ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
Revision: 1.95
Committed: Mon Feb 11 17:35:59 2013 UTC (11 years, 2 months ago) by jsr166
Branch: MAIN
Changes since 1.94: +1 -1 lines
Log Message:
#entrySet -> #entrySet()

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package jsr166e;
8
9 import java.util.Comparator;
10 import java.util.Arrays;
11 import java.util.Map;
12 import java.util.Set;
13 import java.util.Collection;
14 import java.util.AbstractMap;
15 import java.util.AbstractSet;
16 import java.util.AbstractCollection;
17 import java.util.Hashtable;
18 import java.util.HashMap;
19 import java.util.Iterator;
20 import java.util.Enumeration;
21 import java.util.ConcurrentModificationException;
22 import java.util.NoSuchElementException;
23 import java.util.concurrent.ConcurrentMap;
24 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
25 import java.util.concurrent.atomic.AtomicInteger;
26 import java.util.concurrent.atomic.AtomicReference;
27 import java.io.Serializable;
28
29 /**
30 * A hash table supporting full concurrency of retrievals and
31 * high expected concurrency for updates. This class obeys the
32 * same functional specification as {@link java.util.Hashtable}, and
33 * includes versions of methods corresponding to each method of
34 * {@code Hashtable}. However, even though all operations are
35 * thread-safe, retrieval operations do <em>not</em> entail locking,
36 * and there is <em>not</em> any support for locking the entire table
37 * in a way that prevents all access. This class is fully
38 * interoperable with {@code Hashtable} in programs that rely on its
39 * thread safety but not on its synchronization details.
40 *
41 * <p>Retrieval operations (including {@code get}) generally do not
42 * block, so may overlap with update operations (including {@code put}
43 * and {@code remove}). Retrievals reflect the results of the most
44 * recently <em>completed</em> update operations holding upon their
45 * onset. (More formally, an update operation for a given key bears a
46 * <em>happens-before</em> relation with any (non-null) retrieval for
47 * that key reporting the updated value.) For aggregate operations
48 * such as {@code putAll} and {@code clear}, concurrent retrievals may
49 * reflect insertion or removal of only some entries. Similarly,
50 * Iterators and Enumerations return elements reflecting the state of
51 * the hash table at some point at or since the creation of the
52 * iterator/enumeration. They do <em>not</em> throw {@link
53 * ConcurrentModificationException}. However, iterators are designed
54 * to be used by only one thread at a time. Bear in mind that the
55 * results of aggregate status methods including {@code size}, {@code
56 * isEmpty}, and {@code containsValue} are typically useful only when
57 * a map is not undergoing concurrent updates in other threads.
58 * Otherwise the results of these methods reflect transient states
59 * that may be adequate for monitoring or estimation purposes, but not
60 * for program control.
61 *
62 * <p>The table is dynamically expanded when there are too many
63 * collisions (i.e., keys that have distinct hash codes but fall into
64 * the same slot modulo the table size), with the expected average
65 * effect of maintaining roughly two bins per mapping (corresponding
66 * to a 0.75 load factor threshold for resizing). There may be much
67 * variance around this average as mappings are added and removed, but
68 * overall, this maintains a commonly accepted time/space tradeoff for
69 * hash tables. However, resizing this or any other kind of hash
70 * table may be a relatively slow operation. When possible, it is a
71 * good idea to provide a size estimate as an optional {@code
72 * initialCapacity} constructor argument. An additional optional
73 * {@code loadFactor} constructor argument provides a further means of
74 * customizing initial table capacity by specifying the table density
75 * to be used in calculating the amount of space to allocate for the
76 * given number of elements. Also, for compatibility with previous
77 * versions of this class, constructors may optionally specify an
78 * expected {@code concurrencyLevel} as an additional hint for
79 * internal sizing. Note that using many keys with exactly the same
80 * {@code hashCode()} is a sure way to slow down performance of any
81 * hash table.
82 *
83 * <p>A {@link Set} projection of a ConcurrentHashMapV8 may be created
84 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
85 * (using {@link #keySet(Object)} when only keys are of interest, and the
86 * mapped values are (perhaps transiently) not used or all take the
87 * same mapping value.
88 *
89 * <p>A ConcurrentHashMapV8 can be used as scalable frequency map (a
90 * form of histogram or multiset) by using {@link LongAdder} values
91 * and initializing via {@link #computeIfAbsent}. For example, to add
92 * a count to a {@code ConcurrentHashMapV8<String,LongAdder> freqs}, you
93 * can use {@code freqs.computeIfAbsent(k -> new
94 * LongAdder()).increment();}
95 *
96 * <p>This class and its views and iterators implement all of the
97 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
98 * interfaces.
99 *
100 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
101 * does <em>not</em> allow {@code null} to be used as a key or value.
102 *
103 * <p>ConcurrentHashMapV8s support sequential and parallel operations
104 * bulk operations. (Parallel forms use the {@link
105 * ForkJoinPool#commonPool()}). Tasks that may be used in other
106 * contexts are available in class {@link ForkJoinTasks}. These
107 * operations are designed to be safely, and often sensibly, applied
108 * even with maps that are being concurrently updated by other
109 * threads; for example, when computing a snapshot summary of the
110 * values in a shared registry. There are three kinds of operation,
111 * each with four forms, accepting functions with Keys, Values,
112 * Entries, and (Key, Value) arguments and/or return values. Because
113 * the elements of a ConcurrentHashMapV8 are not ordered in any
114 * particular way, and may be processed in different orders in
115 * different parallel executions, the correctness of supplied
116 * functions should not depend on any ordering, or on any other
117 * objects or values that may transiently change while computation is
118 * in progress; and except for forEach actions, should ideally be
119 * side-effect-free.
120 *
121 * <ul>
122 * <li> forEach: Perform a given action on each element.
123 * A variant form applies a given transformation on each element
124 * before performing the action.</li>
125 *
126 * <li> search: Return the first available non-null result of
127 * applying a given function on each element; skipping further
128 * search when a result is found.</li>
129 *
130 * <li> reduce: Accumulate each element. The supplied reduction
131 * function cannot rely on ordering (more formally, it should be
132 * both associative and commutative). There are five variants:
133 *
134 * <ul>
135 *
136 * <li> Plain reductions. (There is not a form of this method for
137 * (key, value) function arguments since there is no corresponding
138 * return type.)</li>
139 *
140 * <li> Mapped reductions that accumulate the results of a given
141 * function applied to each element.</li>
142 *
143 * <li> Reductions to scalar doubles, longs, and ints, using a
144 * given basis value.</li>
145 *
146 * </li>
147 * </ul>
148 * </ul>
149 *
150 * <p>The concurrency properties of bulk operations follow
151 * from those of ConcurrentHashMapV8: Any non-null result returned
152 * from {@code get(key)} and related access methods bears a
153 * happens-before relation with the associated insertion or
154 * update. The result of any bulk operation reflects the
155 * composition of these per-element relations (but is not
156 * necessarily atomic with respect to the map as a whole unless it
157 * is somehow known to be quiescent). Conversely, because keys
158 * and values in the map are never null, null serves as a reliable
159 * atomic indicator of the current lack of any result. To
160 * maintain this property, null serves as an implicit basis for
161 * all non-scalar reduction operations. For the double, long, and
162 * int versions, the basis should be one that, when combined with
163 * any other value, returns that other value (more formally, it
164 * should be the identity element for the reduction). Most common
165 * reductions have these properties; for example, computing a sum
166 * with basis 0 or a minimum with basis MAX_VALUE.
167 *
168 * <p>Search and transformation functions provided as arguments
169 * should similarly return null to indicate the lack of any result
170 * (in which case it is not used). In the case of mapped
171 * reductions, this also enables transformations to serve as
172 * filters, returning null (or, in the case of primitive
173 * specializations, the identity basis) if the element should not
174 * be combined. You can create compound transformations and
175 * filterings by composing them yourself under this "null means
176 * there is nothing there now" rule before using them in search or
177 * reduce operations.
178 *
179 * <p>Methods accepting and/or returning Entry arguments maintain
180 * key-value associations. They may be useful for example when
181 * finding the key for the greatest value. Note that "plain" Entry
182 * arguments can be supplied using {@code new
183 * AbstractMap.SimpleEntry(k,v)}.
184 *
185 * <p>Bulk operations may complete abruptly, throwing an
186 * exception encountered in the application of a supplied
187 * function. Bear in mind when handling such exceptions that other
188 * concurrently executing functions could also have thrown
189 * exceptions, or would have done so if the first exception had
190 * not occurred.
191 *
192 * <p>Speedups for parallel compared to sequential forms are common
193 * but not guaranteed. Parallel operations involving brief functions
194 * on small maps may execute more slowly than sequential forms if the
195 * underlying work to parallelize the computation is more expensive
196 * than the computation itself. Similarly, parallelization may not
197 * lead to much actual parallelism if all processors are busy
198 * performing unrelated tasks.
199 *
200 * <p>All arguments to all task methods must be non-null.
201 *
202 * <p><em>jsr166e note: During transition, this class
203 * uses nested functional interfaces with different names but the
204 * same forms as those expected for JDK8.</em>
205 *
206 * <p>This class is a member of the
207 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
208 * Java Collections Framework</a>.
209 *
210 * @since 1.5
211 * @author Doug Lea
212 * @param <K> the type of keys maintained by this map
213 * @param <V> the type of mapped values
214 */
215 public class ConcurrentHashMapV8<K, V>
216 implements ConcurrentMap<K, V>, Serializable {
217 private static final long serialVersionUID = 7249069246763182397L;
218
219 /**
220 * A partitionable iterator. A Spliterator can be traversed
221 * directly, but can also be partitioned (before traversal) by
222 * creating another Spliterator that covers a non-overlapping
223 * portion of the elements, and so may be amenable to parallel
224 * execution.
225 *
226 * <p>This interface exports a subset of expected JDK8
227 * functionality.
228 *
229 * <p>Sample usage: Here is one (of the several) ways to compute
230 * the sum of the values held in a map using the ForkJoin
231 * framework. As illustrated here, Spliterators are well suited to
232 * designs in which a task repeatedly splits off half its work
233 * into forked subtasks until small enough to process directly,
234 * and then joins these subtasks. Variants of this style can also
235 * be used in completion-based designs.
236 *
237 * <pre>
238 * {@code ConcurrentHashMapV8<String, Long> m = ...
239 * // split as if have 8 * parallelism, for load balance
240 * int n = m.size();
241 * int p = aForkJoinPool.getParallelism() * 8;
242 * int split = (n < p)? n : p;
243 * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
244 * // ...
245 * static class SumValues extends RecursiveTask<Long> {
246 * final Spliterator<Long> s;
247 * final int split; // split while > 1
248 * final SumValues nextJoin; // records forked subtasks to join
249 * SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
250 * this.s = s; this.depth = depth; this.nextJoin = nextJoin;
251 * }
252 * public Long compute() {
253 * long sum = 0;
254 * SumValues subtasks = null; // fork subtasks
255 * for (int s = split >>> 1; s > 0; s >>>= 1)
256 * (subtasks = new SumValues(s.split(), s, subtasks)).fork();
257 * while (s.hasNext()) // directly process remaining elements
258 * sum += s.next();
259 * for (SumValues t = subtasks; t != null; t = t.nextJoin)
260 * sum += t.join(); // collect subtask results
261 * return sum;
262 * }
263 * }
264 * }</pre>
265 */
266 public static interface Spliterator<T> extends Iterator<T> {
267 /**
268 * Returns a Spliterator covering approximately half of the
269 * elements, guaranteed not to overlap with those subsequently
270 * returned by this Spliterator. After invoking this method,
271 * the current Spliterator will <em>not</em> produce any of
272 * the elements of the returned Spliterator, but the two
273 * Spliterators together will produce all of the elements that
274 * would have been produced by this Spliterator had this
275 * method not been called. The exact number of elements
276 * produced by the returned Spliterator is not guaranteed, and
277 * may be zero (i.e., with {@code hasNext()} reporting {@code
278 * false}) if this Spliterator cannot be further split.
279 *
280 * @return a Spliterator covering approximately half of the
281 * elements
282 * @throws IllegalStateException if this Spliterator has
283 * already commenced traversing elements
284 */
285 Spliterator<T> split();
286 }
287
288 /*
289 * Overview:
290 *
291 * The primary design goal of this hash table is to maintain
292 * concurrent readability (typically method get(), but also
293 * iterators and related methods) while minimizing update
294 * contention. Secondary goals are to keep space consumption about
295 * the same or better than java.util.HashMap, and to support high
296 * initial insertion rates on an empty table by many threads.
297 *
298 * Each key-value mapping is held in a Node. Because Node key
299 * fields can contain special values, they are defined using plain
300 * Object types (not type "K"). This leads to a lot of explicit
301 * casting (and many explicit warning suppressions to tell
302 * compilers not to complain about it). It also allows some of the
303 * public methods to be factored into a smaller number of internal
304 * methods (although sadly not so for the five variants of
305 * put-related operations). The validation-based approach
306 * explained below leads to a lot of code sprawl because
307 * retry-control precludes factoring into smaller methods.
308 *
309 * The table is lazily initialized to a power-of-two size upon the
310 * first insertion. Each bin in the table normally contains a
311 * list of Nodes (most often, the list has only zero or one Node).
312 * Table accesses require volatile/atomic reads, writes, and
313 * CASes. Because there is no other way to arrange this without
314 * adding further indirections, we use intrinsics
315 * (sun.misc.Unsafe) operations. The lists of nodes within bins
316 * are always accurately traversable under volatile reads, so long
317 * as lookups check hash code and non-nullness of value before
318 * checking key equality.
319 *
320 * We use the top (sign) bit of Node hash fields for control
321 * purposes -- it is available anyway because of addressing
322 * constraints. Nodes with negative hash fields are forwarding
323 * nodes to either TreeBins or resized tables. The lower 31 bits
324 * of each normal Node's hash field contain a transformation of
325 * the key's hash code.
326 *
327 * Insertion (via put or its variants) of the first node in an
328 * empty bin is performed by just CASing it to the bin. This is
329 * by far the most common case for put operations under most
330 * key/hash distributions. Other update operations (insert,
331 * delete, and replace) require locks. We do not want to waste
332 * the space required to associate a distinct lock object with
333 * each bin, so instead use the first node of a bin list itself as
334 * a lock. Locking support for these locks relies on builtin
335 * "synchronized" monitors.
336 *
337 * Using the first node of a list as a lock does not by itself
338 * suffice though: When a node is locked, any update must first
339 * validate that it is still the first node after locking it, and
340 * retry if not. Because new nodes are always appended to lists,
341 * once a node is first in a bin, it remains first until deleted
342 * or the bin becomes invalidated (upon resizing). However,
343 * operations that only conditionally update may inspect nodes
344 * until the point of update. This is a converse of sorts to the
345 * lazy locking technique described by Herlihy & Shavit.
346 *
347 * The main disadvantage of per-bin locks is that other update
348 * operations on other nodes in a bin list protected by the same
349 * lock can stall, for example when user equals() or mapping
350 * functions take a long time. However, statistically, under
351 * random hash codes, this is not a common problem. Ideally, the
352 * frequency of nodes in bins follows a Poisson distribution
353 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
354 * parameter of about 0.5 on average, given the resizing threshold
355 * of 0.75, although with a large variance because of resizing
356 * granularity. Ignoring variance, the expected occurrences of
357 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
358 * first values are:
359 *
360 * 0: 0.60653066
361 * 1: 0.30326533
362 * 2: 0.07581633
363 * 3: 0.01263606
364 * 4: 0.00157952
365 * 5: 0.00015795
366 * 6: 0.00001316
367 * 7: 0.00000094
368 * 8: 0.00000006
369 * more: less than 1 in ten million
370 *
371 * Lock contention probability for two threads accessing distinct
372 * elements is roughly 1 / (8 * #elements) under random hashes.
373 *
374 * Actual hash code distributions encountered in practice
375 * sometimes deviate significantly from uniform randomness. This
376 * includes the case when N > (1<<30), so some keys MUST collide.
377 * Similarly for dumb or hostile usages in which multiple keys are
378 * designed to have identical hash codes. Also, although we guard
379 * against the worst effects of this (see method spread), sets of
380 * hashes may differ only in bits that do not impact their bin
381 * index for a given power-of-two mask. So we use a secondary
382 * strategy that applies when the number of nodes in a bin exceeds
383 * a threshold, and at least one of the keys implements
384 * Comparable. These TreeBins use a balanced tree to hold nodes
385 * (a specialized form of red-black trees), bounding search time
386 * to O(log N). Each search step in a TreeBin is around twice as
387 * slow as in a regular list, but given that N cannot exceed
388 * (1<<64) (before running out of addresses) this bounds search
389 * steps, lock hold times, etc, to reasonable constants (roughly
390 * 100 nodes inspected per operation worst case) so long as keys
391 * are Comparable (which is very common -- String, Long, etc).
392 * TreeBin nodes (TreeNodes) also maintain the same "next"
393 * traversal pointers as regular nodes, so can be traversed in
394 * iterators in the same way.
395 *
396 * The table is resized when occupancy exceeds a percentage
397 * threshold (nominally, 0.75, but see below). Any thread
398 * noticing an overfull bin may assist in resizing after the
399 * initiating thread allocates and sets up the replacement
400 * array. However, rather than stalling, these other threads may
401 * proceed with insertions etc. The use of TreeBins shields us
402 * from the worst case effects of overfilling while resizes are in
403 * progress. Resizing proceeds by transferring bins, one by one,
404 * from the table to the next table. To enable concurrency, the
405 * next table must be (incrementally) prefilled with place-holders
406 * serving as reverse forwarders to the old table. Because we are
407 * using power-of-two expansion, the elements from each bin must
408 * either stay at same index, or move with a power of two
409 * offset. We eliminate unnecessary node creation by catching
410 * cases where old nodes can be reused because their next fields
411 * won't change. On average, only about one-sixth of them need
412 * cloning when a table doubles. The nodes they replace will be
413 * garbage collectable as soon as they are no longer referenced by
414 * any reader thread that may be in the midst of concurrently
415 * traversing table. Upon transfer, the old table bin contains
416 * only a special forwarding node (with hash field "MOVED") that
417 * contains the next table as its key. On encountering a
418 * forwarding node, access and update operations restart, using
419 * the new table.
420 *
421 * Each bin transfer requires its bin lock, which can stall
422 * waiting for locks while resizing. However, because other
423 * threads can join in and help resize rather than contend for
424 * locks, average aggregate waits become shorter as resizing
425 * progresses. The transfer operation must also ensure that all
426 * accessible bins in both the old and new table are usable by any
427 * traversal. This is arranged by proceeding from the last bin
428 * (table.length - 1) up towards the first. Upon seeing a
429 * forwarding node, traversals (see class Traverser) arrange to
430 * move to the new table without revisiting nodes. However, to
431 * ensure that no intervening nodes are skipped, bin splitting can
432 * only begin after the associated reverse-forwarders are in
433 * place.
434 *
435 * The traversal scheme also applies to partial traversals of
436 * ranges of bins (via an alternate Traverser constructor)
437 * to support partitioned aggregate operations. Also, read-only
438 * operations give up if ever forwarded to a null table, which
439 * provides support for shutdown-style clearing, which is also not
440 * currently implemented.
441 *
442 * Lazy table initialization minimizes footprint until first use,
443 * and also avoids resizings when the first operation is from a
444 * putAll, constructor with map argument, or deserialization.
445 * These cases attempt to override the initial capacity settings,
446 * but harmlessly fail to take effect in cases of races.
447 *
448 * The element count is maintained using a specialization of
449 * LongAdder. We need to incorporate a specialization rather than
450 * just use a LongAdder in order to access implicit
451 * contention-sensing that leads to creation of multiple
452 * CounterCells. The counter mechanics avoid contention on
453 * updates but can encounter cache thrashing if read too
454 * frequently during concurrent access. To avoid reading so often,
455 * resizing under contention is attempted only upon adding to a
456 * bin already holding two or more nodes. Under uniform hash
457 * distributions, the probability of this occurring at threshold
458 * is around 13%, meaning that only about 1 in 8 puts check
459 * threshold (and after resizing, many fewer do so). The bulk
460 * putAll operation further reduces contention by only committing
461 * count updates upon these size checks.
462 *
463 * Maintaining API and serialization compatibility with previous
464 * versions of this class introduces several oddities. Mainly: We
465 * leave untouched but unused constructor arguments refering to
466 * concurrencyLevel. We accept a loadFactor constructor argument,
467 * but apply it only to initial table capacity (which is the only
468 * time that we can guarantee to honor it.) We also declare an
469 * unused "Segment" class that is instantiated in minimal form
470 * only when serializing.
471 */
472
473 /* ---------------- Constants -------------- */
474
475 /**
476 * The largest possible table capacity. This value must be
477 * exactly 1<<30 to stay within Java array allocation and indexing
478 * bounds for power of two table sizes, and is further required
479 * because the top two bits of 32bit hash fields are used for
480 * control purposes.
481 */
482 private static final int MAXIMUM_CAPACITY = 1 << 30;
483
484 /**
485 * The default initial table capacity. Must be a power of 2
486 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
487 */
488 private static final int DEFAULT_CAPACITY = 16;
489
490 /**
491 * The largest possible (non-power of two) array size.
492 * Needed by toArray and related methods.
493 */
494 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
495
496 /**
497 * The default concurrency level for this table. Unused but
498 * defined for compatibility with previous versions of this class.
499 */
500 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
501
502 /**
503 * The load factor for this table. Overrides of this value in
504 * constructors affect only the initial table capacity. The
505 * actual floating point value isn't normally used -- it is
506 * simpler to use expressions such as {@code n - (n >>> 2)} for
507 * the associated resizing threshold.
508 */
509 private static final float LOAD_FACTOR = 0.75f;
510
511 /**
512 * The bin count threshold for using a tree rather than list for a
513 * bin. The value reflects the approximate break-even point for
514 * using tree-based operations.
515 */
516 private static final int TREE_THRESHOLD = 8;
517
518 /**
519 * Minimum number of rebinnings per transfer step. Ranges are
520 * subdivided to allow multiple resizer threads. This value
521 * serves as a lower bound to avoid resizers encountering
522 * excessive memory contention. The value should be at least
523 * DEFAULT_CAPACITY.
524 */
525 private static final int MIN_TRANSFER_STRIDE = 16;
526
527 /*
528 * Encodings for Node hash fields. See above for explanation.
529 */
530 static final int MOVED = 0x80000000; // hash field for forwarding nodes
531 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
532
533 /** Number of CPUS, to place bounds on some sizings */
534 static final int NCPU = Runtime.getRuntime().availableProcessors();
535
536 /* ---------------- Counters -------------- */
537
538 // Adapted from LongAdder and Striped64.
539 // See their internal docs for explanation.
540
541 // A padded cell for distributing counts
542 static final class CounterCell {
543 volatile long p0, p1, p2, p3, p4, p5, p6;
544 volatile long value;
545 volatile long q0, q1, q2, q3, q4, q5, q6;
546 CounterCell(long x) { value = x; }
547 }
548
549 /**
550 * Holder for the thread-local hash code determining which
551 * CounterCell to use. The code is initialized via the
552 * counterHashCodeGenerator, but may be moved upon collisions.
553 */
554 static final class CounterHashCode {
555 int code;
556 }
557
558 /**
559 * Generates initial value for per-thread CounterHashCodes
560 */
561 static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
562
563 /**
564 * Increment for counterHashCodeGenerator. See class ThreadLocal
565 * for explanation.
566 */
567 static final int SEED_INCREMENT = 0x61c88647;
568
569 /**
570 * Per-thread counter hash codes. Shared across all instances.
571 */
572 static final ThreadLocal<CounterHashCode> threadCounterHashCode =
573 new ThreadLocal<CounterHashCode>();
574
575 /* ---------------- Fields -------------- */
576
577 /**
578 * The array of bins. Lazily initialized upon first insertion.
579 * Size is always a power of two. Accessed directly by iterators.
580 */
581 transient volatile Node<V>[] table;
582
583 /**
584 * The next table to use; non-null only while resizing.
585 */
586 private transient volatile Node<V>[] nextTable;
587
588 /**
589 * Base counter value, used mainly when there is no contention,
590 * but also as a fallback during table initialization
591 * races. Updated via CAS.
592 */
593 private transient volatile long baseCount;
594
595 /**
596 * Table initialization and resizing control. When negative, the
597 * table is being initialized or resized: -1 for initialization,
598 * else -(1 + the number of active resizing threads). Otherwise,
599 * when table is null, holds the initial table size to use upon
600 * creation, or 0 for default. After initialization, holds the
601 * next element count value upon which to resize the table.
602 */
603 private transient volatile int sizeCtl;
604
605 /**
606 * The next table index (plus one) to split while resizing.
607 */
608 private transient volatile int transferIndex;
609
610 /**
611 * The least available table index to split while resizing.
612 */
613 private transient volatile int transferOrigin;
614
615 /**
616 * Spinlock (locked via CAS) used when resizing and/or creating Cells.
617 */
618 private transient volatile int counterBusy;
619
620 /**
621 * Table of counter cells. When non-null, size is a power of 2.
622 */
623 private transient volatile CounterCell[] counterCells;
624
625 // views
626 private transient KeySetView<K,V> keySet;
627 private transient ValuesView<K,V> values;
628 private transient EntrySetView<K,V> entrySet;
629
630 /** For serialization compatibility. Null unless serialized; see below */
631 private Segment<K,V>[] segments;
632
633 /* ---------------- Table element access -------------- */
634
635 /*
636 * Volatile access methods are used for table elements as well as
637 * elements of in-progress next table while resizing. Uses are
638 * null checked by callers, and implicitly bounds-checked, relying
639 * on the invariants that tab arrays have non-zero size, and all
640 * indices are masked with (tab.length - 1) which is never
641 * negative and always less than length. Note that, to be correct
642 * wrt arbitrary concurrency errors by users, bounds checks must
643 * operate on local variables, which accounts for some odd-looking
644 * inline assignments below.
645 */
646
647 @SuppressWarnings("unchecked") static final <V> Node<V> tabAt
648 (Node<V>[] tab, int i) { // used by Traverser
649 return (Node<V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
650 }
651
652 private static final <V> boolean casTabAt
653 (Node<V>[] tab, int i, Node<V> c, Node<V> v) {
654 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
655 }
656
657 private static final <V> void setTabAt
658 (Node<V>[] tab, int i, Node<V> v) {
659 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
660 }
661
662 /* ---------------- Nodes -------------- */
663
664 /**
665 * Key-value entry. Note that this is never exported out as a
666 * user-visible Map.Entry (see MapEntry below). Nodes with a hash
667 * field of MOVED are special, and do not contain user keys or
668 * values. Otherwise, keys are never null, and null val fields
669 * indicate that a node is in the process of being deleted or
670 * created. For purposes of read-only access, a key may be read
671 * before a val, but can only be used after checking val to be
672 * non-null.
673 */
674 static class Node<V> {
675 final int hash;
676 final Object key;
677 volatile V val;
678 volatile Node<V> next;
679
680 Node(int hash, Object key, V val, Node<V> next) {
681 this.hash = hash;
682 this.key = key;
683 this.val = val;
684 this.next = next;
685 }
686 }
687
688 /* ---------------- TreeBins -------------- */
689
690 /**
691 * Nodes for use in TreeBins
692 */
693 static final class TreeNode<V> extends Node<V> {
694 TreeNode<V> parent; // red-black tree links
695 TreeNode<V> left;
696 TreeNode<V> right;
697 TreeNode<V> prev; // needed to unlink next upon deletion
698 boolean red;
699
700 TreeNode(int hash, Object key, V val, Node<V> next, TreeNode<V> parent) {
701 super(hash, key, val, next);
702 this.parent = parent;
703 }
704 }
705
706 /**
707 * A specialized form of red-black tree for use in bins
708 * whose size exceeds a threshold.
709 *
710 * TreeBins use a special form of comparison for search and
711 * related operations (which is the main reason we cannot use
712 * existing collections such as TreeMaps). TreeBins contain
713 * Comparable elements, but may contain others, as well as
714 * elements that are Comparable but not necessarily Comparable<T>
715 * for the same T, so we cannot invoke compareTo among them. To
716 * handle this, the tree is ordered primarily by hash value, then
717 * by getClass().getName() order, and then by Comparator order
718 * among elements of the same class. On lookup at a node, if
719 * elements are not comparable or compare as 0, both left and
720 * right children may need to be searched in the case of tied hash
721 * values. (This corresponds to the full list search that would be
722 * necessary if all elements were non-Comparable and had tied
723 * hashes.) The red-black balancing code is updated from
724 * pre-jdk-collections
725 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
726 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
727 * Algorithms" (CLR).
728 *
729 * TreeBins also maintain a separate locking discipline than
730 * regular bins. Because they are forwarded via special MOVED
731 * nodes at bin heads (which can never change once established),
732 * we cannot use those nodes as locks. Instead, TreeBin
733 * extends AbstractQueuedSynchronizer to support a simple form of
734 * read-write lock. For update operations and table validation,
735 * the exclusive form of lock behaves in the same way as bin-head
736 * locks. However, lookups use shared read-lock mechanics to allow
737 * multiple readers in the absence of writers. Additionally,
738 * these lookups do not ever block: While the lock is not
739 * available, they proceed along the slow traversal path (via
740 * next-pointers) until the lock becomes available or the list is
741 * exhausted, whichever comes first. (These cases are not fast,
742 * but maximize aggregate expected throughput.) The AQS mechanics
743 * for doing this are straightforward. The lock state is held as
744 * AQS getState(). Read counts are negative; the write count (1)
745 * is positive. There are no signalling preferences among readers
746 * and writers. Since we don't need to export full Lock API, we
747 * just override the minimal AQS methods and use them directly.
