ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166x/ConcurrentSkipListMap.java
(Generate patch)

Comparing jsr166/src/jsr166x/ConcurrentSkipListMap.java (file contents):
Revision 1.3 by dl, Tue Sep 7 11:37:57 2004 UTC vs.
Revision 1.11 by jsr166, Sat Nov 13 05:59:24 2010 UTC

# Line 4 | Line 4
4   * http://creativecommons.org/licenses/publicdomain
5   */
6  
7 < package jsr166x;
7 > package jsr166x;
8  
9   import java.util.*;
10   import java.util.concurrent.*;
# Line 27 | Line 27 | import java.util.concurrent.atomic.*;
27   * elements reflecting the state of the map at some point at or since
28   * the creation of the iterator.  They do <em>not</em> throw {@link
29   * ConcurrentModificationException}, and may proceed concurrently with
30 < * other operations.
30 > * other operations. Ascending key ordered views and their iterators
31 > * are faster than descending ones.
32   *
33 < * <p> All <tt>Map.Entry</tt> pairs returned by methods in this class
33 > * <p>All <tt>Map.Entry</tt> pairs returned by methods in this class
34   * and its views represent snapshots of mappings at the time they were
35   * produced. They do <em>not</em> support the <tt>Entry.setValue</tt>
36   * method. (Note however that it is possible to change mappings in the
# Line 39 | Line 40 | import java.util.concurrent.atomic.*;
40   * <p>Beware that, unlike in most collections, the <tt>size</tt>
41   * method is <em>not</em> a constant-time operation. Because of the
42   * asynchronous nature of these maps, determining the current number
43 < * of elements requires a traversal of the elements.
43 > * of elements requires a traversal of the elements.  Additionally,
44 > * the bulk operations <tt>putAll</tt>, <tt>equals</tt>, and
45 > * <tt>clear</tt> are <em>not</em> guaranteed to be performed
46 > * atomically. For example, an iterator operating concurrently with a
47 > * <tt>putAll</tt> operation might view only some of the added
48 > * elements.
49   *
50   * <p>This class and its views and iterators implement all of the
51   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
# Line 50 | Line 56 | import java.util.concurrent.atomic.*;
56   *
57   * @author Doug Lea
58   * @param <K> the type of keys maintained by this map
59 < * @param <V> the type of mapped values
59 > * @param <V> the type of mapped values
60   */
61 < public class ConcurrentSkipListMap<K,V> extends AbstractMap<K,V>
61 > public class ConcurrentSkipListMap<K,V> extends AbstractMap<K,V>
62      implements ConcurrentNavigableMap<K,V>,
63 <               Cloneable,
63 >               Cloneable,
64                 java.io.Serializable {
65      /*
66       * This class implements a tree-like two-dimensionally linked skip
# Line 68 | Line 74 | public class ConcurrentSkipListMap<K,V>
74       * possible list with 2 levels of index:
75       *
76       * Head nodes          Index nodes
77 <     * +-+     right       +-+                      +-+                
77 >     * +-+    right        +-+                      +-+
78       * |2|---------------->| |--------------------->| |->null
79 <     * +-+                 +-+                      +-+                
79 >     * +-+                 +-+                      +-+
80       *  | down              |                        |
81       *  v                   v                        v
82 <     * +-+            +-+  +-+       +-+            +-+       +-+  
82 >     * +-+            +-+  +-+       +-+            +-+       +-+
83       * |1|----------->| |->| |------>| |----------->| |------>| |->null
84 <     * +-+            +-+  +-+       +-+            +-+       +-+  
85 <     *  |              |    |         |              |         |
86 <     *  v   Nodes      v    v         v              v         v
87 <     * +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  
84 >     * +-+            +-+  +-+       +-+            +-+       +-+
85 >     *  v              |    |         |              |         |
86 >     * Nodes  next     v    v         v              v         v
87 >     * +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+
88       * | |->|A|->|B|->|C|->|D|->|E|->|F|->|G|->|H|->|I|->|J|->|K|->null
89 <     * +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  
89 >     * +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+
90       *
91       * The base lists use a variant of the HM linked ordered set
92 <     * algorithm (See Tim Harris, "A pragmatic implementation of
92 >     * algorithm. See Tim Harris, "A pragmatic implementation of
93       * non-blocking linked lists"
94       * http://www.cl.cam.ac.uk/~tlh20/publications.html and Maged
95       * Michael "High Performance Dynamic Lock-Free Hash Tables and
96       * List-Based Sets"
97 <     * http://www.research.ibm.com/people/m/michael/pubs.htm).  The
98 <     * basic idea in these lists is to mark pointers of deleted nodes
99 <     * when deleting, and when traversing to keep track of triples
97 >     * http://www.research.ibm.com/people/m/michael/pubs.htm.  The
98 >     * basic idea in these lists is to mark the "next" pointers of
99 >     * deleted nodes when deleting to avoid conflicts with concurrent
100 >     * insertions, and when traversing to keep track of triples
101       * (predecessor, node, successor) in order to detect when and how
102       * to unlink these deleted nodes.
103       *
# Line 138 | Line 145 | public class ConcurrentSkipListMap<K,V>
145       * Here's the sequence of events for a deletion of node n with
146       * predecessor b and successor f, initially:
147       *
148 <     *        +------+       +------+      +------+                
148 >     *        +------+       +------+      +------+
149       *   ...  |   b  |------>|   n  |----->|   f  | ...
150 <     *        +------+       +------+      +------+      
150 >     *        +------+       +------+      +------+
151       *
152       * 1. CAS n's value field from non-null to null.
153       *    From this point on, no public operations encountering
# Line 154 | Line 161 | public class ConcurrentSkipListMap<K,V>
161       *
162       *        +------+       +------+      +------+       +------+
163       *   ...  |   b  |------>|   n  |----->|marker|------>|   f  | ...
164 <     *        +------+       +------+      +------+       +------+
164 >     *        +------+       +------+      +------+       +------+
165       *
166       * 3. CAS b's next pointer over both n and its marker.
167       *    From this point on, no new traversals will encounter n,
168       *    and it can eventually be GCed.
169       *        +------+                                    +------+
170       *   ...  |   b  |----------------------------------->|   f  | ...
171 <     *        +------+                                    +------+
172 <     *
171 >     *        +------+                                    +------+
172 >     *
173       * A failure at step 1 leads to simple retry due to a lost race
174       * with another operation. Steps 2-3 can fail because some other
175       * thread noticed during a traversal a node with null value and
# Line 181 | Line 188 | public class ConcurrentSkipListMap<K,V>
188       * nodes. This doesn't change the basic algorithm except for the
189       * need to make sure base traversals start at predecessors (here,
190       * b) that are not (structurally) deleted, otherwise retrying
191 <     * after processing the deletion.
191 >     * after processing the deletion.
192       *
193       * Index levels are maintained as lists with volatile next fields,
194       * using CAS to link and unlink.  Races are allowed in index-list
# Line 259 | Line 266 | public class ConcurrentSkipListMap<K,V>
266       * For explanation of algorithms sharing at least a couple of
267       * features with this one, see Mikhail Fomitchev's thesis
268       * (http://www.cs.yorku.ca/~mikhail/), Keir Fraser's thesis
269 <     * (http://www.cl.cam.ac.uk/users/kaf24/), and papers by
270 <     * Håkan Sundell (http://www.cs.chalmers.se/~phs/).
269 >     * (http://www.cl.cam.ac.uk/users/kaf24/), and Hakan Sundell's
270 >     * thesis (http://www.cs.chalmers.se/~phs/).
271       *
272       * Given the use of tree-like index nodes, you might wonder why
273       * this doesn't use some kind of search tree instead, which would
# Line 285 | Line 292 | public class ConcurrentSkipListMap<K,V>
292  
293      /**
294       * Special value used to identify base-level header
295 <     */
295 >     */
296      private static final Object BASE_HEADER = new Object();
297  
298      /**
299 <     * The topmost head index of the skiplist.
299 >     * The topmost head index of the skiplist.
300       */
301      private transient volatile HeadIndex<K,V> head;
302  
# Line 312 | Line 319 | public class ConcurrentSkipListMap<K,V>
319      private transient EntrySet entrySet;
320      /** Lazily initialized values collection */
321      private transient Values values;
322 +    /** Lazily initialized descending key set */
323 +    private transient DescendingKeySet descendingKeySet;
324 +    /** Lazily initialized descending entry set */
325 +    private transient DescendingEntrySet descendingEntrySet;
326  
327      /**
328       * Initialize or reset state. Needed by constructors, clone,
# Line 320 | Line 331 | public class ConcurrentSkipListMap<K,V>
331       */
332      final void initialize() {
333          keySet = null;
334 <        entrySet = null;  
334 >        entrySet = null;
335          values = null;
336 +        descendingEntrySet = null;
337 +        descendingKeySet = null;
338          randomSeed = (int) System.nanoTime();
339          head = new HeadIndex<K,V>(new Node<K,V>(null, BASE_HEADER, null),
340                                    null, null, 1);
341      }
342  
343      /** Updater for casHead */
344 <    private static final
345 <        AtomicReferenceFieldUpdater<ConcurrentSkipListMap, HeadIndex>
344 >    private static final
345 >        AtomicReferenceFieldUpdater<ConcurrentSkipListMap, HeadIndex>
346          headUpdater = AtomicReferenceFieldUpdater.newUpdater
347          (ConcurrentSkipListMap.class, HeadIndex.class, "head");
348  
# Line 377 | Line 390 | public class ConcurrentSkipListMap<K,V>
390          }
391  
392          /** Updater for casNext */
393 <        static final AtomicReferenceFieldUpdater<Node, Node>
393 >        static final AtomicReferenceFieldUpdater<Node, Node>
394              nextUpdater = AtomicReferenceFieldUpdater.newUpdater
395              (Node.class, Node.class, "next");
396  
397          /** Updater for casValue */
398 <        static final AtomicReferenceFieldUpdater<Node, Object>
398 >        static final AtomicReferenceFieldUpdater<Node, Object>
399              valueUpdater = AtomicReferenceFieldUpdater.newUpdater
400              (Node.class, Object.class, "value");
401  
389
402          /**
403           * compareAndSet value field
404           */
# Line 454 | Line 466 | public class ConcurrentSkipListMap<K,V>
466  
467          /**
468           * Return value if this node contains a valid key-value pair,
469 <         * else null.
469 >         * else null.
470           * @return this node's value if it isn't a marker or header or
471           * is deleted, else null.
472           */
# Line 495 | Line 507 | public class ConcurrentSkipListMap<K,V>
507          volatile Index<K,V> right;
508  
509          /**
510 <         * Creates index node with unknown right pointer
511 <         */
500 <        Index(Node<K,V> node, Index<K,V> down) {
501 <            this.node = node;
502 <            this.key = node.key;
503 <            this.down = down;
504 <        }
505 <        
506 <        /**
507 <         * Creates index node with known right pointer
508 <         */
510 >         * Creates index node with given values
511 >         */
512          Index(Node<K,V> node, Index<K,V> down, Index<K,V> right) {
513              this.node = node;
514              this.key = node.key;
# Line 514 | Line 517 | public class ConcurrentSkipListMap<K,V>
517          }
518  
519          /** Updater for casRight */
520 <        static final AtomicReferenceFieldUpdater<Index, Index>
520 >        static final AtomicReferenceFieldUpdater<Index, Index>
521              rightUpdater = AtomicReferenceFieldUpdater.newUpdater
522              (Index.class, Index.class, "right");
523  
# Line 543 | Line 546 | public class ConcurrentSkipListMap<K,V>
546           */
547          final boolean link(Index<K,V> succ, Index<K,V> newSucc) {
548              Node<K,V> n = node;
549 <            newSucc.right = succ;
549 >            newSucc.right = succ;
550              return n.value != null && casRight(succ, newSucc);
551          }
552  
# Line 566 | Line 569 | public class ConcurrentSkipListMap<K,V>
569       */
570      static final class HeadIndex<K,V> extends Index<K,V> {
571          final int level;
572 <        HeadIndex(Node<K,V> node, Index<K,V> down, Index<K,V> right,
570 <                  int level) {
572 >        HeadIndex(Node<K,V> node, Index<K,V> down, Index<K,V> right, int level) {
573              super(node, down, right);
574              this.level = level;
575          }
576 <    }    
576 >    }
577  
578      /* ---------------- Map.Entry support -------------- */
579  
# Line 579 | Line 581 | public class ConcurrentSkipListMap<K,V>
581       * An immutable representation of a key-value mapping as it
582       * existed at some point in time. This class does <em>not</em>
583       * support the <tt>Map.Entry.setValue</tt> method.
584 <     */
584 >     */
585      static class SnapshotEntry<K,V> implements Map.Entry<K,V> {
586 <        private final K key;
587 <        private final V value;
586 >        private final K key;
587 >        private final V value;
588  
589          /**
590           * Creates a new entry representing the given key and value.
# Line 590 | Line 592 | public class ConcurrentSkipListMap<K,V>
592           * @param value the value
593           */
594          SnapshotEntry(K key, V value) {
595 <            this.key = key;
596 <            this.value = value;
597 <        }
598 <
599 <        /**
600 <         * Returns the key corresponding to this entry.
601 <         *
602 <         * @return the key corresponding to this entry.
603 <         */
595 >            this.key = key;
596 >            this.value = value;
597 >        }
598 >
599 >        /**
600 >         * Returns the key corresponding to this entry.
601 >         *
602 >         * @return the key corresponding to this entry.
603 >         */
604          public K getKey() {
605              return key;
606          }
607  
608 <        /**
609 <         * Returns the value corresponding to this entry.
610 <         *
611 <         * @return the value corresponding to this entry.
612 <         */
608 >        /**
609 >         * Returns the value corresponding to this entry.
610 >         *
611 >         * @return the value corresponding to this entry.
612 >         */
613          public V getValue() {
614 <            return value;
614 >            return value;
615          }
616  
617 <        /**
618 <         * Always fails, throwing <tt>UnsupportedOperationException</tt>.
619 <         * @throws UnsupportedOperationException always.
617 >        /**
618 >         * Always fails, throwing <tt>UnsupportedOperationException</tt>.
619 >         * @throws UnsupportedOperationException always.
620           */
621          public V setValue(V value) {
622              throw new UnsupportedOperationException();
# Line 647 | Line 649 | public class ConcurrentSkipListMap<K,V>
649           * @return a String representation of this entry.
650           */
651          public String toString() {
652 <            return getKey() + "=" + getValue();
652 >            return getKey() + "=" + getValue();
653          }
654      }
655  
# Line 686 | Line 688 | public class ConcurrentSkipListMap<K,V>
688       * which is propagated back to caller.
