ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
Revision: 1.88
Committed: Fri Jan 18 04:23:27 2013 UTC (11 years, 3 months ago) by jsr166
Branch: MAIN
Changes since 1.87: +4 -4 lines
Log Message:
use blessed modifier order

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package jsr166e;
8
9 import java.util.Comparator;
10 import java.util.Arrays;
11 import java.util.Map;
12 import java.util.Set;
13 import java.util.Collection;
14 import java.util.AbstractMap;
15 import java.util.AbstractSet;
16 import java.util.AbstractCollection;
17 import java.util.Hashtable;
18 import java.util.HashMap;
19 import java.util.Iterator;
20 import java.util.Enumeration;
21 import java.util.ConcurrentModificationException;
22 import java.util.NoSuchElementException;
23 import java.util.concurrent.ConcurrentMap;
24 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
25 import java.util.concurrent.atomic.AtomicInteger;
26 import java.util.concurrent.atomic.AtomicReference;
27 import java.io.Serializable;
28
29 /**
30 * A hash table supporting full concurrency of retrievals and
31 * high expected concurrency for updates. This class obeys the
32 * same functional specification as {@link java.util.Hashtable}, and
33 * includes versions of methods corresponding to each method of
34 * {@code Hashtable}. However, even though all operations are
35 * thread-safe, retrieval operations do <em>not</em> entail locking,
36 * and there is <em>not</em> any support for locking the entire table
37 * in a way that prevents all access. This class is fully
38 * interoperable with {@code Hashtable} in programs that rely on its
39 * thread safety but not on its synchronization details.
40 *
41 * <p>Retrieval operations (including {@code get}) generally do not
42 * block, so may overlap with update operations (including {@code put}
43 * and {@code remove}). Retrievals reflect the results of the most
44 * recently <em>completed</em> update operations holding upon their
45 * onset. (More formally, an update operation for a given key bears a
46 * <em>happens-before</em> relation with any (non-null) retrieval for
47 * that key reporting the updated value.) For aggregate operations
48 * such as {@code putAll} and {@code clear}, concurrent retrievals may
49 * reflect insertion or removal of only some entries. Similarly,
50 * Iterators and Enumerations return elements reflecting the state of
51 * the hash table at some point at or since the creation of the
52 * iterator/enumeration. They do <em>not</em> throw {@link
53 * ConcurrentModificationException}. However, iterators are designed
54 * to be used by only one thread at a time. Bear in mind that the
55 * results of aggregate status methods including {@code size}, {@code
56 * isEmpty}, and {@code containsValue} are typically useful only when
57 * a map is not undergoing concurrent updates in other threads.
58 * Otherwise the results of these methods reflect transient states
59 * that may be adequate for monitoring or estimation purposes, but not
60 * for program control.
61 *
62 * <p>The table is dynamically expanded when there are too many
63 * collisions (i.e., keys that have distinct hash codes but fall into
64 * the same slot modulo the table size), with the expected average
65 * effect of maintaining roughly two bins per mapping (corresponding
66 * to a 0.75 load factor threshold for resizing). There may be much
67 * variance around this average as mappings are added and removed, but
68 * overall, this maintains a commonly accepted time/space tradeoff for
69 * hash tables. However, resizing this or any other kind of hash
70 * table may be a relatively slow operation. When possible, it is a
71 * good idea to provide a size estimate as an optional {@code
72 * initialCapacity} constructor argument. An additional optional
73 * {@code loadFactor} constructor argument provides a further means of
74 * customizing initial table capacity by specifying the table density
75 * to be used in calculating the amount of space to allocate for the
76 * given number of elements. Also, for compatibility with previous
77 * versions of this class, constructors may optionally specify an
78 * expected {@code concurrencyLevel} as an additional hint for
79 * internal sizing. Note that using many keys with exactly the same
80 * {@code hashCode()} is a sure way to slow down performance of any
81 * hash table.
82 *
83 * <p>A {@link Set} projection of a ConcurrentHashMapV8 may be created
84 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
85 * (using {@link #keySet(Object)} when only keys are of interest, and the
86 * mapped values are (perhaps transiently) not used or all take the
87 * same mapping value.
88 *
89 * <p>A ConcurrentHashMapV8 can be used as scalable frequency map (a
90 * form of histogram or multiset) by using {@link LongAdder} values
91 * and initializing via {@link #computeIfAbsent}. For example, to add
92 * a count to a {@code ConcurrentHashMapV8<String,LongAdder> freqs}, you
93 * can use {@code freqs.computeIfAbsent(k -> new
94 * LongAdder()).increment();}
95 *
96 * <p>This class and its views and iterators implement all of the
97 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
98 * interfaces.
99 *
100 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
101 * does <em>not</em> allow {@code null} to be used as a key or value.
102 *
103 * <p>ConcurrentHashMapV8s support sequential and parallel operations
104 * bulk operations. (Parallel forms use the {@link
105 * ForkJoinPool#commonPool()}). Tasks that may be used in other
106 * contexts are available in class {@link ForkJoinTasks}. These
107 * operations are designed to be safely, and often sensibly, applied
108 * even with maps that are being concurrently updated by other
109 * threads; for example, when computing a snapshot summary of the
110 * values in a shared registry. There are three kinds of operation,
111 * each with four forms, accepting functions with Keys, Values,
112 * Entries, and (Key, Value) arguments and/or return values. Because
113 * the elements of a ConcurrentHashMapV8 are not ordered in any
114 * particular way, and may be processed in different orders in
115 * different parallel executions, the correctness of supplied
116 * functions should not depend on any ordering, or on any other
117 * objects or values that may transiently change while computation is
118 * in progress; and except for forEach actions, should ideally be
119 * side-effect-free.
120 *
121 * <ul>
122 * <li> forEach: Perform a given action on each element.
123 * A variant form applies a given transformation on each element
124 * before performing the action.</li>
125 *
126 * <li> search: Return the first available non-null result of
127 * applying a given function on each element; skipping further
128 * search when a result is found.</li>
129 *
130 * <li> reduce: Accumulate each element. The supplied reduction
131 * function cannot rely on ordering (more formally, it should be
132 * both associative and commutative). There are five variants:
133 *
134 * <ul>
135 *
136 * <li> Plain reductions. (There is not a form of this method for
137 * (key, value) function arguments since there is no corresponding
138 * return type.)</li>
139 *
140 * <li> Mapped reductions that accumulate the results of a given
141 * function applied to each element.</li>
142 *
143 * <li> Reductions to scalar doubles, longs, and ints, using a
144 * given basis value.</li>
145 *
146 * </li>
147 * </ul>
148 * </ul>
149 *
150 * <p>The concurrency properties of bulk operations follow
151 * from those of ConcurrentHashMapV8: Any non-null result returned
152 * from {@code get(key)} and related access methods bears a
153 * happens-before relation with the associated insertion or
154 * update. The result of any bulk operation reflects the
155 * composition of these per-element relations (but is not
156 * necessarily atomic with respect to the map as a whole unless it
157 * is somehow known to be quiescent). Conversely, because keys
158 * and values in the map are never null, null serves as a reliable
159 * atomic indicator of the current lack of any result. To
160 * maintain this property, null serves as an implicit basis for
161 * all non-scalar reduction operations. For the double, long, and
162 * int versions, the basis should be one that, when combined with
163 * any other value, returns that other value (more formally, it
164 * should be the identity element for the reduction). Most common
165 * reductions have these properties; for example, computing a sum
166 * with basis 0 or a minimum with basis MAX_VALUE.
167 *
168 * <p>Search and transformation functions provided as arguments
169 * should similarly return null to indicate the lack of any result
170 * (in which case it is not used). In the case of mapped
171 * reductions, this also enables transformations to serve as
172 * filters, returning null (or, in the case of primitive
173 * specializations, the identity basis) if the element should not
174 * be combined. You can create compound transformations and
175 * filterings by composing them yourself under this "null means
176 * there is nothing there now" rule before using them in search or
177 * reduce operations.
178 *
179 * <p>Methods accepting and/or returning Entry arguments maintain
180 * key-value associations. They may be useful for example when
181 * finding the key for the greatest value. Note that "plain" Entry
182 * arguments can be supplied using {@code new
183 * AbstractMap.SimpleEntry(k,v)}.
184 *
185 * <p>Bulk operations may complete abruptly, throwing an
186 * exception encountered in the application of a supplied
187 * function. Bear in mind when handling such exceptions that other
188 * concurrently executing functions could also have thrown
189 * exceptions, or would have done so if the first exception had
190 * not occurred.
191 *
192 * <p>Speedups for parallel compared to sequential forms are common
193 * but not guaranteed. Parallel operations involving brief functions
194 * on small maps may execute more slowly than sequential forms if the
195 * underlying work to parallelize the computation is more expensive
196 * than the computation itself. Similarly, parallelization may not
197 * lead to much actual parallelism if all processors are busy
198 * performing unrelated tasks.
199 *
200 * <p>All arguments to all task methods must be non-null.
201 *
202 * <p><em>jsr166e note: During transition, this class
203 * uses nested functional interfaces with different names but the
204 * same forms as those expected for JDK8.</em>
205 *
206 * <p>This class is a member of the
207 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
208 * Java Collections Framework</a>.
209 *
210 * @since 1.5
211 * @author Doug Lea
212 * @param <K> the type of keys maintained by this map
213 * @param <V> the type of mapped values
214 */
215 public class ConcurrentHashMapV8<K, V>
216 implements ConcurrentMap<K, V>, Serializable {
217 private static final long serialVersionUID = 7249069246763182397L;
218
219 /**
220 * A partitionable iterator. A Spliterator can be traversed
221 * directly, but can also be partitioned (before traversal) by
222 * creating another Spliterator that covers a non-overlapping
223 * portion of the elements, and so may be amenable to parallel
224 * execution.
225 *
226 * <p>This interface exports a subset of expected JDK8
227 * functionality.
228 *
229 * <p>Sample usage: Here is one (of the several) ways to compute
230 * the sum of the values held in a map using the ForkJoin
231 * framework. As illustrated here, Spliterators are well suited to
232 * designs in which a task repeatedly splits off half its work
233 * into forked subtasks until small enough to process directly,
234 * and then joins these subtasks. Variants of this style can also
235 * be used in completion-based designs.
236 *
237 * <pre>
238 * {@code ConcurrentHashMapV8<String, Long> m = ...
239 * // split as if have 8 * parallelism, for load balance
240 * int n = m.size();
241 * int p = aForkJoinPool.getParallelism() * 8;
242 * int split = (n < p)? n : p;
243 * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
244 * // ...
245 * static class SumValues extends RecursiveTask<Long> {
246 * final Spliterator<Long> s;
247 * final int split; // split while > 1
248 * final SumValues nextJoin; // records forked subtasks to join
249 * SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
250 * this.s = s; this.depth = depth; this.nextJoin = nextJoin;
251 * }
252 * public Long compute() {
253 * long sum = 0;
254 * SumValues subtasks = null; // fork subtasks
255 * for (int s = split >>> 1; s > 0; s >>>= 1)
256 * (subtasks = new SumValues(s.split(), s, subtasks)).fork();
257 * while (s.hasNext()) // directly process remaining elements
258 * sum += s.next();
259 * for (SumValues t = subtasks; t != null; t = t.nextJoin)
260 * sum += t.join(); // collect subtask results
261 * return sum;
262 * }
263 * }
264 * }</pre>
265 */
266 public static interface Spliterator<T> extends Iterator<T> {
267 /**
268 * Returns a Spliterator covering approximately half of the
269 * elements, guaranteed not to overlap with those subsequently
270 * returned by this Spliterator. After invoking this method,
271 * the current Spliterator will <em>not</em> produce any of
272 * the elements of the returned Spliterator, but the two
273 * Spliterators together will produce all of the elements that
274 * would have been produced by this Spliterator had this
275 * method not been called. The exact number of elements
276 * produced by the returned Spliterator is not guaranteed, and
277 * may be zero (i.e., with {@code hasNext()} reporting {@code
278 * false}) if this Spliterator cannot be further split.
279 *
280 * @return a Spliterator covering approximately half of the
281 * elements
282 * @throws IllegalStateException if this Spliterator has
283 * already commenced traversing elements
284 */
285 Spliterator<T> split();
286 }
287
288 /*
289 * Overview:
290 *
291 * The primary design goal of this hash table is to maintain
292 * concurrent readability (typically method get(), but also
293 * iterators and related methods) while minimizing update
294 * contention. Secondary goals are to keep space consumption about
295 * the same or better than java.util.HashMap, and to support high
296 * initial insertion rates on an empty table by many threads.
297 *
298 * Each key-value mapping is held in a Node. Because Node key
299 * fields can contain special values, they are defined using plain
300 * Object types (not type "K"). This leads to a lot of explicit
301 * casting (and many explicit warning suppressions to tell
302 * compilers not to complain about it). It also allows some of the
303 * public methods to be factored into a smaller number of internal
304 * methods (although sadly not so for the five variants of
305 * put-related operations). The validation-based approach
306 * explained below leads to a lot of code sprawl because
307 * retry-control precludes factoring into smaller methods.
308 *
309 * The table is lazily initialized to a power-of-two size upon the
310 * first insertion. Each bin in the table normally contains a
311 * list of Nodes (most often, the list has only zero or one Node).
312 * Table accesses require volatile/atomic reads, writes, and
313 * CASes. Because there is no other way to arrange this without
314 * adding further indirections, we use intrinsics
315 * (sun.misc.Unsafe) operations. The lists of nodes within bins
316 * are always accurately traversable under volatile reads, so long
317 * as lookups check hash code and non-nullness of value before
318 * checking key equality.
319 *
320 * We use the top (sign) bit of Node hash fields for control
321 * purposes -- it is available anyway because of addressing
322 * constraints. Nodes with negative hash fields are forwarding
323 * nodes to either TreeBins or resized tables. The lower 31 bits
324 * of each normal Node's hash field contain a transformation of
325 * the key's hash code.
326 *
327 * Insertion (via put or its variants) of the first node in an
328 * empty bin is performed by just CASing it to the bin. This is
329 * by far the most common case for put operations under most
330 * key/hash distributions. Other update operations (insert,
331 * delete, and replace) require locks. We do not want to waste
332 * the space required to associate a distinct lock object with
333 * each bin, so instead use the first node of a bin list itself as
334 * a lock. Locking support for these locks relies on builtin
335 * "synchronized" monitors.
336 *
337 * Using the first node of a list as a lock does not by itself
338 * suffice though: When a node is locked, any update must first
339 * validate that it is still the first node after locking it, and
340 * retry if not. Because new nodes are always appended to lists,
341 * once a node is first in a bin, it remains first until deleted
342 * or the bin becomes invalidated (upon resizing). However,
343 * operations that only conditionally update may inspect nodes
344 * until the point of update. This is a converse of sorts to the
345 * lazy locking technique described by Herlihy & Shavit.
346 *
347 * The main disadvantage of per-bin locks is that other update
348 * operations on other nodes in a bin list protected by the same
349 * lock can stall, for example when user equals() or mapping
350 * functions take a long time. However, statistically, under
351 * random hash codes, this is not a common problem. Ideally, the
352 * frequency of nodes in bins follows a Poisson distribution
353 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
354 * parameter of about 0.5 on average, given the resizing threshold
355 * of 0.75, although with a large variance because of resizing
356 * granularity. Ignoring variance, the expected occurrences of
357 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
358 * first values are:
359 *
360 * 0: 0.60653066
361 * 1: 0.30326533
362 * 2: 0.07581633
363 * 3: 0.01263606
364 * 4: 0.00157952
365 * 5: 0.00015795
366 * 6: 0.00001316
367 * 7: 0.00000094
368 * 8: 0.00000006
369 * more: less than 1 in ten million
370 *
371 * Lock contention probability for two threads accessing distinct
372 * elements is roughly 1 / (8 * #elements) under random hashes.
373 *
374 * Actual hash code distributions encountered in practice
375 * sometimes deviate significantly from uniform randomness. This
376 * includes the case when N > (1<<30), so some keys MUST collide.
377 * Similarly for dumb or hostile usages in which multiple keys are
378 * designed to have identical hash codes. Also, although we guard
379 * against the worst effects of this (see method spread), sets of
380 * hashes may differ only in bits that do not impact their bin
381 * index for a given power-of-two mask. So we use a secondary
382 * strategy that applies when the number of nodes in a bin exceeds
383 * a threshold, and at least one of the keys implements
384 * Comparable. These TreeBins use a balanced tree to hold nodes
385 * (a specialized form of red-black trees), bounding search time
386 * to O(log N). Each search step in a TreeBin is around twice as
387 * slow as in a regular list, but given that N cannot exceed
388 * (1<<64) (before running out of addresses) this bounds search
389 * steps, lock hold times, etc, to reasonable constants (roughly
390 * 100 nodes inspected per operation worst case) so long as keys
391 * are Comparable (which is very common -- String, Long, etc).
392 * TreeBin nodes (TreeNodes) also maintain the same "next"
393 * traversal pointers as regular nodes, so can be traversed in
394 * iterators in the same way.
395 *
396 * The table is resized when occupancy exceeds a percentage
397 * threshold (nominally, 0.75, but see below). Any thread
398 * noticing an overfull bin may assist in resizing after the
399 * initiating thread allocates and sets up the replacement
400 * array. However, rather than stalling, these other threads may
401 * proceed with insertions etc. The use of TreeBins shields us
402 * from the worst case effects of overfilling while resizes are in
403 * progress. Resizing proceeds by transferring bins, one by one,
404 * from the table to the next table. To enable concurrency, the
405 * next table must be (incrementally) prefilled with place-holders
406 * serving as reverse forwarders to the old table. Because we are
407 * using power-of-two expansion, the elements from each bin must
408 * either stay at same index, or move with a power of two
409 * offset. We eliminate unnecessary node creation by catching
410 * cases where old nodes can be reused because their next fields
411 * won't change. On average, only about one-sixth of them need
412 * cloning when a table doubles. The nodes they replace will be
413 * garbage collectable as soon as they are no longer referenced by
414 * any reader thread that may be in the midst of concurrently
415 * traversing table. Upon transfer, the old table bin contains
416 * only a special forwarding node (with hash field "MOVED") that
417 * contains the next table as its key. On encountering a
418 * forwarding node, access and update operations restart, using
419 * the new table.
420 *
421 * Each bin transfer requires its bin lock, which can stall
422 * waiting for locks while resizing. However, because other
423 * threads can join in and help resize rather than contend for
424 * locks, average aggregate waits become shorter as resizing
425 * progresses. The transfer operation must also ensure that all
426 * accessible bins in both the old and new table are usable by any
427 * traversal. This is arranged by proceeding from the last bin
428 * (table.length - 1) up towards the first. Upon seeing a
429 * forwarding node, traversals (see class Traverser) arrange to
430 * move to the new table without revisiting nodes. However, to
431 * ensure that no intervening nodes are skipped, bin splitting can
432 * only begin after the associated reverse-forwarders are in
433 * place.
434 *
435 * The traversal scheme also applies to partial traversals of
436 * ranges of bins (via an alternate Traverser constructor)
437 * to support partitioned aggregate operations. Also, read-only
438 * operations give up if ever forwarded to a null table, which
439 * provides support for shutdown-style clearing, which is also not
440 * currently implemented.
441 *
442 * Lazy table initialization minimizes footprint until first use,
443 * and also avoids resizings when the first operation is from a
444 * putAll, constructor with map argument, or deserialization.
445 * These cases attempt to override the initial capacity settings,
446 * but harmlessly fail to take effect in cases of races.
447 *
448 * The element count is maintained using a specialization of
449 * LongAdder. We need to incorporate a specialization rather than
450 * just use a LongAdder in order to access implicit
451 * contention-sensing that leads to creation of multiple
452 * CounterCells. The counter mechanics avoid contention on
453 * updates but can encounter cache thrashing if read too
454 * frequently during concurrent access. To avoid reading so often,
455 * resizing under contention is attempted only upon adding to a
456 * bin already holding two or more nodes. Under uniform hash
457 * distributions, the probability of this occurring at threshold
458 * is around 13%, meaning that only about 1 in 8 puts check
459 * threshold (and after resizing, many fewer do so). The bulk
460 * putAll operation further reduces contention by only committing
461 * count updates upon these size checks.
462 *
463 * Maintaining API and serialization compatibility with previous
464 * versions of this class introduces several oddities. Mainly: We
465 * leave untouched but unused constructor arguments refering to
466 * concurrencyLevel. We accept a loadFactor constructor argument,
467 * but apply it only to initial table capacity (which is the only
468 * time that we can guarantee to honor it.) We also declare an
469 * unused "Segment" class that is instantiated in minimal form
470 * only when serializing.
471 */
472
473 /* ---------------- Constants -------------- */
474
475 /**
476 * The largest possible table capacity. This value must be
477 * exactly 1<<30 to stay within Java array allocation and indexing
478 * bounds for power of two table sizes, and is further required
479 * because the top two bits of 32bit hash fields are used for
480 * control purposes.
481 */
482 private static final int MAXIMUM_CAPACITY = 1 << 30;
483
484 /**
485 * The default initial table capacity. Must be a power of 2
486 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
487 */
488 private static final int DEFAULT_CAPACITY = 16;
489
490 /**
491 * The largest possible (non-power of two) array size.
492 * Needed by toArray and related methods.
493 */
494 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
495
496 /**
497 * The default concurrency level for this table. Unused but
498 * defined for compatibility with previous versions of this class.
499 */
500 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
501
502 /**
503 * The load factor for this table. Overrides of this value in
504 * constructors affect only the initial table capacity. The
505 * actual floating point value isn't normally used -- it is
506 * simpler to use expressions such as {@code n - (n >>> 2)} for
507 * the associated resizing threshold.
508 */
509 private static final float LOAD_FACTOR = 0.75f;
510
511 /**
512 * The bin count threshold for using a tree rather than list for a
513 * bin. The value reflects the approximate break-even point for
514 * using tree-based operations.
515 */
516 private static final int TREE_THRESHOLD = 8;
517
518 /**
519 * Minimum number of rebinnings per transfer step. Ranges are
520 * subdivided to allow multiple resizer threads. This value
521 * serves as a lower bound to avoid resizers encountering
522 * excessive memory contention. The value should be at least
523 * DEFAULT_CAPACITY.
524 */
525 private static final int MIN_TRANSFER_STRIDE = 16;
526
527 /*
528 * Encodings for Node hash fields. See above for explanation.
529 */
530 static final int MOVED = 0x80000000; // hash field for forwarding nodes
531 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
532
533 /** Number of CPUS, to place bounds on some sizings */
534 static final int NCPU = Runtime.getRuntime().availableProcessors();
535
536 /* ---------------- Counters -------------- */
537
538 // Adapted from LongAdder and Striped64.
539 // See their internal docs for explanation.
540
541 // A padded cell for distributing counts
542 static final class CounterCell {
543 volatile long p0, p1, p2, p3, p4, p5, p6;
544 volatile long value;
545 volatile long q0, q1, q2, q3, q4, q5, q6;
546 CounterCell(long x) { value = x; }
547 }
548
549 /**
550 * Holder for the thread-local hash code determining which
551 * CounterCell to use. The code is initialized via the
552 * counterHashCodeGenerator, but may be moved upon collisions.
553 */
554 static final class CounterHashCode {
555 int code;
556 }
557
558 /**
559 * Generates initial value for per-thread CounterHashCodes
560 */
561 static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
562
563 /**
564 * Increment for counterHashCodeGenerator. See class ThreadLocal
565 * for explanation.
566 */
567 static final int SEED_INCREMENT = 0x61c88647;
568
569 /**
570 * Per-thread counter hash codes. Shared across all instances.
571 */
572 static final ThreadLocal<CounterHashCode> threadCounterHashCode =
573 new ThreadLocal<CounterHashCode>();
574
575 /* ---------------- Fields -------------- */
576
577 /**
578 * The array of bins. Lazily initialized upon first insertion.
579 * Size is always a power of two. Accessed directly by iterators.
580 */
581 transient volatile Node<V>[] table;
582
583 /**
584 * The next table to use; non-null only while resizing.
585 */
586 private transient volatile Node<V>[] nextTable;
587
588 /**
589 * Base counter value, used mainly when there is no contention,
590 * but also as a fallback during table initialization
591 * races. Updated via CAS.
592 */
593 private transient volatile long baseCount;
594
595 /**
596 * Table initialization and resizing control. When negative, the
597 * table is being initialized or resized: -1 for initialization,
598 * else -(1 + the number of active resizing threads). Otherwise,
599 * when table is null, holds the initial table size to use upon
600 * creation, or 0 for default. After initialization, holds the
601 * next element count value upon which to resize the table.
602 */
603 private transient volatile int sizeCtl;
604
605 /**
606 * The next table index (plus one) to split while resizing.
607 */
608 private transient volatile int transferIndex;
609
610 /**
611 * The least available table index to split while resizing.
612 */
613 private transient volatile int transferOrigin;
614
615 /**
616 * Spinlock (locked via CAS) used when resizing and/or creating Cells.
617 */
618 private transient volatile int counterBusy;
619
620 /**
621 * Table of counter cells. When non-null, size is a power of 2.
622 */
623 private transient volatile CounterCell[] counterCells;
624
625 // views
626 private transient KeySetView<K,V> keySet;
627 private transient ValuesView<K,V> values;
628 private transient EntrySetView<K,V> entrySet;
629
630 /** For serialization compatibility. Null unless serialized; see below */
631 private Segment<K,V>[] segments;
632
633 /* ---------------- Table element access -------------- */
634
635 /*
636 * Volatile access methods are used for table elements as well as
637 * elements of in-progress next table while resizing. Uses are
638 * null checked by callers, and implicitly bounds-checked, relying
639 * on the invariants that tab arrays have non-zero size, and all
640 * indices are masked with (tab.length - 1) which is never
641 * negative and always less than length. Note that, to be correct
642 * wrt arbitrary concurrency errors by users, bounds checks must
643 * operate on local variables, which accounts for some odd-looking
644 * inline assignments below.
645 */
646
647 @SuppressWarnings("unchecked") static final <V> Node<V> tabAt
648 (Node<V>[] tab, int i) { // used by Traverser
649 return (Node<V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
650 }
651
652 private static final <V> boolean casTabAt
653 (Node<V>[] tab, int i, Node<V> c, Node<V> v) {
654 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
655 }
656
657 private static final <V> void setTabAt
658 (Node<V>[] tab, int i, Node<V> v) {
659 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
660 }
661
662 /* ---------------- Nodes -------------- */
663
664 /**
665 * Key-value entry. Note that this is never exported out as a
666 * user-visible Map.Entry (see MapEntry below). Nodes with a hash
667 * field of MOVED are special, and do not contain user keys or
668 * values. Otherwise, keys are never null, and null val fields
669 * indicate that a node is in the process of being deleted or
670 * created. For purposes of read-only access, a key may be read
671 * before a val, but can only be used after checking val to be
672 * non-null.
673 */
674 static class Node<V> {
675 final int hash;
676 final Object key;
677 volatile V val;
678 volatile Node<V> next;
679
680 Node(int hash, Object key, V val, Node<V> next) {
681 this.hash = hash;
682 this.key = key;
683 this.val = val;
684 this.next = next;
685 }
686 }
687
688 /* ---------------- TreeBins -------------- */
689
690 /**
691 * Nodes for use in TreeBins
692 */
693 static final class TreeNode<V> extends Node<V> {
694 TreeNode<V> parent; // red-black tree links
695 TreeNode<V> left;
696 TreeNode<V> right;
697 TreeNode<V> prev; // needed to unlink next upon deletion
698 boolean red;
699
700 TreeNode(int hash, Object key, V val, Node<V> next, TreeNode<V> parent) {
701 super(hash, key, val, next);
702 this.parent = parent;
703 }
704 }
705
706 /**
707 * A specialized form of red-black tree for use in bins
708 * whose size exceeds a threshold.
709 *
710 * TreeBins use a special form of comparison for search and
711 * related operations (which is the main reason we cannot use
712 * existing collections such as TreeMaps). TreeBins contain
713 * Comparable elements, but may contain others, as well as
714 * elements that are Comparable but not necessarily Comparable<T>
715 * for the same T, so we cannot invoke compareTo among them. To
716 * handle this, the tree is ordered primarily by hash value, then
717 * by getClass().getName() order, and then by Comparator order
718 * among elements of the same class. On lookup at a node, if
719 * elements are not comparable or compare as 0, both left and
720 * right children may need to be searched in the case of tied hash
721 * values. (This corresponds to the full list search that would be
722 * necessary if all elements were non-Comparable and had tied
723 * hashes.) The red-black balancing code is updated from
724 * pre-jdk-collections
725 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
726 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
727 * Algorithms" (CLR).
728 *
729 * TreeBins also maintain a separate locking discipline than
730 * regular bins. Because they are forwarded via special MOVED
731 * nodes at bin heads (which can never change once established),
732 * we cannot use those nodes as locks. Instead, TreeBin
733 * extends AbstractQueuedSynchronizer to support a simple form of
734 * read-write lock. For update operations and table validation,
735 * the exclusive form of lock behaves in the same way as bin-head
736 * locks. However, lookups use shared read-lock mechanics to allow
737 * multiple readers in the absence of writers. Additionally,
738 * these lookups do not ever block: While the lock is not
739 * available, they proceed along the slow traversal path (via
740 * next-pointers) until the lock becomes available or the list is
741 * exhausted, whichever comes first. (These cases are not fast,
742 * but maximize aggregate expected throughput.) The AQS mechanics
743 * for doing this are straightforward. The lock state is held as
744 * AQS getState(). Read counts are negative; the write count (1)
745 * is positive. There are no signalling preferences among readers
746 * and writers. Since we don't need to export full Lock API, we
747 * just override the minimal AQS methods and use them directly.