748 */
749 static final class TreeBin<V> extends AbstractQueuedSynchronizer {
750 private static final long serialVersionUID = 2249069246763182397L;
751 transient TreeNode<V> root; // root of tree
752 transient TreeNode<V> first; // head of next-pointer list
753
754 /* AQS overrides */
755 public final boolean isHeldExclusively() { return getState() > 0; }
756 public final boolean tryAcquire(int ignore) {
757 if (compareAndSetState(0, 1)) {
758 setExclusiveOwnerThread(Thread.currentThread());
759 return true;
760 }
761 return false;
762 }
763 public final boolean tryRelease(int ignore) {
764 setExclusiveOwnerThread(null);
765 setState(0);
766 return true;
767 }
768 public final int tryAcquireShared(int ignore) {
769 for (int c;;) {
770 if ((c = getState()) > 0)
771 return -1;
772 if (compareAndSetState(c, c -1))
773 return 1;
774 }
775 }
776 public final boolean tryReleaseShared(int ignore) {
777 int c;
778 do {} while (!compareAndSetState(c = getState(), c + 1));
779 return c == -1;
780 }
781
782 /** From CLR */
783 private void rotateLeft(TreeNode<V> p) {
784 if (p != null) {
785 TreeNode<V> r = p.right, pp, rl;
786 if ((rl = p.right = r.left) != null)
787 rl.parent = p;
788 if ((pp = r.parent = p.parent) == null)
789 root = r;
790 else if (pp.left == p)
791 pp.left = r;
792 else
793 pp.right = r;
794 r.left = p;
795 p.parent = r;
796 }
797 }
798
799 /** From CLR */
800 private void rotateRight(TreeNode<V> p) {
801 if (p != null) {
802 TreeNode<V> l = p.left, pp, lr;
803 if ((lr = p.left = l.right) != null)
804 lr.parent = p;
805 if ((pp = l.parent = p.parent) == null)
806 root = l;
807 else if (pp.right == p)
808 pp.right = l;
809 else
810 pp.left = l;
811 l.right = p;
812 p.parent = l;
813 }
814 }
815
816 /**
817 * Returns the TreeNode (or null if not found) for the given key
818 * starting at given root.
819 */
820 @SuppressWarnings("unchecked") final TreeNode<V> getTreeNode
821 (int h, Object k, TreeNode<V> p) {
822 Class<?> c = k.getClass();
823 while (p != null) {
824 int dir, ph; Object pk; Class<?> pc;
825 if ((ph = p.hash) == h) {
826 if ((pk = p.key) == k || k.equals(pk))
827 return p;
828 if (c != (pc = pk.getClass()) ||
829 !(k instanceof Comparable) ||
830 (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
831 if ((dir = (c == pc) ? 0 :
832 c.getName().compareTo(pc.getName())) == 0) {
833 TreeNode<V> r = null, pl, pr; // check both sides
834 if ((pr = p.right) != null && h >= pr.hash &&
835 (r = getTreeNode(h, k, pr)) != null)
836 return r;
837 else if ((pl = p.left) != null && h <= pl.hash)
838 dir = -1;
839 else // nothing there
840 return null;
841 }
842 }
843 }
844 else
845 dir = (h < ph) ? -1 : 1;
846 p = (dir > 0) ? p.right : p.left;
847 }
848 return null;
849 }
850
851 /**
852 * Wrapper for getTreeNode used by CHM.get. Tries to obtain
853 * read-lock to call getTreeNode, but during failure to get
854 * lock, searches along next links.
855 */
856 final V getValue(int h, Object k) {
857 Node<V> r = null;
858 int c = getState(); // Must read lock state first
859 for (Node<V> e = first; e != null; e = e.next) {
860 if (c <= 0 && compareAndSetState(c, c - 1)) {
861 try {
862 r = getTreeNode(h, k, root);
863 } finally {
864 releaseShared(0);
865 }
866 break;
867 }
868 else if (e.hash == h && k.equals(e.key)) {
869 r = e;
870 break;
871 }
872 else
873 c = getState();
874 }
875 return r == null ? null : r.val;
876 }
877
878 /**
879 * Finds or adds a node.
880 * @return null if added
881 */
882 @SuppressWarnings("unchecked") final TreeNode<V> putTreeNode
883 (int h, Object k, V v) {
884 Class<?> c = k.getClass();
885 TreeNode<V> pp = root, p = null;
886 int dir = 0;
887 while (pp != null) { // find existing node or leaf to insert at
888 int ph; Object pk; Class<?> pc;
889 p = pp;
890 if ((ph = p.hash) == h) {
891 if ((pk = p.key) == k || k.equals(pk))
892 return p;
893 if (c != (pc = pk.getClass()) ||
894 !(k instanceof Comparable) ||
895 (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
896 TreeNode<V> s = null, r = null, pr;
897 if ((dir = (c == pc) ? 0 :
898 c.getName().compareTo(pc.getName())) == 0) {
899 if ((pr = p.right) != null && h >= pr.hash &&
900 (r = getTreeNode(h, k, pr)) != null)
901 return r;
902 else // continue left
903 dir = -1;
904 }
905 else if ((pr = p.right) != null && h >= pr.hash)
906 s = pr;
907 if (s != null && (r = getTreeNode(h, k, s)) != null)
908 return r;
909 }
910 }
911 else
912 dir = (h < ph) ? -1 : 1;
913 pp = (dir > 0) ? p.right : p.left;
914 }
915
916 TreeNode<V> f = first;
917 TreeNode<V> x = first = new TreeNode<V>(h, k, v, f, p);
918 if (p == null)
919 root = x;
920 else { // attach and rebalance; adapted from CLR
921 TreeNode<V> xp, xpp;
922 if (f != null)
923 f.prev = x;
924 if (dir <= 0)
925 p.left = x;
926 else
927 p.right = x;
928 x.red = true;
929 while (x != null && (xp = x.parent) != null && xp.red &&
930 (xpp = xp.parent) != null) {
931 TreeNode<V> xppl = xpp.left;
932 if (xp == xppl) {
933 TreeNode<V> y = xpp.right;
934 if (y != null && y.red) {
935 y.red = false;
936 xp.red = false;
937 xpp.red = true;
938 x = xpp;
939 }
940 else {
941 if (x == xp.right) {
942 rotateLeft(x = xp);
943 xpp = (xp = x.parent) == null ? null : xp.parent;
944 }
945 if (xp != null) {
946 xp.red = false;
947 if (xpp != null) {
948 xpp.red = true;
949 rotateRight(xpp);
950 }
951 }
952 }
953 }
954 else {
955 TreeNode<V> y = xppl;
956 if (y != null && y.red) {
957 y.red = false;
958 xp.red = false;
959 xpp.red = true;
960 x = xpp;
961 }
962 else {
963 if (x == xp.left) {
964 rotateRight(x = xp);
965 xpp = (xp = x.parent) == null ? null : xp.parent;
966 }
967 if (xp != null) {
968 xp.red = false;
969 if (xpp != null) {
970 xpp.red = true;
971 rotateLeft(xpp);
972 }
973 }
974 }
975 }
976 }
977 TreeNode<V> r = root;
978 if (r != null && r.red)
979 r.red = false;
980 }
981 return null;
982 }
983
984 /**
985 * Removes the given node, that must be present before this
986 * call. This is messier than typical red-black deletion code
987 * because we cannot swap the contents of an interior node
988 * with a leaf successor that is pinned by "next" pointers
989 * that are accessible independently of lock. So instead we
990 * swap the tree linkages.
991 */
992 final void deleteTreeNode(TreeNode<V> p) {
993 TreeNode<V> next = (TreeNode<V>)p.next; // unlink traversal pointers
994 TreeNode<V> pred = p.prev;
995 if (pred == null)
996 first = next;
997 else
998 pred.next = next;
999 if (next != null)
1000 next.prev = pred;
1001 TreeNode<V> replacement;
1002 TreeNode<V> pl = p.left;
1003 TreeNode<V> pr = p.right;
1004 if (pl != null && pr != null) {
1005 TreeNode<V> s = pr, sl;
1006 while ((sl = s.left) != null) // find successor
1007 s = sl;
1008 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
1009 TreeNode<V> sr = s.right;
1010 TreeNode<V> pp = p.parent;
1011 if (s == pr) { // p was s's direct parent
1012 p.parent = s;
1013 s.right = p;
1014 }
1015 else {
1016 TreeNode<V> sp = s.parent;
1017 if ((p.parent = sp) != null) {
1018 if (s == sp.left)
1019 sp.left = p;
1020 else
1021 sp.right = p;
1022 }
1023 if ((s.right = pr) != null)
1024 pr.parent = s;
1025 }
1026 p.left = null;
1027 if ((p.right = sr) != null)
1028 sr.parent = p;
1029 if ((s.left = pl) != null)
1030 pl.parent = s;
1031 if ((s.parent = pp) == null)
1032 root = s;
1033 else if (p == pp.left)
1034 pp.left = s;
1035 else
1036 pp.right = s;
1037 replacement = sr;
1038 }
1039 else
1040 replacement = (pl != null) ? pl : pr;
1041 TreeNode<V> pp = p.parent;
1042 if (replacement == null) {
1043 if (pp == null) {
1044 root = null;
1045 return;
1046 }
1047 replacement = p;
1048 }
1049 else {
1050 replacement.parent = pp;
1051 if (pp == null)
1052 root = replacement;
1053 else if (p == pp.left)
1054 pp.left = replacement;
1055 else
1056 pp.right = replacement;
1057 p.left = p.right = p.parent = null;
1058 }
1059 if (!p.red) { // rebalance, from CLR
1060 TreeNode<V> x = replacement;
1061 while (x != null) {
1062 TreeNode<V> xp, xpl;
1063 if (x.red || (xp = x.parent) == null) {
1064 x.red = false;
1065 break;
1066 }
1067 if (x == (xpl = xp.left)) {
1068 TreeNode<V> sib = xp.right;
1069 if (sib != null && sib.red) {
1070 sib.red = false;
1071 xp.red = true;
1072 rotateLeft(xp);
1073 sib = (xp = x.parent) == null ? null : xp.right;
1074 }
1075 if (sib == null)
1076 x = xp;
1077 else {
1078 TreeNode<V> sl = sib.left, sr = sib.right;
1079 if ((sr == null || !sr.red) &&
1080 (sl == null || !sl.red)) {
1081 sib.red = true;
1082 x = xp;
1083 }
1084 else {
1085 if (sr == null || !sr.red) {
1086 if (sl != null)
1087 sl.red = false;
1088 sib.red = true;
1089 rotateRight(sib);
1090 sib = (xp = x.parent) == null ?
1091 null : xp.right;
1092 }
1093 if (sib != null) {
1094 sib.red = (xp == null) ? false : xp.red;
1095 if ((sr = sib.right) != null)
1096 sr.red = false;
1097 }
1098 if (xp != null) {
1099 xp.red = false;
1100 rotateLeft(xp);
1101 }
1102 x = root;
1103 }
1104 }
1105 }
1106 else { // symmetric
1107 TreeNode<V> sib = xpl;
1108 if (sib != null && sib.red) {
1109 sib.red = false;
1110 xp.red = true;
1111 rotateRight(xp);
1112 sib = (xp = x.parent) == null ? null : xp.left;
1113 }
1114 if (sib == null)
1115 x = xp;
1116 else {
1117 TreeNode<V> sl = sib.left, sr = sib.right;
1118 if ((sl == null || !sl.red) &&
1119 (sr == null || !sr.red)) {
1120 sib.red = true;
1121 x = xp;
1122 }
1123 else {
1124 if (sl == null || !sl.red) {
1125 if (sr != null)
1126 sr.red = false;
1127 sib.red = true;
1128 rotateLeft(sib);
1129 sib = (xp = x.parent) == null ?
1130 null : xp.left;
1131 }
1132 if (sib != null) {
1133 sib.red = (xp == null) ? false : xp.red;
1134 if ((sl = sib.left) != null)
1135 sl.red = false;
1136 }
1137 if (xp != null) {
1138 xp.red = false;
1139 rotateRight(xp);
1140 }
1141 x = root;
1142 }
1143 }
1144 }
1145 }
1146 }
1147 if (p == replacement && (pp = p.parent) != null) {
1148 if (p == pp.left) // detach pointers
1149 pp.left = null;
1150 else if (p == pp.right)
1151 pp.right = null;
1152 p.parent = null;
1153 }
1154 }
1155 }
1156
1157 /* ---------------- Collision reduction methods -------------- */
1158
1159 /**
1160 * Spreads higher bits to lower, and also forces top bit to 0.
1161 * Because the table uses power-of-two masking, sets of hashes
1162 * that vary only in bits above the current mask will always
1163 * collide. (Among known examples are sets of Float keys holding
1164 * consecutive whole numbers in small tables.) To counter this,
1165 * we apply a transform that spreads the impact of higher bits
1166 * downward. There is a tradeoff between speed, utility, and
1167 * quality of bit-spreading. Because many common sets of hashes
1168 * are already reasonably distributed across bits (so don't benefit
1169 * from spreading), and because we use trees to handle large sets
1170 * of collisions in bins, we don't need excessively high quality.
1171 */
1172 private static final int spread(int h) {
1173 h ^= (h >>> 18) ^ (h >>> 12);
1174 return (h ^ (h >>> 10)) & HASH_BITS;
1175 }
1176
1177 /**
1178 * Replaces a list bin with a tree bin if key is comparable. Call
1179 * only when locked.
1180 */
1181 private final void replaceWithTreeBin(Node<V>[] tab, int index, Object key) {
1182 if (key instanceof Comparable) {
1183 TreeBin<V> t = new TreeBin<V>();
1184 for (Node<V> e = tabAt(tab, index); e != null; e = e.next)
1185 t.putTreeNode(e.hash, e.key, e.val);
1186 setTabAt(tab, index, new Node<V>(MOVED, t, null, null));
1187 }
1188 }
1189
1190 /* ---------------- Internal access and update methods -------------- */
1191
1192 /** Implementation for get and containsKey */
1193 @SuppressWarnings("unchecked") private final V internalGet(Object k) {
1194 int h = spread(k.hashCode());
1195 retry: for (Node<V>[] tab = table; tab != null;) {
1196 Node<V> e; Object ek; V ev; int eh; // locals to read fields once
1197 for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1198 if ((eh = e.hash) < 0) {
1199 if ((ek = e.key) instanceof TreeBin) // search TreeBin
1200 return ((TreeBin<V>)ek).getValue(h, k);
1201 else { // restart with new table
1202 tab = (Node<V>[])ek;
1203 continue retry;
1204 }
1205 }
1206 else if (eh == h && (ev = e.val) != null &&
1207 ((ek = e.key) == k || k.equals(ek)))
1208 return ev;
1209 }
1210 break;
1211 }
1212 return null;
1213 }
1214
1215 /**
1216 * Implementation for the four public remove/replace methods:
1217 * Replaces node value with v, conditional upon match of cv if
1218 * non-null. If resulting value is null, delete.
1219 */
1220 @SuppressWarnings("unchecked") private final V internalReplace
1221 (Object k, V v, Object cv) {
1222 int h = spread(k.hashCode());
1223 V oldVal = null;
1224 for (Node<V>[] tab = table;;) {
1225 Node<V> f; int i, fh; Object fk;
1226 if (tab == null ||
1227 (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1228 break;
1229 else if ((fh = f.hash) < 0) {
1230 if ((fk = f.key) instanceof TreeBin) {
1231 TreeBin<V> t = (TreeBin<V>)fk;
1232 boolean validated = false;
1233 boolean deleted = false;
1234 t.acquire(0);
1235 try {
1236 if (tabAt(tab, i) == f) {
1237 validated = true;
1238 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1239 if (p != null) {
1240 V pv = p.val;
1241 if (cv == null || cv == pv || cv.equals(pv)) {
1242 oldVal = pv;
1243 if ((p.val = v) == null) {
1244 deleted = true;
1245 t.deleteTreeNode(p);
1246 }
1247 }
1248 }
1249 }
1250 } finally {
1251 t.release(0);
1252 }
1253 if (validated) {
1254 if (deleted)
1255 addCount(-1L, -1);
1256 break;
1257 }
1258 }
1259 else
1260 tab = (Node<V>[])fk;
1261 }
1262 else if (fh != h && f.next == null) // precheck
1263 break; // rules out possible existence
1264 else {
1265 boolean validated = false;
1266 boolean deleted = false;
1267 synchronized (f) {
1268 if (tabAt(tab, i) == f) {
1269 validated = true;
1270 for (Node<V> e = f, pred = null;;) {
1271 Object ek; V ev;
1272 if (e.hash == h &&
1273 ((ev = e.val) != null) &&
1274 ((ek = e.key) == k || k.equals(ek))) {
1275 if (cv == null || cv == ev || cv.equals(ev)) {
1276 oldVal = ev;
1277 if ((e.val = v) == null) {
1278 deleted = true;
1279 Node<V> en = e.next;
1280 if (pred != null)
1281 pred.next = en;
1282 else
1283 setTabAt(tab, i, en);
1284 }
1285 }
1286 break;
1287 }
1288 pred = e;
1289 if ((e = e.next) == null)
1290 break;
1291 }
1292 }
1293 }
1294 if (validated) {
1295 if (deleted)
1296 addCount(-1L, -1);
1297 break;
1298 }
1299 }
1300 }
1301 return oldVal;
1302 }
1303
1304 /*
1305 * Internal versions of insertion methods
1306 * All have the same basic structure as the first (internalPut):
1307 * 1. If table uninitialized, create
1308 * 2. If bin empty, try to CAS new node
1309 * 3. If bin stale, use new table
1310 * 4. if bin converted to TreeBin, validate and relay to TreeBin methods
1311 * 5. Lock and validate; if valid, scan and add or update
1312 *
1313 * The putAll method differs mainly in attempting to pre-allocate
1314 * enough table space, and also more lazily performs count updates
1315 * and checks.
1316 *
1317 * Most of the function-accepting methods can't be factored nicely
1318 * because they require different functional forms, so instead
1319 * sprawl out similar mechanics.
1320 */
1321
1322 /** Implementation for put and putIfAbsent */
1323 @SuppressWarnings("unchecked") private final V internalPut
1324 (K k, V v, boolean onlyIfAbsent) {
1325 if (k == null || v == null) throw new NullPointerException();
1326 int h = spread(k.hashCode());
1327 int len = 0;
1328 for (Node<V>[] tab = table;;) {
1329 int i, fh; Node<V> f; Object fk; V fv;
1330 if (tab == null)
1331 tab = initTable();
1332 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1333 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null)))
1334 break; // no lock when adding to empty bin
1335 }
1336 else if ((fh = f.hash) < 0) {
1337 if ((fk = f.key) instanceof TreeBin) {
1338 TreeBin<V> t = (TreeBin<V>)fk;
1339 V oldVal = null;
1340 t.acquire(0);
1341 try {
1342 if (tabAt(tab, i) == f) {
1343 len = 2;
1344 TreeNode<V> p = t.putTreeNode(h, k, v);
1345 if (p != null) {
1346 oldVal = p.val;
1347 if (!onlyIfAbsent)
1348 p.val = v;
1349 }
1350 }
1351 } finally {
1352 t.release(0);
1353 }
1354 if (len != 0) {
1355 if (oldVal != null)
1356 return oldVal;
1357 break;
1358 }
1359 }
1360 else
1361 tab = (Node<V>[])fk;
1362 }
1363 else if (onlyIfAbsent && fh == h && (fv = f.val) != null &&
1364 ((fk = f.key) == k || k.equals(fk))) // peek while nearby
1365 return fv;
1366 else {
1367 V oldVal = null;
1368 synchronized (f) {
1369 if (tabAt(tab, i) == f) {
1370 len = 1;
1371 for (Node<V> e = f;; ++len) {
1372 Object ek; V ev;
1373 if (e.hash == h &&
1374 (ev = e.val) != null &&
1375 ((ek = e.key) == k || k.equals(ek))) {
1376 oldVal = ev;
1377 if (!onlyIfAbsent)
1378 e.val = v;
1379 break;
1380 }
1381 Node<V> last = e;
1382 if ((e = e.next) == null) {
1383 last.next = new Node<V>(h, k, v, null);
1384 if (len >= TREE_THRESHOLD)
1385 replaceWithTreeBin(tab, i, k);
1386 break;
1387 }
1388 }
1389 }
1390 }
1391 if (len != 0) {
1392 if (oldVal != null)
1393 return oldVal;
1394 break;
1395 }
1396 }
1397 }
1398 addCount(1L, len);
1399 return null;
1400 }
1401
1402 /** Implementation for computeIfAbsent */
1403 @SuppressWarnings("unchecked") private final V internalComputeIfAbsent
1404 (K k, Fun<? super K, ? extends V> mf) {
1405 if (k == null || mf == null)
1406 throw new NullPointerException();
1407 int h = spread(k.hashCode());
1408 V val = null;
1409 int len = 0;
1410 for (Node<V>[] tab = table;;) {
1411 Node<V> f; int i; Object fk;
1412 if (tab == null)
1413 tab = initTable();
1414 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1415 Node<V> node = new Node<V>(h, k, null, null);
1416 synchronized (node) {
1417 if (casTabAt(tab, i, null, node)) {
1418 len = 1;
1419 try {
1420 if ((val = mf.apply(k)) != null)
1421 node.val = val;
1422 } finally {
1423 if (val == null)
1424 setTabAt(tab, i, null);
1425 }
1426 }
1427 }
1428 if (len != 0)
1429 break;
1430 }
1431 else if (f.hash < 0) {
1432 if ((fk = f.key) instanceof TreeBin) {
1433 TreeBin<V> t = (TreeBin<V>)fk;
1434 boolean added = false;
1435 t.acquire(0);
1436 try {
1437 if (tabAt(tab, i) == f) {
1438 len = 1;
1439 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1440 if (p != null)
1441 val = p.val;
1442 else if ((val = mf.apply(k)) != null) {
1443 added = true;
1444 len = 2;
1445 t.putTreeNode(h, k, val);
1446 }
1447 }
1448 } finally {
1449 t.release(0);
1450 }
1451 if (len != 0) {
1452 if (!added)
1453 return val;
1454 break;
1455 }
1456 }
1457 else
1458 tab = (Node<V>[])fk;
1459 }
1460 else {
1461 for (Node<V> e = f; e != null; e = e.next) { // prescan
1462 Object ek; V ev;
1463 if (e.hash == h && (ev = e.val) != null &&
1464 ((ek = e.key) == k || k.equals(ek)))
1465 return ev;
1466 }
1467 boolean added = false;
1468 synchronized (f) {
1469 if (tabAt(tab, i) == f) {
1470 len = 1;
1471 for (Node<V> e = f;; ++len) {
1472 Object ek; V ev;
1473 if (e.hash == h &&
1474 (ev = e.val) != null &&
1475 ((ek = e.key) == k || k.equals(ek))) {
1476 val = ev;
1477 break;
1478 }
1479 Node<V> last = e;
1480 if ((e = e.next) == null) {
1481 if ((val = mf.apply(k)) != null) {
1482 added = true;
1483 last.next = new Node<V>(h, k, val, null);
1484 if (len >= TREE_THRESHOLD)
1485 replaceWithTreeBin(tab, i, k);
1486 }
1487 break;
1488 }
1489 }
1490 }
1491 }
1492 if (len != 0) {
1493 if (!added)
1494 return val;
1495 break;
1496 }
1497 }
1498 }
1499 if (val != null)
1500 addCount(1L, len);
1501 return val;
1502 }
1503
1504 /** Implementation for compute */
1505 @SuppressWarnings("unchecked") private final V internalCompute
1506 (K k, boolean onlyIfPresent,
1507 BiFun<? super K, ? super V, ? extends V> mf) {
1508 if (k == null || mf == null)
1509 throw new NullPointerException();
1510 int h = spread(k.hashCode());
1511 V val = null;
1512 int delta = 0;
1513 int len = 0;
1514 for (Node<V>[] tab = table;;) {
1515 Node<V> f; int i, fh; Object fk;
1516 if (tab == null)
1517 tab = initTable();
1518 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1519 if (onlyIfPresent)
1520 break;
1521 Node<V> node = new Node<V>(h, k, null, null);
1522 synchronized (node) {
1523 if (casTabAt(tab, i, null, node)) {
1524 try {
1525 len = 1;
1526 if ((val = mf.apply(k, null)) != null) {
1527 node.val = val;
1528 delta = 1;
1529 }
1530 } finally {
1531 if (delta == 0)
1532 setTabAt(tab, i, null);
1533 }
1534 }
1535 }
1536 if (len != 0)
1537 break;
1538 }
1539 else if ((fh = f.hash) < 0) {
1540 if ((fk = f.key) instanceof TreeBin) {
1541 TreeBin<V> t = (TreeBin<V>)fk;
1542 t.acquire(0);
1543 try {
1544 if (tabAt(tab, i) == f) {
1545 len = 1;
1546 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1547 if (p == null && onlyIfPresent)
1548 break;
1549 V pv = (p == null) ? null : p.val;
1550 if ((val = mf.apply(k, pv)) != null) {
1551 if (p != null)
1552 p.val = val;
1553 else {
1554 len = 2;
1555 delta = 1;
1556 t.putTreeNode(h, k, val);
1557 }
1558 }
1559 else if (p != null) {
1560 delta = -1;
1561 t.deleteTreeNode(p);
1562 }
1563 }
1564 } finally {
1565 t.release(0);
1566 }
1567 if (len != 0)
1568 break;
1569 }
1570 else
1571 tab = (Node<V>[])fk;
1572 }
1573 else {
1574 synchronized (f) {
1575 if (tabAt(tab, i) == f) {
1576 len = 1;
1577 for (Node<V> e = f, pred = null;; ++len) {
1578 Object ek; V ev;
1579 if (e.hash == h &&
1580 (ev = e.val) != null &&
1581 ((ek = e.key) == k || k.equals(ek))) {
1582 val = mf.apply(k, ev);
1583 if (val != null)
1584 e.val = val;
1585 else {
1586 delta = -1;
1587 Node<V> en = e.next;
1588 if (pred != null)
1589 pred.next = en;
1590 else
1591 setTabAt(tab, i, en);
1592 }
1593 break;
1594 }
1595 pred = e;
1596 if ((e = e.next) == null) {
1597 if (!onlyIfPresent &&
1598 (val = mf.apply(k, null)) != null) {
1599 pred.next = new Node<V>(h, k, val, null);
1600 delta = 1;
1601 if (len >= TREE_THRESHOLD)
1602 replaceWithTreeBin(tab, i, k);
1603 }
1604 break;
1605 }
1606 }
1607 }
1608 }
1609 if (len != 0)
1610 break;
1611 }
1612 }
1613 if (delta != 0)
1614 addCount((long)delta, len);
1615 return val;
1616 }
1617
1618 /** Implementation for merge */
1619 @SuppressWarnings("unchecked") private final V internalMerge
1620 (K k, V v, BiFun<? super V, ? super V, ? extends V> mf) {
1621 if (k == null || v == null || mf == null)
1622 throw new NullPointerException();
1623 int h = spread(k.hashCode());
1624 V val = null;
1625 int delta = 0;
1626 int len = 0;
1627 for (Node<V>[] tab = table;;) {
1628 int i; Node<V> f; Object fk; V fv;
1629 if (tab == null)
1630 tab = initTable();
1631 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1632 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1633 delta = 1;
1634 val = v;
1635 break;
1636 }
1637 }
1638 else if (f.hash < 0) {
1639 if ((fk = f.key) instanceof TreeBin) {
1640 TreeBin<V> t = (TreeBin<V>)fk;
1641 t.acquire(0);
1642 try {
1643 if (tabAt(tab, i) == f) {
1644 len = 1;
1645 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1646 val = (p == null) ? v : mf.apply(p.val, v);
1647 if (val != null) {
1648 if (p != null)
1649 p.val = val;
1650 else {
1651 len = 2;
1652 delta = 1;
1653 t.putTreeNode(h, k, val);
1654 }
1655 }
1656 else if (p != null) {
1657 delta = -1;
1658 t.deleteTreeNode(p);
1659 }
1660 }
1661 } finally {
1662 t.release(0);
1663 }
1664 if (len != 0)
1665 break;
1666 }
1667 else
1668 tab = (Node<V>[])fk;
1669 }
1670 else {
1671 synchronized (f) {
1672 if (tabAt(tab, i) == f) {
1673 len = 1;
1674 for (Node<V> e = f, pred = null;; ++len) {
1675 Object ek; V ev;
1676 if (e.hash == h &&
1677 (ev = e.val) != null &&
1678 ((ek = e.key) == k || k.equals(ek))) {
1679 val = mf.apply(ev, v);
1680 if (val != null)
1681 e.val = val;
1682 else {
1683 delta = -1;
1684 Node<V> en = e.next;
1685 if (pred != null)
1686 pred.next = en;
1687 else
1688 setTabAt(tab, i, en);
1689 }
1690 break;
1691 }
1692 pred = e;
1693 if ((e = e.next) == null) {
1694 val = v;
1695 pred.next = new Node<V>(h, k, val, null);
1696 delta = 1;
1697 if (len >= TREE_THRESHOLD)
1698 replaceWithTreeBin(tab, i, k);
1699 break;
1700 }
1701 }
1702 }
1703 }
1704 if (len != 0)
1705 break;
1706 }
1707 }
1708 if (delta != 0)
1709 addCount((long)delta, len);
1710 return val;
1711 }
1712
1713 /** Implementation for putAll */
1714 @SuppressWarnings("unchecked") private final void internalPutAll
1715 (Map<? extends K, ? extends V> m) {
1716 tryPresize(m.size());
1717 long delta = 0L; // number of uncommitted additions
1718 boolean npe = false; // to throw exception on exit for nulls
1719 try { // to clean up counts on other exceptions
1720 for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
1721 Object k; V v;
1722 if (entry == null || (k = entry.getKey()) == null ||
1723 (v = entry.getValue()) == null) {
1724 npe = true;
1725 break;
1726 }
1727 int h = spread(k.hashCode());
1728 for (Node<V>[] tab = table;;) {
1729 int i; Node<V> f; int fh; Object fk;
1730 if (tab == null)
1731 tab = initTable();
1732 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1733 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1734 ++delta;
1735 break;
1736 }
1737 }
1738 else if ((fh = f.hash) < 0) {
1739 if ((fk = f.key) instanceof TreeBin) {
1740 TreeBin<V> t = (TreeBin<V>)fk;
1741 boolean validated = false;
1742 t.acquire(0);
1743 try {
1744 if (tabAt(tab, i) == f) {
1745 validated = true;
1746 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1747 if (p != null)
1748 p.val = v;
1749 else {
1750 t.putTreeNode(h, k, v);
1751 ++delta;
1752 }
1753 }
1754 } finally {
1755 t.release(0);
1756 }
1757 if (validated)
1758 break;
1759 }
1760 else
1761 tab = (Node<V>[])fk;
1762 }
1763 else {
1764 int len = 0;
1765 synchronized (f) {
1766 if (tabAt(tab, i) == f) {
1767 len = 1;
1768 for (Node<V> e = f;; ++len) {
1769 Object ek; V ev;
1770 if (e.hash == h &&
1771 (ev = e.val) != null &&
1772 ((ek = e.key) == k || k.equals(ek))) {
1773 e.val = v;
1774 break;
1775 }
1776 Node<V> last = e;
1777 if ((e = e.next) == null) {
1778 ++delta;
1779 last.next = new Node<V>(h, k, v, null);
1780 if (len >= TREE_THRESHOLD)
1781 replaceWithTreeBin(tab, i, k);
1782 break;
1783 }
1784 }
1785 }
1786 }
1787 if (len != 0) {
1788 if (len > 1) {
1789 addCount(delta, len);
1790 delta = 0L;
1791 }
1792 break;
1793 }
1794 }
1795 }
1796 }
1797 } finally {
1798 if (delta != 0L)
1799 addCount(delta, 2);
1800 }
1801 if (npe)
1802 throw new NullPointerException();
1803 }
1804
1805 /**
1806 * Implementation for clear. Steps through each bin, removing all
1807 * nodes.