689       */
690      private Comparable<K> comparable(Object key) throws ClassCastException {
691 <        if (key == null)
691 >        if (key == null)
692              throw new NullPointerException();
693 <        return (comparator != null)
694 <            ? new ComparableUsingComparator(key, comparator)
693 >        return (comparator != null)
694 >            ? new ComparableUsingComparator(key, comparator)
695              : (Comparable<K>)key;
696      }
697  
# Line 707 | Line 709 | public class ConcurrentSkipListMap<K,V>
709  
710      /**
711       * Return true if given key greater than or equal to least and
712 <     * strictly less than fence. Needed mainly in submap operations.
712 >     * strictly less than fence, bypassing either test if least or
713 >     * fence oare null. Needed mainly in submap operations.
714       */
715      boolean inHalfOpenRange(K key, K least, K fence) {
716 <        if (key == null)
716 >        if (key == null)
717              throw new NullPointerException();
718          return ((least == null || compare(key, least) >= 0) &&
719                  (fence == null || compare(key, fence) <  0));
# Line 721 | Line 724 | public class ConcurrentSkipListMap<K,V>
724       * or equal to fence. Needed mainly in submap operations.
725       */
726      boolean inOpenRange(K key, K least, K fence) {
727 <        if (key == null)
727 >        if (key == null)
728              throw new NullPointerException();
729          return ((least == null || compare(key, least) >= 0) &&
730                  (fence == null || compare(key, fence) <= 0));
# Line 735 | Line 738 | public class ConcurrentSkipListMap<K,V>
738       * unlinks indexes to deleted nodes found along the way.  Callers
739       * rely on this side-effect of clearing indices to deleted nodes.
740       * @param key the key
741 <     * @return a predecessor of key
741 >     * @return a predecessor of key
742       */
743      private Node<K,V> findPredecessor(Comparable<K> key) {
744          for (;;) {
# Line 754 | Line 757 | public class ConcurrentSkipListMap<K,V>
757                          continue;
758                      }
759                  }
760 <                if ((d = q.down) != null)
760 >                if ((d = q.down) != null)
761                      q = d;
762                  else
763                      return q.node;
# Line 784 | Line 787 | public class ConcurrentSkipListMap<K,V>
787       *       here because doing so would not usually outweigh cost of
788       *       restarting.
789       *
790 <     *   (3) n is a marker or n's predecessor's value field is null,
790 >     *   (3) n is a marker or n's predecessor's value field is null,
791       *       indicating (among other possibilities) that
792       *       findPredecessor returned a deleted node. We can't unlink
793       *       the node because we don't know its predecessor, so rely
# Line 797 | Line 800 | public class ConcurrentSkipListMap<K,V>
800       *       links, and so will retry anyway.
801       *
802       * The traversal loops in doPut, doRemove, and findNear all
803 <     * include with the same three kinds of checks. And specialized
804 <     * versions appear in doRemoveFirstEntry, findFirst, and
803 >     * include the same three kinds of checks. And specialized
804 >     * versions appear in doRemoveFirst, doRemoveLast, findFirst, and
805       * findLast. They can't easily share code because each uses the
806       * reads of fields held in locals occurring in the orders they
807       * were performed.
808 <     *
808 >     *
809       * @param key the key
810       * @return node holding key, or null if no such.
811       */
# Line 811 | Line 814 | public class ConcurrentSkipListMap<K,V>
814              Node<K,V> b = findPredecessor(key);
815              Node<K,V> n = b.next;
816              for (;;) {
817 <                if (n == null)
817 >                if (n == null)
818                      return null;
819                  Node<K,V> f = n.next;
820                  if (n != b.next)                // inconsistent read
# Line 826 | Line 829 | public class ConcurrentSkipListMap<K,V>
829                  int c = key.compareTo(n.key);
830                  if (c < 0)
831                      return null;
832 <                if (c == 0)
832 >                if (c == 0)
833                      return n;
834                  b = n;
835                  n = f;
# Line 834 | Line 837 | public class ConcurrentSkipListMap<K,V>
837          }
838      }
839  
840 <    /**
841 <     * Specialized variant of findNode to perform map.get. Does a weak
840 >    /**
841 >     * Specialized variant of findNode to perform Map.get. Does a weak
842       * traversal, not bothering to fix any deleted index nodes,
843       * returning early if it happens to see key in index, and passing
844       * over any deleted base nodes, falling back to getUsingFindNode
# Line 853 | Line 856 | public class ConcurrentSkipListMap<K,V>
856          for (;;) {
857              K rk;
858              Index<K,V> d, r;
859 <            if ((r = q.right) != null &&
859 >            if ((r = q.right) != null &&
860                  (rk = r.key) != null && rk != bound) {
861                  int c = key.compareTo(rk);
862                  if (c > 0) {
# Line 866 | Line 869 | public class ConcurrentSkipListMap<K,V>
869                  }
870                  bound = rk;
871              }
872 <            if ((d = q.down) != null)
872 >            if ((d = q.down) != null)
873                  q = d;
874              else {
875                  for (Node<K,V> n = q.node.next; n != null; n = n.next) {
# Line 893 | Line 896 | public class ConcurrentSkipListMap<K,V>
896       * @return the value, or null if absent
897       */
898      private V getUsingFindNode(Comparable<K> key) {
899 <        // Loop needed here and elsewhere to protect against value
900 <        // field going null just as it is about to be returned.
899 >        /*
900 >         * Loop needed here and elsewhere in case value field goes
901 >         * null just as it is about to be returned, in which case we
902 >         * lost a race with a deletion, so must retry.
903 >         */
904          for (;;) {
905              Node<K,V> n = findNode(key);
906              if (n == null)
# Line 910 | Line 916 | public class ConcurrentSkipListMap<K,V>
916      /**
917       * Main insertion method.  Adds element if not present, or
918       * replaces value if present and onlyIfAbsent is false.
919 <     * @param kkey the key
919 >     * @param kkey the key
920       * @param value  the value that must be associated with key
921       * @param onlyIfAbsent if should not insert if already present
922       * @return the old value, or null if newly inserted
# Line 924 | Line 930 | public class ConcurrentSkipListMap<K,V>
930                  if (n != null) {
931                      Node<K,V> f = n.next;
932                      if (n != b.next)               // inconsistent read
933 <                        break;;
933 >                        break;
934                      Object v = n.value;
935                      if (v == null) {               // n is deleted
936                          n.helpDelete(b, f);
# Line 946 | Line 952 | public class ConcurrentSkipListMap<K,V>
952                      }
953                      // else c < 0; fall through
954                  }
955 <                
955 >
956                  Node<K,V> z = new Node<K,V>(kkey, value, n);
957 <                if (!b.casNext(n, z))
957 >                if (!b.casNext(n, z))
958                      break;         // restart if lost race to append to b
959 <                int level = randomLevel();
960 <                if (level > 0)
959 >                int level = randomLevel();
960 >                if (level > 0)
961                      insertIndex(z, level);
962                  return null;
963              }
# Line 973 | Line 979 | public class ConcurrentSkipListMap<K,V>
979          int level = 0;
980          int r = randomSeed;
981          randomSeed = r * 134775813 + 1;
982 <        if (r < 0) {
983 <            while ((r <<= 1) > 0)
982 >        if (r < 0) {
983 >            while ((r <<= 1) > 0)
984                  ++level;
985          }
986          return level;
# Line 992 | Line 998 | public class ConcurrentSkipListMap<K,V>
998          if (level <= max) {
999              Index<K,V> idx = null;
1000              for (int i = 1; i <= level; ++i)
1001 <                idx = new Index<K,V>(z, idx);
1001 >                idx = new Index<K,V>(z, idx, null);
1002              addIndex(idx, h, level);
1003  
1004          } else { // Add a new level
# Line 1007 | Line 1013 | public class ConcurrentSkipListMap<K,V>
1013              level = max + 1;
1014              Index<K,V>[] idxs = (Index<K,V>[])new Index[level+1];
1015              Index<K,V> idx = null;
1016 <            for (int i = 1; i <= level; ++i)
1017 <                idxs[i] = idx = new Index<K,V>(z, idx);
1016 >            for (int i = 1; i <= level; ++i)
1017 >                idxs[i] = idx = new Index<K,V>(z, idx, null);
1018  
1019              HeadIndex<K,V> oldh;
1020              int k;
# Line 1021 | Line 1027 | public class ConcurrentSkipListMap<K,V>
1027                  }
1028                  HeadIndex<K,V> newh = oldh;
1029                  Node<K,V> oldbase = oldh.node;
1030 <                for (int j = oldLevel+1; j <= level; ++j)
1030 >                for (int j = oldLevel+1; j <= level; ++j)
1031                      newh = new HeadIndex<K,V>(oldbase, newh, idxs[j], j);
1032                  if (casHead(oldh, newh)) {
1033                      k = oldLevel;
# Line 1059 | Line 1065 | public class ConcurrentSkipListMap<K,V>
1065                          if (q.unlink(r))
1066                              continue;
1067                          else
1068 <                            break;
1068 >                            break;
1069                      }
1070                      if (c > 0) {
1071                          q = r;
# Line 1073 | Line 1079 | public class ConcurrentSkipListMap<K,V>
1079                          findNode(key); // cleans up
1080                          return;
1081                      }
1082 <                    if (!q.link(r, t))
1082 >                    if (!q.link(r, t))
1083                          break; // restart
1084                      if (--insertionLevel == 0) {
1085                          // need final deletion check before return
1086 <                        if (t.indexesDeletedNode())
1087 <                            findNode(key);
1086 >                        if (t.indexesDeletedNode())
1087 >                            findNode(key);
1088                          return;
1089                      }
1090                  }
1091  
1092 <                if (j > insertionLevel && j <= indexLevel)
1092 >                if (j > insertionLevel && j <= indexLevel)
1093                      t = t.down;
1094                  q = q.down;
1095                  --j;
# Line 1098 | Line 1104 | public class ConcurrentSkipListMap<K,V>
1104       * deletion marker, unlinks predecessor, removes associated index
1105       * nodes, and possibly reduces head index level.
1106       *
1107 <     * Index node are cleared out simply by calling findPredecessor.
1107 >     * Index nodes are cleared out simply by calling findPredecessor.
1108       * which unlinks indexes to deleted nodes found along path to key,
1109       * which will include the indexes to this node.  This is done
1110       * unconditionally. We can't check beforehand whether there are
1111       * index nodes because it might be the case that some or all
1112       * indexes hadn't been inserted yet for this node during initial
1113       * search for it, and we'd like to ensure lack of garbage
1114 <     * retention, so must call to be sure.
1114 >     * retention, so must call to be sure.
1115       *
1116       * @param okey the key
1117       * @param value if non-null, the value that must be
# Line 1114 | Line 1120 | public class ConcurrentSkipListMap<K,V>
1120       */
1121      private V doRemove(Object okey, Object value) {
1122          Comparable<K> key = comparable(okey);
1123 <        for (;;) {
1123 >        for (;;) {
1124              Node<K,V> b = findPredecessor(key);
1125              Node<K,V> n = b.next;
1126              for (;;) {
1127 <                if (n == null)
1127 >                if (n == null)
1128                      return null;
1129                  Node<K,V> f = n.next;
1130                  if (n != b.next)                    // inconsistent read
# Line 1138 | Line 1144 | public class ConcurrentSkipListMap<K,V>
1144                      n = f;
1145                      continue;
1146                  }
1147 <                if (value != null && !value.equals(v))
1148 <                    return null;              
1149 <                if (!n.casValue(v, null))  
1147 >                if (value != null && !value.equals(v))
1148 >                    return null;
1149 >                if (!n.casValue(v, null))
1150                      break;
1151 <                if (!n.appendMarker(f) || !b.casNext(n, f))
1151 >                if (!n.appendMarker(f) || !b.casNext(n, f))
1152                      findNode(key);                  // Retry via findNode
1153                  else {
1154                      findPredecessor(key);           // Clean index
1155 <                    if (head.right == null)
1155 >                    if (head.right == null)
1156                          tryReduceLevel();
1157                  }
1158                  return (V)v;
# Line 1158 | Line 1164 | public class ConcurrentSkipListMap<K,V>
1164       * Possibly reduce head level if it has no nodes.  This method can
1165       * (rarely) make mistakes, in which case levels can disappear even
1166       * though they are about to contain index nodes. This impacts
1167 <     * performance, not correctness.  To minimize mistakes and also to
1168 <     * reduce hysteresis, the level is reduced by one only if the
1167 >     * performance, not correctness.  To minimize mistakes as well as
1168 >     * to reduce hysteresis, the level is reduced by one only if the
1169       * topmost three levels look empty. Also, if the removed level
1170       * looks non-empty after CAS, we try to change it back quick
1171       * before anyone notices our mistake! (This trick works pretty
# Line 1179 | Line 1185 | public class ConcurrentSkipListMap<K,V>
1185          HeadIndex<K,V> d;
1186          HeadIndex<K,V> e;
1187          if (h.level > 3 &&
1188 <            (d = (HeadIndex<K,V>)h.down) != null &&
1189 <            (e = (HeadIndex<K,V>)d.down) != null &&
1190 <            e.right == null &&
1191 <            d.right == null &&
1188 >            (d = (HeadIndex<K,V>)h.down) != null &&
1189 >            (e = (HeadIndex<K,V>)d.down) != null &&
1190 >            e.right == null &&
1191 >            d.right == null &&
1192              h.right == null &&
1193              casHead(h, d) && // try to set
1194              h.right != null) // recheck
1195              casHead(d, h);   // try to backout
1196      }
1197  
1198 +    /**
1199 +     * Version of remove with boolean return. Needed by view classes
1200 +     */
1201 +    boolean removep(Object key) {
1202 +        return doRemove(key, null) != null;
1203 +    }
1204  
1205 <    /* ---------------- Positional operations -------------- */
1205 >    /* ---------------- Finding and removing first element -------------- */
1206  
1207      /**
1208 <     * Specialized version of find to get first valid node
1208 >     * Specialized variant of findNode to get first valid node
1209       * @return first node or null if empty
1210       */
1211      Node<K,V> findFirst() {
1212          for (;;) {
1201            // cheaper checks because we know head is never deleted
1213              Node<K,V> b = head.node;
1214              Node<K,V> n = b.next;
1215              if (n == null)
1216                  return null;
1217 <            if (n.value != null)
1217 >            if (n.value != null)
1218                  return n;
1219              n.helpDelete(b, n.next);
1220          }
1221      }
1222  
1223      /**
1224 <     * Remove first entry; return its key or null if empty.