748 */
749 static final class TreeBin<V> extends AbstractQueuedSynchronizer {
750 private static final long serialVersionUID = 2249069246763182397L;
751 transient TreeNode<V> root; // root of tree
752 transient TreeNode<V> first; // head of next-pointer list
753
754 /* AQS overrides */
755 public final boolean isHeldExclusively() { return getState() > 0; }
756 public final boolean tryAcquire(int ignore) {
757 if (compareAndSetState(0, 1)) {
758 setExclusiveOwnerThread(Thread.currentThread());
759 return true;
760 }
761 return false;
762 }
763 public final boolean tryRelease(int ignore) {
764 setExclusiveOwnerThread(null);
765 setState(0);
766 return true;
767 }
768 public final int tryAcquireShared(int ignore) {
769 for (int c;;) {
770 if ((c = getState()) > 0)
771 return -1;
772 if (compareAndSetState(c, c -1))
773 return 1;
774 }
775 }
776 public final boolean tryReleaseShared(int ignore) {
777 int c;
778 do {} while (!compareAndSetState(c = getState(), c + 1));
779 return c == -1;
780 }
781
782 /** From CLR */
783 private void rotateLeft(TreeNode<V> p) {
784 if (p != null) {
785 TreeNode<V> r = p.right, pp, rl;
786 if ((rl = p.right = r.left) != null)
787 rl.parent = p;
788 if ((pp = r.parent = p.parent) == null)
789 root = r;
790 else if (pp.left == p)
791 pp.left = r;
792 else
793 pp.right = r;
794 r.left = p;
795 p.parent = r;
796 }
797 }
798
799 /** From CLR */
800 private void rotateRight(TreeNode<V> p) {
801 if (p != null) {
802 TreeNode<V> l = p.left, pp, lr;
803 if ((lr = p.left = l.right) != null)
804 lr.parent = p;
805 if ((pp = l.parent = p.parent) == null)
806 root = l;
807 else if (pp.right == p)
808 pp.right = l;
809 else
810 pp.left = l;
811 l.right = p;
812 p.parent = l;
813 }
814 }
815
816 /**
817 * Returns the TreeNode (or null if not found) for the given key
818 * starting at given root.
819 */
820 @SuppressWarnings("unchecked") final TreeNode<V> getTreeNode
821 (int h, Object k, TreeNode<V> p) {
822 Class<?> c = k.getClass();
823 while (p != null) {
824 int dir, ph; Object pk; Class<?> pc;
825 if ((ph = p.hash) == h) {
826 if ((pk = p.key) == k || k.equals(pk))
827 return p;
828 if (c != (pc = pk.getClass()) ||
829 !(k instanceof Comparable) ||
830 (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
831 if ((dir = (c == pc) ? 0 :
832 c.getName().compareTo(pc.getName())) == 0) {
833 TreeNode<V> r = null, pl, pr; // check both sides
834 if ((pr = p.right) != null && h >= pr.hash &&
835 (r = getTreeNode(h, k, pr)) != null)
836 return r;
837 else if ((pl = p.left) != null && h <= pl.hash)
838 dir = -1;
839 else // nothing there
840 return null;
841 }
842 }
843 }
844 else
845 dir = (h < ph) ? -1 : 1;
846 p = (dir > 0) ? p.right : p.left;
847 }
848 return null;
849 }
850
851 /**
852 * Wrapper for getTreeNode used by CHM.get. Tries to obtain
853 * read-lock to call getTreeNode, but during failure to get
854 * lock, searches along next links.
855 */
856 final V getValue(int h, Object k) {
857 Node<V> r = null;
858 int c = getState(); // Must read lock state first
859 for (Node<V> e = first; e != null; e = e.next) {
860 if (c <= 0 && compareAndSetState(c, c - 1)) {
861 try {
862 r = getTreeNode(h, k, root);
863 } finally {
864 releaseShared(0);
865 }
866 break;
867 }
868 else if (e.hash == h && k.equals(e.key)) {
869 r = e;
870 break;
871 }
872 else
873 c = getState();
874 }
875 return r == null ? null : r.val;
876 }
877
878 /**
879 * Finds or adds a node.
880 * @return null if added
881 */
882 @SuppressWarnings("unchecked") final TreeNode<V> putTreeNode
883 (int h, Object k, V v) {
884 Class<?> c = k.getClass();
885 TreeNode<V> pp = root, p = null;
886 int dir = 0;
887 while (pp != null) { // find existing node or leaf to insert at
888 int ph; Object pk; Class<?> pc;
889 p = pp;
890 if ((ph = p.hash) == h) {
891 if ((pk = p.key) == k || k.equals(pk))
892 return p;
893 if (c != (pc = pk.getClass()) ||
894 !(k instanceof Comparable) ||
895 (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
896 TreeNode<V> s = null, r = null, pr;
897 if ((dir = (c == pc) ? 0 :
898 c.getName().compareTo(pc.getName())) == 0) {
899 if ((pr = p.right) != null && h >= pr.hash &&
900 (r = getTreeNode(h, k, pr)) != null)
901 return r;
902 else // continue left
903 dir = -1;
904 }
905 else if ((pr = p.right) != null && h >= pr.hash)
906 s = pr;
907 if (s != null && (r = getTreeNode(h, k, s)) != null)
908 return r;
909 }
910 }
911 else
912 dir = (h < ph) ? -1 : 1;
913 pp = (dir > 0) ? p.right : p.left;
914 }
915
916 TreeNode<V> f = first;
917 TreeNode<V> x = first = new TreeNode<V>(h, k, v, f, p);
918 if (p == null)
919 root = x;
920 else { // attach and rebalance; adapted from CLR
921 TreeNode<V> xp, xpp;
922 if (f != null)
923 f.prev = x;
924 if (dir <= 0)
925 p.left = x;
926 else
927 p.right = x;
928 x.red = true;
929 while (x != null && (xp = x.parent) != null && xp.red &&
930 (xpp = xp.parent) != null) {
931 TreeNode<V> xppl = xpp.left;
932 if (xp == xppl) {
933 TreeNode<V> y = xpp.right;
934 if (y != null && y.red) {
935 y.red = false;
936 xp.red = false;
937 xpp.red = true;
938 x = xpp;
939 }
940 else {
941 if (x == xp.right) {
942 rotateLeft(x = xp);
943 xpp = (xp = x.parent) == null ? null : xp.parent;
944 }
945 if (xp != null) {
946 xp.red = false;
947 if (xpp != null) {
948 xpp.red = true;
949 rotateRight(xpp);
950 }
951 }
952 }
953 }
954 else {
955 TreeNode<V> y = xppl;
956 if (y != null && y.red) {
957 y.red = false;
958 xp.red = false;
959 xpp.red = true;
960 x = xpp;
961 }
962 else {
963 if (x == xp.left) {
964 rotateRight(x = xp);
965 xpp = (xp = x.parent) == null ? null : xp.parent;
966 }
967 if (xp != null) {
968 xp.red = false;
969 if (xpp != null) {
970 xpp.red = true;
971 rotateLeft(xpp);
972 }
973 }
974 }
975 }
976 }
977 TreeNode<V> r = root;
978 if (r != null && r.red)
979 r.red = false;
980 }
981 return null;
982 }
983
984 /**
985 * Removes the given node, that must be present before this
986 * call. This is messier than typical red-black deletion code
987 * because we cannot swap the contents of an interior node
988 * with a leaf successor that is pinned by "next" pointers
989 * that are accessible independently of lock. So instead we
990 * swap the tree linkages.
991 */
992 final void deleteTreeNode(TreeNode<V> p) {
993 TreeNode<V> next = (TreeNode<V>)p.next; // unlink traversal pointers
994 TreeNode<V> pred = p.prev;
995 if (pred == null)
996 first = next;
997 else
998 pred.next = next;
999 if (next != null)
1000 next.prev = pred;
1001 TreeNode<V> replacement;
1002 TreeNode<V> pl = p.left;
1003 TreeNode<V> pr = p.right;
1004 if (pl != null && pr != null) {
1005 TreeNode<V> s = pr, sl;
1006 while ((sl = s.left) != null) // find successor
1007 s = sl;
1008 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
1009 TreeNode<V> sr = s.right;
1010 TreeNode<V> pp = p.parent;
1011 if (s == pr) { // p was s's direct parent
1012 p.parent = s;
1013 s.right = p;
1014 }
1015 else {
1016 TreeNode<V> sp = s.parent;
1017 if ((p.parent = sp) != null) {
1018 if (s == sp.left)
1019 sp.left = p;
1020 else
1021 sp.right = p;
1022 }
1023 if ((s.right = pr) != null)
1024 pr.parent = s;
1025 }
1026 p.left = null;
1027 if ((p.right = sr) != null)
1028 sr.parent = p;
1029 if ((s.left = pl) != null)
1030 pl.parent = s;
1031 if ((s.parent = pp) == null)
1032 root = s;
1033 else if (p == pp.left)
1034 pp.left = s;
1035 else
1036 pp.right = s;
1037 replacement = sr;
1038 }
1039 else
1040 replacement = (pl != null) ? pl : pr;
1041 TreeNode<V> pp = p.parent;
1042 if (replacement == null) {
1043 if (pp == null) {
1044 root = null;
1045 return;
1046 }
1047 replacement = p;
1048 }
1049 else {
1050 replacement.parent = pp;
1051 if (pp == null)
1052 root = replacement;
1053 else if (p == pp.left)
1054 pp.left = replacement;
1055 else
1056 pp.right = replacement;
1057 p.left = p.right = p.parent = null;
1058 }
1059 if (!p.red) { // rebalance, from CLR
1060 TreeNode<V> x = replacement;
1061 while (x != null) {
1062 TreeNode<V> xp, xpl;
1063 if (x.red || (xp = x.parent) == null) {
1064 x.red = false;
1065 break;
1066 }
1067 if (x == (xpl = xp.left)) {
1068 TreeNode<V> sib = xp.right;
1069 if (sib != null && sib.red) {
1070 sib.red = false;
1071 xp.red = true;
1072 rotateLeft(xp);
1073 sib = (xp = x.parent) == null ? null : xp.right;
1074 }
1075 if (sib == null)
1076 x = xp;
1077 else {
1078 TreeNode<V> sl = sib.left, sr = sib.right;
1079 if ((sr == null || !sr.red) &&
1080 (sl == null || !sl.red)) {
1081 sib.red = true;
1082 x = xp;
1083 }
1084 else {
1085 if (sr == null || !sr.red) {
1086 if (sl != null)
1087 sl.red = false;
1088 sib.red = true;
1089 rotateRight(sib);
1090 sib = (xp = x.parent) == null ?
1091 null : xp.right;
1092 }
1093 if (sib != null) {
1094 sib.red = (xp == null) ? false : xp.red;
1095 if ((sr = sib.right) != null)
1096 sr.red = false;
1097 }
1098 if (xp != null) {
1099 xp.red = false;
1100 rotateLeft(xp);
1101 }
1102 x = root;
1103 }
1104 }
1105 }
1106 else { // symmetric
1107 TreeNode<V> sib = xpl;
1108 if (sib != null && sib.red) {
1109 sib.red = false;
1110 xp.red = true;
1111 rotateRight(xp);
1112 sib = (xp = x.parent) == null ? null : xp.left;
1113 }
1114 if (sib == null)
1115 x = xp;
1116 else {
1117 TreeNode<V> sl = sib.left, sr = sib.right;
1118 if ((sl == null || !sl.red) &&
1119 (sr == null || !sr.red)) {
1120 sib.red = true;
1121 x = xp;
1122 }
1123 else {
1124 if (sl == null || !sl.red) {
1125 if (sr != null)
1126 sr.red = false;
1127 sib.red = true;
1128 rotateLeft(sib);
1129 sib = (xp = x.parent) == null ?
1130 null : xp.left;
1131 }
1132 if (sib != null) {
1133 sib.red = (xp == null) ? false : xp.red;
1134 if ((sl = sib.left) != null)
1135 sl.red = false;
1136 }
1137 if (xp != null) {
1138 xp.red = false;
1139 rotateRight(xp);
1140 }
1141 x = root;
1142 }
1143 }
1144 }
1145 }
1146 }
1147 if (p == replacement && (pp = p.parent) != null) {
1148 if (p == pp.left) // detach pointers
1149 pp.left = null;
1150 else if (p == pp.right)
1151 pp.right = null;
1152 p.parent = null;
1153 }
1154 }
1155 }
1156
1157 /* ---------------- Collision reduction methods -------------- */
1158
1159 /**
1160 * Spreads higher bits to lower, and also forces top bit to 0.
1161 * Because the table uses power-of-two masking, sets of hashes
1162 * that vary only in bits above the current mask will always
1163 * collide. (Among known examples are sets of Float keys holding
1164 * consecutive whole numbers in small tables.) To counter this,
1165 * we apply a transform that spreads the impact of higher bits
1166 * downward. There is a tradeoff between speed, utility, and
1167 * quality of bit-spreading. Because many common sets of hashes
1168 * are already reasonably distributed across bits (so don't benefit
1169 * from spreading), and because we use trees to handle large sets
1170 * of collisions in bins, we don't need excessively high quality.
1171 */
1172 private static final int spread(int h) {
1173 h ^= (h >>> 18) ^ (h >>> 12);
1174 return (h ^ (h >>> 10)) & HASH_BITS;
1175 }
1176
1177 /**
1178 * Replaces a list bin with a tree bin if key is comparable. Call
1179 * only when locked.
1180 */
1181 private final void replaceWithTreeBin(Node<V>[] tab, int index, Object key) {
1182 if (key instanceof Comparable) {
1183 TreeBin<V> t = new TreeBin<V>();
1184 for (Node<V> e = tabAt(tab, index); e != null; e = e.next)
1185 t.putTreeNode(e.hash, e.key, e.val);
1186 setTabAt(tab, index, new Node<V>(MOVED, t, null, null));
1187 }
1188 }
1189
1190 /* ---------------- Internal access and update methods -------------- */
1191
1192 /** Implementation for get and containsKey */
1193 @SuppressWarnings("unchecked") private final V internalGet(Object k) {
1194 int h = spread(k.hashCode());
1195 retry: for (Node<V>[] tab = table; tab != null;) {
1196 Node<V> e; Object ek; V ev; int eh; // locals to read fields once
1197 for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1198 if ((eh = e.hash) < 0) {
1199 if ((ek = e.key) instanceof TreeBin) // search TreeBin
1200 return ((TreeBin<V>)ek).getValue(h, k);
1201 else { // restart with new table
1202 tab = (Node<V>[])ek;
1203 continue retry;
1204 }
1205 }
1206 else if (eh == h && (ev = e.val) != null &&
1207 ((ek = e.key) == k || k.equals(ek)))
1208 return ev;
1209 }
1210 break;
1211 }
1212 return null;
1213 }
1214
1215 /**
1216 * Implementation for the four public remove/replace methods:
1217 * Replaces node value with v, conditional upon match of cv if
1218 * non-null. If resulting value is null, delete.
1219 */
1220 @SuppressWarnings("unchecked") private final V internalReplace
1221 (Object k, V v, Object cv) {
1222 int h = spread(k.hashCode());
1223 V oldVal = null;
1224 for (Node<V>[] tab = table;;) {
1225 Node<V> f; int i, fh; Object fk;
1226 if (tab == null ||
1227 (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1228 break;
1229 else if ((fh = f.hash) < 0) {
1230 if ((fk = f.key) instanceof TreeBin) {
1231 TreeBin<V> t = (TreeBin<V>)fk;
1232 boolean validated = false;
1233 boolean deleted = false;
1234 t.acquire(0);
1235 try {
1236 if (tabAt(tab, i) == f) {
1237 validated = true;
1238 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1239 if (p != null) {
1240 V pv = p.val;
1241 if (cv == null || cv == pv || cv.equals(pv)) {
1242 oldVal = pv;
1243 if ((p.val = v) == null) {
1244 deleted = true;
1245 t.deleteTreeNode(p);
1246 }
1247 }
1248 }
1249 }
1250 } finally {
1251 t.release(0);
1252 }
1253 if (validated) {
1254 if (deleted)
1255 addCount(-1L, -1);
1256 break;
1257 }
1258 }
1259 else
1260 tab = (Node<V>[])fk;
1261 }
1262 else if (fh != h && f.next == null) // precheck
1263 break; // rules out possible existence
1264 else {
1265 boolean validated = false;
1266 boolean deleted = false;
1267 synchronized (f) {
1268 if (tabAt(tab, i) == f) {
1269 validated = true;
1270 for (Node<V> e = f, pred = null;;) {
1271 Object ek; V ev;
1272 if (e.hash == h &&
1273 ((ev = e.val) != null) &&
1274 ((ek = e.key) == k || k.equals(ek))) {
1275 if (cv == null || cv == ev || cv.equals(ev)) {
1276 oldVal = ev;
1277 if ((e.val = v) == null) {
1278 deleted = true;
1279 Node<V> en = e.next;
1280 if (pred != null)
1281 pred.next = en;
1282 else
1283 setTabAt(tab, i, en);
1284 }
1285 }
1286 break;
1287 }
1288 pred = e;
1289 if ((e = e.next) == null)
1290 break;
1291 }
1292 }
1293 }
1294 if (validated) {
1295 if (deleted)
1296 addCount(-1L, -1);
1297 break;
1298 }
1299 }
1300 }
1301 return oldVal;
1302 }
1303
1304 /*
1305 * Internal versions of insertion methods
1306 * All have the same basic structure as the first (internalPut):
1307 * 1. If table uninitialized, create
1308 * 2. If bin empty, try to CAS new node
1309 * 3. If bin stale, use new table
1310 * 4. if bin converted to TreeBin, validate and relay to TreeBin methods
1311 * 5. Lock and validate; if valid, scan and add or update
1312 *
1313 * The putAll method differs mainly in attempting to pre-allocate
1314 * enough table space, and also more lazily performs count updates
1315 * and checks.
1316 *
1317 * Most of the function-accepting methods can't be factored nicely
1318 * because they require different functional forms, so instead
1319 * sprawl out similar mechanics.
1320 */
1321
1322 /** Implementation for put and putIfAbsent */
1323 @SuppressWarnings("unchecked") private final V internalPut
1324 (K k, V v, boolean onlyIfAbsent) {
1325 if (k == null || v == null) throw new NullPointerException();
1326 int h = spread(k.hashCode());
1327 int len = 0;
1328 for (Node<V>[] tab = table;;) {
1329 int i, fh; Node<V> f; Object fk; V fv;
1330 if (tab == null)
1331 tab = initTable();
1332 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1333 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null)))
1334 break; // no lock when adding to empty bin
1335 }
1336 else if ((fh = f.hash) < 0) {
1337 if ((fk = f.key) instanceof TreeBin) {
1338 TreeBin<V> t = (TreeBin<V>)fk;
1339 V oldVal = null;
1340 t.acquire(0);
1341 try {
1342 if (tabAt(tab, i) == f) {
1343 len = 2;
1344 TreeNode<V> p = t.putTreeNode(h, k, v);
1345 if (p != null) {
1346 oldVal = p.val;
1347 if (!onlyIfAbsent)
1348 p.val = v;
1349 }
1350 }
1351 } finally {
1352 t.release(0);
1353 }
1354 if (len != 0) {
1355 if (oldVal != null)
1356 return oldVal;
1357 break;
1358 }
1359 }
1360 else
1361 tab = (Node<V>[])fk;
1362 }
1363 else if (onlyIfAbsent && fh == h && (fv = f.val) != null &&
1364 ((fk = f.key) == k || k.equals(fk))) // peek while nearby
1365 return fv;
1366 else {
1367 V oldVal = null;
1368 synchronized (f) {
1369 if (tabAt(tab, i) == f) {
1370 len = 1;
1371 for (Node<V> e = f;; ++len) {
1372 Object ek; V ev;
1373 if (e.hash == h &&
1374 (ev = e.val) != null &&
1375 ((ek = e.key) == k || k.equals(ek))) {
1376 oldVal = ev;
1377 if (!onlyIfAbsent)
1378 e.val = v;
1379 break;
1380 }
1381 Node<V> last = e;
1382 if ((e = e.next) == null) {
1383 last.next = new Node<V>(h, k, v, null);
1384 if (len >= TREE_THRESHOLD)
1385 replaceWithTreeBin(tab, i, k);
1386 break;
1387 }
1388 }
1389 }
1390 }
1391 if (len != 0) {
1392 if (oldVal != null)
1393 return oldVal;
1394 break;
1395 }
1396 }
1397 }
1398 addCount(1L, len);
1399 return null;
1400 }
1401
1402 /** Implementation for computeIfAbsent */
1403 @SuppressWarnings("unchecked") private final V internalComputeIfAbsent
1404 (K k, Fun<? super K, ? extends V> mf) {
1405 if (k == null || mf == null)
1406 throw new NullPointerException();
1407 int h = spread(k.hashCode());
1408 V val = null;
1409 int len = 0;
1410 for (Node<V>[] tab = table;;) {
1411 Node<V> f; int i; Object fk;
1412 if (tab == null)
1413 tab = initTable();
1414 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1415 Node<V> node = new Node<V>(h, k, null, null);
1416 synchronized (node) {
1417 if (casTabAt(tab, i, null, node)) {
1418 len = 1;
1419 try {
1420 if ((val = mf.apply(k)) != null)
1421 node.val = val;
1422 } finally {
1423 if (val == null)
1424 setTabAt(tab, i, null);
1425 }
1426 }
1427 }
1428 if (len != 0)
1429 break;
1430 }
1431 else if (f.hash < 0) {
1432 if ((fk = f.key) instanceof TreeBin) {
1433 TreeBin<V> t = (TreeBin<V>)fk;
1434 boolean added = false;
1435 t.acquire(0);
1436 try {
1437 if (tabAt(tab, i) == f) {
1438 len = 1;
1439 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1440 if (p != null)
1441 val = p.val;
1442 else if ((val = mf.apply(k)) != null) {
1443 added = true;
1444 len = 2;
1445 t.putTreeNode(h, k, val);
1446 }
1447 }
1448 } finally {
1449 t.release(0);
1450 }
1451 if (len != 0) {
1452 if (!added)
1453 return val;
1454 break;
1455 }
1456 }
1457 else
1458 tab = (Node<V>[])fk;
1459 }
1460 else {
1461 for (Node<V> e = f; e != null; e = e.next) { // prescan
1462 Object ek; V ev;
1463 if (e.hash == h && (ev = e.val) != null &&
1464 ((ek = e.key) == k || k.equals(ek)))
1465 return ev;
1466 }
1467 boolean added = false;
1468 synchronized (f) {
1469 if (tabAt(tab, i) == f) {
1470 len = 1;
1471 for (Node<V> e = f;; ++len) {
1472 Object ek; V ev;
1473 if (e.hash == h &&
1474 (ev = e.val) != null &&
1475 ((ek = e.key) == k || k.equals(ek))) {
1476 val = ev;
1477 break;
1478 }
1479 Node<V> last = e;
1480 if ((e = e.next) == null) {
1481 if ((val = mf.apply(k)) != null) {
1482 added = true;
1483 last.next = new Node<V>(h, k, val, null);
1484 if (len >= TREE_THRESHOLD)
1485 replaceWithTreeBin(tab, i, k);
1486 }
1487 break;
1488 }
1489 }
1490 }
1491 }
1492 if (len != 0) {
1493 if (!added)
1494 return val;
1495 break;
1496 }
1497 }
1498 }
1499 if (val != null)
1500 addCount(1L, len);
1501 return val;
1502 }
1503
1504 /** Implementation for compute */
1505 @SuppressWarnings("unchecked") private final V internalCompute
1506 (K k, boolean onlyIfPresent,
1507 BiFun<? super K, ? super V, ? extends V> mf) {
1508 if (k == null || mf == null)
1509 throw new NullPointerException();
1510 int h = spread(k.hashCode());
1511 V val = null;
1512 int delta = 0;
1513 int len = 0;
1514 for (Node<V>[] tab = table;;) {
1515 Node<V> f; int i, fh; Object fk;
1516 if (tab == null)
1517 tab = initTable();
1518 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1519 if (onlyIfPresent)
1520 break;
1521 Node<V> node = new Node<V>(h, k, null, null);
1522 synchronized (node) {
1523 if (casTabAt(tab, i, null, node)) {
1524 try {
1525 len = 1;
1526 if ((val = mf.apply(k, null)) != null) {
1527 node.val = val;
1528 delta = 1;
1529 }
1530 } finally {
1531 if (delta == 0)
1532 setTabAt(tab, i, null);
1533 }
1534 }
1535 }
1536 if (len != 0)
1537 break;
1538 }
1539 else if ((fh = f.hash) < 0) {
1540 if ((fk = f.key) instanceof TreeBin) {
1541 TreeBin<V> t = (TreeBin<V>)fk;
1542 t.acquire(0);
1543 try {
1544 if (tabAt(tab, i) == f) {
1545 len = 1;
1546 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1547 if (p == null && onlyIfPresent)
1548 break;
1549 V pv = (p == null) ? null : p.val;
1550 if ((val = mf.apply(k, pv)) != null) {
1551 if (p != null)
1552 p.val = val;
1553 else {
1554 len = 2;
1555 delta = 1;
1556 t.putTreeNode(h, k, val);
1557 }
1558 }
1559 else if (p != null) {
1560 delta = -1;
1561 t.deleteTreeNode(p);
1562 }
1563 }
1564 } finally {
1565 t.release(0);
1566 }
1567 if (len != 0)
1568 break;
1569 }
1570 else
1571 tab = (Node<V>[])fk;
1572 }
1573 else {
1574 synchronized (f) {
1575 if (tabAt(tab, i) == f) {
1576 len = 1;
1577 for (Node<V> e = f, pred = null;; ++len) {
1578 Object ek; V ev;
1579 if (e.hash == h &&
1580 (ev = e.val) != null &&
1581 ((ek = e.key) == k || k.equals(ek))) {
1582 val = mf.apply(k, ev);
1583 if (val != null)
1584 e.val = val;
1585 else {
1586 delta = -1;
1587 Node<V> en = e.next;
1588 if (pred != null)
1589 pred.next = en;
1590 else
1591 setTabAt(tab, i, en);
1592 }
1593 break;
1594 }
1595 pred = e;
1596 if ((e = e.next) == null) {
1597 if (!onlyIfPresent &&
1598 (val = mf.apply(k, null)) != null) {
1599 pred.next = new Node<V>(h, k, val, null);
1600 delta = 1;
1601 if (len >= TREE_THRESHOLD)
1602 replaceWithTreeBin(tab, i, k);
1603 }
1604 break;
1605 }
1606 }
1607 }
1608 }
1609 if (len != 0)
1610 break;
1611 }
1612 }
1613 if (delta != 0)
1614 addCount((long)delta, len);
1615 return val;
1616 }
1617
1618 /** Implementation for merge */
1619 @SuppressWarnings("unchecked") private final V internalMerge
1620 (K k, V v, BiFun<? super V, ? super V, ? extends V> mf) {
1621 if (k == null || v == null || mf == null)
1622 throw new NullPointerException();
1623 int h = spread(k.hashCode());
1624 V val = null;
1625 int delta = 0;
1626 int len = 0;
1627 for (Node<V>[] tab = table;;) {
1628 int i; Node<V> f; Object fk; V fv;
1629 if (tab == null)
1630 tab = initTable();
1631 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1632 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1633 delta = 1;
1634 val = v;
1635 break;
1636 }
1637 }
1638 else if (f.hash < 0) {
1639 if ((fk = f.key) instanceof TreeBin) {
1640 TreeBin<V> t = (TreeBin<V>)fk;
1641 t.acquire(0);
1642 try {
1643 if (tabAt(tab, i) == f) {
1644 len = 1;
1645 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1646 val = (p == null) ? v : mf.apply(p.val, v);
1647 if (val != null) {
1648 if (p != null)
1649 p.val = val;
1650 else {
1651 len = 2;
1652 delta = 1;
1653 t.putTreeNode(h, k, val);
1654 }
1655 }
1656 else if (p != null) {
1657 delta = -1;
1658 t.deleteTreeNode(p);
1659 }
1660 }
1661 } finally {
1662 t.release(0);
1663 }
1664 if (len != 0)
1665 break;
1666 }
1667 else
1668 tab = (Node<V>[])fk;
1669 }
1670 else {
1671 synchronized (f) {
1672 if (tabAt(tab, i) == f) {
1673 len = 1;
1674 for (Node<V> e = f, pred = null;; ++len) {
1675 Object ek; V ev;
1676 if (e.hash == h &&
1677 (ev = e.val) != null &&
1678 ((ek = e.key) == k || k.equals(ek))) {
1679 val = mf.apply(ev, v);
1680 if (val != null)
1681 e.val = val;
1682 else {
1683 delta = -1;
1684 Node<V> en = e.next;
1685 if (pred != null)
1686 pred.next = en;
1687 else
1688 setTabAt(tab, i, en);
1689 }
1690 break;
1691 }
1692 pred = e;
1693 if ((e = e.next) == null) {
1694 val = v;
1695 pred.next = new Node<V>(h, k, val, null);
1696 delta = 1;
1697 if (len >= TREE_THRESHOLD)
1698 replaceWithTreeBin(tab, i, k);
1699 break;
1700 }
1701 }
1702 }
1703 }
1704 if (len != 0)
1705 break;
1706 }
1707 }
1708 if (delta != 0)
1709 addCount((long)delta, len);
1710 return val;
1711 }
1712
1713 /** Implementation for putAll */
1714 @SuppressWarnings("unchecked") private final void internalPutAll
1715 (Map<? extends K, ? extends V> m) {
1716 tryPresize(m.size());
1717 long delta = 0L; // number of uncommitted additions
1718 boolean npe = false; // to throw exception on exit for nulls
1719 try { // to clean up counts on other exceptions
1720 for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
1721 Object k; V v;
1722 if (entry == null || (k = entry.getKey()) == null ||
1723 (v = entry.getValue()) == null) {
1724 npe = true;
1725 break;
1726 }
1727 int h = spread(k.hashCode());
1728 for (Node<V>[] tab = table;;) {
1729 int i; Node<V> f; int fh; Object fk;
1730 if (tab == null)
1731 tab = initTable();
1732 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1733 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1734 ++delta;
1735 break;
1736 }
1737 }
1738 else if ((fh = f.hash) < 0) {
1739 if ((fk = f.key) instanceof TreeBin) {
1740 TreeBin<V> t = (TreeBin<V>)fk;
1741 boolean validated = false;
1742 t.acquire(0);
1743 try {
1744 if (tabAt(tab, i) == f) {
1745 validated = true;
1746 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1747 if (p != null)
1748 p.val = v;
1749 else {
1750 t.putTreeNode(h, k, v);
1751 ++delta;
1752 }
1753 }
1754 } finally {
1755 t.release(0);
1756 }
1757 if (validated)
1758 break;
1759 }
1760 else
1761 tab = (Node<V>[])fk;
1762 }
1763 else {
1764 int len = 0;
1765 synchronized (f) {
1766 if (tabAt(tab, i) == f) {
1767 len = 1;
1768 for (Node<V> e = f;; ++len) {
1769 Object ek; V ev;
1770 if (e.hash == h &&
1771 (ev = e.val) != null &&
1772 ((ek = e.key) == k || k.equals(ek))) {
1773 e.val = v;
1774 break;
1775 }
1776 Node<V> last = e;
1777 if ((e = e.next) == null) {
1778 ++delta;
1779 last.next = new Node<V>(h, k, v, null);
1780 if (len >= TREE_THRESHOLD)
1781 replaceWithTreeBin(tab, i, k);
1782 break;
1783 }
1784 }
1785 }
1786 }
1787 if (len != 0) {
1788 if (len > 1)
1789 addCount(delta, len);
1790 break;
1791 }
1792 }
1793 }
1794 }
1795 } finally {
1796 if (delta != 0L)
1797 addCount(delta, 2);
1798 }
1799 if (npe)
1800 throw new NullPointerException();
1801 }
1802
1803 /**
1804 * Implementation for clear. Steps through each bin, removing all
1805 * nodes.
