ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
Revision: 1.75
Committed: Wed Oct 31 12:49:13 2012 UTC (11 years, 6 months ago) by dl
Branch: MAIN
Changes since 1.74: +972 -554 lines
Log Message:
commonPool improvements

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package jsr166e;
8
9 import java.util.Comparator;
10 import java.util.Arrays;
11 import java.util.Map;
12 import java.util.Set;
13 import java.util.Collection;
14 import java.util.AbstractMap;
15 import java.util.AbstractSet;
16 import java.util.AbstractCollection;
17 import java.util.Hashtable;
18 import java.util.HashMap;
19 import java.util.Iterator;
20 import java.util.Enumeration;
21 import java.util.ConcurrentModificationException;
22 import java.util.NoSuchElementException;
23 import java.util.concurrent.ConcurrentMap;
24 import java.util.concurrent.ThreadLocalRandom;
25 import java.util.concurrent.locks.LockSupport;
26 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
27 import java.util.concurrent.atomic.AtomicReference;
28
29 import java.io.Serializable;
30
31 /**
32 * A hash table supporting full concurrency of retrievals and
33 * high expected concurrency for updates. This class obeys the
34 * same functional specification as {@link java.util.Hashtable}, and
35 * includes versions of methods corresponding to each method of
36 * {@code Hashtable}. However, even though all operations are
37 * thread-safe, retrieval operations do <em>not</em> entail locking,
38 * and there is <em>not</em> any support for locking the entire table
39 * in a way that prevents all access. This class is fully
40 * interoperable with {@code Hashtable} in programs that rely on its
41 * thread safety but not on its synchronization details.
42 *
43 * <p> Retrieval operations (including {@code get}) generally do not
44 * block, so may overlap with update operations (including {@code put}
45 * and {@code remove}). Retrievals reflect the results of the most
46 * recently <em>completed</em> update operations holding upon their
47 * onset. (More formally, an update operation for a given key bears a
48 * <em>happens-before</em> relation with any (non-null) retrieval for
49 * that key reporting the updated value.) For aggregate operations
50 * such as {@code putAll} and {@code clear}, concurrent retrievals may
51 * reflect insertion or removal of only some entries. Similarly,
52 * Iterators and Enumerations return elements reflecting the state of
53 * the hash table at some point at or since the creation of the
54 * iterator/enumeration. They do <em>not</em> throw {@link
55 * ConcurrentModificationException}. However, iterators are designed
56 * to be used by only one thread at a time. Bear in mind that the
57 * results of aggregate status methods including {@code size}, {@code
58 * isEmpty}, and {@code containsValue} are typically useful only when
59 * a map is not undergoing concurrent updates in other threads.
60 * Otherwise the results of these methods reflect transient states
61 * that may be adequate for monitoring or estimation purposes, but not
62 * for program control.
63 *
64 * <p> The table is dynamically expanded when there are too many
65 * collisions (i.e., keys that have distinct hash codes but fall into
66 * the same slot modulo the table size), with the expected average
67 * effect of maintaining roughly two bins per mapping (corresponding
68 * to a 0.75 load factor threshold for resizing). There may be much
69 * variance around this average as mappings are added and removed, but
70 * overall, this maintains a commonly accepted time/space tradeoff for
71 * hash tables. However, resizing this or any other kind of hash
72 * table may be a relatively slow operation. When possible, it is a
73 * good idea to provide a size estimate as an optional {@code
74 * initialCapacity} constructor argument. An additional optional
75 * {@code loadFactor} constructor argument provides a further means of
76 * customizing initial table capacity by specifying the table density
77 * to be used in calculating the amount of space to allocate for the
78 * given number of elements. Also, for compatibility with previous
79 * versions of this class, constructors may optionally specify an
80 * expected {@code concurrencyLevel} as an additional hint for
81 * internal sizing. Note that using many keys with exactly the same
82 * {@code hashCode()} is a sure way to slow down performance of any
83 * hash table.
84 *
85 * <p> A {@link Set} projection of a ConcurrentHashMapV8 may be created
86 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
87 * (using {@link #keySet(Object)} when only keys are of interest, and the
88 * mapped values are (perhaps transiently) not used or all take the
89 * same mapping value.
90 *
91 * <p> A ConcurrentHashMapV8 can be used as scalable frequency map (a
92 * form of histogram or multiset) by using {@link LongAdder} values
93 * and initializing via {@link #computeIfAbsent}. For example, to add
94 * a count to a {@code ConcurrentHashMapV8<String,LongAdder> freqs}, you
95 * can use {@code freqs.computeIfAbsent(k -> new
96 * LongAdder()).increment();}
97 *
98 * <p>This class and its views and iterators implement all of the
99 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
100 * interfaces.
101 *
102 * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
103 * does <em>not</em> allow {@code null} to be used as a key or value.
104 *
105 * <p>ConcurrentHashMapV8s support parallel operations using the {@link
106 * ForkJoinPool#commonPool}. (Tasks that may be used in other contexts
107 * are available in class {@link ForkJoinTasks}). These operations are
108 * designed to be safely, and often sensibly, applied even with maps
109 * that are being concurrently updated by other threads; for example,
110 * when computing a snapshot summary of the values in a shared
111 * registry. There are three kinds of operation, each with four
112 * forms, accepting functions with Keys, Values, Entries, and (Key,
113 * Value) arguments and/or return values. (The first three forms are
114 * also available via the {@link #keySet()}, {@link #values()} and
115 * {@link #entrySet()} views). Because the elements of a
116 * ConcurrentHashMapV8 are not ordered in any particular way, and may be
117 * processed in different orders in different parallel executions, the
118 * correctness of supplied functions should not depend on any
119 * ordering, or on any other objects or values that may transiently
120 * change while computation is in progress; and except for forEach
121 * actions, should ideally be side-effect-free.
122 *
123 * <ul>
124 * <li> forEach: Perform a given action on each element.
125 * A variant form applies a given transformation on each element
126 * before performing the action.</li>
127 *
128 * <li> search: Return the first available non-null result of
129 * applying a given function on each element; skipping further
130 * search when a result is found.</li>
131 *
132 * <li> reduce: Accumulate each element. The supplied reduction
133 * function cannot rely on ordering (more formally, it should be
134 * both associative and commutative). There are five variants:
135 *
136 * <ul>
137 *
138 * <li> Plain reductions. (There is not a form of this method for
139 * (key, value) function arguments since there is no corresponding
140 * return type.)</li>
141 *
142 * <li> Mapped reductions that accumulate the results of a given
143 * function applied to each element.</li>
144 *
145 * <li> Reductions to scalar doubles, longs, and ints, using a
146 * given basis value.</li>
147 *
148 * </li>
149 * </ul>
150 * </ul>
151 *
152 * <p>The concurrency properties of bulk operations follow
153 * from those of ConcurrentHashMapV8: Any non-null result returned
154 * from {@code get(key)} and related access methods bears a
155 * happens-before relation with the associated insertion or
156 * update. The result of any bulk operation reflects the
157 * composition of these per-element relations (but is not
158 * necessarily atomic with respect to the map as a whole unless it
159 * is somehow known to be quiescent). Conversely, because keys
160 * and values in the map are never null, null serves as a reliable
161 * atomic indicator of the current lack of any result. To
162 * maintain this property, null serves as an implicit basis for
163 * all non-scalar reduction operations. For the double, long, and
164 * int versions, the basis should be one that, when combined with
165 * any other value, returns that other value (more formally, it
166 * should be the identity element for the reduction). Most common
167 * reductions have these properties; for example, computing a sum
168 * with basis 0 or a minimum with basis MAX_VALUE.
169 *
170 * <p>Search and transformation functions provided as arguments
171 * should similarly return null to indicate the lack of any result
172 * (in which case it is not used). In the case of mapped
173 * reductions, this also enables transformations to serve as
174 * filters, returning null (or, in the case of primitive
175 * specializations, the identity basis) if the element should not
176 * be combined. You can create compound transformations and
177 * filterings by composing them yourself under this "null means
178 * there is nothing there now" rule before using them in search or
179 * reduce operations.
180 *
181 * <p>Methods accepting and/or returning Entry arguments maintain
182 * key-value associations. They may be useful for example when
183 * finding the key for the greatest value. Note that "plain" Entry
184 * arguments can be supplied using {@code new
185 * AbstractMap.SimpleEntry(k,v)}.
186 *
187 * <p> Bulk operations may complete abruptly, throwing an
188 * exception encountered in the application of a supplied
189 * function. Bear in mind when handling such exceptions that other
190 * concurrently executing functions could also have thrown
191 * exceptions, or would have done so if the first exception had
192 * not occurred.
193 *
194 * <p>Parallel speedups for bulk operations compared to sequential
195 * processing are common but not guaranteed. Operations involving
196 * brief functions on small maps may execute more slowly than
197 * sequential loops if the underlying work to parallelize the
198 * computation is more expensive than the computation itself.
199 * Similarly, parallelization may not lead to much actual parallelism
200 * if all processors are busy performing unrelated tasks.
201 *
202 * <p> All arguments to all task methods must be non-null.
203 *
204 * <p><em>jsr166e note: During transition, this class
205 * uses nested functional interfaces with different names but the
206 * same forms as those expected for JDK8.<em>
207 *
208 * <p>This class is a member of the
209 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
210 * Java Collections Framework</a>.
211 *
212 * @since 1.5
213 * @author Doug Lea
214 * @param <K> the type of keys maintained by this map
215 * @param <V> the type of mapped values
216 */
217 public class ConcurrentHashMapV8<K, V>
218 implements ConcurrentMap<K, V>, Serializable {
219 private static final long serialVersionUID = 7249069246763182397L;
220
221 /**
222 * A partitionable iterator. A Spliterator can be traversed
223 * directly, but can also be partitioned (before traversal) by
224 * creating another Spliterator that covers a non-overlapping
225 * portion of the elements, and so may be amenable to parallel
226 * execution.
227 *
228 * <p> This interface exports a subset of expected JDK8
229 * functionality.
230 *
231 * <p>Sample usage: Here is one (of the several) ways to compute
232 * the sum of the values held in a map using the ForkJoin
233 * framework. As illustrated here, Spliterators are well suited to
234 * designs in which a task repeatedly splits off half its work
235 * into forked subtasks until small enough to process directly,
236 * and then joins these subtasks. Variants of this style can also
237 * be used in completion-based designs.
238 *
239 * <pre>
240 * {@code ConcurrentHashMapV8<String, Long> m = ...
241 * // split as if have 8 * parallelism, for load balance
242 * int n = m.size();
243 * int p = aForkJoinPool.getParallelism() * 8;
244 * int split = (n < p)? n : p;
245 * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
246 * // ...
247 * static class SumValues extends RecursiveTask<Long> {
248 * final Spliterator<Long> s;
249 * final int split; // split while > 1
250 * final SumValues nextJoin; // records forked subtasks to join
251 * SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
252 * this.s = s; this.depth = depth; this.nextJoin = nextJoin;
253 * }
254 * public Long compute() {
255 * long sum = 0;
256 * SumValues subtasks = null; // fork subtasks
257 * for (int s = split >>> 1; s > 0; s >>>= 1)
258 * (subtasks = new SumValues(s.split(), s, subtasks)).fork();
259 * while (s.hasNext()) // directly process remaining elements
260 * sum += s.next();
261 * for (SumValues t = subtasks; t != null; t = t.nextJoin)
262 * sum += t.join(); // collect subtask results
263 * return sum;
264 * }
265 * }
266 * }</pre>
267 */
268 public static interface Spliterator<T> extends Iterator<T> {
269 /**
270 * Returns a Spliterator covering approximately half of the
271 * elements, guaranteed not to overlap with those subsequently
272 * returned by this Spliterator. After invoking this method,
273 * the current Spliterator will <em>not</em> produce any of
274 * the elements of the returned Spliterator, but the two
275 * Spliterators together will produce all of the elements that
276 * would have been produced by this Spliterator had this
277 * method not been called. The exact number of elements
278 * produced by the returned Spliterator is not guaranteed, and
279 * may be zero (i.e., with {@code hasNext()} reporting {@code
280 * false}) if this Spliterator cannot be further split.
281 *
282 * @return a Spliterator covering approximately half of the
283 * elements
284 * @throws IllegalStateException if this Spliterator has
285 * already commenced traversing elements
286 */
287 Spliterator<T> split();
288 }
289
290
291 /*
292 * Overview:
293 *
294 * The primary design goal of this hash table is to maintain
295 * concurrent readability (typically method get(), but also
296 * iterators and related methods) while minimizing update
297 * contention. Secondary goals are to keep space consumption about
298 * the same or better than java.util.HashMap, and to support high
299 * initial insertion rates on an empty table by many threads.
300 *
301 * Each key-value mapping is held in a Node. Because Node fields
302 * can contain special values, they are defined using plain Object
303 * types. Similarly in turn, all internal methods that use them
304 * work off Object types. And similarly, so do the internal
305 * methods of auxiliary iterator and view classes. All public
306 * generic typed methods relay in/out of these internal methods,
307 * supplying null-checks and casts as needed. This also allows
308 * many of the public methods to be factored into a smaller number
309 * of internal methods (although sadly not so for the five
310 * variants of put-related operations). The validation-based
311 * approach explained below leads to a lot of code sprawl because
312 * retry-control precludes factoring into smaller methods.
313 *
314 * The table is lazily initialized to a power-of-two size upon the
315 * first insertion. Each bin in the table normally contains a
316 * list of Nodes (most often, the list has only zero or one Node).
317 * Table accesses require volatile/atomic reads, writes, and
318 * CASes. Because there is no other way to arrange this without
319 * adding further indirections, we use intrinsics
320 * (sun.misc.Unsafe) operations. The lists of nodes within bins
321 * are always accurately traversable under volatile reads, so long
322 * as lookups check hash code and non-nullness of value before
323 * checking key equality.
324 *
325 * We use the top two bits of Node hash fields for control
326 * purposes -- they are available anyway because of addressing
327 * constraints. As explained further below, these top bits are
328 * used as follows:
329 * 00 - Normal
330 * 01 - Locked
331 * 11 - Locked and may have a thread waiting for lock
332 * 10 - Node is a forwarding node
333 *
334 * The lower 30 bits of each Node's hash field contain a
335 * transformation of the key's hash code, except for forwarding
336 * nodes, for which the lower bits are zero (and so always have
337 * hash field == MOVED).
338 *
339 * Insertion (via put or its variants) of the first node in an
340 * empty bin is performed by just CASing it to the bin. This is
341 * by far the most common case for put operations under most
342 * key/hash distributions. Other update operations (insert,
343 * delete, and replace) require locks. We do not want to waste
344 * the space required to associate a distinct lock object with
345 * each bin, so instead use the first node of a bin list itself as
346 * a lock. Blocking support for these locks relies on the builtin
347 * "synchronized" monitors. However, we also need a tryLock
348 * construction, so we overlay these by using bits of the Node
349 * hash field for lock control (see above), and so normally use
350 * builtin monitors only for blocking and signalling using
351 * wait/notifyAll constructions. See Node.tryAwaitLock.
352 *
353 * Using the first node of a list as a lock does not by itself
354 * suffice though: When a node is locked, any update must first
355 * validate that it is still the first node after locking it, and
356 * retry if not. Because new nodes are always appended to lists,
357 * once a node is first in a bin, it remains first until deleted
358 * or the bin becomes invalidated (upon resizing). However,
359 * operations that only conditionally update may inspect nodes
360 * until the point of update. This is a converse of sorts to the
361 * lazy locking technique described by Herlihy & Shavit.
362 *
363 * The main disadvantage of per-bin locks is that other update
364 * operations on other nodes in a bin list protected by the same
365 * lock can stall, for example when user equals() or mapping
366 * functions take a long time. However, statistically, under
367 * random hash codes, this is not a common problem. Ideally, the
368 * frequency of nodes in bins follows a Poisson distribution
369 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
370 * parameter of about 0.5 on average, given the resizing threshold
371 * of 0.75, although with a large variance because of resizing
372 * granularity. Ignoring variance, the expected occurrences of
373 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
374 * first values are:
375 *
376 * 0: 0.60653066
377 * 1: 0.30326533
378 * 2: 0.07581633
379 * 3: 0.01263606
380 * 4: 0.00157952
381 * 5: 0.00015795
382 * 6: 0.00001316
383 * 7: 0.00000094
384 * 8: 0.00000006
385 * more: less than 1 in ten million
386 *
387 * Lock contention probability for two threads accessing distinct
388 * elements is roughly 1 / (8 * #elements) under random hashes.
389 *
390 * Actual hash code distributions encountered in practice
391 * sometimes deviate significantly from uniform randomness. This
392 * includes the case when N > (1<<30), so some keys MUST collide.
393 * Similarly for dumb or hostile usages in which multiple keys are
394 * designed to have identical hash codes. Also, although we guard
395 * against the worst effects of this (see method spread), sets of
396 * hashes may differ only in bits that do not impact their bin
397 * index for a given power-of-two mask. So we use a secondary
398 * strategy that applies when the number of nodes in a bin exceeds
399 * a threshold, and at least one of the keys implements
400 * Comparable. These TreeBins use a balanced tree to hold nodes
401 * (a specialized form of red-black trees), bounding search time
402 * to O(log N). Each search step in a TreeBin is around twice as
403 * slow as in a regular list, but given that N cannot exceed
404 * (1<<64) (before running out of addresses) this bounds search
405 * steps, lock hold times, etc, to reasonable constants (roughly
406 * 100 nodes inspected per operation worst case) so long as keys
407 * are Comparable (which is very common -- String, Long, etc).
408 * TreeBin nodes (TreeNodes) also maintain the same "next"
409 * traversal pointers as regular nodes, so can be traversed in
410 * iterators in the same way.
411 *
412 * The table is resized when occupancy exceeds a percentage
413 * threshold (nominally, 0.75, but see below). Only a single
414 * thread performs the resize (using field "sizeCtl", to arrange
415 * exclusion), but the table otherwise remains usable for reads
416 * and updates. Resizing proceeds by transferring bins, one by
417 * one, from the table to the next table. Because we are using
418 * power-of-two expansion, the elements from each bin must either
419 * stay at same index, or move with a power of two offset. We
420 * eliminate unnecessary node creation by catching cases where old
421 * nodes can be reused because their next fields won't change. On
422 * average, only about one-sixth of them need cloning when a table
423 * doubles. The nodes they replace will be garbage collectable as
424 * soon as they are no longer referenced by any reader thread that
425 * may be in the midst of concurrently traversing table. Upon
426 * transfer, the old table bin contains only a special forwarding
427 * node (with hash field "MOVED") that contains the next table as
428 * its key. On encountering a forwarding node, access and update
429 * operations restart, using the new table.
430 *
431 * Each bin transfer requires its bin lock. However, unlike other
432 * cases, a transfer can skip a bin if it fails to acquire its
433 * lock, and revisit it later (unless it is a TreeBin). Method
434 * rebuild maintains a buffer of TRANSFER_BUFFER_SIZE bins that
435 * have been skipped because of failure to acquire a lock, and
436 * blocks only if none are available (i.e., only very rarely).
437 * The transfer operation must also ensure that all accessible
438 * bins in both the old and new table are usable by any traversal.
439 * When there are no lock acquisition failures, this is arranged
440 * simply by proceeding from the last bin (table.length - 1) up
441 * towards the first. Upon seeing a forwarding node, traversals
442 * (see class Iter) arrange to move to the new table
443 * without revisiting nodes. However, when any node is skipped
444 * during a transfer, all earlier table bins may have become
445 * visible, so are initialized with a reverse-forwarding node back
446 * to the old table until the new ones are established. (This
447 * sometimes requires transiently locking a forwarding node, which
448 * is possible under the above encoding.) These more expensive
449 * mechanics trigger only when necessary.
450 *
451 * The traversal scheme also applies to partial traversals of
452 * ranges of bins (via an alternate Traverser constructor)
453 * to support partitioned aggregate operations. Also, read-only
454 * operations give up if ever forwarded to a null table, which
455 * provides support for shutdown-style clearing, which is also not
456 * currently implemented.
457 *
458 * Lazy table initialization minimizes footprint until first use,
459 * and also avoids resizings when the first operation is from a
460 * putAll, constructor with map argument, or deserialization.
461 * These cases attempt to override the initial capacity settings,
462 * but harmlessly fail to take effect in cases of races.
463 *
464 * The element count is maintained using a LongAdder, which avoids
465 * contention on updates but can encounter cache thrashing if read
466 * too frequently during concurrent access. To avoid reading so
467 * often, resizing is attempted either when a bin lock is
468 * contended, or upon adding to a bin already holding two or more
469 * nodes (checked before adding in the xIfAbsent methods, after
470 * adding in others). Under uniform hash distributions, the
471 * probability of this occurring at threshold is around 13%,
472 * meaning that only about 1 in 8 puts check threshold (and after
473 * resizing, many fewer do so). But this approximation has high
474 * variance for small table sizes, so we check on any collision
475 * for sizes <= 64. The bulk putAll operation further reduces
476 * contention by only committing count updates upon these size
477 * checks.
478 *
479 * Maintaining API and serialization compatibility with previous
480 * versions of this class introduces several oddities. Mainly: We
481 * leave untouched but unused constructor arguments refering to
482 * concurrencyLevel. We accept a loadFactor constructor argument,
483 * but apply it only to initial table capacity (which is the only
484 * time that we can guarantee to honor it.) We also declare an
485 * unused "Segment" class that is instantiated in minimal form
486 * only when serializing.
487 */
488
489 /* ---------------- Constants -------------- */
490
491 /**
492 * The largest possible table capacity. This value must be
493 * exactly 1<<30 to stay within Java array allocation and indexing
494 * bounds for power of two table sizes, and is further required
495 * because the top two bits of 32bit hash fields are used for
496 * control purposes.
497 */
498 private static final int MAXIMUM_CAPACITY = 1 << 30;
499
500 /**
501 * The default initial table capacity. Must be a power of 2
502 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
503 */
504 private static final int DEFAULT_CAPACITY = 16;
505
506 /**
507 * The largest possible (non-power of two) array size.
508 * Needed by toArray and related methods.
509 */
510 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
511
512 /**
513 * The default concurrency level for this table. Unused but
514 * defined for compatibility with previous versions of this class.
515 */
516 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
517
518 /**
519 * The load factor for this table. Overrides of this value in
520 * constructors affect only the initial table capacity. The
521 * actual floating point value isn't normally used -- it is
522 * simpler to use expressions such as {@code n - (n >>> 2)} for
523 * the associated resizing threshold.
524 */
525 private static final float LOAD_FACTOR = 0.75f;
526
527 /**
528 * The buffer size for skipped bins during transfers. The
529 * value is arbitrary but should be large enough to avoid
530 * most locking stalls during resizes.
531 */
532 private static final int TRANSFER_BUFFER_SIZE = 32;
533
534 /**
535 * The bin count threshold for using a tree rather than list for a
536 * bin. The value reflects the approximate break-even point for
537 * using tree-based operations.
538 */
539 private static final int TREE_THRESHOLD = 8;
540
541 /*
542 * Encodings for special uses of Node hash fields. See above for
543 * explanation.
544 */
545 static final int MOVED = 0x80000000; // hash field for forwarding nodes
546 static final int LOCKED = 0x40000000; // set/tested only as a bit
547 static final int WAITING = 0xc0000000; // both bits set/tested together
548 static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash
549
550 /* ---------------- Fields -------------- */
551
552 /**
553 * The array of bins. Lazily initialized upon first insertion.
554 * Size is always a power of two. Accessed directly by iterators.
555 */
556 transient volatile Node[] table;
557
558 /**
559 * The counter maintaining number of elements.
560 */
561 private transient final LongAdder counter;
562
563 /**
564 * Table initialization and resizing control. When negative, the
565 * table is being initialized or resized. Otherwise, when table is
566 * null, holds the initial table size to use upon creation, or 0
567 * for default. After initialization, holds the next element count
568 * value upon which to resize the table.
569 */
570 private transient volatile int sizeCtl;
571
572 // views
573 private transient KeySetView<K,V> keySet;
574 private transient ValuesView<K,V> values;
575 private transient EntrySetView<K,V> entrySet;
576
577 /** For serialization compatibility. Null unless serialized; see below */
578 private Segment<K,V>[] segments;
579
580 /* ---------------- Table element access -------------- */
581
582 /*
583 * Volatile access methods are used for table elements as well as
584 * elements of in-progress next table while resizing. Uses are
585 * null checked by callers, and implicitly bounds-checked, relying
586 * on the invariants that tab arrays have non-zero size, and all
587 * indices are masked with (tab.length - 1) which is never
588 * negative and always less than length. Note that, to be correct
589 * wrt arbitrary concurrency errors by users, bounds checks must
590 * operate on local variables, which accounts for some odd-looking
591 * inline assignments below.
592 */
593
594 static final Node tabAt(Node[] tab, int i) { // used by Iter
595 return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
596 }
597
598 private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
599 return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
600 }
601
602 private static final void setTabAt(Node[] tab, int i, Node v) {
603 UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
604 }
605
606 /* ---------------- Nodes -------------- */
607
608 /**
609 * Key-value entry. Note that this is never exported out as a
610 * user-visible Map.Entry (see MapEntry below). Nodes with a hash
611 * field of MOVED are special, and do not contain user keys or
612 * values. Otherwise, keys are never null, and null val fields
613 * indicate that a node is in the process of being deleted or
614 * created. For purposes of read-only access, a key may be read
615 * before a val, but can only be used after checking val to be
616 * non-null.
617 */
618 static class Node {
619 volatile int hash;
620 final Object key;
621 volatile Object val;
622 volatile Node next;
623
624 Node(int hash, Object key, Object val, Node next) {
625 this.hash = hash;
626 this.key = key;
627 this.val = val;
628 this.next = next;
629 }
630
631 /** CompareAndSet the hash field */
632 final boolean casHash(int cmp, int val) {
633 return UNSAFE.compareAndSwapInt(this, hashOffset, cmp, val);
634 }
635
636 /** The number of spins before blocking for a lock */
637 static final int MAX_SPINS =
638 Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
639
640 /**
641 * Spins a while if LOCKED bit set and this node is the first
642 * of its bin, and then sets WAITING bits on hash field and
643 * blocks (once) if they are still set. It is OK for this
644 * method to return even if lock is not available upon exit,
645 * which enables these simple single-wait mechanics.
646 *
647 * The corresponding signalling operation is performed within
648 * callers: Upon detecting that WAITING has been set when
649 * unlocking lock (via a failed CAS from non-waiting LOCKED
650 * state), unlockers acquire the sync lock and perform a
651 * notifyAll.
652 *
653 * The initial sanity check on tab and bounds is not currently
654 * necessary in the only usages of this method, but enables
655 * use in other future contexts.
656 */
657 final void tryAwaitLock(Node[] tab, int i) {
658 if (tab != null && i >= 0 && i < tab.length) { // sanity check
659 int r = ThreadLocalRandom.current().nextInt(); // randomize spins
660 int spins = MAX_SPINS, h;
661 while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) {
662 if (spins >= 0) {
663 r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
664 if (r >= 0 && --spins == 0)
665 Thread.yield(); // yield before block
666 }
667 else if (casHash(h, h | WAITING)) {
668 synchronized (this) {
669 if (tabAt(tab, i) == this &&
670 (hash & WAITING) == WAITING) {
671 try {
672 wait();
673 } catch (InterruptedException ie) {
674 Thread.currentThread().interrupt();
675 }
676 }
677 else
678 notifyAll(); // possibly won race vs signaller
679 }
680 break;
681 }
682 }
683 }
684 }
685
686 // Unsafe mechanics for casHash
687 private static final sun.misc.Unsafe UNSAFE;
688 private static final long hashOffset;
689
690 static {
691 try {
692 UNSAFE = getUnsafe();
693 Class<?> k = Node.class;
694 hashOffset = UNSAFE.objectFieldOffset
695 (k.getDeclaredField("hash"));
696 } catch (Exception e) {
697 throw new Error(e);
698 }
699 }
700 }
701
702 /* ---------------- TreeBins -------------- */
703
704 /**
705 * Nodes for use in TreeBins
706 */
707 static final class TreeNode extends Node {
708 TreeNode parent; // red-black tree links
709 TreeNode left;
710 TreeNode right;
711 TreeNode prev; // needed to unlink next upon deletion
712 boolean red;
713
714 TreeNode(int hash, Object key, Object val, Node next, TreeNode parent) {
715 super(hash, key, val, next);
716 this.parent = parent;
717 }
718 }
719
720 /**
721 * A specialized form of red-black tree for use in bins
722 * whose size exceeds a threshold.
723 *
724 * TreeBins use a special form of comparison for search and
725 * related operations (which is the main reason we cannot use
726 * existing collections such as TreeMaps). TreeBins contain
727 * Comparable elements, but may contain others, as well as
728 * elements that are Comparable but not necessarily Comparable<T>
729 * for the same T, so we cannot invoke compareTo among them. To
730 * handle this, the tree is ordered primarily by hash value, then
731 * by getClass().getName() order, and then by Comparator order
732 * among elements of the same class. On lookup at a node, if
733 * elements are not comparable or compare as 0, both left and
734 * right children may need to be searched in the case of tied hash
735 * values. (This corresponds to the full list search that would be
736 * necessary if all elements were non-Comparable and had tied
737 * hashes.) The red-black balancing code is updated from
738 * pre-jdk-collections
739 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
740 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
741 * Algorithms" (CLR).
742 *
743 * TreeBins also maintain a separate locking discipline than
744 * regular bins. Because they are forwarded via special MOVED
745 * nodes at bin heads (which can never change once established),
746 * we cannot use those nodes as locks. Instead, TreeBin
747 * extends AbstractQueuedSynchronizer to support a simple form of
748 * read-write lock. For update operations and table validation,
749 * the exclusive form of lock behaves in the same way as bin-head
750 * locks. However, lookups use shared read-lock mechanics to allow
751 * multiple readers in the absence of writers. Additionally,
752 * these lookups do not ever block: While the lock is not
753 * available, they proceed along the slow traversal path (via
754 * next-pointers) until the lock becomes available or the list is
755 * exhausted, whichever comes first. (These cases are not fast,
756 * but maximize aggregate expected throughput.) The AQS mechanics
757 * for doing this are straightforward. The lock state is held as
758 * AQS getState(). Read counts are negative; the write count (1)
759 * is positive. There are no signalling preferences among readers
760 * and writers. Since we don't need to export full Lock API, we
761 * just override the minimal AQS methods and use them directly.