1808 */
1809 @SuppressWarnings("unchecked") private final void internalClear() {
1810 long delta = 0L; // negative number of deletions
1811 int i = 0;
1812 Node<V>[] tab = table;
1813 while (tab != null && i < tab.length) {
1814 Node<V> f = tabAt(tab, i);
1815 if (f == null)
1816 ++i;
1817 else if (f.hash < 0) {
1818 Object fk;
1819 if ((fk = f.key) instanceof TreeBin) {
1820 TreeBin<V> t = (TreeBin<V>)fk;
1821 t.acquire(0);
1822 try {
1823 if (tabAt(tab, i) == f) {
1824 for (Node<V> p = t.first; p != null; p = p.next) {
1825 if (p.val != null) { // (currently always true)
1826 p.val = null;
1827 --delta;
1828 }
1829 }
1830 t.first = null;
1831 t.root = null;
1832 ++i;
1833 }
1834 } finally {
1835 t.release(0);
1836 }
1837 }
1838 else
1839 tab = (Node<V>[])fk;
1840 }
1841 else {
1842 synchronized (f) {
1843 if (tabAt(tab, i) == f) {
1844 for (Node<V> e = f; e != null; e = e.next) {
1845 if (e.val != null) { // (currently always true)
1846 e.val = null;
1847 --delta;
1848 }
1849 }
1850 setTabAt(tab, i, null);
1851 ++i;
1852 }
1853 }
1854 }
1855 }
1856 if (delta != 0L)
1857 addCount(delta, -1);
1858 }
1859
1860 /* ---------------- Table Initialization and Resizing -------------- */
1861
1862 /**
1863 * Returns a power of two table size for the given desired capacity.
1864 * See Hackers Delight, sec 3.2
1865 */
1866 private static final int tableSizeFor(int c) {
1867 int n = c - 1;
1868 n |= n >>> 1;
1869 n |= n >>> 2;
1870 n |= n >>> 4;
1871 n |= n >>> 8;
1872 n |= n >>> 16;
1873 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1874 }
1875
1876 /**
1877 * Initializes table, using the size recorded in sizeCtl.
1878 */
1879 @SuppressWarnings("unchecked") private final Node<V>[] initTable() {
1880 Node<V>[] tab; int sc;
1881 while ((tab = table) == null) {
1882 if ((sc = sizeCtl) < 0)
1883 Thread.yield(); // lost initialization race; just spin
1884 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1885 try {
1886 if ((tab = table) == null) {
1887 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1888 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1889 table = tab = (Node<V>[])tb;
1890 sc = n - (n >>> 2);
1891 }
1892 } finally {
1893 sizeCtl = sc;
1894 }
1895 break;
1896 }
1897 }
1898 return tab;
1899 }
1900
1901 /**
1902 * Adds to count, and if table is too small and not already
1903 * resizing, initiates transfer. If already resizing, helps
1904 * perform transfer if work is available. Rechecks occupancy
1905 * after a transfer to see if another resize is already needed
1906 * because resizings are lagging additions.
1907 *
1908 * @param x the count to add
1909 * @param check if <0, don't check resize, if <= 1 only check if uncontended
1910 */
1911 private final void addCount(long x, int check) {
1912 CounterCell[] as; long b, s;
1913 if ((as = counterCells) != null ||
1914 !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1915 CounterHashCode hc; CounterCell a; long v; int m;
1916 boolean uncontended = true;
1917 if ((hc = threadCounterHashCode.get()) == null ||
1918 as == null || (m = as.length - 1) < 0 ||
1919 (a = as[m & hc.code]) == null ||
1920 !(uncontended =
1921 U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1922 fullAddCount(x, hc, uncontended);
1923 return;
1924 }
1925 if (check <= 1)
1926 return;
1927 s = sumCount();
1928 }
1929 if (check >= 0) {
1930 Node<V>[] tab, nt; int sc;
1931 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1932 tab.length < MAXIMUM_CAPACITY) {
1933 if (sc < 0) {
1934 if (sc == -1 || transferIndex <= transferOrigin ||
1935 (nt = nextTable) == null)
1936 break;
1937 if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1938 transfer(tab, nt);
1939 }
1940 else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1941 transfer(tab, null);
1942 s = sumCount();
1943 }
1944 }
1945 }
1946
1947 /**
1948 * Tries to presize table to accommodate the given number of elements.
1949 *
1950 * @param size number of elements (doesn't need to be perfectly accurate)
1951 */
1952 @SuppressWarnings("unchecked") private final void tryPresize(int size) {
1953 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1954 tableSizeFor(size + (size >>> 1) + 1);
1955 int sc;
1956 while ((sc = sizeCtl) >= 0) {
1957 Node<V>[] tab = table; int n;
1958 if (tab == null || (n = tab.length) == 0) {
1959 n = (sc > c) ? sc : c;
1960 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1961 try {
1962 if (table == tab) {
1963 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1964 table = (Node<V>[])tb;
1965 sc = n - (n >>> 2);
1966 }
1967 } finally {
1968 sizeCtl = sc;
1969 }
1970 }
1971 }
1972 else if (c <= sc || n >= MAXIMUM_CAPACITY)
1973 break;
1974 else if (tab == table &&
1975 U.compareAndSwapInt(this, SIZECTL, sc, -2))
1976 transfer(tab, null);
1977 }
1978 }
1979
1980 /**
1981 * Moves and/or copies the nodes in each bin to new table. See
1982 * above for explanation.
1983 */
1984 @SuppressWarnings("unchecked") private final void transfer
1985 (Node<V>[] tab, Node<V>[] nextTab) {
1986 int n = tab.length, stride;
1987 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1988 stride = MIN_TRANSFER_STRIDE; // subdivide range
1989 if (nextTab == null) { // initiating
1990 try {
1991 @SuppressWarnings("rawtypes") Node[] tb = new Node[n << 1];
1992 nextTab = (Node<V>[])tb;
1993 } catch (Throwable ex) { // try to cope with OOME
1994 sizeCtl = Integer.MAX_VALUE;
1995 return;
1996 }
1997 nextTable = nextTab;
1998 transferOrigin = n;
1999 transferIndex = n;
2000 Node<V> rev = new Node<V>(MOVED, tab, null, null);
2001 for (int k = n; k > 0;) { // progressively reveal ready slots
2002 int nextk = (k > stride) ? k - stride : 0;
2003 for (int m = nextk; m < k; ++m)
2004 nextTab[m] = rev;
2005 for (int m = n + nextk; m < n + k; ++m)
2006 nextTab[m] = rev;
2007 U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
2008 }
2009 }
2010 int nextn = nextTab.length;
2011 Node<V> fwd = new Node<V>(MOVED, nextTab, null, null);
2012 boolean advance = true;
2013 for (int i = 0, bound = 0;;) {
2014 int nextIndex, nextBound; Node<V> f; Object fk;
2015 while (advance) {
2016 if (--i >= bound)
2017 advance = false;
2018 else if ((nextIndex = transferIndex) <= transferOrigin) {
2019 i = -1;
2020 advance = false;
2021 }
2022 else if (U.compareAndSwapInt
2023 (this, TRANSFERINDEX, nextIndex,
2024 nextBound = (nextIndex > stride ?
2025 nextIndex - stride : 0))) {
2026 bound = nextBound;
2027 i = nextIndex - 1;
2028 advance = false;
2029 }
2030 }
2031 if (i < 0 || i >= n || i + n >= nextn) {
2032 for (int sc;;) {
2033 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2034 if (sc == -1) {
2035 nextTable = null;
2036 table = nextTab;
2037 sizeCtl = (n << 1) - (n >>> 1);
2038 }
2039 return;
2040 }
2041 }
2042 }
2043 else if ((f = tabAt(tab, i)) == null) {
2044 if (casTabAt(tab, i, null, fwd)) {
2045 setTabAt(nextTab, i, null);
2046 setTabAt(nextTab, i + n, null);
2047 advance = true;
2048 }
2049 }
2050 else if (f.hash >= 0) {
2051 synchronized (f) {
2052 if (tabAt(tab, i) == f) {
2053 int runBit = f.hash & n;
2054 Node<V> lastRun = f, lo = null, hi = null;
2055 for (Node<V> p = f.next; p != null; p = p.next) {
2056 int b = p.hash & n;
2057 if (b != runBit) {
2058 runBit = b;
2059 lastRun = p;
2060 }
2061 }
2062 if (runBit == 0)
2063 lo = lastRun;
2064 else
2065 hi = lastRun;
2066 for (Node<V> p = f; p != lastRun; p = p.next) {
2067 int ph = p.hash;
2068 Object pk = p.key; V pv = p.val;
2069 if ((ph & n) == 0)
2070 lo = new Node<V>(ph, pk, pv, lo);
2071 else
2072 hi = new Node<V>(ph, pk, pv, hi);
2073 }
2074 setTabAt(nextTab, i, lo);
2075 setTabAt(nextTab, i + n, hi);
2076 setTabAt(tab, i, fwd);
2077 advance = true;
2078 }
2079 }
2080 }
2081 else if ((fk = f.key) instanceof TreeBin) {
2082 TreeBin<V> t = (TreeBin<V>)fk;
2083 t.acquire(0);
2084 try {
2085 if (tabAt(tab, i) == f) {
2086 TreeBin<V> lt = new TreeBin<V>();
2087 TreeBin<V> ht = new TreeBin<V>();
2088 int lc = 0, hc = 0;
2089 for (Node<V> e = t.first; e != null; e = e.next) {
2090 int h = e.hash;
2091 Object k = e.key; V v = e.val;
2092 if ((h & n) == 0) {
2093 ++lc;
2094 lt.putTreeNode(h, k, v);
2095 }
2096 else {
2097 ++hc;
2098 ht.putTreeNode(h, k, v);
2099 }
2100 }
2101 Node<V> ln, hn; // throw away trees if too small
2102 if (lc < TREE_THRESHOLD) {
2103 ln = null;
2104 for (Node<V> p = lt.first; p != null; p = p.next)
2105 ln = new Node<V>(p.hash, p.key, p.val, ln);
2106 }
2107 else
2108 ln = new Node<V>(MOVED, lt, null, null);
2109 setTabAt(nextTab, i, ln);
2110 if (hc < TREE_THRESHOLD) {
2111 hn = null;
2112 for (Node<V> p = ht.first; p != null; p = p.next)
2113 hn = new Node<V>(p.hash, p.key, p.val, hn);
2114 }
2115 else
2116 hn = new Node<V>(MOVED, ht, null, null);
2117 setTabAt(nextTab, i + n, hn);
2118 setTabAt(tab, i, fwd);
2119 advance = true;
2120 }
2121 } finally {
2122 t.release(0);
2123 }
2124 }
2125 else
2126 advance = true; // already processed
2127 }
2128 }
2129
2130 /* ---------------- Counter support -------------- */
2131
2132 final long sumCount() {
2133 CounterCell[] as = counterCells; CounterCell a;
2134 long sum = baseCount;
2135 if (as != null) {
2136 for (int i = 0; i < as.length; ++i) {
2137 if ((a = as[i]) != null)
2138 sum += a.value;
2139 }
2140 }
2141 return sum;
2142 }
2143
2144 // See LongAdder version for explanation
2145 private final void fullAddCount(long x, CounterHashCode hc,
2146 boolean wasUncontended) {
2147 int h;
2148 if (hc == null) {
2149 hc = new CounterHashCode();
2150 int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
2151 h = hc.code = (s == 0) ? 1 : s; // Avoid zero
2152 threadCounterHashCode.set(hc);
2153 }
2154 else
2155 h = hc.code;
2156 boolean collide = false; // True if last slot nonempty
2157 for (;;) {
2158 CounterCell[] as; CounterCell a; int n; long v;
2159 if ((as = counterCells) != null && (n = as.length) > 0) {
2160 if ((a = as[(n - 1) & h]) == null) {
2161 if (counterBusy == 0) { // Try to attach new Cell
2162 CounterCell r = new CounterCell(x); // Optimistic create
2163 if (counterBusy == 0 &&
2164 U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2165 boolean created = false;
2166 try { // Recheck under lock
2167 CounterCell[] rs; int m, j;
2168 if ((rs = counterCells) != null &&
2169 (m = rs.length) > 0 &&
2170 rs[j = (m - 1) & h] == null) {
2171 rs[j] = r;
2172 created = true;
2173 }
2174 } finally {
2175 counterBusy = 0;
2176 }
2177 if (created)
2178 break;
2179 continue; // Slot is now non-empty
2180 }
2181 }
2182 collide = false;
2183 }
2184 else if (!wasUncontended) // CAS already known to fail
2185 wasUncontended = true; // Continue after rehash
2186 else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2187 break;
2188 else if (counterCells != as || n >= NCPU)
2189 collide = false; // At max size or stale
2190 else if (!collide)
2191 collide = true;
2192 else if (counterBusy == 0 &&
2193 U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2194 try {
2195 if (counterCells == as) {// Expand table unless stale
2196 CounterCell[] rs = new CounterCell[n << 1];
2197 for (int i = 0; i < n; ++i)
2198 rs[i] = as[i];
2199 counterCells = rs;
2200 }
2201 } finally {
2202 counterBusy = 0;
2203 }
2204 collide = false;
2205 continue; // Retry with expanded table
2206 }
2207 h ^= h << 13; // Rehash
2208 h ^= h >>> 17;
2209 h ^= h << 5;
2210 }
2211 else if (counterBusy == 0 && counterCells == as &&
2212 U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2213 boolean init = false;
2214 try { // Initialize table
2215 if (counterCells == as) {
2216 CounterCell[] rs = new CounterCell[2];
2217 rs[h & 1] = new CounterCell(x);
2218 counterCells = rs;
2219 init = true;
2220 }
2221 } finally {
2222 counterBusy = 0;
2223 }
2224 if (init)
2225 break;
2226 }
2227 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2228 break; // Fall back on using base
2229 }
2230 hc.code = h; // Record index for next time
2231 }
2232
2233 /* ----------------Table Traversal -------------- */
2234
2235 /**
2236 * Encapsulates traversal for methods such as containsValue; also
2237 * serves as a base class for other iterators and bulk tasks.
2238 *
2239 * At each step, the iterator snapshots the key ("nextKey") and
2240 * value ("nextVal") of a valid node (i.e., one that, at point of
2241 * snapshot, has a non-null user value). Because val fields can
2242 * change (including to null, indicating deletion), field nextVal
2243 * might not be accurate at point of use, but still maintains the
2244 * weak consistency property of holding a value that was once
2245 * valid. To support iterator.remove, the nextKey field is not
2246 * updated (nulled out) when the iterator cannot advance.
2247 *
2248 * Internal traversals directly access these fields, as in:
2249 * {@code while (it.advance() != null) { process(it.nextKey); }}
2250 *
2251 * Exported iterators must track whether the iterator has advanced
2252 * (in hasNext vs next) (by setting/checking/nulling field
2253 * nextVal), and then extract key, value, or key-value pairs as
2254 * return values of next().
2255 *
2256 * The iterator visits once each still-valid node that was
2257 * reachable upon iterator construction. It might miss some that
2258 * were added to a bin after the bin was visited, which is OK wrt
2259 * consistency guarantees. Maintaining this property in the face
2260 * of possible ongoing resizes requires a fair amount of
2261 * bookkeeping state that is difficult to optimize away amidst
2262 * volatile accesses. Even so, traversal maintains reasonable
2263 * throughput.
2264 *
2265 * Normally, iteration proceeds bin-by-bin traversing lists.
2266 * However, if the table has been resized, then all future steps
2267 * must traverse both the bin at the current index as well as at
2268 * (index + baseSize); and so on for further resizings. To
2269 * paranoically cope with potential sharing by users of iterators
2270 * across threads, iteration terminates if a bounds checks fails
2271 * for a table read.
2272 *
2273 * This class extends CountedCompleter to streamline parallel
2274 * iteration in bulk operations. This adds only a few fields of
2275 * space overhead, which is small enough in cases where it is not
2276 * needed to not worry about it. Because CountedCompleter is
2277 * Serializable, but iterators need not be, we need to add warning
2278 * suppressions.
2279 */
2280 @SuppressWarnings("serial") static class Traverser<K,V,R>
2281 extends CountedCompleter<R> {
2282 final ConcurrentHashMapV8<K, V> map;
2283 Node<V> next; // the next entry to use
2284 Object nextKey; // cached key field of next
2285 V nextVal; // cached val field of next
2286 Node<V>[] tab; // current table; updated if resized
2287 int index; // index of bin to use next
2288 int baseIndex; // current index of initial table
2289 int baseLimit; // index bound for initial table
2290 int baseSize; // initial table size
2291 int batch; // split control
2292
2293 /** Creates iterator for all entries in the table. */
2294 Traverser(ConcurrentHashMapV8<K, V> map) {
2295 this.map = map;
2296 }
2297
2298 /** Creates iterator for split() methods and task constructors */
2299 Traverser(ConcurrentHashMapV8<K,V> map, Traverser<K,V,?> it, int batch) {
2300 super(it);
2301 this.batch = batch;
2302 if ((this.map = map) != null && it != null) { // split parent
2303 Node<V>[] t;
2304 if ((t = it.tab) == null &&
2305 (t = it.tab = map.table) != null)
2306 it.baseLimit = it.baseSize = t.length;
2307 this.tab = t;
2308 this.baseSize = it.baseSize;
2309 int hi = this.baseLimit = it.baseLimit;
2310 it.baseLimit = this.index = this.baseIndex =
2311 (hi + it.baseIndex + 1) >>> 1;
2312 }
2313 }
2314
2315 /**
2316 * Advances next; returns nextVal or null if terminated.
2317 * See above for explanation.
2318 */
2319 @SuppressWarnings("unchecked") final V advance() {
2320 Node<V> e = next;
2321 V ev = null;
2322 outer: do {
2323 if (e != null) // advance past used/skipped node
2324 e = e.next;
2325 while (e == null) { // get to next non-null bin
2326 ConcurrentHashMapV8<K, V> m;
2327 Node<V>[] t; int b, i, n; Object ek; // must use locals
2328 if ((t = tab) != null)
2329 n = t.length;
2330 else if ((m = map) != null && (t = tab = m.table) != null)
2331 n = baseLimit = baseSize = t.length;
2332 else
2333 break outer;
2334 if ((b = baseIndex) >= baseLimit ||
2335 (i = index) < 0 || i >= n)
2336 break outer;
2337 if ((e = tabAt(t, i)) != null && e.hash < 0) {
2338 if ((ek = e.key) instanceof TreeBin)
2339 e = ((TreeBin<V>)ek).first;
2340 else {
2341 tab = (Node<V>[])ek;
2342 continue; // restarts due to null val
2343 }
2344 } // visit upper slots if present
2345 index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2346 }
2347 nextKey = e.key;
2348 } while ((ev = e.val) == null); // skip deleted or special nodes
2349 next = e;
2350 return nextVal = ev;
2351 }
2352
2353 public final void remove() {
2354 Object k = nextKey;
2355 if (k == null && (advance() == null || (k = nextKey) == null))
2356 throw new IllegalStateException();
2357 map.internalReplace(k, null, null);
2358 }
2359
2360 public final boolean hasNext() {
2361 return nextVal != null || advance() != null;
2362 }
2363
2364 public final boolean hasMoreElements() { return hasNext(); }
2365
2366 public void compute() { } // default no-op CountedCompleter body
2367
2368 /**
2369 * Returns a batch value > 0 if this task should (and must) be
2370 * split, if so, adding to pending count, and in any case
2371 * updating batch value. The initial batch value is approx
2372 * exp2 of the number of times (minus one) to split task by
2373 * two before executing leaf action. This value is faster to
2374 * compute and more convenient to use as a guide to splitting
2375 * than is the depth, since it is used while dividing by two
2376 * anyway.
2377 */
2378 final int preSplit() {
2379 ConcurrentHashMapV8<K, V> m; int b; Node<V>[] t; ForkJoinPool pool;
2380 if ((b = batch) < 0 && (m = map) != null) { // force initialization
2381 if ((t = tab) == null && (t = tab = m.table) != null)
2382 baseLimit = baseSize = t.length;
2383 if (t != null) {
2384 long n = m.sumCount();
2385 int par = ((pool = getPool()) == null) ?
2386 ForkJoinPool.getCommonPoolParallelism() :
2387 pool.getParallelism();
2388 int sp = par << 3; // slack of 8
2389 b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2390 }
2391 }
2392 b = (b <= 1 || baseIndex == baseLimit) ? 0 : (b >>> 1);
2393 if ((batch = b) > 0)
2394 addToPendingCount(1);
2395 return b;
2396 }
2397
2398 }
2399
2400 /* ---------------- Public operations -------------- */
2401
2402 /**
2403 * Creates a new, empty map with the default initial table size (16).
2404 */
2405 public ConcurrentHashMapV8() {
2406 }
2407
2408 /**
2409 * Creates a new, empty map with an initial table size
2410 * accommodating the specified number of elements without the need
2411 * to dynamically resize.
2412 *
2413 * @param initialCapacity The implementation performs internal
2414 * sizing to accommodate this many elements.
2415 * @throws IllegalArgumentException if the initial capacity of
2416 * elements is negative
2417 */
2418 public ConcurrentHashMapV8(int initialCapacity) {
2419 if (initialCapacity < 0)
2420 throw new IllegalArgumentException();
2421 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2422 MAXIMUM_CAPACITY :
2423 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2424 this.sizeCtl = cap;
2425 }
2426
2427 /**
2428 * Creates a new map with the same mappings as the given map.
2429 *
2430 * @param m the map
2431 */
2432 public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
2433 this.sizeCtl = DEFAULT_CAPACITY;
2434 internalPutAll(m);
2435 }
2436
2437 /**
2438 * Creates a new, empty map with an initial table size based on
2439 * the given number of elements ({@code initialCapacity}) and
2440 * initial table density ({@code loadFactor}).
2441 *
2442 * @param initialCapacity the initial capacity. The implementation
2443 * performs internal sizing to accommodate this many elements,
2444 * given the specified load factor.
2445 * @param loadFactor the load factor (table density) for
2446 * establishing the initial table size
2447 * @throws IllegalArgumentException if the initial capacity of
2448 * elements is negative or the load factor is nonpositive
2449 *
2450 * @since 1.6
2451 */
2452 public ConcurrentHashMapV8(int initialCapacity, float loadFactor) {
2453 this(initialCapacity, loadFactor, 1);
2454 }
2455
2456 /**
2457 * Creates a new, empty map with an initial table size based on
2458 * the given number of elements ({@code initialCapacity}), table
2459 * density ({@code loadFactor}), and number of concurrently
2460 * updating threads ({@code concurrencyLevel}).
2461 *
2462 * @param initialCapacity the initial capacity. The implementation
2463 * performs internal sizing to accommodate this many elements,
2464 * given the specified load factor.
2465 * @param loadFactor the load factor (table density) for
2466 * establishing the initial table size
2467 * @param concurrencyLevel the estimated number of concurrently
2468 * updating threads. The implementation may use this value as
2469 * a sizing hint.
2470 * @throws IllegalArgumentException if the initial capacity is
2471 * negative or the load factor or concurrencyLevel are
2472 * nonpositive
2473 */
2474 public ConcurrentHashMapV8(int initialCapacity,
2475 float loadFactor, int concurrencyLevel) {
2476 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2477 throw new IllegalArgumentException();
2478 if (initialCapacity < concurrencyLevel) // Use at least as many bins
2479 initialCapacity = concurrencyLevel; // as estimated threads
2480 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2481 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2482 MAXIMUM_CAPACITY : tableSizeFor((int)size);
2483 this.sizeCtl = cap;
2484 }
2485
2486 /**
2487 * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2488 * from the given type to {@code Boolean.TRUE}.
2489 *
2490 * @return the new set
2491 */
2492 public static <K> KeySetView<K,Boolean> newKeySet() {
2493 return new KeySetView<K,Boolean>(new ConcurrentHashMapV8<K,Boolean>(),
2494 Boolean.TRUE);
2495 }
2496
2497 /**
2498 * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2499 * from the given type to {@code Boolean.TRUE}.
2500 *
2501 * @param initialCapacity The implementation performs internal
2502 * sizing to accommodate this many elements.
2503 * @throws IllegalArgumentException if the initial capacity of
2504 * elements is negative
2505 * @return the new set
2506 */
2507 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2508 return new KeySetView<K,Boolean>
2509 (new ConcurrentHashMapV8<K,Boolean>(initialCapacity), Boolean.TRUE);
2510 }
2511
2512 /**
2513 * {@inheritDoc}
2514 */
2515 public boolean isEmpty() {
2516 return sumCount() <= 0L; // ignore transient negative values
2517 }
2518
2519 /**
2520 * {@inheritDoc}
2521 */
2522 public int size() {
2523 long n = sumCount();
2524 return ((n < 0L) ? 0 :
2525 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2526 (int)n);
2527 }
2528
2529 /**
2530 * Returns the number of mappings. This method should be used
2531 * instead of {@link #size} because a ConcurrentHashMapV8 may
2532 * contain more mappings than can be represented as an int. The
2533 * value returned is an estimate; the actual count may differ if
2534 * there are concurrent insertions or removals.
2535 *
2536 * @return the number of mappings
2537 */
2538 public long mappingCount() {
2539 long n = sumCount();
2540 return (n < 0L) ? 0L : n; // ignore transient negative values
2541 }
2542
2543 /**
2544 * Returns the value to which the specified key is mapped,
2545 * or {@code null} if this map contains no mapping for the key.
2546 *
2547 * <p>More formally, if this map contains a mapping from a key
2548 * {@code k} to a value {@code v} such that {@code key.equals(k)},
2549 * then this method returns {@code v}; otherwise it returns
2550 * {@code null}. (There can be at most one such mapping.)
2551 *
2552 * @throws NullPointerException if the specified key is null
2553 */
2554 public V get(Object key) {
2555 return internalGet(key);
2556 }
2557
2558 /**
2559 * Returns the value to which the specified key is mapped,
2560 * or the given defaultValue if this map contains no mapping for the key.
2561 *
2562 * @param key the key
2563 * @param defaultValue the value to return if this map contains
2564 * no mapping for the given key
2565 * @return the mapping for the key, if present; else the defaultValue
2566 * @throws NullPointerException if the specified key is null
2567 */
2568 public V getValueOrDefault(Object key, V defaultValue) {
2569 V v;
2570 return (v = internalGet(key)) == null ? defaultValue : v;
2571 }
2572
2573 /**
2574 * Tests if the specified object is a key in this table.
2575 *
2576 * @param key possible key
2577 * @return {@code true} if and only if the specified object
2578 * is a key in this table, as determined by the
2579 * {@code equals} method; {@code false} otherwise
2580 * @throws NullPointerException if the specified key is null
2581 */
2582 public boolean containsKey(Object key) {
2583 return internalGet(key) != null;
2584 }
2585
2586 /**
2587 * Returns {@code true} if this map maps one or more keys to the
2588 * specified value. Note: This method may require a full traversal
2589 * of the map, and is much slower than method {@code containsKey}.
2590 *
2591 * @param value value whose presence in this map is to be tested
2592 * @return {@code true} if this map maps one or more keys to the
2593 * specified value
2594 * @throws NullPointerException if the specified value is null
2595 */
2596 public boolean containsValue(Object value) {
2597 if (value == null)
2598 throw new NullPointerException();
2599 V v;
2600 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2601 while ((v = it.advance()) != null) {
2602 if (v == value || value.equals(v))
2603 return true;
2604 }
2605 return false;
2606 }
2607
2608 /**
2609 * Legacy method testing if some key maps into the specified value
2610 * in this table. This method is identical in functionality to
2611 * {@link #containsValue}, and exists solely to ensure
2612 * full compatibility with class {@link java.util.Hashtable},
2613 * which supported this method prior to introduction of the
2614 * Java Collections framework.
2615 *
2616 * @param value a value to search for
2617 * @return {@code true} if and only if some key maps to the
2618 * {@code value} argument in this table as
2619 * determined by the {@code equals} method;
2620 * {@code false} otherwise
2621 * @throws NullPointerException if the specified value is null
2622 */
2623 @Deprecated public boolean contains(Object value) {
2624 return containsValue(value);
2625 }
2626
2627 /**
2628 * Maps the specified key to the specified value in this table.
