ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166x/ConcurrentSkipListMap.java
(Generate patch)

Comparing jsr166/src/jsr166x/ConcurrentSkipListMap.java (file contents):
Revision 1.1 by dl, Wed Aug 11 10:58:15 2004 UTC vs.
Revision 1.28 by jsr166, Tue Feb 5 19:54:07 2013 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7 < package jsr166x;
7 > package jsr166x;
8  
9   import java.util.*;
10   import java.util.concurrent.*;
11   import java.util.concurrent.atomic.*;
12  
13   /**
14 < * A scalable {@link SortedMap} and {@link ConcurrentMap}
15 < * implementation.  This class maintains a map in ascending key order,
16 < * sorted according to the <i>natural order</i> for the key's class
17 < * (see {@link Comparable}), or by the {@link Comparator} provided at
18 < * creation time, depending on which constructor is used.
14 > * A scalable {@link ConcurrentNavigableMap} implementation.  This
15 > * class maintains a map in ascending key order, sorted according to
16 > * the <i>natural order</i> for the key's class (see {@link
17 > * Comparable}), or by the {@link Comparator} provided at creation
18 > * time, depending on which constructor is used.
19   *
20   * <p>This class implements a concurrent variant of <a
21   * href="http://www.cs.umd.edu/~pugh/">SkipLists</a> providing
22   * expected average <i>log(n)</i> time cost for the
23 < * <tt>containsKey</tt>, <tt>get</tt>, <tt>put</tt> and
24 < * <tt>remove</tt> operations and their variants.  Insertion, removal,
23 > * {@code containsKey}, {@code get}, {@code put} and
24 > * {@code remove} operations and their variants.  Insertion, removal,
25   * update, and access operations safely execute concurrently by
26   * multiple threads. Iterators are <i>weakly consistent</i>, returning
27   * elements reflecting the state of the map at some point at or since
28   * the creation of the iterator.  They do <em>not</em> throw {@link
29   * ConcurrentModificationException}, and may proceed concurrently with
30 < * other operations.
30 > * other operations. Ascending key ordered views and their iterators
31 > * are faster than descending ones.
32   *
33 < * <p>This class provides extended <tt>SortedMap</tt> methods
33 < * returning <tt>Map.Entry</tt> key-value pairs that may be useful in
34 < * searching for closest matches. Methods <tt>lowerEntry</tt>,
35 < * <tt>floorEntry</tt>, <tt>ceilingEntry</tt>, and
36 < * <tt>higherEntry</tt> return entries associated with keys
37 < * respectively less, less than or equal, greater than or equal, and
38 < * greater than a given key, returning null if there is no such key.
39 < * These methods are designed for locating, not traversing entries. To
40 < * traverse, use view iterators and/or <tt>submap</tt>. The class
41 < * additionally supports method <tt>removeFirstEntry</tt> that
42 < * atomically returns and removes the first mapping (i.e., with least
43 < * key), if one exists.
44 < *
45 < * <p> All <tt>Map.Entry</tt> pairs returned by methods in this class
33 > * <p>All {@code Map.Entry} pairs returned by methods in this class
34   * and its views represent snapshots of mappings at the time they were
35 < * produced. They do <em>not</em> support the <tt>Entry.setValue</tt>
35 > * produced. They do <em>not</em> support the {@code Entry.setValue}
36   * method. (Note however that it is possible to change mappings in the
37 < * associated map using <tt>put</tt>, <tt>putIfAbsent</tt>, or
38 < * <tt>replace</tt>, depending on exactly which effect you need.)
37 > * associated map using {@code put}, {@code putIfAbsent}, or
38 > * {@code replace}, depending on exactly which effect you need.)
39   *
40 < * <p>The {@link ConcurrentSkipListSubMap} objects returned by methods
53 < * <tt>submap</tt>, <tt>headMap</tt>, and <tt>tailMap</tt> support the
54 < * same extended set of operations as this class, but operate on their
55 < * designated subrange of mappings.
56 < *
57 < * <p>Beware that, unlike in most collections, the <tt>size</tt>
40 > * <p>Beware that, unlike in most collections, the {@code size}
41   * method is <em>not</em> a constant-time operation. Because of the
42   * asynchronous nature of these maps, determining the current number
43 < * of elements requires a traversal of the elements.
43 > * of elements requires a traversal of the elements.  Additionally,
44 > * the bulk operations {@code putAll}, {@code equals}, and
45 > * {@code clear} are <em>not</em> guaranteed to be performed
46 > * atomically. For example, an iterator operating concurrently with a
47 > * {@code putAll} operation might view only some of the added
48 > * elements.
49   *
50   * <p>This class and its views and iterators implement all of the
51   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
52   * interfaces. Like most other concurrent collections, this class does
53 < * not permit the use of <tt>null</tt> keys or values because some
53 > * not permit the use of {@code null} keys or values because some
54   * null return values cannot be reliably distinguished from the
55   * absence of elements.
56   *
57   * @author Doug Lea
58   * @param <K> the type of keys maintained by this map
59 < * @param <V> the type of mapped values
59 > * @param <V> the type of mapped values
60   */
61 < public class ConcurrentSkipListMap<K,V> extends AbstractMap<K,V>
62 <    implements ConcurrentMap<K,V>,
63 <               SortedMap<K,V>,
76 <               Cloneable,
61 > public class ConcurrentSkipListMap<K,V> extends AbstractMap<K,V>
62 >    implements ConcurrentNavigableMap<K,V>,
63 >               Cloneable,
64                 java.io.Serializable {
65      /*
66       * This class implements a tree-like two-dimensionally linked skip
# Line 87 | Line 74 | public class ConcurrentSkipListMap<K,V>
74       * possible list with 2 levels of index:
75       *
76       * Head nodes          Index nodes
77 <     * +-+     right       +-+                      +-+                
77 >     * +-+    right        +-+                      +-+
78       * |2|---------------->| |--------------------->| |->null
79 <     * +-+                 +-+                      +-+                
79 >     * +-+                 +-+                      +-+
80       *  | down              |                        |
81       *  v                   v                        v
82 <     * +-+            +-+  +-+       +-+            +-+       +-+  
82 >     * +-+            +-+  +-+       +-+            +-+       +-+
83       * |1|----------->| |->| |------>| |----------->| |------>| |->null
84 <     * +-+            +-+  +-+       +-+            +-+       +-+  
85 <     *  |              |    |         |              |         |
86 <     *  v   Nodes      v    v         v              v         v
87 <     * +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  
84 >     * +-+            +-+  +-+       +-+            +-+       +-+
85 >     *  v              |    |         |              |         |
86 >     * Nodes  next     v    v         v              v         v
87 >     * +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+
88       * | |->|A|->|B|->|C|->|D|->|E|->|F|->|G|->|H|->|I|->|J|->|K|->null
89 <     * +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  
89 >     * +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+
90       *
91       * The base lists use a variant of the HM linked ordered set
92 <     * algorithm (See Tim Harris, "A pragmatic implementation of
92 >     * algorithm. See Tim Harris, "A pragmatic implementation of
93       * non-blocking linked lists"
94       * http://www.cl.cam.ac.uk/~tlh20/publications.html and Maged
95       * Michael "High Performance Dynamic Lock-Free Hash Tables and
96       * List-Based Sets"
97 <     * http://www.research.ibm.com/people/m/michael/pubs.htm).  The
98 <     * basic idea in these lists is to mark pointers of deleted nodes
99 <     * when deleting, and when traversing to keep track of triples
97 >     * http://www.research.ibm.com/people/m/michael/pubs.htm.  The
98 >     * basic idea in these lists is to mark the "next" pointers of
99 >     * deleted nodes when deleting to avoid conflicts with concurrent
100 >     * insertions, and when traversing to keep track of triples
101       * (predecessor, node, successor) in order to detect when and how
102       * to unlink these deleted nodes.
103       *
# Line 136 | Line 124 | public class ConcurrentSkipListMap<K,V>
124       * space by defining marker nodes not to have key/value fields, it
125       * isn't worth the extra type-testing overhead.  The deletion
126       * markers are rarely encountered during traversal and are
127 <     * normally quickly garbage collected.
127 >     * normally quickly garbage collected. (Note that this technique
128 >     * would not work well in systems without garbage collection.)
129       *
130       * In addition to using deletion markers, the lists also use
131       * nullness of value fields to indicate deletion, in a style
# Line 156 | Line 145 | public class ConcurrentSkipListMap<K,V>
145       * Here's the sequence of events for a deletion of node n with
146       * predecessor b and successor f, initially:
147       *
148 <     *        +------+       +------+      +------+                
148 >     *        +------+       +------+      +------+
149       *   ...  |   b  |------>|   n  |----->|   f  | ...
150 <     *        +------+       +------+      +------+      
150 >     *        +------+       +------+      +------+
151       *
152       * 1. CAS n's value field from non-null to null.
153       *    From this point on, no public operations encountering
# Line 172 | Line 161 | public class ConcurrentSkipListMap<K,V>
161       *
162       *        +------+       +------+      +------+       +------+
163       *   ...  |   b  |------>|   n  |----->|marker|------>|   f  | ...
164 <     *        +------+       +------+      +------+       +------+
164 >     *        +------+       +------+      +------+       +------+
165       *
166       * 3. CAS b's next pointer over both n and its marker.
167       *    From this point on, no new traversals will encounter n,
168       *    and it can eventually be GCed.
169       *        +------+                                    +------+
170       *   ...  |   b  |----------------------------------->|   f  | ...
171 <     *        +------+                                    +------+
172 <     *
171 >     *        +------+                                    +------+
172 >     *
173       * A failure at step 1 leads to simple retry due to a lost race
174       * with another operation. Steps 2-3 can fail because some other
175       * thread noticed during a traversal a node with null value and
# Line 199 | Line 188 | public class ConcurrentSkipListMap<K,V>
188       * nodes. This doesn't change the basic algorithm except for the
189       * need to make sure base traversals start at predecessors (here,
190       * b) that are not (structurally) deleted, otherwise retrying
191 <     * after processing the deletion.
191 >     * after processing the deletion.
192       *
193       * Index levels are maintained as lists with volatile next fields,
194       * using CAS to link and unlink.  Races are allowed in index-list
# Line 276 | Line 265 | public class ConcurrentSkipListMap<K,V>
265       *
266       * For explanation of algorithms sharing at least a couple of
267       * features with this one, see Mikhail Fomitchev's thesis
268 <     * (http://www.cs.yorku.ca/~mikhail/) and Keir Fraser's thesis
269 <     * (http://www.cl.cam.ac.uk/users/kaf24/).
268 >     * (http://www.cs.yorku.ca/~mikhail/), Keir Fraser's thesis
269 >     * (http://www.cl.cam.ac.uk/users/kaf24/), and Hakan Sundell's
270 >     * thesis (http://www.cs.chalmers.se/~phs/).
271       *
272       * Given the use of tree-like index nodes, you might wonder why
273       * this doesn't use some kind of search tree instead, which would
# Line 302 | Line 292 | public class ConcurrentSkipListMap<K,V>
292  
293      /**
294       * Special value used to identify base-level header
295 <     */
295 >     */
296      private static final Object BASE_HEADER = new Object();
297  
298      /**
299 <     * The topmost head index of the skiplist.
299 >     * The topmost head index of the skiplist.
300       */
301      private transient volatile HeadIndex<K,V> head;
302  
# Line 329 | Line 319 | public class ConcurrentSkipListMap<K,V>
319      private transient EntrySet entrySet;
320      /** Lazily initialized values collection */
321      private transient Values values;
322 +    /** Lazily initialized descending key set */
323 +    private transient DescendingKeySet descendingKeySet;
324 +    /** Lazily initialized descending entry set */
325 +    private transient DescendingEntrySet descendingEntrySet;
326  
327      /**
328 <     * Initialize or reset state. Needed by constructors, clone,
328 >     * Initializes or resets state. Needed by constructors, clone,
329       * clear, readObject. and ConcurrentSkipListSet.clone.
330       * (Note that comparator must be separately initialized.)
331       */
332      final void initialize() {
333          keySet = null;
334 <        entrySet = null;  
334 >        entrySet = null;
335          values = null;
336 +        descendingEntrySet = null;
337 +        descendingKeySet = null;
338          randomSeed = (int) System.nanoTime();
339          head = new HeadIndex<K,V>(new Node<K,V>(null, BASE_HEADER, null),
340                                    null, null, 1);
341      }
342  
343      /** Updater for casHead */
344 <    private static final
345 <        AtomicReferenceFieldUpdater<ConcurrentSkipListMap, HeadIndex>
344 >    private static final
345 >        AtomicReferenceFieldUpdater<ConcurrentSkipListMap, HeadIndex>
346          headUpdater = AtomicReferenceFieldUpdater.newUpdater
347          (ConcurrentSkipListMap.class, HeadIndex.class, "head");
348  
# Line 394 | Line 390 | public class ConcurrentSkipListMap<K,V>
390          }
391  
392          /** Updater for casNext */
393 <        static final AtomicReferenceFieldUpdater<Node, Node>
393 >        static final AtomicReferenceFieldUpdater<Node, Node>
394              nextUpdater = AtomicReferenceFieldUpdater.newUpdater
395              (Node.class, Node.class, "next");
396  
397          /** Updater for casValue */
398 <        static final AtomicReferenceFieldUpdater<Node, Object>
398 >        static final AtomicReferenceFieldUpdater<Node, Object>
399              valueUpdater = AtomicReferenceFieldUpdater.newUpdater
400              (Node.class, Object.class, "value");
401  
406
402          /**
403           * compareAndSet value field
404           */
# Line 419 | Line 414 | public class ConcurrentSkipListMap<K,V>
414          }
415  
416          /**
417 <         * Return true if this node is a marker. This method isn't
417 >         * Returns true if this node is a marker. This method isn't
418           * actually called in an any current code checking for markers
419           * because callers will have already read value field and need
420           * to use that read (not another done here) and so directly
421           * test if value points to node.
422 <         * @param n a possibly null reference to a node
422 >         *
423           * @return true if this node is a marker node
424           */
425          boolean isMarker() {
# Line 432 | Line 427 | public class ConcurrentSkipListMap<K,V>
427          }
428  
429          /**
430 <         * Return true if this node is the header of base-level list.
430 >         * Returns true if this node is the header of base-level list.
431           * @return true if this node is header node
432           */
433          boolean isBaseHeader() {
# Line 470 | Line 465 | public class ConcurrentSkipListMap<K,V>
465          }
466  
467          /**
468 <         * Return value if this node contains a valid key-value pair,
469 <         * else null.
468 >         * Returns value if this node contains a valid key-value pair,
469 >         * else null.
470           * @return this node's value if it isn't a marker or header or
471 <         * is deleted, else null.
471 >         * is deleted, else null
472           */
473          V getValidValue() {
474              Object v = value;
# Line 483 | Line 478 | public class ConcurrentSkipListMap<K,V>
478          }
479  
480          /**
481 <         * Create and return a new SnapshotEntry holding current
482 <         * mapping if this node holds a valid value, else null
481 >         * Creates and returns a new SnapshotEntry holding current
482 >         * mapping if this node holds a valid value, else null.
483           * @return new entry or null
484           */
485          SnapshotEntry<K,V> createSnapshot() {
# Line 512 | Line 507 | public class ConcurrentSkipListMap<K,V>
507          volatile Index<K,V> right;
508  
509          /**
510 <         * Creates index node with unknown right pointer
511 <         */
517 <        Index(Node<K,V> node, Index<K,V> down) {
518 <            this.node = node;
519 <            this.key = node.key;
520 <            this.down = down;
521 <        }
522 <        
523 <        /**
524 <         * Creates index node with known right pointer
525 <         */
510 >         * Creates index node with given values.
511 >         */
512          Index(Node<K,V> node, Index<K,V> down, Index<K,V> right) {
513              this.node = node;
514              this.key = node.key;
# Line 531 | Line 517 | public class ConcurrentSkipListMap<K,V>
517          }
518  
519          /** Updater for casRight */
520 <        static final AtomicReferenceFieldUpdater<Index, Index>
520 >        static final AtomicReferenceFieldUpdater<Index, Index>
521              rightUpdater = AtomicReferenceFieldUpdater.newUpdater
522              (Index.class, Index.class, "right");
523  
# Line 560 | Line 546 | public class ConcurrentSkipListMap<K,V>
546           */
547          final boolean link(Index<K,V> succ, Index<K,V> newSucc) {
548              Node<K,V> n = node;
549 <            newSucc.right = succ;
549 >            newSucc.right = succ;
550              return n.value != null && casRight(succ, newSucc);
551          }
552  
# Line 583 | Line 569 | public class ConcurrentSkipListMap<K,V>
569       */
570      static final class HeadIndex<K,V> extends Index<K,V> {
571          final int level;
572 <        HeadIndex(Node<K,V> node, Index<K,V> down, Index<K,V> right,
587 <                  int level) {
572 >        HeadIndex(Node<K,V> node, Index<K,V> down, Index<K,V> right, int level) {
573              super(node, down, right);
574              this.level = level;
575          }
576 <    }    
576 >    }
577  
578      /* ---------------- Map.Entry support -------------- */
579  
580      /**
581       * An immutable representation of a key-value mapping as it
582       * existed at some point in time. This class does <em>not</em>
583 <     * support the <tt>Map.Entry.setValue</tt> method.