762 */
763 static final class TreeBin extends AbstractQueuedSynchronizer {
764 private static final long serialVersionUID = 2249069246763182397L;
765 transient TreeNode root; // root of tree
766 transient TreeNode first; // head of next-pointer list
767
768 /* AQS overrides */
769 public final boolean isHeldExclusively() { return getState() > 0; }
770 public final boolean tryAcquire(int ignore) {
771 if (compareAndSetState(0, 1)) {
772 setExclusiveOwnerThread(Thread.currentThread());
773 return true;
774 }
775 return false;
776 }
777 public final boolean tryRelease(int ignore) {
778 setExclusiveOwnerThread(null);
779 setState(0);
780 return true;
781 }
782 public final int tryAcquireShared(int ignore) {
783 for (int c;;) {
784 if ((c = getState()) > 0)
785 return -1;
786 if (compareAndSetState(c, c -1))
787 return 1;
788 }
789 }
790 public final boolean tryReleaseShared(int ignore) {
791 int c;
792 do {} while (!compareAndSetState(c = getState(), c + 1));
793 return c == -1;
794 }
795
796 /** From CLR */
797 private void rotateLeft(TreeNode p) {
798 if (p != null) {
799 TreeNode r = p.right, pp, rl;
800 if ((rl = p.right = r.left) != null)
801 rl.parent = p;
802 if ((pp = r.parent = p.parent) == null)
803 root = r;
804 else if (pp.left == p)
805 pp.left = r;
806 else
807 pp.right = r;
808 r.left = p;
809 p.parent = r;
810 }
811 }
812
813 /** From CLR */
814 private void rotateRight(TreeNode p) {
815 if (p != null) {
816 TreeNode l = p.left, pp, lr;
817 if ((lr = p.left = l.right) != null)
818 lr.parent = p;
819 if ((pp = l.parent = p.parent) == null)
820 root = l;
821 else if (pp.right == p)
822 pp.right = l;
823 else
824 pp.left = l;
825 l.right = p;
826 p.parent = l;
827 }
828 }
829
830 /**
831 * Returns the TreeNode (or null if not found) for the given key
832 * starting at given root.
833 */
834 @SuppressWarnings("unchecked") final TreeNode getTreeNode
835 (int h, Object k, TreeNode p) {
836 Class<?> c = k.getClass();
837 while (p != null) {
838 int dir, ph; Object pk; Class<?> pc;
839 if ((ph = p.hash) == h) {
840 if ((pk = p.key) == k || k.equals(pk))
841 return p;
842 if (c != (pc = pk.getClass()) ||
843 !(k instanceof Comparable) ||
844 (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
845 dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
846 TreeNode r = null, s = null, pl, pr;
847 if (dir >= 0) {
848 if ((pl = p.left) != null && h <= pl.hash)
849 s = pl;
850 }
851 else if ((pr = p.right) != null && h >= pr.hash)
852 s = pr;
853 if (s != null && (r = getTreeNode(h, k, s)) != null)
854 return r;
855 }
856 }
857 else
858 dir = (h < ph) ? -1 : 1;
859 p = (dir > 0) ? p.right : p.left;
860 }
861 return null;
862 }
863
864 /**
865 * Wrapper for getTreeNode used by CHM.get. Tries to obtain
866 * read-lock to call getTreeNode, but during failure to get
867 * lock, searches along next links.
868 */
869 final Object getValue(int h, Object k) {
870 Node r = null;
871 int c = getState(); // Must read lock state first
872 for (Node e = first; e != null; e = e.next) {
873 if (c <= 0 && compareAndSetState(c, c - 1)) {
874 try {
875 r = getTreeNode(h, k, root);
876 } finally {
877 releaseShared(0);
878 }
879 break;
880 }
881 else if ((e.hash & HASH_BITS) == h && k.equals(e.key)) {
882 r = e;
883 break;
884 }
885 else
886 c = getState();
887 }
888 return r == null ? null : r.val;
889 }
890
891 /**
892 * Finds or adds a node.
893 * @return null if added
894 */
895 @SuppressWarnings("unchecked") final TreeNode putTreeNode
896 (int h, Object k, Object v) {
897 Class<?> c = k.getClass();
898 TreeNode pp = root, p = null;
899 int dir = 0;
900 while (pp != null) { // find existing node or leaf to insert at
901 int ph; Object pk; Class<?> pc;
902 p = pp;
903 if ((ph = p.hash) == h) {
904 if ((pk = p.key) == k || k.equals(pk))
905 return p;
906 if (c != (pc = pk.getClass()) ||
907 !(k instanceof Comparable) ||
908 (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
909 dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
910 TreeNode r = null, s = null, pl, pr;
911 if (dir >= 0) {
912 if ((pl = p.left) != null && h <= pl.hash)
913 s = pl;
914 }
915 else if ((pr = p.right) != null && h >= pr.hash)
916 s = pr;
917 if (s != null && (r = getTreeNode(h, k, s)) != null)
918 return r;
919 }
920 }
921 else
922 dir = (h < ph) ? -1 : 1;
923 pp = (dir > 0) ? p.right : p.left;
924 }
925
926 TreeNode f = first;
927 TreeNode x = first = new TreeNode(h, k, v, f, p);
928 if (p == null)
929 root = x;
930 else { // attach and rebalance; adapted from CLR
931 TreeNode xp, xpp;
932 if (f != null)
933 f.prev = x;
934 if (dir <= 0)
935 p.left = x;
936 else
937 p.right = x;
938 x.red = true;
939 while (x != null && (xp = x.parent) != null && xp.red &&
940 (xpp = xp.parent) != null) {
941 TreeNode xppl = xpp.left;
942 if (xp == xppl) {
943 TreeNode y = xpp.right;
944 if (y != null && y.red) {
945 y.red = false;
946 xp.red = false;
947 xpp.red = true;
948 x = xpp;
949 }
950 else {
951 if (x == xp.right) {
952 rotateLeft(x = xp);
953 xpp = (xp = x.parent) == null ? null : xp.parent;
954 }
955 if (xp != null) {
956 xp.red = false;
957 if (xpp != null) {
958 xpp.red = true;
959 rotateRight(xpp);
960 }
961 }
962 }
963 }
964 else {
965 TreeNode y = xppl;
966 if (y != null && y.red) {
967 y.red = false;
968 xp.red = false;
969 xpp.red = true;
970 x = xpp;
971 }
972 else {
973 if (x == xp.left) {
974 rotateRight(x = xp);
975 xpp = (xp = x.parent) == null ? null : xp.parent;
976 }
977 if (xp != null) {
978 xp.red = false;
979 if (xpp != null) {
980 xpp.red = true;
981 rotateLeft(xpp);
982 }
983 }
984 }
985 }
986 }
987 TreeNode r = root;
988 if (r != null && r.red)
989 r.red = false;
990 }
991 return null;
992 }
993
994 /**
995 * Removes the given node, that must be present before this
996 * call. This is messier than typical red-black deletion code
997 * because we cannot swap the contents of an interior node
998 * with a leaf successor that is pinned by "next" pointers
999 * that are accessible independently of lock. So instead we
1000 * swap the tree linkages.
1001 */
1002 final void deleteTreeNode(TreeNode p) {
1003 TreeNode next = (TreeNode)p.next; // unlink traversal pointers
1004 TreeNode pred = p.prev;
1005 if (pred == null)
1006 first = next;
1007 else
1008 pred.next = next;
1009 if (next != null)
1010 next.prev = pred;
1011 TreeNode replacement;
1012 TreeNode pl = p.left;
1013 TreeNode pr = p.right;
1014 if (pl != null && pr != null) {
1015 TreeNode s = pr, sl;
1016 while ((sl = s.left) != null) // find successor
1017 s = sl;
1018 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
1019 TreeNode sr = s.right;
1020 TreeNode pp = p.parent;
1021 if (s == pr) { // p was s's direct parent
1022 p.parent = s;
1023 s.right = p;
1024 }
1025 else {
1026 TreeNode sp = s.parent;
1027 if ((p.parent = sp) != null) {
1028 if (s == sp.left)
1029 sp.left = p;
1030 else
1031 sp.right = p;
1032 }
1033 if ((s.right = pr) != null)
1034 pr.parent = s;
1035 }
1036 p.left = null;
1037 if ((p.right = sr) != null)
1038 sr.parent = p;
1039 if ((s.left = pl) != null)
1040 pl.parent = s;
1041 if ((s.parent = pp) == null)
1042 root = s;
1043 else if (p == pp.left)
1044 pp.left = s;
1045 else
1046 pp.right = s;
1047 replacement = sr;
1048 }
1049 else
1050 replacement = (pl != null) ? pl : pr;
1051 TreeNode pp = p.parent;
1052 if (replacement == null) {
1053 if (pp == null) {
1054 root = null;
1055 return;
1056 }
1057 replacement = p;
1058 }
1059 else {
1060 replacement.parent = pp;
1061 if (pp == null)
1062 root = replacement;
1063 else if (p == pp.left)
1064 pp.left = replacement;
1065 else
1066 pp.right = replacement;
1067 p.left = p.right = p.parent = null;
1068 }
1069 if (!p.red) { // rebalance, from CLR
1070 TreeNode x = replacement;
1071 while (x != null) {
1072 TreeNode xp, xpl;
1073 if (x.red || (xp = x.parent) == null) {
1074 x.red = false;
1075 break;
1076 }
1077 if (x == (xpl = xp.left)) {
1078 TreeNode sib = xp.right;
1079 if (sib != null && sib.red) {
1080 sib.red = false;
1081 xp.red = true;
1082 rotateLeft(xp);
1083 sib = (xp = x.parent) == null ? null : xp.right;
1084 }
1085 if (sib == null)
1086 x = xp;
1087 else {
1088 TreeNode sl = sib.left, sr = sib.right;
1089 if ((sr == null || !sr.red) &&
1090 (sl == null || !sl.red)) {
1091 sib.red = true;
1092 x = xp;
1093 }
1094 else {
1095 if (sr == null || !sr.red) {
1096 if (sl != null)
1097 sl.red = false;
1098 sib.red = true;
1099 rotateRight(sib);
1100 sib = (xp = x.parent) == null ? null : xp.right;
1101 }
1102 if (sib != null) {
1103 sib.red = (xp == null) ? false : xp.red;
1104 if ((sr = sib.right) != null)
1105 sr.red = false;
1106 }
1107 if (xp != null) {
1108 xp.red = false;
1109 rotateLeft(xp);
1110 }
1111 x = root;
1112 }
1113 }
1114 }
1115 else { // symmetric
1116 TreeNode sib = xpl;
1117 if (sib != null && sib.red) {
1118 sib.red = false;
1119 xp.red = true;
1120 rotateRight(xp);
1121 sib = (xp = x.parent) == null ? null : xp.left;
1122 }
1123 if (sib == null)
1124 x = xp;
1125 else {
1126 TreeNode sl = sib.left, sr = sib.right;
1127 if ((sl == null || !sl.red) &&
1128 (sr == null || !sr.red)) {
1129 sib.red = true;
1130 x = xp;
1131 }
1132 else {
1133 if (sl == null || !sl.red) {
1134 if (sr != null)
1135 sr.red = false;
1136 sib.red = true;
1137 rotateLeft(sib);
1138 sib = (xp = x.parent) == null ? null : xp.left;
1139 }
1140 if (sib != null) {
1141 sib.red = (xp == null) ? false : xp.red;
1142 if ((sl = sib.left) != null)
1143 sl.red = false;
1144 }
1145 if (xp != null) {
1146 xp.red = false;
1147 rotateRight(xp);
1148 }
1149 x = root;
1150 }
1151 }
1152 }
1153 }
1154 }
1155 if (p == replacement && (pp = p.parent) != null) {
1156 if (p == pp.left) // detach pointers
1157 pp.left = null;
1158 else if (p == pp.right)
1159 pp.right = null;
1160 p.parent = null;
1161 }
1162 }
1163 }
1164
1165 /* ---------------- Collision reduction methods -------------- */
1166
1167 /**
1168 * Spreads higher bits to lower, and also forces top 2 bits to 0.
1169 * Because the table uses power-of-two masking, sets of hashes
1170 * that vary only in bits above the current mask will always
1171 * collide. (Among known examples are sets of Float keys holding
1172 * consecutive whole numbers in small tables.) To counter this,
1173 * we apply a transform that spreads the impact of higher bits
1174 * downward. There is a tradeoff between speed, utility, and
1175 * quality of bit-spreading. Because many common sets of hashes
1176 * are already reasonably distributed across bits (so don't benefit
1177 * from spreading), and because we use trees to handle large sets
1178 * of collisions in bins, we don't need excessively high quality.
1179 */
1180 private static final int spread(int h) {
1181 h ^= (h >>> 18) ^ (h >>> 12);
1182 return (h ^ (h >>> 10)) & HASH_BITS;
1183 }
1184
1185 /**
1186 * Replaces a list bin with a tree bin. Call only when locked.
1187 * Fails to replace if the given key is non-comparable or table
1188 * is, or needs, resizing.
1189 */
1190 private final void replaceWithTreeBin(Node[] tab, int index, Object key) {
1191 if ((key instanceof Comparable) &&
1192 (tab.length >= MAXIMUM_CAPACITY || counter.sum() < (long)sizeCtl)) {
1193 TreeBin t = new TreeBin();
1194 for (Node e = tabAt(tab, index); e != null; e = e.next)
1195 t.putTreeNode(e.hash & HASH_BITS, e.key, e.val);
1196 setTabAt(tab, index, new Node(MOVED, t, null, null));
1197 }
1198 }
1199
1200 /* ---------------- Internal access and update methods -------------- */
1201
1202 /** Implementation for get and containsKey */
1203 private final Object internalGet(Object k) {
1204 int h = spread(k.hashCode());
1205 retry: for (Node[] tab = table; tab != null;) {
1206 Node e, p; Object ek, ev; int eh; // locals to read fields once
1207 for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1208 if ((eh = e.hash) == MOVED) {
1209 if ((ek = e.key) instanceof TreeBin) // search TreeBin
1210 return ((TreeBin)ek).getValue(h, k);
1211 else { // restart with new table
1212 tab = (Node[])ek;
1213 continue retry;
1214 }
1215 }
1216 else if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
1217 ((ek = e.key) == k || k.equals(ek)))
1218 return ev;
1219 }
1220 break;
1221 }
1222 return null;
1223 }
1224
1225 /**
1226 * Implementation for the four public remove/replace methods:
1227 * Replaces node value with v, conditional upon match of cv if
1228 * non-null. If resulting value is null, delete.
1229 */
1230 private final Object internalReplace(Object k, Object v, Object cv) {
1231 int h = spread(k.hashCode());
1232 Object oldVal = null;
1233 for (Node[] tab = table;;) {
1234 Node f; int i, fh; Object fk;
1235 if (tab == null ||
1236 (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1237 break;
1238 else if ((fh = f.hash) == MOVED) {
1239 if ((fk = f.key) instanceof TreeBin) {
1240 TreeBin t = (TreeBin)fk;
1241 boolean validated = false;
1242 boolean deleted = false;
1243 t.acquire(0);
1244 try {
1245 if (tabAt(tab, i) == f) {
1246 validated = true;
1247 TreeNode p = t.getTreeNode(h, k, t.root);
1248 if (p != null) {
1249 Object pv = p.val;
1250 if (cv == null || cv == pv || cv.equals(pv)) {
1251 oldVal = pv;
1252 if ((p.val = v) == null) {
1253 deleted = true;
1254 t.deleteTreeNode(p);
1255 }
1256 }
1257 }
1258 }
1259 } finally {
1260 t.release(0);
1261 }
1262 if (validated) {
1263 if (deleted)
1264 counter.add(-1L);
1265 break;
1266 }
1267 }
1268 else
1269 tab = (Node[])fk;
1270 }
1271 else if ((fh & HASH_BITS) != h && f.next == null) // precheck
1272 break; // rules out possible existence
1273 else if ((fh & LOCKED) != 0) {
1274 checkForResize(); // try resizing if can't get lock
1275 f.tryAwaitLock(tab, i);
1276 }
1277 else if (f.casHash(fh, fh | LOCKED)) {
1278 boolean validated = false;
1279 boolean deleted = false;
1280 try {
1281 if (tabAt(tab, i) == f) {
1282 validated = true;
1283 for (Node e = f, pred = null;;) {
1284 Object ek, ev;
1285 if ((e.hash & HASH_BITS) == h &&
1286 ((ev = e.val) != null) &&
1287 ((ek = e.key) == k || k.equals(ek))) {
1288 if (cv == null || cv == ev || cv.equals(ev)) {
1289 oldVal = ev;
1290 if ((e.val = v) == null) {
1291 deleted = true;
1292 Node en = e.next;
1293 if (pred != null)
1294 pred.next = en;
1295 else
1296 setTabAt(tab, i, en);
1297 }
1298 }
1299 break;
1300 }
1301 pred = e;
1302 if ((e = e.next) == null)
1303 break;
1304 }
1305 }
1306 } finally {
1307 if (!f.casHash(fh | LOCKED, fh)) {
1308 f.hash = fh;
1309 synchronized (f) { f.notifyAll(); };
1310 }
1311 }
1312 if (validated) {
1313 if (deleted)
1314 counter.add(-1L);
1315 break;
1316 }
1317 }
1318 }
1319 return oldVal;
1320 }
1321
1322 /*
1323 * Internal versions of the six insertion methods, each a
1324 * little more complicated than the last. All have
1325 * the same basic structure as the first (internalPut):
1326 * 1. If table uninitialized, create
1327 * 2. If bin empty, try to CAS new node
1328 * 3. If bin stale, use new table
1329 * 4. if bin converted to TreeBin, validate and relay to TreeBin methods
1330 * 5. Lock and validate; if valid, scan and add or update
1331 *
1332 * The others interweave other checks and/or alternative actions:
1333 * * Plain put checks for and performs resize after insertion.
1334 * * putIfAbsent prescans for mapping without lock (and fails to add
1335 * if present), which also makes pre-emptive resize checks worthwhile.
1336 * * computeIfAbsent extends form used in putIfAbsent with additional
1337 * mechanics to deal with, calls, potential exceptions and null
1338 * returns from function call.
1339 * * compute uses the same function-call mechanics, but without
1340 * the prescans
1341 * * merge acts as putIfAbsent in the absent case, but invokes the
1342 * update function if present
1343 * * putAll attempts to pre-allocate enough table space
1344 * and more lazily performs count updates and checks.
1345 *
1346 * Someday when details settle down a bit more, it might be worth
1347 * some factoring to reduce sprawl.
1348 */
1349
1350 /** Implementation for put */
1351 private final Object internalPut(Object k, Object v) {
1352 int h = spread(k.hashCode());
1353 int count = 0;
1354 for (Node[] tab = table;;) {
1355 int i; Node f; int fh; Object fk;
1356 if (tab == null)
1357 tab = initTable();
1358 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1359 if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1360 break; // no lock when adding to empty bin
1361 }
1362 else if ((fh = f.hash) == MOVED) {
1363 if ((fk = f.key) instanceof TreeBin) {
1364 TreeBin t = (TreeBin)fk;
1365 Object oldVal = null;
1366 t.acquire(0);
1367 try {
1368 if (tabAt(tab, i) == f) {
1369 count = 2;
1370 TreeNode p = t.putTreeNode(h, k, v);
1371 if (p != null) {
1372 oldVal = p.val;
1373 p.val = v;
1374 }
1375 }
1376 } finally {
1377 t.release(0);
1378 }
1379 if (count != 0) {
1380 if (oldVal != null)
1381 return oldVal;
1382 break;
1383 }
1384 }
1385 else
1386 tab = (Node[])fk;
1387 }
1388 else if ((fh & LOCKED) != 0) {
1389 checkForResize();
1390 f.tryAwaitLock(tab, i);
1391 }
1392 else if (f.casHash(fh, fh | LOCKED)) {
1393 Object oldVal = null;
1394 try { // needed in case equals() throws
1395 if (tabAt(tab, i) == f) {
1396 count = 1;
1397 for (Node e = f;; ++count) {
1398 Object ek, ev;
1399 if ((e.hash & HASH_BITS) == h &&
1400 (ev = e.val) != null &&
1401 ((ek = e.key) == k || k.equals(ek))) {
1402 oldVal = ev;
1403 e.val = v;
1404 break;
1405 }
1406 Node last = e;
1407 if ((e = e.next) == null) {
1408 last.next = new Node(h, k, v, null);
1409 if (count >= TREE_THRESHOLD)
1410 replaceWithTreeBin(tab, i, k);
1411 break;
1412 }
1413 }
1414 }
1415 } finally { // unlock and signal if needed
1416 if (!f.casHash(fh | LOCKED, fh)) {
1417 f.hash = fh;
1418 synchronized (f) { f.notifyAll(); };
1419 }
1420 }
1421 if (count != 0) {
1422 if (oldVal != null)
1423 return oldVal;
1424 if (tab.length <= 64)
1425 count = 2;
1426 break;
1427 }
1428 }
1429 }
1430 counter.add(1L);
1431 if (count > 1)
1432 checkForResize();
1433 return null;
1434 }
1435
1436 /** Implementation for putIfAbsent */
1437 private final Object internalPutIfAbsent(Object k, Object v) {
1438 int h = spread(k.hashCode());
1439 int count = 0;
1440 for (Node[] tab = table;;) {
1441 int i; Node f; int fh; Object fk, fv;
1442 if (tab == null)
1443 tab = initTable();
1444 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1445 if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1446 break;
1447 }
1448 else if ((fh = f.hash) == MOVED) {
1449 if ((fk = f.key) instanceof TreeBin) {
1450 TreeBin t = (TreeBin)fk;
1451 Object oldVal = null;
1452 t.acquire(0);
1453 try {
1454 if (tabAt(tab, i) == f) {
1455 count = 2;
1456 TreeNode p = t.putTreeNode(h, k, v);
1457 if (p != null)
1458 oldVal = p.val;
1459 }
1460 } finally {
1461 t.release(0);
1462 }
1463 if (count != 0) {
1464 if (oldVal != null)
1465 return oldVal;
1466 break;
1467 }
1468 }
1469 else
1470 tab = (Node[])fk;
1471 }
1472 else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1473 ((fk = f.key) == k || k.equals(fk)))
1474 return fv;
1475 else {
1476 Node g = f.next;
1477 if (g != null) { // at least 2 nodes -- search and maybe resize
1478 for (Node e = g;;) {
1479 Object ek, ev;
1480 if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1481 ((ek = e.key) == k || k.equals(ek)))
1482 return ev;
1483 if ((e = e.next) == null) {
1484 checkForResize();
1485 break;
1486 }
1487 }
1488 }
1489 if (((fh = f.hash) & LOCKED) != 0) {
1490 checkForResize();
1491 f.tryAwaitLock(tab, i);
1492 }
1493 else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1494 Object oldVal = null;
1495 try {
1496 if (tabAt(tab, i) == f) {
1497 count = 1;
1498 for (Node e = f;; ++count) {
1499 Object ek, ev;
1500 if ((e.hash & HASH_BITS) == h &&
1501 (ev = e.val) != null &&
1502 ((ek = e.key) == k || k.equals(ek))) {
1503 oldVal = ev;
1504 break;
1505 }
1506 Node last = e;
1507 if ((e = e.next) == null) {
1508 last.next = new Node(h, k, v, null);
1509 if (count >= TREE_THRESHOLD)
1510 replaceWithTreeBin(tab, i, k);
1511 break;
1512 }
1513 }
1514 }
1515 } finally {
1516 if (!f.casHash(fh | LOCKED, fh)) {
1517 f.hash = fh;
1518 synchronized (f) { f.notifyAll(); };
1519 }
1520 }
1521 if (count != 0) {
1522 if (oldVal != null)
1523 return oldVal;
1524 if (tab.length <= 64)
1525 count = 2;
1526 break;
1527 }
1528 }
1529 }
1530 }
1531 counter.add(1L);
1532 if (count > 1)
1533 checkForResize();
1534 return null;
1535 }
1536
1537 /** Implementation for computeIfAbsent */
1538 private final Object internalComputeIfAbsent(K k,
1539 Fun<? super K, ?> mf) {
1540 int h = spread(k.hashCode());
1541 Object val = null;
1542 int count = 0;
1543 for (Node[] tab = table;;) {
1544 Node f; int i, fh; Object fk, fv;
1545 if (tab == null)
1546 tab = initTable();
1547 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1548 Node node = new Node(fh = h | LOCKED, k, null, null);
1549 if (casTabAt(tab, i, null, node)) {
1550 count = 1;
1551 try {
1552 if ((val = mf.apply(k)) != null)
1553 node.val = val;
1554 } finally {
1555 if (val == null)
1556 setTabAt(tab, i, null);
1557 if (!node.casHash(fh, h)) {
1558 node.hash = h;
1559 synchronized (node) { node.notifyAll(); };
1560 }
1561 }
1562 }
1563 if (count != 0)
1564 break;
1565 }
1566 else if ((fh = f.hash) == MOVED) {
1567 if ((fk = f.key) instanceof TreeBin) {
1568 TreeBin t = (TreeBin)fk;
1569 boolean added = false;
1570 t.acquire(0);
1571 try {
1572 if (tabAt(tab, i) == f) {
1573 count = 1;
1574 TreeNode p = t.getTreeNode(h, k, t.root);
1575 if (p != null)
1576 val = p.val;
1577 else if ((val = mf.apply(k)) != null) {
1578 added = true;
1579 count = 2;
1580 t.putTreeNode(h, k, val);
1581 }
1582 }
1583 } finally {
1584 t.release(0);
1585 }
1586 if (count != 0) {
1587 if (!added)
1588 return val;
1589 break;
1590 }
1591 }
1592 else
1593 tab = (Node[])fk;
1594 }
1595 else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1596 ((fk = f.key) == k || k.equals(fk)))
1597 return fv;
1598 else {
1599 Node g = f.next;
1600 if (g != null) {
1601 for (Node e = g;;) {
1602 Object ek, ev;
1603 if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1604 ((ek = e.key) == k || k.equals(ek)))
1605 return ev;
1606 if ((e = e.next) == null) {
1607 checkForResize();
1608 break;
1609 }
1610 }
1611 }
1612 if (((fh = f.hash) & LOCKED) != 0) {
1613 checkForResize();
1614 f.tryAwaitLock(tab, i);
1615 }
1616 else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1617 boolean added = false;
1618 try {
1619 if (tabAt(tab, i) == f) {
1620 count = 1;
1621 for (Node e = f;; ++count) {
1622 Object ek, ev;
1623 if ((e.hash & HASH_BITS) == h &&
1624 (ev = e.val) != null &&
1625 ((ek = e.key) == k || k.equals(ek))) {
1626 val = ev;
1627 break;
1628 }
1629 Node last = e;
1630 if ((e = e.next) == null) {
1631 if ((val = mf.apply(k)) != null) {
1632 added = true;
1633 last.next = new Node(h, k, val, null);
1634 if (count >= TREE_THRESHOLD)
1635 replaceWithTreeBin(tab, i, k);
1636 }
1637 break;
1638 }
1639 }
1640 }
1641 } finally {
1642 if (!f.casHash(fh | LOCKED, fh)) {
1643 f.hash = fh;
1644 synchronized (f) { f.notifyAll(); };
1645 }
1646 }
1647 if (count != 0) {
1648 if (!added)
1649 return val;
1650 if (tab.length <= 64)
1651 count = 2;
1652 break;
1653 }
1654 }
1655 }
1656 }
1657 if (val != null) {
1658 counter.add(1L);
1659 if (count > 1)
1660 checkForResize();
1661 }
1662 return val;
1663 }
1664
1665 /** Implementation for compute */
1666 @SuppressWarnings("unchecked") private final Object internalCompute
1667 (K k, boolean onlyIfPresent, BiFun<? super K, ? super V, ? extends V> mf) {
1668 int h = spread(k.hashCode());
1669 Object val = null;
1670 int delta = 0;
1671 int count = 0;
1672 for (Node[] tab = table;;) {
1673 Node f; int i, fh; Object fk;
1674 if (tab == null)
1675 tab = initTable();
1676 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1677 if (onlyIfPresent)
1678 break;
1679 Node node = new Node(fh = h | LOCKED, k, null, null);
1680 if (casTabAt(tab, i, null, node)) {
1681 try {
1682 count = 1;
1683 if ((val = mf.apply(k, null)) != null) {
1684 node.val = val;
1685 delta = 1;
1686 }
1687 } finally {
1688 if (delta == 0)
1689 setTabAt(tab, i, null);
1690 if (!node.casHash(fh, h)) {
1691 node.hash = h;
1692 synchronized (node) { node.notifyAll(); };
1693 }
1694 }
1695 }
1696 if (count != 0)
1697 break;
1698 }
1699 else if ((fh = f.hash) == MOVED) {
1700 if ((fk = f.key) instanceof TreeBin) {
1701 TreeBin t = (TreeBin)fk;
1702 t.acquire(0);
1703 try {
1704 if (tabAt(tab, i) == f) {
1705 count = 1;
1706 TreeNode p = t.getTreeNode(h, k, t.root);
1707 Object pv = (p == null) ? null : p.val;
1708 if ((val = mf.apply(k, (V)pv)) != null) {
1709 if (p != null)
1710 p.val = val;
1711 else {
1712 count = 2;
1713 delta = 1;
1714 t.putTreeNode(h, k, val);
1715 }
1716 }
1717 else if (p != null) {
1718 delta = -1;
1719 t.deleteTreeNode(p);
1720 }
1721 }
1722 } finally {
1723 t.release(0);
1724 }
1725 if (count != 0)
1726 break;
1727 }
1728 else
1729 tab = (Node[])fk;
1730 }
1731 else if ((fh & LOCKED) != 0) {
1732 checkForResize();
1733 f.tryAwaitLock(tab, i);
1734 }
1735 else if (f.casHash(fh, fh | LOCKED)) {
1736 try {
1737 if (tabAt(tab, i) == f) {
1738 count = 1;
1739 for (Node e = f, pred = null;; ++count) {
1740 Object ek, ev;
1741 if ((e.hash & HASH_BITS) == h &&
1742 (ev = e.val) != null &&
1743 ((ek = e.key) == k || k.equals(ek))) {
1744 val = mf.apply(k, (V)ev);
1745 if (val != null)
1746 e.val = val;
1747 else {
1748 delta = -1;
1749 Node en = e.next;
1750 if (pred != null)
1751 pred.next = en;
1752 else
1753 setTabAt(tab, i, en);
1754 }
1755 break;
1756 }
1757 pred = e;
1758 if ((e = e.next) == null) {
1759 if (!onlyIfPresent && (val = mf.apply(k, null)) != null) {
1760 pred.next = new Node(h, k, val, null);
1761 delta = 1;
1762 if (count >= TREE_THRESHOLD)
1763 replaceWithTreeBin(tab, i, k);
1764 }
1765 break;
1766 }
1767 }
1768 }
1769 } finally {
1770 if (!f.casHash(fh | LOCKED, fh)) {
1771 f.hash = fh;
1772 synchronized (f) { f.notifyAll(); };
1773 }
1774 }
1775 if (count != 0) {
1776 if (tab.length <= 64)
1777 count = 2;
1778 break;
1779 }
1780 }
1781 }
1782 if (delta != 0) {
1783 counter.add((long)delta);
1784 if (count > 1)
1785 checkForResize();
1786 }
1787 return val;
1788 }
1789
1790 /** Implementation for merge */
1791 @SuppressWarnings("unchecked") private final Object internalMerge
1792 (K k, V v, BiFun<? super V, ? super V, ? extends V> mf) {
1793 int h = spread(k.hashCode());
1794 Object val = null;
1795 int delta = 0;
1796 int count = 0;
1797 for (Node[] tab = table;;) {
1798 int i; Node f; int fh; Object fk, fv;
1799 if (tab == null)
1800 tab = initTable();
1801 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1802 if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1803 delta = 1;
1804 val = v;
1805 break;
1806 }
1807 }
1808 else if ((fh = f.hash) == MOVED) {
1809 if ((fk = f.key) instanceof TreeBin) {
1810 TreeBin t = (TreeBin)fk;
1811 t.acquire(0);
1812 try {
1813 if (tabAt(tab, i) == f) {
1814 count = 1;
1815 TreeNode p = t.getTreeNode(h, k, t.root);
1816 val = (p == null) ? v : mf.apply((V)p.val, v);
1817 if (val != null) {
1818 if (p != null)
1819 p.val = val;
1820 else {
1821 count = 2;
1822 delta = 1;
1823 t.putTreeNode(h, k, val);
1824 }
1825 }
1826 else if (p != null) {
1827 delta = -1;
1828 t.deleteTreeNode(p);
1829 }
1830 }
1831 } finally {
1832 t.release(0);
1833 }
1834 if (count != 0)
1835 break;
1836 }
1837 else
1838 tab = (Node[])fk;
1839 }
1840 else if ((fh & LOCKED) != 0) {
1841 checkForResize();
1842 f.tryAwaitLock(tab, i);
1843 }
1844 else if (f.casHash(fh, fh | LOCKED)) {
1845 try {
1846 if (tabAt(tab, i) == f) {
1847 count = 1;
1848 for (Node e = f, pred = null;; ++count) {
1849 Object ek, ev;
1850 if ((e.hash & HASH_BITS) == h &&
1851 (ev = e.val) != null &&
1852 ((ek = e.key) == k || k.equals(ek))) {
1853 val = mf.apply(v, (V)ev);
1854 if (val != null)
1855 e.val = val;
1856 else {
1857 delta = -1;
1858 Node en = e.next;
1859 if (pred != null)
1860 pred.next = en;
1861 else
1862 setTabAt(tab, i, en);
1863 }
1864 break;
1865 }
1866 pred = e;
1867 if ((e = e.next) == null) {
1868 val = v;
1869 pred.next = new Node(h, k, val, null);
1870 delta = 1;
1871 if (count >= TREE_THRESHOLD)
1872 replaceWithTreeBin(tab, i, k);
1873 break;
1874 }
1875 }
1876 }
1877 } finally {
1878 if (!f.casHash(fh | LOCKED, fh)) {
1879 f.hash = fh;
1880 synchronized (f) { f.notifyAll(); };
1881 }
1882 }
1883 if (count != 0) {
1884 if (tab.length <= 64)
1885 count = 2;
1886 break;
1887 }
1888 }
1889 }
1890 if (delta != 0) {
1891 counter.add((long)delta);
1892 if (count > 1)
1893 checkForResize();
1894 }
1895 return val;
1896 }
1897
1898 /** Implementation for putAll */
1899 private final void internalPutAll(Map<?, ?> m) {
1900 tryPresize(m.size());
1901 long delta = 0L; // number of uncommitted additions
1902 boolean npe = false; // to throw exception on exit for nulls
1903 try { // to clean up counts on other exceptions
1904 for (Map.Entry<?, ?> entry : m.entrySet()) {
1905 Object k, v;
1906 if (entry == null || (k = entry.getKey()) == null ||
1907 (v = entry.getValue()) == null) {
1908 npe = true;
1909 break;
1910 }
1911 int h = spread(k.hashCode());
1912 for (Node[] tab = table;;) {
1913 int i; Node f; int fh; Object fk;
1914 if (tab == null)
1915 tab = initTable();
1916 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1917 if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1918 ++delta;
1919 break;
1920 }
1921 }
1922 else if ((fh = f.hash) == MOVED) {
1923 if ((fk = f.key) instanceof TreeBin) {
1924 TreeBin t = (TreeBin)fk;
1925 boolean validated = false;
1926 t.acquire(0);
1927 try {
1928 if (tabAt(tab, i) == f) {
1929 validated = true;
1930 TreeNode p = t.getTreeNode(h, k, t.root);
1931 if (p != null)
1932 p.val = v;
1933 else {
1934 t.putTreeNode(h, k, v);
1935 ++delta;
1936 }
1937 }
1938 } finally {
1939 t.release(0);
1940 }
1941 if (validated)
1942 break;
1943 }
1944 else
1945 tab = (Node[])fk;
1946 }
1947 else if ((fh & LOCKED) != 0) {
1948 counter.add(delta);
1949 delta = 0L;
1950 checkForResize();
1951 f.tryAwaitLock(tab, i);
1952 }
1953 else if (f.casHash(fh, fh | LOCKED)) {
1954 int count = 0;
1955 try {
1956 if (tabAt(tab, i) == f) {
1957 count = 1;
1958 for (Node e = f;; ++count) {
1959 Object ek, ev;
1960 if ((e.hash & HASH_BITS) == h &&
1961 (ev = e.val) != null &&
1962 ((ek = e.key) == k || k.equals(ek))) {
1963 e.val = v;
1964 break;
1965 }
1966 Node last = e;
1967 if ((e = e.next) == null) {
1968 ++delta;
1969 last.next = new Node(h, k, v, null);
1970 if (count >= TREE_THRESHOLD)
1971 replaceWithTreeBin(tab, i, k);
1972 break;
1973 }
1974 }
1975 }
1976 } finally {
1977 if (!f.casHash(fh | LOCKED, fh)) {
1978 f.hash = fh;
1979 synchronized (f) { f.notifyAll(); };
1980 }
1981 }
1982 if (count != 0) {
1983 if (count > 1) {
1984 counter.add(delta);
1985 delta = 0L;
1986 checkForResize();
1987 }
1988 break;
1989 }
1990 }
1991 }
1992 }
1993 } finally {
1994 if (delta != 0)
1995 counter.add(delta);
1996 }
1997 if (npe)
1998 throw new NullPointerException();
1999 }
2000
2001 /* ---------------- Table Initialization and Resizing -------------- */
2002
2003 /**
2004 * Returns a power of two table size for the given desired capacity.