2629 * Neither the key nor the value can be null.
2630 *
2631 * <p>The value can be retrieved by calling the {@code get} method
2632 * with a key that is equal to the original key.
2633 *
2634 * @param key key with which the specified value is to be associated
2635 * @param value value to be associated with the specified key
2636 * @return the previous value associated with {@code key}, or
2637 * {@code null} if there was no mapping for {@code key}
2638 * @throws NullPointerException if the specified key or value is null
2639 */
2640 public V put(K key, V value) {
2641 return internalPut(key, value, false);
2642 }
2643
2644 /**
2645 * {@inheritDoc}
2646 *
2647 * @return the previous value associated with the specified key,
2648 * or {@code null} if there was no mapping for the key
2649 * @throws NullPointerException if the specified key or value is null
2650 */
2651 public V putIfAbsent(K key, V value) {
2652 return internalPut(key, value, true);
2653 }
2654
2655 /**
2656 * Copies all of the mappings from the specified map to this one.
2657 * These mappings replace any mappings that this map had for any of the
2658 * keys currently in the specified map.
2659 *
2660 * @param m mappings to be stored in this map
2661 */
2662 public void putAll(Map<? extends K, ? extends V> m) {
2663 internalPutAll(m);
2664 }
2665
2666 /**
2667 * If the specified key is not already associated with a value,
2668 * computes its value using the given mappingFunction and enters
2669 * it into the map unless null. This is equivalent to
2670 * <pre> {@code
2671 * if (map.containsKey(key))
2672 * return map.get(key);
2673 * value = mappingFunction.apply(key);
2674 * if (value != null)
2675 * map.put(key, value);
2676 * return value;}</pre>
2677 *
2678 * except that the action is performed atomically. If the
2679 * function returns {@code null} no mapping is recorded. If the
2680 * function itself throws an (unchecked) exception, the exception
2681 * is rethrown to its caller, and no mapping is recorded. Some
2682 * attempted update operations on this map by other threads may be
2683 * blocked while computation is in progress, so the computation
2684 * should be short and simple, and must not attempt to update any
2685 * other mappings of this Map. The most appropriate usage is to
2686 * construct a new object serving as an initial mapped value, or
2687 * memoized result, as in:
2688 *
2689 * <pre> {@code
2690 * map.computeIfAbsent(key, new Fun<K, V>() {
2691 * public V map(K k) { return new Value(f(k)); }});}</pre>
2692 *
2693 * @param key key with which the specified value is to be associated
2694 * @param mappingFunction the function to compute a value
2695 * @return the current (existing or computed) value associated with
2696 * the specified key, or null if the computed value is null
2697 * @throws NullPointerException if the specified key or mappingFunction
2698 * is null
2699 * @throws IllegalStateException if the computation detectably
2700 * attempts a recursive update to this map that would
2701 * otherwise never complete
2702 * @throws RuntimeException or Error if the mappingFunction does so,
2703 * in which case the mapping is left unestablished
2704 */
2705 public V computeIfAbsent
2706 (K key, Fun<? super K, ? extends V> mappingFunction) {
2707 return internalComputeIfAbsent(key, mappingFunction);
2708 }
2709
2710 /**
2711 * If the given key is present, computes a new mapping value given a key and
2712 * its current mapped value. This is equivalent to
2713 * <pre> {@code
2714 * if (map.containsKey(key)) {
2715 * value = remappingFunction.apply(key, map.get(key));
2716 * if (value != null)
2717 * map.put(key, value);
2718 * else
2719 * map.remove(key);
2720 * }
2721 * }</pre>
2722 *
2723 * except that the action is performed atomically. If the
2724 * function returns {@code null}, the mapping is removed. If the
2725 * function itself throws an (unchecked) exception, the exception
2726 * is rethrown to its caller, and the current mapping is left
2727 * unchanged. Some attempted update operations on this map by
2728 * other threads may be blocked while computation is in progress,
2729 * so the computation should be short and simple, and must not
2730 * attempt to update any other mappings of this Map. For example,
2731 * to either create or append new messages to a value mapping:
2732 *
2733 * @param key key with which the specified value is to be associated
2734 * @param remappingFunction the function to compute a value
2735 * @return the new value associated with the specified key, or null if none
2736 * @throws NullPointerException if the specified key or remappingFunction
2737 * is null
2738 * @throws IllegalStateException if the computation detectably
2739 * attempts a recursive update to this map that would
2740 * otherwise never complete
2741 * @throws RuntimeException or Error if the remappingFunction does so,
2742 * in which case the mapping is unchanged
2743 */
2744 public V computeIfPresent
2745 (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2746 return internalCompute(key, true, remappingFunction);
2747 }
2748
2749 /**
2750 * Computes a new mapping value given a key and
2751 * its current mapped value (or {@code null} if there is no current
2752 * mapping). This is equivalent to
2753 * <pre> {@code
2754 * value = remappingFunction.apply(key, map.get(key));
2755 * if (value != null)
2756 * map.put(key, value);
2757 * else
2758 * map.remove(key);
2759 * }</pre>
2760 *
2761 * except that the action is performed atomically. If the
2762 * function returns {@code null}, the mapping is removed. If the
2763 * function itself throws an (unchecked) exception, the exception
2764 * is rethrown to its caller, and the current mapping is left
2765 * unchanged. Some attempted update operations on this map by
2766 * other threads may be blocked while computation is in progress,
2767 * so the computation should be short and simple, and must not
2768 * attempt to update any other mappings of this Map. For example,
2769 * to either create or append new messages to a value mapping:
2770 *
2771 * <pre> {@code
2772 * Map<Key, String> map = ...;
2773 * final String msg = ...;
2774 * map.compute(key, new BiFun<Key, String, String>() {
2775 * public String apply(Key k, String v) {
2776 * return (v == null) ? msg : v + msg;});}}</pre>
2777 *
2778 * @param key key with which the specified value is to be associated
2779 * @param remappingFunction the function to compute a value
2780 * @return the new value associated with the specified key, or null if none
2781 * @throws NullPointerException if the specified key or remappingFunction
2782 * is null
2783 * @throws IllegalStateException if the computation detectably
2784 * attempts a recursive update to this map that would
2785 * otherwise never complete
2786 * @throws RuntimeException or Error if the remappingFunction does so,
2787 * in which case the mapping is unchanged
2788 */
2789 public V compute
2790 (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2791 return internalCompute(key, false, remappingFunction);
2792 }
2793
2794 /**
2795 * If the specified key is not already associated
2796 * with a value, associate it with the given value.
2797 * Otherwise, replace the value with the results of
2798 * the given remapping function. This is equivalent to:
2799 * <pre> {@code
2800 * if (!map.containsKey(key))
2801 * map.put(value);
2802 * else {
2803 * newValue = remappingFunction.apply(map.get(key), value);
2804 * if (value != null)
2805 * map.put(key, value);
2806 * else
2807 * map.remove(key);
2808 * }
2809 * }</pre>
2810 * except that the action is performed atomically. If the
2811 * function returns {@code null}, the mapping is removed. If the
2812 * function itself throws an (unchecked) exception, the exception
2813 * is rethrown to its caller, and the current mapping is left
2814 * unchanged. Some attempted update operations on this map by
2815 * other threads may be blocked while computation is in progress,
2816 * so the computation should be short and simple, and must not
2817 * attempt to update any other mappings of this Map.
2818 */
2819 public V merge
2820 (K key, V value,
2821 BiFun<? super V, ? super V, ? extends V> remappingFunction) {
2822 return internalMerge(key, value, remappingFunction);
2823 }
2824
2825 /**
2826 * Removes the key (and its corresponding value) from this map.
2827 * This method does nothing if the key is not in the map.
2828 *
2829 * @param key the key that needs to be removed
2830 * @return the previous value associated with {@code key}, or
2831 * {@code null} if there was no mapping for {@code key}
2832 * @throws NullPointerException if the specified key is null
2833 */
2834 public V remove(Object key) {
2835 return internalReplace(key, null, null);
2836 }
2837
2838 /**
2839 * {@inheritDoc}
2840 *
2841 * @throws NullPointerException if the specified key is null
2842 */
2843 public boolean remove(Object key, Object value) {
2844 return value != null && internalReplace(key, null, value) != null;
2845 }
2846
2847 /**
2848 * {@inheritDoc}
2849 *
2850 * @throws NullPointerException if any of the arguments are null
2851 */
2852 public boolean replace(K key, V oldValue, V newValue) {
2853 if (key == null || oldValue == null || newValue == null)
2854 throw new NullPointerException();
2855 return internalReplace(key, newValue, oldValue) != null;
2856 }
2857
2858 /**
2859 * {@inheritDoc}
2860 *
2861 * @return the previous value associated with the specified key,
2862 * or {@code null} if there was no mapping for the key
2863 * @throws NullPointerException if the specified key or value is null
2864 */
2865 public V replace(K key, V value) {
2866 if (key == null || value == null)
2867 throw new NullPointerException();
2868 return internalReplace(key, value, null);
2869 }
2870
2871 /**
2872 * Removes all of the mappings from this map.
2873 */
2874 public void clear() {
2875 internalClear();
2876 }
2877
2878 /**
2879 * Returns a {@link Set} view of the keys contained in this map.
2880 * The set is backed by the map, so changes to the map are
2881 * reflected in the set, and vice-versa.
2882 *
2883 * @return the set view
2884 */
2885 public KeySetView<K,V> keySet() {
2886 KeySetView<K,V> ks = keySet;
2887 return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2888 }
2889
2890 /**
2891 * Returns a {@link Set} view of the keys in this map, using the
2892 * given common mapped value for any additions (i.e., {@link
2893 * Collection#add} and {@link Collection#addAll}). This is of
2894 * course only appropriate if it is acceptable to use the same
2895 * value for all additions from this view.
2896 *
2897 * @param mappedValue the mapped value to use for any additions
2898 * @return the set view
2899 * @throws NullPointerException if the mappedValue is null
2900 */
2901 public KeySetView<K,V> keySet(V mappedValue) {
2902 if (mappedValue == null)
2903 throw new NullPointerException();
2904 return new KeySetView<K,V>(this, mappedValue);
2905 }
2906
2907 /**
2908 * Returns a {@link Collection} view of the values contained in this map.
2909 * The collection is backed by the map, so changes to the map are
2910 * reflected in the collection, and vice-versa.
2911 */
2912 public ValuesView<K,V> values() {
2913 ValuesView<K,V> vs = values;
2914 return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2915 }
2916
2917 /**
2918 * Returns a {@link Set} view of the mappings contained in this map.
2919 * The set is backed by the map, so changes to the map are
2920 * reflected in the set, and vice-versa. The set supports element
2921 * removal, which removes the corresponding mapping from the map,
2922 * via the {@code Iterator.remove}, {@code Set.remove},
2923 * {@code removeAll}, {@code retainAll}, and {@code clear}
2924 * operations. It does not support the {@code add} or
2925 * {@code addAll} operations.
2926 *
2927 * <p>The view's {@code iterator} is a "weakly consistent" iterator
2928 * that will never throw {@link ConcurrentModificationException},
2929 * and guarantees to traverse elements as they existed upon
2930 * construction of the iterator, and may (but is not guaranteed to)
2931 * reflect any modifications subsequent to construction.
2932 */
2933 public Set<Map.Entry<K,V>> entrySet() {
2934 EntrySetView<K,V> es = entrySet;
2935 return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2936 }
2937
2938 /**
2939 * Returns an enumeration of the keys in this table.
2940 *
2941 * @return an enumeration of the keys in this table
2942 * @see #keySet()
2943 */
2944 public Enumeration<K> keys() {
2945 return new KeyIterator<K,V>(this);
2946 }
2947
2948 /**
2949 * Returns an enumeration of the values in this table.
2950 *
2951 * @return an enumeration of the values in this table
2952 * @see #values()
2953 */
2954 public Enumeration<V> elements() {
2955 return new ValueIterator<K,V>(this);
2956 }
2957
2958 /**
2959 * Returns a partitionable iterator of the keys in this map.
2960 *
2961 * @return a partitionable iterator of the keys in this map
2962 */
2963 public Spliterator<K> keySpliterator() {
2964 return new KeyIterator<K,V>(this);
2965 }
2966
2967 /**
2968 * Returns a partitionable iterator of the values in this map.
2969 *
2970 * @return a partitionable iterator of the values in this map
2971 */
2972 public Spliterator<V> valueSpliterator() {
2973 return new ValueIterator<K,V>(this);
2974 }
2975
2976 /**
2977 * Returns a partitionable iterator of the entries in this map.
2978 *
2979 * @return a partitionable iterator of the entries in this map
2980 */
2981 public Spliterator<Map.Entry<K,V>> entrySpliterator() {
2982 return new EntryIterator<K,V>(this);
2983 }
2984
2985 /**
2986 * Returns the hash code value for this {@link Map}, i.e.,
2987 * the sum of, for each key-value pair in the map,
2988 * {@code key.hashCode() ^ value.hashCode()}.
2989 *
2990 * @return the hash code value for this map
2991 */
2992 public int hashCode() {
2993 int h = 0;
2994 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2995 V v;
2996 while ((v = it.advance()) != null) {
2997 h += it.nextKey.hashCode() ^ v.hashCode();
2998 }
2999 return h;
3000 }
3001
3002 /**
3003 * Returns a string representation of this map. The string
3004 * representation consists of a list of key-value mappings (in no
3005 * particular order) enclosed in braces ("{@code {}}"). Adjacent
3006 * mappings are separated by the characters {@code ", "} (comma
3007 * and space). Each key-value mapping is rendered as the key
3008 * followed by an equals sign ("{@code =}") followed by the
3009 * associated value.
3010 *
3011 * @return a string representation of this map
3012 */
3013 public String toString() {
3014 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3015 StringBuilder sb = new StringBuilder();
3016 sb.append('{');
3017 V v;
3018 if ((v = it.advance()) != null) {
3019 for (;;) {
3020 Object k = it.nextKey;
3021 sb.append(k == this ? "(this Map)" : k);
3022 sb.append('=');
3023 sb.append(v == this ? "(this Map)" : v);
3024 if ((v = it.advance()) == null)
3025 break;
3026 sb.append(',').append(' ');
3027 }
3028 }
3029 return sb.append('}').toString();
3030 }
3031
3032 /**
3033 * Compares the specified object with this map for equality.
3034 * Returns {@code true} if the given object is a map with the same
3035 * mappings as this map. This operation may return misleading
3036 * results if either map is concurrently modified during execution
3037 * of this method.
3038 *
3039 * @param o object to be compared for equality with this map
3040 * @return {@code true} if the specified object is equal to this map
3041 */
3042 public boolean equals(Object o) {
3043 if (o != this) {
3044 if (!(o instanceof Map))
3045 return false;
3046 Map<?,?> m = (Map<?,?>) o;
3047 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3048 V val;
3049 while ((val = it.advance()) != null) {
3050 Object v = m.get(it.nextKey);
3051 if (v == null || (v != val && !v.equals(val)))
3052 return false;
3053 }
3054 for (Map.Entry<?,?> e : m.entrySet()) {
3055 Object mk, mv, v;
3056 if ((mk = e.getKey()) == null ||
3057 (mv = e.getValue()) == null ||
3058 (v = internalGet(mk)) == null ||
3059 (mv != v && !mv.equals(v)))
3060 return false;
3061 }
3062 }
3063 return true;
3064 }
3065
3066 /* ----------------Iterators -------------- */
3067
3068 @SuppressWarnings("serial") static final class KeyIterator<K,V>
3069 extends Traverser<K,V,Object>
3070 implements Spliterator<K>, Enumeration<K> {
3071 KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3072 KeyIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3073 super(map, it, -1);
3074 }
3075 public KeyIterator<K,V> split() {
3076 if (nextKey != null)
3077 throw new IllegalStateException();
3078 return new KeyIterator<K,V>(map, this);
3079 }
3080 @SuppressWarnings("unchecked") public final K next() {
3081 if (nextVal == null && advance() == null)
3082 throw new NoSuchElementException();
3083 Object k = nextKey;
3084 nextVal = null;
3085 return (K) k;
3086 }
3087
3088 public final K nextElement() { return next(); }
3089 }
3090
3091 @SuppressWarnings("serial") static final class ValueIterator<K,V>
3092 extends Traverser<K,V,Object>
3093 implements Spliterator<V>, Enumeration<V> {
3094 ValueIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3095 ValueIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3096 super(map, it, -1);
3097 }
3098 public ValueIterator<K,V> split() {
3099 if (nextKey != null)
3100 throw new IllegalStateException();
3101 return new ValueIterator<K,V>(map, this);
3102 }
3103
3104 public final V next() {
3105 V v;
3106 if ((v = nextVal) == null && (v = advance()) == null)
3107 throw new NoSuchElementException();
3108 nextVal = null;
3109 return v;
3110 }
3111
3112 public final V nextElement() { return next(); }
3113 }
3114
3115 @SuppressWarnings("serial") static final class EntryIterator<K,V>
3116 extends Traverser<K,V,Object>
3117 implements Spliterator<Map.Entry<K,V>> {
3118 EntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3119 EntryIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3120 super(map, it, -1);
3121 }
3122 public EntryIterator<K,V> split() {
3123 if (nextKey != null)
3124 throw new IllegalStateException();
3125 return new EntryIterator<K,V>(map, this);
3126 }
3127
3128 @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3129 V v;
3130 if ((v = nextVal) == null && (v = advance()) == null)
3131 throw new NoSuchElementException();
3132 Object k = nextKey;
3133 nextVal = null;
3134 return new MapEntry<K,V>((K)k, v, map);
3135 }
3136 }
3137
3138 /**
3139 * Exported Entry for iterators
3140 */
3141 static final class MapEntry<K,V> implements Map.Entry<K, V> {
3142 final K key; // non-null
3143 V val; // non-null
3144 final ConcurrentHashMapV8<K, V> map;
3145 MapEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
3146 this.key = key;
3147 this.val = val;
3148 this.map = map;
3149 }
3150 public final K getKey() { return key; }
3151 public final V getValue() { return val; }
3152 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
3153 public final String toString(){ return key + "=" + val; }
3154
3155 public final boolean equals(Object o) {
3156 Object k, v; Map.Entry<?,?> e;
3157 return ((o instanceof Map.Entry) &&
3158 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3159 (v = e.getValue()) != null &&
3160 (k == key || k.equals(key)) &&
3161 (v == val || v.equals(val)));
3162 }
3163
3164 /**
3165 * Sets our entry's value and writes through to the map. The
3166 * value to return is somewhat arbitrary here. Since we do not
3167 * necessarily track asynchronous changes, the most recent
3168 * "previous" value could be different from what we return (or
3169 * could even have been removed in which case the put will
3170 * re-establish). We do not and cannot guarantee more.
3171 */
3172 public final V setValue(V value) {
3173 if (value == null) throw new NullPointerException();
3174 V v = val;
3175 val = value;
3176 map.put(key, value);
3177 return v;
3178 }
3179 }
3180
3181 /**
3182 * Returns exportable snapshot entry for the given key and value
3183 * when write-through can't or shouldn't be used.
3184 */
3185 static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3186 return new AbstractMap.SimpleEntry<K,V>(k, v);
3187 }
3188
3189 /* ---------------- Serialization Support -------------- */
3190
3191 /**
3192 * Stripped-down version of helper class used in previous version,
3193 * declared for the sake of serialization compatibility
3194 */
3195 static class Segment<K,V> implements Serializable {
3196 private static final long serialVersionUID = 2249069246763182397L;
3197 final float loadFactor;
3198 Segment(float lf) { this.loadFactor = lf; }
3199 }
3200
3201 /**
3202 * Saves the state of the {@code ConcurrentHashMapV8} instance to a
3203 * stream (i.e., serializes it).
3204 * @param s the stream
3205 * @serialData
3206 * the key (Object) and value (Object)
3207 * for each key-value mapping, followed by a null pair.
3208 * The key-value mappings are emitted in no particular order.
3209 */
3210 @SuppressWarnings("unchecked") private void writeObject
3211 (java.io.ObjectOutputStream s)
3212 throws java.io.IOException {
3213 if (segments == null) { // for serialization compatibility
3214 segments = (Segment<K,V>[])
3215 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3216 for (int i = 0; i < segments.length; ++i)
3217 segments[i] = new Segment<K,V>(LOAD_FACTOR);
3218 }
3219 s.defaultWriteObject();
3220 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3221 V v;
3222 while ((v = it.advance()) != null) {
3223 s.writeObject(it.nextKey);
3224 s.writeObject(v);
3225 }
3226 s.writeObject(null);
3227 s.writeObject(null);
3228 segments = null; // throw away
3229 }
3230
3231 /**
3232 * Reconstitutes the instance from a stream (that is, deserializes it).
3233 * @param s the stream
3234 */
3235 @SuppressWarnings("unchecked") private void readObject
3236 (java.io.ObjectInputStream s)
3237 throws java.io.IOException, ClassNotFoundException {
3238 s.defaultReadObject();
3239 this.segments = null; // unneeded
3240
3241 // Create all nodes, then place in table once size is known
3242 long size = 0L;
3243 Node<V> p = null;
3244 for (;;) {
3245 K k = (K) s.readObject();
3246 V v = (V) s.readObject();
3247 if (k != null && v != null) {
3248 int h = spread(k.hashCode());
3249 p = new Node<V>(h, k, v, p);
3250 ++size;
3251 }
3252 else
3253 break;
3254 }
3255 if (p != null) {
3256 boolean init = false;
3257 int n;
3258 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3259 n = MAXIMUM_CAPACITY;
3260 else {
3261 int sz = (int)size;
3262 n = tableSizeFor(sz + (sz >>> 1) + 1);
3263 }
3264 int sc = sizeCtl;
3265 boolean collide = false;
3266 if (n > sc &&
3267 U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3268 try {
3269 if (table == null) {
3270 init = true;
3271 @SuppressWarnings("rawtypes") Node[] rt = new Node[n];
3272 Node<V>[] tab = (Node<V>[])rt;
3273 int mask = n - 1;
3274 while (p != null) {
3275 int j = p.hash & mask;
3276 Node<V> next = p.next;
3277 Node<V> q = p.next = tabAt(tab, j);
3278 setTabAt(tab, j, p);
3279 if (!collide && q != null && q.hash == p.hash)
3280 collide = true;
3281 p = next;
3282 }
3283 table = tab;
3284 addCount(size, -1);
3285 sc = n - (n >>> 2);
3286 }
3287 } finally {
3288 sizeCtl = sc;
3289 }
3290 if (collide) { // rescan and convert to TreeBins
3291 Node<V>[] tab = table;
3292 for (int i = 0; i < tab.length; ++i) {
3293 int c = 0;
3294 for (Node<V> e = tabAt(tab, i); e != null; e = e.next) {
3295 if (++c > TREE_THRESHOLD &&
3296 (e.key instanceof Comparable)) {
3297 replaceWithTreeBin(tab, i, e.key);
3298 break;
3299 }
3300 }
3301 }
3302 }
3303 }
3304 if (!init) { // Can only happen if unsafely published.
3305 while (p != null) {
3306 internalPut((K)p.key, p.val, false);
3307 p = p.next;
3308 }
3309 }
3310 }
3311 }
3312
3313 // -------------------------------------------------------
3314
3315 // Sams
3316 /** Interface describing a void action of one argument */
3317 public interface Action<A> { void apply(A a); }
3318 /** Interface describing a void action of two arguments */
3319 public interface BiAction<A,B> { void apply(A a, B b); }
3320 /** Interface describing a function of one argument */
3321 public interface Fun<A,T> { T apply(A a); }
3322 /** Interface describing a function of two arguments */
3323 public interface BiFun<A,B,T> { T apply(A a, B b); }
3324 /** Interface describing a function of no arguments */
3325 public interface Generator<T> { T apply(); }
3326 /** Interface describing a function mapping its argument to a double */
3327 public interface ObjectToDouble<A> { double apply(A a); }
3328 /** Interface describing a function mapping its argument to a long */
3329 public interface ObjectToLong<A> { long apply(A a); }
3330 /** Interface describing a function mapping its argument to an int */
3331 public interface ObjectToInt<A> {int apply(A a); }
3332 /** Interface describing a function mapping two arguments to a double */
3333 public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3334 /** Interface describing a function mapping two arguments to a long */
3335 public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3336 /** Interface describing a function mapping two arguments to an int */
3337 public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3338 /** Interface describing a function mapping a double to a double */
3339 public interface DoubleToDouble { double apply(double a); }
3340 /** Interface describing a function mapping a long to a long */
3341 public interface LongToLong { long apply(long a); }
3342 /** Interface describing a function mapping an int to an int */
3343 public interface IntToInt { int apply(int a); }
3344 /** Interface describing a function mapping two doubles to a double */
3345 public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3346 /** Interface describing a function mapping two longs to a long */
3347 public interface LongByLongToLong { long apply(long a, long b); }
3348 /** Interface describing a function mapping two ints to an int */
3349 public interface IntByIntToInt { int apply(int a, int b); }
3350
3351
3352 // -------------------------------------------------------
3353
3354 // Sequential bulk operations
3355
3356 /**
3357 * Performs the given action for each (key, value).
3358 *
3359 * @param action the action
3360 */
3361 @SuppressWarnings("unchecked") public void forEachSequentially
3362 (BiAction<K,V> action) {
3363 if (action == null) throw new NullPointerException();
3364 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3365 V v;
3366 while ((v = it.advance()) != null)
3367 action.apply((K)it.nextKey, v);
3368 }
3369
3370 /**
3371 * Performs the given action for each non-null transformation
3372 * of each (key, value).
3373 *
3374 * @param transformer a function returning the transformation
3375 * for an element, or null if there is no transformation (in
3376 * which case the action is not applied)
3377 * @param action the action
3378 */
3379 @SuppressWarnings("unchecked") public <U> void forEachSequentially
3380 (BiFun<? super K, ? super V, ? extends U> transformer,
3381 Action<U> action) {
3382 if (transformer == null || action == null)
3383 throw new NullPointerException();
3384 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3385 V v; U u;
3386 while ((v = it.advance()) != null) {
3387 if ((u = transformer.apply((K)it.nextKey, v)) != null)
3388 action.apply(u);
3389 }
3390 }
3391
3392 /**
3393 * Returns a non-null result from applying the given search
3394 * function on each (key, value), or null if none.
3395 *
3396 * @param searchFunction a function returning a non-null
3397 * result on success, else null
3398 * @return a non-null result from applying the given search
3399 * function on each (key, value), or null if none
3400 */
3401 @SuppressWarnings("unchecked") public <U> U searchSequentially
3402 (BiFun<? super K, ? super V, ? extends U> searchFunction) {
3403 if (searchFunction == null) throw new NullPointerException();
3404 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3405 V v; U u;
3406 while ((v = it.advance()) != null) {
3407 if ((u = searchFunction.apply((K)it.nextKey, v)) != null)
3408 return u;
3409 }
3410 return null;
3411 }
3412
3413 /**
3414 * Returns the result of accumulating the given transformation
3415 * of all (key, value) pairs using the given reducer to
3416 * combine values, or null if none.
3417 *
3418 * @param transformer a function returning the transformation
3419 * for an element, or null if there is no transformation (in
3420 * which case it is not combined)
3421 * @param reducer a commutative associative combining function
3422 * @return the result of accumulating the given transformation
3423 * of all (key, value) pairs
3424 */
3425 @SuppressWarnings("unchecked") public <U> U reduceSequentially
3426 (BiFun<? super K, ? super V, ? extends U> transformer,
3427 BiFun<? super U, ? super U, ? extends U> reducer) {
3428 if (transformer == null || reducer == null)
3429 throw new NullPointerException();
3430 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3431 U r = null, u; V v;
3432 while ((v = it.advance()) != null) {
3433 if ((u = transformer.apply((K)it.nextKey, v)) != null)
3434 r = (r == null) ? u : reducer.apply(r, u);
3435 }
3436 return r;
3437 }
3438
3439 /**
3440 * Returns the result of accumulating the given transformation
3441 * of all (key, value) pairs using the given reducer to
3442 * combine values, and the given basis as an identity value.
3443 *
3444 * @param transformer a function returning the transformation
3445 * for an element
3446 * @param basis the identity (initial default value) for the reduction
3447 * @param reducer a commutative associative combining function
3448 * @return the result of accumulating the given transformation
3449 * of all (key, value) pairs
3450 */
3451 @SuppressWarnings("unchecked") public double reduceToDoubleSequentially
3452 (ObjectByObjectToDouble<? super K, ? super V> transformer,
3453 double basis,
3454 DoubleByDoubleToDouble reducer) {
3455 if (transformer == null || reducer == null)
3456 throw new NullPointerException();
3457 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3458 double r = basis; V v;
3459 while ((v = it.advance()) != null)
3460 r = reducer.apply(r, transformer.apply((K)it.nextKey, v));
3461 return r;
3462 }
3463
3464 /**
3465 * Returns the result of accumulating the given transformation
3466 * of all (key, value) pairs using the given reducer to
3467 * combine values, and the given basis as an identity value.
3468 *
3469 * @param transformer a function returning the transformation
3470 * for an element
3471 * @param basis the identity (initial default value) for the reduction
3472 * @param reducer a commutative associative combining function
3473 * @return the result of accumulating the given transformation
3474 * of all (key, value) pairs
3475 */
3476 @SuppressWarnings("unchecked") public long reduceToLongSequentially
3477 (ObjectByObjectToLong<? super K, ? super V> transformer,
3478 long basis,
3479 LongByLongToLong reducer) {
3480 if (transformer == null || reducer == null)
3481 throw new NullPointerException();
3482 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3483 long r = basis; V v;
3484 while ((v = it.advance()) != null)
3485 r = reducer.apply(r, transformer.apply((K)it.nextKey, v));
3486 return r;
3487 }
3488
3489 /**
3490 * Returns the result of accumulating the given transformation
3491 * of all (key, value) pairs using the given reducer to
3492 * combine values, and the given basis as an identity value.
