * traversal pointers as regular nodes, so can be traversed in
301 * iterators in the same way.
302 *
303 * The table is resized when occupancy exceeds a percentage
304 * threshold (nominally, 0.75, but see below). Only a single
305 * thread performs the resize (using field "sizeCtl", to arrange
306 * exclusion), but the table otherwise remains usable for reads
307 * and updates. Resizing proceeds by transferring bins, one by
308 * one, from the table to the next table. Because we are using
309 * power-of-two expansion, the elements from each bin must either
310 * stay at same index, or move with a power of two offset. We
311 * eliminate unnecessary node creation by catching cases where old
312 * nodes can be reused because their next fields won't change. On
313 * average, only about one-sixth of them need cloning when a table
314 * doubles. The nodes they replace will be garbage collectable as
315 * soon as they are no longer referenced by any reader thread that
316 * may be in the midst of concurrently traversing table. Upon
317 * transfer, the old table bin contains only a special forwarding
318 * node (with hash field "MOVED") that contains the next table as
319 * its key. On encountering a forwarding node, access and update
320 * operations restart, using the new table.
321 *
322 * Each bin transfer requires its bin lock. However, unlike other
323 * cases, a transfer can skip a bin if it fails to acquire its
324 * lock, and revisit it later (unless it is a TreeBin). Method
325 * rebuild maintains a buffer of TRANSFER_BUFFER_SIZE bins that
326 * have been skipped because of failure to acquire a lock, and
327 * blocks only if none are available (i.e., only very rarely).
328 * The transfer operation must also ensure that all accessible
329 * bins in both the old and new table are usable by any traversal.
330 * When there are no lock acquisition failures, this is arranged
331 * simply by proceeding from the last bin (table.length - 1) up
332 * towards the first. Upon seeing a forwarding node, traversals
333 * (see class Iter) arrange to move to the new table
334 * without revisiting nodes. However, when any node is skipped
335 * during a transfer, all earlier table bins may have become
336 * visible, so are initialized with a reverse-forwarding node back
337 * to the old table until the new ones are established. (This
338 * sometimes requires transiently locking a forwarding node, which
339 * is possible under the above encoding.) These more expensive
340 * mechanics trigger only when necessary.
341 *
342 * The traversal scheme also applies to partial traversals of
343 * ranges of bins (via an alternate Traverser constructor)
344 * to support partitioned aggregate operations. Also, read-only
345 * operations give up if ever forwarded to a null table, which
346 * provides support for shutdown-style clearing, which is also not
347 * currently implemented.
348 *
349 * Lazy table initialization minimizes footprint until first use,
350 * and also avoids resizings when the first operation is from a
351 * putAll, constructor with map argument, or deserialization.
352 * These cases attempt to override the initial capacity settings,
353 * but harmlessly fail to take effect in cases of races.
354 *
355 * The element count is maintained using a LongAdder, which avoids
356 * contention on updates but can encounter cache thrashing if read
357 * too frequently during concurrent access. To avoid reading so
358 * often, resizing is attempted either when a bin lock is
359 * contended, or upon adding to a bin already holding two or more
360 * nodes (checked before adding in the xIfAbsent methods, after
361 * adding in others). Under uniform hash distributions, the
362 * probability of this occurring at threshold is around 13%,
363 * meaning that only about 1 in 8 puts check threshold (and after
364 * resizing, many fewer do so). But this approximation has high
365 * variance for small table sizes, so we check on any collision
366 * for sizes <= 64. The bulk putAll operation further reduces
367 * contention by only committing count updates upon these size
368 * checks.
369 *
370 * Maintaining API and serialization compatibility with previous
371 * versions of this class introduces several oddities. Mainly: We
372 * leave untouched but unused constructor arguments refering to
373 * concurrencyLevel. We accept a loadFactor constructor argument,
374 * but apply it only to initial table capacity (which is the only
375 * time that we can guarantee to honor it.) We also declare an
376 * unused "Segment" class that is instantiated in minimal form
377 * only when serializing.
378 */
379
380 /* ---------------- Constants -------------- */
381
382 /**
383 * The largest possible table capacity. This value must be
384 * exactly 1<<30 to stay within Java array allocation and indexing
385 * bounds for power of two table sizes, and is further required
386 * because the top two bits of 32bit hash fields are used for
387 * control purposes.
388 */
389 private static final int MAXIMUM_CAPACITY = 1 << 30;
390
391 /**
392 * The default initial table capacity. Must be a power of 2
393 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
394 */
395 private static final int DEFAULT_CAPACITY = 16;
396
397 /**
398 * The largest possible (non-power of two) array size.
399 * Needed by toArray and related methods.
400 */
401 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
402
403 /**
404 * The default concurrency level for this table. Unused but
405 * defined for compatibility with previous versions of this class.
406 */
407 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
408
409 /**
410 * The load factor for this table. Overrides of this value in
411 * constructors affect only the initial table capacity. The
412 * actual floating point value isn't normally used -- it is
413 * simpler to use expressions such as {@code n - (n >>> 2)} for
414 * the associated resizing threshold.
415 */
416 private static final float LOAD_FACTOR = 0.75f;
417
418 /**
419 * The buffer size for skipped bins during transfers. The
420 * value is arbitrary but should be large enough to avoid
421 * most locking stalls during resizes.
422 */
423 private static final int TRANSFER_BUFFER_SIZE = 32;
424
425 /**
426 * The bin count threshold for using a tree rather than list for a
427 * bin. The value reflects the approximate break-even point for
428 * using tree-based operations.
429 */
430 private static final int TREE_THRESHOLD = 8;
431
432 /*
433 * Encodings for special uses of Node hash fields. See above for
434 * explanation.
435 */
436 static final int MOVED = 0x80000000; // hash field for forwarding nodes
437 static final int LOCKED = 0x40000000; // set/tested only as a bit
438 static final int WAITING = 0xc0000000; // both bits set/tested together
439 static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash
440
441 /* ---------------- Fields -------------- */
442
443 /**
444 * The array of bins. Lazily initialized upon first insertion.
445 * Size is always a power of two. Accessed directly by iterators.
446 */
447 transient volatile Node[] table;
448
449 /**
450 * The counter maintaining number of elements.
451 */
452 private transient final LongAdder counter;
453
454 /**
455 * Table initialization and resizing control. When negative, the
456 * table is being initialized or resized. Otherwise, when table is
457 * null, holds the initial table size to use upon creation, or 0
458 * for default. After initialization, holds the next element count
459 * value upon which to resize the table.
460 */
461 private transient volatile int sizeCtl;
462
463 // views
464 private transient KeySet<K,V> keySet;
465 private transient Values<K,V> values;
466 private transient EntrySet<K,V> entrySet;
467
468 /** For serialization compatibility. Null unless serialized; see below */
469 private Segment<K,V>[] segments;
470
471 /* ---------------- Table element access -------------- */
472
473 /*
474 * Volatile access methods are used for table elements as well as
475 * elements of in-progress next table while resizing. Uses are
476 * null checked by callers, and implicitly bounds-checked, relying
477 * on the invariants that tab arrays have non-zero size, and all
478 * indices are masked with (tab.length - 1) which is never
479 * negative and always less than length. Note that, to be correct
480 * wrt arbitrary concurrency errors by users, bounds checks must
481 * operate on local variables, which accounts for some odd-looking
482 * inline assignments below.
483 */
484
485 static final Node tabAt(Node[] tab, int i) { // used by Iter
486 return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
487 }
488
489 private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
490 return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
491 }
492
493 private static final void setTabAt(Node[] tab, int i, Node v) {
494 UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
495 }
496
497 /* ---------------- Nodes -------------- */
498
499 /**
500 * Key-value entry. Note that this is never exported out as a
501 * user-visible Map.Entry (see MapEntry below). Nodes with a hash
502 * field of MOVED are special, and do not contain user keys or
503 * values. Otherwise, keys are never null, and null val fields
504 * indicate that a node is in the process of being deleted or
505 * created. For purposes of read-only access, a key may be read
506 * before a val, but can only be used after checking val to be
507 * non-null.
508 */
509 static class Node {
510 volatile int hash;
511 final Object key;
512 volatile Object val;
513 volatile Node next;
514
515 Node(int hash, Object key, Object val, Node next) {
516 this.hash = hash;
517 this.key = key;
518 this.val = val;
519 this.next = next;
520 }
521
522 /** CompareAndSet the hash field */
523 final boolean casHash(int cmp, int val) {
524 return UNSAFE.compareAndSwapInt(this, hashOffset, cmp, val);
525 }
526
527 /** The number of spins before blocking for a lock */
528 static final int MAX_SPINS =
529 Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
530
531 /**
532 * Spins a while if LOCKED bit set and this node is the first
533 * of its bin, and then sets WAITING bits on hash field and
534 * blocks (once) if they are still set. It is OK for this
535 * method to return even if lock is not available upon exit,
536 * which enables these simple single-wait mechanics.
537 *
538 * The corresponding signalling operation is performed within
539 * callers: Upon detecting that WAITING has been set when
540 * unlocking lock (via a failed CAS from non-waiting LOCKED
541 * state), unlockers acquire the sync lock and perform a
542 * notifyAll.
543 *
544 * The initial sanity check on tab and bounds is not currently
545 * necessary in the only usages of this method, but enables
546 * use in other future contexts.
547 */
548 final void tryAwaitLock(Node[] tab, int i) {
549 if (tab != null && i >= 0 && i < tab.length) { // sanity check
550 int r = ThreadLocalRandom.current().nextInt(); // randomize spins
551 int spins = MAX_SPINS, h;
552 while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) {
553 if (spins >= 0) {
554 r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
555 if (r >= 0 && --spins == 0)
556 Thread.yield(); // yield before block
557 }
558 else if (casHash(h, h | WAITING)) {
559 synchronized (this) {
560 if (tabAt(tab, i) == this &&
561 (hash & WAITING) == WAITING) {
562 try {
563 wait();
564 } catch (InterruptedException ie) {
565 Thread.currentThread().interrupt();
566 }
567 }
568 else
569 notifyAll(); // possibly won race vs signaller
570 }
571 break;
572 }
573 }
574 }
575 }
576
577 // Unsafe mechanics for casHash
578 private static final sun.misc.Unsafe UNSAFE;
579 private static final long hashOffset;
580
581 static {
582 try {
583 UNSAFE = getUnsafe();
584 Class<?> k = Node.class;
585 hashOffset = UNSAFE.objectFieldOffset
586 (k.getDeclaredField("hash"));
587 } catch (Exception e) {
588 throw new Error(e);
589 }
590 }
591 }
592
593 /* ---------------- TreeBins -------------- */
594
595 /**
596 * Nodes for use in TreeBins
597 */
598 static final class TreeNode extends Node {
599 TreeNode parent; // red-black tree links
600 TreeNode left;
601 TreeNode right;
602 TreeNode prev; // needed to unlink next upon deletion
603 boolean red;
604
605 TreeNode(int hash, Object key, Object val, Node next, TreeNode parent) {
606 super(hash, key, val, next);
607 this.parent = parent;
608 }
609 }
610
611 /**
612 * A specialized form of red-black tree for use in bins
613 * whose size exceeds a threshold.
614 *
615 * TreeBins use a special form of comparison for search and
616 * related operations (which is the main reason we cannot use
617 * existing collections such as TreeMaps). TreeBins contain
618 * Comparable elements, but may contain others, as well as
619 * elements that are Comparable but not necessarily Comparable<T>
620 * for the same T, so we cannot invoke compareTo among them. To
621 * handle this, the tree is ordered primarily by hash value, then
622 * by getClass().getName() order, and then by Comparator order
623 * among elements of the same class. On lookup at a node, if
624 * elements are not comparable or compare as 0, both left and
625 * right children may need to be searched in the case of tied hash
626 * values. (This corresponds to the full list search that would be
627 * necessary if all elements were non-Comparable and had tied
628 * hashes.) The red-black balancing code is updated from
629 * pre-jdk-collections
630 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
631 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
632 * Algorithms" (CLR).
633 *
634 * TreeBins also maintain a separate locking discipline than
635 * regular bins. Because they are forwarded via special MOVED
636 * nodes at bin heads (which can never change once established),
637 * we cannot use those nodes as locks. Instead, TreeBin
638 * extends AbstractQueuedSynchronizer to support a simple form of
639 * read-write lock. For update operations and table validation,
640 * the exclusive form of lock behaves in the same way as bin-head
641 * locks. However, lookups use shared read-lock mechanics to allow
642 * multiple readers in the absence of writers. Additionally,
643 * these lookups do not ever block: While the lock is not
644 * available, they proceed along the slow traversal path (via
645 * next-pointers) until the lock becomes available or the list is
646 * exhausted, whichever comes first. (These cases are not fast,
647 * but maximize aggregate expected throughput.) The AQS mechanics
648 * for doing this are straightforward. The lock state is held as
649 * AQS getState(). Read counts are negative; the write count (1)
650 * is positive. There are no signalling preferences among readers
651 * and writers. Since we don't need to export full Lock API, we
652 * just override the minimal AQS methods and use them directly.
653 */
654 static final class TreeBin extends AbstractQueuedSynchronizer {
655 private static final long serialVersionUID = 2249069246763182397L;
656 transient TreeNode root; // root of tree
657 transient TreeNode first; // head of next-pointer list
658
659 /* AQS overrides */
660 public final boolean isHeldExclusively() { return getState() > 0; }
661 public final boolean tryAcquire(int ignore) {
662 if (compareAndSetState(0, 1)) {
663 setExclusiveOwnerThread(Thread.currentThread());
664 return true;
665 }
666 return false;
667 }
668 public final boolean tryRelease(int ignore) {
669 setExclusiveOwnerThread(null);
670 setState(0);
671 return true;
672 }
673 public final int tryAcquireShared(int ignore) {
674 for (int c;;) {
675 if ((c = getState()) > 0)
676 return -1;
677 if (compareAndSetState(c, c -1))
678 return 1;
679 }
680 }
681 public final boolean tryReleaseShared(int ignore) {
682 int c;
683 do {} while (!compareAndSetState(c = getState(), c + 1));
684 return c == -1;
685 }
686
687 /** From CLR */
688 private void rotateLeft(TreeNode p) {
689 if (p != null) {
690 TreeNode r = p.right, pp, rl;
691 if ((rl = p.right = r.left) != null)
692 rl.parent = p;
693 if ((pp = r.parent = p.parent) == null)
694 root = r;
695 else if (pp.left == p)
696 pp.left = r;
697 else
698 pp.right = r;
699 r.left = p;
700 p.parent = r;
701 }
702 }
703
704 /** From CLR */
705 private void rotateRight(TreeNode p) {
706 if (p != null) {
707 TreeNode l = p.left, pp, lr;
708 if ((lr = p.left = l.right) != null)
709 lr.parent = p;
710 if ((pp = l.parent = p.parent) == null)
711 root = l;
712 else if (pp.right == p)
713 pp.right = l;
714 else
715 pp.left = l;
716 l.right = p;
717 p.parent = l;
718 }
719 }
720
721 /**
722 * Returns the TreeNode (or null if not found) for the given key
723 * starting at given root.
724 */
725 @SuppressWarnings("unchecked") final TreeNode getTreeNode
726 (int h, Object k, TreeNode p) {
727 Class<?> c = k.getClass();
728 while (p != null) {
729 int dir, ph; Object pk; Class<?> pc;
730 if ((ph = p.hash) == h) {
731 if ((pk = p.key) == k || k.equals(pk))
732 return p;
733 if (c != (pc = pk.getClass()) ||
734 !(k instanceof Comparable) ||
735 (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
736 dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
737 TreeNode r = null, s = null, pl, pr;
738 if (dir >= 0) {
739 if ((pl = p.left) != null && h <= pl.hash)
740 s = pl;
741 }
742 else if ((pr = p.right) != null && h >= pr.hash)
743 s = pr;
744 if (s != null && (r = getTreeNode(h, k, s)) != null)
745 return r;
746 }
747 }
748 else
749 dir = (h < ph) ? -1 : 1;
750 p = (dir > 0) ? p.right : p.left;
751 }
752 return null;
753 }
754
755 /**
756 * Wrapper for getTreeNode used by CHM.get. Tries to obtain
757 * read-lock to call getTreeNode, but during failure to get
758 * lock, searches along next links.
759 */
760 final Object getValue(int h, Object k) {
761 Node r = null;
762 int c = getState(); // Must read lock state first
763 for (Node e = first; e != null; e = e.next) {
764 if (c <= 0 && compareAndSetState(c, c - 1)) {
765 try {
766 r = getTreeNode(h, k, root);
767 } finally {
768 releaseShared(0);
769 }
770 break;
771 }
772 else if ((e.hash & HASH_BITS) == h && k.equals(e.key)) {
773 r = e;
774 break;
775 }
776 else
777 c = getState();
778 }
779 return r == null ? null : r.val;
780 }
781
782 /**
783 * Finds or adds a node.
784 * @return null if added
785 */
786 @SuppressWarnings("unchecked") final TreeNode putTreeNode
787 (int h, Object k, Object v) {
788 Class<?> c = k.getClass();
789 TreeNode pp = root, p = null;
790 int dir = 0;
791 while (pp != null) { // find existing node or leaf to insert at
792 int ph; Object pk; Class<?> pc;
793 p = pp;
794 if ((ph = p.hash) == h) {
795 if ((pk = p.key) == k || k.equals(pk))
796 return p;
797 if (c != (pc = pk.getClass()) ||
798 !(k instanceof Comparable) ||
799 (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
800 dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
801 TreeNode r = null, s = null, pl, pr;
802 if (dir >= 0) {
803 if ((pl = p.left) != null && h <= pl.hash)
804 s = pl;
805 }
806 else if ((pr = p.right) != null && h >= pr.hash)
807 s = pr;
808 if (s != null && (r = getTreeNode(h, k, s)) != null)
809 return r;
810 }
811 }
812 else
813 dir = (h < ph) ? -1 : 1;
814 pp = (dir > 0) ? p.right : p.left;
815 }
816
817 TreeNode f = first;
818 TreeNode x = first = new TreeNode(h, k, v, f, p);
819 if (p == null)
820 root = x;
821 else { // attach and rebalance; adapted from CLR
822 TreeNode xp, xpp;
823 if (f != null)
824 f.prev = x;
825 if (dir <= 0)
826 p.left = x;
827 else
828 p.right = x;
829 x.red = true;
830 while (x != null && (xp = x.parent) != null && xp.red &&
831 (xpp = xp.parent) != null) {
832 TreeNode xppl = xpp.left;
833 if (xp == xppl) {
834 TreeNode y = xpp.right;
835 if (y != null && y.red) {
836 y.red = false;
837 xp.red = false;
838 xpp.red = true;
839 x = xpp;
840 }
841 else {
842 if (x == xp.right) {
843 rotateLeft(x = xp);
844 xpp = (xp = x.parent) == null ? null : xp.parent;
845 }
846 if (xp != null) {
847 xp.red = false;
848 if (xpp != null) {
849 xpp.red = true;
850 rotateRight(xpp);
851 }
852 }
853 }
854 }
855 else {
856 TreeNode y = xppl;
857 if (y != null && y.red) {
858 y.red = false;
859 xp.red = false;
860 xpp.red = true;
861 x = xpp;
862 }
863 else {
864 if (x == xp.left) {
865 rotateRight(x = xp);
866 xpp = (xp = x.parent) == null ? null : xp.parent;
867 }
868 if (xp != null) {
869 xp.red = false;
870 if (xpp != null) {
871 xpp.red = true;
872 rotateLeft(xpp);
873 }
874 }
875 }
876 }
877 }
878 TreeNode r = root;
879 if (r != null && r.red)
880 r.red = false;
881 }
882 return null;
883 }
884
885 /**
886 * Removes the given node, that must be present before this
887 * call. This is messier than typical red-black deletion code
888 * because we cannot swap the contents of an interior node
889 * with a leaf successor that is pinned by "next" pointers
890 * that are accessible independently of lock. So instead we
891 * swap the tree linkages.
892 */
893 final void deleteTreeNode(TreeNode p) {
894 TreeNode next = (TreeNode)p.next; // unlink traversal pointers
895 TreeNode pred = p.prev;
896 if (pred == null)
897 first = next;
898 else
899 pred.next = next;
900 if (next != null)
901 next.prev = pred;
902 TreeNode replacement;
903 TreeNode pl = p.left;
904 TreeNode pr = p.right;
905 if (pl != null && pr != null) {
906 TreeNode s = pr, sl;
907 while ((sl = s.left) != null) // find successor
908 s = sl;
909 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
910 TreeNode sr = s.right;
911 TreeNode pp = p.parent;
912 if (s == pr) { // p was s's direct parent
913 p.parent = s;
914 s.right = p;
915 }
916 else {
917 TreeNode sp = s.parent;
918 if ((p.parent = sp) != null) {
919 if (s == sp.left)
920 sp.left = p;
921 else
922 sp.right = p;
923 }
924 if ((s.right = pr) != null)
925 pr.parent = s;
926 }
927 p.left = null;
928 if ((p.right = sr) != null)
929 sr.parent = p;
930 if ((s.left = pl) != null)
931 pl.parent = s;
932 if ((s.parent = pp) == null)
933 root = s;
934 else if (p == pp.left)
935 pp.left = s;
936 else
937 pp.right = s;
938 replacement = sr;
939 }
940 else
941 replacement = (pl != null) ? pl : pr;
942 TreeNode pp = p.parent;
943 if (replacement == null) {
944 if (pp == null) {
945 root = null;
946 return;
947 }
948 replacement = p;
949 }
950 else {
951 replacement.parent = pp;
952 if (pp == null)
953 root = replacement;
954 else if (p == pp.left)
955 pp.left = replacement;
956 else
957 pp.right = replacement;
958 p.left = p.right = p.parent = null;
959 }
960 if (!p.red) { // rebalance, from CLR
961 TreeNode x = replacement;
962 while (x != null) {
963 TreeNode xp, xpl;
964 if (x.red || (xp = x.parent) == null) {
965 x.red = false;
966 break;
967 }
968 if (x == (xpl = xp.left)) {
969 TreeNode sib = xp.right;
970 if (sib != null && sib.red) {
971 sib.red = false;
972 xp.red = true;
973 rotateLeft(xp);
974 sib = (xp = x.parent) == null ? null : xp.right;
975 }
976 if (sib == null)
977 x = xp;
978 else {
979 TreeNode sl = sib.left, sr = sib.right;
980 if ((sr == null || !sr.red) &&
981 (sl == null || !sl.red)) {
982 sib.red = true;
983 x = xp;
984 }
985 else {
986 if (sr == null || !sr.red) {
987 if (sl != null)
988 sl.red = false;
989 sib.red = true;
990 rotateRight(sib);
991 sib = (xp = x.parent) == null ? null : xp.right;
992 }
993 if (sib != null) {
994 sib.red = (xp == null) ? false : xp.red;
995 if ((sr = sib.right) != null)
996 sr.red = false;
997 }
998 if (xp != null) {
999 xp.red = false;
1000 rotateLeft(xp);
1001 }
1002 x = root;
1003 }
1004 }
1005 }
1006 else { // symmetric
1007 TreeNode sib = xpl;
1008 if (sib != null && sib.red) {
1009 sib.red = false;
1010 xp.red = true;
1011 rotateRight(xp);
1012 sib = (xp = x.parent) == null ? null : xp.left;
1013 }
1014 if (sib == null)
1015 x = xp;
1016 else {
1017 TreeNode sl = sib.left, sr = sib.right;
1018 if ((sl == null || !sl.red) &&
1019 (sr == null || !sr.red)) {
1020 sib.red = true;
1021 x = xp;
1022 }
1023 else {
1024 if (sl == null || !sl.red) {
1025 if (sr != null)
1026 sr.red = false;
1027 sib.red = true;
1028 rotateLeft(sib);
1029 sib = (xp = x.parent) == null ? null : xp.left;
1030 }
1031 if (sib != null) {
1032 sib.red = (xp == null) ? false : xp.red;
1033 if ((sl = sib.left) != null)
1034 sl.red = false;
1035 }
1036 if (xp != null) {
1037 xp.red = false;
1038 rotateRight(xp);
1039 }
1040 x = root;
1041 }
1042 }
1043 }
1044 }
1045 }
1046 if (p == replacement && (pp = p.parent) != null) {
1047 if (p == pp.left) // detach pointers
1048 pp.left = null;
1049 else if (p == pp.right)
1050 pp.right = null;
1051 p.parent = null;
1052 }
1053 }
1054 }
1055
1056 /* ---------------- Collision reduction methods -------------- */
1057
1058 /**
1059 * Spreads higher bits to lower, and also forces top 2 bits to 0.
1060 * Because the table uses power-of-two masking, sets of hashes
1061 * that vary only in bits above the current mask will always
1062 * collide. (Among known examples are sets of Float keys holding
1063 * consecutive whole numbers in small tables.) To counter this,
1064 * we apply a transform that spreads the impact of higher bits
1065 * downward. There is a tradeoff between speed, utility, and
1066 * quality of bit-spreading. Because many common sets of hashes
1067 * are already reasonably distributed across bits (so don't benefit
1068 * from spreading), and because we use trees to handle large sets
1069 * of collisions in bins, we don't need excessively high quality.
1070 */
1071 private static final int spread(int h) {
1072 h ^= (h >>> 18) ^ (h >>> 12);
1073 return (h ^ (h >>> 10)) & HASH_BITS;
1074 }
1075
1076 /**
1077 * Replaces a list bin with a tree bin. Call only when locked.
1078 * Fails to replace if the given key is non-comparable or table
1079 * is, or needs, resizing.
1080 */
1081 private final void replaceWithTreeBin(Node[] tab, int index, Object key) {
1082 if ((key instanceof Comparable) &&
1083 (tab.length >= MAXIMUM_CAPACITY || counter.sum() < (long)sizeCtl)) {
1084 TreeBin t = new TreeBin();
1085 for (Node e = tabAt(tab, index); e != null; e = e.next)
1086 t.putTreeNode(e.hash & HASH_BITS, e.key, e.val);
1087 setTabAt(tab, index, new Node(MOVED, t, null, null));
1088 }
1089 }
1090
1091 /* ---------------- Internal access and update methods -------------- */
1092
1093 /** Implementation for get and containsKey */
1094 private final Object internalGet(Object k) {
1095 int h = spread(k.hashCode());
1096 retry: for (Node[] tab = table; tab != null;) {
1097 Node e, p; Object ek, ev; int eh; // locals to read fields once
1098 for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1099 if ((eh = e.hash) == MOVED) {
1100 if ((ek = e.key) instanceof TreeBin) // search TreeBin
1101 return ((TreeBin)ek).getValue(h, k);
1102 else { // restart with new table
1103 tab = (Node[])ek;
1104 continue retry;
1105 }
1106 }
1107 else if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
1108 ((ek = e.key) == k || k.equals(ek)))
1109 return ev;
1110 }
1111 break;
1112 }
1113 return null;
1114 }
1115
1116 /**
1117 * Implementation for the four public remove/replace methods:
1118 * Replaces node value with v, conditional upon match of cv if
1119 * non-null. If resulting value is null, delete.