2005 * See Hackers Delight, sec 3.2
2006 */
2007 private static final int tableSizeFor(int c) {
2008 int n = c - 1;
2009 n |= n >>> 1;
2010 n |= n >>> 2;
2011 n |= n >>> 4;
2012 n |= n >>> 8;
2013 n |= n >>> 16;
2014 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
2015 }
2016
2017 /**
2018 * Initializes table, using the size recorded in sizeCtl.
2019 */
2020 private final Node[] initTable() {
2021 Node[] tab; int sc;
2022 while ((tab = table) == null) {
2023 if ((sc = sizeCtl) < 0)
2024 Thread.yield(); // lost initialization race; just spin
2025 else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2026 try {
2027 if ((tab = table) == null) {
2028 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2029 tab = table = new Node[n];
2030 sc = n - (n >>> 2);
2031 }
2032 } finally {
2033 sizeCtl = sc;
2034 }
2035 break;
2036 }
2037 }
2038 return tab;
2039 }
2040
2041 /**
2042 * If table is too small and not already resizing, creates next
2043 * table and transfers bins. Rechecks occupancy after a transfer
2044 * to see if another resize is already needed because resizings
2045 * are lagging additions.
2046 */
2047 private final void checkForResize() {
2048 Node[] tab; int n, sc;
2049 while ((tab = table) != null &&
2050 (n = tab.length) < MAXIMUM_CAPACITY &&
2051 (sc = sizeCtl) >= 0 && counter.sum() >= (long)sc &&
2052 UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2053 try {
2054 if (tab == table) {
2055 table = rebuild(tab);
2056 sc = (n << 1) - (n >>> 1);
2057 }
2058 } finally {
2059 sizeCtl = sc;
2060 }
2061 }
2062 }
2063
2064 /**
2065 * Tries to presize table to accommodate the given number of elements.
2066 *
2067 * @param size number of elements (doesn't need to be perfectly accurate)
2068 */
2069 private final void tryPresize(int size) {
2070 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2071 tableSizeFor(size + (size >>> 1) + 1);
2072 int sc;
2073 while ((sc = sizeCtl) >= 0) {
2074 Node[] tab = table; int n;
2075 if (tab == null || (n = tab.length) == 0) {
2076 n = (sc > c) ? sc : c;
2077 if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2078 try {
2079 if (table == tab) {
2080 table = new Node[n];
2081 sc = n - (n >>> 2);
2082 }
2083 } finally {
2084 sizeCtl = sc;
2085 }
2086 }
2087 }
2088 else if (c <= sc || n >= MAXIMUM_CAPACITY)
2089 break;
2090 else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2091 try {
2092 if (table == tab) {
2093 table = rebuild(tab);
2094 sc = (n << 1) - (n >>> 1);
2095 }
2096 } finally {
2097 sizeCtl = sc;
2098 }
2099 }
2100 }
2101 }
2102
2103 /*
2104 * Moves and/or copies the nodes in each bin to new table. See
2105 * above for explanation.
2106 *
2107 * @return the new table
2108 */
2109 private static final Node[] rebuild(Node[] tab) {
2110 int n = tab.length;
2111 Node[] nextTab = new Node[n << 1];
2112 Node fwd = new Node(MOVED, nextTab, null, null);
2113 int[] buffer = null; // holds bins to revisit; null until needed
2114 Node rev = null; // reverse forwarder; null until needed
2115 int nbuffered = 0; // the number of bins in buffer list
2116 int bufferIndex = 0; // buffer index of current buffered bin
2117 int bin = n - 1; // current non-buffered bin or -1 if none
2118
2119 for (int i = bin;;) { // start upwards sweep
2120 int fh; Node f;
2121 if ((f = tabAt(tab, i)) == null) {
2122 if (bin >= 0) { // Unbuffered; no lock needed (or available)
2123 if (!casTabAt(tab, i, f, fwd))
2124 continue;
2125 }
2126 else { // transiently use a locked forwarding node
2127 Node g = new Node(MOVED|LOCKED, nextTab, null, null);
2128 if (!casTabAt(tab, i, f, g))
2129 continue;
2130 setTabAt(nextTab, i, null);
2131 setTabAt(nextTab, i + n, null);
2132 setTabAt(tab, i, fwd);
2133 if (!g.casHash(MOVED|LOCKED, MOVED)) {
2134 g.hash = MOVED;
2135 synchronized (g) { g.notifyAll(); }
2136 }
2137 }
2138 }
2139 else if ((fh = f.hash) == MOVED) {
2140 Object fk = f.key;
2141 if (fk instanceof TreeBin) {
2142 TreeBin t = (TreeBin)fk;
2143 boolean validated = false;
2144 t.acquire(0);
2145 try {
2146 if (tabAt(tab, i) == f) {
2147 validated = true;
2148 splitTreeBin(nextTab, i, t);
2149 setTabAt(tab, i, fwd);
2150 }
2151 } finally {
2152 t.release(0);
2153 }
2154 if (!validated)
2155 continue;
2156 }
2157 }
2158 else if ((fh & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
2159 boolean validated = false;
2160 try { // split to lo and hi lists; copying as needed
2161 if (tabAt(tab, i) == f) {
2162 validated = true;
2163 splitBin(nextTab, i, f);
2164 setTabAt(tab, i, fwd);
2165 }
2166 } finally {
2167 if (!f.casHash(fh | LOCKED, fh)) {
2168 f.hash = fh;
2169 synchronized (f) { f.notifyAll(); };
2170 }
2171 }
2172 if (!validated)
2173 continue;
2174 }
2175 else {
2176 if (buffer == null) // initialize buffer for revisits
2177 buffer = new int[TRANSFER_BUFFER_SIZE];
2178 if (bin < 0 && bufferIndex > 0) {
2179 int j = buffer[--bufferIndex];
2180 buffer[bufferIndex] = i;
2181 i = j; // swap with another bin
2182 continue;
2183 }
2184 if (bin < 0 || nbuffered >= TRANSFER_BUFFER_SIZE) {
2185 f.tryAwaitLock(tab, i);
2186 continue; // no other options -- block
2187 }
2188 if (rev == null) // initialize reverse-forwarder
2189 rev = new Node(MOVED, tab, null, null);
2190 if (tabAt(tab, i) != f || (f.hash & LOCKED) == 0)
2191 continue; // recheck before adding to list
2192 buffer[nbuffered++] = i;
2193 setTabAt(nextTab, i, rev); // install place-holders
2194 setTabAt(nextTab, i + n, rev);
2195 }
2196
2197 if (bin > 0)
2198 i = --bin;
2199 else if (buffer != null && nbuffered > 0) {
2200 bin = -1;
2201 i = buffer[bufferIndex = --nbuffered];
2202 }
2203 else
2204 return nextTab;
2205 }
2206 }
2207
2208 /**
2209 * Splits a normal bin with list headed by e into lo and hi parts;
2210 * installs in given table.
2211 */
2212 private static void splitBin(Node[] nextTab, int i, Node e) {
2213 int bit = nextTab.length >>> 1; // bit to split on
2214 int runBit = e.hash & bit;
2215 Node lastRun = e, lo = null, hi = null;
2216 for (Node p = e.next; p != null; p = p.next) {
2217 int b = p.hash & bit;
2218 if (b != runBit) {
2219 runBit = b;
2220 lastRun = p;
2221 }
2222 }
2223 if (runBit == 0)
2224 lo = lastRun;
2225 else
2226 hi = lastRun;
2227 for (Node p = e; p != lastRun; p = p.next) {
2228 int ph = p.hash & HASH_BITS;
2229 Object pk = p.key, pv = p.val;
2230 if ((ph & bit) == 0)
2231 lo = new Node(ph, pk, pv, lo);
2232 else
2233 hi = new Node(ph, pk, pv, hi);
2234 }
2235 setTabAt(nextTab, i, lo);
2236 setTabAt(nextTab, i + bit, hi);
2237 }
2238
2239 /**
2240 * Splits a tree bin into lo and hi parts; installs in given table.
2241 */
2242 private static void splitTreeBin(Node[] nextTab, int i, TreeBin t) {
2243 int bit = nextTab.length >>> 1;
2244 TreeBin lt = new TreeBin();
2245 TreeBin ht = new TreeBin();
2246 int lc = 0, hc = 0;
2247 for (Node e = t.first; e != null; e = e.next) {
2248 int h = e.hash & HASH_BITS;
2249 Object k = e.key, v = e.val;
2250 if ((h & bit) == 0) {
2251 ++lc;
2252 lt.putTreeNode(h, k, v);
2253 }
2254 else {
2255 ++hc;
2256 ht.putTreeNode(h, k, v);
2257 }
2258 }
2259 Node ln, hn; // throw away trees if too small
2260 if (lc <= (TREE_THRESHOLD >>> 1)) {
2261 ln = null;
2262 for (Node p = lt.first; p != null; p = p.next)
2263 ln = new Node(p.hash, p.key, p.val, ln);
2264 }
2265 else
2266 ln = new Node(MOVED, lt, null, null);
2267 setTabAt(nextTab, i, ln);
2268 if (hc <= (TREE_THRESHOLD >>> 1)) {
2269 hn = null;
2270 for (Node p = ht.first; p != null; p = p.next)
2271 hn = new Node(p.hash, p.key, p.val, hn);
2272 }
2273 else
2274 hn = new Node(MOVED, ht, null, null);
2275 setTabAt(nextTab, i + bit, hn);
2276 }
2277
2278 /**
2279 * Implementation for clear. Steps through each bin, removing all
2280 * nodes.
2281 */
2282 private final void internalClear() {
2283 long delta = 0L; // negative number of deletions
2284 int i = 0;
2285 Node[] tab = table;
2286 while (tab != null && i < tab.length) {
2287 int fh; Object fk;
2288 Node f = tabAt(tab, i);
2289 if (f == null)
2290 ++i;
2291 else if ((fh = f.hash) == MOVED) {
2292 if ((fk = f.key) instanceof TreeBin) {
2293 TreeBin t = (TreeBin)fk;
2294 t.acquire(0);
2295 try {
2296 if (tabAt(tab, i) == f) {
2297 for (Node p = t.first; p != null; p = p.next) {
2298 if (p.val != null) { // (currently always true)
2299 p.val = null;
2300 --delta;
2301 }
2302 }
2303 t.first = null;
2304 t.root = null;
2305 ++i;
2306 }
2307 } finally {
2308 t.release(0);
2309 }
2310 }
2311 else
2312 tab = (Node[])fk;
2313 }
2314 else if ((fh & LOCKED) != 0) {
2315 counter.add(delta); // opportunistically update count
2316 delta = 0L;
2317 f.tryAwaitLock(tab, i);
2318 }
2319 else if (f.casHash(fh, fh | LOCKED)) {
2320 try {
2321 if (tabAt(tab, i) == f) {
2322 for (Node e = f; e != null; e = e.next) {
2323 if (e.val != null) { // (currently always true)
2324 e.val = null;
2325 --delta;
2326 }
2327 }
2328 setTabAt(tab, i, null);
2329 ++i;
2330 }
2331 } finally {
2332 if (!f.casHash(fh | LOCKED, fh)) {
2333 f.hash = fh;
2334 synchronized (f) { f.notifyAll(); };
2335 }
2336 }
2337 }
2338 }
2339 if (delta != 0)
2340 counter.add(delta);
2341 }
2342
2343 /* ----------------Table Traversal -------------- */
2344
2345 /**
2346 * Encapsulates traversal for methods such as containsValue; also
2347 * serves as a base class for other iterators and bulk tasks.
2348 *
2349 * At each step, the iterator snapshots the key ("nextKey") and
2350 * value ("nextVal") of a valid node (i.e., one that, at point of
2351 * snapshot, has a non-null user value). Because val fields can
2352 * change (including to null, indicating deletion), field nextVal
2353 * might not be accurate at point of use, but still maintains the
2354 * weak consistency property of holding a value that was once
2355 * valid. To support iterator.remove, the nextKey field is not
2356 * updated (nulled out) when the iterator cannot advance.
2357 *
2358 * Internal traversals directly access these fields, as in:
2359 * {@code while (it.advance() != null) { process(it.nextKey); }}
2360 *
2361 * Exported iterators must track whether the iterator has advanced
2362 * (in hasNext vs next) (by setting/checking/nulling field
2363 * nextVal), and then extract key, value, or key-value pairs as
2364 * return values of next().
2365 *
2366 * The iterator visits once each still-valid node that was
2367 * reachable upon iterator construction. It might miss some that
2368 * were added to a bin after the bin was visited, which is OK wrt
2369 * consistency guarantees. Maintaining this property in the face
2370 * of possible ongoing resizes requires a fair amount of
2371 * bookkeeping state that is difficult to optimize away amidst
2372 * volatile accesses. Even so, traversal maintains reasonable
2373 * throughput.
2374 *
2375 * Normally, iteration proceeds bin-by-bin traversing lists.
2376 * However, if the table has been resized, then all future steps
2377 * must traverse both the bin at the current index as well as at
2378 * (index + baseSize); and so on for further resizings. To
2379 * paranoically cope with potential sharing by users of iterators
2380 * across threads, iteration terminates if a bounds checks fails
2381 * for a table read.
2382 *
2383 * This class extends ForkJoinTask to streamline parallel
2384 * iteration in bulk operations (see BulkTask). This adds only an
2385 * int of space overhead, which is close enough to negligible in
2386 * cases where it is not needed to not worry about it. Because
2387 * ForkJoinTask is Serializable, but iterators need not be, we
2388 * need to add warning suppressions.
2389 */
2390 @SuppressWarnings("serial") static class Traverser<K,V,R> extends ForkJoinTask<R> {
2391 final ConcurrentHashMapV8<K, V> map;
2392 Node next; // the next entry to use
2393 Object nextKey; // cached key field of next
2394 Object nextVal; // cached val field of next
2395 Node[] tab; // current table; updated if resized
2396 int index; // index of bin to use next
2397 int baseIndex; // current index of initial table
2398 int baseLimit; // index bound for initial table
2399 int baseSize; // initial table size
2400
2401 /** Creates iterator for all entries in the table. */
2402 Traverser(ConcurrentHashMapV8<K, V> map) {
2403 this.map = map;
2404 }
2405
2406 /** Creates iterator for split() methods */
2407 Traverser(Traverser<K,V,?> it) {
2408 ConcurrentHashMapV8<K, V> m; Node[] t;
2409 if ((m = this.map = it.map) == null)
2410 t = null;
2411 else if ((t = it.tab) == null && // force parent tab initialization
2412 (t = it.tab = m.table) != null)
2413 it.baseLimit = it.baseSize = t.length;
2414 this.tab = t;
2415 this.baseSize = it.baseSize;
2416 it.baseLimit = this.index = this.baseIndex =
2417 ((this.baseLimit = it.baseLimit) + it.baseIndex + 1) >>> 1;
2418 }
2419
2420 /**
2421 * Advances next; returns nextVal or null if terminated.
2422 * See above for explanation.
2423 */
2424 final Object advance() {
2425 Node e = next;
2426 Object ev = null;
2427 outer: do {
2428 if (e != null) // advance past used/skipped node
2429 e = e.next;
2430 while (e == null) { // get to next non-null bin
2431 ConcurrentHashMapV8<K, V> m;
2432 Node[] t; int b, i, n; Object ek; // checks must use locals
2433 if ((t = tab) != null)
2434 n = t.length;
2435 else if ((m = map) != null && (t = tab = m.table) != null)
2436 n = baseLimit = baseSize = t.length;
2437 else
2438 break outer;
2439 if ((b = baseIndex) >= baseLimit ||
2440 (i = index) < 0 || i >= n)
2441 break outer;
2442 if ((e = tabAt(t, i)) != null && e.hash == MOVED) {
2443 if ((ek = e.key) instanceof TreeBin)
2444 e = ((TreeBin)ek).first;
2445 else {
2446 tab = (Node[])ek;
2447 continue; // restarts due to null val
2448 }
2449 } // visit upper slots if present
2450 index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2451 }
2452 nextKey = e.key;
2453 } while ((ev = e.val) == null); // skip deleted or special nodes
2454 next = e;
2455 return nextVal = ev;
2456 }
2457
2458 public final void remove() {
2459 Object k = nextKey;
2460 if (k == null && (advance() == null || (k = nextKey) == null))
2461 throw new IllegalStateException();
2462 map.internalReplace(k, null, null);
2463 }
2464
2465 public final boolean hasNext() {
2466 return nextVal != null || advance() != null;
2467 }
2468
2469 public final boolean hasMoreElements() { return hasNext(); }
2470 public final void setRawResult(Object x) { }
2471 public R getRawResult() { return null; }
2472 public boolean exec() { return true; }
2473 }
2474
2475 /* ---------------- Public operations -------------- */
2476
2477 /**
2478 * Creates a new, empty map with the default initial table size (16).
2479 */
2480 public ConcurrentHashMapV8() {
2481 this.counter = new LongAdder();
2482 }
2483
2484 /**
2485 * Creates a new, empty map with an initial table size
2486 * accommodating the specified number of elements without the need
2487 * to dynamically resize.
2488 *
2489 * @param initialCapacity The implementation performs internal
2490 * sizing to accommodate this many elements.
2491 * @throws IllegalArgumentException if the initial capacity of
2492 * elements is negative
2493 */
2494 public ConcurrentHashMapV8(int initialCapacity) {
2495 if (initialCapacity < 0)
2496 throw new IllegalArgumentException();
2497 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2498 MAXIMUM_CAPACITY :
2499 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2500 this.counter = new LongAdder();
2501 this.sizeCtl = cap;
2502 }
2503
2504 /**
2505 * Creates a new map with the same mappings as the given map.
2506 *
2507 * @param m the map
2508 */
2509 public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
2510 this.counter = new LongAdder();
2511 this.sizeCtl = DEFAULT_CAPACITY;
2512 internalPutAll(m);
2513 }
2514
2515 /**
2516 * Creates a new, empty map with an initial table size based on
2517 * the given number of elements ({@code initialCapacity}) and
2518 * initial table density ({@code loadFactor}).
2519 *
2520 * @param initialCapacity the initial capacity. The implementation
2521 * performs internal sizing to accommodate this many elements,
2522 * given the specified load factor.
2523 * @param loadFactor the load factor (table density) for
2524 * establishing the initial table size
2525 * @throws IllegalArgumentException if the initial capacity of
2526 * elements is negative or the load factor is nonpositive
2527 *
2528 * @since 1.6
2529 */
2530 public ConcurrentHashMapV8(int initialCapacity, float loadFactor) {
2531 this(initialCapacity, loadFactor, 1);
2532 }
2533
2534 /**
2535 * Creates a new, empty map with an initial table size based on
2536 * the given number of elements ({@code initialCapacity}), table
2537 * density ({@code loadFactor}), and number of concurrently
2538 * updating threads ({@code concurrencyLevel}).
2539 *
2540 * @param initialCapacity the initial capacity. The implementation
2541 * performs internal sizing to accommodate this many elements,
2542 * given the specified load factor.
2543 * @param loadFactor the load factor (table density) for
2544 * establishing the initial table size
2545 * @param concurrencyLevel the estimated number of concurrently
2546 * updating threads. The implementation may use this value as
2547 * a sizing hint.
2548 * @throws IllegalArgumentException if the initial capacity is
2549 * negative or the load factor or concurrencyLevel are
2550 * nonpositive
2551 */
2552 public ConcurrentHashMapV8(int initialCapacity,
2553 float loadFactor, int concurrencyLevel) {
2554 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2555 throw new IllegalArgumentException();
2556 if (initialCapacity < concurrencyLevel) // Use at least as many bins
2557 initialCapacity = concurrencyLevel; // as estimated threads
2558 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2559 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2560 MAXIMUM_CAPACITY : tableSizeFor((int)size);
2561 this.counter = new LongAdder();
2562 this.sizeCtl = cap;
2563 }
2564
2565 /**
2566 * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2567 * from the given type to {@code Boolean.TRUE}.
2568 *
2569 * @return the new set
2570 */
2571 public static <K> KeySetView<K,Boolean> newKeySet() {
2572 return new KeySetView<K,Boolean>(new ConcurrentHashMapV8<K,Boolean>(),
2573 Boolean.TRUE);
2574 }
2575
2576 /**
2577 * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2578 * from the given type to {@code Boolean.TRUE}.
2579 *
2580 * @param initialCapacity The implementation performs internal
2581 * sizing to accommodate this many elements.
2582 * @throws IllegalArgumentException if the initial capacity of
2583 * elements is negative
2584 * @return the new set
2585 */
2586 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2587 return new KeySetView<K,Boolean>(new ConcurrentHashMapV8<K,Boolean>(initialCapacity),
2588 Boolean.TRUE);
2589 }
2590
2591 /**
2592 * {@inheritDoc}
2593 */
2594 public boolean isEmpty() {
2595 return counter.sum() <= 0L; // ignore transient negative values
2596 }
2597
2598 /**
2599 * {@inheritDoc}
2600 */
2601 public int size() {
2602 long n = counter.sum();
2603 return ((n < 0L) ? 0 :
2604 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2605 (int)n);
2606 }
2607
2608 /**
2609 * Returns the number of mappings. This method should be used
2610 * instead of {@link #size} because a ConcurrentHashMapV8 may
2611 * contain more mappings than can be represented as an int. The
2612 * value returned is a snapshot; the actual count may differ if
2613 * there are ongoing concurrent insertions or removals.
2614 *
2615 * @return the number of mappings
2616 */
2617 public long mappingCount() {
2618 long n = counter.sum();
2619 return (n < 0L) ? 0L : n; // ignore transient negative values
2620 }
2621
2622 /**
2623 * Returns the value to which the specified key is mapped,
2624 * or {@code null} if this map contains no mapping for the key.
2625 *
2626 * <p>More formally, if this map contains a mapping from a key
2627 * {@code k} to a value {@code v} such that {@code key.equals(k)},
2628 * then this method returns {@code v}; otherwise it returns
2629 * {@code null}. (There can be at most one such mapping.)
2630 *
2631 * @throws NullPointerException if the specified key is null
2632 */
2633 @SuppressWarnings("unchecked") public V get(Object key) {
2634 if (key == null)
2635 throw new NullPointerException();
2636 return (V)internalGet(key);
2637 }
2638
2639 /**
2640 * Returns the value to which the specified key is mapped,
2641 * or the given defaultValue if this map contains no mapping for the key.
2642 *
2643 * @param key the key
2644 * @param defaultValue the value to return if this map contains
2645 * no mapping for the given key
2646 * @return the mapping for the key, if present; else the defaultValue
2647 * @throws NullPointerException if the specified key is null
2648 */
2649 @SuppressWarnings("unchecked") public V getValueOrDefault(Object key, V defaultValue) {
2650 if (key == null)
2651 throw new NullPointerException();
2652 V v = (V) internalGet(key);
2653 return v == null ? defaultValue : v;
2654 }
2655
2656 /**
2657 * Tests if the specified object is a key in this table.
2658 *
2659 * @param key possible key
2660 * @return {@code true} if and only if the specified object
2661 * is a key in this table, as determined by the
2662 * {@code equals} method; {@code false} otherwise
2663 * @throws NullPointerException if the specified key is null
2664 */
2665 public boolean containsKey(Object key) {
2666 if (key == null)
2667 throw new NullPointerException();
2668 return internalGet(key) != null;
2669 }
2670
2671 /**
2672 * Returns {@code true} if this map maps one or more keys to the
2673 * specified value. Note: This method may require a full traversal
2674 * of the map, and is much slower than method {@code containsKey}.
2675 *
2676 * @param value value whose presence in this map is to be tested
2677 * @return {@code true} if this map maps one or more keys to the
2678 * specified value
2679 * @throws NullPointerException if the specified value is null
2680 */
2681 public boolean containsValue(Object value) {
2682 if (value == null)
2683 throw new NullPointerException();
2684 Object v;
2685 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2686 while ((v = it.advance()) != null) {
2687 if (v == value || value.equals(v))
2688 return true;
2689 }
2690 return false;
2691 }
2692
2693 /**
2694 * Legacy method testing if some key maps into the specified value
2695 * in this table. This method is identical in functionality to
2696 * {@link #containsValue}, and exists solely to ensure
2697 * full compatibility with class {@link java.util.Hashtable},
2698 * which supported this method prior to introduction of the
2699 * Java Collections framework.
2700 *
2701 * @param value a value to search for
2702 * @return {@code true} if and only if some key maps to the
2703 * {@code value} argument in this table as
2704 * determined by the {@code equals} method;
2705 * {@code false} otherwise
2706 * @throws NullPointerException if the specified value is null
2707 */
2708 public boolean contains(Object value) {
2709 return containsValue(value);
2710 }
2711
2712 /**
2713 * Maps the specified key to the specified value in this table.
2714 * Neither the key nor the value can be null.
2715 *
2716 * <p> The value can be retrieved by calling the {@code get} method
2717 * with a key that is equal to the original key.
2718 *
2719 * @param key key with which the specified value is to be associated
2720 * @param value value to be associated with the specified key
2721 * @return the previous value associated with {@code key}, or
2722 * {@code null} if there was no mapping for {@code key}
2723 * @throws NullPointerException if the specified key or value is null
2724 */
2725 @SuppressWarnings("unchecked") public V put(K key, V value) {
2726 if (key == null || value == null)
2727 throw new NullPointerException();
2728 return (V)internalPut(key, value);
2729 }
2730
2731 /**
2732 * {@inheritDoc}
2733 *
2734 * @return the previous value associated with the specified key,
2735 * or {@code null} if there was no mapping for the key
2736 * @throws NullPointerException if the specified key or value is null
2737 */
2738 @SuppressWarnings("unchecked") public V putIfAbsent(K key, V value) {
2739 if (key == null || value == null)
2740 throw new NullPointerException();
2741 return (V)internalPutIfAbsent(key, value);
2742 }
2743
2744 /**
2745 * Copies all of the mappings from the specified map to this one.
2746 * These mappings replace any mappings that this map had for any of the
2747 * keys currently in the specified map.