584 <     */
583 >     * support the {@code Map.Entry.setValue} method.
584 >     */
585      static class SnapshotEntry<K,V> implements Map.Entry<K,V> {
586 <        private final K key;
587 <        private final V value;
586 >        private final K key;
587 >        private final V value;
588  
589          /**
590           * Creates a new entry representing the given key and value.
# Line 607 | Line 592 | public class ConcurrentSkipListMap<K,V>
592           * @param value the value
593           */
594          SnapshotEntry(K key, V value) {
595 <            this.key = key;
596 <            this.value = value;
597 <        }
598 <
599 <        /**
600 <         * Returns the key corresponding to this entry.
601 <         *
602 <         * @return the key corresponding to this entry.
603 <         */
595 >            this.key = key;
596 >            this.value = value;
597 >        }
598 >
599 >        /**
600 >         * Returns the key corresponding to this entry.
601 >         *
602 >         * @return the key corresponding to this entry
603 >         */
604          public K getKey() {
605              return key;
606          }
607  
608 <        /**
609 <         * Returns the value corresponding to this entry.
610 <         *
611 <         * @return the value corresponding to this entry.
612 <         */
608 >        /**
609 >         * Returns the value corresponding to this entry.
610 >         *
611 >         * @return the value corresponding to this entry
612 >         */
613          public V getValue() {
614 <            return value;
614 >            return value;
615          }
616  
617 <        /**
618 <         * Always fails, throwing <tt>UnsupportedOperationException</tt>.
619 <         * @throws UnsupportedOperationException always.
617 >        /**
618 >         * Always fails, throwing {@code UnsupportedOperationException}.
619 >         * @throws UnsupportedOperationException always
620           */
621          public V setValue(V value) {
622              throw new UnsupportedOperationException();
# Line 659 | Line 644 | public class ConcurrentSkipListMap<K,V>
644  
645          /**
646           * Returns a String consisting of the key followed by an
647 <         * equals sign (<tt>"="</tt>) followed by the associated
647 >         * equals sign ({@code "="}) followed by the associated
648           * value.
649 <         * @return a String representation of this entry.
649 >         * @return a String representation of this entry
650           */
651          public String toString() {
652 <            return getKey() + "=" + getValue();
652 >            return getKey() + "=" + getValue();
653          }
654      }
655  
# Line 703 | Line 688 | public class ConcurrentSkipListMap<K,V>
688       * which is propagated back to caller.
689       */
690      private Comparable<K> comparable(Object key) throws ClassCastException {
691 <        if (key == null)
691 >        if (key == null)
692              throw new NullPointerException();
693 <        return (comparator != null)
694 <            ? new ComparableUsingComparator(key, comparator)
693 >        return (comparator != null)
694 >            ? new ComparableUsingComparator(key, comparator)
695              : (Comparable<K>)key;
696      }
697  
698      /**
699 <     * Compare using comparator or natural ordering. Used when the
699 >     * Compares using comparator or natural ordering. Used when the
700       * ComparableUsingComparator approach doesn't apply.
701       */
702      int compare(K k1, K k2) throws ClassCastException {
# Line 723 | Line 708 | public class ConcurrentSkipListMap<K,V>
708      }
709  
710      /**
711 <     * Return true if given key greater than or equal to least and
712 <     * strictly less than fence. Needed mainly in submap operations.
711 >     * Returns true if given key greater than or equal to least and
712 >     * strictly less than fence, bypassing either test if least or
713 >     * fence are null. Needed mainly in submap operations.
714       */
715      boolean inHalfOpenRange(K key, K least, K fence) {
716 <        if (key == null)
716 >        if (key == null)
717              throw new NullPointerException();
718          return ((least == null || compare(key, least) >= 0) &&
719                  (fence == null || compare(key, fence) <  0));
720      }
721  
722      /**
723 <     * Return true if given key greater than or equal to least and less
723 >     * Returns true if given key greater than or equal to least and less
724       * or equal to fence. Needed mainly in submap operations.
725       */
726      boolean inOpenRange(K key, K least, K fence) {
727 <        if (key == null)
727 >        if (key == null)
728              throw new NullPointerException();
729          return ((least == null || compare(key, least) >= 0) &&
730                  (fence == null || compare(key, fence) <= 0));
# Line 747 | Line 733 | public class ConcurrentSkipListMap<K,V>
733      /* ---------------- Traversal -------------- */
734  
735      /**
736 <     * Return a base-level node with key strictly less than given key,
736 >     * Returns a base-level node with key strictly less than given key,
737       * or the base-level header if there is no such node.  Also
738       * unlinks indexes to deleted nodes found along the way.  Callers
739       * rely on this side-effect of clearing indices to deleted nodes.
740       * @param key the key
741 <     * @return a predecessor of key
741 >     * @return a predecessor of key
742       */
743      private Node<K,V> findPredecessor(Comparable<K> key) {
744          for (;;) {
# Line 771 | Line 757 | public class ConcurrentSkipListMap<K,V>
757                          continue;
758                      }
759                  }
760 <                if ((d = q.down) != null)
760 >                if ((d = q.down) != null)
761                      q = d;
762                  else
763                      return q.node;
# Line 780 | Line 766 | public class ConcurrentSkipListMap<K,V>
766      }
767  
768      /**
769 <     * Return node holding key or null if no such, clearing out any
769 >     * Returns node holding key or null if no such, clearing out any
770       * deleted nodes seen along the way.  Repeatedly traverses at
771       * base-level looking for key starting at predecessor returned
772       * from findPredecessor, processing base-level deletions as
# Line 801 | Line 787 | public class ConcurrentSkipListMap<K,V>
787       *       here because doing so would not usually outweigh cost of
788       *       restarting.
789       *
790 <     *   (3) n is a marker or n's predecessor's value field is null,
790 >     *   (3) n is a marker or n's predecessor's value field is null,
791       *       indicating (among other possibilities) that
792       *       findPredecessor returned a deleted node. We can't unlink
793       *       the node because we don't know its predecessor, so rely
# Line 814 | Line 800 | public class ConcurrentSkipListMap<K,V>
800       *       links, and so will retry anyway.
801       *
802       * The traversal loops in doPut, doRemove, and findNear all
803 <     * include with the same three kinds of checks. And specialized
804 <     * versions appear in doRemoveFirstEntry, findFirst, and
803 >     * include the same three kinds of checks. And specialized
804 >     * versions appear in doRemoveFirst, doRemoveLast, findFirst, and
805       * findLast. They can't easily share code because each uses the
806       * reads of fields held in locals occurring in the orders they
807       * were performed.
808 <     *
808 >     *
809       * @param key the key
810 <     * @return node holding key, or null if no such.
810 >     * @return node holding key, or null if no such
811       */
812      private Node<K,V> findNode(Comparable<K> key) {
813          for (;;) {
814              Node<K,V> b = findPredecessor(key);
815              Node<K,V> n = b.next;
816              for (;;) {
817 <                if (n == null)
817 >                if (n == null)
818                      return null;
819                  Node<K,V> f = n.next;
820                  if (n != b.next)                // inconsistent read
# Line 843 | Line 829 | public class ConcurrentSkipListMap<K,V>
829                  int c = key.compareTo(n.key);
830                  if (c < 0)
831                      return null;
832 <                if (c == 0)
832 >                if (c == 0)
833                      return n;
834                  b = n;
835                  n = f;
# Line 851 | Line 837 | public class ConcurrentSkipListMap<K,V>
837          }
838      }
839  
840 <    /**
841 <     * Specialized variant of findNode to perform map.get. Does a weak
840 >    /**
841 >     * Specialized variant of findNode to perform Map.get. Does a weak
842       * traversal, not bothering to fix any deleted index nodes,
843       * returning early if it happens to see key in index, and passing
844       * over any deleted base nodes, falling back to getUsingFindNode
# Line 870 | Line 856 | public class ConcurrentSkipListMap<K,V>
856          for (;;) {
857              K rk;
858              Index<K,V> d, r;
859 <            if ((r = q.right) != null &&
859 >            if ((r = q.right) != null &&
860                  (rk = r.key) != null && rk != bound) {
861                  int c = key.compareTo(rk);
862                  if (c > 0) {
# Line 879 | Line 865 | public class ConcurrentSkipListMap<K,V>
865                  }
866                  if (c == 0) {
867                      Object v = r.node.value;
868 <                    return (v != null)? (V)v : getUsingFindNode(key);
868 >                    return (v != null) ? (V)v : getUsingFindNode(key);
869                  }
870                  bound = rk;
871              }
872 <            if ((d = q.down) != null)
872 >            if ((d = q.down) != null)
873                  q = d;
874              else {
875                  for (Node<K,V> n = q.node.next; n != null; n = n.next) {
# Line 892 | Line 878 | public class ConcurrentSkipListMap<K,V>
878                          int c = key.compareTo(nk);
879                          if (c == 0) {
880                              Object v = n.value;
881 <                            return (v != null)? (V)v : getUsingFindNode(key);
881 >                            return (v != null) ? (V)v : getUsingFindNode(key);
882                          }
883                          if (c < 0)
884                              return null;
# Line 904 | Line 890 | public class ConcurrentSkipListMap<K,V>
890      }
891  
892      /**
893 <     * Perform map.get via findNode.  Used as a backup if doGet
893 >     * Performs map.get via findNode.  Used as a backup if doGet
894       * encounters an in-progress deletion.
895       * @param key the key
896       * @return the value, or null if absent
897       */
898      private V getUsingFindNode(Comparable<K> key) {
899 <        // Loop needed here and elsewhere to protect against value
900 <        // field going null just as it is about to be returned.
899 >        /*
900 >         * Loop needed here and elsewhere in case value field goes
901 >         * null just as it is about to be returned, in which case we
902 >         * lost a race with a deletion, so must retry.
903 >         */
904          for (;;) {
905              Node<K,V> n = findNode(key);
906              if (n == null)
# Line 927 | Line 916 | public class ConcurrentSkipListMap<K,V>
916      /**
917       * Main insertion method.  Adds element if not present, or
918       * replaces value if present and onlyIfAbsent is false.
919 <     * @param kkey the key
919 >     * @param kkey the key
920       * @param value  the value that must be associated with key
921       * @param onlyIfAbsent if should not insert if already present
922       * @return the old value, or null if newly inserted
# Line 941 | Line 930 | public class ConcurrentSkipListMap<K,V>
930                  if (n != null) {
931                      Node<K,V> f = n.next;
932                      if (n != b.next)               // inconsistent read
933 <                        break;;
933 >                        break;
934                      Object v = n.value;
935                      if (v == null) {               // n is deleted
936                          n.helpDelete(b, f);
# Line 963 | Line 952 | public class ConcurrentSkipListMap<K,V>
952                      }
953                      // else c < 0; fall through
954                  }
955 <                
955 >
956                  Node<K,V> z = new Node<K,V>(kkey, value, n);
957 <                if (!b.casNext(n, z))
957 >                if (!b.casNext(n, z))
958                      break;         // restart if lost race to append to b
959 <                int level = randomLevel();
960 <                if (level > 0)
959 >                int level = randomLevel();
960 >                if (level > 0)
961                      insertIndex(z, level);
962                  return null;
963              }
# Line 976 | Line 965 | public class ConcurrentSkipListMap<K,V>
965      }
966  
967      /**
968 <     * Return a random level for inserting a new node.
968 >     * Returns a random level for inserting a new node.
969       * Hardwired to k=1, p=0.5, max 31.
970       *
971       * This uses a cheap pseudo-random function that according to
# Line 990 | Line 979 | public class ConcurrentSkipListMap<K,V>
979          int level = 0;
980          int r = randomSeed;
981          randomSeed = r * 134775813 + 1;
982 <        if (r < 0) {
983 <            while ((r <<= 1) > 0)
982 >        if (r < 0) {
983 >            while ((r <<= 1) > 0)
984                  ++level;
985          }
986          return level;
987      }
988  
989      /**
990 <     * Create and add index nodes for given node.
990 >     * Creates and adds index nodes for given node.
991       * @param z the node
992       * @param level the level of the index
993       */
# Line 1009 | Line 998 | public class ConcurrentSkipListMap<K,V>
998          if (level <= max) {
999              Index<K,V> idx = null;
1000              for (int i = 1; i <= level; ++i)
1001 <                idx = new Index<K,V>(z, idx);
1001 >                idx = new Index<K,V>(z, idx, null);
1002              addIndex(idx, h, level);
1003  
1004          } else { // Add a new level
# Line 1024 | Line 1013 | public class ConcurrentSkipListMap<K,V>
1013              level = max + 1;
1014              Index<K,V>[] idxs = (Index<K,V>[])new Index[level+1];
1015              Index<K,V> idx = null;
1016 <            for (int i = 1; i <= level; ++i)
1017 <                idxs[i] = idx = new Index<K,V>(z, idx);
1016 >            for (int i = 1; i <= level; ++i)
1017 >                idxs[i] = idx = new Index<K,V>(z, idx, null);
1018  
1019              HeadIndex<K,V> oldh;
1020              int k;
# Line 1038 | Line 1027 | public class ConcurrentSkipListMap<K,V>
1027                  }
1028                  HeadIndex<K,V> newh = oldh;
1029                  Node<K,V> oldbase = oldh.node;
1030 <                for (int j = oldLevel+1; j <= level; ++j)
1030 >                for (int j = oldLevel+1; j <= level; ++j)
1031                      newh = new HeadIndex<K,V>(oldbase, newh, idxs[j], j);
1032                  if (casHead(oldh, newh)) {
1033                      k = oldLevel;
# Line 1050 | Line 1039 | public class ConcurrentSkipListMap<K,V>
1039      }
1040  
1041      /**
1042 <     * Add given index nodes from given level down to 1.
1042 >     * Adds given index nodes from given level down to 1.
1043       * @param idx the topmost index node being inserted
1044       * @param h the value of head to use to insert. This must be
1045 <     * snapshotted by callers to provide correct insertion level
1045 >     * snapshotted by callers to provide correct insertion level.
1046       * @param indexLevel the level of the index
1047       */
1048      private void addIndex(Index<K,V> idx, HeadIndex<K,V> h, int indexLevel) {
# Line 1076 | Line 1065 | public class ConcurrentSkipListMap<K,V>
1065                          if (q.unlink(r))
1066                              continue;
1067                          else
1068 <                            break;
1068 >                            break;
1069                      }
1070                      if (c > 0) {
1071                          q = r;
# Line 1090 | Line 1079 | public class ConcurrentSkipListMap<K,V>
1079                          findNode(key); // cleans up
1080                          return;
1081                      }
1082 <                    if (!q.link(r, t))
1082 >                    if (!q.link(r, t))
1083                          break; // restart
1084                      if (--insertionLevel == 0) {
1085                          // need final deletion check before return
1086 <                        if (t.indexesDeletedNode())
1087 <                            findNode(key);
1086 >                        if (t.indexesDeletedNode())
1087 >                            findNode(key);
1088                          return;
1089                      }
1090                  }
1091  
1092 <                if (j > insertionLevel && j <= indexLevel)
1092 >                if (j > insertionLevel && j <= indexLevel)
1093                      t = t.down;
1094                  q = q.down;
1095                  --j;
# Line 1115 | Line 1104 | public class ConcurrentSkipListMap<K,V>
1104       * deletion marker, unlinks predecessor, removes associated index
1105       * nodes, and possibly reduces head index level.
1106       *
1107 <     * Index node are cleared out simply by calling findPredecessor.
1107 >     * Index nodes are cleared out simply by calling findPredecessor.
1108       * which unlinks indexes to deleted nodes found along path to key,
1109       * which will include the indexes to this node.  This is done
1110       * unconditionally. We can't check beforehand whether there are
1111       * index nodes because it might be the case that some or all
1112       * indexes hadn't been inserted yet for this node during initial
1113       * search for it, and we'd like to ensure lack of garbage
1114 <     * retention, so must call to be sure.
1114 >     * retention, so must call to be sure.