1806 */
1807 @SuppressWarnings("unchecked") private final void internalClear() {
1808 long delta = 0L; // negative number of deletions
1809 int i = 0;
1810 Node<V>[] tab = table;
1811 while (tab != null && i < tab.length) {
1812 Node<V> f = tabAt(tab, i);
1813 if (f == null)
1814 ++i;
1815 else if (f.hash < 0) {
1816 Object fk;
1817 if ((fk = f.key) instanceof TreeBin) {
1818 TreeBin<V> t = (TreeBin<V>)fk;
1819 t.acquire(0);
1820 try {
1821 if (tabAt(tab, i) == f) {
1822 for (Node<V> p = t.first; p != null; p = p.next) {
1823 if (p.val != null) { // (currently always true)
1824 p.val = null;
1825 --delta;
1826 }
1827 }
1828 t.first = null;
1829 t.root = null;
1830 ++i;
1831 }
1832 } finally {
1833 t.release(0);
1834 }
1835 }
1836 else
1837 tab = (Node<V>[])fk;
1838 }
1839 else {
1840 synchronized (f) {
1841 if (tabAt(tab, i) == f) {
1842 for (Node<V> e = f; e != null; e = e.next) {
1843 if (e.val != null) { // (currently always true)
1844 e.val = null;
1845 --delta;
1846 }
1847 }
1848 setTabAt(tab, i, null);
1849 ++i;
1850 }
1851 }
1852 }
1853 }
1854 if (delta != 0L)
1855 addCount(delta, -1);
1856 }
1857
1858 /* ---------------- Table Initialization and Resizing -------------- */
1859
1860 /**
1861 * Returns a power of two table size for the given desired capacity.
1862 * See Hackers Delight, sec 3.2
1863 */
1864 private static final int tableSizeFor(int c) {
1865 int n = c - 1;
1866 n |= n >>> 1;
1867 n |= n >>> 2;
1868 n |= n >>> 4;
1869 n |= n >>> 8;
1870 n |= n >>> 16;
1871 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1872 }
1873
1874 /**
1875 * Initializes table, using the size recorded in sizeCtl.
1876 */
1877 @SuppressWarnings("unchecked") private final Node<V>[] initTable() {
1878 Node<V>[] tab; int sc;
1879 while ((tab = table) == null) {
1880 if ((sc = sizeCtl) < 0)
1881 Thread.yield(); // lost initialization race; just spin
1882 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1883 try {
1884 if ((tab = table) == null) {
1885 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1886 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1887 table = tab = (Node<V>[])tb;
1888 sc = n - (n >>> 2);
1889 }
1890 } finally {
1891 sizeCtl = sc;
1892 }
1893 break;
1894 }
1895 }
1896 return tab;
1897 }
1898
1899 /**
1900 * Adds to count, and if table is too small and not already
1901 * resizing, initiates transfer. If already resizing, helps
1902 * perform transfer if work is available. Rechecks occupancy
1903 * after a transfer to see if another resize is already needed
1904 * because resizings are lagging additions.
1905 *
1906 * @param x the count to add
1907 * @param check if <0, don't check resize, if <= 1 only check if uncontended
1908 */
1909 private final void addCount(long x, int check) {
1910 CounterCell[] as; long b, s;
1911 if ((as = counterCells) != null ||
1912 !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1913 CounterHashCode hc; CounterCell a; long v; int m;
1914 boolean uncontended = true;
1915 if ((hc = threadCounterHashCode.get()) == null ||
1916 as == null || (m = as.length - 1) < 0 ||
1917 (a = as[m & hc.code]) == null ||
1918 !(uncontended =
1919 U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1920 fullAddCount(x, hc, uncontended);
1921 return;
1922 }
1923 if (check <= 1)
1924 return;
1925 s = sumCount();
1926 }
1927 if (check >= 0) {
1928 Node<V>[] tab, nt; int sc;
1929 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1930 tab.length < MAXIMUM_CAPACITY) {
1931 if (sc < 0) {
1932 if (sc == -1 || transferIndex <= transferOrigin ||
1933 (nt = nextTable) == null)
1934 break;
1935 if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1936 transfer(tab, nt);
1937 }
1938 else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1939 transfer(tab, null);
1940 s = sumCount();
1941 }
1942 }
1943 }
1944
1945 /**
1946 * Tries to presize table to accommodate the given number of elements.
1947 *
1948 * @param size number of elements (doesn't need to be perfectly accurate)
1949 */
1950 @SuppressWarnings("unchecked") private final void tryPresize(int size) {
1951 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1952 tableSizeFor(size + (size >>> 1) + 1);
1953 int sc;
1954 while ((sc = sizeCtl) >= 0) {
1955 Node<V>[] tab = table; int n;
1956 if (tab == null || (n = tab.length) == 0) {
1957 n = (sc > c) ? sc : c;
1958 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1959 try {
1960 if (table == tab) {
1961 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1962 table = (Node<V>[])tb;
1963 sc = n - (n >>> 2);
1964 }
1965 } finally {
1966 sizeCtl = sc;
1967 }
1968 }
1969 }
1970 else if (c <= sc || n >= MAXIMUM_CAPACITY)
1971 break;
1972 else if (tab == table &&
1973 U.compareAndSwapInt(this, SIZECTL, sc, -2))
1974 transfer(tab, null);
1975 }
1976 }
1977
1978 /*
1979 * Moves and/or copies the nodes in each bin to new table. See
1980 * above for explanation.
1981 */
1982 @SuppressWarnings("unchecked") private final void transfer
1983 (Node<V>[] tab, Node<V>[] nextTab) {
1984 int n = tab.length, stride;
1985 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1986 stride = MIN_TRANSFER_STRIDE; // subdivide range
1987 if (nextTab == null) { // initiating
1988 try {
1989 @SuppressWarnings("rawtypes") Node[] tb = new Node[n << 1];
1990 nextTab = (Node<V>[])tb;
1991 } catch (Throwable ex) { // try to cope with OOME
1992 sizeCtl = Integer.MAX_VALUE;
1993 return;
1994 }
1995 nextTable = nextTab;
1996 transferOrigin = n;
1997 transferIndex = n;
1998 Node<V> rev = new Node<V>(MOVED, tab, null, null);
1999 for (int k = n; k > 0;) { // progressively reveal ready slots
2000 int nextk = (k > stride) ? k - stride : 0;
2001 for (int m = nextk; m < k; ++m)
2002 nextTab[m] = rev;
2003 for (int m = n + nextk; m < n + k; ++m)
2004 nextTab[m] = rev;
2005 U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
2006 }
2007 }
2008 int nextn = nextTab.length;
2009 Node<V> fwd = new Node<V>(MOVED, nextTab, null, null);
2010 boolean advance = true;
2011 for (int i = 0, bound = 0;;) {
2012 int nextIndex, nextBound; Node<V> f; Object fk;
2013 while (advance) {
2014 if (--i >= bound)
2015 advance = false;
2016 else if ((nextIndex = transferIndex) <= transferOrigin) {
2017 i = -1;
2018 advance = false;
2019 }
2020 else if (U.compareAndSwapInt
2021 (this, TRANSFERINDEX, nextIndex,
2022 nextBound = (nextIndex > stride ?
2023 nextIndex - stride : 0))) {
2024 bound = nextBound;
2025 i = nextIndex - 1;
2026 advance = false;
2027 }
2028 }
2029 if (i < 0 || i >= n || i + n >= nextn) {
2030 for (int sc;;) {
2031 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2032 if (sc == -1) {
2033 nextTable = null;
2034 table = nextTab;
2035 sizeCtl = (n << 1) - (n >>> 1);
2036 }
2037 return;
2038 }
2039 }
2040 }
2041 else if ((f = tabAt(tab, i)) == null) {
2042 if (casTabAt(tab, i, null, fwd)) {
2043 setTabAt(nextTab, i, null);
2044 setTabAt(nextTab, i + n, null);
2045 advance = true;
2046 }
2047 }
2048 else if (f.hash >= 0) {
2049 synchronized (f) {
2050 if (tabAt(tab, i) == f) {
2051 int runBit = f.hash & n;
2052 Node<V> lastRun = f, lo = null, hi = null;
2053 for (Node<V> p = f.next; p != null; p = p.next) {
2054 int b = p.hash & n;
2055 if (b != runBit) {
2056 runBit = b;
2057 lastRun = p;
2058 }
2059 }
2060 if (runBit == 0)
2061 lo = lastRun;
2062 else
2063 hi = lastRun;
2064 for (Node<V> p = f; p != lastRun; p = p.next) {
2065 int ph = p.hash;
2066 Object pk = p.key; V pv = p.val;
2067 if ((ph & n) == 0)
2068 lo = new Node<V>(ph, pk, pv, lo);
2069 else
2070 hi = new Node<V>(ph, pk, pv, hi);
2071 }
2072 setTabAt(nextTab, i, lo);
2073 setTabAt(nextTab, i + n, hi);
2074 setTabAt(tab, i, fwd);
2075 advance = true;
2076 }
2077 }
2078 }
2079 else if ((fk = f.key) instanceof TreeBin) {
2080 TreeBin<V> t = (TreeBin<V>)fk;
2081 t.acquire(0);
2082 try {
2083 if (tabAt(tab, i) == f) {
2084 TreeBin<V> lt = new TreeBin<V>();
2085 TreeBin<V> ht = new TreeBin<V>();
2086 int lc = 0, hc = 0;
2087 for (Node<V> e = t.first; e != null; e = e.next) {
2088 int h = e.hash;
2089 Object k = e.key; V v = e.val;
2090 if ((h & n) == 0) {
2091 ++lc;
2092 lt.putTreeNode(h, k, v);
2093 }
2094 else {
2095 ++hc;
2096 ht.putTreeNode(h, k, v);
2097 }
2098 }
2099 Node<V> ln, hn; // throw away trees if too small
2100 if (lc < TREE_THRESHOLD) {
2101 ln = null;
2102 for (Node<V> p = lt.first; p != null; p = p.next)
2103 ln = new Node<V>(p.hash, p.key, p.val, ln);
2104 }
2105 else
2106 ln = new Node<V>(MOVED, lt, null, null);
2107 setTabAt(nextTab, i, ln);
2108 if (hc < TREE_THRESHOLD) {
2109 hn = null;
2110 for (Node<V> p = ht.first; p != null; p = p.next)
2111 hn = new Node<V>(p.hash, p.key, p.val, hn);
2112 }
2113 else
2114 hn = new Node<V>(MOVED, ht, null, null);
2115 setTabAt(nextTab, i + n, hn);
2116 setTabAt(tab, i, fwd);
2117 advance = true;
2118 }
2119 } finally {
2120 t.release(0);
2121 }
2122 }
2123 else
2124 advance = true; // already processed
2125 }
2126 }
2127
2128 /* ---------------- Counter support -------------- */
2129
2130 final long sumCount() {
2131 CounterCell[] as = counterCells; CounterCell a;
2132 long sum = baseCount;
2133 if (as != null) {
2134 for (int i = 0; i < as.length; ++i) {
2135 if ((a = as[i]) != null)
2136 sum += a.value;
2137 }
2138 }
2139 return sum;
2140 }
2141
2142 // See LongAdder version for explanation
2143 private final void fullAddCount(long x, CounterHashCode hc,
2144 boolean wasUncontended) {
2145 int h;
2146 if (hc == null) {
2147 hc = new CounterHashCode();
2148 int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
2149 h = hc.code = (s == 0) ? 1 : s; // Avoid zero
2150 threadCounterHashCode.set(hc);
2151 }
2152 else
2153 h = hc.code;
2154 boolean collide = false; // True if last slot nonempty
2155 for (;;) {
2156 CounterCell[] as; CounterCell a; int n; long v;
2157 if ((as = counterCells) != null && (n = as.length) > 0) {
2158 if ((a = as[(n - 1) & h]) == null) {
2159 if (counterBusy == 0) { // Try to attach new Cell
2160 CounterCell r = new CounterCell(x); // Optimistic create
2161 if (counterBusy == 0 &&
2162 U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2163 boolean created = false;
2164 try { // Recheck under lock
2165 CounterCell[] rs; int m, j;
2166 if ((rs = counterCells) != null &&
2167 (m = rs.length) > 0 &&
2168 rs[j = (m - 1) & h] == null) {
2169 rs[j] = r;
2170 created = true;
2171 }
2172 } finally {
2173 counterBusy = 0;
2174 }
2175 if (created)
2176 break;
2177 continue; // Slot is now non-empty
2178 }
2179 }
2180 collide = false;
2181 }
2182 else if (!wasUncontended) // CAS already known to fail
2183 wasUncontended = true; // Continue after rehash
2184 else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2185 break;
2186 else if (counterCells != as || n >= NCPU)
2187 collide = false; // At max size or stale
2188 else if (!collide)
2189 collide = true;
2190 else if (counterBusy == 0 &&
2191 U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2192 try {
2193 if (counterCells == as) {// Expand table unless stale
2194 CounterCell[] rs = new CounterCell[n << 1];
2195 for (int i = 0; i < n; ++i)
2196 rs[i] = as[i];
2197 counterCells = rs;
2198 }
2199 } finally {
2200 counterBusy = 0;
2201 }
2202 collide = false;
2203 continue; // Retry with expanded table
2204 }
2205 h ^= h << 13; // Rehash
2206 h ^= h >>> 17;
2207 h ^= h << 5;
2208 }
2209 else if (counterBusy == 0 && counterCells == as &&
2210 U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2211 boolean init = false;
2212 try { // Initialize table
2213 if (counterCells == as) {
2214 CounterCell[] rs = new CounterCell[2];
2215 rs[h & 1] = new CounterCell(x);
2216 counterCells = rs;
2217 init = true;
2218 }
2219 } finally {
2220 counterBusy = 0;
2221 }
2222 if (init)
2223 break;
2224 }
2225 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2226 break; // Fall back on using base
2227 }
2228 hc.code = h; // Record index for next time
2229 }
2230
2231 /* ----------------Table Traversal -------------- */
2232
2233 /**
2234 * Encapsulates traversal for methods such as containsValue; also
2235 * serves as a base class for other iterators and bulk tasks.
2236 *
2237 * At each step, the iterator snapshots the key ("nextKey") and
2238 * value ("nextVal") of a valid node (i.e., one that, at point of
2239 * snapshot, has a non-null user value). Because val fields can
2240 * change (including to null, indicating deletion), field nextVal
2241 * might not be accurate at point of use, but still maintains the
2242 * weak consistency property of holding a value that was once
2243 * valid. To support iterator.remove, the nextKey field is not
2244 * updated (nulled out) when the iterator cannot advance.
2245 *
2246 * Internal traversals directly access these fields, as in:
2247 * {@code while (it.advance() != null) { process(it.nextKey); }}
2248 *
2249 * Exported iterators must track whether the iterator has advanced
2250 * (in hasNext vs next) (by setting/checking/nulling field
2251 * nextVal), and then extract key, value, or key-value pairs as
2252 * return values of next().
2253 *
2254 * The iterator visits once each still-valid node that was
2255 * reachable upon iterator construction. It might miss some that
2256 * were added to a bin after the bin was visited, which is OK wrt
2257 * consistency guarantees. Maintaining this property in the face
2258 * of possible ongoing resizes requires a fair amount of
2259 * bookkeeping state that is difficult to optimize away amidst
2260 * volatile accesses. Even so, traversal maintains reasonable
2261 * throughput.
2262 *
2263 * Normally, iteration proceeds bin-by-bin traversing lists.
2264 * However, if the table has been resized, then all future steps
2265 * must traverse both the bin at the current index as well as at
2266 * (index + baseSize); and so on for further resizings. To
2267 * paranoically cope with potential sharing by users of iterators
2268 * across threads, iteration terminates if a bounds checks fails
2269 * for a table read.
2270 *
2271 * This class extends CountedCompleter to streamline parallel
2272 * iteration in bulk operations. This adds only a few fields of
2273 * space overhead, which is small enough in cases where it is not
2274 * needed to not worry about it. Because CountedCompleter is
2275 * Serializable, but iterators need not be, we need to add warning
2276 * suppressions.
2277 */
2278 @SuppressWarnings("serial") static class Traverser<K,V,R>
2279 extends CountedCompleter<R> {
2280 final ConcurrentHashMapV8<K, V> map;
2281 Node<V> next; // the next entry to use
2282 Object nextKey; // cached key field of next
2283 V nextVal; // cached val field of next
2284 Node<V>[] tab; // current table; updated if resized
2285 int index; // index of bin to use next
2286 int baseIndex; // current index of initial table
2287 int baseLimit; // index bound for initial table
2288 int baseSize; // initial table size
2289 int batch; // split control
2290
2291 /** Creates iterator for all entries in the table. */
2292 Traverser(ConcurrentHashMapV8<K, V> map) {
2293 this.map = map;
2294 }
2295
2296 /** Creates iterator for split() methods and task constructors */
2297 Traverser(ConcurrentHashMapV8<K,V> map, Traverser<K,V,?> it, int batch) {
2298 super(it);
2299 this.batch = batch;
2300 if ((this.map = map) != null && it != null) { // split parent
2301 Node<V>[] t;
2302 if ((t = it.tab) == null &&
2303 (t = it.tab = map.table) != null)
2304 it.baseLimit = it.baseSize = t.length;
2305 this.tab = t;
2306 this.baseSize = it.baseSize;
2307 int hi = this.baseLimit = it.baseLimit;
2308 it.baseLimit = this.index = this.baseIndex =
2309 (hi + it.baseIndex + 1) >>> 1;
2310 }
2311 }
2312
2313 /**
2314 * Advances next; returns nextVal or null if terminated.
2315 * See above for explanation.
2316 */
2317 @SuppressWarnings("unchecked") final V advance() {
2318 Node<V> e = next;
2319 V ev = null;
2320 outer: do {
2321 if (e != null) // advance past used/skipped node
2322 e = e.next;
2323 while (e == null) { // get to next non-null bin
2324 ConcurrentHashMapV8<K, V> m;
2325 Node<V>[] t; int b, i, n; Object ek; // must use locals
2326 if ((t = tab) != null)
2327 n = t.length;
2328 else if ((m = map) != null && (t = tab = m.table) != null)
2329 n = baseLimit = baseSize = t.length;
2330 else
2331 break outer;
2332 if ((b = baseIndex) >= baseLimit ||
2333 (i = index) < 0 || i >= n)
2334 break outer;
2335 if ((e = tabAt(t, i)) != null && e.hash < 0) {
2336 if ((ek = e.key) instanceof TreeBin)
2337 e = ((TreeBin<V>)ek).first;
2338 else {
2339 tab = (Node<V>[])ek;
2340 continue; // restarts due to null val
2341 }
2342 } // visit upper slots if present
2343 index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2344 }
2345 nextKey = e.key;
2346 } while ((ev = e.val) == null); // skip deleted or special nodes
2347 next = e;
2348 return nextVal = ev;
2349 }
2350
2351 public final void remove() {
2352 Object k = nextKey;
2353 if (k == null && (advance() == null || (k = nextKey) == null))
2354 throw new IllegalStateException();
2355 map.internalReplace(k, null, null);
2356 }
2357
2358 public final boolean hasNext() {
2359 return nextVal != null || advance() != null;
2360 }
2361
2362 public final boolean hasMoreElements() { return hasNext(); }
2363
2364 public void compute() { } // default no-op CountedCompleter body
2365
2366 /**
2367 * Returns a batch value > 0 if this task should (and must) be
2368 * split, if so, adding to pending count, and in any case
2369 * updating batch value. The initial batch value is approx
2370 * exp2 of the number of times (minus one) to split task by
2371 * two before executing leaf action. This value is faster to
2372 * compute and more convenient to use as a guide to splitting
2373 * than is the depth, since it is used while dividing by two
2374 * anyway.
2375 */
2376 final int preSplit() {
2377 ConcurrentHashMapV8<K, V> m; int b; Node<V>[] t; ForkJoinPool pool;
2378 if ((b = batch) < 0 && (m = map) != null) { // force initialization
2379 if ((t = tab) == null && (t = tab = m.table) != null)
2380 baseLimit = baseSize = t.length;
2381 if (t != null) {
2382 long n = m.sumCount();
2383 int par = ((pool = getPool()) == null) ?
2384 ForkJoinPool.getCommonPoolParallelism() :
2385 pool.getParallelism();
2386 int sp = par << 3; // slack of 8
2387 b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2388 }
2389 }
2390 b = (b <= 1 || baseIndex == baseLimit) ? 0 : (b >>> 1);
2391 if ((batch = b) > 0)
2392 addToPendingCount(1);
2393 return b;
2394 }
2395
2396 }
2397
2398 /* ---------------- Public operations -------------- */
2399
2400 /**
2401 * Creates a new, empty map with the default initial table size (16).
2402 */
2403 public ConcurrentHashMapV8() {
2404 }
2405
2406 /**
2407 * Creates a new, empty map with an initial table size
2408 * accommodating the specified number of elements without the need
2409 * to dynamically resize.
2410 *
2411 * @param initialCapacity The implementation performs internal
2412 * sizing to accommodate this many elements.
2413 * @throws IllegalArgumentException if the initial capacity of
2414 * elements is negative
2415 */
2416 public ConcurrentHashMapV8(int initialCapacity) {
2417 if (initialCapacity < 0)
2418 throw new IllegalArgumentException();
2419 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2420 MAXIMUM_CAPACITY :
2421 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2422 this.sizeCtl = cap;
2423 }
2424
2425 /**
2426 * Creates a new map with the same mappings as the given map.
2427 *
2428 * @param m the map
2429 */
2430 public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
2431 this.sizeCtl = DEFAULT_CAPACITY;
2432 internalPutAll(m);
2433 }
2434
2435 /**
2436 * Creates a new, empty map with an initial table size based on
2437 * the given number of elements ({@code initialCapacity}) and
2438 * initial table density ({@code loadFactor}).
2439 *
2440 * @param initialCapacity the initial capacity. The implementation
2441 * performs internal sizing to accommodate this many elements,
2442 * given the specified load factor.
2443 * @param loadFactor the load factor (table density) for
2444 * establishing the initial table size
2445 * @throws IllegalArgumentException if the initial capacity of
2446 * elements is negative or the load factor is nonpositive
2447 *
2448 * @since 1.6
2449 */
2450 public ConcurrentHashMapV8(int initialCapacity, float loadFactor) {
2451 this(initialCapacity, loadFactor, 1);
2452 }
2453
2454 /**
2455 * Creates a new, empty map with an initial table size based on
2456 * the given number of elements ({@code initialCapacity}), table
2457 * density ({@code loadFactor}), and number of concurrently
2458 * updating threads ({@code concurrencyLevel}).
2459 *
2460 * @param initialCapacity the initial capacity. The implementation
2461 * performs internal sizing to accommodate this many elements,
2462 * given the specified load factor.
2463 * @param loadFactor the load factor (table density) for
2464 * establishing the initial table size
2465 * @param concurrencyLevel the estimated number of concurrently
2466 * updating threads. The implementation may use this value as
2467 * a sizing hint.
2468 * @throws IllegalArgumentException if the initial capacity is
2469 * negative or the load factor or concurrencyLevel are
2470 * nonpositive
2471 */
2472 public ConcurrentHashMapV8(int initialCapacity,
2473 float loadFactor, int concurrencyLevel) {
2474 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2475 throw new IllegalArgumentException();
2476 if (initialCapacity < concurrencyLevel) // Use at least as many bins
2477 initialCapacity = concurrencyLevel; // as estimated threads
2478 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2479 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2480 MAXIMUM_CAPACITY : tableSizeFor((int)size);
2481 this.sizeCtl = cap;
2482 }
2483
2484 /**
2485 * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2486 * from the given type to {@code Boolean.TRUE}.
2487 *
2488 * @return the new set
2489 */
2490 public static <K> KeySetView<K,Boolean> newKeySet() {
2491 return new KeySetView<K,Boolean>(new ConcurrentHashMapV8<K,Boolean>(),
2492 Boolean.TRUE);
2493 }
2494
2495 /**
2496 * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2497 * from the given type to {@code Boolean.TRUE}.
2498 *
2499 * @param initialCapacity The implementation performs internal
2500 * sizing to accommodate this many elements.
2501 * @throws IllegalArgumentException if the initial capacity of
2502 * elements is negative
2503 * @return the new set
2504 */
2505 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2506 return new KeySetView<K,Boolean>
2507 (new ConcurrentHashMapV8<K,Boolean>(initialCapacity), Boolean.TRUE);
2508 }
2509
2510 /**
2511 * {@inheritDoc}
2512 */
2513 public boolean isEmpty() {
2514 return sumCount() <= 0L; // ignore transient negative values
2515 }
2516
2517 /**
2518 * {@inheritDoc}
2519 */
2520 public int size() {
2521 long n = sumCount();
2522 return ((n < 0L) ? 0 :
2523 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2524 (int)n);
2525 }
2526
2527 /**
2528 * Returns the number of mappings. This method should be used
2529 * instead of {@link #size} because a ConcurrentHashMapV8 may
2530 * contain more mappings than can be represented as an int. The
2531 * value returned is an estimate; the actual count may differ if
2532 * there are concurrent insertions or removals.
2533 *
2534 * @return the number of mappings
2535 */
2536 public long mappingCount() {
2537 long n = sumCount();
2538 return (n < 0L) ? 0L : n; // ignore transient negative values
2539 }
2540
2541 /**
2542 * Returns the value to which the specified key is mapped,
2543 * or {@code null} if this map contains no mapping for the key.
2544 *
2545 * <p>More formally, if this map contains a mapping from a key
2546 * {@code k} to a value {@code v} such that {@code key.equals(k)},
2547 * then this method returns {@code v}; otherwise it returns
2548 * {@code null}. (There can be at most one such mapping.)
2549 *
2550 * @throws NullPointerException if the specified key is null
2551 */
2552 public V get(Object key) {
2553 return internalGet(key);
2554 }
2555
2556 /**
2557 * Returns the value to which the specified key is mapped,
2558 * or the given defaultValue if this map contains no mapping for the key.
2559 *
2560 * @param key the key
2561 * @param defaultValue the value to return if this map contains
2562 * no mapping for the given key
2563 * @return the mapping for the key, if present; else the defaultValue
2564 * @throws NullPointerException if the specified key is null
2565 */
2566 public V getValueOrDefault(Object key, V defaultValue) {
2567 V v;
2568 return (v = internalGet(key)) == null ? defaultValue : v;
2569 }
2570
2571 /**
2572 * Tests if the specified object is a key in this table.
2573 *
2574 * @param key possible key
2575 * @return {@code true} if and only if the specified object
2576 * is a key in this table, as determined by the
2577 * {@code equals} method; {@code false} otherwise
2578 * @throws NullPointerException if the specified key is null
2579 */
2580 public boolean containsKey(Object key) {
2581 return internalGet(key) != null;
2582 }
2583
2584 /**
2585 * Returns {@code true} if this map maps one or more keys to the
2586 * specified value. Note: This method may require a full traversal
2587 * of the map, and is much slower than method {@code containsKey}.
2588 *
2589 * @param value value whose presence in this map is to be tested
2590 * @return {@code true} if this map maps one or more keys to the
2591 * specified value
2592 * @throws NullPointerException if the specified value is null
2593 */
2594 public boolean containsValue(Object value) {
2595 if (value == null)
2596 throw new NullPointerException();
2597 V v;
2598 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2599 while ((v = it.advance()) != null) {
2600 if (v == value || value.equals(v))
2601 return true;
2602 }
2603 return false;
2604 }
2605
2606 /**
2607 * Legacy method testing if some key maps into the specified value
2608 * in this table. This method is identical in functionality to
2609 * {@link #containsValue}, and exists solely to ensure
2610 * full compatibility with class {@link java.util.Hashtable},
2611 * which supported this method prior to introduction of the
2612 * Java Collections framework.
2613 *
2614 * @param value a value to search for
2615 * @return {@code true} if and only if some key maps to the
2616 * {@code value} argument in this table as
2617 * determined by the {@code equals} method;
2618 * {@code false} otherwise
2619 * @throws NullPointerException if the specified value is null
2620 */
2621 @Deprecated public boolean contains(Object value) {
2622 return containsValue(value);
2623 }
2624
2625 /**
2626 * Maps the specified key to the specified value in this table.