3493 *
3494 * @param transformer a function returning the transformation
3495 * for an element
3496 * @param basis the identity (initial default value) for the reduction
3497 * @param reducer a commutative associative combining function
3498 * @return the result of accumulating the given transformation
3499 * of all (key, value) pairs
3500 */
3501 @SuppressWarnings("unchecked") public int reduceToIntSequentially
3502 (ObjectByObjectToInt<? super K, ? super V> transformer,
3503 int basis,
3504 IntByIntToInt reducer) {
3505 if (transformer == null || reducer == null)
3506 throw new NullPointerException();
3507 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3508 int r = basis; V v;
3509 while ((v = it.advance()) != null)
3510 r = reducer.apply(r, transformer.apply((K)it.nextKey, v));
3511 return r;
3512 }
3513
3514 /**
3515 * Performs the given action for each key.
3516 *
3517 * @param action the action
3518 */
3519 @SuppressWarnings("unchecked") public void forEachKeySequentially
3520 (Action<K> action) {
3521 if (action == null) throw new NullPointerException();
3522 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3523 while (it.advance() != null)
3524 action.apply((K)it.nextKey);
3525 }
3526
3527 /**
3528 * Performs the given action for each non-null transformation
3529 * of each key.
3530 *
3531 * @param transformer a function returning the transformation
3532 * for an element, or null if there is no transformation (in
3533 * which case the action is not applied)
3534 * @param action the action
3535 */
3536 @SuppressWarnings("unchecked") public <U> void forEachKeySequentially
3537 (Fun<? super K, ? extends U> transformer,
3538 Action<U> action) {
3539 if (transformer == null || action == null)
3540 throw new NullPointerException();
3541 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3542 U u;
3543 while (it.advance() != null) {
3544 if ((u = transformer.apply((K)it.nextKey)) != null)
3545 action.apply(u);
3546 }
3547 ForkJoinTasks.forEachKey
3548 (this, transformer, action).invoke();
3549 }
3550
3551 /**
3552 * Returns a non-null result from applying the given search
3553 * function on each key, or null if none.
3554 *
3555 * @param searchFunction a function returning a non-null
3556 * result on success, else null
3557 * @return a non-null result from applying the given search
3558 * function on each key, or null if none
3559 */
3560 @SuppressWarnings("unchecked") public <U> U searchKeysSequentially
3561 (Fun<? super K, ? extends U> searchFunction) {
3562 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3563 U u;
3564 while (it.advance() != null) {
3565 if ((u = searchFunction.apply((K)it.nextKey)) != null)
3566 return u;
3567 }
3568 return null;
3569 }
3570
3571 /**
3572 * Returns the result of accumulating all keys using the given
3573 * reducer to combine values, or null if none.
3574 *
3575 * @param reducer a commutative associative combining function
3576 * @return the result of accumulating all keys using the given
3577 * reducer to combine values, or null if none
3578 */
3579 @SuppressWarnings("unchecked") public K reduceKeysSequentially
3580 (BiFun<? super K, ? super K, ? extends K> reducer) {
3581 if (reducer == null) throw new NullPointerException();
3582 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3583 K r = null;
3584 while (it.advance() != null) {
3585 K u = (K)it.nextKey;
3586 r = (r == null) ? u : reducer.apply(r, u);
3587 }
3588 return r;
3589 }
3590
3591 /**
3592 * Returns the result of accumulating the given transformation
3593 * of all keys using the given reducer to combine values, or
3594 * null if none.
3595 *
3596 * @param transformer a function returning the transformation
3597 * for an element, or null if there is no transformation (in
3598 * which case it is not combined)
3599 * @param reducer a commutative associative combining function
3600 * @return the result of accumulating the given transformation
3601 * of all keys
3602 */
3603 @SuppressWarnings("unchecked") public <U> U reduceKeysSequentially
3604 (Fun<? super K, ? extends U> transformer,
3605 BiFun<? super U, ? super U, ? extends U> reducer) {
3606 if (transformer == null || reducer == null)
3607 throw new NullPointerException();
3608 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3609 U r = null, u;
3610 while (it.advance() != null) {
3611 if ((u = transformer.apply((K)it.nextKey)) != null)
3612 r = (r == null) ? u : reducer.apply(r, u);
3613 }
3614 return r;
3615 }
3616
3617 /**
3618 * Returns the result of accumulating the given transformation
3619 * of all keys using the given reducer to combine values, and
3620 * the given basis as an identity value.
3621 *
3622 * @param transformer a function returning the transformation
3623 * for an element
3624 * @param basis the identity (initial default value) for the reduction
3625 * @param reducer a commutative associative combining function
3626 * @return the result of accumulating the given transformation
3627 * of all keys
3628 */
3629 @SuppressWarnings("unchecked") public double reduceKeysToDoubleSequentially
3630 (ObjectToDouble<? super K> transformer,
3631 double basis,
3632 DoubleByDoubleToDouble reducer) {
3633 if (transformer == null || reducer == null)
3634 throw new NullPointerException();
3635 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3636 double r = basis;
3637 while (it.advance() != null)
3638 r = reducer.apply(r, transformer.apply((K)it.nextKey));
3639 return r;
3640 }
3641
3642 /**
3643 * Returns the result of accumulating the given transformation
3644 * of all keys using the given reducer to combine values, and
3645 * the given basis as an identity value.
3646 *
3647 * @param transformer a function returning the transformation
3648 * for an element
3649 * @param basis the identity (initial default value) for the reduction
3650 * @param reducer a commutative associative combining function
3651 * @return the result of accumulating the given transformation
3652 * of all keys
3653 */
3654 @SuppressWarnings("unchecked") public long reduceKeysToLongSequentially
3655 (ObjectToLong<? super K> transformer,
3656 long basis,
3657 LongByLongToLong reducer) {
3658 if (transformer == null || reducer == null)
3659 throw new NullPointerException();
3660 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3661 long r = basis;
3662 while (it.advance() != null)
3663 r = reducer.apply(r, transformer.apply((K)it.nextKey));
3664 return r;
3665 }
3666
3667 /**
3668 * Returns the result of accumulating the given transformation
3669 * of all keys using the given reducer to combine values, and
3670 * the given basis as an identity value.
3671 *
3672 * @param transformer a function returning the transformation
3673 * for an element
3674 * @param basis the identity (initial default value) for the reduction
3675 * @param reducer a commutative associative combining function
3676 * @return the result of accumulating the given transformation
3677 * of all keys
3678 */
3679 @SuppressWarnings("unchecked") public int reduceKeysToIntSequentially
3680 (ObjectToInt<? super K> transformer,
3681 int basis,
3682 IntByIntToInt reducer) {
3683 if (transformer == null || reducer == null)
3684 throw new NullPointerException();
3685 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3686 int r = basis;
3687 while (it.advance() != null)
3688 r = reducer.apply(r, transformer.apply((K)it.nextKey));
3689 return r;
3690 }
3691
3692 /**
3693 * Performs the given action for each value.
3694 *
3695 * @param action the action
3696 */
3697 public void forEachValueSequentially(Action<V> action) {
3698 if (action == null) throw new NullPointerException();
3699 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3700 V v;
3701 while ((v = it.advance()) != null)
3702 action.apply(v);
3703 }
3704
3705 /**
3706 * Performs the given action for each non-null transformation
3707 * of each value.
3708 *
3709 * @param transformer a function returning the transformation
3710 * for an element, or null if there is no transformation (in
3711 * which case the action is not applied)
3712 */
3713 public <U> void forEachValueSequentially
3714 (Fun<? super V, ? extends U> transformer,
3715 Action<U> action) {
3716 if (transformer == null || action == null)
3717 throw new NullPointerException();
3718 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3719 V v; U u;
3720 while ((v = it.advance()) != null) {
3721 if ((u = transformer.apply(v)) != null)
3722 action.apply(u);
3723 }
3724 }
3725
3726 /**
3727 * Returns a non-null result from applying the given search
3728 * function on each value, or null if none.
3729 *
3730 * @param searchFunction a function returning a non-null
3731 * result on success, else null
3732 * @return a non-null result from applying the given search
3733 * function on each value, or null if none
3734 */
3735 public <U> U searchValuesSequentially
3736 (Fun<? super V, ? extends U> searchFunction) {
3737 if (searchFunction == null) throw new NullPointerException();
3738 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3739 V v; U u;
3740 while ((v = it.advance()) != null) {
3741 if ((u = searchFunction.apply(v)) != null)
3742 return u;
3743 }
3744 return null;
3745 }
3746
3747 /**
3748 * Returns the result of accumulating all values using the
3749 * given reducer to combine values, or null if none.
3750 *
3751 * @param reducer a commutative associative combining function
3752 * @return the result of accumulating all values
3753 */
3754 public V reduceValuesSequentially
3755 (BiFun<? super V, ? super V, ? extends V> reducer) {
3756 if (reducer == null) throw new NullPointerException();
3757 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3758 V r = null; V v;
3759 while ((v = it.advance()) != null)
3760 r = (r == null) ? v : reducer.apply(r, v);
3761 return r;
3762 }
3763
3764 /**
3765 * Returns the result of accumulating the given transformation
3766 * of all values using the given reducer to combine values, or
3767 * null if none.
3768 *
3769 * @param transformer a function returning the transformation
3770 * for an element, or null if there is no transformation (in
3771 * which case it is not combined)
3772 * @param reducer a commutative associative combining function
3773 * @return the result of accumulating the given transformation
3774 * of all values
3775 */
3776 public <U> U reduceValuesSequentially
3777 (Fun<? super V, ? extends U> transformer,
3778 BiFun<? super U, ? super U, ? extends U> reducer) {
3779 if (transformer == null || reducer == null)
3780 throw new NullPointerException();
3781 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3782 U r = null, u; V v;
3783 while ((v = it.advance()) != null) {
3784 if ((u = transformer.apply(v)) != null)
3785 r = (r == null) ? u : reducer.apply(r, u);
3786 }
3787 return r;
3788 }
3789
3790 /**
3791 * Returns the result of accumulating the given transformation
3792 * of all values using the given reducer to combine values,
3793 * and the given basis as an identity value.
3794 *
3795 * @param transformer a function returning the transformation
3796 * for an element
3797 * @param basis the identity (initial default value) for the reduction
3798 * @param reducer a commutative associative combining function
3799 * @return the result of accumulating the given transformation
3800 * of all values
3801 */
3802 public double reduceValuesToDoubleSequentially
3803 (ObjectToDouble<? super V> transformer,
3804 double basis,
3805 DoubleByDoubleToDouble reducer) {
3806 if (transformer == null || reducer == null)
3807 throw new NullPointerException();
3808 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3809 double r = basis; V v;
3810 while ((v = it.advance()) != null)
3811 r = reducer.apply(r, transformer.apply(v));
3812 return r;
3813 }
3814
3815 /**
3816 * Returns the result of accumulating the given transformation
3817 * of all values using the given reducer to combine values,
3818 * and the given basis as an identity value.
3819 *
3820 * @param transformer a function returning the transformation
3821 * for an element
3822 * @param basis the identity (initial default value) for the reduction
3823 * @param reducer a commutative associative combining function
3824 * @return the result of accumulating the given transformation
3825 * of all values
3826 */
3827 public long reduceValuesToLongSequentially
3828 (ObjectToLong<? super V> transformer,
3829 long basis,
3830 LongByLongToLong reducer) {
3831 if (transformer == null || reducer == null)
3832 throw new NullPointerException();
3833 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3834 long r = basis; V v;
3835 while ((v = it.advance()) != null)
3836 r = reducer.apply(r, transformer.apply(v));
3837 return r;
3838 }
3839
3840 /**
3841 * Returns the result of accumulating the given transformation
3842 * of all values using the given reducer to combine values,
3843 * and the given basis as an identity value.
3844 *
3845 * @param transformer a function returning the transformation
3846 * for an element
3847 * @param basis the identity (initial default value) for the reduction
3848 * @param reducer a commutative associative combining function
3849 * @return the result of accumulating the given transformation
3850 * of all values
3851 */
3852 public int reduceValuesToIntSequentially
3853 (ObjectToInt<? super V> transformer,
3854 int basis,
3855 IntByIntToInt reducer) {
3856 if (transformer == null || reducer == null)
3857 throw new NullPointerException();
3858 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3859 int r = basis; V v;
3860 while ((v = it.advance()) != null)
3861 r = reducer.apply(r, transformer.apply(v));
3862 return r;
3863 }
3864
3865 /**
3866 * Performs the given action for each entry.
3867 *
3868 * @param action the action
3869 */
3870 @SuppressWarnings("unchecked") public void forEachEntrySequentially
3871 (Action<Map.Entry<K,V>> action) {
3872 if (action == null) throw new NullPointerException();
3873 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3874 V v;
3875 while ((v = it.advance()) != null)
3876 action.apply(entryFor((K)it.nextKey, v));
3877 }
3878
3879 /**
3880 * Performs the given action for each non-null transformation
3881 * of each entry.
3882 *
3883 * @param transformer a function returning the transformation
3884 * for an element, or null if there is no transformation (in
3885 * which case the action is not applied)
3886 * @param action the action
3887 */
3888 @SuppressWarnings("unchecked") public <U> void forEachEntrySequentially
3889 (Fun<Map.Entry<K,V>, ? extends U> transformer,
3890 Action<U> action) {
3891 if (transformer == null || action == null)
3892 throw new NullPointerException();
3893 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3894 V v; U u;
3895 while ((v = it.advance()) != null) {
3896 if ((u = transformer.apply(entryFor((K)it.nextKey, v))) != null)
3897 action.apply(u);
3898 }
3899 }
3900
3901 /**
3902 * Returns a non-null result from applying the given search
3903 * function on each entry, or null if none.
3904 *
3905 * @param searchFunction a function returning a non-null
3906 * result on success, else null
3907 * @return a non-null result from applying the given search
3908 * function on each entry, or null if none
3909 */
3910 @SuppressWarnings("unchecked") public <U> U searchEntriesSequentially
3911 (Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
3912 if (searchFunction == null) throw new NullPointerException();
3913 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3914 V v; U u;
3915 while ((v = it.advance()) != null) {
3916 if ((u = searchFunction.apply(entryFor((K)it.nextKey, v))) != null)
3917 return u;
3918 }
3919 return null;
3920 }
3921
3922 /**
3923 * Returns the result of accumulating all entries using the
3924 * given reducer to combine values, or null if none.
3925 *
3926 * @param reducer a commutative associative combining function
3927 * @return the result of accumulating all entries
3928 */
3929 @SuppressWarnings("unchecked") public Map.Entry<K,V> reduceEntriesSequentially
3930 (BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3931 if (reducer == null) throw new NullPointerException();
3932 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3933 Map.Entry<K,V> r = null; V v;
3934 while ((v = it.advance()) != null) {
3935 Map.Entry<K,V> u = entryFor((K)it.nextKey, v);
3936 r = (r == null) ? u : reducer.apply(r, u);
3937 }
3938 return r;
3939 }
3940
3941 /**
3942 * Returns the result of accumulating the given transformation
3943 * of all entries using the given reducer to combine values,
3944 * or null if none.
3945 *
3946 * @param transformer a function returning the transformation
3947 * for an element, or null if there is no transformation (in
3948 * which case it is not combined)
3949 * @param reducer a commutative associative combining function
3950 * @return the result of accumulating the given transformation
3951 * of all entries
3952 */
3953 @SuppressWarnings("unchecked") public <U> U reduceEntriesSequentially
3954 (Fun<Map.Entry<K,V>, ? extends U> transformer,
3955 BiFun<? super U, ? super U, ? extends U> reducer) {
3956 if (transformer == null || reducer == null)
3957 throw new NullPointerException();
3958 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3959 U r = null, u; V v;
3960 while ((v = it.advance()) != null) {
3961 if ((u = transformer.apply(entryFor((K)it.nextKey, v))) != null)
3962 r = (r == null) ? u : reducer.apply(r, u);
3963 }
3964 return r;
3965 }
3966
3967 /**
3968 * Returns the result of accumulating the given transformation
3969 * of all entries using the given reducer to combine values,
3970 * and the given basis as an identity value.
3971 *
3972 * @param transformer a function returning the transformation
3973 * for an element
3974 * @param basis the identity (initial default value) for the reduction
3975 * @param reducer a commutative associative combining function
3976 * @return the result of accumulating the given transformation
3977 * of all entries
3978 */
3979 @SuppressWarnings("unchecked") public double reduceEntriesToDoubleSequentially
3980 (ObjectToDouble<Map.Entry<K,V>> transformer,
3981 double basis,
3982 DoubleByDoubleToDouble reducer) {
3983 if (transformer == null || reducer == null)
3984 throw new NullPointerException();
3985 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3986 double r = basis; V v;
3987 while ((v = it.advance()) != null)
3988 r = reducer.apply(r, transformer.apply(entryFor((K)it.nextKey, v)));
3989 return r;
3990 }
3991
3992 /**
3993 * Returns the result of accumulating the given transformation
3994 * of all entries using the given reducer to combine values,
3995 * and the given basis as an identity value.
3996 *
3997 * @param transformer a function returning the transformation
3998 * for an element
3999 * @param basis the identity (initial default value) for the reduction
4000 * @param reducer a commutative associative combining function
4001 * @return the result of accumulating the given transformation
4002 * of all entries
4003 */
4004 @SuppressWarnings("unchecked") public long reduceEntriesToLongSequentially
4005 (ObjectToLong<Map.Entry<K,V>> transformer,
4006 long basis,
4007 LongByLongToLong reducer) {
4008 if (transformer == null || reducer == null)
4009 throw new NullPointerException();
4010 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4011 long r = basis; V v;
4012 while ((v = it.advance()) != null)
4013 r = reducer.apply(r, transformer.apply(entryFor((K)it.nextKey, v)));
4014 return r;
4015 }
4016
4017 /**
4018 * Returns the result of accumulating the given transformation
4019 * of all entries using the given reducer to combine values,
4020 * and the given basis as an identity value.
4021 *
4022 * @param transformer a function returning the transformation
4023 * for an element
4024 * @param basis the identity (initial default value) for the reduction
4025 * @param reducer a commutative associative combining function
4026 * @return the result of accumulating the given transformation
4027 * of all entries
4028 */
4029 @SuppressWarnings("unchecked") public int reduceEntriesToIntSequentially
4030 (ObjectToInt<Map.Entry<K,V>> transformer,
4031 int basis,
4032 IntByIntToInt reducer) {
4033 if (transformer == null || reducer == null)
4034 throw new NullPointerException();
4035 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4036 int r = basis; V v;
4037 while ((v = it.advance()) != null)
4038 r = reducer.apply(r, transformer.apply(entryFor((K)it.nextKey, v)));
4039 return r;
4040 }
4041
4042 // Parallel bulk operations
4043
4044 /**
4045 * Performs the given action for each (key, value).
4046 *
4047 * @param action the action
4048 */
4049 public void forEachInParallel(BiAction<K,V> action) {
4050 ForkJoinTasks.forEach
4051 (this, action).invoke();
4052 }
4053
4054 /**
4055 * Performs the given action for each non-null transformation
4056 * of each (key, value).
4057 *
4058 * @param transformer a function returning the transformation
4059 * for an element, or null if there is no transformation (in
4060 * which case the action is not applied)
4061 * @param action the action
4062 */
4063 public <U> void forEachInParallel
4064 (BiFun<? super K, ? super V, ? extends U> transformer,
4065 Action<U> action) {
4066 ForkJoinTasks.forEach
4067 (this, transformer, action).invoke();
4068 }
4069
4070 /**
4071 * Returns a non-null result from applying the given search
4072 * function on each (key, value), or null if none. Upon
4073 * success, further element processing is suppressed and the
4074 * results of any other parallel invocations of the search
4075 * function are ignored.
4076 *
4077 * @param searchFunction a function returning a non-null
4078 * result on success, else null
4079 * @return a non-null result from applying the given search
4080 * function on each (key, value), or null if none
4081 */
4082 public <U> U searchInParallel
4083 (BiFun<? super K, ? super V, ? extends U> searchFunction) {
4084 return ForkJoinTasks.search
4085 (this, searchFunction).invoke();
4086 }
4087
4088 /**
4089 * Returns the result of accumulating the given transformation
4090 * of all (key, value) pairs using the given reducer to
4091 * combine values, or null if none.
4092 *
4093 * @param transformer a function returning the transformation
4094 * for an element, or null if there is no transformation (in
4095 * which case it is not combined)
4096 * @param reducer a commutative associative combining function
4097 * @return the result of accumulating the given transformation
4098 * of all (key, value) pairs
4099 */
4100 public <U> U reduceInParallel
4101 (BiFun<? super K, ? super V, ? extends U> transformer,
4102 BiFun<? super U, ? super U, ? extends U> reducer) {
4103 return ForkJoinTasks.reduce
4104 (this, transformer, reducer).invoke();
4105 }
4106
4107 /**
4108 * Returns the result of accumulating the given transformation
4109 * of all (key, value) pairs using the given reducer to
4110 * combine values, and the given basis as an identity value.
4111 *
4112 * @param transformer a function returning the transformation
4113 * for an element
4114 * @param basis the identity (initial default value) for the reduction
4115 * @param reducer a commutative associative combining function
4116 * @return the result of accumulating the given transformation
4117 * of all (key, value) pairs
4118 */
4119 public double reduceToDoubleInParallel
4120 (ObjectByObjectToDouble<? super K, ? super V> transformer,
4121 double basis,
4122 DoubleByDoubleToDouble reducer) {
4123 return ForkJoinTasks.reduceToDouble
4124 (this, transformer, basis, reducer).invoke();
4125 }
4126
4127 /**
4128 * Returns the result of accumulating the given transformation
4129 * of all (key, value) pairs using the given reducer to
4130 * combine values, and the given basis as an identity value.
4131 *
4132 * @param transformer a function returning the transformation
4133 * for an element
4134 * @param basis the identity (initial default value) for the reduction
4135 * @param reducer a commutative associative combining function
4136 * @return the result of accumulating the given transformation
4137 * of all (key, value) pairs
4138 */
4139 public long reduceToLongInParallel
4140 (ObjectByObjectToLong<? super K, ? super V> transformer,
4141 long basis,
4142 LongByLongToLong reducer) {
4143 return ForkJoinTasks.reduceToLong
4144 (this, transformer, basis, reducer).invoke();
4145 }
4146
4147 /**
4148 * Returns the result of accumulating the given transformation
4149 * of all (key, value) pairs using the given reducer to
4150 * combine values, and the given basis as an identity value.
4151 *
4152 * @param transformer a function returning the transformation
4153 * for an element
4154 * @param basis the identity (initial default value) for the reduction
4155 * @param reducer a commutative associative combining function
4156 * @return the result of accumulating the given transformation
4157 * of all (key, value) pairs
4158 */
4159 public int reduceToIntInParallel
4160 (ObjectByObjectToInt<? super K, ? super V> transformer,
4161 int basis,
4162 IntByIntToInt reducer) {
4163 return ForkJoinTasks.reduceToInt
4164 (this, transformer, basis, reducer).invoke();
4165 }
4166
4167 /**
4168 * Performs the given action for each key.
4169 *
4170 * @param action the action
4171 */
4172 public void forEachKeyInParallel(Action<K> action) {
4173 ForkJoinTasks.forEachKey
4174 (this, action).invoke();
4175 }
4176
4177 /**
4178 * Performs the given action for each non-null transformation
4179 * of each key.
4180 *
4181 * @param transformer a function returning the transformation
4182 * for an element, or null if there is no transformation (in
4183 * which case the action is not applied)
4184 * @param action the action
4185 */
4186 public <U> void forEachKeyInParallel
4187 (Fun<? super K, ? extends U> transformer,
4188 Action<U> action) {
4189 ForkJoinTasks.forEachKey
4190 (this, transformer, action).invoke();
4191 }
4192
4193 /**
4194 * Returns a non-null result from applying the given search
4195 * function on each key, or null if none. Upon success,
4196 * further element processing is suppressed and the results of
4197 * any other parallel invocations of the search function are
4198 * ignored.
4199 *
4200 * @param searchFunction a function returning a non-null
4201 * result on success, else null
4202 * @return a non-null result from applying the given search
4203 * function on each key, or null if none
4204 */
4205 public <U> U searchKeysInParallel
4206 (Fun<? super K, ? extends U> searchFunction) {
4207 return ForkJoinTasks.searchKeys
4208 (this, searchFunction).invoke();
4209 }
4210
4211 /**
4212 * Returns the result of accumulating all keys using the given
4213 * reducer to combine values, or null if none.
4214 *
4215 * @param reducer a commutative associative combining function
4216 * @return the result of accumulating all keys using the given
4217 * reducer to combine values, or null if none
4218 */
4219 public K reduceKeysInParallel
4220 (BiFun<? super K, ? super K, ? extends K> reducer) {
4221 return ForkJoinTasks.reduceKeys
4222 (this, reducer).invoke();
4223 }
4224
4225 /**
4226 * Returns the result of accumulating the given transformation
4227 * of all keys using the given reducer to combine values, or
4228 * null if none.
4229 *
4230 * @param transformer a function returning the transformation
4231 * for an element, or null if there is no transformation (in
4232 * which case it is not combined)
4233 * @param reducer a commutative associative combining function
4234 * @return the result of accumulating the given transformation
4235 * of all keys
4236 */
4237 public <U> U reduceKeysInParallel
4238 (Fun<? super K, ? extends U> transformer,
4239 BiFun<? super U, ? super U, ? extends U> reducer) {
4240 return ForkJoinTasks.reduceKeys
4241 (this, transformer, reducer).invoke();
4242 }
4243
4244 /**
4245 * Returns the result of accumulating the given transformation
4246 * of all keys using the given reducer to combine values, and
4247 * the given basis as an identity value.
4248 *
4249 * @param transformer a function returning the transformation
4250 * for an element
4251 * @param basis the identity (initial default value) for the reduction
4252 * @param reducer a commutative associative combining function
4253 * @return the result of accumulating the given transformation
4254 * of all keys
4255 */
4256 public double reduceKeysToDoubleInParallel
4257 (ObjectToDouble<? super K> transformer,
4258 double basis,
4259 DoubleByDoubleToDouble reducer) {
4260 return ForkJoinTasks.reduceKeysToDouble
4261 (this, transformer, basis, reducer).invoke();
4262 }
4263
4264 /**
4265 * Returns the result of accumulating the given transformation
4266 * of all keys using the given reducer to combine values, and
4267 * the given basis as an identity value.
4268 *
4269 * @param transformer a function returning the transformation
4270 * for an element
4271 * @param basis the identity (initial default value) for the reduction
4272 * @param reducer a commutative associative combining function
4273 * @return the result of accumulating the given transformation
4274 * of all keys
4275 */
4276 public long reduceKeysToLongInParallel
4277 (ObjectToLong<? super K> transformer,
4278 long basis,
4279 LongByLongToLong reducer) {
4280 return ForkJoinTasks.reduceKeysToLong
4281 (this, transformer, basis, reducer).invoke();
4282 }
4283
4284 /**
4285 * Returns the result of accumulating the given transformation
4286 * of all keys using the given reducer to combine values, and
4287 * the given basis as an identity value.
4288 *
4289 * @param transformer a function returning the transformation
4290 * for an element
4291 * @param basis the identity (initial default value) for the reduction
4292 * @param reducer a commutative associative combining function
4293 * @return the result of accumulating the given transformation
4294 * of all keys
4295 */
4296 public int reduceKeysToIntInParallel
4297 (ObjectToInt<? super K> transformer,
4298 int basis,
4299 IntByIntToInt reducer) {
4300 return ForkJoinTasks.reduceKeysToInt
4301 (this, transformer, basis, reducer).invoke();
4302 }
4303
4304 /**
4305 * Performs the given action for each value.
4306 *
4307 * @param action the action
4308 */
4309 public void forEachValueInParallel(Action<V> action) {
4310 ForkJoinTasks.forEachValue
4311 (this, action).invoke();
4312 }
4313
4314 /**
4315 * Performs the given action for each non-null transformation
4316 * of each value.
4317 *
4318 * @param transformer a function returning the transformation
4319 * for an element, or null if there is no transformation (in
4320 * which case the action is not applied)
4321 */
4322 public <U> void forEachValueInParallel
4323 (Fun<? super V, ? extends U> transformer,
4324 Action<U> action) {
4325 ForkJoinTasks.forEachValue
4326 (this, transformer, action).invoke();
4327 }
4328
4329 /**
4330 * Returns a non-null result from applying the given search
4331 * function on each value, or null if none. Upon success,
4332 * further element processing is suppressed and the results of
4333 * any other parallel invocations of the search function are
4334 * ignored.
4335 *
4336 * @param searchFunction a function returning a non-null
4337 * result on success, else null
4338 * @return a non-null result from applying the given search
4339 * function on each value, or null if none
4340 */
4341 public <U> U searchValuesInParallel
4342 (Fun<? super V, ? extends U> searchFunction) {
4343 return ForkJoinTasks.searchValues
4344 (this, searchFunction).invoke();
4345 }
4346
4347 /**
4348 * Returns the result of accumulating all values using the
4349 * given reducer to combine values, or null if none.
4350 *
4351 * @param reducer a commutative associative combining function
4352 * @return the result of accumulating all values
4353 */
4354 public V reduceValuesInParallel
4355 (BiFun<? super V, ? super V, ? extends V> reducer) {
4356 return ForkJoinTasks.reduceValues
4357 (this, reducer).invoke();
4358 }
4359
4360 /**
4361 * Returns the result of accumulating the given transformation
4362 * of all values using the given reducer to combine values, or
4363 * null if none.
4364 *
4365 * @param transformer a function returning the transformation
4366 * for an element, or null if there is no transformation (in
4367 * which case it is not combined)
4368 * @param reducer a commutative associative combining function
4369 * @return the result of accumulating the given transformation
4370 * of all values
4371 */
4372 public <U> U reduceValuesInParallel
4373 (Fun<? super V, ? extends U> transformer,
4374 BiFun<? super U, ? super U, ? extends U> reducer) {
4375 return ForkJoinTasks.reduceValues
4376 (this, transformer, reducer).invoke();
4377 }
4378
4379 /**
4380 * Returns the result of accumulating the given transformation
4381 * of all values using the given reducer to combine values,
4382 * and the given basis as an identity value.