1115       *
1116       * @param okey the key
1117       * @param value if non-null, the value that must be
# Line 1131 | Line 1120 | public class ConcurrentSkipListMap<K,V>
1120       */
1121      private V doRemove(Object okey, Object value) {
1122          Comparable<K> key = comparable(okey);
1123 <        for (;;) {
1123 >        for (;;) {
1124              Node<K,V> b = findPredecessor(key);
1125              Node<K,V> n = b.next;
1126              for (;;) {
1127 <                if (n == null)
1127 >                if (n == null)
1128                      return null;
1129                  Node<K,V> f = n.next;
1130                  if (n != b.next)                    // inconsistent read
# Line 1155 | Line 1144 | public class ConcurrentSkipListMap<K,V>
1144                      n = f;
1145                      continue;
1146                  }
1147 <                if (value != null && !value.equals(v))
1148 <                    return null;              
1149 <                if (!n.casValue(v, null))  
1147 >                if (value != null && !value.equals(v))
1148 >                    return null;
1149 >                if (!n.casValue(v, null))
1150                      break;
1151 <                if (!n.appendMarker(f) || !b.casNext(n, f))
1151 >                if (!n.appendMarker(f) || !b.casNext(n, f))
1152                      findNode(key);                  // Retry via findNode
1153                  else {
1154                      findPredecessor(key);           // Clean index
1155 <                    if (head.right == null)
1155 >                    if (head.right == null)
1156                          tryReduceLevel();
1157                  }
1158                  return (V)v;
# Line 1175 | Line 1164 | public class ConcurrentSkipListMap<K,V>
1164       * Possibly reduce head level if it has no nodes.  This method can
1165       * (rarely) make mistakes, in which case levels can disappear even
1166       * though they are about to contain index nodes. This impacts
1167 <     * performance, not correctness.  To minimize mistakes and also to
1168 <     * reduce hysteresis, the level is reduced by one only if the
1167 >     * performance, not correctness.  To minimize mistakes as well as
1168 >     * to reduce hysteresis, the level is reduced by one only if the
1169       * topmost three levels look empty. Also, if the removed level
1170       * looks non-empty after CAS, we try to change it back quick
1171       * before anyone notices our mistake! (This trick works pretty
# Line 1196 | Line 1185 | public class ConcurrentSkipListMap<K,V>
1185          HeadIndex<K,V> d;
1186          HeadIndex<K,V> e;
1187          if (h.level > 3 &&
1188 <            (d = (HeadIndex<K,V>)h.down) != null &&
1189 <            (e = (HeadIndex<K,V>)d.down) != null &&
1190 <            e.right == null &&
1191 <            d.right == null &&
1188 >            (d = (HeadIndex<K,V>)h.down) != null &&
1189 >            (e = (HeadIndex<K,V>)d.down) != null &&
1190 >            e.right == null &&
1191 >            d.right == null &&
1192              h.right == null &&
1193              casHead(h, d) && // try to set
1194              h.right != null) // recheck
1195              casHead(d, h);   // try to backout
1196      }
1197  
1198 +    /**
1199 +     * Version of remove with boolean return. Needed by view classes.
1200 +     */
1201 +    boolean removep(Object key) {
1202 +        return doRemove(key, null) != null;
1203 +    }
1204  
1205 <    /* ---------------- Positional operations -------------- */
1205 >    /* ---------------- Finding and removing first element -------------- */
1206  
1207      /**
1208 <     * Specialized version of find to get first valid node
1208 >     * Specialized variant of findNode to get first valid node
1209       * @return first node or null if empty
1210       */
1211      Node<K,V> findFirst() {
1212          for (;;) {
1218            // cheaper checks because we know head is never deleted
1213              Node<K,V> b = head.node;
1214              Node<K,V> n = b.next;
1215              if (n == null)
1216                  return null;
1217 <            if (n.value != null)
1217 >            if (n.value != null)
1218                  return n;
1219              n.helpDelete(b, n.next);
1220          }
1221      }
1222  
1223      /**
1224 <     * Remove first entry; return its key or null if empty.
1225 <     * Used by ConcurrentSkipListSet
1226 <     */
1227 <    K removeFirstKey() {
1234 <        for (;;) {
1235 <            Node<K,V> b = head.node;
1236 <            Node<K,V> n = b.next;
1237 <            if (n == null)
1238 <                return null;
1239 <            Node<K,V> f = n.next;
1240 <            if (n != b.next)
1241 <                continue;
1242 <            Object v = n.value;
1243 <            if (v == null) {
1244 <                n.helpDelete(b, f);
1245 <                continue;
1246 <            }
1247 <            if (!n.casValue(v, null))
1248 <                continue;
1249 <            if (!n.appendMarker(f) || !b.casNext(n, f))
1250 <                findFirst(); // retry
1251 <            clearIndexToFirst();
1252 <            return n.key;
1253 <        }
1254 <    }
1255 <
1256 <    /**
1257 <     * Remove first entry; return SnapshotEntry or null if empty.
1224 >     * Removes first entry; return either its key or a snapshot.
1225 >     * @param keyOnly if true return key, else return SnapshotEntry
1226 >     * (This is a little ugly, but avoids code duplication.)
1227 >     * @return null if empty, first key if keyOnly true, else key,value entry
1228       */
1229 <    private SnapshotEntry<K,V> doRemoveFirstEntry() {
1230 <        /*
1261 <         * This must be mostly duplicated from removeFirstKey because we
1262 <         * need to save the last value read before it is nulled out
1263 <         */
1264 <        for (;;) {
1229 >    Object doRemoveFirst(boolean keyOnly) {
1230 >        for (;;) {
1231              Node<K,V> b = head.node;
1232              Node<K,V> n = b.next;
1233 <            if (n == null)
1233 >            if (n == null)
1234                  return null;
1235              Node<K,V> f = n.next;
1236              if (n != b.next)
# Line 1279 | Line 1245 | public class ConcurrentSkipListMap<K,V>
1245              if (!n.appendMarker(f) || !b.casNext(n, f))
1246                  findFirst(); // retry
1247              clearIndexToFirst();
1248 <            return new SnapshotEntry<K,V>(n.key, (V)v);
1248 >            K key = n.key;
1249 >            return keyOnly ? key : new SnapshotEntry<K,V>(key, (V)v);
1250          }
1251      }
1252  
1253      /**
1254 <     * Clear out index nodes associated with deleted first entry.
1255 <     * Needed by removeFirstKey and removeFirstEntry
1254 >     * Clears out index nodes associated with deleted first entry.
1255 >     * Needed by doRemoveFirst.
1256       */
1257      private void clearIndexToFirst() {
1258          for (;;) {
# Line 1293 | Line 1260 | public class ConcurrentSkipListMap<K,V>
1260              for (;;) {
1261                  Index<K,V> r = q.right;
1262                  if (r != null && r.indexesDeletedNode() && !q.unlink(r))
1263 <                    break;
1263 >                    break;
1264                  if ((q = q.down) == null) {
1265 <                    if (head.right == null)
1265 >                    if (head.right == null)
1266                          tryReduceLevel();
1267                      return;
1268                  }
# Line 1303 | Line 1270 | public class ConcurrentSkipListMap<K,V>
1270          }
1271      }
1272  
1273 +   /**
1274 +     * Removes first entry; return key or null if empty.
1275 +     */
1276 +    K pollFirstKey() {
1277 +        return (K)doRemoveFirst(true);
1278 +    }
1279 +
1280 +    /* ---------------- Finding and removing last element -------------- */
1281 +
1282      /**
1283       * Specialized version of find to get last valid node
1284       * @return last node or null if empty
# Line 1320 | Line 1296 | public class ConcurrentSkipListMap<K,V>
1296                  if (r.indexesDeletedNode()) {
1297                      q.unlink(r);
1298                      q = head; // restart
1299 <                }
1299 >                }
1300                  else
1301                      q = r;
1302              } else if ((d = q.down) != null) {
# Line 1329 | Line 1305 | public class ConcurrentSkipListMap<K,V>
1305                  Node<K,V> b = q.node;
1306                  Node<K,V> n = b.next;
1307                  for (;;) {
1308 <                    if (n == null)
1309 <                        return (b.isBaseHeader())? null : b;
1308 >                    if (n == null)
1309 >                        return b.isBaseHeader() ? null : b;
1310                      Node<K,V> f = n.next;            // inconsistent read
1311                      if (n != b.next)
1312                          break;
# Line 1349 | Line 1325 | public class ConcurrentSkipListMap<K,V>
1325          }
1326      }
1327  
1328 +
1329 +    /**
1330 +     * Specialized version of doRemove for last entry.
1331 +     * @param keyOnly if true return key, else return SnapshotEntry
1332 +     * @return null if empty, last key if keyOnly true, else key,value entry
1333 +     */
1334 +    Object doRemoveLast(boolean keyOnly) {
1335 +        for (;;) {
1336 +            Node<K,V> b = findPredecessorOfLast();
1337 +            Node<K,V> n = b.next;
1338 +            if (n == null) {
1339 +                if (b.isBaseHeader())               // empty
1340 +                    return null;
1341 +                else
1342 +                    continue; // all b's successors are deleted; retry
1343 +            }
1344 +            for (;;) {
1345 +                Node<K,V> f = n.next;
1346 +                if (n != b.next)                    // inconsistent read
1347 +                    break;
1348 +                Object v = n.value;
1349 +                if (v == null) {                    // n is deleted
1350 +                    n.helpDelete(b, f);
1351 +                    break;
1352 +                }
1353 +                if (v == n || b.value == null)      // b is deleted
1354 +                    break;
1355 +                if (f != null) {
1356 +                    b = n;
1357 +                    n = f;
1358 +                    continue;
1359 +                }
1360 +                if (!n.casValue(v, null))
1361 +                    break;
1362 +                K key = n.key;
1363 +                Comparable<K> ck = comparable(key);
1364 +                if (!n.appendMarker(f) || !b.casNext(n, f))
1365 +                    findNode(ck);                  // Retry via findNode
1366 +                else {
1367 +                    findPredecessor(ck);           // Clean index
1368 +                    if (head.right == null)
1369 +                        tryReduceLevel();
1370 +                }
1371 +                return keyOnly ? key : new SnapshotEntry<K,V>(key, (V)v);
1372 +            }
1373 +        }
1374 +    }
1375 +
1376 +    /**
1377 +     * Specialized variant of findPredecessor to get predecessor of
1378 +     * last valid node. Needed by doRemoveLast. It is possible that
1379 +     * all successors of returned node will have been deleted upon
1380 +     * return, in which case this method can be retried.
1381 +     * @return likely predecessor of last node
1382 +     */
1383 +    private Node<K,V> findPredecessorOfLast() {
1384 +        for (;;) {
1385 +            Index<K,V> q = head;
1386 +            for (;;) {
1387 +                Index<K,V> d, r;
1388 +                if ((r = q.right) != null) {
1389 +                    if (r.indexesDeletedNode()) {
1390 +                        q.unlink(r);
1391 +                        break;    // must restart
1392 +                    }
1393 +                    // proceed as far across as possible without overshooting
1394 +                    if (r.node.next != null) {
1395 +                        q = r;
1396 +                        continue;
1397 +                    }
1398 +                }
1399 +                if ((d = q.down) != null)
1400 +                    q = d;
1401 +                else
1402 +                    return q.node;
1403 +            }
1404 +        }
1405 +    }
1406 +
1407 +    /**
1408 +     * Removes last entry; return key or null if empty.
1409 +     */
1410 +    K pollLastKey() {
1411 +        return (K)doRemoveLast(true);
1412 +    }
1413 +
1414      /* ---------------- Relational operations -------------- */
1415  
1416      // Control values OR'ed as arguments to findNear
1417  
1418      private static final int EQ = 1;
1419      private static final int LT = 2;
1420 <    private static final int GT = 0;
1420 >    private static final int GT = 0; // Actually checked as !LT
1421  
1422      /**
1423       * Utility for ceiling, floor, lower, higher methods.
# Line 1369 | Line 1431 | public class ConcurrentSkipListMap<K,V>
1431              Node<K,V> b = findPredecessor(key);
1432              Node<K,V> n = b.next;
1433              for (;;) {
1434 <                if (n == null)
1435 <                    return ((rel & LT) == 0 || b.isBaseHeader())? null : b;
1434 >                if (n == null)
1435 >                    return ((rel & LT) == 0 || b.isBaseHeader()) ? null : b;
1436                  Node<K,V> f = n.next;
1437                  if (n != b.next)                  // inconsistent read
1438                      break;
# Line 1386 | Line 1448 | public class ConcurrentSkipListMap<K,V>
1448                      (c <  0 && (rel & LT) == 0))
1449                      return n;
1450                  if ( c <= 0 && (rel & LT) != 0)
1451 <                    return (b.isBaseHeader())? null : b;
1451 >                    return b.isBaseHeader() ? null : b;
1452                  b = n;
1453                  n = f;
1454              }
# Line 1394 | Line 1456 | public class ConcurrentSkipListMap<K,V>
1456      }
1457  
1458      /**
1459 <     * Return SnapshotEntry for results of findNear.
1459 >     * Returns SnapshotEntry for results of findNear.
1460       * @param kkey the key
1461       * @param rel the relation -- OR'ed combination of EQ, LT, GT
1462       * @return Entry fitting relation, or null if no such
# Line 1410 | Line 1472 | public class ConcurrentSkipListMap<K,V>
1472          }
1473      }
1474  
1475 +    /**
1476 +     * Returns ceiling, or first node if key is {@code null}.
1477 +     */
1478 +    Node<K,V> findCeiling(K key) {
1479 +        return (key == null) ? findFirst() : findNear(key, GT|EQ);
1480 +    }
1481 +
1482 +    /**
1483 +     * Returns lower node, or last node if key is {@code null}.
1484 +     */
1485 +    Node<K,V> findLower(K key) {
1486 +        return (key == null) ? findLast() : findNear(key, LT);
1487 +    }
1488 +
1489 +    /**
1490 +     * Returns SnapshotEntry or key for results of findNear ofter screening
1491 +     * to ensure result is in given range. Needed by submaps.
1492 +     * @param kkey the key
1493 +     * @param rel the relation -- OR'ed combination of EQ, LT, GT
1494 +     * @param least minimum allowed key value
1495 +     * @param fence key greater than maximum allowed key value
1496 +     * @param keyOnly if true return key, else return SnapshotEntry
1497 +     * @return Key or Entry fitting relation, or {@code null} if no such
1498 +     */
1499 +    Object getNear(K kkey, int rel, K least, K fence, boolean keyOnly) {
1500 +        K key = kkey;
1501 +        // Don't return keys less than least
1502 +        if ((rel & LT) == 0) {
1503 +            if (compare(key, least) < 0) {
1504 +                key = least;
1505 +                rel = rel | EQ;
1506 +            }
1507 +        }
1508 +
1509 +        for (;;) {
1510 +            Node<K,V> n = findNear(key, rel);
1511 +            if (n == null || !inHalfOpenRange(n.key, least, fence))
1512 +                return null;
1513 +            K k = n.key;
1514 +            V v = n.getValidValue();
1515 +            if (v != null)
1516 +                return keyOnly ? k : new SnapshotEntry<K,V>(k, v);
1517 +        }
1518 +    }
1519 +
1520 +    /**
1521 +     * Finds and removes least element of subrange.
1522 +     * @param least minimum allowed key value
1523 +     * @param fence key greater than maximum allowed key value
1524 +     * @param keyOnly if true return key, else return SnapshotEntry
1525 +     * @return least Key or Entry, or {@code null} if no such
1526 +     */
1527 +    Object removeFirstEntryOfSubrange(K least, K fence, boolean keyOnly) {
1528 +        for (;;) {
1529 +            Node<K,V> n = findCeiling(least);
1530 +            if (n == null)
1531 +                return null;
1532 +            K k = n.key;
1533 +            if (fence != null && compare(k, fence) >= 0)
1534 +                return null;
1535 +            V v = doRemove(k, null);
1536 +            if (v != null)
1537 +                return keyOnly ? k : new SnapshotEntry<K,V>(k, v);
1538 +        }
1539 +    }
1540 +
1541 +    /**
1542 +     * Finds and removes greatest element of subrange.
1543 +     * @param least minimum allowed key value
1544 +     * @param fence key greater than maximum allowed key value
1545 +     * @param keyOnly if true return key, else return SnapshotEntry
1546 +     * @return least Key or Entry, or {@code null} if no such
1547 +     */
1548 +    Object removeLastEntryOfSubrange(K least, K fence, boolean keyOnly) {
1549 +        for (;;) {
1550 +            Node<K,V> n = findLower(fence);
1551 +            if (n == null)
1552 +                return null;
1553 +            K k = n.key;
1554 +            if (least != null && compare(k, least) < 0)
1555 +                return null;
1556 +            V v = doRemove(k, null);
1557 +            if (v != null)
1558 +                return keyOnly ? k : new SnapshotEntry<K,V>(k, v);
1559 +        }
1560 +    }
1561 +
1562      /* ---------------- Constructors -------------- */
1563  
1564      /**
1565       * Constructs a new empty map, sorted according to the keys' natural
1566 <     * order.  
1566 >     * order.
1567       */
1568      public ConcurrentSkipListMap() {
1569          this.comparator = null;
# Line 1425 | Line 1574 | public class ConcurrentSkipListMap<K,V>
1574       * Constructs a new empty map, sorted according to the given comparator.
1575       *
1576       * @param c the comparator that will be used to sort this map.  A
1577 <     *        <tt>null</tt> value indicates that the keys' <i>natural
1577 >     *        {@code null} value indicates that the keys' <i>natural
1578       *        ordering</i> should be used.
1579       */
1580      public ConcurrentSkipListMap(Comparator<? super K> c) {
# Line 1435 | Line 1584 | public class ConcurrentSkipListMap<K,V>
1584  
1585      /**
1586       * Constructs a new map containing the same mappings as the given map,
1587 <     * sorted according to the keys' <i>natural order</i>.  
1587 >     * sorted according to the keys' <i>natural order</i>.
1588       *
1589 <     * @param  m the map whose mappings are to be placed in this map.