2748 *
2749 * @param m mappings to be stored in this map
2750 */
2751 public void putAll(Map<? extends K, ? extends V> m) {
2752 internalPutAll(m);
2753 }
2754
2755 /**
2756 * If the specified key is not already associated with a value,
2757 * computes its value using the given mappingFunction and enters
2758 * it into the map unless null. This is equivalent to
2759 * <pre> {@code
2760 * if (map.containsKey(key))
2761 * return map.get(key);
2762 * value = mappingFunction.apply(key);
2763 * if (value != null)
2764 * map.put(key, value);
2765 * return value;}</pre>
2766 *
2767 * except that the action is performed atomically. If the
2768 * function returns {@code null} no mapping is recorded. If the
2769 * function itself throws an (unchecked) exception, the exception
2770 * is rethrown to its caller, and no mapping is recorded. Some
2771 * attempted update operations on this map by other threads may be
2772 * blocked while computation is in progress, so the computation
2773 * should be short and simple, and must not attempt to update any
2774 * other mappings of this Map. The most appropriate usage is to
2775 * construct a new object serving as an initial mapped value, or
2776 * memoized result, as in:
2777 *
2778 * <pre> {@code
2779 * map.computeIfAbsent(key, new Fun<K, V>() {
2780 * public V map(K k) { return new Value(f(k)); }});}</pre>
2781 *
2782 * @param key key with which the specified value is to be associated
2783 * @param mappingFunction the function to compute a value
2784 * @return the current (existing or computed) value associated with
2785 * the specified key, or null if the computed value is null
2786 * @throws NullPointerException if the specified key or mappingFunction
2787 * is null
2788 * @throws IllegalStateException if the computation detectably
2789 * attempts a recursive update to this map that would
2790 * otherwise never complete
2791 * @throws RuntimeException or Error if the mappingFunction does so,
2792 * in which case the mapping is left unestablished
2793 */
2794 @SuppressWarnings("unchecked") public V computeIfAbsent
2795 (K key, Fun<? super K, ? extends V> mappingFunction) {
2796 if (key == null || mappingFunction == null)
2797 throw new NullPointerException();
2798 return (V)internalComputeIfAbsent(key, mappingFunction);
2799 }
2800
2801 /**
2802 * If the given key is present, computes a new mapping value given a key and
2803 * its current mapped value. This is equivalent to
2804 * <pre> {@code
2805 * if (map.containsKey(key)) {
2806 * value = remappingFunction.apply(key, map.get(key));
2807 * if (value != null)
2808 * map.put(key, value);
2809 * else
2810 * map.remove(key);
2811 * }
2812 * }</pre>
2813 *
2814 * except that the action is performed atomically. If the
2815 * function returns {@code null}, the mapping is removed. If the
2816 * function itself throws an (unchecked) exception, the exception
2817 * is rethrown to its caller, and the current mapping is left
2818 * unchanged. Some attempted update operations on this map by
2819 * other threads may be blocked while computation is in progress,
2820 * so the computation should be short and simple, and must not
2821 * attempt to update any other mappings of this Map. For example,
2822 * to either create or append new messages to a value mapping:
2823 *
2824 * @param key key with which the specified value is to be associated
2825 * @param remappingFunction the function to compute a value
2826 * @return the new value associated with the specified key, or null if none
2827 * @throws NullPointerException if the specified key or remappingFunction
2828 * is null
2829 * @throws IllegalStateException if the computation detectably
2830 * attempts a recursive update to this map that would
2831 * otherwise never complete
2832 * @throws RuntimeException or Error if the remappingFunction does so,
2833 * in which case the mapping is unchanged
2834 */
2835 @SuppressWarnings("unchecked") public V computeIfPresent
2836 (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2837 if (key == null || remappingFunction == null)
2838 throw new NullPointerException();
2839 return (V)internalCompute(key, true, remappingFunction);
2840 }
2841
2842 /**
2843 * Computes a new mapping value given a key and
2844 * its current mapped value (or {@code null} if there is no current
2845 * mapping). This is equivalent to
2846 * <pre> {@code
2847 * value = remappingFunction.apply(key, map.get(key));
2848 * if (value != null)
2849 * map.put(key, value);
2850 * else
2851 * map.remove(key);
2852 * }</pre>
2853 *
2854 * except that the action is performed atomically. If the
2855 * function returns {@code null}, the mapping is removed. If the
2856 * function itself throws an (unchecked) exception, the exception
2857 * is rethrown to its caller, and the current mapping is left
2858 * unchanged. Some attempted update operations on this map by
2859 * other threads may be blocked while computation is in progress,
2860 * so the computation should be short and simple, and must not
2861 * attempt to update any other mappings of this Map. For example,
2862 * to either create or append new messages to a value mapping:
2863 *
2864 * <pre> {@code
2865 * Map<Key, String> map = ...;
2866 * final String msg = ...;
2867 * map.compute(key, new BiFun<Key, String, String>() {
2868 * public String apply(Key k, String v) {
2869 * return (v == null) ? msg : v + msg;});}}</pre>
2870 *
2871 * @param key key with which the specified value is to be associated
2872 * @param remappingFunction the function to compute a value
2873 * @return the new value associated with the specified key, or null if none
2874 * @throws NullPointerException if the specified key or remappingFunction
2875 * is null
2876 * @throws IllegalStateException if the computation detectably
2877 * attempts a recursive update to this map that would
2878 * otherwise never complete
2879 * @throws RuntimeException or Error if the remappingFunction does so,
2880 * in which case the mapping is unchanged
2881 */
2882 @SuppressWarnings("unchecked") public V compute
2883 (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2884 if (key == null || remappingFunction == null)
2885 throw new NullPointerException();
2886 return (V)internalCompute(key, false, remappingFunction);
2887 }
2888
2889 /**
2890 * If the specified key is not already associated
2891 * with a value, associate it with the given value.
2892 * Otherwise, replace the value with the results of
2893 * the given remapping function. This is equivalent to:
2894 * <pre> {@code
2895 * if (!map.containsKey(key))
2896 * map.put(value);
2897 * else {
2898 * newValue = remappingFunction.apply(map.get(key), value);
2899 * if (value != null)
2900 * map.put(key, value);
2901 * else
2902 * map.remove(key);
2903 * }
2904 * }</pre>
2905 * except that the action is performed atomically. If the
2906 * function returns {@code null}, the mapping is removed. If the
2907 * function itself throws an (unchecked) exception, the exception
2908 * is rethrown to its caller, and the current mapping is left
2909 * unchanged. Some attempted update operations on this map by
2910 * other threads may be blocked while computation is in progress,
2911 * so the computation should be short and simple, and must not
2912 * attempt to update any other mappings of this Map.
2913 */
2914 @SuppressWarnings("unchecked") public V merge
2915 (K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
2916 if (key == null || value == null || remappingFunction == null)
2917 throw new NullPointerException();
2918 return (V)internalMerge(key, value, remappingFunction);
2919 }
2920
2921 /**
2922 * Removes the key (and its corresponding value) from this map.
2923 * This method does nothing if the key is not in the map.
2924 *
2925 * @param key the key that needs to be removed
2926 * @return the previous value associated with {@code key}, or
2927 * {@code null} if there was no mapping for {@code key}
2928 * @throws NullPointerException if the specified key is null
2929 */
2930 @SuppressWarnings("unchecked") public V remove(Object key) {
2931 if (key == null)
2932 throw new NullPointerException();
2933 return (V)internalReplace(key, null, null);
2934 }
2935
2936 /**
2937 * {@inheritDoc}
2938 *
2939 * @throws NullPointerException if the specified key is null
2940 */
2941 public boolean remove(Object key, Object value) {
2942 if (key == null)
2943 throw new NullPointerException();
2944 if (value == null)
2945 return false;
2946 return internalReplace(key, null, value) != null;
2947 }
2948
2949 /**
2950 * {@inheritDoc}
2951 *
2952 * @throws NullPointerException if any of the arguments are null
2953 */
2954 public boolean replace(K key, V oldValue, V newValue) {
2955 if (key == null || oldValue == null || newValue == null)
2956 throw new NullPointerException();
2957 return internalReplace(key, newValue, oldValue) != null;
2958 }
2959
2960 /**
2961 * {@inheritDoc}
2962 *
2963 * @return the previous value associated with the specified key,
2964 * or {@code null} if there was no mapping for the key
2965 * @throws NullPointerException if the specified key or value is null
2966 */
2967 @SuppressWarnings("unchecked") public V replace(K key, V value) {
2968 if (key == null || value == null)
2969 throw new NullPointerException();
2970 return (V)internalReplace(key, value, null);
2971 }
2972
2973 /**
2974 * Removes all of the mappings from this map.
2975 */
2976 public void clear() {
2977 internalClear();
2978 }
2979
2980 /**
2981 * Returns a {@link Set} view of the keys contained in this map.
2982 * The set is backed by the map, so changes to the map are
2983 * reflected in the set, and vice-versa.
2984 *
2985 * @return the set view
2986 */
2987 public KeySetView<K,V> keySet() {
2988 KeySetView<K,V> ks = keySet;
2989 return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2990 }
2991
2992 /**
2993 * Returns a {@link Set} view of the keys in this map, using the
2994 * given common mapped value for any additions (i.e., {@link
2995 * Collection#add} and {@link Collection#addAll}). This is of
2996 * course only appropriate if it is acceptable to use the same
2997 * value for all additions from this view.
2998 *
2999 * @param mappedValue the mapped value to use for any
3000 * additions.
3001 * @return the set view
3002 * @throws NullPointerException if the mappedValue is null
3003 */
3004 public KeySetView<K,V> keySet(V mappedValue) {
3005 if (mappedValue == null)
3006 throw new NullPointerException();
3007 return new KeySetView<K,V>(this, mappedValue);
3008 }
3009
3010 /**
3011 * Returns a {@link Collection} view of the values contained in this map.
3012 * The collection is backed by the map, so changes to the map are
3013 * reflected in the collection, and vice-versa.
3014 */
3015 public ValuesView<K,V> values() {
3016 ValuesView<K,V> vs = values;
3017 return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
3018 }
3019
3020 /**
3021 * Returns a {@link Set} view of the mappings contained in this map.
3022 * The set is backed by the map, so changes to the map are
3023 * reflected in the set, and vice-versa. The set supports element
3024 * removal, which removes the corresponding mapping from the map,
3025 * via the {@code Iterator.remove}, {@code Set.remove},
3026 * {@code removeAll}, {@code retainAll}, and {@code clear}
3027 * operations. It does not support the {@code add} or
3028 * {@code addAll} operations.
3029 *
3030 * <p>The view's {@code iterator} is a "weakly consistent" iterator
3031 * that will never throw {@link ConcurrentModificationException},
3032 * and guarantees to traverse elements as they existed upon
3033 * construction of the iterator, and may (but is not guaranteed to)
3034 * reflect any modifications subsequent to construction.
3035 */
3036 public Set<Map.Entry<K,V>> entrySet() {
3037 EntrySetView<K,V> es = entrySet;
3038 return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
3039 }
3040
3041 /**
3042 * Returns an enumeration of the keys in this table.
3043 *
3044 * @return an enumeration of the keys in this table
3045 * @see #keySet()
3046 */
3047 public Enumeration<K> keys() {
3048 return new KeyIterator<K,V>(this);
3049 }
3050
3051 /**
3052 * Returns an enumeration of the values in this table.
3053 *
3054 * @return an enumeration of the values in this table
3055 * @see #values()
3056 */
3057 public Enumeration<V> elements() {
3058 return new ValueIterator<K,V>(this);
3059 }
3060
3061 /**
3062 * Returns a partitionable iterator of the keys in this map.
3063 *
3064 * @return a partitionable iterator of the keys in this map
3065 */
3066 public Spliterator<K> keySpliterator() {
3067 return new KeyIterator<K,V>(this);
3068 }
3069
3070 /**
3071 * Returns a partitionable iterator of the values in this map.
3072 *
3073 * @return a partitionable iterator of the values in this map
3074 */
3075 public Spliterator<V> valueSpliterator() {
3076 return new ValueIterator<K,V>(this);
3077 }
3078
3079 /**
3080 * Returns a partitionable iterator of the entries in this map.
3081 *
3082 * @return a partitionable iterator of the entries in this map
3083 */
3084 public Spliterator<Map.Entry<K,V>> entrySpliterator() {
3085 return new EntryIterator<K,V>(this);
3086 }
3087
3088 /**
3089 * Returns the hash code value for this {@link Map}, i.e.,
3090 * the sum of, for each key-value pair in the map,
3091 * {@code key.hashCode() ^ value.hashCode()}.
3092 *
3093 * @return the hash code value for this map
3094 */
3095 public int hashCode() {
3096 int h = 0;
3097 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3098 Object v;
3099 while ((v = it.advance()) != null) {
3100 h += it.nextKey.hashCode() ^ v.hashCode();
3101 }
3102 return h;
3103 }
3104
3105 /**
3106 * Returns a string representation of this map. The string
3107 * representation consists of a list of key-value mappings (in no
3108 * particular order) enclosed in braces ("{@code {}}"). Adjacent
3109 * mappings are separated by the characters {@code ", "} (comma
3110 * and space). Each key-value mapping is rendered as the key
3111 * followed by an equals sign ("{@code =}") followed by the
3112 * associated value.
3113 *
3114 * @return a string representation of this map
3115 */
3116 public String toString() {
3117 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3118 StringBuilder sb = new StringBuilder();
3119 sb.append('{');
3120 Object v;
3121 if ((v = it.advance()) != null) {
3122 for (;;) {
3123 Object k = it.nextKey;
3124 sb.append(k == this ? "(this Map)" : k);
3125 sb.append('=');
3126 sb.append(v == this ? "(this Map)" : v);
3127 if ((v = it.advance()) == null)
3128 break;
3129 sb.append(',').append(' ');
3130 }
3131 }
3132 return sb.append('}').toString();
3133 }
3134
3135 /**
3136 * Compares the specified object with this map for equality.
3137 * Returns {@code true} if the given object is a map with the same
3138 * mappings as this map. This operation may return misleading
3139 * results if either map is concurrently modified during execution
3140 * of this method.
3141 *
3142 * @param o object to be compared for equality with this map
3143 * @return {@code true} if the specified object is equal to this map
3144 */
3145 public boolean equals(Object o) {
3146 if (o != this) {
3147 if (!(o instanceof Map))
3148 return false;
3149 Map<?,?> m = (Map<?,?>) o;
3150 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3151 Object val;
3152 while ((val = it.advance()) != null) {
3153 Object v = m.get(it.nextKey);
3154 if (v == null || (v != val && !v.equals(val)))
3155 return false;
3156 }
3157 for (Map.Entry<?,?> e : m.entrySet()) {
3158 Object mk, mv, v;
3159 if ((mk = e.getKey()) == null ||
3160 (mv = e.getValue()) == null ||
3161 (v = internalGet(mk)) == null ||
3162 (mv != v && !mv.equals(v)))
3163 return false;
3164 }
3165 }
3166 return true;
3167 }
3168
3169 /* ----------------Iterators -------------- */
3170
3171 @SuppressWarnings("serial") static final class KeyIterator<K,V> extends Traverser<K,V,Object>
3172 implements Spliterator<K>, Enumeration<K> {
3173 KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3174 KeyIterator(Traverser<K,V,Object> it) {
3175 super(it);
3176 }
3177 public KeyIterator<K,V> split() {
3178 if (nextKey != null)
3179 throw new IllegalStateException();
3180 return new KeyIterator<K,V>(this);
3181 }
3182 @SuppressWarnings("unchecked") public final K next() {
3183 if (nextVal == null && advance() == null)
3184 throw new NoSuchElementException();
3185 Object k = nextKey;
3186 nextVal = null;
3187 return (K) k;
3188 }
3189
3190 public final K nextElement() { return next(); }
3191 }
3192
3193 @SuppressWarnings("serial") static final class ValueIterator<K,V> extends Traverser<K,V,Object>
3194 implements Spliterator<V>, Enumeration<V> {
3195 ValueIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3196 ValueIterator(Traverser<K,V,Object> it) {
3197 super(it);
3198 }
3199 public ValueIterator<K,V> split() {
3200 if (nextKey != null)
3201 throw new IllegalStateException();
3202 return new ValueIterator<K,V>(this);
3203 }
3204
3205 @SuppressWarnings("unchecked") public final V next() {
3206 Object v;
3207 if ((v = nextVal) == null && (v = advance()) == null)
3208 throw new NoSuchElementException();
3209 nextVal = null;
3210 return (V) v;
3211 }
3212
3213 public final V nextElement() { return next(); }
3214 }
3215
3216 @SuppressWarnings("serial") static final class EntryIterator<K,V> extends Traverser<K,V,Object>
3217 implements Spliterator<Map.Entry<K,V>> {
3218 EntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3219 EntryIterator(Traverser<K,V,Object> it) {
3220 super(it);
3221 }
3222 public EntryIterator<K,V> split() {
3223 if (nextKey != null)
3224 throw new IllegalStateException();
3225 return new EntryIterator<K,V>(this);
3226 }
3227
3228 @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3229 Object v;
3230 if ((v = nextVal) == null && (v = advance()) == null)
3231 throw new NoSuchElementException();
3232 Object k = nextKey;
3233 nextVal = null;
3234 return new MapEntry<K,V>((K)k, (V)v, map);
3235 }
3236 }
3237
3238 /**
3239 * Exported Entry for iterators
3240 */
3241 static final class MapEntry<K,V> implements Map.Entry<K, V> {
3242 final K key; // non-null
3243 V val; // non-null
3244 final ConcurrentHashMapV8<K, V> map;
3245 MapEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
3246 this.key = key;
3247 this.val = val;
3248 this.map = map;
3249 }
3250 public final K getKey() { return key; }
3251 public final V getValue() { return val; }
3252 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
3253 public final String toString(){ return key + "=" + val; }
3254
3255 public final boolean equals(Object o) {
3256 Object k, v; Map.Entry<?,?> e;
3257 return ((o instanceof Map.Entry) &&
3258 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3259 (v = e.getValue()) != null &&
3260 (k == key || k.equals(key)) &&
3261 (v == val || v.equals(val)));
3262 }
3263
3264 /**
3265 * Sets our entry's value and writes through to the map. The
3266 * value to return is somewhat arbitrary here. Since we do not
3267 * necessarily track asynchronous changes, the most recent
3268 * "previous" value could be different from what we return (or
3269 * could even have been removed in which case the put will
3270 * re-establish). We do not and cannot guarantee more.
3271 */
3272 public final V setValue(V value) {
3273 if (value == null) throw new NullPointerException();
3274 V v = val;
3275 val = value;
3276 map.put(key, value);
3277 return v;
3278 }
3279 }
3280
3281 /* ---------------- Serialization Support -------------- */
3282
3283 /**
3284 * Stripped-down version of helper class used in previous version,
3285 * declared for the sake of serialization compatibility
3286 */
3287 static class Segment<K,V> implements Serializable {
3288 private static final long serialVersionUID = 2249069246763182397L;
3289 final float loadFactor;
3290 Segment(float lf) { this.loadFactor = lf; }
3291 }
3292
3293 /**
3294 * Saves the state of the {@code ConcurrentHashMapV8} instance to a
3295 * stream (i.e., serializes it).
3296 * @param s the stream
3297 * @serialData
3298 * the key (Object) and value (Object)
3299 * for each key-value mapping, followed by a null pair.
3300 * The key-value mappings are emitted in no particular order.
3301 */
3302 @SuppressWarnings("unchecked") private void writeObject(java.io.ObjectOutputStream s)
3303 throws java.io.IOException {
3304 if (segments == null) { // for serialization compatibility
3305 segments = (Segment<K,V>[])
3306 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3307 for (int i = 0; i < segments.length; ++i)
3308 segments[i] = new Segment<K,V>(LOAD_FACTOR);
3309 }
3310 s.defaultWriteObject();
3311 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3312 Object v;
3313 while ((v = it.advance()) != null) {
3314 s.writeObject(it.nextKey);
3315 s.writeObject(v);
3316 }
3317 s.writeObject(null);
3318 s.writeObject(null);
3319 segments = null; // throw away
3320 }
3321
3322 /**
3323 * Reconstitutes the instance from a stream (that is, deserializes it).
3324 * @param s the stream
3325 */
3326 @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s)
3327 throws java.io.IOException, ClassNotFoundException {
3328 s.defaultReadObject();
3329 this.segments = null; // unneeded
3330 // initialize transient final field
3331 UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
3332
3333 // Create all nodes, then place in table once size is known
3334 long size = 0L;
3335 Node p = null;
3336 for (;;) {
3337 K k = (K) s.readObject();
3338 V v = (V) s.readObject();
3339 if (k != null && v != null) {
3340 int h = spread(k.hashCode());
3341 p = new Node(h, k, v, p);
3342 ++size;
3343 }
3344 else
3345 break;
3346 }
3347 if (p != null) {
3348 boolean init = false;
3349 int n;
3350 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3351 n = MAXIMUM_CAPACITY;
3352 else {
3353 int sz = (int)size;
3354 n = tableSizeFor(sz + (sz >>> 1) + 1);
3355 }
3356 int sc = sizeCtl;
3357 boolean collide = false;
3358 if (n > sc &&
3359 UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
3360 try {
3361 if (table == null) {
3362 init = true;
3363 Node[] tab = new Node[n];
3364 int mask = n - 1;
3365 while (p != null) {
3366 int j = p.hash & mask;
3367 Node next = p.next;
3368 Node q = p.next = tabAt(tab, j);
3369 setTabAt(tab, j, p);
3370 if (!collide && q != null && q.hash == p.hash)
3371 collide = true;
3372 p = next;
3373 }
3374 table = tab;
3375 counter.add(size);
3376 sc = n - (n >>> 2);
3377 }
3378 } finally {
3379 sizeCtl = sc;
3380 }
3381 if (collide) { // rescan and convert to TreeBins
3382 Node[] tab = table;
3383 for (int i = 0; i < tab.length; ++i) {
3384 int c = 0;
3385 for (Node e = tabAt(tab, i); e != null; e = e.next) {
3386 if (++c > TREE_THRESHOLD &&
3387 (e.key instanceof Comparable)) {
3388 replaceWithTreeBin(tab, i, e.key);
3389 break;
3390 }
3391 }
3392 }
3393 }
3394 }
3395 if (!init) { // Can only happen if unsafely published.
3396 while (p != null) {
3397 internalPut(p.key, p.val);
3398 p = p.next;
3399 }
3400 }
3401 }
3402 }
3403
3404
3405 // -------------------------------------------------------
3406
3407 // Sams
3408 /** Interface describing a void action of one argument */
3409 public interface Action<A> { void apply(A a); }
3410 /** Interface describing a void action of two arguments */
3411 public interface BiAction<A,B> { void apply(A a, B b); }
3412 /** Interface describing a function of one argument */
3413 public interface Fun<A,T> { T apply(A a); }
3414 /** Interface describing a function of two arguments */
3415 public interface BiFun<A,B,T> { T apply(A a, B b); }
3416 /** Interface describing a function of no arguments */
3417 public interface Generator<T> { T apply(); }
3418 /** Interface describing a function mapping its argument to a double */
3419 public interface ObjectToDouble<A> { double apply(A a); }
3420 /** Interface describing a function mapping its argument to a long */
3421 public interface ObjectToLong<A> { long apply(A a); }
3422 /** Interface describing a function mapping its argument to an int */
3423 public interface ObjectToInt<A> {int apply(A a); }
3424 /** Interface describing a function mapping two arguments to a double */
3425 public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3426 /** Interface describing a function mapping two arguments to a long */
3427 public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3428 /** Interface describing a function mapping two arguments to an int */
3429 public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3430 /** Interface describing a function mapping a double to a double */
3431 public interface DoubleToDouble { double apply(double a); }
3432 /** Interface describing a function mapping a long to a long */
3433 public interface LongToLong { long apply(long a); }
3434 /** Interface describing a function mapping an int to an int */
3435 public interface IntToInt { int apply(int a); }
3436 /** Interface describing a function mapping two doubles to a double */
3437 public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3438 /** Interface describing a function mapping two longs to a long */
3439 public interface LongByLongToLong { long apply(long a, long b); }
3440 /** Interface describing a function mapping two ints to an int */
3441 public interface IntByIntToInt { int apply(int a, int b); }
3442
3443
3444 // -------------------------------------------------------
3445
3446 /**
3447 * Performs the given action for each (key, value).
3448 *
3449 * @param action the action
3450 */
3451 public void forEach(BiAction<K,V> action) {
3452 ForkJoinTasks.forEach
3453 (this, action).invoke();
3454 }
3455
3456 /**
3457 * Performs the given action for each non-null transformation
3458 * of each (key, value).
3459 *
3460 * @param transformer a function returning the transformation
3461 * for an element, or null of there is no transformation (in
3462 * which case the action is not applied).
3463 * @param action the action
3464 */
3465 public <U> void forEach(BiFun<? super K, ? super V, ? extends U> transformer,
3466 Action<U> action) {
3467 ForkJoinTasks.forEach
3468 (this, transformer, action).invoke();
3469 }
3470
3471 /**
3472 * Returns a non-null result from applying the given search
3473 * function on each (key, value), or null if none. Upon
3474 * success, further element processing is suppressed and the
3475 * results of any other parallel invocations of the search
3476 * function are ignored.
3477 *
3478 * @param searchFunction a function returning a non-null
3479 * result on success, else null
3480 * @return a non-null result from applying the given search
3481 * function on each (key, value), or null if none
3482 */
3483 public <U> U search(BiFun<? super K, ? super V, ? extends U> searchFunction) {
3484 return ForkJoinTasks.search
3485 (this, searchFunction).invoke();
3486 }
3487
3488 /**
3489 * Returns the result of accumulating the given transformation
3490 * of all (key, value) pairs using the given reducer to
3491 * combine values, or null if none.
3492 *
3493 * @param transformer a function returning the transformation
3494 * for an element, or null of there is no transformation (in
3495 * which case it is not combined).
3496 * @param reducer a commutative associative combining function
3497 * @return the result of accumulating the given transformation
3498 * of all (key, value) pairs
3499 */
3500 public <U> U reduce(BiFun<? super K, ? super V, ? extends U> transformer,
3501 BiFun<? super U, ? super U, ? extends U> reducer) {
3502 return ForkJoinTasks.reduce
3503 (this, transformer, reducer).invoke();
3504 }
3505
3506 /**
3507 * Returns the result of accumulating the given transformation
3508 * of all (key, value) pairs using the given reducer to
3509 * combine values, and the given basis as an identity value.
3510 *
3511 * @param transformer a function returning the transformation
3512 * for an element
3513 * @param basis the identity (initial default value) for the reduction
3514 * @param reducer a commutative associative combining function
3515 * @return the result of accumulating the given transformation
3516 * of all (key, value) pairs
3517 */
3518 public double reduceToDouble(ObjectByObjectToDouble<? super K, ? super V> transformer,
3519 double basis,
3520 DoubleByDoubleToDouble reducer) {
3521 return ForkJoinTasks.reduceToDouble
3522 (this, transformer, basis, reducer).invoke();
3523 }
3524
3525 /**
3526 * Returns the result of accumulating the given transformation
3527 * of all (key, value) pairs using the given reducer to
3528 * combine values, and the given basis as an identity value.
3529 *
3530 * @param transformer a function returning the transformation
3531 * for an element
3532 * @param basis the identity (initial default value) for the reduction
3533 * @param reducer a commutative associative combining function
3534 * @return the result of accumulating the given transformation
3535 * of all (key, value) pairs
3536 */
3537 public long reduceToLong(ObjectByObjectToLong<? super K, ? super V> transformer,
3538 long basis,
3539 LongByLongToLong reducer) {
3540 return ForkJoinTasks.reduceToLong
3541 (this, transformer, basis, reducer).invoke();
3542 }
3543
3544 /**
3545 * Returns the result of accumulating the given transformation
3546 * of all (key, value) pairs using the given reducer to
3547 * combine values, and the given basis as an identity value.
3548 *
3549 * @param transformer a function returning the transformation
3550 * for an element
3551 * @param basis the identity (initial default value) for the reduction
3552 * @param reducer a commutative associative combining function
3553 * @return the result of accumulating the given transformation
3554 * of all (key, value) pairs
3555 */
3556 public int reduceToInt(ObjectByObjectToInt<? super K, ? super V> transformer,
3557 int basis,
3558 IntByIntToInt reducer) {
3559 return ForkJoinTasks.reduceToInt
3560 (this, transformer, basis, reducer).invoke();
3561 }
3562
3563 /**
3564 * Performs the given action for each key.
3565 *
3566 * @param action the action
3567 */
3568 public void forEachKey(Action<K> action) {
3569 ForkJoinTasks.forEachKey
3570 (this, action).invoke();
3571 }
3572
3573 /**
3574 * Performs the given action for each non-null transformation
3575 * of each key.
3576 *
3577 * @param transformer a function returning the transformation
3578 * for an element, or null of there is no transformation (in
3579 * which case the action is not applied).
3580 * @param action the action
3581 */
3582 public <U> void forEachKey(Fun<? super K, ? extends U> transformer,
3583 Action<U> action) {
3584 ForkJoinTasks.forEachKey
3585 (this, transformer, action).invoke();
3586 }
3587
3588 /**
3589 * Returns a non-null result from applying the given search
3590 * function on each key, or null if none. Upon success,
3591 * further element processing is suppressed and the results of
3592 * any other parallel invocations of the search function are
3593 * ignored.
3594 *
3595 * @param searchFunction a function returning a non-null
3596 * result on success, else null
3597 * @return a non-null result from applying the given search
3598 * function on each key, or null if none
3599 */
3600 public <U> U searchKeys(Fun<? super K, ? extends U> searchFunction) {
3601 return ForkJoinTasks.searchKeys
3602 (this, searchFunction).invoke();
3603 }
3604
3605 /**
3606 * Returns the result of accumulating all keys using the given
3607 * reducer to combine values, or null if none.
3608 *
3609 * @param reducer a commutative associative combining function
3610 * @return the result of accumulating all keys using the given
3611 * reducer to combine values, or null if none
3612 */
3613 public K reduceKeys(BiFun<? super K, ? super K, ? extends K> reducer) {
3614 return ForkJoinTasks.reduceKeys
3615 (this, reducer).invoke();
3616 }
3617
3618 /**
3619 * Returns the result of accumulating the given transformation
3620 * of all keys using the given reducer to combine values, or
3621 * null if none.
3622 *
3623 * @param transformer a function returning the transformation
3624 * for an element, or null of there is no transformation (in
3625 * which case it is not combined).
3626 * @param reducer a commutative associative combining function
3627 * @return the result of accumulating the given transformation
3628 * of all keys
3629 */
3630 public <U> U reduceKeys(Fun<? super K, ? extends U> transformer,
3631 BiFun<? super U, ? super U, ? extends U> reducer) {
3632 return ForkJoinTasks.reduceKeys
3633 (this, transformer, reducer).invoke();
3634 }
3635
3636 /**
3637 * Returns the result of accumulating the given transformation
3638 * of all keys using the given reducer to combine values, and
3639 * the given basis as an identity value.
3640 *
3641 * @param transformer a function returning the transformation
3642 * for an element
3643 * @param basis the identity (initial default value) for the reduction
3644 * @param reducer a commutative associative combining function
3645 * @return the result of accumulating the given transformation
3646 * of all keys
3647 */
3648 public double reduceKeysToDouble(ObjectToDouble<? super K> transformer,
3649 double basis,
3650 DoubleByDoubleToDouble reducer) {
3651 return ForkJoinTasks.reduceKeysToDouble
3652 (this, transformer, basis, reducer).invoke();
3653 }
3654
3655 /**
3656 * Returns the result of accumulating the given transformation
3657 * of all keys using the given reducer to combine values, and
3658 * the given basis as an identity value.
