/* * Written by Doug Lea with assistance from members of JCP JSR-166 * Expert Group and released to the public domain, as explained at * http://creativecommons.org/publicdomain/zero/1.0/ */ package jsr166e; import jsr166e.LongAdder; import java.util.Map; import java.util.Set; import java.util.Collection; import java.util.AbstractMap; import java.util.AbstractSet; import java.util.AbstractCollection; import java.util.Hashtable; import java.util.HashMap; import java.util.Iterator; import java.util.Enumeration; import java.util.ConcurrentModificationException; import java.util.NoSuchElementException; import java.util.concurrent.ConcurrentMap; import java.io.Serializable; /** * A hash table supporting full concurrency of retrievals and * high expected concurrency for updates. This class obeys the * same functional specification as {@link java.util.Hashtable}, and * includes versions of methods corresponding to each method of * {@code Hashtable}. However, even though all operations are * thread-safe, retrieval operations do not entail locking, * and there is not any support for locking the entire table * in a way that prevents all access. This class is fully * interoperable with {@code Hashtable} in programs that rely on its * thread safety but not on its synchronization details. * *

Retrieval operations (including {@code get}) generally do not * block, so may overlap with update operations (including {@code put} * and {@code remove}). Retrievals reflect the results of the most * recently completed update operations holding upon their * onset. For aggregate operations such as {@code putAll} and {@code * clear}, concurrent retrievals may reflect insertion or removal of * only some entries. Similarly, Iterators and Enumerations return * elements reflecting the state of the hash table at some point at or * since the creation of the iterator/enumeration. They do * not throw {@link ConcurrentModificationException}. * However, iterators are designed to be used by only one thread at a * time. Bear in mind that the results of aggregate status methods * including {@code size}, {@code isEmpty}, and {@code containsValue} * are typically useful only when a map is not undergoing concurrent * updates in other threads. Otherwise the results of these methods * reflect transient states that may be adequate for monitoring * purposes, but not for program control. * *

Resizing this or any other kind of hash table is a relatively * slow operation, so, when possible, it is a good idea to provide * estimates of expected table sizes in constructors. Also, for * compatibility with previous versions of this class, constructors * may optionally specify an expected {@code concurrencyLevel} as an * additional hint for internal sizing. * *

This class and its views and iterators implement all of the * optional methods of the {@link Map} and {@link Iterator} * interfaces. * *

Like {@link Hashtable} but unlike {@link HashMap}, this class * does not allow {@code null} to be used as a key or value. * *

This class is a member of the * * Java Collections Framework. * *

jsr166e note: This class is a candidate replacement for * java.util.concurrent.ConcurrentHashMap. * * @since 1.5 * @author Doug Lea * @param the type of keys maintained by this map * @param the type of mapped values */ public class ConcurrentHashMapV8 implements ConcurrentMap, Serializable { private static final long serialVersionUID = 7249069246763182397L; /** * A function computing a mapping from the given key to a value, * or {@code null} if there is no mapping. This is a place-holder * for an upcoming JDK8 interface. */ public static interface MappingFunction { /** * Returns a value for the given key, or null if there is no * mapping. If this function throws an (unchecked) exception, * the exception is rethrown to its caller, and no mapping is * recorded. Because this function is invoked within * atomicity control, the computation should be short and * simple. The most common usage is to construct a new object * serving as an initial mapped value. * * @param key the (non-null) key * @return a value, or null if none */ V map(K key); } /* * Overview: * * The primary design goal of this hash table is to maintain * concurrent readability (typically method get(), but also * iterators and related methods) while minimizing update * contention. * * Each key-value mapping is held in a Node. Because Node fields * can contain special values, they are defined using plain Object * types. Similarly in turn, all internal methods that use them * work off Object types. All public generic-typed methods relay * in/out of these internal methods, supplying casts as needed. * * The table is lazily initialized to a power-of-two size upon the * first insertion. Each bin in the table contains a (typically * short) list of Nodes. Table accesses require volatile/atomic * reads, writes, and CASes. Because there is no other way to * arrange this without adding further indirections, we use * intrinsics (sun.misc.Unsafe) operations. The lists of nodes * within bins are always accurately traversable under volatile * reads, so long as lookups check hash code and non-nullness of * key and value before checking key equality. (All valid hash * codes are nonnegative. Negative values are reserved for special * forwarding nodes; see below.) * * A bin may be locked during update (insert, delete, and replace) * operations. We do not want to waste the space required to * associate a distinct lock object with each bin, so instead use * the first node of a bin list itself as a lock, using builtin * "synchronized" locks. These save space and we can live with * only plain block-structured lock/unlock operations. Using the * first node of a list as a lock