4383 *
4384 * @param transformer a function returning the transformation
4385 * for an element
4386 * @param basis the identity (initial default value) for the reduction
4387 * @param reducer a commutative associative combining function
4388 * @return the result of accumulating the given transformation
4389 * of all values
4390 */
4391 public double reduceValuesToDoubleInParallel
4392 (ObjectToDouble<? super V> transformer,
4393 double basis,
4394 DoubleByDoubleToDouble reducer) {
4395 return ForkJoinTasks.reduceValuesToDouble
4396 (this, transformer, basis, reducer).invoke();
4397 }
4398
4399 /**
4400 * Returns the result of accumulating the given transformation
4401 * of all values using the given reducer to combine values,
4402 * and the given basis as an identity value.
4403 *
4404 * @param transformer a function returning the transformation
4405 * for an element
4406 * @param basis the identity (initial default value) for the reduction
4407 * @param reducer a commutative associative combining function
4408 * @return the result of accumulating the given transformation
4409 * of all values
4410 */
4411 public long reduceValuesToLongInParallel
4412 (ObjectToLong<? super V> transformer,
4413 long basis,
4414 LongByLongToLong reducer) {
4415 return ForkJoinTasks.reduceValuesToLong
4416 (this, transformer, basis, reducer).invoke();
4417 }
4418
4419 /**
4420 * Returns the result of accumulating the given transformation
4421 * of all values using the given reducer to combine values,
4422 * and the given basis as an identity value.
4423 *
4424 * @param transformer a function returning the transformation
4425 * for an element
4426 * @param basis the identity (initial default value) for the reduction
4427 * @param reducer a commutative associative combining function
4428 * @return the result of accumulating the given transformation
4429 * of all values
4430 */
4431 public int reduceValuesToIntInParallel
4432 (ObjectToInt<? super V> transformer,
4433 int basis,
4434 IntByIntToInt reducer) {
4435 return ForkJoinTasks.reduceValuesToInt
4436 (this, transformer, basis, reducer).invoke();
4437 }
4438
4439 /**
4440 * Performs the given action for each entry.
4441 *
4442 * @param action the action
4443 */
4444 public void forEachEntryInParallel(Action<Map.Entry<K,V>> action) {
4445 ForkJoinTasks.forEachEntry
4446 (this, action).invoke();
4447 }
4448
4449 /**
4450 * Performs the given action for each non-null transformation
4451 * of each entry.
4452 *
4453 * @param transformer a function returning the transformation
4454 * for an element, or null if there is no transformation (in
4455 * which case the action is not applied)
4456 * @param action the action
4457 */
4458 public <U> void forEachEntryInParallel
4459 (Fun<Map.Entry<K,V>, ? extends U> transformer,
4460 Action<U> action) {
4461 ForkJoinTasks.forEachEntry
4462 (this, transformer, action).invoke();
4463 }
4464
4465 /**
4466 * Returns a non-null result from applying the given search
4467 * function on each entry, or null if none. Upon success,
4468 * further element processing is suppressed and the results of
4469 * any other parallel invocations of the search function are
4470 * ignored.
4471 *
4472 * @param searchFunction a function returning a non-null
4473 * result on success, else null
4474 * @return a non-null result from applying the given search
4475 * function on each entry, or null if none
4476 */
4477 public <U> U searchEntriesInParallel
4478 (Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4479 return ForkJoinTasks.searchEntries
4480 (this, searchFunction).invoke();
4481 }
4482
4483 /**
4484 * Returns the result of accumulating all entries using the
4485 * given reducer to combine values, or null if none.
4486 *
4487 * @param reducer a commutative associative combining function
4488 * @return the result of accumulating all entries
4489 */
4490 public Map.Entry<K,V> reduceEntriesInParallel
4491 (BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4492 return ForkJoinTasks.reduceEntries
4493 (this, reducer).invoke();
4494 }
4495
4496 /**
4497 * Returns the result of accumulating the given transformation
4498 * of all entries using the given reducer to combine values,
4499 * or null if none.
4500 *
4501 * @param transformer a function returning the transformation
4502 * for an element, or null if there is no transformation (in
4503 * which case it is not combined)
4504 * @param reducer a commutative associative combining function
4505 * @return the result of accumulating the given transformation
4506 * of all entries
4507 */
4508 public <U> U reduceEntriesInParallel
4509 (Fun<Map.Entry<K,V>, ? extends U> transformer,
4510 BiFun<? super U, ? super U, ? extends U> reducer) {
4511 return ForkJoinTasks.reduceEntries
4512 (this, transformer, reducer).invoke();
4513 }
4514
4515 /**
4516 * Returns the result of accumulating the given transformation
4517 * of all entries using the given reducer to combine values,
4518 * and the given basis as an identity value.
4519 *
4520 * @param transformer a function returning the transformation
4521 * for an element
4522 * @param basis the identity (initial default value) for the reduction
4523 * @param reducer a commutative associative combining function
4524 * @return the result of accumulating the given transformation
4525 * of all entries
4526 */
4527 public double reduceEntriesToDoubleInParallel
4528 (ObjectToDouble<Map.Entry<K,V>> transformer,
4529 double basis,
4530 DoubleByDoubleToDouble reducer) {
4531 return ForkJoinTasks.reduceEntriesToDouble
4532 (this, transformer, basis, reducer).invoke();
4533 }
4534
4535 /**
4536 * Returns the result of accumulating the given transformation
4537 * of all entries using the given reducer to combine values,
4538 * and the given basis as an identity value.
4539 *
4540 * @param transformer a function returning the transformation
4541 * for an element
4542 * @param basis the identity (initial default value) for the reduction
4543 * @param reducer a commutative associative combining function
4544 * @return the result of accumulating the given transformation
4545 * of all entries
4546 */
4547 public long reduceEntriesToLongInParallel
4548 (ObjectToLong<Map.Entry<K,V>> transformer,
4549 long basis,
4550 LongByLongToLong reducer) {
4551 return ForkJoinTasks.reduceEntriesToLong
4552 (this, transformer, basis, reducer).invoke();
4553 }
4554
4555 /**
4556 * Returns the result of accumulating the given transformation
4557 * of all entries using the given reducer to combine values,
4558 * and the given basis as an identity value.
4559 *
4560 * @param transformer a function returning the transformation
4561 * for an element
4562 * @param basis the identity (initial default value) for the reduction
4563 * @param reducer a commutative associative combining function
4564 * @return the result of accumulating the given transformation
4565 * of all entries
4566 */
4567 public int reduceEntriesToIntInParallel
4568 (ObjectToInt<Map.Entry<K,V>> transformer,
4569 int basis,
4570 IntByIntToInt reducer) {
4571 return ForkJoinTasks.reduceEntriesToInt
4572 (this, transformer, basis, reducer).invoke();
4573 }
4574
4575
4576 /* ----------------Views -------------- */
4577
4578 /**
4579 * Base class for views.
4580 */
4581 abstract static class CHMView<K, V> {
4582 final ConcurrentHashMapV8<K, V> map;
4583 CHMView(ConcurrentHashMapV8<K, V> map) { this.map = map; }
4584
4585 /**
4586 * Returns the map backing this view.
4587 *
4588 * @return the map backing this view
4589 */
4590 public ConcurrentHashMapV8<K,V> getMap() { return map; }
4591
4592 public final int size() { return map.size(); }
4593 public final boolean isEmpty() { return map.isEmpty(); }
4594 public final void clear() { map.clear(); }
4595
4596 // implementations below rely on concrete classes supplying these
4597 public abstract Iterator<?> iterator();
4598 public abstract boolean contains(Object o);
4599 public abstract boolean remove(Object o);
4600
4601 private static final String oomeMsg = "Required array size too large";
4602
4603 public final Object[] toArray() {
4604 long sz = map.mappingCount();
4605 if (sz > (long)(MAX_ARRAY_SIZE))
4606 throw new OutOfMemoryError(oomeMsg);
4607 int n = (int)sz;
4608 Object[] r = new Object[n];
4609 int i = 0;
4610 Iterator<?> it = iterator();
4611 while (it.hasNext()) {
4612 if (i == n) {
4613 if (n >= MAX_ARRAY_SIZE)
4614 throw new OutOfMemoryError(oomeMsg);
4615 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4616 n = MAX_ARRAY_SIZE;
4617 else
4618 n += (n >>> 1) + 1;
4619 r = Arrays.copyOf(r, n);
4620 }
4621 r[i++] = it.next();
4622 }
4623 return (i == n) ? r : Arrays.copyOf(r, i);
4624 }
4625
4626 @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
4627 long sz = map.mappingCount();
4628 if (sz > (long)(MAX_ARRAY_SIZE))
4629 throw new OutOfMemoryError(oomeMsg);
4630 int m = (int)sz;
4631 T[] r = (a.length >= m) ? a :
4632 (T[])java.lang.reflect.Array
4633 .newInstance(a.getClass().getComponentType(), m);
4634 int n = r.length;
4635 int i = 0;
4636 Iterator<?> it = iterator();
4637 while (it.hasNext()) {
4638 if (i == n) {
4639 if (n >= MAX_ARRAY_SIZE)
4640 throw new OutOfMemoryError(oomeMsg);
4641 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4642 n = MAX_ARRAY_SIZE;
4643 else
4644 n += (n >>> 1) + 1;
4645 r = Arrays.copyOf(r, n);
4646 }
4647 r[i++] = (T)it.next();
4648 }
4649 if (a == r && i < n) {
4650 r[i] = null; // null-terminate
4651 return r;
4652 }
4653 return (i == n) ? r : Arrays.copyOf(r, i);
4654 }
4655
4656 public final int hashCode() {
4657 int h = 0;
4658 for (Iterator<?> it = iterator(); it.hasNext();)
4659 h += it.next().hashCode();
4660 return h;
4661 }
4662
4663 public final String toString() {
4664 StringBuilder sb = new StringBuilder();
4665 sb.append('[');
4666 Iterator<?> it = iterator();
4667 if (it.hasNext()) {
4668 for (;;) {
4669 Object e = it.next();
4670 sb.append(e == this ? "(this Collection)" : e);
4671 if (!it.hasNext())
4672 break;
4673 sb.append(',').append(' ');
4674 }
4675 }
4676 return sb.append(']').toString();
4677 }
4678
4679 public final boolean containsAll(Collection<?> c) {
4680 if (c != this) {
4681 for (Iterator<?> it = c.iterator(); it.hasNext();) {
4682 Object e = it.next();
4683 if (e == null || !contains(e))
4684 return false;
4685 }
4686 }
4687 return true;
4688 }
4689
4690 public final boolean removeAll(Collection<?> c) {
4691 boolean modified = false;
4692 for (Iterator<?> it = iterator(); it.hasNext();) {
4693 if (c.contains(it.next())) {
4694 it.remove();
4695 modified = true;
4696 }
4697 }
4698 return modified;
4699 }
4700
4701 public final boolean retainAll(Collection<?> c) {
4702 boolean modified = false;
4703 for (Iterator<?> it = iterator(); it.hasNext();) {
4704 if (!c.contains(it.next())) {
4705 it.remove();
4706 modified = true;
4707 }
4708 }
4709 return modified;
4710 }
4711
4712 }
4713
4714 /**
4715 * A view of a ConcurrentHashMapV8 as a {@link Set} of keys, in
4716 * which additions may optionally be enabled by mapping to a
4717 * common value. This class cannot be directly instantiated. See
4718 * {@link #keySet()}, {@link #keySet(Object)}, {@link #newKeySet()},
4719 * {@link #newKeySet(int)}.
4720 */
4721 public static class KeySetView<K,V> extends CHMView<K,V>
4722 implements Set<K>, java.io.Serializable {
4723 private static final long serialVersionUID = 7249069246763182397L;
4724 private final V value;
4725 KeySetView(ConcurrentHashMapV8<K, V> map, V value) { // non-public
4726 super(map);
4727 this.value = value;
4728 }
4729
4730 /**
4731 * Returns the default mapped value for additions,
4732 * or {@code null} if additions are not supported.
4733 *
4734 * @return the default mapped value for additions, or {@code null}
4735 * if not supported
4736 */
4737 public V getMappedValue() { return value; }
4738
4739 // implement Set API
4740
4741 public boolean contains(Object o) { return map.containsKey(o); }
4742 public boolean remove(Object o) { return map.remove(o) != null; }
4743
4744 /**
4745 * Returns a "weakly consistent" iterator that will never
4746 * throw {@link ConcurrentModificationException}, and
4747 * guarantees to traverse elements as they existed upon
4748 * construction of the iterator, and may (but is not
4749 * guaranteed to) reflect any modifications subsequent to
4750 * construction.
4751 *
4752 * @return an iterator over the keys of this map
4753 */
4754 public Iterator<K> iterator() { return new KeyIterator<K,V>(map); }
4755 public boolean add(K e) {
4756 V v;
4757 if ((v = value) == null)
4758 throw new UnsupportedOperationException();
4759 if (e == null)
4760 throw new NullPointerException();
4761 return map.internalPut(e, v, true) == null;
4762 }
4763 public boolean addAll(Collection<? extends K> c) {
4764 boolean added = false;
4765 V v;
4766 if ((v = value) == null)
4767 throw new UnsupportedOperationException();
4768 for (K e : c) {
4769 if (e == null)
4770 throw new NullPointerException();
4771 if (map.internalPut(e, v, true) == null)
4772 added = true;
4773 }
4774 return added;
4775 }
4776 public boolean equals(Object o) {
4777 Set<?> c;
4778 return ((o instanceof Set) &&
4779 ((c = (Set<?>)o) == this ||
4780 (containsAll(c) && c.containsAll(this))));
4781 }
4782 }
4783
4784 /**
4785 * A view of a ConcurrentHashMapV8 as a {@link Collection} of
4786 * values, in which additions are disabled. This class cannot be
4787 * directly instantiated. See {@link #values},
4788 *
4789 * <p>The view's {@code iterator} is a "weakly consistent" iterator
4790 * that will never throw {@link ConcurrentModificationException},
4791 * and guarantees to traverse elements as they existed upon
4792 * construction of the iterator, and may (but is not guaranteed to)
4793 * reflect any modifications subsequent to construction.
4794 */
4795 public static final class ValuesView<K,V> extends CHMView<K,V>
4796 implements Collection<V> {
4797 ValuesView(ConcurrentHashMapV8<K, V> map) { super(map); }
4798 public final boolean contains(Object o) { return map.containsValue(o); }
4799 public final boolean remove(Object o) {
4800 if (o != null) {
4801 Iterator<V> it = new ValueIterator<K,V>(map);
4802 while (it.hasNext()) {
4803 if (o.equals(it.next())) {
4804 it.remove();
4805 return true;
4806 }
4807 }
4808 }
4809 return false;
4810 }
4811
4812 /**
4813 * Returns a "weakly consistent" iterator that will never
4814 * throw {@link ConcurrentModificationException}, and
4815 * guarantees to traverse elements as they existed upon
4816 * construction of the iterator, and may (but is not
4817 * guaranteed to) reflect any modifications subsequent to
4818 * construction.
4819 *
4820 * @return an iterator over the values of this map
4821 */
4822 public final Iterator<V> iterator() {
4823 return new ValueIterator<K,V>(map);
4824 }
4825 public final boolean add(V e) {
4826 throw new UnsupportedOperationException();
4827 }
4828 public final boolean addAll(Collection<? extends V> c) {
4829 throw new UnsupportedOperationException();
4830 }
4831
4832 }
4833
4834 /**
4835 * A view of a ConcurrentHashMapV8 as a {@link Set} of (key, value)
4836 * entries. This class cannot be directly instantiated. See
4837 * {@link #entrySet()}.
4838 */
4839 public static final class EntrySetView<K,V> extends CHMView<K,V>
4840 implements Set<Map.Entry<K,V>> {
4841 EntrySetView(ConcurrentHashMapV8<K, V> map) { super(map); }
4842 public final boolean contains(Object o) {
4843 Object k, v, r; Map.Entry<?,?> e;
4844 return ((o instanceof Map.Entry) &&
4845 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4846 (r = map.get(k)) != null &&
4847 (v = e.getValue()) != null &&
4848 (v == r || v.equals(r)));
4849 }
4850 public final boolean remove(Object o) {
4851 Object k, v; Map.Entry<?,?> e;
4852 return ((o instanceof Map.Entry) &&
4853 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4854 (v = e.getValue()) != null &&
4855 map.remove(k, v));
4856 }
4857
4858 /**
4859 * Returns a "weakly consistent" iterator that will never
4860 * throw {@link ConcurrentModificationException}, and
4861 * guarantees to traverse elements as they existed upon
4862 * construction of the iterator, and may (but is not
4863 * guaranteed to) reflect any modifications subsequent to
4864 * construction.
4865 *
4866 * @return an iterator over the entries of this map
4867 */
4868 public final Iterator<Map.Entry<K,V>> iterator() {
4869 return new EntryIterator<K,V>(map);
4870 }
4871
4872 public final boolean add(Entry<K,V> e) {
4873 K key = e.getKey();
4874 V value = e.getValue();
4875 if (key == null || value == null)
4876 throw new NullPointerException();
4877 return map.internalPut(key, value, false) == null;
4878 }
4879 public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4880 boolean added = false;
4881 for (Entry<K,V> e : c) {
4882 if (add(e))
4883 added = true;
4884 }
4885 return added;
4886 }
4887 public boolean equals(Object o) {
4888 Set<?> c;
4889 return ((o instanceof Set) &&
4890 ((c = (Set<?>)o) == this ||
4891 (containsAll(c) && c.containsAll(this))));
4892 }
4893 }
4894
4895 // ---------------------------------------------------------------------
4896
4897 /**
4898 * Predefined tasks for performing bulk parallel operations on
4899 * ConcurrentHashMapV8s. These tasks follow the forms and rules used
4900 * for bulk operations. Each method has the same name, but returns
4901 * a task rather than invoking it. These methods may be useful in
4902 * custom applications such as submitting a task without waiting
4903 * for completion, using a custom pool, or combining with other
4904 * tasks.
4905 */
4906 public static class ForkJoinTasks {
4907 private ForkJoinTasks() {}
4908
4909 /**
4910 * Returns a task that when invoked, performs the given
4911 * action for each (key, value)
4912 *
4913 * @param map the map
4914 * @param action the action
4915 * @return the task
4916 */
4917 public static <K,V> ForkJoinTask<Void> forEach
4918 (ConcurrentHashMapV8<K,V> map,
4919 BiAction<K,V> action) {
4920 if (action == null) throw new NullPointerException();
4921 return new ForEachMappingTask<K,V>(map, null, -1, action);
4922 }
4923
4924 /**
4925 * Returns a task that when invoked, performs the given
4926 * action for each non-null transformation of each (key, value)
4927 *
4928 * @param map the map
4929 * @param transformer a function returning the transformation
4930 * for an element, or null if there is no transformation (in
4931 * which case the action is not applied)
4932 * @param action the action
4933 * @return the task
4934 */
4935 public static <K,V,U> ForkJoinTask<Void> forEach
4936 (ConcurrentHashMapV8<K,V> map,
4937 BiFun<? super K, ? super V, ? extends U> transformer,
4938 Action<U> action) {
4939 if (transformer == null || action == null)
4940 throw new NullPointerException();
4941 return new ForEachTransformedMappingTask<K,V,U>
4942 (map, null, -1, transformer, action);
4943 }
4944
4945 /**
4946 * Returns a task that when invoked, returns a non-null result
4947 * from applying the given search function on each (key,
4948 * value), or null if none. Upon success, further element
4949 * processing is suppressed and the results of any other
4950 * parallel invocations of the search function are ignored.
4951 *
4952 * @param map the map
4953 * @param searchFunction a function returning a non-null
4954 * result on success, else null
4955 * @return the task
4956 */
4957 public static <K,V,U> ForkJoinTask<U> search
4958 (ConcurrentHashMapV8<K,V> map,
4959 BiFun<? super K, ? super V, ? extends U> searchFunction) {
4960 if (searchFunction == null) throw new NullPointerException();
4961 return new SearchMappingsTask<K,V,U>
4962 (map, null, -1, searchFunction,
4963 new AtomicReference<U>());
4964 }
4965
4966 /**
4967 * Returns a task that when invoked, returns the result of
4968 * accumulating the given transformation of all (key, value) pairs
4969 * using the given reducer to combine values, or null if none.
4970 *
4971 * @param map the map
4972 * @param transformer a function returning the transformation
4973 * for an element, or null if there is no transformation (in
4974 * which case it is not combined)
4975 * @param reducer a commutative associative combining function
4976 * @return the task
4977 */
4978 public static <K,V,U> ForkJoinTask<U> reduce
4979 (ConcurrentHashMapV8<K,V> map,
4980 BiFun<? super K, ? super V, ? extends U> transformer,
4981 BiFun<? super U, ? super U, ? extends U> reducer) {
4982 if (transformer == null || reducer == null)
4983 throw new NullPointerException();
4984 return new MapReduceMappingsTask<K,V,U>
4985 (map, null, -1, null, transformer, reducer);
4986 }
4987
4988 /**
4989 * Returns a task that when invoked, returns the result of
4990 * accumulating the given transformation of all (key, value) pairs
4991 * using the given reducer to combine values, and the given
4992 * basis as an identity value.
4993 *
4994 * @param map the map
4995 * @param transformer a function returning the transformation
4996 * for an element
4997 * @param basis the identity (initial default value) for the reduction
4998 * @param reducer a commutative associative combining function
4999 * @return the task
5000 */
5001 public static <K,V> ForkJoinTask<Double> reduceToDouble
5002 (ConcurrentHashMapV8<K,V> map,
5003 ObjectByObjectToDouble<? super K, ? super V> transformer,
5004 double basis,
5005 DoubleByDoubleToDouble reducer) {
5006 if (transformer == null || reducer == null)
5007 throw new NullPointerException();
5008 return new MapReduceMappingsToDoubleTask<K,V>
5009 (map, null, -1, null, transformer, basis, reducer);
5010 }
5011
5012 /**
5013 * Returns a task that when invoked, returns the result of
5014 * accumulating the given transformation of all (key, value) pairs
5015 * using the given reducer to combine values, and the given
5016 * basis as an identity value.
5017 *
5018 * @param map the map
5019 * @param transformer a function returning the transformation
5020 * for an element
5021 * @param basis the identity (initial default value) for the reduction
5022 * @param reducer a commutative associative combining function
5023 * @return the task
5024 */
5025 public static <K,V> ForkJoinTask<Long> reduceToLong
5026 (ConcurrentHashMapV8<K,V> map,
5027 ObjectByObjectToLong<? super K, ? super V> transformer,
5028 long basis,
5029 LongByLongToLong reducer) {
5030 if (transformer == null || reducer == null)
5031 throw new NullPointerException();
5032 return new MapReduceMappingsToLongTask<K,V>
5033 (map, null, -1, null, transformer, basis, reducer);
5034 }
5035
5036 /**
5037 * Returns a task that when invoked, returns the result of
5038 * accumulating the given transformation of all (key, value) pairs
5039 * using the given reducer to combine values, and the given
5040 * basis as an identity value.
5041 *
5042 * @param transformer a function returning the transformation
5043 * for an element
5044 * @param basis the identity (initial default value) for the reduction
5045 * @param reducer a commutative associative combining function
5046 * @return the task
5047 */
5048 public static <K,V> ForkJoinTask<Integer> reduceToInt
5049 (ConcurrentHashMapV8<K,V> map,
5050 ObjectByObjectToInt<? super K, ? super V> transformer,
5051 int basis,
5052 IntByIntToInt reducer) {
5053 if (transformer == null || reducer == null)
5054 throw new NullPointerException();
5055 return new MapReduceMappingsToIntTask<K,V>
5056 (map, null, -1, null, transformer, basis, reducer);
5057 }
5058
5059 /**
5060 * Returns a task that when invoked, performs the given action
5061 * for each key.
5062 *
5063 * @param map the map
5064 * @param action the action
5065 * @return the task
5066 */
5067 public static <K,V> ForkJoinTask<Void> forEachKey
5068 (ConcurrentHashMapV8<K,V> map,
5069 Action<K> action) {
5070 if (action == null) throw new NullPointerException();
5071 return new ForEachKeyTask<K,V>(map, null, -1, action);
5072 }
5073
5074 /**
5075 * Returns a task that when invoked, performs the given action
5076 * for each non-null transformation of each key.
5077 *
5078 * @param map the map
5079 * @param transformer a function returning the transformation
5080 * for an element, or null if there is no transformation (in
5081 * which case the action is not applied)
5082 * @param action the action
5083 * @return the task
5084 */
5085 public static <K,V,U> ForkJoinTask<Void> forEachKey
5086 (ConcurrentHashMapV8<K,V> map,
5087 Fun<? super K, ? extends U> transformer,
5088 Action<U> action) {
5089 if (transformer == null || action == null)
5090 throw new NullPointerException();
5091 return new ForEachTransformedKeyTask<K,V,U>
5092 (map, null, -1, transformer, action);
5093 }
5094
5095 /**
5096 * Returns a task that when invoked, returns a non-null result
5097 * from applying the given search function on each key, or
5098 * null if none. Upon success, further element processing is
5099 * suppressed and the results of any other parallel
5100 * invocations of the search function are ignored.
5101 *
5102 * @param map the map
5103 * @param searchFunction a function returning a non-null
5104 * result on success, else null
5105 * @return the task
5106 */
5107 public static <K,V,U> ForkJoinTask<U> searchKeys
5108 (ConcurrentHashMapV8<K,V> map,
5109 Fun<? super K, ? extends U> searchFunction) {
5110 if (searchFunction == null) throw new NullPointerException();
5111 return new SearchKeysTask<K,V,U>
5112 (map, null, -1, searchFunction,
5113 new AtomicReference<U>());
5114 }
5115
5116 /**
5117 * Returns a task that when invoked, returns the result of
5118 * accumulating all keys using the given reducer to combine
5119 * values, or null if none.
5120 *
5121 * @param map the map
5122 * @param reducer a commutative associative combining function
5123 * @return the task
5124 */
5125 public static <K,V> ForkJoinTask<K> reduceKeys
5126 (ConcurrentHashMapV8<K,V> map,
5127 BiFun<? super K, ? super K, ? extends K> reducer) {
5128 if (reducer == null) throw new NullPointerException();
5129 return new ReduceKeysTask<K,V>
5130 (map, null, -1, null, reducer);
5131 }
5132
5133 /**
5134 * Returns a task that when invoked, returns the result of
5135 * accumulating the given transformation of all keys using the given
5136 * reducer to combine values, or null if none.
5137 *
5138 * @param map the map
5139 * @param transformer a function returning the transformation
5140 * for an element, or null if there is no transformation (in
5141 * which case it is not combined)
5142 * @param reducer a commutative associative combining function
5143 * @return the task
5144 */
5145 public static <K,V,U> ForkJoinTask<U> reduceKeys
5146 (ConcurrentHashMapV8<K,V> map,
5147 Fun<? super K, ? extends U> transformer,
5148 BiFun<? super U, ? super U, ? extends U> reducer) {
5149 if (transformer == null || reducer == null)
5150 throw new NullPointerException();
5151 return new MapReduceKeysTask<K,V,U>
5152 (map, null, -1, null, transformer, reducer);
5153 }
5154
5155 /**
5156 * Returns a task that when invoked, returns the result of
5157 * accumulating the given transformation of all keys using the given
5158 * reducer to combine values, and the given basis as an
5159 * identity value.
5160 *
5161 * @param map the map
5162 * @param transformer a function returning the transformation
5163 * for an element
5164 * @param basis the identity (initial default value) for the reduction
5165 * @param reducer a commutative associative combining function
5166 * @return the task
5167 */
5168 public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
5169 (ConcurrentHashMapV8<K,V> map,
5170 ObjectToDouble<? super K> transformer,
5171 double basis,
5172 DoubleByDoubleToDouble reducer) {
5173 if (transformer == null || reducer == null)
5174 throw new NullPointerException();
5175 return new MapReduceKeysToDoubleTask<K,V>
5176 (map, null, -1, null, transformer, basis, reducer);
5177 }
5178
5179 /**
5180 * Returns a task that when invoked, returns the result of
5181 * accumulating the given transformation of all keys using the given
5182 * reducer to combine values, and the given basis as an
5183 * identity value.
5184 *
5185 * @param map the map
5186 * @param transformer a function returning the transformation
5187 * for an element
5188 * @param basis the identity (initial default value) for the reduction
5189 * @param reducer a commutative associative combining function
5190 * @return the task
5191 */
5192 public static <K,V> ForkJoinTask<Long> reduceKeysToLong
5193 (ConcurrentHashMapV8<K,V> map,
5194 ObjectToLong<? super K> transformer,
5195 long basis,
5196 LongByLongToLong reducer) {
5197 if (transformer == null || reducer == null)
5198 throw new NullPointerException();
5199 return new MapReduceKeysToLongTask<K,V>
5200 (map, null, -1, null, transformer, basis, reducer);
5201 }
5202
5203 /**
5204 * Returns a task that when invoked, returns the result of
5205 * accumulating the given transformation of all keys using the given
5206 * reducer to combine values, and the given basis as an
5207 * identity value.
5208 *
5209 * @param map the map
5210 * @param transformer a function returning the transformation
5211 * for an element
5212 * @param basis the identity (initial default value) for the reduction
5213 * @param reducer a commutative associative combining function
5214 * @return the task
5215 */
5216 public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5217 (ConcurrentHashMapV8<K,V> map,
5218 ObjectToInt<? super K> transformer,
5219 int basis,
5220 IntByIntToInt reducer) {
5221 if (transformer == null || reducer == null)
5222 throw new NullPointerException();
5223 return new MapReduceKeysToIntTask<K,V>
5224 (map, null, -1, null, transformer, basis, reducer);
5225 }
5226
5227 /**
5228 * Returns a task that when invoked, performs the given action
5229 * for each value.