2627 * Neither the key nor the value can be null.
2628 *
2629 * <p>The value can be retrieved by calling the {@code get} method
2630 * with a key that is equal to the original key.
2631 *
2632 * @param key key with which the specified value is to be associated
2633 * @param value value to be associated with the specified key
2634 * @return the previous value associated with {@code key}, or
2635 * {@code null} if there was no mapping for {@code key}
2636 * @throws NullPointerException if the specified key or value is null
2637 */
2638 public V put(K key, V value) {
2639 return internalPut(key, value, false);
2640 }
2641
2642 /**
2643 * {@inheritDoc}
2644 *
2645 * @return the previous value associated with the specified key,
2646 * or {@code null} if there was no mapping for the key
2647 * @throws NullPointerException if the specified key or value is null
2648 */
2649 public V putIfAbsent(K key, V value) {
2650 return internalPut(key, value, true);
2651 }
2652
2653 /**
2654 * Copies all of the mappings from the specified map to this one.
2655 * These mappings replace any mappings that this map had for any of the
2656 * keys currently in the specified map.
2657 *
2658 * @param m mappings to be stored in this map
2659 */
2660 public void putAll(Map<? extends K, ? extends V> m) {
2661 internalPutAll(m);
2662 }
2663
2664 /**
2665 * If the specified key is not already associated with a value,
2666 * computes its value using the given mappingFunction and enters
2667 * it into the map unless null. This is equivalent to
2668 * <pre> {@code
2669 * if (map.containsKey(key))
2670 * return map.get(key);
2671 * value = mappingFunction.apply(key);
2672 * if (value != null)
2673 * map.put(key, value);
2674 * return value;}</pre>
2675 *
2676 * except that the action is performed atomically. If the
2677 * function returns {@code null} no mapping is recorded. If the
2678 * function itself throws an (unchecked) exception, the exception
2679 * is rethrown to its caller, and no mapping is recorded. Some
2680 * attempted update operations on this map by other threads may be
2681 * blocked while computation is in progress, so the computation
2682 * should be short and simple, and must not attempt to update any
2683 * other mappings of this Map. The most appropriate usage is to
2684 * construct a new object serving as an initial mapped value, or
2685 * memoized result, as in:
2686 *
2687 * <pre> {@code
2688 * map.computeIfAbsent(key, new Fun<K, V>() {
2689 * public V map(K k) { return new Value(f(k)); }});}</pre>
2690 *
2691 * @param key key with which the specified value is to be associated
2692 * @param mappingFunction the function to compute a value
2693 * @return the current (existing or computed) value associated with
2694 * the specified key, or null if the computed value is null
2695 * @throws NullPointerException if the specified key or mappingFunction
2696 * is null
2697 * @throws IllegalStateException if the computation detectably
2698 * attempts a recursive update to this map that would
2699 * otherwise never complete
2700 * @throws RuntimeException or Error if the mappingFunction does so,
2701 * in which case the mapping is left unestablished
2702 */
2703 public V computeIfAbsent
2704 (K key, Fun<? super K, ? extends V> mappingFunction) {
2705 return internalComputeIfAbsent(key, mappingFunction);
2706 }
2707
2708 /**
2709 * If the given key is present, computes a new mapping value given a key and
2710 * its current mapped value. This is equivalent to
2711 * <pre> {@code
2712 * if (map.containsKey(key)) {
2713 * value = remappingFunction.apply(key, map.get(key));
2714 * if (value != null)
2715 * map.put(key, value);
2716 * else
2717 * map.remove(key);
2718 * }
2719 * }</pre>
2720 *
2721 * except that the action is performed atomically. If the
2722 * function returns {@code null}, the mapping is removed. If the
2723 * function itself throws an (unchecked) exception, the exception
2724 * is rethrown to its caller, and the current mapping is left
2725 * unchanged. Some attempted update operations on this map by
2726 * other threads may be blocked while computation is in progress,
2727 * so the computation should be short and simple, and must not
2728 * attempt to update any other mappings of this Map. For example,
2729 * to either create or append new messages to a value mapping:
2730 *
2731 * @param key key with which the specified value is to be associated
2732 * @param remappingFunction the function to compute a value
2733 * @return the new value associated with the specified key, or null if none
2734 * @throws NullPointerException if the specified key or remappingFunction
2735 * is null
2736 * @throws IllegalStateException if the computation detectably
2737 * attempts a recursive update to this map that would
2738 * otherwise never complete
2739 * @throws RuntimeException or Error if the remappingFunction does so,
2740 * in which case the mapping is unchanged
2741 */
2742 public V computeIfPresent
2743 (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2744 return internalCompute(key, true, remappingFunction);
2745 }
2746
2747 /**
2748 * Computes a new mapping value given a key and
2749 * its current mapped value (or {@code null} if there is no current
2750 * mapping). This is equivalent to
2751 * <pre> {@code
2752 * value = remappingFunction.apply(key, map.get(key));
2753 * if (value != null)
2754 * map.put(key, value);
2755 * else
2756 * map.remove(key);
2757 * }</pre>
2758 *
2759 * except that the action is performed atomically. If the
2760 * function returns {@code null}, the mapping is removed. If the
2761 * function itself throws an (unchecked) exception, the exception
2762 * is rethrown to its caller, and the current mapping is left
2763 * unchanged. Some attempted update operations on this map by
2764 * other threads may be blocked while computation is in progress,
2765 * so the computation should be short and simple, and must not
2766 * attempt to update any other mappings of this Map. For example,
2767 * to either create or append new messages to a value mapping:
2768 *
2769 * <pre> {@code
2770 * Map<Key, String> map = ...;
2771 * final String msg = ...;
2772 * map.compute(key, new BiFun<Key, String, String>() {
2773 * public String apply(Key k, String v) {
2774 * return (v == null) ? msg : v + msg;});}}</pre>
2775 *
2776 * @param key key with which the specified value is to be associated
2777 * @param remappingFunction the function to compute a value
2778 * @return the new value associated with the specified key, or null if none
2779 * @throws NullPointerException if the specified key or remappingFunction
2780 * is null
2781 * @throws IllegalStateException if the computation detectably
2782 * attempts a recursive update to this map that would
2783 * otherwise never complete
2784 * @throws RuntimeException or Error if the remappingFunction does so,
2785 * in which case the mapping is unchanged
2786 */
2787 public V compute
2788 (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2789 return internalCompute(key, false, remappingFunction);
2790 }
2791
2792 /**
2793 * If the specified key is not already associated
2794 * with a value, associate it with the given value.
2795 * Otherwise, replace the value with the results of
2796 * the given remapping function. This is equivalent to:
2797 * <pre> {@code
2798 * if (!map.containsKey(key))
2799 * map.put(value);
2800 * else {
2801 * newValue = remappingFunction.apply(map.get(key), value);
2802 * if (value != null)
2803 * map.put(key, value);
2804 * else
2805 * map.remove(key);
2806 * }
2807 * }</pre>
2808 * except that the action is performed atomically. If the
2809 * function returns {@code null}, the mapping is removed. If the
2810 * function itself throws an (unchecked) exception, the exception
2811 * is rethrown to its caller, and the current mapping is left
2812 * unchanged. Some attempted update operations on this map by
2813 * other threads may be blocked while computation is in progress,
2814 * so the computation should be short and simple, and must not
2815 * attempt to update any other mappings of this Map.
2816 */
2817 public V merge
2818 (K key, V value,
2819 BiFun<? super V, ? super V, ? extends V> remappingFunction) {
2820 return internalMerge(key, value, remappingFunction);
2821 }
2822
2823 /**
2824 * Removes the key (and its corresponding value) from this map.
2825 * This method does nothing if the key is not in the map.
2826 *
2827 * @param key the key that needs to be removed
2828 * @return the previous value associated with {@code key}, or
2829 * {@code null} if there was no mapping for {@code key}
2830 * @throws NullPointerException if the specified key is null
2831 */
2832 public V remove(Object key) {
2833 return internalReplace(key, null, null);
2834 }
2835
2836 /**
2837 * {@inheritDoc}
2838 *
2839 * @throws NullPointerException if the specified key is null
2840 */
2841 public boolean remove(Object key, Object value) {
2842 return value != null && internalReplace(key, null, value) != null;
2843 }
2844
2845 /**
2846 * {@inheritDoc}
2847 *
2848 * @throws NullPointerException if any of the arguments are null
2849 */
2850 public boolean replace(K key, V oldValue, V newValue) {
2851 if (key == null || oldValue == null || newValue == null)
2852 throw new NullPointerException();
2853 return internalReplace(key, newValue, oldValue) != null;
2854 }
2855
2856 /**
2857 * {@inheritDoc}
2858 *
2859 * @return the previous value associated with the specified key,
2860 * or {@code null} if there was no mapping for the key
2861 * @throws NullPointerException if the specified key or value is null
2862 */
2863 public V replace(K key, V value) {
2864 if (key == null || value == null)
2865 throw new NullPointerException();
2866 return internalReplace(key, value, null);
2867 }
2868
2869 /**
2870 * Removes all of the mappings from this map.
2871 */
2872 public void clear() {
2873 internalClear();
2874 }
2875
2876 /**
2877 * Returns a {@link Set} view of the keys contained in this map.
2878 * The set is backed by the map, so changes to the map are
2879 * reflected in the set, and vice-versa.
2880 *
2881 * @return the set view
2882 */
2883 public KeySetView<K,V> keySet() {
2884 KeySetView<K,V> ks = keySet;
2885 return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2886 }
2887
2888 /**
2889 * Returns a {@link Set} view of the keys in this map, using the
2890 * given common mapped value for any additions (i.e., {@link
2891 * Collection#add} and {@link Collection#addAll}). This is of
2892 * course only appropriate if it is acceptable to use the same
2893 * value for all additions from this view.
2894 *
2895 * @param mappedValue the mapped value to use for any
2896 * additions.
2897 * @return the set view
2898 * @throws NullPointerException if the mappedValue is null
2899 */
2900 public KeySetView<K,V> keySet(V mappedValue) {
2901 if (mappedValue == null)
2902 throw new NullPointerException();
2903 return new KeySetView<K,V>(this, mappedValue);
2904 }
2905
2906 /**
2907 * Returns a {@link Collection} view of the values contained in this map.
2908 * The collection is backed by the map, so changes to the map are
2909 * reflected in the collection, and vice-versa.
2910 */
2911 public ValuesView<K,V> values() {
2912 ValuesView<K,V> vs = values;
2913 return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2914 }
2915
2916 /**
2917 * Returns a {@link Set} view of the mappings contained in this map.
2918 * The set is backed by the map, so changes to the map are
2919 * reflected in the set, and vice-versa. The set supports element
2920 * removal, which removes the corresponding mapping from the map,
2921 * via the {@code Iterator.remove}, {@code Set.remove},
2922 * {@code removeAll}, {@code retainAll}, and {@code clear}
2923 * operations. It does not support the {@code add} or
2924 * {@code addAll} operations.
2925 *
2926 * <p>The view's {@code iterator} is a "weakly consistent" iterator
2927 * that will never throw {@link ConcurrentModificationException},
2928 * and guarantees to traverse elements as they existed upon
2929 * construction of the iterator, and may (but is not guaranteed to)
2930 * reflect any modifications subsequent to construction.
2931 */
2932 public Set<Map.Entry<K,V>> entrySet() {
2933 EntrySetView<K,V> es = entrySet;
2934 return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2935 }
2936
2937 /**
2938 * Returns an enumeration of the keys in this table.
2939 *
2940 * @return an enumeration of the keys in this table
2941 * @see #keySet()
2942 */
2943 public Enumeration<K> keys() {
2944 return new KeyIterator<K,V>(this);
2945 }
2946
2947 /**
2948 * Returns an enumeration of the values in this table.
2949 *
2950 * @return an enumeration of the values in this table
2951 * @see #values()
2952 */
2953 public Enumeration<V> elements() {
2954 return new ValueIterator<K,V>(this);
2955 }
2956
2957 /**
2958 * Returns a partitionable iterator of the keys in this map.
2959 *
2960 * @return a partitionable iterator of the keys in this map
2961 */
2962 public Spliterator<K> keySpliterator() {
2963 return new KeyIterator<K,V>(this);
2964 }
2965
2966 /**
2967 * Returns a partitionable iterator of the values in this map.
2968 *
2969 * @return a partitionable iterator of the values in this map
2970 */
2971 public Spliterator<V> valueSpliterator() {
2972 return new ValueIterator<K,V>(this);
2973 }
2974
2975 /**
2976 * Returns a partitionable iterator of the entries in this map.
2977 *
2978 * @return a partitionable iterator of the entries in this map
2979 */
2980 public Spliterator<Map.Entry<K,V>> entrySpliterator() {
2981 return new EntryIterator<K,V>(this);
2982 }
2983
2984 /**
2985 * Returns the hash code value for this {@link Map}, i.e.,
2986 * the sum of, for each key-value pair in the map,
2987 * {@code key.hashCode() ^ value.hashCode()}.
2988 *
2989 * @return the hash code value for this map
2990 */
2991 public int hashCode() {
2992 int h = 0;
2993 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2994 V v;
2995 while ((v = it.advance()) != null) {
2996 h += it.nextKey.hashCode() ^ v.hashCode();
2997 }
2998 return h;
2999 }
3000
3001 /**
3002 * Returns a string representation of this map. The string
3003 * representation consists of a list of key-value mappings (in no
3004 * particular order) enclosed in braces ("{@code {}}"). Adjacent
3005 * mappings are separated by the characters {@code ", "} (comma
3006 * and space). Each key-value mapping is rendered as the key
3007 * followed by an equals sign ("{@code =}") followed by the
3008 * associated value.
3009 *
3010 * @return a string representation of this map
3011 */
3012 public String toString() {
3013 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3014 StringBuilder sb = new StringBuilder();
3015 sb.append('{');
3016 V v;
3017 if ((v = it.advance()) != null) {
3018 for (;;) {
3019 Object k = it.nextKey;
3020 sb.append(k == this ? "(this Map)" : k);
3021 sb.append('=');
3022 sb.append(v == this ? "(this Map)" : v);
3023 if ((v = it.advance()) == null)
3024 break;
3025 sb.append(',').append(' ');
3026 }
3027 }
3028 return sb.append('}').toString();
3029 }
3030
3031 /**
3032 * Compares the specified object with this map for equality.
3033 * Returns {@code true} if the given object is a map with the same
3034 * mappings as this map. This operation may return misleading
3035 * results if either map is concurrently modified during execution
3036 * of this method.
3037 *
3038 * @param o object to be compared for equality with this map
3039 * @return {@code true} if the specified object is equal to this map
3040 */
3041 public boolean equals(Object o) {
3042 if (o != this) {
3043 if (!(o instanceof Map))
3044 return false;
3045 Map<?,?> m = (Map<?,?>) o;
3046 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3047 V val;
3048 while ((val = it.advance()) != null) {
3049 Object v = m.get(it.nextKey);
3050 if (v == null || (v != val && !v.equals(val)))
3051 return false;
3052 }
3053 for (Map.Entry<?,?> e : m.entrySet()) {
3054 Object mk, mv, v;
3055 if ((mk = e.getKey()) == null ||
3056 (mv = e.getValue()) == null ||
3057 (v = internalGet(mk)) == null ||
3058 (mv != v && !mv.equals(v)))
3059 return false;
3060 }
3061 }
3062 return true;
3063 }
3064
3065 /* ----------------Iterators -------------- */
3066
3067 @SuppressWarnings("serial") static final class KeyIterator<K,V>
3068 extends Traverser<K,V,Object>
3069 implements Spliterator<K>, Enumeration<K> {
3070 KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3071 KeyIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3072 super(map, it, -1);
3073 }
3074 public KeyIterator<K,V> split() {
3075 if (nextKey != null)
3076 throw new IllegalStateException();
3077 return new KeyIterator<K,V>(map, this);
3078 }
3079 @SuppressWarnings("unchecked") public final K next() {
3080 if (nextVal == null && advance() == null)
3081 throw new NoSuchElementException();
3082 Object k = nextKey;
3083 nextVal = null;
3084 return (K) k;
3085 }
3086
3087 public final K nextElement() { return next(); }
3088 }
3089
3090 @SuppressWarnings("serial") static final class ValueIterator<K,V>
3091 extends Traverser<K,V,Object>
3092 implements Spliterator<V>, Enumeration<V> {
3093 ValueIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3094 ValueIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3095 super(map, it, -1);
3096 }
3097 public ValueIterator<K,V> split() {
3098 if (nextKey != null)
3099 throw new IllegalStateException();
3100 return new ValueIterator<K,V>(map, this);
3101 }
3102
3103 public final V next() {
3104 V v;
3105 if ((v = nextVal) == null && (v = advance()) == null)
3106 throw new NoSuchElementException();
3107 nextVal = null;
3108 return v;
3109 }
3110
3111 public final V nextElement() { return next(); }
3112 }
3113
3114 @SuppressWarnings("serial") static final class EntryIterator<K,V>
3115 extends Traverser<K,V,Object>
3116 implements Spliterator<Map.Entry<K,V>> {
3117 EntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3118 EntryIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3119 super(map, it, -1);
3120 }
3121 public EntryIterator<K,V> split() {
3122 if (nextKey != null)
3123 throw new IllegalStateException();
3124 return new EntryIterator<K,V>(map, this);
3125 }
3126
3127 @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3128 V v;
3129 if ((v = nextVal) == null && (v = advance()) == null)
3130 throw new NoSuchElementException();
3131 Object k = nextKey;
3132 nextVal = null;
3133 return new MapEntry<K,V>((K)k, v, map);
3134 }
3135 }
3136
3137 /**
3138 * Exported Entry for iterators
3139 */
3140 static final class MapEntry<K,V> implements Map.Entry<K, V> {
3141 final K key; // non-null
3142 V val; // non-null
3143 final ConcurrentHashMapV8<K, V> map;
3144 MapEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
3145 this.key = key;
3146 this.val = val;
3147 this.map = map;
3148 }
3149 public final K getKey() { return key; }
3150 public final V getValue() { return val; }
3151 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
3152 public final String toString(){ return key + "=" + val; }
3153
3154 public final boolean equals(Object o) {
3155 Object k, v; Map.Entry<?,?> e;
3156 return ((o instanceof Map.Entry) &&
3157 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3158 (v = e.getValue()) != null &&
3159 (k == key || k.equals(key)) &&
3160 (v == val || v.equals(val)));
3161 }
3162
3163 /**
3164 * Sets our entry's value and writes through to the map. The
3165 * value to return is somewhat arbitrary here. Since we do not
3166 * necessarily track asynchronous changes, the most recent
3167 * "previous" value could be different from what we return (or
3168 * could even have been removed in which case the put will
3169 * re-establish). We do not and cannot guarantee more.
3170 */
3171 public final V setValue(V value) {
3172 if (value == null) throw new NullPointerException();
3173 V v = val;
3174 val = value;
3175 map.put(key, value);
3176 return v;
3177 }
3178 }
3179
3180 /**
3181 * Returns exportable snapshot entry for the given key and value
3182 * when write-through can't or shouldn't be used.
3183 */
3184 static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3185 return new AbstractMap.SimpleEntry<K,V>(k, v);
3186 }
3187
3188 /* ---------------- Serialization Support -------------- */
3189
3190 /**
3191 * Stripped-down version of helper class used in previous version,
3192 * declared for the sake of serialization compatibility
3193 */
3194 static class Segment<K,V> implements Serializable {
3195 private static final long serialVersionUID = 2249069246763182397L;
3196 final float loadFactor;
3197 Segment(float lf) { this.loadFactor = lf; }
3198 }
3199
3200 /**
3201 * Saves the state of the {@code ConcurrentHashMapV8} instance to a
3202 * stream (i.e., serializes it).
3203 * @param s the stream
3204 * @serialData
3205 * the key (Object) and value (Object)
3206 * for each key-value mapping, followed by a null pair.
3207 * The key-value mappings are emitted in no particular order.
3208 */
3209 @SuppressWarnings("unchecked") private void writeObject
3210 (java.io.ObjectOutputStream s)
3211 throws java.io.IOException {
3212 if (segments == null) { // for serialization compatibility
3213 segments = (Segment<K,V>[])
3214 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3215 for (int i = 0; i < segments.length; ++i)
3216 segments[i] = new Segment<K,V>(LOAD_FACTOR);
3217 }
3218 s.defaultWriteObject();
3219 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3220 V v;
3221 while ((v = it.advance()) != null) {
3222 s.writeObject(it.nextKey);
3223 s.writeObject(v);
3224 }
3225 s.writeObject(null);
3226 s.writeObject(null);
3227 segments = null; // throw away
3228 }
3229
3230 /**
3231 * Reconstitutes the instance from a stream (that is, deserializes it).
3232 * @param s the stream
3233 */
3234 @SuppressWarnings("unchecked") private void readObject
3235 (java.io.ObjectInputStream s)
3236 throws java.io.IOException, ClassNotFoundException {
3237 s.defaultReadObject();
3238 this.segments = null; // unneeded
3239
3240 // Create all nodes, then place in table once size is known
3241 long size = 0L;
3242 Node<V> p = null;
3243 for (;;) {
3244 K k = (K) s.readObject();
3245 V v = (V) s.readObject();
3246 if (k != null && v != null) {
3247 int h = spread(k.hashCode());
3248 p = new Node<V>(h, k, v, p);
3249 ++size;
3250 }
3251 else
3252 break;
3253 }
3254 if (p != null) {
3255 boolean init = false;
3256 int n;
3257 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3258 n = MAXIMUM_CAPACITY;
3259 else {
3260 int sz = (int)size;
3261 n = tableSizeFor(sz + (sz >>> 1) + 1);
3262 }
3263 int sc = sizeCtl;
3264 boolean collide = false;
3265 if (n > sc &&
3266 U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3267 try {
3268 if (table == null) {
3269 init = true;
3270 @SuppressWarnings("rawtypes") Node[] rt = new Node[n];
3271 Node<V>[] tab = (Node<V>[])rt;
3272 int mask = n - 1;
3273 while (p != null) {
3274 int j = p.hash & mask;
3275 Node<V> next = p.next;
3276 Node<V> q = p.next = tabAt(tab, j);
3277 setTabAt(tab, j, p);
3278 if (!collide && q != null && q.hash == p.hash)
3279 collide = true;
3280 p = next;
3281 }
3282 table = tab;
3283 addCount(size, -1);
3284 sc = n - (n >>> 2);
3285 }
3286 } finally {
3287 sizeCtl = sc;
3288 }
3289 if (collide) { // rescan and convert to TreeBins
3290 Node<V>[] tab = table;
3291 for (int i = 0; i < tab.length; ++i) {
3292 int c = 0;
3293 for (Node<V> e = tabAt(tab, i); e != null; e = e.next) {
3294 if (++c > TREE_THRESHOLD &&
3295 (e.key instanceof Comparable)) {
3296 replaceWithTreeBin(tab, i, e.key);
3297 break;
3298 }
3299 }
3300 }
3301 }
3302 }
3303 if (!init) { // Can only happen if unsafely published.
3304 while (p != null) {
3305 internalPut((K)p.key, p.val, false);
3306 p = p.next;
3307 }
3308 }
3309 }
3310 }
3311
3312 // -------------------------------------------------------
3313
3314 // Sams
3315 /** Interface describing a void action of one argument */
3316 public interface Action<A> { void apply(A a); }
3317 /** Interface describing a void action of two arguments */
3318 public interface BiAction<A,B> { void apply(A a, B b); }
3319 /** Interface describing a function of one argument */
3320 public interface Fun<A,T> { T apply(A a); }
3321 /** Interface describing a function of two arguments */
3322 public interface BiFun<A,B,T> { T apply(A a, B b); }
3323 /** Interface describing a function of no arguments */
3324 public interface Generator<T> { T apply(); }
3325 /** Interface describing a function mapping its argument to a double */
3326 public interface ObjectToDouble<A> { double apply(A a); }
3327 /** Interface describing a function mapping its argument to a long */
3328 public interface ObjectToLong<A> { long apply(A a); }
3329 /** Interface describing a function mapping its argument to an int */
3330 public interface ObjectToInt<A> {int apply(A a); }
3331 /** Interface describing a function mapping two arguments to a double */
3332 public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3333 /** Interface describing a function mapping two arguments to a long */
3334 public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3335 /** Interface describing a function mapping two arguments to an int */
3336 public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3337 /** Interface describing a function mapping a double to a double */
3338 public interface DoubleToDouble { double apply(double a); }
3339 /** Interface describing a function mapping a long to a long */
3340 public interface LongToLong { long apply(long a); }
3341 /** Interface describing a function mapping an int to an int */
3342 public interface IntToInt { int apply(int a); }
3343 /** Interface describing a function mapping two doubles to a double */
3344 public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3345 /** Interface describing a function mapping two longs to a long */
3346 public interface LongByLongToLong { long apply(long a, long b); }
3347 /** Interface describing a function mapping two ints to an int */
3348 public interface IntByIntToInt { int apply(int a, int b); }
3349
3350
3351 // -------------------------------------------------------
3352
3353 // Sequential bulk operations
3354
3355 /**
3356 * Performs the given action for each (key, value).
3357 *
3358 * @param action the action
3359 */
3360 @SuppressWarnings("unchecked") public void forEachSequentially
3361 (BiAction<K,V> action) {
3362 if (action == null) throw new NullPointerException();
3363 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3364 V v;
3365 while ((v = it.advance()) != null)
3366 action.apply((K)it.nextKey, v);
3367 }
3368
3369 /**
3370 * Performs the given action for each non-null transformation
3371 * of each (key, value).
3372 *
3373 * @param transformer a function returning the transformation
3374 * for an element, or null of there is no transformation (in
3375 * which case the action is not applied).
3376 * @param action the action
3377 */
3378 @SuppressWarnings("unchecked") public <U> void forEachSequentially
3379 (BiFun<? super K, ? super V, ? extends U> transformer,
3380 Action<U> action) {
3381 if (transformer == null || action == null)
3382 throw new NullPointerException();
3383 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3384 V v; U u;
3385 while ((v = it.advance()) != null) {
3386 if ((u = transformer.apply((K)it.nextKey, v)) != null)
3387 action.apply(u);
3388 }
3389 }
3390
3391 /**
3392 * Returns a non-null result from applying the given search
3393 * function on each (key, value), or null if none.
3394 *
3395 * @param searchFunction a function returning a non-null
3396 * result on success, else null
3397 * @return a non-null result from applying the given search
3398 * function on each (key, value), or null if none
3399 */
3400 @SuppressWarnings("unchecked") public <U> U searchSequentially
3401 (BiFun<? super K, ? super V, ? extends U> searchFunction) {
3402 if (searchFunction == null) throw new NullPointerException();
3403 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3404 V v; U u;
3405 while ((v = it.advance()) != null) {
3406 if ((u = searchFunction.apply((K)it.nextKey, v)) != null)
3407 return u;
3408 }
3409 return null;
3410 }
3411
3412 /**
3413 * Returns the result of accumulating the given transformation
3414 * of all (key, value) pairs using the given reducer to
3415 * combine values, or null if none.
3416 *
3417 * @param transformer a function returning the transformation
3418 * for an element, or null of there is no transformation (in
3419 * which case it is not combined).
3420 * @param reducer a commutative associative combining function
3421 * @return the result of accumulating the given transformation
3422 * of all (key, value) pairs
3423 */
3424 @SuppressWarnings("unchecked") public <U> U reduceSequentially
3425 (BiFun<? super K, ? super V, ? extends U> transformer,
3426 BiFun<? super U, ? super U, ? extends U> reducer) {
3427 if (transformer == null || reducer == null)
3428 throw new NullPointerException();
3429 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3430 U r = null, u; V v;
3431 while ((v = it.advance()) != null) {
3432 if ((u = transformer.apply((K)it.nextKey, v)) != null)
3433 r = (r == null) ? u : reducer.apply(r, u);
3434 }
3435 return r;
3436 }
3437
3438 /**
3439 * Returns the result of accumulating the given transformation
3440 * of all (key, value) pairs using the given reducer to
3441 * combine values, and the given basis as an identity value.
3442 *
3443 * @param transformer a function returning the transformation
3444 * for an element
3445 * @param basis the identity (initial default value) for the reduction
3446 * @param reducer a commutative associative combining function
3447 * @return the result of accumulating the given transformation
3448 * of all (key, value) pairs
3449 */
3450 @SuppressWarnings("unchecked") public double reduceToDoubleSequentially
3451 (ObjectByObjectToDouble<? super K, ? super V> transformer,
3452 double basis,
3453 DoubleByDoubleToDouble reducer) {
3454 if (transformer == null || reducer == null)
3455 throw new NullPointerException();
3456 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3457 double r = basis; V v;
3458 while ((v = it.advance()) != null)
3459 r = reducer.apply(r, transformer.apply((K)it.nextKey, v));
3460 return r;
3461 }
3462
3463 /**
3464 * Returns the result of accumulating the given transformation
3465 * of all (key, value) pairs using the given reducer to
3466 * combine values, and the given basis as an identity value.
3467 *
3468 * @param transformer a function returning the transformation
3469 * for an element
3470 * @param basis the identity (initial default value) for the reduction
3471 * @param reducer a commutative associative combining function
3472 * @return the result of accumulating the given transformation
3473 * of all (key, value) pairs
3474 */
3475 @SuppressWarnings("unchecked") public long reduceToLongSequentially
3476 (ObjectByObjectToLong<? super K, ? super V> transformer,
3477 long basis,
3478 LongByLongToLong reducer) {
3479 if (transformer == null || reducer == null)
3480 throw new NullPointerException();
3481 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3482 long r = basis; V v;
3483 while ((v = it.advance()) != null)
3484 r = reducer.apply(r, transformer.apply((K)it.nextKey, v));
3485 return r;
3486 }
3487
3488 /**
3489 * Returns the result of accumulating the given transformation
3490 * of all (key, value) pairs using the given reducer to
3491 * combine values, and the given basis as an identity value.