does not by itself suffice * though: When a node is locked, any update must first validate * that it is still the first node, and retry if not. (Because new * nodes are always appended to lists, once a node is first in a * bin, it remains first until deleted or the bin becomes * invalidated.) However, update operations can and usually do * still traverse the bin until the point of update, which helps * reduce cache misses on retries. This is a converse of sorts to * the lazy locking technique described by Herlihy & Shavit. If * there is no existing node during a put operation, then one can * be CAS'ed in (without need for lock except in computeIfAbsent); * the CAS serves as validation. This is on average the most * common case for put operations -- under random hash codes, the * distribution of nodes in bins follows a Poisson distribution * (see http://en.wikipedia.org/wiki/Poisson_distribution) with a * parameter of 0.5 on average under the default loadFactor of * 0.75. The expected number of locks covering different elements * (i.e., bins with 2 or more nodes) is approximately 10% at * steady state under default settings. Lock contention * probability for two threads accessing arbitrary distinct * elements is, roughly, 1 / (8 * #elements). * * The table is resized when occupancy exceeds a threshold. Only * a single thread performs the resize (using field "resizing", to * arrange exclusion), but the table otherwise remains usable for * both reads and updates. Resizing proceeds by transferring bins, * one by one, from the table to the next table. Upon transfer, * the old table bin contains only a special forwarding node (with * negative hash code ("MOVED")) that contains the next table as * its key. On encountering a forwarding node, access and update * operations restart, using the new table. To ensure concurrent * readability of traversals, transfers must proceed from the last * bin (table.length - 1) up towards the first. Any traversal * starting from the first bin can then arrange to move to the new * table for the rest of the traversal without revisiting nodes. * This constrains bin transfers to a particular order, and so can * block indefinitely waiting for the next lock, and other threads * cannot help with the transfer. However, expected stalls are * infrequent enough to not warrant the additional overhead and * complexity of access and iteration schemes that could admit * out-of-order or concurrent bin transfers. * * A similar traversal scheme (not yet implemented) can apply to * partial traversals during partitioned aggregate operations. * Also, read-only operations give up if ever forwarded to a null * table, which provides support for shutdown-style clearing, * which is also not currently implemented. * * The element count is maintained using a LongAdder, which avoids * contention on updates but can encounter cache thrashing if read * too frequently during concurrent updates. To avoid reading so * often, resizing is normally attempted only upon adding to a bin * already holding two or more nodes. Under the default threshold * (0.75), and uniform hash distributions, the probability of this * occurring at threshold is around 13%, meaning that only about 1 * in 8 puts check threshold (and after resizing, many fewer do * so). But this approximation has high variance for small table * sizes, so we check on any collision for sizes <= 64. Further, * to increase the probability that a resize occurs soon enough, we * offset the threshold (see THRESHOLD_OFFSET) by the expected * number of puts between checks. This is currently set to 8, in * accord with the default load factor. In practice, this is * rarely overridden, and in any case is close enough to other * plausible values not to waste dynamic probability computation * for more precision. */ /* ---------------- Constants -------------- */ /** * The smallest allowed table capacity. Must be a power of 2, at * least 2. */ static final int MINIMUM_CAPACITY = 2; /** * The largest allowed table capacity. Must be a power of 2, at * most 1<<30. */ static final int MAXIMUM_CAPACITY = 1 << 30; /** * The default initial table capacity. Must be a power of 2, at * least MINIMUM_CAPACITY and at most MAXIMUM_CAPACITY */ static final int DEFAULT_CAPACITY = 16; /** * The default load factor for this table, used when not otherwise * specified in a constructor. */ static final float DEFAULT_LOAD_FACTOR = 0.75f; /** * The default concurrency level for this table. Unused, but * defined for compatibility with previous versions of this class. */ static final int DEFAULT_CONCURRENCY_LEVEL = 16; /** * The count value to offset thresholds to compensate for checking * for resizing only when inserting into bins with two or more * elements. See above for explanation. */ static final int THRESHOLD_OFFSET = 8; /** * Special node hash value indicating to use table in node.key * Must be negative. */ static final int MOVED = -1; /* ---------------- Fields -------------- */ /** * The array of bins. Lazily initialized upon first insertion. * Size is always a power of two. Accessed directly by inner * classes. */ transient volatile Node[] table; /** The counter maintaining number of elements. */ private transient final LongAdder counter; /** Nonzero when table is being initialized or resized. Updated via CAS. */ private transient volatile int resizing; /** The target load factor for the table. */ private transient float loadFactor; /** The next element count value upon which to resize the table. */ private transient int threshold; /** The initial capacity of the table. */ private transient int initCap; // views transient Set keySet; transient Set> entrySet; transient Collection values; /** For serialization compatibility. Null