1589 >     * @param  m the map whose mappings are to be placed in this map
1590       * @throws ClassCastException if the keys in m are not Comparable, or
1591 <     *         are not mutually comparable.
1592 <     * @throws NullPointerException if the specified map is null.
1591 >     *         are not mutually comparable
1592 >     * @throws NullPointerException if the specified map is {@code null}
1593       */
1594      public ConcurrentSkipListMap(Map<? extends K, ? extends V> m) {
1595          this.comparator = null;
# Line 1450 | Line 1599 | public class ConcurrentSkipListMap<K,V>
1599  
1600      /**
1601       * Constructs a new map containing the same mappings as the given
1602 <     * <tt>SortedMap</tt>, sorted according to the same ordering.  
1603 <     * @param  m the sorted map whose mappings are to be placed in this map,
1604 <     *         and whose comparator is to be used to sort this map.
1605 <     * @throws NullPointerException if the specified sorted map is null.
1602 >     * {@code SortedMap}, sorted according to the same ordering.
1603 >     * @param m the sorted map whose mappings are to be placed in this
1604 >     * map, and whose comparator is to be used to sort this map
1605 >     * @throws NullPointerException if the specified sorted map is
1606 >     * {@code null}
1607       */
1608      public ConcurrentSkipListMap(SortedMap<K, ? extends V> m) {
1609          this.comparator = m.comparator();
# Line 1462 | Line 1612 | public class ConcurrentSkipListMap<K,V>
1612      }
1613  
1614      /**
1615 <     * Returns a shallow copy of this <tt>Map</tt> instance. (The keys and
1615 >     * Returns a shallow copy of this {@code Map} instance. (The keys and
1616       * values themselves are not cloned.)
1617       *
1618 <     * @return a shallow copy of this Map.
1618 >     * @return a shallow copy of this Map
1619       */
1620      public Object clone() {
1621          ConcurrentSkipListMap<K,V> clone = null;
# Line 1497 | Line 1647 | public class ConcurrentSkipListMap<K,V>
1647          ArrayList<Index<K,V>> preds = new ArrayList<Index<K,V>>();
1648  
1649          // initialize
1650 <        for (int i = 0; i <= h.level; ++i)
1650 >        for (int i = 0; i <= h.level; ++i)
1651              preds.add(null);
1652          Index<K,V> q = h;
1653          for (int i = h.level; i > 0; --i) {
# Line 1505 | Line 1655 | public class ConcurrentSkipListMap<K,V>
1655              q = q.down;
1656          }
1657  
1658 <        Iterator<? extends Map.Entry<? extends K, ? extends V>> it =
1658 >        Iterator<? extends Map.Entry<? extends K, ? extends V>> it =
1659              map.entrySet().iterator();
1660          while (it.hasNext()) {
1661              Map.Entry<? extends K, ? extends V> e = it.next();
# Line 1521 | Line 1671 | public class ConcurrentSkipListMap<K,V>
1671              if (j > 0) {
1672                  Index<K,V> idx = null;
1673                  for (int i = 1; i <= j; ++i) {
1674 <                    idx = new Index<K,V>(z, idx);
1675 <                    if (i > h.level)
1674 >                    idx = new Index<K,V>(z, idx, null);
1675 >                    if (i > h.level)
1676                          h = new HeadIndex<K,V>(h.node, h, idx, i);
1677  
1678                      if (i < preds.size()) {
# Line 1539 | Line 1689 | public class ConcurrentSkipListMap<K,V>
1689      /* ---------------- Serialization -------------- */
1690  
1691      /**
1692 <     * Save the state of the <tt>Map</tt> instance to a stream.
1692 >     * Saves the state of the {@code Map} instance to a stream.
1693       *
1694       * @serialData The key (Object) and value (Object) for each
1695 <     * key-value mapping represented by the Map, followed by
1696 <     * <tt>null</tt>. The key-value mappings are emitted in key-order
1695 >     * key-value mapping represented by the Map, followed by
1696 >     * {@code null}. The key-value mappings are emitted in key-order
1697       * (as determined by the Comparator, or by the keys' natural
1698       * ordering if no Comparator).
1699       */
# Line 1564 | Line 1714 | public class ConcurrentSkipListMap<K,V>
1714      }
1715  
1716      /**
1717 <     * Reconstitute the <tt>Map</tt> instance from a stream.
1717 >     * Reconstitutes the {@code Map} instance from a stream.
1718       */
1719      private void readObject(final java.io.ObjectInputStream s)
1720          throws java.io.IOException, ClassNotFoundException {
# Line 1573 | Line 1723 | public class ConcurrentSkipListMap<K,V>
1723          // Reset transients
1724          initialize();
1725  
1726 <        /*
1727 <         * This is basically identical to buildFromSorted, but is
1726 >        /*
1727 >         * This is nearly identical to buildFromSorted, but is
1728           * distinct because readObject calls can't be nicely adapted
1729           * as the kind of iterator needed by buildFromSorted. (They
1730           * can be, but doing so requires type cheats and/or creation
# Line 1584 | Line 1734 | public class ConcurrentSkipListMap<K,V>
1734          HeadIndex<K,V> h = head;
1735          Node<K,V> basepred = h.node;
1736          ArrayList<Index<K,V>> preds = new ArrayList<Index<K,V>>();
1737 <        for (int i = 0; i <= h.level; ++i)
1737 >        for (int i = 0; i <= h.level; ++i)
1738              preds.add(null);
1739          Index<K,V> q = h;
1740          for (int i = h.level; i > 0; --i) {
# Line 1597 | Line 1747 | public class ConcurrentSkipListMap<K,V>
1747              if (k == null)
1748                  break;
1749              Object v = s.readObject();
1750 <            if (v == null)
1750 >            if (v == null)
1751                  throw new NullPointerException();
1752              K key = (K) k;
1753              V val = (V) v;
# Line 1609 | Line 1759 | public class ConcurrentSkipListMap<K,V>
1759              if (j > 0) {
1760                  Index<K,V> idx = null;
1761                  for (int i = 1; i <= j; ++i) {
1762 <                    idx = new Index<K,V>(z, idx);
1763 <                    if (i > h.level)
1762 >                    idx = new Index<K,V>(z, idx, null);
1763 >                    if (i > h.level)
1764                          h = new HeadIndex<K,V>(h.node, h, idx, i);
1765  
1766                      if (i < preds.size()) {
# Line 1627 | Line 1777 | public class ConcurrentSkipListMap<K,V>
1777      /* ------ Map API methods ------ */
1778  
1779      /**
1780 <     * Returns <tt>true</tt> if this map contains a mapping for the specified
1780 >     * Returns {@code true} if this map contains a mapping for the specified
1781       * key.
1782 <     * @param key key whose presence in this map is to be tested.
1783 <     * @return <tt>true</tt> if this map contains a mapping for the
1784 <     *            specified key.
1782 >     * @param key key whose presence in this map is to be tested
1783 >     * @return {@code true} if this map contains a mapping for the
1784 >     *            specified key
1785       * @throws ClassCastException if the key cannot be compared with the keys
1786 <     *                  currently in the map.
1787 <     * @throws NullPointerException if the key is <tt>null</tt>.
1786 >     *                  currently in the map
1787 >     * @throws NullPointerException if the key is {@code null}
1788       */
1789      public boolean containsKey(Object key) {
1790          return doGet(key) != null;
# Line 1642 | Line 1792 | public class ConcurrentSkipListMap<K,V>
1792  
1793      /**
1794       * Returns the value to which this map maps the specified key.  Returns
1795 <     * <tt>null</tt> if the map contains no mapping for this key.  
1795 >     * {@code null} if the map contains no mapping for this key.
1796       *
1797 <     * @param key key whose associated value is to be returned.
1797 >     * @param key key whose associated value is to be returned
1798       * @return the value to which this map maps the specified key, or
1799 <     *               <tt>null</tt> if the map contains no mapping for the key.
1799 >     *               {@code null} if the map contains no mapping for the key
1800       * @throws ClassCastException if the key cannot be compared with the keys
1801 <     *                  currently in the map.
1802 <     * @throws NullPointerException if the key is <tt>null</tt>.
1801 >     *                  currently in the map
1802 >     * @throws NullPointerException if the key is {@code null}
1803       */
1804      public V get(Object key) {
1805          return doGet(key);
# Line 1660 | Line 1810 | public class ConcurrentSkipListMap<K,V>
1810       * If the map previously contained a mapping for this key, the old
1811       * value is replaced.
1812       *
1813 <     * @param key key with which the specified value is to be associated.
1814 <     * @param value value to be associated with the specified key.
1813 >     * @param key key with which the specified value is to be associated
1814 >     * @param value value to be associated with the specified key
1815       *
1816 <     * @return previous value associated with specified key, or <tt>null</tt>
1817 <     *         if there was no mapping for key.  
1816 >     * @return previous value associated with specified key, or {@code null}
1817 >     *         if there was no mapping for key
1818       * @throws ClassCastException if the key cannot be compared with the keys
1819 <     *            currently in the map.
1820 <     * @throws NullPointerException if the key or value are <tt>null</tt>.
1819 >     *            currently in the map
1820 >     * @throws NullPointerException if the key or value are {@code null}
1821       */
1822      public V put(K key, V value) {
1823 <        if (value == null)
1823 >        if (value == null)
1824              throw new NullPointerException();
1825          return doPut(key, value, false);
1826      }
# Line 1679 | Line 1829 | public class ConcurrentSkipListMap<K,V>
1829       * Removes the mapping for this key from this Map if present.
1830       *
1831       * @param  key key for which mapping should be removed
1832 <     * @return previous value associated with specified key, or <tt>null</tt>
1833 <     *         if there was no mapping for key.
1832 >     * @return previous value associated with specified key, or {@code null}
1833 >     *         if there was no mapping for key
1834       *
1835       * @throws ClassCastException if the key cannot be compared with the keys
1836 <     *            currently in the map.
1837 <     * @throws NullPointerException if the key is <tt>null</tt>.
1836 >     *            currently in the map
1837 >     * @throws NullPointerException if the key is {@code null}
1838       */
1839      public V remove(Object key) {
1840          return doRemove(key, null);
1841      }
1842  
1843      /**
1844 <     * Returns <tt>true</tt> if this map maps one or more keys to the
1844 >     * Returns {@code true} if this map maps one or more keys to the
1845       * specified value.  This operation requires time linear in the
1846       * Map size.
1847       *
1848 <     * @param value value whose presence in this Map is to be tested.
1849 <     * @return  <tt>true</tt> if a mapping to <tt>value</tt> exists;
1850 <     *          <tt>false</tt> otherwise.
1851 <     * @throws  NullPointerException  if the value is <tt>null</tt>.
1852 <     */    
1848 >     * @param value value whose presence in this Map is to be tested
1849 >     * @return  {@code true} if a mapping to {@code value} exists;
1850 >     *          {@code false} otherwise
1851 >     * @throws  NullPointerException  if the value is {@code null}
1852 >     */
1853      public boolean containsValue(Object value) {
1854 <        if (value == null)
1854 >        if (value == null)
1855              throw new NullPointerException();
1856          for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1857              V v = n.getValidValue();
# Line 1713 | Line 1863 | public class ConcurrentSkipListMap<K,V>
1863  
1864      /**
1865       * Returns the number of elements in this map.  If this map
1866 <     * contains more than <tt>Integer.MAX_VALUE</tt> elements, it
1867 <     * returns <tt>Integer.MAX_VALUE</tt>.
1866 >     * contains more than {@code Integer.MAX_VALUE} elements, it
1867 >     * returns {@code Integer.MAX_VALUE}.
1868       *
1869       * <p>Beware that, unlike in most collections, this method is
1870       * <em>NOT</em> a constant-time operation. Because of the
# Line 1725 | Line 1875 | public class ConcurrentSkipListMap<K,V>
1875       * will be inaccurate. Thus, this method is typically not very
1876       * useful in concurrent applications.
1877       *
1878 <     * @return  the number of elements in this map.
1878 >     * @return  the number of elements in this map
1879       */
1880      public int size() {
1881          long count = 0;
# Line 1733 | Line 1883 | public class ConcurrentSkipListMap<K,V>
1883              if (n.getValidValue() != null)
1884                  ++count;
1885          }
1886 <        return (count >= Integer.MAX_VALUE)? Integer.MAX_VALUE : (int)count;
1886 >        return (count >= Integer.MAX_VALUE) ? Integer.MAX_VALUE : (int)count;
1887      }
1888  
1889      /**
1890 <     * Returns <tt>true</tt> if this map contains no key-value mappings.
1891 <     * @return <tt>true</tt> if this map contains no key-value mappings.
1890 >     * Returns {@code true} if this map contains no key-value mappings.
1891 >     * @return {@code true} if this map contains no key-value mappings
1892       */
1893      public boolean isEmpty() {
1894          return findFirst() == null;
# Line 1755 | Line 1905 | public class ConcurrentSkipListMap<K,V>
1905       * Returns a set view of the keys contained in this map.  The set is
1906       * backed by the map, so changes to the map are reflected in the set, and
1907       * vice-versa.  The set supports element removal, which removes the
1908 <     * corresponding mapping from this map, via the <tt>Iterator.remove</tt>,
1909 <     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and
1910 <     * <tt>clear</tt> operations.  It does not support the <tt>add</tt> or
1911 <     * <tt>addAll</tt> operations.
1912 <     * The view's <tt>iterator</tt> is a "weakly consistent" iterator that
1908 >     * corresponding mapping from this map, via the {@code Iterator.remove},
1909 >     * {@code Set.remove}, {@code removeAll}, {@code retainAll}, and
1910 >     * {@code clear} operations.  It does not support the {@code add} or
1911 >     * {@code addAll} operations.
1912 >     * The view's {@code iterator} is a "weakly consistent" iterator that
1913       * will never throw {@link java.util.ConcurrentModificationException},
1914       * and guarantees to traverse elements as they existed upon
1915       * construction of the iterator, and may (but is not guaranteed to)
1916       * reflect any modifications subsequent to construction.
1917       *
1918 <     * @return a set view of the keys contained in this map.
1918 >     * @return a set view of the keys contained in this map
1919       */
1920      public Set<K> keySet() {
1921          /*
# Line 1782 | Line 1932 | public class ConcurrentSkipListMap<K,V>
1932      }
1933  
1934      /**
1935 +     * Returns a set view of the keys contained in this map in
1936 +     * descending order.  The set is backed by the map, so changes to
1937 +     * the map are reflected in the set, and vice-versa.  The set
1938 +     * supports element removal, which removes the corresponding
1939 +     * mapping from this map, via the {@code Iterator.remove},
1940 +     * {@code Set.remove}, {@code removeAll}, {@code retainAll},
1941 +     * and {@code clear} operations.  It does not support the
1942 +     * {@code add} or {@code addAll} operations.  The view's
1943 +     * {@code iterator} is a "weakly consistent" iterator that will
1944 +     * never throw {@link java.util.ConcurrentModificationException},
1945 +     * and guarantees to traverse elements as they existed upon
1946 +     * construction of the iterator, and may (but is not guaranteed
1947 +     * to) reflect any modifications subsequent to construction.
1948 +     *
1949 +     * @return a set view of the keys contained in this map
1950 +     */
1951 +    public Set<K> descendingKeySet() {
1952 +        /*
1953 +         * Note: Lazy intialization works here and for other views
1954 +         * because view classes are stateless/immutable so it doesn't
1955 +         * matter wrt correctness if more than one is created (which
1956 +         * will only rarely happen).  Even so, the following idiom
1957 +         * conservatively ensures that the method returns the one it
1958 +         * created if it does so, not one created by another racing
1959 +         * thread.
1960 +         */
1961 +        DescendingKeySet ks = descendingKeySet;
1962 +        return (ks != null) ? ks : (descendingKeySet = new DescendingKeySet());
1963 +    }
1964 +
1965 +    /**
1966       * Returns a collection view of the values contained in this map.
1967       * The collection is backed by the map, so changes to the map are
1968       * reflected in the collection, and vice-versa.  The collection
1969       * supports element removal, which removes the corresponding
1970 <     * mapping from this map, via the <tt>Iterator.remove</tt>,
1971 <     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
1972 <     * <tt>retainAll</tt>, and <tt>clear</tt> operations.  It does not
1973 <     * support the <tt>add</tt> or <tt>addAll</tt> operations.  The
1974 <     * view's <tt>iterator</tt> is a "weakly consistent" iterator that
1970 >     * mapping from this map, via the {@code Iterator.remove},
1971 >     * {@code Collection.remove}, {@code removeAll},
1972 >     * {@code retainAll}, and {@code clear} operations.  It does not
1973 >     * support the {@code add} or {@code addAll} operations.  The
1974 >     * view's {@code iterator} is a "weakly consistent" iterator that
1975       * will never throw {@link
1976       * java.util.ConcurrentModificationException}, and guarantees to
1977       * traverse elements as they existed upon construction of the
1978       * iterator, and may (but is not guaranteed to) reflect any
1979       * modifications subsequent to construction.
1980       *
1981 <     * @return a collection view of the values contained in this map.