1225 <     * Used by ConcurrentSkipListSet
1224 >     * Remove first entry; return either its key or a snapshot.
1225 >     * @param keyOnly if true return key, else return SnapshotEntry
1226 >     * (This is a little ugly, but avoids code duplication.)
1227 >     * @return null if empty, first key if keyOnly true, else key,value entry
1228       */
1229 <    K removeFirstKey() {
1230 <        for (;;) {
1218 <            Node<K,V> b = head.node;
1219 <            Node<K,V> n = b.next;
1220 <            if (n == null)
1221 <                return null;
1222 <            Node<K,V> f = n.next;
1223 <            if (n != b.next)
1224 <                continue;
1225 <            Object v = n.value;
1226 <            if (v == null) {
1227 <                n.helpDelete(b, f);
1228 <                continue;
1229 <            }
1230 <            if (!n.casValue(v, null))
1231 <                continue;
1232 <            if (!n.appendMarker(f) || !b.casNext(n, f))
1233 <                findFirst(); // retry
1234 <            clearIndexToFirst();
1235 <            return n.key;
1236 <        }
1237 <    }
1238 <
1239 <    /**
1240 <     * Remove first entry; return SnapshotEntry or null if empty.
1241 <     */
1242 <    private SnapshotEntry<K,V> doRemoveFirstEntry() {
1243 <        /*
1244 <         * This must be mostly duplicated from removeFirstKey because we
1245 <         * need to save the last value read before it is nulled out
1246 <         */
1247 <        for (;;) {
1229 >    Object doRemoveFirst(boolean keyOnly) {
1230 >        for (;;) {
1231              Node<K,V> b = head.node;
1232              Node<K,V> n = b.next;
1233 <            if (n == null)
1233 >            if (n == null)
1234                  return null;
1235              Node<K,V> f = n.next;
1236              if (n != b.next)
# Line 1262 | Line 1245 | public class ConcurrentSkipListMap<K,V>
1245              if (!n.appendMarker(f) || !b.casNext(n, f))
1246                  findFirst(); // retry
1247              clearIndexToFirst();
1248 <            return new SnapshotEntry<K,V>(n.key, (V)v);
1248 >            K key = n.key;
1249 >            return (keyOnly)? key : new SnapshotEntry<K,V>(key, (V)v);
1250          }
1251      }
1252  
1253      /**
1254       * Clear out index nodes associated with deleted first entry.
1255 <     * Needed by removeFirstKey and removeFirstEntry
1255 >     * Needed by doRemoveFirst
1256       */
1257      private void clearIndexToFirst() {
1258          for (;;) {
# Line 1276 | Line 1260 | public class ConcurrentSkipListMap<K,V>
1260              for (;;) {
1261                  Index<K,V> r = q.right;
1262                  if (r != null && r.indexesDeletedNode() && !q.unlink(r))
1263 <                    break;
1263 >                    break;
1264                  if ((q = q.down) == null) {
1265 <                    if (head.right == null)
1265 >                    if (head.right == null)
1266                          tryReduceLevel();
1267                      return;
1268                  }
# Line 1286 | Line 1270 | public class ConcurrentSkipListMap<K,V>
1270          }
1271      }
1272  
1273 +   /**
1274 +     * Remove first entry; return key or null if empty.
1275 +     */
1276 +    K pollFirstKey() {
1277 +        return (K)doRemoveFirst(true);
1278 +    }
1279 +
1280 +    /* ---------------- Finding and removing last element -------------- */
1281 +
1282      /**
1283       * Specialized version of find to get last valid node
1284       * @return last node or null if empty
# Line 1303 | Line 1296 | public class ConcurrentSkipListMap<K,V>
1296                  if (r.indexesDeletedNode()) {
1297                      q.unlink(r);
1298                      q = head; // restart
1299 <                }
1299 >                }
1300                  else
1301                      q = r;
1302              } else if ((d = q.down) != null) {
# Line 1312 | Line 1305 | public class ConcurrentSkipListMap<K,V>
1305                  Node<K,V> b = q.node;
1306                  Node<K,V> n = b.next;
1307                  for (;;) {
1308 <                    if (n == null)
1308 >                    if (n == null)
1309                          return (b.isBaseHeader())? null : b;
1310                      Node<K,V> f = n.next;            // inconsistent read
1311                      if (n != b.next)
# Line 1332 | Line 1325 | public class ConcurrentSkipListMap<K,V>
1325          }
1326      }
1327  
1328 +
1329      /**
1330 <     * Temporary helper method for two-pass implementation of
1331 <     * removeLastEntry, mostly pasted from doRemove.
1332 <     * TODO: replace with one-pass implementation
1330 >     * Specialized version of doRemove for last entry.
1331 >     * @param keyOnly if true return key, else return SnapshotEntry
1332 >     * @return null if empty, last key if keyOnly true, else key,value entry
1333       */
1334 <    private Object removeIfLast(K kkey) {
1335 <        Comparable<K> key = comparable(kkey);
1336 <        for (;;) {
1343 <            Node<K,V> b = findPredecessor(key);
1334 >    Object doRemoveLast(boolean keyOnly) {
1335 >        for (;;) {
1336 >            Node<K,V> b = findPredecessorOfLast();
1337              Node<K,V> n = b.next;
1338 <            for (;;) {
1339 <                if (n == null)
1338 >            if (n == null) {
1339 >                if (b.isBaseHeader())               // empty
1340                      return null;
1341 +                else
1342 +                    continue; // all b's successors are deleted; retry
1343 +            }
1344 +            for (;;) {
1345                  Node<K,V> f = n.next;
1346                  if (n != b.next)                    // inconsistent read
1347                      break;
# Line 1355 | Line 1352 | public class ConcurrentSkipListMap<K,V>
1352                  }
1353                  if (v == n || b.value == null)      // b is deleted
1354                      break;
1355 <                int c = key.compareTo(n.key);
1359 <                if (c < 0)
1360 <                    return null;
1361 <                if (c > 0) {
1355 >                if (f != null) {
1356                      b = n;
1357                      n = f;
1358                      continue;
1359                  }
1360 <                if (f != null)                       // fail if n not last
1361 <                    return null;
1362 <                if (!n.casValue(v, null))  
1363 <                    return null;
1364 <                if (!n.appendMarker(f) || !b.casNext(n, f))
1365 <                    findNode(key);                  // Retry via findNode
1360 >                if (!n.casValue(v, null))
1361 >                    break;
1362 >                K key = n.key;
1363 >                Comparable<K> ck = comparable(key);
1364 >                if (!n.appendMarker(f) || !b.casNext(n, f))
1365 >                    findNode(ck);                  // Retry via findNode
1366                  else {
1367 <                    findPredecessor(key);           // Clean index
1368 <                    if (head.right == null)
1367 >                    findPredecessor(ck);           // Clean index
1368 >                    if (head.right == null)
1369                          tryReduceLevel();
1370                  }
1371 <                return v;
1371 >                return (keyOnly)? key : new SnapshotEntry<K,V>(key, (V)v);
1372              }
1373          }
1374      }
1375  
1376      /**
1377 <     * Remove last entry; return SnapshotEntry or null if empty.
1377 >     * Specialized variant of findPredecessor to get predecessor of
1378 >     * last valid node. Needed by doRemoveLast. It is possible that
1379 >     * all successors of returned node will have been deleted upon
1380 >     * return, in which case this method can be retried.
1381 >     * @return likely predecessor of last node.
1382       */
1383 <    private SnapshotEntry<K,V> doRemoveLastEntry() {
1383 >    private Node<K,V> findPredecessorOfLast() {
1384          for (;;) {
1385 <            Node<K,V> l = findLast();
1386 <            if (l == null)
1387 <                return null;
1388 <            K k = l.key;
1389 <            Object v = removeIfLast(k);
1390 <            if (v != null)
1391 <                return new SnapshotEntry<K, V>(k, (V)v);
1385 >            Index<K,V> q = head;
1386 >            for (;;) {
1387 >                Index<K,V> d, r;
1388 >                if ((r = q.right) != null) {
1389 >                    if (r.indexesDeletedNode()) {
1390 >                        q.unlink(r);
1391 >                        break;    // must restart
1392 >                    }
1393 >                    // proceed as far across as possible without overshooting
1394 >                    if (r.node.next != null) {
1395 >                        q = r;
1396 >                        continue;
1397 >                    }
1398 >                }
1399 >                if ((d = q.down) != null)
1400 >                    q = d;
1401 >                else
1402 >                    return q.node;
1403 >            }
1404          }
1405      }
1406 <    
1406 >
1407      /**
1408 <     * Remove last entry; return key or null if empty.
1408 >     * Remove last entry; return key or null if empty.
1409       */
1410 <    K removeLastKey() {
1411 <        for (;;) {
1402 <            Node<K,V> l = findLast();
1403 <            if (l == null)
1404 <                return null;
1405 <            K k = l.key;
1406 <            if (removeIfLast(k) != null)
1407 <                return k;
1408 <        }
1410 >    K pollLastKey() {
1411 >        return (K)doRemoveLast(true);
1412      }
1413  
1414      /* ---------------- Relational operations -------------- */
# Line 1414 | Line 1417 | public class ConcurrentSkipListMap<K,V>
1417  
1418      private static final int EQ = 1;
1419      private static final int LT = 2;
1420 <    private static final int GT = 0;
1420 >    private static final int GT = 0; // Actually checked as !LT
1421  
1422      /**
1423       * Utility for ceiling, floor, lower, higher methods.
# Line 1428 | Line 1431 | public class ConcurrentSkipListMap<K,V>
1431              Node<K,V> b = findPredecessor(key);
1432              Node<K,V> n = b.next;
1433              for (;;) {
1434 <                if (n == null)
1434 >                if (n == null)
1435                      return ((rel & LT) == 0 || b.isBaseHeader())? null : b;
1436                  Node<K,V> f = n.next;
1437                  if (n != b.next)                  // inconsistent read
# Line 1469 | Line 1472 | public class ConcurrentSkipListMap<K,V>
1472          }
1473      }
1474  
1475 +    /**
1476 +     * Return ceiling, or first node if key is <tt>null</tt>
1477 +     */
1478 +    Node<K,V> findCeiling(K key) {
1479 +        return (key == null)? findFirst() : findNear(key, GT|EQ);
1480 +    }
1481 +
1482 +    /**
1483 +     * Return lower node, or last node if key is <tt>null</tt>
1484 +     */
1485 +    Node<K,V> findLower(K key) {
1486 +        return (key == null)? findLast() : findNear(key, LT);
1487 +    }
1488 +
1489 +    /**
1490 +     * Return SnapshotEntry or key for results of findNear ofter screening
1491 +     * to ensure result is in given range. Needed by submaps.
1492 +     * @param kkey the key
1493 +     * @param rel the relation -- OR'ed combination of EQ, LT, GT
1494 +     * @param least minimum allowed key value
1495 +     * @param fence key greater than maximum allowed key value
1496 +     * @param keyOnly if true return key, else return SnapshotEntry
1497 +     * @return Key or Entry fitting relation, or <tt>null</tt> if no such
1498 +     */
1499 +    Object getNear(K kkey, int rel, K least, K fence, boolean keyOnly) {
1500 +        K key = kkey;
1501 +        // Don't return keys less than least
1502 +        if ((rel & LT) == 0) {
1503 +            if (compare(key, least) < 0) {
1504 +                key = least;
1505 +                rel = rel | EQ;
1506 +            }
1507 +        }
1508 +
1509 +        for (;;) {
1510 +            Node<K,V> n = findNear(key, rel);
1511 +            if (n == null || !inHalfOpenRange(n.key, least, fence))
1512 +                return null;
1513 +            K k = n.key;
1514 +            V v = n.getValidValue();
1515 +            if (v != null)
1516 +                return keyOnly? k : new SnapshotEntry<K,V>(k, v);
1517 +        }
1518 +    }
1519 +
1520 +    /**
1521 +     * Find and remove least element of subrange.
1522 +     * @param least minimum allowed key value
1523 +     * @param fence key greater than maximum allowed key value
1524 +     * @param keyOnly if true return key, else return SnapshotEntry
1525 +     * @return least Key or Entry, or <tt>null</tt> if no such
1526 +     */
1527 +    Object removeFirstEntryOfSubrange(K least, K fence, boolean keyOnly) {
1528 +        for (;;) {
1529 +            Node<K,V> n = findCeiling(least);
1530 +            if (n == null)
1531 +                return null;
1532 +            K k = n.key;
1533 +            if (fence != null && compare(k, fence) >= 0)
1534 +                return null;
1535 +            V v = doRemove(k, null);
1536 +            if (v != null)
1537 +                return (keyOnly)? k : new SnapshotEntry<K,V>(k, v);
1538 +        }
1539 +    }
1540 +
1541 +    /**
1542 +     * Find and remove greatest element of subrange.
1543 +     * @param least minimum allowed key value
1544 +     * @param fence key greater than maximum allowed key value
1545 +     * @param keyOnly if true return key, else return SnapshotEntry
1546 +     * @return least Key or Entry, or <tt>null</tt> if no such
1547 +     */
1548 +    Object removeLastEntryOfSubrange(K least, K fence, boolean keyOnly) {
1549 +        for (;;) {
1550 +            Node<K,V> n = findLower(fence);
1551 +            if (n == null)
1552 +                return null;
1553 +            K k = n.key;
1554 +            if (least != null && compare(k, least) < 0)
1555 +                return null;
1556 +            V v = doRemove(k, null);
1557 +            if (v != null)
1558 +                return (keyOnly)? k : new SnapshotEntry<K,V>(k, v);
1559 +        }
1560 +    }
1561 +
1562      /* ---------------- Constructors -------------- */
1563  
1564      /**
1565       * Constructs a new empty map, sorted according to the keys' natural
1566 <     * order.  
1566 >     * order.
1567       */
1568      public ConcurrentSkipListMap() {
1569          this.comparator = null;
# Line 1494 | Line 1584 | public class ConcurrentSkipListMap<K,V>
1584  
1585      /**
1586       * Constructs a new map containing the same mappings as the given map,
1587 <     * sorted according to the keys' <i>natural order</i>.  
1587 >     * sorted according to the keys' <i>natural order</i>.
1588       *
1589       * @param  m the map whose mappings are to be placed in this map.
1590       * @throws ClassCastException if the keys in m are not Comparable, or
# Line 1509 | Line 1599 | public class ConcurrentSkipListMap<K,V>
1599  
1600      /**
1601       * Constructs a new map containing the same mappings as the given
1602 <     * <tt>SortedMap</tt>, sorted according to the same ordering.  
1603 <     * @param  m the sorted map whose mappings are to be placed in this map,
1604 <     *         and whose comparator is to be used to sort this map.