unless serialized; see below */ Segment[] segments; /** * Applies a supplemental hash function to a given hashCode, which * defends against poor quality hash functions. The result must * be non-negative, and for reasonable performance must have good * avalanche properties; i.e., that each bit of the argument * affects each bit (except sign bit) of the result. */ private static final int spread(int h) { // Apply base step of MurmurHash; see http://code.google.com/p/smhasher/ h ^= h >>> 16; h *= 0x85ebca6b; h ^= h >>> 13; h *= 0xc2b2ae35; return (h >>> 16) ^ (h & 0x7fffffff); // mask out sign bit } /** * Key-value entry. Note that this is never exported out as a * user-visible Map.Entry. */ static final class Node { final int hash; final Object key; volatile Object val; volatile Node next; Node(int hash, Object key, Object val, Node next) { this.hash = hash; this.key = key; this.val = val; this.next = next; } } /* * Volatile access methods are used for table elements as well as * elements of in-progress next table while resizing. Uses in * access and update methods are null checked by callers, and * implicitly bounds-checked, relying on the invariants that tab * arrays have non-zero size, and all indices are masked with * (tab.length - 1) which is never negative and always less than * length. The "relaxed" non-volatile forms are used only during * table initialization. The only other usage is in * HashIterator.advance, which performs explicit checks. */ static final Node tabAt(Node[] tab, int i) { // used in HashIterator return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<= threshold) grow(0); break; } } } if (oldVal == null) counter.increment(); return oldVal; } /** * Covers the four public remove/replace methods: Replaces node * value with v, conditional upon match of cv if non-null. If * resulting value is null, delete. */ private final Object internalReplace(Object k, Object v, Object cv) { int h = spread(k.hashCode()); Object oldVal = null; Node e; int i; Node[] tab = table; while (tab != null && (e = tabAt(tab, i = (tab.length - 1) & h)) != null) { if (e.hash < 0) tab = (Node[])e.key; else { boolean validated = false; boolean deleted = false; synchronized (e) { Node pred = null; Node first = e; for (;;) { Object ek, ev; if ((ev = e.val) == null) break; if (e.hash == h && (ek = e.key) != null && (k == ek || k.equals(ek))) { if (tabAt(tab, i) == first) { validated = true; if (cv == null || cv == ev || cv.equals(ev)) { oldVal = ev; if ((e.val = v) == null) { deleted = true; Node en = e.next; if (pred != null) pred.next = en; else setTabAt(tab, i, en); } } } break; } pred = e; if ((e = e.next) == null) { if (tabAt(tab, i) == first) validated = true; break; } } } if (validated) { if (deleted) counter.decrement(); break; } } } return oldVal; } /** Implementation for computeIfAbsent and compute */ @SuppressWarnings("unchecked") private final V internalCompute(K k, MappingFunction f, boolean replace) { int h = spread(k.hashCode()); V val = null; boolean added = false; boolean validated = false; Node[] tab = table; do { Node e; int i; if (tab == null) tab = grow(0); else if ((e = tabAt(tab, i = (tab.length - 1) & h)) == null) { Node node = new Node(h, k, null, null); synchronized (node) { if (casTabAt(tab, i, null, node)) { validated = true; try { val = f.map(k); if (val != null) { node.val = val; added = true; } } finally { if (!added) setTabAt(tab, i, null); } } } } else if (e.hash < 0) tab = (Node[])e.key; else if (Thread.holdsLock(e)) throw new IllegalStateException("Recursive map computation"); else { boolean checkSize = false; synchronized (e) { Node first = e; for (;;) { Object ek, ev; if ((ev = e.val) == null) break; if (e.hash == h && (ek = e.key) != null && (k == ek || k.equals(ek))) { if (tabAt(tab, i) == first) { validated = true; if (replace && (ev = f.map(k)) != null) e.val = ev; val = (V)ev; } break; } Node last = e; if ((e = e.next) == null) { if (tabAt(tab, i) == first) { validated = true; if ((val = f.map(k)) != null) { last.next = new Node(h, k, val, null); added = true; if (last != first || tab.length <= 64) checkSize = true; } } break; } } } if (checkSize && tab.length < MAXIMUM_CAPACITY && resizing == 0 && counter.sum() >= threshold) grow(0); } } while (!validated); if (added) counter.increment(); return val; } /* * Reclassifies nodes in each bin to new table. Because we are * using power-of-two expansion, the elements from each bin must * either stay at same index, or move with a power of two * offset. We eliminate unnecessary node creation by catching * cases where old nodes can be reused because their next fields * won't change. Statistically, at the default threshold, only * about one-sixth of them need cloning when a table doubles. The * nodes they replace will be garbage collectable as soon as they * are no longer referenced by any reader thread that may be in * the midst of concurrently traversing table. * * Transfers are done from the bottom up to preserve iterator * traversability. On each step, the old bin is locked, * moved/copied, and then replaced with a forwarding node. */ private static final void transfer(Node[] tab, Node[] nextTab) { int n = tab.length; int mask = nextTab.length - 1; Node fwd = new Node(MOVED, nextTab, null, null); for (int i = n - 1; i >= 0; --i) { for (Node e;;) { if ((e = tabAt(tab, i)) == null) { if (casTabAt(tab, i, e, fwd)) break; } else { boolean validated = false; synchronized (e) { int idx = e.hash & mask; Node lastRun = e; for (Node p = e.next; p != null; p = p.next) { int j = p.hash & mask; if (j != idx) { idx = j; lastRun = p; } } if (tabAt(tab, i) == e) { validated = true; relaxedSetTabAt(nextTab, idx, lastRun); for (Node p = e; p != lastRun; p = p.next) { int h = p.hash; int