1981 >     * @return a collection view of the values contained in this map
1982       */
1983      public Collection<V> values() {
1984          Values vs = values;
# Line 1807 | Line 1988 | public class ConcurrentSkipListMap<K,V>
1988      /**
1989       * Returns a collection view of the mappings contained in this
1990       * map.  Each element in the returned collection is a
1991 <     * <tt>Map.Entry</tt>.  The collection is backed by the map, so
1991 >     * {@code Map.Entry}.  The collection is backed by the map, so
1992       * changes to the map are reflected in the collection, and
1993       * vice-versa.  The collection supports element removal, which
1994       * removes the corresponding mapping from the map, via the
1995 <     * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
1996 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1997 <     * operations.  It does not support the <tt>add</tt> or
1998 <     * <tt>addAll</tt> operations.  The view's <tt>iterator</tt> is a
1995 >     * {@code Iterator.remove}, {@code Collection.remove},
1996 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1997 >     * operations.  It does not support the {@code add} or
1998 >     * {@code addAll} operations.  The view's {@code iterator} is a
1999       * "weakly consistent" iterator that will never throw {@link
2000       * java.util.ConcurrentModificationException}, and guarantees to
2001       * traverse elements as they existed upon construction of the
2002       * iterator, and may (but is not guaranteed to) reflect any
2003       * modifications subsequent to construction. The
2004 <     * <tt>Map.Entry</tt> elements returned by
2005 <     * <tt>iterator.next()</tt> do <em>not</em> support the
2006 <     * <tt>setValue</tt> operation.
2004 >     * {@code Map.Entry} elements returned by
2005 >     * {@code iterator.next()} do <em>not</em> support the
2006 >     * {@code setValue} operation.
2007       *
2008 <     * @return a collection view of the mappings contained in this map.
2008 >     * @return a collection view of the mappings contained in this map
2009       */
2010      public Set<Map.Entry<K,V>> entrySet() {
2011          EntrySet es = entrySet;
2012          return (es != null) ? es : (entrySet = new EntrySet());
2013      }
2014  
2015 +    /**
2016 +     * Returns a collection view of the mappings contained in this
2017 +     * map, in descending order.  Each element in the returned
2018 +     * collection is a {@code Map.Entry}.  The collection is backed
2019 +     * by the map, so changes to the map are reflected in the
2020 +     * collection, and vice-versa.  The collection supports element
2021 +     * removal, which removes the corresponding mapping from the map,
2022 +     * via the {@code Iterator.remove}, {@code Collection.remove},
2023 +     * {@code removeAll}, {@code retainAll}, and {@code clear}
2024 +     * operations.  It does not support the {@code add} or
2025 +     * {@code addAll} operations.  The view's {@code iterator} is a
2026 +     * "weakly consistent" iterator that will never throw {@link
2027 +     * java.util.ConcurrentModificationException}, and guarantees to
2028 +     * traverse elements as they existed upon construction of the
2029 +     * iterator, and may (but is not guaranteed to) reflect any
2030 +     * modifications subsequent to construction. The
2031 +     * {@code Map.Entry} elements returned by
2032 +     * {@code iterator.next()} do <em>not</em> support the
2033 +     * {@code setValue} operation.
2034 +     *
2035 +     * @return a collection view of the mappings contained in this map
2036 +     */
2037 +    public Set<Map.Entry<K,V>> descendingEntrySet() {
2038 +        DescendingEntrySet es = descendingEntrySet;
2039 +        return (es != null) ? es : (descendingEntrySet = new DescendingEntrySet());
2040 +    }
2041 +
2042 +    /* ---------------- AbstractMap Overrides -------------- */
2043 +
2044 +    /**
2045 +     * Compares the specified object with this map for equality.
2046 +     * Returns {@code true} if the given object is also a map and the
2047 +     * two maps represent the same mappings.  More formally, two maps
2048 +     * {@code t1} and {@code t2} represent the same mappings if
2049 +     * {@code t1.keySet().equals(t2.keySet())} and for every key
2050 +     * {@code k} in {@code t1.keySet()}, {@code  (t1.get(k)==null ?
2051 +     * t2.get(k)==null : t1.get(k).equals(t2.get(k))) }.  This
2052 +     * operation may return misleading results if either map is
2053 +     * concurrently modified during execution of this method.
2054 +     *
2055 +     * @param o object to be compared for equality with this map
2056 +     * @return {@code true} if the specified object is equal to this map
2057 +     */
2058 +    public boolean equals(Object o) {
2059 +        if (o == this)
2060 +            return true;
2061 +        if (!(o instanceof Map))
2062 +            return false;
2063 +        Map<K,V> t = (Map<K,V>) o;
2064 +        try {
2065 +            return (containsAllMappings(this, t) &&
2066 +                    containsAllMappings(t, this));
2067 +        } catch (ClassCastException unused) {
2068 +            return false;
2069 +        } catch (NullPointerException unused) {
2070 +            return false;
2071 +        }
2072 +    }
2073 +
2074 +    /**
2075 +     * Helper for equals -- check for containment, avoiding nulls.
2076 +     */
2077 +    static <K,V> boolean containsAllMappings(Map<K,V> a, Map<K,V> b) {
2078 +        Iterator<Entry<K,V>> it = b.entrySet().iterator();
2079 +        while (it.hasNext()) {
2080 +            Entry<K,V> e = it.next();
2081 +            Object k = e.getKey();
2082 +            Object v = e.getValue();
2083 +            if (k == null || v == null || !v.equals(a.get(k)))
2084 +                return false;
2085 +        }
2086 +        return true;
2087 +    }
2088 +
2089      /* ------ ConcurrentMap API methods ------ */
2090  
2091      /**
# Line 1838 | Line 2093 | public class ConcurrentSkipListMap<K,V>
2093       * with a value, associate it with the given value.
2094       * This is equivalent to
2095       * <pre>
2096 <     *   if (!map.containsKey(key))
2097 <     *      return map.put(key, value);
2096 >     *   if (!map.containsKey(key))
2097 >     *     return map.put(key, value);
2098       *   else
2099 <     *      return map.get(key);
2099 >     *     return map.get(key);
2100       * </pre>
2101 <     * Except that the action is performed atomically.
2102 <     * @param key key with which the specified value is to be associated.
2103 <     * @param value value to be associated with the specified key.
2104 <     * @return previous value associated with specified key, or <tt>null</tt>
2105 <     *         if there was no mapping for key.
2101 >     * except that the action is performed atomically.
2102 >     * @param key key with which the specified value is to be associated
2103 >     * @param value value to be associated with the specified key
2104 >     * @return previous value associated with specified key, or {@code null}
2105 >     *         if there was no mapping for key
2106       *
2107       * @throws ClassCastException if the key cannot be compared with the keys
2108 <     *            currently in the map.
2109 <     * @throws NullPointerException if the key or value are <tt>null</tt>.
2108 >     *            currently in the map
2109 >     * @throws NullPointerException if the key or value are {@code null}
2110       */
2111      public V putIfAbsent(K key, V value) {
2112 <        if (value == null)
2112 >        if (value == null)
2113              throw new NullPointerException();
2114          return doPut(key, value, true);
2115      }
2116  
2117      /**
2118 <     * Remove entry for key only if currently mapped to given value.
2118 >     * Removes entry for key only if currently mapped to given value.
2119       * Acts as
2120 <     * <pre>
2120 >     * <pre>
2121       *  if ((map.containsKey(key) && map.get(key).equals(value)) {
2122       *     map.remove(key);
2123       *     return true;
2124       * } else return false;
2125       * </pre>
2126       * except that the action is performed atomically.
2127 <     * @param key key with which the specified value is associated.
2128 <     * @param value value associated with the specified key.
2127 >     * @param key key with which the specified value is associated
2128 >     * @param value value associated with the specified key
2129       * @return true if the value was removed, false otherwise
2130       * @throws ClassCastException if the key cannot be compared with the keys
2131 <     *            currently in the map.
2132 <     * @throws NullPointerException if the key or value are <tt>null</tt>.
2131 >     *            currently in the map
2132 >     * @throws NullPointerException if the key or value are {@code null}
2133       */
2134      public boolean remove(Object key, Object value) {
2135 <        if (value == null)
2135 >        if (value == null)
2136              throw new NullPointerException();
2137          return doRemove(key, value) != null;
2138      }
2139  
2140      /**
2141 <     * Replace entry for key only if currently mapped to given value.
2141 >     * Replaces entry for key only if currently mapped to given value.
2142       * Acts as
2143 <     * <pre>
2143 >     * <pre>
2144       *  if ((map.containsKey(key) && map.get(key).equals(oldValue)) {
2145       *     map.put(key, newValue);
2146       *     return true;
2147       * } else return false;
2148       * </pre>
2149       * except that the action is performed atomically.
2150 <     * @param key key with which the specified value is associated.
2151 <     * @param oldValue value expected to be associated with the specified key.
2152 <     * @param newValue value to be associated with the specified key.
2150 >     * @param key key with which the specified value is associated
2151 >     * @param oldValue value expected to be associated with the specified key
2152 >     * @param newValue value to be associated with the specified key
2153       * @return true if the value was replaced
2154       * @throws ClassCastException if the key cannot be compared with the keys
2155 <     *            currently in the map.
2155 >     *            currently in the map
2156       * @throws NullPointerException if key, oldValue or newValue are
2157 <     * <tt>null</tt>.
2157 >     * {@code null}
2158       */
2159      public boolean replace(K key, V oldValue, V newValue) {
2160 <        if (oldValue == null || newValue == null)
2160 >        if (oldValue == null || newValue == null)
2161              throw new NullPointerException();
2162          Comparable<K> k = comparable(key);
2163          for (;;) {
# Line 1920 | Line 2175 | public class ConcurrentSkipListMap<K,V>
2175      }
2176  
2177      /**
2178 <     * Replace entry for key only if currently mapped to some value.
2178 >     * Replaces entry for key only if currently mapped to some value.
2179       * Acts as
2180 <     * <pre>
2180 >     * <pre>
2181       *  if ((map.containsKey(key)) {
2182       *     return map.put(key, value);
2183       * } else return null;
2184       * </pre>
2185       * except that the action is performed atomically.
2186 <     * @param key key with which the specified value is associated.
2187 <     * @param value value to be associated with the specified key.
2188 <     * @return previous value associated with specified key, or <tt>null</tt>
2189 <     *         if there was no mapping for key.  
2186 >     * @param key key with which the specified value is associated
2187 >     * @param value value to be associated with the specified key
2188 >     * @return previous value associated with specified key, or {@code null}
2189 >     *         if there was no mapping for key
2190       * @throws ClassCastException if the key cannot be compared with the keys
2191 <     *            currently in the map.
2192 <     * @throws NullPointerException if the key or value are <tt>null</tt>.
2191 >     *            currently in the map
2192 >     * @throws NullPointerException if the key or value are {@code null}
2193       */
2194      public V replace(K key, V value) {
2195 <        if (value == null)
2195 >        if (value == null)
2196              throw new NullPointerException();
2197          Comparable<K> k = comparable(key);
2198          for (;;) {
# Line 1953 | Line 2208 | public class ConcurrentSkipListMap<K,V>
2208      /* ------ SortedMap API methods ------ */
2209  
2210      /**
2211 <     * Returns the comparator used to order this map, or <tt>null</tt>
2211 >     * Returns the comparator used to order this map, or {@code null}
2212       * if this map uses its keys' natural order.
2213       *
2214       * @return the comparator associated with this map, or
2215 <     * <tt>null</tt> if it uses its keys' natural sort method.
2215 >     * {@code null} if it uses its keys' natural sort method
2216       */
2217      public Comparator<? super K> comparator() {
2218          return comparator;
# Line 1966 | Line 2221 | public class ConcurrentSkipListMap<K,V>
2221      /**
2222       * Returns the first (lowest) key currently in this map.
2223       *
2224 <     * @return the first (lowest) key currently in this map.
2225 <     * @throws    NoSuchElementException Map is empty.
2224 >     * @return the first (lowest) key currently in this map
2225 >     * @throws    NoSuchElementException Map is empty
2226       */
2227 <    public K firstKey() {
2227 >    public K firstKey() {
2228          Node<K,V> n = findFirst();
2229          if (n == null)
2230              throw new NoSuchElementException();
# Line 1979 | Line 2234 | public class ConcurrentSkipListMap<K,V>
2234      /**
2235       * Returns the last (highest) key currently in this map.
2236       *
2237 <     * @return the last (highest) key currently in this map.
2238 <     * @throws    NoSuchElementException Map is empty.
2237 >     * @return the last (highest) key currently in this map
2238 >     * @throws    NoSuchElementException Map is empty
2239       */
2240      public K lastKey() {
2241          Node<K,V> n = findLast();
# Line 1991 | Line 2246 | public class ConcurrentSkipListMap<K,V>
2246  
2247      /**
2248       * Returns a view of the portion of this map whose keys range from
2249 <     * <tt>fromKey</tt>, inclusive, to <tt>toKey</tt>, exclusive.  (If
2250 <     * <tt>fromKey</tt> and <tt>toKey</tt> are equal, the returned sorted map
2249 >     * {@code fromKey}, inclusive, to {@code toKey}, exclusive.  (If
2250 >     * {@code fromKey} and {@code toKey} are equal, the returned sorted map
2251       * is empty.)  The returned sorted map is backed by this map, so changes
2252       * in the returned sorted map are reflected in this map, and vice-versa.
2253 <
2254 <     * @param fromKey low endpoint (inclusive) of the subMap.
2255 <     * @param toKey high endpoint (exclusive) of the subMap.
2253 >     *
2254 >     * @param fromKey low endpoint (inclusive) of the subMap
2255 >     * @param toKey high endpoint (exclusive) of the subMap
2256       *
2257       * @return a view of the portion of this map whose keys range from
2258 <     * <tt>fromKey</tt>, inclusive, to <tt>toKey</tt>, exclusive.
2258 >     * {@code fromKey}, inclusive, to {@code toKey}, exclusive
2259       *
2260 <     * @throws ClassCastException if <tt>fromKey</tt> and <tt>toKey</tt>
2260 >     * @throws ClassCastException if {@code fromKey} and {@code toKey}
2261       *         cannot be compared to one another using this map's comparator
2262 <     *         (or, if the map has no comparator, using natural ordering).
2263 <     * @throws IllegalArgumentException if <tt>fromKey</tt> is greater than
2264 <     *         <tt>toKey</tt>.
2265 <     * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is
2266 <     *               <tt>null</tt>.
2262 >     *         (or, if the map has no comparator, using natural ordering)
2263 >     * @throws IllegalArgumentException if {@code fromKey} is greater than
2264 >     *         {@code toKey}
2265 >     * @throws NullPointerException if {@code fromKey} or {@code toKey} is
2266 >     *               {@code null}
2267       */
2268 <    public ConcurrentSkipListSubMap<K,V> subMap(K fromKey, K toKey) {
2268 >    public ConcurrentNavigableMap<K,V> subMap(K fromKey, K toKey) {
2269          if (fromKey == null || toKey == null)
2270              throw new NullPointerException();
2271          return new ConcurrentSkipListSubMap(this, fromKey, toKey);
2272      }
2273  
2274      /**
2275 <     * Returns a view of the portion of this map whose keys are strictly less
2276 <     * than <tt>toKey</tt>.  The returned sorted map is backed by this map, so
2277 <     * changes in the returned sorted map are reflected in this map, and
2278 <     * vice-versa.  
2279 <     * @param toKey high endpoint (exclusive) of the headMap.
2280 <     * @return a view of the portion of this map whose keys are strictly
2281 <     *                less than <tt>toKey</tt>.
2282 <     *
2283 <     * @throws ClassCastException if <tt>toKey</tt> is not compatible
2284 <     *         with this map's comparator (or, if the map has no comparator,
2285 <     *         if <tt>toKey</tt> does not implement <tt>Comparable</tt>).
2286 <     * @throws NullPointerException if <tt>toKey</tt> is <tt>null</tt>.
2275 >     * Returns a view of the portion of this map whose keys are
2276 >     * strictly less than {@code toKey}.  The returned sorted map is
2277 >     * backed by this map, so changes in the returned sorted map are
2278 >     * reflected in this map, and vice-versa.
2279 >     * @param toKey high endpoint (exclusive) of the headMap
2280 >     * @return a view of the portion of this map whose keys are
2281 >     * strictly less than {@code toKey}
2282 >     *
2283 >     * @throws ClassCastException if {@code toKey} is not compatible
2284 >     * with this map's comparator (or, if the map has no comparator,
2285 >     * if {@code toKey} does not implement {@code Comparable})
2286 >     * @throws NullPointerException if {@code toKey} is {@code null}
2287       */
2288 <    public ConcurrentSkipListSubMap<K,V> headMap(K toKey) {
2288 >    public ConcurrentNavigableMap<K,V> headMap(K toKey) {
2289          if (toKey == null)
2290              throw new NullPointerException();
2291          return new ConcurrentSkipListSubMap(this, null, toKey);
# Line 2038 | Line 2293 | public class ConcurrentSkipListMap<K,V>
2293  
2294      /**
2295       * Returns a view of the portion of this map whose keys are
2296 <     * greater than or equal to <tt>fromKey</tt>.  The returned sorted
2296 >     * greater than or equal to {@code fromKey}.  The returned sorted
2297       * map is backed by this map, so changes in the returned sorted
2298       * map are reflected in this map, and vice-versa.