5230 *
5231 * @param map the map
5232 * @param action the action
5233 */
5234 public static <K,V> ForkJoinTask<Void> forEachValue
5235 (ConcurrentHashMapV8<K,V> map,
5236 Action<V> action) {
5237 if (action == null) throw new NullPointerException();
5238 return new ForEachValueTask<K,V>(map, null, -1, action);
5239 }
5240
5241 /**
5242 * Returns a task that when invoked, performs the given action
5243 * for each non-null transformation of each value.
5244 *
5245 * @param map the map
5246 * @param transformer a function returning the transformation
5247 * for an element, or null if there is no transformation (in
5248 * which case the action is not applied)
5249 * @param action the action
5250 */
5251 public static <K,V,U> ForkJoinTask<Void> forEachValue
5252 (ConcurrentHashMapV8<K,V> map,
5253 Fun<? super V, ? extends U> transformer,
5254 Action<U> action) {
5255 if (transformer == null || action == null)
5256 throw new NullPointerException();
5257 return new ForEachTransformedValueTask<K,V,U>
5258 (map, null, -1, transformer, action);
5259 }
5260
5261 /**
5262 * Returns a task that when invoked, returns a non-null result
5263 * from applying the given search function on each value, or
5264 * null if none. Upon success, further element processing is
5265 * suppressed and the results of any other parallel
5266 * invocations of the search function are ignored.
5267 *
5268 * @param map the map
5269 * @param searchFunction a function returning a non-null
5270 * result on success, else null
5271 * @return the task
5272 */
5273 public static <K,V,U> ForkJoinTask<U> searchValues
5274 (ConcurrentHashMapV8<K,V> map,
5275 Fun<? super V, ? extends U> searchFunction) {
5276 if (searchFunction == null) throw new NullPointerException();
5277 return new SearchValuesTask<K,V,U>
5278 (map, null, -1, searchFunction,
5279 new AtomicReference<U>());
5280 }
5281
5282 /**
5283 * Returns a task that when invoked, returns the result of
5284 * accumulating all values using the given reducer to combine
5285 * values, or null if none.
5286 *
5287 * @param map the map
5288 * @param reducer a commutative associative combining function
5289 * @return the task
5290 */
5291 public static <K,V> ForkJoinTask<V> reduceValues
5292 (ConcurrentHashMapV8<K,V> map,
5293 BiFun<? super V, ? super V, ? extends V> reducer) {
5294 if (reducer == null) throw new NullPointerException();
5295 return new ReduceValuesTask<K,V>
5296 (map, null, -1, null, reducer);
5297 }
5298
5299 /**
5300 * Returns a task that when invoked, returns the result of
5301 * accumulating the given transformation of all values using the
5302 * given reducer to combine values, or null if none.
5303 *
5304 * @param map the map
5305 * @param transformer a function returning the transformation
5306 * for an element, or null if there is no transformation (in
5307 * which case it is not combined)
5308 * @param reducer a commutative associative combining function
5309 * @return the task
5310 */
5311 public static <K,V,U> ForkJoinTask<U> reduceValues
5312 (ConcurrentHashMapV8<K,V> map,
5313 Fun<? super V, ? extends U> transformer,
5314 BiFun<? super U, ? super U, ? extends U> reducer) {
5315 if (transformer == null || reducer == null)
5316 throw new NullPointerException();
5317 return new MapReduceValuesTask<K,V,U>
5318 (map, null, -1, null, transformer, reducer);
5319 }
5320
5321 /**
5322 * Returns a task that when invoked, returns the result of
5323 * accumulating the given transformation of all values using the
5324 * given reducer to combine values, and the given basis as an
5325 * identity value.
5326 *
5327 * @param map the map
5328 * @param transformer a function returning the transformation
5329 * for an element
5330 * @param basis the identity (initial default value) for the reduction
5331 * @param reducer a commutative associative combining function
5332 * @return the task
5333 */
5334 public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5335 (ConcurrentHashMapV8<K,V> map,
5336 ObjectToDouble<? super V> transformer,
5337 double basis,
5338 DoubleByDoubleToDouble reducer) {
5339 if (transformer == null || reducer == null)
5340 throw new NullPointerException();
5341 return new MapReduceValuesToDoubleTask<K,V>
5342 (map, null, -1, null, transformer, basis, reducer);
5343 }
5344
5345 /**
5346 * Returns a task that when invoked, returns the result of
5347 * accumulating the given transformation of all values using the
5348 * given reducer to combine values, and the given basis as an
5349 * identity value.
5350 *
5351 * @param map the map
5352 * @param transformer a function returning the transformation
5353 * for an element
5354 * @param basis the identity (initial default value) for the reduction
5355 * @param reducer a commutative associative combining function
5356 * @return the task
5357 */
5358 public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5359 (ConcurrentHashMapV8<K,V> map,
5360 ObjectToLong<? super V> transformer,
5361 long basis,
5362 LongByLongToLong reducer) {
5363 if (transformer == null || reducer == null)
5364 throw new NullPointerException();
5365 return new MapReduceValuesToLongTask<K,V>
5366 (map, null, -1, null, transformer, basis, reducer);
5367 }
5368
5369 /**
5370 * Returns a task that when invoked, returns the result of
5371 * accumulating the given transformation of all values using the
5372 * given reducer to combine values, and the given basis as an
5373 * identity value.
5374 *
5375 * @param map the map
5376 * @param transformer a function returning the transformation
5377 * for an element
5378 * @param basis the identity (initial default value) for the reduction
5379 * @param reducer a commutative associative combining function
5380 * @return the task
5381 */
5382 public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5383 (ConcurrentHashMapV8<K,V> map,
5384 ObjectToInt<? super V> transformer,
5385 int basis,
5386 IntByIntToInt reducer) {
5387 if (transformer == null || reducer == null)
5388 throw new NullPointerException();
5389 return new MapReduceValuesToIntTask<K,V>
5390 (map, null, -1, null, transformer, basis, reducer);
5391 }
5392
5393 /**
5394 * Returns a task that when invoked, perform the given action
5395 * for each entry.
5396 *
5397 * @param map the map
5398 * @param action the action
5399 */
5400 public static <K,V> ForkJoinTask<Void> forEachEntry
5401 (ConcurrentHashMapV8<K,V> map,
5402 Action<Map.Entry<K,V>> action) {
5403 if (action == null) throw new NullPointerException();
5404 return new ForEachEntryTask<K,V>(map, null, -1, action);
5405 }
5406
5407 /**
5408 * Returns a task that when invoked, perform the given action
5409 * for each non-null transformation of each entry.
5410 *
5411 * @param map the map
5412 * @param transformer a function returning the transformation
5413 * for an element, or null if there is no transformation (in
5414 * which case the action is not applied)
5415 * @param action the action
5416 */
5417 public static <K,V,U> ForkJoinTask<Void> forEachEntry
5418 (ConcurrentHashMapV8<K,V> map,
5419 Fun<Map.Entry<K,V>, ? extends U> transformer,
5420 Action<U> action) {
5421 if (transformer == null || action == null)
5422 throw new NullPointerException();
5423 return new ForEachTransformedEntryTask<K,V,U>
5424 (map, null, -1, transformer, action);
5425 }
5426
5427 /**
5428 * Returns a task that when invoked, returns a non-null result
5429 * from applying the given search function on each entry, or
5430 * null if none. Upon success, further element processing is
5431 * suppressed and the results of any other parallel
5432 * invocations of the search function are ignored.
5433 *
5434 * @param map the map
5435 * @param searchFunction a function returning a non-null
5436 * result on success, else null
5437 * @return the task
5438 */
5439 public static <K,V,U> ForkJoinTask<U> searchEntries
5440 (ConcurrentHashMapV8<K,V> map,
5441 Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
5442 if (searchFunction == null) throw new NullPointerException();
5443 return new SearchEntriesTask<K,V,U>
5444 (map, null, -1, searchFunction,
5445 new AtomicReference<U>());
5446 }
5447
5448 /**
5449 * Returns a task that when invoked, returns the result of
5450 * accumulating all entries using the given reducer to combine
5451 * values, or null if none.
5452 *
5453 * @param map the map
5454 * @param reducer a commutative associative combining function
5455 * @return the task
5456 */
5457 public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5458 (ConcurrentHashMapV8<K,V> map,
5459 BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5460 if (reducer == null) throw new NullPointerException();
5461 return new ReduceEntriesTask<K,V>
5462 (map, null, -1, null, reducer);
5463 }
5464
5465 /**
5466 * Returns a task that when invoked, returns the result of
5467 * accumulating the given transformation of all entries using the
5468 * given reducer to combine values, or null if none.
5469 *
5470 * @param map the map
5471 * @param transformer a function returning the transformation
5472 * for an element, or null if there is no transformation (in
5473 * which case it is not combined)
5474 * @param reducer a commutative associative combining function
5475 * @return the task
5476 */
5477 public static <K,V,U> ForkJoinTask<U> reduceEntries
5478 (ConcurrentHashMapV8<K,V> map,
5479 Fun<Map.Entry<K,V>, ? extends U> transformer,
5480 BiFun<? super U, ? super U, ? extends U> reducer) {
5481 if (transformer == null || reducer == null)
5482 throw new NullPointerException();
5483 return new MapReduceEntriesTask<K,V,U>
5484 (map, null, -1, null, transformer, reducer);
5485 }
5486
5487 /**
5488 * Returns a task that when invoked, returns the result of
5489 * accumulating the given transformation of all entries using the
5490 * given reducer to combine values, and the given basis as an
5491 * identity value.
5492 *
5493 * @param map the map
5494 * @param transformer a function returning the transformation
5495 * for an element
5496 * @param basis the identity (initial default value) for the reduction
5497 * @param reducer a commutative associative combining function
5498 * @return the task
5499 */
5500 public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5501 (ConcurrentHashMapV8<K,V> map,
5502 ObjectToDouble<Map.Entry<K,V>> transformer,
5503 double basis,
5504 DoubleByDoubleToDouble reducer) {
5505 if (transformer == null || reducer == null)
5506 throw new NullPointerException();
5507 return new MapReduceEntriesToDoubleTask<K,V>
5508 (map, null, -1, null, transformer, basis, reducer);
5509 }
5510
5511 /**
5512 * Returns a task that when invoked, returns the result of
5513 * accumulating the given transformation of all entries using the
5514 * given reducer to combine values, and the given basis as an
5515 * identity value.
5516 *
5517 * @param map the map
5518 * @param transformer a function returning the transformation
5519 * for an element
5520 * @param basis the identity (initial default value) for the reduction
5521 * @param reducer a commutative associative combining function
5522 * @return the task
5523 */
5524 public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5525 (ConcurrentHashMapV8<K,V> map,
5526 ObjectToLong<Map.Entry<K,V>> transformer,
5527 long basis,
5528 LongByLongToLong reducer) {
5529 if (transformer == null || reducer == null)
5530 throw new NullPointerException();
5531 return new MapReduceEntriesToLongTask<K,V>
5532 (map, null, -1, null, transformer, basis, reducer);
5533 }
5534
5535 /**
5536 * Returns a task that when invoked, returns the result of
5537 * accumulating the given transformation of all entries using the
5538 * given reducer to combine values, and the given basis as an
5539 * identity value.
5540 *
5541 * @param map the map
5542 * @param transformer a function returning the transformation
5543 * for an element
5544 * @param basis the identity (initial default value) for the reduction
5545 * @param reducer a commutative associative combining function
5546 * @return the task
5547 */
5548 public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5549 (ConcurrentHashMapV8<K,V> map,
5550 ObjectToInt<Map.Entry<K,V>> transformer,
5551 int basis,
5552 IntByIntToInt reducer) {
5553 if (transformer == null || reducer == null)
5554 throw new NullPointerException();
5555 return new MapReduceEntriesToIntTask<K,V>
5556 (map, null, -1, null, transformer, basis, reducer);
5557 }
5558 }
5559
5560 // -------------------------------------------------------
5561
5562 /*
5563 * Task classes. Coded in a regular but ugly format/style to
5564 * simplify checks that each variant differs in the right way from
5565 * others. The null screenings exist because compilers cannot tell
5566 * that we've already null-checked task arguments, so we force
5567 * simplest hoisted bypass to help avoid convoluted traps.
5568 */
5569
5570 @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5571 extends Traverser<K,V,Void> {
5572 final Action<K> action;
5573 ForEachKeyTask
5574 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5575 Action<K> action) {
5576 super(m, p, b);
5577 this.action = action;
5578 }
5579 @SuppressWarnings("unchecked") public final void compute() {
5580 final Action<K> action;
5581 if ((action = this.action) != null) {
5582 for (int b; (b = preSplit()) > 0;)
5583 new ForEachKeyTask<K,V>(map, this, b, action).fork();
5584 while (advance() != null)
5585 action.apply((K)nextKey);
5586 propagateCompletion();
5587 }
5588 }
5589 }
5590
5591 @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5592 extends Traverser<K,V,Void> {
5593 final Action<V> action;
5594 ForEachValueTask
5595 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5596 Action<V> action) {
5597 super(m, p, b);
5598 this.action = action;
5599 }
5600 @SuppressWarnings("unchecked") public final void compute() {
5601 final Action<V> action;
5602 if ((action = this.action) != null) {
5603 for (int b; (b = preSplit()) > 0;)
5604 new ForEachValueTask<K,V>(map, this, b, action).fork();
5605 V v;
5606 while ((v = advance()) != null)
5607 action.apply(v);
5608 propagateCompletion();
5609 }
5610 }
5611 }
5612
5613 @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5614 extends Traverser<K,V,Void> {
5615 final Action<Entry<K,V>> action;
5616 ForEachEntryTask
5617 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5618 Action<Entry<K,V>> action) {
5619 super(m, p, b);
5620 this.action = action;
5621 }
5622 @SuppressWarnings("unchecked") public final void compute() {
5623 final Action<Entry<K,V>> action;
5624 if ((action = this.action) != null) {
5625 for (int b; (b = preSplit()) > 0;)
5626 new ForEachEntryTask<K,V>(map, this, b, action).fork();
5627 V v;
5628 while ((v = advance()) != null)
5629 action.apply(entryFor((K)nextKey, v));
5630 propagateCompletion();
5631 }
5632 }
5633 }
5634
5635 @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5636 extends Traverser<K,V,Void> {
5637 final BiAction<K,V> action;
5638 ForEachMappingTask
5639 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5640 BiAction<K,V> action) {
5641 super(m, p, b);
5642 this.action = action;
5643 }
5644 @SuppressWarnings("unchecked") public final void compute() {
5645 final BiAction<K,V> action;
5646 if ((action = this.action) != null) {
5647 for (int b; (b = preSplit()) > 0;)
5648 new ForEachMappingTask<K,V>(map, this, b, action).fork();
5649 V v;
5650 while ((v = advance()) != null)
5651 action.apply((K)nextKey, v);
5652 propagateCompletion();
5653 }
5654 }
5655 }
5656
5657 @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5658 extends Traverser<K,V,Void> {
5659 final Fun<? super K, ? extends U> transformer;
5660 final Action<U> action;
5661 ForEachTransformedKeyTask
5662 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5663 Fun<? super K, ? extends U> transformer, Action<U> action) {
5664 super(m, p, b);
5665 this.transformer = transformer; this.action = action;
5666 }
5667 @SuppressWarnings("unchecked") public final void compute() {
5668 final Fun<? super K, ? extends U> transformer;
5669 final Action<U> action;
5670 if ((transformer = this.transformer) != null &&
5671 (action = this.action) != null) {
5672 for (int b; (b = preSplit()) > 0;)
5673 new ForEachTransformedKeyTask<K,V,U>
5674 (map, this, b, transformer, action).fork();
5675 U u;
5676 while (advance() != null) {
5677 if ((u = transformer.apply((K)nextKey)) != null)
5678 action.apply(u);
5679 }
5680 propagateCompletion();
5681 }
5682 }
5683 }
5684
5685 @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5686 extends Traverser<K,V,Void> {
5687 final Fun<? super V, ? extends U> transformer;
5688 final Action<U> action;
5689 ForEachTransformedValueTask
5690 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5691 Fun<? super V, ? extends U> transformer, Action<U> action) {
5692 super(m, p, b);
5693 this.transformer = transformer; this.action = action;
5694 }
5695 @SuppressWarnings("unchecked") public final void compute() {
5696 final Fun<? super V, ? extends U> transformer;
5697 final Action<U> action;
5698 if ((transformer = this.transformer) != null &&
5699 (action = this.action) != null) {
5700 for (int b; (b = preSplit()) > 0;)
5701 new ForEachTransformedValueTask<K,V,U>
5702 (map, this, b, transformer, action).fork();
5703 V v; U u;
5704 while ((v = advance()) != null) {
5705 if ((u = transformer.apply(v)) != null)
5706 action.apply(u);
5707 }
5708 propagateCompletion();
5709 }
5710 }
5711 }
5712
5713 @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5714 extends Traverser<K,V,Void> {
5715 final Fun<Map.Entry<K,V>, ? extends U> transformer;
5716 final Action<U> action;
5717 ForEachTransformedEntryTask
5718 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5719 Fun<Map.Entry<K,V>, ? extends U> transformer, Action<U> action) {
5720 super(m, p, b);
5721 this.transformer = transformer; this.action = action;
5722 }
5723 @SuppressWarnings("unchecked") public final void compute() {
5724 final Fun<Map.Entry<K,V>, ? extends U> transformer;
5725 final Action<U> action;
5726 if ((transformer = this.transformer) != null &&
5727 (action = this.action) != null) {
5728 for (int b; (b = preSplit()) > 0;)
5729 new ForEachTransformedEntryTask<K,V,U>
5730 (map, this, b, transformer, action).fork();
5731 V v; U u;
5732 while ((v = advance()) != null) {
5733 if ((u = transformer.apply(entryFor((K)nextKey,
5734 v))) != null)
5735 action.apply(u);
5736 }
5737 propagateCompletion();
5738 }
5739 }
5740 }
5741
5742 @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5743 extends Traverser<K,V,Void> {
5744 final BiFun<? super K, ? super V, ? extends U> transformer;
5745 final Action<U> action;
5746 ForEachTransformedMappingTask
5747 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5748 BiFun<? super K, ? super V, ? extends U> transformer,
5749 Action<U> action) {
5750 super(m, p, b);
5751 this.transformer = transformer; this.action = action;
5752 }
5753 @SuppressWarnings("unchecked") public final void compute() {
5754 final BiFun<? super K, ? super V, ? extends U> transformer;
5755 final Action<U> action;
5756 if ((transformer = this.transformer) != null &&
5757 (action = this.action) != null) {
5758 for (int b; (b = preSplit()) > 0;)
5759 new ForEachTransformedMappingTask<K,V,U>
5760 (map, this, b, transformer, action).fork();
5761 V v; U u;
5762 while ((v = advance()) != null) {
5763 if ((u = transformer.apply((K)nextKey, v)) != null)
5764 action.apply(u);
5765 }
5766 propagateCompletion();
5767 }
5768 }
5769 }
5770
5771 @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5772 extends Traverser<K,V,U> {
5773 final Fun<? super K, ? extends U> searchFunction;
5774 final AtomicReference<U> result;
5775 SearchKeysTask
5776 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5777 Fun<? super K, ? extends U> searchFunction,
5778 AtomicReference<U> result) {
5779 super(m, p, b);
5780 this.searchFunction = searchFunction; this.result = result;
5781 }
5782 public final U getRawResult() { return result.get(); }
5783 @SuppressWarnings("unchecked") public final void compute() {
5784 final Fun<? super K, ? extends U> searchFunction;
5785 final AtomicReference<U> result;
5786 if ((searchFunction = this.searchFunction) != null &&
5787 (result = this.result) != null) {
5788 for (int b;;) {
5789 if (result.get() != null)
5790 return;
5791 if ((b = preSplit()) <= 0)
5792 break;
5793 new SearchKeysTask<K,V,U>
5794 (map, this, b, searchFunction, result).fork();
5795 }
5796 while (result.get() == null) {
5797 U u;
5798 if (advance() == null) {
5799 propagateCompletion();
5800 break;
5801 }
5802 if ((u = searchFunction.apply((K)nextKey)) != null) {
5803 if (result.compareAndSet(null, u))
5804 quietlyCompleteRoot();
5805 break;
5806 }
5807 }
5808 }
5809 }
5810 }
5811
5812 @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5813 extends Traverser<K,V,U> {
5814 final Fun<? super V, ? extends U> searchFunction;
5815 final AtomicReference<U> result;
5816 SearchValuesTask
5817 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5818 Fun<? super V, ? extends U> searchFunction,
5819 AtomicReference<U> result) {
5820 super(m, p, b);
5821 this.searchFunction = searchFunction; this.result = result;
5822 }
5823 public final U getRawResult() { return result.get(); }
5824 @SuppressWarnings("unchecked") public final void compute() {
5825 final Fun<? super V, ? extends U> searchFunction;
5826 final AtomicReference<U> result;
5827 if ((searchFunction = this.searchFunction) != null &&
5828 (result = this.result) != null) {
5829 for (int b;;) {
5830 if (result.get() != null)
5831 return;
5832 if ((b = preSplit()) <= 0)
5833 break;
5834 new SearchValuesTask<K,V,U>
5835 (map, this, b, searchFunction, result).fork();
5836 }
5837 while (result.get() == null) {
5838 V v; U u;
5839 if ((v = advance()) == null) {
5840 propagateCompletion();
5841 break;
5842 }
5843 if ((u = searchFunction.apply(v)) != null) {
5844 if (result.compareAndSet(null, u))
5845 quietlyCompleteRoot();
5846 break;
5847 }
5848 }
5849 }
5850 }
5851 }
5852
5853 @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5854 extends Traverser<K,V,U> {
5855 final Fun<Entry<K,V>, ? extends U> searchFunction;
5856 final AtomicReference<U> result;
5857 SearchEntriesTask
5858 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5859 Fun<Entry<K,V>, ? extends U> searchFunction,
5860 AtomicReference<U> result) {
5861 super(m, p, b);
5862 this.searchFunction = searchFunction; this.result = result;
5863 }
5864 public final U getRawResult() { return result.get(); }
5865 @SuppressWarnings("unchecked") public final void compute() {
5866 final Fun<Entry<K,V>, ? extends U> searchFunction;
5867 final AtomicReference<U> result;
5868 if ((searchFunction = this.searchFunction) != null &&
5869 (result = this.result) != null) {
5870 for (int b;;) {
5871 if (result.get() != null)
5872 return;
5873 if ((b = preSplit()) <= 0)
5874 break;
5875 new SearchEntriesTask<K,V,U>
5876 (map, this, b, searchFunction, result).fork();
5877 }
5878 while (result.get() == null) {
5879 V v; U u;
5880 if ((v = advance()) == null) {
5881 propagateCompletion();
5882 break;
5883 }
5884 if ((u = searchFunction.apply(entryFor((K)nextKey,
5885 v))) != null) {
5886 if (result.compareAndSet(null, u))
5887 quietlyCompleteRoot();
5888 return;
5889 }
5890 }
5891 }
5892 }
5893 }
5894
5895 @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5896 extends Traverser<K,V,U> {
5897 final BiFun<? super K, ? super V, ? extends U> searchFunction;
5898 final AtomicReference<U> result;
5899 SearchMappingsTask
5900 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5901 BiFun<? super K, ? super V, ? extends U> searchFunction,
5902 AtomicReference<U> result) {
5903 super(m, p, b);
5904 this.searchFunction = searchFunction; this.result = result;
5905 }
5906 public final U getRawResult() { return result.get(); }
5907 @SuppressWarnings("unchecked") public final void compute() {
5908 final BiFun<? super K, ? super V, ? extends U> searchFunction;
5909 final AtomicReference<U> result;
5910 if ((searchFunction = this.searchFunction) != null &&
5911 (result = this.result) != null) {
5912 for (int b;;) {
5913 if (result.get() != null)
5914 return;
5915 if ((b = preSplit()) <= 0)
5916 break;
5917 new SearchMappingsTask<K,V,U>
5918 (map, this, b, searchFunction, result).fork();
5919 }
5920 while (result.get() == null) {
5921 V v; U u;
5922 if ((v = advance()) == null) {
5923 propagateCompletion();
5924 break;
5925 }
5926 if ((u = searchFunction.apply((K)nextKey, v)) != null) {
5927 if (result.compareAndSet(null, u))
5928 quietlyCompleteRoot();
5929 break;
5930 }
5931 }
5932 }
5933 }
5934 }
5935
5936 @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5937 extends Traverser<K,V,K> {
5938 final BiFun<? super K, ? super K, ? extends K> reducer;
5939 K result;
5940 ReduceKeysTask<K,V> rights, nextRight;
5941 ReduceKeysTask
5942 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5943 ReduceKeysTask<K,V> nextRight,
5944 BiFun<? super K, ? super K, ? extends K> reducer) {
5945 super(m, p, b); this.nextRight = nextRight;
5946 this.reducer = reducer;
5947 }
5948 public final K getRawResult() { return result; }
5949 @SuppressWarnings("unchecked") public final void compute() {
5950 final BiFun<? super K, ? super K, ? extends K> reducer;
5951 if ((reducer = this.reducer) != null) {
5952 for (int b; (b = preSplit()) > 0;)
5953 (rights = new ReduceKeysTask<K,V>
5954 (map, this, b, rights, reducer)).fork();
5955 K r = null;
5956 while (advance() != null) {
5957 K u = (K)nextKey;
5958 r = (r == null) ? u : reducer.apply(r, u);
5959 }
5960 result = r;
5961 CountedCompleter<?> c;
5962 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5963 ReduceKeysTask<K,V>
5964 t = (ReduceKeysTask<K,V>)c,
5965 s = t.rights;
5966 while (s != null) {
5967 K tr, sr;
5968 if ((sr = s.result) != null)
5969 t.result = (((tr = t.result) == null) ? sr :
5970 reducer.apply(tr, sr));
5971 s = t.rights = s.nextRight;
5972 }
5973 }
5974 }
5975 }
5976 }
5977
5978 @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5979 extends Traverser<K,V,V> {
5980 final BiFun<? super V, ? super V, ? extends V> reducer;
5981 V result;
5982 ReduceValuesTask<K,V> rights, nextRight;
5983 ReduceValuesTask
5984 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5985 ReduceValuesTask<K,V> nextRight,
5986 BiFun<? super V, ? super V, ? extends V> reducer) {
5987 super(m, p, b); this.nextRight = nextRight;
5988 this.reducer = reducer;
5989 }
5990 public final V getRawResult() { return result; }
5991 @SuppressWarnings("unchecked") public final void compute() {
5992 final BiFun<? super V, ? super V, ? extends V> reducer;
5993 if ((reducer = this.reducer) != null) {
5994 for (int b; (b = preSplit()) > 0;)
5995 (rights = new ReduceValuesTask<K,V>
5996 (map, this, b, rights, reducer)).fork();
5997 V r = null;
5998 V v;
5999 while ((v = advance()) != null) {
6000 V u = v;
6001 r = (r == null) ? u : reducer.apply(r, u);
6002 }
6003 result = r;
6004 CountedCompleter<?> c;
6005 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6006 ReduceValuesTask<K,V>
6007 t = (ReduceValuesTask<K,V>)c,
6008 s = t.rights;
6009 while (s != null) {
6010 V tr, sr;
6011 if ((sr = s.result) != null)
6012 t.result = (((tr = t.result) == null) ? sr :
6013 reducer.apply(tr, sr));
6014 s = t.rights = s.nextRight;
6015 }
6016 }
6017 }
6018 }
6019 }
6020
6021 @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
6022 extends Traverser<K,V,Map.Entry<K,V>> {
6023 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6024 Map.Entry<K,V> result;
6025 ReduceEntriesTask<K,V> rights, nextRight;
6026 ReduceEntriesTask
6027 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6028 ReduceEntriesTask<K,V> nextRight,
6029 BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
6030 super(m, p, b); this.nextRight = nextRight;
6031 this.reducer = reducer;
6032 }
6033 public final Map.Entry<K,V> getRawResult() { return result; }
6034 @SuppressWarnings("unchecked") public final void compute() {
6035 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6036 if ((reducer = this.reducer) != null) {
6037 for (int b; (b = preSplit()) > 0;)
6038 (rights = new ReduceEntriesTask<K,V>
6039 (map, this, b, rights, reducer)).fork();
6040 Map.Entry<K,V> r = null;
6041 V v;
6042 while ((v = advance()) != null) {
6043 Map.Entry<K,V> u = entryFor((K)nextKey, v);
6044 r = (r == null) ? u : reducer.apply(r, u);
6045 }
6046 result = r;
6047 CountedCompleter<?> c;
6048 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6049 ReduceEntriesTask<K,V>
6050 t = (ReduceEntriesTask<K,V>)c,
6051 s = t.rights;
6052 while (s != null) {
6053 Map.Entry<K,V> tr, sr;
6054 if ((sr = s.result) != null)