1120 */
1121 private final Object internalReplace(Object k, Object v, Object cv) {
1122 int h = spread(k.hashCode());
1123 Object oldVal = null;
1124 for (Node[] tab = table;;) {
1125 Node f; int i, fh; Object fk;
1126 if (tab == null ||
1127 (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1128 break;
1129 else if ((fh = f.hash) == MOVED) {
1130 if ((fk = f.key) instanceof TreeBin) {
1131 TreeBin t = (TreeBin)fk;
1132 boolean validated = false;
1133 boolean deleted = false;
1134 t.acquire(0);
1135 try {
1136 if (tabAt(tab, i) == f) {
1137 validated = true;
1138 TreeNode p = t.getTreeNode(h, k, t.root);
1139 if (p != null) {
1140 Object pv = p.val;
1141 if (cv == null || cv == pv || cv.equals(pv)) {
1142 oldVal = pv;
1143 if ((p.val = v) == null) {
1144 deleted = true;
1145 t.deleteTreeNode(p);
1146 }
1147 }
1148 }
1149 }
1150 } finally {
1151 t.release(0);
1152 }
1153 if (validated) {
1154 if (deleted)
1155 counter.add(-1L);
1156 break;
1157 }
1158 }
1159 else
1160 tab = (Node[])fk;
1161 }
1162 else if ((fh & HASH_BITS) != h && f.next == null) // precheck
1163 break; // rules out possible existence
1164 else if ((fh & LOCKED) != 0) {
1165 checkForResize(); // try resizing if can't get lock
1166 f.tryAwaitLock(tab, i);
1167 }
1168 else if (f.casHash(fh, fh | LOCKED)) {
1169 boolean validated = false;
1170 boolean deleted = false;
1171 try {
1172 if (tabAt(tab, i) == f) {
1173 validated = true;
1174 for (Node e = f, pred = null;;) {
1175 Object ek, ev;
1176 if ((e.hash & HASH_BITS) == h &&
1177 ((ev = e.val) != null) &&
1178 ((ek = e.key) == k || k.equals(ek))) {
1179 if (cv == null || cv == ev || cv.equals(ev)) {
1180 oldVal = ev;
1181 if ((e.val = v) == null) {
1182 deleted = true;
1183 Node en = e.next;
1184 if (pred != null)
1185 pred.next = en;
1186 else
1187 setTabAt(tab, i, en);
1188 }
1189 }
1190 break;
1191 }
1192 pred = e;
1193 if ((e = e.next) == null)
1194 break;
1195 }
1196 }
1197 } finally {
1198 if (!f.casHash(fh | LOCKED, fh)) {
1199 f.hash = fh;
1200 synchronized (f) { f.notifyAll(); };
1201 }
1202 }
1203 if (validated) {
1204 if (deleted)
1205 counter.add(-1L);
1206 break;
1207 }
1208 }
1209 }
1210 return oldVal;
1211 }
1212
1213 /*
1214 * Internal versions of the six insertion methods, each a
1215 * little more complicated than the last. All have
1216 * the same basic structure as the first (internalPut):
1217 * 1. If table uninitialized, create
1218 * 2. If bin empty, try to CAS new node
1219 * 3. If bin stale, use new table
1220 * 4. if bin converted to TreeBin, validate and relay to TreeBin methods
1221 * 5. Lock and validate; if valid, scan and add or update
1222 *
1223 * The others interweave other checks and/or alternative actions:
1224 * * Plain put checks for and performs resize after insertion.
1225 * * putIfAbsent prescans for mapping without lock (and fails to add
1226 * if present), which also makes pre-emptive resize checks worthwhile.
1227 * * computeIfAbsent extends form used in putIfAbsent with additional
1228 * mechanics to deal with, calls, potential exceptions and null
1229 * returns from function call.
1230 * * compute uses the same function-call mechanics, but without
1231 * the prescans
1232 * * merge acts as putIfAbsent in the absent case, but invokes the
1233 * update function if present
1234 * * putAll attempts to pre-allocate enough table space
1235 * and more lazily performs count updates and checks.
1236 *
1237 * Someday when details settle down a bit more, it might be worth
1238 * some factoring to reduce sprawl.
1239 */
1240
1241 /** Implementation for put */
1242 private final Object internalPut(Object k, Object v) {
1243 int h = spread(k.hashCode());
1244 int count = 0;
1245 for (Node[] tab = table;;) {
1246 int i; Node f; int fh; Object fk;
1247 if (tab == null)
1248 tab = initTable();
1249 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1250 if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1251 break; // no lock when adding to empty bin
1252 }
1253 else if ((fh = f.hash) == MOVED) {
1254 if ((fk = f.key) instanceof TreeBin) {
1255 TreeBin t = (TreeBin)fk;
1256 Object oldVal = null;
1257 t.acquire(0);
1258 try {
1259 if (tabAt(tab, i) == f) {
1260 count = 2;
1261 TreeNode p = t.putTreeNode(h, k, v);
1262 if (p != null) {
1263 oldVal = p.val;
1264 p.val = v;
1265 }
1266 }
1267 } finally {
1268 t.release(0);
1269 }
1270 if (count != 0) {
1271 if (oldVal != null)
1272 return oldVal;
1273 break;
1274 }
1275 }
1276 else
1277 tab = (Node[])fk;
1278 }
1279 else if ((fh & LOCKED) != 0) {
1280 checkForResize();
1281 f.tryAwaitLock(tab, i);
1282 }
1283 else if (f.casHash(fh, fh | LOCKED)) {
1284 Object oldVal = null;
1285 try { // needed in case equals() throws
1286 if (tabAt(tab, i) == f) {
1287 count = 1;
1288 for (Node e = f;; ++count) {
1289 Object ek, ev;
1290 if ((e.hash & HASH_BITS) == h &&
1291 (ev = e.val) != null &&
1292 ((ek = e.key) == k || k.equals(ek))) {
1293 oldVal = ev;
1294 e.val = v;
1295 break;
1296 }
1297 Node last = e;
1298 if ((e = e.next) == null) {
1299 last.next = new Node(h, k, v, null);
1300 if (count >= TREE_THRESHOLD)
1301 replaceWithTreeBin(tab, i, k);
1302 break;
1303 }
1304 }
1305 }
1306 } finally { // unlock and signal if needed
1307 if (!f.casHash(fh | LOCKED, fh)) {
1308 f.hash = fh;
1309 synchronized (f) { f.notifyAll(); };
1310 }
1311 }
1312 if (count != 0) {
1313 if (oldVal != null)
1314 return oldVal;
1315 if (tab.length <= 64)
1316 count = 2;
1317 break;
1318 }
1319 }
1320 }
1321 counter.add(1L);
1322 if (count > 1)
1323 checkForResize();
1324 return null;
1325 }
1326
1327 /** Implementation for putIfAbsent */
1328 private final Object internalPutIfAbsent(Object k, Object v) {
1329 int h = spread(k.hashCode());
1330 int count = 0;
1331 for (Node[] tab = table;;) {
1332 int i; Node f; int fh; Object fk, fv;
1333 if (tab == null)
1334 tab = initTable();
1335 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1336 if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1337 break;
1338 }
1339 else if ((fh = f.hash) == MOVED) {
1340 if ((fk = f.key) instanceof TreeBin) {
1341 TreeBin t = (TreeBin)fk;
1342 Object oldVal = null;
1343 t.acquire(0);
1344 try {
1345 if (tabAt(tab, i) == f) {
1346 count = 2;
1347 TreeNode p = t.putTreeNode(h, k, v);
1348 if (p != null)
1349 oldVal = p.val;
1350 }
1351 } finally {
1352 t.release(0);
1353 }
1354 if (count != 0) {
1355 if (oldVal != null)
1356 return oldVal;
1357 break;
1358 }
1359 }
1360 else
1361 tab = (Node[])fk;
1362 }
1363 else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1364 ((fk = f.key) == k || k.equals(fk)))
1365 return fv;
1366 else {
1367 Node g = f.next;
1368 if (g != null) { // at least 2 nodes -- search and maybe resize
1369 for (Node e = g;;) {
1370 Object ek, ev;
1371 if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1372 ((ek = e.key) == k || k.equals(ek)))
1373 return ev;
1374 if ((e = e.next) == null) {
1375 checkForResize();
1376 break;
1377 }
1378 }
1379 }
1380 if (((fh = f.hash) & LOCKED) != 0) {
1381 checkForResize();
1382 f.tryAwaitLock(tab, i);
1383 }
1384 else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1385 Object oldVal = null;
1386 try {
1387 if (tabAt(tab, i) == f) {
1388 count = 1;
1389 for (Node e = f;; ++count) {
1390 Object ek, ev;
1391 if ((e.hash & HASH_BITS) == h &&
1392 (ev = e.val) != null &&
1393 ((ek = e.key) == k || k.equals(ek))) {
1394 oldVal = ev;
1395 break;
1396 }
1397 Node last = e;
1398 if ((e = e.next) == null) {
1399 last.next = new Node(h, k, v, null);
1400 if (count >= TREE_THRESHOLD)
1401 replaceWithTreeBin(tab, i, k);
1402 break;
1403 }
1404 }
1405 }
1406 } finally {
1407 if (!f.casHash(fh | LOCKED, fh)) {
1408 f.hash = fh;
1409 synchronized (f) { f.notifyAll(); };
1410 }
1411 }
1412 if (count != 0) {
1413 if (oldVal != null)
1414 return oldVal;
1415 if (tab.length <= 64)
1416 count = 2;
1417 break;
1418 }
1419 }
1420 }
1421 }
1422 counter.add(1L);
1423 if (count > 1)
1424 checkForResize();
1425 return null;
1426 }
1427
1428 /** Implementation for computeIfAbsent */
1429 private final Object internalComputeIfAbsent(K k,
1430 Fun<? super K, ?> mf) {
1431 int h = spread(k.hashCode());
1432 Object val = null;
1433 int count = 0;
1434 for (Node[] tab = table;;) {
1435 Node f; int i, fh; Object fk, fv;
1436 if (tab == null)
1437 tab = initTable();
1438 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1439 Node node = new Node(fh = h | LOCKED, k, null, null);
1440 if (casTabAt(tab, i, null, node)) {
1441 count = 1;
1442 try {
1443 if ((val = mf.apply(k)) != null)
1444 node.val = val;
1445 } finally {
1446 if (val == null)
1447 setTabAt(tab, i, null);
1448 if (!node.casHash(fh, h)) {
1449 node.hash = h;
1450 synchronized (node) { node.notifyAll(); };
1451 }
1452 }
1453 }
1454 if (count != 0)
1455 break;
1456 }
1457 else if ((fh = f.hash) == MOVED) {
1458 if ((fk = f.key) instanceof TreeBin) {
1459 TreeBin t = (TreeBin)fk;
1460 boolean added = false;
1461 t.acquire(0);
1462 try {
1463 if (tabAt(tab, i) == f) {
1464 count = 1;
1465 TreeNode p = t.getTreeNode(h, k, t.root);
1466 if (p != null)
1467 val = p.val;
1468 else if ((val = mf.apply(k)) != null) {
1469 added = true;
1470 count = 2;
1471 t.putTreeNode(h, k, val);
1472 }
1473 }
1474 } finally {
1475 t.release(0);
1476 }
1477 if (count != 0) {
1478 if (!added)
1479 return val;
1480 break;
1481 }
1482 }
1483 else
1484 tab = (Node[])fk;
1485 }
1486 else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1487 ((fk = f.key) == k || k.equals(fk)))
1488 return fv;
1489 else {
1490 Node g = f.next;
1491 if (g != null) {
1492 for (Node e = g;;) {
1493 Object ek, ev;
1494 if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1495 ((ek = e.key) == k || k.equals(ek)))
1496 return ev;
1497 if ((e = e.next) == null) {
1498 checkForResize();
1499 break;
1500 }
1501 }
1502 }
1503 if (((fh = f.hash) & LOCKED) != 0) {
1504 checkForResize();
1505 f.tryAwaitLock(tab, i);
1506 }
1507 else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1508 boolean added = false;
1509 try {
1510 if (tabAt(tab, i) == f) {
1511 count = 1;
1512 for (Node e = f;; ++count) {
1513 Object ek, ev;
1514 if ((e.hash & HASH_BITS) == h &&
1515 (ev = e.val) != null &&
1516 ((ek = e.key) == k || k.equals(ek))) {
1517 val = ev;
1518 break;
1519 }
1520 Node last = e;
1521 if ((e = e.next) == null) {
1522 if ((val = mf.apply(k)) != null) {
1523 added = true;
1524 last.next = new Node(h, k, val, null);
1525 if (count >= TREE_THRESHOLD)
1526 replaceWithTreeBin(tab, i, k);
1527 }
1528 break;
1529 }
1530 }
1531 }
1532 } finally {
1533 if (!f.casHash(fh | LOCKED, fh)) {
1534 f.hash = fh;
1535 synchronized (f) { f.notifyAll(); };
1536 }
1537 }
1538 if (count != 0) {
1539 if (!added)
1540 return val;
1541 if (tab.length <= 64)
1542 count = 2;
1543 break;
1544 }
1545 }
1546 }
1547 }
1548 if (val != null) {
1549 counter.add(1L);
1550 if (count > 1)
1551 checkForResize();
1552 }
1553 return val;
1554 }
1555
1556 /** Implementation for compute */
1557 @SuppressWarnings("unchecked") private final Object internalCompute
1558 (K k, boolean onlyIfPresent, BiFun<? super K, ? super V, ? extends V> mf) {
1559 int h = spread(k.hashCode());
1560 Object val = null;
1561 int delta = 0;
1562 int count = 0;
1563 for (Node[] tab = table;;) {
1564 Node f; int i, fh; Object fk;
1565 if (tab == null)
1566 tab = initTable();
1567 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1568 if (onlyIfPresent)
1569 break;
1570 Node node = new Node(fh = h | LOCKED, k, null, null);
1571 if (casTabAt(tab, i, null, node)) {
1572 try {
1573 count = 1;
1574 if ((val = mf.apply(k, null)) != null) {
1575 node.val = val;
1576 delta = 1;
1577 }
1578 } finally {
1579 if (delta == 0)
1580 setTabAt(tab, i, null);
1581 if (!node.casHash(fh, h)) {
1582 node.hash = h;
1583 synchronized (node) { node.notifyAll(); };
1584 }
1585 }
1586 }
1587 if (count != 0)
1588 break;
1589 }
1590 else if ((fh = f.hash) == MOVED) {
1591 if ((fk = f.key) instanceof TreeBin) {
1592 TreeBin t = (TreeBin)fk;
1593 t.acquire(0);
1594 try {
1595 if (tabAt(tab, i) == f) {
1596 count = 1;
1597 TreeNode p = t.getTreeNode(h, k, t.root);
1598 Object pv = (p == null) ? null : p.val;
1599 if ((val = mf.apply(k, (V)pv)) != null) {
1600 if (p != null)
1601 p.val = val;
1602 else {
1603 count = 2;
1604 delta = 1;
1605 t.putTreeNode(h, k, val);
1606 }
1607 }
1608 else if (p != null) {
1609 delta = -1;
1610 t.deleteTreeNode(p);
1611 }
1612 }
1613 } finally {
1614 t.release(0);
1615 }
1616 if (count != 0)
1617 break;
1618 }
1619 else
1620 tab = (Node[])fk;
1621 }
1622 else if ((fh & LOCKED) != 0) {
1623 checkForResize();
1624 f.tryAwaitLock(tab, i);
1625 }
1626 else if (f.casHash(fh, fh | LOCKED)) {
1627 try {
1628 if (tabAt(tab, i) == f) {
1629 count = 1;
1630 for (Node e = f, pred = null;; ++count) {
1631 Object ek, ev;
1632 if ((e.hash & HASH_BITS) == h &&
1633 (ev = e.val) != null &&
1634 ((ek = e.key) == k || k.equals(ek))) {
1635 val = mf.apply(k, (V)ev);
1636 if (val != null)
1637 e.val = val;
1638 else {
1639 delta = -1;
1640 Node en = e.next;
1641 if (pred != null)
1642 pred.next = en;
1643 else
1644 setTabAt(tab, i, en);
1645 }
1646 break;
1647 }
1648 pred = e;
1649 if ((e = e.next) == null) {
1650 if (!onlyIfPresent && (val = mf.apply(k, null)) != null) {
1651 pred.next = new Node(h, k, val, null);
1652 delta = 1;
1653 if (count >= TREE_THRESHOLD)
1654 replaceWithTreeBin(tab, i, k);
1655 }
1656 break;
1657 }
1658 }
1659 }
1660 } finally {
1661 if (!f.casHash(fh | LOCKED, fh)) {
1662 f.hash = fh;
1663 synchronized (f) { f.notifyAll(); };
1664 }
1665 }
1666 if (count != 0) {
1667 if (tab.length <= 64)
1668 count = 2;
1669 break;
1670 }
1671 }
1672 }
1673 if (delta != 0) {
1674 counter.add((long)delta);
1675 if (count > 1)
1676 checkForResize();
1677 }
1678 return val;
1679 }
1680
1681 /** Implementation for merge */
1682 @SuppressWarnings("unchecked") private final Object internalMerge
1683 (K k, V v, BiFun<? super V, ? super V, ? extends V> mf) {
1684 int h = spread(k.hashCode());
1685 Object val = null;
1686 int delta = 0;
1687 int count = 0;
1688 for (Node[] tab = table;;) {
1689 int i; Node f; int fh; Object fk, fv;
1690 if (tab == null)
1691 tab = initTable();
1692 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1693 if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1694 delta = 1;
1695 val = v;
1696 break;
1697 }
1698 }
1699 else if ((fh = f.hash) == MOVED) {
1700 if ((fk = f.key) instanceof TreeBin) {
1701 TreeBin t = (TreeBin)fk;
1702 t.acquire(0);
1703 try {
1704 if (tabAt(tab, i) == f) {
1705 count = 1;
1706 TreeNode p = t.getTreeNode(h, k, t.root);
1707 val = (p == null) ? v : mf.apply((V)p.val, v);
1708 if (val != null) {
1709 if (p != null)
1710 p.val = val;
1711 else {
1712 count = 2;
1713 delta = 1;
1714 t.putTreeNode(h, k, val);
1715 }
1716 }
1717 else if (p != null) {
1718 delta = -1;
1719 t.deleteTreeNode(p);
1720 }
1721 }
1722 } finally {
1723 t.release(0);
1724 }
1725 if (count != 0)
1726 break;
1727 }
1728 else
1729 tab = (Node[])fk;
1730 }
1731 else if ((fh & LOCKED) != 0) {
1732 checkForResize();
1733 f.tryAwaitLock(tab, i);
1734 }
1735 else if (f.casHash(fh, fh | LOCKED)) {
1736 try {
1737 if (tabAt(tab, i) == f) {
1738 count = 1;
1739 for (Node e = f, pred = null;; ++count) {
1740 Object ek, ev;
1741 if ((e.hash & HASH_BITS) == h &&
1742 (ev = e.val) != null &&
1743 ((ek = e.key) == k || k.equals(ek))) {
1744 val = mf.apply(v, (V)ev);
1745 if (val != null)
1746 e.val = val;
1747 else {
1748 delta = -1;
1749 Node en = e.next;
1750 if (pred != null)
1751 pred.next = en;
1752 else
1753 setTabAt(tab, i, en);
1754 }
1755 break;
1756 }
1757 pred = e;
1758 if ((e = e.next) == null) {
1759 val = v;
1760 pred.next = new Node(h, k, val, null);
1761 delta = 1;
1762 if (count >= TREE_THRESHOLD)
1763 replaceWithTreeBin(tab, i, k);
1764 break;
1765 }
1766 }
1767 }
1768 } finally {
1769 if (!f.casHash(fh | LOCKED, fh)) {
1770 f.hash = fh;
1771 synchronized (f) { f.notifyAll(); };
1772 }
1773 }
1774 if (count != 0) {
1775 if (tab.length <= 64)
1776 count = 2;
1777 break;
1778 }
1779 }
1780 }
1781 if (delta != 0) {
1782 counter.add((long)delta);
1783 if (count > 1)
1784 checkForResize();
1785 }
1786 return val;
1787 }
1788
1789 /** Implementation for putAll */
1790 private final void internalPutAll(Map<?, ?> m) {
1791 tryPresize(m.size());
1792 long delta = 0L; // number of uncommitted additions
1793 boolean npe = false; // to throw exception on exit for nulls
1794 try { // to clean up counts on other exceptions
1795 for (Map.Entry<?, ?> entry : m.entrySet()) {
1796 Object k, v;
1797 if (entry == null || (k = entry.getKey()) == null ||
1798 (v = entry.getValue()) == null) {
1799 npe = true;
1800 break;
1801 }
1802 int h = spread(k.hashCode());
1803 for (Node[] tab = table;;) {
1804 int i; Node f; int fh; Object fk;
1805 if (tab == null)
1806 tab = initTable();
1807 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1808 if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1809 ++delta;
1810 break;
1811 }
1812 }
1813 else if ((fh = f.hash) == MOVED) {
1814 if ((fk = f.key) instanceof TreeBin) {
1815 TreeBin t = (TreeBin)fk;
1816 boolean validated = false;
1817 t.acquire(0);
1818 try {
1819 if (tabAt(tab, i) == f) {
1820 validated = true;
1821 TreeNode p = t.getTreeNode(h, k, t.root);
1822 if (p != null)
1823 p.val = v;
1824 else {
1825 t.putTreeNode(h, k, v);
1826 ++delta;
1827 }
1828 }
1829 } finally {
1830 t.release(0);
1831 }
1832 if (validated)
1833 break;
1834 }
1835 else
1836 tab = (Node[])fk;
1837 }
1838 else if ((fh & LOCKED) != 0) {
1839 counter.add(delta);
1840 delta = 0L;
1841 checkForResize();
1842 f.tryAwaitLock(tab, i);
1843 }
1844 else if (f.casHash(fh, fh | LOCKED)) {
1845 int count = 0;
1846 try {
1847 if (tabAt(tab, i) == f) {
1848 count = 1;
1849 for (Node e = f;; ++count) {
1850 Object ek, ev;
1851 if ((e.hash & HASH_BITS) == h &&
1852 (ev = e.val) != null &&
1853 ((ek = e.key) == k || k.equals(ek))) {
1854 e.val = v;
1855 break;
1856 }
1857 Node last = e;
1858 if ((e = e.next) == null) {
1859 ++delta;
1860 last.next = new Node(h, k, v, null);
1861 if (count >= TREE_THRESHOLD)
1862 replaceWithTreeBin(tab, i, k);
1863 break;
1864 }
1865 }
1866 }
1867 } finally {
1868 if (!f.casHash(fh | LOCKED, fh)) {
1869 f.hash = fh;
1870 synchronized (f) { f.notifyAll(); };
1871 }
1872 }
1873 if (count != 0) {
1874 if (count > 1) {
1875 counter.add(delta);
1876 delta = 0L;
1877 checkForResize();
1878 }
1879 break;
1880 }
1881 }
1882 }
1883 }
1884 } finally {
1885 if (delta != 0)
1886 counter.add(delta);
1887 }
1888 if (npe)
1889 throw new NullPointerException();
1890 }
1891
1892 /* ---------------- Table Initialization and Resizing -------------- */
1893
1894 /**
1895 * Returns a power of two table size for the given desired capacity.
1896 * See Hackers Delight, sec 3.2
1897 */
1898 private static final int tableSizeFor(int c) {
1899 int n = c - 1;
1900 n |= n >>> 1;
1901 n |= n >>> 2;
1902 n |= n >>> 4;
1903 n |= n >>> 8;
1904 n |= n >>> 16;
1905 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1906 }
1907
1908 /**
1909 * Initializes table, using the size recorded in sizeCtl.
1910 */
1911 private final Node[] initTable() {
1912 Node[] tab; int sc;
1913 while ((tab = table) == null) {
1914 if ((sc = sizeCtl) < 0)
1915 Thread.yield(); // lost initialization race; just spin
1916 else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1917 try {
1918 if ((tab = table) == null) {
1919 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1920 tab = table = new Node[n];
1921 sc = n - (n >>> 2);
1922 }
1923 } finally {
1924 sizeCtl = sc;
1925 }
1926 break;
1927 }
1928 }
1929 return tab;
1930 }
1931
1932 /**
1933 * If table is too small and not already resizing, creates next
1934 * table and transfers bins. Rechecks occupancy after a transfer
1935 * to see if another resize is already needed because resizings
1936 * are lagging additions.
1937 */
1938 private final void checkForResize() {
1939 Node[] tab; int n, sc;
1940 while ((tab = table) != null &&
1941 (n = tab.length) < MAXIMUM_CAPACITY &&
1942 (sc = sizeCtl) >= 0 && counter.sum() >= (long)sc &&
1943 UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1944 try {
1945 if (tab == table) {
1946 table = rebuild(tab);
1947 sc = (n << 1) - (n >>> 1);
1948 }
1949 } finally {
1950 sizeCtl = sc;
1951 }
1952 }
1953 }
1954
1955 /**
1956 * Tries to presize table to accommodate the given number of elements.
1957 *
1958 * @param size number of elements (doesn't need to be perfectly accurate)
1959 */
1960 private final void tryPresize(int size) {
1961 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1962 tableSizeFor(size + (size >>> 1) + 1);
1963 int sc;
1964 while ((sc = sizeCtl) >= 0) {
1965 Node[] tab = table; int n;
1966 if (tab == null || (n = tab.length) == 0) {
1967 n = (sc > c) ? sc : c;
1968 if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1969 try {
1970 if (table == tab) {
1971 table = new Node[n];
1972 sc = n - (n >>> 2);
1973 }
1974 } finally {
1975 sizeCtl = sc;
1976 }
1977 }
1978 }
1979 else if (c <= sc || n >= MAXIMUM_CAPACITY)
1980 break;
1981 else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1982 try {
1983 if (table == tab) {
1984 table = rebuild(tab);
1985 sc = (n << 1) - (n >>> 1);
1986 }
1987 } finally {
1988 sizeCtl = sc;
1989 }
1990 }
1991 }
1992 }
1993
1994 /*
1995 * Moves and/or copies the nodes in each bin to new table. See
1996 * above for explanation.