1605 <     * @throws NullPointerException if the specified sorted map is <tt>null</tt>.
1602 >     * <tt>SortedMap</tt>, sorted according to the same ordering.
1603 >     * @param m the sorted map whose mappings are to be placed in this
1604 >     * map, and whose comparator is to be used to sort this map.
1605 >     * @throws NullPointerException if the specified sorted map is
1606 >     * <tt>null</tt>.
1607       */
1608      public ConcurrentSkipListMap(SortedMap<K, ? extends V> m) {
1609          this.comparator = m.comparator();
# Line 1556 | Line 1647 | public class ConcurrentSkipListMap<K,V>
1647          ArrayList<Index<K,V>> preds = new ArrayList<Index<K,V>>();
1648  
1649          // initialize
1650 <        for (int i = 0; i <= h.level; ++i)
1650 >        for (int i = 0; i <= h.level; ++i)
1651              preds.add(null);
1652          Index<K,V> q = h;
1653          for (int i = h.level; i > 0; --i) {
# Line 1564 | Line 1655 | public class ConcurrentSkipListMap<K,V>
1655              q = q.down;
1656          }
1657  
1658 <        Iterator<? extends Map.Entry<? extends K, ? extends V>> it =
1658 >        Iterator<? extends Map.Entry<? extends K, ? extends V>> it =
1659              map.entrySet().iterator();
1660          while (it.hasNext()) {
1661              Map.Entry<? extends K, ? extends V> e = it.next();
# Line 1580 | Line 1671 | public class ConcurrentSkipListMap<K,V>
1671              if (j > 0) {
1672                  Index<K,V> idx = null;
1673                  for (int i = 1; i <= j; ++i) {
1674 <                    idx = new Index<K,V>(z, idx);
1675 <                    if (i > h.level)
1674 >                    idx = new Index<K,V>(z, idx, null);
1675 >                    if (i > h.level)
1676                          h = new HeadIndex<K,V>(h.node, h, idx, i);
1677  
1678                      if (i < preds.size()) {
# Line 1601 | Line 1692 | public class ConcurrentSkipListMap<K,V>
1692       * Save the state of the <tt>Map</tt> instance to a stream.
1693       *
1694       * @serialData The key (Object) and value (Object) for each
1695 <     * key-value mapping represented by the Map, followed by
1695 >     * key-value mapping represented by the Map, followed by
1696       * <tt>null</tt>. The key-value mappings are emitted in key-order
1697       * (as determined by the Comparator, or by the keys' natural
1698       * ordering if no Comparator).
# Line 1632 | Line 1723 | public class ConcurrentSkipListMap<K,V>
1723          // Reset transients
1724          initialize();
1725  
1726 <        /*
1727 <         * This is basically identical to buildFromSorted, but is
1726 >        /*
1727 >         * This is nearly identical to buildFromSorted, but is
1728           * distinct because readObject calls can't be nicely adapted
1729           * as the kind of iterator needed by buildFromSorted. (They
1730           * can be, but doing so requires type cheats and/or creation
# Line 1643 | Line 1734 | public class ConcurrentSkipListMap<K,V>
1734          HeadIndex<K,V> h = head;
1735          Node<K,V> basepred = h.node;
1736          ArrayList<Index<K,V>> preds = new ArrayList<Index<K,V>>();
1737 <        for (int i = 0; i <= h.level; ++i)
1737 >        for (int i = 0; i <= h.level; ++i)
1738              preds.add(null);
1739          Index<K,V> q = h;
1740          for (int i = h.level; i > 0; --i) {
# Line 1656 | Line 1747 | public class ConcurrentSkipListMap<K,V>
1747              if (k == null)
1748                  break;
1749              Object v = s.readObject();
1750 <            if (v == null)
1750 >            if (v == null)
1751                  throw new NullPointerException();
1752              K key = (K) k;
1753              V val = (V) v;
# Line 1668 | Line 1759 | public class ConcurrentSkipListMap<K,V>
1759              if (j > 0) {
1760                  Index<K,V> idx = null;
1761                  for (int i = 1; i <= j; ++i) {
1762 <                    idx = new Index<K,V>(z, idx);
1763 <                    if (i > h.level)
1762 >                    idx = new Index<K,V>(z, idx, null);
1763 >                    if (i > h.level)
1764                          h = new HeadIndex<K,V>(h.node, h, idx, i);
1765  
1766                      if (i < preds.size()) {
# Line 1701 | Line 1792 | public class ConcurrentSkipListMap<K,V>
1792  
1793      /**
1794       * Returns the value to which this map maps the specified key.  Returns
1795 <     * <tt>null</tt> if the map contains no mapping for this key.  
1795 >     * <tt>null</tt> if the map contains no mapping for this key.
1796       *
1797       * @param key key whose associated value is to be returned.
1798       * @return the value to which this map maps the specified key, or
# Line 1723 | Line 1814 | public class ConcurrentSkipListMap<K,V>
1814       * @param value value to be associated with the specified key.
1815       *
1816       * @return previous value associated with specified key, or <tt>null</tt>
1817 <     *         if there was no mapping for key.  
1817 >     *         if there was no mapping for key.
1818       * @throws ClassCastException if the key cannot be compared with the keys
1819       *            currently in the map.
1820       * @throws NullPointerException if the key or value are <tt>null</tt>.
1821       */
1822      public V put(K key, V value) {
1823 <        if (value == null)
1823 >        if (value == null)
1824              throw new NullPointerException();
1825          return doPut(key, value, false);
1826      }
# Line 1739 | Line 1830 | public class ConcurrentSkipListMap<K,V>
1830       *
1831       * @param  key key for which mapping should be removed
1832       * @return previous value associated with specified key, or <tt>null</tt>
1833 <     *         if there was no mapping for key.
1833 >     *         if there was no mapping for key.
1834       *
1835       * @throws ClassCastException if the key cannot be compared with the keys
1836       *            currently in the map.
# Line 1756 | Line 1847 | public class ConcurrentSkipListMap<K,V>
1847       *
1848       * @param value value whose presence in this Map is to be tested.
1849       * @return  <tt>true</tt> if a mapping to <tt>value</tt> exists;
1850 <     *          <tt>false</tt> otherwise.
1850 >     *          <tt>false</tt> otherwise.
1851       * @throws  NullPointerException  if the value is <tt>null</tt>.
1852 <     */    
1852 >     */
1853      public boolean containsValue(Object value) {
1854 <        if (value == null)
1854 >        if (value == null)
1855              throw new NullPointerException();
1856          for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1857              V v = n.getValidValue();
# Line 1841 | Line 1932 | public class ConcurrentSkipListMap<K,V>
1932      }
1933  
1934      /**
1935 +     * Returns a set view of the keys contained in this map in
1936 +     * descending order.  The set is backed by the map, so changes to
1937 +     * the map are reflected in the set, and vice-versa.  The set
1938 +     * supports element removal, which removes the corresponding
1939 +     * mapping from this map, via the <tt>Iterator.remove</tt>,
1940 +     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>,
1941 +     * and <tt>clear</tt> operations.  It does not support the
1942 +     * <tt>add</tt> or <tt>addAll</tt> operations.  The view's
1943 +     * <tt>iterator</tt> is a "weakly consistent" iterator that will
1944 +     * never throw {@link java.util.ConcurrentModificationException},
1945 +     * and guarantees to traverse elements as they existed upon
1946 +     * construction of the iterator, and may (but is not guaranteed
1947 +     * to) reflect any modifications subsequent to construction.
1948 +     *
1949 +     * @return a set view of the keys contained in this map.
1950 +     */
1951 +    public Set<K> descendingKeySet() {
1952 +        /*
1953 +         * Note: Lazy intialization works here and for other views
1954 +         * because view classes are stateless/immutable so it doesn't
1955 +         * matter wrt correctness if more than one is created (which
1956 +         * will only rarely happen).  Even so, the following idiom
1957 +         * conservatively ensures that the method returns the one it
1958 +         * created if it does so, not one created by another racing
1959 +         * thread.
1960 +         */
1961 +        DescendingKeySet ks = descendingKeySet;
1962 +        return (ks != null) ? ks : (descendingKeySet = new DescendingKeySet());
1963 +    }
1964 +
1965 +    /**
1966       * Returns a collection view of the values contained in this map.
1967       * The collection is backed by the map, so changes to the map are
1968       * reflected in the collection, and vice-versa.  The collection
# Line 1890 | Line 2012 | public class ConcurrentSkipListMap<K,V>
2012          return (es != null) ? es : (entrySet = new EntrySet());
2013      }
2014  
2015 +    /**
2016 +     * Returns a collection view of the mappings contained in this
2017 +     * map, in descending order.  Each element in the returned
2018 +     * collection is a <tt>Map.Entry</tt>.  The collection is backed
2019 +     * by the map, so changes to the map are reflected in the
2020 +     * collection, and vice-versa.  The collection supports element
2021 +     * removal, which removes the corresponding mapping from the map,
2022 +     * via the <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
2023 +     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
2024 +     * operations.  It does not support the <tt>add</tt> or
2025 +     * <tt>addAll</tt> operations.  The view's <tt>iterator</tt> is a
2026 +     * "weakly consistent" iterator that will never throw {@link
2027 +     * java.util.ConcurrentModificationException}, and guarantees to
2028 +     * traverse elements as they existed upon construction of the
2029 +     * iterator, and may (but is not guaranteed to) reflect any
2030 +     * modifications subsequent to construction. The
2031 +     * <tt>Map.Entry</tt> elements returned by
2032 +     * <tt>iterator.next()</tt> do <em>not</em> support the
2033 +     * <tt>setValue</tt> operation.
2034 +     *
2035 +     * @return a collection view of the mappings contained in this map.
2036 +     */
2037 +    public Set<Map.Entry<K,V>> descendingEntrySet() {
2038 +        DescendingEntrySet es = descendingEntrySet;
2039 +        return (es != null) ? es : (descendingEntrySet = new DescendingEntrySet());
2040 +    }
2041 +
2042 +    /* ---------------- AbstractMap Overrides -------------- */
2043 +
2044 +    /**
2045 +     * Compares the specified object with this map for equality.
2046 +     * Returns <tt>true</tt> if the given object is also a map and the
2047 +     * two maps represent the same mappings.  More formally, two maps
2048 +     * <tt>t1</tt> and <tt>t2</tt> represent the same mappings if
2049 +     * <tt>t1.keySet().equals(t2.keySet())</tt> and for every key
2050 +     * <tt>k</tt> in <tt>t1.keySet()</tt>, <tt> (t1.get(k)==null ?
2051 +     * t2.get(k)==null : t1.get(k).equals(t2.get(k))) </tt>.  This
2052 +     * operation may return misleading results if either map is
2053 +     * concurrently modified during execution of this method.
2054 +     *
2055 +     * @param o object to be compared for equality with this map.
2056 +     * @return <tt>true</tt> if the specified object is equal to this map.
2057 +     */
2058 +    public boolean equals(Object o) {
2059 +        if (o == this)
2060 +            return true;
2061 +        if (!(o instanceof Map))
2062 +            return false;
2063 +        Map<K,V> t = (Map<K,V>) o;
2064 +        try {
2065 +            return (containsAllMappings(this, t) &&
2066 +                    containsAllMappings(t, this));
2067 +        } catch (ClassCastException unused) {
2068 +            return false;
2069 +        } catch (NullPointerException unused) {
2070 +            return false;
2071 +        }
2072 +    }
2073 +
2074 +    /**
2075 +     * Helper for equals -- check for containment, avoiding nulls.
2076 +     */
2077 +    static <K,V> boolean containsAllMappings(Map<K,V> a, Map<K,V> b) {
2078 +        Iterator<Entry<K,V>> it = b.entrySet().iterator();
2079 +        while (it.hasNext()) {
2080 +            Entry<K,V> e = it.next();
2081 +            Object k = e.getKey();
2082 +            Object v = e.getValue();
2083 +            if (k == null || v == null || !v.equals(a.get(k)))
2084 +                return false;
2085 +        }
2086 +        return true;
2087 +    }
2088 +
2089      /* ------ ConcurrentMap API methods ------ */
2090  
2091      /**
# Line 1897 | Line 2093 | public class ConcurrentSkipListMap<K,V>
2093       * with a value, associate it with the given value.
2094       * This is equivalent to
2095       * <pre>
2096 <     *   if (!map.containsKey(key))
2096 >     *   if (!map.containsKey(key))
2097       *      return map.put(key, value);
2098       *   else
2099       *      return map.get(key);
2100       * </pre>
2101 <     * Except that the action is performed atomically.
2101 >     * except that the action is performed atomically.
2102       * @param key key with which the specified value is to be associated.
2103       * @param value value to be associated with the specified key.
2104       * @return previous value associated with specified key, or <tt>null</tt>
2105 <     *         if there was no mapping for key.
2105 >     *         if there was no mapping for key.
2106       *
2107       * @throws ClassCastException if the key cannot be compared with the keys
2108       *            currently in the map.
2109       * @throws NullPointerException if the key or value are <tt>null</tt>.
2110       */
2111      public V putIfAbsent(K key, V value) {
2112 <        if (value == null)
2112 >        if (value == null)
2113              throw new NullPointerException();
2114          return doPut(key, value, true);
2115      }
# Line 1921 | Line 2117 | public class ConcurrentSkipListMap<K,V>
2117      /**
2118       * Remove entry for key only if currently mapped to given value.
2119       * Acts as
2120 <     * <pre>
2120 >     * <pre>
2121       *  if ((map.containsKey(key) && map.get(key).equals(value)) {
2122       *     map.remove(key);
2123       *     return true;
# Line 1936 | Line 2132 | public class ConcurrentSkipListMap<K,V>
2132       * @throws NullPointerException if the key or value are <tt>null</tt>.
2133       */
2134      public boolean remove(Object key, Object value) {
2135 <        if (value == null)
2135 >        if (value == null)
2136              throw new NullPointerException();
2137          return doRemove(key, value) != null;
2138      }
# Line 1944 | Line 2140 | public class ConcurrentSkipListMap<K,V>
2140      /**
2141       * Replace entry for key only if currently mapped to given value.
2142       * Acts as
2143 <     * <pre>
2143 >     * <pre>
2144       *  if ((map.containsKey(key) && map.get(key).equals(oldValue)) {
2145       *     map.put(key, newValue);
2146       *     return true;
# Line 1961 | Line 2157 | public class ConcurrentSkipListMap<K,V>
2157       * <tt>null</tt>.
2158       */
2159      public boolean replace(K key, V oldValue, V newValue) {
2160 <        if (oldValue == null || newValue == null)
2160 >        if (oldValue == null || newValue == null)
2161              throw new NullPointerException();
2162          Comparable<K> k = comparable(key);
2163          for (;;) {
# Line 1981 | Line 2177 | public class ConcurrentSkipListMap<K,V>
2177      /**
2178       * Replace entry for key only if currently mapped to some value.
2179       * Acts as
2180 <     * <pre>
2180 >     * <pre>
2181       *  if ((map.containsKey(key)) {
2182       *     return map.put(key, value);
2183       * } else return null;
# Line 1990 | Line 2186 | public class ConcurrentSkipListMap<K,V>
2186       * @param key key with which the specified value is associated.
2187       * @param value value to be associated with the specified key.
2188       * @return previous value associated with specified key, or <tt>null</tt>
2189 <     *         if there was no mapping for key.  
2189 >     *         if there was no mapping for key.
2190       * @throws ClassCastException if the key cannot be compared with the keys
2191       *            currently in the map.
2192       * @throws NullPointerException if the key or value are <tt>null</tt>.
2193       */
2194      public V replace(K key, V value) {
2195 <        if (value == null)
2195 >        if (value == null)
2196              throw new NullPointerException();
2197          Comparable<K> k = comparable(key);
2198          for (;;) {
# Line 2028 | Line 2224 | public class ConcurrentSkipListMap<K,V>
2224       * @return the first (lowest) key currently in this map.
2225       * @throws    NoSuchElementException Map is empty.
2226       */
2227 <    public K firstKey() {
2227 >    public K firstKey() {
2228          Node<K,V> n = findFirst();
2229          if (n == null)
2230              throw new NoSuchElementException();
# Line 2076 | Line 2272 | public class ConcurrentSkipListMap<K,V>
2272      }
2273  
2274      /**
2275 <     * Returns a view of the portion of this map whose keys are strictly less
2276 <     * than <tt>toKey</tt>.  The returned sorted map is backed by this map, so
2277 <     * changes in the returned sorted map are reflected in this map, and
2278 <     * vice-versa.  
2275 >     * Returns a view of the portion of this map whose keys are
2276 >     * strictly less than <tt>toKey</tt>.  The returned sorted map is
2277 >     * backed by this map, so changes in the returned sorted map are
2278 >     * reflected in this map, and vice-versa.
2279       * @param toKey high endpoint (exclusive) of the headMap.
2280 <     * @return a view of the portion of this map whose keys are strictly
2281 <     *                less than <tt>toKey</tt>.
2280 >     * @return a view of the portion of this map whose keys are
2281 >     * strictly less than <tt>toKey</tt>.
2282       *
2283       * @throws ClassCastException if <tt>toKey</tt> is not compatible
2284 <     *         with this map's comparator (or, if the map has no comparator,
2285 <     *         if <tt>toKey</tt> does not implement <tt>Comparable</tt>).
2284 >     * with this map's comparator (or, if the map has no comparator,
2285 >     * if <tt>toKey</tt> does not implement <tt>Comparable</tt>).
2286       * @throws NullPointerException if <tt>toKey</tt> is <tt>null</tt>.
2287       */
2288      public ConcurrentNavigableMap<K,V> headMap(K toKey) {
# Line 2101 | Line 2297 | public class ConcurrentSkipListMap<K,V>
2297       * map is backed by this map, so changes in the returned sorted
2298       * map are reflected in this map, and vice-versa.
2299       * @param fromKey low endpoint (inclusive) of the tailMap.
2300 <     * @return a view of the portion of this map whose keys are greater
2301 <     *                than or equal to <tt>fromKey</tt>.
2302 <     * @throws ClassCastException if <tt>fromKey</tt> is not compatible
2303 <     *         with this map's comparator (or, if the map has no comparator,
2304 <     *         if <tt>fromKey</tt> does not implement <tt>Comparable</tt>).
2300 >     * @return a view of the portion of this map whose keys are
2301 >     * greater than or equal to <tt>fromKey</tt>.
2302 >     * @throws ClassCastException if <tt>fromKey</tt> is not
2303 >     * compatible with this map's comparator (or, if the map has no
2304 >     * comparator, if <tt>fromKey</tt> does not implement
2305 >     * <tt>Comparable</tt>).
2306       * @throws NullPointerException if <tt>fromKey</tt> is <tt>null</tt>.
2307       */
2308      public ConcurrentNavigableMap<K,V>  tailMap(K fromKey) {
# Line 2118 | Line 2315 | public class ConcurrentSkipListMap<K,V>
2315  
2316      /**
2317       * Returns a key-value mapping associated with the least key
2318 <     * greater than or equal to the given key, or <tt>null</tt> if there is
2319 <     * no such entry. The returned entry does <em>not</em> support
2320 <     * the <tt>Entry.setValue</tt> method.
2321 <     *
2318 >     * greater than or equal to the given key, or <tt>null</tt> if
2319 >     * there is no such entry. The returned entry does <em>not</em>
2320 >     * support the <tt>Entry.setValue</tt> method.
2321 >     *
2322       * @param key the key.
2323 <     * @return an Entry associated with ceiling of given key, or <tt>null</tt>
2324 <     * if there is no such Entry.
2325 <     * @throws ClassCastException if key cannot be compared with the keys
2326 <     *            currently in the map.
2323 >     * @return an Entry associated with ceiling of given key, or
2324 >     * <tt>null</tt> if there is no such Entry.
2325 >     * @throws ClassCastException if key cannot be compared with the
2326 >     * keys currently in the map.
2327       * @throws NullPointerException if key is <tt>null</tt>.
2328       */
2329      public Map.Entry<K,V> ceilingEntry(K key) {
# Line 2134 | Line 2331 | public class ConcurrentSkipListMap<K,V>
2331      }
2332  
2333      /**
2334 +     * Returns least key greater than or equal to the given key, or
2335 +     * <tt>null</tt> if there is no such key.
2336 +     *
2337 +     * @param key the key.
2338 +     * @return the ceiling key, or <tt>null</tt>
2339 +     * if there is no such key.
2340 +     * @throws ClassCastException if key cannot be compared with the keys
2341 +     *            currently in the map.
2342 +     * @throws NullPointerException if key is <tt>null</tt>.
2343 +     */
2344 +    public K ceilingKey(K key) {
2345 +        Node<K,V> n = findNear(key, GT|EQ);
2346 +        return (n == null)? null : n.key;
2347 +    }
2348 +
2349 +    /**
2350       * Returns a key-value mapping associated with the greatest
2351       * key strictly less than the given key, or <tt>null</tt> if there is no
2352       * such entry. The returned entry does <em>not</em> support
2353       * the <tt>Entry.setValue</tt> method.
2354 <     *
2354 >     *
2355       * @param key the key.
2356       * @return an Entry with greatest key less than the given
2357       * key, or <tt>null</tt> if there is no such Entry.
# Line 2151 | Line 2364 | public class ConcurrentSkipListMap<K,V>
2364      }
2365  
2366      /**
2367 <     * Returns a key-value mapping associated with the greatest
2368 <     * key less than or equal to the given key, or <tt>null</tt> if there is no
2369 <     * such entry. The returned entry does <em>not</em> support
2367 >     * Returns the greatest key strictly less than the given key, or
2368 >     * <tt>null</tt> if there is no such key.
2369 >     *
2370 >     * @param key the key.
2371 >     * @return the greatest key less than the given
2372 >     * key, or <tt>null</tt> if there is no such key.
2373 >     * @throws ClassCastException if key cannot be compared with the keys
2374 >     *            currently in the map.
2375 >     * @throws NullPointerException if key is <tt>null</tt>.
2376 >     */
2377 >    public K lowerKey(K key) {
2378 >        Node<K,V> n = findNear(key, LT);
2379 >        return (n == null)? null : n.key;
2380 >    }
2381 >
2382 >    /**
2383 >     * Returns a key-value mapping associated with the greatest key
2384 >     * less than or equal to the given key, or <tt>null</tt> if there
2385 >     * is no such entry. The returned entry does <em>not</em> support
2386       * the <tt>Entry.setValue</tt> method.
2387 <     *
2387 >     *
2388       * @param key the key.
2389       * @return an Entry associated with floor of given key, or <tt>null</tt>
2390       * if there is no such Entry.
# Line 2168 | Line 2397 | public class ConcurrentSkipListMap<K,V>
2397      }
2398  
2399      /**
2400 <     * Returns a key-value mapping associated with the least
2401 <     * key strictly greater than the given key, or <tt>null</tt> if there is no
2402 <     * such entry. The returned entry does <em>not</em> support
2400 >     * Returns the greatest key
2401 >     * less than or equal to the given key, or <tt>null</tt> if there
2402 >     * is no such key.
2403 >     *
2404 >     * @param key the key.
2405 >     * @return the floor of given key, or <tt>null</tt> if there is no
2406 >     * such key.
2407 >     * @throws ClassCastException if key cannot be compared with the keys
2408 >     *            currently in the map.
2409 >     * @throws NullPointerException if key is <tt>null</tt>.
2410 >     */
2411 >    public K floorKey(K key) {
2412 >        Node<K,V> n = findNear(key, LT|EQ);
2413 >        return (n == null)? null : n.key;
2414 >    }
2415 >
2416 >    /**
2417 >     * Returns a key-value mapping associated with the least key
2418 >     * strictly greater than the given key, or <tt>null</tt> if there
2419 >     * is no such entry. The returned entry does <em>not</em> support
2420       * the <tt>Entry.setValue</tt> method.
2421 <     *
2421 >     *
2422       * @param key the key.
2423       * @return an Entry with least key greater than the given key, or
2424       * <tt>null</tt> if there is no such Entry.
# Line 2185 | Line 2431 | public class ConcurrentSkipListMap<K,V>
2431      }
2432  
2433      /**
2434 +     * Returns the least key strictly greater than the given key, or
2435 +     * <tt>null</tt> if there is no such key.
2436 +     *
2437 +     * @param key the key.
2438 +     * @return the least key greater than the given key, or
2439 +     * <tt>null</tt> if there is no such key.
2440 +     * @throws ClassCastException if key cannot be compared with the keys
2441 +     *            currently in the map.
2442 +     * @throws NullPointerException if key is <tt>null</tt>.
2443 +     */
2444 +    public K higherKey(K key) {
2445 +        Node<K,V> n = findNear(key, GT);
2446 +        return (n == null)? null : n.key;
2447 +    }
2448 +
2449 +    /**
2450       * Returns a key-value mapping associated with the least
2451       * key in this map, or <tt>null</tt> if the map is empty.
2452       * The returned entry does <em>not</em> support
2453       * the <tt>Entry.setValue</tt> method.
2454 <     *
2455 <     * @return an Entry with least key, or <tt>null</tt>
2454 >     *
2455 >     * @return an Entry with least key, or <tt>null</tt>
2456       * if the map is empty.
2457       */
2458      public Map.Entry<K,V> firstEntry() {
2459          for (;;) {
2460              Node<K,V> n = findFirst();
2461 <            if (n == null)
2461 >            if (n == null)
2462                  return null;
2463              SnapshotEntry<K,V> e = n.createSnapshot();
2464              if (e != null)
# Line 2209 | Line 2471 | public class ConcurrentSkipListMap<K,V>
2471       * key in this map, or <tt>null</tt> if the map is empty.
2472       * The returned entry does <em>not</em> support
2473       * the <tt>Entry.setValue</tt> method.
2474 <     *
2474 >     *
2475       * @return an Entry with greatest key, or <tt>null</tt>
2476       * if the map is empty.
2477       */
2478      public Map.Entry<K,V> lastEntry() {
2479          for (;;) {
2480              Node<K,V> n = findLast();
2481 <            if (n == null)
2481 >            if (n == null)
2482                  return null;
2483              SnapshotEntry<K,V> e = n.createSnapshot();
2484              if (e != null)
# Line 2229 | Line 2491 | public class ConcurrentSkipListMap<K,V>
2491       * the least key in this map, or <tt>null</tt> if the map is empty.
2492       * The returned entry does <em>not</em> support
2493       * the <tt>Entry.setValue</tt> method.
2494 <     *
2494 >     *
2495       * @return the removed first entry of this map, or <tt>null</tt>
2496       * if the map is empty.
2497       */
2498      public Map.Entry<K,V> pollFirstEntry() {
2499 <        return doRemoveFirstEntry();
2499 >        return (SnapshotEntry<K,V>)doRemoveFirst(false);
2500      }
2501  
2502      /**
# Line 2242 | Line 2504 | public class ConcurrentSkipListMap<K,V>
2504       * the greatest key in this map, or <tt>null</tt> if the map is empty.
2505       * The returned entry does <em>not</em> support
2506       * the <tt>Entry.setValue</tt> method.
2507 <     *
2507 >     *
2508       * @return the removed last entry of this map, or <tt>null</tt>
2509       * if the map is empty.
2510       */
2511      public Map.Entry<K,V> pollLastEntry() {
2512 <        return doRemoveLastEntry();
2512 >        return (SnapshotEntry<K,V>)doRemoveLast(false);
2513      }
2514  
2515 +
2516      /* ---------------- Iterators -------------- */
2517  
2518      /**
2519 <     * Base of iterator classes.
2520 <     * (Six kinds: {key, value, entry} X {map, submap})
2519 >     * Base of ten kinds of iterator classes:
2520 >     *   ascending:  {map, submap} X {key, value, entry}
2521 >     *   descending: {map, submap} X {key, entry}
2522       */
2523 <    abstract class ConcurrentSkipListMapIterator {
2523 >    abstract class Iter {
2524          /** the last node returned by next() */
2525          Node<K,V> last;
2526          /** the next node to return from next(); */
2527          Node<K,V> next;
2528 <        /** Cache of next value field to maintain weak consistency */
2529 <        Object nextValue;
2528 >        /** Cache of next value field to maintain weak consistency */
2529 >        Object nextValue;
2530  
2531 <        /** Create normal iterator for entire range  */
2532 <        ConcurrentSkipListMapIterator() {
2531 >        Iter() {}
2532 >
2533 >        public final boolean hasNext() {
2534 >            return next != null;
2535 >        }
2536 >
2537 >        /** initialize ascending iterator for entire range  */
2538 >        final void initAscending() {
2539              for (;;) {
2540 <                next = findFirst();
2540 >                next = findFirst();
2541                  if (next == null)
2542                      break;
2543                  nextValue = next.value;
# Line 2276 | Line 2546 | public class ConcurrentSkipListMap<K,V>
2546              }
2547          }
2548  
2549 <        /**
2550 <         * Create a submap iterator starting at given least key, or
2551 <         * first node if least is <tt>null</tt>, but not greater or equal to
2552 <         * fence, or end if fence is <tt>null</tt>.
2549 >        /**
2550 >         * initialize ascending iterator starting at given least key,
2551 >         * or first node if least is <tt>null</tt>, but not greater or
2552 >         * equal to fence, or end if fence is <tt>null</tt>.
2553           */
2554 <        ConcurrentSkipListMapIterator(K least, K fence) {
2554 >        final void initAscending(K least, K fence) {
2555              for (;;) {
2556 <                next = findCeiling(least);
2556 >                next = findCeiling(least);
2557                  if (next == null)
2558                      break;
2559                  nextValue = next.value;
# Line 2296 | Line 2566 | public class ConcurrentSkipListMap<K,V>
2566                  }
2567              }
2568          }
2569 +        /** advance next to higher entry */
2570 +        final void ascend() {
2571 +            if ((last = next) == null)
2572 +                throw new NoSuchElementException();
2573 +            for (;;) {
2574 +                next = next.next;
2575 +                if (next == null)
2576 +                    break;
2577 +                nextValue = next.value;
2578 +                if (nextValue != null && nextValue != next)
2579 +                    break;
2580 +            }
2581 +        }
2582  
2583 <        public final boolean hasNext() {
2584 <            return next != null;
2583 >        /**
2584 >         * Version of ascend for submaps to stop at fence
2585 >         */
2586 >        final void ascend(K fence) {
2587 >            if ((last = next) == null)
2588 >                throw new NoSuchElementException();
2589 >            for (;;) {
2590 >                next = next.next;
2591 >                if (next == null)
2592 >                    break;
2593 >                nextValue = next.value;
2594 >                if (nextValue != null && nextValue != next) {
2595 >                    if (fence != null && compare(fence, next.key) <= 0) {
2596 >                        next = null;
2597 >                        nextValue = null;
2598 >                    }
2599 >                    break;
2600 >                }
2601 >            }
2602          }
2603  
2604 <        final void advance() {
2604 >        /** initialize descending iterator for entire range  */
2605 >        final void initDescending() {
2606 >            for (;;) {
2607 >                next = findLast();
2608 >                if (next == null)
2609 >                    break;
2610 >                nextValue = next.value;
2611 >                if (nextValue != null && nextValue != next)
2612 >                    break;
2613 >            }
2614 >        }
2615 >
2616 >        /**
2617 >         * initialize descending iterator starting at key less
2618 >         * than or equal to given fence key, or
2619 >         * last node if fence is <tt>null</tt>, but not less than
2620 >         * least, or beginning if lest is <tt>null</tt>.
2621 >         */
2622 >        final void initDescending(K least, K fence) {
2623 >            for (;;) {
2624 >                next = findLower(fence);
2625 >                if (next == null)
2626 >                    break;
2627 >                nextValue = next.value;
2628 >                if (nextValue != null && nextValue != next) {
2629 >                    if (least != null && compare(least, next.key) > 0) {
2630 >                        next = null;
2631 >                        nextValue = null;
2632 >                    }
2633 >                    break;
2634 >                }
2635 >            }
2636 >        }
2637 >
2638 >        /** advance next to lower entry */
2639 >        final void descend() {
2640              if ((last = next) == null)
2641                  throw new NoSuchElementException();
2642 +            K k = last.key;
2643              for (;;) {
2644 <                next = next.next;
2644 >                next = findNear(k, LT);
2645                  if (next == null)
2646                      break;
2647                  nextValue = next.value;
# Line 2315 | Line 2651 | public class ConcurrentSkipListMap<K,V>
2651          }
2652  
2653          /**
2654 <         * Version of advance for submaps to stop at fence
2654 >         * Version of descend for submaps to stop at least
2655           */
2656 <        final void advance(K fence) {
2656 >        final void descend(K least) {
2657              if ((last = next) == null)
2658                  throw new NoSuchElementException();
2659 +            K k = last.key;
2660              for (;;) {
2661 <                next = next.next;
2661 >                next = findNear(k, LT);
2662                  if (next == null)
2663                      break;
2664                  nextValue = next.value;
2665                  if (nextValue != null && nextValue != next) {
2666 <                    if (fence != null && compare(fence, next.key) <= 0) {
2666 >                    if (least != null && compare(least, next.key) > 0) {
2667                          next = null;
2668                          nextValue = null;
2669                      }
# Line 2343 | Line 2680 | public class ConcurrentSkipListMap<K,V>
2680              // unlink from here. Using remove is fast enough.
2681              ConcurrentSkipListMap.this.remove(l.key);
2682          }
2683 +
2684      }
2685  
2686 <    final class ValueIterator extends ConcurrentSkipListMapIterator
2687 <        implements Iterator<V> {
2688 <        public V next() {
2686 >    final class ValueIterator extends Iter implements Iterator<V> {
2687 >        ValueIterator() {
2688 >            initAscending();
2689 >        }
2690 >        public V next() {
2691              Object v = nextValue;
2692 <            advance();
2692 >            ascend();
2693              return (V)v;
2694          }
2695      }
2696  
2697 <    final class KeyIterator extends ConcurrentSkipListMapIterator
2698 <        implements Iterator<K> {
2699 <        public K next() {
2697 >    final class KeyIterator extends Iter implements Iterator<K> {
2698 >        KeyIterator() {
2699 >            initAscending();
2700 >        }
2701 >        public K next() {
2702              Node<K,V> n = next;
2703 <            advance();
2703 >            ascend();
2704 >            return n.key;
2705 >        }
2706 >    }
2707 >
2708 >    class SubMapValueIterator extends Iter implements Iterator<V> {
2709 >        final K fence;
2710 >        SubMapValueIterator(K least, K fence) {
2711 >            initAscending(least, fence);
2712 >            this.fence = fence;
2713 >        }
2714 >
2715 >        public V next() {
2716 >            Object v = nextValue;
2717 >            ascend(fence);
2718 >            return (V)v;
2719 >        }
2720 >    }
2721 >
2722 >    final class SubMapKeyIterator extends Iter implements Iterator<K> {
2723 >        final K fence;
2724 >        SubMapKeyIterator(K least, K fence) {
2725 >            initAscending(least, fence);
2726 >            this.fence = fence;
2727 >        }
2728 >
2729 >        public K next() {
2730 >            Node<K,V> n = next;
2731 >            ascend(fence);
2732 >            return n.key;
2733 >        }
2734 >    }
2735 >
2736 >    final class DescendingKeyIterator extends Iter implements Iterator<K> {
2737 >        DescendingKeyIterator() {
2738 >            initDescending();
2739 >        }
2740 >        public K next() {
2741 >            Node<K,V> n = next;
2742 >            descend();
2743 >            return n.key;
2744 >        }
2745 >    }
2746 >
2747 >    final class DescendingSubMapKeyIterator extends Iter implements Iterator<K> {
2748 >        final K least;
2749 >        DescendingSubMapKeyIterator(K least, K fence) {
2750 >            initDescending(least, fence);
2751 >            this.least = least;
2752 >        }
2753 >
2754 >        public K next() {
2755 >            Node<K,V> n = next;
2756 >            descend(least);
2757              return n.key;
2758          }
2759      }
# Line 2368 | Line 2763 | public class ConcurrentSkipListMap<K,V>
2763       * elsewhere of using the iterator itself to represent entries,
2764       * thus avoiding having to create entry objects in next().
2765       */
2766 <    class EntryIterator extends ConcurrentSkipListMapIterator
2372 <        implements Map.Entry<K,V>, Iterator<Map.Entry<K,V>>  {
2766 >    abstract class EntryIter extends Iter implements Map.Entry<K,V> {
2767          /** Cache of last value returned */
2768          Object lastValue;
2769  
2770 <        EntryIterator() {
2377 <            super();
2378 <        }
2379 <
2380 <        EntryIterator(K least, K fence) {
2381 <            super(least, fence);
2382 <        }
2383 <
2384 <        public Map.Entry<K,V> next() {
2385 <            lastValue = nextValue;
2386 <            advance();
2387 <            return this;
2770 >        EntryIter() {
2771          }
2772  
2773          public K getKey() {
# Line 2398 | Line 2781 | public class ConcurrentSkipListMap<K,V>
2781              Object v = lastValue;
2782              if (last == null || v == null)
2783                  throw new IllegalStateException();
2784 <            return (V)v;
2784 >            return (V)v;
2785          }
2786  
2787          public V setValue(V value) {
# Line 2427 | Line 2810 | public class ConcurrentSkipListMap<K,V>
2810              // If not acting as entry, just use default.
2811              if (last == null)
2812                  return super.toString();
2813 <            return getKey() + "=" + getValue();
2813 >            return getKey() + "=" + getValue();
2814          }
2815      }
2816  
2817 <    /**
2818 <     * Submap iterators start at given starting point at beginning of
2819 <     * submap range, and advance until they are at end of range.
2820 <     */
2821 <    class SubMapEntryIterator extends EntryIterator {
2817 >    final class EntryIterator extends EntryIter
2818 >        implements Iterator<Map.Entry<K,V>> {
2819 >        EntryIterator() {
2820 >            initAscending();
2821 >        }
2822 >        public Map.Entry<K,V> next() {
2823 >            lastValue = nextValue;
2824 >            ascend();
2825 >            return this;
2826 >        }
2827 >    }
2828 >
2829 >    final class SubMapEntryIterator extends EntryIter
2830 >        implements Iterator<Map.Entry<K,V>> {
2831          final K fence;
2832          SubMapEntryIterator(K least, K fence) {
2833 <            super(least, fence);
2833 >            initAscending(least, fence);
2834              this.fence = fence;
2835          }
2836  
2837 <        public Map.Entry<K,V> next() {
2837 >        public Map.Entry<K,V> next() {
2838              lastValue = nextValue;
2839 <            advance(fence);
2839 >            ascend(fence);
2840              return this;
2841          }
2842      }
2843  
2844 <    class SubMapValueIterator extends ConcurrentSkipListMapIterator
2845 <        implements Iterator<V> {
2846 <        final K fence;
2847 <        SubMapValueIterator(K least, K fence) {
2456 <            super(least, fence);
2457 <            this.fence = fence;
2844 >    final class DescendingEntryIterator extends EntryIter
2845 >        implements Iterator<Map.Entry<K,V>>  {
2846 >        DescendingEntryIterator() {
2847 >            initDescending();
2848          }
2849 <
2850 <        public V next() {
2851 <            Object v = nextValue;
2852 <            advance(fence);
2463 <            return (V)v;
2849 >        public Map.Entry<K,V> next() {
2850 >            lastValue = nextValue;
2851 >            descend();
2852 >            return this;
2853          }
2854      }
2855  
2856 <    class SubMapKeyIterator extends ConcurrentSkipListMapIterator
2857 <        implements Iterator<K> {
2858 <        final K fence;
2859 <        SubMapKeyIterator(K least, K fence) {
2860 <            super(least, fence);
2861 <            this.fence = fence;
2856 >    final class DescendingSubMapEntryIterator extends EntryIter
2857 >        implements Iterator<Map.Entry<K,V>>  {
2858 >        final K least;
2859 >        DescendingSubMapEntryIterator(K least, K fence) {
2860 >            initDescending(least, fence);
2861 >            this.least = least;
2862          }
2863  
2864 <        public K next() {
2865 <            Node<K,V> n = next;
2866 <            advance(fence);
2867 <            return n.key;
2864 >        public Map.Entry<K,V> next() {
2865 >            lastValue = nextValue;
2866 >            descend(least);
2867 >            return this;
2868          }
2869      }
2870  
2482    /* ---------------- Utilities for views, sets, submaps -------------- */
2483    
2871      // Factory methods for iterators needed by submaps and/or
2872      // ConcurrentSkipListSet
2873  
# Line 2488 | Line 2875 | public class ConcurrentSkipListMap<K,V>
2875          return new KeyIterator();
2876      }
2877  
2878 <    SubMapEntryIterator subMapEntryIterator(K least, K fence) {
2879 <        return new SubMapEntryIterator(least, fence);
2493 <    }
2494 <
2495 <    SubMapKeyIterator subMapKeyIterator(K least, K fence) {
2496 <        return new SubMapKeyIterator(least, fence);
2497 <    }
2498 <
2499 <    SubMapValueIterator subMapValueIterator(K least, K fence) {
2500 <        return new SubMapValueIterator(least, fence);
2501 <    }
2502 <
2503 <
2504 <    /**
2505 <     * Version of remove with boolean return. Needed by
2506 <     * view classes and ConcurrentSkipListSet
2507 <     */
2508 <    boolean removep(Object key) {
2509 <        return doRemove(key, null) != null;
2510 <    }
2511 <
2512 <    /**
2513 <     * Return SnapshotEntry for results of findNear ofter screening
2514 <     * to ensure result is in given range. Needed by submaps.
2515 <     * @param kkey the key
2516 <     * @param rel the relation -- OR'ed combination of EQ, LT, GT
2517 <     * @param least minimum allowed key value
2518 <     * @param fence key greater than maximum allowed key value
2519 <     * @return Entry fitting relation, or <tt>null</tt> if no such
2520 <     */
2521 <    SnapshotEntry<K,V> getNear(K kkey, int rel, K least, K fence) {
2522 <        K key = kkey;
2523 <        // Don't return keys less than least
2524 <        if ((rel & LT) == 0) {
2525 <            if (compare(key, least) < 0) {
2526 <                key = least;
2527 <                rel = rel | EQ;
2528 <            }
2529 <        }
2530 <
2531 <        for (;;) {
2532 <            Node<K,V> n = findNear(key, rel);
2533 <            if (n == null || !inHalfOpenRange(n.key, least, fence))
2534 <                return null;
2535 <            SnapshotEntry<K,V> e = n.createSnapshot();
2536 <            if (e != null)
2537 <                return e;
2538 <        }
2539 <    }
2540 <
2541 <    // Methods expanding out relational operations for submaps
2542 <
2543 <    /**
2544 <     * Return ceiling, or first node if key is <tt>null</tt>
2545 <     */
2546 <    Node<K,V> findCeiling(K key) {
2547 <        return (key == null)? findFirst() : findNear(key, GT|EQ);
2548 <    }
2549 <
2550 <    /**
2551 <     * Return lower node, or last node if key is <tt>null</tt>
2552 <     */
2553 <    Node<K,V> findLower(K key) {
2554 <        return (key == null)? findLast() : findNear(key, LT);
2555 <    }
2556 <
2557 <    /**
2558 <     * Find and remove least element of subrange.
2559 <     */
2560 <    SnapshotEntry<K,V> removeFirstEntryOfSubrange(K least, K fence) {
2561 <        for (;;) {
2562 <            Node<K,V> n = findCeiling(least);
2563 <            if (n == null)
2564 <                return null;
2565 <            K k = n.key;
2566 <            if (fence != null && compare(k, fence) >= 0)
2567 <                return null;
2568 <            V v = doRemove(k, null);
2569 <            if (v != null)
2570 <                return new SnapshotEntry<K,V>(k,v);
2571 <        }
2572 <    }
2573 <
2574 <
2575 <    /**
2576 <     * Find and remove greatest element of subrange.
2577 <     */
2578 <    SnapshotEntry<K,V> removeLastEntryOfSubrange(K least, K fence) {
2579 <        for (;;) {
2580 <            Node<K,V> n = findLower(fence);
2581 <            if (n == null)
2582 <                return null;
2583 <            K k = n.key;
2584 <            if (least != null && compare(k, least) < 0)
2585 <                return null;
2586 <            V v = doRemove(k, null);
2587 <            if (v != null)
2588 <                return new SnapshotEntry<K,V>(k,v);
2589 <        }
2590 <    }
2591 <
2592 <
2593 <    SnapshotEntry<K,V> getCeiling(K key, K least, K fence) {
2594 <        return getNear(key, GT|EQ, least, fence);
2595 <    }
2596 <
2597 <    SnapshotEntry<K,V> getLower(K key, K least, K fence) {
2598 <        return getNear(key, LT, least, fence);
2599 <    }
2600 <
2601 <    SnapshotEntry<K,V> getFloor(K key, K least, K fence) {
2602 <        return getNear(key, LT|EQ, least, fence);
2878 >    Iterator<K> descendingKeyIterator() {
2879 >        return new DescendingKeyIterator();
2880      }
2881  
2882 <    SnapshotEntry<K,V> getHigher(K key, K least, K fence) {
2883 <        return getNear(key, GT, least, fence);
2607 <    }
2608 <
2609 <    // Key-returning relational methods for ConcurrentSkipListSet
2610 <
2611 <    K ceilingKey(K key) {
2612 <        Node<K,V> n = findNear(key, GT|EQ);
2613 <        return (n == null)? null : n.key;
2882 >    SubMapEntryIterator subMapEntryIterator(K least, K fence) {
2883 >        return new SubMapEntryIterator(least, fence);
2884      }
2885  
2886 <    K lowerKey(K key) {
2887 <        Node<K,V> n = findNear(key, LT);
2618 <        return (n == null)? null : n.key;
2886 >    DescendingSubMapEntryIterator descendingSubMapEntryIterator(K least, K fence) {
2887 >        return new DescendingSubMapEntryIterator(least, fence);
2888      }
2889  
2890 <    K floorKey(K key) {
2891 <        Node<K,V> n = findNear(key, LT|EQ);
2623 <        return (n == null)? null : n.key;
2624 <    }
2625 <
2626 <    K higherKey(K key) {
2627 <        Node<K,V> n = findNear(key, GT);
2628 <        return (n == null)? null : n.key;
2890 >    SubMapKeyIterator subMapKeyIterator(K least, K fence) {
2891 >        return new SubMapKeyIterator(least, fence);
2892      }
2893  
2894 <    K lowestKey() {
2895 <        Node<K,V> n = findFirst();
2633 <        return (n == null)? null : n.key;
2894 >    DescendingSubMapKeyIterator descendingSubMapKeyIterator(K least, K fence) {
2895 >        return new DescendingSubMapKeyIterator(least, fence);
2896      }
2897  
2898 <    K highestKey() {
2899 <        Node<K,V> n = findLast();
2638 <        return (n == null)? null : n.key;
2898 >    SubMapValueIterator subMapValueIterator(K least, K fence) {
2899 >        return new SubMapValueIterator(least, fence);
2900      }
2901  
2902      /* ---------------- Views -------------- */
2903  
2904 <    final class KeySet extends AbstractSet<K> {
2904 >    class KeySet extends AbstractSet<K> {
2905          public Iterator<K> iterator() {
2906              return new KeyIterator();
2907          }
# Line 2673 | Line 2934 | public class ConcurrentSkipListMap<K,V>
2934          }
2935      }
2936  
2937 +    class DescendingKeySet extends KeySet {
2938 +        public Iterator<K> iterator() {
2939 +            return new DescendingKeyIterator();
2940 +        }
2941 +    }
2942  
2943      final class Values extends AbstractCollection<V> {
2944          public Iterator<V> iterator() {
# Line 2704 | Line 2970 | public class ConcurrentSkipListMap<K,V>
2970          }
2971      }
2972  
2973 <    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
2973 >    class EntrySet extends AbstractSet<Map.Entry<K,V>> {
2974          public Iterator<Map.Entry<K,V>> iterator() {
2975              return new EntryIterator();
2976          }
# Line 2719 | Line 2985 | public class ConcurrentSkipListMap<K,V>
2985              if (!(o instanceof Map.Entry))
2986                  return false;
2987              Map.Entry<K,V> e = (Map.Entry<K,V>)o;
2988 <            return ConcurrentSkipListMap.this.remove(e.getKey(), e.getValue());
2988 >            return ConcurrentSkipListMap.this.remove(e.getKey(),
2989 >                                                     e.getValue());
2990          }
2991          public boolean isEmpty() {
2992              return ConcurrentSkipListMap.this.isEmpty();
# Line 2733 | Line 3000 | public class ConcurrentSkipListMap<K,V>
3000  
3001          public Object[] toArray() {
3002              Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
3003 <            for (Node<K,V> n = findFirst(); n != null; n = n.next) {
3004 <                Map.Entry<K,V> e = n.createSnapshot();
2738 <                if (e != null)
2739 <                    c.add(e);
2740 <            }
3003 >            for (Map.Entry e : this)
3004 >                c.add(new SnapshotEntry(e.getKey(), e.getValue()));
3005              return c.toArray();
3006          }
3007          public <T> T[] toArray(T[] a) {
3008              Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
3009 <            for (Node<K,V> n = findFirst(); n != null; n = n.next) {
3010 <                Map.Entry<K,V> e = n.createSnapshot();
2747 <                if (e != null)
2748 <                    c.add(e);
2749 <            }
3009 >            for (Map.Entry e : this)
3010 >                c.add(new SnapshotEntry(e.getKey(), e.getValue()));
3011              return c.toArray(a);
3012          }
3013      }
3014  
3015 +    class DescendingEntrySet extends EntrySet {
3016 +        public Iterator<Map.Entry<K,V>> iterator() {
3017 +            return new DescendingEntryIterator();
3018 +        }
3019 +    }
3020 +
3021      /**
3022       * Submaps returned by {@link ConcurrentSkipListMap} submap operations
3023       * represent a subrange of mappings of their underlying
# Line 2769 | Line 3036 | public class ConcurrentSkipListMap<K,V>
3036          /** Underlying map */
3037          private final ConcurrentSkipListMap<K,V> m;
3038          /** lower bound key, or null if from start */
3039 <        private final K least;
3039 >        private final K least;
3040          /** upper fence key, or null if to end */
3041 <        private final K fence;  
3041 >        private final K fence;
3042          // Lazily initialized view holders
3043          private transient Set<K> keySetView;
3044          private transient Set<Map.Entry<K,V>> entrySetView;
3045          private transient Collection<V> valuesView;
3046 +        private transient Set<K> descendingKeySetView;
3047 +        private transient Set<Map.Entry<K,V>> descendingEntrySetView;
3048  
3049          /**
3050 <         * Creates a new submap.
3050 >         * Creates a new submap.
3051           * @param least inclusive least value, or <tt>null</tt> if from start
3052           * @param fence exclusive upper bound or <tt>null</tt> if to end
3053 <         * @throws IllegalArgumentException if least and fence nonnull
3053 >         * @throws IllegalArgumentException if least and fence non-null
3054           *  and least greater than fence
3055           */
3056 <        ConcurrentSkipListSubMap(ConcurrentSkipListMap<K,V> map,
3056 >        ConcurrentSkipListSubMap(ConcurrentSkipListMap<K,V> map,
3057                                   K least, K fence) {
3058 <            if (least != null && fence != null && map.compare(least, fence) > 0)
3058 >            if (least != null &&
3059 >                fence != null &&
3060 >                map.compare(least, fence) > 0)
3061                  throw new IllegalArgumentException("inconsistent range");
3062              this.m = map;
3063              this.least = least;
# Line 2812 | Line 3083 | public class ConcurrentSkipListMap<K,V>
3083          }
3084  
3085          boolean isBeforeEnd(ConcurrentSkipListMap.Node<K,V> n) {
3086 <            return (n != null &&
3087 <                    (fence == null ||
3086 >            return (n != null &&
3087 >                    (fence == null ||
3088                       n.key == null || // pass by markers and headers
3089                       m.compare(fence, n.key) > 0));
3090          }
# Line 2847 | Line 3118 | public class ConcurrentSkipListMap<K,V>
3118              return fence;
3119          }
3120  
2850        /**
2851         * Non-exception throwing version of firstKey needed by
2852         * ConcurrentSkipListSubSet
2853         * @return first key, or <tt>null</tt> if empty
2854         */
2855        K lowestKey() {
2856            ConcurrentSkipListMap.Node<K,V> n = firstNode();
2857            if (isBeforeEnd(n))
2858                return n.key;
2859            else
2860                return null;
2861        }
2862
2863        /**
2864         * Non-exception throwing version of highestKey needed by
2865         * ConcurrentSkipListSubSet
2866         * @return last key, or <tt>null</tt> if empty
2867         */
2868        K highestKey() {
2869            ConcurrentSkipListMap.Node<K,V> n = lastNode();
2870            if (isBeforeEnd(n))
2871                return n.key;
2872            else
2873                return null;
2874        }
3121  
3122          /* ----------------  Map API methods -------------- */
3123  
2878        /**
2879         * Returns <tt>true</tt> if this map contains a mapping for
2880         * the specified key.
2881         * @param key key whose presence in this map is to be tested.
2882         * @return <tt>true</tt> if this map contains a mapping for
2883         * the specified key.
2884         * @throws ClassCastException if the key cannot be compared
2885         * with the keys currently in the map.
2886         * @throws NullPointerException if the key is <tt>null</tt>.
2887         */
3124          public boolean containsKey(Object key) {
3125              K k = (K)key;
3126              return inHalfOpenRange(k) && m.containsKey(k);
3127          }
3128  
2893        /**
2894         * Returns the value to which this map maps the specified key.
2895         * Returns <tt>null</tt> if the map contains no mapping for
2896         * this key.
2897         *
2898         * @param key key whose associated value is to be returned.
2899         * @return the value to which this map maps the specified key,
2900         * or <tt>null</tt> if the map contains no mapping for the
2901         * key.
2902         * @throws ClassCastException if the key cannot be compared
2903         * with the keys currently in the map.
2904         * @throws NullPointerException if the key is <tt>null</tt>.
2905         */
3129          public V get(Object key) {
3130              K k = (K)key;
3131              return ((!inHalfOpenRange(k)) ? null : m.get(k));
3132          }
3133  
2911        /**
2912         * Associates the specified value with the specified key in
2913         * this map.  If the map previously contained a mapping for
2914         * this key, the old value is replaced.
2915         *
2916         * @param key key with which the specified value is to be associated.
2917         * @param value value to be associated with the specified key.
2918         *
2919         * @return previous value associated with specified key, or
2920         * <tt>null</tt> if there was no mapping for key.
2921         * @throws ClassCastException if the key cannot be compared
2922         * with the keys currently in the map.
2923         * @throws IllegalArgumentException if key outside range of
2924         * this submap.
2925         * @throws NullPointerException if the key or value are <tt>null</tt>.
2926         */
3134          public V put(K key, V value) {
3135              checkKey(key);
3136              return m.put(key, value);
3137          }
3138  
2932        /**
2933         * Removes the mapping for this key from this Map if present.
2934         *
2935         * @param key key for which mapping should be removed
2936         * @return previous value associated with specified key, or
2937         * <tt>null</tt> if there was no mapping for key.
2938         *
2939         * @throws ClassCastException if the key cannot be compared
2940         * with the keys currently in the map.
2941         * @throws NullPointerException if the key is <tt>null</tt>.
2942         */
3139          public V remove(Object key) {
3140              K k = (K)key;
3141              return (!inHalfOpenRange(k))? null : m.remove(k);
3142          }
3143  
2948        /**
2949         * Returns the number of elements in this map.  If this map
2950         * contains more than <tt>Integer.MAX_VALUE</tt> elements, it
2951         * returns <tt>Integer.MAX_VALUE</tt>.
2952         *
2953         * <p>Beware that, unlike in most collections, this method is
2954         * <em>NOT</em> a constant-time operation. Because of the
2955         * asynchronous nature of these maps, determining the current
2956         * number of elements requires traversing them all to count them.
2957         * Additionally, it is possible for the size to change during
2958         * execution of this method, in which case the returned result
2959         * will be inaccurate. Thus, this method is typically not very
2960         * useful in concurrent applications.
2961         *
2962         * @return  the number of elements in this map.
2963         */
3144          public int size() {
3145              long count = 0;
3146 <            for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
3147 <                 isBeforeEnd(n);
3146 >            for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
3147 >                 isBeforeEnd(n);
3148                   n = n.next) {
3149                  if (n.getValidValue() != null)
3150                      ++count;
# Line 2972 | Line 3152 | public class ConcurrentSkipListMap<K,V>
3152              return count >= Integer.MAX_VALUE? Integer.MAX_VALUE : (int)count;
3153          }
3154  
2975        /**
2976         * Returns <tt>true</tt> if this map contains no key-value mappings.
2977         * @return <tt>true</tt> if this map contains no key-value mappings.
2978         */
3155          public boolean isEmpty() {
3156              return !isBeforeEnd(firstNode());
3157          }
3158  
2983        /**
2984         * Returns <tt>true</tt> if this map maps one or more keys to the
2985         * specified value.  This operation requires time linear in the
2986         * Map size.
2987         *
2988         * @param value value whose presence in this Map is to be tested.
2989         * @return  <tt>true</tt> if a mapping to <tt>value</tt> exists;
2990         *              <tt>false</tt> otherwise.
2991         * @throws  NullPointerException  if the value is <tt>null</tt>.
2992         */    
3159          public boolean containsValue(Object value) {
3160 <            if (value == null)
3160 >            if (value == null)
3161                  throw new NullPointerException();
3162 <            for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
3163 <                 isBeforeEnd(n);
3162 >            for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
3163 >                 isBeforeEnd(n);
3164                   n = n.next) {
3165                  V v = n.getValidValue();
3166                  if (v != null && value.equals(v))
# Line 3003 | Line 3169 | public class ConcurrentSkipListMap<K,V>
3169              return false;
3170          }
3171  
3006        /**
3007         * Removes all mappings from this map.