j = h & mask; Node r = relaxedTabAt(nextTab, j); relaxedSetTabAt(nextTab, j, new Node(h, p.key, p.val, r)); } setTabAt(tab, i, fwd); } } if (validated) break; } } } } /** * If not already resizing, initializes or creates next table and * transfers bins. Rechecks occupancy after a transfer to see if * another resize is already needed because resizings are lagging * additions. * * @param sizeHint overridden capacity target (nonzero only from putAll) * @return current table */ private final Node[] grow(int sizeHint) { if (resizing == 0 && UNSAFE.compareAndSwapInt(this, resizingOffset, 0, 1)) { try { for (;;) { int cap, n; Node[] tab = table; if (tab == null) { int c = initCap; if (c < sizeHint) c = sizeHint; if (c == DEFAULT_CAPACITY) cap = c; else if (c >= MAXIMUM_CAPACITY) cap = MAXIMUM_CAPACITY; else { cap = MINIMUM_CAPACITY; while (cap < c) cap <<= 1; } } else if ((n = tab.length) < MAXIMUM_CAPACITY && (sizeHint <= 0 || n < sizeHint)) cap = n << 1; else break; threshold = (int)(cap * loadFactor) - THRESHOLD_OFFSET; Node[] nextTab = new Node[cap]; if (tab != null) transfer(tab, nextTab); table = nextTab; if (tab == null || cap >= MAXIMUM_CAPACITY || (sizeHint > 0 && cap >= sizeHint) || counter.sum() < threshold) break; } } finally { resizing = 0; } } else if (table == null) Thread.yield(); // lost initialization race; just spin return table; } /** * Implementation for putAll and constructor with Map * argument. Tries to first override initial capacity or grow * based on map size to pre-allocate table space. */ private final void internalPutAll(Map m) { int s = m.size(); grow((s >= (MAXIMUM_CAPACITY >>> 1)) ? s : s + (s >>> 1)); for (Map.Entry e : m.entrySet()) { Object k = e.getKey(); Object v = e.getValue(); if (k == null || v == null) throw new NullPointerException(); internalPut(k, v, true); } } /** * Implementation for clear. Steps through each bin, removing all nodes. */ private final void internalClear() { long deletions = 0L; int i = 0; Node[] tab = table; while (tab != null && i < tab.length) { Node e = tabAt(tab, i); if (e == null) ++i; else if (e.hash < 0) tab = (Node[])e.key; else { boolean validated = false; synchronized (e) { if (tabAt(tab, i) == e) { validated = true; do { if (e.val != null) { e.val = null; ++deletions; } } while ((e = e.next) != null); setTabAt(tab, i, null); } } if (validated) { ++i; if (deletions > THRESHOLD_OFFSET) { // bound lag in counts counter.add(-deletions); deletions = 0L; } } } } if (deletions != 0L) counter.add(-deletions); } /** * Base class for key, value, and entry iterators, plus internal * implementations of public traversal-based methods, to avoid * duplicating traversal code. */ class HashIterator { private Node next; // the next entry to return private Node[] tab; // current table; updated if resized private Node lastReturned; // the last entry returned, for remove private Object nextVal; // cached value of next private int index; // index of bin to use next private int baseIndex; // current index of initial table private final int baseSize; // initial table size HashIterator() { Node[] t = tab = table; if (t == null) baseSize = 0; else { baseSize = t.length; advance(null); } } public final boolean hasNext() { return next != null; } public final boolean hasMoreElements() { return next != null; } /** * Advances next. Normally, iteration proceeds bin-by-bin * traversing lists. However, if the table has been resized, * then all future steps must traverse both the bin at the * current index as well as at (index + baseSize); and so on * for further resizings. To paranoically cope with potential * (improper) sharing of iterators across threads, table reads * are bounds-checked. */ final void advance(Node e) { for (;;) { Node[] t; int i; // for bounds checks if (e != null) { Object ek = e.key, ev = e.val; if (ev != null && ek != null) { nextVal = ev; next = e; break; } e = e.next; } else if (baseIndex < baseSize && (t = tab) != null && t.length > (i = index) && i >= 0) { if ((e = tabAt(t, i)) != null && e.hash < 0) { tab = (Node[])e.key; e = null; } else if (i + baseSize < t.length) index += baseSize; // visit forwarded upper slots else index = ++baseIndex; } else { next = null; break; } } } final Object nextKey() { Node e = next; if (e == null) throw new NoSuchElementException(); Object k = e.key; advance((lastReturned = e).next); return k; } final Object nextValue() { Node e = next; if (e == null) throw new NoSuchElementException(); Object v = nextVal; advance((lastReturned = e).next); return v; } final WriteThroughEntry nextEntry() { Node e = next; if (e == null) throw new NoSuchElementException(); WriteThroughEntry entry = new WriteThroughEntry(e.key, nextVal); advance((lastReturned = e).next); return entry; } public final void remove() { if (lastReturned == null) throw new IllegalStateException(); ConcurrentHashMapV8.this.remove(lastReturned.key); lastReturned = null; } /** Helper for serialization */ final void writeEntries(java.io.ObjectOutputStream s) throws java.io.IOException { Node e; while ((e = next) != null) { s.writeObject(e.key); s.writeObject(nextVal); advance(e.next); } } /** Helper for containsValue */ final boolean containsVal(Object value) { if (value != null) { Node e; while ((e = next) != null) { Object v = nextVal; if (value == v || value.equals(v)) return true; advance(e.next); } } return false; } /** Helper for Map.hashCode */ final int mapHashCode() { int h = 0; Node e; while ((e = next) != null) { h += e.key.hashCode() ^ nextVal.hashCode(); advance(e.next); } return h; } /** Helper for Map.toString */ final String mapToString() { Node e = next; if (e == null) return "{}"; StringBuilder sb = new StringBuilder(); sb.append('{'); for (;;) { sb.append(e.key == this ? "(this