1997 *
1998 * @return the new table
1999 */
2000 private static final Node[] rebuild(Node[] tab) {
2001 int n = tab.length;
2002 Node[] nextTab = new Node[n << 1];
2003 Node fwd = new Node(MOVED, nextTab, null, null);
2004 int[] buffer = null; // holds bins to revisit; null until needed
2005 Node rev = null; // reverse forwarder; null until needed
2006 int nbuffered = 0; // the number of bins in buffer list
2007 int bufferIndex = 0; // buffer index of current buffered bin
2008 int bin = n - 1; // current non-buffered bin or -1 if none
2009
2010 for (int i = bin;;) { // start upwards sweep
2011 int fh; Node f;
2012 if ((f = tabAt(tab, i)) == null) {
2013 if (bin >= 0) { // Unbuffered; no lock needed (or available)
2014 if (!casTabAt(tab, i, f, fwd))
2015 continue;
2016 }
2017 else { // transiently use a locked forwarding node
2018 Node g = new Node(MOVED|LOCKED, nextTab, null, null);
2019 if (!casTabAt(tab, i, f, g))
2020 continue;
2021 setTabAt(nextTab, i, null);
2022 setTabAt(nextTab, i + n, null);
2023 setTabAt(tab, i, fwd);
2024 if (!g.casHash(MOVED|LOCKED, MOVED)) {
2025 g.hash = MOVED;
2026 synchronized (g) { g.notifyAll(); }
2027 }
2028 }
2029 }
2030 else if ((fh = f.hash) == MOVED) {
2031 Object fk = f.key;
2032 if (fk instanceof TreeBin) {
2033 TreeBin t = (TreeBin)fk;
2034 boolean validated = false;
2035 t.acquire(0);
2036 try {
2037 if (tabAt(tab, i) == f) {
2038 validated = true;
2039 splitTreeBin(nextTab, i, t);
2040 setTabAt(tab, i, fwd);
2041 }
2042 } finally {
2043 t.release(0);
2044 }
2045 if (!validated)
2046 continue;
2047 }
2048 }
2049 else if ((fh & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
2050 boolean validated = false;
2051 try { // split to lo and hi lists; copying as needed
2052 if (tabAt(tab, i) == f) {
2053 validated = true;
2054 splitBin(nextTab, i, f);
2055 setTabAt(tab, i, fwd);
2056 }
2057 } finally {
2058 if (!f.casHash(fh | LOCKED, fh)) {
2059 f.hash = fh;
2060 synchronized (f) { f.notifyAll(); };
2061 }
2062 }
2063 if (!validated)
2064 continue;
2065 }
2066 else {
2067 if (buffer == null) // initialize buffer for revisits
2068 buffer = new int[TRANSFER_BUFFER_SIZE];
2069 if (bin < 0 && bufferIndex > 0) {
2070 int j = buffer[--bufferIndex];
2071 buffer[bufferIndex] = i;
2072 i = j; // swap with another bin
2073 continue;
2074 }
2075 if (bin < 0 || nbuffered >= TRANSFER_BUFFER_SIZE) {
2076 f.tryAwaitLock(tab, i);
2077 continue; // no other options -- block
2078 }
2079 if (rev == null) // initialize reverse-forwarder
2080 rev = new Node(MOVED, tab, null, null);
2081 if (tabAt(tab, i) != f || (f.hash & LOCKED) == 0)
2082 continue; // recheck before adding to list
2083 buffer[nbuffered++] = i;
2084 setTabAt(nextTab, i, rev); // install place-holders
2085 setTabAt(nextTab, i + n, rev);
2086 }
2087
2088 if (bin > 0)
2089 i = --bin;
2090 else if (buffer != null && nbuffered > 0) {
2091 bin = -1;
2092 i = buffer[bufferIndex = --nbuffered];
2093 }
2094 else
2095 return nextTab;
2096 }
2097 }
2098
2099 /**
2100 * Splits a normal bin with list headed by e into lo and hi parts;
2101 * installs in given table.
2102 */
2103 private static void splitBin(Node[] nextTab, int i, Node e) {
2104 int bit = nextTab.length >>> 1; // bit to split on
2105 int runBit = e.hash & bit;
2106 Node lastRun = e, lo = null, hi = null;
2107 for (Node p = e.next; p != null; p = p.next) {
2108 int b = p.hash & bit;
2109 if (b != runBit) {
2110 runBit = b;
2111 lastRun = p;
2112 }
2113 }
2114 if (runBit == 0)
2115 lo = lastRun;
2116 else
2117 hi = lastRun;
2118 for (Node p = e; p != lastRun; p = p.next) {
2119 int ph = p.hash & HASH_BITS;
2120 Object pk = p.key, pv = p.val;
2121 if ((ph & bit) == 0)
2122 lo = new Node(ph, pk, pv, lo);
2123 else
2124 hi = new Node(ph, pk, pv, hi);
2125 }
2126 setTabAt(nextTab, i, lo);
2127 setTabAt(nextTab, i + bit, hi);
2128 }
2129
2130 /**
2131 * Splits a tree bin into lo and hi parts; installs in given table.
2132 */
2133 private static void splitTreeBin(Node[] nextTab, int i, TreeBin t) {
2134 int bit = nextTab.length >>> 1;
2135 TreeBin lt = new TreeBin();
2136 TreeBin ht = new TreeBin();
2137 int lc = 0, hc = 0;
2138 for (Node e = t.first; e != null; e = e.next) {
2139 int h = e.hash & HASH_BITS;
2140 Object k = e.key, v = e.val;
2141 if ((h & bit) == 0) {
2142 ++lc;
2143 lt.putTreeNode(h, k, v);
2144 }
2145 else {
2146 ++hc;
2147 ht.putTreeNode(h, k, v);
2148 }
2149 }
2150 Node ln, hn; // throw away trees if too small
2151 if (lc <= (TREE_THRESHOLD >>> 1)) {
2152 ln = null;
2153 for (Node p = lt.first; p != null; p = p.next)
2154 ln = new Node(p.hash, p.key, p.val, ln);
2155 }
2156 else
2157 ln = new Node(MOVED, lt, null, null);
2158 setTabAt(nextTab, i, ln);
2159 if (hc <= (TREE_THRESHOLD >>> 1)) {
2160 hn = null;
2161 for (Node p = ht.first; p != null; p = p.next)
2162 hn = new Node(p.hash, p.key, p.val, hn);
2163 }
2164 else
2165 hn = new Node(MOVED, ht, null, null);
2166 setTabAt(nextTab, i + bit, hn);
2167 }
2168
2169 /**
2170 * Implementation for clear. Steps through each bin, removing all
2171 * nodes.
2172 */
2173 private final void internalClear() {
2174 long delta = 0L; // negative number of deletions
2175 int i = 0;
2176 Node[] tab = table;
2177 while (tab != null && i < tab.length) {
2178 int fh; Object fk;
2179 Node f = tabAt(tab, i);
2180 if (f == null)
2181 ++i;
2182 else if ((fh = f.hash) == MOVED) {
2183 if ((fk = f.key) instanceof TreeBin) {
2184 TreeBin t = (TreeBin)fk;
2185 t.acquire(0);
2186 try {
2187 if (tabAt(tab, i) == f) {
2188 for (Node p = t.first; p != null; p = p.next) {
2189 if (p.val != null) { // (currently always true)
2190 p.val = null;
2191 --delta;
2192 }
2193 }
2194 t.first = null;
2195 t.root = null;
2196 ++i;
2197 }
2198 } finally {
2199 t.release(0);
2200 }
2201 }
2202 else
2203 tab = (Node[])fk;
2204 }
2205 else if ((fh & LOCKED) != 0) {
2206 counter.add(delta); // opportunistically update count
2207 delta = 0L;
2208 f.tryAwaitLock(tab, i);
2209 }
2210 else if (f.casHash(fh, fh | LOCKED)) {
2211 try {
2212 if (tabAt(tab, i) == f) {
2213 for (Node e = f; e != null; e = e.next) {
2214 if (e.val != null) { // (currently always true)
2215 e.val = null;
2216 --delta;
2217 }
2218 }
2219 setTabAt(tab, i, null);
2220 ++i;
2221 }
2222 } finally {
2223 if (!f.casHash(fh | LOCKED, fh)) {
2224 f.hash = fh;
2225 synchronized (f) { f.notifyAll(); };
2226 }
2227 }
2228 }
2229 }
2230 if (delta != 0)
2231 counter.add(delta);
2232 }
2233
2234 /* ----------------Table Traversal -------------- */
2235
2236 /**
2237 * Encapsulates traversal for methods such as containsValue; also
2238 * serves as a base class for other iterators and bulk tasks.
2239 *
2240 * At each step, the iterator snapshots the key ("nextKey") and
2241 * value ("nextVal") of a valid node (i.e., one that, at point of
2242 * snapshot, has a non-null user value). Because val fields can
2243 * change (including to null, indicating deletion), field nextVal
2244 * might not be accurate at point of use, but still maintains the
2245 * weak consistency property of holding a value that was once
2246 * valid.
2247 *
2248 * Internal traversals directly access these fields, as in:
2249 * {@code while (it.advance() != null) { process(it.nextKey); }}
2250 *
2251 * Exported iterators must track whether the iterator has advanced
2252 * (in hasNext vs next) (by setting/checking/nulling field
2253 * nextVal), and then extract key, value, or key-value pairs as
2254 * return values of next().
2255 *
2256 * The iterator visits once each still-valid node that was
2257 * reachable upon iterator construction. It might miss some that
2258 * were added to a bin after the bin was visited, which is OK wrt
2259 * consistency guarantees. Maintaining this property in the face
2260 * of possible ongoing resizes requires a fair amount of
2261 * bookkeeping state that is difficult to optimize away amidst
2262 * volatile accesses. Even so, traversal maintains reasonable
2263 * throughput.
2264 *
2265 * Normally, iteration proceeds bin-by-bin traversing lists.
2266 * However, if the table has been resized, then all future steps
2267 * must traverse both the bin at the current index as well as at
2268 * (index + baseSize); and so on for further resizings. To
2269 * paranoically cope with potential sharing by users of iterators
2270 * across threads, iteration terminates if a bounds checks fails
2271 * for a table read.
2272 *
2273 * This class extends ForkJoinTask to streamline parallel
2274 * iteration in bulk operations (see BulkTask). This adds only an
2275 * int of space overhead, which is close enough to negligible in
2276 * cases where it is not needed to not worry about it. Because
2277 * ForkJoinTask is Serializable, but iterators need not be, we
2278 * need to add warning suppressions.
2279 */
2280 @SuppressWarnings("serial") static class Traverser<K,V,R> extends ForkJoinTask<R> {
2281 final ConcurrentHashMapV8<K, V> map;
2282 Node next; // the next entry to use
2283 Node last; // the last entry used
2284 Object nextKey; // cached key field of next
2285 Object nextVal; // cached val field of next
2286 Node[] tab; // current table; updated if resized
2287 int index; // index of bin to use next
2288 int baseIndex; // current index of initial table
2289 int baseLimit; // index bound for initial table
2290 int baseSize; // initial table size
2291
2292 /** Creates iterator for all entries in the table. */
2293 Traverser(ConcurrentHashMapV8<K, V> map) {
2294 this.map = map;
2295 }
2296
2297 /** Creates iterator for split() methods */
2298 Traverser(Traverser<K,V,?> it) {
2299 ConcurrentHashMapV8<K, V> m; Node[] t;
2300 if ((m = this.map = it.map) == null)
2301 t = null;
2302 else if ((t = it.tab) == null && // force parent tab initialization
2303 (t = it.tab = m.table) != null)
2304 it.baseLimit = it.baseSize = t.length;
2305 this.tab = t;
2306 this.baseSize = it.baseSize;
2307 it.baseLimit = this.index = this.baseIndex =
2308 ((this.baseLimit = it.baseLimit) + it.baseIndex + 1) >>> 1;
2309 }
2310
2311 /**
2312 * Advances next; returns nextVal or null if terminated.
2313 * See above for explanation.
2314 */
2315 final Object advance() {
2316 Node e = last = next;
2317 Object ev = null;
2318 outer: do {
2319 if (e != null) // advance past used/skipped node
2320 e = e.next;
2321 while (e == null) { // get to next non-null bin
2322 ConcurrentHashMapV8<K, V> m;
2323 Node[] t; int b, i, n; Object ek; // checks must use locals
2324 if ((t = tab) != null)
2325 n = t.length;
2326 else if ((m = map) != null && (t = tab = m.table) != null)
2327 n = baseLimit = baseSize = t.length;
2328 else
2329 break outer;
2330 if ((b = baseIndex) >= baseLimit ||
2331 (i = index) < 0 || i >= n)
2332 break outer;
2333 if ((e = tabAt(t, i)) != null && e.hash == MOVED) {
2334 if ((ek = e.key) instanceof TreeBin)
2335 e = ((TreeBin)ek).first;
2336 else {
2337 tab = (Node[])ek;
2338 continue; // restarts due to null val
2339 }
2340 } // visit upper slots if present
2341 index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2342 }
2343 nextKey = e.key;
2344 } while ((ev = e.val) == null); // skip deleted or special nodes
2345 next = e;
2346 return nextVal = ev;
2347 }
2348
2349 public final void remove() {
2350 if (nextVal == null && last == null)
2351 advance();
2352 Node e = last;
2353 if (e == null)
2354 throw new IllegalStateException();
2355 last = null;
2356 map.remove(e.key);
2357 }
2358
2359 public final boolean hasNext() {
2360 return nextVal != null || advance() != null;
2361 }
2362
2363 public final boolean hasMoreElements() { return hasNext(); }
2364 public final void setRawResult(Object x) { }
2365 public R getRawResult() { return null; }
2366 public boolean exec() { return true; }
2367 }
2368
2369 /* ---------------- Public operations -------------- */
2370
2371 /**
2372 * Creates a new, empty map with the default initial table size (16).
2373 */
2374 public ConcurrentHashMapV8() {
2375 this.counter = new LongAdder();
2376 }
2377
2378 /**
2379 * Creates a new, empty map with an initial table size
2380 * accommodating the specified number of elements without the need
2381 * to dynamically resize.
2382 *
2383 * @param initialCapacity The implementation performs internal
2384 * sizing to accommodate this many elements.
2385 * @throws IllegalArgumentException if the initial capacity of
2386 * elements is negative
2387 */
2388 public ConcurrentHashMapV8(int initialCapacity) {
2389 if (initialCapacity < 0)
2390 throw new IllegalArgumentException();
2391 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2392 MAXIMUM_CAPACITY :
2393 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2394 this.counter = new LongAdder();
2395 this.sizeCtl = cap;
2396 }
2397
2398 /**
2399 * Creates a new map with the same mappings as the given map.
2400 *
2401 * @param m the map
2402 */
2403 public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
2404 this.counter = new LongAdder();
2405 this.sizeCtl = DEFAULT_CAPACITY;
2406 internalPutAll(m);
2407 }
2408
2409 /**
2410 * Creates a new, empty map with an initial table size based on
2411 * the given number of elements ({@code initialCapacity}) and
2412 * initial table density ({@code loadFactor}).
2413 *
2414 * @param initialCapacity the initial capacity. The implementation
2415 * performs internal sizing to accommodate this many elements,
2416 * given the specified load factor.
2417 * @param loadFactor the load factor (table density) for
2418 * establishing the initial table size
2419 * @throws IllegalArgumentException if the initial capacity of
2420 * elements is negative or the load factor is nonpositive
2421 *
2422 * @since 1.6
2423 */
2424 public ConcurrentHashMapV8(int initialCapacity, float loadFactor) {
2425 this(initialCapacity, loadFactor, 1);
2426 }
2427
2428 /**
2429 * Creates a new, empty map with an initial table size based on
2430 * the given number of elements ({@code initialCapacity}), table
2431 * density ({@code loadFactor}), and number of concurrently
2432 * updating threads ({@code concurrencyLevel}).
2433 *
2434 * @param initialCapacity the initial capacity. The implementation
2435 * performs internal sizing to accommodate this many elements,
2436 * given the specified load factor.
2437 * @param loadFactor the load factor (table density) for
2438 * establishing the initial table size
2439 * @param concurrencyLevel the estimated number of concurrently
2440 * updating threads. The implementation may use this value as
2441 * a sizing hint.
2442 * @throws IllegalArgumentException if the initial capacity is
2443 * negative or the load factor or concurrencyLevel are
2444 * nonpositive
2445 */
2446 public ConcurrentHashMapV8(int initialCapacity,
2447 float loadFactor, int concurrencyLevel) {
2448 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2449 throw new IllegalArgumentException();
2450 if (initialCapacity < concurrencyLevel) // Use at least as many bins
2451 initialCapacity = concurrencyLevel; // as estimated threads
2452 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2453 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2454 MAXIMUM_CAPACITY : tableSizeFor((int)size);
2455 this.counter = new LongAdder();
2456 this.sizeCtl = cap;
2457 }
2458
2459 /**
2460 * {@inheritDoc}
2461 */
2462 public boolean isEmpty() {
2463 return counter.sum() <= 0L; // ignore transient negative values
2464 }
2465
2466 /**
2467 * {@inheritDoc}
2468 */
2469 public int size() {
2470 long n = counter.sum();
2471 return ((n < 0L) ? 0 :
2472 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2473 (int)n);
2474 }
2475
2476 /**
2477 * Returns the number of mappings. This method should be used
2478 * instead of {@link #size} because a ConcurrentHashMap may
2479 * contain more mappings than can be represented as an int. The
2480 * value returned is a snapshot; the actual count may differ if
2481 * there are ongoing concurrent insertions or removals.
2482 *
2483 * @return the number of mappings
2484 */
2485 public long mappingCount() {
2486 long n = counter.sum();
2487 return (n < 0L) ? 0L : n; // ignore transient negative values
2488 }
2489
2490 /**
2491 * Returns the value to which the specified key is mapped,
2492 * or {@code null} if this map contains no mapping for the key.
2493 *
2494 * <p>More formally, if this map contains a mapping from a key
2495 * {@code k} to a value {@code v} such that {@code key.equals(k)},
2496 * then this method returns {@code v}; otherwise it returns
2497 * {@code null}. (There can be at most one such mapping.)
2498 *
2499 * @throws NullPointerException if the specified key is null
2500 */
2501 @SuppressWarnings("unchecked") public V get(Object key) {
2502 if (key == null)
2503 throw new NullPointerException();
2504 return (V)internalGet(key);
2505 }
2506
2507 /**
2508 * Returns the value to which the specified key is mapped,
2509 * or the given defaultValue if this map contains no mapping for the key.
2510 *
2511 * @param key the key
2512 * @param defaultValue the value to return if this map contains
2513 * no mapping for the given key
2514 * @return the mapping for the key, if present; else the defaultValue
2515 * @throws NullPointerException if the specified key is null
2516 */
2517 @SuppressWarnings("unchecked") public V getValueOrDefault(Object key, V defaultValue) {
2518 if (key == null)
2519 throw new NullPointerException();
2520 V v = (V) internalGet(key);
2521 return v == null ? defaultValue : v;
2522 }
2523
2524 /**
2525 * Tests if the specified object is a key in this table.
2526 *
2527 * @param key possible key
2528 * @return {@code true} if and only if the specified object
2529 * is a key in this table, as determined by the
2530 * {@code equals} method; {@code false} otherwise
2531 * @throws NullPointerException if the specified key is null
2532 */
2533 public boolean containsKey(Object key) {
2534 if (key == null)
2535 throw new NullPointerException();
2536 return internalGet(key) != null;
2537 }
2538
2539 /**
2540 * Returns {@code true} if this map maps one or more keys to the
2541 * specified value. Note: This method may require a full traversal
2542 * of the map, and is much slower than method {@code containsKey}.
2543 *
2544 * @param value value whose presence in this map is to be tested
2545 * @return {@code true} if this map maps one or more keys to the
2546 * specified value
2547 * @throws NullPointerException if the specified value is null
2548 */
2549 public boolean containsValue(Object value) {
2550 if (value == null)
2551 throw new NullPointerException();
2552 Object v;
2553 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2554 while ((v = it.advance()) != null) {
2555 if (v == value || value.equals(v))
2556 return true;
2557 }
2558 return false;
2559 }
2560
2561 /**
2562 * Legacy method testing if some key maps into the specified value
2563 * in this table. This method is identical in functionality to
2564 * {@link #containsValue}, and exists solely to ensure
2565 * full compatibility with class {@link java.util.Hashtable},
2566 * which supported this method prior to introduction of the
2567 * Java Collections framework.
2568 *
2569 * @param value a value to search for
2570 * @return {@code true} if and only if some key maps to the
2571 * {@code value} argument in this table as
2572 * determined by the {@code equals} method;
2573 * {@code false} otherwise
2574 * @throws NullPointerException if the specified value is null
2575 */
2576 public boolean contains(Object value) {
2577 return containsValue(value);
2578 }
2579
2580 /**
2581 * Maps the specified key to the specified value in this table.
2582 * Neither the key nor the value can be null.
2583 *
2584 * <p> The value can be retrieved by calling the {@code get} method
2585 * with a key that is equal to the original key.
2586 *
2587 * @param key key with which the specified value is to be associated
2588 * @param value value to be associated with the specified key
2589 * @return the previous value associated with {@code key}, or
2590 * {@code null} if there was no mapping for {@code key}
2591 * @throws NullPointerException if the specified key or value is null
2592 */
2593 @SuppressWarnings("unchecked") public V put(K key, V value) {
2594 if (key == null || value == null)
2595 throw new NullPointerException();
2596 return (V)internalPut(key, value);
2597 }
2598
2599 /**
2600 * {@inheritDoc}
2601 *
2602 * @return the previous value associated with the specified key,
2603 * or {@code null} if there was no mapping for the key
2604 * @throws NullPointerException if the specified key or value is null
2605 */
2606 @SuppressWarnings("unchecked") public V putIfAbsent(K key, V value) {
2607 if (key == null || value == null)
2608 throw new NullPointerException();
2609 return (V)internalPutIfAbsent(key, value);
2610 }
2611
2612 /**
2613 * Copies all of the mappings from the specified map to this one.
2614 * These mappings replace any mappings that this map had for any of the
2615 * keys currently in the specified map.
2616 *
2617 * @param m mappings to be stored in this map
2618 */
2619 public void putAll(Map<? extends K, ? extends V> m) {
2620 internalPutAll(m);
2621 }
2622
2623 /**
2624 * If the specified key is not already associated with a value,
2625 * computes its value using the given mappingFunction and enters
2626 * it into the map unless null. This is equivalent to
2627 * <pre> {@code
2628 * if (map.containsKey(key))
2629 * return map.get(key);
2630 * value = mappingFunction.apply(key);
2631 * if (value != null)
2632 * map.put(key, value);
2633 * return value;}</pre>
2634 *
2635 * except that the action is performed atomically. If the
2636 * function returns {@code null} no mapping is recorded. If the
2637 * function itself throws an (unchecked) exception, the exception
2638 * is rethrown to its caller, and no mapping is recorded. Some
2639 * attempted update operations on this map by other threads may be
2640 * blocked while computation is in progress, so the computation
2641 * should be short and simple, and must not attempt to update any
2642 * other mappings of this Map. The most appropriate usage is to
2643 * construct a new object serving as an initial mapped value, or
2644 * memoized result, as in:
2645 *
2646 * <pre> {@code
2647 * map.computeIfAbsent(key, new Fun<K, V>() {
2648 * public V map(K k) { return new Value(f(k)); }});}</pre>
2649 *
2650 * @param key key with which the specified value is to be associated
2651 * @param mappingFunction the function to compute a value
2652 * @return the current (existing or computed) value associated with
2653 * the specified key, or null if the computed value is null
2654 * @throws NullPointerException if the specified key or mappingFunction
2655 * is null
2656 * @throws IllegalStateException if the computation detectably
2657 * attempts a recursive update to this map that would
2658 * otherwise never complete
2659 * @throws RuntimeException or Error if the mappingFunction does so,
2660 * in which case the mapping is left unestablished
2661 */
2662 @SuppressWarnings("unchecked") public V computeIfAbsent
2663 (K key, Fun<? super K, ? extends V> mappingFunction) {
2664 if (key == null || mappingFunction == null)
2665 throw new NullPointerException();
2666 return (V)internalComputeIfAbsent(key, mappingFunction);
2667 }
2668
2669 /**
2670 * If the given key is present, computes a new mapping value given a key and
2671 * its current mapped value. This is equivalent to
2672 * <pre> {@code
2673 * if (map.containsKey(key)) {
2674 * value = remappingFunction.apply(key, map.get(key));
2675 * if (value != null)
2676 * map.put(key, value);
2677 * else
2678 * map.remove(key);
2679 * }
2680 * }</pre>
2681 *
2682 * except that the action is performed atomically. If the
2683 * function returns {@code null}, the mapping is removed. If the
2684 * function itself throws an (unchecked) exception, the exception
2685 * is rethrown to its caller, and the current mapping is left
2686 * unchanged. Some attempted update operations on this map by
2687 * other threads may be blocked while computation is in progress,
2688 * so the computation should be short and simple, and must not
2689 * attempt to update any other mappings of this Map. For example,
2690 * to either create or append new messages to a value mapping:
2691 *
2692 * @param key key with which the specified value is to be associated
2693 * @param remappingFunction the function to compute a value
2694 * @return the new value associated with the specified key, or null if none
2695 * @throws NullPointerException if the specified key or remappingFunction
2696 * is null
2697 * @throws IllegalStateException if the computation detectably
2698 * attempts a recursive update to this map that would
2699 * otherwise never complete
2700 * @throws RuntimeException or Error if the remappingFunction does so,
2701 * in which case the mapping is unchanged
2702 */
2703 @SuppressWarnings("unchecked") public V computeIfPresent
2704 (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2705 if (key == null || remappingFunction == null)
2706 throw new NullPointerException();
2707 return (V)internalCompute(key, true, remappingFunction);
2708 }
2709
2710 /**
2711 * Computes a new mapping value given a key and
2712 * its current mapped value (or {@code null} if there is no current
2713 * mapping). This is equivalent to
2714 * <pre> {@code
2715 * value = remappingFunction.apply(key, map.get(key));
2716 * if (value != null)
2717 * map.put(key, value);
2718 * else
2719 * map.remove(key);
2720 * }</pre>
2721 *
2722 * except that the action is performed atomically. If the
2723 * function returns {@code null}, the mapping is removed. If the
2724 * function itself throws an (unchecked) exception, the exception
2725 * is rethrown to its caller, and the current mapping is left
2726 * unchanged. Some attempted update operations on this map by
2727 * other threads may be blocked while computation is in progress,
2728 * so the computation should be short and simple, and must not
2729 * attempt to update any other mappings of this Map. For example,
2730 * to either create or append new messages to a value mapping:
2731 *
2732 * <pre> {@code
2733 * Map<Key, String> map = ...;
2734 * final String msg = ...;
2735 * map.compute(key, new BiFun<Key, String, String>() {
2736 * public String apply(Key k, String v) {
2737 * return (v == null) ? msg : v + msg;});}}</pre>
2738 *
2739 * @param key key with which the specified value is to be associated
2740 * @param remappingFunction the function to compute a value
2741 * @return the new value associated with the specified key, or null if none
2742 * @throws NullPointerException if the specified key or remappingFunction
2743 * is null
2744 * @throws IllegalStateException if the computation detectably
2745 * attempts a recursive update to this map that would
2746 * otherwise never complete
2747 * @throws RuntimeException or Error if the remappingFunction does so,
2748 * in which case the mapping is unchanged
2749 */
2750 @SuppressWarnings("unchecked") public V compute
2751 (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2752 if (key == null || remappingFunction == null)
2753 throw new NullPointerException();
2754 return (V)internalCompute(key, false, remappingFunction);
2755 }
2756
2757 /**
2758 * If the specified key is not already associated
2759 * with a value, associate it with the given value.
2760 * Otherwise, replace the value with the results of
2761 * the given remapping function. This is equivalent to:
2762 * <pre> {@code
2763 * if (!map.containsKey(key))
2764 * map.put(value);
2765 * else {
2766 * newValue = remappingFunction.apply(map.get(key), value);
2767 * if (value != null)
2768 * map.put(key, value);
2769 * else
2770 * map.remove(key);
2771 * }
2772 * }</pre>
2773 * except that the action is performed atomically. If the
2774 * function returns {@code null}, the mapping is removed. If the
2775 * function itself throws an (unchecked) exception, the exception
2776 * is rethrown to its caller, and the current mapping is left
2777 * unchanged. Some attempted update operations on this map by
2778 * other threads may be blocked while computation is in progress,
2779 * so the computation should be short and simple, and must not
2780 * attempt to update any other mappings of this Map.
2781 */
2782 @SuppressWarnings("unchecked") public V merge
2783 (K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
2784 if (key == null || value == null || remappingFunction == null)
2785 throw new NullPointerException();
2786 return (V)internalMerge(key, value, remappingFunction);
2787 }
2788
2789 /**
2790 * Removes the key (and its corresponding value) from this map.
2791 * This method does nothing if the key is not in the map.
2792 *
2793 * @param key the key that needs to be removed
2794 * @return the previous value associated with {@code key}, or
2795 * {@code null} if there was no mapping for {@code key}
2796 * @throws NullPointerException if the specified key is null
2797 */
2798 @SuppressWarnings("unchecked") public V remove(Object key) {
2799 if (key == null)
2800 throw new NullPointerException();
2801 return (V)internalReplace(key, null, null);
2802 }
2803
2804 /**
2805 * {@inheritDoc}
2806 *
2807 * @throws NullPointerException if the specified key is null
2808 */
2809 public boolean remove(Object key, Object value) {
2810 if (key == null)
2811 throw new NullPointerException();
2812 if (value == null)
2813 return false;
2814 return internalReplace(key, null, value) != null;
2815 }
2816
2817 /**
2818 * {@inheritDoc}
2819 *
2820 * @throws NullPointerException if any of the arguments are null
2821 */
2822 public boolean replace(K key, V oldValue, V newValue) {
2823 if (key == null || oldValue == null || newValue == null)
2824 throw new NullPointerException();
2825 return internalReplace(key, newValue, oldValue) != null;
2826 }
2827
2828 /**
2829 * {@inheritDoc}
2830 *
2831 * @return the previous value associated with the specified key,
2832 * or {@code null} if there was no mapping for the key
2833 * @throws NullPointerException if the specified key or value is null
2834 */
2835 @SuppressWarnings("unchecked") public V replace(K key, V value) {
2836 if (key == null || value == null)
2837 throw new NullPointerException();
2838 return (V)internalReplace(key, value, null);
2839 }
2840
2841 /**
2842 * Removes all of the mappings from this map.
2843 */
2844 public void clear() {
2845 internalClear();
2846 }
2847
2848 /**
2849 * Returns a {@link Set} view of the keys contained in this map.
2850 * The set is backed by the map, so changes to the map are
2851 * reflected in the set, and vice-versa. The set supports element
2852 * removal, which removes the corresponding mapping from this map,
2853 * via the {@code Iterator.remove}, {@code Set.remove},
2854 * {@code removeAll}, {@code retainAll}, and {@code clear}
2855 * operations. It does not support the {@code add} or
2856 * {@code addAll} operations.
2857 *
2858 * <p>The view's {@code iterator} is a "weakly consistent" iterator
2859 * that will never throw {@link ConcurrentModificationException},
2860 * and guarantees to traverse elements as they existed upon
2861 * construction of the iterator, and may (but is not guaranteed to)
2862 * reflect any modifications subsequent to construction.
2863 */
2864 public Set<K> keySet() {
2865 KeySet<K,V> ks = keySet;
2866 return (ks != null) ? ks : (keySet = new KeySet<K,V>(this));
2867 }
2868
2869 /**
2870 * Returns a {@link Collection} view of the values contained in this map.
2871 * The collection is backed by the map, so changes to the map are
2872 * reflected in the collection, and vice-versa. The collection
2873 * supports element removal, which removes the corresponding
2874 * mapping from this map, via the {@code Iterator.remove},
2875 * {@code Collection.remove}, {@code removeAll},
2876 * {@code retainAll}, and {@code clear} operations. It does not
2877 * support the {@code add} or {@code addAll} operations.
2878 *
2879 * <p>The view's {@code iterator} is a "weakly consistent" iterator
2880 * that will never throw {@link ConcurrentModificationException},
2881 * and guarantees to traverse elements as they existed upon
2882 * construction of the iterator, and may (but is not guaranteed to)
2883 * reflect any modifications subsequent to construction.
2884 */
2885 public Collection<V> values() {
2886 Values<K,V> vs = values;
2887 return (vs != null) ? vs : (values = new Values<K,V>(this));
2888 }
2889
2890 /**
2891 * Returns a {@link Set} view of the mappings contained in this map.
2892 * The set is backed by the map, so changes to the map are
2893 * reflected in the set, and vice-versa. The set supports element
2894 * removal, which removes the corresponding mapping from the map,
2895 * via the {@code Iterator.remove}, {@code Set.remove},
2896 * {@code removeAll}, {@code retainAll}, and {@code clear}
2897 * operations. It does not support the {@code add} or
2898 * {@code addAll} operations.
2899 *
2900 * <p>The view's {@code iterator} is a "weakly consistent" iterator
2901 * that will never throw {@link ConcurrentModificationException},
2902 * and guarantees to traverse elements as they existed upon
2903 * construction of the iterator, and may (but is not guaranteed to)
2904 * reflect any modifications subsequent to construction.
2905 */
2906 public Set<Map.Entry<K,V>> entrySet() {
2907 EntrySet<K,V> es = entrySet;
2908 return (es != null) ? es : (entrySet = new EntrySet<K,V>(this));
2909 }
2910
2911 /**
2912 * Returns an enumeration of the keys in this table.
2913 *
2914 * @return an enumeration of the keys in this table
2915 * @see #keySet()
2916 */
2917 public Enumeration<K> keys() {
2918 return new KeyIterator<K,V>(this);
2919 }
2920
2921 /**
2922 * Returns an enumeration of the values in this table.
2923 *
2924 * @return an enumeration of the values in this table
2925 * @see #values()
2926 */
2927 public Enumeration<V> elements() {
2928 return new ValueIterator<K,V>(this);
2929 }
2930
2931 /**
2932 * Returns a partitionable iterator of the keys in this map.
2933 *
2934 * @return a partitionable iterator of the keys in this map
2935 */
2936 public Spliterator<K> keySpliterator() {
2937 return new KeyIterator<K,V>(this);
2938 }
2939
2940 /**
2941 * Returns a partitionable iterator of the values in this map.
2942 *
2943 * @return a partitionable iterator of the values in this map
2944 */
2945 public Spliterator<V> valueSpliterator() {
2946 return new ValueIterator<K,V>(this);
2947 }
2948
2949 /**
2950 * Returns a partitionable iterator of the entries in this map.
2951 *
2952 * @return a partitionable iterator of the entries in this map
2953 */
2954 public Spliterator<Map.Entry<K,V>> entrySpliterator() {
2955 return new EntryIterator<K,V>(this);
2956 }
2957
2958 /**
2959 * Returns the hash code value for this {@link Map}, i.e.,
2960 * the sum of, for each key-value pair in the map,
2961 * {@code key.hashCode() ^ value.hashCode()}.
2962 *
2963 * @return the hash code value for this map
2964 */
2965 public int hashCode() {
2966 int h = 0;
2967 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2968 Object v;
2969 while ((v = it.advance()) != null) {
2970 h += it.nextKey.hashCode() ^ v.hashCode();
2971 }
2972 return h;
2973 }
2974
2975 /**
2976 * Returns a string representation of this map. The string
2977 * representation consists of a list of key-value mappings (in no
2978 * particular order) enclosed in braces ("{@code {}}"). Adjacent
2979 * mappings are separated by the characters {@code ", "} (comma
2980 * and space). Each key-value mapping is rendered as the key
2981 * followed by an equals sign ("{@code =}") followed by the
2982 * associated value.
2983 *
2984 * @return a string representation of this map
2985 */
2986 public String toString() {
2987 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2988 StringBuilder sb = new StringBuilder();
2989 sb.append('{');
2990 Object v;
2991 if ((v = it.advance()) != null) {
2992 for (;;) {
2993 Object k = it.nextKey;
2994 sb.append(k == this ? "(this Map)" : k);
2995 sb.append('=');
2996 sb.append(v == this ? "(this Map)" : v);
2997 if ((v = it.advance()) == null)
2998 break;
2999 sb.append(',').append(' ');
3000 }
3001 }
3002 return sb.append('}').toString();
3003 }
3004
3005 /**
3006 * Compares the specified object with this map for equality.
3007 * Returns {@code true} if the given object is a map with the same
3008 * mappings as this map. This operation may return misleading
3009 * results if either map is concurrently modified during execution
3010 * of this method.
3011 *
3012 * @param o object to be compared for equality with this map
3013 * @return {@code true} if the specified object is equal to this map
3014 */
3015 public boolean equals(Object o) {
3016 if (o != this) {
3017 if (!(o instanceof Map))
3018 return false;
3019 Map<?,?> m = (Map<?,?>) o;
3020 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3021 Object val;
3022 while ((val = it.advance()) != null) {
3023 Object v = m.get(it.nextKey);
3024 if (v == null || (v != val && !v.equals(val)))
3025 return false;
3026 }
3027 for (Map.Entry<?,?> e : m.entrySet()) {
3028 Object mk, mv, v;
3029 if ((mk = e.getKey()) == null ||
3030 (mv = e.getValue()) == null ||
3031 (v = internalGet(mk)) == null ||
3032 (mv != v && !mv.equals(v)))
3033 return false;
3034 }
3035 }
3036 return true;
3037 }
3038
3039 /* ----------------Iterators -------------- */
3040
3041 @SuppressWarnings("serial") static final class KeyIterator<K,V> extends Traverser<K,V,Object>
3042 implements Spliterator<K>, Enumeration<K> {
3043 KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3044 KeyIterator(Traverser<K,V,Object> it) {
3045 super(it);
3046 }
3047 public KeyIterator<K,V> split() {
3048 if (last != null || (next != null && nextVal == null))
3049 throw new IllegalStateException();
3050 return new KeyIterator<K,V>(this);
3051 }
3052 @SuppressWarnings("unchecked") public final K next() {
3053 if (nextVal == null && advance() == null)
3054 throw new NoSuchElementException();
3055 Object k = nextKey;
3056 nextVal = null;
3057 return (K) k;
3058 }
3059
3060 public final K nextElement() { return next(); }
3061 }
3062
3063 @SuppressWarnings("serial") static final class ValueIterator<K,V> extends Traverser<K,V,Object>
3064 implements Spliterator<V>, Enumeration<V> {
3065 ValueIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3066 ValueIterator(Traverser<K,V,Object> it) {
3067 super(it);
3068 }
3069 public ValueIterator<K,V> split() {
3070 if (last != null || (next != null && nextVal == null))
3071 throw new IllegalStateException();
3072 return new ValueIterator<K,V>(this);
3073 }
3074
3075 @SuppressWarnings("unchecked") public final V next() {
3076 Object v;
3077 if ((v = nextVal) == null && (v = advance()) == null)
3078 throw new NoSuchElementException();
3079 nextVal = null;
3080 return (V) v;
3081 }
3082
3083 public final V nextElement() { return next(); }
3084 }
3085
3086 @SuppressWarnings("serial") static final class EntryIterator<K,V> extends Traverser<K,V,Object>
3087 implements Spliterator<Map.Entry<K,V>> {
3088 EntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3089 EntryIterator(Traverser<K,V,Object> it) {
3090 super(it);
3091 }
3092 public EntryIterator<K,V> split() {
3093 if (last != null || (next != null && nextVal == null))
3094 throw new IllegalStateException();
3095 return new EntryIterator<K,V>(this);
3096 }
3097
3098 @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3099 Object v;
3100 if ((v = nextVal) == null && (v = advance()) == null)
3101 throw new NoSuchElementException();
3102 Object k = nextKey;
3103 nextVal = null;
3104 return new MapEntry<K,V>((K)k, (V)v, map);
3105 }
3106 }
3107
3108 /**
3109 * Exported Entry for iterators
3110 */
3111 static final class MapEntry<K,V> implements Map.Entry<K, V> {
3112 final K key; // non-null
3113 V val; // non-null
3114 final ConcurrentHashMapV8<K, V> map;
3115 MapEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
3116 this.key = key;
3117 this.val = val;
3118 this.map = map;
3119 }
3120 public final K getKey() { return key; }
3121 public final V getValue() { return val; }
3122 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
3123 public final String toString(){ return key + "=" + val; }
3124
3125 public final boolean equals(Object o) {
3126 Object k, v; Map.Entry<?,?> e;
3127 return ((o instanceof Map.Entry) &&
3128 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3129 (v = e.getValue()) != null &&
3130 (k == key || k.equals(key)) &&
3131 (v == val || v.equals(val)));
3132 }
3133
3134 /**
3135 * Sets our entry's value and writes through to the map. The
3136 * value to return is somewhat arbitrary here. Since we do not
3137 * necessarily track asynchronous changes, the most recent
3138 * "previous" value could be different from what we return (or
3139 * could even have been removed in which case the put will
3140 * re-establish). We do not and cannot guarantee more.
3141 */
3142 public final V setValue(V value) {
3143 if (value == null) throw new NullPointerException();
3144 V v = val;
3145 val = value;
3146 map.put(key, value);
3147 return v;
3148 }
3149 }
3150
3151 /* ----------------Views -------------- */
3152
3153 /**
3154 * Base class for views.
3155 */
3156 static abstract class CHMView<K, V> {
3157 final ConcurrentHashMapV8<K, V> map;
3158 CHMView(ConcurrentHashMapV8<K, V> map) { this.map = map; }
3159 public final int size() { return map.size(); }
3160 public final boolean isEmpty() { return map.isEmpty(); }
3161 public final void clear() { map.clear(); }
3162
3163 // implementations below rely on concrete classes supplying these
3164 abstract public Iterator<?> iterator();
3165 abstract public boolean contains(Object o);
3166 abstract public boolean remove(Object o);
3167
3168 private static final String oomeMsg = "Required array size too large";
3169
3170 public final Object[] toArray() {
3171 long sz = map.mappingCount();
3172 if (sz > (long)(MAX_ARRAY_SIZE))
3173 throw new OutOfMemoryError(oomeMsg);
3174 int n = (int)sz;
3175 Object[] r = new Object[n];
3176 int i = 0;
3177 Iterator<?> it = iterator();
3178 while (it.hasNext()) {
3179 if (i == n) {
3180 if (n >= MAX_ARRAY_SIZE)
3181 throw new OutOfMemoryError(oomeMsg);
3182 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
3183 n = MAX_ARRAY_SIZE;
3184 else
3185 n += (n >>> 1) + 1;
3186 r = Arrays.copyOf(r, n);
3187 }
3188 r[i++] = it.next();
3189 }
3190 return (i == n) ? r : Arrays.copyOf(r, i);
3191 }
3192
3193 @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
3194 long sz = map.mappingCount();
3195 if (sz > (long)(MAX_ARRAY_SIZE))
3196 throw new OutOfMemoryError(oomeMsg);
3197 int m = (int)sz;
3198 T[] r = (a.length >= m) ? a :
3199 (T[])java.lang.reflect.Array
3200 .newInstance(a.getClass().getComponentType(), m);
3201 int n = r.length;
3202 int i = 0;
3203 Iterator<?> it = iterator();
3204 while (it.hasNext()) {
3205 if (i == n) {
3206 if (n >= MAX_ARRAY_SIZE)
3207 throw new OutOfMemoryError(oomeMsg);
3208 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
3209 n = MAX_ARRAY_SIZE;
3210 else
3211 n += (n >>> 1) + 1;
3212 r = Arrays.copyOf(r, n);
3213 }
3214 r[i++] = (T)it.next();
3215 }
3216 if (a == r && i < n) {
3217 r[i] = null; // null-terminate
3218 return r;
3219 }
3220 return (i == n) ? r : Arrays.copyOf(r, i);
3221 }
3222
3223 public final int hashCode() {
3224 int h = 0;
3225 for (Iterator<?> it = iterator(); it.hasNext();)
3226 h += it.next().hashCode();
3227 return h;
3228 }
3229
3230 public final String toString() {
3231 StringBuilder sb = new StringBuilder();
3232 sb.append('[');
3233 Iterator<?> it = iterator();
3234 if (it.hasNext()) {
3235 for (;;) {
3236 Object e = it.next();
3237 sb.append(e == this ? "(this Collection)" : e);
3238 if (!it.hasNext())
3239 break;
3240 sb.append(',').append(' ');
3241 }
3242 }
3243 return sb.append(']').toString();
3244 }
3245
3246 public final boolean containsAll(Collection<?> c) {
3247 if (c != this) {
3248 for (Iterator<?> it = c.iterator(); it.hasNext();) {
3249 Object e = it.next();
3250 if (e == null || !contains(e))
3251 return false;
3252 }
3253 }
3254 return true;
3255 }
3256
3257 public final boolean removeAll(Collection<?> c) {
3258 boolean modified = false;
3259 for (Iterator<?> it = iterator(); it.hasNext();) {
3260 if (c.contains(it.next())) {
3261 it.remove();
3262 modified = true;
3263 }
3264 }
3265 return modified;
3266 }
3267
3268 public final boolean retainAll(Collection<?> c) {
3269 boolean modified = false;
3270 for (Iterator<?> it = iterator(); it.hasNext();) {
3271 if (!c.contains(it.next())) {
3272 it.remove();
3273 modified = true;
3274 }
3275 }
3276 return modified;
3277 }
3278
3279 }
3280
3281 static final class KeySet<K,V> extends CHMView<K,V> implements Set<K> {
3282 KeySet(ConcurrentHashMapV8<K, V> map) {
3283 super(map);
3284 }
3285 public final boolean contains(Object o) { return map.containsKey(o); }
3286 public final boolean remove(Object o) { return map.remove(o) != null; }
3287 public final Iterator<K> iterator() {
3288 return new KeyIterator<K,V>(map);
3289 }
3290 public final boolean add(K e) {
3291 throw new UnsupportedOperationException();
3292 }
3293 public final boolean addAll(Collection<? extends K> c) {
3294 throw new UnsupportedOperationException();
3295 }
3296 public boolean equals(Object o) {
3297 Set<?> c;
3298 return ((o instanceof Set) &&
3299 ((c = (Set<?>)o) == this ||
3300 (containsAll(c) && c.containsAll(this))));
3301 }
3302 }
3303
3304
3305 static final class Values<K,V> extends CHMView<K,V>
3306 implements Collection<V> {
3307 Values(ConcurrentHashMapV8<K, V> map) { super(map); }
3308 public final boolean contains(Object o) { return map.containsValue(o); }
3309 public final boolean remove(Object o) {
3310 if (o != null) {
3311 Iterator<V> it = new ValueIterator<K,V>(map);
3312 while (it.hasNext()) {
3313 if (o.equals(it.next())) {
3314 it.remove();
3315 return true;
3316 }
3317 }
3318 }
3319 return false;
3320 }
3321 public final Iterator<V> iterator() {
3322 return new ValueIterator<K,V>(map);
3323 }
3324 public final boolean add(V e) {
3325 throw new UnsupportedOperationException();
3326 }
3327 public final boolean addAll(Collection<? extends V> c) {
3328 throw new UnsupportedOperationException();
3329 }
3330
3331 }
3332
3333 static final class EntrySet<K,V> extends CHMView<K,V>
3334 implements Set<Map.Entry<K,V>> {
3335 EntrySet(ConcurrentHashMapV8<K, V> map) { super(map); }
3336 public final boolean contains(Object o) {
3337 Object k, v, r; Map.Entry<?,?> e;
3338 return ((o instanceof Map.Entry) &&
3339 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3340 (r = map.get(k)) != null &&
3341 (v = e.getValue()) != null &&
3342 (v == r || v.equals(r)));
3343 }
3344 public final boolean remove(Object o) {
3345 Object k, v; Map.Entry<?,?> e;
3346 return ((o instanceof Map.Entry) &&
3347 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3348 (v = e.getValue()) != null &&
3349 map.remove(k, v));
3350 }
3351 public final Iterator<Map.Entry<K,V>> iterator() {
3352 return new EntryIterator<K,V>(map);
3353 }
3354 public final boolean add(Entry<K,V> e) {
3355 throw new UnsupportedOperationException();
3356 }
3357 public final boolean addAll(Collection<? extends Entry<K,V>> c) {
3358 throw new UnsupportedOperationException();
3359 }
3360 public boolean equals(Object o) {
3361 Set<?> c;
3362 return ((o instanceof Set) &&
3363 ((c = (Set<?>)o) == this ||
3364 (containsAll(c) && c.containsAll(this))));
3365 }
3366 }
3367
3368 /* ---------------- Serialization Support -------------- */
3369
3370 /**
3371 * Stripped-down version of helper class used in previous version,
3372 * declared for the sake of serialization compatibility
3373 */
3374 static class Segment<K,V> implements Serializable {
3375 private static final long serialVersionUID = 2249069246763182397L;
3376 final float loadFactor;
3377 Segment(float lf) { this.loadFactor = lf; }
3378 }
3379
3380 /**
3381 * Saves the state of the {@code ConcurrentHashMapV8} instance to a
3382 * stream (i.e., serializes it).
3383 * @param s the stream
3384 * @serialData
3385 * the key (Object) and value (Object)
3386 * for each key-value mapping, followed by a null pair.
3387 * The key-value mappings are emitted in no particular order.
3388 */
3389 @SuppressWarnings("unchecked") private void writeObject(java.io.ObjectOutputStream s)
3390 throws java.io.IOException {
3391 if (segments == null) { // for serialization compatibility
3392 segments = (Segment<K,V>[])
3393 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3394 for (int i = 0; i < segments.length; ++i)
3395 segments[i] = new Segment<K,V>(LOAD_FACTOR);
3396 }
3397 s.defaultWriteObject();
3398 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3399 Object v;
3400 while ((v = it.advance()) != null) {
3401 s.writeObject(it.nextKey);
3402 s.writeObject(v);
3403 }
3404 s.writeObject(null);
3405 s.writeObject(null);
3406 segments = null; // throw away
3407 }
3408
3409 /**
3410 * Reconstitutes the instance from a stream (that is, deserializes it).
3411 * @param s the stream
3412 */
3413 @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s)
3414 throws java.io.IOException, ClassNotFoundException {
3415 s.defaultReadObject();
3416 this.segments = null; // unneeded
3417 // initialize transient final field
3418 UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
3419
3420 // Create all nodes, then place in table once size is known
3421 long size = 0L;
3422 Node p = null;
3423 for (;;) {
3424 K k = (K) s.readObject();
3425 V v = (V) s.readObject();
3426 if (k != null && v != null) {
3427 int h = spread(k.hashCode());
3428 p = new Node(h, k, v, p);
3429 ++size;
3430 }
3431 else
3432 break;
3433 }
3434 if (p != null) {
3435 boolean init = false;
3436 int n;
3437 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3438 n = MAXIMUM_CAPACITY;
3439 else {
3440 int sz = (int)size;
3441 n = tableSizeFor(sz + (sz >>> 1) + 1);
3442 }
3443 int sc = sizeCtl;
3444 boolean collide = false;
3445 if (n > sc &&
3446 UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
3447 try {
3448 if (table == null) {
3449 init = true;
3450 Node[] tab = new Node[n];
3451 int mask = n - 1;
3452 while (p != null) {
3453 int j = p.hash & mask;
3454 Node next = p.next;
3455 Node q = p.next = tabAt(tab, j);
3456 setTabAt(tab, j, p);
3457 if (!collide && q != null && q.hash == p.hash)
3458 collide = true;
3459 p = next;
3460 }
3461 table = tab;
3462 counter.add(size);
3463 sc = n - (n >>> 2);
3464 }
3465 } finally {
3466 sizeCtl = sc;
3467 }
3468 if (collide) { // rescan and convert to TreeBins
3469 Node[] tab = table;
3470 for (int i = 0; i < tab.length; ++i) {
3471 int c = 0;
3472 for (Node e = tabAt(tab, i); e != null; e = e.next) {
3473 if (++c > TREE_THRESHOLD &&
3474 (e.key instanceof Comparable)) {
3475 replaceWithTreeBin(tab, i, e.key);
3476 break;
3477 }
3478 }
3479 }
3480 }
3481 }
3482 if (!init) { // Can only happen if unsafely published.
3483 while (p != null) {
3484 internalPut(p.key, p.val);
3485 p = p.next;
3486 }
3487 }
3488 }
3489 }
3490
3491
3492 // -------------------------------------------------------
3493
3494 // Sams
3495 /** Interface describing a void action of one argument */
3496 public interface Action<A> { void apply(A a); }
3497 /** Interface describing a void action of two arguments */
3498 public interface BiAction<A,B> { void apply(A a, B b); }
3499 /** Interface describing a function of one argument */
3500 public interface Fun<A,T> { T apply(A a); }
3501 /** Interface describing a function of two arguments */
3502 public interface BiFun<A,B,T> { T apply(A a, B b); }
3503 /** Interface describing a function of no arguments */
3504 public interface Generator<T> { T apply(); }
3505 /** Interface describing a function mapping its argument to a double */
3506 public interface ObjectToDouble<A> { double apply(A a); }
3507 /** Interface describing a function mapping its argument to a long */
3508 public interface ObjectToLong<A> { long apply(A a); }
3509 /** Interface describing a function mapping its argument to an int */
3510 public interface ObjectToInt<A> {int apply(A a); }
3511 /** Interface describing a function mapping two arguments to a double */
3512 public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3513 /** Interface describing a function mapping two arguments to a long */
3514 public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3515 /** Interface describing a function mapping two arguments to an int */
3516 public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3517 /** Interface describing a function mapping a double to a double */
3518 public interface DoubleToDouble { double apply(double a); }
3519 /** Interface describing a function mapping a long to a long */
3520 public interface LongToLong { long apply(long a); }
3521 /** Interface describing a function mapping an int to an int */
3522 public interface IntToInt { int apply(int a); }
3523 /** Interface describing a function mapping two doubles to a double */
3524 public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3525 /** Interface describing a function mapping two longs to a long */
3526 public interface LongByLongToLong { long apply(long a, long b); }
3527 /** Interface describing a function mapping two ints to an int */
3528 public interface IntByIntToInt { int apply(int a, int b); }
3529
3530
3531 // -------------------------------------------------------
3532
3533 /**
3534 * Returns an extended {@link Parallel} view of this map using the
3535 * given executor for bulk parallel operations.
3536 *
3537 * @param executor the executor
3538 * @return a parallel view
3539 */
3540 public Parallel parallel(ForkJoinPool executor) {
3541 return new Parallel(executor);
3542 }
3543
3544 /**
3545 * An extended view of a ConcurrentHashMap supporting bulk
3546 * parallel operations. These operations are designed to be
3547 * safely, and often sensibly, applied even with maps that are
3548 * being concurrently updated by other threads; for example, when
3549 * computing a snapshot summary of the values in a shared
3550 * registry. There are three kinds of operation, each with four
3551 * forms, accepting functions with Keys, Values, Entries, and
3552 * (Key, Value) arguments and/or return values. Because the
3553 * elements of a ConcurrentHashMap are not ordered in any
3554 * particular way, and may be processed in different orders in
3555 * different parallel executions, the correctness of supplied
3556 * functions should not depend on any ordering, or on any other
3557 * objects or values that may transiently change while computation
3558 * is in progress; and except for forEach actions, should ideally
3559 * be side-effect-free.
3560 *
3561 * <ul>
3562 * <li> forEach: Perform a given action on each element.
3563 * A variant form applies a given transformation on each element
3564 * before performing the action.</li>
3565 *
3566 * <li> search: Return the first available non-null result of
3567 * applying a given function on each element; skipping further
3568 * search when a result is found.</li>
3569 *
3570 * <li> reduce: Accumulate each element. The supplied reduction
3571 * function cannot rely on ordering (more formally, it should be
3572 * both associative and commutative). There are five variants:
3573 *
3574 * <ul>
3575 *
3576 * <li> Plain reductions. (There is not a form of this method for
3577 * (key, value) function arguments since there is no corresponding
3578 * return type.)</li>
3579 *
3580 * <li> Mapped reductions that accumulate the results of a given
3581 * function applied to each element.</li>
3582 *
3583 * <li> Reductions to scalar doubles, longs, and ints, using a
3584 * given basis value.</li>
3585 *
3586 * </li>
3587 * </ul>
3588 * </ul>
3589 *
3590 * <p>The concurrency properties of the bulk operations follow
3591 * from those of ConcurrentHashMap: Any non-null result returned
3592 * from {@code get(key)} and related access methods bears a
3593 * happens-before relation with the associated insertion or
3594 * update. The result of any bulk operation reflects the
3595 * composition of these per-element relations (but is not
3596 * necessarily atomic with respect to the map as a whole unless it
3597 * is somehow known to be quiescent). Conversely, because keys
3598 * and values in the map are never null, null serves as a reliable
3599 * atomic indicator of the current lack of any result. To
3600 * maintain this property, null serves as an implicit basis for
3601 * all non-scalar reduction operations. For the double, long, and
3602 * int versions, the basis should be one that, when combined with
3603 * any other value, returns that other value (more formally, it
3604 * should be the identity element for the reduction). Most common
3605 * reductions have these properties; for example, computing a sum
3606 * with basis 0 or a minimum with basis MAX_VALUE.
3607 *
3608 * <p>Search and transformation functions provided as arguments
3609 * should similarly return null to indicate the lack of any result
3610 * (in which case it is not used). In the case of mapped
3611 * reductions, this also enables transformations to serve as
3612 * filters, returning null (or, in the case of primitive
3613 * specializations, the identity basis) if the element should not
3614 * be combined. You can create compound transformations and
3615 * filterings by composing them yourself under this "null means
3616 * there is nothing there now" rule before using them in search or
3617 * reduce operations.
3618 *
3619 * <p>Methods accepting and/or returning Entry arguments maintain
3620 * key-value associations. They may be useful for example when
3621 * finding the key for the greatest value. Note that "plain" Entry
3622 * arguments can be supplied using {@code new
3623 * AbstractMap.SimpleEntry(k,v)}.
3624 *
3625 * <p> Bulk operations may complete abruptly, throwing an
3626 * exception encountered in the application of a supplied
3627 * function. Bear in mind when handling such exceptions that other
3628 * concurrently executing functions could also have thrown
3629 * exceptions, or would have done so if the first exception had
3630 * not occurred.
3631 *
3632 * <p>Parallel speedups compared to sequential processing are
3633 * common but not guaranteed. Operations involving brief
3634 * functions on small maps may execute more slowly than sequential
3635 * loops if the underlying work to parallelize the computation is
3636 * more expensive than the computation itself. Similarly,
3637 * parallelization may not lead to much actual parallelism if all
3638 * processors are busy performing unrelated tasks.
3639 *
3640 * <p> All arguments to all task methods must be non-null.
3641 *
3642 * <p><em>jsr166e note: During transition, this class
3643 * uses nested functional interfaces with different names but the
3644 * same forms as those expected for JDK8.<em>
3645 */
3646 public class Parallel {
3647 final ForkJoinPool fjp;
3648
3649 /**
3650 * Returns an extended view of this map using the given
3651 * executor for bulk parallel operations.
3652 *
3653 * @param executor the executor
3654 */
3655 public Parallel(ForkJoinPool executor) {
3656 this.fjp = executor;
3657 }
3658
3659 /**
3660 * Performs the given action for each (key, value).
3661 *
3662 * @param action the action
3663 */
3664 public void forEach(BiAction<K,V> action) {
3665 fjp.invoke(ForkJoinTasks.forEach
3666 (ConcurrentHashMapV8.this, action));
3667 }
3668
3669 /**
3670 * Performs the given action for each non-null transformation
3671 * of each (key, value).
3672 *
3673 * @param transformer a function returning the transformation
3674 * for an element, or null if there is no transformation (in
3675 * which case the action is not applied)
3676 * @param action the action
3677 */
3678 public <U> void forEach(BiFun<? super K, ? super V, ? extends U> transformer,
3679 Action<U> action) {
3680 fjp.invoke(ForkJoinTasks.forEach
3681 (ConcurrentHashMapV8.this, transformer, action));
3682 }
3683
3684 /**
3685 * Returns a non-null result from applying the given search
3686 * function on each (key, value), or null if none. Upon
3687 * success, further element processing is suppressed and the
3688 * results of any other parallel invocations of the search
3689 * function are ignored.
3690 *
3691 * @param searchFunction a function returning a non-null
3692 * result on success, else null
3693 * @return a non-null result from applying the given search
3694 * function on each (key, value), or null if none
3695 */
3696 public <U> U search(BiFun<? super K, ? super V, ? extends U> searchFunction) {
3697 return fjp.invoke(ForkJoinTasks.search
3698 (ConcurrentHashMapV8.this, searchFunction));
3699 }
3700
3701 /**
3702 * Returns the result of accumulating the given transformation
3703 * of all (key, value) pairs using the given reducer to
3704 * combine values, or null if none.
3705 *
3706 * @param transformer a function returning the transformation
3707 * for an element, or null if there is no transformation (in
3708 * which case it is not combined)
3709 * @param reducer a commutative associative combining function
3710 * @return the result of accumulating the given transformation
3711 * of all (key, value) pairs
3712 */
3713 public <U> U reduce(BiFun<? super K, ? super V, ? extends U> transformer,
3714 BiFun<? super U, ? super U, ? extends U> reducer) {
3715 return fjp.invoke(ForkJoinTasks.reduce
3716 (ConcurrentHashMapV8.this, transformer, reducer));
3717 }
3718
3719 /**
3720 * Returns the result of accumulating the given transformation
3721 * of all (key, value) pairs using the given reducer to
3722 * combine values, and the given basis as an identity value.
3723 *
3724 * @param transformer a function returning the transformation
3725 * for an element
3726 * @param basis the identity (initial default value) for the reduction
3727 * @param reducer a commutative associative combining function
3728 * @return the result of accumulating the given transformation
3729 * of all (key, value) pairs
3730 */
3731 public double reduceToDouble(ObjectByObjectToDouble<? super K, ? super V> transformer,
3732 double basis,
3733 DoubleByDoubleToDouble reducer) {
3734 return fjp.invoke(ForkJoinTasks.reduceToDouble
3735 (ConcurrentHashMapV8.this, transformer, basis, reducer));
3736 }
3737
3738 /**
3739 * Returns the result of accumulating the given transformation
3740 * of all (key, value) pairs using the given reducer to
3741 * combine values, and the given basis as an identity value.
3742 *
3743 * @param transformer a function returning the transformation
3744 * for an element
3745 * @param basis the identity (initial default value) for the reduction
3746 * @param reducer a commutative associative combining function
3747 * @return the result of accumulating the given transformation
3748 * of all (key, value) pairs
3749 */
3750 public long reduceToLong(ObjectByObjectToLong<? super K, ? super V> transformer,
3751 long basis,
3752 LongByLongToLong reducer) {
3753 return fjp.invoke(ForkJoinTasks.reduceToLong
3754 (ConcurrentHashMapV8.this, transformer, basis, reducer));
3755 }
3756
3757 /**
3758 * Returns the result of accumulating the given transformation
3759 * of all (key, value) pairs using the given reducer to
3760 * combine values, and the given basis as an identity value.
3761 *
3762 * @param transformer a function returning the transformation
3763 * for an element
3764 * @param basis the identity (initial default value) for the reduction
3765 * @param reducer a commutative associative combining function
3766 * @return the result of accumulating the given transformation
3767 * of all (key, value) pairs
3768 */
3769 public int reduceToInt(ObjectByObjectToInt<? super K, ? super V> transformer,
3770 int basis,
3771 IntByIntToInt reducer) {
3772 return fjp.invoke(ForkJoinTasks.reduceToInt
3773 (ConcurrentHashMapV8.this, transformer, basis, reducer));
3774 }
3775
3776 /**
3777 * Performs the given action for each key.
3778 *
3779 * @param action the action
3780 */
3781 public void forEachKey(Action<K> action) {
3782 fjp.invoke(ForkJoinTasks.forEachKey
3783 (ConcurrentHashMapV8.this, action));
3784 }
3785
3786 /**
3787 * Performs the given action for each non-null transformation
3788 * of each key.
3789 *
3790 * @param transformer a function returning the transformation
3791 * for an element, or null if there is no transformation (in
3792 * which case the action is not applied)
3793 * @param action the action
3794 */
3795 public <U> void forEachKey(Fun<? super K, ? extends U> transformer,
3796 Action<U> action) {
3797 fjp.invoke(ForkJoinTasks.forEachKey
3798 (ConcurrentHashMapV8.this, transformer, action));
3799 }
3800
3801 /**
3802 * Returns a non-null result from applying the given search
3803 * function on each key, or null if none. Upon success,
3804 * further element processing is suppressed and the results of
3805 * any other parallel invocations of the search function are
3806 * ignored.
3807 *
3808 * @param searchFunction a function returning a non-null
3809 * result on success, else null
3810 * @return a non-null result from applying the given search
3811 * function on each key, or null if none
3812 */
3813 public <U> U searchKeys(Fun<? super K, ? extends U> searchFunction) {
3814 return fjp.invoke(ForkJoinTasks.searchKeys
3815 (ConcurrentHashMapV8.this, searchFunction));
3816 }
3817
3818 /**
3819 * Returns the result of accumulating all keys using the given
3820 * reducer to combine values, or null if none.
3821 *
3822 * @param reducer a commutative associative combining function
3823 * @return the result of accumulating all keys using the given
3824 * reducer to combine values, or null if none
3825 */
3826 public K reduceKeys(BiFun<? super K, ? super K, ? extends K> reducer) {
3827 return fjp.invoke(ForkJoinTasks.reduceKeys
3828 (ConcurrentHashMapV8.this, reducer));
3829 }
3830
3831 /**
3832 * Returns the result of accumulating the given transformation
3833 * of all keys using the given reducer to combine values, or
3834 * null if none.
3835 *
3836 * @param transformer a function returning the transformation
3837 * for an element, or null if there is no transformation (in
3838 * which case it is not combined)
3839 * @param reducer a commutative associative combining function
3840 * @return the result of accumulating the given transformation
3841 * of all keys
3842 */
3843 public <U> U reduceKeys(Fun<? super K, ? extends U> transformer,
3844 BiFun<? super U, ? super U, ? extends U> reducer) {
3845 return fjp.invoke(ForkJoinTasks.reduceKeys
3846 (ConcurrentHashMapV8.this, transformer, reducer));
3847 }
3848
3849 /**
3850 * Returns the result of accumulating the given transformation
3851 * of all keys using the given reducer to combine values, and
3852 * the given basis as an identity value.
3853 *
3854 * @param transformer a function returning the transformation
3855 * for an element
3856 * @param basis the identity (initial default value) for the reduction
3857 * @param reducer a commutative associative combining function
3858 * @return the result of accumulating the given transformation
3859 * of all keys
3860 */
3861 public double reduceKeysToDouble(ObjectToDouble<? super K> transformer,
3862 double basis,
3863 DoubleByDoubleToDouble reducer) {
3864 return fjp.invoke(ForkJoinTasks.reduceKeysToDouble
3865 (ConcurrentHashMapV8.this, transformer, basis, reducer));
3866 }
3867
3868 /**
3869 * Returns the result of accumulating the given transformation
3870 * of all keys using the given reducer to combine values, and
3871 * the given basis as an identity value.
3872 *
3873 * @param transformer a function returning the transformation
3874 * for an element
3875 * @param basis the identity (initial default value) for the reduction
3876 * @param reducer a commutative associative combining function
3877 * @return the result of accumulating the given transformation
3878 * of all keys
3879 */
3880 public long reduceKeysToLong(ObjectToLong<? super K> transformer,
3881 long basis,
3882 LongByLongToLong reducer) {
3883 return fjp.invoke(ForkJoinTasks.reduceKeysToLong
3884 (ConcurrentHashMapV8.this, transformer, basis, reducer));
3885 }
3886
3887 /**
3888 * Returns the result of accumulating the given transformation
3889 * of all keys using the given reducer to combine values, and
3890 * the given basis as an identity value.
3891 *
3892 * @param transformer a function returning the transformation
3893 * for an element
3894 * @param basis the identity (initial default value) for the reduction
3895 * @param reducer a commutative associative combining function
3896 * @return the result of accumulating the given transformation
3897 * of all keys
3898 */
3899 public int reduceKeysToInt(ObjectToInt<? super K> transformer,
3900 int basis,
3901 IntByIntToInt reducer) {
3902 return fjp.invoke(ForkJoinTasks.reduceKeysToInt
3903 (ConcurrentHashMapV8.this, transformer, basis, reducer));
3904 }
3905
3906 /**
3907 * Performs the given action for each value.
3908 *
3909 * @param action the action
3910 */
3911 public void forEachValue(Action<V> action) {
3912 fjp.invoke(ForkJoinTasks.forEachValue
3913 (ConcurrentHashMapV8.this, action));
3914 }
3915
3916 /**
3917 * Performs the given action for each non-null transformation
3918 * of each value.
3919 *
3920 * @param transformer a function returning the transformation
3921 * for an element, or null if there is no transformation (in
3922 * which case the action is not applied)
3923 */
3924 public <U> void forEachValue(Fun<? super V, ? extends U> transformer,
3925 Action<U> action) {
3926 fjp.invoke(ForkJoinTasks.forEachValue
3927 (ConcurrentHashMapV8.this, transformer, action));
3928 }
3929
3930 /**
3931 * Returns a non-null result from applying the given search
3932 * function on each value, or null if none. Upon success,
3933 * further element processing is suppressed and the results of
3934 * any other parallel invocations of the search function are
3935 * ignored.
3936 *
3937 * @param searchFunction a function returning a non-null
3938 * result on success, else null
3939 * @return a non-null result from applying the given search
3940 * function on each value, or null if none
3941 */
3942 public <U> U searchValues(Fun<? super V, ? extends U> searchFunction) {
3943 return fjp.invoke(ForkJoinTasks.searchValues
3944 (ConcurrentHashMapV8.this, searchFunction));
3945 }
3946
3947 /**
3948 * Returns the result of accumulating all values using the
3949 * given reducer to combine values, or null if none.
3950 *
3951 * @param reducer a commutative associative combining function
3952 * @return the result of accumulating all values
3953 */
3954 public V reduceValues(BiFun<? super V, ? super V, ? extends V> reducer) {
3955 return fjp.invoke(ForkJoinTasks.reduceValues
3956 (ConcurrentHashMapV8.this, reducer));
3957 }
3958
3959 /**
3960 * Returns the result of accumulating the given transformation
3961 * of all values using the given reducer to combine values, or
3962 * null if none.
3963 *
3964 * @param transformer a function returning the transformation
3965 * for an element, or null if there is no transformation (in
3966 * which case it is not combined)
3967 * @param reducer a commutative associative combining function
3968 * @return the result of accumulating the given transformation
3969 * of all values
3970 */
3971 public <U> U reduceValues(Fun<? super V, ? extends U> transformer,
3972 BiFun<? super U, ? super U, ? extends U> reducer) {
3973 return fjp.invoke(ForkJoinTasks.reduceValues
3974 (ConcurrentHashMapV8.this, transformer, reducer));
3975 }
3976
3977 /**
3978 * Returns the result of accumulating the given transformation
3979 * of all values using the given reducer to combine values,
3980 * and the given basis as an identity value.
3981 *
3982 * @param transformer a function returning the transformation
3983 * for an element
3984 * @param basis the identity (initial default value) for the reduction
3985 * @param reducer a commutative associative combining function
3986 * @return the result of accumulating the given transformation
3987 * of all values
3988 */
3989 public double reduceValuesToDouble(ObjectToDouble<? super V> transformer,
3990 double basis,
3991 DoubleByDoubleToDouble reducer) {
3992 return fjp.invoke(ForkJoinTasks.reduceValuesToDouble
3993 (ConcurrentHashMapV8.this, transformer, basis, reducer));
3994 }
3995
3996 /**
3997 * Returns the result of accumulating the given transformation
3998 * of all values using the given reducer to combine values,
3999 * and the given basis as an identity value.
4000 *
4001 * @param transformer a function returning the transformation
4002 * for an element
4003 * @param basis the identity (initial default value) for the reduction
4004 * @param reducer a commutative associative combining function
4005 * @return the result of accumulating the given transformation
4006 * of all values
4007 */
4008 public long reduceValuesToLong(ObjectToLong<? super V> transformer,
4009 long basis,
4010 LongByLongToLong reducer) {
4011 return fjp.invoke(ForkJoinTasks.reduceValuesToLong
4012 (ConcurrentHashMapV8.this, transformer, basis, reducer));
4013 }
4014
4015 /**
4016 * Returns the result of accumulating the given transformation
4017 * of all values using the given reducer to combine values,
4018 * and the given basis as an identity value.
4019 *
4020 * @param transformer a function returning the transformation
4021 * for an element
4022 * @param basis the identity (initial default value) for the reduction
4023 * @param reducer a commutative associative combining function
4024 * @return the result of accumulating the given transformation
4025 * of all values
4026 */
4027 public int reduceValuesToInt(ObjectToInt<? super V> transformer,
4028 int basis,
4029 IntByIntToInt reducer) {
4030 return fjp.invoke(ForkJoinTasks.reduceValuesToInt
4031 (ConcurrentHashMapV8.this, transformer, basis, reducer));
4032 }
4033
4034 /**
4035 * Performs the given action for each entry.
4036 *
4037 * @param action the action
4038 */
4039 public void forEachEntry(Action<Map.Entry<K,V>> action) {
4040 fjp.invoke(ForkJoinTasks.forEachEntry
4041 (ConcurrentHashMapV8.this, action));
4042 }
4043
4044 /**
4045 * Performs the given action for each non-null transformation
4046 * of each entry.
4047 *
4048 * @param transformer a function returning the transformation
4049 * for an element, or null if there is no transformation (in
4050 * which case the action is not applied)
4051 * @param action the action
4052 */
4053 public <U> void forEachEntry(Fun<Map.Entry<K,V>, ? extends U> transformer,
4054 Action<U> action) {
4055 fjp.invoke(ForkJoinTasks.forEachEntry
4056 (ConcurrentHashMapV8.this, transformer, action));
4057 }
4058
4059 /**
4060 * Returns a non-null result from applying the given search
4061 * function on each entry, or null if none. Upon success,
4062 * further element processing is suppressed and the results of
4063 * any other parallel invocations of the search function are
4064 * ignored.
4065 *
4066 * @param searchFunction a function returning a non-null
4067 * result on success, else null
4068 * @return a non-null result from applying the given search
4069 * function on each entry, or null if none
4070 */
4071 public <U> U searchEntries(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4072 return fjp.invoke(ForkJoinTasks.searchEntries
4073 (ConcurrentHashMapV8.this, searchFunction));
4074 }
4075
4076 /**
4077 * Returns the result of accumulating all entries using the
4078 * given reducer to combine values, or null if none.
4079 *
4080 * @param reducer a commutative associative combining function
4081 * @return the result of accumulating all entries
4082 */
4083 public Map.Entry<K,V> reduceEntries(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4084 return fjp.invoke(ForkJoinTasks.reduceEntries
4085 (ConcurrentHashMapV8.this, reducer));
4086 }
4087
4088 /**
4089 * Returns the result of accumulating the given transformation
4090 * of all entries using the given reducer to combine values,
4091 * or null if none.
4092 *
4093 * @param transformer a function returning the transformation
4094 * for an element, or null if there is no transformation (in
4095 * which case it is not combined).
4096 * @param reducer a commutative associative combining function
4097 * @return the result of accumulating the given transformation
4098 * of all entries
4099 */
4100 public <U> U reduceEntries(Fun<Map.Entry<K,V>, ? extends U> transformer,
4101 BiFun<? super U, ? super U, ? extends U> reducer) {
4102 return fjp.invoke(ForkJoinTasks.reduceEntries
4103 (ConcurrentHashMapV8.this, transformer, reducer));
4104 }
4105
4106 /**
4107 * Returns the result of accumulating the given transformation
4108 * of all entries using the given reducer to combine values,
4109 * and the given basis as an identity value.
4110 *
4111 * @param transformer a function returning the transformation
4112 * for an element
4113 * @param basis the identity (initial default value) for the reduction
4114 * @param reducer a commutative associative combining function
4115 * @return the result of accumulating the given transformation
4116 * of all entries
4117 */
4118 public double reduceEntriesToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4119 double basis,
4120 DoubleByDoubleToDouble reducer) {
4121 return fjp.invoke(ForkJoinTasks.reduceEntriesToDouble
4122 (ConcurrentHashMapV8.this, transformer, basis, reducer));
4123 }
4124
4125 /**
4126 * Returns the result of accumulating the given transformation
4127 * of all entries using the given reducer to combine values,
4128 * and the given basis as an identity value.
4129 *
4130 * @param transformer a function returning the transformation
4131 * for an element
4132 * @param basis the identity (initial default value) for the reduction
4133 * @param reducer a commutative associative combining function
4134 * @return the result of accumulating the given transformation
4135 * of all entries
4136 */
4137 public long reduceEntriesToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4138 long basis,
4139 LongByLongToLong reducer) {
4140 return fjp.invoke(ForkJoinTasks.reduceEntriesToLong
4141 (ConcurrentHashMapV8.this, transformer, basis, reducer));
4142 }
4143
4144 /**
4145 * Returns the result of accumulating the given transformation
4146 * of all entries using the given reducer to combine values,
4147 * and the given basis as an identity value.
4148 *
4149 * @param transformer a function returning the transformation
4150 * for an element
4151 * @param basis the identity (initial default value) for the reduction
4152 * @param reducer a commutative associative combining function
4153 * @return the result of accumulating the given transformation
4154 * of all entries
4155 */
4156 public int reduceEntriesToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4157 int basis,
4158 IntByIntToInt reducer) {
4159 return fjp.invoke(ForkJoinTasks.reduceEntriesToInt
4160 (ConcurrentHashMapV8.this, transformer, basis, reducer));
4161 }
4162 }
4163
4164 // ---------------------------------------------------------------------
4165
4166 /**
4167 * Predefined tasks for performing bulk parallel operations on
4168 * ConcurrentHashMaps. These tasks follow the forms and rules used
4169 * in class {@link Parallel}. Each method has the same name, but
4170 * returns a task rather than invoking it. These methods may be
4171 * useful in custom applications such as submitting a task without
4172 * waiting for completion, or combining with other tasks.
4173 */
4174 public static class ForkJoinTasks {
4175 private ForkJoinTasks() {}
4176
4177 /**
4178 * Returns a task that when invoked, performs the given
4179 * action for each (key, value)
4180 *
4181 * @param map the map
4182 * @param action the action
4183 * @return the task
4184 */
4185 public static <K,V> ForkJoinTask<Void> forEach
4186 (ConcurrentHashMapV8<K,V> map,
4187 BiAction<K,V> action) {
4188 if (action == null) throw new NullPointerException();
4189 return new ForEachMappingTask<K,V>(map, null, -1, action);
4190 }
4191
4192 /**
4193 * Returns a task that when invoked, performs the given
4194 * action for each non-null transformation of each (key, value)
4195 *
4196 * @param map the map
4197 * @param transformer a function returning the transformation
4198 * for an element, or null if there is no transformation (in
4199 * which case the action is not applied)
4200 * @param action the action
4201 * @return the task
4202 */
4203 public static <K,V,U> ForkJoinTask<Void> forEach
4204 (ConcurrentHashMapV8<K,V> map,
4205 BiFun<? super K, ? super V, ? extends U> transformer,
4206 Action<U> action) {
4207 if (transformer == null || action == null)
4208 throw new NullPointerException();
4209 return new ForEachTransformedMappingTask<K,V,U>
4210 (map, null, -1, transformer, action);
4211 }
4212
4213 /**
4214 * Returns a task that when invoked, returns a non-null result
4215 * from applying the given search function on each (key,
4216 * value), or null if none. Upon success, further element
4217 * processing is suppressed and the results of any other
4218 * parallel invocations of the search function are ignored.
4219 *
4220 * @param map the map
4221 * @param searchFunction a function returning a non-null
4222 * result on success, else null
4223 * @return the task
4224 */
4225 public static <K,V,U> ForkJoinTask<U> search
4226 (ConcurrentHashMapV8<K,V> map,
4227 BiFun<? super K, ? super V, ? extends U> searchFunction) {
4228 if (searchFunction == null) throw new NullPointerException();
4229 return new SearchMappingsTask<K,V,U>
4230 (map, null, -1, searchFunction,
4231 new AtomicReference<U>());
4232 }
4233
4234 /**
4235 * Returns a task that when invoked, returns the result of
4236 * accumulating the given transformation of all (key, value) pairs
4237 * using the given reducer to combine values, or null if none.
4238 *
4239 * @param map the map
4240 * @param transformer a function returning the transformation
4241 * for an element, or null if there is no transformation (in
4242 * which case it is not combined).
4243 * @param reducer a commutative associative combining function
4244 * @return the task
4245 */
4246 public static <K,V,U> ForkJoinTask<U> reduce
4247 (ConcurrentHashMapV8<K,V> map,
4248 BiFun<? super K, ? super V, ? extends U> transformer,
4249 BiFun<? super U, ? super U, ? extends U> reducer) {
4250 if (transformer == null || reducer == null)
4251 throw new NullPointerException();
4252 return new MapReduceMappingsTask<K,V,U>
4253 (map, null, -1, null, transformer, reducer);
4254 }
4255
4256 /**
4257 * Returns a task that when invoked, returns the result of
4258 * accumulating the given transformation of all (key, value) pairs
4259 * using the given reducer to combine values, and the given
4260 * basis as an identity value.
4261 *
4262 * @param map the map
4263 * @param transformer a function returning the transformation
4264 * for an element
4265 * @param basis the identity (initial default value) for the reduction
4266 * @param reducer a commutative associative combining function
4267 * @return the task
4268 */
4269 public static <K,V> ForkJoinTask<Double> reduceToDouble
4270 (ConcurrentHashMapV8<K,V> map,
4271 ObjectByObjectToDouble<? super K, ? super V> transformer,
4272 double basis,
4273 DoubleByDoubleToDouble reducer) {
4274 if (transformer == null || reducer == null)
4275 throw new NullPointerException();
4276 return new MapReduceMappingsToDoubleTask<K,V>
4277 (map, null, -1, null, transformer, basis, reducer);
4278 }
4279
4280 /**
4281 * Returns a task that when invoked, returns the result of
4282 * accumulating the given transformation of all (key, value) pairs
4283 * using the given reducer to combine values, and the given
4284 * basis as an identity value.
4285 *
4286 * @param map the map
4287 * @param transformer a function returning the transformation
4288 * for an element
4289 * @param basis the identity (initial default value) for the reduction
4290 * @param reducer a commutative associative combining function
4291 * @return the task
4292 */
4293 public static <K,V> ForkJoinTask<Long> reduceToLong
4294 (ConcurrentHashMapV8<K,V> map,
4295 ObjectByObjectToLong<? super K, ? super V> transformer,
4296 long basis,
4297 LongByLongToLong reducer) {
4298 if (transformer == null || reducer == null)
4299 throw new NullPointerException();
4300 return new MapReduceMappingsToLongTask<K,V>
4301 (map, null, -1, null, transformer, basis, reducer);
4302 }
4303
4304 /**
4305 * Returns a task that when invoked, returns the result of
4306 * accumulating the given transformation of all (key, value) pairs
4307 * using the given reducer to combine values, and the given
4308 * basis as an identity value.
4309 *
4310 * @param transformer a function returning the transformation
4311 * for an element
4312 * @param basis the identity (initial default value) for the reduction
4313 * @param reducer a commutative associative combining function
4314 * @return the task
4315 */
4316 public static <K,V> ForkJoinTask<Integer> reduceToInt
4317 (ConcurrentHashMapV8<K,V> map,
4318 ObjectByObjectToInt<? super K, ? super V> transformer,
4319 int basis,
4320 IntByIntToInt reducer) {
4321 if (transformer == null || reducer == null)
4322 throw new NullPointerException();
4323 return new MapReduceMappingsToIntTask<K,V>
4324 (map, null, -1, null, transformer, basis, reducer);
4325 }
4326
4327 /**
4328 * Returns a task that when invoked, performs the given action
4329 * for each key.
4330 *
4331 * @param map the map
4332 * @param action the action
4333 * @return the task
4334 */
4335 public static <K,V> ForkJoinTask<Void> forEachKey
4336 (ConcurrentHashMapV8<K,V> map,
4337 Action<K> action) {
4338 if (action == null) throw new NullPointerException();
4339 return new ForEachKeyTask<K,V>(map, null, -1, action);
4340 }
4341
4342 /**
4343 * Returns a task that when invoked, performs the given action
4344 * for each non-null transformation of each key.
4345 *
4346 * @param map the map
4347 * @param transformer a function returning the transformation
4348 * for an element, or null if there is no transformation (in
4349 * which case the action is not applied)
4350 * @param action the action
4351 * @return the task
4352 */
4353 public static <K,V,U> ForkJoinTask<Void> forEachKey
4354 (ConcurrentHashMapV8<K,V> map,
4355 Fun<? super K, ? extends U> transformer,
4356 Action<U> action) {
4357 if (transformer == null || action == null)
4358 throw new NullPointerException();
4359 return new ForEachTransformedKeyTask<K,V,U>
4360 (map, null, -1, transformer, action);
4361 }
4362
4363 /**
4364 * Returns a task that when invoked, returns a non-null result
4365 * from applying the given search function on each key, or
4366 * null if none. Upon success, further element processing is
4367 * suppressed and the results of any other parallel
4368 * invocations of the search function are ignored.
4369 *
4370 * @param map the map
4371 * @param searchFunction a function returning a non-null
4372 * result on success, else null
4373 * @return the task
4374 */
4375 public static <K,V,U> ForkJoinTask<U> searchKeys
4376 (ConcurrentHashMapV8<K,V> map,
4377 Fun<? super K, ? extends U> searchFunction) {
4378 if (searchFunction == null) throw new NullPointerException();
4379 return new SearchKeysTask<K,V,U>
4380 (map, null, -1, searchFunction,
4381 new AtomicReference<U>());
4382 }
4383
4384 /**
4385 * Returns a task that when invoked, returns the result of
4386 * accumulating all keys using the given reducer to combine
4387 * values, or null if none.
4388 *
4389 * @param map the map
4390 * @param reducer a commutative associative combining function
4391 * @return the task
4392 */
4393 public static <K,V> ForkJoinTask<K> reduceKeys
4394 (ConcurrentHashMapV8<K,V> map,
4395 BiFun<? super K, ? super K, ? extends K> reducer) {
4396 if (reducer == null) throw new NullPointerException();
4397 return new ReduceKeysTask<K,V>
4398 (map, null, -1, null, reducer);
4399 }
4400
4401 /**
4402 * Returns a task that when invoked, returns the result of
4403 * accumulating the given transformation of all keys using the given
4404 * reducer to combine values, or null if none.
4405 *
4406 * @param map the map
4407 * @param transformer a function returning the transformation
4408 * for an element, or null if there is no transformation (in
4409 * which case it is not combined).
4410 * @param reducer a commutative associative combining function
4411 * @return the task
4412 */
4413 public static <K,V,U> ForkJoinTask<U> reduceKeys
4414 (ConcurrentHashMapV8<K,V> map,
4415 Fun<? super K, ? extends U> transformer,
4416 BiFun<? super U, ? super U, ? extends U> reducer) {
4417 if (transformer == null || reducer == null)
4418 throw new NullPointerException();
4419 return new MapReduceKeysTask<K,V,U>
4420 (map, null, -1, null, transformer, reducer);
4421 }
4422
4423 /**
4424 * Returns a task that when invoked, returns the result of
4425 * accumulating the given transformation of all keys using the given
4426 * reducer to combine values, and the given basis as an
4427 * identity value.
4428 *
4429 * @param map the map
4430 * @param transformer a function returning the transformation
4431 * for an element
4432 * @param basis the identity (initial default value) for the reduction
4433 * @param reducer a commutative associative combining function
4434 * @return the task
4435 */
4436 public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
4437 (ConcurrentHashMapV8<K,V> map,
4438 ObjectToDouble<? super K> transformer,
4439 double basis,
4440 DoubleByDoubleToDouble reducer) {
4441 if (transformer == null || reducer == null)
4442 throw new NullPointerException();
4443 return new MapReduceKeysToDoubleTask<K,V>
4444 (map, null, -1, null, transformer, basis, reducer);
4445 }
4446
4447 /**
4448 * Returns a task that when invoked, returns the result of
4449 * accumulating the given transformation of all keys using the given
4450 * reducer to combine values, and the given basis as an
4451 * identity value.
4452 *
4453 * @param map the map
4454 * @param transformer a function returning the transformation
4455 * for an element
4456 * @param basis the identity (initial default value) for the reduction
4457 * @param reducer a commutative associative combining function
4458 * @return the task
4459 */
4460 public static <K,V> ForkJoinTask<Long> reduceKeysToLong
4461 (ConcurrentHashMapV8<K,V> map,
4462 ObjectToLong<? super K> transformer,
4463 long basis,
4464 LongByLongToLong reducer) {
4465 if (transformer == null || reducer == null)
4466 throw new NullPointerException();
4467 return new MapReduceKeysToLongTask<K,V>
4468 (map, null, -1, null, transformer, basis, reducer);
4469 }
4470
4471 /**
4472 * Returns a task that when invoked, returns the result of
4473 * accumulating the given transformation of all keys using the given
4474 * reducer to combine values, and the given basis as an
4475 * identity value.
4476 *
4477 * @param map the map
4478 * @param transformer a function returning the transformation
4479 * for an element
4480 * @param basis the identity (initial default value) for the reduction
4481 * @param reducer a commutative associative combining function
4482 * @return the task
4483 */
4484 public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
4485 (ConcurrentHashMapV8<K,V> map,
4486 ObjectToInt<? super K> transformer,
4487 int basis,
4488 IntByIntToInt reducer) {
4489 if (transformer == null || reducer == null)
4490 throw new NullPointerException();
4491 return new MapReduceKeysToIntTask<K,V>
4492 (map, null, -1, null, transformer, basis, reducer);
4493 }
4494
4495 /**
4496 * Returns a task that when invoked, performs the given action
4497 * for each value.
4498 *
4499 * @param map the map
4500 * @param action the action
4501 */
4502 public static <K,V> ForkJoinTask<Void> forEachValue
4503 (ConcurrentHashMapV8<K,V> map,
4504 Action<V> action) {
4505 if (action == null) throw new NullPointerException();
4506 return new ForEachValueTask<K,V>(map, null, -1, action);
4507 }
4508
4509 /**
4510 * Returns a task that when invoked, performs the given action
4511 * for each non-null transformation of each value.
4512 *
4513 * @param map the map
4514 * @param transformer a function returning the transformation
4515 * for an element, or null if there is no transformation (in
4516 * which case the action is not applied)
4517 * @param action the action
4518 */
4519 public static <K,V,U> ForkJoinTask<Void> forEachValue
4520 (ConcurrentHashMapV8<K,V> map,
4521 Fun<? super V, ? extends U> transformer,
4522 Action<U> action) {
4523 if (transformer == null || action == null)
4524 throw new NullPointerException();
4525 return new ForEachTransformedValueTask<K,V,U>
4526 (map, null, -1, transformer, action);
4527 }
4528
4529 /**
4530 * Returns a task that when invoked, returns a non-null result
4531 * from applying the given search function on each value, or
4532 * null if none. Upon success, further element processing is
4533 * suppressed and the results of any other parallel
4534 * invocations of the search function are ignored.
4535 *
4536 * @param map the map
4537 * @param searchFunction a function returning a non-null
4538 * result on success, else null
4539 * @return the task
4540 */
4541 public static <K,V,U> ForkJoinTask<U> searchValues
4542 (ConcurrentHashMapV8<K,V> map,
4543 Fun<? super V, ? extends U> searchFunction) {
4544 if (searchFunction == null) throw new NullPointerException();
4545 return new SearchValuesTask<K,V,U>
4546 (map, null, -1, searchFunction,
4547 new AtomicReference<U>());
4548 }
4549
4550 /**
4551 * Returns a task that when invoked, returns the result of
4552 * accumulating all values using the given reducer to combine
4553 * values, or null if none.
4554 *
4555 * @param map the map
4556 * @param reducer a commutative associative combining function
4557 * @return the task
4558 */
4559 public static <K,V> ForkJoinTask<V> reduceValues
4560 (ConcurrentHashMapV8<K,V> map,
4561 BiFun<? super V, ? super V, ? extends V> reducer) {
4562 if (reducer == null) throw new NullPointerException();
4563 return new ReduceValuesTask<K,V>
4564 (map, null, -1, null, reducer);
4565 }
4566
4567 /**
4568 * Returns a task that when invoked, returns the result of
4569 * accumulating the given transformation of all values using the
4570 * given reducer to combine values, or null if none.
4571 *
4572 * @param map the map
4573 * @param transformer a function returning the transformation
4574 * for an element, or null if there is no transformation (in
4575 * which case it is not combined).
4576 * @param reducer a commutative associative combining function
4577 * @return the task
4578 */
4579 public static <K,V,U> ForkJoinTask<U> reduceValues
4580 (ConcurrentHashMapV8<K,V> map,
4581 Fun<? super V, ? extends U> transformer,
4582 BiFun<? super U, ? super U, ? extends U> reducer) {
4583 if (transformer == null || reducer == null)
4584 throw new NullPointerException();
4585 return new MapReduceValuesTask<K,V,U>
4586 (map, null, -1, null, transformer, reducer);
4587 }
4588
4589 /**
4590 * Returns a task that when invoked, returns the result of
4591 * accumulating the given transformation of all values using the
4592 * given reducer to combine values, and the given basis as an
4593 * identity value.
4594 *
4595 * @param map the map
4596 * @param transformer a function returning the transformation
4597 * for an element
4598 * @param basis the identity (initial default value) for the reduction
4599 * @param reducer a commutative associative combining function
4600 * @return the task
4601 */
4602 public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
4603 (ConcurrentHashMapV8<K,V> map,
4604 ObjectToDouble<? super V> transformer,
4605 double basis,
4606 DoubleByDoubleToDouble reducer) {
4607 if (transformer == null || reducer == null)
4608 throw new NullPointerException();
4609 return new MapReduceValuesToDoubleTask<K,V>
4610 (map, null, -1, null, transformer, basis, reducer);
4611 }
4612
4613 /**
4614 * Returns a task that when invoked, returns the result of
4615 * accumulating the given transformation of all values using the
4616 * given reducer to combine values, and the given basis as an
4617 * identity value.
4618 *
4619 * @param map the map
4620 * @param transformer a function returning the transformation
4621 * for an element
4622 * @param basis the identity (initial default value) for the reduction
4623 * @param reducer a commutative associative combining function
4624 * @return the task
4625 */
4626 public static <K,V> ForkJoinTask<Long> reduceValuesToLong
4627 (ConcurrentHashMapV8<K,V> map,
4628 ObjectToLong<? super V> transformer,
4629 long basis,
4630 LongByLongToLong reducer) {
4631 if (transformer == null || reducer == null)
4632 throw new NullPointerException();
4633 return new MapReduceValuesToLongTask<K,V>
4634 (map, null, -1, null, transformer, basis, reducer);
4635 }
4636
4637 /**
4638 * Returns a task that when invoked, returns the result of
4639 * accumulating the given transformation of all values using the
4640 * given reducer to combine values, and the given basis as an
4641 * identity value.
4642 *
4643 * @param map the map
4644 * @param transformer a function returning the transformation
4645 * for an element
4646 * @param basis the identity (initial default value) for the reduction
4647 * @param reducer a commutative associative combining function
4648 * @return the task
4649 */
4650 public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
4651 (ConcurrentHashMapV8<K,V> map,
4652 ObjectToInt<? super V> transformer,
4653 int basis,
4654 IntByIntToInt reducer) {
4655 if (transformer == null || reducer == null)
4656 throw new NullPointerException();
4657 return new MapReduceValuesToIntTask<K,V>
4658 (map, null, -1, null, transformer, basis, reducer);
4659 }
4660
4661 /**
4662 * Returns a task that when invoked, perform the given action
4663 * for each entry.
4664 *
4665 * @param map the map
4666 * @param action the action
4667 */
4668 public static <K,V> ForkJoinTask<Void> forEachEntry
4669 (ConcurrentHashMapV8<K,V> map,
4670 Action<Map.Entry<K,V>> action) {
4671 if (action == null) throw new NullPointerException();
4672 return new ForEachEntryTask<K,V>(map, null, -1, action);
4673 }
4674
4675 /**
4676 * Returns a task that when invoked, perform the given action
4677 * for each non-null transformation of each entry.
4678 *
4679 * @param map the map
4680 * @param transformer a function returning the transformation
4681 * for an element, or null if there is no transformation (in
4682 * which case the action is not applied)
4683 * @param action the action
4684 */
4685 public static <K,V,U> ForkJoinTask<Void> forEachEntry
4686 (ConcurrentHashMapV8<K,V> map,
4687 Fun<Map.Entry<K,V>, ? extends U> transformer,
4688 Action<U> action) {
4689 if (transformer == null || action == null)
4690 throw new NullPointerException();
4691 return new ForEachTransformedEntryTask<K,V,U>
4692 (map, null, -1, transformer, action);
4693 }
4694
4695 /**
4696 * Returns a task that when invoked, returns a non-null result
4697 * from applying the given search function on each entry, or
4698 * null if none. Upon success, further element processing is
4699 * suppressed and the results of any other parallel
4700 * invocations of the search function are ignored.
4701 *
4702 * @param map the map
4703 * @param searchFunction a function returning a non-null
4704 * result on success, else null
4705 * @return the task
4706 */
4707 public static <K,V,U> ForkJoinTask<U> searchEntries
4708 (ConcurrentHashMapV8<K,V> map,
4709 Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4710 if (searchFunction == null) throw new NullPointerException();
4711 return new SearchEntriesTask<K,V,U>
4712 (map, null, -1, searchFunction,
4713 new AtomicReference<U>());
4714 }
4715
4716 /**
4717 * Returns a task that when invoked, returns the result of
4718 * accumulating all entries using the given reducer to combine
4719 * values, or null if none.
4720 *
4721 * @param map the map
4722 * @param reducer a commutative associative combining function
4723 * @return the task
4724 */
4725 public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
4726 (ConcurrentHashMapV8<K,V> map,
4727 BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4728 if (reducer == null) throw new NullPointerException();
4729 return new ReduceEntriesTask<K,V>
4730 (map, null, -1, null, reducer);
4731 }
4732
4733 /**
4734 * Returns a task that when invoked, returns the result of
4735 * accumulating the given transformation of all entries using the
4736 * given reducer to combine values, or null if none.
4737 *
4738 * @param map the map
4739 * @param transformer a function returning the transformation
4740 * for an element, or null if there is no transformation (in
4741 * which case it is not combined).
4742 * @param reducer a commutative associative combining function
4743 * @return the task
4744 */
4745 public static <K,V,U> ForkJoinTask<U> reduceEntries
4746 (ConcurrentHashMapV8<K,V> map,
4747 Fun<Map.Entry<K,V>, ? extends U> transformer,
4748 BiFun<? super U, ? super U, ? extends U> reducer) {
4749 if (transformer == null || reducer == null)
4750 throw new NullPointerException();
4751 return new MapReduceEntriesTask<K,V,U>
4752 (map, null, -1, null, transformer, reducer);
4753 }
4754
4755 /**
4756 * Returns a task that when invoked, returns the result of
4757 * accumulating the given transformation of all entries using the
4758 * given reducer to combine values, and the given basis as an
4759 * identity value.
4760 *
4761 * @param map the map
4762 * @param transformer a function returning the transformation
4763 * for an element
4764 * @param basis the identity (initial default value) for the reduction
4765 * @param reducer a commutative associative combining function
4766 * @return the task
4767 */
4768 public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
4769 (ConcurrentHashMapV8<K,V> map,
4770 ObjectToDouble<Map.Entry<K,V>> transformer,
4771 double basis,
4772 DoubleByDoubleToDouble reducer) {
4773 if (transformer == null || reducer == null)
4774 throw new NullPointerException();
4775 return new MapReduceEntriesToDoubleTask<K,V>
4776 (map, null, -1, null, transformer, basis, reducer);
4777 }
4778
4779 /**
4780 * Returns a task that when invoked, returns the result of
4781 * accumulating the given transformation of all entries using the
4782 * given reducer to combine values, and the given basis as an
4783 * identity value.
4784 *
4785 * @param map the map
4786 * @param transformer a function returning the transformation
4787 * for an element
4788 * @param basis the identity (initial default value) for the reduction
4789 * @param reducer a commutative associative combining function
4790 * @return the task
4791 */
4792 public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
4793 (ConcurrentHashMapV8<K,V> map,
4794 ObjectToLong<Map.Entry<K,V>> transformer,
4795 long basis,
4796 LongByLongToLong reducer) {
4797 if (transformer == null || reducer == null)
4798 throw new NullPointerException();
4799 return new MapReduceEntriesToLongTask<K,V>
4800 (map, null, -1, null, transformer, basis, reducer);
4801 }
4802
4803 /**
4804 * Returns a task that when invoked, returns the result of
4805 * accumulating the given transformation of all entries using the
4806 * given reducer to combine values, and the given basis as an
4807 * identity value.
4808 *
4809 * @param map the map
4810 * @param transformer a function returning the transformation
4811 * for an element
4812 * @param basis the identity (initial default value) for the reduction
4813 * @param reducer a commutative associative combining function
4814 * @return the task
4815 */
4816 public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
4817 (ConcurrentHashMapV8<K,V> map,
4818 ObjectToInt<Map.Entry<K,V>> transformer,
4819 int basis,
4820 IntByIntToInt reducer) {
4821 if (transformer == null || reducer == null)
4822 throw new NullPointerException();
4823 return new MapReduceEntriesToIntTask<K,V>
4824 (map, null, -1, null, transformer, basis, reducer);
4825 }
4826 }
4827
4828 // -------------------------------------------------------
4829
4830 /**
4831 * Base for FJ tasks for bulk operations. This adds a variant of
4832 * CountedCompleters and some split and merge bookkeeping to
4833 * iterator functionality. The forEach and reduce methods are
4834 * similar to those illustrated in CountedCompleter documentation,
4835 * except that bottom-up reduction completions perform them within
4836 * their compute methods. The search methods are like forEach
4837 * except they continually poll for success and exit early. Also,
4838 * exceptions are handled in a simpler manner, by just trying to
4839 * complete root task exceptionally.
4840 */
4841 @SuppressWarnings("serial") static abstract class BulkTask<K,V,R> extends Traverser<K,V,R> {
4842 final BulkTask<K,V,?> parent; // completion target
4843 int batch; // split control; -1 for unknown
4844 int pending; // completion control
4845
4846 BulkTask(ConcurrentHashMapV8<K,V> map, BulkTask<K,V,?> parent,
4847 int batch) {
4848 super(map);
4849 this.parent = parent;
4850 this.batch = batch;
4851 if (parent != null && map != null) { // split parent
4852 Node[] t;
4853 if ((t = parent.tab) == null &&
4854 (t = parent.tab = map.table) != null)
4855 parent.baseLimit = parent.baseSize = t.length;
4856 this.tab = t;
4857 this.baseSize = parent.baseSize;
4858 int hi = this.baseLimit = parent.baseLimit;
4859 parent.baseLimit = this.index = this.baseIndex =
4860 (hi + parent.baseIndex + 1) >>> 1;
4861 }
4862 }
4863
4864 // FJ methods
4865
4866 /**
4867 * Propagates completion. Note that all reduce actions
4868 * bypass this method to combine while completing.
4869 */
4870 final void tryComplete() {
4871 BulkTask<K,V,?> a = this, s = a;
4872 for (int c;;) {
4873 if ((c = a.pending) == 0) {
4874 if ((a = (s = a).parent) == null) {
4875 s.quietlyComplete();
4876 break;
4877 }
4878 }
4879 else if (U.compareAndSwapInt(a, PENDING, c, c - 1))
4880 break;
4881 }
4882 }
4883
4884 /**
4885 * Forces root task to complete.
4886 * @param ex if null, complete normally, else exceptionally
4887 * @return false to simplify use
4888 */
4889 final boolean tryCompleteComputation(Throwable ex) {
4890 for (BulkTask<K,V,?> a = this;;) {
4891 BulkTask<K,V,?> p = a.parent;
4892 if (p == null) {
4893 if (ex != null)
4894 a.completeExceptionally(ex);
4895 else
4896 a.quietlyComplete();
4897 return false;
4898 }
4899 a = p;
4900 }
4901 }
4902
4903 /**
4904 * Version of tryCompleteComputation for function screening checks
4905 */
4906 final boolean abortOnNullFunction() {
4907 return tryCompleteComputation(new Error("Unexpected null function"));
4908 }
4909
4910 // utilities
4911
4912 /** CompareAndSet pending count */
4913 final boolean casPending(int cmp, int val) {
4914 return U.compareAndSwapInt(this, PENDING, cmp, val);
4915 }
4916
4917 /**
4918 * Returns approx exp2 of the number of times (minus one) to
4919 * split task by two before executing leaf action. This value
4920 * is faster to compute and more convenient to use as a guide
4921 * to splitting than is the depth, since it is used while
4922 * dividing by two anyway.
4923 */
4924 final int batch() {
4925 ConcurrentHashMapV8<K, V> m; int b; Node[] t;
4926 if ((b = batch) < 0 && (m = map) != null) { // force initialization
4927 if ((t = tab) == null && (t = tab = m.table) != null)
4928 baseLimit = baseSize = t.length;
4929 if (t != null) {
4930 long n = m.counter.sum();
4931 int sp = getPool().getParallelism() << 3; // slack of 8
4932 b = batch = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
4933 }
4934 }
4935 return b;
4936 }
4937
4938 /**
4939 * Returns exportable snapshot entry.
4940 */
4941 static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
4942 return new AbstractMap.SimpleEntry<K,V>(k, v);
4943 }
4944
4945 // Unsafe mechanics
4946 private static final sun.misc.Unsafe U;
4947 private static final long PENDING;
4948 static {
4949 try {
4950 U = getUnsafe();
4951 PENDING = U.objectFieldOffset
4952 (BulkTask.class.getDeclaredField("pending"));
4953 } catch (Exception e) {
4954 throw new Error(e);
4955 }
4956 }
4957 }
4958
4959 /*
4960 * Task classes. Coded in a regular but ugly format/style to
4961 * simplify checks that each variant differs in the right way from
4962 * others.
4963 */
4964
4965 @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
4966 extends BulkTask<K,V,Void> {
4967 final Action<K> action;
4968 ForEachKeyTask
4969 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
4970 Action<K> action) {
4971 super(m, p, b);
4972 this.action = action;
4973 }
4974 @SuppressWarnings("unchecked") public final boolean exec() {
4975 final Action<K> action = this.action;
4976 if (action == null)
4977 return abortOnNullFunction();
4978 try {
4979 int b = batch(), c;
4980 while (b > 1 && baseIndex != baseLimit) {
4981 do {} while (!casPending(c = pending, c+1));
4982 new ForEachKeyTask<K,V>(map, this, b >>>= 1, action).fork();
4983 }
4984 while (advance() != null)
4985 action.apply((K)nextKey);
4986 tryComplete();
4987 } catch (Throwable ex) {
4988 return tryCompleteComputation(ex);
4989 }
4990 return false;
4991 }
4992 }
4993
4994 @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
4995 extends BulkTask<K,V,Void> {
4996 final Action<V> action;
4997 ForEachValueTask
4998 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
4999 Action<V> action) {
5000 super(m, p, b);
5001 this.action = action;
5002 }
5003 @SuppressWarnings("unchecked") public final boolean exec() {
5004 final Action<V> action = this.action;
5005 if (action == null)
5006 return abortOnNullFunction();
5007 try {
5008 int b = batch(), c;
5009 while (b > 1 && baseIndex != baseLimit) {
5010 do {} while (!casPending(c = pending, c+1));
5011 new ForEachValueTask<K,V>(map, this, b >>>= 1, action).fork();
5012 }
5013 Object v;
5014 while ((v = advance()) != null)
5015 action.apply((V)v);
5016 tryComplete();
5017 } catch (Throwable ex) {
5018 return tryCompleteComputation(ex);
5019 }
5020 return false;
5021 }
5022 }
5023
5024 @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5025 extends BulkTask<K,V,Void> {
5026 final Action<Entry<K,V>> action;
5027 ForEachEntryTask
5028 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5029 Action<Entry<K,V>> action) {
5030 super(m, p, b);
5031 this.action = action;
5032 }
5033 @SuppressWarnings("unchecked") public final boolean exec() {
5034 final Action<Entry<K,V>> action = this.action;
5035 if (action == null)
5036 return abortOnNullFunction();
5037 try {
5038 int b = batch(), c;
5039 while (b > 1 && baseIndex != baseLimit) {
5040 do {} while (!casPending(c = pending, c+1));
5041 new ForEachEntryTask<K,V>(map, this, b >>>= 1, action).fork();
5042 }
5043 Object v;
5044 while ((v = advance()) != null)
5045 action.apply(entryFor((K)nextKey, (V)v));
5046 tryComplete();
5047 } catch (Throwable ex) {
5048 return tryCompleteComputation(ex);
5049 }
5050 return false;
5051 }
5052 }
5053
5054 @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5055 extends BulkTask<K,V,Void> {
5056 final BiAction<K,V> action;
5057 ForEachMappingTask
5058 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5059 BiAction<K,V> action) {
5060 super(m, p, b);
5061 this.action = action;
5062 }
5063 @SuppressWarnings("unchecked") public final boolean exec() {
5064 final BiAction<K,V> action = this.action;
5065 if (action == null)
5066 return abortOnNullFunction();
5067 try {
5068 int b = batch(), c;
5069 while (b > 1 && baseIndex != baseLimit) {
5070 do {} while (!casPending(c = pending, c+1));
5071 new ForEachMappingTask<K,V>(map, this, b >>>= 1,
5072 action).fork();
5073 }
5074 Object v;
5075 while ((v = advance()) != null)
5076 action.apply((K)nextKey, (V)v);
5077 tryComplete();
5078 } catch (Throwable ex) {
5079 return tryCompleteComputation(ex);
5080 }
5081 return false;
5082 }
5083 }
5084
5085 @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5086 extends BulkTask<K,V,Void> {
5087 final Fun<? super K, ? extends U> transformer;
5088 final Action<U> action;
5089 ForEachTransformedKeyTask
5090 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5091 Fun<? super K, ? extends U> transformer,
5092 Action<U> action) {
5093 super(m, p, b);
5094 this.transformer = transformer;
5095 this.action = action;
5096
5097 }
5098 @SuppressWarnings("unchecked") public final boolean exec() {
5099 final Fun<? super K, ? extends U> transformer =
5100 this.transformer;
5101 final Action<U> action = this.action;
5102 if (transformer == null || action == null)
5103 return abortOnNullFunction();
5104 try {
5105 int b = batch(), c;
5106 while (b > 1 && baseIndex != baseLimit) {
5107 do {} while (!casPending(c = pending, c+1));
5108 new ForEachTransformedKeyTask<K,V,U>
5109 (map, this, b >>>= 1, transformer, action).fork();
5110 }
5111 U u;
5112 while (advance() != null) {
5113 if ((u = transformer.apply((K)nextKey)) != null)
5114 action.apply(u);
5115 }
5116 tryComplete();
5117 } catch (Throwable ex) {
5118 return tryCompleteComputation(ex);
5119 }
5120 return false;
5121 }
5122 }
5123
5124 @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5125 extends BulkTask<K,V,Void> {
5126 final Fun<? super V, ? extends U> transformer;
5127 final Action<U> action;
5128 ForEachTransformedValueTask
5129 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5130 Fun<? super V, ? extends U> transformer,
5131 Action<U> action) {
5132 super(m, p, b);
5133 this.transformer = transformer;
5134 this.action = action;
5135
5136 }
5137 @SuppressWarnings("unchecked") public final boolean exec() {
5138 final Fun<? super V, ? extends U> transformer =
5139 this.transformer;
5140 final Action<U> action = this.action;
5141 if (transformer == null || action == null)
5142 return abortOnNullFunction();
5143 try {
5144 int b = batch(), c;
5145 while (b > 1 && baseIndex != baseLimit) {
5146 do {} while (!casPending(c = pending, c+1));
5147 new ForEachTransformedValueTask<K,V,U>
5148 (map, this, b >>>= 1, transformer, action).fork();
5149 }
5150 Object v; U u;
5151 while ((v = advance()) != null) {
5152 if ((u = transformer.apply((V)v)) != null)
5153 action.apply(u);
5154 }
5155 tryComplete();
5156 } catch (Throwable ex) {
5157 return tryCompleteComputation(ex);
5158 }
5159 return false;
5160 }
5161 }
5162
5163 @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5164 extends BulkTask<K,V,Void> {
5165 final Fun<Map.Entry<K,V>, ? extends U> transformer;
5166 final Action<U> action;
5167 ForEachTransformedEntryTask
5168 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5169 Fun<Map.Entry<K,V>, ? extends U> transformer,
5170 Action<U> action) {
5171 super(m, p, b);
5172 this.transformer = transformer;
5173 this.action = action;
5174
5175 }
5176 @SuppressWarnings("unchecked") public final boolean exec() {
5177 final Fun<Map.Entry<K,V>, ? extends U> transformer =
5178 this.transformer;
5179 final Action<U> action = this.action;
5180 if (transformer == null || action == null)
5181 return abortOnNullFunction();
5182 try {
5183 int b = batch(), c;
5184 while (b > 1 && baseIndex != baseLimit) {
5185 do {} while (!casPending(c = pending, c+1));
5186 new ForEachTransformedEntryTask<K,V,U>
5187 (map, this, b >>>= 1, transformer, action).fork();
5188 }
5189 Object v; U u;
5190 while ((v = advance()) != null) {
5191 if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
5192 action.apply(u);
5193 }
5194 tryComplete();
5195 } catch (Throwable ex) {
5196 return tryCompleteComputation(ex);
5197 }
5198 return false;
5199 }
5200 }
5201
5202 @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5203 extends BulkTask<K,V,Void> {
5204 final BiFun<? super K, ? super V, ? extends U> transformer;
5205 final Action<U> action;
5206 ForEachTransformedMappingTask
5207 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5208 BiFun<? super K, ? super V, ? extends U> transformer,
5209 Action<U> action) {
5210 super(m, p, b);
5211 this.transformer = transformer;
5212 this.action = action;
5213
5214 }
5215 @SuppressWarnings("unchecked") public final boolean exec() {
5216 final BiFun<? super K, ? super V, ? extends U> transformer =
5217 this.transformer;
5218 final Action<U> action = this.action;
5219 if (transformer == null || action == null)
5220 return abortOnNullFunction();
5221 try {
5222 int b = batch(), c;
5223 while (b > 1 && baseIndex != baseLimit) {
5224 do {} while (!casPending(c = pending, c+1));
5225 new ForEachTransformedMappingTask<K,V,U>
5226 (map, this, b >>>= 1, transformer, action).fork();
5227 }
5228 Object v; U u;
5229 while ((v = advance()) != null) {
5230 if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5231 action.apply(u);
5232 }
5233 tryComplete();
5234 } catch (Throwable ex) {
5235 return tryCompleteComputation(ex);
5236 }
5237 return false;
5238 }
5239 }
5240
5241 @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5242 extends BulkTask<K,V,U> {
5243 final Fun<? super K, ? extends U> searchFunction;
5244 final AtomicReference<U> result;
5245 SearchKeysTask
5246 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5247 Fun<? super K, ? extends U> searchFunction,
5248 AtomicReference<U> result) {
5249 super(m, p, b);
5250 this.searchFunction = searchFunction; this.result = result;
5251 }
5252 @SuppressWarnings("unchecked") public final boolean exec() {
5253 AtomicReference<U> result = this.result;
5254 final Fun<? super K, ? extends U> searchFunction =
5255 this.searchFunction;
5256 if (searchFunction == null || result == null)
5257 return abortOnNullFunction();
5258 try {
5259 int b = batch(), c;
5260 while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5261 do {} while (!casPending(c = pending, c+1));
5262 new SearchKeysTask<K,V,U>(map, this, b >>>= 1,
5263 searchFunction, result).fork();
5264 }
5265 U u;
5266 while (result.get() == null && advance() != null) {
5267 if ((u = searchFunction.apply((K)nextKey)) != null) {
5268 if (result.compareAndSet(null, u))
5269 tryCompleteComputation(null);
5270 break;
5271 }
5272 }
5273 tryComplete();
5274 } catch (Throwable ex) {
5275 return tryCompleteComputation(ex);
5276 }
5277 return false;
5278 }
5279 public final U getRawResult() { return result.get(); }
5280 }
5281
5282 @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5283 extends BulkTask<K,V,U> {
5284 final Fun<? super V, ? extends U> searchFunction;
5285 final AtomicReference<U> result;
5286 SearchValuesTask
5287 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5288 Fun<? super V, ? extends U> searchFunction,
5289 AtomicReference<U> result) {
5290 super(m, p, b);
5291 this.searchFunction = searchFunction; this.result = result;
5292 }
5293 @SuppressWarnings("unchecked") public final boolean exec() {
5294 AtomicReference<U> result = this.result;
5295 final Fun<? super V, ? extends U> searchFunction =
5296 this.searchFunction;
5297 if (searchFunction == null || result == null)
5298 return abortOnNullFunction();
5299 try {
5300 int b = batch(), c;
5301 while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5302 do {} while (!casPending(c = pending, c+1));
5303 new SearchValuesTask<K,V,U>(map, this, b >>>= 1,
5304 searchFunction, result).fork();
5305 }
5306 Object v; U u;
5307 while (result.get() == null && (v = advance()) != null) {
5308 if ((u = searchFunction.apply((V)v)) != null) {
5309 if (result.compareAndSet(null, u))
5310 tryCompleteComputation(null);
5311 break;
5312 }
5313 }
5314 tryComplete();
5315 } catch (Throwable ex) {
5316 return tryCompleteComputation(ex);
5317 }
5318 return false;
5319 }
5320 public final U getRawResult() { return result.get(); }
5321 }
5322
5323 @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5324 extends BulkTask<K,V,U> {
5325 final Fun<Entry<K,V>, ? extends U> searchFunction;
5326 final AtomicReference<U> result;
5327 SearchEntriesTask
5328 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5329 Fun<Entry<K,V>, ? extends U> searchFunction,
5330 AtomicReference<U> result) {
5331 super(m, p, b);
5332 this.searchFunction = searchFunction; this.result = result;
5333 }
5334 @SuppressWarnings("unchecked") public final boolean exec() {
5335 AtomicReference<U> result = this.result;
5336 final Fun<Entry<K,V>, ? extends U> searchFunction =
5337 this.searchFunction;
5338 if (searchFunction == null || result == null)
5339 return abortOnNullFunction();
5340 try {
5341 int b = batch(), c;
5342 while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5343 do {} while (!casPending(c = pending, c+1));
5344 new SearchEntriesTask<K,V,U>(map, this, b >>>= 1,
5345 searchFunction, result).fork();
5346 }
5347 Object v; U u;
5348 while (result.get() == null && (v = advance()) != null) {
5349 if ((u = searchFunction.apply(entryFor((K)nextKey, (V)v))) != null) {
5350 if (result.compareAndSet(null, u))
5351 tryCompleteComputation(null);
5352 break;
5353 }
5354 }
5355 tryComplete();
5356 } catch (Throwable ex) {
5357 return tryCompleteComputation(ex);
5358 }
5359 return false;
5360 }
5361 public final U getRawResult() { return result.get(); }
5362 }
5363
5364 @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5365 extends BulkTask<K,V,U> {
5366 final BiFun<? super K, ? super V, ? extends U> searchFunction;
5367 final AtomicReference<U> result;
5368 SearchMappingsTask
5369 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5370 BiFun<? super K, ? super V, ? extends U> searchFunction,
5371 AtomicReference<U> result) {
5372 super(m, p, b);
5373 this.searchFunction = searchFunction; this.result = result;
5374 }
5375 @SuppressWarnings("unchecked") public final boolean exec() {
5376 AtomicReference<U> result = this.result;
5377 final BiFun<? super K, ? super V, ? extends U> searchFunction =
5378 this.searchFunction;
5379 if (searchFunction == null || result == null)
5380 return abortOnNullFunction();
5381 try {
5382 int b = batch(), c;
5383 while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5384 do {} while (!casPending(c = pending, c+1));
5385 new SearchMappingsTask<K,V,U>(map, this, b >>>= 1,
5386 searchFunction, result).fork();
5387 }
5388 Object v; U u;
5389 while (result.get() == null && (v = advance()) != null) {
5390 if ((u = searchFunction.apply((K)nextKey, (V)v)) != null) {
5391 if (result.compareAndSet(null, u))
5392 tryCompleteComputation(null);
5393 break;
5394 }
5395 }
5396 tryComplete();
5397 } catch (Throwable ex) {
5398 return tryCompleteComputation(ex);
5399 }
5400 return false;
5401 }
5402 public final U getRawResult() { return result.get(); }
5403 }
5404
5405 @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5406 extends BulkTask<K,V,K> {
5407 final BiFun<? super K, ? super K, ? extends K> reducer;
5408 K result;
5409 ReduceKeysTask<K,V> rights, nextRight;
5410 ReduceKeysTask
5411 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5412 ReduceKeysTask<K,V> nextRight,
5413 BiFun<? super K, ? super K, ? extends K> reducer) {
5414 super(m, p, b); this.nextRight = nextRight;
5415 this.reducer = reducer;
5416 }
5417 @SuppressWarnings("unchecked") public final boolean exec() {
5418 final BiFun<? super K, ? super K, ? extends K> reducer =
5419 this.reducer;
5420 if (reducer == null)
5421 return abortOnNullFunction();
5422 try {
5423 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5424 do {} while (!casPending(c = pending, c+1));
5425 (rights = new ReduceKeysTask<K,V>
5426 (map, this, b >>>= 1, rights, reducer)).fork();
5427 }
5428 K r = null;
5429 while (advance() != null) {
5430 K u = (K)nextKey;
5431 r = (r == null) ? u : reducer.apply(r, u);
5432 }
5433 result = r;
5434 for (ReduceKeysTask<K,V> t = this, s;;) {
5435 int c; BulkTask<K,V,?> par; K tr, sr;
5436 if ((c = t.pending) == 0) {
5437 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5438 if ((sr = s.result) != null)
5439 t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5440 }
5441 if ((par = t.parent) == null ||
5442 !(par instanceof ReduceKeysTask)) {
5443 t.quietlyComplete();
5444 break;
5445 }
5446 t = (ReduceKeysTask<K,V>)par;
5447 }
5448 else if (t.casPending(c, c - 1))
5449 break;
5450 }
5451 } catch (Throwable ex) {
5452 return tryCompleteComputation(ex);
5453 }
5454 return false;
5455 }
5456 public final K getRawResult() { return result; }
5457 }
5458
5459 @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5460 extends BulkTask<K,V,V> {
5461 final BiFun<? super V, ? super V, ? extends V> reducer;
5462 V result;
5463 ReduceValuesTask<K,V> rights, nextRight;
5464 ReduceValuesTask
5465 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5466 ReduceValuesTask<K,V> nextRight,
5467 BiFun<? super V, ? super V, ? extends V> reducer) {
5468 super(m, p, b); this.nextRight = nextRight;
5469 this.reducer = reducer;
5470 }
5471 @SuppressWarnings("unchecked") public final boolean exec() {
5472 final BiFun<? super V, ? super V, ? extends V> reducer =
5473 this.reducer;
5474 if (reducer == null)
5475 return abortOnNullFunction();
5476 try {
5477 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5478 do {} while (!casPending(c = pending, c+1));
5479 (rights = new ReduceValuesTask<K,V>
5480 (map, this, b >>>= 1, rights, reducer)).fork();
5481 }
5482 V r = null;
5483 Object v;
5484 while ((v = advance()) != null) {
5485 V u = (V)v;
5486 r = (r == null) ? u : reducer.apply(r, u);
5487 }
5488 result = r;
5489 for (ReduceValuesTask<K,V> t = this, s;;) {
5490 int c; BulkTask<K,V,?> par; V tr, sr;
5491 if ((c = t.pending) == 0) {
5492 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5493 if ((sr = s.result) != null)
5494 t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5495 }
5496 if ((par = t.parent) == null ||
5497 !(par instanceof ReduceValuesTask)) {
5498 t.quietlyComplete();
5499 break;
5500 }
5501 t = (ReduceValuesTask<K,V>)par;
5502 }
5503 else if (t.casPending(c, c - 1))
5504 break;
5505 }
5506 } catch (Throwable ex) {
5507 return tryCompleteComputation(ex);
5508 }
5509 return false;
5510 }
5511 public final V getRawResult() { return result; }
5512 }
5513
5514 @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
5515 extends BulkTask<K,V,Map.Entry<K,V>> {
5516 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5517 Map.Entry<K,V> result;
5518 ReduceEntriesTask<K,V> rights, nextRight;
5519 ReduceEntriesTask
5520 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5521 ReduceEntriesTask<K,V> nextRight,
5522 BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5523 super(m, p, b); this.nextRight = nextRight;
5524 this.reducer = reducer;
5525 }
5526 @SuppressWarnings("unchecked") public final boolean exec() {
5527 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer =
5528 this.reducer;
5529 if (reducer == null)
5530 return abortOnNullFunction();
5531 try {
5532 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5533 do {} while (!casPending(c = pending, c+1));
5534 (rights = new ReduceEntriesTask<K,V>
5535 (map, this, b >>>= 1, rights, reducer)).fork();
5536 }
5537 Map.Entry<K,V> r = null;
5538 Object v;
5539 while ((v = advance()) != null) {
5540 Map.Entry<K,V> u = entryFor((K)nextKey, (V)v);
5541 r = (r == null) ? u : reducer.apply(r, u);
5542 }
5543 result = r;
5544 for (ReduceEntriesTask<K,V> t = this, s;;) {
5545 int c; BulkTask<K,V,?> par; Map.Entry<K,V> tr, sr;
5546 if ((c = t.pending) == 0) {
5547 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5548 if ((sr = s.result) != null)
5549 t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5550 }
5551 if ((par = t.parent) == null ||
5552 !(par instanceof ReduceEntriesTask)) {
5553 t.quietlyComplete();
5554 break;
5555 }
5556 t = (ReduceEntriesTask<K,V>)par;
5557 }
5558 else if (t.casPending(c, c - 1))
5559 break;
5560 }
5561 } catch (Throwable ex) {
5562 return tryCompleteComputation(ex);
5563 }
5564 return false;
5565 }
5566 public final Map.Entry<K,V> getRawResult() { return result; }
5567 }
5568
5569 @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
5570 extends BulkTask<K,V,U> {
5571 final Fun<? super K, ? extends U> transformer;
5572 final BiFun<? super U, ? super U, ? extends U> reducer;
5573 U result;
5574 MapReduceKeysTask<K,V,U> rights, nextRight;
5575 MapReduceKeysTask
5576 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5577 MapReduceKeysTask<K,V,U> nextRight,
5578 Fun<? super K, ? extends U> transformer,
5579 BiFun<? super U, ? super U, ? extends U> reducer) {
5580 super(m, p, b); this.nextRight = nextRight;
5581 this.transformer = transformer;
5582 this.reducer = reducer;
5583 }
5584 @SuppressWarnings("unchecked") public final boolean exec() {
5585 final Fun<? super K, ? extends U> transformer =
5586 this.transformer;
5587 final BiFun<? super U, ? super U, ? extends U> reducer =
5588 this.reducer;
5589 if (transformer == null || reducer == null)
5590 return abortOnNullFunction();
5591 try {
5592 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5593 do {} while (!casPending(c = pending, c+1));
5594 (rights = new MapReduceKeysTask<K,V,U>
5595 (map, this, b >>>= 1, rights, transformer, reducer)).fork();
5596 }
5597 U r = null, u;
5598 while (advance() != null) {
5599 if ((u = transformer.apply((K)nextKey)) != null)
5600 r = (r == null) ? u : reducer.apply(r, u);
5601 }
5602 result = r;
5603 for (MapReduceKeysTask<K,V,U> t = this, s;;) {
5604 int c; BulkTask<K,V,?> par; U tr, sr;
5605 if ((c = t.pending) == 0) {
5606 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5607 if ((sr = s.result) != null)
5608 t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5609 }
5610 if ((par = t.parent) == null ||
5611 !(par instanceof MapReduceKeysTask)) {
5612 t.quietlyComplete();
5613 break;
5614 }
5615 t = (MapReduceKeysTask<K,V,U>)par;
5616 }
5617 else if (t.casPending(c, c - 1))
5618 break;
5619 }
5620 } catch (Throwable ex) {
5621 return tryCompleteComputation(ex);
5622 }
5623 return false;
5624 }
5625 public final U getRawResult() { return result; }
5626 }
5627
5628 @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
5629 extends BulkTask<K,V,U> {
5630 final Fun<? super V, ? extends U> transformer;
5631 final BiFun<? super U, ? super U, ? extends U> reducer;
5632 U result;
5633 MapReduceValuesTask<K,V,U> rights, nextRight;
5634 MapReduceValuesTask
5635 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5636 MapReduceValuesTask<K,V,U> nextRight,
5637 Fun<? super V, ? extends U> transformer,
5638 BiFun<? super U, ? super U, ? extends U> reducer) {
5639 super(m, p, b); this.nextRight = nextRight;
5640 this.transformer = transformer;
5641 this.reducer = reducer;
5642 }
5643 @SuppressWarnings("unchecked") public final boolean exec() {
5644 final Fun<? super V, ? extends U> transformer =
5645 this.transformer;
5646 final BiFun<? super U, ? super U, ? extends U> reducer =
5647 this.reducer;
5648 if (transformer == null || reducer == null)
5649 return abortOnNullFunction();
5650 try {
5651 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5652 do {} while (!casPending(c = pending, c+1));
5653 (rights = new MapReduceValuesTask<K,V,U>
5654 (map, this, b >>>= 1, rights, transformer, reducer)).fork();
5655 }
5656 U r = null, u;
5657 Object v;
5658 while ((v = advance()) != null) {
5659 if ((u = transformer.apply((V)v)) != null)
5660 r = (r == null) ? u : reducer.apply(r, u);
5661 }
5662 result = r;
5663 for (MapReduceValuesTask<K,V,U> t = this, s;;) {
5664 int c; BulkTask<K,V,?> par; U tr, sr;
5665 if ((c = t.pending) == 0) {
5666 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5667 if ((sr = s.result) != null)
5668 t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5669 }
5670 if ((par = t.parent) == null ||
5671 !(par instanceof MapReduceValuesTask)) {
5672 t.quietlyComplete();
5673 break;
5674 }
5675 t = (MapReduceValuesTask<K,V,U>)par;
5676 }
5677 else if (t.casPending(c, c - 1))
5678 break;
5679 }
5680 } catch (Throwable ex) {
5681 return tryCompleteComputation(ex);
5682 }
5683 return false;
5684 }
5685 public final U getRawResult() { return result; }
5686 }
5687
5688 @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
5689 extends BulkTask<K,V,U> {
5690 final Fun<Map.Entry<K,V>, ? extends U> transformer;
5691 final BiFun<? super U, ? super U, ? extends U> reducer;
5692 U result;
5693 MapReduceEntriesTask<K,V,U> rights, nextRight;
5694 MapReduceEntriesTask
5695 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5696 MapReduceEntriesTask<K,V,U> nextRight,
5697 Fun<Map.Entry<K,V>, ? extends U> transformer,
5698 BiFun<? super U, ? super U, ? extends U> reducer) {
5699 super(m, p, b); this.nextRight = nextRight;
5700 this.transformer = transformer;
5701 this.reducer = reducer;
5702 }
5703 @SuppressWarnings("unchecked") public final boolean exec() {
5704 final Fun<Map.Entry<K,V>, ? extends U> transformer =
5705 this.transformer;
5706 final BiFun<? super U, ? super U, ? extends U> reducer =
5707 this.reducer;
5708 if (transformer == null || reducer == null)
5709 return abortOnNullFunction();
5710 try {
5711 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5712 do {} while (!casPending(c = pending, c+1));
5713 (rights = new MapReduceEntriesTask<K,V,U>
5714 (map, this, b >>>= 1, rights, transformer, reducer)).fork();
5715 }
5716 U r = null, u;
5717 Object v;
5718 while ((v = advance()) != null) {
5719 if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
5720 r = (r == null) ? u : reducer.apply(r, u);
5721 }
5722 result = r;
5723 for (MapReduceEntriesTask<K,V,U> t = this, s;;) {
5724 int c; BulkTask<K,V,?> par; U tr, sr;
5725 if ((c = t.pending) == 0) {
5726 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5727 if ((sr = s.result) != null)
5728 t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5729 }
5730 if ((par = t.parent) == null ||
5731 !(par instanceof MapReduceEntriesTask)) {
5732 t.quietlyComplete();
5733 break;
5734 }
5735 t = (MapReduceEntriesTask<K,V,U>)par;
5736 }
5737 else if (t.casPending(c, c - 1))
5738 break;
5739 }
5740 } catch (Throwable ex) {
5741 return tryCompleteComputation(ex);
5742 }
5743 return false;
5744 }
5745 public final U getRawResult() { return result; }
5746 }
5747
5748 @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
5749 extends BulkTask<K,V,U> {
5750 final BiFun<? super K, ? super V, ? extends U> transformer;
5751 final BiFun<? super U, ? super U, ? extends U> reducer;
5752 U result;
5753 MapReduceMappingsTask<K,V,U> rights, nextRight;
5754 MapReduceMappingsTask
5755 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5756 MapReduceMappingsTask<K,V,U> nextRight,
5757 BiFun<? super K, ? super V, ? extends U> transformer,
5758 BiFun<? super U, ? super U, ? extends U> reducer) {
5759 super(m, p, b); this.nextRight = nextRight;
5760 this.transformer = transformer;
5761 this.reducer = reducer;
5762 }
5763 @SuppressWarnings("unchecked") public final boolean exec() {
5764 final BiFun<? super K, ? super V, ? extends U> transformer =
5765 this.transformer;
5766 final BiFun<? super U, ? super U, ? extends U> reducer =
5767 this.reducer;
5768 if (transformer == null || reducer == null)
5769 return abortOnNullFunction();
5770 try {
5771 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5772 do {} while (!casPending(c = pending, c+1));
5773 (rights = new MapReduceMappingsTask<K,V,U>
5774 (map, this, b >>>= 1, rights, transformer, reducer)).fork();
5775 }
5776 U r = null, u;
5777 Object v;
5778 while ((v = advance()) != null) {
5779 if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5780 r = (r == null) ? u : reducer.apply(r, u);
5781 }
5782 result = r;
5783 for (MapReduceMappingsTask<K,V,U> t = this, s;;) {
5784 int c; BulkTask<K,V,?> par; U tr, sr;
5785 if ((c = t.pending) == 0) {
5786 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5787 if ((sr = s.result) != null)
5788 t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5789 }
5790 if ((par = t.parent) == null ||
5791 !(par instanceof MapReduceMappingsTask)) {
5792 t.quietlyComplete();
5793 break;
5794 }
5795 t = (MapReduceMappingsTask<K,V,U>)par;
5796 }
5797 else if (t.casPending(c, c - 1))
5798 break;
5799 }
5800 } catch (Throwable ex) {
5801 return tryCompleteComputation(ex);
5802 }
5803 return false;
5804 }
5805 public final U getRawResult() { return result; }
5806 }
5807
5808 @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
5809 extends BulkTask<K,V,Double> {
5810 final ObjectToDouble<? super K> transformer;
5811 final DoubleByDoubleToDouble reducer;
5812 final double basis;
5813 double result;
5814 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5815 MapReduceKeysToDoubleTask
5816 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5817 MapReduceKeysToDoubleTask<K,V> nextRight,
5818 ObjectToDouble<? super K> transformer,
5819 double basis,
5820 DoubleByDoubleToDouble reducer) {
5821 super(m, p, b); this.nextRight = nextRight;
5822 this.transformer = transformer;
5823 this.basis = basis; this.reducer = reducer;
5824 }
5825 @SuppressWarnings("unchecked") public final boolean exec() {
5826 final ObjectToDouble<? super K> transformer =
5827 this.transformer;
5828 final DoubleByDoubleToDouble reducer = this.reducer;
5829 if (transformer == null || reducer == null)
5830 return abortOnNullFunction();
5831 try {
5832 final double id = this.basis;
5833 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5834 do {} while (!casPending(c = pending, c+1));
5835 (rights = new MapReduceKeysToDoubleTask<K,V>
5836 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5837 }
5838 double r = id;
5839 while (advance() != null)
5840 r = reducer.apply(r, transformer.apply((K)nextKey));
5841 result = r;
5842 for (MapReduceKeysToDoubleTask<K,V> t = this, s;;) {
5843 int c; BulkTask<K,V,?> par;
5844 if ((c = t.pending) == 0) {
5845 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5846 t.result = reducer.apply(t.result, s.result);
5847 }
5848 if ((par = t.parent) == null ||
5849 !(par instanceof MapReduceKeysToDoubleTask)) {
5850 t.quietlyComplete();
5851 break;
5852 }
5853 t = (MapReduceKeysToDoubleTask<K,V>)par;
5854 }
5855 else if (t.casPending(c, c - 1))
5856 break;
5857 }
5858 } catch (Throwable ex) {
5859 return tryCompleteComputation(ex);
5860 }
5861 return false;
5862 }
5863 public final Double getRawResult() { return result; }
5864 }
5865
5866 @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
5867 extends BulkTask<K,V,Double> {
5868 final ObjectToDouble<? super V> transformer;
5869 final DoubleByDoubleToDouble reducer;
5870 final double basis;
5871 double result;
5872 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5873 MapReduceValuesToDoubleTask
5874 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5875 MapReduceValuesToDoubleTask<K,V> nextRight,
5876 ObjectToDouble<? super V> transformer,
5877 double basis,
5878 DoubleByDoubleToDouble reducer) {
5879 super(m, p, b); this.nextRight = nextRight;
5880 this.transformer = transformer;
5881 this.basis = basis; this.reducer = reducer;
5882 }
5883 @SuppressWarnings("unchecked") public final boolean exec() {
5884 final ObjectToDouble<? super V> transformer =
5885 this.transformer;
5886 final DoubleByDoubleToDouble reducer = this.reducer;
5887 if (transformer == null || reducer == null)
5888 return abortOnNullFunction();
5889 try {
5890 final double id = this.basis;
5891 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5892 do {} while (!casPending(c = pending, c+1));
5893 (rights = new MapReduceValuesToDoubleTask<K,V>
5894 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5895 }
5896 double r = id;
5897 Object v;
5898 while ((v = advance()) != null)
5899 r = reducer.apply(r, transformer.apply((V)v));
5900 result = r;
5901 for (MapReduceValuesToDoubleTask<K,V> t = this, s;;) {
5902 int c; BulkTask<K,V,?> par;
5903 if ((c = t.pending) == 0) {
5904 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5905 t.result = reducer.apply(t.result, s.result);
5906 }
5907 if ((par = t.parent) == null ||
5908 !(par instanceof MapReduceValuesToDoubleTask)) {
5909 t.quietlyComplete();
5910 break;
5911 }
5912 t = (MapReduceValuesToDoubleTask<K,V>)par;
5913 }
5914 else if (t.casPending(c, c - 1))
5915 break;
5916 }
5917 } catch (Throwable ex) {
5918 return tryCompleteComputation(ex);
5919 }
5920 return false;
5921 }
5922 public final Double getRawResult() { return result; }
5923 }
5924
5925 @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
5926 extends BulkTask<K,V,Double> {
5927 final ObjectToDouble<Map.Entry<K,V>> transformer;
5928 final DoubleByDoubleToDouble reducer;
5929 final double basis;
5930 double result;
5931 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5932 MapReduceEntriesToDoubleTask
5933 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5934 MapReduceEntriesToDoubleTask<K,V> nextRight,
5935 ObjectToDouble<Map.Entry<K,V>> transformer,
5936 double basis,
5937 DoubleByDoubleToDouble reducer) {
5938 super(m, p, b); this.nextRight = nextRight;
5939 this.transformer = transformer;
5940 this.basis = basis; this.reducer = reducer;
5941 }
5942 @SuppressWarnings("unchecked") public final boolean exec() {
5943 final ObjectToDouble<Map.Entry<K,V>> transformer =
5944 this.transformer;
5945 final DoubleByDoubleToDouble reducer = this.reducer;
5946 if (transformer == null || reducer == null)
5947 return abortOnNullFunction();
5948 try {
5949 final double id = this.basis;
5950 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5951 do {} while (!casPending(c = pending, c+1));
5952 (rights = new MapReduceEntriesToDoubleTask<K,V>
5953 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5954 }
5955 double r = id;
5956 Object v;
5957 while ((v = advance()) != null)
5958 r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
5959 result = r;
5960 for (MapReduceEntriesToDoubleTask<K,V> t = this, s;;) {
5961 int c; BulkTask<K,V,?> par;
5962 if ((c = t.pending) == 0) {
5963 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5964 t.result = reducer.apply(t.result, s.result);
5965 }
5966 if ((par = t.parent) == null ||
5967 !(par instanceof MapReduceEntriesToDoubleTask)) {
5968 t.quietlyComplete();
5969 break;
5970 }
5971 t = (MapReduceEntriesToDoubleTask<K,V>)par;
5972 }
5973 else if (t.casPending(c, c - 1))
5974 break;
5975 }
5976 } catch (Throwable ex) {
5977 return tryCompleteComputation(ex);
5978 }
5979 return false;
5980 }
5981 public final Double getRawResult() { return result; }
5982 }
5983
5984 @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
5985 extends BulkTask<K,V,Double> {
5986 final ObjectByObjectToDouble<? super K, ? super V> transformer;
5987 final DoubleByDoubleToDouble reducer;
5988 final double basis;
5989 double result;
5990 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5991 MapReduceMappingsToDoubleTask
5992 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5993 MapReduceMappingsToDoubleTask<K,V> nextRight,
5994 ObjectByObjectToDouble<? super K, ? super V> transformer,
5995 double basis,
5996 DoubleByDoubleToDouble reducer) {
5997 super(m, p, b); this.nextRight = nextRight;
5998 this.transformer = transformer;
5999 this.basis = basis; this.reducer = reducer;
6000 }
6001 @SuppressWarnings("unchecked") public final boolean exec() {
6002 final ObjectByObjectToDouble<? super K, ? super V> transformer =
6003 this.transformer;
6004 final DoubleByDoubleToDouble reducer = this.reducer;
6005 if (transformer == null || reducer == null)
6006 return abortOnNullFunction();
6007 try {
6008 final double id = this.basis;
6009 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6010 do {} while (!casPending(c = pending, c+1));
6011 (rights = new MapReduceMappingsToDoubleTask<K,V>
6012 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6013 }
6014 double r = id;
6015 Object v;
6016 while ((v = advance()) != null)
6017 r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6018 result = r;
6019 for (MapReduceMappingsToDoubleTask<K,V> t = this, s;;) {
6020 int c; BulkTask<K,V,?> par;
6021 if ((c = t.pending) == 0) {
6022 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6023 t.result = reducer.apply(t.result, s.result);
6024 }
6025 if ((par = t.parent) == null ||
6026 !(par instanceof MapReduceMappingsToDoubleTask)) {
6027 t.quietlyComplete();
6028 break;
6029 }
6030 t = (MapReduceMappingsToDoubleTask<K,V>)par;
6031 }
6032 else if (t.casPending(c, c - 1))
6033 break;
6034 }
6035 } catch (Throwable ex) {
6036 return tryCompleteComputation(ex);
6037 }
6038 return false;
6039 }
6040 public final Double getRawResult() { return result; }
6041 }
6042
6043 @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6044 extends BulkTask<K,V,Long> {
6045 final ObjectToLong<? super K> transformer;
6046 final LongByLongToLong reducer;
6047 final long basis;
6048 long result;
6049 MapReduceKeysToLongTask<K,V> rights, nextRight;
6050 MapReduceKeysToLongTask
6051 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6052 MapReduceKeysToLongTask<K,V> nextRight,
6053 ObjectToLong<? super K> transformer,
6054 long basis,
6055 LongByLongToLong reducer) {
6056 super(m, p, b); this.nextRight = nextRight;
6057 this.transformer = transformer;
6058 this.basis = basis; this.reducer = reducer;
6059 }
6060 @SuppressWarnings("unchecked") public final boolean exec() {
6061 final ObjectToLong<? super K> transformer =
6062 this.transformer;
6063 final LongByLongToLong reducer = this.reducer;
6064 if (transformer == null || reducer == null)
6065 return abortOnNullFunction();
6066 try {
6067 final long id = this.basis;
6068 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6069 do {} while (!casPending(c = pending, c+1));
6070 (rights = new MapReduceKeysToLongTask<K,V>
6071 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6072 }
6073 long r = id;
6074 while (advance() != null)
6075 r = reducer.apply(r, transformer.apply((K)nextKey));
6076 result = r;
6077 for (MapReduceKeysToLongTask<K,V> t = this, s;;) {
6078 int c; BulkTask<K,V,?> par;
6079 if ((c = t.pending) == 0) {
6080 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6081 t.result = reducer.apply(t.result, s.result);
6082 }
6083 if ((par = t.parent) == null ||
6084 !(par instanceof MapReduceKeysToLongTask)) {
6085 t.quietlyComplete();
6086 break;
6087 }
6088 t = (MapReduceKeysToLongTask<K,V>)par;
6089 }
6090 else if (t.casPending(c, c - 1))
6091 break;
6092 }
6093 } catch (Throwable ex) {
6094 return tryCompleteComputation(ex);
6095 }
6096 return false;
6097 }
6098 public final Long getRawResult() { return result; }
6099 }
6100
6101 @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6102 extends BulkTask<K,V,Long> {
6103 final ObjectToLong<? super V> transformer;
6104 final LongByLongToLong reducer;
6105 final long basis;
6106 long result;
6107 MapReduceValuesToLongTask<K,V> rights, nextRight;
6108 MapReduceValuesToLongTask
6109 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6110 MapReduceValuesToLongTask<K,V> nextRight,
6111 ObjectToLong<? super V> transformer,
6112 long basis,
6113 LongByLongToLong reducer) {
6114 super(m, p, b); this.nextRight = nextRight;
6115 this.transformer = transformer;
6116 this.basis = basis; this.reducer = reducer;
6117 }
6118 @SuppressWarnings("unchecked") public final boolean exec() {
6119 final ObjectToLong<? super V> transformer =
6120 this.transformer;
6121 final LongByLongToLong reducer = this.reducer;
6122 if (transformer == null || reducer == null)
6123 return abortOnNullFunction();
6124 try {
6125 final long id = this.basis;
6126 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6127 do {} while (!casPending(c = pending, c+1));
6128 (rights = new MapReduceValuesToLongTask<K,V>
6129 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6130 }
6131 long r = id;
6132 Object v;
6133 while ((v = advance()) != null)
6134 r = reducer.apply(r, transformer.apply((V)v));
6135 result = r;
6136 for (MapReduceValuesToLongTask<K,V> t = this, s;;) {
6137 int c; BulkTask<K,V,?> par;
6138 if ((c = t.pending) == 0) {
6139 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6140 t.result = reducer.apply(t.result, s.result);
6141 }
6142 if ((par = t.parent) == null ||
6143 !(par instanceof MapReduceValuesToLongTask)) {
6144 t.quietlyComplete();
6145 break;
6146 }
6147 t = (MapReduceValuesToLongTask<K,V>)par;
6148 }
6149 else if (t.casPending(c, c - 1))
6150 break;
6151 }
6152 } catch (Throwable ex) {
6153 return tryCompleteComputation(ex);
6154 }
6155 return false;
6156 }
6157 public final Long getRawResult() { return result; }
6158 }
6159
6160 @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6161 extends BulkTask<K,V,Long> {
6162 final ObjectToLong<Map.Entry<K,V>> transformer;
6163 final LongByLongToLong reducer;
6164 final long basis;
6165 long result;
6166 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6167 MapReduceEntriesToLongTask
6168 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6169 MapReduceEntriesToLongTask<K,V> nextRight,
6170 ObjectToLong<Map.Entry<K,V>> transformer,
6171 long basis,
6172 LongByLongToLong reducer) {
6173 super(m, p, b); this.nextRight = nextRight;
6174 this.transformer = transformer;
6175 this.basis = basis; this.reducer = reducer;
6176 }
6177 @SuppressWarnings("unchecked") public final boolean exec() {
6178 final ObjectToLong<Map.Entry<K,V>> transformer =
6179 this.transformer;
6180 final LongByLongToLong reducer = this.reducer;
6181 if (transformer == null || reducer == null)
6182 return abortOnNullFunction();
6183 try {
6184 final long id = this.basis;
6185 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6186 do {} while (!casPending(c = pending, c+1));
6187 (rights = new MapReduceEntriesToLongTask<K,V>
6188 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6189 }
6190 long r = id;
6191 Object v;
6192 while ((v = advance()) != null)
6193 r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6194 result = r;
6195 for (MapReduceEntriesToLongTask<K,V> t = this, s;;) {
6196 int c; BulkTask<K,V,?> par;
6197 if ((c = t.pending) == 0) {
6198 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6199 t.result = reducer.apply(t.result, s.result);
6200 }
6201 if ((par = t.parent) == null ||
6202 !(par instanceof MapReduceEntriesToLongTask)) {
6203 t.quietlyComplete();
6204 break;
6205 }
6206 t = (MapReduceEntriesToLongTask<K,V>)par;
6207 }
6208 else if (t.casPending(c, c - 1))
6209 break;
6210 }
6211 } catch (Throwable ex) {
6212 return tryCompleteComputation(ex);
6213 }
6214 return false;
6215 }
6216 public final Long getRawResult() { return result; }
6217 }
6218
6219 @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6220 extends BulkTask<K,V,Long> {
6221 final ObjectByObjectToLong<? super K, ? super V> transformer;
6222 final LongByLongToLong reducer;
6223 final long basis;
6224 long result;
6225 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6226 MapReduceMappingsToLongTask
6227 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6228 MapReduceMappingsToLongTask<K,V> nextRight,
6229 ObjectByObjectToLong<? super K, ? super V> transformer,
6230 long basis,
6231 LongByLongToLong reducer) {
6232 super(m, p, b); this.nextRight = nextRight;
6233 this.transformer = transformer;
6234 this.basis = basis; this.reducer = reducer;
6235 }
6236 @SuppressWarnings("unchecked") public final boolean exec() {
6237 final ObjectByObjectToLong<? super K, ? super V> transformer =
6238 this.transformer;
6239 final LongByLongToLong reducer = this.reducer;
6240 if (transformer == null || reducer == null)
6241 return abortOnNullFunction();
6242 try {
6243 final long id = this.basis;
6244 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6245 do {} while (!casPending(c = pending, c+1));
6246 (rights = new MapReduceMappingsToLongTask<K,V>
6247 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6248 }
6249 long r = id;
6250 Object v;
6251 while ((v = advance()) != null)
6252 r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6253 result = r;
6254 for (MapReduceMappingsToLongTask<K,V> t = this, s;;) {
6255 int c; BulkTask<K,V,?> par;
6256 if ((c = t.pending) == 0) {
6257 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6258 t.result = reducer.apply(t.result, s.result);
6259 }
6260 if ((par = t.parent) == null ||
6261 !(par instanceof MapReduceMappingsToLongTask)) {
6262 t.quietlyComplete();
6263 break;
6264 }
6265 t = (MapReduceMappingsToLongTask<K,V>)par;
6266 }
6267 else if (t.casPending(c, c - 1))
6268 break;
6269 }
6270 } catch (Throwable ex) {
6271 return tryCompleteComputation(ex);
6272 }
6273 return false;
6274 }
6275 public final Long getRawResult() { return result; }
6276 }
6277
6278 @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6279 extends BulkTask<K,V,Integer> {
6280 final ObjectToInt<? super K> transformer;
6281 final IntByIntToInt reducer;
6282 final int basis;
6283 int result;
6284 MapReduceKeysToIntTask<K,V> rights, nextRight;
6285 MapReduceKeysToIntTask
6286 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6287 MapReduceKeysToIntTask<K,V> nextRight,
6288 ObjectToInt<? super K> transformer,
6289 int basis,
6290 IntByIntToInt reducer) {
6291 super(m, p, b); this.nextRight = nextRight;
6292 this.transformer = transformer;
6293 this.basis = basis; this.reducer = reducer;
6294 }
6295 @SuppressWarnings("unchecked") public final boolean exec() {
6296 final ObjectToInt<? super K> transformer =
6297 this.transformer;
6298 final IntByIntToInt reducer = this.reducer;
6299 if (transformer == null || reducer == null)
6300 return abortOnNullFunction();
6301 try {
6302 final int id = this.basis;
6303 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6304 do {} while (!casPending(c = pending, c+1));
6305 (rights = new MapReduceKeysToIntTask<K,V>
6306 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6307 }
6308 int r = id;
6309 while (advance() != null)
6310 r = reducer.apply(r, transformer.apply((K)nextKey));
6311 result = r;
6312 for (MapReduceKeysToIntTask<K,V> t = this, s;;) {
6313 int c; BulkTask<K,V,?> par;
6314 if ((c = t.pending) == 0) {
6315 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6316 t.result = reducer.apply(t.result, s.result);
6317 }
6318 if ((par = t.parent) == null ||
6319 !(par instanceof MapReduceKeysToIntTask)) {
6320 t.quietlyComplete();
6321 break;
6322 }
6323 t = (MapReduceKeysToIntTask<K,V>)par;
6324 }
6325 else if (t.casPending(c, c - 1))
6326 break;
6327 }
6328 } catch (Throwable ex) {
6329 return tryCompleteComputation(ex);
6330 }
6331 return false;
6332 }
6333 public final Integer getRawResult() { return result; }
6334 }
6335
6336 @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6337 extends BulkTask<K,V,Integer> {
6338 final ObjectToInt<? super V> transformer;
6339 final IntByIntToInt reducer;
6340 final int basis;
6341 int result;
6342 MapReduceValuesToIntTask<K,V> rights, nextRight;
6343 MapReduceValuesToIntTask
6344 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6345 MapReduceValuesToIntTask<K,V> nextRight,
6346 ObjectToInt<? super V> transformer,
6347 int basis,
6348 IntByIntToInt reducer) {
6349 super(m, p, b); this.nextRight = nextRight;
6350 this.transformer = transformer;
6351 this.basis = basis; this.reducer = reducer;
6352 }
6353 @SuppressWarnings("unchecked") public final boolean exec() {
6354 final ObjectToInt<? super V> transformer =
6355 this.transformer;
6356 final IntByIntToInt reducer = this.reducer;
6357 if (transformer == null || reducer == null)
6358 return abortOnNullFunction();
6359 try {
6360 final int id = this.basis;
6361 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6362 do {} while (!casPending(c = pending, c+1));
6363 (rights = new MapReduceValuesToIntTask<K,V>
6364 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6365 }
6366 int r = id;
6367 Object v;
6368 while ((v = advance()) != null)
6369 r = reducer.apply(r, transformer.apply((V)v));
6370 result = r;
6371 for (MapReduceValuesToIntTask<K,V> t = this, s;;) {
6372 int c; BulkTask<K,V,?> par;
6373 if ((c = t.pending) == 0) {
6374 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6375 t.result = reducer.apply(t.result, s.result);
6376 }
6377 if ((par = t.parent) == null ||
6378 !(par instanceof MapReduceValuesToIntTask)) {
6379 t.quietlyComplete();
6380 break;
6381 }
6382 t = (MapReduceValuesToIntTask<K,V>)par;
6383 }
6384 else if (t.casPending(c, c - 1))
6385 break;
6386 }
6387 } catch (Throwable ex) {
6388 return tryCompleteComputation(ex);
6389 }
6390 return false;
6391 }
6392 public final Integer getRawResult() { return result; }
6393 }
6394
6395 @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6396 extends BulkTask<K,V,Integer> {
6397 final ObjectToInt<Map.Entry<K,V>> transformer;
6398 final IntByIntToInt reducer;
6399 final int basis;
6400 int result;
6401 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6402 MapReduceEntriesToIntTask
6403 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6404 MapReduceEntriesToIntTask<K,V> nextRight,
6405 ObjectToInt<Map.Entry<K,V>> transformer,
6406 int basis,
6407 IntByIntToInt reducer) {
6408 super(m, p, b); this.nextRight = nextRight;
6409 this.transformer = transformer;
6410 this.basis = basis; this.reducer = reducer;
6411 }
6412 @SuppressWarnings("unchecked") public final boolean exec() {
6413 final ObjectToInt<Map.Entry<K,V>> transformer =
6414 this.transformer;
6415 final IntByIntToInt reducer = this.reducer;
6416 if (transformer == null || reducer == null)
6417 return abortOnNullFunction();
6418 try {
6419 final int id = this.basis;
6420 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6421 do {} while (!casPending(c = pending, c+1));
6422 (rights = new MapReduceEntriesToIntTask<K,V>
6423 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6424 }
6425 int r = id;
6426 Object v;
6427 while ((v = advance()) != null)
6428 r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6429 result = r;
6430 for (MapReduceEntriesToIntTask<K,V> t = this, s;;) {
6431 int c; BulkTask<K,V,?> par;
6432 if ((c = t.pending) == 0) {
6433 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6434 t.result = reducer.apply(t.result, s.result);
6435 }
6436 if ((par = t.parent) == null ||
6437 !(par instanceof MapReduceEntriesToIntTask)) {
6438 t.quietlyComplete();
6439 break;
6440 }
6441 t = (MapReduceEntriesToIntTask<K,V>)par;
6442 }
6443 else if (t.casPending(c, c - 1))
6444 break;
6445 }
6446 } catch (Throwable ex) {
6447 return tryCompleteComputation(ex);
6448 }
6449 return false;
6450 }
6451 public final Integer getRawResult() { return result; }
6452 }
6453
6454 @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6455 extends BulkTask<K,V,Integer> {
6456 final ObjectByObjectToInt<? super K, ? super V> transformer;
6457 final IntByIntToInt reducer;
6458 final int basis;
6459 int result;
6460 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6461 MapReduceMappingsToIntTask
6462 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6463 MapReduceMappingsToIntTask<K,V> rights,
6464 ObjectByObjectToInt<? super K, ? super V> transformer,
6465 int basis,
6466 IntByIntToInt reducer) {
6467 super(m, p, b); this.nextRight = nextRight;
6468 this.transformer = transformer;
6469 this.basis = basis; this.reducer = reducer;
6470 }
6471 @SuppressWarnings("unchecked") public final boolean exec() {
6472 final ObjectByObjectToInt<? super K, ? super V> transformer =
6473 this.transformer;
6474 final IntByIntToInt reducer = this.reducer;
6475 if (transformer == null || reducer == null)
6476 return abortOnNullFunction();
6477 try {
6478 final int id = this.basis;
6479 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6480 do {} while (!casPending(c = pending, c+1));
6481 (rights = new MapReduceMappingsToIntTask<K,V>
6482 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6483 }
6484 int r = id;
6485 Object v;
6486 while ((v = advance()) != null)
6487 r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6488 result = r;
6489 for (MapReduceMappingsToIntTask<K,V> t = this, s;;) {
6490 int c; BulkTask<K,V,?> par;
6491 if ((c = t.pending) == 0) {
6492 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6493 t.result = reducer.apply(t.result, s.result);
6494 }
6495 if ((par = t.parent) == null ||
6496 !(par instanceof MapReduceMappingsToIntTask)) {
6497 t.quietlyComplete();
6498 break;
6499 }
6500 t = (MapReduceMappingsToIntTask<K,V>)par;
6501 }
6502 else if (t.casPending(c, c - 1))
6503 break;
6504 }
6505 } catch (Throwable ex) {
6506 return tryCompleteComputation(ex);
6507 }
6508 return false;
6509 }
6510 public final Integer getRawResult() { return result; }
6511 }
6512
6513
6514 // Unsafe mechanics
6515 private static final sun.misc.Unsafe UNSAFE;
6516 private static final long counterOffset;
6517 private static final long sizeCtlOffset;
6518 private static final long ABASE;
6519 private static final int ASHIFT;
6520
6521 static {
6522 int ss;
6523 try {
6524 UNSAFE = getUnsafe();
6525 Class<?> k = ConcurrentHashMapV8.class;
6526 counterOffset = UNSAFE.objectFieldOffset
6527 (k.getDeclaredField("counter"));
6528 sizeCtlOffset = UNSAFE.objectFieldOffset
6529 (k.getDeclaredField("sizeCtl"));
6530 Class<?> sc = Node[].class;
6531 ABASE = UNSAFE.arrayBaseOffset(sc);
6532 ss = UNSAFE.arrayIndexScale(sc);
6533 } catch (Exception e) {
6534 throw new Error(e);
6535 }
6536 if ((ss & (ss-1)) != 0)
6537 throw new Error("data type scale not a power of two");
6538 ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6539 }
6540
6541 /**
6542 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
6543 * Replace with a simple call to Unsafe.getUnsafe when integrating
6544 * into a jdk.
6545 *
6546 * @return a sun.misc.Unsafe
6547 */
6548 private static sun.misc.Unsafe getUnsafe() {
6549 try {
6550 return sun.misc.Unsafe.getUnsafe();
6551 } catch (SecurityException se) {
6552 try {
6553 return java.security.AccessController.doPrivileged
6554 (new java.security
6555 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
6556 public sun.misc.Unsafe run() throws Exception {
6557 java.lang.reflect.Field f = sun.misc
6558 .Unsafe.class.getDeclaredField("theUnsafe");
6559 f.setAccessible(true);
6560 return (sun.misc.Unsafe) f.get(null);
6561 }});
6562 } catch (java.security.PrivilegedActionException e) {
6563 throw new RuntimeException("Could not initialize intrinsics",
6564 e.getCause());
6565 }
6566 }
6567 }
6568 }