2299 <     * @param fromKey low endpoint (inclusive) of the tailMap.
2300 <     * @return a view of the portion of this map whose keys are greater
2301 <     *                than or equal to <tt>fromKey</tt>.
2302 <     * @throws ClassCastException if <tt>fromKey</tt> is not compatible
2303 <     *         with this map's comparator (or, if the map has no comparator,
2304 <     *         if <tt>fromKey</tt> does not implement <tt>Comparable</tt>).
2305 <     * @throws NullPointerException if <tt>fromKey</tt> is <tt>null</tt>.
2299 >     * @param fromKey low endpoint (inclusive) of the tailMap
2300 >     * @return a view of the portion of this map whose keys are
2301 >     * greater than or equal to {@code fromKey}
2302 >     * @throws ClassCastException if {@code fromKey} is not
2303 >     * compatible with this map's comparator (or, if the map has no
2304 >     * comparator, if {@code fromKey} does not implement
2305 >     * {@code Comparable})
2306 >     * @throws NullPointerException if {@code fromKey} is {@code null}
2307       */
2308 <    public ConcurrentSkipListSubMap<K,V>  tailMap(K fromKey) {
2308 >    public ConcurrentNavigableMap<K,V> tailMap(K fromKey) {
2309          if (fromKey == null)
2310              throw new NullPointerException();
2311          return new ConcurrentSkipListSubMap(this, fromKey, null);
# Line 2059 | Line 2315 | public class ConcurrentSkipListMap<K,V>
2315  
2316      /**
2317       * Returns a key-value mapping associated with the least key
2318 <     * greater than or equal to the given key, or null if there is
2319 <     * no such entry. The returned entry does <em>not</em> support
2320 <     * the <tt>Entry.setValue</tt> method.
2321 <     *
2322 <     * @param key the key.
2323 <     * @return an Entry associated with ceiling of given key, or null
2324 <     * if there is no such Entry.
2325 <     * @throws ClassCastException if key cannot be compared with the keys
2326 <     *            currently in the map.
2327 <     * @throws NullPointerException if key is <tt>null</tt>.
2318 >     * greater than or equal to the given key, or {@code null} if
2319 >     * there is no such entry. The returned entry does <em>not</em>
2320 >     * support the {@code Entry.setValue} method.
2321 >     *
2322 >     * @param key the key
2323 >     * @return an Entry associated with ceiling of given key, or
2324 >     * {@code null} if there is no such Entry
2325 >     * @throws ClassCastException if key cannot be compared with the
2326 >     * keys currently in the map
2327 >     * @throws NullPointerException if key is {@code null}
2328       */
2329      public Map.Entry<K,V> ceilingEntry(K key) {
2330          return getNear(key, GT|EQ);
2331      }
2332  
2333      /**
2334 +     * Returns least key greater than or equal to the given key, or
2335 +     * {@code null} if there is no such key.
2336 +     *
2337 +     * @param key the key
2338 +     * @return the ceiling key, or {@code null}
2339 +     * if there is no such key
2340 +     * @throws ClassCastException if key cannot be compared with the keys
2341 +     *            currently in the map
2342 +     * @throws NullPointerException if key is {@code null}
2343 +     */
2344 +    public K ceilingKey(K key) {
2345 +        Node<K,V> n = findNear(key, GT|EQ);
2346 +        return (n == null) ? null : n.key;
2347 +    }
2348 +
2349 +    /**
2350       * Returns a key-value mapping associated with the greatest
2351 <     * key strictly less than the given key, or null if there is no
2351 >     * key strictly less than the given key, or {@code null} if there is no
2352       * such entry. The returned entry does <em>not</em> support
2353 <     * the <tt>Entry.setValue</tt> method.
2354 <     *
2355 <     * @param key the key.
2353 >     * the {@code Entry.setValue} method.
2354 >     *
2355 >     * @param key the key
2356       * @return an Entry with greatest key less than the given
2357 <     * key, or null if there is no such Entry.
2357 >     * key, or {@code null} if there is no such Entry
2358       * @throws ClassCastException if key cannot be compared with the keys
2359 <     *            currently in the map.
2360 <     * @throws NullPointerException if key is <tt>null</tt>.
2359 >     *            currently in the map
2360 >     * @throws NullPointerException if key is {@code null}
2361       */
2362      public Map.Entry<K,V> lowerEntry(K key) {
2363          return getNear(key, LT);
2364      }
2365  
2366      /**
2367 <     * Returns a key-value mapping associated with the greatest
2368 <     * key less than or equal to the given key, or null if there is no
2369 <     * such entry. The returned entry does <em>not</em> support
2370 <     * the <tt>Entry.setValue</tt> method.
2371 <     *
2372 <     * @param key the key.
2101 <     * @return an Entry associated with floor of given key, or null
2102 <     * if there is no such Entry.
2367 >     * Returns the greatest key strictly less than the given key, or
2368 >     * {@code null} if there is no such key.
2369 >     *
2370 >     * @param key the key
2371 >     * @return the greatest key less than the given
2372 >     * key, or {@code null} if there is no such key
2373       * @throws ClassCastException if key cannot be compared with the keys
2374 <     *            currently in the map.
2375 <     * @throws NullPointerException if key is <tt>null</tt>.
2374 >     *            currently in the map
2375 >     * @throws NullPointerException if key is {@code null}
2376 >     */
2377 >    public K lowerKey(K key) {
2378 >        Node<K,V> n = findNear(key, LT);
2379 >        return (n == null) ? null : n.key;
2380 >    }
2381 >
2382 >    /**
2383 >     * Returns a key-value mapping associated with the greatest key
2384 >     * less than or equal to the given key, or {@code null} if there
2385 >     * is no such entry. The returned entry does <em>not</em> support
2386 >     * the {@code Entry.setValue} method.
2387 >     *
2388 >     * @param key the key
2389 >     * @return an Entry associated with floor of given key, or {@code null}
2390 >     * if there is no such Entry
2391 >     * @throws ClassCastException if key cannot be compared with the keys
2392 >     *            currently in the map
2393 >     * @throws NullPointerException if key is {@code null}
2394       */
2395      public Map.Entry<K,V> floorEntry(K key) {
2396          return getNear(key, LT|EQ);
2397      }
2398  
2399      /**
2400 <     * Returns a key-value mapping associated with the least
2401 <     * key strictly greater than the given key, or null if there is no
2402 <     * such entry. The returned entry does <em>not</em> support
2403 <     * the <tt>Entry.setValue</tt> method.
2404 <     *
2405 <     * @param key the key.
2400 >     * Returns the greatest key
2401 >     * less than or equal to the given key, or {@code null} if there
2402 >     * is no such key.
2403 >     *
2404 >     * @param key the key
2405 >     * @return the floor of given key, or {@code null} if there is no
2406 >     * such key
2407 >     * @throws ClassCastException if key cannot be compared with the keys
2408 >     *            currently in the map
2409 >     * @throws NullPointerException if key is {@code null}
2410 >     */
2411 >    public K floorKey(K key) {
2412 >        Node<K,V> n = findNear(key, LT|EQ);
2413 >        return (n == null) ? null : n.key;
2414 >    }
2415 >
2416 >    /**
2417 >     * Returns a key-value mapping associated with the least key
2418 >     * strictly greater than the given key, or {@code null} if there
2419 >     * is no such entry. The returned entry does <em>not</em> support
2420 >     * the {@code Entry.setValue} method.
2421 >     *
2422 >     * @param key the key
2423       * @return an Entry with least key greater than the given key, or
2424 <     * null if there is no such Entry.
2424 >     * {@code null} if there is no such Entry
2425       * @throws ClassCastException if key cannot be compared with the keys
2426 <     *            currently in the map.
2427 <     * @throws NullPointerException if key is <tt>null</tt>.
2426 >     *            currently in the map
2427 >     * @throws NullPointerException if key is {@code null}
2428       */
2429      public Map.Entry<K,V> higherEntry(K key) {
2430          return getNear(key, GT);
2431      }
2432  
2433      /**
2434 +     * Returns the least key strictly greater than the given key, or
2435 +     * {@code null} if there is no such key.
2436 +     *
2437 +     * @param key the key
2438 +     * @return the least key greater than the given key, or
2439 +     * {@code null} if there is no such key
2440 +     * @throws ClassCastException if key cannot be compared with the keys
2441 +     *            currently in the map
2442 +     * @throws NullPointerException if key is {@code null}
2443 +     */
2444 +    public K higherKey(K key) {
2445 +        Node<K,V> n = findNear(key, GT);
2446 +        return (n == null) ? null : n.key;
2447 +    }
2448 +
2449 +    /**
2450       * Returns a key-value mapping associated with the least
2451 <     * key in this map, or null if the map is empty.
2451 >     * key in this map, or {@code null} if the map is empty.
2452       * The returned entry does <em>not</em> support
2453 <     * the <tt>Entry.setValue</tt> method.
2454 <     *
2455 <     * @return an Entry with least key, or null
2456 <     * if the map is empty.
2453 >     * the {@code Entry.setValue} method.
2454 >     *
2455 >     * @return an Entry with least key, or {@code null}
2456 >     * if the map is empty
2457       */
2458      public Map.Entry<K,V> firstEntry() {
2459          for (;;) {
2460              Node<K,V> n = findFirst();
2461 <            if (n == null)
2461 >            if (n == null)
2462                  return null;
2463              SnapshotEntry<K,V> e = n.createSnapshot();
2464              if (e != null)
# Line 2147 | Line 2468 | public class ConcurrentSkipListMap<K,V>
2468  
2469      /**
2470       * Returns a key-value mapping associated with the greatest
2471 <     * key in this map, or null if the map is empty.
2471 >     * key in this map, or {@code null} if the map is empty.
2472       * The returned entry does <em>not</em> support
2473 <     * the <tt>Entry.setValue</tt> method.
2474 <     *
2475 <     * @return an Entry with greatest key, or null
2476 <     * if the map is empty.
2473 >     * the {@code Entry.setValue} method.
2474 >     *
2475 >     * @return an Entry with greatest key, or {@code null}
2476 >     * if the map is empty
2477       */
2478      public Map.Entry<K,V> lastEntry() {
2479          for (;;) {
2480              Node<K,V> n = findLast();
2481 <            if (n == null)
2481 >            if (n == null)
2482                  return null;
2483              SnapshotEntry<K,V> e = n.createSnapshot();
2484              if (e != null)
# Line 2167 | Line 2488 | public class ConcurrentSkipListMap<K,V>
2488  
2489      /**
2490       * Removes and returns a key-value mapping associated with
2491 <     * the least key in this map, or null if the map is empty.
2491 >     * the least key in this map, or {@code null} if the map is empty.
2492       * The returned entry does <em>not</em> support
2493 <     * the <tt>Entry.setValue</tt> method.
2494 <     *
2495 <     * @return the removed first entry of this map, or null
2496 <     * if the map is empty.
2493 >     * the {@code Entry.setValue} method.
2494 >     *
2495 >     * @return the removed first entry of this map, or {@code null}
2496 >     * if the map is empty
2497       */
2498 <    public Map.Entry<K,V> removeFirstEntry() {
2499 <        return doRemoveFirstEntry();
2498 >    public Map.Entry<K,V> pollFirstEntry() {
2499 >        return (SnapshotEntry<K,V>)doRemoveFirst(false);
2500      }
2501  
2502 +    /**
2503 +     * Removes and returns a key-value mapping associated with
2504 +     * the greatest key in this map, or {@code null} if the map is empty.
2505 +     * The returned entry does <em>not</em> support
2506 +     * the {@code Entry.setValue} method.
2507 +     *
2508 +     * @return the removed last entry of this map, or {@code null}
2509 +     * if the map is empty
2510 +     */
2511 +    public Map.Entry<K,V> pollLastEntry() {
2512 +        return (SnapshotEntry<K,V>)doRemoveLast(false);
2513 +    }
2514 +
2515 +
2516      /* ---------------- Iterators -------------- */
2517  
2518      /**
2519 <     * Base of iterator classes.
2520 <     * (Six kinds: {key, value, entry} X {map, submap})
2519 >     * Base of ten kinds of iterator classes:
2520 >     *   ascending:  {map, submap} X {key, value, entry}
2521 >     *   descending: {map, submap} X {key, entry}
2522       */
2523 <    abstract class ConcurrentSkipListMapIterator {
2523 >    abstract class Iter {
2524          /** the last node returned by next() */
2525          Node<K,V> last;
2526          /** the next node to return from next(); */
2527          Node<K,V> next;
2528 <        /** Cache of next value field to maintain weak consistency */
2529 <        Object nextValue;
2528 >        /** Cache of next value field to maintain weak consistency */
2529 >        Object nextValue;
2530  
2531 <        /** Create normal iterator for entire range  */
2532 <        ConcurrentSkipListMapIterator() {
2531 >        Iter() {}
2532 >
2533 >        public final boolean hasNext() {
2534 >            return next != null;
2535 >        }
2536 >
2537 >        /** initialize ascending iterator for entire range  */
2538 >        final void initAscending() {
2539              for (;;) {
2540 <                next = findFirst();
2540 >                next = findFirst();
2541                  if (next == null)
2542                      break;
2543                  nextValue = next.value;
# Line 2204 | Line 2546 | public class ConcurrentSkipListMap<K,V>
2546              }
2547          }
2548  
2549 <        /**
2550 <         * Create a submap iterator starting at given least key, or
2551 <         * first node if least is null, but not greater or equal to
2552 <         * fence, or end if fence is null.
2549 >        /**
2550 >         * initialize ascending iterator starting at given least key,
2551 >         * or first node if least is {@code null}, but not greater or
2552 >         * equal to fence, or end if fence is {@code null}.
2553           */
2554 <        ConcurrentSkipListMapIterator(K least, K fence) {
2554 >        final void initAscending(K least, K fence) {
2555              for (;;) {
2556 <                next = findCeiling(least);
2556 >                next = findCeiling(least);
2557 >                if (next == null)
2558 >                    break;
2559 >                nextValue = next.value;
2560 >                if (nextValue != null && nextValue != next) {
2561 >                    if (fence != null && compare(fence, next.key) <= 0) {
2562 >                        next = null;
2563 >                        nextValue = null;
2564 >                    }
2565 >                    break;
2566 >                }
2567 >            }
2568 >        }
2569 >        /** advance next to higher entry */
2570 >        final void ascend() {
2571 >            if ((last = next) == null)
2572 >                throw new NoSuchElementException();
2573 >            for (;;) {
2574 >                next = next.next;
2575 >                if (next == null)
2576 >                    break;
2577 >                nextValue = next.value;
2578 >                if (nextValue != null && nextValue != next)
2579 >                    break;
2580 >            }
2581 >        }
2582 >
2583 >        /**
2584 >         * Version of ascend for submaps to stop at fence
2585 >         */
2586 >        final void ascend(K fence) {
2587 >            if ((last = next) == null)
2588 >                throw new NoSuchElementException();
2589 >            for (;;) {
2590 >                next = next.next;
2591                  if (next == null)
2592                      break;
2593                  nextValue = next.value;
# Line 2225 | Line 2601 | public class ConcurrentSkipListMap<K,V>
2601              }
2602          }
2603  
2604 <        public final boolean hasNext() {
2605 <            return next != null;
2604 >        /** initialize descending iterator for entire range  */
2605 >        final void initDescending() {
2606 >            for (;;) {
2607 >                next = findLast();
2608 >                if (next == null)
2609 >                    break;
2610 >                nextValue = next.value;
2611 >                if (nextValue != null && nextValue != next)
2612 >                    break;
2613 >            }
2614          }
2615  
2616 <        final void advance() {
2616 >        /**
2617 >         * initialize descending iterator starting at key less
2618 >         * than or equal to given fence key, or
2619 >         * last node if fence is {@code null}, but not less than
2620 >         * least, or beginning if lest is {@code null}.
2621 >         */
2622 >        final void initDescending(K least, K fence) {
2623 >            for (;;) {
2624 >                next = findLower(fence);
2625 >                if (next == null)
2626 >                    break;
2627 >                nextValue = next.value;
2628 >                if (nextValue != null && nextValue != next) {
2629 >                    if (least != null && compare(least, next.key) > 0) {
2630 >                        next = null;
2631 >                        nextValue = null;
2632 >                    }
2633 >                    break;
2634 >                }
2635 >            }
2636 >        }
2637 >
2638 >        /** advance next to lower entry */
2639 >        final void descend() {
2640              if ((last = next) == null)
2641                  throw new NoSuchElementException();
2642 +            K k = last.key;
2643              for (;;) {
2644 <                next = next.next;
2644 >                next = findNear(k, LT);
2645                  if (next == null)
2646                      break;
2647                  nextValue = next.value;
# Line 2243 | Line 2651 | public class ConcurrentSkipListMap<K,V>
2651          }
2652  
2653          /**
2654 <         * Version of advance for submaps to stop at fence
2654 >         * Version of descend for submaps to stop at least
2655           */
2656 <        final void advance(K fence) {
2656 >        final void descend(K least) {
2657              if ((last = next) == null)
2658                  throw new NoSuchElementException();
2659 +            K k = last.key;
2660              for (;;) {
2661 <                next = next.next;
2661 >                next = findNear(k, LT);
2662                  if (next == null)
2663                      break;
2664                  nextValue = next.value;
2665                  if (nextValue != null && nextValue != next) {
2666 <                    if (fence != null && compare(fence, next.key) <= 0) {
2666 >                    if (least != null && compare(least, next.key) > 0) {
2667                          next = null;
2668                          nextValue = null;
2669                      }
# Line 2271 | Line 2680 | public class ConcurrentSkipListMap<K,V>
2680              // unlink from here. Using remove is fast enough.