3492 *
3493 * @param transformer a function returning the transformation
3494 * for an element
3495 * @param basis the identity (initial default value) for the reduction
3496 * @param reducer a commutative associative combining function
3497 * @return the result of accumulating the given transformation
3498 * of all (key, value) pairs
3499 */
3500 @SuppressWarnings("unchecked") public int reduceToIntSequentially
3501 (ObjectByObjectToInt<? super K, ? super V> transformer,
3502 int basis,
3503 IntByIntToInt reducer) {
3504 if (transformer == null || reducer == null)
3505 throw new NullPointerException();
3506 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3507 int r = basis; V v;
3508 while ((v = it.advance()) != null)
3509 r = reducer.apply(r, transformer.apply((K)it.nextKey, v));
3510 return r;
3511 }
3512
3513 /**
3514 * Performs the given action for each key.
3515 *
3516 * @param action the action
3517 */
3518 @SuppressWarnings("unchecked") public void forEachKeySequentially
3519 (Action<K> action) {
3520 if (action == null) throw new NullPointerException();
3521 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3522 while (it.advance() != null)
3523 action.apply((K)it.nextKey);
3524 }
3525
3526 /**
3527 * Performs the given action for each non-null transformation
3528 * of each key.
3529 *
3530 * @param transformer a function returning the transformation
3531 * for an element, or null of there is no transformation (in
3532 * which case the action is not applied).
3533 * @param action the action
3534 */
3535 @SuppressWarnings("unchecked") public <U> void forEachKeySequentially
3536 (Fun<? super K, ? extends U> transformer,
3537 Action<U> action) {
3538 if (transformer == null || action == null)
3539 throw new NullPointerException();
3540 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3541 U u;
3542 while (it.advance() != null) {
3543 if ((u = transformer.apply((K)it.nextKey)) != null)
3544 action.apply(u);
3545 }
3546 ForkJoinTasks.forEachKey
3547 (this, transformer, action).invoke();
3548 }
3549
3550 /**
3551 * Returns a non-null result from applying the given search
3552 * function on each key, or null if none.
3553 *
3554 * @param searchFunction a function returning a non-null
3555 * result on success, else null
3556 * @return a non-null result from applying the given search
3557 * function on each key, or null if none
3558 */
3559 @SuppressWarnings("unchecked") public <U> U searchKeysSequentially
3560 (Fun<? super K, ? extends U> searchFunction) {
3561 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3562 U u;
3563 while (it.advance() != null) {
3564 if ((u = searchFunction.apply((K)it.nextKey)) != null)
3565 return u;
3566 }
3567 return null;
3568 }
3569
3570 /**
3571 * Returns the result of accumulating all keys using the given
3572 * reducer to combine values, or null if none.
3573 *
3574 * @param reducer a commutative associative combining function
3575 * @return the result of accumulating all keys using the given
3576 * reducer to combine values, or null if none
3577 */
3578 @SuppressWarnings("unchecked") public K reduceKeysSequentially
3579 (BiFun<? super K, ? super K, ? extends K> reducer) {
3580 if (reducer == null) throw new NullPointerException();
3581 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3582 K r = null;
3583 while (it.advance() != null) {
3584 K u = (K)it.nextKey;
3585 r = (r == null) ? u : reducer.apply(r, u);
3586 }
3587 return r;
3588 }
3589
3590 /**
3591 * Returns the result of accumulating the given transformation
3592 * of all keys using the given reducer to combine values, or
3593 * null if none.
3594 *
3595 * @param transformer a function returning the transformation
3596 * for an element, or null of there is no transformation (in
3597 * which case it is not combined).
3598 * @param reducer a commutative associative combining function
3599 * @return the result of accumulating the given transformation
3600 * of all keys
3601 */
3602 @SuppressWarnings("unchecked") public <U> U reduceKeysSequentially
3603 (Fun<? super K, ? extends U> transformer,
3604 BiFun<? super U, ? super U, ? extends U> reducer) {
3605 if (transformer == null || reducer == null)
3606 throw new NullPointerException();
3607 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3608 U r = null, u;
3609 while (it.advance() != null) {
3610 if ((u = transformer.apply((K)it.nextKey)) != null)
3611 r = (r == null) ? u : reducer.apply(r, u);
3612 }
3613 return r;
3614 }
3615
3616 /**
3617 * Returns the result of accumulating the given transformation
3618 * of all keys using the given reducer to combine values, and
3619 * the given basis as an identity value.
3620 *
3621 * @param transformer a function returning the transformation
3622 * for an element
3623 * @param basis the identity (initial default value) for the reduction
3624 * @param reducer a commutative associative combining function
3625 * @return the result of accumulating the given transformation
3626 * of all keys
3627 */
3628 @SuppressWarnings("unchecked") public double reduceKeysToDoubleSequentially
3629 (ObjectToDouble<? super K> transformer,
3630 double basis,
3631 DoubleByDoubleToDouble reducer) {
3632 if (transformer == null || reducer == null)
3633 throw new NullPointerException();
3634 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3635 double r = basis;
3636 while (it.advance() != null)
3637 r = reducer.apply(r, transformer.apply((K)it.nextKey));
3638 return r;
3639 }
3640
3641 /**
3642 * Returns the result of accumulating the given transformation
3643 * of all keys using the given reducer to combine values, and
3644 * the given basis as an identity value.
3645 *
3646 * @param transformer a function returning the transformation
3647 * for an element
3648 * @param basis the identity (initial default value) for the reduction
3649 * @param reducer a commutative associative combining function
3650 * @return the result of accumulating the given transformation
3651 * of all keys
3652 */
3653 @SuppressWarnings("unchecked") public long reduceKeysToLongSequentially
3654 (ObjectToLong<? super K> transformer,
3655 long basis,
3656 LongByLongToLong reducer) {
3657 if (transformer == null || reducer == null)
3658 throw new NullPointerException();
3659 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3660 long r = basis;
3661 while (it.advance() != null)
3662 r = reducer.apply(r, transformer.apply((K)it.nextKey));
3663 return r;
3664 }
3665
3666 /**
3667 * Returns the result of accumulating the given transformation
3668 * of all keys using the given reducer to combine values, and
3669 * the given basis as an identity value.
3670 *
3671 * @param transformer a function returning the transformation
3672 * for an element
3673 * @param basis the identity (initial default value) for the reduction
3674 * @param reducer a commutative associative combining function
3675 * @return the result of accumulating the given transformation
3676 * of all keys
3677 */
3678 @SuppressWarnings("unchecked") public int reduceKeysToIntSequentially
3679 (ObjectToInt<? super K> transformer,
3680 int basis,
3681 IntByIntToInt reducer) {
3682 if (transformer == null || reducer == null)
3683 throw new NullPointerException();
3684 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3685 int r = basis;
3686 while (it.advance() != null)
3687 r = reducer.apply(r, transformer.apply((K)it.nextKey));
3688 return r;
3689 }
3690
3691 /**
3692 * Performs the given action for each value.
3693 *
3694 * @param action the action
3695 */
3696 public void forEachValueSequentially(Action<V> action) {
3697 if (action == null) throw new NullPointerException();
3698 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3699 V v;
3700 while ((v = it.advance()) != null)
3701 action.apply(v);
3702 }
3703
3704 /**
3705 * Performs the given action for each non-null transformation
3706 * of each value.
3707 *
3708 * @param transformer a function returning the transformation
3709 * for an element, or null of there is no transformation (in
3710 * which case the action is not applied).
3711 */
3712 public <U> void forEachValueSequentially
3713 (Fun<? super V, ? extends U> transformer,
3714 Action<U> action) {
3715 if (transformer == null || action == null)
3716 throw new NullPointerException();
3717 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3718 V v; U u;
3719 while ((v = it.advance()) != null) {
3720 if ((u = transformer.apply(v)) != null)
3721 action.apply(u);
3722 }
3723 }
3724
3725 /**
3726 * Returns a non-null result from applying the given search
3727 * function on each value, or null if none.
3728 *
3729 * @param searchFunction a function returning a non-null
3730 * result on success, else null
3731 * @return a non-null result from applying the given search
3732 * function on each value, or null if none
3733 */
3734 public <U> U searchValuesSequentially
3735 (Fun<? super V, ? extends U> searchFunction) {
3736 if (searchFunction == null) throw new NullPointerException();
3737 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3738 V v; U u;
3739 while ((v = it.advance()) != null) {
3740 if ((u = searchFunction.apply(v)) != null)
3741 return u;
3742 }
3743 return null;
3744 }
3745
3746 /**
3747 * Returns the result of accumulating all values using the
3748 * given reducer to combine values, or null if none.
3749 *
3750 * @param reducer a commutative associative combining function
3751 * @return the result of accumulating all values
3752 */
3753 public V reduceValuesSequentially
3754 (BiFun<? super V, ? super V, ? extends V> reducer) {
3755 if (reducer == null) throw new NullPointerException();
3756 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3757 V r = null; V v;
3758 while ((v = it.advance()) != null)
3759 r = (r == null) ? v : reducer.apply(r, v);
3760 return r;
3761 }
3762
3763 /**
3764 * Returns the result of accumulating the given transformation
3765 * of all values using the given reducer to combine values, or
3766 * null if none.
3767 *
3768 * @param transformer a function returning the transformation
3769 * for an element, or null of there is no transformation (in
3770 * which case it is not combined).
3771 * @param reducer a commutative associative combining function
3772 * @return the result of accumulating the given transformation
3773 * of all values
3774 */
3775 public <U> U reduceValuesSequentially
3776 (Fun<? super V, ? extends U> transformer,
3777 BiFun<? super U, ? super U, ? extends U> reducer) {
3778 if (transformer == null || reducer == null)
3779 throw new NullPointerException();
3780 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3781 U r = null, u; V v;
3782 while ((v = it.advance()) != null) {
3783 if ((u = transformer.apply(v)) != null)
3784 r = (r == null) ? u : reducer.apply(r, u);
3785 }
3786 return r;
3787 }
3788
3789 /**
3790 * Returns the result of accumulating the given transformation
3791 * of all values using the given reducer to combine values,
3792 * and the given basis as an identity value.
3793 *
3794 * @param transformer a function returning the transformation
3795 * for an element
3796 * @param basis the identity (initial default value) for the reduction
3797 * @param reducer a commutative associative combining function
3798 * @return the result of accumulating the given transformation
3799 * of all values
3800 */
3801 public double reduceValuesToDoubleSequentially
3802 (ObjectToDouble<? super V> transformer,
3803 double basis,
3804 DoubleByDoubleToDouble reducer) {
3805 if (transformer == null || reducer == null)
3806 throw new NullPointerException();
3807 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3808 double r = basis; V v;
3809 while ((v = it.advance()) != null)
3810 r = reducer.apply(r, transformer.apply(v));
3811 return r;
3812 }
3813
3814 /**
3815 * Returns the result of accumulating the given transformation
3816 * of all values using the given reducer to combine values,
3817 * and the given basis as an identity value.
3818 *
3819 * @param transformer a function returning the transformation
3820 * for an element
3821 * @param basis the identity (initial default value) for the reduction
3822 * @param reducer a commutative associative combining function
3823 * @return the result of accumulating the given transformation
3824 * of all values
3825 */
3826 public long reduceValuesToLongSequentially
3827 (ObjectToLong<? super V> transformer,
3828 long basis,
3829 LongByLongToLong reducer) {
3830 if (transformer == null || reducer == null)
3831 throw new NullPointerException();
3832 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3833 long r = basis; V v;
3834 while ((v = it.advance()) != null)
3835 r = reducer.apply(r, transformer.apply(v));
3836 return r;
3837 }
3838
3839 /**
3840 * Returns the result of accumulating the given transformation
3841 * of all values using the given reducer to combine values,
3842 * and the given basis as an identity value.
3843 *
3844 * @param transformer a function returning the transformation
3845 * for an element
3846 * @param basis the identity (initial default value) for the reduction
3847 * @param reducer a commutative associative combining function
3848 * @return the result of accumulating the given transformation
3849 * of all values
3850 */
3851 public int reduceValuesToIntSequentially
3852 (ObjectToInt<? super V> transformer,
3853 int basis,
3854 IntByIntToInt reducer) {
3855 if (transformer == null || reducer == null)
3856 throw new NullPointerException();
3857 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3858 int r = basis; V v;
3859 while ((v = it.advance()) != null)
3860 r = reducer.apply(r, transformer.apply(v));
3861 return r;
3862 }
3863
3864 /**
3865 * Performs the given action for each entry.
3866 *
3867 * @param action the action
3868 */
3869 @SuppressWarnings("unchecked") public void forEachEntrySequentially
3870 (Action<Map.Entry<K,V>> action) {
3871 if (action == null) throw new NullPointerException();
3872 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3873 V v;
3874 while ((v = it.advance()) != null)
3875 action.apply(entryFor((K)it.nextKey, v));
3876 }
3877
3878 /**
3879 * Performs the given action for each non-null transformation
3880 * of each entry.
3881 *
3882 * @param transformer a function returning the transformation
3883 * for an element, or null of there is no transformation (in
3884 * which case the action is not applied).
3885 * @param action the action
3886 */
3887 @SuppressWarnings("unchecked") public <U> void forEachEntrySequentially
3888 (Fun<Map.Entry<K,V>, ? extends U> transformer,
3889 Action<U> action) {
3890 if (transformer == null || action == null)
3891 throw new NullPointerException();
3892 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3893 V v; U u;
3894 while ((v = it.advance()) != null) {
3895 if ((u = transformer.apply(entryFor((K)it.nextKey, v))) != null)
3896 action.apply(u);
3897 }
3898 }
3899
3900 /**
3901 * Returns a non-null result from applying the given search
3902 * function on each entry, or null if none.
3903 *
3904 * @param searchFunction a function returning a non-null
3905 * result on success, else null
3906 * @return a non-null result from applying the given search
3907 * function on each entry, or null if none
3908 */
3909 @SuppressWarnings("unchecked") public <U> U searchEntriesSequentially
3910 (Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
3911 if (searchFunction == null) throw new NullPointerException();
3912 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3913 V v; U u;
3914 while ((v = it.advance()) != null) {
3915 if ((u = searchFunction.apply(entryFor((K)it.nextKey, v))) != null)
3916 return u;
3917 }
3918 return null;
3919 }
3920
3921 /**
3922 * Returns the result of accumulating all entries using the
3923 * given reducer to combine values, or null if none.
3924 *
3925 * @param reducer a commutative associative combining function
3926 * @return the result of accumulating all entries
3927 */
3928 @SuppressWarnings("unchecked") public Map.Entry<K,V> reduceEntriesSequentially
3929 (BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3930 if (reducer == null) throw new NullPointerException();
3931 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3932 Map.Entry<K,V> r = null; V v;
3933 while ((v = it.advance()) != null) {
3934 Map.Entry<K,V> u = entryFor((K)it.nextKey, v);
3935 r = (r == null) ? u : reducer.apply(r, u);
3936 }
3937 return r;
3938 }
3939
3940 /**
3941 * Returns the result of accumulating the given transformation
3942 * of all entries using the given reducer to combine values,
3943 * or null if none.
3944 *
3945 * @param transformer a function returning the transformation
3946 * for an element, or null of there is no transformation (in
3947 * which case it is not combined).
3948 * @param reducer a commutative associative combining function
3949 * @return the result of accumulating the given transformation
3950 * of all entries
3951 */
3952 @SuppressWarnings("unchecked") public <U> U reduceEntriesSequentially
3953 (Fun<Map.Entry<K,V>, ? extends U> transformer,
3954 BiFun<? super U, ? super U, ? extends U> reducer) {
3955 if (transformer == null || reducer == null)
3956 throw new NullPointerException();
3957 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3958 U r = null, u; V v;
3959 while ((v = it.advance()) != null) {
3960 if ((u = transformer.apply(entryFor((K)it.nextKey, v))) != null)
3961 r = (r == null) ? u : reducer.apply(r, u);
3962 }
3963 return r;
3964 }
3965
3966 /**
3967 * Returns the result of accumulating the given transformation
3968 * of all entries using the given reducer to combine values,
3969 * and the given basis as an identity value.
3970 *
3971 * @param transformer a function returning the transformation
3972 * for an element
3973 * @param basis the identity (initial default value) for the reduction
3974 * @param reducer a commutative associative combining function
3975 * @return the result of accumulating the given transformation
3976 * of all entries
3977 */
3978 @SuppressWarnings("unchecked") public double reduceEntriesToDoubleSequentially
3979 (ObjectToDouble<Map.Entry<K,V>> transformer,
3980 double basis,
3981 DoubleByDoubleToDouble reducer) {
3982 if (transformer == null || reducer == null)
3983 throw new NullPointerException();
3984 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3985 double r = basis; V v;
3986 while ((v = it.advance()) != null)
3987 r = reducer.apply(r, transformer.apply(entryFor((K)it.nextKey, v)));
3988 return r;
3989 }
3990
3991 /**
3992 * Returns the result of accumulating the given transformation
3993 * of all entries using the given reducer to combine values,
3994 * and the given basis as an identity value.
3995 *
3996 * @param transformer a function returning the transformation
3997 * for an element
3998 * @param basis the identity (initial default value) for the reduction
3999 * @param reducer a commutative associative combining function
4000 * @return the result of accumulating the given transformation
4001 * of all entries
4002 */
4003 @SuppressWarnings("unchecked") public long reduceEntriesToLongSequentially
4004 (ObjectToLong<Map.Entry<K,V>> transformer,
4005 long basis,
4006 LongByLongToLong reducer) {
4007 if (transformer == null || reducer == null)
4008 throw new NullPointerException();
4009 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4010 long r = basis; V v;
4011 while ((v = it.advance()) != null)
4012 r = reducer.apply(r, transformer.apply(entryFor((K)it.nextKey, v)));
4013 return r;
4014 }
4015
4016 /**
4017 * Returns the result of accumulating the given transformation
4018 * of all entries using the given reducer to combine values,
4019 * and the given basis as an identity value.
4020 *
4021 * @param transformer a function returning the transformation
4022 * for an element
4023 * @param basis the identity (initial default value) for the reduction
4024 * @param reducer a commutative associative combining function
4025 * @return the result of accumulating the given transformation
4026 * of all entries
4027 */
4028 @SuppressWarnings("unchecked") public int reduceEntriesToIntSequentially
4029 (ObjectToInt<Map.Entry<K,V>> transformer,
4030 int basis,
4031 IntByIntToInt reducer) {
4032 if (transformer == null || reducer == null)
4033 throw new NullPointerException();
4034 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4035 int r = basis; V v;
4036 while ((v = it.advance()) != null)
4037 r = reducer.apply(r, transformer.apply(entryFor((K)it.nextKey, v)));
4038 return r;
4039 }
4040
4041 // Parallel bulk operations
4042
4043 /**
4044 * Performs the given action for each (key, value).
4045 *
4046 * @param action the action
4047 */
4048 public void forEachInParallel(BiAction<K,V> action) {
4049 ForkJoinTasks.forEach
4050 (this, action).invoke();
4051 }
4052
4053 /**
4054 * Performs the given action for each non-null transformation
4055 * of each (key, value).
4056 *
4057 * @param transformer a function returning the transformation
4058 * for an element, or null of there is no transformation (in
4059 * which case the action is not applied).
4060 * @param action the action
4061 */
4062 public <U> void forEachInParallel
4063 (BiFun<? super K, ? super V, ? extends U> transformer,
4064 Action<U> action) {
4065 ForkJoinTasks.forEach
4066 (this, transformer, action).invoke();
4067 }
4068
4069 /**
4070 * Returns a non-null result from applying the given search
4071 * function on each (key, value), or null if none. Upon
4072 * success, further element processing is suppressed and the
4073 * results of any other parallel invocations of the search
4074 * function are ignored.
4075 *
4076 * @param searchFunction a function returning a non-null
4077 * result on success, else null
4078 * @return a non-null result from applying the given search
4079 * function on each (key, value), or null if none
4080 */
4081 public <U> U searchInParallel
4082 (BiFun<? super K, ? super V, ? extends U> searchFunction) {
4083 return ForkJoinTasks.search
4084 (this, searchFunction).invoke();
4085 }
4086
4087 /**
4088 * Returns the result of accumulating the given transformation
4089 * of all (key, value) pairs using the given reducer to
4090 * combine values, or null if none.
4091 *
4092 * @param transformer a function returning the transformation
4093 * for an element, or null of there is no transformation (in
4094 * which case it is not combined).
4095 * @param reducer a commutative associative combining function
4096 * @return the result of accumulating the given transformation
4097 * of all (key, value) pairs
4098 */
4099 public <U> U reduceInParallel
4100 (BiFun<? super K, ? super V, ? extends U> transformer,
4101 BiFun<? super U, ? super U, ? extends U> reducer) {
4102 return ForkJoinTasks.reduce
4103 (this, transformer, reducer).invoke();
4104 }
4105
4106 /**
4107 * Returns the result of accumulating the given transformation
4108 * of all (key, value) pairs using the given reducer to
4109 * combine values, and the given basis as an identity value.
4110 *
4111 * @param transformer a function returning the transformation
4112 * for an element
4113 * @param basis the identity (initial default value) for the reduction
4114 * @param reducer a commutative associative combining function
4115 * @return the result of accumulating the given transformation
4116 * of all (key, value) pairs
4117 */
4118 public double reduceToDoubleInParallel
4119 (ObjectByObjectToDouble<? super K, ? super V> transformer,
4120 double basis,
4121 DoubleByDoubleToDouble reducer) {
4122 return ForkJoinTasks.reduceToDouble
4123 (this, transformer, basis, reducer).invoke();
4124 }
4125
4126 /**
4127 * Returns the result of accumulating the given transformation
4128 * of all (key, value) pairs using the given reducer to
4129 * combine values, and the given basis as an identity value.
4130 *
4131 * @param transformer a function returning the transformation
4132 * for an element
4133 * @param basis the identity (initial default value) for the reduction
4134 * @param reducer a commutative associative combining function
4135 * @return the result of accumulating the given transformation
4136 * of all (key, value) pairs
4137 */
4138 public long reduceToLongInParallel
4139 (ObjectByObjectToLong<? super K, ? super V> transformer,
4140 long basis,
4141 LongByLongToLong reducer) {
4142 return ForkJoinTasks.reduceToLong
4143 (this, transformer, basis, reducer).invoke();
4144 }
4145
4146 /**
4147 * Returns the result of accumulating the given transformation
4148 * of all (key, value) pairs using the given reducer to
4149 * combine values, and the given basis as an identity value.
4150 *
4151 * @param transformer a function returning the transformation
4152 * for an element
4153 * @param basis the identity (initial default value) for the reduction
4154 * @param reducer a commutative associative combining function
4155 * @return the result of accumulating the given transformation
4156 * of all (key, value) pairs
4157 */
4158 public int reduceToIntInParallel
4159 (ObjectByObjectToInt<? super K, ? super V> transformer,
4160 int basis,
4161 IntByIntToInt reducer) {
4162 return ForkJoinTasks.reduceToInt
4163 (this, transformer, basis, reducer).invoke();
4164 }
4165
4166 /**
4167 * Performs the given action for each key.
4168 *
4169 * @param action the action
4170 */
4171 public void forEachKeyInParallel(Action<K> action) {
4172 ForkJoinTasks.forEachKey
4173 (this, action).invoke();
4174 }
4175
4176 /**
4177 * Performs the given action for each non-null transformation
4178 * of each key.
4179 *
4180 * @param transformer a function returning the transformation
4181 * for an element, or null of there is no transformation (in
4182 * which case the action is not applied).
4183 * @param action the action
4184 */
4185 public <U> void forEachKeyInParallel
4186 (Fun<? super K, ? extends U> transformer,
4187 Action<U> action) {
4188 ForkJoinTasks.forEachKey
4189 (this, transformer, action).invoke();
4190 }
4191
4192 /**
4193 * Returns a non-null result from applying the given search
4194 * function on each key, or null if none. Upon success,
4195 * further element processing is suppressed and the results of
4196 * any other parallel invocations of the search function are
4197 * ignored.
4198 *
4199 * @param searchFunction a function returning a non-null
4200 * result on success, else null
4201 * @return a non-null result from applying the given search
4202 * function on each key, or null if none
4203 */
4204 public <U> U searchKeysInParallel
4205 (Fun<? super K, ? extends U> searchFunction) {
4206 return ForkJoinTasks.searchKeys
4207 (this, searchFunction).invoke();
4208 }
4209
4210 /**
4211 * Returns the result of accumulating all keys using the given
4212 * reducer to combine values, or null if none.
4213 *
4214 * @param reducer a commutative associative combining function
4215 * @return the result of accumulating all keys using the given
4216 * reducer to combine values, or null if none
4217 */
4218 public K reduceKeysInParallel
4219 (BiFun<? super K, ? super K, ? extends K> reducer) {
4220 return ForkJoinTasks.reduceKeys
4221 (this, reducer).invoke();
4222 }
4223
4224 /**
4225 * Returns the result of accumulating the given transformation
4226 * of all keys using the given reducer to combine values, or
4227 * null if none.
4228 *
4229 * @param transformer a function returning the transformation
4230 * for an element, or null of there is no transformation (in
4231 * which case it is not combined).
4232 * @param reducer a commutative associative combining function
4233 * @return the result of accumulating the given transformation
4234 * of all keys
4235 */
4236 public <U> U reduceKeysInParallel
4237 (Fun<? super K, ? extends U> transformer,
4238 BiFun<? super U, ? super U, ? extends U> reducer) {
4239 return ForkJoinTasks.reduceKeys
4240 (this, transformer, reducer).invoke();
4241 }
4242
4243 /**
4244 * Returns the result of accumulating the given transformation
4245 * of all keys using the given reducer to combine values, and
4246 * the given basis as an identity value.
4247 *
4248 * @param transformer a function returning the transformation
4249 * for an element
4250 * @param basis the identity (initial default value) for the reduction
4251 * @param reducer a commutative associative combining function
4252 * @return the result of accumulating the given transformation
4253 * of all keys
4254 */
4255 public double reduceKeysToDoubleInParallel
4256 (ObjectToDouble<? super K> transformer,
4257 double basis,
4258 DoubleByDoubleToDouble reducer) {
4259 return ForkJoinTasks.reduceKeysToDouble
4260 (this, transformer, basis, reducer).invoke();
4261 }
4262
4263 /**
4264 * Returns the result of accumulating the given transformation
4265 * of all keys using the given reducer to combine values, and
4266 * the given basis as an identity value.
4267 *
4268 * @param transformer a function returning the transformation
4269 * for an element
4270 * @param basis the identity (initial default value) for the reduction
4271 * @param reducer a commutative associative combining function
4272 * @return the result of accumulating the given transformation
4273 * of all keys
4274 */
4275 public long reduceKeysToLongInParallel
4276 (ObjectToLong<? super K> transformer,
4277 long basis,
4278 LongByLongToLong reducer) {
4279 return ForkJoinTasks.reduceKeysToLong
4280 (this, transformer, basis, reducer).invoke();
4281 }
4282
4283 /**
4284 * Returns the result of accumulating the given transformation
4285 * of all keys using the given reducer to combine values, and
4286 * the given basis as an identity value.
4287 *
4288 * @param transformer a function returning the transformation
4289 * for an element
4290 * @param basis the identity (initial default value) for the reduction
4291 * @param reducer a commutative associative combining function
4292 * @return the result of accumulating the given transformation
4293 * of all keys
4294 */
4295 public int reduceKeysToIntInParallel
4296 (ObjectToInt<? super K> transformer,
4297 int basis,
4298 IntByIntToInt reducer) {
4299 return ForkJoinTasks.reduceKeysToInt
4300 (this, transformer, basis, reducer).invoke();
4301 }
4302
4303 /**
4304 * Performs the given action for each value.
4305 *
4306 * @param action the action
4307 */
4308 public void forEachValueInParallel(Action<V> action) {
4309 ForkJoinTasks.forEachValue
4310 (this, action).invoke();
4311 }
4312
4313 /**
4314 * Performs the given action for each non-null transformation
4315 * of each value.
4316 *
4317 * @param transformer a function returning the transformation
4318 * for an element, or null of there is no transformation (in
4319 * which case the action is not applied).
4320 */
4321 public <U> void forEachValueInParallel
4322 (Fun<? super V, ? extends U> transformer,
4323 Action<U> action) {
4324 ForkJoinTasks.forEachValue
4325 (this, transformer, action).invoke();
4326 }
4327
4328 /**
4329 * Returns a non-null result from applying the given search
4330 * function on each value, or null if none. Upon success,
4331 * further element processing is suppressed and the results of
4332 * any other parallel invocations of the search function are
4333 * ignored.
4334 *
4335 * @param searchFunction a function returning a non-null
4336 * result on success, else null
4337 * @return a non-null result from applying the given search
4338 * function on each value, or null if none
4339 */
4340 public <U> U searchValuesInParallel
4341 (Fun<? super V, ? extends U> searchFunction) {
4342 return ForkJoinTasks.searchValues
4343 (this, searchFunction).invoke();
4344 }
4345
4346 /**
4347 * Returns the result of accumulating all values using the
4348 * given reducer to combine values, or null if none.
4349 *
4350 * @param reducer a commutative associative combining function
4351 * @return the result of accumulating all values
4352 */
4353 public V reduceValuesInParallel
4354 (BiFun<? super V, ? super V, ? extends V> reducer) {
4355 return ForkJoinTasks.reduceValues
4356 (this, reducer).invoke();
4357 }
4358
4359 /**
4360 * Returns the result of accumulating the given transformation
4361 * of all values using the given reducer to combine values, or
4362 * null if none.
4363 *
4364 * @param transformer a function returning the transformation
4365 * for an element, or null of there is no transformation (in
4366 * which case it is not combined).