Map)" : e.key); sb.append('='); sb.append(nextVal == this ? "(this Map)" : nextVal); advance(e.next); if ((e = next) != null) sb.append(',').append(' '); else return sb.append('}').toString(); } } } /* ---------------- Public operations -------------- */ /** * Creates a new, empty map with the specified initial * capacity, load factor and concurrency level. * * @param initialCapacity the initial capacity. The implementation * performs internal sizing to accommodate this many elements. * @param loadFactor the load factor threshold, used to control resizing. * Resizing may be performed when the average number of elements per * bin exceeds this threshold. * @param concurrencyLevel the estimated number of concurrently * updating threads. The implementation may use this value as * a sizing hint. * @throws IllegalArgumentException if the initial capacity is * negative or the load factor or concurrencyLevel are * nonpositive. */ public ConcurrentHashMapV8(int initialCapacity, float loadFactor, int concurrencyLevel) { if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0) throw new IllegalArgumentException(); this.initCap = initialCapacity; this.loadFactor = loadFactor; this.counter = new LongAdder(); } /** * Creates a new, empty map with the specified initial capacity * and load factor and with the default concurrencyLevel (16). * * @param initialCapacity The implementation performs internal * sizing to accommodate this many elements. * @param loadFactor the load factor threshold, used to control resizing. * Resizing may be performed when the average number of elements per * bin exceeds this threshold. * @throws IllegalArgumentException if the initial capacity of * elements is negative or the load factor is nonpositive * * @since 1.6 */ public ConcurrentHashMapV8(int initialCapacity, float loadFactor) { this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL); } /** * Creates a new, empty map with the specified initial capacity, * and with default load factor (0.75) and concurrencyLevel (16). * * @param initialCapacity the initial capacity. The implementation * performs internal sizing to accommodate this many elements. * @throws IllegalArgumentException if the initial capacity of * elements is negative. */ public ConcurrentHashMapV8(int initialCapacity) { this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL); } /** * Creates a new, empty map with a default initial capacity (16), * load factor (0.75) and concurrencyLevel (16). */ public ConcurrentHashMapV8() { this(DEFAULT_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL); } /** * Creates a new map with the same mappings as the given map. * The map is created with a capacity of 1.5 times the number * of mappings in the given map or 16 (whichever is greater), * and a default load factor (0.75) and concurrencyLevel (16). * * @param m the map */ public ConcurrentHashMapV8(Map m) { this(DEFAULT_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL); if (m == null) throw new NullPointerException(); internalPutAll(m); } /** * Returns {@code true} if this map contains no key-value mappings. * * @return {@code true} if this map contains no key-value mappings */ public boolean isEmpty() { return counter.sum() <= 0L; // ignore transient negative values } /** * Returns the number of key-value mappings in this map. If the * map contains more than {@code Integer.MAX_VALUE} elements, returns * {@code Integer.MAX_VALUE}. * * @return the number of key-value mappings in this map */ public int size() { long n = counter.sum(); return ((n >>> 31) == 0) ? (int)n : (n < 0L) ? 0 : Integer.MAX_VALUE; } /** * Returns the value to which the specified key is mapped, * or {@code null} if this map contains no mapping for the key. * *

More formally, if this map contains a mapping from a key * {@code k} to a value {@code v} such that {@code key.equals(k)}, * then this method returns {@code v}; otherwise it returns * {@code null}. (There can be at most one such mapping.) * * @throws NullPointerException if the specified key is null */ @SuppressWarnings("unchecked") public V get(Object key) { if (key == null) throw new NullPointerException(); return (V)internalGet(key); } /** * Tests if the specified object is a key in this table. * * @param key possible key * @return {@code true} if and only if the specified object * is a key in this table, as determined by the * {@code equals} method; {@code false} otherwise. * @throws NullPointerException if the specified key is null */ public boolean containsKey(Object key) { if (key == null) throw new NullPointerException(); return internalGet(key) != null; } /** * Returns {@code true} if this map maps one or more keys to the * specified value. Note: This method requires a full internal * traversal of the hash table, and so is much slower than * method {@code containsKey}. * * @param value value whose presence in this map is to be tested * @return {@code true} if this map maps one or more keys to the * specified value * @throws NullPointerException if the specified value is null */ public boolean containsValue(Object value) { if (value == null) throw new NullPointerException(); return new HashIterator().containsVal(value); } /** * Legacy method testing if some key maps into the specified value * in this table. This method is identical in functionality to * {@link #containsValue}, and exists solely to ensure * full compatibility with class {@link java.util.Hashtable}, * which supported this method prior to introduction of the * Java Collections framework. * * @param value a value to search for * @return {@code true} if and only if some key maps to the * {@code value} argument in this table as * determined by the {@code equals} method; * {@code false} otherwise * @throws NullPointerException if the specified value is null */ public boolean contains(Object value) { return containsValue(value); } /** * Maps the specified key to the specified value in this table. * Neither the key nor the value can be null. * *