2681              ConcurrentSkipListMap.this.remove(l.key);
2682          }
2683 +
2684      }
2685  
2686 <    final class ValueIterator extends ConcurrentSkipListMapIterator
2687 <        implements Iterator<V> {
2688 <        public V next() {
2686 >    final class ValueIterator extends Iter implements Iterator<V> {
2687 >        ValueIterator() {
2688 >            initAscending();
2689 >        }
2690 >        public V next() {
2691              Object v = nextValue;
2692 <            advance();
2692 >            ascend();
2693              return (V)v;
2694          }
2695      }
2696  
2697 <    final class KeyIterator extends ConcurrentSkipListMapIterator
2698 <        implements Iterator<K> {
2699 <        public K next() {
2697 >    final class KeyIterator extends Iter implements Iterator<K> {
2698 >        KeyIterator() {
2699 >            initAscending();
2700 >        }
2701 >        public K next() {
2702 >            Node<K,V> n = next;
2703 >            ascend();
2704 >            return n.key;
2705 >        }
2706 >    }
2707 >
2708 >    class SubMapValueIterator extends Iter implements Iterator<V> {
2709 >        final K fence;
2710 >        SubMapValueIterator(K least, K fence) {
2711 >            initAscending(least, fence);
2712 >            this.fence = fence;
2713 >        }
2714 >
2715 >        public V next() {
2716 >            Object v = nextValue;
2717 >            ascend(fence);
2718 >            return (V)v;
2719 >        }
2720 >    }
2721 >
2722 >    final class SubMapKeyIterator extends Iter implements Iterator<K> {
2723 >        final K fence;
2724 >        SubMapKeyIterator(K least, K fence) {
2725 >            initAscending(least, fence);
2726 >            this.fence = fence;
2727 >        }
2728 >
2729 >        public K next() {
2730 >            Node<K,V> n = next;
2731 >            ascend(fence);
2732 >            return n.key;
2733 >        }
2734 >    }
2735 >
2736 >    final class DescendingKeyIterator extends Iter implements Iterator<K> {
2737 >        DescendingKeyIterator() {
2738 >            initDescending();
2739 >        }
2740 >        public K next() {
2741 >            Node<K,V> n = next;
2742 >            descend();
2743 >            return n.key;
2744 >        }
2745 >    }
2746 >
2747 >    final class DescendingSubMapKeyIterator extends Iter implements Iterator<K> {
2748 >        final K least;
2749 >        DescendingSubMapKeyIterator(K least, K fence) {
2750 >            initDescending(least, fence);
2751 >            this.least = least;
2752 >        }
2753 >
2754 >        public K next() {
2755              Node<K,V> n = next;
2756 <            advance();
2756 >            descend(least);
2757              return n.key;
2758          }
2759      }
# Line 2296 | Line 2763 | public class ConcurrentSkipListMap<K,V>
2763       * elsewhere of using the iterator itself to represent entries,
2764       * thus avoiding having to create entry objects in next().
2765       */
2766 <    class EntryIterator extends ConcurrentSkipListMapIterator
2300 <        implements Map.Entry<K,V>, Iterator<Map.Entry<K,V>>  {
2766 >    abstract class EntryIter extends Iter implements Map.Entry<K,V> {
2767          /** Cache of last value returned */
2768          Object lastValue;
2769  
2770 <        EntryIterator() {
2305 <            super();
2306 <        }
2307 <
2308 <        EntryIterator(K least, K fence) {
2309 <            super(least, fence);
2310 <        }
2311 <
2312 <        public Map.Entry<K,V> next() {
2313 <            lastValue = nextValue;
2314 <            advance();
2315 <            return this;
2770 >        EntryIter() {
2771          }
2772  
2773          public K getKey() {
# Line 2326 | Line 2781 | public class ConcurrentSkipListMap<K,V>
2781              Object v = lastValue;
2782              if (last == null || v == null)
2783                  throw new IllegalStateException();
2784 <            return (V)v;
2784 >            return (V)v;
2785          }
2786  
2787          public V setValue(V value) {
# Line 2355 | Line 2810 | public class ConcurrentSkipListMap<K,V>
2810              // If not acting as entry, just use default.
2811              if (last == null)
2812                  return super.toString();
2813 <            return getKey() + "=" + getValue();
2813 >            return getKey() + "=" + getValue();
2814          }
2815      }
2816  
2817 <    /**
2818 <     * Submap iterators start at given starting point at beginning of
2819 <     * submap range, and advance until they are at end of range.
2820 <     */
2821 <    class SubMapEntryIterator extends EntryIterator {
2817 >    final class EntryIterator extends EntryIter
2818 >        implements Iterator<Map.Entry<K,V>> {
2819 >        EntryIterator() {
2820 >            initAscending();
2821 >        }
2822 >        public Map.Entry<K,V> next() {
2823 >            lastValue = nextValue;
2824 >            ascend();
2825 >            return this;
2826 >        }
2827 >    }
2828 >
2829 >    final class SubMapEntryIterator extends EntryIter
2830 >        implements Iterator<Map.Entry<K,V>> {
2831          final K fence;
2832          SubMapEntryIterator(K least, K fence) {
2833 <            super(least, fence);
2833 >            initAscending(least, fence);
2834              this.fence = fence;
2835          }
2836  
2837 <        public Map.Entry<K,V> next() {
2837 >        public Map.Entry<K,V> next() {
2838              lastValue = nextValue;
2839 <            advance(fence);
2839 >            ascend(fence);
2840              return this;
2841          }
2842      }
2843  
2844 <    class SubMapValueIterator extends ConcurrentSkipListMapIterator
2845 <        implements Iterator<V> {
2846 <        final K fence;
2847 <        SubMapValueIterator(K least, K fence) {
2384 <            super(least, fence);
2385 <            this.fence = fence;
2844 >    final class DescendingEntryIterator extends EntryIter
2845 >        implements Iterator<Map.Entry<K,V>>  {
2846 >        DescendingEntryIterator() {
2847 >            initDescending();
2848          }
2849 <
2850 <        public V next() {
2851 <            Object v = nextValue;
2852 <            advance(fence);
2391 <            return (V)v;
2849 >        public Map.Entry<K,V> next() {
2850 >            lastValue = nextValue;
2851 >            descend();
2852 >            return this;
2853          }
2854      }
2855  
2856 <    class SubMapKeyIterator extends ConcurrentSkipListMapIterator
2857 <        implements Iterator<K> {
2858 <        final K fence;
2859 <        SubMapKeyIterator(K least, K fence) {
2860 <            super(least, fence);
2861 <            this.fence = fence;
2856 >    final class DescendingSubMapEntryIterator extends EntryIter
2857 >        implements Iterator<Map.Entry<K,V>>  {
2858 >        final K least;
2859 >        DescendingSubMapEntryIterator(K least, K fence) {
2860 >            initDescending(least, fence);
2861 >            this.least = least;
2862          }
2863  
2864 <        public K next() {
2865 <            Node<K,V> n = next;
2866 <            advance(fence);
2867 <            return n.key;
2864 >        public Map.Entry<K,V> next() {
2865 >            lastValue = nextValue;
2866 >            descend(least);
2867 >            return this;
2868          }
2869      }
2870  
2410    /* ---------------- Utilities for views, sets, submaps -------------- */
2411    
2871      // Factory methods for iterators needed by submaps and/or
2872      // ConcurrentSkipListSet
2873  
# Line 2416 | Line 2875 | public class ConcurrentSkipListMap<K,V>
2875          return new KeyIterator();
2876      }
2877  
2878 <    SubMapEntryIterator subMapEntryIterator(K least, K fence) {
2879 <        return new SubMapEntryIterator(least, fence);
2878 >    Iterator<K> descendingKeyIterator() {
2879 >        return new DescendingKeyIterator();
2880      }
2881  
2882 <    SubMapKeyIterator subMapKeyIterator(K least, K fence) {
2883 <        return new SubMapKeyIterator(least, fence);
2425 <    }
2426 <
2427 <    SubMapValueIterator subMapValueIterator(K least, K fence) {
2428 <        return new SubMapValueIterator(least, fence);
2429 <    }
2430 <
2431 <
2432 <    /**
2433 <     * Version of remove with boolean return. Needed by
2434 <     * view classes and ConcurrentSkipListSet
2435 <     */
2436 <    boolean removep(Object key) {
2437 <        return doRemove(key, null) != null;
2438 <    }
2439 <
2440 <    /**
2441 <     * Return SnapshotEntry for results of findNear ofter screening
2442 <     * to ensure result is in given range. Needed by submaps.
2443 <     * @param kkey the key
2444 <     * @param rel the relation -- OR'ed combination of EQ, LT, GT
2445 <     * @param least minimum allowed key value
2446 <     * @param fence key greater than maximum allowed key value
2447 <     * @return Entry fitting relation, or null if no such
2448 <     */
2449 <    SnapshotEntry<K,V> getNear(K kkey, int rel, K least, K fence) {
2450 <        K key = kkey;
2451 <        // Don't return keys less than least
2452 <        if ((rel & LT) == 0) {
2453 <            if (compare(key, least) < 0) {
2454 <                key = least;
2455 <                rel = rel | EQ;
2456 <            }
2457 <        }
2458 <
2459 <        for (;;) {
2460 <            Node<K,V> n = findNear(key, rel);
2461 <            if (n == null || !inHalfOpenRange(n.key, least, fence))
2462 <                return null;
2463 <            SnapshotEntry<K,V> e = n.createSnapshot();
2464 <            if (e != null)
2465 <                return e;
2466 <        }
2467 <    }
2468 <
2469 <    // Methods expanding out relational operations for submaps
2470 <
2471 <    /**
2472 <     * Return ceiling, or first node if key is null
2473 <     */
2474 <    Node<K,V> findCeiling(K key) {
2475 <        return (key == null)? findFirst() : findNear(key, GT|EQ);
2476 <    }
2477 <
2478 <    /**
2479 <     * Return lower node, or last node if key is null
2480 <     */
2481 <    Node<K,V> findLower(K key) {
2482 <        return (key == null)? findLast() : findNear(key, LT);
2483 <    }
2484 <
2485 <    /**
2486 <     * Find and remove least element of subrange.
2487 <     */
2488 <    SnapshotEntry<K,V> removeFirstEntryOfSubrange(K least, K fence) {
2489 <        for (;;) {
2490 <            Node<K,V> n = findCeiling(least);
2491 <            if (n == null)
2492 <                return null;
2493 <            K k = n.key;
2494 <            if (fence != null && compare(k, fence) >= 0)
2495 <                return null;
2496 <            V v = doRemove(k, null);
2497 <            if (v != null)
2498 <                return new SnapshotEntry<K,V>(k,v);
2499 <        }
2500 <    }
2501 <
2502 <    SnapshotEntry<K,V> getCeiling(K key, K least, K fence) {
2503 <        return getNear(key, GT|EQ, least, fence);
2504 <    }
2505 <
2506 <    SnapshotEntry<K,V> getLower(K key, K least, K fence) {
2507 <        return getNear(key, LT, least, fence);
2508 <    }
2509 <
2510 <    SnapshotEntry<K,V> getFloor(K key, K least, K fence) {
2511 <        return getNear(key, LT|EQ, least, fence);
2512 <    }
2513 <
2514 <    SnapshotEntry<K,V> getHigher(K key, K least, K fence) {
2515 <        return getNear(key, GT, least, fence);
2516 <    }
2517 <
2518 <    // Key-returning relational methods for ConcurrentSkipListSet
2519 <
2520 <    K ceilingKey(K key) {
2521 <        Node<K,V> n = findNear(key, GT|EQ);
2522 <        return (n == null)? null : n.key;
2523 <    }
2524 <
2525 <    K lowerKey(K key) {
2526 <        Node<K,V> n = findNear(key, LT);
2527 <        return (n == null)? null : n.key;
2882 >    SubMapEntryIterator subMapEntryIterator(K least, K fence) {
2883 >        return new SubMapEntryIterator(least, fence);
2884      }
2885  
2886 <    K floorKey(K key) {
2887 <        Node<K,V> n = findNear(key, LT|EQ);
2532 <        return (n == null)? null : n.key;
2886 >    DescendingSubMapEntryIterator descendingSubMapEntryIterator(K least, K fence) {
2887 >        return new DescendingSubMapEntryIterator(least, fence);
2888      }
2889  
2890 <    K higherKey(K key) {
2891 <        Node<K,V> n = findNear(key, GT);
2537 <        return (n == null)? null : n.key;
2890 >    SubMapKeyIterator subMapKeyIterator(K least, K fence) {
2891 >        return new SubMapKeyIterator(least, fence);
2892      }
2893  
2894 <    K lowestKey() {
2895 <        Node<K,V> n = findFirst();
2542 <        return (n == null)? null : n.key;
2894 >    DescendingSubMapKeyIterator descendingSubMapKeyIterator(K least, K fence) {
2895 >        return new DescendingSubMapKeyIterator(least, fence);
2896      }
2897  
2898 <    K highestKey() {
2899 <        Node<K,V> n = findLast();
2547 <        return (n == null)? null : n.key;
2898 >    SubMapValueIterator subMapValueIterator(K least, K fence) {
2899 >        return new SubMapValueIterator(least, fence);
2900      }
2901  
2902      /* ---------------- Views -------------- */
2903  
2904 <    final class KeySet extends AbstractSet<K> {
2904 >    class KeySet extends AbstractSet<K> {
2905          public Iterator<K> iterator() {
2906              return new KeyIterator();
2907          }
# Line 2582 | Line 2934 | public class ConcurrentSkipListMap<K,V>
2934          }
2935      }
2936  
2937 +    class DescendingKeySet extends KeySet {
2938 +        public Iterator<K> iterator() {
2939 +            return new DescendingKeyIterator();
2940 +        }
2941 +    }
2942  
2943      final class Values extends AbstractCollection<V> {
2944          public Iterator<V> iterator() {
# Line 2613 | Line 2970 | public class ConcurrentSkipListMap<K,V>
2970          }
2971      }
2972  
2973 <    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
2973 >    class EntrySet extends AbstractSet<Map.Entry<K,V>> {
2974          public Iterator<Map.Entry<K,V>> iterator() {
2975              return new EntryIterator();
2976          }
# Line 2628 | Line 2985 | public class ConcurrentSkipListMap<K,V>
2985              if (!(o instanceof Map.Entry))
2986                  return false;
2987              Map.Entry<K,V> e = (Map.Entry<K,V>)o;
2988 <            return ConcurrentSkipListMap.this.remove(e.getKey(), e.getValue());
2988 >            return ConcurrentSkipListMap.this.remove(e.getKey(),
2989 >                                                     e.getValue());
2990          }
2991          public boolean isEmpty() {
2992              return ConcurrentSkipListMap.this.isEmpty();
# Line 2642 | Line 3000 | public class ConcurrentSkipListMap<K,V>
3000  
3001          public Object[] toArray() {
3002              Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
3003 <            for (Node<K,V> n = findFirst(); n != null; n = n.next) {
3004 <                Map.Entry<K,V> e = n.createSnapshot();
2647 <                if (e != null)
2648 <                    c.add(e);
2649 <            }
3003 >            for (Map.Entry e : this)
3004 >                c.add(new SnapshotEntry(e.getKey(), e.getValue()));
3005              return c.toArray();
3006          }
3007          public <T> T[] toArray(T[] a) {
3008              Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
3009 <            for (Node<K,V> n = findFirst(); n != null; n = n.next) {
3009 >            for (Map.Entry e : this)
3010 >                c.add(new SnapshotEntry(e.getKey(), e.getValue()));
3011 >            return c.toArray(a);
3012 >        }
3013 >    }
3014 >
3015 >    class DescendingEntrySet extends EntrySet {
3016 >        public Iterator<Map.Entry<K,V>> iterator() {
3017 >            return new DescendingEntryIterator();
3018 >        }
3019 >    }
3020 >
3021 >    /**
3022 >     * Submaps returned by {@link ConcurrentSkipListMap} submap operations
3023 >     * represent a subrange of mappings of their underlying
3024 >     * maps. Instances of this class support all methods of their
3025 >     * underlying maps, differing in that mappings outside their range are
3026 >     * ignored, and attempts to add mappings outside their ranges result
3027 >     * in {@link IllegalArgumentException}.  Instances of this class are
3028 >     * constructed only using the {@code subMap}, {@code headMap}, and
3029 >     * {@code tailMap} methods of their underlying maps.