4367 * @param reducer a commutative associative combining function
4368 * @return the result of accumulating the given transformation
4369 * of all values
4370 */
4371 public <U> U reduceValuesInParallel
4372 (Fun<? super V, ? extends U> transformer,
4373 BiFun<? super U, ? super U, ? extends U> reducer) {
4374 return ForkJoinTasks.reduceValues
4375 (this, transformer, reducer).invoke();
4376 }
4377
4378 /**
4379 * Returns the result of accumulating the given transformation
4380 * of all values using the given reducer to combine values,
4381 * and the given basis as an identity value.
4382 *
4383 * @param transformer a function returning the transformation
4384 * for an element
4385 * @param basis the identity (initial default value) for the reduction
4386 * @param reducer a commutative associative combining function
4387 * @return the result of accumulating the given transformation
4388 * of all values
4389 */
4390 public double reduceValuesToDoubleInParallel
4391 (ObjectToDouble<? super V> transformer,
4392 double basis,
4393 DoubleByDoubleToDouble reducer) {
4394 return ForkJoinTasks.reduceValuesToDouble
4395 (this, transformer, basis, reducer).invoke();
4396 }
4397
4398 /**
4399 * Returns the result of accumulating the given transformation
4400 * of all values using the given reducer to combine values,
4401 * and the given basis as an identity value.
4402 *
4403 * @param transformer a function returning the transformation
4404 * for an element
4405 * @param basis the identity (initial default value) for the reduction
4406 * @param reducer a commutative associative combining function
4407 * @return the result of accumulating the given transformation
4408 * of all values
4409 */
4410 public long reduceValuesToLongInParallel
4411 (ObjectToLong<? super V> transformer,
4412 long basis,
4413 LongByLongToLong reducer) {
4414 return ForkJoinTasks.reduceValuesToLong
4415 (this, transformer, basis, reducer).invoke();
4416 }
4417
4418 /**
4419 * Returns the result of accumulating the given transformation
4420 * of all values using the given reducer to combine values,
4421 * and the given basis as an identity value.
4422 *
4423 * @param transformer a function returning the transformation
4424 * for an element
4425 * @param basis the identity (initial default value) for the reduction
4426 * @param reducer a commutative associative combining function
4427 * @return the result of accumulating the given transformation
4428 * of all values
4429 */
4430 public int reduceValuesToIntInParallel
4431 (ObjectToInt<? super V> transformer,
4432 int basis,
4433 IntByIntToInt reducer) {
4434 return ForkJoinTasks.reduceValuesToInt
4435 (this, transformer, basis, reducer).invoke();
4436 }
4437
4438 /**
4439 * Performs the given action for each entry.
4440 *
4441 * @param action the action
4442 */
4443 public void forEachEntryInParallel(Action<Map.Entry<K,V>> action) {
4444 ForkJoinTasks.forEachEntry
4445 (this, action).invoke();
4446 }
4447
4448 /**
4449 * Performs the given action for each non-null transformation
4450 * of each entry.
4451 *
4452 * @param transformer a function returning the transformation
4453 * for an element, or null of there is no transformation (in
4454 * which case the action is not applied).
4455 * @param action the action
4456 */
4457 public <U> void forEachEntryInParallel
4458 (Fun<Map.Entry<K,V>, ? extends U> transformer,
4459 Action<U> action) {
4460 ForkJoinTasks.forEachEntry
4461 (this, transformer, action).invoke();
4462 }
4463
4464 /**
4465 * Returns a non-null result from applying the given search
4466 * function on each entry, or null if none. Upon success,
4467 * further element processing is suppressed and the results of
4468 * any other parallel invocations of the search function are
4469 * ignored.
4470 *
4471 * @param searchFunction a function returning a non-null
4472 * result on success, else null
4473 * @return a non-null result from applying the given search
4474 * function on each entry, or null if none
4475 */
4476 public <U> U searchEntriesInParallel
4477 (Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4478 return ForkJoinTasks.searchEntries
4479 (this, searchFunction).invoke();
4480 }
4481
4482 /**
4483 * Returns the result of accumulating all entries using the
4484 * given reducer to combine values, or null if none.
4485 *
4486 * @param reducer a commutative associative combining function
4487 * @return the result of accumulating all entries
4488 */
4489 public Map.Entry<K,V> reduceEntriesInParallel
4490 (BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4491 return ForkJoinTasks.reduceEntries
4492 (this, reducer).invoke();
4493 }
4494
4495 /**
4496 * Returns the result of accumulating the given transformation
4497 * of all entries using the given reducer to combine values,
4498 * or null if none.
4499 *
4500 * @param transformer a function returning the transformation
4501 * for an element, or null of there is no transformation (in
4502 * which case it is not combined).
4503 * @param reducer a commutative associative combining function
4504 * @return the result of accumulating the given transformation
4505 * of all entries
4506 */
4507 public <U> U reduceEntriesInParallel
4508 (Fun<Map.Entry<K,V>, ? extends U> transformer,
4509 BiFun<? super U, ? super U, ? extends U> reducer) {
4510 return ForkJoinTasks.reduceEntries
4511 (this, transformer, reducer).invoke();
4512 }
4513
4514 /**
4515 * Returns the result of accumulating the given transformation
4516 * of all entries using the given reducer to combine values,
4517 * and the given basis as an identity value.
4518 *
4519 * @param transformer a function returning the transformation
4520 * for an element
4521 * @param basis the identity (initial default value) for the reduction
4522 * @param reducer a commutative associative combining function
4523 * @return the result of accumulating the given transformation
4524 * of all entries
4525 */
4526 public double reduceEntriesToDoubleInParallel
4527 (ObjectToDouble<Map.Entry<K,V>> transformer,
4528 double basis,
4529 DoubleByDoubleToDouble reducer) {
4530 return ForkJoinTasks.reduceEntriesToDouble
4531 (this, transformer, basis, reducer).invoke();
4532 }
4533
4534 /**
4535 * Returns the result of accumulating the given transformation
4536 * of all entries using the given reducer to combine values,
4537 * and the given basis as an identity value.
4538 *
4539 * @param transformer a function returning the transformation
4540 * for an element
4541 * @param basis the identity (initial default value) for the reduction
4542 * @param reducer a commutative associative combining function
4543 * @return the result of accumulating the given transformation
4544 * of all entries
4545 */
4546 public long reduceEntriesToLongInParallel
4547 (ObjectToLong<Map.Entry<K,V>> transformer,
4548 long basis,
4549 LongByLongToLong reducer) {
4550 return ForkJoinTasks.reduceEntriesToLong
4551 (this, transformer, basis, reducer).invoke();
4552 }
4553
4554 /**
4555 * Returns the result of accumulating the given transformation
4556 * of all entries using the given reducer to combine values,
4557 * and the given basis as an identity value.
4558 *
4559 * @param transformer a function returning the transformation
4560 * for an element
4561 * @param basis the identity (initial default value) for the reduction
4562 * @param reducer a commutative associative combining function
4563 * @return the result of accumulating the given transformation
4564 * of all entries
4565 */
4566 public int reduceEntriesToIntInParallel
4567 (ObjectToInt<Map.Entry<K,V>> transformer,
4568 int basis,
4569 IntByIntToInt reducer) {
4570 return ForkJoinTasks.reduceEntriesToInt
4571 (this, transformer, basis, reducer).invoke();
4572 }
4573
4574
4575 /* ----------------Views -------------- */
4576
4577 /**
4578 * Base class for views.
4579 */
4580 abstract static class CHMView<K, V> {
4581 final ConcurrentHashMapV8<K, V> map;
4582 CHMView(ConcurrentHashMapV8<K, V> map) { this.map = map; }
4583
4584 /**
4585 * Returns the map backing this view.
4586 *
4587 * @return the map backing this view
4588 */
4589 public ConcurrentHashMapV8<K,V> getMap() { return map; }
4590
4591 public final int size() { return map.size(); }
4592 public final boolean isEmpty() { return map.isEmpty(); }
4593 public final void clear() { map.clear(); }
4594
4595 // implementations below rely on concrete classes supplying these
4596 public abstract Iterator<?> iterator();
4597 public abstract boolean contains(Object o);
4598 public abstract boolean remove(Object o);
4599
4600 private static final String oomeMsg = "Required array size too large";
4601
4602 public final Object[] toArray() {
4603 long sz = map.mappingCount();
4604 if (sz > (long)(MAX_ARRAY_SIZE))
4605 throw new OutOfMemoryError(oomeMsg);
4606 int n = (int)sz;
4607 Object[] r = new Object[n];
4608 int i = 0;
4609 Iterator<?> it = iterator();
4610 while (it.hasNext()) {
4611 if (i == n) {
4612 if (n >= MAX_ARRAY_SIZE)
4613 throw new OutOfMemoryError(oomeMsg);
4614 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4615 n = MAX_ARRAY_SIZE;
4616 else
4617 n += (n >>> 1) + 1;
4618 r = Arrays.copyOf(r, n);
4619 }
4620 r[i++] = it.next();
4621 }
4622 return (i == n) ? r : Arrays.copyOf(r, i);
4623 }
4624
4625 @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
4626 long sz = map.mappingCount();
4627 if (sz > (long)(MAX_ARRAY_SIZE))
4628 throw new OutOfMemoryError(oomeMsg);
4629 int m = (int)sz;
4630 T[] r = (a.length >= m) ? a :
4631 (T[])java.lang.reflect.Array
4632 .newInstance(a.getClass().getComponentType(), m);
4633 int n = r.length;
4634 int i = 0;
4635 Iterator<?> it = iterator();
4636 while (it.hasNext()) {
4637 if (i == n) {
4638 if (n >= MAX_ARRAY_SIZE)
4639 throw new OutOfMemoryError(oomeMsg);
4640 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4641 n = MAX_ARRAY_SIZE;
4642 else
4643 n += (n >>> 1) + 1;
4644 r = Arrays.copyOf(r, n);
4645 }
4646 r[i++] = (T)it.next();
4647 }
4648 if (a == r && i < n) {
4649 r[i] = null; // null-terminate
4650 return r;
4651 }
4652 return (i == n) ? r : Arrays.copyOf(r, i);
4653 }
4654
4655 public final int hashCode() {
4656 int h = 0;
4657 for (Iterator<?> it = iterator(); it.hasNext();)
4658 h += it.next().hashCode();
4659 return h;
4660 }
4661
4662 public final String toString() {
4663 StringBuilder sb = new StringBuilder();
4664 sb.append('[');
4665 Iterator<?> it = iterator();
4666 if (it.hasNext()) {
4667 for (;;) {
4668 Object e = it.next();
4669 sb.append(e == this ? "(this Collection)" : e);
4670 if (!it.hasNext())
4671 break;
4672 sb.append(',').append(' ');
4673 }
4674 }
4675 return sb.append(']').toString();
4676 }
4677
4678 public final boolean containsAll(Collection<?> c) {
4679 if (c != this) {
4680 for (Iterator<?> it = c.iterator(); it.hasNext();) {
4681 Object e = it.next();
4682 if (e == null || !contains(e))
4683 return false;
4684 }
4685 }
4686 return true;
4687 }
4688
4689 public final boolean removeAll(Collection<?> c) {
4690 boolean modified = false;
4691 for (Iterator<?> it = iterator(); it.hasNext();) {
4692 if (c.contains(it.next())) {
4693 it.remove();
4694 modified = true;
4695 }
4696 }
4697 return modified;
4698 }
4699
4700 public final boolean retainAll(Collection<?> c) {
4701 boolean modified = false;
4702 for (Iterator<?> it = iterator(); it.hasNext();) {
4703 if (!c.contains(it.next())) {
4704 it.remove();
4705 modified = true;
4706 }
4707 }
4708 return modified;
4709 }
4710
4711 }
4712
4713 /**
4714 * A view of a ConcurrentHashMapV8 as a {@link Set} of keys, in
4715 * which additions may optionally be enabled by mapping to a
4716 * common value. This class cannot be directly instantiated. See
4717 * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
4718 * {@link #newKeySet(int)}.
4719 */
4720 public static class KeySetView<K,V> extends CHMView<K,V>
4721 implements Set<K>, java.io.Serializable {
4722 private static final long serialVersionUID = 7249069246763182397L;
4723 private final V value;
4724 KeySetView(ConcurrentHashMapV8<K, V> map, V value) { // non-public
4725 super(map);
4726 this.value = value;
4727 }
4728
4729 /**
4730 * Returns the default mapped value for additions,
4731 * or {@code null} if additions are not supported.
4732 *
4733 * @return the default mapped value for additions, or {@code null}
4734 * if not supported.
4735 */
4736 public V getMappedValue() { return value; }
4737
4738 // implement Set API
4739
4740 public boolean contains(Object o) { return map.containsKey(o); }
4741 public boolean remove(Object o) { return map.remove(o) != null; }
4742
4743 /**
4744 * Returns a "weakly consistent" iterator that will never
4745 * throw {@link ConcurrentModificationException}, and
4746 * guarantees to traverse elements as they existed upon
4747 * construction of the iterator, and may (but is not
4748 * guaranteed to) reflect any modifications subsequent to
4749 * construction.
4750 *
4751 * @return an iterator over the keys of this map
4752 */
4753 public Iterator<K> iterator() { return new KeyIterator<K,V>(map); }
4754 public boolean add(K e) {
4755 V v;
4756 if ((v = value) == null)
4757 throw new UnsupportedOperationException();
4758 if (e == null)
4759 throw new NullPointerException();
4760 return map.internalPut(e, v, true) == null;
4761 }
4762 public boolean addAll(Collection<? extends K> c) {
4763 boolean added = false;
4764 V v;
4765 if ((v = value) == null)
4766 throw new UnsupportedOperationException();
4767 for (K e : c) {
4768 if (e == null)
4769 throw new NullPointerException();
4770 if (map.internalPut(e, v, true) == null)
4771 added = true;
4772 }
4773 return added;
4774 }
4775 public boolean equals(Object o) {
4776 Set<?> c;
4777 return ((o instanceof Set) &&
4778 ((c = (Set<?>)o) == this ||
4779 (containsAll(c) && c.containsAll(this))));
4780 }
4781 }
4782
4783 /**
4784 * A view of a ConcurrentHashMapV8 as a {@link Collection} of
4785 * values, in which additions are disabled. This class cannot be
4786 * directly instantiated. See {@link #values},
4787 *
4788 * <p>The view's {@code iterator} is a "weakly consistent" iterator
4789 * that will never throw {@link ConcurrentModificationException},
4790 * and guarantees to traverse elements as they existed upon
4791 * construction of the iterator, and may (but is not guaranteed to)
4792 * reflect any modifications subsequent to construction.
4793 */
4794 public static final class ValuesView<K,V> extends CHMView<K,V>
4795 implements Collection<V> {
4796 ValuesView(ConcurrentHashMapV8<K, V> map) { super(map); }
4797 public final boolean contains(Object o) { return map.containsValue(o); }
4798 public final boolean remove(Object o) {
4799 if (o != null) {
4800 Iterator<V> it = new ValueIterator<K,V>(map);
4801 while (it.hasNext()) {
4802 if (o.equals(it.next())) {
4803 it.remove();
4804 return true;
4805 }
4806 }
4807 }
4808 return false;
4809 }
4810
4811 /**
4812 * Returns a "weakly consistent" iterator that will never
4813 * throw {@link ConcurrentModificationException}, and
4814 * guarantees to traverse elements as they existed upon
4815 * construction of the iterator, and may (but is not
4816 * guaranteed to) reflect any modifications subsequent to
4817 * construction.
4818 *
4819 * @return an iterator over the values of this map
4820 */
4821 public final Iterator<V> iterator() {
4822 return new ValueIterator<K,V>(map);
4823 }
4824 public final boolean add(V e) {
4825 throw new UnsupportedOperationException();
4826 }
4827 public final boolean addAll(Collection<? extends V> c) {
4828 throw new UnsupportedOperationException();
4829 }
4830
4831 }
4832
4833 /**
4834 * A view of a ConcurrentHashMapV8 as a {@link Set} of (key, value)
4835 * entries. This class cannot be directly instantiated. See
4836 * {@link #entrySet}.
4837 */
4838 public static final class EntrySetView<K,V> extends CHMView<K,V>
4839 implements Set<Map.Entry<K,V>> {
4840 EntrySetView(ConcurrentHashMapV8<K, V> map) { super(map); }
4841 public final boolean contains(Object o) {
4842 Object k, v, r; Map.Entry<?,?> e;
4843 return ((o instanceof Map.Entry) &&
4844 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4845 (r = map.get(k)) != null &&
4846 (v = e.getValue()) != null &&
4847 (v == r || v.equals(r)));
4848 }
4849 public final boolean remove(Object o) {
4850 Object k, v; Map.Entry<?,?> e;
4851 return ((o instanceof Map.Entry) &&
4852 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4853 (v = e.getValue()) != null &&
4854 map.remove(k, v));
4855 }
4856
4857 /**
4858 * Returns a "weakly consistent" iterator that will never
4859 * throw {@link ConcurrentModificationException}, and
4860 * guarantees to traverse elements as they existed upon
4861 * construction of the iterator, and may (but is not
4862 * guaranteed to) reflect any modifications subsequent to
4863 * construction.
4864 *
4865 * @return an iterator over the entries of this map
4866 */
4867 public final Iterator<Map.Entry<K,V>> iterator() {
4868 return new EntryIterator<K,V>(map);
4869 }
4870
4871 public final boolean add(Entry<K,V> e) {
4872 K key = e.getKey();
4873 V value = e.getValue();
4874 if (key == null || value == null)
4875 throw new NullPointerException();
4876 return map.internalPut(key, value, false) == null;
4877 }
4878 public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4879 boolean added = false;
4880 for (Entry<K,V> e : c) {
4881 if (add(e))
4882 added = true;
4883 }
4884 return added;
4885 }
4886 public boolean equals(Object o) {
4887 Set<?> c;
4888 return ((o instanceof Set) &&
4889 ((c = (Set<?>)o) == this ||
4890 (containsAll(c) && c.containsAll(this))));
4891 }
4892 }
4893
4894 // ---------------------------------------------------------------------
4895
4896 /**
4897 * Predefined tasks for performing bulk parallel operations on
4898 * ConcurrentHashMapV8s. These tasks follow the forms and rules used
4899 * for bulk operations. Each method has the same name, but returns
4900 * a task rather than invoking it. These methods may be useful in
4901 * custom applications such as submitting a task without waiting
4902 * for completion, using a custom pool, or combining with other
4903 * tasks.
4904 */
4905 public static class ForkJoinTasks {
4906 private ForkJoinTasks() {}
4907
4908 /**
4909 * Returns a task that when invoked, performs the given
4910 * action for each (key, value)
4911 *
4912 * @param map the map
4913 * @param action the action
4914 * @return the task
4915 */
4916 public static <K,V> ForkJoinTask<Void> forEach
4917 (ConcurrentHashMapV8<K,V> map,
4918 BiAction<K,V> action) {
4919 if (action == null) throw new NullPointerException();
4920 return new ForEachMappingTask<K,V>(map, null, -1, action);
4921 }
4922
4923 /**
4924 * Returns a task that when invoked, performs the given
4925 * action for each non-null transformation of each (key, value)
4926 *
4927 * @param map the map
4928 * @param transformer a function returning the transformation
4929 * for an element, or null if there is no transformation (in
4930 * which case the action is not applied)
4931 * @param action the action
4932 * @return the task
4933 */
4934 public static <K,V,U> ForkJoinTask<Void> forEach
4935 (ConcurrentHashMapV8<K,V> map,
4936 BiFun<? super K, ? super V, ? extends U> transformer,
4937 Action<U> action) {
4938 if (transformer == null || action == null)
4939 throw new NullPointerException();
4940 return new ForEachTransformedMappingTask<K,V,U>
4941 (map, null, -1, transformer, action);
4942 }
4943
4944 /**
4945 * Returns a task that when invoked, returns a non-null result
4946 * from applying the given search function on each (key,
4947 * value), or null if none. Upon success, further element
4948 * processing is suppressed and the results of any other
4949 * parallel invocations of the search function are ignored.
4950 *
4951 * @param map the map
4952 * @param searchFunction a function returning a non-null
4953 * result on success, else null
4954 * @return the task
4955 */
4956 public static <K,V,U> ForkJoinTask<U> search
4957 (ConcurrentHashMapV8<K,V> map,
4958 BiFun<? super K, ? super V, ? extends U> searchFunction) {
4959 if (searchFunction == null) throw new NullPointerException();
4960 return new SearchMappingsTask<K,V,U>
4961 (map, null, -1, searchFunction,
4962 new AtomicReference<U>());
4963 }
4964
4965 /**
4966 * Returns a task that when invoked, returns the result of
4967 * accumulating the given transformation of all (key, value) pairs
4968 * using the given reducer to combine values, or null if none.
4969 *
4970 * @param map the map
4971 * @param transformer a function returning the transformation
4972 * for an element, or null if there is no transformation (in
4973 * which case it is not combined).
4974 * @param reducer a commutative associative combining function
4975 * @return the task
4976 */
4977 public static <K,V,U> ForkJoinTask<U> reduce
4978 (ConcurrentHashMapV8<K,V> map,
4979 BiFun<? super K, ? super V, ? extends U> transformer,
4980 BiFun<? super U, ? super U, ? extends U> reducer) {
4981 if (transformer == null || reducer == null)
4982 throw new NullPointerException();
4983 return new MapReduceMappingsTask<K,V,U>
4984 (map, null, -1, null, transformer, reducer);
4985 }
4986
4987 /**
4988 * Returns a task that when invoked, returns the result of
4989 * accumulating the given transformation of all (key, value) pairs
4990 * using the given reducer to combine values, and the given
4991 * basis as an identity value.
4992 *
4993 * @param map the map
4994 * @param transformer a function returning the transformation
4995 * for an element
4996 * @param basis the identity (initial default value) for the reduction
4997 * @param reducer a commutative associative combining function
4998 * @return the task
4999 */
5000 public static <K,V> ForkJoinTask<Double> reduceToDouble
5001 (ConcurrentHashMapV8<K,V> map,
5002 ObjectByObjectToDouble<? super K, ? super V> transformer,
5003 double basis,
5004 DoubleByDoubleToDouble reducer) {
5005 if (transformer == null || reducer == null)
5006 throw new NullPointerException();
5007 return new MapReduceMappingsToDoubleTask<K,V>
5008 (map, null, -1, null, transformer, basis, reducer);
5009 }
5010
5011 /**
5012 * Returns a task that when invoked, returns the result of
5013 * accumulating the given transformation of all (key, value) pairs
5014 * using the given reducer to combine values, and the given
5015 * basis as an identity value.
5016 *
5017 * @param map the map
5018 * @param transformer a function returning the transformation
5019 * for an element
5020 * @param basis the identity (initial default value) for the reduction
5021 * @param reducer a commutative associative combining function
5022 * @return the task
5023 */
5024 public static <K,V> ForkJoinTask<Long> reduceToLong
5025 (ConcurrentHashMapV8<K,V> map,
5026 ObjectByObjectToLong<? super K, ? super V> transformer,
5027 long basis,
5028 LongByLongToLong reducer) {
5029 if (transformer == null || reducer == null)
5030 throw new NullPointerException();
5031 return new MapReduceMappingsToLongTask<K,V>
5032 (map, null, -1, null, transformer, basis, reducer);
5033 }
5034
5035 /**
5036 * Returns a task that when invoked, returns the result of
5037 * accumulating the given transformation of all (key, value) pairs
5038 * using the given reducer to combine values, and the given
5039 * basis as an identity value.
5040 *
5041 * @param transformer a function returning the transformation
5042 * for an element
5043 * @param basis the identity (initial default value) for the reduction
5044 * @param reducer a commutative associative combining function
5045 * @return the task
5046 */
5047 public static <K,V> ForkJoinTask<Integer> reduceToInt
5048 (ConcurrentHashMapV8<K,V> map,
5049 ObjectByObjectToInt<? super K, ? super V> transformer,
5050 int basis,
5051 IntByIntToInt reducer) {
5052 if (transformer == null || reducer == null)
5053 throw new NullPointerException();
5054 return new MapReduceMappingsToIntTask<K,V>
5055 (map, null, -1, null, transformer, basis, reducer);
5056 }
5057
5058 /**
5059 * Returns a task that when invoked, performs the given action
5060 * for each key.
5061 *
5062 * @param map the map
5063 * @param action the action
5064 * @return the task
5065 */
5066 public static <K,V> ForkJoinTask<Void> forEachKey
5067 (ConcurrentHashMapV8<K,V> map,
5068 Action<K> action) {
5069 if (action == null) throw new NullPointerException();
5070 return new ForEachKeyTask<K,V>(map, null, -1, action);
5071 }
5072
5073 /**
5074 * Returns a task that when invoked, performs the given action
5075 * for each non-null transformation of each key.
5076 *
5077 * @param map the map
5078 * @param transformer a function returning the transformation
5079 * for an element, or null if there is no transformation (in
5080 * which case the action is not applied)
5081 * @param action the action
5082 * @return the task
5083 */
5084 public static <K,V,U> ForkJoinTask<Void> forEachKey
5085 (ConcurrentHashMapV8<K,V> map,
5086 Fun<? super K, ? extends U> transformer,
5087 Action<U> action) {
5088 if (transformer == null || action == null)
5089 throw new NullPointerException();
5090 return new ForEachTransformedKeyTask<K,V,U>
5091 (map, null, -1, transformer, action);
5092 }
5093
5094 /**
5095 * Returns a task that when invoked, returns a non-null result
5096 * from applying the given search function on each key, or
5097 * null if none. Upon success, further element processing is
5098 * suppressed and the results of any other parallel
5099 * invocations of the search function are ignored.
5100 *
5101 * @param map the map
5102 * @param searchFunction a function returning a non-null
5103 * result on success, else null
5104 * @return the task
5105 */
5106 public static <K,V,U> ForkJoinTask<U> searchKeys
5107 (ConcurrentHashMapV8<K,V> map,
5108 Fun<? super K, ? extends U> searchFunction) {
5109 if (searchFunction == null) throw new NullPointerException();
5110 return new SearchKeysTask<K,V,U>
5111 (map, null, -1, searchFunction,
5112 new AtomicReference<U>());
5113 }
5114
5115 /**
5116 * Returns a task that when invoked, returns the result of
5117 * accumulating all keys using the given reducer to combine
5118 * values, or null if none.
5119 *
5120 * @param map the map
5121 * @param reducer a commutative associative combining function
5122 * @return the task
5123 */
5124 public static <K,V> ForkJoinTask<K> reduceKeys
5125 (ConcurrentHashMapV8<K,V> map,
5126 BiFun<? super K, ? super K, ? extends K> reducer) {
5127 if (reducer == null) throw new NullPointerException();
5128 return new ReduceKeysTask<K,V>
5129 (map, null, -1, null, reducer);
5130 }
5131
5132 /**
5133 * Returns a task that when invoked, returns the result of
5134 * accumulating the given transformation of all keys using the given
5135 * reducer to combine values, or null if none.
5136 *
5137 * @param map the map
5138 * @param transformer a function returning the transformation
5139 * for an element, or null if there is no transformation (in
5140 * which case it is not combined).
5141 * @param reducer a commutative associative combining function
5142 * @return the task
5143 */
5144 public static <K,V,U> ForkJoinTask<U> reduceKeys
5145 (ConcurrentHashMapV8<K,V> map,
5146 Fun<? super K, ? extends U> transformer,
5147 BiFun<? super U, ? super U, ? extends U> reducer) {
5148 if (transformer == null || reducer == null)
5149 throw new NullPointerException();
5150 return new MapReduceKeysTask<K,V,U>
5151 (map, null, -1, null, transformer, reducer);
5152 }
5153
5154 /**
5155 * Returns a task that when invoked, returns the result of
5156 * accumulating the given transformation of all keys using the given
5157 * reducer to combine values, and the given basis as an
5158 * identity value.
5159 *
5160 * @param map the map
5161 * @param transformer a function returning the transformation
5162 * for an element
5163 * @param basis the identity (initial default value) for the reduction
5164 * @param reducer a commutative associative combining function
5165 * @return the task
5166 */
5167 public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
5168 (ConcurrentHashMapV8<K,V> map,
5169 ObjectToDouble<? super K> transformer,
5170 double basis,
5171 DoubleByDoubleToDouble reducer) {
5172 if (transformer == null || reducer == null)
5173 throw new NullPointerException();
5174 return new MapReduceKeysToDoubleTask<K,V>
5175 (map, null, -1, null, transformer, basis, reducer);
5176 }
5177
5178 /**
5179 * Returns a task that when invoked, returns the result of
5180 * accumulating the given transformation of all keys using the given
5181 * reducer to combine values, and the given basis as an
5182 * identity value.
5183 *
5184 * @param map the map
5185 * @param transformer a function returning the transformation
5186 * for an element
5187 * @param basis the identity (initial default value) for the reduction
5188 * @param reducer a commutative associative combining function
5189 * @return the task
5190 */
5191 public static <K,V> ForkJoinTask<Long> reduceKeysToLong
5192 (ConcurrentHashMapV8<K,V> map,
5193 ObjectToLong<? super K> transformer,
5194 long basis,
5195 LongByLongToLong reducer) {
5196 if (transformer == null || reducer == null)
5197 throw new NullPointerException();
5198 return new MapReduceKeysToLongTask<K,V>
5199 (map, null, -1, null, transformer, basis, reducer);
5200 }
5201
5202 /**
5203 * Returns a task that when invoked, returns the result of
5204 * accumulating the given transformation of all keys using the given
5205 * reducer to combine values, and the given basis as an
5206 * identity value.
5207 *
5208 * @param map the map
5209 * @param transformer a function returning the transformation
5210 * for an element
5211 * @param basis the identity (initial default value) for the reduction
5212 * @param reducer a commutative associative combining function
5213 * @return the task
5214 */
5215 public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5216 (ConcurrentHashMapV8<K,V> map,
5217 ObjectToInt<? super K> transformer,
5218 int basis,
5219 IntByIntToInt reducer) {
5220 if (transformer == null || reducer == null)
5221 throw new NullPointerException();
5222 return new MapReduceKeysToIntTask<K,V>
5223 (map, null, -1, null, transformer, basis, reducer);
5224 }
5225
5226 /**
5227 * Returns a task that when invoked, performs the given action
5228 * for each value.