3659 *
3660 * @param transformer a function returning the transformation
3661 * for an element
3662 * @param basis the identity (initial default value) for the reduction
3663 * @param reducer a commutative associative combining function
3664 * @return the result of accumulating the given transformation
3665 * of all keys
3666 */
3667 public long reduceKeysToLong(ObjectToLong<? super K> transformer,
3668 long basis,
3669 LongByLongToLong reducer) {
3670 return ForkJoinTasks.reduceKeysToLong
3671 (this, transformer, basis, reducer).invoke();
3672 }
3673
3674 /**
3675 * Returns the result of accumulating the given transformation
3676 * of all keys using the given reducer to combine values, and
3677 * the given basis as an identity value.
3678 *
3679 * @param transformer a function returning the transformation
3680 * for an element
3681 * @param basis the identity (initial default value) for the reduction
3682 * @param reducer a commutative associative combining function
3683 * @return the result of accumulating the given transformation
3684 * of all keys
3685 */
3686 public int reduceKeysToInt(ObjectToInt<? super K> transformer,
3687 int basis,
3688 IntByIntToInt reducer) {
3689 return ForkJoinTasks.reduceKeysToInt
3690 (this, transformer, basis, reducer).invoke();
3691 }
3692
3693 /**
3694 * Performs the given action for each value.
3695 *
3696 * @param action the action
3697 */
3698 public void forEachValue(Action<V> action) {
3699 ForkJoinTasks.forEachValue
3700 (this, action).invoke();
3701 }
3702
3703 /**
3704 * Performs the given action for each non-null transformation
3705 * of each value.
3706 *
3707 * @param transformer a function returning the transformation
3708 * for an element, or null of there is no transformation (in
3709 * which case the action is not applied).
3710 */
3711 public <U> void forEachValue(Fun<? super V, ? extends U> transformer,
3712 Action<U> action) {
3713 ForkJoinTasks.forEachValue
3714 (this, transformer, action).invoke();
3715 }
3716
3717 /**
3718 * Returns a non-null result from applying the given search
3719 * function on each value, or null if none. Upon success,
3720 * further element processing is suppressed and the results of
3721 * any other parallel invocations of the search function are
3722 * ignored.
3723 *
3724 * @param searchFunction a function returning a non-null
3725 * result on success, else null
3726 * @return a non-null result from applying the given search
3727 * function on each value, or null if none
3728 *
3729 */
3730 public <U> U searchValues(Fun<? super V, ? extends U> searchFunction) {
3731 return ForkJoinTasks.searchValues
3732 (this, searchFunction).invoke();
3733 }
3734
3735 /**
3736 * Returns the result of accumulating all values using the
3737 * given reducer to combine values, or null if none.
3738 *
3739 * @param reducer a commutative associative combining function
3740 * @return the result of accumulating all values
3741 */
3742 public V reduceValues(BiFun<? super V, ? super V, ? extends V> reducer) {
3743 return ForkJoinTasks.reduceValues
3744 (this, reducer).invoke();
3745 }
3746
3747 /**
3748 * Returns the result of accumulating the given transformation
3749 * of all values using the given reducer to combine values, or
3750 * null if none.
3751 *
3752 * @param transformer a function returning the transformation
3753 * for an element, or null of there is no transformation (in
3754 * which case it is not combined).
3755 * @param reducer a commutative associative combining function
3756 * @return the result of accumulating the given transformation
3757 * of all values
3758 */
3759 public <U> U reduceValues(Fun<? super V, ? extends U> transformer,
3760 BiFun<? super U, ? super U, ? extends U> reducer) {
3761 return ForkJoinTasks.reduceValues
3762 (this, transformer, reducer).invoke();
3763 }
3764
3765 /**
3766 * Returns the result of accumulating the given transformation
3767 * of all values using the given reducer to combine values,
3768 * and the given basis as an identity value.
3769 *
3770 * @param transformer a function returning the transformation
3771 * for an element
3772 * @param basis the identity (initial default value) for the reduction
3773 * @param reducer a commutative associative combining function
3774 * @return the result of accumulating the given transformation
3775 * of all values
3776 */
3777 public double reduceValuesToDouble(ObjectToDouble<? super V> transformer,
3778 double basis,
3779 DoubleByDoubleToDouble reducer) {
3780 return ForkJoinTasks.reduceValuesToDouble
3781 (this, transformer, basis, reducer).invoke();
3782 }
3783
3784 /**
3785 * Returns the result of accumulating the given transformation
3786 * of all values using the given reducer to combine values,
3787 * and the given basis as an identity value.
3788 *
3789 * @param transformer a function returning the transformation
3790 * for an element
3791 * @param basis the identity (initial default value) for the reduction
3792 * @param reducer a commutative associative combining function
3793 * @return the result of accumulating the given transformation
3794 * of all values
3795 */
3796 public long reduceValuesToLong(ObjectToLong<? super V> transformer,
3797 long basis,
3798 LongByLongToLong reducer) {
3799 return ForkJoinTasks.reduceValuesToLong
3800 (this, transformer, basis, reducer).invoke();
3801 }
3802
3803 /**
3804 * Returns the result of accumulating the given transformation
3805 * of all values using the given reducer to combine values,
3806 * and the given basis as an identity value.
3807 *
3808 * @param transformer a function returning the transformation
3809 * for an element
3810 * @param basis the identity (initial default value) for the reduction
3811 * @param reducer a commutative associative combining function
3812 * @return the result of accumulating the given transformation
3813 * of all values
3814 */
3815 public int reduceValuesToInt(ObjectToInt<? super V> transformer,
3816 int basis,
3817 IntByIntToInt reducer) {
3818 return ForkJoinTasks.reduceValuesToInt
3819 (this, transformer, basis, reducer).invoke();
3820 }
3821
3822 /**
3823 * Performs the given action for each entry.
3824 *
3825 * @param action the action
3826 */
3827 public void forEachEntry(Action<Map.Entry<K,V>> action) {
3828 ForkJoinTasks.forEachEntry
3829 (this, action).invoke();
3830 }
3831
3832 /**
3833 * Performs the given action for each non-null transformation
3834 * of each entry.
3835 *
3836 * @param transformer a function returning the transformation
3837 * for an element, or null of there is no transformation (in
3838 * which case the action is not applied).
3839 * @param action the action
3840 */
3841 public <U> void forEachEntry(Fun<Map.Entry<K,V>, ? extends U> transformer,
3842 Action<U> action) {
3843 ForkJoinTasks.forEachEntry
3844 (this, transformer, action).invoke();
3845 }
3846
3847 /**
3848 * Returns a non-null result from applying the given search
3849 * function on each entry, or null if none. Upon success,
3850 * further element processing is suppressed and the results of
3851 * any other parallel invocations of the search function are
3852 * ignored.
3853 *
3854 * @param searchFunction a function returning a non-null
3855 * result on success, else null
3856 * @return a non-null result from applying the given search
3857 * function on each entry, or null if none
3858 */
3859 public <U> U searchEntries(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
3860 return ForkJoinTasks.searchEntries
3861 (this, searchFunction).invoke();
3862 }
3863
3864 /**
3865 * Returns the result of accumulating all entries using the
3866 * given reducer to combine values, or null if none.
3867 *
3868 * @param reducer a commutative associative combining function
3869 * @return the result of accumulating all entries
3870 */
3871 public Map.Entry<K,V> reduceEntries(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3872 return ForkJoinTasks.reduceEntries
3873 (this, reducer).invoke();
3874 }
3875
3876 /**
3877 * Returns the result of accumulating the given transformation
3878 * of all entries using the given reducer to combine values,
3879 * or null if none.
3880 *
3881 * @param transformer a function returning the transformation
3882 * for an element, or null of there is no transformation (in
3883 * which case it is not combined).
3884 * @param reducer a commutative associative combining function
3885 * @return the result of accumulating the given transformation
3886 * of all entries
3887 */
3888 public <U> U reduceEntries(Fun<Map.Entry<K,V>, ? extends U> transformer,
3889 BiFun<? super U, ? super U, ? extends U> reducer) {
3890 return ForkJoinTasks.reduceEntries
3891 (this, transformer, reducer).invoke();
3892 }
3893
3894 /**
3895 * Returns the result of accumulating the given transformation
3896 * of all entries using the given reducer to combine values,
3897 * and the given basis as an identity value.
3898 *
3899 * @param transformer a function returning the transformation
3900 * for an element
3901 * @param basis the identity (initial default value) for the reduction
3902 * @param reducer a commutative associative combining function
3903 * @return the result of accumulating the given transformation
3904 * of all entries
3905 */
3906 public double reduceEntriesToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
3907 double basis,
3908 DoubleByDoubleToDouble reducer) {
3909 return ForkJoinTasks.reduceEntriesToDouble
3910 (this, transformer, basis, reducer).invoke();
3911 }
3912
3913 /**
3914 * Returns the result of accumulating the given transformation
3915 * of all entries using the given reducer to combine values,
3916 * and the given basis as an identity value.
3917 *
3918 * @param transformer a function returning the transformation
3919 * for an element
3920 * @param basis the identity (initial default value) for the reduction
3921 * @param reducer a commutative associative combining function
3922 * @return the result of accumulating the given transformation
3923 * of all entries
3924 */
3925 public long reduceEntriesToLong(ObjectToLong<Map.Entry<K,V>> transformer,
3926 long basis,
3927 LongByLongToLong reducer) {
3928 return ForkJoinTasks.reduceEntriesToLong
3929 (this, transformer, basis, reducer).invoke();
3930 }
3931
3932 /**
3933 * Returns the result of accumulating the given transformation
3934 * of all entries using the given reducer to combine values,
3935 * and the given basis as an identity value.
3936 *
3937 * @param transformer a function returning the transformation
3938 * for an element
3939 * @param basis the identity (initial default value) for the reduction
3940 * @param reducer a commutative associative combining function
3941 * @return the result of accumulating the given transformation
3942 * of all entries
3943 */
3944 public int reduceEntriesToInt(ObjectToInt<Map.Entry<K,V>> transformer,
3945 int basis,
3946 IntByIntToInt reducer) {
3947 return ForkJoinTasks.reduceEntriesToInt
3948 (this, transformer, basis, reducer).invoke();
3949 }
3950
3951 /* ----------------Views -------------- */
3952
3953 /**
3954 * Base class for views.
3955 */
3956 static abstract class CHMView<K, V> {
3957 final ConcurrentHashMapV8<K, V> map;
3958 CHMView(ConcurrentHashMapV8<K, V> map) { this.map = map; }
3959
3960 /**
3961 * Returns the map backing this view.
3962 *
3963 * @return the map backing this view
3964 */
3965 public ConcurrentHashMapV8<K,V> getMap() { return map; }
3966
3967 public final int size() { return map.size(); }
3968 public final boolean isEmpty() { return map.isEmpty(); }
3969 public final void clear() { map.clear(); }
3970
3971 // implementations below rely on concrete classes supplying these
3972 abstract public Iterator<?> iterator();
3973 abstract public boolean contains(Object o);
3974 abstract public boolean remove(Object o);
3975
3976 private static final String oomeMsg = "Required array size too large";
3977
3978 public final Object[] toArray() {
3979 long sz = map.mappingCount();
3980 if (sz > (long)(MAX_ARRAY_SIZE))
3981 throw new OutOfMemoryError(oomeMsg);
3982 int n = (int)sz;
3983 Object[] r = new Object[n];
3984 int i = 0;
3985 Iterator<?> it = iterator();
3986 while (it.hasNext()) {
3987 if (i == n) {
3988 if (n >= MAX_ARRAY_SIZE)
3989 throw new OutOfMemoryError(oomeMsg);
3990 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
3991 n = MAX_ARRAY_SIZE;
3992 else
3993 n += (n >>> 1) + 1;
3994 r = Arrays.copyOf(r, n);
3995 }
3996 r[i++] = it.next();
3997 }
3998 return (i == n) ? r : Arrays.copyOf(r, i);
3999 }
4000
4001 @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
4002 long sz = map.mappingCount();
4003 if (sz > (long)(MAX_ARRAY_SIZE))
4004 throw new OutOfMemoryError(oomeMsg);
4005 int m = (int)sz;
4006 T[] r = (a.length >= m) ? a :
4007 (T[])java.lang.reflect.Array
4008 .newInstance(a.getClass().getComponentType(), m);
4009 int n = r.length;
4010 int i = 0;
4011 Iterator<?> it = iterator();
4012 while (it.hasNext()) {
4013 if (i == n) {
4014 if (n >= MAX_ARRAY_SIZE)
4015 throw new OutOfMemoryError(oomeMsg);
4016 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4017 n = MAX_ARRAY_SIZE;
4018 else
4019 n += (n >>> 1) + 1;
4020 r = Arrays.copyOf(r, n);
4021 }
4022 r[i++] = (T)it.next();
4023 }
4024 if (a == r && i < n) {
4025 r[i] = null; // null-terminate
4026 return r;
4027 }
4028 return (i == n) ? r : Arrays.copyOf(r, i);
4029 }
4030
4031 public final int hashCode() {
4032 int h = 0;
4033 for (Iterator<?> it = iterator(); it.hasNext();)
4034 h += it.next().hashCode();
4035 return h;
4036 }
4037
4038 public final String toString() {
4039 StringBuilder sb = new StringBuilder();
4040 sb.append('[');
4041 Iterator<?> it = iterator();
4042 if (it.hasNext()) {
4043 for (;;) {
4044 Object e = it.next();
4045 sb.append(e == this ? "(this Collection)" : e);
4046 if (!it.hasNext())
4047 break;
4048 sb.append(',').append(' ');
4049 }
4050 }
4051 return sb.append(']').toString();
4052 }
4053
4054 public final boolean containsAll(Collection<?> c) {
4055 if (c != this) {
4056 for (Iterator<?> it = c.iterator(); it.hasNext();) {
4057 Object e = it.next();
4058 if (e == null || !contains(e))
4059 return false;
4060 }
4061 }
4062 return true;
4063 }
4064
4065 public final boolean removeAll(Collection<?> c) {
4066 boolean modified = false;
4067 for (Iterator<?> it = iterator(); it.hasNext();) {
4068 if (c.contains(it.next())) {
4069 it.remove();
4070 modified = true;
4071 }
4072 }
4073 return modified;
4074 }
4075
4076 public final boolean retainAll(Collection<?> c) {
4077 boolean modified = false;
4078 for (Iterator<?> it = iterator(); it.hasNext();) {
4079 if (!c.contains(it.next())) {
4080 it.remove();
4081 modified = true;
4082 }
4083 }
4084 return modified;
4085 }
4086
4087 }
4088
4089 /**
4090 * A view of a ConcurrentHashMapV8 as a {@link Set} of keys, in
4091 * which additions may optionally be enabled by mapping to a
4092 * common value. This class cannot be directly instantiated. See
4093 * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
4094 * {@link #newKeySet(int)}.
4095 */
4096 public static class KeySetView<K,V> extends CHMView<K,V> implements Set<K>, java.io.Serializable {
4097 private static final long serialVersionUID = 7249069246763182397L;
4098 private final V value;
4099 KeySetView(ConcurrentHashMapV8<K, V> map, V value) { // non-public
4100 super(map);
4101 this.value = value;
4102 }
4103
4104 /**
4105 * Returns the default mapped value for additions,
4106 * or {@code null} if additions are not supported.
4107 *
4108 * @return the default mapped value for additions, or {@code null}
4109 * if not supported.
4110 */
4111 public V getMappedValue() { return value; }
4112
4113 // implement Set API
4114
4115 public boolean contains(Object o) { return map.containsKey(o); }
4116 public boolean remove(Object o) { return map.remove(o) != null; }
4117
4118 /**
4119 * Returns a "weakly consistent" iterator that will never
4120 * throw {@link ConcurrentModificationException}, and
4121 * guarantees to traverse elements as they existed upon
4122 * construction of the iterator, and may (but is not
4123 * guaranteed to) reflect any modifications subsequent to
4124 * construction.
4125 *
4126 * @return an iterator over the keys of this map
4127 */
4128 public Iterator<K> iterator() { return new KeyIterator<K,V>(map); }
4129 public boolean add(K e) {
4130 V v;
4131 if ((v = value) == null)
4132 throw new UnsupportedOperationException();
4133 if (e == null)
4134 throw new NullPointerException();
4135 return map.internalPutIfAbsent(e, v) == null;
4136 }
4137 public boolean addAll(Collection<? extends K> c) {
4138 boolean added = false;
4139 V v;
4140 if ((v = value) == null)
4141 throw new UnsupportedOperationException();
4142 for (K e : c) {
4143 if (e == null)
4144 throw new NullPointerException();
4145 if (map.internalPutIfAbsent(e, v) == null)
4146 added = true;
4147 }
4148 return added;
4149 }
4150 public boolean equals(Object o) {
4151 Set<?> c;
4152 return ((o instanceof Set) &&
4153 ((c = (Set<?>)o) == this ||
4154 (containsAll(c) && c.containsAll(this))));
4155 }
4156
4157 /**
4158 * Performs the given action for each key.
4159 *
4160 * @param action the action
4161 */
4162 public void forEach(Action<K> action) {
4163 ForkJoinTasks.forEachKey
4164 (map, action).invoke();
4165 }
4166
4167 /**
4168 * Performs the given action for each non-null transformation
4169 * of each key.
4170 *
4171 * @param transformer a function returning the transformation
4172 * for an element, or null of there is no transformation (in
4173 * which case the action is not applied).
4174 * @param action the action
4175 */
4176 public <U> void forEach(Fun<? super K, ? extends U> transformer,
4177 Action<U> action) {
4178 ForkJoinTasks.forEachKey
4179 (map, transformer, action).invoke();
4180 }
4181
4182 /**
4183 * Returns a non-null result from applying the given search
4184 * function on each key, or null if none. Upon success,
4185 * further element processing is suppressed and the results of
4186 * any other parallel invocations of the search function are
4187 * ignored.
4188 *
4189 * @param searchFunction a function returning a non-null
4190 * result on success, else null
4191 * @return a non-null result from applying the given search
4192 * function on each key, or null if none
4193 */
4194 public <U> U search(Fun<? super K, ? extends U> searchFunction) {
4195 return ForkJoinTasks.searchKeys
4196 (map, searchFunction).invoke();
4197 }
4198
4199 /**
4200 * Returns the result of accumulating all keys using the given
4201 * reducer to combine values, or null if none.
4202 *
4203 * @param reducer a commutative associative combining function
4204 * @return the result of accumulating all keys using the given
4205 * reducer to combine values, or null if none
4206 */
4207 public K reduce(BiFun<? super K, ? super K, ? extends K> reducer) {
4208 return ForkJoinTasks.reduceKeys
4209 (map, reducer).invoke();
4210 }
4211
4212 /**
4213 * Returns the result of accumulating the given transformation
4214 * of all keys using the given reducer to combine values, and
4215 * the given basis as an identity value.
4216 *
4217 * @param transformer a function returning the transformation
4218 * for an element
4219 * @param basis the identity (initial default value) for the reduction
4220 * @param reducer a commutative associative combining function
4221 * @return the result of accumulating the given transformation
4222 * of all keys
4223 */
4224 public double reduceToDouble(ObjectToDouble<? super K> transformer,
4225 double basis,
4226 DoubleByDoubleToDouble reducer) {
4227 return ForkJoinTasks.reduceKeysToDouble
4228 (map, transformer, basis, reducer).invoke();
4229 }
4230
4231
4232 /**
4233 * Returns the result of accumulating the given transformation
4234 * of all keys using the given reducer to combine values, and
4235 * the given basis as an identity value.
4236 *
4237 * @param transformer a function returning the transformation
4238 * for an element
4239 * @param basis the identity (initial default value) for the reduction
4240 * @param reducer a commutative associative combining function
4241 * @return the result of accumulating the given transformation
4242 * of all keys
4243 */
4244 public long reduceToLong(ObjectToLong<? super K> transformer,
4245 long basis,
4246 LongByLongToLong reducer) {
4247 return ForkJoinTasks.reduceKeysToLong
4248 (map, transformer, basis, reducer).invoke();
4249 }
4250
4251 /**
4252 * Returns the result of accumulating the given transformation
4253 * of all keys using the given reducer to combine values, and
4254 * the given basis as an identity value.
4255 *
4256 * @param transformer a function returning the transformation
4257 * for an element
4258 * @param basis the identity (initial default value) for the reduction
4259 * @param reducer a commutative associative combining function
4260 * @return the result of accumulating the given transformation
4261 * of all keys
4262 */
4263 public int reduceToInt(ObjectToInt<? super K> transformer,
4264 int basis,
4265 IntByIntToInt reducer) {
4266 return ForkJoinTasks.reduceKeysToInt
4267 (map, transformer, basis, reducer).invoke();
4268 }
4269
4270 }
4271
4272 /**
4273 * A view of a ConcurrentHashMapV8 as a {@link Collection} of
4274 * values, in which additions are disabled. This class cannot be
4275 * directly instantiated. See {@link #values},
4276 *
4277 * <p>The view's {@code iterator} is a "weakly consistent" iterator
4278 * that will never throw {@link ConcurrentModificationException},
4279 * and guarantees to traverse elements as they existed upon
4280 * construction of the iterator, and may (but is not guaranteed to)
4281 * reflect any modifications subsequent to construction.
4282 */
4283 public static final class ValuesView<K,V> extends CHMView<K,V>
4284 implements Collection<V> {
4285 ValuesView(ConcurrentHashMapV8<K, V> map) { super(map); }
4286 public final boolean contains(Object o) { return map.containsValue(o); }
4287 public final boolean remove(Object o) {
4288 if (o != null) {
4289 Iterator<V> it = new ValueIterator<K,V>(map);
4290 while (it.hasNext()) {
4291 if (o.equals(it.next())) {
4292 it.remove();
4293 return true;
4294 }
4295 }
4296 }
4297 return false;
4298 }
4299
4300 /**
4301 * Returns a "weakly consistent" iterator that will never
4302 * throw {@link ConcurrentModificationException}, and
4303 * guarantees to traverse elements as they existed upon
4304 * construction of the iterator, and may (but is not
4305 * guaranteed to) reflect any modifications subsequent to
4306 * construction.
4307 *
4308 * @return an iterator over the values of this map
4309 */
4310 public final Iterator<V> iterator() {
4311 return new ValueIterator<K,V>(map);
4312 }
4313 public final boolean add(V e) {
4314 throw new UnsupportedOperationException();
4315 }
4316 public final boolean addAll(Collection<? extends V> c) {
4317 throw new UnsupportedOperationException();
4318 }
4319
4320 /**
4321 * Performs the given action for each value.
4322 *
4323 * @param action the action
4324 */
4325 public void forEach(Action<V> action) {
4326 ForkJoinTasks.forEachValue
4327 (map, action).invoke();
4328 }
4329
4330 /**
4331 * Performs the given action for each non-null transformation
4332 * of each value.
4333 *
4334 * @param transformer a function returning the transformation
4335 * for an element, or null of there is no transformation (in
4336 * which case the action is not applied).
4337 */
4338 public <U> void forEach(Fun<? super V, ? extends U> transformer,
4339 Action<U> action) {
4340 ForkJoinTasks.forEachValue
4341 (map, transformer, action).invoke();
4342 }
4343
4344 /**
4345 * Returns a non-null result from applying the given search
4346 * function on each value, or null if none. Upon success,
4347 * further element processing is suppressed and the results of
4348 * any other parallel invocations of the search function are
4349 * ignored.
4350 *
4351 * @param searchFunction a function returning a non-null
4352 * result on success, else null
4353 * @return a non-null result from applying the given search
4354 * function on each value, or null if none
4355 *
4356 */
4357 public <U> U search(Fun<? super V, ? extends U> searchFunction) {
4358 return ForkJoinTasks.searchValues
4359 (map, searchFunction).invoke();
4360 }
4361
4362 /**
4363 * Returns the result of accumulating all values using the
4364 * given reducer to combine values, or null if none.
4365 *
4366 * @param reducer a commutative associative combining function
4367 * @return the result of accumulating all values
4368 */
4369 public V reduce(BiFun<? super V, ? super V, ? extends V> reducer) {
4370 return ForkJoinTasks.reduceValues
4371 (map, reducer).invoke();
4372 }
4373
4374 /**
4375 * Returns the result of accumulating the given transformation
4376 * of all values using the given reducer to combine values, or
4377 * null if none.
4378 *
4379 * @param transformer a function returning the transformation
4380 * for an element, or null of there is no transformation (in
4381 * which case it is not combined).
4382 * @param reducer a commutative associative combining function
4383 * @return the result of accumulating the given transformation
4384 * of all values
4385 */
4386 public <U> U reduce(Fun<? super V, ? extends U> transformer,
4387 BiFun<? super U, ? super U, ? extends U> reducer) {
4388 return ForkJoinTasks.reduceValues
4389 (map, transformer, reducer).invoke();
4390 }
4391
4392 /**
4393 * Returns the result of accumulating the given transformation
4394 * of all values using the given reducer to combine values,
4395 * and the given basis as an identity value.
4396 *
4397 * @param transformer a function returning the transformation
4398 * for an element
4399 * @param basis the identity (initial default value) for the reduction
4400 * @param reducer a commutative associative combining function
4401 * @return the result of accumulating the given transformation
4402 * of all values
4403 */
4404 public double reduceToDouble(ObjectToDouble<? super V> transformer,
4405 double basis,
4406 DoubleByDoubleToDouble reducer) {
4407 return ForkJoinTasks.reduceValuesToDouble
4408 (map, transformer, basis, reducer).invoke();
4409 }
4410
4411 /**
4412 * Returns the result of accumulating the given transformation
4413 * of all values using the given reducer to combine values,
4414 * and the given basis as an identity value.
4415 *
4416 * @param transformer a function returning the transformation
4417 * for an element
4418 * @param basis the identity (initial default value) for the reduction
4419 * @param reducer a commutative associative combining function
4420 * @return the result of accumulating the given transformation
4421 * of all values
4422 */
4423 public long reduceToLong(ObjectToLong<? super V> transformer,
4424 long basis,
4425 LongByLongToLong reducer) {
4426 return ForkJoinTasks.reduceValuesToLong
4427 (map, transformer, basis, reducer).invoke();
4428 }
4429
4430 /**
4431 * Returns the result of accumulating the given transformation
4432 * of all values using the given reducer to combine values,
4433 * and the given basis as an identity value.
4434 *
4435 * @param transformer a function returning the transformation
4436 * for an element
4437 * @param basis the identity (initial default value) for the reduction
4438 * @param reducer a commutative associative combining function
4439 * @return the result of accumulating the given transformation
4440 * of all values
4441 */
4442 public int reduceToInt(ObjectToInt<? super V> transformer,
4443 int basis,
4444 IntByIntToInt reducer) {
4445 return ForkJoinTasks.reduceValuesToInt
4446 (map, transformer, basis, reducer).invoke();
4447 }
4448
4449 }
4450
4451 /**
4452 * A view of a ConcurrentHashMapV8 as a {@link Set} of (key, value)
4453 * entries. This class cannot be directly instantiated. See
4454 * {@link #entrySet}.
4455 */
4456 public static final class EntrySetView<K,V> extends CHMView<K,V>
4457 implements Set<Map.Entry<K,V>> {
4458 EntrySetView(ConcurrentHashMapV8<K, V> map) { super(map); }
4459 public final boolean contains(Object o) {
4460 Object k, v, r; Map.Entry<?,?> e;
4461 return ((o instanceof Map.Entry) &&
4462 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4463 (r = map.get(k)) != null &&
4464 (v = e.getValue()) != null &&
4465 (v == r || v.equals(r)));
4466 }
4467 public final boolean remove(Object o) {
4468 Object k, v; Map.Entry<?,?> e;
4469 return ((o instanceof Map.Entry) &&
4470 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4471 (v = e.getValue()) != null &&
4472 map.remove(k, v));
4473 }
4474
4475 /**
4476 * Returns a "weakly consistent" iterator that will never
4477 * throw {@link ConcurrentModificationException}, and
4478 * guarantees to traverse elements as they existed upon
4479 * construction of the iterator, and may (but is not
4480 * guaranteed to) reflect any modifications subsequent to
4481 * construction.
4482 *
4483 * @return an iterator over the entries of this map
4484 */
4485 public final Iterator<Map.Entry<K,V>> iterator() {
4486 return new EntryIterator<K,V>(map);
4487 }
4488
4489 public final boolean add(Entry<K,V> e) {
4490 K key = e.getKey();
4491 V value = e.getValue();
4492 if (key == null || value == null)
4493 throw new NullPointerException();
4494 return map.internalPut(key, value) == null;
4495 }
4496 public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4497 boolean added = false;
4498 for (Entry<K,V> e : c) {
4499 if (add(e))
4500 added = true;
4501 }
4502 return added;
4503 }
4504 public boolean equals(Object o) {
4505 Set<?> c;
4506 return ((o instanceof Set) &&
4507 ((c = (Set<?>)o) == this ||
4508 (containsAll(c) && c.containsAll(this))));
4509 }
4510
4511 /**
4512 * Performs the given action for each entry.
4513 *
4514 * @param action the action
4515 */
4516 public void forEach(Action<Map.Entry<K,V>> action) {
4517 ForkJoinTasks.forEachEntry
4518 (map, action).invoke();
4519 }
4520
4521 /**
4522 * Performs the given action for each non-null transformation
4523 * of each entry.
4524 *
4525 * @param transformer a function returning the transformation
4526 * for an element, or null of there is no transformation (in
4527 * which case the action is not applied).
4528 * @param action the action
4529 */
4530 public <U> void forEach(Fun<Map.Entry<K,V>, ? extends U> transformer,
4531 Action<U> action) {
4532 ForkJoinTasks.forEachEntry
4533 (map, transformer, action).invoke();
4534 }
4535
4536 /**
4537 * Returns a non-null result from applying the given search
4538 * function on each entry, or null if none. Upon success,
4539 * further element processing is suppressed and the results of
4540 * any other parallel invocations of the search function are
4541 * ignored.
4542 *
4543 * @param searchFunction a function returning a non-null
4544 * result on success, else null
4545 * @return a non-null result from applying the given search
4546 * function on each entry, or null if none
4547 */
4548 public <U> U search(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4549 return ForkJoinTasks.searchEntries
4550 (map, searchFunction).invoke();
4551 }
4552
4553 /**
4554 * Returns the result of accumulating all entries using the
4555 * given reducer to combine values, or null if none.
4556 *
4557 * @param reducer a commutative associative combining function
4558 * @return the result of accumulating all entries
4559 */
4560 public Map.Entry<K,V> reduce(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4561 return ForkJoinTasks.reduceEntries
4562 (map, reducer).invoke();
4563 }
4564
4565 /**
4566 * Returns the result of accumulating the given transformation
4567 * of all entries using the given reducer to combine values,
4568 * or null if none.
4569 *
4570 * @param transformer a function returning the transformation
4571 * for an element, or null of there is no transformation (in
4572 * which case it is not combined).
4573 * @param reducer a commutative associative combining function
4574 * @return the result of accumulating the given transformation
4575 * of all entries
4576 */
4577 public <U> U reduce(Fun<Map.Entry<K,V>, ? extends U> transformer,
4578 BiFun<? super U, ? super U, ? extends U> reducer) {
4579 return ForkJoinTasks.reduceEntries
4580 (map, transformer, reducer).invoke();
4581 }
4582
4583 /**
4584 * Returns the result of accumulating the given transformation
4585 * of all entries using the given reducer to combine values,
4586 * and the given basis as an identity value.