6055 t.result = (((tr = t.result) == null) ? sr :
6056 reducer.apply(tr, sr));
6057 s = t.rights = s.nextRight;
6058 }
6059 }
6060 }
6061 }
6062 }
6063
6064 @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
6065 extends Traverser<K,V,U> {
6066 final Fun<? super K, ? extends U> transformer;
6067 final BiFun<? super U, ? super U, ? extends U> reducer;
6068 U result;
6069 MapReduceKeysTask<K,V,U> rights, nextRight;
6070 MapReduceKeysTask
6071 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6072 MapReduceKeysTask<K,V,U> nextRight,
6073 Fun<? super K, ? extends U> transformer,
6074 BiFun<? super U, ? super U, ? extends U> reducer) {
6075 super(m, p, b); this.nextRight = nextRight;
6076 this.transformer = transformer;
6077 this.reducer = reducer;
6078 }
6079 public final U getRawResult() { return result; }
6080 @SuppressWarnings("unchecked") public final void compute() {
6081 final Fun<? super K, ? extends U> transformer;
6082 final BiFun<? super U, ? super U, ? extends U> reducer;
6083 if ((transformer = this.transformer) != null &&
6084 (reducer = this.reducer) != null) {
6085 for (int b; (b = preSplit()) > 0;)
6086 (rights = new MapReduceKeysTask<K,V,U>
6087 (map, this, b, rights, transformer, reducer)).fork();
6088 U r = null, u;
6089 while (advance() != null) {
6090 if ((u = transformer.apply((K)nextKey)) != null)
6091 r = (r == null) ? u : reducer.apply(r, u);
6092 }
6093 result = r;
6094 CountedCompleter<?> c;
6095 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6096 MapReduceKeysTask<K,V,U>
6097 t = (MapReduceKeysTask<K,V,U>)c,
6098 s = t.rights;
6099 while (s != null) {
6100 U tr, sr;
6101 if ((sr = s.result) != null)
6102 t.result = (((tr = t.result) == null) ? sr :
6103 reducer.apply(tr, sr));
6104 s = t.rights = s.nextRight;
6105 }
6106 }
6107 }
6108 }
6109 }
6110
6111 @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
6112 extends Traverser<K,V,U> {
6113 final Fun<? super V, ? extends U> transformer;
6114 final BiFun<? super U, ? super U, ? extends U> reducer;
6115 U result;
6116 MapReduceValuesTask<K,V,U> rights, nextRight;
6117 MapReduceValuesTask
6118 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6119 MapReduceValuesTask<K,V,U> nextRight,
6120 Fun<? super V, ? extends U> transformer,
6121 BiFun<? super U, ? super U, ? extends U> reducer) {
6122 super(m, p, b); this.nextRight = nextRight;
6123 this.transformer = transformer;
6124 this.reducer = reducer;
6125 }
6126 public final U getRawResult() { return result; }
6127 @SuppressWarnings("unchecked") public final void compute() {
6128 final Fun<? super V, ? extends U> transformer;
6129 final BiFun<? super U, ? super U, ? extends U> reducer;
6130 if ((transformer = this.transformer) != null &&
6131 (reducer = this.reducer) != null) {
6132 for (int b; (b = preSplit()) > 0;)
6133 (rights = new MapReduceValuesTask<K,V,U>
6134 (map, this, b, rights, transformer, reducer)).fork();
6135 U r = null, u;
6136 V v;
6137 while ((v = advance()) != null) {
6138 if ((u = transformer.apply(v)) != null)
6139 r = (r == null) ? u : reducer.apply(r, u);
6140 }
6141 result = r;
6142 CountedCompleter<?> c;
6143 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6144 MapReduceValuesTask<K,V,U>
6145 t = (MapReduceValuesTask<K,V,U>)c,
6146 s = t.rights;
6147 while (s != null) {
6148 U tr, sr;
6149 if ((sr = s.result) != null)
6150 t.result = (((tr = t.result) == null) ? sr :
6151 reducer.apply(tr, sr));
6152 s = t.rights = s.nextRight;
6153 }
6154 }
6155 }
6156 }
6157 }
6158
6159 @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
6160 extends Traverser<K,V,U> {
6161 final Fun<Map.Entry<K,V>, ? extends U> transformer;
6162 final BiFun<? super U, ? super U, ? extends U> reducer;
6163 U result;
6164 MapReduceEntriesTask<K,V,U> rights, nextRight;
6165 MapReduceEntriesTask
6166 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6167 MapReduceEntriesTask<K,V,U> nextRight,
6168 Fun<Map.Entry<K,V>, ? extends U> transformer,
6169 BiFun<? super U, ? super U, ? extends U> reducer) {
6170 super(m, p, b); this.nextRight = nextRight;
6171 this.transformer = transformer;
6172 this.reducer = reducer;
6173 }
6174 public final U getRawResult() { return result; }
6175 @SuppressWarnings("unchecked") public final void compute() {
6176 final Fun<Map.Entry<K,V>, ? extends U> transformer;
6177 final BiFun<? super U, ? super U, ? extends U> reducer;
6178 if ((transformer = this.transformer) != null &&
6179 (reducer = this.reducer) != null) {
6180 for (int b; (b = preSplit()) > 0;)
6181 (rights = new MapReduceEntriesTask<K,V,U>
6182 (map, this, b, rights, transformer, reducer)).fork();
6183 U r = null, u;
6184 V v;
6185 while ((v = advance()) != null) {
6186 if ((u = transformer.apply(entryFor((K)nextKey,
6187 v))) != null)
6188 r = (r == null) ? u : reducer.apply(r, u);
6189 }
6190 result = r;
6191 CountedCompleter<?> c;
6192 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6193 MapReduceEntriesTask<K,V,U>
6194 t = (MapReduceEntriesTask<K,V,U>)c,
6195 s = t.rights;
6196 while (s != null) {
6197 U tr, sr;
6198 if ((sr = s.result) != null)
6199 t.result = (((tr = t.result) == null) ? sr :
6200 reducer.apply(tr, sr));
6201 s = t.rights = s.nextRight;
6202 }
6203 }
6204 }
6205 }
6206 }
6207
6208 @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
6209 extends Traverser<K,V,U> {
6210 final BiFun<? super K, ? super V, ? extends U> transformer;
6211 final BiFun<? super U, ? super U, ? extends U> reducer;
6212 U result;
6213 MapReduceMappingsTask<K,V,U> rights, nextRight;
6214 MapReduceMappingsTask
6215 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6216 MapReduceMappingsTask<K,V,U> nextRight,
6217 BiFun<? super K, ? super V, ? extends U> transformer,
6218 BiFun<? super U, ? super U, ? extends U> reducer) {
6219 super(m, p, b); this.nextRight = nextRight;
6220 this.transformer = transformer;
6221 this.reducer = reducer;
6222 }
6223 public final U getRawResult() { return result; }
6224 @SuppressWarnings("unchecked") public final void compute() {
6225 final BiFun<? super K, ? super V, ? extends U> transformer;
6226 final BiFun<? super U, ? super U, ? extends U> reducer;
6227 if ((transformer = this.transformer) != null &&
6228 (reducer = this.reducer) != null) {
6229 for (int b; (b = preSplit()) > 0;)
6230 (rights = new MapReduceMappingsTask<K,V,U>
6231 (map, this, b, rights, transformer, reducer)).fork();
6232 U r = null, u;
6233 V v;
6234 while ((v = advance()) != null) {
6235 if ((u = transformer.apply((K)nextKey, v)) != null)
6236 r = (r == null) ? u : reducer.apply(r, u);
6237 }
6238 result = r;
6239 CountedCompleter<?> c;
6240 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6241 MapReduceMappingsTask<K,V,U>
6242 t = (MapReduceMappingsTask<K,V,U>)c,
6243 s = t.rights;
6244 while (s != null) {
6245 U tr, sr;
6246 if ((sr = s.result) != null)
6247 t.result = (((tr = t.result) == null) ? sr :
6248 reducer.apply(tr, sr));
6249 s = t.rights = s.nextRight;
6250 }
6251 }
6252 }
6253 }
6254 }
6255
6256 @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
6257 extends Traverser<K,V,Double> {
6258 final ObjectToDouble<? super K> transformer;
6259 final DoubleByDoubleToDouble reducer;
6260 final double basis;
6261 double result;
6262 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
6263 MapReduceKeysToDoubleTask
6264 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6265 MapReduceKeysToDoubleTask<K,V> nextRight,
6266 ObjectToDouble<? super K> transformer,
6267 double basis,
6268 DoubleByDoubleToDouble reducer) {
6269 super(m, p, b); this.nextRight = nextRight;
6270 this.transformer = transformer;
6271 this.basis = basis; this.reducer = reducer;
6272 }
6273 public final Double getRawResult() { return result; }
6274 @SuppressWarnings("unchecked") public final void compute() {
6275 final ObjectToDouble<? super K> transformer;
6276 final DoubleByDoubleToDouble reducer;
6277 if ((transformer = this.transformer) != null &&
6278 (reducer = this.reducer) != null) {
6279 double r = this.basis;
6280 for (int b; (b = preSplit()) > 0;)
6281 (rights = new MapReduceKeysToDoubleTask<K,V>
6282 (map, this, b, rights, transformer, r, reducer)).fork();
6283 while (advance() != null)
6284 r = reducer.apply(r, transformer.apply((K)nextKey));
6285 result = r;
6286 CountedCompleter<?> c;
6287 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6288 MapReduceKeysToDoubleTask<K,V>
6289 t = (MapReduceKeysToDoubleTask<K,V>)c,
6290 s = t.rights;
6291 while (s != null) {
6292 t.result = reducer.apply(t.result, s.result);
6293 s = t.rights = s.nextRight;
6294 }
6295 }
6296 }
6297 }
6298 }
6299
6300 @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
6301 extends Traverser<K,V,Double> {
6302 final ObjectToDouble<? super V> transformer;
6303 final DoubleByDoubleToDouble reducer;
6304 final double basis;
6305 double result;
6306 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6307 MapReduceValuesToDoubleTask
6308 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6309 MapReduceValuesToDoubleTask<K,V> nextRight,
6310 ObjectToDouble<? super V> transformer,
6311 double basis,
6312 DoubleByDoubleToDouble reducer) {
6313 super(m, p, b); this.nextRight = nextRight;
6314 this.transformer = transformer;
6315 this.basis = basis; this.reducer = reducer;
6316 }
6317 public final Double getRawResult() { return result; }
6318 @SuppressWarnings("unchecked") public final void compute() {
6319 final ObjectToDouble<? super V> transformer;
6320 final DoubleByDoubleToDouble reducer;
6321 if ((transformer = this.transformer) != null &&
6322 (reducer = this.reducer) != null) {
6323 double r = this.basis;
6324 for (int b; (b = preSplit()) > 0;)
6325 (rights = new MapReduceValuesToDoubleTask<K,V>
6326 (map, this, b, rights, transformer, r, reducer)).fork();
6327 V v;
6328 while ((v = advance()) != null)
6329 r = reducer.apply(r, transformer.apply(v));
6330 result = r;
6331 CountedCompleter<?> c;
6332 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6333 MapReduceValuesToDoubleTask<K,V>
6334 t = (MapReduceValuesToDoubleTask<K,V>)c,
6335 s = t.rights;
6336 while (s != null) {
6337 t.result = reducer.apply(t.result, s.result);
6338 s = t.rights = s.nextRight;
6339 }
6340 }
6341 }
6342 }
6343 }
6344
6345 @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6346 extends Traverser<K,V,Double> {
6347 final ObjectToDouble<Map.Entry<K,V>> transformer;
6348 final DoubleByDoubleToDouble reducer;
6349 final double basis;
6350 double result;
6351 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6352 MapReduceEntriesToDoubleTask
6353 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6354 MapReduceEntriesToDoubleTask<K,V> nextRight,
6355 ObjectToDouble<Map.Entry<K,V>> transformer,
6356 double basis,
6357 DoubleByDoubleToDouble reducer) {
6358 super(m, p, b); this.nextRight = nextRight;
6359 this.transformer = transformer;
6360 this.basis = basis; this.reducer = reducer;
6361 }
6362 public final Double getRawResult() { return result; }
6363 @SuppressWarnings("unchecked") public final void compute() {
6364 final ObjectToDouble<Map.Entry<K,V>> transformer;
6365 final DoubleByDoubleToDouble reducer;
6366 if ((transformer = this.transformer) != null &&
6367 (reducer = this.reducer) != null) {
6368 double r = this.basis;
6369 for (int b; (b = preSplit()) > 0;)
6370 (rights = new MapReduceEntriesToDoubleTask<K,V>
6371 (map, this, b, rights, transformer, r, reducer)).fork();
6372 V v;
6373 while ((v = advance()) != null)
6374 r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
6375 v)));
6376 result = r;
6377 CountedCompleter<?> c;
6378 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6379 MapReduceEntriesToDoubleTask<K,V>
6380 t = (MapReduceEntriesToDoubleTask<K,V>)c,
6381 s = t.rights;
6382 while (s != null) {
6383 t.result = reducer.apply(t.result, s.result);
6384 s = t.rights = s.nextRight;
6385 }
6386 }
6387 }
6388 }
6389 }
6390
6391 @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6392 extends Traverser<K,V,Double> {
6393 final ObjectByObjectToDouble<? super K, ? super V> transformer;
6394 final DoubleByDoubleToDouble reducer;
6395 final double basis;
6396 double result;
6397 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6398 MapReduceMappingsToDoubleTask
6399 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6400 MapReduceMappingsToDoubleTask<K,V> nextRight,
6401 ObjectByObjectToDouble<? super K, ? super V> transformer,
6402 double basis,
6403 DoubleByDoubleToDouble reducer) {
6404 super(m, p, b); this.nextRight = nextRight;
6405 this.transformer = transformer;
6406 this.basis = basis; this.reducer = reducer;
6407 }
6408 public final Double getRawResult() { return result; }
6409 @SuppressWarnings("unchecked") public final void compute() {
6410 final ObjectByObjectToDouble<? super K, ? super V> transformer;
6411 final DoubleByDoubleToDouble reducer;
6412 if ((transformer = this.transformer) != null &&
6413 (reducer = this.reducer) != null) {
6414 double r = this.basis;
6415 for (int b; (b = preSplit()) > 0;)
6416 (rights = new MapReduceMappingsToDoubleTask<K,V>
6417 (map, this, b, rights, transformer, r, reducer)).fork();
6418 V v;
6419 while ((v = advance()) != null)
6420 r = reducer.apply(r, transformer.apply((K)nextKey, v));
6421 result = r;
6422 CountedCompleter<?> c;
6423 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6424 MapReduceMappingsToDoubleTask<K,V>
6425 t = (MapReduceMappingsToDoubleTask<K,V>)c,
6426 s = t.rights;
6427 while (s != null) {
6428 t.result = reducer.apply(t.result, s.result);
6429 s = t.rights = s.nextRight;
6430 }
6431 }
6432 }
6433 }
6434 }
6435
6436 @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6437 extends Traverser<K,V,Long> {
6438 final ObjectToLong<? super K> transformer;
6439 final LongByLongToLong reducer;
6440 final long basis;
6441 long result;
6442 MapReduceKeysToLongTask<K,V> rights, nextRight;
6443 MapReduceKeysToLongTask
6444 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6445 MapReduceKeysToLongTask<K,V> nextRight,
6446 ObjectToLong<? super K> transformer,
6447 long basis,
6448 LongByLongToLong reducer) {
6449 super(m, p, b); this.nextRight = nextRight;
6450 this.transformer = transformer;
6451 this.basis = basis; this.reducer = reducer;
6452 }
6453 public final Long getRawResult() { return result; }
6454 @SuppressWarnings("unchecked") public final void compute() {
6455 final ObjectToLong<? super K> transformer;
6456 final LongByLongToLong reducer;
6457 if ((transformer = this.transformer) != null &&
6458 (reducer = this.reducer) != null) {
6459 long r = this.basis;
6460 for (int b; (b = preSplit()) > 0;)
6461 (rights = new MapReduceKeysToLongTask<K,V>
6462 (map, this, b, rights, transformer, r, reducer)).fork();
6463 while (advance() != null)
6464 r = reducer.apply(r, transformer.apply((K)nextKey));
6465 result = r;
6466 CountedCompleter<?> c;
6467 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6468 MapReduceKeysToLongTask<K,V>
6469 t = (MapReduceKeysToLongTask<K,V>)c,
6470 s = t.rights;
6471 while (s != null) {
6472 t.result = reducer.apply(t.result, s.result);
6473 s = t.rights = s.nextRight;
6474 }
6475 }
6476 }
6477 }
6478 }
6479
6480 @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6481 extends Traverser<K,V,Long> {
6482 final ObjectToLong<? super V> transformer;
6483 final LongByLongToLong reducer;
6484 final long basis;
6485 long result;
6486 MapReduceValuesToLongTask<K,V> rights, nextRight;
6487 MapReduceValuesToLongTask
6488 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6489 MapReduceValuesToLongTask<K,V> nextRight,
6490 ObjectToLong<? super V> transformer,
6491 long basis,
6492 LongByLongToLong reducer) {
6493 super(m, p, b); this.nextRight = nextRight;
6494 this.transformer = transformer;
6495 this.basis = basis; this.reducer = reducer;
6496 }
6497 public final Long getRawResult() { return result; }
6498 @SuppressWarnings("unchecked") public final void compute() {
6499 final ObjectToLong<? super V> transformer;
6500 final LongByLongToLong reducer;
6501 if ((transformer = this.transformer) != null &&
6502 (reducer = this.reducer) != null) {
6503 long r = this.basis;
6504 for (int b; (b = preSplit()) > 0;)
6505 (rights = new MapReduceValuesToLongTask<K,V>
6506 (map, this, b, rights, transformer, r, reducer)).fork();
6507 V v;
6508 while ((v = advance()) != null)
6509 r = reducer.apply(r, transformer.apply(v));
6510 result = r;
6511 CountedCompleter<?> c;
6512 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6513 MapReduceValuesToLongTask<K,V>
6514 t = (MapReduceValuesToLongTask<K,V>)c,
6515 s = t.rights;
6516 while (s != null) {
6517 t.result = reducer.apply(t.result, s.result);
6518 s = t.rights = s.nextRight;
6519 }
6520 }
6521 }
6522 }
6523 }
6524
6525 @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6526 extends Traverser<K,V,Long> {
6527 final ObjectToLong<Map.Entry<K,V>> transformer;
6528 final LongByLongToLong reducer;
6529 final long basis;
6530 long result;
6531 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6532 MapReduceEntriesToLongTask
6533 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6534 MapReduceEntriesToLongTask<K,V> nextRight,
6535 ObjectToLong<Map.Entry<K,V>> transformer,
6536 long basis,
6537 LongByLongToLong reducer) {
6538 super(m, p, b); this.nextRight = nextRight;
6539 this.transformer = transformer;
6540 this.basis = basis; this.reducer = reducer;
6541 }
6542 public final Long getRawResult() { return result; }
6543 @SuppressWarnings("unchecked") public final void compute() {
6544 final ObjectToLong<Map.Entry<K,V>> transformer;
6545 final LongByLongToLong reducer;
6546 if ((transformer = this.transformer) != null &&
6547 (reducer = this.reducer) != null) {
6548 long r = this.basis;
6549 for (int b; (b = preSplit()) > 0;)
6550 (rights = new MapReduceEntriesToLongTask<K,V>
6551 (map, this, b, rights, transformer, r, reducer)).fork();
6552 V v;
6553 while ((v = advance()) != null)
6554 r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
6555 v)));
6556 result = r;
6557 CountedCompleter<?> c;
6558 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6559 MapReduceEntriesToLongTask<K,V>
6560 t = (MapReduceEntriesToLongTask<K,V>)c,
6561 s = t.rights;
6562 while (s != null) {
6563 t.result = reducer.apply(t.result, s.result);
6564 s = t.rights = s.nextRight;
6565 }
6566 }
6567 }
6568 }
6569 }
6570
6571 @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6572 extends Traverser<K,V,Long> {
6573 final ObjectByObjectToLong<? super K, ? super V> transformer;
6574 final LongByLongToLong reducer;
6575 final long basis;
6576 long result;
6577 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6578 MapReduceMappingsToLongTask
6579 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6580 MapReduceMappingsToLongTask<K,V> nextRight,
6581 ObjectByObjectToLong<? super K, ? super V> transformer,
6582 long basis,
6583 LongByLongToLong reducer) {
6584 super(m, p, b); this.nextRight = nextRight;
6585 this.transformer = transformer;
6586 this.basis = basis; this.reducer = reducer;
6587 }
6588 public final Long getRawResult() { return result; }
6589 @SuppressWarnings("unchecked") public final void compute() {
6590 final ObjectByObjectToLong<? super K, ? super V> transformer;
6591 final LongByLongToLong reducer;
6592 if ((transformer = this.transformer) != null &&
6593 (reducer = this.reducer) != null) {
6594 long r = this.basis;
6595 for (int b; (b = preSplit()) > 0;)
6596 (rights = new MapReduceMappingsToLongTask<K,V>
6597 (map, this, b, rights, transformer, r, reducer)).fork();
6598 V v;
6599 while ((v = advance()) != null)
6600 r = reducer.apply(r, transformer.apply((K)nextKey, v));
6601 result = r;
6602 CountedCompleter<?> c;
6603 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6604 MapReduceMappingsToLongTask<K,V>
6605 t = (MapReduceMappingsToLongTask<K,V>)c,
6606 s = t.rights;
6607 while (s != null) {
6608 t.result = reducer.apply(t.result, s.result);
6609 s = t.rights = s.nextRight;
6610 }
6611 }
6612 }
6613 }
6614 }
6615
6616 @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6617 extends Traverser<K,V,Integer> {
6618 final ObjectToInt<? super K> transformer;
6619 final IntByIntToInt reducer;
6620 final int basis;
6621 int result;
6622 MapReduceKeysToIntTask<K,V> rights, nextRight;
6623 MapReduceKeysToIntTask
6624 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6625 MapReduceKeysToIntTask<K,V> nextRight,
6626 ObjectToInt<? super K> transformer,
6627 int basis,
6628 IntByIntToInt reducer) {
6629 super(m, p, b); this.nextRight = nextRight;
6630 this.transformer = transformer;
6631 this.basis = basis; this.reducer = reducer;
6632 }
6633 public final Integer getRawResult() { return result; }
6634 @SuppressWarnings("unchecked") public final void compute() {
6635 final ObjectToInt<? super K> transformer;
6636 final IntByIntToInt reducer;
6637 if ((transformer = this.transformer) != null &&
6638 (reducer = this.reducer) != null) {
6639 int r = this.basis;
6640 for (int b; (b = preSplit()) > 0;)
6641 (rights = new MapReduceKeysToIntTask<K,V>
6642 (map, this, b, rights, transformer, r, reducer)).fork();
6643 while (advance() != null)
6644 r = reducer.apply(r, transformer.apply((K)nextKey));
6645 result = r;
6646 CountedCompleter<?> c;
6647 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6648 MapReduceKeysToIntTask<K,V>
6649 t = (MapReduceKeysToIntTask<K,V>)c,
6650 s = t.rights;
6651 while (s != null) {
6652 t.result = reducer.apply(t.result, s.result);
6653 s = t.rights = s.nextRight;
6654 }
6655 }
6656 }
6657 }
6658 }
6659
6660 @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6661 extends Traverser<K,V,Integer> {
6662 final ObjectToInt<? super V> transformer;
6663 final IntByIntToInt reducer;
6664 final int basis;
6665 int result;
6666 MapReduceValuesToIntTask<K,V> rights, nextRight;
6667 MapReduceValuesToIntTask
6668 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6669 MapReduceValuesToIntTask<K,V> nextRight,
6670 ObjectToInt<? super V> transformer,
6671 int basis,
6672 IntByIntToInt reducer) {
6673 super(m, p, b); this.nextRight = nextRight;
6674 this.transformer = transformer;
6675 this.basis = basis; this.reducer = reducer;
6676 }
6677 public final Integer getRawResult() { return result; }
6678 @SuppressWarnings("unchecked") public final void compute() {
6679 final ObjectToInt<? super V> transformer;
6680 final IntByIntToInt reducer;
6681 if ((transformer = this.transformer) != null &&
6682 (reducer = this.reducer) != null) {
6683 int r = this.basis;
6684 for (int b; (b = preSplit()) > 0;)
6685 (rights = new MapReduceValuesToIntTask<K,V>
6686 (map, this, b, rights, transformer, r, reducer)).fork();
6687 V v;
6688 while ((v = advance()) != null)
6689 r = reducer.apply(r, transformer.apply(v));
6690 result = r;
6691 CountedCompleter<?> c;
6692 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6693 MapReduceValuesToIntTask<K,V>
6694 t = (MapReduceValuesToIntTask<K,V>)c,
6695 s = t.rights;
6696 while (s != null) {
6697 t.result = reducer.apply(t.result, s.result);
6698 s = t.rights = s.nextRight;
6699 }
6700 }
6701 }
6702 }
6703 }
6704
6705 @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6706 extends Traverser<K,V,Integer> {
6707 final ObjectToInt<Map.Entry<K,V>> transformer;
6708 final IntByIntToInt reducer;
6709 final int basis;
6710 int result;
6711 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6712 MapReduceEntriesToIntTask
6713 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6714 MapReduceEntriesToIntTask<K,V> nextRight,
6715 ObjectToInt<Map.Entry<K,V>> transformer,
6716 int basis,
6717 IntByIntToInt reducer) {
6718 super(m, p, b); this.nextRight = nextRight;
6719 this.transformer = transformer;
6720 this.basis = basis; this.reducer = reducer;
6721 }
6722 public final Integer getRawResult() { return result; }
6723 @SuppressWarnings("unchecked") public final void compute() {
6724 final ObjectToInt<Map.Entry<K,V>> transformer;
6725 final IntByIntToInt reducer;
6726 if ((transformer = this.transformer) != null &&
6727 (reducer = this.reducer) != null) {
6728 int r = this.basis;
6729 for (int b; (b = preSplit()) > 0;)
6730 (rights = new MapReduceEntriesToIntTask<K,V>
6731 (map, this, b, rights, transformer, r, reducer)).fork();
6732 V v;
6733 while ((v = advance()) != null)
6734 r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
6735 v)));
6736 result = r;
6737 CountedCompleter<?> c;
6738 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6739 MapReduceEntriesToIntTask<K,V>
6740 t = (MapReduceEntriesToIntTask<K,V>)c,
6741 s = t.rights;
6742 while (s != null) {
6743 t.result = reducer.apply(t.result, s.result);
6744 s = t.rights = s.nextRight;
6745 }
6746 }
6747 }
6748 }
6749 }
6750
6751 @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6752 extends Traverser<K,V,Integer> {
6753 final ObjectByObjectToInt<? super K, ? super V> transformer;
6754 final IntByIntToInt reducer;
6755 final int basis;
6756 int result;
6757 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6758 MapReduceMappingsToIntTask
6759 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6760 MapReduceMappingsToIntTask<K,V> nextRight,
6761 ObjectByObjectToInt<? super K, ? super V> transformer,
6762 int basis,
6763 IntByIntToInt reducer) {
6764 super(m, p, b); this.nextRight = nextRight;
6765 this.transformer = transformer;
6766 this.basis = basis; this.reducer = reducer;
6767 }
6768 public final Integer getRawResult() { return result; }
6769 @SuppressWarnings("unchecked") public final void compute() {
6770 final ObjectByObjectToInt<? super K, ? super V> transformer;
6771 final IntByIntToInt reducer;
6772 if ((transformer = this.transformer) != null &&
6773 (reducer = this.reducer) != null) {
6774 int r = this.basis;
6775 for (int b; (b = preSplit()) > 0;)
6776 (rights = new MapReduceMappingsToIntTask<K,V>
6777 (map, this, b, rights, transformer, r, reducer)).fork();
6778 V v;
6779 while ((v = advance()) != null)
6780 r = reducer.apply(r, transformer.apply((K)nextKey, v));
6781 result = r;
6782 CountedCompleter<?> c;
6783 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6784 MapReduceMappingsToIntTask<K,V>
6785 t = (MapReduceMappingsToIntTask<K,V>)c,
6786 s = t.rights;
6787 while (s != null) {
6788 t.result = reducer.apply(t.result, s.result);
6789 s = t.rights = s.nextRight;
6790 }
6791 }
6792 }
6793 }
6794 }
6795
6796 // Unsafe mechanics
6797 private static final sun.misc.Unsafe U;
6798 private static final long SIZECTL;
6799 private static final long TRANSFERINDEX;
6800 private static final long TRANSFERORIGIN;
6801 private static final long BASECOUNT;
6802 private static final long COUNTERBUSY;
6803 private static final long CELLVALUE;
6804 private static final long ABASE;
6805 private static final int ASHIFT;
6806
6807 static {
6808 try {
6809 U = getUnsafe();
6810 Class<?> k = ConcurrentHashMapV8.class;
6811 SIZECTL = U.objectFieldOffset
6812 (k.getDeclaredField("sizeCtl"));
6813 TRANSFERINDEX = U.objectFieldOffset
6814 (k.getDeclaredField("transferIndex"));
6815 TRANSFERORIGIN = U.objectFieldOffset
6816 (k.getDeclaredField("transferOrigin"));
6817 BASECOUNT = U.objectFieldOffset
6818 (k.getDeclaredField("baseCount"));
6819 COUNTERBUSY = U.objectFieldOffset
6820 (k.getDeclaredField("counterBusy"));
6821 Class<?> ck = CounterCell.class;
6822 CELLVALUE = U.objectFieldOffset
6823 (ck.getDeclaredField("value"));
6824 Class<?> sc = Node[].class;
6825 ABASE = U.arrayBaseOffset(sc);
6826 int scale = U.arrayIndexScale(sc);
6827 if ((scale & (scale - 1)) != 0)
6828 throw new Error("data type scale not a power of two");
6829 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6830 } catch (Exception e) {
6831 throw new Error(e);
6832 }
6833 }
6834
6835 /**
6836 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
6837 * Replace with a simple call to Unsafe.getUnsafe when integrating
6838 * into a jdk.
6839 *
6840 * @return a sun.misc.Unsafe
6841 */
6842 private static sun.misc.Unsafe getUnsafe() {
6843 try {
6844 return sun.misc.Unsafe.getUnsafe();
6845 } catch (SecurityException tryReflectionInstead) {}
6846 try {
6847 return java.security.AccessController.doPrivileged
6848 (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
6849 public sun.misc.Unsafe run() throws Exception {
6850 Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
6851 for (java.lang.reflect.Field f : k.getDeclaredFields()) {
6852 f.setAccessible(true);
6853 Object x = f.get(null);
6854 if (k.isInstance(x))
6855 return k.cast(x);
6856 }
6857 throw new NoSuchFieldError("the Unsafe");
6858 }});
6859 } catch (java.security.PrivilegedActionException e) {
6860 throw new RuntimeException("Could not initialize intrinsics",
6861 e.getCause());
6862 }
6863 }
6864 }