5229 *
5230 * @param map the map
5231 * @param action the action
5232 */
5233 public static <K,V> ForkJoinTask<Void> forEachValue
5234 (ConcurrentHashMapV8<K,V> map,
5235 Action<V> action) {
5236 if (action == null) throw new NullPointerException();
5237 return new ForEachValueTask<K,V>(map, null, -1, action);
5238 }
5239
5240 /**
5241 * Returns a task that when invoked, performs the given action
5242 * for each non-null transformation of each value.
5243 *
5244 * @param map the map
5245 * @param transformer a function returning the transformation
5246 * for an element, or null if there is no transformation (in
5247 * which case the action is not applied)
5248 * @param action the action
5249 */
5250 public static <K,V,U> ForkJoinTask<Void> forEachValue
5251 (ConcurrentHashMapV8<K,V> map,
5252 Fun<? super V, ? extends U> transformer,
5253 Action<U> action) {
5254 if (transformer == null || action == null)
5255 throw new NullPointerException();
5256 return new ForEachTransformedValueTask<K,V,U>
5257 (map, null, -1, transformer, action);
5258 }
5259
5260 /**
5261 * Returns a task that when invoked, returns a non-null result
5262 * from applying the given search function on each value, or
5263 * null if none. Upon success, further element processing is
5264 * suppressed and the results of any other parallel
5265 * invocations of the search function are ignored.
5266 *
5267 * @param map the map
5268 * @param searchFunction a function returning a non-null
5269 * result on success, else null
5270 * @return the task
5271 */
5272 public static <K,V,U> ForkJoinTask<U> searchValues
5273 (ConcurrentHashMapV8<K,V> map,
5274 Fun<? super V, ? extends U> searchFunction) {
5275 if (searchFunction == null) throw new NullPointerException();
5276 return new SearchValuesTask<K,V,U>
5277 (map, null, -1, searchFunction,
5278 new AtomicReference<U>());
5279 }
5280
5281 /**
5282 * Returns a task that when invoked, returns the result of
5283 * accumulating all values using the given reducer to combine
5284 * values, or null if none.
5285 *
5286 * @param map the map
5287 * @param reducer a commutative associative combining function
5288 * @return the task
5289 */
5290 public static <K,V> ForkJoinTask<V> reduceValues
5291 (ConcurrentHashMapV8<K,V> map,
5292 BiFun<? super V, ? super V, ? extends V> reducer) {
5293 if (reducer == null) throw new NullPointerException();
5294 return new ReduceValuesTask<K,V>
5295 (map, null, -1, null, reducer);
5296 }
5297
5298 /**
5299 * Returns a task that when invoked, returns the result of
5300 * accumulating the given transformation of all values using the
5301 * given reducer to combine values, or null if none.
5302 *
5303 * @param map the map
5304 * @param transformer a function returning the transformation
5305 * for an element, or null if there is no transformation (in
5306 * which case it is not combined).
5307 * @param reducer a commutative associative combining function
5308 * @return the task
5309 */
5310 public static <K,V,U> ForkJoinTask<U> reduceValues
5311 (ConcurrentHashMapV8<K,V> map,
5312 Fun<? super V, ? extends U> transformer,
5313 BiFun<? super U, ? super U, ? extends U> reducer) {
5314 if (transformer == null || reducer == null)
5315 throw new NullPointerException();
5316 return new MapReduceValuesTask<K,V,U>
5317 (map, null, -1, null, transformer, reducer);
5318 }
5319
5320 /**
5321 * Returns a task that when invoked, returns the result of
5322 * accumulating the given transformation of all values using the
5323 * given reducer to combine values, and the given basis as an
5324 * identity value.
5325 *
5326 * @param map the map
5327 * @param transformer a function returning the transformation
5328 * for an element
5329 * @param basis the identity (initial default value) for the reduction
5330 * @param reducer a commutative associative combining function
5331 * @return the task
5332 */
5333 public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5334 (ConcurrentHashMapV8<K,V> map,
5335 ObjectToDouble<? super V> transformer,
5336 double basis,
5337 DoubleByDoubleToDouble reducer) {
5338 if (transformer == null || reducer == null)
5339 throw new NullPointerException();
5340 return new MapReduceValuesToDoubleTask<K,V>
5341 (map, null, -1, null, transformer, basis, reducer);
5342 }
5343
5344 /**
5345 * Returns a task that when invoked, returns the result of
5346 * accumulating the given transformation of all values using the
5347 * given reducer to combine values, and the given basis as an
5348 * identity value.
5349 *
5350 * @param map the map
5351 * @param transformer a function returning the transformation
5352 * for an element
5353 * @param basis the identity (initial default value) for the reduction
5354 * @param reducer a commutative associative combining function
5355 * @return the task
5356 */
5357 public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5358 (ConcurrentHashMapV8<K,V> map,
5359 ObjectToLong<? super V> transformer,
5360 long basis,
5361 LongByLongToLong reducer) {
5362 if (transformer == null || reducer == null)
5363 throw new NullPointerException();
5364 return new MapReduceValuesToLongTask<K,V>
5365 (map, null, -1, null, transformer, basis, reducer);
5366 }
5367
5368 /**
5369 * Returns a task that when invoked, returns the result of
5370 * accumulating the given transformation of all values using the
5371 * given reducer to combine values, and the given basis as an
5372 * identity value.
5373 *
5374 * @param map the map
5375 * @param transformer a function returning the transformation
5376 * for an element
5377 * @param basis the identity (initial default value) for the reduction
5378 * @param reducer a commutative associative combining function
5379 * @return the task
5380 */
5381 public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5382 (ConcurrentHashMapV8<K,V> map,
5383 ObjectToInt<? super V> transformer,
5384 int basis,
5385 IntByIntToInt reducer) {
5386 if (transformer == null || reducer == null)
5387 throw new NullPointerException();
5388 return new MapReduceValuesToIntTask<K,V>
5389 (map, null, -1, null, transformer, basis, reducer);
5390 }
5391
5392 /**
5393 * Returns a task that when invoked, perform the given action
5394 * for each entry.
5395 *
5396 * @param map the map
5397 * @param action the action
5398 */
5399 public static <K,V> ForkJoinTask<Void> forEachEntry
5400 (ConcurrentHashMapV8<K,V> map,
5401 Action<Map.Entry<K,V>> action) {
5402 if (action == null) throw new NullPointerException();
5403 return new ForEachEntryTask<K,V>(map, null, -1, action);
5404 }
5405
5406 /**
5407 * Returns a task that when invoked, perform the given action
5408 * for each non-null transformation of each entry.
5409 *
5410 * @param map the map
5411 * @param transformer a function returning the transformation
5412 * for an element, or null if there is no transformation (in
5413 * which case the action is not applied)
5414 * @param action the action
5415 */
5416 public static <K,V,U> ForkJoinTask<Void> forEachEntry
5417 (ConcurrentHashMapV8<K,V> map,
5418 Fun<Map.Entry<K,V>, ? extends U> transformer,
5419 Action<U> action) {
5420 if (transformer == null || action == null)
5421 throw new NullPointerException();
5422 return new ForEachTransformedEntryTask<K,V,U>
5423 (map, null, -1, transformer, action);
5424 }
5425
5426 /**
5427 * Returns a task that when invoked, returns a non-null result
5428 * from applying the given search function on each entry, or
5429 * null if none. Upon success, further element processing is
5430 * suppressed and the results of any other parallel
5431 * invocations of the search function are ignored.
5432 *
5433 * @param map the map
5434 * @param searchFunction a function returning a non-null
5435 * result on success, else null
5436 * @return the task
5437 */
5438 public static <K,V,U> ForkJoinTask<U> searchEntries
5439 (ConcurrentHashMapV8<K,V> map,
5440 Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
5441 if (searchFunction == null) throw new NullPointerException();
5442 return new SearchEntriesTask<K,V,U>
5443 (map, null, -1, searchFunction,
5444 new AtomicReference<U>());
5445 }
5446
5447 /**
5448 * Returns a task that when invoked, returns the result of
5449 * accumulating all entries using the given reducer to combine
5450 * values, or null if none.
5451 *
5452 * @param map the map
5453 * @param reducer a commutative associative combining function
5454 * @return the task
5455 */
5456 public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5457 (ConcurrentHashMapV8<K,V> map,
5458 BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5459 if (reducer == null) throw new NullPointerException();
5460 return new ReduceEntriesTask<K,V>
5461 (map, null, -1, null, reducer);
5462 }
5463
5464 /**
5465 * Returns a task that when invoked, returns the result of
5466 * accumulating the given transformation of all entries using the
5467 * given reducer to combine values, or null if none.
5468 *
5469 * @param map the map
5470 * @param transformer a function returning the transformation
5471 * for an element, or null if there is no transformation (in
5472 * which case it is not combined).
5473 * @param reducer a commutative associative combining function
5474 * @return the task
5475 */
5476 public static <K,V,U> ForkJoinTask<U> reduceEntries
5477 (ConcurrentHashMapV8<K,V> map,
5478 Fun<Map.Entry<K,V>, ? extends U> transformer,
5479 BiFun<? super U, ? super U, ? extends U> reducer) {
5480 if (transformer == null || reducer == null)
5481 throw new NullPointerException();
5482 return new MapReduceEntriesTask<K,V,U>
5483 (map, null, -1, null, transformer, reducer);
5484 }
5485
5486 /**
5487 * Returns a task that when invoked, returns the result of
5488 * accumulating the given transformation of all entries using the
5489 * given reducer to combine values, and the given basis as an
5490 * identity value.
5491 *
5492 * @param map the map
5493 * @param transformer a function returning the transformation
5494 * for an element
5495 * @param basis the identity (initial default value) for the reduction
5496 * @param reducer a commutative associative combining function
5497 * @return the task
5498 */
5499 public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5500 (ConcurrentHashMapV8<K,V> map,
5501 ObjectToDouble<Map.Entry<K,V>> transformer,
5502 double basis,
5503 DoubleByDoubleToDouble reducer) {
5504 if (transformer == null || reducer == null)
5505 throw new NullPointerException();
5506 return new MapReduceEntriesToDoubleTask<K,V>
5507 (map, null, -1, null, transformer, basis, reducer);
5508 }
5509
5510 /**
5511 * Returns a task that when invoked, returns the result of
5512 * accumulating the given transformation of all entries using the
5513 * given reducer to combine values, and the given basis as an
5514 * identity value.
5515 *
5516 * @param map the map
5517 * @param transformer a function returning the transformation
5518 * for an element
5519 * @param basis the identity (initial default value) for the reduction
5520 * @param reducer a commutative associative combining function
5521 * @return the task
5522 */
5523 public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5524 (ConcurrentHashMapV8<K,V> map,
5525 ObjectToLong<Map.Entry<K,V>> transformer,
5526 long basis,
5527 LongByLongToLong reducer) {
5528 if (transformer == null || reducer == null)
5529 throw new NullPointerException();
5530 return new MapReduceEntriesToLongTask<K,V>
5531 (map, null, -1, null, transformer, basis, reducer);
5532 }
5533
5534 /**
5535 * Returns a task that when invoked, returns the result of
5536 * accumulating the given transformation of all entries using the
5537 * given reducer to combine values, and the given basis as an
5538 * identity value.
5539 *
5540 * @param map the map
5541 * @param transformer a function returning the transformation
5542 * for an element
5543 * @param basis the identity (initial default value) for the reduction
5544 * @param reducer a commutative associative combining function
5545 * @return the task
5546 */
5547 public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5548 (ConcurrentHashMapV8<K,V> map,
5549 ObjectToInt<Map.Entry<K,V>> transformer,
5550 int basis,
5551 IntByIntToInt reducer) {
5552 if (transformer == null || reducer == null)
5553 throw new NullPointerException();
5554 return new MapReduceEntriesToIntTask<K,V>
5555 (map, null, -1, null, transformer, basis, reducer);
5556 }
5557 }
5558
5559 // -------------------------------------------------------
5560
5561 /*
5562 * Task classes. Coded in a regular but ugly format/style to
5563 * simplify checks that each variant differs in the right way from
5564 * others. The null screenings exist because compilers cannot tell
5565 * that we've already null-checked task arguments, so we force
5566 * simplest hoisted bypass to help avoid convoluted traps.
5567 */
5568
5569 @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5570 extends Traverser<K,V,Void> {
5571 final Action<K> action;
5572 ForEachKeyTask
5573 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5574 Action<K> action) {
5575 super(m, p, b);
5576 this.action = action;
5577 }
5578 @SuppressWarnings("unchecked") public final void compute() {
5579 final Action<K> action;
5580 if ((action = this.action) != null) {
5581 for (int b; (b = preSplit()) > 0;)
5582 new ForEachKeyTask<K,V>(map, this, b, action).fork();
5583 while (advance() != null)
5584 action.apply((K)nextKey);
5585 propagateCompletion();
5586 }
5587 }
5588 }
5589
5590 @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5591 extends Traverser<K,V,Void> {
5592 final Action<V> action;
5593 ForEachValueTask
5594 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5595 Action<V> action) {
5596 super(m, p, b);
5597 this.action = action;
5598 }
5599 @SuppressWarnings("unchecked") public final void compute() {
5600 final Action<V> action;
5601 if ((action = this.action) != null) {
5602 for (int b; (b = preSplit()) > 0;)
5603 new ForEachValueTask<K,V>(map, this, b, action).fork();
5604 V v;
5605 while ((v = advance()) != null)
5606 action.apply(v);
5607 propagateCompletion();
5608 }
5609 }
5610 }
5611
5612 @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5613 extends Traverser<K,V,Void> {
5614 final Action<Entry<K,V>> action;
5615 ForEachEntryTask
5616 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5617 Action<Entry<K,V>> action) {
5618 super(m, p, b);
5619 this.action = action;
5620 }
5621 @SuppressWarnings("unchecked") public final void compute() {
5622 final Action<Entry<K,V>> action;
5623 if ((action = this.action) != null) {
5624 for (int b; (b = preSplit()) > 0;)
5625 new ForEachEntryTask<K,V>(map, this, b, action).fork();
5626 V v;
5627 while ((v = advance()) != null)
5628 action.apply(entryFor((K)nextKey, v));
5629 propagateCompletion();
5630 }
5631 }
5632 }
5633
5634 @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5635 extends Traverser<K,V,Void> {
5636 final BiAction<K,V> action;
5637 ForEachMappingTask
5638 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5639 BiAction<K,V> action) {
5640 super(m, p, b);
5641 this.action = action;
5642 }
5643 @SuppressWarnings("unchecked") public final void compute() {
5644 final BiAction<K,V> action;
5645 if ((action = this.action) != null) {
5646 for (int b; (b = preSplit()) > 0;)
5647 new ForEachMappingTask<K,V>(map, this, b, action).fork();
5648 V v;
5649 while ((v = advance()) != null)
5650 action.apply((K)nextKey, v);
5651 propagateCompletion();
5652 }
5653 }
5654 }
5655
5656 @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5657 extends Traverser<K,V,Void> {
5658 final Fun<? super K, ? extends U> transformer;
5659 final Action<U> action;
5660 ForEachTransformedKeyTask
5661 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5662 Fun<? super K, ? extends U> transformer, Action<U> action) {
5663 super(m, p, b);
5664 this.transformer = transformer; this.action = action;
5665 }
5666 @SuppressWarnings("unchecked") public final void compute() {
5667 final Fun<? super K, ? extends U> transformer;
5668 final Action<U> action;
5669 if ((transformer = this.transformer) != null &&
5670 (action = this.action) != null) {
5671 for (int b; (b = preSplit()) > 0;)
5672 new ForEachTransformedKeyTask<K,V,U>
5673 (map, this, b, transformer, action).fork();
5674 U u;
5675 while (advance() != null) {
5676 if ((u = transformer.apply((K)nextKey)) != null)
5677 action.apply(u);
5678 }
5679 propagateCompletion();
5680 }
5681 }
5682 }
5683
5684 @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5685 extends Traverser<K,V,Void> {
5686 final Fun<? super V, ? extends U> transformer;
5687 final Action<U> action;
5688 ForEachTransformedValueTask
5689 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5690 Fun<? super V, ? extends U> transformer, Action<U> action) {
5691 super(m, p, b);
5692 this.transformer = transformer; this.action = action;
5693 }
5694 @SuppressWarnings("unchecked") public final void compute() {
5695 final Fun<? super V, ? extends U> transformer;
5696 final Action<U> action;
5697 if ((transformer = this.transformer) != null &&
5698 (action = this.action) != null) {
5699 for (int b; (b = preSplit()) > 0;)
5700 new ForEachTransformedValueTask<K,V,U>
5701 (map, this, b, transformer, action).fork();
5702 V v; U u;
5703 while ((v = advance()) != null) {
5704 if ((u = transformer.apply(v)) != null)
5705 action.apply(u);
5706 }
5707 propagateCompletion();
5708 }
5709 }
5710 }
5711
5712 @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5713 extends Traverser<K,V,Void> {
5714 final Fun<Map.Entry<K,V>, ? extends U> transformer;
5715 final Action<U> action;
5716 ForEachTransformedEntryTask
5717 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5718 Fun<Map.Entry<K,V>, ? extends U> transformer, Action<U> action) {
5719 super(m, p, b);
5720 this.transformer = transformer; this.action = action;
5721 }
5722 @SuppressWarnings("unchecked") public final void compute() {
5723 final Fun<Map.Entry<K,V>, ? extends U> transformer;
5724 final Action<U> action;
5725 if ((transformer = this.transformer) != null &&
5726 (action = this.action) != null) {
5727 for (int b; (b = preSplit()) > 0;)
5728 new ForEachTransformedEntryTask<K,V,U>
5729 (map, this, b, transformer, action).fork();
5730 V v; U u;
5731 while ((v = advance()) != null) {
5732 if ((u = transformer.apply(entryFor((K)nextKey,
5733 v))) != null)
5734 action.apply(u);
5735 }
5736 propagateCompletion();
5737 }
5738 }
5739 }
5740
5741 @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5742 extends Traverser<K,V,Void> {
5743 final BiFun<? super K, ? super V, ? extends U> transformer;
5744 final Action<U> action;
5745 ForEachTransformedMappingTask
5746 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5747 BiFun<? super K, ? super V, ? extends U> transformer,
5748 Action<U> action) {
5749 super(m, p, b);
5750 this.transformer = transformer; this.action = action;
5751 }
5752 @SuppressWarnings("unchecked") public final void compute() {
5753 final BiFun<? super K, ? super V, ? extends U> transformer;
5754 final Action<U> action;
5755 if ((transformer = this.transformer) != null &&
5756 (action = this.action) != null) {
5757 for (int b; (b = preSplit()) > 0;)
5758 new ForEachTransformedMappingTask<K,V,U>
5759 (map, this, b, transformer, action).fork();
5760 V v; U u;
5761 while ((v = advance()) != null) {
5762 if ((u = transformer.apply((K)nextKey, v)) != null)
5763 action.apply(u);
5764 }
5765 propagateCompletion();
5766 }
5767 }
5768 }
5769
5770 @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5771 extends Traverser<K,V,U> {
5772 final Fun<? super K, ? extends U> searchFunction;
5773 final AtomicReference<U> result;
5774 SearchKeysTask
5775 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5776 Fun<? super K, ? extends U> searchFunction,
5777 AtomicReference<U> result) {
5778 super(m, p, b);
5779 this.searchFunction = searchFunction; this.result = result;
5780 }
5781 public final U getRawResult() { return result.get(); }
5782 @SuppressWarnings("unchecked") public final void compute() {
5783 final Fun<? super K, ? extends U> searchFunction;
5784 final AtomicReference<U> result;
5785 if ((searchFunction = this.searchFunction) != null &&
5786 (result = this.result) != null) {
5787 for (int b;;) {
5788 if (result.get() != null)
5789 return;
5790 if ((b = preSplit()) <= 0)
5791 break;
5792 new SearchKeysTask<K,V,U>
5793 (map, this, b, searchFunction, result).fork();
5794 }
5795 while (result.get() == null) {
5796 U u;
5797 if (advance() == null) {
5798 propagateCompletion();
5799 break;
5800 }
5801 if ((u = searchFunction.apply((K)nextKey)) != null) {
5802 if (result.compareAndSet(null, u))
5803 quietlyCompleteRoot();
5804 break;
5805 }
5806 }
5807 }
5808 }
5809 }
5810
5811 @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5812 extends Traverser<K,V,U> {
5813 final Fun<? super V, ? extends U> searchFunction;
5814 final AtomicReference<U> result;
5815 SearchValuesTask
5816 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5817 Fun<? super V, ? extends U> searchFunction,
5818 AtomicReference<U> result) {
5819 super(m, p, b);
5820 this.searchFunction = searchFunction; this.result = result;
5821 }
5822 public final U getRawResult() { return result.get(); }
5823 @SuppressWarnings("unchecked") public final void compute() {
5824 final Fun<? super V, ? extends U> searchFunction;
5825 final AtomicReference<U> result;
5826 if ((searchFunction = this.searchFunction) != null &&
5827 (result = this.result) != null) {
5828 for (int b;;) {
5829 if (result.get() != null)
5830 return;
5831 if ((b = preSplit()) <= 0)
5832 break;
5833 new SearchValuesTask<K,V,U>
5834 (map, this, b, searchFunction, result).fork();
5835 }
5836 while (result.get() == null) {
5837 V v; U u;
5838 if ((v = advance()) == null) {
5839 propagateCompletion();
5840 break;
5841 }
5842 if ((u = searchFunction.apply(v)) != null) {
5843 if (result.compareAndSet(null, u))
5844 quietlyCompleteRoot();
5845 break;
5846 }
5847 }
5848 }
5849 }
5850 }
5851
5852 @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5853 extends Traverser<K,V,U> {
5854 final Fun<Entry<K,V>, ? extends U> searchFunction;
5855 final AtomicReference<U> result;
5856 SearchEntriesTask
5857 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5858 Fun<Entry<K,V>, ? extends U> searchFunction,
5859 AtomicReference<U> result) {
5860 super(m, p, b);
5861 this.searchFunction = searchFunction; this.result = result;
5862 }
5863 public final U getRawResult() { return result.get(); }
5864 @SuppressWarnings("unchecked") public final void compute() {
5865 final Fun<Entry<K,V>, ? extends U> searchFunction;
5866 final AtomicReference<U> result;
5867 if ((searchFunction = this.searchFunction) != null &&
5868 (result = this.result) != null) {
5869 for (int b;;) {
5870 if (result.get() != null)
5871 return;
5872 if ((b = preSplit()) <= 0)
5873 break;
5874 new SearchEntriesTask<K,V,U>
5875 (map, this, b, searchFunction, result).fork();
5876 }
5877 while (result.get() == null) {
5878 V v; U u;
5879 if ((v = advance()) == null) {
5880 propagateCompletion();
5881 break;
5882 }
5883 if ((u = searchFunction.apply(entryFor((K)nextKey,
5884 v))) != null) {
5885 if (result.compareAndSet(null, u))
5886 quietlyCompleteRoot();
5887 return;
5888 }
5889 }
5890 }
5891 }
5892 }
5893
5894 @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5895 extends Traverser<K,V,U> {
5896 final BiFun<? super K, ? super V, ? extends U> searchFunction;
5897 final AtomicReference<U> result;
5898 SearchMappingsTask
5899 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5900 BiFun<? super K, ? super V, ? extends U> searchFunction,
5901 AtomicReference<U> result) {
5902 super(m, p, b);
5903 this.searchFunction = searchFunction; this.result = result;
5904 }
5905 public final U getRawResult() { return result.get(); }
5906 @SuppressWarnings("unchecked") public final void compute() {
5907 final BiFun<? super K, ? super V, ? extends U> searchFunction;
5908 final AtomicReference<U> result;
5909 if ((searchFunction = this.searchFunction) != null &&
5910 (result = this.result) != null) {
5911 for (int b;;) {
5912 if (result.get() != null)
5913 return;
5914 if ((b = preSplit()) <= 0)
5915 break;
5916 new SearchMappingsTask<K,V,U>
5917 (map, this, b, searchFunction, result).fork();
5918 }
5919 while (result.get() == null) {
5920 V v; U u;
5921 if ((v = advance()) == null) {
5922 propagateCompletion();
5923 break;
5924 }
5925 if ((u = searchFunction.apply((K)nextKey, v)) != null) {
5926 if (result.compareAndSet(null, u))
5927 quietlyCompleteRoot();
5928 break;
5929 }
5930 }
5931 }
5932 }
5933 }
5934
5935 @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5936 extends Traverser<K,V,K> {
5937 final BiFun<? super K, ? super K, ? extends K> reducer;
5938 K result;
5939 ReduceKeysTask<K,V> rights, nextRight;
5940 ReduceKeysTask
5941 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5942 ReduceKeysTask<K,V> nextRight,
5943 BiFun<? super K, ? super K, ? extends K> reducer) {
5944 super(m, p, b); this.nextRight = nextRight;
5945 this.reducer = reducer;
5946 }
5947 public final K getRawResult() { return result; }
5948 @SuppressWarnings("unchecked") public final void compute() {
5949 final BiFun<? super K, ? super K, ? extends K> reducer;
5950 if ((reducer = this.reducer) != null) {
5951 for (int b; (b = preSplit()) > 0;)
5952 (rights = new ReduceKeysTask<K,V>
5953 (map, this, b, rights, reducer)).fork();
5954 K r = null;
5955 while (advance() != null) {
5956 K u = (K)nextKey;
5957 r = (r == null) ? u : reducer.apply(r, u);
5958 }
5959 result = r;
5960 CountedCompleter<?> c;
5961 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5962 ReduceKeysTask<K,V>
5963 t = (ReduceKeysTask<K,V>)c,
5964 s = t.rights;
5965 while (s != null) {
5966 K tr, sr;
5967 if ((sr = s.result) != null)
5968 t.result = (((tr = t.result) == null) ? sr :
5969 reducer.apply(tr, sr));
5970 s = t.rights = s.nextRight;
5971 }
5972 }
5973 }
5974 }
5975 }
5976
5977 @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5978 extends Traverser<K,V,V> {
5979 final BiFun<? super V, ? super V, ? extends V> reducer;
5980 V result;
5981 ReduceValuesTask<K,V> rights, nextRight;
5982 ReduceValuesTask
5983 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5984 ReduceValuesTask<K,V> nextRight,
5985 BiFun<? super V, ? super V, ? extends V> reducer) {
5986 super(m, p, b); this.nextRight = nextRight;
5987 this.reducer = reducer;
5988 }
5989 public final V getRawResult() { return result; }
5990 @SuppressWarnings("unchecked") public final void compute() {
5991 final BiFun<? super V, ? super V, ? extends V> reducer;
5992 if ((reducer = this.reducer) != null) {
5993 for (int b; (b = preSplit()) > 0;)
5994 (rights = new ReduceValuesTask<K,V>
5995 (map, this, b, rights, reducer)).fork();
5996 V r = null;
5997 V v;
5998 while ((v = advance()) != null) {
5999 V u = v;
6000 r = (r == null) ? u : reducer.apply(r, u);
6001 }
6002 result = r;
6003 CountedCompleter<?> c;
6004 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6005 ReduceValuesTask<K,V>
6006 t = (ReduceValuesTask<K,V>)c,
6007 s = t.rights;
6008 while (s != null) {
6009 V tr, sr;
6010 if ((sr = s.result) != null)
6011 t.result = (((tr = t.result) == null) ? sr :
6012 reducer.apply(tr, sr));
6013 s = t.rights = s.nextRight;
6014 }
6015 }
6016 }
6017 }
6018 }
6019
6020 @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
6021 extends Traverser<K,V,Map.Entry<K,V>> {
6022 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6023 Map.Entry<K,V> result;
6024 ReduceEntriesTask<K,V> rights, nextRight;
6025 ReduceEntriesTask
6026 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6027 ReduceEntriesTask<K,V> nextRight,
6028 BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
6029 super(m, p, b); this.nextRight = nextRight;
6030 this.reducer = reducer;
6031 }
6032 public final Map.Entry<K,V> getRawResult() { return result; }
6033 @SuppressWarnings("unchecked") public final void compute() {
6034 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6035 if ((reducer = this.reducer) != null) {
6036 for (int b; (b = preSplit()) > 0;)
6037 (rights = new ReduceEntriesTask<K,V>
6038 (map, this, b, rights, reducer)).fork();
6039 Map.Entry<K,V> r = null;
6040 V v;
6041 while ((v = advance()) != null) {
6042 Map.Entry<K,V> u = entryFor((K)nextKey, v);
6043 r = (r == null) ? u : reducer.apply(r, u);
6044 }
6045 result = r;
6046 CountedCompleter<?> c;
6047 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6048 ReduceEntriesTask<K,V>
6049 t = (ReduceEntriesTask<K,V>)c,
6050 s = t.rights;
6051 while (s != null) {
6052 Map.Entry<K,V> tr, sr;
6053 if ((sr = s.result) != null)