3030 >     */
3031 >    static class ConcurrentSkipListSubMap<K,V> extends AbstractMap<K,V>
3032 >        implements ConcurrentNavigableMap<K,V>, java.io.Serializable {
3033 >
3034 >        private static final long serialVersionUID = -7647078645895051609L;
3035 >
3036 >        /** Underlying map */
3037 >        private final ConcurrentSkipListMap<K,V> m;
3038 >        /** lower bound key, or null if from start */
3039 >        private final K least;
3040 >        /** upper fence key, or null if to end */
3041 >        private final K fence;
3042 >        // Lazily initialized view holders
3043 >        private transient Set<K> keySetView;
3044 >        private transient Set<Map.Entry<K,V>> entrySetView;
3045 >        private transient Collection<V> valuesView;
3046 >        private transient Set<K> descendingKeySetView;
3047 >        private transient Set<Map.Entry<K,V>> descendingEntrySetView;
3048 >
3049 >        /**
3050 >         * Creates a new submap.
3051 >         * @param least inclusive least value, or {@code null} if from start
3052 >         * @param fence exclusive upper bound or {@code null} if to end
3053 >         * @throws IllegalArgumentException if least and fence non-null
3054 >         *  and least greater than fence
3055 >         */
3056 >        ConcurrentSkipListSubMap(ConcurrentSkipListMap<K,V> map,
3057 >                                 K least, K fence) {
3058 >            if (least != null &&
3059 >                fence != null &&
3060 >                map.compare(least, fence) > 0)
3061 >                throw new IllegalArgumentException("inconsistent range");
3062 >            this.m = map;
3063 >            this.least = least;
3064 >            this.fence = fence;
3065 >        }
3066 >
3067 >        /* ----------------  Utilities -------------- */
3068 >
3069 >        boolean inHalfOpenRange(K key) {
3070 >            return m.inHalfOpenRange(key, least, fence);
3071 >        }
3072 >
3073 >        boolean inOpenRange(K key) {
3074 >            return m.inOpenRange(key, least, fence);
3075 >        }
3076 >
3077 >        ConcurrentSkipListMap.Node<K,V> firstNode() {
3078 >            return m.findCeiling(least);
3079 >        }
3080 >
3081 >        ConcurrentSkipListMap.Node<K,V> lastNode() {
3082 >            return m.findLower(fence);
3083 >        }
3084 >
3085 >        boolean isBeforeEnd(ConcurrentSkipListMap.Node<K,V> n) {
3086 >            return (n != null &&
3087 >                    (fence == null ||
3088 >                     n.key == null || // pass by markers and headers
3089 >                     m.compare(fence, n.key) > 0));
3090 >        }
3091 >
3092 >        void checkKey(K key) throws IllegalArgumentException {
3093 >            if (!inHalfOpenRange(key))
3094 >                throw new IllegalArgumentException("key out of range");
3095 >        }
3096 >
3097 >        /**
3098 >         * Returns underlying map. Needed by ConcurrentSkipListSet.
3099 >         * @return the backing map
3100 >         */
3101 >        ConcurrentSkipListMap<K,V> getMap() {
3102 >            return m;
3103 >        }
3104 >
3105 >        /**
3106 >         * Returns least key. Needed by ConcurrentSkipListSet.
3107 >         * @return least key or {@code null} if from start
3108 >         */
3109 >        K getLeast() {
3110 >            return least;
3111 >        }
3112 >
3113 >        /**
3114 >         * Returns fence key. Needed by ConcurrentSkipListSet.
3115 >         * @return fence key or {@code null} of to end
3116 >         */
3117 >        K getFence() {
3118 >            return fence;
3119 >        }
3120 >
3121 >
3122 >        /* ----------------  Map API methods -------------- */
3123 >
3124 >        public boolean containsKey(Object key) {
3125 >            K k = (K)key;
3126 >            return inHalfOpenRange(k) && m.containsKey(k);
3127 >        }
3128 >
3129 >        public V get(Object key) {
3130 >            K k = (K)key;
3131 >            return (!inHalfOpenRange(k)) ? null : m.get(k);
3132 >        }
3133 >
3134 >        public V put(K key, V value) {
3135 >            checkKey(key);
3136 >            return m.put(key, value);
3137 >        }
3138 >
3139 >        public V remove(Object key) {
3140 >            K k = (K)key;
3141 >            return (!inHalfOpenRange(k)) ? null : m.remove(k);
3142 >        }
3143 >
3144 >        public int size() {
3145 >            long count = 0;
3146 >            for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
3147 >                 isBeforeEnd(n);
3148 >                 n = n.next) {
3149 >                if (n.getValidValue() != null)
3150 >                    ++count;
3151 >            }
3152 >            return (count >= Integer.MAX_VALUE) ?
3153 >                Integer.MAX_VALUE : (int)count;
3154 >        }
3155 >
3156 >        public boolean isEmpty() {
3157 >            return !isBeforeEnd(firstNode());
3158 >        }
3159 >
3160 >        public boolean containsValue(Object value) {
3161 >            if (value == null)
3162 >                throw new NullPointerException();
3163 >            for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
3164 >                 isBeforeEnd(n);
3165 >                 n = n.next) {
3166 >                V v = n.getValidValue();
3167 >                if (v != null && value.equals(v))
3168 >                    return true;
3169 >            }
3170 >            return false;
3171 >        }
3172 >
3173 >        public void clear() {
3174 >            for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
3175 >                 isBeforeEnd(n);
3176 >                 n = n.next) {
3177 >                if (n.getValidValue() != null)
3178 >                    m.remove(n.key);
3179 >            }
3180 >        }
3181 >
3182 >        /* ----------------  ConcurrentMap API methods -------------- */
3183 >
3184 >        public V putIfAbsent(K key, V value) {
3185 >            checkKey(key);
3186 >            return m.putIfAbsent(key, value);
3187 >        }
3188 >
3189 >        public boolean remove(Object key, Object value) {
3190 >            K k = (K)key;
3191 >            return inHalfOpenRange(k) && m.remove(k, value);
3192 >        }
3193 >
3194 >        public boolean replace(K key, V oldValue, V newValue) {
3195 >            checkKey(key);
3196 >            return m.replace(key, oldValue, newValue);
3197 >        }
3198 >
3199 >        public V replace(K key, V value) {
3200 >            checkKey(key);
3201 >            return m.replace(key, value);
3202 >        }
3203 >
3204 >        /* ----------------  SortedMap API methods -------------- */
3205 >
3206 >        public Comparator<? super K> comparator() {
3207 >            return m.comparator();
3208 >        }
3209 >
3210 >        public K firstKey() {
3211 >            ConcurrentSkipListMap.Node<K,V> n = firstNode();
3212 >            if (isBeforeEnd(n))
3213 >                return n.key;
3214 >            else
3215 >                throw new NoSuchElementException();
3216 >        }
3217 >
3218 >        public K lastKey() {
3219 >            ConcurrentSkipListMap.Node<K,V> n = lastNode();
3220 >            if (n != null) {
3221 >                K last = n.key;
3222 >                if (inHalfOpenRange(last))
3223 >                    return last;
3224 >            }
3225 >            throw new NoSuchElementException();
3226 >        }
3227 >
3228 >        public ConcurrentNavigableMap<K,V> subMap(K fromKey, K toKey) {
3229 >            if (fromKey == null || toKey == null)
3230 >                throw new NullPointerException();
3231 >            if (!inOpenRange(fromKey) || !inOpenRange(toKey))
3232 >                throw new IllegalArgumentException("key out of range");
3233 >            return new ConcurrentSkipListSubMap(m, fromKey, toKey);
3234 >        }
3235 >
3236 >        public ConcurrentNavigableMap<K,V> headMap(K toKey) {
3237 >            if (toKey == null)
3238 >                throw new NullPointerException();
3239 >            if (!inOpenRange(toKey))
3240 >                throw new IllegalArgumentException("key out of range");
3241 >            return new ConcurrentSkipListSubMap(m, least, toKey);
3242 >        }
3243 >
3244 >        public ConcurrentNavigableMap<K,V> tailMap(K fromKey) {
3245 >            if (fromKey == null)
3246 >                throw new NullPointerException();
3247 >            if (!inOpenRange(fromKey))
3248 >                throw new IllegalArgumentException("key out of range");
3249 >            return new ConcurrentSkipListSubMap(m, fromKey, fence);
3250 >        }
3251 >
3252 >        /* ----------------  Relational methods -------------- */
3253 >
3254 >        public Map.Entry<K,V> ceilingEntry(K key) {
3255 >            return (SnapshotEntry<K,V>)
3256 >                m.getNear(key, GT|EQ, least, fence, false);
3257 >        }
3258 >
3259 >        public K ceilingKey(K key) {
3260 >            return (K)
3261 >                m.getNear(key, GT|EQ, least, fence, true);
3262 >        }
3263 >
3264 >        public Map.Entry<K,V> lowerEntry(K key) {
3265 >            return (SnapshotEntry<K,V>)
3266 >                m.getNear(key, LT, least, fence, false);
3267 >        }
3268 >
3269 >        public K lowerKey(K key) {
3270 >            return (K)
3271 >                m.getNear(key, LT, least, fence, true);
3272 >        }
3273 >
3274 >        public Map.Entry<K,V> floorEntry(K key) {
3275 >            return (SnapshotEntry<K,V>)
3276 >                m.getNear(key, LT|EQ, least, fence, false);
3277 >        }
3278 >
3279 >        public K floorKey(K key) {
3280 >            return (K)
3281 >                m.getNear(key, LT|EQ, least, fence, true);
3282 >        }
3283 >
3284 >
3285 >        public Map.Entry<K,V> higherEntry(K key) {
3286 >            return (SnapshotEntry<K,V>)
3287 >                m.getNear(key, GT, least, fence, false);
3288 >        }
3289 >
3290 >        public K higherKey(K key) {
3291 >            return (K)
3292 >                m.getNear(key, GT, least, fence, true);
3293 >        }
3294 >
3295 >        public Map.Entry<K,V> firstEntry() {
3296 >            for (;;) {
3297 >                ConcurrentSkipListMap.Node<K,V> n = firstNode();
3298 >                if (!isBeforeEnd(n))
3299 >                    return null;
3300                  Map.Entry<K,V> e = n.createSnapshot();
3301 <                if (e != null)
3302 <                    c.add(e);
3301 >                if (e != null)
3302 >                    return e;
3303 >            }
3304 >        }
3305 >
3306 >        public Map.Entry<K,V> lastEntry() {
3307 >            for (;;) {
3308 >                ConcurrentSkipListMap.Node<K,V> n = lastNode();
3309 >                if (n == null || !inHalfOpenRange(n.key))
3310 >                    return null;
3311 >                Map.Entry<K,V> e = n.createSnapshot();
3312 >                if (e != null)
3313 >                    return e;
3314 >            }
3315 >        }
3316 >
3317 >        public Map.Entry<K,V> pollFirstEntry() {
3318 >            return (SnapshotEntry<K,V>)
3319 >                m.removeFirstEntryOfSubrange(least, fence, false);
3320 >        }
3321 >
3322 >        public Map.Entry<K,V> pollLastEntry() {
3323 >            return (SnapshotEntry<K,V>)
3324 >                m.removeLastEntryOfSubrange(least, fence, false);
3325 >        }
3326 >
3327 >        /* ---------------- Submap Views -------------- */
3328 >
3329 >        public Set<K> keySet() {
3330 >            Set<K> ks = keySetView;
3331 >            return (ks != null) ? ks : (keySetView = new KeySetView());
3332 >        }
3333 >
3334 >        class KeySetView extends AbstractSet<K> {
3335 >            public Iterator<K> iterator() {
3336 >                return m.subMapKeyIterator(least, fence);
3337 >            }
3338 >            public int size() {
3339 >                return ConcurrentSkipListSubMap.this.size();
3340 >            }
3341 >            public boolean isEmpty() {
3342 >                return ConcurrentSkipListSubMap.this.isEmpty();
3343 >            }
3344 >            public boolean contains(Object k) {
3345 >                return ConcurrentSkipListSubMap.this.containsKey(k);
3346 >            }
3347 >            public Object[] toArray() {
3348 >                Collection<K> c = new ArrayList<K>();
3349 >                for (Iterator<K> i = iterator(); i.hasNext(); )
3350 >                    c.add(i.next());
3351 >                return c.toArray();
3352 >            }
3353 >            public <T> T[] toArray(T[] a) {
3354 >                Collection<K> c = new ArrayList<K>();
3355 >                for (Iterator<K> i = iterator(); i.hasNext(); )
3356 >                    c.add(i.next());
3357 >                return c.toArray(a);
3358 >            }
3359 >        }
3360 >
3361 >        public Set<K> descendingKeySet() {
3362 >            Set<K> ks = descendingKeySetView;
3363 >            return (ks != null) ? ks : (descendingKeySetView = new DescendingKeySetView());
3364 >        }
3365 >
3366 >        class DescendingKeySetView extends KeySetView {
3367 >            public Iterator<K> iterator() {
3368 >                return m.descendingSubMapKeyIterator(least, fence);
3369 >            }
3370 >        }
3371 >
3372 >        public Collection<V> values() {
3373 >            Collection<V> vs = valuesView;
3374 >            return (vs != null) ? vs : (valuesView = new ValuesView());
3375 >        }
3376 >
3377 >        class ValuesView extends AbstractCollection<V> {
3378 >            public Iterator<V> iterator() {
3379 >                return m.subMapValueIterator(least, fence);
3380 >            }
3381 >            public int size() {
3382 >                return ConcurrentSkipListSubMap.this.size();
3383 >            }
3384 >            public boolean isEmpty() {
3385 >                return ConcurrentSkipListSubMap.this.isEmpty();
3386 >            }
3387 >            public boolean contains(Object v) {
3388 >                return ConcurrentSkipListSubMap.this.containsValue(v);
3389 >            }
3390 >            public Object[] toArray() {
3391 >                Collection<V> c = new ArrayList<V>();
3392 >                for (Iterator<V> i = iterator(); i.hasNext(); )
3393 >                    c.add(i.next());
3394 >                return c.toArray();
3395 >            }
3396 >            public <T> T[] toArray(T[] a) {
3397 >                Collection<V> c = new ArrayList<V>();
3398 >                for (Iterator<V> i = iterator(); i.hasNext(); )
3399 >                    c.add(i.next());
3400 >                return c.toArray(a);
3401 >            }
3402 >        }
3403 >
3404 >        public Set<Map.Entry<K,V>> entrySet() {
3405 >            Set<Map.Entry<K,V>> es = entrySetView;
3406 >            return (es != null) ? es : (entrySetView = new EntrySetView());
3407 >        }
3408 >
3409 >        class EntrySetView extends AbstractSet<Map.Entry<K,V>> {
3410 >            public Iterator<Map.Entry<K,V>> iterator() {
3411 >                return m.subMapEntryIterator(least, fence);
3412 >            }
3413 >            public int size() {
3414 >                return ConcurrentSkipListSubMap.this.size();
3415 >            }
3416 >            public boolean isEmpty() {
3417 >                return ConcurrentSkipListSubMap.this.isEmpty();
3418 >            }
3419 >            public boolean contains(Object o) {
3420 >                if (!(o instanceof Map.Entry))
3421 >                    return false;
3422 >                Map.Entry<K,V> e = (Map.Entry<K,V>) o;
3423 >                K key = e.getKey();
3424 >                if (!inHalfOpenRange(key))
3425 >                    return false;
3426 >                V v = m.get(key);
3427 >                return v != null && v.equals(e.getValue());
3428 >            }
3429 >            public boolean remove(Object o) {
3430 >                if (!(o instanceof Map.Entry))
3431 >                    return false;
3432 >                Map.Entry<K,V> e = (Map.Entry<K,V>) o;
3433 >                K key = e.getKey();
3434 >                if (!inHalfOpenRange(key))
3435 >                    return false;
3436 >                return m.remove(key, e.getValue());
3437 >            }
3438 >            public Object[] toArray() {
3439 >                Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
3440 >                for (Map.Entry e : this)
3441 >                    c.add(new SnapshotEntry(e.getKey(), e.getValue()));
3442 >                return c.toArray();
3443 >            }
3444 >            public <T> T[] toArray(T[] a) {
3445 >                Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
3446 >                for (Map.Entry e : this)
3447 >                    c.add(new SnapshotEntry(e.getKey(), e.getValue()));
3448 >                return c.toArray(a);
3449 >            }
3450 >        }
3451 >
3452 >        public Set<Map.Entry<K,V>> descendingEntrySet() {
3453 >            Set<Map.Entry<K,V>> es = descendingEntrySetView;
3454 >            return (es != null) ? es : (descendingEntrySetView = new DescendingEntrySetView());
3455 >        }
3456 >
3457 >        class DescendingEntrySetView extends EntrySetView {
3458 >            public Iterator<Map.Entry<K,V>> iterator() {
3459 >                return m.descendingSubMapEntryIterator(least, fence);
3460              }
2659            return c.toArray(a);
3461          }
3462      }
3463   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines