ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
Revision: 1.72
Committed: Tue Oct 30 16:05:35 2012 UTC (11 years, 6 months ago) by jsr166
Branch: MAIN
Changes since 1.71: +1 -1 lines
Log Message:
whitespace

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package jsr166e;
8
9 import java.util.Comparator;
10 import java.util.Arrays;
11 import java.util.Map;
12 import java.util.Set;
13 import java.util.Collection;
14 import java.util.AbstractMap;
15 import java.util.AbstractSet;
16 import java.util.AbstractCollection;
17 import java.util.Hashtable;
18 import java.util.HashMap;
19 import java.util.Iterator;
20 import java.util.Enumeration;
21 import java.util.ConcurrentModificationException;
22 import java.util.NoSuchElementException;
23 import java.util.concurrent.ConcurrentMap;
24 import java.util.concurrent.ThreadLocalRandom;
25 import java.util.concurrent.locks.LockSupport;
26 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
27 import java.util.concurrent.atomic.AtomicReference;
28
29 import java.io.Serializable;
30
31 /**
32 * A hash table supporting full concurrency of retrievals and
33 * high expected concurrency for updates. This class obeys the
34 * same functional specification as {@link java.util.Hashtable}, and
35 * includes versions of methods corresponding to each method of
36 * {@code Hashtable}. However, even though all operations are
37 * thread-safe, retrieval operations do <em>not</em> entail locking,
38 * and there is <em>not</em> any support for locking the entire table
39 * in a way that prevents all access. This class is fully
40 * interoperable with {@code Hashtable} in programs that rely on its
41 * thread safety but not on its synchronization details.
42 *
43 * <p> Retrieval operations (including {@code get}) generally do not
44 * block, so may overlap with update operations (including {@code put}
45 * and {@code remove}). Retrievals reflect the results of the most
46 * recently <em>completed</em> update operations holding upon their
47 * onset. (More formally, an update operation for a given key bears a
48 * <em>happens-before</em> relation with any (non-null) retrieval for
49 * that key reporting the updated value.) For aggregate operations
50 * such as {@code putAll} and {@code clear}, concurrent retrievals may
51 * reflect insertion or removal of only some entries. Similarly,
52 * Iterators and Enumerations return elements reflecting the state of
53 * the hash table at some point at or since the creation of the
54 * iterator/enumeration. They do <em>not</em> throw {@link
55 * ConcurrentModificationException}. However, iterators are designed
56 * to be used by only one thread at a time. Bear in mind that the
57 * results of aggregate status methods including {@code size}, {@code
58 * isEmpty}, and {@code containsValue} are typically useful only when
59 * a map is not undergoing concurrent updates in other threads.
60 * Otherwise the results of these methods reflect transient states
61 * that may be adequate for monitoring or estimation purposes, but not
62 * for program control.
63 *
64 * <p> The table is dynamically expanded when there are too many
65 * collisions (i.e., keys that have distinct hash codes but fall into
66 * the same slot modulo the table size), with the expected average
67 * effect of maintaining roughly two bins per mapping (corresponding
68 * to a 0.75 load factor threshold for resizing). There may be much
69 * variance around this average as mappings are added and removed, but
70 * overall, this maintains a commonly accepted time/space tradeoff for
71 * hash tables. However, resizing this or any other kind of hash
72 * table may be a relatively slow operation. When possible, it is a
73 * good idea to provide a size estimate as an optional {@code
74 * initialCapacity} constructor argument. An additional optional
75 * {@code loadFactor} constructor argument provides a further means of
76 * customizing initial table capacity by specifying the table density
77 * to be used in calculating the amount of space to allocate for the
78 * given number of elements. Also, for compatibility with previous
79 * versions of this class, constructors may optionally specify an
80 * expected {@code concurrencyLevel} as an additional hint for
81 * internal sizing. Note that using many keys with exactly the same
82 * {@code hashCode()} is a sure way to slow down performance of any
83 * hash table.
84 *
85 * <p> A {@link Set} projection of a ConcurrentHashMapV8 may be created
86 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
87 * (using {@link #keySet(Object)} when only keys are of interest, and the
88 * mapped values are (perhaps transiently) not used or all take the
89 * same mapping value.
90 *
91 * <p> A ConcurrentHashMapV8 can be used as scalable frequency map (a
92 * form of histogram or multiset) by using {@link LongAdder} values
93 * and initializing via {@link #computeIfAbsent}. For example, to add
94 * a count to a {@code ConcurrentHashMapV8<String,LongAdder> freqs}, you
95 * can use {@code freqs.computeIfAbsent(k -> new
96 * LongAdder()).increment();}
97 *
98 * <p>This class and its views and iterators implement all of the
99 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
100 * interfaces.
101 *
102 * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
103 * does <em>not</em> allow {@code null} to be used as a key or value.
104 *
105 * <p>ConcurrentHashMapV8s support parallel operations using the {@link
106 * ForkJoinPool#commonPool}. (Task that may be used in other contexts
107 * are available in class {@link ForkJoinTasks}). These operations are
108 * designed to be safely, and often sensibly, applied even with maps
109 * that are being concurrently updated by other threads; for example,
110 * when computing a snapshot summary of the values in a shared
111 * registry. There are three kinds of operation, each with four
112 * forms, accepting functions with Keys, Values, Entries, and (Key,
113 * Value) arguments and/or return values. Because the elements of a
114 * ConcurrentHashMapV8 are not ordered in any particular way, and may be
115 * processed in different orders in different parallel executions, the
116 * correctness of supplied functions should not depend on any
117 * ordering, or on any other objects or values that may transiently
118 * change while computation is in progress; and except for forEach
119 * actions, should ideally be side-effect-free.
120 *
121 * <ul>
122 * <li> forEach: Perform a given action on each element.
123 * A variant form applies a given transformation on each element
124 * before performing the action.</li>
125 *
126 * <li> search: Return the first available non-null result of
127 * applying a given function on each element; skipping further
128 * search when a result is found.</li>
129 *
130 * <li> reduce: Accumulate each element. The supplied reduction
131 * function cannot rely on ordering (more formally, it should be
132 * both associative and commutative). There are five variants:
133 *
134 * <ul>
135 *
136 * <li> Plain reductions. (There is not a form of this method for
137 * (key, value) function arguments since there is no corresponding
138 * return type.)</li>
139 *
140 * <li> Mapped reductions that accumulate the results of a given
141 * function applied to each element.</li>
142 *
143 * <li> Reductions to scalar doubles, longs, and ints, using a
144 * given basis value.</li>
145 *
146 * </li>
147 * </ul>
148 * </ul>
149 *
150 * <p>The concurrency properties of bulk operations follow
151 * from those of ConcurrentHashMapV8: Any non-null result returned
152 * from {@code get(key)} and related access methods bears a
153 * happens-before relation with the associated insertion or
154 * update. The result of any bulk operation reflects the
155 * composition of these per-element relations (but is not
156 * necessarily atomic with respect to the map as a whole unless it
157 * is somehow known to be quiescent). Conversely, because keys
158 * and values in the map are never null, null serves as a reliable
159 * atomic indicator of the current lack of any result. To
160 * maintain this property, null serves as an implicit basis for
161 * all non-scalar reduction operations. For the double, long, and
162 * int versions, the basis should be one that, when combined with
163 * any other value, returns that other value (more formally, it
164 * should be the identity element for the reduction). Most common
165 * reductions have these properties; for example, computing a sum
166 * with basis 0 or a minimum with basis MAX_VALUE.
167 *
168 * <p>Search and transformation functions provided as arguments
169 * should similarly return null to indicate the lack of any result
170 * (in which case it is not used). In the case of mapped
171 * reductions, this also enables transformations to serve as
172 * filters, returning null (or, in the case of primitive
173 * specializations, the identity basis) if the element should not
174 * be combined. You can create compound transformations and
175 * filterings by composing them yourself under this "null means
176 * there is nothing there now" rule before using them in search or
177 * reduce operations.
178 *
179 * <p>Methods accepting and/or returning Entry arguments maintain
180 * key-value associations. They may be useful for example when
181 * finding the key for the greatest value. Note that "plain" Entry
182 * arguments can be supplied using {@code new
183 * AbstractMap.SimpleEntry(k,v)}.
184 *
185 * <p> Bulk operations may complete abruptly, throwing an
186 * exception encountered in the application of a supplied
187 * function. Bear in mind when handling such exceptions that other
188 * concurrently executing functions could also have thrown
189 * exceptions, or would have done so if the first exception had
190 * not occurred.
191 *
192 * <p>Parallel speedups for bulk operations compared to sequential
193 * processing are common but not guaranteed. Operations involving
194 * brief functions on small maps may execute more slowly than
195 * sequential loops if the underlying work to parallelize the
196 * computation is more expensive than the computation
197 * itself. Similarly, parallelization may not lead to much actual
198 * parallelism if all processors are busy performing unrelated tasks.
199 *
200 * <p> All arguments to all task methods must be non-null.
201 *
202 * <p><em>jsr166e note: During transition, this class
203 * uses nested functional interfaces with different names but the
204 * same forms as those expected for JDK8.<em>
205 *
206 * <p>This class is a member of the
207 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
208 * Java Collections Framework</a>.
209 *
210 * @since 1.5
211 * @author Doug Lea
212 * @param <K> the type of keys maintained by this map
213 * @param <V> the type of mapped values
214 */
215 public class ConcurrentHashMapV8<K, V>
216 implements ConcurrentMap<K, V>, Serializable {
217 private static final long serialVersionUID = 7249069246763182397L;
218
219 /**
220 * A partitionable iterator. A Spliterator can be traversed
221 * directly, but can also be partitioned (before traversal) by
222 * creating another Spliterator that covers a non-overlapping
223 * portion of the elements, and so may be amenable to parallel
224 * execution.
225 *
226 * <p> This interface exports a subset of expected JDK8
227 * functionality.
228 *
229 * <p>Sample usage: Here is one (of the several) ways to compute
230 * the sum of the values held in a map using the ForkJoin
231 * framework. As illustrated here, Spliterators are well suited to
232 * designs in which a task repeatedly splits off half its work
233 * into forked subtasks until small enough to process directly,
234 * and then joins these subtasks. Variants of this style can also
235 * be used in completion-based designs.
236 *
237 * <pre>
238 * {@code ConcurrentHashMapV8<String, Long> m = ...
239 * // split as if have 8 * parallelism, for load balance
240 * int n = m.size();
241 * int p = aForkJoinPool.getParallelism() * 8;
242 * int split = (n < p)? n : p;
243 * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
244 * // ...
245 * static class SumValues extends RecursiveTask<Long> {
246 * final Spliterator<Long> s;
247 * final int split; // split while > 1
248 * final SumValues nextJoin; // records forked subtasks to join
249 * SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
250 * this.s = s; this.depth = depth; this.nextJoin = nextJoin;
251 * }
252 * public Long compute() {
253 * long sum = 0;
254 * SumValues subtasks = null; // fork subtasks
255 * for (int s = split >>> 1; s > 0; s >>>= 1)
256 * (subtasks = new SumValues(s.split(), s, subtasks)).fork();
257 * while (s.hasNext()) // directly process remaining elements
258 * sum += s.next();
259 * for (SumValues t = subtasks; t != null; t = t.nextJoin)
260 * sum += t.join(); // collect subtask results
261 * return sum;
262 * }
263 * }
264 * }</pre>
265 */
266 public static interface Spliterator<T> extends Iterator<T> {
267 /**
268 * Returns a Spliterator covering approximately half of the
269 * elements, guaranteed not to overlap with those subsequently
270 * returned by this Spliterator. After invoking this method,
271 * the current Spliterator will <em>not</em> produce any of
272 * the elements of the returned Spliterator, but the two
273 * Spliterators together will produce all of the elements that
274 * would have been produced by this Spliterator had this
275 * method not been called. The exact number of elements
276 * produced by the returned Spliterator is not guaranteed, and
277 * may be zero (i.e., with {@code hasNext()} reporting {@code
278 * false}) if this Spliterator cannot be further split.
279 *
280 * @return a Spliterator covering approximately half of the
281 * elements
282 * @throws IllegalStateException if this Spliterator has
283 * already commenced traversing elements
284 */
285 Spliterator<T> split();
286 }
287
288 /**
289 * A view of a ConcurrentHashMapV8 as a {@link Set} of keys, in
290 * which additions may optionally be enabled by mapping to a
291 * common value. This class cannot be directly instantiated. See
292 * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
293 * {@link #newKeySet(int)}.
294 *
295 * <p>The view's {@code iterator} is a "weakly consistent" iterator
296 * that will never throw {@link ConcurrentModificationException},
297 * and guarantees to traverse elements as they existed upon
298 * construction of the iterator, and may (but is not guaranteed to)
299 * reflect any modifications subsequent to construction.
300 */
301 public static class KeySetView<K,V> extends CHMView<K,V> implements Set<K>, java.io.Serializable {
302 private static final long serialVersionUID = 7249069246763182397L;
303 private final V value;
304 KeySetView(ConcurrentHashMapV8<K, V> map, V value) { // non-public
305 super(map);
306 this.value = value;
307 }
308
309 /**
310 * Returns the map backing this view.
311 *
312 * @return the map backing this view
313 */
314 public ConcurrentHashMapV8<K,V> getMap() { return map; }
315
316 /**
317 * Returns the default mapped value for additions,
318 * or {@code null} if additions are not supported.
319 *
320 * @return the default mapped value for additions, or {@code null}
321 * if not supported.
322 */
323 public V getMappedValue() { return value; }
324
325 // implement Set API
326
327 public boolean contains(Object o) { return map.containsKey(o); }
328 public boolean remove(Object o) { return map.remove(o) != null; }
329 public Iterator<K> iterator() { return new KeyIterator<K,V>(map); }
330 public boolean add(K e) {
331 V v;
332 if ((v = value) == null)
333 throw new UnsupportedOperationException();
334 if (e == null)
335 throw new NullPointerException();
336 return map.internalPutIfAbsent(e, v) == null;
337 }
338 public boolean addAll(Collection<? extends K> c) {
339 boolean added = false;
340 V v;
341 if ((v = value) == null)
342 throw new UnsupportedOperationException();
343 for (K e : c) {
344 if (e == null)
345 throw new NullPointerException();
346 if (map.internalPutIfAbsent(e, v) == null)
347 added = true;
348 }
349 return added;
350 }
351 public boolean equals(Object o) {
352 Set<?> c;
353 return ((o instanceof Set) &&
354 ((c = (Set<?>)o) == this ||
355 (containsAll(c) && c.containsAll(this))));
356 }
357 }
358
359 /*
360 * Overview:
361 *
362 * The primary design goal of this hash table is to maintain
363 * concurrent readability (typically method get(), but also
364 * iterators and related methods) while minimizing update
365 * contention. Secondary goals are to keep space consumption about
366 * the same or better than java.util.HashMap, and to support high
367 * initial insertion rates on an empty table by many threads.
368 *
369 * Each key-value mapping is held in a Node. Because Node fields
370 * can contain special values, they are defined using plain Object
371 * types. Similarly in turn, all internal methods that use them
372 * work off Object types. And similarly, so do the internal
373 * methods of auxiliary iterator and view classes. All public
374 * generic typed methods relay in/out of these internal methods,
375 * supplying null-checks and casts as needed. This also allows
376 * many of the public methods to be factored into a smaller number
377 * of internal methods (although sadly not so for the five
378 * variants of put-related operations). The validation-based
379 * approach explained below leads to a lot of code sprawl because
380 * retry-control precludes factoring into smaller methods.
381 *
382 * The table is lazily initialized to a power-of-two size upon the
383 * first insertion. Each bin in the table normally contains a
384 * list of Nodes (most often, the list has only zero or one Node).
385 * Table accesses require volatile/atomic reads, writes, and
386 * CASes. Because there is no other way to arrange this without
387 * adding further indirections, we use intrinsics
388 * (sun.misc.Unsafe) operations. The lists of nodes within bins
389 * are always accurately traversable under volatile reads, so long
390 * as lookups check hash code and non-nullness of value before
391 * checking key equality.
392 *
393 * We use the top two bits of Node hash fields for control
394 * purposes -- they are available anyway because of addressing
395 * constraints. As explained further below, these top bits are
396 * used as follows:
397 * 00 - Normal
398 * 01 - Locked
399 * 11 - Locked and may have a thread waiting for lock
400 * 10 - Node is a forwarding node
401 *
402 * The lower 30 bits of each Node's hash field contain a
403 * transformation of the key's hash code, except for forwarding
404 * nodes, for which the lower bits are zero (and so always have
405 * hash field == MOVED).
406 *
407 * Insertion (via put or its variants) of the first node in an
408 * empty bin is performed by just CASing it to the bin. This is
409 * by far the most common case for put operations under most
410 * key/hash distributions. Other update operations (insert,
411 * delete, and replace) require locks. We do not want to waste
412 * the space required to associate a distinct lock object with
413 * each bin, so instead use the first node of a bin list itself as
414 * a lock. Blocking support for these locks relies on the builtin
415 * "synchronized" monitors. However, we also need a tryLock
416 * construction, so we overlay these by using bits of the Node
417 * hash field for lock control (see above), and so normally use
418 * builtin monitors only for blocking and signalling using
419 * wait/notifyAll constructions. See Node.tryAwaitLock.
420 *
421 * Using the first node of a list as a lock does not by itself
422 * suffice though: When a node is locked, any update must first
423 * validate that it is still the first node after locking it, and
424 * retry if not. Because new nodes are always appended to lists,
425 * once a node is first in a bin, it remains first until deleted
426 * or the bin becomes invalidated (upon resizing). However,
427 * operations that only conditionally update may inspect nodes
428 * until the point of update. This is a converse of sorts to the
429 * lazy locking technique described by Herlihy & Shavit.
430 *
431 * The main disadvantage of per-bin locks is that other update
432 * operations on other nodes in a bin list protected by the same
433 * lock can stall, for example when user equals() or mapping
434 * functions take a long time. However, statistically, under
435 * random hash codes, this is not a common problem. Ideally, the
436 * frequency of nodes in bins follows a Poisson distribution
437 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
438 * parameter of about 0.5 on average, given the resizing threshold
439 * of 0.75, although with a large variance because of resizing
440 * granularity. Ignoring variance, the expected occurrences of
441 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
442 * first values are:
443 *
444 * 0: 0.60653066
445 * 1: 0.30326533
446 * 2: 0.07581633
447 * 3: 0.01263606
448 * 4: 0.00157952
449 * 5: 0.00015795
450 * 6: 0.00001316
451 * 7: 0.00000094
452 * 8: 0.00000006
453 * more: less than 1 in ten million
454 *
455 * Lock contention probability for two threads accessing distinct
456 * elements is roughly 1 / (8 * #elements) under random hashes.
457 *
458 * Actual hash code distributions encountered in practice
459 * sometimes deviate significantly from uniform randomness. This
460 * includes the case when N > (1<<30), so some keys MUST collide.
461 * Similarly for dumb or hostile usages in which multiple keys are
462 * designed to have identical hash codes. Also, although we guard
463 * against the worst effects of this (see method spread), sets of
464 * hashes may differ only in bits that do not impact their bin
465 * index for a given power-of-two mask. So we use a secondary
466 * strategy that applies when the number of nodes in a bin exceeds
467 * a threshold, and at least one of the keys implements
468 * Comparable. These TreeBins use a balanced tree to hold nodes
469 * (a specialized form of red-black trees), bounding search time
470 * to O(log N). Each search step in a TreeBin is around twice as
471 * slow as in a regular list, but given that N cannot exceed
472 * (1<<64) (before running out of addresses) this bounds search
473 * steps, lock hold times, etc, to reasonable constants (roughly
474 * 100 nodes inspected per operation worst case) so long as keys
475 * are Comparable (which is very common -- String, Long, etc).
476 * TreeBin nodes (TreeNodes) also maintain the same "next"
477 * traversal pointers as regular nodes, so can be traversed in
478 * iterators in the same way.
479 *
480 * The table is resized when occupancy exceeds a percentage
481 * threshold (nominally, 0.75, but see below). Only a single
482 * thread performs the resize (using field "sizeCtl", to arrange
483 * exclusion), but the table otherwise remains usable for reads
484 * and updates. Resizing proceeds by transferring bins, one by
485 * one, from the table to the next table. Because we are using
486 * power-of-two expansion, the elements from each bin must either
487 * stay at same index, or move with a power of two offset. We
488 * eliminate unnecessary node creation by catching cases where old
489 * nodes can be reused because their next fields won't change. On
490 * average, only about one-sixth of them need cloning when a table
491 * doubles. The nodes they replace will be garbage collectable as
492 * soon as they are no longer referenced by any reader thread that
493 * may be in the midst of concurrently traversing table. Upon
494 * transfer, the old table bin contains only a special forwarding
495 * node (with hash field "MOVED") that contains the next table as
496 * its key. On encountering a forwarding node, access and update
497 * operations restart, using the new table.
498 *
499 * Each bin transfer requires its bin lock. However, unlike other
500 * cases, a transfer can skip a bin if it fails to acquire its
501 * lock, and revisit it later (unless it is a TreeBin). Method
502 * rebuild maintains a buffer of TRANSFER_BUFFER_SIZE bins that
503 * have been skipped because of failure to acquire a lock, and
504 * blocks only if none are available (i.e., only very rarely).
505 * The transfer operation must also ensure that all accessible
506 * bins in both the old and new table are usable by any traversal.
507 * When there are no lock acquisition failures, this is arranged
508 * simply by proceeding from the last bin (table.length - 1) up
509 * towards the first. Upon seeing a forwarding node, traversals
510 * (see class Iter) arrange to move to the new table
511 * without revisiting nodes. However, when any node is skipped
512 * during a transfer, all earlier table bins may have become
513 * visible, so are initialized with a reverse-forwarding node back
514 * to the old table until the new ones are established. (This
515 * sometimes requires transiently locking a forwarding node, which
516 * is possible under the above encoding.) These more expensive
517 * mechanics trigger only when necessary.
518 *
519 * The traversal scheme also applies to partial traversals of
520 * ranges of bins (via an alternate Traverser constructor)
521 * to support partitioned aggregate operations. Also, read-only
522 * operations give up if ever forwarded to a null table, which
523 * provides support for shutdown-style clearing, which is also not
524 * currently implemented.
525 *
526 * Lazy table initialization minimizes footprint until first use,
527 * and also avoids resizings when the first operation is from a
528 * putAll, constructor with map argument, or deserialization.
529 * These cases attempt to override the initial capacity settings,
530 * but harmlessly fail to take effect in cases of races.
531 *
532 * The element count is maintained using a LongAdder, which avoids
533 * contention on updates but can encounter cache thrashing if read
534 * too frequently during concurrent access. To avoid reading so
535 * often, resizing is attempted either when a bin lock is
536 * contended, or upon adding to a bin already holding two or more
537 * nodes (checked before adding in the xIfAbsent methods, after
538 * adding in others). Under uniform hash distributions, the
539 * probability of this occurring at threshold is around 13%,
540 * meaning that only about 1 in 8 puts check threshold (and after
541 * resizing, many fewer do so). But this approximation has high
542 * variance for small table sizes, so we check on any collision
543 * for sizes <= 64. The bulk putAll operation further reduces
544 * contention by only committing count updates upon these size
545 * checks.
546 *
547 * Maintaining API and serialization compatibility with previous
548 * versions of this class introduces several oddities. Mainly: We
549 * leave untouched but unused constructor arguments refering to
550 * concurrencyLevel. We accept a loadFactor constructor argument,
551 * but apply it only to initial table capacity (which is the only
552 * time that we can guarantee to honor it.) We also declare an
553 * unused "Segment" class that is instantiated in minimal form
554 * only when serializing.
555 */
556
557 /* ---------------- Constants -------------- */
558
559 /**
560 * The largest possible table capacity. This value must be
561 * exactly 1<<30 to stay within Java array allocation and indexing
562 * bounds for power of two table sizes, and is further required
563 * because the top two bits of 32bit hash fields are used for
564 * control purposes.
565 */
566 private static final int MAXIMUM_CAPACITY = 1 << 30;
567
568 /**
569 * The default initial table capacity. Must be a power of 2
570 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
571 */
572 private static final int DEFAULT_CAPACITY = 16;
573
574 /**
575 * The largest possible (non-power of two) array size.
576 * Needed by toArray and related methods.
577 */
578 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
579
580 /**
581 * The default concurrency level for this table. Unused but
582 * defined for compatibility with previous versions of this class.
583 */
584 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
585
586 /**
587 * The load factor for this table. Overrides of this value in
588 * constructors affect only the initial table capacity. The
589 * actual floating point value isn't normally used -- it is
590 * simpler to use expressions such as {@code n - (n >>> 2)} for
591 * the associated resizing threshold.
592 */
593 private static final float LOAD_FACTOR = 0.75f;
594
595 /**
596 * The buffer size for skipped bins during transfers. The
597 * value is arbitrary but should be large enough to avoid
598 * most locking stalls during resizes.
599 */
600 private static final int TRANSFER_BUFFER_SIZE = 32;
601
602 /**
603 * The bin count threshold for using a tree rather than list for a
604 * bin. The value reflects the approximate break-even point for
605 * using tree-based operations.
606 */
607 private static final int TREE_THRESHOLD = 8;
608
609 /*
610 * Encodings for special uses of Node hash fields. See above for
611 * explanation.
612 */
613 static final int MOVED = 0x80000000; // hash field for forwarding nodes
614 static final int LOCKED = 0x40000000; // set/tested only as a bit
615 static final int WAITING = 0xc0000000; // both bits set/tested together
616 static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash
617
618 /* ---------------- Fields -------------- */
619
620 /**
621 * The array of bins. Lazily initialized upon first insertion.
622 * Size is always a power of two. Accessed directly by iterators.
623 */
624 transient volatile Node[] table;
625
626 /**
627 * The counter maintaining number of elements.
628 */
629 private transient final LongAdder counter;
630
631 /**
632 * Table initialization and resizing control. When negative, the
633 * table is being initialized or resized. Otherwise, when table is
634 * null, holds the initial table size to use upon creation, or 0
635 * for default. After initialization, holds the next element count
636 * value upon which to resize the table.
637 */
638 private transient volatile int sizeCtl;
639
640 // views
641 private transient KeySetView<K,V> keySet;
642 private transient Values<K,V> values;
643 private transient EntrySet<K,V> entrySet;
644
645 /** For serialization compatibility. Null unless serialized; see below */
646 private Segment<K,V>[] segments;
647
648 /* ---------------- Table element access -------------- */
649
650 /*
651 * Volatile access methods are used for table elements as well as
652 * elements of in-progress next table while resizing. Uses are
653 * null checked by callers, and implicitly bounds-checked, relying
654 * on the invariants that tab arrays have non-zero size, and all
655 * indices are masked with (tab.length - 1) which is never
656 * negative and always less than length. Note that, to be correct
657 * wrt arbitrary concurrency errors by users, bounds checks must
658 * operate on local variables, which accounts for some odd-looking
659 * inline assignments below.
660 */
661
662 static final Node tabAt(Node[] tab, int i) { // used by Iter
663 return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
664 }
665
666 private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
667 return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
668 }
669
670 private static final void setTabAt(Node[] tab, int i, Node v) {
671 UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
672 }
673
674 /* ---------------- Nodes -------------- */
675
676 /**
677 * Key-value entry. Note that this is never exported out as a
678 * user-visible Map.Entry (see MapEntry below). Nodes with a hash
679 * field of MOVED are special, and do not contain user keys or
680 * values. Otherwise, keys are never null, and null val fields
681 * indicate that a node is in the process of being deleted or
682 * created. For purposes of read-only access, a key may be read
683 * before a val, but can only be used after checking val to be
684 * non-null.
685 */
686 static class Node {
687 volatile int hash;
688 final Object key;
689 volatile Object val;
690 volatile Node next;
691
692 Node(int hash, Object key, Object val, Node next) {
693 this.hash = hash;
694 this.key = key;
695 this.val = val;
696 this.next = next;
697 }
698
699 /** CompareAndSet the hash field */
700 final boolean casHash(int cmp, int val) {
701 return UNSAFE.compareAndSwapInt(this, hashOffset, cmp, val);
702 }
703
704 /** The number of spins before blocking for a lock */
705 static final int MAX_SPINS =
706 Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
707
708 /**
709 * Spins a while if LOCKED bit set and this node is the first
710 * of its bin, and then sets WAITING bits on hash field and
711 * blocks (once) if they are still set. It is OK for this
712 * method to return even if lock is not available upon exit,
713 * which enables these simple single-wait mechanics.
714 *
715 * The corresponding signalling operation is performed within
716 * callers: Upon detecting that WAITING has been set when
717 * unlocking lock (via a failed CAS from non-waiting LOCKED
718 * state), unlockers acquire the sync lock and perform a
719 * notifyAll.
720 *
721 * The initial sanity check on tab and bounds is not currently
722 * necessary in the only usages of this method, but enables
723 * use in other future contexts.
724 */
725 final void tryAwaitLock(Node[] tab, int i) {
726 if (tab != null && i >= 0 && i < tab.length) { // sanity check
727 int r = ThreadLocalRandom.current().nextInt(); // randomize spins
728 int spins = MAX_SPINS, h;
729 while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) {
730 if (spins >= 0) {
731 r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
732 if (r >= 0 && --spins == 0)
733 Thread.yield(); // yield before block
734 }
735 else if (casHash(h, h | WAITING)) {
736 synchronized (this) {
737 if (tabAt(tab, i) == this &&
738 (hash & WAITING) == WAITING) {
739 try {
740 wait();
741 } catch (InterruptedException ie) {
742 Thread.currentThread().interrupt();
743 }
744 }
745 else
746 notifyAll(); // possibly won race vs signaller
747 }
748 break;
749 }
750 }
751 }
752 }
753
754 // Unsafe mechanics for casHash
755 private static final sun.misc.Unsafe UNSAFE;
756 private static final long hashOffset;
757
758 static {
759 try {
760 UNSAFE = getUnsafe();
761 Class<?> k = Node.class;
762 hashOffset = UNSAFE.objectFieldOffset
763 (k.getDeclaredField("hash"));
764 } catch (Exception e) {
765 throw new Error(e);
766 }
767 }
768 }
769
770 /* ---------------- TreeBins -------------- */
771
772 /**
773 * Nodes for use in TreeBins
774 */
775 static final class TreeNode extends Node {
776 TreeNode parent; // red-black tree links
777 TreeNode left;
778 TreeNode right;
779 TreeNode prev; // needed to unlink next upon deletion
780 boolean red;
781
782 TreeNode(int hash, Object key, Object val, Node next, TreeNode parent) {
783 super(hash, key, val, next);
784 this.parent = parent;
785 }
786 }
787
788 /**
789 * A specialized form of red-black tree for use in bins
790 * whose size exceeds a threshold.
791 *
792 * TreeBins use a special form of comparison for search and
793 * related operations (which is the main reason we cannot use
794 * existing collections such as TreeMaps). TreeBins contain
795 * Comparable elements, but may contain others, as well as
796 * elements that are Comparable but not necessarily Comparable<T>
797 * for the same T, so we cannot invoke compareTo among them. To
798 * handle this, the tree is ordered primarily by hash value, then
799 * by getClass().getName() order, and then by Comparator order
800 * among elements of the same class. On lookup at a node, if
801 * elements are not comparable or compare as 0, both left and
802 * right children may need to be searched in the case of tied hash
803 * values. (This corresponds to the full list search that would be
804 * necessary if all elements were non-Comparable and had tied
805 * hashes.) The red-black balancing code is updated from
806 * pre-jdk-collections
807 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
808 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
809 * Algorithms" (CLR).
810 *
811 * TreeBins also maintain a separate locking discipline than
812 * regular bins. Because they are forwarded via special MOVED
813 * nodes at bin heads (which can never change once established),
814 * we cannot use those nodes as locks. Instead, TreeBin
815 * extends AbstractQueuedSynchronizer to support a simple form of
816 * read-write lock. For update operations and table validation,
817 * the exclusive form of lock behaves in the same way as bin-head
818 * locks. However, lookups use shared read-lock mechanics to allow
819 * multiple readers in the absence of writers. Additionally,
820 * these lookups do not ever block: While the lock is not
821 * available, they proceed along the slow traversal path (via
822 * next-pointers) until the lock becomes available or the list is
823 * exhausted, whichever comes first. (These cases are not fast,
824 * but maximize aggregate expected throughput.) The AQS mechanics
825 * for doing this are straightforward. The lock state is held as
826 * AQS getState(). Read counts are negative; the write count (1)
827 * is positive. There are no signalling preferences among readers
828 * and writers. Since we don't need to export full Lock API, we
829 * just override the minimal AQS methods and use them directly.
830 */
831 static final class TreeBin extends AbstractQueuedSynchronizer {
832 private static final long serialVersionUID = 2249069246763182397L;
833 transient TreeNode root; // root of tree
834 transient TreeNode first; // head of next-pointer list
835
836 /* AQS overrides */
837 public final boolean isHeldExclusively() { return getState() > 0; }
838 public final boolean tryAcquire(int ignore) {
839 if (compareAndSetState(0, 1)) {
840 setExclusiveOwnerThread(Thread.currentThread());
841 return true;
842 }
843 return false;
844 }
845 public final boolean tryRelease(int ignore) {
846 setExclusiveOwnerThread(null);
847 setState(0);
848 return true;
849 }
850 public final int tryAcquireShared(int ignore) {
851 for (int c;;) {
852 if ((c = getState()) > 0)
853 return -1;
854 if (compareAndSetState(c, c -1))
855 return 1;
856 }
857 }
858 public final boolean tryReleaseShared(int ignore) {
859 int c;
860 do {} while (!compareAndSetState(c = getState(), c + 1));
861 return c == -1;
862 }
863
864 /** From CLR */
865 private void rotateLeft(TreeNode p) {
866 if (p != null) {
867 TreeNode r = p.right, pp, rl;
868 if ((rl = p.right = r.left) != null)
869 rl.parent = p;
870 if ((pp = r.parent = p.parent) == null)
871 root = r;
872 else if (pp.left == p)
873 pp.left = r;
874 else
875 pp.right = r;
876 r.left = p;
877 p.parent = r;
878 }
879 }
880
881 /** From CLR */
882 private void rotateRight(TreeNode p) {
883 if (p != null) {
884 TreeNode l = p.left, pp, lr;
885 if ((lr = p.left = l.right) != null)
886 lr.parent = p;
887 if ((pp = l.parent = p.parent) == null)
888 root = l;
889 else if (pp.right == p)
890 pp.right = l;
891 else
892 pp.left = l;
893 l.right = p;
894 p.parent = l;
895 }
896 }
897
898 /**
899 * Returns the TreeNode (or null if not found) for the given key
900 * starting at given root.
901 */
902 @SuppressWarnings("unchecked") final TreeNode getTreeNode
903 (int h, Object k, TreeNode p) {
904 Class<?> c = k.getClass();
905 while (p != null) {
906 int dir, ph; Object pk; Class<?> pc;
907 if ((ph = p.hash) == h) {
908 if ((pk = p.key) == k || k.equals(pk))
909 return p;
910 if (c != (pc = pk.getClass()) ||
911 !(k instanceof Comparable) ||
912 (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
913 dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
914 TreeNode r = null, s = null, pl, pr;
915 if (dir >= 0) {
916 if ((pl = p.left) != null && h <= pl.hash)
917 s = pl;
918 }
919 else if ((pr = p.right) != null && h >= pr.hash)
920 s = pr;
921 if (s != null && (r = getTreeNode(h, k, s)) != null)
922 return r;
923 }
924 }
925 else
926 dir = (h < ph) ? -1 : 1;
927 p = (dir > 0) ? p.right : p.left;
928 }
929 return null;
930 }
931
932 /**
933 * Wrapper for getTreeNode used by CHM.get. Tries to obtain
934 * read-lock to call getTreeNode, but during failure to get
935 * lock, searches along next links.
936 */
937 final Object getValue(int h, Object k) {
938 Node r = null;
939 int c = getState(); // Must read lock state first
940 for (Node e = first; e != null; e = e.next) {
941 if (c <= 0 && compareAndSetState(c, c - 1)) {
942 try {
943 r = getTreeNode(h, k, root);
944 } finally {
945 releaseShared(0);
946 }
947 break;
948 }
949 else if ((e.hash & HASH_BITS) == h && k.equals(e.key)) {
950 r = e;
951 break;
952 }
953 else
954 c = getState();
955 }
956 return r == null ? null : r.val;
957 }
958
959 /**
960 * Finds or adds a node.
961 * @return null if added
962 */
963 @SuppressWarnings("unchecked") final TreeNode putTreeNode
964 (int h, Object k, Object v) {
965 Class<?> c = k.getClass();
966 TreeNode pp = root, p = null;
967 int dir = 0;
968 while (pp != null) { // find existing node or leaf to insert at
969 int ph; Object pk; Class<?> pc;
970 p = pp;
971 if ((ph = p.hash) == h) {
972 if ((pk = p.key) == k || k.equals(pk))
973 return p;
974 if (c != (pc = pk.getClass()) ||
975 !(k instanceof Comparable) ||
976 (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
977 dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
978 TreeNode r = null, s = null, pl, pr;
979 if (dir >= 0) {
980 if ((pl = p.left) != null && h <= pl.hash)
981 s = pl;
982 }
983 else if ((pr = p.right) != null && h >= pr.hash)
984 s = pr;
985 if (s != null && (r = getTreeNode(h, k, s)) != null)
986 return r;
987 }
988 }
989 else
990 dir = (h < ph) ? -1 : 1;
991 pp = (dir > 0) ? p.right : p.left;
992 }
993
994 TreeNode f = first;
995 TreeNode x = first = new TreeNode(h, k, v, f, p);
996 if (p == null)
997 root = x;
998 else { // attach and rebalance; adapted from CLR
999 TreeNode xp, xpp;
1000 if (f != null)
1001 f.prev = x;
1002 if (dir <= 0)
1003 p.left = x;
1004 else
1005 p.right = x;
1006 x.red = true;
1007 while (x != null && (xp = x.parent) != null && xp.red &&
1008 (xpp = xp.parent) != null) {
1009 TreeNode xppl = xpp.left;
1010 if (xp == xppl) {
1011 TreeNode y = xpp.right;
1012 if (y != null && y.red) {
1013 y.red = false;
1014 xp.red = false;
1015 xpp.red = true;
1016 x = xpp;
1017 }
1018 else {
1019 if (x == xp.right) {
1020 rotateLeft(x = xp);
1021 xpp = (xp = x.parent) == null ? null : xp.parent;
1022 }
1023 if (xp != null) {
1024 xp.red = false;
1025 if (xpp != null) {
1026 xpp.red = true;
1027 rotateRight(xpp);
1028 }
1029 }
1030 }
1031 }
1032 else {
1033 TreeNode y = xppl;
1034 if (y != null && y.red) {
1035 y.red = false;
1036 xp.red = false;
1037 xpp.red = true;
1038 x = xpp;
1039 }
1040 else {
1041 if (x == xp.left) {
1042 rotateRight(x = xp);
1043 xpp = (xp = x.parent) == null ? null : xp.parent;
1044 }
1045 if (xp != null) {
1046 xp.red = false;
1047 if (xpp != null) {
1048 xpp.red = true;
1049 rotateLeft(xpp);
1050 }
1051 }
1052 }
1053 }
1054 }
1055 TreeNode r = root;
1056 if (r != null && r.red)
1057 r.red = false;
1058 }
1059 return null;
1060 }
1061
1062 /**
1063 * Removes the given node, that must be present before this
1064 * call. This is messier than typical red-black deletion code
1065 * because we cannot swap the contents of an interior node
1066 * with a leaf successor that is pinned by "next" pointers
1067 * that are accessible independently of lock. So instead we
1068 * swap the tree linkages.
1069 */
1070 final void deleteTreeNode(TreeNode p) {
1071 TreeNode next = (TreeNode)p.next; // unlink traversal pointers
1072 TreeNode pred = p.prev;
1073 if (pred == null)
1074 first = next;
1075 else
1076 pred.next = next;
1077 if (next != null)
1078 next.prev = pred;
1079 TreeNode replacement;
1080 TreeNode pl = p.left;
1081 TreeNode pr = p.right;
1082 if (pl != null && pr != null) {
1083 TreeNode s = pr, sl;
1084 while ((sl = s.left) != null) // find successor
1085 s = sl;
1086 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
1087 TreeNode sr = s.right;
1088 TreeNode pp = p.parent;
1089 if (s == pr) { // p was s's direct parent
1090 p.parent = s;
1091 s.right = p;
1092 }
1093 else {
1094 TreeNode sp = s.parent;
1095 if ((p.parent = sp) != null) {
1096 if (s == sp.left)
1097 sp.left = p;
1098 else
1099 sp.right = p;
1100 }
1101 if ((s.right = pr) != null)
1102 pr.parent = s;
1103 }
1104 p.left = null;
1105 if ((p.right = sr) != null)
1106 sr.parent = p;
1107 if ((s.left = pl) != null)
1108 pl.parent = s;
1109 if ((s.parent = pp) == null)
1110 root = s;
1111 else if (p == pp.left)
1112 pp.left = s;
1113 else
1114 pp.right = s;
1115 replacement = sr;
1116 }
1117 else
1118 replacement = (pl != null) ? pl : pr;
1119 TreeNode pp = p.parent;
1120 if (replacement == null) {
1121 if (pp == null) {
1122 root = null;
1123 return;
1124 }
1125 replacement = p;
1126 }
1127 else {
1128 replacement.parent = pp;
1129 if (pp == null)
1130 root = replacement;
1131 else if (p == pp.left)
1132 pp.left = replacement;
1133 else
1134 pp.right = replacement;
1135 p.left = p.right = p.parent = null;
1136 }
1137 if (!p.red) { // rebalance, from CLR
1138 TreeNode x = replacement;
1139 while (x != null) {
1140 TreeNode xp, xpl;
1141 if (x.red || (xp = x.parent) == null) {
1142 x.red = false;
1143 break;
1144 }
1145 if (x == (xpl = xp.left)) {
1146 TreeNode sib = xp.right;
1147 if (sib != null && sib.red) {
1148 sib.red = false;
1149 xp.red = true;
1150 rotateLeft(xp);
1151 sib = (xp = x.parent) == null ? null : xp.right;
1152 }
1153 if (sib == null)
1154 x = xp;
1155 else {
1156 TreeNode sl = sib.left, sr = sib.right;
1157 if ((sr == null || !sr.red) &&
1158 (sl == null || !sl.red)) {
1159 sib.red = true;
1160 x = xp;
1161 }
1162 else {
1163 if (sr == null || !sr.red) {
1164 if (sl != null)
1165 sl.red = false;
1166 sib.red = true;
1167 rotateRight(sib);
1168 sib = (xp = x.parent) == null ? null : xp.right;
1169 }
1170 if (sib != null) {
1171 sib.red = (xp == null) ? false : xp.red;
1172 if ((sr = sib.right) != null)
1173 sr.red = false;
1174 }
1175 if (xp != null) {
1176 xp.red = false;
1177 rotateLeft(xp);
1178 }
1179 x = root;
1180 }
1181 }
1182 }
1183 else { // symmetric
1184 TreeNode sib = xpl;
1185 if (sib != null && sib.red) {
1186 sib.red = false;
1187 xp.red = true;
1188 rotateRight(xp);
1189 sib = (xp = x.parent) == null ? null : xp.left;
1190 }
1191 if (sib == null)
1192 x = xp;
1193 else {
1194 TreeNode sl = sib.left, sr = sib.right;
1195 if ((sl == null || !sl.red) &&
1196 (sr == null || !sr.red)) {
1197 sib.red = true;
1198 x = xp;
1199 }
1200 else {
1201 if (sl == null || !sl.red) {
1202 if (sr != null)
1203 sr.red = false;
1204 sib.red = true;
1205 rotateLeft(sib);
1206 sib = (xp = x.parent) == null ? null : xp.left;
1207 }
1208 if (sib != null) {
1209 sib.red = (xp == null) ? false : xp.red;
1210 if ((sl = sib.left) != null)
1211 sl.red = false;
1212 }
1213 if (xp != null) {
1214 xp.red = false;
1215 rotateRight(xp);
1216 }
1217 x = root;
1218 }
1219 }
1220 }
1221 }
1222 }
1223 if (p == replacement && (pp = p.parent) != null) {
1224 if (p == pp.left) // detach pointers
1225 pp.left = null;
1226 else if (p == pp.right)
1227 pp.right = null;
1228 p.parent = null;
1229 }
1230 }
1231 }
1232
1233 /* ---------------- Collision reduction methods -------------- */
1234
1235 /**
1236 * Spreads higher bits to lower, and also forces top 2 bits to 0.
1237 * Because the table uses power-of-two masking, sets of hashes
1238 * that vary only in bits above the current mask will always
1239 * collide. (Among known examples are sets of Float keys holding
1240 * consecutive whole numbers in small tables.) To counter this,
1241 * we apply a transform that spreads the impact of higher bits
1242 * downward. There is a tradeoff between speed, utility, and
1243 * quality of bit-spreading. Because many common sets of hashes
1244 * are already reasonably distributed across bits (so don't benefit
1245 * from spreading), and because we use trees to handle large sets
1246 * of collisions in bins, we don't need excessively high quality.
1247 */
1248 private static final int spread(int h) {
1249 h ^= (h >>> 18) ^ (h >>> 12);
1250 return (h ^ (h >>> 10)) & HASH_BITS;
1251 }
1252
1253 /**
1254 * Replaces a list bin with a tree bin. Call only when locked.
1255 * Fails to replace if the given key is non-comparable or table
1256 * is, or needs, resizing.
1257 */
1258 private final void replaceWithTreeBin(Node[] tab, int index, Object key) {
1259 if ((key instanceof Comparable) &&
1260 (tab.length >= MAXIMUM_CAPACITY || counter.sum() < (long)sizeCtl)) {
1261 TreeBin t = new TreeBin();
1262 for (Node e = tabAt(tab, index); e != null; e = e.next)
1263 t.putTreeNode(e.hash & HASH_BITS, e.key, e.val);
1264 setTabAt(tab, index, new Node(MOVED, t, null, null));
1265 }
1266 }
1267
1268 /* ---------------- Internal access and update methods -------------- */
1269
1270 /** Implementation for get and containsKey */
1271 private final Object internalGet(Object k) {
1272 int h = spread(k.hashCode());
1273 retry: for (Node[] tab = table; tab != null;) {
1274 Node e, p; Object ek, ev; int eh; // locals to read fields once
1275 for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1276 if ((eh = e.hash) == MOVED) {
1277 if ((ek = e.key) instanceof TreeBin) // search TreeBin
1278 return ((TreeBin)ek).getValue(h, k);
1279 else { // restart with new table
1280 tab = (Node[])ek;
1281 continue retry;
1282 }
1283 }
1284 else if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
1285 ((ek = e.key) == k || k.equals(ek)))
1286 return ev;
1287 }
1288 break;
1289 }
1290 return null;
1291 }
1292
1293 /**
1294 * Implementation for the four public remove/replace methods:
1295 * Replaces node value with v, conditional upon match of cv if
1296 * non-null. If resulting value is null, delete.
1297 */
1298 private final Object internalReplace(Object k, Object v, Object cv) {
1299 int h = spread(k.hashCode());
1300 Object oldVal = null;
1301 for (Node[] tab = table;;) {
1302 Node f; int i, fh; Object fk;
1303 if (tab == null ||
1304 (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1305 break;
1306 else if ((fh = f.hash) == MOVED) {
1307 if ((fk = f.key) instanceof TreeBin) {
1308 TreeBin t = (TreeBin)fk;
1309 boolean validated = false;
1310 boolean deleted = false;
1311 t.acquire(0);
1312 try {
1313 if (tabAt(tab, i) == f) {
1314 validated = true;
1315 TreeNode p = t.getTreeNode(h, k, t.root);
1316 if (p != null) {
1317 Object pv = p.val;
1318 if (cv == null || cv == pv || cv.equals(pv)) {
1319 oldVal = pv;
1320 if ((p.val = v) == null) {
1321 deleted = true;
1322 t.deleteTreeNode(p);
1323 }
1324 }
1325 }
1326 }
1327 } finally {
1328 t.release(0);
1329 }
1330 if (validated) {
1331 if (deleted)
1332 counter.add(-1L);
1333 break;
1334 }
1335 }
1336 else
1337 tab = (Node[])fk;
1338 }
1339 else if ((fh & HASH_BITS) != h && f.next == null) // precheck
1340 break; // rules out possible existence
1341 else if ((fh & LOCKED) != 0) {
1342 checkForResize(); // try resizing if can't get lock
1343 f.tryAwaitLock(tab, i);
1344 }
1345 else if (f.casHash(fh, fh | LOCKED)) {
1346 boolean validated = false;
1347 boolean deleted = false;
1348 try {
1349 if (tabAt(tab, i) == f) {
1350 validated = true;
1351 for (Node e = f, pred = null;;) {
1352 Object ek, ev;
1353 if ((e.hash & HASH_BITS) == h &&
1354 ((ev = e.val) != null) &&
1355 ((ek = e.key) == k || k.equals(ek))) {
1356 if (cv == null || cv == ev || cv.equals(ev)) {
1357 oldVal = ev;
1358 if ((e.val = v) == null) {
1359 deleted = true;
1360 Node en = e.next;
1361 if (pred != null)
1362 pred.next = en;
1363 else
1364 setTabAt(tab, i, en);
1365 }
1366 }
1367 break;
1368 }
1369 pred = e;
1370 if ((e = e.next) == null)
1371 break;
1372 }
1373 }
1374 } finally {
1375 if (!f.casHash(fh | LOCKED, fh)) {
1376 f.hash = fh;
1377 synchronized (f) { f.notifyAll(); };
1378 }
1379 }
1380 if (validated) {
1381 if (deleted)
1382 counter.add(-1L);
1383 break;
1384 }
1385 }
1386 }
1387 return oldVal;
1388 }
1389
1390 /*
1391 * Internal versions of the six insertion methods, each a
1392 * little more complicated than the last. All have
1393 * the same basic structure as the first (internalPut):
1394 * 1. If table uninitialized, create
1395 * 2. If bin empty, try to CAS new node
1396 * 3. If bin stale, use new table
1397 * 4. if bin converted to TreeBin, validate and relay to TreeBin methods
1398 * 5. Lock and validate; if valid, scan and add or update
1399 *
1400 * The others interweave other checks and/or alternative actions:
1401 * * Plain put checks for and performs resize after insertion.
1402 * * putIfAbsent prescans for mapping without lock (and fails to add
1403 * if present), which also makes pre-emptive resize checks worthwhile.
1404 * * computeIfAbsent extends form used in putIfAbsent with additional
1405 * mechanics to deal with, calls, potential exceptions and null
1406 * returns from function call.
1407 * * compute uses the same function-call mechanics, but without
1408 * the prescans
1409 * * merge acts as putIfAbsent in the absent case, but invokes the
1410 * update function if present
1411 * * putAll attempts to pre-allocate enough table space
1412 * and more lazily performs count updates and checks.
1413 *
1414 * Someday when details settle down a bit more, it might be worth
1415 * some factoring to reduce sprawl.
1416 */
1417
1418 /** Implementation for put */
1419 private final Object internalPut(Object k, Object v) {
1420 int h = spread(k.hashCode());
1421 int count = 0;
1422 for (Node[] tab = table;;) {
1423 int i; Node f; int fh; Object fk;
1424 if (tab == null)
1425 tab = initTable();
1426 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1427 if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1428 break; // no lock when adding to empty bin
1429 }
1430 else if ((fh = f.hash) == MOVED) {
1431 if ((fk = f.key) instanceof TreeBin) {
1432 TreeBin t = (TreeBin)fk;
1433 Object oldVal = null;
1434 t.acquire(0);
1435 try {
1436 if (tabAt(tab, i) == f) {
1437 count = 2;
1438 TreeNode p = t.putTreeNode(h, k, v);
1439 if (p != null) {
1440 oldVal = p.val;
1441 p.val = v;
1442 }
1443 }
1444 } finally {
1445 t.release(0);
1446 }
1447 if (count != 0) {
1448 if (oldVal != null)
1449 return oldVal;
1450 break;
1451 }
1452 }
1453 else
1454 tab = (Node[])fk;
1455 }
1456 else if ((fh & LOCKED) != 0) {
1457 checkForResize();
1458 f.tryAwaitLock(tab, i);
1459 }
1460 else if (f.casHash(fh, fh | LOCKED)) {
1461 Object oldVal = null;
1462 try { // needed in case equals() throws
1463 if (tabAt(tab, i) == f) {
1464 count = 1;
1465 for (Node e = f;; ++count) {
1466 Object ek, ev;
1467 if ((e.hash & HASH_BITS) == h &&
1468 (ev = e.val) != null &&
1469 ((ek = e.key) == k || k.equals(ek))) {
1470 oldVal = ev;
1471 e.val = v;
1472 break;
1473 }
1474 Node last = e;
1475 if ((e = e.next) == null) {
1476 last.next = new Node(h, k, v, null);
1477 if (count >= TREE_THRESHOLD)
1478 replaceWithTreeBin(tab, i, k);
1479 break;
1480 }
1481 }
1482 }
1483 } finally { // unlock and signal if needed
1484 if (!f.casHash(fh | LOCKED, fh)) {
1485 f.hash = fh;
1486 synchronized (f) { f.notifyAll(); };
1487 }
1488 }
1489 if (count != 0) {
1490 if (oldVal != null)
1491 return oldVal;
1492 if (tab.length <= 64)
1493 count = 2;
1494 break;
1495 }
1496 }
1497 }
1498 counter.add(1L);
1499 if (count > 1)
1500 checkForResize();
1501 return null;
1502 }
1503
1504 /** Implementation for putIfAbsent */
1505 private final Object internalPutIfAbsent(Object k, Object v) {
1506 int h = spread(k.hashCode());
1507 int count = 0;
1508 for (Node[] tab = table;;) {
1509 int i; Node f; int fh; Object fk, fv;
1510 if (tab == null)
1511 tab = initTable();
1512 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1513 if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1514 break;
1515 }
1516 else if ((fh = f.hash) == MOVED) {
1517 if ((fk = f.key) instanceof TreeBin) {
1518 TreeBin t = (TreeBin)fk;
1519 Object oldVal = null;
1520 t.acquire(0);
1521 try {
1522 if (tabAt(tab, i) == f) {
1523 count = 2;
1524 TreeNode p = t.putTreeNode(h, k, v);
1525 if (p != null)
1526 oldVal = p.val;
1527 }
1528 } finally {
1529 t.release(0);
1530 }
1531 if (count != 0) {
1532 if (oldVal != null)
1533 return oldVal;
1534 break;
1535 }
1536 }
1537 else
1538 tab = (Node[])fk;
1539 }
1540 else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1541 ((fk = f.key) == k || k.equals(fk)))
1542 return fv;
1543 else {
1544 Node g = f.next;
1545 if (g != null) { // at least 2 nodes -- search and maybe resize
1546 for (Node e = g;;) {
1547 Object ek, ev;
1548 if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1549 ((ek = e.key) == k || k.equals(ek)))
1550 return ev;
1551 if ((e = e.next) == null) {
1552 checkForResize();
1553 break;
1554 }
1555 }
1556 }
1557 if (((fh = f.hash) & LOCKED) != 0) {
1558 checkForResize();
1559 f.tryAwaitLock(tab, i);
1560 }
1561 else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1562 Object oldVal = null;
1563 try {
1564 if (tabAt(tab, i) == f) {
1565 count = 1;
1566 for (Node e = f;; ++count) {
1567 Object ek, ev;
1568 if ((e.hash & HASH_BITS) == h &&
1569 (ev = e.val) != null &&
1570 ((ek = e.key) == k || k.equals(ek))) {
1571 oldVal = ev;
1572 break;
1573 }
1574 Node last = e;
1575 if ((e = e.next) == null) {
1576 last.next = new Node(h, k, v, null);
1577 if (count >= TREE_THRESHOLD)
1578 replaceWithTreeBin(tab, i, k);
1579 break;
1580 }
1581 }
1582 }
1583 } finally {
1584 if (!f.casHash(fh | LOCKED, fh)) {
1585 f.hash = fh;
1586 synchronized (f) { f.notifyAll(); };
1587 }
1588 }
1589 if (count != 0) {
1590 if (oldVal != null)
1591 return oldVal;
1592 if (tab.length <= 64)
1593 count = 2;
1594 break;
1595 }
1596 }
1597 }
1598 }
1599 counter.add(1L);
1600 if (count > 1)
1601 checkForResize();
1602 return null;
1603 }
1604
1605 /** Implementation for computeIfAbsent */
1606 private final Object internalComputeIfAbsent(K k,
1607 Fun<? super K, ?> mf) {
1608 int h = spread(k.hashCode());
1609 Object val = null;
1610 int count = 0;
1611 for (Node[] tab = table;;) {
1612 Node f; int i, fh; Object fk, fv;
1613 if (tab == null)
1614 tab = initTable();
1615 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1616 Node node = new Node(fh = h | LOCKED, k, null, null);
1617 if (casTabAt(tab, i, null, node)) {
1618 count = 1;
1619 try {
1620 if ((val = mf.apply(k)) != null)
1621 node.val = val;
1622 } finally {
1623 if (val == null)
1624 setTabAt(tab, i, null);
1625 if (!node.casHash(fh, h)) {
1626 node.hash = h;
1627 synchronized (node) { node.notifyAll(); };
1628 }
1629 }
1630 }
1631 if (count != 0)
1632 break;
1633 }
1634 else if ((fh = f.hash) == MOVED) {
1635 if ((fk = f.key) instanceof TreeBin) {
1636 TreeBin t = (TreeBin)fk;
1637 boolean added = false;
1638 t.acquire(0);
1639 try {
1640 if (tabAt(tab, i) == f) {
1641 count = 1;
1642 TreeNode p = t.getTreeNode(h, k, t.root);
1643 if (p != null)
1644 val = p.val;
1645 else if ((val = mf.apply(k)) != null) {
1646 added = true;
1647 count = 2;
1648 t.putTreeNode(h, k, val);
1649 }
1650 }
1651 } finally {
1652 t.release(0);
1653 }
1654 if (count != 0) {
1655 if (!added)
1656 return val;
1657 break;
1658 }
1659 }
1660 else
1661 tab = (Node[])fk;
1662 }
1663 else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1664 ((fk = f.key) == k || k.equals(fk)))
1665 return fv;
1666 else {
1667 Node g = f.next;
1668 if (g != null) {
1669 for (Node e = g;;) {
1670 Object ek, ev;
1671 if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1672 ((ek = e.key) == k || k.equals(ek)))
1673 return ev;
1674 if ((e = e.next) == null) {
1675 checkForResize();
1676 break;
1677 }
1678 }
1679 }
1680 if (((fh = f.hash) & LOCKED) != 0) {
1681 checkForResize();
1682 f.tryAwaitLock(tab, i);
1683 }
1684 else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1685 boolean added = false;
1686 try {
1687 if (tabAt(tab, i) == f) {
1688 count = 1;
1689 for (Node e = f;; ++count) {
1690 Object ek, ev;
1691 if ((e.hash & HASH_BITS) == h &&
1692 (ev = e.val) != null &&
1693 ((ek = e.key) == k || k.equals(ek))) {
1694 val = ev;
1695 break;
1696 }
1697 Node last = e;
1698 if ((e = e.next) == null) {
1699 if ((val = mf.apply(k)) != null) {
1700 added = true;
1701 last.next = new Node(h, k, val, null);
1702 if (count >= TREE_THRESHOLD)
1703 replaceWithTreeBin(tab, i, k);
1704 }
1705 break;
1706 }
1707 }
1708 }
1709 } finally {
1710 if (!f.casHash(fh | LOCKED, fh)) {
1711 f.hash = fh;
1712 synchronized (f) { f.notifyAll(); };
1713 }
1714 }
1715 if (count != 0) {
1716 if (!added)
1717 return val;
1718 if (tab.length <= 64)
1719 count = 2;
1720 break;
1721 }
1722 }
1723 }
1724 }
1725 if (val != null) {
1726 counter.add(1L);
1727 if (count > 1)
1728 checkForResize();
1729 }
1730 return val;
1731 }
1732
1733 /** Implementation for compute */
1734 @SuppressWarnings("unchecked") private final Object internalCompute
1735 (K k, boolean onlyIfPresent, BiFun<? super K, ? super V, ? extends V> mf) {
1736 int h = spread(k.hashCode());
1737 Object val = null;
1738 int delta = 0;
1739 int count = 0;
1740 for (Node[] tab = table;;) {
1741 Node f; int i, fh; Object fk;
1742 if (tab == null)
1743 tab = initTable();
1744 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1745 if (onlyIfPresent)
1746 break;
1747 Node node = new Node(fh = h | LOCKED, k, null, null);
1748 if (casTabAt(tab, i, null, node)) {
1749 try {
1750 count = 1;
1751 if ((val = mf.apply(k, null)) != null) {
1752 node.val = val;
1753 delta = 1;
1754 }
1755 } finally {
1756 if (delta == 0)
1757 setTabAt(tab, i, null);
1758 if (!node.casHash(fh, h)) {
1759 node.hash = h;
1760 synchronized (node) { node.notifyAll(); };
1761 }
1762 }
1763 }
1764 if (count != 0)
1765 break;
1766 }
1767 else if ((fh = f.hash) == MOVED) {
1768 if ((fk = f.key) instanceof TreeBin) {
1769 TreeBin t = (TreeBin)fk;
1770 t.acquire(0);
1771 try {
1772 if (tabAt(tab, i) == f) {
1773 count = 1;
1774 TreeNode p = t.getTreeNode(h, k, t.root);
1775 Object pv = (p == null) ? null : p.val;
1776 if ((val = mf.apply(k, (V)pv)) != null) {
1777 if (p != null)
1778 p.val = val;
1779 else {
1780 count = 2;
1781 delta = 1;
1782 t.putTreeNode(h, k, val);
1783 }
1784 }
1785 else if (p != null) {
1786 delta = -1;
1787 t.deleteTreeNode(p);
1788 }
1789 }
1790 } finally {
1791 t.release(0);
1792 }
1793 if (count != 0)
1794 break;
1795 }
1796 else
1797 tab = (Node[])fk;
1798 }
1799 else if ((fh & LOCKED) != 0) {
1800 checkForResize();
1801 f.tryAwaitLock(tab, i);
1802 }
1803 else if (f.casHash(fh, fh | LOCKED)) {
1804 try {
1805 if (tabAt(tab, i) == f) {
1806 count = 1;
1807 for (Node e = f, pred = null;; ++count) {
1808 Object ek, ev;
1809 if ((e.hash & HASH_BITS) == h &&
1810 (ev = e.val) != null &&
1811 ((ek = e.key) == k || k.equals(ek))) {
1812 val = mf.apply(k, (V)ev);
1813 if (val != null)
1814 e.val = val;
1815 else {
1816 delta = -1;
1817 Node en = e.next;
1818 if (pred != null)
1819 pred.next = en;
1820 else
1821 setTabAt(tab, i, en);
1822 }
1823 break;
1824 }
1825 pred = e;
1826 if ((e = e.next) == null) {
1827 if (!onlyIfPresent && (val = mf.apply(k, null)) != null) {
1828 pred.next = new Node(h, k, val, null);
1829 delta = 1;
1830 if (count >= TREE_THRESHOLD)
1831 replaceWithTreeBin(tab, i, k);
1832 }
1833 break;
1834 }
1835 }
1836 }
1837 } finally {
1838 if (!f.casHash(fh | LOCKED, fh)) {
1839 f.hash = fh;
1840 synchronized (f) { f.notifyAll(); };
1841 }
1842 }
1843 if (count != 0) {
1844 if (tab.length <= 64)
1845 count = 2;
1846 break;
1847 }
1848 }
1849 }
1850 if (delta != 0) {
1851 counter.add((long)delta);
1852 if (count > 1)
1853 checkForResize();
1854 }
1855 return val;
1856 }
1857
1858 /** Implementation for merge */
1859 @SuppressWarnings("unchecked") private final Object internalMerge
1860 (K k, V v, BiFun<? super V, ? super V, ? extends V> mf) {
1861 int h = spread(k.hashCode());
1862 Object val = null;
1863 int delta = 0;
1864 int count = 0;
1865 for (Node[] tab = table;;) {
1866 int i; Node f; int fh; Object fk, fv;
1867 if (tab == null)
1868 tab = initTable();
1869 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1870 if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1871 delta = 1;
1872 val = v;
1873 break;
1874 }
1875 }
1876 else if ((fh = f.hash) == MOVED) {
1877 if ((fk = f.key) instanceof TreeBin) {
1878 TreeBin t = (TreeBin)fk;
1879 t.acquire(0);
1880 try {
1881 if (tabAt(tab, i) == f) {
1882 count = 1;
1883 TreeNode p = t.getTreeNode(h, k, t.root);
1884 val = (p == null) ? v : mf.apply((V)p.val, v);
1885 if (val != null) {
1886 if (p != null)
1887 p.val = val;
1888 else {
1889 count = 2;
1890 delta = 1;
1891 t.putTreeNode(h, k, val);
1892 }
1893 }
1894 else if (p != null) {
1895 delta = -1;
1896 t.deleteTreeNode(p);
1897 }
1898 }
1899 } finally {
1900 t.release(0);
1901 }
1902 if (count != 0)
1903 break;
1904 }
1905 else
1906 tab = (Node[])fk;
1907 }
1908 else if ((fh & LOCKED) != 0) {
1909 checkForResize();
1910 f.tryAwaitLock(tab, i);
1911 }
1912 else if (f.casHash(fh, fh | LOCKED)) {
1913 try {
1914 if (tabAt(tab, i) == f) {
1915 count = 1;
1916 for (Node e = f, pred = null;; ++count) {
1917 Object ek, ev;
1918 if ((e.hash & HASH_BITS) == h &&
1919 (ev = e.val) != null &&
1920 ((ek = e.key) == k || k.equals(ek))) {
1921 val = mf.apply(v, (V)ev);
1922 if (val != null)
1923 e.val = val;
1924 else {
1925 delta = -1;
1926 Node en = e.next;
1927 if (pred != null)
1928 pred.next = en;
1929 else
1930 setTabAt(tab, i, en);
1931 }
1932 break;
1933 }
1934 pred = e;
1935 if ((e = e.next) == null) {
1936 val = v;
1937 pred.next = new Node(h, k, val, null);
1938 delta = 1;
1939 if (count >= TREE_THRESHOLD)
1940 replaceWithTreeBin(tab, i, k);
1941 break;
1942 }
1943 }
1944 }
1945 } finally {
1946 if (!f.casHash(fh | LOCKED, fh)) {
1947 f.hash = fh;
1948 synchronized (f) { f.notifyAll(); };
1949 }
1950 }
1951 if (count != 0) {
1952 if (tab.length <= 64)
1953 count = 2;
1954 break;
1955 }
1956 }
1957 }
1958 if (delta != 0) {
1959 counter.add((long)delta);
1960 if (count > 1)
1961 checkForResize();
1962 }
1963 return val;
1964 }
1965
1966 /** Implementation for putAll */
1967 private final void internalPutAll(Map<?, ?> m) {
1968 tryPresize(m.size());
1969 long delta = 0L; // number of uncommitted additions
1970 boolean npe = false; // to throw exception on exit for nulls
1971 try { // to clean up counts on other exceptions
1972 for (Map.Entry<?, ?> entry : m.entrySet()) {
1973 Object k, v;
1974 if (entry == null || (k = entry.getKey()) == null ||
1975 (v = entry.getValue()) == null) {
1976 npe = true;
1977 break;
1978 }
1979 int h = spread(k.hashCode());
1980 for (Node[] tab = table;;) {
1981 int i; Node f; int fh; Object fk;
1982 if (tab == null)
1983 tab = initTable();
1984 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1985 if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1986 ++delta;
1987 break;
1988 }
1989 }
1990 else if ((fh = f.hash) == MOVED) {
1991 if ((fk = f.key) instanceof TreeBin) {
1992 TreeBin t = (TreeBin)fk;
1993 boolean validated = false;
1994 t.acquire(0);
1995 try {
1996 if (tabAt(tab, i) == f) {
1997 validated = true;
1998 TreeNode p = t.getTreeNode(h, k, t.root);
1999 if (p != null)
2000 p.val = v;
2001 else {
2002 t.putTreeNode(h, k, v);
2003 ++delta;
2004 }
2005 }
2006 } finally {
2007 t.release(0);
2008 }
2009 if (validated)
2010 break;
2011 }
2012 else
2013 tab = (Node[])fk;
2014 }
2015 else if ((fh & LOCKED) != 0) {
2016 counter.add(delta);
2017 delta = 0L;
2018 checkForResize();
2019 f.tryAwaitLock(tab, i);
2020 }
2021 else if (f.casHash(fh, fh | LOCKED)) {
2022 int count = 0;
2023 try {
2024 if (tabAt(tab, i) == f) {
2025 count = 1;
2026 for (Node e = f;; ++count) {
2027 Object ek, ev;
2028 if ((e.hash & HASH_BITS) == h &&
2029 (ev = e.val) != null &&
2030 ((ek = e.key) == k || k.equals(ek))) {
2031 e.val = v;
2032 break;
2033 }
2034 Node last = e;
2035 if ((e = e.next) == null) {
2036 ++delta;
2037 last.next = new Node(h, k, v, null);
2038 if (count >= TREE_THRESHOLD)
2039 replaceWithTreeBin(tab, i, k);
2040 break;
2041 }
2042 }
2043 }
2044 } finally {
2045 if (!f.casHash(fh | LOCKED, fh)) {
2046 f.hash = fh;
2047 synchronized (f) { f.notifyAll(); };
2048 }
2049 }
2050 if (count != 0) {
2051 if (count > 1) {
2052 counter.add(delta);
2053 delta = 0L;
2054 checkForResize();
2055 }
2056 break;
2057 }
2058 }
2059 }
2060 }
2061 } finally {
2062 if (delta != 0)
2063 counter.add(delta);
2064 }
2065 if (npe)
2066 throw new NullPointerException();
2067 }
2068
2069 /* ---------------- Table Initialization and Resizing -------------- */
2070
2071 /**
2072 * Returns a power of two table size for the given desired capacity.
2073 * See Hackers Delight, sec 3.2
2074 */
2075 private static final int tableSizeFor(int c) {
2076 int n = c - 1;
2077 n |= n >>> 1;
2078 n |= n >>> 2;
2079 n |= n >>> 4;
2080 n |= n >>> 8;
2081 n |= n >>> 16;
2082 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
2083 }
2084
2085 /**
2086 * Initializes table, using the size recorded in sizeCtl.
2087 */
2088 private final Node[] initTable() {
2089 Node[] tab; int sc;
2090 while ((tab = table) == null) {
2091 if ((sc = sizeCtl) < 0)
2092 Thread.yield(); // lost initialization race; just spin
2093 else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2094 try {
2095 if ((tab = table) == null) {
2096 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2097 tab = table = new Node[n];
2098 sc = n - (n >>> 2);
2099 }
2100 } finally {
2101 sizeCtl = sc;
2102 }
2103 break;
2104 }
2105 }
2106 return tab;
2107 }
2108
2109 /**
2110 * If table is too small and not already resizing, creates next
2111 * table and transfers bins. Rechecks occupancy after a transfer
2112 * to see if another resize is already needed because resizings
2113 * are lagging additions.
2114 */
2115 private final void checkForResize() {
2116 Node[] tab; int n, sc;
2117 while ((tab = table) != null &&
2118 (n = tab.length) < MAXIMUM_CAPACITY &&
2119 (sc = sizeCtl) >= 0 && counter.sum() >= (long)sc &&
2120 UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2121 try {
2122 if (tab == table) {
2123 table = rebuild(tab);
2124 sc = (n << 1) - (n >>> 1);
2125 }
2126 } finally {
2127 sizeCtl = sc;
2128 }
2129 }
2130 }
2131
2132 /**
2133 * Tries to presize table to accommodate the given number of elements.
2134 *
2135 * @param size number of elements (doesn't need to be perfectly accurate)
2136 */
2137 private final void tryPresize(int size) {
2138 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2139 tableSizeFor(size + (size >>> 1) + 1);
2140 int sc;
2141 while ((sc = sizeCtl) >= 0) {
2142 Node[] tab = table; int n;
2143 if (tab == null || (n = tab.length) == 0) {
2144 n = (sc > c) ? sc : c;
2145 if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2146 try {
2147 if (table == tab) {
2148 table = new Node[n];
2149 sc = n - (n >>> 2);
2150 }
2151 } finally {
2152 sizeCtl = sc;
2153 }
2154 }
2155 }
2156 else if (c <= sc || n >= MAXIMUM_CAPACITY)
2157 break;
2158 else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2159 try {
2160 if (table == tab) {
2161 table = rebuild(tab);
2162 sc = (n << 1) - (n >>> 1);
2163 }
2164 } finally {
2165 sizeCtl = sc;
2166 }
2167 }
2168 }
2169 }
2170
2171 /*
2172 * Moves and/or copies the nodes in each bin to new table. See
2173 * above for explanation.
2174 *
2175 * @return the new table
2176 */
2177 private static final Node[] rebuild(Node[] tab) {
2178 int n = tab.length;
2179 Node[] nextTab = new Node[n << 1];
2180 Node fwd = new Node(MOVED, nextTab, null, null);
2181 int[] buffer = null; // holds bins to revisit; null until needed
2182 Node rev = null; // reverse forwarder; null until needed
2183 int nbuffered = 0; // the number of bins in buffer list
2184 int bufferIndex = 0; // buffer index of current buffered bin
2185 int bin = n - 1; // current non-buffered bin or -1 if none
2186
2187 for (int i = bin;;) { // start upwards sweep
2188 int fh; Node f;
2189 if ((f = tabAt(tab, i)) == null) {
2190 if (bin >= 0) { // Unbuffered; no lock needed (or available)
2191 if (!casTabAt(tab, i, f, fwd))
2192 continue;
2193 }
2194 else { // transiently use a locked forwarding node
2195 Node g = new Node(MOVED|LOCKED, nextTab, null, null);
2196 if (!casTabAt(tab, i, f, g))
2197 continue;
2198 setTabAt(nextTab, i, null);
2199 setTabAt(nextTab, i + n, null);
2200 setTabAt(tab, i, fwd);
2201 if (!g.casHash(MOVED|LOCKED, MOVED)) {
2202 g.hash = MOVED;
2203 synchronized (g) { g.notifyAll(); }
2204 }
2205 }
2206 }
2207 else if ((fh = f.hash) == MOVED) {
2208 Object fk = f.key;
2209 if (fk instanceof TreeBin) {
2210 TreeBin t = (TreeBin)fk;
2211 boolean validated = false;
2212 t.acquire(0);
2213 try {
2214 if (tabAt(tab, i) == f) {
2215 validated = true;
2216 splitTreeBin(nextTab, i, t);
2217 setTabAt(tab, i, fwd);
2218 }
2219 } finally {
2220 t.release(0);
2221 }
2222 if (!validated)
2223 continue;
2224 }
2225 }
2226 else if ((fh & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
2227 boolean validated = false;
2228 try { // split to lo and hi lists; copying as needed
2229 if (tabAt(tab, i) == f) {
2230 validated = true;
2231 splitBin(nextTab, i, f);
2232 setTabAt(tab, i, fwd);
2233 }
2234 } finally {
2235 if (!f.casHash(fh | LOCKED, fh)) {
2236 f.hash = fh;
2237 synchronized (f) { f.notifyAll(); };
2238 }
2239 }
2240 if (!validated)
2241 continue;
2242 }
2243 else {
2244 if (buffer == null) // initialize buffer for revisits
2245 buffer = new int[TRANSFER_BUFFER_SIZE];
2246 if (bin < 0 && bufferIndex > 0) {
2247 int j = buffer[--bufferIndex];
2248 buffer[bufferIndex] = i;
2249 i = j; // swap with another bin
2250 continue;
2251 }
2252 if (bin < 0 || nbuffered >= TRANSFER_BUFFER_SIZE) {
2253 f.tryAwaitLock(tab, i);
2254 continue; // no other options -- block
2255 }
2256 if (rev == null) // initialize reverse-forwarder
2257 rev = new Node(MOVED, tab, null, null);
2258 if (tabAt(tab, i) != f || (f.hash & LOCKED) == 0)
2259 continue; // recheck before adding to list
2260 buffer[nbuffered++] = i;
2261 setTabAt(nextTab, i, rev); // install place-holders
2262 setTabAt(nextTab, i + n, rev);
2263 }
2264
2265 if (bin > 0)
2266 i = --bin;
2267 else if (buffer != null && nbuffered > 0) {
2268 bin = -1;
2269 i = buffer[bufferIndex = --nbuffered];
2270 }
2271 else
2272 return nextTab;
2273 }
2274 }
2275
2276 /**
2277 * Splits a normal bin with list headed by e into lo and hi parts;
2278 * installs in given table.
2279 */
2280 private static void splitBin(Node[] nextTab, int i, Node e) {
2281 int bit = nextTab.length >>> 1; // bit to split on
2282 int runBit = e.hash & bit;
2283 Node lastRun = e, lo = null, hi = null;
2284 for (Node p = e.next; p != null; p = p.next) {
2285 int b = p.hash & bit;
2286 if (b != runBit) {
2287 runBit = b;
2288 lastRun = p;
2289 }
2290 }
2291 if (runBit == 0)
2292 lo = lastRun;
2293 else
2294 hi = lastRun;
2295 for (Node p = e; p != lastRun; p = p.next) {
2296 int ph = p.hash & HASH_BITS;
2297 Object pk = p.key, pv = p.val;
2298 if ((ph & bit) == 0)
2299 lo = new Node(ph, pk, pv, lo);
2300 else
2301 hi = new Node(ph, pk, pv, hi);
2302 }
2303 setTabAt(nextTab, i, lo);
2304 setTabAt(nextTab, i + bit, hi);
2305 }
2306
2307 /**
2308 * Splits a tree bin into lo and hi parts; installs in given table.
2309 */
2310 private static void splitTreeBin(Node[] nextTab, int i, TreeBin t) {
2311 int bit = nextTab.length >>> 1;
2312 TreeBin lt = new TreeBin();
2313 TreeBin ht = new TreeBin();
2314 int lc = 0, hc = 0;
2315 for (Node e = t.first; e != null; e = e.next) {
2316 int h = e.hash & HASH_BITS;
2317 Object k = e.key, v = e.val;
2318 if ((h & bit) == 0) {
2319 ++lc;
2320 lt.putTreeNode(h, k, v);
2321 }
2322 else {
2323 ++hc;
2324 ht.putTreeNode(h, k, v);
2325 }
2326 }
2327 Node ln, hn; // throw away trees if too small
2328 if (lc <= (TREE_THRESHOLD >>> 1)) {
2329 ln = null;
2330 for (Node p = lt.first; p != null; p = p.next)
2331 ln = new Node(p.hash, p.key, p.val, ln);
2332 }
2333 else
2334 ln = new Node(MOVED, lt, null, null);
2335 setTabAt(nextTab, i, ln);
2336 if (hc <= (TREE_THRESHOLD >>> 1)) {
2337 hn = null;
2338 for (Node p = ht.first; p != null; p = p.next)
2339 hn = new Node(p.hash, p.key, p.val, hn);
2340 }
2341 else
2342 hn = new Node(MOVED, ht, null, null);
2343 setTabAt(nextTab, i + bit, hn);
2344 }
2345
2346 /**
2347 * Implementation for clear. Steps through each bin, removing all
2348 * nodes.
2349 */
2350 private final void internalClear() {
2351 long delta = 0L; // negative number of deletions
2352 int i = 0;
2353 Node[] tab = table;
2354 while (tab != null && i < tab.length) {
2355 int fh; Object fk;
2356 Node f = tabAt(tab, i);
2357 if (f == null)
2358 ++i;
2359 else if ((fh = f.hash) == MOVED) {
2360 if ((fk = f.key) instanceof TreeBin) {
2361 TreeBin t = (TreeBin)fk;
2362 t.acquire(0);
2363 try {
2364 if (tabAt(tab, i) == f) {
2365 for (Node p = t.first; p != null; p = p.next) {
2366 if (p.val != null) { // (currently always true)
2367 p.val = null;
2368 --delta;
2369 }
2370 }
2371 t.first = null;
2372 t.root = null;
2373 ++i;
2374 }
2375 } finally {
2376 t.release(0);
2377 }
2378 }
2379 else
2380 tab = (Node[])fk;
2381 }
2382 else if ((fh & LOCKED) != 0) {
2383 counter.add(delta); // opportunistically update count
2384 delta = 0L;
2385 f.tryAwaitLock(tab, i);
2386 }
2387 else if (f.casHash(fh, fh | LOCKED)) {
2388 try {
2389 if (tabAt(tab, i) == f) {
2390 for (Node e = f; e != null; e = e.next) {
2391 if (e.val != null) { // (currently always true)
2392 e.val = null;
2393 --delta;
2394 }
2395 }
2396 setTabAt(tab, i, null);
2397 ++i;
2398 }
2399 } finally {
2400 if (!f.casHash(fh | LOCKED, fh)) {
2401 f.hash = fh;
2402 synchronized (f) { f.notifyAll(); };
2403 }
2404 }
2405 }
2406 }
2407 if (delta != 0)
2408 counter.add(delta);
2409 }
2410
2411 /* ----------------Table Traversal -------------- */
2412
2413 /**
2414 * Encapsulates traversal for methods such as containsValue; also
2415 * serves as a base class for other iterators and bulk tasks.
2416 *
2417 * At each step, the iterator snapshots the key ("nextKey") and
2418 * value ("nextVal") of a valid node (i.e., one that, at point of
2419 * snapshot, has a non-null user value). Because val fields can
2420 * change (including to null, indicating deletion), field nextVal
2421 * might not be accurate at point of use, but still maintains the
2422 * weak consistency property of holding a value that was once
2423 * valid. To support iterator.remove, the nextKey field is not
2424 * updated (nulled out) when the iterator cannot advance.
2425 *
2426 * Internal traversals directly access these fields, as in:
2427 * {@code while (it.advance() != null) { process(it.nextKey); }}
2428 *
2429 * Exported iterators must track whether the iterator has advanced
2430 * (in hasNext vs next) (by setting/checking/nulling field
2431 * nextVal), and then extract key, value, or key-value pairs as
2432 * return values of next().
2433 *
2434 * The iterator visits once each still-valid node that was
2435 * reachable upon iterator construction. It might miss some that
2436 * were added to a bin after the bin was visited, which is OK wrt
2437 * consistency guarantees. Maintaining this property in the face
2438 * of possible ongoing resizes requires a fair amount of
2439 * bookkeeping state that is difficult to optimize away amidst
2440 * volatile accesses. Even so, traversal maintains reasonable
2441 * throughput.
2442 *
2443 * Normally, iteration proceeds bin-by-bin traversing lists.
2444 * However, if the table has been resized, then all future steps
2445 * must traverse both the bin at the current index as well as at
2446 * (index + baseSize); and so on for further resizings. To
2447 * paranoically cope with potential sharing by users of iterators
2448 * across threads, iteration terminates if a bounds checks fails
2449 * for a table read.
2450 *
2451 * This class extends ForkJoinTask to streamline parallel
2452 * iteration in bulk operations (see BulkTask). This adds only an
2453 * int of space overhead, which is close enough to negligible in
2454 * cases where it is not needed to not worry about it. Because
2455 * ForkJoinTask is Serializable, but iterators need not be, we
2456 * need to add warning suppressions.
2457 */
2458 @SuppressWarnings("serial") static class Traverser<K,V,R> extends ForkJoinTask<R> {
2459 final ConcurrentHashMapV8<K, V> map;
2460 Node next; // the next entry to use
2461 Object nextKey; // cached key field of next
2462 Object nextVal; // cached val field of next
2463 Node[] tab; // current table; updated if resized
2464 int index; // index of bin to use next
2465 int baseIndex; // current index of initial table
2466 int baseLimit; // index bound for initial table
2467 int baseSize; // initial table size
2468
2469 /** Creates iterator for all entries in the table. */
2470 Traverser(ConcurrentHashMapV8<K, V> map) {
2471 this.map = map;
2472 }
2473
2474 /** Creates iterator for split() methods */
2475 Traverser(Traverser<K,V,?> it) {
2476 ConcurrentHashMapV8<K, V> m; Node[] t;
2477 if ((m = this.map = it.map) == null)
2478 t = null;
2479 else if ((t = it.tab) == null && // force parent tab initialization
2480 (t = it.tab = m.table) != null)
2481 it.baseLimit = it.baseSize = t.length;
2482 this.tab = t;
2483 this.baseSize = it.baseSize;
2484 it.baseLimit = this.index = this.baseIndex =
2485 ((this.baseLimit = it.baseLimit) + it.baseIndex + 1) >>> 1;
2486 }
2487
2488 /**
2489 * Advances next; returns nextVal or null if terminated.
2490 * See above for explanation.
2491 */
2492 final Object advance() {
2493 Node e = next;
2494 Object ev = null;
2495 outer: do {
2496 if (e != null) // advance past used/skipped node
2497 e = e.next;
2498 while (e == null) { // get to next non-null bin
2499 ConcurrentHashMapV8<K, V> m;
2500 Node[] t; int b, i, n; Object ek; // checks must use locals
2501 if ((t = tab) != null)
2502 n = t.length;
2503 else if ((m = map) != null && (t = tab = m.table) != null)
2504 n = baseLimit = baseSize = t.length;
2505 else
2506 break outer;
2507 if ((b = baseIndex) >= baseLimit ||
2508 (i = index) < 0 || i >= n)
2509 break outer;
2510 if ((e = tabAt(t, i)) != null && e.hash == MOVED) {
2511 if ((ek = e.key) instanceof TreeBin)
2512 e = ((TreeBin)ek).first;
2513 else {
2514 tab = (Node[])ek;
2515 continue; // restarts due to null val
2516 }
2517 } // visit upper slots if present
2518 index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2519 }
2520 nextKey = e.key;
2521 } while ((ev = e.val) == null); // skip deleted or special nodes
2522 next = e;
2523 return nextVal = ev;
2524 }
2525
2526 public final void remove() {
2527 Object k = nextKey;
2528 if (k == null && (advance() == null || (k = nextKey) == null))
2529 throw new IllegalStateException();
2530 map.internalReplace(k, null, null);
2531 }
2532
2533 public final boolean hasNext() {
2534 return nextVal != null || advance() != null;
2535 }
2536
2537 public final boolean hasMoreElements() { return hasNext(); }
2538 public final void setRawResult(Object x) { }
2539 public R getRawResult() { return null; }
2540 public boolean exec() { return true; }
2541 }
2542
2543 /* ---------------- Public operations -------------- */
2544
2545 /**
2546 * Creates a new, empty map with the default initial table size (16).
2547 */
2548 public ConcurrentHashMapV8() {
2549 this.counter = new LongAdder();
2550 }
2551
2552 /**
2553 * Creates a new, empty map with an initial table size
2554 * accommodating the specified number of elements without the need
2555 * to dynamically resize.
2556 *
2557 * @param initialCapacity The implementation performs internal
2558 * sizing to accommodate this many elements.
2559 * @throws IllegalArgumentException if the initial capacity of
2560 * elements is negative
2561 */
2562 public ConcurrentHashMapV8(int initialCapacity) {
2563 if (initialCapacity < 0)
2564 throw new IllegalArgumentException();
2565 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2566 MAXIMUM_CAPACITY :
2567 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2568 this.counter = new LongAdder();
2569 this.sizeCtl = cap;
2570 }
2571
2572 /**
2573 * Creates a new map with the same mappings as the given map.
2574 *
2575 * @param m the map
2576 */
2577 public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
2578 this.counter = new LongAdder();
2579 this.sizeCtl = DEFAULT_CAPACITY;
2580 internalPutAll(m);
2581 }
2582
2583 /**
2584 * Creates a new, empty map with an initial table size based on
2585 * the given number of elements ({@code initialCapacity}) and
2586 * initial table density ({@code loadFactor}).
2587 *
2588 * @param initialCapacity the initial capacity. The implementation
2589 * performs internal sizing to accommodate this many elements,
2590 * given the specified load factor.
2591 * @param loadFactor the load factor (table density) for
2592 * establishing the initial table size
2593 * @throws IllegalArgumentException if the initial capacity of
2594 * elements is negative or the load factor is nonpositive
2595 *
2596 * @since 1.6
2597 */
2598 public ConcurrentHashMapV8(int initialCapacity, float loadFactor) {
2599 this(initialCapacity, loadFactor, 1);
2600 }
2601
2602 /**
2603 * Creates a new, empty map with an initial table size based on
2604 * the given number of elements ({@code initialCapacity}), table
2605 * density ({@code loadFactor}), and number of concurrently
2606 * updating threads ({@code concurrencyLevel}).
2607 *
2608 * @param initialCapacity the initial capacity. The implementation
2609 * performs internal sizing to accommodate this many elements,
2610 * given the specified load factor.
2611 * @param loadFactor the load factor (table density) for
2612 * establishing the initial table size
2613 * @param concurrencyLevel the estimated number of concurrently
2614 * updating threads. The implementation may use this value as
2615 * a sizing hint.
2616 * @throws IllegalArgumentException if the initial capacity is
2617 * negative or the load factor or concurrencyLevel are
2618 * nonpositive
2619 */
2620 public ConcurrentHashMapV8(int initialCapacity,
2621 float loadFactor, int concurrencyLevel) {
2622 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2623 throw new IllegalArgumentException();
2624 if (initialCapacity < concurrencyLevel) // Use at least as many bins
2625 initialCapacity = concurrencyLevel; // as estimated threads
2626 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2627 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2628 MAXIMUM_CAPACITY : tableSizeFor((int)size);
2629 this.counter = new LongAdder();
2630 this.sizeCtl = cap;
2631 }
2632
2633 /**
2634 * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2635 * from the given type to {@code Boolean.TRUE}.
2636 *
2637 * @return the new set
2638 */
2639 public static <K> KeySetView<K,Boolean> newKeySet() {
2640 return new KeySetView<K,Boolean>(new ConcurrentHashMapV8<K,Boolean>(),
2641 Boolean.TRUE);
2642 }
2643
2644 /**
2645 * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2646 * from the given type to {@code Boolean.TRUE}.
2647 *
2648 * @param initialCapacity The implementation performs internal
2649 * sizing to accommodate this many elements.
2650 * @throws IllegalArgumentException if the initial capacity of
2651 * elements is negative
2652 * @return the new set
2653 */
2654 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2655 return new KeySetView<K,Boolean>(new ConcurrentHashMapV8<K,Boolean>(initialCapacity),
2656 Boolean.TRUE);
2657 }
2658
2659 /**
2660 * {@inheritDoc}
2661 */
2662 public boolean isEmpty() {
2663 return counter.sum() <= 0L; // ignore transient negative values
2664 }
2665
2666 /**
2667 * {@inheritDoc}
2668 */
2669 public int size() {
2670 long n = counter.sum();
2671 return ((n < 0L) ? 0 :
2672 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2673 (int)n);
2674 }
2675
2676 /**
2677 * Returns the number of mappings. This method should be used
2678 * instead of {@link #size} because a ConcurrentHashMapV8 may
2679 * contain more mappings than can be represented as an int. The
2680 * value returned is a snapshot; the actual count may differ if
2681 * there are ongoing concurrent insertions or removals.
2682 *
2683 * @return the number of mappings
2684 */
2685 public long mappingCount() {
2686 long n = counter.sum();
2687 return (n < 0L) ? 0L : n; // ignore transient negative values
2688 }
2689
2690 /**
2691 * Returns the value to which the specified key is mapped,
2692 * or {@code null} if this map contains no mapping for the key.
2693 *
2694 * <p>More formally, if this map contains a mapping from a key
2695 * {@code k} to a value {@code v} such that {@code key.equals(k)},
2696 * then this method returns {@code v}; otherwise it returns
2697 * {@code null}. (There can be at most one such mapping.)
2698 *
2699 * @throws NullPointerException if the specified key is null
2700 */
2701 @SuppressWarnings("unchecked") public V get(Object key) {
2702 if (key == null)
2703 throw new NullPointerException();
2704 return (V)internalGet(key);
2705 }
2706
2707 /**
2708 * Returns the value to which the specified key is mapped,
2709 * or the given defaultValue if this map contains no mapping for the key.
2710 *
2711 * @param key the key
2712 * @param defaultValue the value to return if this map contains
2713 * no mapping for the given key
2714 * @return the mapping for the key, if present; else the defaultValue
2715 * @throws NullPointerException if the specified key is null
2716 */
2717 @SuppressWarnings("unchecked") public V getValueOrDefault(Object key, V defaultValue) {
2718 if (key == null)
2719 throw new NullPointerException();
2720 V v = (V) internalGet(key);
2721 return v == null ? defaultValue : v;
2722 }
2723
2724 /**
2725 * Tests if the specified object is a key in this table.
2726 *
2727 * @param key possible key
2728 * @return {@code true} if and only if the specified object
2729 * is a key in this table, as determined by the
2730 * {@code equals} method; {@code false} otherwise
2731 * @throws NullPointerException if the specified key is null
2732 */
2733 public boolean containsKey(Object key) {
2734 if (key == null)
2735 throw new NullPointerException();
2736 return internalGet(key) != null;
2737 }
2738
2739 /**
2740 * Returns {@code true} if this map maps one or more keys to the
2741 * specified value. Note: This method may require a full traversal
2742 * of the map, and is much slower than method {@code containsKey}.
2743 *
2744 * @param value value whose presence in this map is to be tested
2745 * @return {@code true} if this map maps one or more keys to the
2746 * specified value
2747 * @throws NullPointerException if the specified value is null
2748 */
2749 public boolean containsValue(Object value) {
2750 if (value == null)
2751 throw new NullPointerException();
2752 Object v;
2753 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2754 while ((v = it.advance()) != null) {
2755 if (v == value || value.equals(v))
2756 return true;
2757 }
2758 return false;
2759 }
2760
2761 /**
2762 * Legacy method testing if some key maps into the specified value
2763 * in this table. This method is identical in functionality to
2764 * {@link #containsValue}, and exists solely to ensure
2765 * full compatibility with class {@link java.util.Hashtable},
2766 * which supported this method prior to introduction of the
2767 * Java Collections framework.
2768 *
2769 * @param value a value to search for
2770 * @return {@code true} if and only if some key maps to the
2771 * {@code value} argument in this table as
2772 * determined by the {@code equals} method;
2773 * {@code false} otherwise
2774 * @throws NullPointerException if the specified value is null
2775 */
2776 public boolean contains(Object value) {
2777 return containsValue(value);
2778 }
2779
2780 /**
2781 * Maps the specified key to the specified value in this table.
2782 * Neither the key nor the value can be null.
2783 *
2784 * <p> The value can be retrieved by calling the {@code get} method
2785 * with a key that is equal to the original key.
2786 *
2787 * @param key key with which the specified value is to be associated
2788 * @param value value to be associated with the specified key
2789 * @return the previous value associated with {@code key}, or
2790 * {@code null} if there was no mapping for {@code key}
2791 * @throws NullPointerException if the specified key or value is null
2792 */
2793 @SuppressWarnings("unchecked") public V put(K key, V value) {
2794 if (key == null || value == null)
2795 throw new NullPointerException();
2796 return (V)internalPut(key, value);
2797 }
2798
2799 /**
2800 * {@inheritDoc}
2801 *
2802 * @return the previous value associated with the specified key,
2803 * or {@code null} if there was no mapping for the key
2804 * @throws NullPointerException if the specified key or value is null
2805 */
2806 @SuppressWarnings("unchecked") public V putIfAbsent(K key, V value) {
2807 if (key == null || value == null)
2808 throw new NullPointerException();
2809 return (V)internalPutIfAbsent(key, value);
2810 }
2811
2812 /**
2813 * Copies all of the mappings from the specified map to this one.
2814 * These mappings replace any mappings that this map had for any of the
2815 * keys currently in the specified map.
2816 *
2817 * @param m mappings to be stored in this map
2818 */
2819 public void putAll(Map<? extends K, ? extends V> m) {
2820 internalPutAll(m);
2821 }
2822
2823 /**
2824 * If the specified key is not already associated with a value,
2825 * computes its value using the given mappingFunction and enters
2826 * it into the map unless null. This is equivalent to
2827 * <pre> {@code
2828 * if (map.containsKey(key))
2829 * return map.get(key);
2830 * value = mappingFunction.apply(key);
2831 * if (value != null)
2832 * map.put(key, value);
2833 * return value;}</pre>
2834 *
2835 * except that the action is performed atomically. If the
2836 * function returns {@code null} no mapping is recorded. If the
2837 * function itself throws an (unchecked) exception, the exception
2838 * is rethrown to its caller, and no mapping is recorded. Some
2839 * attempted update operations on this map by other threads may be
2840 * blocked while computation is in progress, so the computation
2841 * should be short and simple, and must not attempt to update any
2842 * other mappings of this Map. The most appropriate usage is to
2843 * construct a new object serving as an initial mapped value, or
2844 * memoized result, as in:
2845 *
2846 * <pre> {@code
2847 * map.computeIfAbsent(key, new Fun<K, V>() {
2848 * public V map(K k) { return new Value(f(k)); }});}</pre>
2849 *
2850 * @param key key with which the specified value is to be associated
2851 * @param mappingFunction the function to compute a value
2852 * @return the current (existing or computed) value associated with
2853 * the specified key, or null if the computed value is null
2854 * @throws NullPointerException if the specified key or mappingFunction
2855 * is null
2856 * @throws IllegalStateException if the computation detectably
2857 * attempts a recursive update to this map that would
2858 * otherwise never complete
2859 * @throws RuntimeException or Error if the mappingFunction does so,
2860 * in which case the mapping is left unestablished
2861 */
2862 @SuppressWarnings("unchecked") public V computeIfAbsent
2863 (K key, Fun<? super K, ? extends V> mappingFunction) {
2864 if (key == null || mappingFunction == null)
2865 throw new NullPointerException();
2866 return (V)internalComputeIfAbsent(key, mappingFunction);
2867 }
2868
2869 /**
2870 * If the given key is present, computes a new mapping value given a key and
2871 * its current mapped value. This is equivalent to
2872 * <pre> {@code
2873 * if (map.containsKey(key)) {
2874 * value = remappingFunction.apply(key, map.get(key));
2875 * if (value != null)
2876 * map.put(key, value);
2877 * else
2878 * map.remove(key);
2879 * }
2880 * }</pre>
2881 *
2882 * except that the action is performed atomically. If the
2883 * function returns {@code null}, the mapping is removed. If the
2884 * function itself throws an (unchecked) exception, the exception
2885 * is rethrown to its caller, and the current mapping is left
2886 * unchanged. Some attempted update operations on this map by
2887 * other threads may be blocked while computation is in progress,
2888 * so the computation should be short and simple, and must not
2889 * attempt to update any other mappings of this Map. For example,
2890 * to either create or append new messages to a value mapping:
2891 *
2892 * @param key key with which the specified value is to be associated
2893 * @param remappingFunction the function to compute a value
2894 * @return the new value associated with the specified key, or null if none
2895 * @throws NullPointerException if the specified key or remappingFunction
2896 * is null
2897 * @throws IllegalStateException if the computation detectably
2898 * attempts a recursive update to this map that would
2899 * otherwise never complete
2900 * @throws RuntimeException or Error if the remappingFunction does so,
2901 * in which case the mapping is unchanged
2902 */
2903 @SuppressWarnings("unchecked") public V computeIfPresent
2904 (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2905 if (key == null || remappingFunction == null)
2906 throw new NullPointerException();
2907 return (V)internalCompute(key, true, remappingFunction);
2908 }
2909
2910 /**
2911 * Computes a new mapping value given a key and
2912 * its current mapped value (or {@code null} if there is no current
2913 * mapping). This is equivalent to
2914 * <pre> {@code
2915 * value = remappingFunction.apply(key, map.get(key));
2916 * if (value != null)
2917 * map.put(key, value);
2918 * else
2919 * map.remove(key);
2920 * }</pre>
2921 *
2922 * except that the action is performed atomically. If the
2923 * function returns {@code null}, the mapping is removed. If the
2924 * function itself throws an (unchecked) exception, the exception
2925 * is rethrown to its caller, and the current mapping is left
2926 * unchanged. Some attempted update operations on this map by
2927 * other threads may be blocked while computation is in progress,
2928 * so the computation should be short and simple, and must not
2929 * attempt to update any other mappings of this Map. For example,
2930 * to either create or append new messages to a value mapping:
2931 *
2932 * <pre> {@code
2933 * Map<Key, String> map = ...;
2934 * final String msg = ...;
2935 * map.compute(key, new BiFun<Key, String, String>() {
2936 * public String apply(Key k, String v) {
2937 * return (v == null) ? msg : v + msg;});}}</pre>
2938 *
2939 * @param key key with which the specified value is to be associated
2940 * @param remappingFunction the function to compute a value
2941 * @return the new value associated with the specified key, or null if none
2942 * @throws NullPointerException if the specified key or remappingFunction
2943 * is null
2944 * @throws IllegalStateException if the computation detectably
2945 * attempts a recursive update to this map that would
2946 * otherwise never complete
2947 * @throws RuntimeException or Error if the remappingFunction does so,
2948 * in which case the mapping is unchanged
2949 */
2950 @SuppressWarnings("unchecked") public V compute
2951 (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2952 if (key == null || remappingFunction == null)
2953 throw new NullPointerException();
2954 return (V)internalCompute(key, false, remappingFunction);
2955 }
2956
2957 /**
2958 * If the specified key is not already associated
2959 * with a value, associate it with the given value.
2960 * Otherwise, replace the value with the results of
2961 * the given remapping function. This is equivalent to:
2962 * <pre> {@code
2963 * if (!map.containsKey(key))
2964 * map.put(value);
2965 * else {
2966 * newValue = remappingFunction.apply(map.get(key), value);
2967 * if (value != null)
2968 * map.put(key, value);
2969 * else
2970 * map.remove(key);
2971 * }
2972 * }</pre>
2973 * except that the action is performed atomically. If the
2974 * function returns {@code null}, the mapping is removed. If the
2975 * function itself throws an (unchecked) exception, the exception
2976 * is rethrown to its caller, and the current mapping is left
2977 * unchanged. Some attempted update operations on this map by
2978 * other threads may be blocked while computation is in progress,
2979 * so the computation should be short and simple, and must not
2980 * attempt to update any other mappings of this Map.
2981 */
2982 @SuppressWarnings("unchecked") public V merge
2983 (K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
2984 if (key == null || value == null || remappingFunction == null)
2985 throw new NullPointerException();
2986 return (V)internalMerge(key, value, remappingFunction);
2987 }
2988
2989 /**
2990 * Removes the key (and its corresponding value) from this map.
2991 * This method does nothing if the key is not in the map.
2992 *
2993 * @param key the key that needs to be removed
2994 * @return the previous value associated with {@code key}, or
2995 * {@code null} if there was no mapping for {@code key}
2996 * @throws NullPointerException if the specified key is null
2997 */
2998 @SuppressWarnings("unchecked") public V remove(Object key) {
2999 if (key == null)
3000 throw new NullPointerException();
3001 return (V)internalReplace(key, null, null);
3002 }
3003
3004 /**
3005 * {@inheritDoc}
3006 *
3007 * @throws NullPointerException if the specified key is null
3008 */
3009 public boolean remove(Object key, Object value) {
3010 if (key == null)
3011 throw new NullPointerException();
3012 if (value == null)
3013 return false;
3014 return internalReplace(key, null, value) != null;
3015 }
3016
3017 /**
3018 * {@inheritDoc}
3019 *
3020 * @throws NullPointerException if any of the arguments are null
3021 */
3022 public boolean replace(K key, V oldValue, V newValue) {
3023 if (key == null || oldValue == null || newValue == null)
3024 throw new NullPointerException();
3025 return internalReplace(key, newValue, oldValue) != null;
3026 }
3027
3028 /**
3029 * {@inheritDoc}
3030 *
3031 * @return the previous value associated with the specified key,
3032 * or {@code null} if there was no mapping for the key
3033 * @throws NullPointerException if the specified key or value is null
3034 */
3035 @SuppressWarnings("unchecked") public V replace(K key, V value) {
3036 if (key == null || value == null)
3037 throw new NullPointerException();
3038 return (V)internalReplace(key, value, null);
3039 }
3040
3041 /**
3042 * Removes all of the mappings from this map.
3043 */
3044 public void clear() {
3045 internalClear();
3046 }
3047
3048 /**
3049 * Returns a {@link Set} view of the keys contained in this map.
3050 * The set is backed by the map, so changes to the map are
3051 * reflected in the set, and vice-versa.
3052 *
3053 * @return the set view
3054 */
3055 public KeySetView<K,V> keySet() {
3056 KeySetView<K,V> ks = keySet;
3057 return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
3058 }
3059
3060 /**
3061 * Returns a {@link Set} view of the keys in this map, using the
3062 * given common mapped value for any additions (i.e., {@link
3063 * Collection#add} and {@link Collection#addAll}). This is of
3064 * course only appropriate if it is acceptable to use the same
3065 * value for all additions from this view.
3066 *
3067 * @param mappedValue the mapped value to use for any
3068 * additions.
3069 * @return the set view
3070 * @throws NullPointerException if the mappedValue is null
3071 */
3072 public KeySetView<K,V> keySet(V mappedValue) {
3073 if (mappedValue == null)
3074 throw new NullPointerException();
3075 return new KeySetView<K,V>(this, mappedValue);
3076 }
3077
3078 /**
3079 * Returns a {@link Collection} view of the values contained in this map.
3080 * The collection is backed by the map, so changes to the map are
3081 * reflected in the collection, and vice-versa. The collection
3082 * supports element removal, which removes the corresponding
3083 * mapping from this map, via the {@code Iterator.remove},
3084 * {@code Collection.remove}, {@code removeAll},
3085 * {@code retainAll}, and {@code clear} operations. It does not
3086 * support the {@code add} or {@code addAll} operations.
3087 *
3088 * <p>The view's {@code iterator} is a "weakly consistent" iterator
3089 * that will never throw {@link ConcurrentModificationException},
3090 * and guarantees to traverse elements as they existed upon
3091 * construction of the iterator, and may (but is not guaranteed to)
3092 * reflect any modifications subsequent to construction.
3093 */
3094 public Collection<V> values() {
3095 Values<K,V> vs = values;
3096 return (vs != null) ? vs : (values = new Values<K,V>(this));
3097 }
3098
3099 /**
3100 * Returns a {@link Set} view of the mappings contained in this map.
3101 * The set is backed by the map, so changes to the map are
3102 * reflected in the set, and vice-versa. The set supports element
3103 * removal, which removes the corresponding mapping from the map,
3104 * via the {@code Iterator.remove}, {@code Set.remove},
3105 * {@code removeAll}, {@code retainAll}, and {@code clear}
3106 * operations. It does not support the {@code add} or
3107 * {@code addAll} operations.
3108 *
3109 * <p>The view's {@code iterator} is a "weakly consistent" iterator
3110 * that will never throw {@link ConcurrentModificationException},
3111 * and guarantees to traverse elements as they existed upon
3112 * construction of the iterator, and may (but is not guaranteed to)
3113 * reflect any modifications subsequent to construction.
3114 */
3115 public Set<Map.Entry<K,V>> entrySet() {
3116 EntrySet<K,V> es = entrySet;
3117 return (es != null) ? es : (entrySet = new EntrySet<K,V>(this));
3118 }
3119
3120 /**
3121 * Returns an enumeration of the keys in this table.
3122 *
3123 * @return an enumeration of the keys in this table
3124 * @see #keySet()
3125 */
3126 public Enumeration<K> keys() {
3127 return new KeyIterator<K,V>(this);
3128 }
3129
3130 /**
3131 * Returns an enumeration of the values in this table.
3132 *
3133 * @return an enumeration of the values in this table
3134 * @see #values()
3135 */
3136 public Enumeration<V> elements() {
3137 return new ValueIterator<K,V>(this);
3138 }
3139
3140 /**
3141 * Returns a partitionable iterator of the keys in this map.
3142 *
3143 * @return a partitionable iterator of the keys in this map
3144 */
3145 public Spliterator<K> keySpliterator() {
3146 return new KeyIterator<K,V>(this);
3147 }
3148
3149 /**
3150 * Returns a partitionable iterator of the values in this map.
3151 *
3152 * @return a partitionable iterator of the values in this map
3153 */
3154 public Spliterator<V> valueSpliterator() {
3155 return new ValueIterator<K,V>(this);
3156 }
3157
3158 /**
3159 * Returns a partitionable iterator of the entries in this map.
3160 *
3161 * @return a partitionable iterator of the entries in this map
3162 */
3163 public Spliterator<Map.Entry<K,V>> entrySpliterator() {
3164 return new EntryIterator<K,V>(this);
3165 }
3166
3167 /**
3168 * Returns the hash code value for this {@link Map}, i.e.,
3169 * the sum of, for each key-value pair in the map,
3170 * {@code key.hashCode() ^ value.hashCode()}.
3171 *
3172 * @return the hash code value for this map
3173 */
3174 public int hashCode() {
3175 int h = 0;
3176 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3177 Object v;
3178 while ((v = it.advance()) != null) {
3179 h += it.nextKey.hashCode() ^ v.hashCode();
3180 }
3181 return h;
3182 }
3183
3184 /**
3185 * Returns a string representation of this map. The string
3186 * representation consists of a list of key-value mappings (in no
3187 * particular order) enclosed in braces ("{@code {}}"). Adjacent
3188 * mappings are separated by the characters {@code ", "} (comma
3189 * and space). Each key-value mapping is rendered as the key
3190 * followed by an equals sign ("{@code =}") followed by the
3191 * associated value.
3192 *
3193 * @return a string representation of this map
3194 */
3195 public String toString() {
3196 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3197 StringBuilder sb = new StringBuilder();
3198 sb.append('{');
3199 Object v;
3200 if ((v = it.advance()) != null) {
3201 for (;;) {
3202 Object k = it.nextKey;
3203 sb.append(k == this ? "(this Map)" : k);
3204 sb.append('=');
3205 sb.append(v == this ? "(this Map)" : v);
3206 if ((v = it.advance()) == null)
3207 break;
3208 sb.append(',').append(' ');
3209 }
3210 }
3211 return sb.append('}').toString();
3212 }
3213
3214 /**
3215 * Compares the specified object with this map for equality.
3216 * Returns {@code true} if the given object is a map with the same
3217 * mappings as this map. This operation may return misleading
3218 * results if either map is concurrently modified during execution
3219 * of this method.
3220 *
3221 * @param o object to be compared for equality with this map
3222 * @return {@code true} if the specified object is equal to this map
3223 */
3224 public boolean equals(Object o) {
3225 if (o != this) {
3226 if (!(o instanceof Map))
3227 return false;
3228 Map<?,?> m = (Map<?,?>) o;
3229 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3230 Object val;
3231 while ((val = it.advance()) != null) {
3232 Object v = m.get(it.nextKey);
3233 if (v == null || (v != val && !v.equals(val)))
3234 return false;
3235 }
3236 for (Map.Entry<?,?> e : m.entrySet()) {
3237 Object mk, mv, v;
3238 if ((mk = e.getKey()) == null ||
3239 (mv = e.getValue()) == null ||
3240 (v = internalGet(mk)) == null ||
3241 (mv != v && !mv.equals(v)))
3242 return false;
3243 }
3244 }
3245 return true;
3246 }
3247
3248 /* ----------------Iterators -------------- */
3249
3250 @SuppressWarnings("serial") static final class KeyIterator<K,V> extends Traverser<K,V,Object>
3251 implements Spliterator<K>, Enumeration<K> {
3252 KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3253 KeyIterator(Traverser<K,V,Object> it) {
3254 super(it);
3255 }
3256 public KeyIterator<K,V> split() {
3257 if (nextKey != null)
3258 throw new IllegalStateException();
3259 return new KeyIterator<K,V>(this);
3260 }
3261 @SuppressWarnings("unchecked") public final K next() {
3262 if (nextVal == null && advance() == null)
3263 throw new NoSuchElementException();
3264 Object k = nextKey;
3265 nextVal = null;
3266 return (K) k;
3267 }
3268
3269 public final K nextElement() { return next(); }
3270 }
3271
3272 @SuppressWarnings("serial") static final class ValueIterator<K,V> extends Traverser<K,V,Object>
3273 implements Spliterator<V>, Enumeration<V> {
3274 ValueIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3275 ValueIterator(Traverser<K,V,Object> it) {
3276 super(it);
3277 }
3278 public ValueIterator<K,V> split() {
3279 if (nextKey != null)
3280 throw new IllegalStateException();
3281 return new ValueIterator<K,V>(this);
3282 }
3283
3284 @SuppressWarnings("unchecked") public final V next() {
3285 Object v;
3286 if ((v = nextVal) == null && (v = advance()) == null)
3287 throw new NoSuchElementException();
3288 nextVal = null;
3289 return (V) v;
3290 }
3291
3292 public final V nextElement() { return next(); }
3293 }
3294
3295 @SuppressWarnings("serial") static final class EntryIterator<K,V> extends Traverser<K,V,Object>
3296 implements Spliterator<Map.Entry<K,V>> {
3297 EntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3298 EntryIterator(Traverser<K,V,Object> it) {
3299 super(it);
3300 }
3301 public EntryIterator<K,V> split() {
3302 if (nextKey != null)
3303 throw new IllegalStateException();
3304 return new EntryIterator<K,V>(this);
3305 }
3306
3307 @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3308 Object v;
3309 if ((v = nextVal) == null && (v = advance()) == null)
3310 throw new NoSuchElementException();
3311 Object k = nextKey;
3312 nextVal = null;
3313 return new MapEntry<K,V>((K)k, (V)v, map);
3314 }
3315 }
3316
3317 /**
3318 * Exported Entry for iterators
3319 */
3320 static final class MapEntry<K,V> implements Map.Entry<K, V> {
3321 final K key; // non-null
3322 V val; // non-null
3323 final ConcurrentHashMapV8<K, V> map;
3324 MapEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
3325 this.key = key;
3326 this.val = val;
3327 this.map = map;
3328 }
3329 public final K getKey() { return key; }
3330 public final V getValue() { return val; }
3331 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
3332 public final String toString(){ return key + "=" + val; }
3333
3334 public final boolean equals(Object o) {
3335 Object k, v; Map.Entry<?,?> e;
3336 return ((o instanceof Map.Entry) &&
3337 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3338 (v = e.getValue()) != null &&
3339 (k == key || k.equals(key)) &&
3340 (v == val || v.equals(val)));
3341 }
3342
3343 /**
3344 * Sets our entry's value and writes through to the map. The
3345 * value to return is somewhat arbitrary here. Since we do not
3346 * necessarily track asynchronous changes, the most recent
3347 * "previous" value could be different from what we return (or
3348 * could even have been removed in which case the put will
3349 * re-establish). We do not and cannot guarantee more.
3350 */
3351 public final V setValue(V value) {
3352 if (value == null) throw new NullPointerException();
3353 V v = val;
3354 val = value;
3355 map.put(key, value);
3356 return v;
3357 }
3358 }
3359
3360 /* ----------------Views -------------- */
3361
3362 /**
3363 * Base class for views.
3364 */
3365 static abstract class CHMView<K, V> {
3366 final ConcurrentHashMapV8<K, V> map;
3367 CHMView(ConcurrentHashMapV8<K, V> map) { this.map = map; }
3368 public final int size() { return map.size(); }
3369 public final boolean isEmpty() { return map.isEmpty(); }
3370 public final void clear() { map.clear(); }
3371
3372 // implementations below rely on concrete classes supplying these
3373 abstract public Iterator<?> iterator();
3374 abstract public boolean contains(Object o);
3375 abstract public boolean remove(Object o);
3376
3377 private static final String oomeMsg = "Required array size too large";
3378
3379 public final Object[] toArray() {
3380 long sz = map.mappingCount();
3381 if (sz > (long)(MAX_ARRAY_SIZE))
3382 throw new OutOfMemoryError(oomeMsg);
3383 int n = (int)sz;
3384 Object[] r = new Object[n];
3385 int i = 0;
3386 Iterator<?> it = iterator();
3387 while (it.hasNext()) {
3388 if (i == n) {
3389 if (n >= MAX_ARRAY_SIZE)
3390 throw new OutOfMemoryError(oomeMsg);
3391 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
3392 n = MAX_ARRAY_SIZE;
3393 else
3394 n += (n >>> 1) + 1;
3395 r = Arrays.copyOf(r, n);
3396 }
3397 r[i++] = it.next();
3398 }
3399 return (i == n) ? r : Arrays.copyOf(r, i);
3400 }
3401
3402 @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
3403 long sz = map.mappingCount();
3404 if (sz > (long)(MAX_ARRAY_SIZE))
3405 throw new OutOfMemoryError(oomeMsg);
3406 int m = (int)sz;
3407 T[] r = (a.length >= m) ? a :
3408 (T[])java.lang.reflect.Array
3409 .newInstance(a.getClass().getComponentType(), m);
3410 int n = r.length;
3411 int i = 0;
3412 Iterator<?> it = iterator();
3413 while (it.hasNext()) {
3414 if (i == n) {
3415 if (n >= MAX_ARRAY_SIZE)
3416 throw new OutOfMemoryError(oomeMsg);
3417 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
3418 n = MAX_ARRAY_SIZE;
3419 else
3420 n += (n >>> 1) + 1;
3421 r = Arrays.copyOf(r, n);
3422 }
3423 r[i++] = (T)it.next();
3424 }
3425 if (a == r && i < n) {
3426 r[i] = null; // null-terminate
3427 return r;
3428 }
3429 return (i == n) ? r : Arrays.copyOf(r, i);
3430 }
3431
3432 public final int hashCode() {
3433 int h = 0;
3434 for (Iterator<?> it = iterator(); it.hasNext();)
3435 h += it.next().hashCode();
3436 return h;
3437 }
3438
3439 public final String toString() {
3440 StringBuilder sb = new StringBuilder();
3441 sb.append('[');
3442 Iterator<?> it = iterator();
3443 if (it.hasNext()) {
3444 for (;;) {
3445 Object e = it.next();
3446 sb.append(e == this ? "(this Collection)" : e);
3447 if (!it.hasNext())
3448 break;
3449 sb.append(',').append(' ');
3450 }
3451 }
3452 return sb.append(']').toString();
3453 }
3454
3455 public final boolean containsAll(Collection<?> c) {
3456 if (c != this) {
3457 for (Iterator<?> it = c.iterator(); it.hasNext();) {
3458 Object e = it.next();
3459 if (e == null || !contains(e))
3460 return false;
3461 }
3462 }
3463 return true;
3464 }
3465
3466 public final boolean removeAll(Collection<?> c) {
3467 boolean modified = false;
3468 for (Iterator<?> it = iterator(); it.hasNext();) {
3469 if (c.contains(it.next())) {
3470 it.remove();
3471 modified = true;
3472 }
3473 }
3474 return modified;
3475 }
3476
3477 public final boolean retainAll(Collection<?> c) {
3478 boolean modified = false;
3479 for (Iterator<?> it = iterator(); it.hasNext();) {
3480 if (!c.contains(it.next())) {
3481 it.remove();
3482 modified = true;
3483 }
3484 }
3485 return modified;
3486 }
3487
3488 }
3489
3490 static final class Values<K,V> extends CHMView<K,V>
3491 implements Collection<V> {
3492 Values(ConcurrentHashMapV8<K, V> map) { super(map); }
3493 public final boolean contains(Object o) { return map.containsValue(o); }
3494 public final boolean remove(Object o) {
3495 if (o != null) {
3496 Iterator<V> it = new ValueIterator<K,V>(map);
3497 while (it.hasNext()) {
3498 if (o.equals(it.next())) {
3499 it.remove();
3500 return true;
3501 }
3502 }
3503 }
3504 return false;
3505 }
3506 public final Iterator<V> iterator() {
3507 return new ValueIterator<K,V>(map);
3508 }
3509 public final boolean add(V e) {
3510 throw new UnsupportedOperationException();
3511 }
3512 public final boolean addAll(Collection<? extends V> c) {
3513 throw new UnsupportedOperationException();
3514 }
3515
3516 }
3517
3518 static final class EntrySet<K,V> extends CHMView<K,V>
3519 implements Set<Map.Entry<K,V>> {
3520 EntrySet(ConcurrentHashMapV8<K, V> map) { super(map); }
3521 public final boolean contains(Object o) {
3522 Object k, v, r; Map.Entry<?,?> e;
3523 return ((o instanceof Map.Entry) &&
3524 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3525 (r = map.get(k)) != null &&
3526 (v = e.getValue()) != null &&
3527 (v == r || v.equals(r)));
3528 }
3529 public final boolean remove(Object o) {
3530 Object k, v; Map.Entry<?,?> e;
3531 return ((o instanceof Map.Entry) &&
3532 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3533 (v = e.getValue()) != null &&
3534 map.remove(k, v));
3535 }
3536 public final Iterator<Map.Entry<K,V>> iterator() {
3537 return new EntryIterator<K,V>(map);
3538 }
3539 public final boolean add(Entry<K,V> e) {
3540 throw new UnsupportedOperationException();
3541 }
3542 public final boolean addAll(Collection<? extends Entry<K,V>> c) {
3543 throw new UnsupportedOperationException();
3544 }
3545 public boolean equals(Object o) {
3546 Set<?> c;
3547 return ((o instanceof Set) &&
3548 ((c = (Set<?>)o) == this ||
3549 (containsAll(c) && c.containsAll(this))));
3550 }
3551 }
3552
3553 /* ---------------- Serialization Support -------------- */
3554
3555 /**
3556 * Stripped-down version of helper class used in previous version,
3557 * declared for the sake of serialization compatibility
3558 */
3559 static class Segment<K,V> implements Serializable {
3560 private static final long serialVersionUID = 2249069246763182397L;
3561 final float loadFactor;
3562 Segment(float lf) { this.loadFactor = lf; }
3563 }
3564
3565 /**
3566 * Saves the state of the {@code ConcurrentHashMapV8} instance to a
3567 * stream (i.e., serializes it).
3568 * @param s the stream
3569 * @serialData
3570 * the key (Object) and value (Object)
3571 * for each key-value mapping, followed by a null pair.
3572 * The key-value mappings are emitted in no particular order.
3573 */
3574 @SuppressWarnings("unchecked") private void writeObject(java.io.ObjectOutputStream s)
3575 throws java.io.IOException {
3576 if (segments == null) { // for serialization compatibility
3577 segments = (Segment<K,V>[])
3578 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3579 for (int i = 0; i < segments.length; ++i)
3580 segments[i] = new Segment<K,V>(LOAD_FACTOR);
3581 }
3582 s.defaultWriteObject();
3583 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3584 Object v;
3585 while ((v = it.advance()) != null) {
3586 s.writeObject(it.nextKey);
3587 s.writeObject(v);
3588 }
3589 s.writeObject(null);
3590 s.writeObject(null);
3591 segments = null; // throw away
3592 }
3593
3594 /**
3595 * Reconstitutes the instance from a stream (that is, deserializes it).
3596 * @param s the stream
3597 */
3598 @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s)
3599 throws java.io.IOException, ClassNotFoundException {
3600 s.defaultReadObject();
3601 this.segments = null; // unneeded
3602 // initialize transient final field
3603 UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
3604
3605 // Create all nodes, then place in table once size is known
3606 long size = 0L;
3607 Node p = null;
3608 for (;;) {
3609 K k = (K) s.readObject();
3610 V v = (V) s.readObject();
3611 if (k != null && v != null) {
3612 int h = spread(k.hashCode());
3613 p = new Node(h, k, v, p);
3614 ++size;
3615 }
3616 else
3617 break;
3618 }
3619 if (p != null) {
3620 boolean init = false;
3621 int n;
3622 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3623 n = MAXIMUM_CAPACITY;
3624 else {
3625 int sz = (int)size;
3626 n = tableSizeFor(sz + (sz >>> 1) + 1);
3627 }
3628 int sc = sizeCtl;
3629 boolean collide = false;
3630 if (n > sc &&
3631 UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
3632 try {
3633 if (table == null) {
3634 init = true;
3635 Node[] tab = new Node[n];
3636 int mask = n - 1;
3637 while (p != null) {
3638 int j = p.hash & mask;
3639 Node next = p.next;
3640 Node q = p.next = tabAt(tab, j);
3641 setTabAt(tab, j, p);
3642 if (!collide && q != null && q.hash == p.hash)
3643 collide = true;
3644 p = next;
3645 }
3646 table = tab;
3647 counter.add(size);
3648 sc = n - (n >>> 2);
3649 }
3650 } finally {
3651 sizeCtl = sc;
3652 }
3653 if (collide) { // rescan and convert to TreeBins
3654 Node[] tab = table;
3655 for (int i = 0; i < tab.length; ++i) {
3656 int c = 0;
3657 for (Node e = tabAt(tab, i); e != null; e = e.next) {
3658 if (++c > TREE_THRESHOLD &&
3659 (e.key instanceof Comparable)) {
3660 replaceWithTreeBin(tab, i, e.key);
3661 break;
3662 }
3663 }
3664 }
3665 }
3666 }
3667 if (!init) { // Can only happen if unsafely published.
3668 while (p != null) {
3669 internalPut(p.key, p.val);
3670 p = p.next;
3671 }
3672 }
3673 }
3674 }
3675
3676
3677 // -------------------------------------------------------
3678
3679 // Sams
3680 /** Interface describing a void action of one argument */
3681 public interface Action<A> { void apply(A a); }
3682 /** Interface describing a void action of two arguments */
3683 public interface BiAction<A,B> { void apply(A a, B b); }
3684 /** Interface describing a function of one argument */
3685 public interface Fun<A,T> { T apply(A a); }
3686 /** Interface describing a function of two arguments */
3687 public interface BiFun<A,B,T> { T apply(A a, B b); }
3688 /** Interface describing a function of no arguments */
3689 public interface Generator<T> { T apply(); }
3690 /** Interface describing a function mapping its argument to a double */
3691 public interface ObjectToDouble<A> { double apply(A a); }
3692 /** Interface describing a function mapping its argument to a long */
3693 public interface ObjectToLong<A> { long apply(A a); }
3694 /** Interface describing a function mapping its argument to an int */
3695 public interface ObjectToInt<A> {int apply(A a); }
3696 /** Interface describing a function mapping two arguments to a double */
3697 public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3698 /** Interface describing a function mapping two arguments to a long */
3699 public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3700 /** Interface describing a function mapping two arguments to an int */
3701 public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3702 /** Interface describing a function mapping a double to a double */
3703 public interface DoubleToDouble { double apply(double a); }
3704 /** Interface describing a function mapping a long to a long */
3705 public interface LongToLong { long apply(long a); }
3706 /** Interface describing a function mapping an int to an int */
3707 public interface IntToInt { int apply(int a); }
3708 /** Interface describing a function mapping two doubles to a double */
3709 public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3710 /** Interface describing a function mapping two longs to a long */
3711 public interface LongByLongToLong { long apply(long a, long b); }
3712 /** Interface describing a function mapping two ints to an int */
3713 public interface IntByIntToInt { int apply(int a, int b); }
3714
3715
3716 // -------------------------------------------------------
3717
3718 /**
3719 * Performs the given action for each (key, value).
3720 *
3721 * @param action the action
3722 */
3723 public void forEach(BiAction<K,V> action) {
3724 ForkJoinTasks.forEach
3725 (this, action).invoke();
3726 }
3727
3728 /**
3729 * Performs the given action for each non-null transformation
3730 * of each (key, value).
3731 *
3732 * @param transformer a function returning the transformation
3733 * for an element, or null of there is no transformation (in
3734 * which case the action is not applied).
3735 * @param action the action
3736 */
3737 public <U> void forEach(BiFun<? super K, ? super V, ? extends U> transformer,
3738 Action<U> action) {
3739 ForkJoinTasks.forEach
3740 (this, transformer, action).invoke();
3741 }
3742
3743 /**
3744 * Returns a non-null result from applying the given search
3745 * function on each (key, value), or null if none. Upon
3746 * success, further element processing is suppressed and the
3747 * results of any other parallel invocations of the search
3748 * function are ignored.
3749 *
3750 * @param searchFunction a function returning a non-null
3751 * result on success, else null
3752 * @return a non-null result from applying the given search
3753 * function on each (key, value), or null if none
3754 */
3755 public <U> U search(BiFun<? super K, ? super V, ? extends U> searchFunction) {
3756 return ForkJoinTasks.search
3757 (this, searchFunction).invoke();
3758 }
3759
3760 /**
3761 * Returns the result of accumulating the given transformation
3762 * of all (key, value) pairs using the given reducer to
3763 * combine values, or null if none.
3764 *
3765 * @param transformer a function returning the transformation
3766 * for an element, or null of there is no transformation (in
3767 * which case it is not combined).
3768 * @param reducer a commutative associative combining function
3769 * @return the result of accumulating the given transformation
3770 * of all (key, value) pairs
3771 */
3772 public <U> U reduce(BiFun<? super K, ? super V, ? extends U> transformer,
3773 BiFun<? super U, ? super U, ? extends U> reducer) {
3774 return ForkJoinTasks.reduce
3775 (this, transformer, reducer).invoke();
3776 }
3777
3778 /**
3779 * Returns the result of accumulating the given transformation
3780 * of all (key, value) pairs using the given reducer to
3781 * combine values, and the given basis as an identity value.
3782 *
3783 * @param transformer a function returning the transformation
3784 * for an element
3785 * @param basis the identity (initial default value) for the reduction
3786 * @param reducer a commutative associative combining function
3787 * @return the result of accumulating the given transformation
3788 * of all (key, value) pairs
3789 */
3790 public double reduceToDouble(ObjectByObjectToDouble<? super K, ? super V> transformer,
3791 double basis,
3792 DoubleByDoubleToDouble reducer) {
3793 return ForkJoinTasks.reduceToDouble
3794 (this, transformer, basis, reducer).invoke();
3795 }
3796
3797 /**
3798 * Returns the result of accumulating the given transformation
3799 * of all (key, value) pairs using the given reducer to
3800 * combine values, and the given basis as an identity value.
3801 *
3802 * @param transformer a function returning the transformation
3803 * for an element
3804 * @param basis the identity (initial default value) for the reduction
3805 * @param reducer a commutative associative combining function
3806 * @return the result of accumulating the given transformation
3807 * of all (key, value) pairs
3808 */
3809 public long reduceToLong(ObjectByObjectToLong<? super K, ? super V> transformer,
3810 long basis,
3811 LongByLongToLong reducer) {
3812 return ForkJoinTasks.reduceToLong
3813 (this, transformer, basis, reducer).invoke();
3814 }
3815
3816 /**
3817 * Returns the result of accumulating the given transformation
3818 * of all (key, value) pairs using the given reducer to
3819 * combine values, and the given basis as an identity value.
3820 *
3821 * @param transformer a function returning the transformation
3822 * for an element
3823 * @param basis the identity (initial default value) for the reduction
3824 * @param reducer a commutative associative combining function
3825 * @return the result of accumulating the given transformation
3826 * of all (key, value) pairs
3827 */
3828 public int reduceToInt(ObjectByObjectToInt<? super K, ? super V> transformer,
3829 int basis,
3830 IntByIntToInt reducer) {
3831 return ForkJoinTasks.reduceToInt
3832 (this, transformer, basis, reducer).invoke();
3833 }
3834
3835 /**
3836 * Performs the given action for each key.
3837 *
3838 * @param action the action
3839 */
3840 public void forEachKey(Action<K> action) {
3841 ForkJoinTasks.forEachKey
3842 (this, action).invoke();
3843 }
3844
3845 /**
3846 * Performs the given action for each non-null transformation
3847 * of each key.
3848 *
3849 * @param transformer a function returning the transformation
3850 * for an element, or null of there is no transformation (in
3851 * which case the action is not applied).
3852 * @param action the action
3853 */
3854 public <U> void forEachKey(Fun<? super K, ? extends U> transformer,
3855 Action<U> action) {
3856 ForkJoinTasks.forEachKey
3857 (this, transformer, action).invoke();
3858 }
3859
3860 /**
3861 * Returns a non-null result from applying the given search
3862 * function on each key, or null if none. Upon success,
3863 * further element processing is suppressed and the results of
3864 * any other parallel invocations of the search function are
3865 * ignored.
3866 *
3867 * @param searchFunction a function returning a non-null
3868 * result on success, else null
3869 * @return a non-null result from applying the given search
3870 * function on each key, or null if none
3871 */
3872 public <U> U searchKeys(Fun<? super K, ? extends U> searchFunction) {
3873 return ForkJoinTasks.searchKeys
3874 (this, searchFunction).invoke();
3875 }
3876
3877 /**
3878 * Returns the result of accumulating all keys using the given
3879 * reducer to combine values, or null if none.
3880 *
3881 * @param reducer a commutative associative combining function
3882 * @return the result of accumulating all keys using the given
3883 * reducer to combine values, or null if none
3884 */
3885 public K reduceKeys(BiFun<? super K, ? super K, ? extends K> reducer) {
3886 return ForkJoinTasks.reduceKeys
3887 (this, reducer).invoke();
3888 }
3889
3890 /**
3891 * Returns the result of accumulating the given transformation
3892 * of all keys using the given reducer to combine values, or
3893 * null if none.
3894 *
3895 * @param transformer a function returning the transformation
3896 * for an element, or null of there is no transformation (in
3897 * which case it is not combined).
3898 * @param reducer a commutative associative combining function
3899 * @return the result of accumulating the given transformation
3900 * of all keys
3901 */
3902 public <U> U reduceKeys(Fun<? super K, ? extends U> transformer,
3903 BiFun<? super U, ? super U, ? extends U> reducer) {
3904 return ForkJoinTasks.reduceKeys
3905 (this, transformer, reducer).invoke();
3906 }
3907
3908 /**
3909 * Returns the result of accumulating the given transformation
3910 * of all keys using the given reducer to combine values, and
3911 * the given basis as an identity value.
3912 *
3913 * @param transformer a function returning the transformation
3914 * for an element
3915 * @param basis the identity (initial default value) for the reduction
3916 * @param reducer a commutative associative combining function
3917 * @return the result of accumulating the given transformation
3918 * of all keys
3919 */
3920 public double reduceKeysToDouble(ObjectToDouble<? super K> transformer,
3921 double basis,
3922 DoubleByDoubleToDouble reducer) {
3923 return ForkJoinTasks.reduceKeysToDouble
3924 (this, transformer, basis, reducer).invoke();
3925 }
3926
3927 /**
3928 * Returns the result of accumulating the given transformation
3929 * of all keys using the given reducer to combine values, and
3930 * the given basis as an identity value.
3931 *
3932 * @param transformer a function returning the transformation
3933 * for an element
3934 * @param basis the identity (initial default value) for the reduction
3935 * @param reducer a commutative associative combining function
3936 * @return the result of accumulating the given transformation
3937 * of all keys
3938 */
3939 public long reduceKeysToLong(ObjectToLong<? super K> transformer,
3940 long basis,
3941 LongByLongToLong reducer) {
3942 return ForkJoinTasks.reduceKeysToLong
3943 (this, transformer, basis, reducer).invoke();
3944 }
3945
3946 /**
3947 * Returns the result of accumulating the given transformation
3948 * of all keys using the given reducer to combine values, and
3949 * the given basis as an identity value.
3950 *
3951 * @param transformer a function returning the transformation
3952 * for an element
3953 * @param basis the identity (initial default value) for the reduction
3954 * @param reducer a commutative associative combining function
3955 * @return the result of accumulating the given transformation
3956 * of all keys
3957 */
3958 public int reduceKeysToInt(ObjectToInt<? super K> transformer,
3959 int basis,
3960 IntByIntToInt reducer) {
3961 return ForkJoinTasks.reduceKeysToInt
3962 (this, transformer, basis, reducer).invoke();
3963 }
3964
3965 /**
3966 * Performs the given action for each value.
3967 *
3968 * @param action the action
3969 */
3970 public void forEachValue(Action<V> action) {
3971 ForkJoinTasks.forEachValue
3972 (this, action).invoke();
3973 }
3974
3975 /**
3976 * Performs the given action for each non-null transformation
3977 * of each value.
3978 *
3979 * @param transformer a function returning the transformation
3980 * for an element, or null of there is no transformation (in
3981 * which case the action is not applied).
3982 */
3983 public <U> void forEachValue(Fun<? super V, ? extends U> transformer,
3984 Action<U> action) {
3985 ForkJoinTasks.forEachValue
3986 (this, transformer, action).invoke();
3987 }
3988
3989 /**
3990 * Returns a non-null result from applying the given search
3991 * function on each value, or null if none. Upon success,
3992 * further element processing is suppressed and the results of
3993 * any other parallel invocations of the search function are
3994 * ignored.
3995 *
3996 * @param searchFunction a function returning a non-null
3997 * result on success, else null
3998 * @return a non-null result from applying the given search
3999 * function on each value, or null if none
4000 *
4001 */
4002 public <U> U searchValues(Fun<? super V, ? extends U> searchFunction) {
4003 return ForkJoinTasks.searchValues
4004 (this, searchFunction).invoke();
4005 }
4006
4007 /**
4008 * Returns the result of accumulating all values using the
4009 * given reducer to combine values, or null if none.
4010 *
4011 * @param reducer a commutative associative combining function
4012 * @return the result of accumulating all values
4013 */
4014 public V reduceValues(BiFun<? super V, ? super V, ? extends V> reducer) {
4015 return ForkJoinTasks.reduceValues
4016 (this, reducer).invoke();
4017 }
4018
4019 /**
4020 * Returns the result of accumulating the given transformation
4021 * of all values using the given reducer to combine values, or
4022 * null if none.
4023 *
4024 * @param transformer a function returning the transformation
4025 * for an element, or null of there is no transformation (in
4026 * which case it is not combined).
4027 * @param reducer a commutative associative combining function
4028 * @return the result of accumulating the given transformation
4029 * of all values
4030 */
4031 public <U> U reduceValues(Fun<? super V, ? extends U> transformer,
4032 BiFun<? super U, ? super U, ? extends U> reducer) {
4033 return ForkJoinTasks.reduceValues
4034 (this, transformer, reducer).invoke();
4035 }
4036
4037 /**
4038 * Returns the result of accumulating the given transformation
4039 * of all values using the given reducer to combine values,
4040 * and the given basis as an identity value.
4041 *
4042 * @param transformer a function returning the transformation
4043 * for an element
4044 * @param basis the identity (initial default value) for the reduction
4045 * @param reducer a commutative associative combining function
4046 * @return the result of accumulating the given transformation
4047 * of all values
4048 */
4049 public double reduceValuesToDouble(ObjectToDouble<? super V> transformer,
4050 double basis,
4051 DoubleByDoubleToDouble reducer) {
4052 return ForkJoinTasks.reduceValuesToDouble
4053 (this, transformer, basis, reducer).invoke();
4054 }
4055
4056 /**
4057 * Returns the result of accumulating the given transformation
4058 * of all values using the given reducer to combine values,
4059 * and the given basis as an identity value.
4060 *
4061 * @param transformer a function returning the transformation
4062 * for an element
4063 * @param basis the identity (initial default value) for the reduction
4064 * @param reducer a commutative associative combining function
4065 * @return the result of accumulating the given transformation
4066 * of all values
4067 */
4068 public long reduceValuesToLong(ObjectToLong<? super V> transformer,
4069 long basis,
4070 LongByLongToLong reducer) {
4071 return ForkJoinTasks.reduceValuesToLong
4072 (this, transformer, basis, reducer).invoke();
4073 }
4074
4075 /**
4076 * Returns the result of accumulating the given transformation
4077 * of all values using the given reducer to combine values,
4078 * and the given basis as an identity value.
4079 *
4080 * @param transformer a function returning the transformation
4081 * for an element
4082 * @param basis the identity (initial default value) for the reduction
4083 * @param reducer a commutative associative combining function
4084 * @return the result of accumulating the given transformation
4085 * of all values
4086 */
4087 public int reduceValuesToInt(ObjectToInt<? super V> transformer,
4088 int basis,
4089 IntByIntToInt reducer) {
4090 return ForkJoinTasks.reduceValuesToInt
4091 (this, transformer, basis, reducer).invoke();
4092 }
4093
4094 /**
4095 * Performs the given action for each entry.
4096 *
4097 * @param action the action
4098 */
4099 public void forEachEntry(Action<Map.Entry<K,V>> action) {
4100 ForkJoinTasks.forEachEntry
4101 (this, action).invoke();
4102 }
4103
4104 /**
4105 * Performs the given action for each non-null transformation
4106 * of each entry.
4107 *
4108 * @param transformer a function returning the transformation
4109 * for an element, or null of there is no transformation (in
4110 * which case the action is not applied).
4111 * @param action the action
4112 */
4113 public <U> void forEachEntry(Fun<Map.Entry<K,V>, ? extends U> transformer,
4114 Action<U> action) {
4115 ForkJoinTasks.forEachEntry
4116 (this, transformer, action).invoke();
4117 }
4118
4119 /**
4120 * Returns a non-null result from applying the given search
4121 * function on each entry, or null if none. Upon success,
4122 * further element processing is suppressed and the results of
4123 * any other parallel invocations of the search function are
4124 * ignored.
4125 *
4126 * @param searchFunction a function returning a non-null
4127 * result on success, else null
4128 * @return a non-null result from applying the given search
4129 * function on each entry, or null if none
4130 */
4131 public <U> U searchEntries(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4132 return ForkJoinTasks.searchEntries
4133 (this, searchFunction).invoke();
4134 }
4135
4136 /**
4137 * Returns the result of accumulating all entries using the
4138 * given reducer to combine values, or null if none.
4139 *
4140 * @param reducer a commutative associative combining function
4141 * @return the result of accumulating all entries
4142 */
4143 public Map.Entry<K,V> reduceEntries(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4144 return ForkJoinTasks.reduceEntries
4145 (this, reducer).invoke();
4146 }
4147
4148 /**
4149 * Returns the result of accumulating the given transformation
4150 * of all entries using the given reducer to combine values,
4151 * or null if none.
4152 *
4153 * @param transformer a function returning the transformation
4154 * for an element, or null of there is no transformation (in
4155 * which case it is not combined).
4156 * @param reducer a commutative associative combining function
4157 * @return the result of accumulating the given transformation
4158 * of all entries
4159 */
4160 public <U> U reduceEntries(Fun<Map.Entry<K,V>, ? extends U> transformer,
4161 BiFun<? super U, ? super U, ? extends U> reducer) {
4162 return ForkJoinTasks.reduceEntries
4163 (this, transformer, reducer).invoke();
4164 }
4165
4166 /**
4167 * Returns the result of accumulating the given transformation
4168 * of all entries using the given reducer to combine values,
4169 * and the given basis as an identity value.
4170 *
4171 * @param transformer a function returning the transformation
4172 * for an element
4173 * @param basis the identity (initial default value) for the reduction
4174 * @param reducer a commutative associative combining function
4175 * @return the result of accumulating the given transformation
4176 * of all entries
4177 */
4178 public double reduceEntriesToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4179 double basis,
4180 DoubleByDoubleToDouble reducer) {
4181 return ForkJoinTasks.reduceEntriesToDouble
4182 (this, transformer, basis, reducer).invoke();
4183 }
4184
4185 /**
4186 * Returns the result of accumulating the given transformation
4187 * of all entries using the given reducer to combine values,
4188 * and the given basis as an identity value.
4189 *
4190 * @param transformer a function returning the transformation
4191 * for an element
4192 * @param basis the identity (initial default value) for the reduction
4193 * @param reducer a commutative associative combining function
4194 * @return the result of accumulating the given transformation
4195 * of all entries
4196 */
4197 public long reduceEntriesToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4198 long basis,
4199 LongByLongToLong reducer) {
4200 return ForkJoinTasks.reduceEntriesToLong
4201 (this, transformer, basis, reducer).invoke();
4202 }
4203
4204 /**
4205 * Returns the result of accumulating the given transformation
4206 * of all entries using the given reducer to combine values,
4207 * and the given basis as an identity value.
4208 *
4209 * @param transformer a function returning the transformation
4210 * for an element
4211 * @param basis the identity (initial default value) for the reduction
4212 * @param reducer a commutative associative combining function
4213 * @return the result of accumulating the given transformation
4214 * of all entries
4215 */
4216 public int reduceEntriesToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4217 int basis,
4218 IntByIntToInt reducer) {
4219 return ForkJoinTasks.reduceEntriesToInt
4220 (this, transformer, basis, reducer).invoke();
4221 }
4222
4223 // ---------------------------------------------------------------------
4224
4225 /**
4226 * Predefined tasks for performing bulk parallel operations on
4227 * ConcurrentHashMapV8s. These tasks follow the forms and rules used
4228 * for bulk operations. Each method has the same name, but returns
4229 * a task rather than invoking it. These methods may be useful in
4230 * custom applications such as submitting a task without waiting
4231 * for completion, using a custom pool, or combining with other
4232 * tasks.
4233 */
4234 public static class ForkJoinTasks {
4235 private ForkJoinTasks() {}
4236
4237 /**
4238 * Returns a task that when invoked, performs the given
4239 * action for each (key, value)
4240 *
4241 * @param map the map
4242 * @param action the action
4243 * @return the task
4244 */
4245 public static <K,V> ForkJoinTask<Void> forEach
4246 (ConcurrentHashMapV8<K,V> map,
4247 BiAction<K,V> action) {
4248 if (action == null) throw new NullPointerException();
4249 return new ForEachMappingTask<K,V>(map, null, -1, null, action);
4250 }
4251
4252 /**
4253 * Returns a task that when invoked, performs the given
4254 * action for each non-null transformation of each (key, value)
4255 *
4256 * @param map the map
4257 * @param transformer a function returning the transformation
4258 * for an element, or null if there is no transformation (in
4259 * which case the action is not applied)
4260 * @param action the action
4261 * @return the task
4262 */
4263 public static <K,V,U> ForkJoinTask<Void> forEach
4264 (ConcurrentHashMapV8<K,V> map,
4265 BiFun<? super K, ? super V, ? extends U> transformer,
4266 Action<U> action) {
4267 if (transformer == null || action == null)
4268 throw new NullPointerException();
4269 return new ForEachTransformedMappingTask<K,V,U>
4270 (map, null, -1, null, transformer, action);
4271 }
4272
4273 /**
4274 * Returns a task that when invoked, returns a non-null result
4275 * from applying the given search function on each (key,
4276 * value), or null if none. Upon success, further element
4277 * processing is suppressed and the results of any other
4278 * parallel invocations of the search function are ignored.
4279 *
4280 * @param map the map
4281 * @param searchFunction a function returning a non-null
4282 * result on success, else null
4283 * @return the task
4284 */
4285 public static <K,V,U> ForkJoinTask<U> search
4286 (ConcurrentHashMapV8<K,V> map,
4287 BiFun<? super K, ? super V, ? extends U> searchFunction) {
4288 if (searchFunction == null) throw new NullPointerException();
4289 return new SearchMappingsTask<K,V,U>
4290 (map, null, -1, null, searchFunction,
4291 new AtomicReference<U>());
4292 }
4293
4294 /**
4295 * Returns a task that when invoked, returns the result of
4296 * accumulating the given transformation of all (key, value) pairs
4297 * using the given reducer to combine values, or null if none.
4298 *
4299 * @param map the map
4300 * @param transformer a function returning the transformation
4301 * for an element, or null if there is no transformation (in
4302 * which case it is not combined).
4303 * @param reducer a commutative associative combining function
4304 * @return the task
4305 */
4306 public static <K,V,U> ForkJoinTask<U> reduce
4307 (ConcurrentHashMapV8<K,V> map,
4308 BiFun<? super K, ? super V, ? extends U> transformer,
4309 BiFun<? super U, ? super U, ? extends U> reducer) {
4310 if (transformer == null || reducer == null)
4311 throw new NullPointerException();
4312 return new MapReduceMappingsTask<K,V,U>
4313 (map, null, -1, null, transformer, reducer);
4314 }
4315
4316 /**
4317 * Returns a task that when invoked, returns the result of
4318 * accumulating the given transformation of all (key, value) pairs
4319 * using the given reducer to combine values, and the given
4320 * basis as an identity value.
4321 *
4322 * @param map the map
4323 * @param transformer a function returning the transformation
4324 * for an element
4325 * @param basis the identity (initial default value) for the reduction
4326 * @param reducer a commutative associative combining function
4327 * @return the task
4328 */
4329 public static <K,V> ForkJoinTask<Double> reduceToDouble
4330 (ConcurrentHashMapV8<K,V> map,
4331 ObjectByObjectToDouble<? super K, ? super V> transformer,
4332 double basis,
4333 DoubleByDoubleToDouble reducer) {
4334 if (transformer == null || reducer == null)
4335 throw new NullPointerException();
4336 return new MapReduceMappingsToDoubleTask<K,V>
4337 (map, null, -1, null, transformer, basis, reducer);
4338 }
4339
4340 /**
4341 * Returns a task that when invoked, returns the result of
4342 * accumulating the given transformation of all (key, value) pairs
4343 * using the given reducer to combine values, and the given
4344 * basis as an identity value.
4345 *
4346 * @param map the map
4347 * @param transformer a function returning the transformation
4348 * for an element
4349 * @param basis the identity (initial default value) for the reduction
4350 * @param reducer a commutative associative combining function
4351 * @return the task
4352 */
4353 public static <K,V> ForkJoinTask<Long> reduceToLong
4354 (ConcurrentHashMapV8<K,V> map,
4355 ObjectByObjectToLong<? super K, ? super V> transformer,
4356 long basis,
4357 LongByLongToLong reducer) {
4358 if (transformer == null || reducer == null)
4359 throw new NullPointerException();
4360 return new MapReduceMappingsToLongTask<K,V>
4361 (map, null, -1, null, transformer, basis, reducer);
4362 }
4363
4364 /**
4365 * Returns a task that when invoked, returns the result of
4366 * accumulating the given transformation of all (key, value) pairs
4367 * using the given reducer to combine values, and the given
4368 * basis as an identity value.
4369 *
4370 * @param transformer a function returning the transformation
4371 * for an element
4372 * @param basis the identity (initial default value) for the reduction
4373 * @param reducer a commutative associative combining function
4374 * @return the task
4375 */
4376 public static <K,V> ForkJoinTask<Integer> reduceToInt
4377 (ConcurrentHashMapV8<K,V> map,
4378 ObjectByObjectToInt<? super K, ? super V> transformer,
4379 int basis,
4380 IntByIntToInt reducer) {
4381 if (transformer == null || reducer == null)
4382 throw new NullPointerException();
4383 return new MapReduceMappingsToIntTask<K,V>
4384 (map, null, -1, null, transformer, basis, reducer);
4385 }
4386
4387 /**
4388 * Returns a task that when invoked, performs the given action
4389 * for each key.
4390 *
4391 * @param map the map
4392 * @param action the action
4393 * @return the task
4394 */
4395 public static <K,V> ForkJoinTask<Void> forEachKey
4396 (ConcurrentHashMapV8<K,V> map,
4397 Action<K> action) {
4398 if (action == null) throw new NullPointerException();
4399 return new ForEachKeyTask<K,V>(map, null, -1, null, action);
4400 }
4401
4402 /**
4403 * Returns a task that when invoked, performs the given action
4404 * for each non-null transformation of each key.
4405 *
4406 * @param map the map
4407 * @param transformer a function returning the transformation
4408 * for an element, or null if there is no transformation (in
4409 * which case the action is not applied)
4410 * @param action the action
4411 * @return the task
4412 */
4413 public static <K,V,U> ForkJoinTask<Void> forEachKey
4414 (ConcurrentHashMapV8<K,V> map,
4415 Fun<? super K, ? extends U> transformer,
4416 Action<U> action) {
4417 if (transformer == null || action == null)
4418 throw new NullPointerException();
4419 return new ForEachTransformedKeyTask<K,V,U>
4420 (map, null, -1, null, transformer, action);
4421 }
4422
4423 /**
4424 * Returns a task that when invoked, returns a non-null result
4425 * from applying the given search function on each key, or
4426 * null if none. Upon success, further element processing is
4427 * suppressed and the results of any other parallel
4428 * invocations of the search function are ignored.
4429 *
4430 * @param map the map
4431 * @param searchFunction a function returning a non-null
4432 * result on success, else null
4433 * @return the task
4434 */
4435 public static <K,V,U> ForkJoinTask<U> searchKeys
4436 (ConcurrentHashMapV8<K,V> map,
4437 Fun<? super K, ? extends U> searchFunction) {
4438 if (searchFunction == null) throw new NullPointerException();
4439 return new SearchKeysTask<K,V,U>
4440 (map, null, -1, null, searchFunction,
4441 new AtomicReference<U>());
4442 }
4443
4444 /**
4445 * Returns a task that when invoked, returns the result of
4446 * accumulating all keys using the given reducer to combine
4447 * values, or null if none.
4448 *
4449 * @param map the map
4450 * @param reducer a commutative associative combining function
4451 * @return the task
4452 */
4453 public static <K,V> ForkJoinTask<K> reduceKeys
4454 (ConcurrentHashMapV8<K,V> map,
4455 BiFun<? super K, ? super K, ? extends K> reducer) {
4456 if (reducer == null) throw new NullPointerException();
4457 return new ReduceKeysTask<K,V>
4458 (map, null, -1, null, reducer);
4459 }
4460
4461 /**
4462 * Returns a task that when invoked, returns the result of
4463 * accumulating the given transformation of all keys using the given
4464 * reducer to combine values, or null if none.
4465 *
4466 * @param map the map
4467 * @param transformer a function returning the transformation
4468 * for an element, or null if there is no transformation (in
4469 * which case it is not combined).
4470 * @param reducer a commutative associative combining function
4471 * @return the task
4472 */
4473 public static <K,V,U> ForkJoinTask<U> reduceKeys
4474 (ConcurrentHashMapV8<K,V> map,
4475 Fun<? super K, ? extends U> transformer,
4476 BiFun<? super U, ? super U, ? extends U> reducer) {
4477 if (transformer == null || reducer == null)
4478 throw new NullPointerException();
4479 return new MapReduceKeysTask<K,V,U>
4480 (map, null, -1, null, transformer, reducer);
4481 }
4482
4483 /**
4484 * Returns a task that when invoked, returns the result of
4485 * accumulating the given transformation of all keys using the given
4486 * reducer to combine values, and the given basis as an
4487 * identity value.
4488 *
4489 * @param map the map
4490 * @param transformer a function returning the transformation
4491 * for an element
4492 * @param basis the identity (initial default value) for the reduction
4493 * @param reducer a commutative associative combining function
4494 * @return the task
4495 */
4496 public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
4497 (ConcurrentHashMapV8<K,V> map,
4498 ObjectToDouble<? super K> transformer,
4499 double basis,
4500 DoubleByDoubleToDouble reducer) {
4501 if (transformer == null || reducer == null)
4502 throw new NullPointerException();
4503 return new MapReduceKeysToDoubleTask<K,V>
4504 (map, null, -1, null, transformer, basis, reducer);
4505 }
4506
4507 /**
4508 * Returns a task that when invoked, returns the result of
4509 * accumulating the given transformation of all keys using the given
4510 * reducer to combine values, and the given basis as an
4511 * identity value.
4512 *
4513 * @param map the map
4514 * @param transformer a function returning the transformation
4515 * for an element
4516 * @param basis the identity (initial default value) for the reduction
4517 * @param reducer a commutative associative combining function
4518 * @return the task
4519 */
4520 public static <K,V> ForkJoinTask<Long> reduceKeysToLong
4521 (ConcurrentHashMapV8<K,V> map,
4522 ObjectToLong<? super K> transformer,
4523 long basis,
4524 LongByLongToLong reducer) {
4525 if (transformer == null || reducer == null)
4526 throw new NullPointerException();
4527 return new MapReduceKeysToLongTask<K,V>
4528 (map, null, -1, null, transformer, basis, reducer);
4529 }
4530
4531 /**
4532 * Returns a task that when invoked, returns the result of
4533 * accumulating the given transformation of all keys using the given
4534 * reducer to combine values, and the given basis as an
4535 * identity value.
4536 *
4537 * @param map the map
4538 * @param transformer a function returning the transformation
4539 * for an element
4540 * @param basis the identity (initial default value) for the reduction
4541 * @param reducer a commutative associative combining function
4542 * @return the task
4543 */
4544 public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
4545 (ConcurrentHashMapV8<K,V> map,
4546 ObjectToInt<? super K> transformer,
4547 int basis,
4548 IntByIntToInt reducer) {
4549 if (transformer == null || reducer == null)
4550 throw new NullPointerException();
4551 return new MapReduceKeysToIntTask<K,V>
4552 (map, null, -1, null, transformer, basis, reducer);
4553 }
4554
4555 /**
4556 * Returns a task that when invoked, performs the given action
4557 * for each value.
4558 *
4559 * @param map the map
4560 * @param action the action
4561 */
4562 public static <K,V> ForkJoinTask<Void> forEachValue
4563 (ConcurrentHashMapV8<K,V> map,
4564 Action<V> action) {
4565 if (action == null) throw new NullPointerException();
4566 return new ForEachValueTask<K,V>(map, null, -1, null, action);
4567 }
4568
4569 /**
4570 * Returns a task that when invoked, performs the given action
4571 * for each non-null transformation of each value.
4572 *
4573 * @param map the map
4574 * @param transformer a function returning the transformation
4575 * for an element, or null if there is no transformation (in
4576 * which case the action is not applied)
4577 * @param action the action
4578 */
4579 public static <K,V,U> ForkJoinTask<Void> forEachValue
4580 (ConcurrentHashMapV8<K,V> map,
4581 Fun<? super V, ? extends U> transformer,
4582 Action<U> action) {
4583 if (transformer == null || action == null)
4584 throw new NullPointerException();
4585 return new ForEachTransformedValueTask<K,V,U>
4586 (map, null, -1, null, transformer, action);
4587 }
4588
4589 /**
4590 * Returns a task that when invoked, returns a non-null result
4591 * from applying the given search function on each value, or
4592 * null if none. Upon success, further element processing is
4593 * suppressed and the results of any other parallel
4594 * invocations of the search function are ignored.
4595 *
4596 * @param map the map
4597 * @param searchFunction a function returning a non-null
4598 * result on success, else null
4599 * @return the task
4600 */
4601 public static <K,V,U> ForkJoinTask<U> searchValues
4602 (ConcurrentHashMapV8<K,V> map,
4603 Fun<? super V, ? extends U> searchFunction) {
4604 if (searchFunction == null) throw new NullPointerException();
4605 return new SearchValuesTask<K,V,U>
4606 (map, null, -1, null, searchFunction,
4607 new AtomicReference<U>());
4608 }
4609
4610 /**
4611 * Returns a task that when invoked, returns the result of
4612 * accumulating all values using the given reducer to combine
4613 * values, or null if none.
4614 *
4615 * @param map the map
4616 * @param reducer a commutative associative combining function
4617 * @return the task
4618 */
4619 public static <K,V> ForkJoinTask<V> reduceValues
4620 (ConcurrentHashMapV8<K,V> map,
4621 BiFun<? super V, ? super V, ? extends V> reducer) {
4622 if (reducer == null) throw new NullPointerException();
4623 return new ReduceValuesTask<K,V>
4624 (map, null, -1, null, reducer);
4625 }
4626
4627 /**
4628 * Returns a task that when invoked, returns the result of
4629 * accumulating the given transformation of all values using the
4630 * given reducer to combine values, or null if none.
4631 *
4632 * @param map the map
4633 * @param transformer a function returning the transformation
4634 * for an element, or null if there is no transformation (in
4635 * which case it is not combined).
4636 * @param reducer a commutative associative combining function
4637 * @return the task
4638 */
4639 public static <K,V,U> ForkJoinTask<U> reduceValues
4640 (ConcurrentHashMapV8<K,V> map,
4641 Fun<? super V, ? extends U> transformer,
4642 BiFun<? super U, ? super U, ? extends U> reducer) {
4643 if (transformer == null || reducer == null)
4644 throw new NullPointerException();
4645 return new MapReduceValuesTask<K,V,U>
4646 (map, null, -1, null, transformer, reducer);
4647 }
4648
4649 /**
4650 * Returns a task that when invoked, returns the result of
4651 * accumulating the given transformation of all values using the
4652 * given reducer to combine values, and the given basis as an
4653 * identity value.
4654 *
4655 * @param map the map
4656 * @param transformer a function returning the transformation
4657 * for an element
4658 * @param basis the identity (initial default value) for the reduction
4659 * @param reducer a commutative associative combining function
4660 * @return the task
4661 */
4662 public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
4663 (ConcurrentHashMapV8<K,V> map,
4664 ObjectToDouble<? super V> transformer,
4665 double basis,
4666 DoubleByDoubleToDouble reducer) {
4667 if (transformer == null || reducer == null)
4668 throw new NullPointerException();
4669 return new MapReduceValuesToDoubleTask<K,V>
4670 (map, null, -1, null, transformer, basis, reducer);
4671 }
4672
4673 /**
4674 * Returns a task that when invoked, returns the result of
4675 * accumulating the given transformation of all values using the
4676 * given reducer to combine values, and the given basis as an
4677 * identity value.
4678 *
4679 * @param map the map
4680 * @param transformer a function returning the transformation
4681 * for an element
4682 * @param basis the identity (initial default value) for the reduction
4683 * @param reducer a commutative associative combining function
4684 * @return the task
4685 */
4686 public static <K,V> ForkJoinTask<Long> reduceValuesToLong
4687 (ConcurrentHashMapV8<K,V> map,
4688 ObjectToLong<? super V> transformer,
4689 long basis,
4690 LongByLongToLong reducer) {
4691 if (transformer == null || reducer == null)
4692 throw new NullPointerException();
4693 return new MapReduceValuesToLongTask<K,V>
4694 (map, null, -1, null, transformer, basis, reducer);
4695 }
4696
4697 /**
4698 * Returns a task that when invoked, returns the result of
4699 * accumulating the given transformation of all values using the
4700 * given reducer to combine values, and the given basis as an
4701 * identity value.
4702 *
4703 * @param map the map
4704 * @param transformer a function returning the transformation
4705 * for an element
4706 * @param basis the identity (initial default value) for the reduction
4707 * @param reducer a commutative associative combining function
4708 * @return the task
4709 */
4710 public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
4711 (ConcurrentHashMapV8<K,V> map,
4712 ObjectToInt<? super V> transformer,
4713 int basis,
4714 IntByIntToInt reducer) {
4715 if (transformer == null || reducer == null)
4716 throw new NullPointerException();
4717 return new MapReduceValuesToIntTask<K,V>
4718 (map, null, -1, null, transformer, basis, reducer);
4719 }
4720
4721 /**
4722 * Returns a task that when invoked, perform the given action
4723 * for each entry.
4724 *
4725 * @param map the map
4726 * @param action the action
4727 */
4728 public static <K,V> ForkJoinTask<Void> forEachEntry
4729 (ConcurrentHashMapV8<K,V> map,
4730 Action<Map.Entry<K,V>> action) {
4731 if (action == null) throw new NullPointerException();
4732 return new ForEachEntryTask<K,V>(map, null, -1, null, action);
4733 }
4734
4735 /**
4736 * Returns a task that when invoked, perform the given action
4737 * for each non-null transformation of each entry.
4738 *
4739 * @param map the map
4740 * @param transformer a function returning the transformation
4741 * for an element, or null if there is no transformation (in
4742 * which case the action is not applied)
4743 * @param action the action
4744 */
4745 public static <K,V,U> ForkJoinTask<Void> forEachEntry
4746 (ConcurrentHashMapV8<K,V> map,
4747 Fun<Map.Entry<K,V>, ? extends U> transformer,
4748 Action<U> action) {
4749 if (transformer == null || action == null)
4750 throw new NullPointerException();
4751 return new ForEachTransformedEntryTask<K,V,U>
4752 (map, null, -1, null, transformer, action);
4753 }
4754
4755 /**
4756 * Returns a task that when invoked, returns a non-null result
4757 * from applying the given search function on each entry, or
4758 * null if none. Upon success, further element processing is
4759 * suppressed and the results of any other parallel
4760 * invocations of the search function are ignored.
4761 *
4762 * @param map the map
4763 * @param searchFunction a function returning a non-null
4764 * result on success, else null
4765 * @return the task
4766 */
4767 public static <K,V,U> ForkJoinTask<U> searchEntries
4768 (ConcurrentHashMapV8<K,V> map,
4769 Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4770 if (searchFunction == null) throw new NullPointerException();
4771 return new SearchEntriesTask<K,V,U>
4772 (map, null, -1, null, searchFunction,
4773 new AtomicReference<U>());
4774 }
4775
4776 /**
4777 * Returns a task that when invoked, returns the result of
4778 * accumulating all entries using the given reducer to combine
4779 * values, or null if none.
4780 *
4781 * @param map the map
4782 * @param reducer a commutative associative combining function
4783 * @return the task
4784 */
4785 public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
4786 (ConcurrentHashMapV8<K,V> map,
4787 BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4788 if (reducer == null) throw new NullPointerException();
4789 return new ReduceEntriesTask<K,V>
4790 (map, null, -1, null, reducer);
4791 }
4792
4793 /**
4794 * Returns a task that when invoked, returns the result of
4795 * accumulating the given transformation of all entries using the
4796 * given reducer to combine values, or null if none.
4797 *
4798 * @param map the map
4799 * @param transformer a function returning the transformation
4800 * for an element, or null if there is no transformation (in
4801 * which case it is not combined).
4802 * @param reducer a commutative associative combining function
4803 * @return the task
4804 */
4805 public static <K,V,U> ForkJoinTask<U> reduceEntries
4806 (ConcurrentHashMapV8<K,V> map,
4807 Fun<Map.Entry<K,V>, ? extends U> transformer,
4808 BiFun<? super U, ? super U, ? extends U> reducer) {
4809 if (transformer == null || reducer == null)
4810 throw new NullPointerException();
4811 return new MapReduceEntriesTask<K,V,U>
4812 (map, null, -1, null, transformer, reducer);
4813 }
4814
4815 /**
4816 * Returns a task that when invoked, returns the result of
4817 * accumulating the given transformation of all entries using the
4818 * given reducer to combine values, and the given basis as an
4819 * identity value.
4820 *
4821 * @param map the map
4822 * @param transformer a function returning the transformation
4823 * for an element
4824 * @param basis the identity (initial default value) for the reduction
4825 * @param reducer a commutative associative combining function
4826 * @return the task
4827 */
4828 public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
4829 (ConcurrentHashMapV8<K,V> map,
4830 ObjectToDouble<Map.Entry<K,V>> transformer,
4831 double basis,
4832 DoubleByDoubleToDouble reducer) {
4833 if (transformer == null || reducer == null)
4834 throw new NullPointerException();
4835 return new MapReduceEntriesToDoubleTask<K,V>
4836 (map, null, -1, null, transformer, basis, reducer);
4837 }
4838
4839 /**
4840 * Returns a task that when invoked, returns the result of
4841 * accumulating the given transformation of all entries using the
4842 * given reducer to combine values, and the given basis as an
4843 * identity value.
4844 *
4845 * @param map the map
4846 * @param transformer a function returning the transformation
4847 * for an element
4848 * @param basis the identity (initial default value) for the reduction
4849 * @param reducer a commutative associative combining function
4850 * @return the task
4851 */
4852 public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
4853 (ConcurrentHashMapV8<K,V> map,
4854 ObjectToLong<Map.Entry<K,V>> transformer,
4855 long basis,
4856 LongByLongToLong reducer) {
4857 if (transformer == null || reducer == null)
4858 throw new NullPointerException();
4859 return new MapReduceEntriesToLongTask<K,V>
4860 (map, null, -1, null, transformer, basis, reducer);
4861 }
4862
4863 /**
4864 * Returns a task that when invoked, returns the result of
4865 * accumulating the given transformation of all entries using the
4866 * given reducer to combine values, and the given basis as an
4867 * identity value.
4868 *
4869 * @param map the map
4870 * @param transformer a function returning the transformation
4871 * for an element
4872 * @param basis the identity (initial default value) for the reduction
4873 * @param reducer a commutative associative combining function
4874 * @return the task
4875 */
4876 public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
4877 (ConcurrentHashMapV8<K,V> map,
4878 ObjectToInt<Map.Entry<K,V>> transformer,
4879 int basis,
4880 IntByIntToInt reducer) {
4881 if (transformer == null || reducer == null)
4882 throw new NullPointerException();
4883 return new MapReduceEntriesToIntTask<K,V>
4884 (map, null, -1, null, transformer, basis, reducer);
4885 }
4886 }
4887
4888 // -------------------------------------------------------
4889
4890 /**
4891 * Base for FJ tasks for bulk operations. This adds a variant of
4892 * CountedCompleters and some split and merge bookkeeping to
4893 * iterator functionality. The forEach and reduce methods are
4894 * similar to those illustrated in CountedCompleter documentation,
4895 * except that bottom-up reduction completions perform them within
4896 * their compute methods. The search methods are like forEach
4897 * except they continually poll for success and exit early. Also,
4898 * exceptions are handled in a simpler manner, by just trying to
4899 * complete root task exceptionally.
4900 */
4901 @SuppressWarnings("serial") static abstract class BulkTask<K,V,R> extends Traverser<K,V,R> {
4902 final BulkTask<K,V,?> parent; // completion target
4903 int batch; // split control; -1 for unknown
4904 int pending; // completion control
4905
4906 BulkTask(ConcurrentHashMapV8<K,V> map, BulkTask<K,V,?> parent,
4907 int batch) {
4908 super(map);
4909 this.parent = parent;
4910 this.batch = batch;
4911 if (parent != null && map != null) { // split parent
4912 Node[] t;
4913 if ((t = parent.tab) == null &&
4914 (t = parent.tab = map.table) != null)
4915 parent.baseLimit = parent.baseSize = t.length;
4916 this.tab = t;
4917 this.baseSize = parent.baseSize;
4918 int hi = this.baseLimit = parent.baseLimit;
4919 parent.baseLimit = this.index = this.baseIndex =
4920 (hi + parent.baseIndex + 1) >>> 1;
4921 }
4922 }
4923
4924 /**
4925 * Forces root task to complete.
4926 * @param ex if null, complete normally, else exceptionally
4927 * @return false to simplify use
4928 */
4929 final boolean tryCompleteComputation(Throwable ex) {
4930 for (BulkTask<K,V,?> a = this;;) {
4931 BulkTask<K,V,?> p = a.parent;
4932 if (p == null) {
4933 if (ex != null)
4934 a.completeExceptionally(ex);
4935 else
4936 a.quietlyComplete();
4937 return false;
4938 }
4939 a = p;
4940 }
4941 }
4942
4943 /**
4944 * Version of tryCompleteComputation for function screening checks
4945 */
4946 final boolean abortOnNullFunction() {
4947 return tryCompleteComputation(new Error("Unexpected null function"));
4948 }
4949
4950 // utilities
4951
4952 /** CompareAndSet pending count */
4953 final boolean casPending(int cmp, int val) {
4954 return U.compareAndSwapInt(this, PENDING, cmp, val);
4955 }
4956
4957 /**
4958 * Returns approx exp2 of the number of times (minus one) to
4959 * split task by two before executing leaf action. This value
4960 * is faster to compute and more convenient to use as a guide
4961 * to splitting than is the depth, since it is used while
4962 * dividing by two anyway.
4963 */
4964 final int batch() {
4965 ConcurrentHashMapV8<K, V> m; int b; Node[] t; ForkJoinPool pool;
4966 if ((b = batch) < 0 && (m = map) != null) { // force initialization
4967 if ((t = tab) == null && (t = tab = m.table) != null)
4968 baseLimit = baseSize = t.length;
4969 if (t != null) {
4970 long n = m.counter.sum();
4971 int par = ((pool = getPool()) == null) ?
4972 ForkJoinPool.getCommonPoolParallelism() :
4973 pool.getParallelism();
4974 int sp = par << 3; // slack of 8
4975 b = batch = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
4976 }
4977 }
4978 return b;
4979 }
4980
4981 /**
4982 * Returns exportable snapshot entry.
4983 */
4984 static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
4985 return new AbstractMap.SimpleEntry<K,V>(k, v);
4986 }
4987
4988 // Unsafe mechanics
4989 private static final sun.misc.Unsafe U;
4990 private static final long PENDING;
4991 static {
4992 try {
4993 U = getUnsafe();
4994 PENDING = U.objectFieldOffset
4995 (BulkTask.class.getDeclaredField("pending"));
4996 } catch (Exception e) {
4997 throw new Error(e);
4998 }
4999 }
5000 }
5001
5002 /**
5003 * Base class for non-reductive actions
5004 */
5005 @SuppressWarnings("serial") static abstract class BulkAction<K,V,R> extends BulkTask<K,V,R> {
5006 BulkAction<K,V,?> nextTask;
5007 BulkAction(ConcurrentHashMapV8<K,V> map, BulkTask<K,V,?> parent,
5008 int batch, BulkAction<K,V,?> nextTask) {
5009 super(map, parent, batch);
5010 this.nextTask = nextTask;
5011 }
5012
5013 /**
5014 * Try to complete task and upward parents. Upon hitting
5015 * non-completed parent, if a non-FJ task, try to help out the
5016 * computation.
5017 */
5018 final void tryComplete(BulkAction<K,V,?> subtasks) {
5019 BulkTask<K,V,?> a = this, s = a;
5020 for (int c;;) {
5021 if ((c = a.pending) == 0) {
5022 if ((a = (s = a).parent) == null) {
5023 s.quietlyComplete();
5024 break;
5025 }
5026 }
5027 else if (a.casPending(c, c - 1)) {
5028 if (subtasks != null && !inForkJoinPool()) {
5029 while ((s = a.parent) != null)
5030 a = s;
5031 while (!a.isDone()) {
5032 BulkAction<K,V,?> next = subtasks.nextTask;
5033 if (subtasks.tryUnfork())
5034 subtasks.exec();
5035 if ((subtasks = next) == null)
5036 break;
5037 }
5038 }
5039 break;
5040 }
5041 }
5042 }
5043
5044 }
5045
5046 /*
5047 * Task classes. Coded in a regular but ugly format/style to
5048 * simplify checks that each variant differs in the right way from
5049 * others.
5050 */
5051
5052 @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5053 extends BulkAction<K,V,Void> {
5054 final Action<K> action;
5055 ForEachKeyTask
5056 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5057 ForEachKeyTask<K,V> nextTask,
5058 Action<K> action) {
5059 super(m, p, b, nextTask);
5060 this.action = action;
5061 }
5062 @SuppressWarnings("unchecked") public final boolean exec() {
5063 final Action<K> action = this.action;
5064 if (action == null)
5065 return abortOnNullFunction();
5066 ForEachKeyTask<K,V> subtasks = null;
5067 try {
5068 int b = batch(), c;
5069 while (b > 1 && baseIndex != baseLimit) {
5070 do {} while (!casPending(c = pending, c+1));
5071 (subtasks = new ForEachKeyTask<K,V>
5072 (map, this, b >>>= 1, subtasks, action)).fork();
5073 }
5074 while (advance() != null)
5075 action.apply((K)nextKey);
5076 } catch (Throwable ex) {
5077 return tryCompleteComputation(ex);
5078 }
5079 tryComplete(subtasks);
5080 return false;
5081 }
5082 }
5083
5084 @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5085 extends BulkAction<K,V,Void> {
5086 final Action<V> action;
5087 ForEachValueTask
5088 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5089 ForEachValueTask<K,V> nextTask,
5090 Action<V> action) {
5091 super(m, p, b, nextTask);
5092 this.action = action;
5093 }
5094 @SuppressWarnings("unchecked") public final boolean exec() {
5095 final Action<V> action = this.action;
5096 if (action == null)
5097 return abortOnNullFunction();
5098 ForEachValueTask<K,V> subtasks = null;
5099 try {
5100 int b = batch(), c;
5101 while (b > 1 && baseIndex != baseLimit) {
5102 do {} while (!casPending(c = pending, c+1));
5103 (subtasks = new ForEachValueTask<K,V>
5104 (map, this, b >>>= 1, subtasks, action)).fork();
5105 }
5106 Object v;
5107 while ((v = advance()) != null)
5108 action.apply((V)v);
5109 } catch (Throwable ex) {
5110 return tryCompleteComputation(ex);
5111 }
5112 tryComplete(subtasks);
5113 return false;
5114 }
5115 }
5116
5117 @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5118 extends BulkAction<K,V,Void> {
5119 final Action<Entry<K,V>> action;
5120 ForEachEntryTask
5121 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5122 ForEachEntryTask<K,V> nextTask,
5123 Action<Entry<K,V>> action) {
5124 super(m, p, b, nextTask);
5125 this.action = action;
5126 }
5127 @SuppressWarnings("unchecked") public final boolean exec() {
5128 final Action<Entry<K,V>> action = this.action;
5129 if (action == null)
5130 return abortOnNullFunction();
5131 ForEachEntryTask<K,V> subtasks = null;
5132 try {
5133 int b = batch(), c;
5134 while (b > 1 && baseIndex != baseLimit) {
5135 do {} while (!casPending(c = pending, c+1));
5136 (subtasks = new ForEachEntryTask<K,V>
5137 (map, this, b >>>= 1, subtasks, action)).fork();
5138 }
5139 Object v;
5140 while ((v = advance()) != null)
5141 action.apply(entryFor((K)nextKey, (V)v));
5142 } catch (Throwable ex) {
5143 return tryCompleteComputation(ex);
5144 }
5145 tryComplete(subtasks);
5146 return false;
5147 }
5148 }
5149
5150 @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5151 extends BulkAction<K,V,Void> {
5152 final BiAction<K,V> action;
5153 ForEachMappingTask
5154 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5155 ForEachMappingTask<K,V> nextTask,
5156 BiAction<K,V> action) {
5157 super(m, p, b, nextTask);
5158 this.action = action;
5159 }
5160 @SuppressWarnings("unchecked") public final boolean exec() {
5161 final BiAction<K,V> action = this.action;
5162 if (action == null)
5163 return abortOnNullFunction();
5164 ForEachMappingTask<K,V> subtasks = null;
5165 try {
5166 int b = batch(), c;
5167 while (b > 1 && baseIndex != baseLimit) {
5168 do {} while (!casPending(c = pending, c+1));
5169 (subtasks = new ForEachMappingTask<K,V>
5170 (map, this, b >>>= 1, subtasks, action)).fork();
5171 }
5172 Object v;
5173 while ((v = advance()) != null)
5174 action.apply((K)nextKey, (V)v);
5175 } catch (Throwable ex) {
5176 return tryCompleteComputation(ex);
5177 }
5178 tryComplete(subtasks);
5179 return false;
5180 }
5181 }
5182
5183 @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5184 extends BulkAction<K,V,Void> {
5185 final Fun<? super K, ? extends U> transformer;
5186 final Action<U> action;
5187 ForEachTransformedKeyTask
5188 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5189 ForEachTransformedKeyTask<K,V,U> nextTask,
5190 Fun<? super K, ? extends U> transformer,
5191 Action<U> action) {
5192 super(m, p, b, nextTask);
5193 this.transformer = transformer;
5194 this.action = action;
5195
5196 }
5197 @SuppressWarnings("unchecked") public final boolean exec() {
5198 final Fun<? super K, ? extends U> transformer =
5199 this.transformer;
5200 final Action<U> action = this.action;
5201 if (transformer == null || action == null)
5202 return abortOnNullFunction();
5203 ForEachTransformedKeyTask<K,V,U> subtasks = null;
5204 try {
5205 int b = batch(), c;
5206 while (b > 1 && baseIndex != baseLimit) {
5207 do {} while (!casPending(c = pending, c+1));
5208 (subtasks = new ForEachTransformedKeyTask<K,V,U>
5209 (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5210 }
5211 U u;
5212 while (advance() != null) {
5213 if ((u = transformer.apply((K)nextKey)) != null)
5214 action.apply(u);
5215 }
5216 } catch (Throwable ex) {
5217 return tryCompleteComputation(ex);
5218 }
5219 tryComplete(subtasks);
5220 return false;
5221 }
5222 }
5223
5224 @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5225 extends BulkAction<K,V,Void> {
5226 final Fun<? super V, ? extends U> transformer;
5227 final Action<U> action;
5228 ForEachTransformedValueTask
5229 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5230 ForEachTransformedValueTask<K,V,U> nextTask,
5231 Fun<? super V, ? extends U> transformer,
5232 Action<U> action) {
5233 super(m, p, b, nextTask);
5234 this.transformer = transformer;
5235 this.action = action;
5236
5237 }
5238 @SuppressWarnings("unchecked") public final boolean exec() {
5239 final Fun<? super V, ? extends U> transformer =
5240 this.transformer;
5241 final Action<U> action = this.action;
5242 if (transformer == null || action == null)
5243 return abortOnNullFunction();
5244 ForEachTransformedValueTask<K,V,U> subtasks = null;
5245 try {
5246 int b = batch(), c;
5247 while (b > 1 && baseIndex != baseLimit) {
5248 do {} while (!casPending(c = pending, c+1));
5249 (subtasks = new ForEachTransformedValueTask<K,V,U>
5250 (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5251 }
5252 Object v; U u;
5253 while ((v = advance()) != null) {
5254 if ((u = transformer.apply((V)v)) != null)
5255 action.apply(u);
5256 }
5257 } catch (Throwable ex) {
5258 return tryCompleteComputation(ex);
5259 }
5260 tryComplete(subtasks);
5261 return false;
5262 }
5263 }
5264
5265 @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5266 extends BulkAction<K,V,Void> {
5267 final Fun<Map.Entry<K,V>, ? extends U> transformer;
5268 final Action<U> action;
5269 ForEachTransformedEntryTask
5270 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5271 ForEachTransformedEntryTask<K,V,U> nextTask,
5272 Fun<Map.Entry<K,V>, ? extends U> transformer,
5273 Action<U> action) {
5274 super(m, p, b, nextTask);
5275 this.transformer = transformer;
5276 this.action = action;
5277
5278 }
5279 @SuppressWarnings("unchecked") public final boolean exec() {
5280 final Fun<Map.Entry<K,V>, ? extends U> transformer =
5281 this.transformer;
5282 final Action<U> action = this.action;
5283 if (transformer == null || action == null)
5284 return abortOnNullFunction();
5285 ForEachTransformedEntryTask<K,V,U> subtasks = null;
5286 try {
5287 int b = batch(), c;
5288 while (b > 1 && baseIndex != baseLimit) {
5289 do {} while (!casPending(c = pending, c+1));
5290 (subtasks = new ForEachTransformedEntryTask<K,V,U>
5291 (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5292 }
5293 Object v; U u;
5294 while ((v = advance()) != null) {
5295 if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
5296 action.apply(u);
5297 }
5298 } catch (Throwable ex) {
5299 return tryCompleteComputation(ex);
5300 }
5301 tryComplete(subtasks);
5302 return false;
5303 }
5304 }
5305
5306 @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5307 extends BulkAction<K,V,Void> {
5308 final BiFun<? super K, ? super V, ? extends U> transformer;
5309 final Action<U> action;
5310 ForEachTransformedMappingTask
5311 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5312 ForEachTransformedMappingTask<K,V,U> nextTask,
5313 BiFun<? super K, ? super V, ? extends U> transformer,
5314 Action<U> action) {
5315 super(m, p, b, nextTask);
5316 this.transformer = transformer;
5317 this.action = action;
5318
5319 }
5320 @SuppressWarnings("unchecked") public final boolean exec() {
5321 final BiFun<? super K, ? super V, ? extends U> transformer =
5322 this.transformer;
5323 final Action<U> action = this.action;
5324 if (transformer == null || action == null)
5325 return abortOnNullFunction();
5326 ForEachTransformedMappingTask<K,V,U> subtasks = null;
5327 try {
5328 int b = batch(), c;
5329 while (b > 1 && baseIndex != baseLimit) {
5330 do {} while (!casPending(c = pending, c+1));
5331 (subtasks = new ForEachTransformedMappingTask<K,V,U>
5332 (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5333 }
5334 Object v; U u;
5335 while ((v = advance()) != null) {
5336 if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5337 action.apply(u);
5338 }
5339 } catch (Throwable ex) {
5340 return tryCompleteComputation(ex);
5341 }
5342 tryComplete(subtasks);
5343 return false;
5344 }
5345 }
5346
5347 @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5348 extends BulkAction<K,V,U> {
5349 final Fun<? super K, ? extends U> searchFunction;
5350 final AtomicReference<U> result;
5351 SearchKeysTask
5352 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5353 SearchKeysTask<K,V,U> nextTask,
5354 Fun<? super K, ? extends U> searchFunction,
5355 AtomicReference<U> result) {
5356 super(m, p, b, nextTask);
5357 this.searchFunction = searchFunction; this.result = result;
5358 }
5359 @SuppressWarnings("unchecked") public final boolean exec() {
5360 AtomicReference<U> result = this.result;
5361 final Fun<? super K, ? extends U> searchFunction =
5362 this.searchFunction;
5363 if (searchFunction == null || result == null)
5364 return abortOnNullFunction();
5365 SearchKeysTask<K,V,U> subtasks = null;
5366 try {
5367 int b = batch(), c;
5368 while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5369 do {} while (!casPending(c = pending, c+1));
5370 (subtasks = new SearchKeysTask<K,V,U>
5371 (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
5372 }
5373 U u;
5374 while (result.get() == null && advance() != null) {
5375 if ((u = searchFunction.apply((K)nextKey)) != null) {
5376 if (result.compareAndSet(null, u))
5377 tryCompleteComputation(null);
5378 break;
5379 }
5380 }
5381 } catch (Throwable ex) {
5382 return tryCompleteComputation(ex);
5383 }
5384 tryComplete(subtasks);
5385 return false;
5386 }
5387 public final U getRawResult() { return result.get(); }
5388 }
5389
5390 @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5391 extends BulkAction<K,V,U> {
5392 final Fun<? super V, ? extends U> searchFunction;
5393 final AtomicReference<U> result;
5394 SearchValuesTask
5395 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5396 SearchValuesTask<K,V,U> nextTask,
5397 Fun<? super V, ? extends U> searchFunction,
5398 AtomicReference<U> result) {
5399 super(m, p, b, nextTask);
5400 this.searchFunction = searchFunction; this.result = result;
5401 }
5402 @SuppressWarnings("unchecked") public final boolean exec() {
5403 AtomicReference<U> result = this.result;
5404 final Fun<? super V, ? extends U> searchFunction =
5405 this.searchFunction;
5406 if (searchFunction == null || result == null)
5407 return abortOnNullFunction();
5408 SearchValuesTask<K,V,U> subtasks = null;
5409 try {
5410 int b = batch(), c;
5411 while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5412 do {} while (!casPending(c = pending, c+1));
5413 (subtasks = new SearchValuesTask<K,V,U>
5414 (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
5415 }
5416 Object v; U u;
5417 while (result.get() == null && (v = advance()) != null) {
5418 if ((u = searchFunction.apply((V)v)) != null) {
5419 if (result.compareAndSet(null, u))
5420 tryCompleteComputation(null);
5421 break;
5422 }
5423 }
5424 } catch (Throwable ex) {
5425 return tryCompleteComputation(ex);
5426 }
5427 tryComplete(subtasks);
5428 return false;
5429 }
5430 public final U getRawResult() { return result.get(); }
5431 }
5432
5433 @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5434 extends BulkAction<K,V,U> {
5435 final Fun<Entry<K,V>, ? extends U> searchFunction;
5436 final AtomicReference<U> result;
5437 SearchEntriesTask
5438 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5439 SearchEntriesTask<K,V,U> nextTask,
5440 Fun<Entry<K,V>, ? extends U> searchFunction,
5441 AtomicReference<U> result) {
5442 super(m, p, b, nextTask);
5443 this.searchFunction = searchFunction; this.result = result;
5444 }
5445 @SuppressWarnings("unchecked") public final boolean exec() {
5446 AtomicReference<U> result = this.result;
5447 final Fun<Entry<K,V>, ? extends U> searchFunction =
5448 this.searchFunction;
5449 if (searchFunction == null || result == null)
5450 return abortOnNullFunction();
5451 SearchEntriesTask<K,V,U> subtasks = null;
5452 try {
5453 int b = batch(), c;
5454 while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5455 do {} while (!casPending(c = pending, c+1));
5456 (subtasks = new SearchEntriesTask<K,V,U>
5457 (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
5458 }
5459 Object v; U u;
5460 while (result.get() == null && (v = advance()) != null) {
5461 if ((u = searchFunction.apply(entryFor((K)nextKey, (V)v))) != null) {
5462 if (result.compareAndSet(null, u))
5463 tryCompleteComputation(null);
5464 break;
5465 }
5466 }
5467 } catch (Throwable ex) {
5468 return tryCompleteComputation(ex);
5469 }
5470 tryComplete(subtasks);
5471 return false;
5472 }
5473 public final U getRawResult() { return result.get(); }
5474 }
5475
5476 @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5477 extends BulkAction<K,V,U> {
5478 final BiFun<? super K, ? super V, ? extends U> searchFunction;
5479 final AtomicReference<U> result;
5480 SearchMappingsTask
5481 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5482 SearchMappingsTask<K,V,U> nextTask,
5483 BiFun<? super K, ? super V, ? extends U> searchFunction,
5484 AtomicReference<U> result) {
5485 super(m, p, b, nextTask);
5486 this.searchFunction = searchFunction; this.result = result;
5487 }
5488 @SuppressWarnings("unchecked") public final boolean exec() {
5489 AtomicReference<U> result = this.result;
5490 final BiFun<? super K, ? super V, ? extends U> searchFunction =
5491 this.searchFunction;
5492 if (searchFunction == null || result == null)
5493 return abortOnNullFunction();
5494 SearchMappingsTask<K,V,U> subtasks = null;
5495 try {
5496 int b = batch(), c;
5497 while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5498 do {} while (!casPending(c = pending, c+1));
5499 (subtasks = new SearchMappingsTask<K,V,U>
5500 (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
5501 }
5502 Object v; U u;
5503 while (result.get() == null && (v = advance()) != null) {
5504 if ((u = searchFunction.apply((K)nextKey, (V)v)) != null) {
5505 if (result.compareAndSet(null, u))
5506 tryCompleteComputation(null);
5507 break;
5508 }
5509 }
5510 } catch (Throwable ex) {
5511 return tryCompleteComputation(ex);
5512 }
5513 tryComplete(subtasks);
5514 return false;
5515 }
5516 public final U getRawResult() { return result.get(); }
5517 }
5518
5519 @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5520 extends BulkTask<K,V,K> {
5521 final BiFun<? super K, ? super K, ? extends K> reducer;
5522 K result;
5523 ReduceKeysTask<K,V> rights, nextRight;
5524 ReduceKeysTask
5525 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5526 ReduceKeysTask<K,V> nextRight,
5527 BiFun<? super K, ? super K, ? extends K> reducer) {
5528 super(m, p, b); this.nextRight = nextRight;
5529 this.reducer = reducer;
5530 }
5531 @SuppressWarnings("unchecked") public final boolean exec() {
5532 final BiFun<? super K, ? super K, ? extends K> reducer =
5533 this.reducer;
5534 if (reducer == null)
5535 return abortOnNullFunction();
5536 try {
5537 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5538 do {} while (!casPending(c = pending, c+1));
5539 (rights = new ReduceKeysTask<K,V>
5540 (map, this, b >>>= 1, rights, reducer)).fork();
5541 }
5542 K r = null;
5543 while (advance() != null) {
5544 K u = (K)nextKey;
5545 r = (r == null) ? u : reducer.apply(r, u);
5546 }
5547 result = r;
5548 for (ReduceKeysTask<K,V> t = this, s;;) {
5549 int c; BulkTask<K,V,?> par; K tr, sr;
5550 if ((c = t.pending) == 0) {
5551 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5552 if ((sr = s.result) != null)
5553 t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5554 }
5555 if ((par = t.parent) == null ||
5556 !(par instanceof ReduceKeysTask)) {
5557 t.quietlyComplete();
5558 break;
5559 }
5560 t = (ReduceKeysTask<K,V>)par;
5561 }
5562 else if (t.casPending(c, c - 1))
5563 break;
5564 }
5565 } catch (Throwable ex) {
5566 return tryCompleteComputation(ex);
5567 }
5568 ReduceKeysTask<K,V> s = rights;
5569 if (s != null && !inForkJoinPool()) {
5570 do {
5571 if (s.tryUnfork())
5572 s.exec();
5573 } while ((s = s.nextRight) != null);
5574 }
5575 return false;
5576 }
5577 public final K getRawResult() { return result; }
5578 }
5579
5580 @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5581 extends BulkTask<K,V,V> {
5582 final BiFun<? super V, ? super V, ? extends V> reducer;
5583 V result;
5584 ReduceValuesTask<K,V> rights, nextRight;
5585 ReduceValuesTask
5586 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5587 ReduceValuesTask<K,V> nextRight,
5588 BiFun<? super V, ? super V, ? extends V> reducer) {
5589 super(m, p, b); this.nextRight = nextRight;
5590 this.reducer = reducer;
5591 }
5592 @SuppressWarnings("unchecked") public final boolean exec() {
5593 final BiFun<? super V, ? super V, ? extends V> reducer =
5594 this.reducer;
5595 if (reducer == null)
5596 return abortOnNullFunction();
5597 try {
5598 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5599 do {} while (!casPending(c = pending, c+1));
5600 (rights = new ReduceValuesTask<K,V>
5601 (map, this, b >>>= 1, rights, reducer)).fork();
5602 }
5603 V r = null;
5604 Object v;
5605 while ((v = advance()) != null) {
5606 V u = (V)v;
5607 r = (r == null) ? u : reducer.apply(r, u);
5608 }
5609 result = r;
5610 for (ReduceValuesTask<K,V> t = this, s;;) {
5611 int c; BulkTask<K,V,?> par; V tr, sr;
5612 if ((c = t.pending) == 0) {
5613 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5614 if ((sr = s.result) != null)
5615 t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5616 }
5617 if ((par = t.parent) == null ||
5618 !(par instanceof ReduceValuesTask)) {
5619 t.quietlyComplete();
5620 break;
5621 }
5622 t = (ReduceValuesTask<K,V>)par;
5623 }
5624 else if (t.casPending(c, c - 1))
5625 break;
5626 }
5627 } catch (Throwable ex) {
5628 return tryCompleteComputation(ex);
5629 }
5630 ReduceValuesTask<K,V> s = rights;
5631 if (s != null && !inForkJoinPool()) {
5632 do {
5633 if (s.tryUnfork())
5634 s.exec();
5635 } while ((s = s.nextRight) != null);
5636 }
5637 return false;
5638 }
5639 public final V getRawResult() { return result; }
5640 }
5641
5642 @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
5643 extends BulkTask<K,V,Map.Entry<K,V>> {
5644 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5645 Map.Entry<K,V> result;
5646 ReduceEntriesTask<K,V> rights, nextRight;
5647 ReduceEntriesTask
5648 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5649 ReduceEntriesTask<K,V> nextRight,
5650 BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5651 super(m, p, b); this.nextRight = nextRight;
5652 this.reducer = reducer;
5653 }
5654 @SuppressWarnings("unchecked") public final boolean exec() {
5655 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer =
5656 this.reducer;
5657 if (reducer == null)
5658 return abortOnNullFunction();
5659 try {
5660 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5661 do {} while (!casPending(c = pending, c+1));
5662 (rights = new ReduceEntriesTask<K,V>
5663 (map, this, b >>>= 1, rights, reducer)).fork();
5664 }
5665 Map.Entry<K,V> r = null;
5666 Object v;
5667 while ((v = advance()) != null) {
5668 Map.Entry<K,V> u = entryFor((K)nextKey, (V)v);
5669 r = (r == null) ? u : reducer.apply(r, u);
5670 }
5671 result = r;
5672 for (ReduceEntriesTask<K,V> t = this, s;;) {
5673 int c; BulkTask<K,V,?> par; Map.Entry<K,V> tr, sr;
5674 if ((c = t.pending) == 0) {
5675 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5676 if ((sr = s.result) != null)
5677 t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5678 }
5679 if ((par = t.parent) == null ||
5680 !(par instanceof ReduceEntriesTask)) {
5681 t.quietlyComplete();
5682 break;
5683 }
5684 t = (ReduceEntriesTask<K,V>)par;
5685 }
5686 else if (t.casPending(c, c - 1))
5687 break;
5688 }
5689 } catch (Throwable ex) {
5690 return tryCompleteComputation(ex);
5691 }
5692 ReduceEntriesTask<K,V> s = rights;
5693 if (s != null && !inForkJoinPool()) {
5694 do {
5695 if (s.tryUnfork())
5696 s.exec();
5697 } while ((s = s.nextRight) != null);
5698 }
5699 return false;
5700 }
5701 public final Map.Entry<K,V> getRawResult() { return result; }
5702 }
5703
5704 @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
5705 extends BulkTask<K,V,U> {
5706 final Fun<? super K, ? extends U> transformer;
5707 final BiFun<? super U, ? super U, ? extends U> reducer;
5708 U result;
5709 MapReduceKeysTask<K,V,U> rights, nextRight;
5710 MapReduceKeysTask
5711 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5712 MapReduceKeysTask<K,V,U> nextRight,
5713 Fun<? super K, ? extends U> transformer,
5714 BiFun<? super U, ? super U, ? extends U> reducer) {
5715 super(m, p, b); this.nextRight = nextRight;
5716 this.transformer = transformer;
5717 this.reducer = reducer;
5718 }
5719 @SuppressWarnings("unchecked") public final boolean exec() {
5720 final Fun<? super K, ? extends U> transformer =
5721 this.transformer;
5722 final BiFun<? super U, ? super U, ? extends U> reducer =
5723 this.reducer;
5724 if (transformer == null || reducer == null)
5725 return abortOnNullFunction();
5726 try {
5727 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5728 do {} while (!casPending(c = pending, c+1));
5729 (rights = new MapReduceKeysTask<K,V,U>
5730 (map, this, b >>>= 1, rights, transformer, reducer)).fork();
5731 }
5732 U r = null, u;
5733 while (advance() != null) {
5734 if ((u = transformer.apply((K)nextKey)) != null)
5735 r = (r == null) ? u : reducer.apply(r, u);
5736 }
5737 result = r;
5738 for (MapReduceKeysTask<K,V,U> t = this, s;;) {
5739 int c; BulkTask<K,V,?> par; U tr, sr;
5740 if ((c = t.pending) == 0) {
5741 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5742 if ((sr = s.result) != null)
5743 t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5744 }
5745 if ((par = t.parent) == null ||
5746 !(par instanceof MapReduceKeysTask)) {
5747 t.quietlyComplete();
5748 break;
5749 }
5750 t = (MapReduceKeysTask<K,V,U>)par;
5751 }
5752 else if (t.casPending(c, c - 1))
5753 break;
5754 }
5755 } catch (Throwable ex) {
5756 return tryCompleteComputation(ex);
5757 }
5758 MapReduceKeysTask<K,V,U> s = rights;
5759 if (s != null && !inForkJoinPool()) {
5760 do {
5761 if (s.tryUnfork())
5762 s.exec();
5763 } while ((s = s.nextRight) != null);
5764 }
5765 return false;
5766 }
5767 public final U getRawResult() { return result; }
5768 }
5769
5770 @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
5771 extends BulkTask<K,V,U> {
5772 final Fun<? super V, ? extends U> transformer;
5773 final BiFun<? super U, ? super U, ? extends U> reducer;
5774 U result;
5775 MapReduceValuesTask<K,V,U> rights, nextRight;
5776 MapReduceValuesTask
5777 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5778 MapReduceValuesTask<K,V,U> nextRight,
5779 Fun<? super V, ? extends U> transformer,
5780 BiFun<? super U, ? super U, ? extends U> reducer) {
5781 super(m, p, b); this.nextRight = nextRight;
5782 this.transformer = transformer;
5783 this.reducer = reducer;
5784 }
5785 @SuppressWarnings("unchecked") public final boolean exec() {
5786 final Fun<? super V, ? extends U> transformer =
5787 this.transformer;
5788 final BiFun<? super U, ? super U, ? extends U> reducer =
5789 this.reducer;
5790 if (transformer == null || reducer == null)
5791 return abortOnNullFunction();
5792 try {
5793 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5794 do {} while (!casPending(c = pending, c+1));
5795 (rights = new MapReduceValuesTask<K,V,U>
5796 (map, this, b >>>= 1, rights, transformer, reducer)).fork();
5797 }
5798 U r = null, u;
5799 Object v;
5800 while ((v = advance()) != null) {
5801 if ((u = transformer.apply((V)v)) != null)
5802 r = (r == null) ? u : reducer.apply(r, u);
5803 }
5804 result = r;
5805 for (MapReduceValuesTask<K,V,U> t = this, s;;) {
5806 int c; BulkTask<K,V,?> par; U tr, sr;
5807 if ((c = t.pending) == 0) {
5808 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5809 if ((sr = s.result) != null)
5810 t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5811 }
5812 if ((par = t.parent) == null ||
5813 !(par instanceof MapReduceValuesTask)) {
5814 t.quietlyComplete();
5815 break;
5816 }
5817 t = (MapReduceValuesTask<K,V,U>)par;
5818 }
5819 else if (t.casPending(c, c - 1))
5820 break;
5821 }
5822 } catch (Throwable ex) {
5823 return tryCompleteComputation(ex);
5824 }
5825 MapReduceValuesTask<K,V,U> s = rights;
5826 if (s != null && !inForkJoinPool()) {
5827 do {
5828 if (s.tryUnfork())
5829 s.exec();
5830 } while ((s = s.nextRight) != null);
5831 }
5832 return false;
5833 }
5834 public final U getRawResult() { return result; }
5835 }
5836
5837 @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
5838 extends BulkTask<K,V,U> {
5839 final Fun<Map.Entry<K,V>, ? extends U> transformer;
5840 final BiFun<? super U, ? super U, ? extends U> reducer;
5841 U result;
5842 MapReduceEntriesTask<K,V,U> rights, nextRight;
5843 MapReduceEntriesTask
5844 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5845 MapReduceEntriesTask<K,V,U> nextRight,
5846 Fun<Map.Entry<K,V>, ? extends U> transformer,
5847 BiFun<? super U, ? super U, ? extends U> reducer) {
5848 super(m, p, b); this.nextRight = nextRight;
5849 this.transformer = transformer;
5850 this.reducer = reducer;
5851 }
5852 @SuppressWarnings("unchecked") public final boolean exec() {
5853 final Fun<Map.Entry<K,V>, ? extends U> transformer =
5854 this.transformer;
5855 final BiFun<? super U, ? super U, ? extends U> reducer =
5856 this.reducer;
5857 if (transformer == null || reducer == null)
5858 return abortOnNullFunction();
5859 try {
5860 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5861 do {} while (!casPending(c = pending, c+1));
5862 (rights = new MapReduceEntriesTask<K,V,U>
5863 (map, this, b >>>= 1, rights, transformer, reducer)).fork();
5864 }
5865 U r = null, u;
5866 Object v;
5867 while ((v = advance()) != null) {
5868 if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
5869 r = (r == null) ? u : reducer.apply(r, u);
5870 }
5871 result = r;
5872 for (MapReduceEntriesTask<K,V,U> t = this, s;;) {
5873 int c; BulkTask<K,V,?> par; U tr, sr;
5874 if ((c = t.pending) == 0) {
5875 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5876 if ((sr = s.result) != null)
5877 t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5878 }
5879 if ((par = t.parent) == null ||
5880 !(par instanceof MapReduceEntriesTask)) {
5881 t.quietlyComplete();
5882 break;
5883 }
5884 t = (MapReduceEntriesTask<K,V,U>)par;
5885 }
5886 else if (t.casPending(c, c - 1))
5887 break;
5888 }
5889 } catch (Throwable ex) {
5890 return tryCompleteComputation(ex);
5891 }
5892 MapReduceEntriesTask<K,V,U> s = rights;
5893 if (s != null && !inForkJoinPool()) {
5894 do {
5895 if (s.tryUnfork())
5896 s.exec();
5897 } while ((s = s.nextRight) != null);
5898 }
5899 return false;
5900 }
5901 public final U getRawResult() { return result; }
5902 }
5903
5904 @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
5905 extends BulkTask<K,V,U> {
5906 final BiFun<? super K, ? super V, ? extends U> transformer;
5907 final BiFun<? super U, ? super U, ? extends U> reducer;
5908 U result;
5909 MapReduceMappingsTask<K,V,U> rights, nextRight;
5910 MapReduceMappingsTask
5911 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5912 MapReduceMappingsTask<K,V,U> nextRight,
5913 BiFun<? super K, ? super V, ? extends U> transformer,
5914 BiFun<? super U, ? super U, ? extends U> reducer) {
5915 super(m, p, b); this.nextRight = nextRight;
5916 this.transformer = transformer;
5917 this.reducer = reducer;
5918 }
5919 @SuppressWarnings("unchecked") public final boolean exec() {
5920 final BiFun<? super K, ? super V, ? extends U> transformer =
5921 this.transformer;
5922 final BiFun<? super U, ? super U, ? extends U> reducer =
5923 this.reducer;
5924 if (transformer == null || reducer == null)
5925 return abortOnNullFunction();
5926 try {
5927 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5928 do {} while (!casPending(c = pending, c+1));
5929 (rights = new MapReduceMappingsTask<K,V,U>
5930 (map, this, b >>>= 1, rights, transformer, reducer)).fork();
5931 }
5932 U r = null, u;
5933 Object v;
5934 while ((v = advance()) != null) {
5935 if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5936 r = (r == null) ? u : reducer.apply(r, u);
5937 }
5938 result = r;
5939 for (MapReduceMappingsTask<K,V,U> t = this, s;;) {
5940 int c; BulkTask<K,V,?> par; U tr, sr;
5941 if ((c = t.pending) == 0) {
5942 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5943 if ((sr = s.result) != null)
5944 t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5945 }
5946 if ((par = t.parent) == null ||
5947 !(par instanceof MapReduceMappingsTask)) {
5948 t.quietlyComplete();
5949 break;
5950 }
5951 t = (MapReduceMappingsTask<K,V,U>)par;
5952 }
5953 else if (t.casPending(c, c - 1))
5954 break;
5955 }
5956 } catch (Throwable ex) {
5957 return tryCompleteComputation(ex);
5958 }
5959 MapReduceMappingsTask<K,V,U> s = rights;
5960 if (s != null && !inForkJoinPool()) {
5961 do {
5962 if (s.tryUnfork())
5963 s.exec();
5964 } while ((s = s.nextRight) != null);
5965 }
5966 return false;
5967 }
5968 public final U getRawResult() { return result; }
5969 }
5970
5971 @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
5972 extends BulkTask<K,V,Double> {
5973 final ObjectToDouble<? super K> transformer;
5974 final DoubleByDoubleToDouble reducer;
5975 final double basis;
5976 double result;
5977 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5978 MapReduceKeysToDoubleTask
5979 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5980 MapReduceKeysToDoubleTask<K,V> nextRight,
5981 ObjectToDouble<? super K> transformer,
5982 double basis,
5983 DoubleByDoubleToDouble reducer) {
5984 super(m, p, b); this.nextRight = nextRight;
5985 this.transformer = transformer;
5986 this.basis = basis; this.reducer = reducer;
5987 }
5988 @SuppressWarnings("unchecked") public final boolean exec() {
5989 final ObjectToDouble<? super K> transformer =
5990 this.transformer;
5991 final DoubleByDoubleToDouble reducer = this.reducer;
5992 if (transformer == null || reducer == null)
5993 return abortOnNullFunction();
5994 try {
5995 final double id = this.basis;
5996 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5997 do {} while (!casPending(c = pending, c+1));
5998 (rights = new MapReduceKeysToDoubleTask<K,V>
5999 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6000 }
6001 double r = id;
6002 while (advance() != null)
6003 r = reducer.apply(r, transformer.apply((K)nextKey));
6004 result = r;
6005 for (MapReduceKeysToDoubleTask<K,V> t = this, s;;) {
6006 int c; BulkTask<K,V,?> par;
6007 if ((c = t.pending) == 0) {
6008 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6009 t.result = reducer.apply(t.result, s.result);
6010 }
6011 if ((par = t.parent) == null ||
6012 !(par instanceof MapReduceKeysToDoubleTask)) {
6013 t.quietlyComplete();
6014 break;
6015 }
6016 t = (MapReduceKeysToDoubleTask<K,V>)par;
6017 }
6018 else if (t.casPending(c, c - 1))
6019 break;
6020 }
6021 } catch (Throwable ex) {
6022 return tryCompleteComputation(ex);
6023 }
6024 MapReduceKeysToDoubleTask<K,V> s = rights;
6025 if (s != null && !inForkJoinPool()) {
6026 do {
6027 if (s.tryUnfork())
6028 s.exec();
6029 } while ((s = s.nextRight) != null);
6030 }
6031 return false;
6032 }
6033 public final Double getRawResult() { return result; }
6034 }
6035
6036 @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
6037 extends BulkTask<K,V,Double> {
6038 final ObjectToDouble<? super V> transformer;
6039 final DoubleByDoubleToDouble reducer;
6040 final double basis;
6041 double result;
6042 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6043 MapReduceValuesToDoubleTask
6044 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6045 MapReduceValuesToDoubleTask<K,V> nextRight,
6046 ObjectToDouble<? super V> transformer,
6047 double basis,
6048 DoubleByDoubleToDouble reducer) {
6049 super(m, p, b); this.nextRight = nextRight;
6050 this.transformer = transformer;
6051 this.basis = basis; this.reducer = reducer;
6052 }
6053 @SuppressWarnings("unchecked") public final boolean exec() {
6054 final ObjectToDouble<? super V> transformer =
6055 this.transformer;
6056 final DoubleByDoubleToDouble reducer = this.reducer;
6057 if (transformer == null || reducer == null)
6058 return abortOnNullFunction();
6059 try {
6060 final double id = this.basis;
6061 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6062 do {} while (!casPending(c = pending, c+1));
6063 (rights = new MapReduceValuesToDoubleTask<K,V>
6064 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6065 }
6066 double r = id;
6067 Object v;
6068 while ((v = advance()) != null)
6069 r = reducer.apply(r, transformer.apply((V)v));
6070 result = r;
6071 for (MapReduceValuesToDoubleTask<K,V> t = this, s;;) {
6072 int c; BulkTask<K,V,?> par;
6073 if ((c = t.pending) == 0) {
6074 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6075 t.result = reducer.apply(t.result, s.result);
6076 }
6077 if ((par = t.parent) == null ||
6078 !(par instanceof MapReduceValuesToDoubleTask)) {
6079 t.quietlyComplete();
6080 break;
6081 }
6082 t = (MapReduceValuesToDoubleTask<K,V>)par;
6083 }
6084 else if (t.casPending(c, c - 1))
6085 break;
6086 }
6087 } catch (Throwable ex) {
6088 return tryCompleteComputation(ex);
6089 }
6090 MapReduceValuesToDoubleTask<K,V> s = rights;
6091 if (s != null && !inForkJoinPool()) {
6092 do {
6093 if (s.tryUnfork())
6094 s.exec();
6095 } while ((s = s.nextRight) != null);
6096 }
6097 return false;
6098 }
6099 public final Double getRawResult() { return result; }
6100 }
6101
6102 @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6103 extends BulkTask<K,V,Double> {
6104 final ObjectToDouble<Map.Entry<K,V>> transformer;
6105 final DoubleByDoubleToDouble reducer;
6106 final double basis;
6107 double result;
6108 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6109 MapReduceEntriesToDoubleTask
6110 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6111 MapReduceEntriesToDoubleTask<K,V> nextRight,
6112 ObjectToDouble<Map.Entry<K,V>> transformer,
6113 double basis,
6114 DoubleByDoubleToDouble reducer) {
6115 super(m, p, b); this.nextRight = nextRight;
6116 this.transformer = transformer;
6117 this.basis = basis; this.reducer = reducer;
6118 }
6119 @SuppressWarnings("unchecked") public final boolean exec() {
6120 final ObjectToDouble<Map.Entry<K,V>> transformer =
6121 this.transformer;
6122 final DoubleByDoubleToDouble reducer = this.reducer;
6123 if (transformer == null || reducer == null)
6124 return abortOnNullFunction();
6125 try {
6126 final double id = this.basis;
6127 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6128 do {} while (!casPending(c = pending, c+1));
6129 (rights = new MapReduceEntriesToDoubleTask<K,V>
6130 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6131 }
6132 double r = id;
6133 Object v;
6134 while ((v = advance()) != null)
6135 r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6136 result = r;
6137 for (MapReduceEntriesToDoubleTask<K,V> t = this, s;;) {
6138 int c; BulkTask<K,V,?> par;
6139 if ((c = t.pending) == 0) {
6140 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6141 t.result = reducer.apply(t.result, s.result);
6142 }
6143 if ((par = t.parent) == null ||
6144 !(par instanceof MapReduceEntriesToDoubleTask)) {
6145 t.quietlyComplete();
6146 break;
6147 }
6148 t = (MapReduceEntriesToDoubleTask<K,V>)par;
6149 }
6150 else if (t.casPending(c, c - 1))
6151 break;
6152 }
6153 } catch (Throwable ex) {
6154 return tryCompleteComputation(ex);
6155 }
6156 MapReduceEntriesToDoubleTask<K,V> s = rights;
6157 if (s != null && !inForkJoinPool()) {
6158 do {
6159 if (s.tryUnfork())
6160 s.exec();
6161 } while ((s = s.nextRight) != null);
6162 }
6163 return false;
6164 }
6165 public final Double getRawResult() { return result; }
6166 }
6167
6168 @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6169 extends BulkTask<K,V,Double> {
6170 final ObjectByObjectToDouble<? super K, ? super V> transformer;
6171 final DoubleByDoubleToDouble reducer;
6172 final double basis;
6173 double result;
6174 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6175 MapReduceMappingsToDoubleTask
6176 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6177 MapReduceMappingsToDoubleTask<K,V> nextRight,
6178 ObjectByObjectToDouble<? super K, ? super V> transformer,
6179 double basis,
6180 DoubleByDoubleToDouble reducer) {
6181 super(m, p, b); this.nextRight = nextRight;
6182 this.transformer = transformer;
6183 this.basis = basis; this.reducer = reducer;
6184 }
6185 @SuppressWarnings("unchecked") public final boolean exec() {
6186 final ObjectByObjectToDouble<? super K, ? super V> transformer =
6187 this.transformer;
6188 final DoubleByDoubleToDouble reducer = this.reducer;
6189 if (transformer == null || reducer == null)
6190 return abortOnNullFunction();
6191 try {
6192 final double id = this.basis;
6193 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6194 do {} while (!casPending(c = pending, c+1));
6195 (rights = new MapReduceMappingsToDoubleTask<K,V>
6196 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6197 }
6198 double r = id;
6199 Object v;
6200 while ((v = advance()) != null)
6201 r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6202 result = r;
6203 for (MapReduceMappingsToDoubleTask<K,V> t = this, s;;) {
6204 int c; BulkTask<K,V,?> par;
6205 if ((c = t.pending) == 0) {
6206 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6207 t.result = reducer.apply(t.result, s.result);
6208 }
6209 if ((par = t.parent) == null ||
6210 !(par instanceof MapReduceMappingsToDoubleTask)) {
6211 t.quietlyComplete();
6212 break;
6213 }
6214 t = (MapReduceMappingsToDoubleTask<K,V>)par;
6215 }
6216 else if (t.casPending(c, c - 1))
6217 break;
6218 }
6219 } catch (Throwable ex) {
6220 return tryCompleteComputation(ex);
6221 }
6222 MapReduceMappingsToDoubleTask<K,V> s = rights;
6223 if (s != null && !inForkJoinPool()) {
6224 do {
6225 if (s.tryUnfork())
6226 s.exec();
6227 } while ((s = s.nextRight) != null);
6228 }
6229 return false;
6230 }
6231 public final Double getRawResult() { return result; }
6232 }
6233
6234 @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6235 extends BulkTask<K,V,Long> {
6236 final ObjectToLong<? super K> transformer;
6237 final LongByLongToLong reducer;
6238 final long basis;
6239 long result;
6240 MapReduceKeysToLongTask<K,V> rights, nextRight;
6241 MapReduceKeysToLongTask
6242 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6243 MapReduceKeysToLongTask<K,V> nextRight,
6244 ObjectToLong<? super K> transformer,
6245 long basis,
6246 LongByLongToLong reducer) {
6247 super(m, p, b); this.nextRight = nextRight;
6248 this.transformer = transformer;
6249 this.basis = basis; this.reducer = reducer;
6250 }
6251 @SuppressWarnings("unchecked") public final boolean exec() {
6252 final ObjectToLong<? super K> transformer =
6253 this.transformer;
6254 final LongByLongToLong reducer = this.reducer;
6255 if (transformer == null || reducer == null)
6256 return abortOnNullFunction();
6257 try {
6258 final long id = this.basis;
6259 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6260 do {} while (!casPending(c = pending, c+1));
6261 (rights = new MapReduceKeysToLongTask<K,V>
6262 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6263 }
6264 long r = id;
6265 while (advance() != null)
6266 r = reducer.apply(r, transformer.apply((K)nextKey));
6267 result = r;
6268 for (MapReduceKeysToLongTask<K,V> t = this, s;;) {
6269 int c; BulkTask<K,V,?> par;
6270 if ((c = t.pending) == 0) {
6271 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6272 t.result = reducer.apply(t.result, s.result);
6273 }
6274 if ((par = t.parent) == null ||
6275 !(par instanceof MapReduceKeysToLongTask)) {
6276 t.quietlyComplete();
6277 break;
6278 }
6279 t = (MapReduceKeysToLongTask<K,V>)par;
6280 }
6281 else if (t.casPending(c, c - 1))
6282 break;
6283 }
6284 } catch (Throwable ex) {
6285 return tryCompleteComputation(ex);
6286 }
6287 MapReduceKeysToLongTask<K,V> s = rights;
6288 if (s != null && !inForkJoinPool()) {
6289 do {
6290 if (s.tryUnfork())
6291 s.exec();
6292 } while ((s = s.nextRight) != null);
6293 }
6294 return false;
6295 }
6296 public final Long getRawResult() { return result; }
6297 }
6298
6299 @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6300 extends BulkTask<K,V,Long> {
6301 final ObjectToLong<? super V> transformer;
6302 final LongByLongToLong reducer;
6303 final long basis;
6304 long result;
6305 MapReduceValuesToLongTask<K,V> rights, nextRight;
6306 MapReduceValuesToLongTask
6307 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6308 MapReduceValuesToLongTask<K,V> nextRight,
6309 ObjectToLong<? super V> transformer,
6310 long basis,
6311 LongByLongToLong reducer) {
6312 super(m, p, b); this.nextRight = nextRight;
6313 this.transformer = transformer;
6314 this.basis = basis; this.reducer = reducer;
6315 }
6316 @SuppressWarnings("unchecked") public final boolean exec() {
6317 final ObjectToLong<? super V> transformer =
6318 this.transformer;
6319 final LongByLongToLong reducer = this.reducer;
6320 if (transformer == null || reducer == null)
6321 return abortOnNullFunction();
6322 try {
6323 final long id = this.basis;
6324 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6325 do {} while (!casPending(c = pending, c+1));
6326 (rights = new MapReduceValuesToLongTask<K,V>
6327 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6328 }
6329 long r = id;
6330 Object v;
6331 while ((v = advance()) != null)
6332 r = reducer.apply(r, transformer.apply((V)v));
6333 result = r;
6334 for (MapReduceValuesToLongTask<K,V> t = this, s;;) {
6335 int c; BulkTask<K,V,?> par;
6336 if ((c = t.pending) == 0) {
6337 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6338 t.result = reducer.apply(t.result, s.result);
6339 }
6340 if ((par = t.parent) == null ||
6341 !(par instanceof MapReduceValuesToLongTask)) {
6342 t.quietlyComplete();
6343 break;
6344 }
6345 t = (MapReduceValuesToLongTask<K,V>)par;
6346 }
6347 else if (t.casPending(c, c - 1))
6348 break;
6349 }
6350 } catch (Throwable ex) {
6351 return tryCompleteComputation(ex);
6352 }
6353 MapReduceValuesToLongTask<K,V> s = rights;
6354 if (s != null && !inForkJoinPool()) {
6355 do {
6356 if (s.tryUnfork())
6357 s.exec();
6358 } while ((s = s.nextRight) != null);
6359 }
6360 return false;
6361 }
6362 public final Long getRawResult() { return result; }
6363 }
6364
6365 @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6366 extends BulkTask<K,V,Long> {
6367 final ObjectToLong<Map.Entry<K,V>> transformer;
6368 final LongByLongToLong reducer;
6369 final long basis;
6370 long result;
6371 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6372 MapReduceEntriesToLongTask
6373 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6374 MapReduceEntriesToLongTask<K,V> nextRight,
6375 ObjectToLong<Map.Entry<K,V>> transformer,
6376 long basis,
6377 LongByLongToLong reducer) {
6378 super(m, p, b); this.nextRight = nextRight;
6379 this.transformer = transformer;
6380 this.basis = basis; this.reducer = reducer;
6381 }
6382 @SuppressWarnings("unchecked") public final boolean exec() {
6383 final ObjectToLong<Map.Entry<K,V>> transformer =
6384 this.transformer;
6385 final LongByLongToLong reducer = this.reducer;
6386 if (transformer == null || reducer == null)
6387 return abortOnNullFunction();
6388 try {
6389 final long id = this.basis;
6390 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6391 do {} while (!casPending(c = pending, c+1));
6392 (rights = new MapReduceEntriesToLongTask<K,V>
6393 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6394 }
6395 long r = id;
6396 Object v;
6397 while ((v = advance()) != null)
6398 r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6399 result = r;
6400 for (MapReduceEntriesToLongTask<K,V> t = this, s;;) {
6401 int c; BulkTask<K,V,?> par;
6402 if ((c = t.pending) == 0) {
6403 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6404 t.result = reducer.apply(t.result, s.result);
6405 }
6406 if ((par = t.parent) == null ||
6407 !(par instanceof MapReduceEntriesToLongTask)) {
6408 t.quietlyComplete();
6409 break;
6410 }
6411 t = (MapReduceEntriesToLongTask<K,V>)par;
6412 }
6413 else if (t.casPending(c, c - 1))
6414 break;
6415 }
6416 } catch (Throwable ex) {
6417 return tryCompleteComputation(ex);
6418 }
6419 MapReduceEntriesToLongTask<K,V> s = rights;
6420 if (s != null && !inForkJoinPool()) {
6421 do {
6422 if (s.tryUnfork())
6423 s.exec();
6424 } while ((s = s.nextRight) != null);
6425 }
6426 return false;
6427 }
6428 public final Long getRawResult() { return result; }
6429 }
6430
6431 @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6432 extends BulkTask<K,V,Long> {
6433 final ObjectByObjectToLong<? super K, ? super V> transformer;
6434 final LongByLongToLong reducer;
6435 final long basis;
6436 long result;
6437 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6438 MapReduceMappingsToLongTask
6439 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6440 MapReduceMappingsToLongTask<K,V> nextRight,
6441 ObjectByObjectToLong<? super K, ? super V> transformer,
6442 long basis,
6443 LongByLongToLong reducer) {
6444 super(m, p, b); this.nextRight = nextRight;
6445 this.transformer = transformer;
6446 this.basis = basis; this.reducer = reducer;
6447 }
6448 @SuppressWarnings("unchecked") public final boolean exec() {
6449 final ObjectByObjectToLong<? super K, ? super V> transformer =
6450 this.transformer;
6451 final LongByLongToLong reducer = this.reducer;
6452 if (transformer == null || reducer == null)
6453 return abortOnNullFunction();
6454 try {
6455 final long id = this.basis;
6456 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6457 do {} while (!casPending(c = pending, c+1));
6458 (rights = new MapReduceMappingsToLongTask<K,V>
6459 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6460 }
6461 long r = id;
6462 Object v;
6463 while ((v = advance()) != null)
6464 r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6465 result = r;
6466 for (MapReduceMappingsToLongTask<K,V> t = this, s;;) {
6467 int c; BulkTask<K,V,?> par;
6468 if ((c = t.pending) == 0) {
6469 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6470 t.result = reducer.apply(t.result, s.result);
6471 }
6472 if ((par = t.parent) == null ||
6473 !(par instanceof MapReduceMappingsToLongTask)) {
6474 t.quietlyComplete();
6475 break;
6476 }
6477 t = (MapReduceMappingsToLongTask<K,V>)par;
6478 }
6479 else if (t.casPending(c, c - 1))
6480 break;
6481 }
6482 } catch (Throwable ex) {
6483 return tryCompleteComputation(ex);
6484 }
6485 MapReduceMappingsToLongTask<K,V> s = rights;
6486 if (s != null && !inForkJoinPool()) {
6487 do {
6488 if (s.tryUnfork())
6489 s.exec();
6490 } while ((s = s.nextRight) != null);
6491 }
6492 return false;
6493 }
6494 public final Long getRawResult() { return result; }
6495 }
6496
6497 @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6498 extends BulkTask<K,V,Integer> {
6499 final ObjectToInt<? super K> transformer;
6500 final IntByIntToInt reducer;
6501 final int basis;
6502 int result;
6503 MapReduceKeysToIntTask<K,V> rights, nextRight;
6504 MapReduceKeysToIntTask
6505 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6506 MapReduceKeysToIntTask<K,V> nextRight,
6507 ObjectToInt<? super K> transformer,
6508 int basis,
6509 IntByIntToInt reducer) {
6510 super(m, p, b); this.nextRight = nextRight;
6511 this.transformer = transformer;
6512 this.basis = basis; this.reducer = reducer;
6513 }
6514 @SuppressWarnings("unchecked") public final boolean exec() {
6515 final ObjectToInt<? super K> transformer =
6516 this.transformer;
6517 final IntByIntToInt reducer = this.reducer;
6518 if (transformer == null || reducer == null)
6519 return abortOnNullFunction();
6520 try {
6521 final int id = this.basis;
6522 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6523 do {} while (!casPending(c = pending, c+1));
6524 (rights = new MapReduceKeysToIntTask<K,V>
6525 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6526 }
6527 int r = id;
6528 while (advance() != null)
6529 r = reducer.apply(r, transformer.apply((K)nextKey));
6530 result = r;
6531 for (MapReduceKeysToIntTask<K,V> t = this, s;;) {
6532 int c; BulkTask<K,V,?> par;
6533 if ((c = t.pending) == 0) {
6534 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6535 t.result = reducer.apply(t.result, s.result);
6536 }
6537 if ((par = t.parent) == null ||
6538 !(par instanceof MapReduceKeysToIntTask)) {
6539 t.quietlyComplete();
6540 break;
6541 }
6542 t = (MapReduceKeysToIntTask<K,V>)par;
6543 }
6544 else if (t.casPending(c, c - 1))
6545 break;
6546 }
6547 } catch (Throwable ex) {
6548 return tryCompleteComputation(ex);
6549 }
6550 MapReduceKeysToIntTask<K,V> s = rights;
6551 if (s != null && !inForkJoinPool()) {
6552 do {
6553 if (s.tryUnfork())
6554 s.exec();
6555 } while ((s = s.nextRight) != null);
6556 }
6557 return false;
6558 }
6559 public final Integer getRawResult() { return result; }
6560 }
6561
6562 @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6563 extends BulkTask<K,V,Integer> {
6564 final ObjectToInt<? super V> transformer;
6565 final IntByIntToInt reducer;
6566 final int basis;
6567 int result;
6568 MapReduceValuesToIntTask<K,V> rights, nextRight;
6569 MapReduceValuesToIntTask
6570 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6571 MapReduceValuesToIntTask<K,V> nextRight,
6572 ObjectToInt<? super V> transformer,
6573 int basis,
6574 IntByIntToInt reducer) {
6575 super(m, p, b); this.nextRight = nextRight;
6576 this.transformer = transformer;
6577 this.basis = basis; this.reducer = reducer;
6578 }
6579 @SuppressWarnings("unchecked") public final boolean exec() {
6580 final ObjectToInt<? super V> transformer =
6581 this.transformer;
6582 final IntByIntToInt reducer = this.reducer;
6583 if (transformer == null || reducer == null)
6584 return abortOnNullFunction();
6585 try {
6586 final int id = this.basis;
6587 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6588 do {} while (!casPending(c = pending, c+1));
6589 (rights = new MapReduceValuesToIntTask<K,V>
6590 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6591 }
6592 int r = id;
6593 Object v;
6594 while ((v = advance()) != null)
6595 r = reducer.apply(r, transformer.apply((V)v));
6596 result = r;
6597 for (MapReduceValuesToIntTask<K,V> t = this, s;;) {
6598 int c; BulkTask<K,V,?> par;
6599 if ((c = t.pending) == 0) {
6600 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6601 t.result = reducer.apply(t.result, s.result);
6602 }
6603 if ((par = t.parent) == null ||
6604 !(par instanceof MapReduceValuesToIntTask)) {
6605 t.quietlyComplete();
6606 break;
6607 }
6608 t = (MapReduceValuesToIntTask<K,V>)par;
6609 }
6610 else if (t.casPending(c, c - 1))
6611 break;
6612 }
6613 } catch (Throwable ex) {
6614 return tryCompleteComputation(ex);
6615 }
6616 MapReduceValuesToIntTask<K,V> s = rights;
6617 if (s != null && !inForkJoinPool()) {
6618 do {
6619 if (s.tryUnfork())
6620 s.exec();
6621 } while ((s = s.nextRight) != null);
6622 }
6623 return false;
6624 }
6625 public final Integer getRawResult() { return result; }
6626 }
6627
6628 @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6629 extends BulkTask<K,V,Integer> {
6630 final ObjectToInt<Map.Entry<K,V>> transformer;
6631 final IntByIntToInt reducer;
6632 final int basis;
6633 int result;
6634 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6635 MapReduceEntriesToIntTask
6636 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6637 MapReduceEntriesToIntTask<K,V> nextRight,
6638 ObjectToInt<Map.Entry<K,V>> transformer,
6639 int basis,
6640 IntByIntToInt reducer) {
6641 super(m, p, b); this.nextRight = nextRight;
6642 this.transformer = transformer;
6643 this.basis = basis; this.reducer = reducer;
6644 }
6645 @SuppressWarnings("unchecked") public final boolean exec() {
6646 final ObjectToInt<Map.Entry<K,V>> transformer =
6647 this.transformer;
6648 final IntByIntToInt reducer = this.reducer;
6649 if (transformer == null || reducer == null)
6650 return abortOnNullFunction();
6651 try {
6652 final int id = this.basis;
6653 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6654 do {} while (!casPending(c = pending, c+1));
6655 (rights = new MapReduceEntriesToIntTask<K,V>
6656 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6657 }
6658 int r = id;
6659 Object v;
6660 while ((v = advance()) != null)
6661 r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6662 result = r;
6663 for (MapReduceEntriesToIntTask<K,V> t = this, s;;) {
6664 int c; BulkTask<K,V,?> par;
6665 if ((c = t.pending) == 0) {
6666 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6667 t.result = reducer.apply(t.result, s.result);
6668 }
6669 if ((par = t.parent) == null ||
6670 !(par instanceof MapReduceEntriesToIntTask)) {
6671 t.quietlyComplete();
6672 break;
6673 }
6674 t = (MapReduceEntriesToIntTask<K,V>)par;
6675 }
6676 else if (t.casPending(c, c - 1))
6677 break;
6678 }
6679 } catch (Throwable ex) {
6680 return tryCompleteComputation(ex);
6681 }
6682 MapReduceEntriesToIntTask<K,V> s = rights;
6683 if (s != null && !inForkJoinPool()) {
6684 do {
6685 if (s.tryUnfork())
6686 s.exec();
6687 } while ((s = s.nextRight) != null);
6688 }
6689 return false;
6690 }
6691 public final Integer getRawResult() { return result; }
6692 }
6693
6694 @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6695 extends BulkTask<K,V,Integer> {
6696 final ObjectByObjectToInt<? super K, ? super V> transformer;
6697 final IntByIntToInt reducer;
6698 final int basis;
6699 int result;
6700 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6701 MapReduceMappingsToIntTask
6702 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6703 MapReduceMappingsToIntTask<K,V> rights,
6704 ObjectByObjectToInt<? super K, ? super V> transformer,
6705 int basis,
6706 IntByIntToInt reducer) {
6707 super(m, p, b); this.nextRight = nextRight;
6708 this.transformer = transformer;
6709 this.basis = basis; this.reducer = reducer;
6710 }
6711 @SuppressWarnings("unchecked") public final boolean exec() {
6712 final ObjectByObjectToInt<? super K, ? super V> transformer =
6713 this.transformer;
6714 final IntByIntToInt reducer = this.reducer;
6715 if (transformer == null || reducer == null)
6716 return abortOnNullFunction();
6717 try {
6718 final int id = this.basis;
6719 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6720 do {} while (!casPending(c = pending, c+1));
6721 (rights = new MapReduceMappingsToIntTask<K,V>
6722 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6723 }
6724 int r = id;
6725 Object v;
6726 while ((v = advance()) != null)
6727 r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6728 result = r;
6729 for (MapReduceMappingsToIntTask<K,V> t = this, s;;) {
6730 int c; BulkTask<K,V,?> par;
6731 if ((c = t.pending) == 0) {
6732 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6733 t.result = reducer.apply(t.result, s.result);
6734 }
6735 if ((par = t.parent) == null ||
6736 !(par instanceof MapReduceMappingsToIntTask)) {
6737 t.quietlyComplete();
6738 break;
6739 }
6740 t = (MapReduceMappingsToIntTask<K,V>)par;
6741 }
6742 else if (t.casPending(c, c - 1))
6743 break;
6744 }
6745 } catch (Throwable ex) {
6746 return tryCompleteComputation(ex);
6747 }
6748 MapReduceMappingsToIntTask<K,V> s = rights;
6749 if (s != null && !inForkJoinPool()) {
6750 do {
6751 if (s.tryUnfork())
6752 s.exec();
6753 } while ((s = s.nextRight) != null);
6754 }
6755 return false;
6756 }
6757 public final Integer getRawResult() { return result; }
6758 }
6759
6760
6761 // Unsafe mechanics
6762 private static final sun.misc.Unsafe UNSAFE;
6763 private static final long counterOffset;
6764 private static final long sizeCtlOffset;
6765 private static final long ABASE;
6766 private static final int ASHIFT;
6767
6768 static {
6769 int ss;
6770 try {
6771 UNSAFE = getUnsafe();
6772 Class<?> k = ConcurrentHashMapV8.class;
6773 counterOffset = UNSAFE.objectFieldOffset
6774 (k.getDeclaredField("counter"));
6775 sizeCtlOffset = UNSAFE.objectFieldOffset
6776 (k.getDeclaredField("sizeCtl"));
6777 Class<?> sc = Node[].class;
6778 ABASE = UNSAFE.arrayBaseOffset(sc);
6779 ss = UNSAFE.arrayIndexScale(sc);
6780 } catch (Exception e) {
6781 throw new Error(e);
6782 }
6783 if ((ss & (ss-1)) != 0)
6784 throw new Error("data type scale not a power of two");
6785 ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6786 }
6787
6788 /**
6789 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
6790 * Replace with a simple call to Unsafe.getUnsafe when integrating
6791 * into a jdk.
6792 *
6793 * @return a sun.misc.Unsafe
6794 */
6795 private static sun.misc.Unsafe getUnsafe() {
6796 try {
6797 return sun.misc.Unsafe.getUnsafe();
6798 } catch (SecurityException se) {
6799 try {
6800 return java.security.AccessController.doPrivileged
6801 (new java.security
6802 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
6803 public sun.misc.Unsafe run() throws Exception {
6804 java.lang.reflect.Field f = sun.misc
6805 .Unsafe.class.getDeclaredField("theUnsafe");
6806 f.setAccessible(true);
6807 return (sun.misc.Unsafe) f.get(null);
6808 }});
6809 } catch (java.security.PrivilegedActionException e) {
6810 throw new RuntimeException("Could not initialize intrinsics",
6811 e.getCause());
6812 }
6813 }
6814 }
6815 }