The value can be retrieved by calling the {@code get} method * with a key that is equal to the original key. * * @param key key with which the specified value is to be associated * @param value value to be associated with the specified key * @return the previous value associated with {@code key}, or * {@code null} if there was no mapping for {@code key} * @throws NullPointerException if the specified key or value is null */ @SuppressWarnings("unchecked") public V put(K key, V value) { if (key == null || value == null) throw new NullPointerException(); return (V)internalPut(key, value, true); } /** * {@inheritDoc} * * @return the previous value associated with the specified key, * or {@code null} if there was no mapping for the key * @throws NullPointerException if the specified key or value is null */ @SuppressWarnings("unchecked") public V putIfAbsent(K key, V value) { if (key == null || value == null) throw new NullPointerException(); return (V)internalPut(key, value, false); } /** * Copies all of the mappings from the specified map to this one. * These mappings replace any mappings that this map had for any of the * keys currently in the specified map. * * @param m mappings to be stored in this map */ public void putAll(Map m) { if (m == null) throw new NullPointerException(); internalPutAll(m); } /** * If the specified key is not already associated with a value, * computes its value using the given mappingFunction, and if * non-null, enters it into the map. This is equivalent to * *

     *   if (map.containsKey(key))
     *       return map.get(key);
     *   value = mappingFunction.map(key);
     *   if (value != null)
     *      map.put(key, value);
     *   return value;
     * 
* * except that the action is performed atomically. Some attempted * update operations on this map by other threads may be blocked * while computation is in progress, so the computation should be * short and simple, and must not attempt to update any other * mappings of this Map. The most appropriate usage is to * construct a new object serving as an initial mapped value, or * memoized result, as in: *
{@code
     * map.computeIfAbsent(key, new MappingFunction() {
     *   public V map(K k) { return new Value(f(k)); }};
     * }
* * @param key key with which the specified value is to be associated * @param mappingFunction the function to compute a value * @return the current (existing or computed) value associated with * the specified key, or {@code null} if the computation * returned {@code null}. * @throws NullPointerException if the specified key or mappingFunction * is null, * @throws IllegalStateException if the computation detectably * attempts a recursive update to this map that would * otherwise never complete. * @throws RuntimeException or Error if the mappingFunction does so, * in which case the mapping is left unestablished. */ public V computeIfAbsent(K key, MappingFunction mappingFunction) { if (key == null || mappingFunction == null) throw new NullPointerException(); return internalCompute(key, mappingFunction, false); } /** * Computes the value associated with the given key using the given * mappingFunction, and if non-null, enters it into the map. This * is equivalent to * *
     *   value = mappingFunction.map(key);
     *   if (value != null)
     *      map.put(key, value);
     *   else
     *      value = map.get(key);
     *   return value;
     * 
* * except that the action is performed atomically. Some attempted * update operations on this map by other threads may be blocked * while computation is in progress, so the computation should be * short and simple, and must not attempt to update any other * mappings of this Map. * * @param key key with which the specified value is to be associated * @param mappingFunction the function to compute a value * @return the current value associated with * the specified key, or {@code null} if the computation * returned {@code null} and the value was not otherwise present. * @throws NullPointerException if the specified key or mappingFunction * is null, * @throws IllegalStateException if the computation detectably * attempts a recursive update to this map that would * otherwise never complete. * @throws RuntimeException or Error if the mappingFunction does so, * in which case the mapping is unchanged. */ public V compute(K key, MappingFunction mappingFunction) { if (key == null || mappingFunction == null) throw new NullPointerException(); return internalCompute(key, mappingFunction, true); } /** * Removes the key (and its corresponding value) from this map. * This method does nothing if the key is not in the map. * * @param key the key that needs to be removed * @return the previous value associated with {@code key}, or * {@code null} if there was no mapping for {@code key} * @throws NullPointerException if the specified key is null */ @SuppressWarnings("unchecked") public V remove(Object key) { if (key == null) throw new NullPointerException(); return (V)internalReplace(key, null, null); } /** * {@inheritDoc} * * @throws NullPointerException if the specified key is null */ public boolean remove(Object key, Object value) { if (key == null) throw new NullPointerException(); if (value == null) return false; return internalReplace(key, null, value) != null; } /** * {@inheritDoc} * * @throws NullPointerException if any of the arguments are null */ public boolean replace(K key, V oldValue, V newValue) { if (key == null || oldValue == null || newValue == null) throw new