6054 t.result = (((tr = t.result) == null) ? sr :
6055 reducer.apply(tr, sr));
6056 s = t.rights = s.nextRight;
6057 }
6058 }
6059 }
6060 }
6061 }
6062
6063 @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
6064 extends Traverser<K,V,U> {
6065 final Fun<? super K, ? extends U> transformer;
6066 final BiFun<? super U, ? super U, ? extends U> reducer;
6067 U result;
6068 MapReduceKeysTask<K,V,U> rights, nextRight;
6069 MapReduceKeysTask
6070 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6071 MapReduceKeysTask<K,V,U> nextRight,
6072 Fun<? super K, ? extends U> transformer,
6073 BiFun<? super U, ? super U, ? extends U> reducer) {
6074 super(m, p, b); this.nextRight = nextRight;
6075 this.transformer = transformer;
6076 this.reducer = reducer;
6077 }
6078 public final U getRawResult() { return result; }
6079 @SuppressWarnings("unchecked") public final void compute() {
6080 final Fun<? super K, ? extends U> transformer;
6081 final BiFun<? super U, ? super U, ? extends U> reducer;
6082 if ((transformer = this.transformer) != null &&
6083 (reducer = this.reducer) != null) {
6084 for (int b; (b = preSplit()) > 0;)
6085 (rights = new MapReduceKeysTask<K,V,U>
6086 (map, this, b, rights, transformer, reducer)).fork();
6087 U r = null, u;
6088 while (advance() != null) {
6089 if ((u = transformer.apply((K)nextKey)) != null)
6090 r = (r == null) ? u : reducer.apply(r, u);
6091 }
6092 result = r;
6093 CountedCompleter<?> c;
6094 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6095 MapReduceKeysTask<K,V,U>
6096 t = (MapReduceKeysTask<K,V,U>)c,
6097 s = t.rights;
6098 while (s != null) {
6099 U tr, sr;
6100 if ((sr = s.result) != null)
6101 t.result = (((tr = t.result) == null) ? sr :
6102 reducer.apply(tr, sr));
6103 s = t.rights = s.nextRight;
6104 }
6105 }
6106 }
6107 }
6108 }
6109
6110 @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
6111 extends Traverser<K,V,U> {
6112 final Fun<? super V, ? extends U> transformer;
6113 final BiFun<? super U, ? super U, ? extends U> reducer;
6114 U result;
6115 MapReduceValuesTask<K,V,U> rights, nextRight;
6116 MapReduceValuesTask
6117 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6118 MapReduceValuesTask<K,V,U> nextRight,
6119 Fun<? super V, ? extends U> transformer,
6120 BiFun<? super U, ? super U, ? extends U> reducer) {
6121 super(m, p, b); this.nextRight = nextRight;
6122 this.transformer = transformer;
6123 this.reducer = reducer;
6124 }
6125 public final U getRawResult() { return result; }
6126 @SuppressWarnings("unchecked") public final void compute() {
6127 final Fun<? super V, ? extends U> transformer;
6128 final BiFun<? super U, ? super U, ? extends U> reducer;
6129 if ((transformer = this.transformer) != null &&
6130 (reducer = this.reducer) != null) {
6131 for (int b; (b = preSplit()) > 0;)
6132 (rights = new MapReduceValuesTask<K,V,U>
6133 (map, this, b, rights, transformer, reducer)).fork();
6134 U r = null, u;
6135 V v;
6136 while ((v = advance()) != null) {
6137 if ((u = transformer.apply(v)) != null)
6138 r = (r == null) ? u : reducer.apply(r, u);
6139 }
6140 result = r;
6141 CountedCompleter<?> c;
6142 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6143 MapReduceValuesTask<K,V,U>
6144 t = (MapReduceValuesTask<K,V,U>)c,
6145 s = t.rights;
6146 while (s != null) {
6147 U tr, sr;
6148 if ((sr = s.result) != null)
6149 t.result = (((tr = t.result) == null) ? sr :
6150 reducer.apply(tr, sr));
6151 s = t.rights = s.nextRight;
6152 }
6153 }
6154 }
6155 }
6156 }
6157
6158 @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
6159 extends Traverser<K,V,U> {
6160 final Fun<Map.Entry<K,V>, ? extends U> transformer;
6161 final BiFun<? super U, ? super U, ? extends U> reducer;
6162 U result;
6163 MapReduceEntriesTask<K,V,U> rights, nextRight;
6164 MapReduceEntriesTask
6165 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6166 MapReduceEntriesTask<K,V,U> nextRight,
6167 Fun<Map.Entry<K,V>, ? extends U> transformer,
6168 BiFun<? super U, ? super U, ? extends U> reducer) {
6169 super(m, p, b); this.nextRight = nextRight;
6170 this.transformer = transformer;
6171 this.reducer = reducer;
6172 }
6173 public final U getRawResult() { return result; }
6174 @SuppressWarnings("unchecked") public final void compute() {
6175 final Fun<Map.Entry<K,V>, ? extends U> transformer;
6176 final BiFun<? super U, ? super U, ? extends U> reducer;
6177 if ((transformer = this.transformer) != null &&
6178 (reducer = this.reducer) != null) {
6179 for (int b; (b = preSplit()) > 0;)
6180 (rights = new MapReduceEntriesTask<K,V,U>
6181 (map, this, b, rights, transformer, reducer)).fork();
6182 U r = null, u;
6183 V v;
6184 while ((v = advance()) != null) {
6185 if ((u = transformer.apply(entryFor((K)nextKey,
6186 v))) != null)
6187 r = (r == null) ? u : reducer.apply(r, u);
6188 }
6189 result = r;
6190 CountedCompleter<?> c;
6191 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6192 MapReduceEntriesTask<K,V,U>
6193 t = (MapReduceEntriesTask<K,V,U>)c,
6194 s = t.rights;
6195 while (s != null) {
6196 U tr, sr;
6197 if ((sr = s.result) != null)
6198 t.result = (((tr = t.result) == null) ? sr :
6199 reducer.apply(tr, sr));
6200 s = t.rights = s.nextRight;
6201 }
6202 }
6203 }
6204 }
6205 }
6206
6207 @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
6208 extends Traverser<K,V,U> {
6209 final BiFun<? super K, ? super V, ? extends U> transformer;
6210 final BiFun<? super U, ? super U, ? extends U> reducer;
6211 U result;
6212 MapReduceMappingsTask<K,V,U> rights, nextRight;
6213 MapReduceMappingsTask
6214 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6215 MapReduceMappingsTask<K,V,U> nextRight,
6216 BiFun<? super K, ? super V, ? extends U> transformer,
6217 BiFun<? super U, ? super U, ? extends U> reducer) {
6218 super(m, p, b); this.nextRight = nextRight;
6219 this.transformer = transformer;
6220 this.reducer = reducer;
6221 }
6222 public final U getRawResult() { return result; }
6223 @SuppressWarnings("unchecked") public final void compute() {
6224 final BiFun<? super K, ? super V, ? extends U> transformer;
6225 final BiFun<? super U, ? super U, ? extends U> reducer;
6226 if ((transformer = this.transformer) != null &&
6227 (reducer = this.reducer) != null) {
6228 for (int b; (b = preSplit()) > 0;)
6229 (rights = new MapReduceMappingsTask<K,V,U>
6230 (map, this, b, rights, transformer, reducer)).fork();
6231 U r = null, u;
6232 V v;
6233 while ((v = advance()) != null) {
6234 if ((u = transformer.apply((K)nextKey, v)) != null)
6235 r = (r == null) ? u : reducer.apply(r, u);
6236 }
6237 result = r;
6238 CountedCompleter<?> c;
6239 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6240 MapReduceMappingsTask<K,V,U>
6241 t = (MapReduceMappingsTask<K,V,U>)c,
6242 s = t.rights;
6243 while (s != null) {
6244 U tr, sr;
6245 if ((sr = s.result) != null)
6246 t.result = (((tr = t.result) == null) ? sr :
6247 reducer.apply(tr, sr));
6248 s = t.rights = s.nextRight;
6249 }
6250 }
6251 }
6252 }
6253 }
6254
6255 @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
6256 extends Traverser<K,V,Double> {
6257 final ObjectToDouble<? super K> transformer;
6258 final DoubleByDoubleToDouble reducer;
6259 final double basis;
6260 double result;
6261 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
6262 MapReduceKeysToDoubleTask
6263 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6264 MapReduceKeysToDoubleTask<K,V> nextRight,
6265 ObjectToDouble<? super K> transformer,
6266 double basis,
6267 DoubleByDoubleToDouble reducer) {
6268 super(m, p, b); this.nextRight = nextRight;
6269 this.transformer = transformer;
6270 this.basis = basis; this.reducer = reducer;
6271 }
6272 public final Double getRawResult() { return result; }
6273 @SuppressWarnings("unchecked") public final void compute() {
6274 final ObjectToDouble<? super K> transformer;
6275 final DoubleByDoubleToDouble reducer;
6276 if ((transformer = this.transformer) != null &&
6277 (reducer = this.reducer) != null) {
6278 double r = this.basis;
6279 for (int b; (b = preSplit()) > 0;)
6280 (rights = new MapReduceKeysToDoubleTask<K,V>
6281 (map, this, b, rights, transformer, r, reducer)).fork();
6282 while (advance() != null)
6283 r = reducer.apply(r, transformer.apply((K)nextKey));
6284 result = r;
6285 CountedCompleter<?> c;
6286 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6287 MapReduceKeysToDoubleTask<K,V>
6288 t = (MapReduceKeysToDoubleTask<K,V>)c,
6289 s = t.rights;
6290 while (s != null) {
6291 t.result = reducer.apply(t.result, s.result);
6292 s = t.rights = s.nextRight;
6293 }
6294 }
6295 }
6296 }
6297 }
6298
6299 @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
6300 extends Traverser<K,V,Double> {
6301 final ObjectToDouble<? super V> transformer;
6302 final DoubleByDoubleToDouble reducer;
6303 final double basis;
6304 double result;
6305 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6306 MapReduceValuesToDoubleTask
6307 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6308 MapReduceValuesToDoubleTask<K,V> nextRight,
6309 ObjectToDouble<? super V> transformer,
6310 double basis,
6311 DoubleByDoubleToDouble reducer) {
6312 super(m, p, b); this.nextRight = nextRight;
6313 this.transformer = transformer;
6314 this.basis = basis; this.reducer = reducer;
6315 }
6316 public final Double getRawResult() { return result; }
6317 @SuppressWarnings("unchecked") public final void compute() {
6318 final ObjectToDouble<? super V> transformer;
6319 final DoubleByDoubleToDouble reducer;
6320 if ((transformer = this.transformer) != null &&
6321 (reducer = this.reducer) != null) {
6322 double r = this.basis;
6323 for (int b; (b = preSplit()) > 0;)
6324 (rights = new MapReduceValuesToDoubleTask<K,V>
6325 (map, this, b, rights, transformer, r, reducer)).fork();
6326 V v;
6327 while ((v = advance()) != null)
6328 r = reducer.apply(r, transformer.apply(v));
6329 result = r;
6330 CountedCompleter<?> c;
6331 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6332 MapReduceValuesToDoubleTask<K,V>
6333 t = (MapReduceValuesToDoubleTask<K,V>)c,
6334 s = t.rights;
6335 while (s != null) {
6336 t.result = reducer.apply(t.result, s.result);
6337 s = t.rights = s.nextRight;
6338 }
6339 }
6340 }
6341 }
6342 }
6343
6344 @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6345 extends Traverser<K,V,Double> {
6346 final ObjectToDouble<Map.Entry<K,V>> transformer;
6347 final DoubleByDoubleToDouble reducer;
6348 final double basis;
6349 double result;
6350 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6351 MapReduceEntriesToDoubleTask
6352 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6353 MapReduceEntriesToDoubleTask<K,V> nextRight,
6354 ObjectToDouble<Map.Entry<K,V>> transformer,
6355 double basis,
6356 DoubleByDoubleToDouble reducer) {
6357 super(m, p, b); this.nextRight = nextRight;
6358 this.transformer = transformer;
6359 this.basis = basis; this.reducer = reducer;
6360 }
6361 public final Double getRawResult() { return result; }
6362 @SuppressWarnings("unchecked") public final void compute() {
6363 final ObjectToDouble<Map.Entry<K,V>> transformer;
6364 final DoubleByDoubleToDouble reducer;
6365 if ((transformer = this.transformer) != null &&
6366 (reducer = this.reducer) != null) {
6367 double r = this.basis;
6368 for (int b; (b = preSplit()) > 0;)
6369 (rights = new MapReduceEntriesToDoubleTask<K,V>
6370 (map, this, b, rights, transformer, r, reducer)).fork();
6371 V v;
6372 while ((v = advance()) != null)
6373 r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
6374 v)));
6375 result = r;
6376 CountedCompleter<?> c;
6377 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6378 MapReduceEntriesToDoubleTask<K,V>
6379 t = (MapReduceEntriesToDoubleTask<K,V>)c,
6380 s = t.rights;
6381 while (s != null) {
6382 t.result = reducer.apply(t.result, s.result);
6383 s = t.rights = s.nextRight;
6384 }
6385 }
6386 }
6387 }
6388 }
6389
6390 @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6391 extends Traverser<K,V,Double> {
6392 final ObjectByObjectToDouble<? super K, ? super V> transformer;
6393 final DoubleByDoubleToDouble reducer;
6394 final double basis;
6395 double result;
6396 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6397 MapReduceMappingsToDoubleTask
6398 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6399 MapReduceMappingsToDoubleTask<K,V> nextRight,
6400 ObjectByObjectToDouble<? super K, ? super V> transformer,
6401 double basis,
6402 DoubleByDoubleToDouble reducer) {
6403 super(m, p, b); this.nextRight = nextRight;
6404 this.transformer = transformer;
6405 this.basis = basis; this.reducer = reducer;
6406 }
6407 public final Double getRawResult() { return result; }
6408 @SuppressWarnings("unchecked") public final void compute() {
6409 final ObjectByObjectToDouble<? super K, ? super V> transformer;
6410 final DoubleByDoubleToDouble reducer;
6411 if ((transformer = this.transformer) != null &&
6412 (reducer = this.reducer) != null) {
6413 double r = this.basis;
6414 for (int b; (b = preSplit()) > 0;)
6415 (rights = new MapReduceMappingsToDoubleTask<K,V>
6416 (map, this, b, rights, transformer, r, reducer)).fork();
6417 V v;
6418 while ((v = advance()) != null)
6419 r = reducer.apply(r, transformer.apply((K)nextKey, v));
6420 result = r;
6421 CountedCompleter<?> c;
6422 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6423 MapReduceMappingsToDoubleTask<K,V>
6424 t = (MapReduceMappingsToDoubleTask<K,V>)c,
6425 s = t.rights;
6426 while (s != null) {
6427 t.result = reducer.apply(t.result, s.result);
6428 s = t.rights = s.nextRight;
6429 }
6430 }
6431 }
6432 }
6433 }
6434
6435 @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6436 extends Traverser<K,V,Long> {
6437 final ObjectToLong<? super K> transformer;
6438 final LongByLongToLong reducer;
6439 final long basis;
6440 long result;
6441 MapReduceKeysToLongTask<K,V> rights, nextRight;
6442 MapReduceKeysToLongTask
6443 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6444 MapReduceKeysToLongTask<K,V> nextRight,
6445 ObjectToLong<? super K> transformer,
6446 long basis,
6447 LongByLongToLong reducer) {
6448 super(m, p, b); this.nextRight = nextRight;
6449 this.transformer = transformer;
6450 this.basis = basis; this.reducer = reducer;
6451 }
6452 public final Long getRawResult() { return result; }
6453 @SuppressWarnings("unchecked") public final void compute() {
6454 final ObjectToLong<? super K> transformer;
6455 final LongByLongToLong reducer;
6456 if ((transformer = this.transformer) != null &&
6457 (reducer = this.reducer) != null) {
6458 long r = this.basis;
6459 for (int b; (b = preSplit()) > 0;)
6460 (rights = new MapReduceKeysToLongTask<K,V>
6461 (map, this, b, rights, transformer, r, reducer)).fork();
6462 while (advance() != null)
6463 r = reducer.apply(r, transformer.apply((K)nextKey));
6464 result = r;
6465 CountedCompleter<?> c;
6466 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6467 MapReduceKeysToLongTask<K,V>
6468 t = (MapReduceKeysToLongTask<K,V>)c,
6469 s = t.rights;
6470 while (s != null) {
6471 t.result = reducer.apply(t.result, s.result);
6472 s = t.rights = s.nextRight;
6473 }
6474 }
6475 }
6476 }
6477 }
6478
6479 @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6480 extends Traverser<K,V,Long> {
6481 final ObjectToLong<? super V> transformer;
6482 final LongByLongToLong reducer;
6483 final long basis;
6484 long result;
6485 MapReduceValuesToLongTask<K,V> rights, nextRight;
6486 MapReduceValuesToLongTask
6487 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6488 MapReduceValuesToLongTask<K,V> nextRight,
6489 ObjectToLong<? super V> transformer,
6490 long basis,
6491 LongByLongToLong reducer) {
6492 super(m, p, b); this.nextRight = nextRight;
6493 this.transformer = transformer;
6494 this.basis = basis; this.reducer = reducer;
6495 }
6496 public final Long getRawResult() { return result; }
6497 @SuppressWarnings("unchecked") public final void compute() {
6498 final ObjectToLong<? super V> transformer;
6499 final LongByLongToLong reducer;
6500 if ((transformer = this.transformer) != null &&
6501 (reducer = this.reducer) != null) {
6502 long r = this.basis;
6503 for (int b; (b = preSplit()) > 0;)
6504 (rights = new MapReduceValuesToLongTask<K,V>
6505 (map, this, b, rights, transformer, r, reducer)).fork();
6506 V v;
6507 while ((v = advance()) != null)
6508 r = reducer.apply(r, transformer.apply(v));
6509 result = r;
6510 CountedCompleter<?> c;
6511 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6512 MapReduceValuesToLongTask<K,V>
6513 t = (MapReduceValuesToLongTask<K,V>)c,
6514 s = t.rights;
6515 while (s != null) {
6516 t.result = reducer.apply(t.result, s.result);
6517 s = t.rights = s.nextRight;
6518 }
6519 }
6520 }
6521 }
6522 }
6523
6524 @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6525 extends Traverser<K,V,Long> {
6526 final ObjectToLong<Map.Entry<K,V>> transformer;
6527 final LongByLongToLong reducer;
6528 final long basis;
6529 long result;
6530 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6531 MapReduceEntriesToLongTask
6532 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6533 MapReduceEntriesToLongTask<K,V> nextRight,
6534 ObjectToLong<Map.Entry<K,V>> transformer,
6535 long basis,
6536 LongByLongToLong reducer) {
6537 super(m, p, b); this.nextRight = nextRight;
6538 this.transformer = transformer;
6539 this.basis = basis; this.reducer = reducer;
6540 }
6541 public final Long getRawResult() { return result; }
6542 @SuppressWarnings("unchecked") public final void compute() {
6543 final ObjectToLong<Map.Entry<K,V>> transformer;
6544 final LongByLongToLong reducer;
6545 if ((transformer = this.transformer) != null &&
6546 (reducer = this.reducer) != null) {
6547 long r = this.basis;
6548 for (int b; (b = preSplit()) > 0;)
6549 (rights = new MapReduceEntriesToLongTask<K,V>
6550 (map, this, b, rights, transformer, r, reducer)).fork();
6551 V v;
6552 while ((v = advance()) != null)
6553 r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
6554 v)));
6555 result = r;
6556 CountedCompleter<?> c;
6557 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6558 MapReduceEntriesToLongTask<K,V>
6559 t = (MapReduceEntriesToLongTask<K,V>)c,
6560 s = t.rights;
6561 while (s != null) {
6562 t.result = reducer.apply(t.result, s.result);
6563 s = t.rights = s.nextRight;
6564 }
6565 }
6566 }
6567 }
6568 }
6569
6570 @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6571 extends Traverser<K,V,Long> {
6572 final ObjectByObjectToLong<? super K, ? super V> transformer;
6573 final LongByLongToLong reducer;
6574 final long basis;
6575 long result;
6576 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6577 MapReduceMappingsToLongTask
6578 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6579 MapReduceMappingsToLongTask<K,V> nextRight,
6580 ObjectByObjectToLong<? super K, ? super V> transformer,
6581 long basis,
6582 LongByLongToLong reducer) {
6583 super(m, p, b); this.nextRight = nextRight;
6584 this.transformer = transformer;
6585 this.basis = basis; this.reducer = reducer;
6586 }
6587 public final Long getRawResult() { return result; }
6588 @SuppressWarnings("unchecked") public final void compute() {
6589 final ObjectByObjectToLong<? super K, ? super V> transformer;
6590 final LongByLongToLong reducer;
6591 if ((transformer = this.transformer) != null &&
6592 (reducer = this.reducer) != null) {
6593 long r = this.basis;
6594 for (int b; (b = preSplit()) > 0;)
6595 (rights = new MapReduceMappingsToLongTask<K,V>
6596 (map, this, b, rights, transformer, r, reducer)).fork();
6597 V v;
6598 while ((v = advance()) != null)
6599 r = reducer.apply(r, transformer.apply((K)nextKey, v));
6600 result = r;
6601 CountedCompleter<?> c;
6602 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6603 MapReduceMappingsToLongTask<K,V>
6604 t = (MapReduceMappingsToLongTask<K,V>)c,
6605 s = t.rights;
6606 while (s != null) {
6607 t.result = reducer.apply(t.result, s.result);
6608 s = t.rights = s.nextRight;
6609 }
6610 }
6611 }
6612 }
6613 }
6614
6615 @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6616 extends Traverser<K,V,Integer> {
6617 final ObjectToInt<? super K> transformer;
6618 final IntByIntToInt reducer;
6619 final int basis;
6620 int result;
6621 MapReduceKeysToIntTask<K,V> rights, nextRight;
6622 MapReduceKeysToIntTask
6623 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6624 MapReduceKeysToIntTask<K,V> nextRight,
6625 ObjectToInt<? super K> transformer,
6626 int basis,
6627 IntByIntToInt reducer) {
6628 super(m, p, b); this.nextRight = nextRight;
6629 this.transformer = transformer;
6630 this.basis = basis; this.reducer = reducer;
6631 }
6632 public final Integer getRawResult() { return result; }
6633 @SuppressWarnings("unchecked") public final void compute() {
6634 final ObjectToInt<? super K> transformer;
6635 final IntByIntToInt reducer;
6636 if ((transformer = this.transformer) != null &&
6637 (reducer = this.reducer) != null) {
6638 int r = this.basis;
6639 for (int b; (b = preSplit()) > 0;)
6640 (rights = new MapReduceKeysToIntTask<K,V>
6641 (map, this, b, rights, transformer, r, reducer)).fork();
6642 while (advance() != null)
6643 r = reducer.apply(r, transformer.apply((K)nextKey));
6644 result = r;
6645 CountedCompleter<?> c;
6646 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6647 MapReduceKeysToIntTask<K,V>
6648 t = (MapReduceKeysToIntTask<K,V>)c,
6649 s = t.rights;
6650 while (s != null) {
6651 t.result = reducer.apply(t.result, s.result);
6652 s = t.rights = s.nextRight;
6653 }
6654 }
6655 }
6656 }
6657 }
6658
6659 @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6660 extends Traverser<K,V,Integer> {
6661 final ObjectToInt<? super V> transformer;
6662 final IntByIntToInt reducer;
6663 final int basis;
6664 int result;
6665 MapReduceValuesToIntTask<K,V> rights, nextRight;
6666 MapReduceValuesToIntTask
6667 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6668 MapReduceValuesToIntTask<K,V> nextRight,
6669 ObjectToInt<? super V> transformer,
6670 int basis,
6671 IntByIntToInt reducer) {
6672 super(m, p, b); this.nextRight = nextRight;
6673 this.transformer = transformer;
6674 this.basis = basis; this.reducer = reducer;
6675 }
6676 public final Integer getRawResult() { return result; }
6677 @SuppressWarnings("unchecked") public final void compute() {
6678 final ObjectToInt<? super V> transformer;
6679 final IntByIntToInt reducer;
6680 if ((transformer = this.transformer) != null &&
6681 (reducer = this.reducer) != null) {
6682 int r = this.basis;
6683 for (int b; (b = preSplit()) > 0;)
6684 (rights = new MapReduceValuesToIntTask<K,V>
6685 (map, this, b, rights, transformer, r, reducer)).fork();
6686 V v;
6687 while ((v = advance()) != null)
6688 r = reducer.apply(r, transformer.apply(v));
6689 result = r;
6690 CountedCompleter<?> c;
6691 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6692 MapReduceValuesToIntTask<K,V>
6693 t = (MapReduceValuesToIntTask<K,V>)c,
6694 s = t.rights;
6695 while (s != null) {
6696 t.result = reducer.apply(t.result, s.result);
6697 s = t.rights = s.nextRight;
6698 }
6699 }
6700 }
6701 }
6702 }
6703
6704 @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6705 extends Traverser<K,V,Integer> {
6706 final ObjectToInt<Map.Entry<K,V>> transformer;
6707 final IntByIntToInt reducer;
6708 final int basis;
6709 int result;
6710 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6711 MapReduceEntriesToIntTask
6712 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6713 MapReduceEntriesToIntTask<K,V> nextRight,
6714 ObjectToInt<Map.Entry<K,V>> transformer,
6715 int basis,
6716 IntByIntToInt reducer) {
6717 super(m, p, b); this.nextRight = nextRight;
6718 this.transformer = transformer;
6719 this.basis = basis; this.reducer = reducer;
6720 }
6721 public final Integer getRawResult() { return result; }
6722 @SuppressWarnings("unchecked") public final void compute() {
6723 final ObjectToInt<Map.Entry<K,V>> transformer;
6724 final IntByIntToInt reducer;
6725 if ((transformer = this.transformer) != null &&
6726 (reducer = this.reducer) != null) {
6727 int r = this.basis;
6728 for (int b; (b = preSplit()) > 0;)
6729 (rights = new MapReduceEntriesToIntTask<K,V>
6730 (map, this, b, rights, transformer, r, reducer)).fork();
6731 V v;
6732 while ((v = advance()) != null)
6733 r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
6734 v)));
6735 result = r;
6736 CountedCompleter<?> c;
6737 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6738 MapReduceEntriesToIntTask<K,V>
6739 t = (MapReduceEntriesToIntTask<K,V>)c,
6740 s = t.rights;
6741 while (s != null) {
6742 t.result = reducer.apply(t.result, s.result);
6743 s = t.rights = s.nextRight;
6744 }
6745 }
6746 }
6747 }
6748 }
6749
6750 @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6751 extends Traverser<K,V,Integer> {
6752 final ObjectByObjectToInt<? super K, ? super V> transformer;
6753 final IntByIntToInt reducer;
6754 final int basis;
6755 int result;
6756 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6757 MapReduceMappingsToIntTask
6758 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6759 MapReduceMappingsToIntTask<K,V> nextRight,
6760 ObjectByObjectToInt<? super K, ? super V> transformer,
6761 int basis,
6762 IntByIntToInt reducer) {
6763 super(m, p, b); this.nextRight = nextRight;
6764 this.transformer = transformer;
6765 this.basis = basis; this.reducer = reducer;
6766 }
6767 public final Integer getRawResult() { return result; }
6768 @SuppressWarnings("unchecked") public final void compute() {
6769 final ObjectByObjectToInt<? super K, ? super V> transformer;
6770 final IntByIntToInt reducer;
6771 if ((transformer = this.transformer) != null &&
6772 (reducer = this.reducer) != null) {
6773 int r = this.basis;
6774 for (int b; (b = preSplit()) > 0;)
6775 (rights = new MapReduceMappingsToIntTask<K,V>
6776 (map, this, b, rights, transformer, r, reducer)).fork();
6777 V v;
6778 while ((v = advance()) != null)
6779 r = reducer.apply(r, transformer.apply((K)nextKey, v));
6780 result = r;
6781 CountedCompleter<?> c;
6782 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6783 MapReduceMappingsToIntTask<K,V>
6784 t = (MapReduceMappingsToIntTask<K,V>)c,
6785 s = t.rights;
6786 while (s != null) {
6787 t.result = reducer.apply(t.result, s.result);
6788 s = t.rights = s.nextRight;
6789 }
6790 }
6791 }
6792 }
6793 }
6794
6795 // Unsafe mechanics
6796 private static final sun.misc.Unsafe U;
6797 private static final long SIZECTL;
6798 private static final long TRANSFERINDEX;
6799 private static final long TRANSFERORIGIN;
6800 private static final long BASECOUNT;
6801 private static final long COUNTERBUSY;
6802 private static final long CELLVALUE;
6803 private static final long ABASE;
6804 private static final int ASHIFT;
6805
6806 static {
6807 int ss;
6808 try {
6809 U = getUnsafe();
6810 Class<?> k = ConcurrentHashMapV8.class;
6811 SIZECTL = U.objectFieldOffset
6812 (k.getDeclaredField("sizeCtl"));
6813 TRANSFERINDEX = U.objectFieldOffset
6814 (k.getDeclaredField("transferIndex"));
6815 TRANSFERORIGIN = U.objectFieldOffset
6816 (k.getDeclaredField("transferOrigin"));
6817 BASECOUNT = U.objectFieldOffset
6818 (k.getDeclaredField("baseCount"));
6819 COUNTERBUSY = U.objectFieldOffset
6820 (k.getDeclaredField("counterBusy"));
6821 Class<?> ck = CounterCell.class;
6822 CELLVALUE = U.objectFieldOffset
6823 (ck.getDeclaredField("value"));
6824 Class<?> sc = Node[].class;
6825 ABASE = U.arrayBaseOffset(sc);
6826 ss = U.arrayIndexScale(sc);
6827 ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6828 } catch (Exception e) {
6829 throw new Error(e);
6830 }
6831 if ((ss & (ss-1)) != 0)
6832 throw new Error("data type scale not a power of two");
6833 }
6834
6835 /**
6836 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
6837 * Replace with a simple call to Unsafe.getUnsafe when integrating
6838 * into a jdk.
6839 *
6840 * @return a sun.misc.Unsafe
6841 */
6842 private static sun.misc.Unsafe getUnsafe() {
6843 try {
6844 return sun.misc.Unsafe.getUnsafe();
6845 } catch (SecurityException tryReflectionInstead) {}
6846 try {
6847 return java.security.AccessController.doPrivileged
6848 (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
6849 public sun.misc.Unsafe run() throws Exception {
6850 Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
6851 for (java.lang.reflect.Field f : k.getDeclaredFields()) {
6852 f.setAccessible(true);
6853 Object x = f.get(null);
6854 if (k.isInstance(x))
6855 return k.cast(x);
6856 }
6857 throw new NoSuchFieldError("the Unsafe");
6858 }});
6859 } catch (java.security.PrivilegedActionException e) {
6860 throw new RuntimeException("Could not initialize intrinsics",
6861 e.getCause());
6862 }
6863 }
6864 }