4587 *
4588 * @param transformer a function returning the transformation
4589 * for an element
4590 * @param basis the identity (initial default value) for the reduction
4591 * @param reducer a commutative associative combining function
4592 * @return the result of accumulating the given transformation
4593 * of all entries
4594 */
4595 public double reduceToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4596 double basis,
4597 DoubleByDoubleToDouble reducer) {
4598 return ForkJoinTasks.reduceEntriesToDouble
4599 (map, transformer, basis, reducer).invoke();
4600 }
4601
4602 /**
4603 * Returns the result of accumulating the given transformation
4604 * of all entries using the given reducer to combine values,
4605 * and the given basis as an identity value.
4606 *
4607 * @param transformer a function returning the transformation
4608 * for an element
4609 * @param basis the identity (initial default value) for the reduction
4610 * @param reducer a commutative associative combining function
4611 * @return the result of accumulating the given transformation
4612 * of all entries
4613 */
4614 public long reduceToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4615 long basis,
4616 LongByLongToLong reducer) {
4617 return ForkJoinTasks.reduceEntriesToLong
4618 (map, transformer, basis, reducer).invoke();
4619 }
4620
4621 /**
4622 * Returns the result of accumulating the given transformation
4623 * of all entries using the given reducer to combine values,
4624 * and the given basis as an identity value.
4625 *
4626 * @param transformer a function returning the transformation
4627 * for an element
4628 * @param basis the identity (initial default value) for the reduction
4629 * @param reducer a commutative associative combining function
4630 * @return the result of accumulating the given transformation
4631 * of all entries
4632 */
4633 public int reduceToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4634 int basis,
4635 IntByIntToInt reducer) {
4636 return ForkJoinTasks.reduceEntriesToInt
4637 (map, transformer, basis, reducer).invoke();
4638 }
4639
4640 }
4641
4642 // ---------------------------------------------------------------------
4643
4644 /**
4645 * Predefined tasks for performing bulk parallel operations on
4646 * ConcurrentHashMapV8s. These tasks follow the forms and rules used
4647 * for bulk operations. Each method has the same name, but returns
4648 * a task rather than invoking it. These methods may be useful in
4649 * custom applications such as submitting a task without waiting
4650 * for completion, using a custom pool, or combining with other
4651 * tasks.
4652 */
4653 public static class ForkJoinTasks {
4654 private ForkJoinTasks() {}
4655
4656 /**
4657 * Returns a task that when invoked, performs the given
4658 * action for each (key, value)
4659 *
4660 * @param map the map
4661 * @param action the action
4662 * @return the task
4663 */
4664 public static <K,V> ForkJoinTask<Void> forEach
4665 (ConcurrentHashMapV8<K,V> map,
4666 BiAction<K,V> action) {
4667 if (action == null) throw new NullPointerException();
4668 return new ForEachMappingTask<K,V>(map, null, -1, null, action);
4669 }
4670
4671 /**
4672 * Returns a task that when invoked, performs the given
4673 * action for each non-null transformation of each (key, value)
4674 *
4675 * @param map the map
4676 * @param transformer a function returning the transformation
4677 * for an element, or null if there is no transformation (in
4678 * which case the action is not applied)
4679 * @param action the action
4680 * @return the task
4681 */
4682 public static <K,V,U> ForkJoinTask<Void> forEach
4683 (ConcurrentHashMapV8<K,V> map,
4684 BiFun<? super K, ? super V, ? extends U> transformer,
4685 Action<U> action) {
4686 if (transformer == null || action == null)
4687 throw new NullPointerException();
4688 return new ForEachTransformedMappingTask<K,V,U>
4689 (map, null, -1, null, transformer, action);
4690 }
4691
4692 /**
4693 * Returns a task that when invoked, returns a non-null result
4694 * from applying the given search function on each (key,
4695 * value), or null if none. Upon success, further element
4696 * processing is suppressed and the results of any other
4697 * parallel invocations of the search function are ignored.
4698 *
4699 * @param map the map
4700 * @param searchFunction a function returning a non-null
4701 * result on success, else null
4702 * @return the task
4703 */
4704 public static <K,V,U> ForkJoinTask<U> search
4705 (ConcurrentHashMapV8<K,V> map,
4706 BiFun<? super K, ? super V, ? extends U> searchFunction) {
4707 if (searchFunction == null) throw new NullPointerException();
4708 return new SearchMappingsTask<K,V,U>
4709 (map, null, -1, null, searchFunction,
4710 new AtomicReference<U>());
4711 }
4712
4713 /**
4714 * Returns a task that when invoked, returns the result of
4715 * accumulating the given transformation of all (key, value) pairs
4716 * using the given reducer to combine values, or null if none.
4717 *
4718 * @param map the map
4719 * @param transformer a function returning the transformation
4720 * for an element, or null if there is no transformation (in
4721 * which case it is not combined).
4722 * @param reducer a commutative associative combining function
4723 * @return the task
4724 */
4725 public static <K,V,U> ForkJoinTask<U> reduce
4726 (ConcurrentHashMapV8<K,V> map,
4727 BiFun<? super K, ? super V, ? extends U> transformer,
4728 BiFun<? super U, ? super U, ? extends U> reducer) {
4729 if (transformer == null || reducer == null)
4730 throw new NullPointerException();
4731 return new MapReduceMappingsTask<K,V,U>
4732 (map, null, -1, null, transformer, reducer);
4733 }
4734
4735 /**
4736 * Returns a task that when invoked, returns the result of
4737 * accumulating the given transformation of all (key, value) pairs
4738 * using the given reducer to combine values, and the given
4739 * basis as an identity value.
4740 *
4741 * @param map the map
4742 * @param transformer a function returning the transformation
4743 * for an element
4744 * @param basis the identity (initial default value) for the reduction
4745 * @param reducer a commutative associative combining function
4746 * @return the task
4747 */
4748 public static <K,V> ForkJoinTask<Double> reduceToDouble
4749 (ConcurrentHashMapV8<K,V> map,
4750 ObjectByObjectToDouble<? super K, ? super V> transformer,
4751 double basis,
4752 DoubleByDoubleToDouble reducer) {
4753 if (transformer == null || reducer == null)
4754 throw new NullPointerException();
4755 return new MapReduceMappingsToDoubleTask<K,V>
4756 (map, null, -1, null, transformer, basis, reducer);
4757 }
4758
4759 /**
4760 * Returns a task that when invoked, returns the result of
4761 * accumulating the given transformation of all (key, value) pairs
4762 * using the given reducer to combine values, and the given
4763 * basis as an identity value.
4764 *
4765 * @param map the map
4766 * @param transformer a function returning the transformation
4767 * for an element
4768 * @param basis the identity (initial default value) for the reduction
4769 * @param reducer a commutative associative combining function
4770 * @return the task
4771 */
4772 public static <K,V> ForkJoinTask<Long> reduceToLong
4773 (ConcurrentHashMapV8<K,V> map,
4774 ObjectByObjectToLong<? super K, ? super V> transformer,
4775 long basis,
4776 LongByLongToLong reducer) {
4777 if (transformer == null || reducer == null)
4778 throw new NullPointerException();
4779 return new MapReduceMappingsToLongTask<K,V>
4780 (map, null, -1, null, transformer, basis, reducer);
4781 }
4782
4783 /**
4784 * Returns a task that when invoked, returns the result of
4785 * accumulating the given transformation of all (key, value) pairs
4786 * using the given reducer to combine values, and the given
4787 * basis as an identity value.
4788 *
4789 * @param transformer a function returning the transformation
4790 * for an element
4791 * @param basis the identity (initial default value) for the reduction
4792 * @param reducer a commutative associative combining function
4793 * @return the task
4794 */
4795 public static <K,V> ForkJoinTask<Integer> reduceToInt
4796 (ConcurrentHashMapV8<K,V> map,
4797 ObjectByObjectToInt<? super K, ? super V> transformer,
4798 int basis,
4799 IntByIntToInt reducer) {
4800 if (transformer == null || reducer == null)
4801 throw new NullPointerException();
4802 return new MapReduceMappingsToIntTask<K,V>
4803 (map, null, -1, null, transformer, basis, reducer);
4804 }
4805
4806 /**
4807 * Returns a task that when invoked, performs the given action
4808 * for each key.
4809 *
4810 * @param map the map
4811 * @param action the action
4812 * @return the task
4813 */
4814 public static <K,V> ForkJoinTask<Void> forEachKey
4815 (ConcurrentHashMapV8<K,V> map,
4816 Action<K> action) {
4817 if (action == null) throw new NullPointerException();
4818 return new ForEachKeyTask<K,V>(map, null, -1, null, action);
4819 }
4820
4821 /**
4822 * Returns a task that when invoked, performs the given action
4823 * for each non-null transformation of each key.
4824 *
4825 * @param map the map
4826 * @param transformer a function returning the transformation
4827 * for an element, or null if there is no transformation (in
4828 * which case the action is not applied)
4829 * @param action the action
4830 * @return the task
4831 */
4832 public static <K,V,U> ForkJoinTask<Void> forEachKey
4833 (ConcurrentHashMapV8<K,V> map,
4834 Fun<? super K, ? extends U> transformer,
4835 Action<U> action) {
4836 if (transformer == null || action == null)
4837 throw new NullPointerException();
4838 return new ForEachTransformedKeyTask<K,V,U>
4839 (map, null, -1, null, transformer, action);
4840 }
4841
4842 /**
4843 * Returns a task that when invoked, returns a non-null result
4844 * from applying the given search function on each key, or
4845 * null if none. Upon success, further element processing is
4846 * suppressed and the results of any other parallel
4847 * invocations of the search function are ignored.
4848 *
4849 * @param map the map
4850 * @param searchFunction a function returning a non-null
4851 * result on success, else null
4852 * @return the task
4853 */
4854 public static <K,V,U> ForkJoinTask<U> searchKeys
4855 (ConcurrentHashMapV8<K,V> map,
4856 Fun<? super K, ? extends U> searchFunction) {
4857 if (searchFunction == null) throw new NullPointerException();
4858 return new SearchKeysTask<K,V,U>
4859 (map, null, -1, null, searchFunction,
4860 new AtomicReference<U>());
4861 }
4862
4863 /**
4864 * Returns a task that when invoked, returns the result of
4865 * accumulating all keys using the given reducer to combine
4866 * values, or null if none.
4867 *
4868 * @param map the map
4869 * @param reducer a commutative associative combining function
4870 * @return the task
4871 */
4872 public static <K,V> ForkJoinTask<K> reduceKeys
4873 (ConcurrentHashMapV8<K,V> map,
4874 BiFun<? super K, ? super K, ? extends K> reducer) {
4875 if (reducer == null) throw new NullPointerException();
4876 return new ReduceKeysTask<K,V>
4877 (map, null, -1, null, reducer);
4878 }
4879
4880 /**
4881 * Returns a task that when invoked, returns the result of
4882 * accumulating the given transformation of all keys using the given
4883 * reducer to combine values, or null if none.
4884 *
4885 * @param map the map
4886 * @param transformer a function returning the transformation
4887 * for an element, or null if there is no transformation (in
4888 * which case it is not combined).
4889 * @param reducer a commutative associative combining function
4890 * @return the task
4891 */
4892 public static <K,V,U> ForkJoinTask<U> reduceKeys
4893 (ConcurrentHashMapV8<K,V> map,
4894 Fun<? super K, ? extends U> transformer,
4895 BiFun<? super U, ? super U, ? extends U> reducer) {
4896 if (transformer == null || reducer == null)
4897 throw new NullPointerException();
4898 return new MapReduceKeysTask<K,V,U>
4899 (map, null, -1, null, transformer, reducer);
4900 }
4901
4902 /**
4903 * Returns a task that when invoked, returns the result of
4904 * accumulating the given transformation of all keys using the given
4905 * reducer to combine values, and the given basis as an
4906 * identity value.
4907 *
4908 * @param map the map
4909 * @param transformer a function returning the transformation
4910 * for an element
4911 * @param basis the identity (initial default value) for the reduction
4912 * @param reducer a commutative associative combining function
4913 * @return the task
4914 */
4915 public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
4916 (ConcurrentHashMapV8<K,V> map,
4917 ObjectToDouble<? super K> transformer,
4918 double basis,
4919 DoubleByDoubleToDouble reducer) {
4920 if (transformer == null || reducer == null)
4921 throw new NullPointerException();
4922 return new MapReduceKeysToDoubleTask<K,V>
4923 (map, null, -1, null, transformer, basis, reducer);
4924 }
4925
4926 /**
4927 * Returns a task that when invoked, returns the result of
4928 * accumulating the given transformation of all keys using the given
4929 * reducer to combine values, and the given basis as an
4930 * identity value.
4931 *
4932 * @param map the map
4933 * @param transformer a function returning the transformation
4934 * for an element
4935 * @param basis the identity (initial default value) for the reduction
4936 * @param reducer a commutative associative combining function
4937 * @return the task
4938 */
4939 public static <K,V> ForkJoinTask<Long> reduceKeysToLong
4940 (ConcurrentHashMapV8<K,V> map,
4941 ObjectToLong<? super K> transformer,
4942 long basis,
4943 LongByLongToLong reducer) {
4944 if (transformer == null || reducer == null)
4945 throw new NullPointerException();
4946 return new MapReduceKeysToLongTask<K,V>
4947 (map, null, -1, null, transformer, basis, reducer);
4948 }
4949
4950 /**
4951 * Returns a task that when invoked, returns the result of
4952 * accumulating the given transformation of all keys using the given
4953 * reducer to combine values, and the given basis as an
4954 * identity value.
4955 *
4956 * @param map the map
4957 * @param transformer a function returning the transformation
4958 * for an element
4959 * @param basis the identity (initial default value) for the reduction
4960 * @param reducer a commutative associative combining function
4961 * @return the task
4962 */
4963 public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
4964 (ConcurrentHashMapV8<K,V> map,
4965 ObjectToInt<? super K> transformer,
4966 int basis,
4967 IntByIntToInt reducer) {
4968 if (transformer == null || reducer == null)
4969 throw new NullPointerException();
4970 return new MapReduceKeysToIntTask<K,V>
4971 (map, null, -1, null, transformer, basis, reducer);
4972 }
4973
4974 /**
4975 * Returns a task that when invoked, performs the given action
4976 * for each value.
4977 *
4978 * @param map the map
4979 * @param action the action
4980 */
4981 public static <K,V> ForkJoinTask<Void> forEachValue
4982 (ConcurrentHashMapV8<K,V> map,
4983 Action<V> action) {
4984 if (action == null) throw new NullPointerException();
4985 return new ForEachValueTask<K,V>(map, null, -1, null, action);
4986 }
4987
4988 /**
4989 * Returns a task that when invoked, performs the given action
4990 * for each non-null transformation of each value.
4991 *
4992 * @param map the map
4993 * @param transformer a function returning the transformation
4994 * for an element, or null if there is no transformation (in
4995 * which case the action is not applied)
4996 * @param action the action
4997 */
4998 public static <K,V,U> ForkJoinTask<Void> forEachValue
4999 (ConcurrentHashMapV8<K,V> map,
5000 Fun<? super V, ? extends U> transformer,
5001 Action<U> action) {
5002 if (transformer == null || action == null)
5003 throw new NullPointerException();
5004 return new ForEachTransformedValueTask<K,V,U>
5005 (map, null, -1, null, transformer, action);
5006 }
5007
5008 /**
5009 * Returns a task that when invoked, returns a non-null result
5010 * from applying the given search function on each value, or
5011 * null if none. Upon success, further element processing is
5012 * suppressed and the results of any other parallel
5013 * invocations of the search function are ignored.
5014 *
5015 * @param map the map
5016 * @param searchFunction a function returning a non-null
5017 * result on success, else null
5018 * @return the task
5019 */
5020 public static <K,V,U> ForkJoinTask<U> searchValues
5021 (ConcurrentHashMapV8<K,V> map,
5022 Fun<? super V, ? extends U> searchFunction) {
5023 if (searchFunction == null) throw new NullPointerException();
5024 return new SearchValuesTask<K,V,U>
5025 (map, null, -1, null, searchFunction,
5026 new AtomicReference<U>());
5027 }
5028
5029 /**
5030 * Returns a task that when invoked, returns the result of
5031 * accumulating all values using the given reducer to combine
5032 * values, or null if none.
5033 *
5034 * @param map the map
5035 * @param reducer a commutative associative combining function
5036 * @return the task
5037 */
5038 public static <K,V> ForkJoinTask<V> reduceValues
5039 (ConcurrentHashMapV8<K,V> map,
5040 BiFun<? super V, ? super V, ? extends V> reducer) {
5041 if (reducer == null) throw new NullPointerException();
5042 return new ReduceValuesTask<K,V>
5043 (map, null, -1, null, reducer);
5044 }
5045
5046 /**
5047 * Returns a task that when invoked, returns the result of
5048 * accumulating the given transformation of all values using the
5049 * given reducer to combine values, or null if none.
5050 *
5051 * @param map the map
5052 * @param transformer a function returning the transformation
5053 * for an element, or null if there is no transformation (in
5054 * which case it is not combined).
5055 * @param reducer a commutative associative combining function
5056 * @return the task
5057 */
5058 public static <K,V,U> ForkJoinTask<U> reduceValues
5059 (ConcurrentHashMapV8<K,V> map,
5060 Fun<? super V, ? extends U> transformer,
5061 BiFun<? super U, ? super U, ? extends U> reducer) {
5062 if (transformer == null || reducer == null)
5063 throw new NullPointerException();
5064 return new MapReduceValuesTask<K,V,U>
5065 (map, null, -1, null, transformer, reducer);
5066 }
5067
5068 /**
5069 * Returns a task that when invoked, returns the result of
5070 * accumulating the given transformation of all values using the
5071 * given reducer to combine values, and the given basis as an
5072 * identity value.
5073 *
5074 * @param map the map
5075 * @param transformer a function returning the transformation
5076 * for an element
5077 * @param basis the identity (initial default value) for the reduction
5078 * @param reducer a commutative associative combining function
5079 * @return the task
5080 */
5081 public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5082 (ConcurrentHashMapV8<K,V> map,
5083 ObjectToDouble<? super V> transformer,
5084 double basis,
5085 DoubleByDoubleToDouble reducer) {
5086 if (transformer == null || reducer == null)
5087 throw new NullPointerException();
5088 return new MapReduceValuesToDoubleTask<K,V>
5089 (map, null, -1, null, transformer, basis, reducer);
5090 }
5091
5092 /**
5093 * Returns a task that when invoked, returns the result of
5094 * accumulating the given transformation of all values using the
5095 * given reducer to combine values, and the given basis as an
5096 * identity value.
5097 *
5098 * @param map the map
5099 * @param transformer a function returning the transformation
5100 * for an element
5101 * @param basis the identity (initial default value) for the reduction
5102 * @param reducer a commutative associative combining function
5103 * @return the task
5104 */
5105 public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5106 (ConcurrentHashMapV8<K,V> map,
5107 ObjectToLong<? super V> transformer,
5108 long basis,
5109 LongByLongToLong reducer) {
5110 if (transformer == null || reducer == null)
5111 throw new NullPointerException();
5112 return new MapReduceValuesToLongTask<K,V>
5113 (map, null, -1, null, transformer, basis, reducer);
5114 }
5115
5116 /**
5117 * Returns a task that when invoked, returns the result of
5118 * accumulating the given transformation of all values using the
5119 * given reducer to combine values, and the given basis as an
5120 * identity value.
5121 *
5122 * @param map the map
5123 * @param transformer a function returning the transformation
5124 * for an element
5125 * @param basis the identity (initial default value) for the reduction
5126 * @param reducer a commutative associative combining function
5127 * @return the task
5128 */
5129 public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5130 (ConcurrentHashMapV8<K,V> map,
5131 ObjectToInt<? super V> transformer,
5132 int basis,
5133 IntByIntToInt reducer) {
5134 if (transformer == null || reducer == null)
5135 throw new NullPointerException();
5136 return new MapReduceValuesToIntTask<K,V>
5137 (map, null, -1, null, transformer, basis, reducer);
5138 }
5139
5140 /**
5141 * Returns a task that when invoked, perform the given action
5142 * for each entry.
5143 *
5144 * @param map the map
5145 * @param action the action
5146 */
5147 public static <K,V> ForkJoinTask<Void> forEachEntry
5148 (ConcurrentHashMapV8<K,V> map,
5149 Action<Map.Entry<K,V>> action) {
5150 if (action == null) throw new NullPointerException();
5151 return new ForEachEntryTask<K,V>(map, null, -1, null, action);
5152 }
5153
5154 /**
5155 * Returns a task that when invoked, perform the given action
5156 * for each non-null transformation of each entry.
5157 *
5158 * @param map the map
5159 * @param transformer a function returning the transformation
5160 * for an element, or null if there is no transformation (in
5161 * which case the action is not applied)
5162 * @param action the action
5163 */
5164 public static <K,V,U> ForkJoinTask<Void> forEachEntry
5165 (ConcurrentHashMapV8<K,V> map,
5166 Fun<Map.Entry<K,V>, ? extends U> transformer,
5167 Action<U> action) {
5168 if (transformer == null || action == null)
5169 throw new NullPointerException();
5170 return new ForEachTransformedEntryTask<K,V,U>
5171 (map, null, -1, null, transformer, action);
5172 }
5173
5174 /**
5175 * Returns a task that when invoked, returns a non-null result
5176 * from applying the given search function on each entry, or
5177 * null if none. Upon success, further element processing is
5178 * suppressed and the results of any other parallel
5179 * invocations of the search function are ignored.
5180 *
5181 * @param map the map
5182 * @param searchFunction a function returning a non-null
5183 * result on success, else null
5184 * @return the task
5185 */
5186 public static <K,V,U> ForkJoinTask<U> searchEntries
5187 (ConcurrentHashMapV8<K,V> map,
5188 Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
5189 if (searchFunction == null) throw new NullPointerException();
5190 return new SearchEntriesTask<K,V,U>
5191 (map, null, -1, null, searchFunction,
5192 new AtomicReference<U>());
5193 }
5194
5195 /**
5196 * Returns a task that when invoked, returns the result of
5197 * accumulating all entries using the given reducer to combine
5198 * values, or null if none.
5199 *
5200 * @param map the map
5201 * @param reducer a commutative associative combining function
5202 * @return the task
5203 */
5204 public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5205 (ConcurrentHashMapV8<K,V> map,
5206 BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5207 if (reducer == null) throw new NullPointerException();
5208 return new ReduceEntriesTask<K,V>
5209 (map, null, -1, null, reducer);
5210 }
5211
5212 /**
5213 * Returns a task that when invoked, returns the result of
5214 * accumulating the given transformation of all entries using the
5215 * given reducer to combine values, or null if none.
5216 *
5217 * @param map the map
5218 * @param transformer a function returning the transformation
5219 * for an element, or null if there is no transformation (in
5220 * which case it is not combined).
5221 * @param reducer a commutative associative combining function
5222 * @return the task
5223 */
5224 public static <K,V,U> ForkJoinTask<U> reduceEntries
5225 (ConcurrentHashMapV8<K,V> map,
5226 Fun<Map.Entry<K,V>, ? extends U> transformer,
5227 BiFun<? super U, ? super U, ? extends U> reducer) {
5228 if (transformer == null || reducer == null)
5229 throw new NullPointerException();
5230 return new MapReduceEntriesTask<K,V,U>
5231 (map, null, -1, null, transformer, reducer);
5232 }
5233
5234 /**
5235 * Returns a task that when invoked, returns the result of
5236 * accumulating the given transformation of all entries using the
5237 * given reducer to combine values, and the given basis as an
5238 * identity value.
5239 *
5240 * @param map the map
5241 * @param transformer a function returning the transformation
5242 * for an element
5243 * @param basis the identity (initial default value) for the reduction
5244 * @param reducer a commutative associative combining function
5245 * @return the task
5246 */
5247 public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5248 (ConcurrentHashMapV8<K,V> map,
5249 ObjectToDouble<Map.Entry<K,V>> transformer,
5250 double basis,
5251 DoubleByDoubleToDouble reducer) {
5252 if (transformer == null || reducer == null)
5253 throw new NullPointerException();
5254 return new MapReduceEntriesToDoubleTask<K,V>
5255 (map, null, -1, null, transformer, basis, reducer);
5256 }
5257
5258 /**
5259 * Returns a task that when invoked, returns the result of
5260 * accumulating the given transformation of all entries using the
5261 * given reducer to combine values, and the given basis as an
5262 * identity value.
5263 *
5264 * @param map the map
5265 * @param transformer a function returning the transformation
5266 * for an element
5267 * @param basis the identity (initial default value) for the reduction
5268 * @param reducer a commutative associative combining function
5269 * @return the task
5270 */
5271 public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5272 (ConcurrentHashMapV8<K,V> map,
5273 ObjectToLong<Map.Entry<K,V>> transformer,
5274 long basis,
5275 LongByLongToLong reducer) {
5276 if (transformer == null || reducer == null)
5277 throw new NullPointerException();
5278 return new MapReduceEntriesToLongTask<K,V>
5279 (map, null, -1, null, transformer, basis, reducer);
5280 }
5281
5282 /**
5283 * Returns a task that when invoked, returns the result of
5284 * accumulating the given transformation of all entries using the
5285 * given reducer to combine values, and the given basis as an
5286 * identity value.
5287 *
5288 * @param map the map
5289 * @param transformer a function returning the transformation
5290 * for an element
5291 * @param basis the identity (initial default value) for the reduction
5292 * @param reducer a commutative associative combining function
5293 * @return the task
5294 */
5295 public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5296 (ConcurrentHashMapV8<K,V> map,
5297 ObjectToInt<Map.Entry<K,V>> transformer,
5298 int basis,
5299 IntByIntToInt reducer) {
5300 if (transformer == null || reducer == null)
5301 throw new NullPointerException();
5302 return new MapReduceEntriesToIntTask<K,V>
5303 (map, null, -1, null, transformer, basis, reducer);
5304 }
5305 }
5306
5307 // -------------------------------------------------------
5308
5309 /**
5310 * Base for FJ tasks for bulk operations. This adds a variant of
5311 * CountedCompleters and some split and merge bookkeeping to
5312 * iterator functionality. The forEach and reduce methods are
5313 * similar to those illustrated in CountedCompleter documentation,
5314 * except that bottom-up reduction completions perform them within
5315 * their compute methods. The search methods are like forEach
5316 * except they continually poll for success and exit early. Also,
5317 * exceptions are handled in a simpler manner, by just trying to
5318 * complete root task exceptionally.
5319 */
5320 @SuppressWarnings("serial") static abstract class BulkTask<K,V,R> extends Traverser<K,V,R> {
5321 final BulkTask<K,V,?> parent; // completion target
5322 int batch; // split control; -1 for unknown
5323 int pending; // completion control
5324
5325 BulkTask(ConcurrentHashMapV8<K,V> map, BulkTask<K,V,?> parent,
5326 int batch) {
5327 super(map);
5328 this.parent = parent;
5329 this.batch = batch;
5330 if (parent != null && map != null) { // split parent
5331 Node[] t;
5332 if ((t = parent.tab) == null &&
5333 (t = parent.tab = map.table) != null)
5334 parent.baseLimit = parent.baseSize = t.length;
5335 this.tab = t;
5336 this.baseSize = parent.baseSize;
5337 int hi = this.baseLimit = parent.baseLimit;
5338 parent.baseLimit = this.index = this.baseIndex =
5339 (hi + parent.baseIndex + 1) >>> 1;
5340 }
5341 }
5342
5343 /**
5344 * Forces root task to complete.
5345 * @param ex if null, complete normally, else exceptionally
5346 * @return false to simplify use
5347 */
5348 final boolean tryCompleteComputation(Throwable ex) {
5349 for (BulkTask<K,V,?> a = this;;) {
5350 BulkTask<K,V,?> p = a.parent;
5351 if (p == null) {
5352 if (ex != null)
5353 a.completeExceptionally(ex);
5354 else
5355 a.quietlyComplete();
5356 return false;
5357 }
5358 a = p;
5359 }
5360 }
5361
5362 /**
5363 * Version of tryCompleteComputation for function screening checks
5364 */
5365 final boolean abortOnNullFunction() {
5366 return tryCompleteComputation(new Error("Unexpected null function"));
5367 }
5368
5369 // utilities
5370
5371 /** CompareAndSet pending count */
5372 final boolean casPending(int cmp, int val) {
5373 return U.compareAndSwapInt(this, PENDING, cmp, val);
5374 }
5375
5376 /**
5377 * Returns approx exp2 of the number of times (minus one) to
5378 * split task by two before executing leaf action. This value
5379 * is faster to compute and more convenient to use as a guide
5380 * to splitting than is the depth, since it is used while
5381 * dividing by two anyway.
5382 */
5383 final int batch() {
5384 ConcurrentHashMapV8<K, V> m; int b; Node[] t; ForkJoinPool pool;
5385 if ((b = batch) < 0 && (m = map) != null) { // force initialization
5386 if ((t = tab) == null && (t = tab = m.table) != null)
5387 baseLimit = baseSize = t.length;
5388 if (t != null) {
5389 long n = m.counter.sum();
5390 int par = ((pool = getPool()) == null) ?
5391 ForkJoinPool.getCommonPoolParallelism() :
5392 pool.getParallelism();
5393 int sp = par << 3; // slack of 8
5394 b = batch = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
5395 }
5396 }
5397 return b;
5398 }
5399
5400 /**
5401 * Returns exportable snapshot entry.
5402 */
5403 static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
5404 return new AbstractMap.SimpleEntry<K,V>(k, v);
5405 }
5406
5407 // Unsafe mechanics
5408 private static final sun.misc.Unsafe U;
5409 private static final long PENDING;
5410 static {
5411 try {
5412 U = getUnsafe();
5413 PENDING = U.objectFieldOffset
5414 (BulkTask.class.getDeclaredField("pending"));
5415 } catch (Exception e) {
5416 throw new Error(e);
5417 }
5418 }
5419 }
5420
5421 /**
5422 * Base class for non-reductive actions
5423 */
5424 @SuppressWarnings("serial") static abstract class BulkAction<K,V,R> extends BulkTask<K,V,R> {
5425 BulkAction<K,V,?> nextTask;
5426 BulkAction(ConcurrentHashMapV8<K,V> map, BulkTask<K,V,?> parent,
5427 int batch, BulkAction<K,V,?> nextTask) {
5428 super(map, parent, batch);
5429 this.nextTask = nextTask;
5430 }
5431
5432 /**
5433 * Try to complete task and upward parents. Upon hitting
5434 * non-completed parent, if a non-FJ task, try to help out the
5435 * computation.
5436 */
5437 final void tryComplete(BulkAction<K,V,?> subtasks) {
5438 BulkTask<K,V,?> a = this, s = a;
5439 for (int c;;) {
5440 if ((c = a.pending) == 0) {
5441 if ((a = (s = a).parent) == null) {
5442 s.quietlyComplete();
5443 break;
5444 }
5445 }
5446 else if (a.casPending(c, c - 1)) {
5447 if (subtasks != null && !inForkJoinPool()) {
5448 while ((s = a.parent) != null)
5449 a = s;
5450 while (!a.isDone()) {
5451 BulkAction<K,V,?> next = subtasks.nextTask;
5452 if (subtasks.tryUnfork())
5453 subtasks.exec();
5454 if ((subtasks = next) == null)
5455 break;
5456 }
5457 }
5458 break;
5459 }
5460 }
5461 }
5462
5463 }
5464
5465 /*
5466 * Task classes. Coded in a regular but ugly format/style to
5467 * simplify checks that each variant differs in the right way from
5468 * others.