NullPointerException(); return internalReplace(key, newValue, oldValue) != null; } /** * {@inheritDoc} * * @return the previous value associated with the specified key, * or {@code null} if there was no mapping for the key * @throws NullPointerException if the specified key or value is null */ @SuppressWarnings("unchecked") public V replace(K key, V value) { if (key == null || value == null) throw new NullPointerException(); return (V)internalReplace(key, value, null); } /** * Removes all of the mappings from this map. */ public void clear() { internalClear(); } /** * Returns a {@link Set} view of the keys contained in this map. * The set is backed by the map, so changes to the map are * reflected in the set, and vice-versa. The set supports element * removal, which removes the corresponding mapping from this map, * via the {@code Iterator.remove}, {@code Set.remove}, * {@code removeAll}, {@code retainAll}, and {@code clear} * operations. It does not support the {@code add} or * {@code addAll} operations. * *

The view's {@code iterator} is a "weakly consistent" iterator * that will never throw {@link ConcurrentModificationException}, * and guarantees to traverse elements as they existed upon * construction of the iterator, and may (but is not guaranteed to) * reflect any modifications subsequent to construction. */ public Set keySet() { Set ks = keySet; return (ks != null) ? ks : (keySet = new KeySet()); } /** * Returns a {@link Collection} view of the values contained in this map. * The collection is backed by the map, so changes to the map are * reflected in the collection, and vice-versa. The collection * supports element removal, which removes the corresponding * mapping from this map, via the {@code Iterator.remove}, * {@code Collection.remove}, {@code removeAll}, * {@code retainAll}, and {@code clear} operations. It does not * support the {@code add} or {@code addAll} operations. * *

The view's {@code iterator} is a "weakly consistent" iterator * that will never throw {@link ConcurrentModificationException}, * and guarantees to traverse elements as they existed upon * construction of the iterator, and may (but is not guaranteed to) * reflect any modifications subsequent to construction. */ public Collection values() { Collection vs = values; return (vs != null) ? vs : (values = new Values()); } /** * Returns a {@link Set} view of the mappings contained in this map. * The set is backed by the map, so changes to the map are * reflected in the set, and vice-versa. The set supports element * removal, which removes the corresponding mapping from the map, * via the {@code Iterator.remove}, {@code Set.remove}, * {@code removeAll}, {@code retainAll}, and {@code clear} * operations. It does not support the {@code add} or * {@code addAll} operations. * *

The view's {@code iterator} is a "weakly consistent" iterator * that will never throw {@link ConcurrentModificationException}, * and guarantees to traverse elements as they existed upon * construction of the iterator, and may (but is not guaranteed to) * reflect any modifications subsequent to construction. */ public Set> entrySet() { Set> es = entrySet; return (es != null) ? es : (entrySet = new EntrySet()); } /** * Returns an enumeration of the keys in this table. * * @return an enumeration of the keys in this table * @see #keySet() */ public Enumeration keys() { return new KeyIterator(); } /** * Returns an enumeration of the values in this table. * * @return an enumeration of the values in this table * @see #values() */ public Enumeration elements() { return new ValueIterator(); } /** * Returns the hash code value for this {@link Map}, i.e., * the sum of, for each key-value pair in the map, * {@code key.hashCode() ^ value.hashCode()}. * * @return the hash code value for this map */ public int hashCode() { return new HashIterator().mapHashCode(); } /** * Returns a string representation of this map. The string * representation consists of a list of key-value mappings (in no * particular order) enclosed in braces ("{@code {}}"). Adjacent * mappings are separated by the characters {@code ", "} (comma * and space). Each key-value mapping is rendered as the key * followed by an equals sign ("{@code =}") followed by the * associated value. * * @return a string representation of this map */ public String toString() { return new HashIterator().mapToString(); } /** * Compares the specified object with this map for equality. * Returns {@code true} if the given object is a map with the same * mappings as this map. This operation may return misleading * results if either map is concurrently modified during execution * of this method. * * @param o object to be compared for equality with this map * @return {@code true} if the specified object is equal to this map */ public boolean equals(Object o) { if (o == this) return true; if (!(o instanceof Map)) return false; Map m = (Map) o; try { for (Map.Entry e : this.entrySet()) if (! e.getValue().equals(m.get(e.getKey()))) return false; for (Map.Entry e : m.entrySet()) { Object k = e.getKey(); Object v = e.getValue(); if (k == null || v == null || !v.equals(get(k))) return false; } return true; } catch (ClassCastException unused) { return false; } catch (NullPointerException unused) { return false; } } /** * Custom Entry class used by EntryIterator.next(), that relays * setValue changes to the underlying map. */ final class WriteThroughEntry extends AbstractMap.SimpleEntry { @SuppressWarnings("unchecked") WriteThroughEntry(Object k, Object v) { super((K)k, (V)v); } /** * Sets our entry's value and writes through to the map. The * value to return is somewhat arbitrary here. Since a * WriteThroughEntry does not necessarily track asynchronous * changes, the most recent "previous" value could be * different from what we return (or could even have been * removed in which case the put will re-establish). We do not * and cannot guarantee more. */ public V setValue(V value) { if (value == null) throw new NullPointerException(); V v = super.setValue(value); ConcurrentHashMapV8.this.put(getKey(), value); return v; } } final class KeyIterator extends HashIterator implements Iterator, Enumeration { @SuppressWarnings("unchecked") public final K next() { return (K)super.nextKey(); } @SuppressWarnings("unchecked") public final K nextElement() { return (K)super.nextKey(); } } final class ValueIterator extends HashIterator implements Iterator, Enumeration { @SuppressWarnings("unchecked") public final V next() { return (V)super.nextValue(); } @SuppressWarnings("unchecked") public final V nextElement() { return (V)super.nextValue(); } } final class EntryIterator extends HashIterator implements Iterator> { public final Map.Entry next() { return super.nextEntry(); } } final class KeySet extends AbstractSet { public int size() { return ConcurrentHashMapV8.this.size(); } public boolean isEmpty() { return ConcurrentHashMapV8.this.isEmpty(); } public void clear() { ConcurrentHashMapV8.this.clear(); } public Iterator iterator() { return new KeyIterator(); } public boolean contains(Object o) { return ConcurrentHashMapV8.this.containsKey(o); } public boolean remove(Object o) { return ConcurrentHashMapV8.this.remove(o) != null; } } final class Values extends AbstractCollection { public int size() { return ConcurrentHashMapV8.this.size(); } public boolean isEmpty() { return ConcurrentHashMapV8.this.isEmpty(); } public void clear() { ConcurrentHashMapV8.this.clear(); } public Iterator iterator() { return new ValueIterator(); } public boolean contains(Object o) { return ConcurrentHashMapV8.this.containsValue(o); } } final class EntrySet extends AbstractSet> { public int size() { return ConcurrentHashMapV8.this.size(); } public boolean isEmpty() { return ConcurrentHashMapV8.this.isEmpty(); } public void clear() { ConcurrentHashMapV8.this.clear(); } public Iterator> iterator() { return new EntryIterator(); } public boolean contains(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry)o; V v = ConcurrentHashMapV8.this.get(e.getKey()); return v != null && v.equals(e.getValue()); } public boolean remove(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry)o; return ConcurrentHashMapV8.this.remove(e.getKey(), e.getValue()); } } /* ---------------- Serialization Support -------------- */ /** * Helper class used in previous version, declared for the sake of * serialization compatibility */ static class Segment extends java.util.concurrent.locks.ReentrantLock implements Serializable { private static final long serialVersionUID = 2249069246763182397L; final float loadFactor; Segment(float lf) { this.loadFactor = lf; } } /** * Saves the state of the {@code ConcurrentHashMapV8} instance to a * stream (i.e., serializes it). * @param s the stream * @serialData * the key (Object) and value (Object) * for each key-value mapping, followed by a null pair. * The key-value mappings are emitted in no particular order. */ @SuppressWarnings("unchecked") private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { if (segments == null) { // for serialization compatibility segments = (Segment[]) new Segment[DEFAULT_CONCURRENCY_LEVEL]; for (int i = 0; i < segments.length; ++i) segments[i] = new Segment(loadFactor); } s.defaultWriteObject(); new HashIterator().writeEntries(s); s.writeObject(null); s.writeObject(null); segments = null; // throw away } /** * Reconstitutes the instance from a * stream (i.e., deserializes it). * @param s the stream */ @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); // find load factor in a segment, if one exists if (segments != null && segments.length != 0) this.loadFactor = segments[0].loadFactor; else this.loadFactor = DEFAULT_LOAD_FACTOR; this.initCap = DEFAULT_CAPACITY; LongAdder ct = new LongAdder(); // force final field write UNSAFE.putObjectVolatile(this, counterOffset, ct); this.segments = null; // unneeded // Read the keys and values, and put the mappings in the table for (;;) { K key = (K) s.readObject(); V value = (V) s.readObject(); if (key == null) break; put(key, value); } } // Unsafe mechanics private static final sun.misc.Unsafe UNSAFE; private static final long counterOffset; private static final long resizingOffset; private static final long ABASE; private static final int ASHIFT; static { int ss; try { UNSAFE = getUnsafe(); Class k = ConcurrentHashMapV8.class; counterOffset = UNSAFE.objectFieldOffset (k.getDeclaredField("counter")); resizingOffset = UNSAFE.objectFieldOffset (k.getDeclaredField("resizing")); Class sc = Node[].class; ABASE = UNSAFE.arrayBaseOffset(sc); ss = UNSAFE.arrayIndexScale(sc); } catch (Exception e) { throw new Error(e); } if ((ss & (ss-1)) != 0) throw new Error("data type scale not a power of two"); ASHIFT = 31 - Integer.numberOfLeadingZeros(ss); } /** * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package. * Replace with a simple call to Unsafe.getUnsafe when integrating * into a jdk. * * @return a sun.misc.Unsafe */ private static sun.misc.Unsafe getUnsafe() { try { return sun.misc.Unsafe.getUnsafe(); } catch (SecurityException se) { try { return java.security.AccessController.doPrivileged (new java.security .PrivilegedExceptionAction() { public sun.misc.Unsafe run() throws Exception { java.lang.reflect.Field f = sun.misc .Unsafe.class.getDeclaredField("theUnsafe"); f.setAccessible(true); return (sun.misc.Unsafe) f.get(null); }}); } catch (java.security.PrivilegedActionException e) { throw new RuntimeException("Could not initialize intrinsics", e.getCause()); } } } }