5469 */
5470
5471 @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5472 extends BulkAction<K,V,Void> {
5473 final Action<K> action;
5474 ForEachKeyTask
5475 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5476 ForEachKeyTask<K,V> nextTask,
5477 Action<K> action) {
5478 super(m, p, b, nextTask);
5479 this.action = action;
5480 }
5481 @SuppressWarnings("unchecked") public final boolean exec() {
5482 final Action<K> action = this.action;
5483 if (action == null)
5484 return abortOnNullFunction();
5485 ForEachKeyTask<K,V> subtasks = null;
5486 try {
5487 int b = batch(), c;
5488 while (b > 1 && baseIndex != baseLimit) {
5489 do {} while (!casPending(c = pending, c+1));
5490 (subtasks = new ForEachKeyTask<K,V>
5491 (map, this, b >>>= 1, subtasks, action)).fork();
5492 }
5493 while (advance() != null)
5494 action.apply((K)nextKey);
5495 } catch (Throwable ex) {
5496 return tryCompleteComputation(ex);
5497 }
5498 tryComplete(subtasks);
5499 return false;
5500 }
5501 }
5502
5503 @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5504 extends BulkAction<K,V,Void> {
5505 final Action<V> action;
5506 ForEachValueTask
5507 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5508 ForEachValueTask<K,V> nextTask,
5509 Action<V> action) {
5510 super(m, p, b, nextTask);
5511 this.action = action;
5512 }
5513 @SuppressWarnings("unchecked") public final boolean exec() {
5514 final Action<V> action = this.action;
5515 if (action == null)
5516 return abortOnNullFunction();
5517 ForEachValueTask<K,V> subtasks = null;
5518 try {
5519 int b = batch(), c;
5520 while (b > 1 && baseIndex != baseLimit) {
5521 do {} while (!casPending(c = pending, c+1));
5522 (subtasks = new ForEachValueTask<K,V>
5523 (map, this, b >>>= 1, subtasks, action)).fork();
5524 }
5525 Object v;
5526 while ((v = advance()) != null)
5527 action.apply((V)v);
5528 } catch (Throwable ex) {
5529 return tryCompleteComputation(ex);
5530 }
5531 tryComplete(subtasks);
5532 return false;
5533 }
5534 }
5535
5536 @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5537 extends BulkAction<K,V,Void> {
5538 final Action<Entry<K,V>> action;
5539 ForEachEntryTask
5540 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5541 ForEachEntryTask<K,V> nextTask,
5542 Action<Entry<K,V>> action) {
5543 super(m, p, b, nextTask);
5544 this.action = action;
5545 }
5546 @SuppressWarnings("unchecked") public final boolean exec() {
5547 final Action<Entry<K,V>> action = this.action;
5548 if (action == null)
5549 return abortOnNullFunction();
5550 ForEachEntryTask<K,V> subtasks = null;
5551 try {
5552 int b = batch(), c;
5553 while (b > 1 && baseIndex != baseLimit) {
5554 do {} while (!casPending(c = pending, c+1));
5555 (subtasks = new ForEachEntryTask<K,V>
5556 (map, this, b >>>= 1, subtasks, action)).fork();
5557 }
5558 Object v;
5559 while ((v = advance()) != null)
5560 action.apply(entryFor((K)nextKey, (V)v));
5561 } catch (Throwable ex) {
5562 return tryCompleteComputation(ex);
5563 }
5564 tryComplete(subtasks);
5565 return false;
5566 }
5567 }
5568
5569 @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5570 extends BulkAction<K,V,Void> {
5571 final BiAction<K,V> action;
5572 ForEachMappingTask
5573 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5574 ForEachMappingTask<K,V> nextTask,
5575 BiAction<K,V> action) {
5576 super(m, p, b, nextTask);
5577 this.action = action;
5578 }
5579 @SuppressWarnings("unchecked") public final boolean exec() {
5580 final BiAction<K,V> action = this.action;
5581 if (action == null)
5582 return abortOnNullFunction();
5583 ForEachMappingTask<K,V> subtasks = null;
5584 try {
5585 int b = batch(), c;
5586 while (b > 1 && baseIndex != baseLimit) {
5587 do {} while (!casPending(c = pending, c+1));
5588 (subtasks = new ForEachMappingTask<K,V>
5589 (map, this, b >>>= 1, subtasks, action)).fork();
5590 }
5591 Object v;
5592 while ((v = advance()) != null)
5593 action.apply((K)nextKey, (V)v);
5594 } catch (Throwable ex) {
5595 return tryCompleteComputation(ex);
5596 }
5597 tryComplete(subtasks);
5598 return false;
5599 }
5600 }
5601
5602 @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5603 extends BulkAction<K,V,Void> {
5604 final Fun<? super K, ? extends U> transformer;
5605 final Action<U> action;
5606 ForEachTransformedKeyTask
5607 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5608 ForEachTransformedKeyTask<K,V,U> nextTask,
5609 Fun<? super K, ? extends U> transformer,
5610 Action<U> action) {
5611 super(m, p, b, nextTask);
5612 this.transformer = transformer;
5613 this.action = action;
5614
5615 }
5616 @SuppressWarnings("unchecked") public final boolean exec() {
5617 final Fun<? super K, ? extends U> transformer =
5618 this.transformer;
5619 final Action<U> action = this.action;
5620 if (transformer == null || action == null)
5621 return abortOnNullFunction();
5622 ForEachTransformedKeyTask<K,V,U> subtasks = null;
5623 try {
5624 int b = batch(), c;
5625 while (b > 1 && baseIndex != baseLimit) {
5626 do {} while (!casPending(c = pending, c+1));
5627 (subtasks = new ForEachTransformedKeyTask<K,V,U>
5628 (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5629 }
5630 U u;
5631 while (advance() != null) {
5632 if ((u = transformer.apply((K)nextKey)) != null)
5633 action.apply(u);
5634 }
5635 } catch (Throwable ex) {
5636 return tryCompleteComputation(ex);
5637 }
5638 tryComplete(subtasks);
5639 return false;
5640 }
5641 }
5642
5643 @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5644 extends BulkAction<K,V,Void> {
5645 final Fun<? super V, ? extends U> transformer;
5646 final Action<U> action;
5647 ForEachTransformedValueTask
5648 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5649 ForEachTransformedValueTask<K,V,U> nextTask,
5650 Fun<? super V, ? extends U> transformer,
5651 Action<U> action) {
5652 super(m, p, b, nextTask);
5653 this.transformer = transformer;
5654 this.action = action;
5655
5656 }
5657 @SuppressWarnings("unchecked") public final boolean exec() {
5658 final Fun<? super V, ? extends U> transformer =
5659 this.transformer;
5660 final Action<U> action = this.action;
5661 if (transformer == null || action == null)
5662 return abortOnNullFunction();
5663 ForEachTransformedValueTask<K,V,U> subtasks = null;
5664 try {
5665 int b = batch(), c;
5666 while (b > 1 && baseIndex != baseLimit) {
5667 do {} while (!casPending(c = pending, c+1));
5668 (subtasks = new ForEachTransformedValueTask<K,V,U>
5669 (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5670 }
5671 Object v; U u;
5672 while ((v = advance()) != null) {
5673 if ((u = transformer.apply((V)v)) != null)
5674 action.apply(u);
5675 }
5676 } catch (Throwable ex) {
5677 return tryCompleteComputation(ex);
5678 }
5679 tryComplete(subtasks);
5680 return false;
5681 }
5682 }
5683
5684 @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5685 extends BulkAction<K,V,Void> {
5686 final Fun<Map.Entry<K,V>, ? extends U> transformer;
5687 final Action<U> action;
5688 ForEachTransformedEntryTask
5689 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5690 ForEachTransformedEntryTask<K,V,U> nextTask,
5691 Fun<Map.Entry<K,V>, ? extends U> transformer,
5692 Action<U> action) {
5693 super(m, p, b, nextTask);
5694 this.transformer = transformer;
5695 this.action = action;
5696
5697 }
5698 @SuppressWarnings("unchecked") public final boolean exec() {
5699 final Fun<Map.Entry<K,V>, ? extends U> transformer =
5700 this.transformer;
5701 final Action<U> action = this.action;
5702 if (transformer == null || action == null)
5703 return abortOnNullFunction();
5704 ForEachTransformedEntryTask<K,V,U> subtasks = null;
5705 try {
5706 int b = batch(), c;
5707 while (b > 1 && baseIndex != baseLimit) {
5708 do {} while (!casPending(c = pending, c+1));
5709 (subtasks = new ForEachTransformedEntryTask<K,V,U>
5710 (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5711 }
5712 Object v; U u;
5713 while ((v = advance()) != null) {
5714 if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
5715 action.apply(u);
5716 }
5717 } catch (Throwable ex) {
5718 return tryCompleteComputation(ex);
5719 }
5720 tryComplete(subtasks);
5721 return false;
5722 }
5723 }
5724
5725 @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5726 extends BulkAction<K,V,Void> {
5727 final BiFun<? super K, ? super V, ? extends U> transformer;
5728 final Action<U> action;
5729 ForEachTransformedMappingTask
5730 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5731 ForEachTransformedMappingTask<K,V,U> nextTask,
5732 BiFun<? super K, ? super V, ? extends U> transformer,
5733 Action<U> action) {
5734 super(m, p, b, nextTask);
5735 this.transformer = transformer;
5736 this.action = action;
5737
5738 }
5739 @SuppressWarnings("unchecked") public final boolean exec() {
5740 final BiFun<? super K, ? super V, ? extends U> transformer =
5741 this.transformer;
5742 final Action<U> action = this.action;
5743 if (transformer == null || action == null)
5744 return abortOnNullFunction();
5745 ForEachTransformedMappingTask<K,V,U> subtasks = null;
5746 try {
5747 int b = batch(), c;
5748 while (b > 1 && baseIndex != baseLimit) {
5749 do {} while (!casPending(c = pending, c+1));
5750 (subtasks = new ForEachTransformedMappingTask<K,V,U>
5751 (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5752 }
5753 Object v; U u;
5754 while ((v = advance()) != null) {
5755 if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5756 action.apply(u);
5757 }
5758 } catch (Throwable ex) {
5759 return tryCompleteComputation(ex);
5760 }
5761 tryComplete(subtasks);
5762 return false;
5763 }
5764 }
5765
5766 @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5767 extends BulkAction<K,V,U> {
5768 final Fun<? super K, ? extends U> searchFunction;
5769 final AtomicReference<U> result;
5770 SearchKeysTask
5771 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5772 SearchKeysTask<K,V,U> nextTask,
5773 Fun<? super K, ? extends U> searchFunction,
5774 AtomicReference<U> result) {
5775 super(m, p, b, nextTask);
5776 this.searchFunction = searchFunction; this.result = result;
5777 }
5778 @SuppressWarnings("unchecked") public final boolean exec() {
5779 AtomicReference<U> result = this.result;
5780 final Fun<? super K, ? extends U> searchFunction =
5781 this.searchFunction;
5782 if (searchFunction == null || result == null)
5783 return abortOnNullFunction();
5784 SearchKeysTask<K,V,U> subtasks = null;
5785 try {
5786 int b = batch(), c;
5787 while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5788 do {} while (!casPending(c = pending, c+1));
5789 (subtasks = new SearchKeysTask<K,V,U>
5790 (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
5791 }
5792 U u;
5793 while (result.get() == null && advance() != null) {
5794 if ((u = searchFunction.apply((K)nextKey)) != null) {
5795 if (result.compareAndSet(null, u))
5796 tryCompleteComputation(null);
5797 break;
5798 }
5799 }
5800 } catch (Throwable ex) {
5801 return tryCompleteComputation(ex);
5802 }
5803 tryComplete(subtasks);
5804 return false;
5805 }
5806 public final U getRawResult() { return result.get(); }
5807 }
5808
5809 @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5810 extends BulkAction<K,V,U> {
5811 final Fun<? super V, ? extends U> searchFunction;
5812 final AtomicReference<U> result;
5813 SearchValuesTask
5814 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5815 SearchValuesTask<K,V,U> nextTask,
5816 Fun<? super V, ? extends U> searchFunction,
5817 AtomicReference<U> result) {
5818 super(m, p, b, nextTask);
5819 this.searchFunction = searchFunction; this.result = result;
5820 }
5821 @SuppressWarnings("unchecked") public final boolean exec() {
5822 AtomicReference<U> result = this.result;
5823 final Fun<? super V, ? extends U> searchFunction =
5824 this.searchFunction;
5825 if (searchFunction == null || result == null)
5826 return abortOnNullFunction();
5827 SearchValuesTask<K,V,U> subtasks = null;
5828 try {
5829 int b = batch(), c;
5830 while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5831 do {} while (!casPending(c = pending, c+1));
5832 (subtasks = new SearchValuesTask<K,V,U>
5833 (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
5834 }
5835 Object v; U u;
5836 while (result.get() == null && (v = advance()) != null) {
5837 if ((u = searchFunction.apply((V)v)) != null) {
5838 if (result.compareAndSet(null, u))
5839 tryCompleteComputation(null);
5840 break;
5841 }
5842 }
5843 } catch (Throwable ex) {
5844 return tryCompleteComputation(ex);
5845 }
5846 tryComplete(subtasks);
5847 return false;
5848 }
5849 public final U getRawResult() { return result.get(); }
5850 }
5851
5852 @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5853 extends BulkAction<K,V,U> {
5854 final Fun<Entry<K,V>, ? extends U> searchFunction;
5855 final AtomicReference<U> result;
5856 SearchEntriesTask
5857 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5858 SearchEntriesTask<K,V,U> nextTask,
5859 Fun<Entry<K,V>, ? extends U> searchFunction,
5860 AtomicReference<U> result) {
5861 super(m, p, b, nextTask);
5862 this.searchFunction = searchFunction; this.result = result;
5863 }
5864 @SuppressWarnings("unchecked") public final boolean exec() {
5865 AtomicReference<U> result = this.result;
5866 final Fun<Entry<K,V>, ? extends U> searchFunction =
5867 this.searchFunction;
5868 if (searchFunction == null || result == null)
5869 return abortOnNullFunction();
5870 SearchEntriesTask<K,V,U> subtasks = null;
5871 try {
5872 int b = batch(), c;
5873 while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5874 do {} while (!casPending(c = pending, c+1));
5875 (subtasks = new SearchEntriesTask<K,V,U>
5876 (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
5877 }
5878 Object v; U u;
5879 while (result.get() == null && (v = advance()) != null) {
5880 if ((u = searchFunction.apply(entryFor((K)nextKey, (V)v))) != null) {
5881 if (result.compareAndSet(null, u))
5882 tryCompleteComputation(null);
5883 break;
5884 }
5885 }
5886 } catch (Throwable ex) {
5887 return tryCompleteComputation(ex);
5888 }
5889 tryComplete(subtasks);
5890 return false;
5891 }
5892 public final U getRawResult() { return result.get(); }
5893 }
5894
5895 @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5896 extends BulkAction<K,V,U> {
5897 final BiFun<? super K, ? super V, ? extends U> searchFunction;
5898 final AtomicReference<U> result;
5899 SearchMappingsTask
5900 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5901 SearchMappingsTask<K,V,U> nextTask,
5902 BiFun<? super K, ? super V, ? extends U> searchFunction,
5903 AtomicReference<U> result) {
5904 super(m, p, b, nextTask);
5905 this.searchFunction = searchFunction; this.result = result;
5906 }
5907 @SuppressWarnings("unchecked") public final boolean exec() {
5908 AtomicReference<U> result = this.result;
5909 final BiFun<? super K, ? super V, ? extends U> searchFunction =
5910 this.searchFunction;
5911 if (searchFunction == null || result == null)
5912 return abortOnNullFunction();
5913 SearchMappingsTask<K,V,U> subtasks = null;
5914 try {
5915 int b = batch(), c;
5916 while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5917 do {} while (!casPending(c = pending, c+1));
5918 (subtasks = new SearchMappingsTask<K,V,U>
5919 (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
5920 }
5921 Object v; U u;
5922 while (result.get() == null && (v = advance()) != null) {
5923 if ((u = searchFunction.apply((K)nextKey, (V)v)) != null) {
5924 if (result.compareAndSet(null, u))
5925 tryCompleteComputation(null);
5926 break;
5927 }
5928 }
5929 } catch (Throwable ex) {
5930 return tryCompleteComputation(ex);
5931 }
5932 tryComplete(subtasks);
5933 return false;
5934 }
5935 public final U getRawResult() { return result.get(); }
5936 }
5937
5938 @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5939 extends BulkTask<K,V,K> {
5940 final BiFun<? super K, ? super K, ? extends K> reducer;
5941 K result;
5942 ReduceKeysTask<K,V> rights, nextRight;
5943 ReduceKeysTask
5944 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5945 ReduceKeysTask<K,V> nextRight,
5946 BiFun<? super K, ? super K, ? extends K> reducer) {
5947 super(m, p, b); this.nextRight = nextRight;
5948 this.reducer = reducer;
5949 }
5950 @SuppressWarnings("unchecked") public final boolean exec() {
5951 final BiFun<? super K, ? super K, ? extends K> reducer =
5952 this.reducer;
5953 if (reducer == null)
5954 return abortOnNullFunction();
5955 try {
5956 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5957 do {} while (!casPending(c = pending, c+1));
5958 (rights = new ReduceKeysTask<K,V>
5959 (map, this, b >>>= 1, rights, reducer)).fork();
5960 }
5961 K r = null;
5962 while (advance() != null) {
5963 K u = (K)nextKey;
5964 r = (r == null) ? u : reducer.apply(r, u);
5965 }
5966 result = r;
5967 for (ReduceKeysTask<K,V> t = this, s;;) {
5968 int c; BulkTask<K,V,?> par; K tr, sr;
5969 if ((c = t.pending) == 0) {
5970 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5971 if ((sr = s.result) != null)
5972 t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5973 }
5974 if ((par = t.parent) == null ||
5975 !(par instanceof ReduceKeysTask)) {
5976 t.quietlyComplete();
5977 break;
5978 }
5979 t = (ReduceKeysTask<K,V>)par;
5980 }
5981 else if (t.casPending(c, c - 1))
5982 break;
5983 }
5984 } catch (Throwable ex) {
5985 return tryCompleteComputation(ex);
5986 }
5987 ReduceKeysTask<K,V> s = rights;
5988 if (s != null && !inForkJoinPool()) {
5989 do {
5990 if (s.tryUnfork())
5991 s.exec();
5992 } while ((s = s.nextRight) != null);
5993 }
5994 return false;
5995 }
5996 public final K getRawResult() { return result; }
5997 }
5998
5999 @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
6000 extends BulkTask<K,V,V> {
6001 final BiFun<? super V, ? super V, ? extends V> reducer;
6002 V result;
6003 ReduceValuesTask<K,V> rights, nextRight;
6004 ReduceValuesTask
6005 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6006 ReduceValuesTask<K,V> nextRight,
6007 BiFun<? super V, ? super V, ? extends V> reducer) {
6008 super(m, p, b); this.nextRight = nextRight;
6009 this.reducer = reducer;
6010 }
6011 @SuppressWarnings("unchecked") public final boolean exec() {
6012 final BiFun<? super V, ? super V, ? extends V> reducer =
6013 this.reducer;
6014 if (reducer == null)
6015 return abortOnNullFunction();
6016 try {
6017 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6018 do {} while (!casPending(c = pending, c+1));
6019 (rights = new ReduceValuesTask<K,V>
6020 (map, this, b >>>= 1, rights, reducer)).fork();
6021 }
6022 V r = null;
6023 Object v;
6024 while ((v = advance()) != null) {
6025 V u = (V)v;
6026 r = (r == null) ? u : reducer.apply(r, u);
6027 }
6028 result = r;
6029 for (ReduceValuesTask<K,V> t = this, s;;) {
6030 int c; BulkTask<K,V,?> par; V tr, sr;
6031 if ((c = t.pending) == 0) {
6032 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6033 if ((sr = s.result) != null)
6034 t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
6035 }
6036 if ((par = t.parent) == null ||
6037 !(par instanceof ReduceValuesTask)) {
6038 t.quietlyComplete();
6039 break;
6040 }
6041 t = (ReduceValuesTask<K,V>)par;
6042 }
6043 else if (t.casPending(c, c - 1))
6044 break;
6045 }
6046 } catch (Throwable ex) {
6047 return tryCompleteComputation(ex);
6048 }
6049 ReduceValuesTask<K,V> s = rights;
6050 if (s != null && !inForkJoinPool()) {
6051 do {
6052 if (s.tryUnfork())
6053 s.exec();
6054 } while ((s = s.nextRight) != null);
6055 }
6056 return false;
6057 }
6058 public final V getRawResult() { return result; }
6059 }
6060
6061 @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
6062 extends BulkTask<K,V,Map.Entry<K,V>> {
6063 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6064 Map.Entry<K,V> result;
6065 ReduceEntriesTask<K,V> rights, nextRight;
6066 ReduceEntriesTask
6067 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6068 ReduceEntriesTask<K,V> nextRight,
6069 BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
6070 super(m, p, b); this.nextRight = nextRight;
6071 this.reducer = reducer;
6072 }
6073 @SuppressWarnings("unchecked") public final boolean exec() {
6074 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer =
6075 this.reducer;
6076 if (reducer == null)
6077 return abortOnNullFunction();
6078 try {
6079 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6080 do {} while (!casPending(c = pending, c+1));
6081 (rights = new ReduceEntriesTask<K,V>
6082 (map, this, b >>>= 1, rights, reducer)).fork();
6083 }
6084 Map.Entry<K,V> r = null;
6085 Object v;
6086 while ((v = advance()) != null) {
6087 Map.Entry<K,V> u = entryFor((K)nextKey, (V)v);
6088 r = (r == null) ? u : reducer.apply(r, u);
6089 }
6090 result = r;
6091 for (ReduceEntriesTask<K,V> t = this, s;;) {
6092 int c; BulkTask<K,V,?> par; Map.Entry<K,V> tr, sr;
6093 if ((c = t.pending) == 0) {
6094 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6095 if ((sr = s.result) != null)
6096 t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
6097 }
6098 if ((par = t.parent) == null ||
6099 !(par instanceof ReduceEntriesTask)) {
6100 t.quietlyComplete();
6101 break;
6102 }
6103 t = (ReduceEntriesTask<K,V>)par;
6104 }
6105 else if (t.casPending(c, c - 1))
6106 break;
6107 }
6108 } catch (Throwable ex) {
6109 return tryCompleteComputation(ex);
6110 }
6111 ReduceEntriesTask<K,V> s = rights;
6112 if (s != null && !inForkJoinPool()) {
6113 do {
6114 if (s.tryUnfork())
6115 s.exec();
6116 } while ((s = s.nextRight) != null);
6117 }
6118 return false;
6119 }
6120 public final Map.Entry<K,V> getRawResult() { return result; }
6121 }
6122
6123 @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
6124 extends BulkTask<K,V,U> {
6125 final Fun<? super K, ? extends U> transformer;
6126 final BiFun<? super U, ? super U, ? extends U> reducer;
6127 U result;
6128 MapReduceKeysTask<K,V,U> rights, nextRight;
6129 MapReduceKeysTask
6130 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6131 MapReduceKeysTask<K,V,U> nextRight,
6132 Fun<? super K, ? extends U> transformer,
6133 BiFun<? super U, ? super U, ? extends U> reducer) {
6134 super(m, p, b); this.nextRight = nextRight;
6135 this.transformer = transformer;
6136 this.reducer = reducer;
6137 }
6138 @SuppressWarnings("unchecked") public final boolean exec() {
6139 final Fun<? super K, ? extends U> transformer =
6140 this.transformer;
6141 final BiFun<? super U, ? super U, ? extends U> reducer =
6142 this.reducer;
6143 if (transformer == null || reducer == null)
6144 return abortOnNullFunction();
6145 try {
6146 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6147 do {} while (!casPending(c = pending, c+1));
6148 (rights = new MapReduceKeysTask<K,V,U>
6149 (map, this, b >>>= 1, rights, transformer, reducer)).fork();
6150 }
6151 U r = null, u;
6152 while (advance() != null) {
6153 if ((u = transformer.apply((K)nextKey)) != null)
6154 r = (r == null) ? u : reducer.apply(r, u);
6155 }
6156 result = r;
6157 for (MapReduceKeysTask<K,V,U> t = this, s;;) {
6158 int c; BulkTask<K,V,?> par; U tr, sr;
6159 if ((c = t.pending) == 0) {
6160 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6161 if ((sr = s.result) != null)
6162 t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
6163 }
6164 if ((par = t.parent) == null ||
6165 !(par instanceof MapReduceKeysTask)) {
6166 t.quietlyComplete();
6167 break;
6168 }
6169 t = (MapReduceKeysTask<K,V,U>)par;
6170 }
6171 else if (t.casPending(c, c - 1))
6172 break;
6173 }
6174 } catch (Throwable ex) {
6175 return tryCompleteComputation(ex);
6176 }
6177 MapReduceKeysTask<K,V,U> s = rights;
6178 if (s != null && !inForkJoinPool()) {
6179 do {
6180 if (s.tryUnfork())
6181 s.exec();
6182 } while ((s = s.nextRight) != null);
6183 }
6184 return false;
6185 }
6186 public final U getRawResult() { return result; }
6187 }
6188
6189 @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
6190 extends BulkTask<K,V,U> {
6191 final Fun<? super V, ? extends U> transformer;
6192 final BiFun<? super U, ? super U, ? extends U> reducer;
6193 U result;
6194 MapReduceValuesTask<K,V,U> rights, nextRight;
6195 MapReduceValuesTask
6196 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6197 MapReduceValuesTask<K,V,U> nextRight,
6198 Fun<? super V, ? extends U> transformer,
6199 BiFun<? super U, ? super U, ? extends U> reducer) {
6200 super(m, p, b); this.nextRight = nextRight;
6201 this.transformer = transformer;
6202 this.reducer = reducer;
6203 }
6204 @SuppressWarnings("unchecked") public final boolean exec() {
6205 final Fun<? super V, ? extends U> transformer =
6206 this.transformer;
6207 final BiFun<? super U, ? super U, ? extends U> reducer =
6208 this.reducer;
6209 if (transformer == null || reducer == null)
6210 return abortOnNullFunction();
6211 try {
6212 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6213 do {} while (!casPending(c = pending, c+1));
6214 (rights = new MapReduceValuesTask<K,V,U>
6215 (map, this, b >>>= 1, rights, transformer, reducer)).fork();
6216 }
6217 U r = null, u;
6218 Object v;
6219 while ((v = advance()) != null) {
6220 if ((u = transformer.apply((V)v)) != null)
6221 r = (r == null) ? u : reducer.apply(r, u);
6222 }
6223 result = r;
6224 for (MapReduceValuesTask<K,V,U> t = this, s;;) {
6225 int c; BulkTask<K,V,?> par; U tr, sr;
6226 if ((c = t.pending) == 0) {
6227 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6228 if ((sr = s.result) != null)
6229 t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
6230 }
6231 if ((par = t.parent) == null ||
6232 !(par instanceof MapReduceValuesTask)) {
6233 t.quietlyComplete();
6234 break;
6235 }
6236 t = (MapReduceValuesTask<K,V,U>)par;
6237 }
6238 else if (t.casPending(c, c - 1))
6239 break;
6240 }
6241 } catch (Throwable ex) {
6242 return tryCompleteComputation(ex);
6243 }
6244 MapReduceValuesTask<K,V,U> s = rights;
6245 if (s != null && !inForkJoinPool()) {
6246 do {
6247 if (s.tryUnfork())
6248 s.exec();
6249 } while ((s = s.nextRight) != null);
6250 }
6251 return false;
6252 }
6253 public final U getRawResult() { return result; }
6254 }
6255
6256 @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
6257 extends BulkTask<K,V,U> {
6258 final Fun<Map.Entry<K,V>, ? extends U> transformer;
6259 final BiFun<? super U, ? super U, ? extends U> reducer;
6260 U result;
6261 MapReduceEntriesTask<K,V,U> rights, nextRight;
6262 MapReduceEntriesTask
6263 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6264 MapReduceEntriesTask<K,V,U> nextRight,
6265 Fun<Map.Entry<K,V>, ? extends U> transformer,
6266 BiFun<? super U, ? super U, ? extends U> reducer) {
6267 super(m, p, b); this.nextRight = nextRight;
6268 this.transformer = transformer;
6269 this.reducer = reducer;
6270 }
6271 @SuppressWarnings("unchecked") public final boolean exec() {
6272 final Fun<Map.Entry<K,V>, ? extends U> transformer =
6273 this.transformer;
6274 final BiFun<? super U, ? super U, ? extends U> reducer =
6275 this.reducer;
6276 if (transformer == null || reducer == null)
6277 return abortOnNullFunction();
6278 try {
6279 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6280 do {} while (!casPending(c = pending, c+1));
6281 (rights = new MapReduceEntriesTask<K,V,U>
6282 (map, this, b >>>= 1, rights, transformer, reducer)).fork();
6283 }
6284 U r = null, u;
6285 Object v;
6286 while ((v = advance()) != null) {
6287 if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
6288 r = (r == null) ? u : reducer.apply(r, u);
6289 }
6290 result = r;
6291 for (MapReduceEntriesTask<K,V,U> t = this, s;;) {
6292 int c; BulkTask<K,V,?> par; U tr, sr;
6293 if ((c = t.pending) == 0) {
6294 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6295 if ((sr = s.result) != null)
6296 t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
6297 }
6298 if ((par = t.parent) == null ||
6299 !(par instanceof MapReduceEntriesTask)) {
6300 t.quietlyComplete();
6301 break;
6302 }
6303 t = (MapReduceEntriesTask<K,V,U>)par;
6304 }
6305 else if (t.casPending(c, c - 1))
6306 break;
6307 }
6308 } catch (Throwable ex) {
6309 return tryCompleteComputation(ex);
6310 }
6311 MapReduceEntriesTask<K,V,U> s = rights;
6312 if (s != null && !inForkJoinPool()) {
6313 do {
6314 if (s.tryUnfork())
6315 s.exec();
6316 } while ((s = s.nextRight) != null);
6317 }
6318 return false;
6319 }
6320 public final U getRawResult() { return result; }
6321 }
6322
6323 @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
6324 extends BulkTask<K,V,U> {
6325 final BiFun<? super K, ? super V, ? extends U> transformer;
6326 final BiFun<? super U, ? super U, ? extends U> reducer;
6327 U result;
6328 MapReduceMappingsTask<K,V,U> rights, nextRight;
6329 MapReduceMappingsTask
6330 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6331 MapReduceMappingsTask<K,V,U> nextRight,
6332 BiFun<? super K, ? super V, ? extends U> transformer,
6333 BiFun<? super U, ? super U, ? extends U> reducer) {
6334 super(m, p, b); this.nextRight = nextRight;
6335 this.transformer = transformer;
6336 this.reducer = reducer;
6337 }
6338 @SuppressWarnings("unchecked") public final boolean exec() {
6339 final BiFun<? super K, ? super V, ? extends U> transformer =
6340 this.transformer;
6341 final BiFun<? super U, ? super U, ? extends U> reducer =
6342 this.reducer;
6343 if (transformer == null || reducer == null)
6344 return abortOnNullFunction();
6345 try {
6346 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6347 do {} while (!casPending(c = pending, c+1));
6348 (rights = new MapReduceMappingsTask<K,V,U>
6349 (map, this, b >>>= 1, rights, transformer, reducer)).fork();
6350 }
6351 U r = null, u;
6352 Object v;
6353 while ((v = advance()) != null) {
6354 if ((u = transformer.apply((K)nextKey, (V)v)) != null)
6355 r = (r == null) ? u : reducer.apply(r, u);
6356 }
6357 result = r;
6358 for (MapReduceMappingsTask<K,V,U> t = this, s;;) {
6359 int c; BulkTask<K,V,?> par; U tr, sr;
6360 if ((c = t.pending) == 0) {
6361 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6362 if ((sr = s.result) != null)
6363 t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
6364 }
6365 if ((par = t.parent) == null ||
6366 !(par instanceof MapReduceMappingsTask)) {
6367 t.quietlyComplete();
6368 break;
6369 }
6370 t = (MapReduceMappingsTask<K,V,U>)par;
6371 }
6372 else if (t.casPending(c, c - 1))
6373 break;
6374 }
6375 } catch (Throwable ex) {
6376 return tryCompleteComputation(ex);
6377 }
6378 MapReduceMappingsTask<K,V,U> s = rights;
6379 if (s != null && !inForkJoinPool()) {
6380 do {
6381 if (s.tryUnfork())
6382 s.exec();
6383 } while ((s = s.nextRight) != null);
6384 }
6385 return false;
6386 }
6387 public final U getRawResult() { return result; }
6388 }
6389
6390 @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
6391 extends BulkTask<K,V,Double> {
6392 final ObjectToDouble<? super K> transformer;
6393 final DoubleByDoubleToDouble reducer;
6394 final double basis;
6395 double result;
6396 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
6397 MapReduceKeysToDoubleTask
6398 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6399 MapReduceKeysToDoubleTask<K,V> nextRight,
6400 ObjectToDouble<? super K> transformer,
6401 double basis,
6402 DoubleByDoubleToDouble reducer) {
6403 super(m, p, b); this.nextRight = nextRight;
6404 this.transformer = transformer;
6405 this.basis = basis; this.reducer = reducer;
6406 }
6407 @SuppressWarnings("unchecked") public final boolean exec() {
6408 final ObjectToDouble<? super K> transformer =
6409 this.transformer;
6410 final DoubleByDoubleToDouble reducer = this.reducer;
6411 if (transformer == null || reducer == null)
6412 return abortOnNullFunction();
6413 try {
6414 final double id = this.basis;
6415 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6416 do {} while (!casPending(c = pending, c+1));
6417 (rights = new MapReduceKeysToDoubleTask<K,V>
6418 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6419 }
6420 double r = id;
6421 while (advance() != null)
6422 r = reducer.apply(r, transformer.apply((K)nextKey));
6423 result = r;
6424 for (MapReduceKeysToDoubleTask<K,V> t = this, s;;) {
6425 int c; BulkTask<K,V,?> par;
6426 if ((c = t.pending) == 0) {
6427 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6428 t.result = reducer.apply(t.result, s.result);
6429 }
6430 if ((par = t.parent) == null ||
6431 !(par instanceof MapReduceKeysToDoubleTask)) {
6432 t.quietlyComplete();
6433 break;
6434 }
6435 t = (MapReduceKeysToDoubleTask<K,V>)par;
6436 }
6437 else if (t.casPending(c, c - 1))
6438 break;
6439 }
6440 } catch (Throwable ex) {
6441 return tryCompleteComputation(ex);
6442 }
6443 MapReduceKeysToDoubleTask<K,V> s = rights;
6444 if (s != null && !inForkJoinPool()) {
6445 do {
6446 if (s.tryUnfork())
6447 s.exec();
6448 } while ((s = s.nextRight) != null);
6449 }
6450 return false;
6451 }
6452 public final Double getRawResult() { return result; }
6453 }
6454
6455 @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
6456 extends BulkTask<K,V,Double> {
6457 final ObjectToDouble<? super V> transformer;
6458 final DoubleByDoubleToDouble reducer;
6459 final double basis;
6460 double result;
6461 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6462 MapReduceValuesToDoubleTask
6463 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6464 MapReduceValuesToDoubleTask<K,V> nextRight,
6465 ObjectToDouble<? super V> transformer,
6466 double basis,
6467 DoubleByDoubleToDouble reducer) {
6468 super(m, p, b); this.nextRight = nextRight;
6469 this.transformer = transformer;
6470 this.basis = basis; this.reducer = reducer;
6471 }
6472 @SuppressWarnings("unchecked") public final boolean exec() {
6473 final ObjectToDouble<? super V> transformer =
6474 this.transformer;
6475 final DoubleByDoubleToDouble reducer = this.reducer;
6476 if (transformer == null || reducer == null)
6477 return abortOnNullFunction();
6478 try {
6479 final double id = this.basis;
6480 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6481 do {} while (!casPending(c = pending, c+1));
6482 (rights = new MapReduceValuesToDoubleTask<K,V>
6483 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6484 }
6485 double r = id;
6486 Object v;
6487 while ((v = advance()) != null)
6488 r = reducer.apply(r, transformer.apply((V)v));
6489 result = r;
6490 for (MapReduceValuesToDoubleTask<K,V> t = this, s;;) {
6491 int c; BulkTask<K,V,?> par;
6492 if ((c = t.pending) == 0) {
6493 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6494 t.result = reducer.apply(t.result, s.result);
6495 }
6496 if ((par = t.parent) == null ||
6497 !(par instanceof MapReduceValuesToDoubleTask)) {
6498 t.quietlyComplete();
6499 break;
6500 }
6501 t = (MapReduceValuesToDoubleTask<K,V>)par;
6502 }
6503 else if (t.casPending(c, c - 1))
6504 break;
6505 }
6506 } catch (Throwable ex) {
6507 return tryCompleteComputation(ex);
6508 }
6509 MapReduceValuesToDoubleTask<K,V> s = rights;
6510 if (s != null && !inForkJoinPool()) {
6511 do {
6512 if (s.tryUnfork())
6513 s.exec();
6514 } while ((s = s.nextRight) != null);
6515 }
6516 return false;
6517 }
6518 public final Double getRawResult() { return result; }
6519 }
6520
6521 @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6522 extends BulkTask<K,V,Double> {
6523 final ObjectToDouble<Map.Entry<K,V>> transformer;
6524 final DoubleByDoubleToDouble reducer;
6525 final double basis;
6526 double result;
6527 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6528 MapReduceEntriesToDoubleTask
6529 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6530 MapReduceEntriesToDoubleTask<K,V> nextRight,
6531 ObjectToDouble<Map.Entry<K,V>> transformer,
6532 double basis,
6533 DoubleByDoubleToDouble reducer) {
6534 super(m, p, b); this.nextRight = nextRight;
6535 this.transformer = transformer;
6536 this.basis = basis; this.reducer = reducer;
6537 }
6538 @SuppressWarnings("unchecked") public final boolean exec() {
6539 final ObjectToDouble<Map.Entry<K,V>> transformer =
6540 this.transformer;
6541 final DoubleByDoubleToDouble reducer = this.reducer;
6542 if (transformer == null || reducer == null)
6543 return abortOnNullFunction();
6544 try {
6545 final double id = this.basis;
6546 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6547 do {} while (!casPending(c = pending, c+1));
6548 (rights = new MapReduceEntriesToDoubleTask<K,V>
6549 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6550 }
6551 double r = id;
6552 Object v;
6553 while ((v = advance()) != null)
6554 r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6555 result = r;
6556 for (MapReduceEntriesToDoubleTask<K,V> t = this, s;;) {
6557 int c; BulkTask<K,V,?> par;
6558 if ((c = t.pending) == 0) {
6559 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6560 t.result = reducer.apply(t.result, s.result);
6561 }
6562 if ((par = t.parent) == null ||
6563 !(par instanceof MapReduceEntriesToDoubleTask)) {
6564 t.quietlyComplete();
6565 break;
6566 }
6567 t = (MapReduceEntriesToDoubleTask<K,V>)par;
6568 }
6569 else if (t.casPending(c, c - 1))
6570 break;
6571 }
6572 } catch (Throwable ex) {
6573 return tryCompleteComputation(ex);
6574 }
6575 MapReduceEntriesToDoubleTask<K,V> s = rights;
6576 if (s != null && !inForkJoinPool()) {
6577 do {
6578 if (s.tryUnfork())
6579 s.exec();
6580 } while ((s = s.nextRight) != null);
6581 }
6582 return false;
6583 }
6584 public final Double getRawResult() { return result; }
6585 }
6586
6587 @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6588 extends BulkTask<K,V,Double> {
6589 final ObjectByObjectToDouble<? super K, ? super V> transformer;
6590 final DoubleByDoubleToDouble reducer;
6591 final double basis;
6592 double result;
6593 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6594 MapReduceMappingsToDoubleTask
6595 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6596 MapReduceMappingsToDoubleTask<K,V> nextRight,
6597 ObjectByObjectToDouble<? super K, ? super V> transformer,
6598 double basis,
6599 DoubleByDoubleToDouble reducer) {
6600 super(m, p, b); this.nextRight = nextRight;
6601 this.transformer = transformer;
6602 this.basis = basis; this.reducer = reducer;
6603 }
6604 @SuppressWarnings("unchecked") public final boolean exec() {
6605 final ObjectByObjectToDouble<? super K, ? super V> transformer =
6606 this.transformer;
6607 final DoubleByDoubleToDouble reducer = this.reducer;
6608 if (transformer == null || reducer == null)
6609 return abortOnNullFunction();
6610 try {
6611 final double id = this.basis;
6612 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6613 do {} while (!casPending(c = pending, c+1));
6614 (rights = new MapReduceMappingsToDoubleTask<K,V>
6615 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6616 }
6617 double r = id;
6618 Object v;
6619 while ((v = advance()) != null)
6620 r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6621 result = r;
6622 for (MapReduceMappingsToDoubleTask<K,V> t = this, s;;) {
6623 int c; BulkTask<K,V,?> par;
6624 if ((c = t.pending) == 0) {
6625 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6626 t.result = reducer.apply(t.result, s.result);
6627 }
6628 if ((par = t.parent) == null ||
6629 !(par instanceof MapReduceMappingsToDoubleTask)) {
6630 t.quietlyComplete();
6631 break;
6632 }
6633 t = (MapReduceMappingsToDoubleTask<K,V>)par;
6634 }
6635 else if (t.casPending(c, c - 1))
6636 break;
6637 }
6638 } catch (Throwable ex) {
6639 return tryCompleteComputation(ex);
6640 }
6641 MapReduceMappingsToDoubleTask<K,V> s = rights;
6642 if (s != null && !inForkJoinPool()) {
6643 do {
6644 if (s.tryUnfork())
6645 s.exec();
6646 } while ((s = s.nextRight) != null);
6647 }
6648 return false;
6649 }
6650 public final Double getRawResult() { return result; }
6651 }
6652
6653 @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6654 extends BulkTask<K,V,Long> {
6655 final ObjectToLong<? super K> transformer;
6656 final LongByLongToLong reducer;
6657 final long basis;
6658 long result;
6659 MapReduceKeysToLongTask<K,V> rights, nextRight;
6660 MapReduceKeysToLongTask
6661 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6662 MapReduceKeysToLongTask<K,V> nextRight,
6663 ObjectToLong<? super K> transformer,
6664 long basis,
6665 LongByLongToLong reducer) {
6666 super(m, p, b); this.nextRight = nextRight;
6667 this.transformer = transformer;
6668 this.basis = basis; this.reducer = reducer;
6669 }
6670 @SuppressWarnings("unchecked") public final boolean exec() {
6671 final ObjectToLong<? super K> transformer =
6672 this.transformer;
6673 final LongByLongToLong reducer = this.reducer;
6674 if (transformer == null || reducer == null)
6675 return abortOnNullFunction();
6676 try {
6677 final long id = this.basis;
6678 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6679 do {} while (!casPending(c = pending, c+1));
6680 (rights = new MapReduceKeysToLongTask<K,V>
6681 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6682 }
6683 long r = id;
6684 while (advance() != null)
6685 r = reducer.apply(r, transformer.apply((K)nextKey));
6686 result = r;
6687 for (MapReduceKeysToLongTask<K,V> t = this, s;;) {
6688 int c; BulkTask<K,V,?> par;
6689 if ((c = t.pending) == 0) {
6690 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6691 t.result = reducer.apply(t.result, s.result);
6692 }
6693 if ((par = t.parent) == null ||
6694 !(par instanceof MapReduceKeysToLongTask)) {
6695 t.quietlyComplete();
6696 break;
6697 }
6698 t = (MapReduceKeysToLongTask<K,V>)par;
6699 }
6700 else if (t.casPending(c, c - 1))
6701 break;
6702 }
6703 } catch (Throwable ex) {
6704 return tryCompleteComputation(ex);
6705 }
6706 MapReduceKeysToLongTask<K,V> s = rights;
6707 if (s != null && !inForkJoinPool()) {
6708 do {
6709 if (s.tryUnfork())
6710 s.exec();
6711 } while ((s = s.nextRight) != null);
6712 }
6713 return false;
6714 }
6715 public final Long getRawResult() { return result; }
6716 }
6717
6718 @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6719 extends BulkTask<K,V,Long> {
6720 final ObjectToLong<? super V> transformer;
6721 final LongByLongToLong reducer;
6722 final long basis;
6723 long result;
6724 MapReduceValuesToLongTask<K,V> rights, nextRight;
6725 MapReduceValuesToLongTask
6726 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6727 MapReduceValuesToLongTask<K,V> nextRight,
6728 ObjectToLong<? super V> transformer,
6729 long basis,
6730 LongByLongToLong reducer) {
6731 super(m, p, b); this.nextRight = nextRight;
6732 this.transformer = transformer;
6733 this.basis = basis; this.reducer = reducer;
6734 }
6735 @SuppressWarnings("unchecked") public final boolean exec() {
6736 final ObjectToLong<? super V> transformer =
6737 this.transformer;
6738 final LongByLongToLong reducer = this.reducer;
6739 if (transformer == null || reducer == null)
6740 return abortOnNullFunction();
6741 try {
6742 final long id = this.basis;
6743 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6744 do {} while (!casPending(c = pending, c+1));
6745 (rights = new MapReduceValuesToLongTask<K,V>
6746 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6747 }
6748 long r = id;
6749 Object v;
6750 while ((v = advance()) != null)
6751 r = reducer.apply(r, transformer.apply((V)v));
6752 result = r;
6753 for (MapReduceValuesToLongTask<K,V> t = this, s;;) {
6754 int c; BulkTask<K,V,?> par;
6755 if ((c = t.pending) == 0) {
6756 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6757 t.result = reducer.apply(t.result, s.result);
6758 }
6759 if ((par = t.parent) == null ||
6760 !(par instanceof MapReduceValuesToLongTask)) {
6761 t.quietlyComplete();
6762 break;
6763 }
6764 t = (MapReduceValuesToLongTask<K,V>)par;
6765 }
6766 else if (t.casPending(c, c - 1))
6767 break;
6768 }
6769 } catch (Throwable ex) {
6770 return tryCompleteComputation(ex);
6771 }
6772 MapReduceValuesToLongTask<K,V> s = rights;
6773 if (s != null && !inForkJoinPool()) {
6774 do {
6775 if (s.tryUnfork())
6776 s.exec();
6777 } while ((s = s.nextRight) != null);
6778 }
6779 return false;
6780 }
6781 public final Long getRawResult() { return result; }
6782 }
6783
6784 @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6785 extends BulkTask<K,V,Long> {
6786 final ObjectToLong<Map.Entry<K,V>> transformer;
6787 final LongByLongToLong reducer;
6788 final long basis;
6789 long result;
6790 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6791 MapReduceEntriesToLongTask
6792 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6793 MapReduceEntriesToLongTask<K,V> nextRight,
6794 ObjectToLong<Map.Entry<K,V>> transformer,
6795 long basis,
6796 LongByLongToLong reducer) {
6797 super(m, p, b); this.nextRight = nextRight;
6798 this.transformer = transformer;
6799 this.basis = basis; this.reducer = reducer;
6800 }
6801 @SuppressWarnings("unchecked") public final boolean exec() {
6802 final ObjectToLong<Map.Entry<K,V>> transformer =
6803 this.transformer;
6804 final LongByLongToLong reducer = this.reducer;
6805 if (transformer == null || reducer == null)
6806 return abortOnNullFunction();
6807 try {
6808 final long id = this.basis;
6809 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6810 do {} while (!casPending(c = pending, c+1));
6811 (rights = new MapReduceEntriesToLongTask<K,V>
6812 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6813 }
6814 long r = id;
6815 Object v;
6816 while ((v = advance()) != null)
6817 r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6818 result = r;
6819 for (MapReduceEntriesToLongTask<K,V> t = this, s;;) {
6820 int c; BulkTask<K,V,?> par;
6821 if ((c = t.pending) == 0) {
6822 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6823 t.result = reducer.apply(t.result, s.result);
6824 }
6825 if ((par = t.parent) == null ||
6826 !(par instanceof MapReduceEntriesToLongTask)) {
6827 t.quietlyComplete();
6828 break;
6829 }
6830 t = (MapReduceEntriesToLongTask<K,V>)par;
6831 }
6832 else if (t.casPending(c, c - 1))
6833 break;
6834 }
6835 } catch (Throwable ex) {
6836 return tryCompleteComputation(ex);
6837 }
6838 MapReduceEntriesToLongTask<K,V> s = rights;
6839 if (s != null && !inForkJoinPool()) {
6840 do {
6841 if (s.tryUnfork())
6842 s.exec();
6843 } while ((s = s.nextRight) != null);
6844 }
6845 return false;
6846 }
6847 public final Long getRawResult() { return result; }
6848 }
6849
6850 @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6851 extends BulkTask<K,V,Long> {
6852 final ObjectByObjectToLong<? super K, ? super V> transformer;
6853 final LongByLongToLong reducer;
6854 final long basis;
6855 long result;
6856 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6857 MapReduceMappingsToLongTask
6858 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6859 MapReduceMappingsToLongTask<K,V> nextRight,
6860 ObjectByObjectToLong<? super K, ? super V> transformer,
6861 long basis,
6862 LongByLongToLong reducer) {
6863 super(m, p, b); this.nextRight = nextRight;
6864 this.transformer = transformer;
6865 this.basis = basis; this.reducer = reducer;
6866 }
6867 @SuppressWarnings("unchecked") public final boolean exec() {
6868 final ObjectByObjectToLong<? super K, ? super V> transformer =
6869 this.transformer;
6870 final LongByLongToLong reducer = this.reducer;
6871 if (transformer == null || reducer == null)
6872 return abortOnNullFunction();
6873 try {
6874 final long id = this.basis;
6875 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6876 do {} while (!casPending(c = pending, c+1));
6877 (rights = new MapReduceMappingsToLongTask<K,V>
6878 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6879 }
6880 long r = id;
6881 Object v;
6882 while ((v = advance()) != null)
6883 r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6884 result = r;
6885 for (MapReduceMappingsToLongTask<K,V> t = this, s;;) {
6886 int c; BulkTask<K,V,?> par;
6887 if ((c = t.pending) == 0) {
6888 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6889 t.result = reducer.apply(t.result, s.result);
6890 }
6891 if ((par = t.parent) == null ||
6892 !(par instanceof MapReduceMappingsToLongTask)) {
6893 t.quietlyComplete();
6894 break;
6895 }
6896 t = (MapReduceMappingsToLongTask<K,V>)par;
6897 }
6898 else if (t.casPending(c, c - 1))
6899 break;
6900 }
6901 } catch (Throwable ex) {
6902 return tryCompleteComputation(ex);
6903 }
6904 MapReduceMappingsToLongTask<K,V> s = rights;
6905 if (s != null && !inForkJoinPool()) {
6906 do {
6907 if (s.tryUnfork())
6908 s.exec();
6909 } while ((s = s.nextRight) != null);
6910 }
6911 return false;
6912 }
6913 public final Long getRawResult() { return result; }
6914 }
6915
6916 @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6917 extends BulkTask<K,V,Integer> {
6918 final ObjectToInt<? super K> transformer;
6919 final IntByIntToInt reducer;
6920 final int basis;
6921 int result;
6922 MapReduceKeysToIntTask<K,V> rights, nextRight;
6923 MapReduceKeysToIntTask
6924 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6925 MapReduceKeysToIntTask<K,V> nextRight,
6926 ObjectToInt<? super K> transformer,
6927 int basis,
6928 IntByIntToInt reducer) {
6929 super(m, p, b); this.nextRight = nextRight;
6930 this.transformer = transformer;
6931 this.basis = basis; this.reducer = reducer;
6932 }
6933 @SuppressWarnings("unchecked") public final boolean exec() {
6934 final ObjectToInt<? super K> transformer =
6935 this.transformer;
6936 final IntByIntToInt reducer = this.reducer;
6937 if (transformer == null || reducer == null)
6938 return abortOnNullFunction();
6939 try {
6940 final int id = this.basis;
6941 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6942 do {} while (!casPending(c = pending, c+1));
6943 (rights = new MapReduceKeysToIntTask<K,V>
6944 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6945 }
6946 int r = id;
6947 while (advance() != null)
6948 r = reducer.apply(r, transformer.apply((K)nextKey));
6949 result = r;
6950 for (MapReduceKeysToIntTask<K,V> t = this, s;;) {
6951 int c; BulkTask<K,V,?> par;
6952 if ((c = t.pending) == 0) {
6953 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6954 t.result = reducer.apply(t.result, s.result);
6955 }
6956 if ((par = t.parent) == null ||
6957 !(par instanceof MapReduceKeysToIntTask)) {
6958 t.quietlyComplete();
6959 break;
6960 }
6961 t = (MapReduceKeysToIntTask<K,V>)par;
6962 }
6963 else if (t.casPending(c, c - 1))
6964 break;
6965 }
6966 } catch (Throwable ex) {
6967 return tryCompleteComputation(ex);
6968 }
6969 MapReduceKeysToIntTask<K,V> s = rights;
6970 if (s != null && !inForkJoinPool()) {
6971 do {
6972 if (s.tryUnfork())
6973 s.exec();
6974 } while ((s = s.nextRight) != null);
6975 }
6976 return false;
6977 }
6978 public final Integer getRawResult() { return result; }
6979 }
6980
6981 @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6982 extends BulkTask<K,V,Integer> {
6983 final ObjectToInt<? super V> transformer;
6984 final IntByIntToInt reducer;
6985 final int basis;
6986 int result;
6987 MapReduceValuesToIntTask<K,V> rights, nextRight;
6988 MapReduceValuesToIntTask
6989 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6990 MapReduceValuesToIntTask<K,V> nextRight,
6991 ObjectToInt<? super V> transformer,
6992 int basis,
6993 IntByIntToInt reducer) {
6994 super(m, p, b); this.nextRight = nextRight;
6995 this.transformer = transformer;
6996 this.basis = basis; this.reducer = reducer;
6997 }
6998 @SuppressWarnings("unchecked") public final boolean exec() {
6999 final ObjectToInt<? super V> transformer =
7000 this.transformer;
7001 final IntByIntToInt reducer = this.reducer;
7002 if (transformer == null || reducer == null)
7003 return abortOnNullFunction();
7004 try {
7005 final int id = this.basis;
7006 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
7007 do {} while (!casPending(c = pending, c+1));
7008 (rights = new MapReduceValuesToIntTask<K,V>
7009 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
7010 }
7011 int r = id;
7012 Object v;
7013 while ((v = advance()) != null)
7014 r = reducer.apply(r, transformer.apply((V)v));
7015 result = r;
7016 for (MapReduceValuesToIntTask<K,V> t = this, s;;) {
7017 int c; BulkTask<K,V,?> par;
7018 if ((c = t.pending) == 0) {
7019 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
7020 t.result = reducer.apply(t.result, s.result);
7021 }
7022 if ((par = t.parent) == null ||
7023 !(par instanceof MapReduceValuesToIntTask)) {
7024 t.quietlyComplete();
7025 break;
7026 }
7027 t = (MapReduceValuesToIntTask<K,V>)par;
7028 }
7029 else if (t.casPending(c, c - 1))
7030 break;
7031 }
7032 } catch (Throwable ex) {
7033 return tryCompleteComputation(ex);
7034 }
7035 MapReduceValuesToIntTask<K,V> s = rights;
7036 if (s != null && !inForkJoinPool()) {
7037 do {
7038 if (s.tryUnfork())
7039 s.exec();
7040 } while ((s = s.nextRight) != null);
7041 }
7042 return false;
7043 }
7044 public final Integer getRawResult() { return result; }
7045 }
7046
7047 @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
7048 extends BulkTask<K,V,Integer> {
7049 final ObjectToInt<Map.Entry<K,V>> transformer;
7050 final IntByIntToInt reducer;
7051 final int basis;
7052 int result;
7053 MapReduceEntriesToIntTask<K,V> rights, nextRight;
7054 MapReduceEntriesToIntTask
7055 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
7056 MapReduceEntriesToIntTask<K,V> nextRight,
7057 ObjectToInt<Map.Entry<K,V>> transformer,
7058 int basis,
7059 IntByIntToInt reducer) {
7060 super(m, p, b); this.nextRight = nextRight;
7061 this.transformer = transformer;
7062 this.basis = basis; this.reducer = reducer;
7063 }
7064 @SuppressWarnings("unchecked") public final boolean exec() {
7065 final ObjectToInt<Map.Entry<K,V>> transformer =
7066 this.transformer;
7067 final IntByIntToInt reducer = this.reducer;
7068 if (transformer == null || reducer == null)
7069 return abortOnNullFunction();
7070 try {
7071 final int id = this.basis;
7072 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
7073 do {} while (!casPending(c = pending, c+1));
7074 (rights = new MapReduceEntriesToIntTask<K,V>
7075 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
7076 }
7077 int r = id;
7078 Object v;
7079 while ((v = advance()) != null)
7080 r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
7081 result = r;
7082 for (MapReduceEntriesToIntTask<K,V> t = this, s;;) {
7083 int c; BulkTask<K,V,?> par;
7084 if ((c = t.pending) == 0) {
7085 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
7086 t.result = reducer.apply(t.result, s.result);
7087 }
7088 if ((par = t.parent) == null ||
7089 !(par instanceof MapReduceEntriesToIntTask)) {
7090 t.quietlyComplete();
7091 break;
7092 }
7093 t = (MapReduceEntriesToIntTask<K,V>)par;
7094 }
7095 else if (t.casPending(c, c - 1))
7096 break;
7097 }
7098 } catch (Throwable ex) {
7099 return tryCompleteComputation(ex);
7100 }
7101 MapReduceEntriesToIntTask<K,V> s = rights;
7102 if (s != null && !inForkJoinPool()) {
7103 do {
7104 if (s.tryUnfork())
7105 s.exec();
7106 } while ((s = s.nextRight) != null);
7107 }
7108 return false;
7109 }
7110 public final Integer getRawResult() { return result; }
7111 }
7112
7113 @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
7114 extends BulkTask<K,V,Integer> {
7115 final ObjectByObjectToInt<? super K, ? super V> transformer;
7116 final IntByIntToInt reducer;
7117 final int basis;
7118 int result;
7119 MapReduceMappingsToIntTask<K,V> rights, nextRight;
7120 MapReduceMappingsToIntTask
7121 (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
7122 MapReduceMappingsToIntTask<K,V> rights,
7123 ObjectByObjectToInt<? super K, ? super V> transformer,
7124 int basis,
7125 IntByIntToInt reducer) {
7126 super(m, p, b); this.nextRight = nextRight;
7127 this.transformer = transformer;
7128 this.basis = basis; this.reducer = reducer;
7129 }
7130 @SuppressWarnings("unchecked") public final boolean exec() {
7131 final ObjectByObjectToInt<? super K, ? super V> transformer =
7132 this.transformer;
7133 final IntByIntToInt reducer = this.reducer;
7134 if (transformer == null || reducer == null)
7135 return abortOnNullFunction();
7136 try {
7137 final int id = this.basis;
7138 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
7139 do {} while (!casPending(c = pending, c+1));
7140 (rights = new MapReduceMappingsToIntTask<K,V>
7141 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
7142 }
7143 int r = id;
7144 Object v;
7145 while ((v = advance()) != null)
7146 r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
7147 result = r;
7148 for (MapReduceMappingsToIntTask<K,V> t = this, s;;) {
7149 int c; BulkTask<K,V,?> par;
7150 if ((c = t.pending) == 0) {
7151 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
7152 t.result = reducer.apply(t.result, s.result);
7153 }
7154 if ((par = t.parent) == null ||
7155 !(par instanceof MapReduceMappingsToIntTask)) {
7156 t.quietlyComplete();
7157 break;
7158 }
7159 t = (MapReduceMappingsToIntTask<K,V>)par;
7160 }
7161 else if (t.casPending(c, c - 1))
7162 break;
7163 }
7164 } catch (Throwable ex) {
7165 return tryCompleteComputation(ex);
7166 }
7167 MapReduceMappingsToIntTask<K,V> s = rights;
7168 if (s != null && !inForkJoinPool()) {
7169 do {
7170 if (s.tryUnfork())
7171 s.exec();
7172 } while ((s = s.nextRight) != null);
7173 }
7174 return false;
7175 }
7176 public final Integer getRawResult() { return result; }
7177 }
7178
7179 // Unsafe mechanics
7180 private static final sun.misc.Unsafe UNSAFE;
7181 private static final long counterOffset;
7182 private static final long sizeCtlOffset;
7183 private static final long ABASE;
7184 private static final int ASHIFT;
7185
7186 static {
7187 int ss;
7188 try {
7189 UNSAFE = getUnsafe();
7190 Class<?> k = ConcurrentHashMapV8.class;
7191 counterOffset = UNSAFE.objectFieldOffset
7192 (k.getDeclaredField("counter"));
7193 sizeCtlOffset = UNSAFE.objectFieldOffset
7194 (k.getDeclaredField("sizeCtl"));
7195 Class<?> sc = Node[].class;
7196 ABASE = UNSAFE.arrayBaseOffset(sc);
7197 ss = UNSAFE.arrayIndexScale(sc);
7198 } catch (Exception e) {
7199 throw new Error(e);
7200 }
7201 if ((ss & (ss-1)) != 0)
7202 throw new Error("data type scale not a power of two");
7203 ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
7204 }
7205
7206 /**
7207 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
7208 * Replace with a simple call to Unsafe.getUnsafe when integrating
7209 * into a jdk.
7210 *
7211 * @return a sun.misc.Unsafe
7212 */
7213 private static sun.misc.Unsafe getUnsafe() {
7214 try {
7215 return sun.misc.Unsafe.getUnsafe();
7216 } catch (SecurityException se) {
7217 try {
7218 return java.security.AccessController.doPrivileged
7219 (new java.security
7220 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
7221 public sun.misc.Unsafe run() throws Exception {
7222 java.lang.reflect.Field f = sun.misc
7223 .Unsafe.class.getDeclaredField("theUnsafe");
7224 f.setAccessible(true);
7225 return (sun.misc.Unsafe) f.get(null);
7226 }});
7227 } catch (java.security.PrivilegedActionException e) {
7228 throw new RuntimeException("Could not initialize intrinsics",
7229 e.getCause());
7230 }
7231 }
7232 }
7233 }