3008         */
3172          public void clear() {
3173 <            for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
3174 <                 isBeforeEnd(n);
3173 >            for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
3174 >                 isBeforeEnd(n);
3175                   n = n.next) {
3176                  if (n.getValidValue() != null)
3177                      m.remove(n.key);
# Line 3017 | Line 3180 | public class ConcurrentSkipListMap<K,V>
3180  
3181          /* ----------------  ConcurrentMap API methods -------------- */
3182  
3020        /**
3021         * If the specified key is not already associated
3022         * with a value, associate it with the given value.
3023         * This is equivalent to
3024         * <pre>
3025         *   if (!map.containsKey(key))
3026         *      return map.put(key, value);
3027         *   else
3028         *      return map.get(key);
3029         * </pre>
3030         * Except that the action is performed atomically.
3031         * @param key key with which the specified value is to be associated.
3032         * @param value value to be associated with the specified key.
3033         * @return previous value associated with specified key, or
3034         * <tt>null</tt> if there was no mapping for key.
3035         *
3036         * @throws ClassCastException if the key cannot be compared
3037         * with the keys currently in the map.
3038         * @throws IllegalArgumentException if key outside range of
3039         * this submap.
3040         * @throws NullPointerException if the key or value are <tt>null</tt>.
3041         */
3183          public V putIfAbsent(K key, V value) {
3184              checkKey(key);
3185              return m.putIfAbsent(key, value);
3186          }
3187  
3047        /**
3048         * Remove entry for key only if currently mapped to given value.
3049         * Acts as
3050         * <pre>
3051         *  if ((map.containsKey(key) && map.get(key).equals(value)) {
3052         *     map.remove(key);
3053         *     return true;
3054         * } else return false;
3055         * </pre>
3056         * except that the action is performed atomically.
3057         * @param key key with which the specified value is associated.
3058         * @param value value associated with the specified key.
3059         * @return true if the value was removed, false otherwise
3060         * @throws ClassCastException if the key cannot be compared
3061         * with the keys currently in the map.
3062         * @throws NullPointerException if the key or value are
3063         * <tt>null</tt>.
3064         */
3188          public boolean remove(Object key, Object value) {
3189              K k = (K)key;
3190              return inHalfOpenRange(k) && m.remove(k, value);
3191          }
3192  
3070        /**
3071         * Replace entry for key only if currently mapped to given value.
3072         * Acts as
3073         * <pre>
3074         *  if ((map.containsKey(key) && map.get(key).equals(oldValue)) {
3075         *     map.put(key, newValue);
3076         *     return true;
3077         * } else return false;
3078         * </pre>
3079         * except that the action is performed atomically.
3080         * @param key key with which the specified value is associated.
3081         * @param oldValue value expected to be associated with the specified key.
3082         * @param newValue value to be associated with the specified key.
3083         * @return true if the value was replaced
3084         * @throws ClassCastException if the key cannot be compared
3085         * with the keys currently in the map.
3086         * @throws IllegalArgumentException if key outside range of
3087         * this submap.
3088         * @throws NullPointerException if key, oldValue or newValue
3089         * are <tt>null</tt>.
3090         */
3193          public boolean replace(K key, V oldValue, V newValue) {
3194              checkKey(key);
3195              return m.replace(key, oldValue, newValue);
3196          }
3197  
3096        /**
3097         * Replace entry for key only if currently mapped to some value.
3098         * Acts as
3099         * <pre>
3100         *  if ((map.containsKey(key)) {
3101         *     return map.put(key, value);
3102         * } else return null;
3103         * </pre>
3104         * except that the action is performed atomically.
3105         * @param key key with which the specified value is associated.
3106         * @param value value to be associated with the specified key.
3107         * @return previous value associated with specified key, or
3108         * <tt>null</tt> if there was no mapping for key.
3109         * @throws ClassCastException if the key cannot be compared
3110         * with the keys currently in the map.
3111         * @throws IllegalArgumentException if key outside range of
3112         * this submap.
3113         * @throws NullPointerException if the key or value are
3114         * <tt>null</tt>.
3115         */
3198          public V replace(K key, V value) {
3199              checkKey(key);
3200              return m.replace(key, value);
# Line 3120 | Line 3202 | public class ConcurrentSkipListMap<K,V>
3202  
3203          /* ----------------  SortedMap API methods -------------- */
3204  
3123        /**
3124         * Returns the comparator used to order this map, or <tt>null</tt>
3125         * if this map uses its keys' natural order.
3126         *
3127         * @return the comparator associated with this map, or
3128         * <tt>null</tt> if it uses its keys' natural sort method.
3129         */
3205          public Comparator<? super K> comparator() {
3206              return m.comparator();
3207          }
3208  
3134        /**
3135         * Returns the first (lowest) key currently in this map.
3136         *
3137         * @return the first (lowest) key currently in this map.
3138         * @throws    NoSuchElementException Map is empty.
3139         */
3209          public K firstKey() {
3210              ConcurrentSkipListMap.Node<K,V> n = firstNode();
3211              if (isBeforeEnd(n))
# Line 3145 | Line 3214 | public class ConcurrentSkipListMap<K,V>
3214                  throw new NoSuchElementException();
3215          }
3216  
3148        /**
3149         * Returns the last (highest) key currently in this map.
3150         *
3151         * @return the last (highest) key currently in this map.
3152         * @throws    NoSuchElementException Map is empty.
3153         */
3217          public K lastKey() {
3218              ConcurrentSkipListMap.Node<K,V> n = lastNode();
3219              if (n != null) {
# Line 3161 | Line 3224 | public class ConcurrentSkipListMap<K,V>
3224              throw new NoSuchElementException();
3225          }
3226  
3164        /**
3165         * Returns a view of the portion of this map whose keys range
3166         * from <tt>fromKey</tt>, inclusive, to <tt>toKey</tt>,
3167         * exclusive.  (If <tt>fromKey</tt> and <tt>toKey</tt> are
3168         * equal, the returned sorted map is empty.)  The returned
3169         * sorted map is backed by this map, so changes in the
3170         * returned sorted map are reflected in this map, and
3171         * vice-versa.
3172
3173         * @param fromKey low endpoint (inclusive) of the subMap.
3174         * @param toKey high endpoint (exclusive) of the subMap.
3175         *
3176         * @return a view of the portion of this map whose keys range
3177         * from <tt>fromKey</tt>, inclusive, to <tt>toKey</tt>,
3178         * exclusive.
3179         *
3180         * @throws ClassCastException if <tt>fromKey</tt> and
3181         * <tt>toKey</tt> cannot be compared to one another using this
3182         * map's comparator (or, if the map has no comparator, using
3183         * natural ordering).
3184         * @throws IllegalArgumentException if <tt>fromKey</tt> is
3185         * greater than <tt>toKey</tt> or either key is outside of
3186         * the range of this submap.
3187         * @throws NullPointerException if <tt>fromKey</tt> or
3188         * <tt>toKey</tt> is <tt>null</tt>.
3189         */
3227          public ConcurrentNavigableMap<K,V> subMap(K fromKey, K toKey) {
3228              if (fromKey == null || toKey == null)
3229                  throw new NullPointerException();
# Line 3195 | Line 3232 | public class ConcurrentSkipListMap<K,V>
3232              return new ConcurrentSkipListSubMap(m, fromKey, toKey);
3233          }
3234  
3198        /**
3199         * Returns a view of the portion of this map whose keys are
3200         * strictly less than <tt>toKey</tt>.  The returned sorted map
3201         * is backed by this map, so changes in the returned sorted
3202         * map are reflected in this map, and vice-versa.
3203         * @param toKey high endpoint (exclusive) of the headMap.
3204         * @return a view of the portion of this map whose keys are
3205         * strictly less than <tt>toKey</tt>.
3206         *
3207         * @throws ClassCastException if <tt>toKey</tt> is not
3208         * compatible with this map's comparator (or, if the map has
3209         * no comparator, if <tt>toKey</tt> does not implement
3210         * <tt>Comparable</tt>).
3211         * @throws IllegalArgumentException if <tt>toKey</tt> is
3212         * outside of the range of this submap.
3213         * @throws NullPointerException if <tt>toKey</tt> is
3214         * <tt>null</tt>.
3215         */
3235          public ConcurrentNavigableMap<K,V> headMap(K toKey) {
3236              if (toKey == null)
3237                  throw new NullPointerException();
# Line 3221 | Line 3240 | public class ConcurrentSkipListMap<K,V>
3240              return new ConcurrentSkipListSubMap(m, least, toKey);
3241          }
3242  
3224        /**
3225         * Returns a view of the portion of this map whose keys are
3226         * greater than or equal to <tt>fromKey</tt>.  The returned sorted
3227         * map is backed by this map, so changes in the returned sorted
3228         * map are reflected in this map, and vice-versa.
3229         * @param fromKey low endpoint (inclusive) of the tailMap.
3230         * @return a view of the portion of this map whose keys are
3231         * greater than or equal to <tt>fromKey</tt>.
3232         * @throws ClassCastException if <tt>fromKey</tt> is not
3233         * compatible with this map's comparator (or, if the map has
3234         * no comparator, if <tt>fromKey</tt> does not implement
3235         * <tt>Comparable</tt>).
3236         * @throws IllegalArgumentException if <tt>fromKey</tt> is
3237         * outside of the range of this submap.
3238         * @throws NullPointerException if <tt>fromKey</tt> is
3239         * <tt>null</tt>.
3240         */
3243          public  ConcurrentNavigableMap<K,V> tailMap(K fromKey) {
3244              if (fromKey == null)
3245                  throw new NullPointerException();
# Line 3248 | Line 3250 | public class ConcurrentSkipListMap<K,V>
3250  
3251          /* ----------------  Relational methods -------------- */
3252  
3251        /**
3252         * Returns a key-value mapping associated with the least key
3253         * greater than or equal to the given key, or <tt>null</tt> if there is
3254         * no such entry. The returned entry does <em>not</em> support
3255         * the <tt>Entry.setValue</tt> method.
3256         *
3257         * @param key the key.
3258         * @return an Entry associated with ceiling of given key, or <tt>null</tt>
3259         * if there is no such Entry.
3260         * @throws ClassCastException if key cannot be compared with the keys
3261         *            currently in the map.
3262         * @throws NullPointerException if key is <tt>null</tt>.
3263         */
3253          public Map.Entry<K,V> ceilingEntry(K key) {
3254 <            return m.getCeiling(key, least, fence);
3254 >            return (SnapshotEntry<K,V>)
3255 >                m.getNear(key, m.GT|m.EQ, least, fence, false);
3256 >        }
3257 >
3258 >        public K ceilingKey(K key) {
3259 >            return (K)
3260 >                m.getNear(key, m.GT|m.EQ, least, fence, true);
3261          }
3262  
3268        /**
3269         * Returns a key-value mapping associated with the greatest
3270         * key strictly less than the given key, or <tt>null</tt> if there is no
3271         * such entry. The returned entry does <em>not</em> support
3272         * the <tt>Entry.setValue</tt> method.
3273         *
3274         * @param key the key.
3275         * @return an Entry with greatest key less than the given
3276         * key, or <tt>null</tt> if there is no such Entry.
3277         * @throws ClassCastException if key cannot be compared with the keys
3278         *            currently in the map.
3279         * @throws NullPointerException if key is <tt>null</tt>.
3280         */
3263          public Map.Entry<K,V> lowerEntry(K key) {
3264 <            return m.getLower(key, least, fence);
3264 >            return (SnapshotEntry<K,V>)
3265 >                m.getNear(key, m.LT, least, fence, false);
3266 >        }
3267 >
3268 >        public K lowerKey(K key) {
3269 >            return (K)
3270 >                m.getNear(key, m.LT, least, fence, true);
3271          }
3272  
3285        /**
3286         * Returns a key-value mapping associated with the greatest
3287         * key less than or equal to the given key, or <tt>null</tt> if there is no
3288         * such entry. The returned entry does <em>not</em> support
3289         * the <tt>Entry.setValue</tt> method.
3290         *
3291         * @param key the key.
3292         * @return an Entry associated with floor of given key, or <tt>null</tt>
3293         * if there is no such Entry.
3294         * @throws ClassCastException if key cannot be compared with the keys
3295         *            currently in the map.
3296         * @throws NullPointerException if key is <tt>null</tt>.
3297         */
3273          public Map.Entry<K,V> floorEntry(K key) {
3274 <            return m.getFloor(key, least, fence);
3274 >            return (SnapshotEntry<K,V>)
3275 >                m.getNear(key, m.LT|m.EQ, least, fence, false);
3276          }
3277 <        
3278 <        /**
3279 <         * Returns a key-value mapping associated with the least
3280 <         * key strictly greater than the given key, or <tt>null</tt> if there is no
3281 <         * such entry. The returned entry does <em>not</em> support
3282 <         * the <tt>Entry.setValue</tt> method.
3283 <         *
3308 <         * @param key the key.
3309 <         * @return an Entry with least key greater than the given key, or
3310 <         * <tt>null</tt> if there is no such Entry.
3311 <         * @throws ClassCastException if key cannot be compared with the keys
3312 <         *            currently in the map.
3313 <         * @throws NullPointerException if key is <tt>null</tt>.
3314 <         */
3277 >
3278 >        public K floorKey(K key) {
3279 >            return (K)
3280 >                m.getNear(key, m.LT|m.EQ, least, fence, true);
3281 >        }
3282 >
3283 >
3284          public Map.Entry<K,V> higherEntry(K key) {
3285 <            return m.getHigher(key, least, fence);
3285 >            return (SnapshotEntry<K,V>)
3286 >                m.getNear(key, m.GT, least, fence, false);
3287 >        }
3288 >
3289 >        public K higherKey(K key) {
3290 >            return (K)
3291 >                m.getNear(key, m.GT, least, fence, true);
3292          }
3293  
3319        /**
3320         * Returns a key-value mapping associated with the least
3321         * key in this map, or <tt>null</tt> if the map is empty.
3322         * The returned entry does <em>not</em> support
3323         * the <tt>Entry.setValue</tt> method.
3324         *
3325         * @return an Entry with least key, or <tt>null</tt>
3326         * if the map is empty.
3327         */
3294          public Map.Entry<K,V> firstEntry() {
3295              for (;;) {
3296                  ConcurrentSkipListMap.Node<K,V> n = firstNode();
3297 <                if (!isBeforeEnd(n))
3297 >                if (!isBeforeEnd(n))
3298                      return null;
3299                  Map.Entry<K,V> e = n.createSnapshot();
3300                  if (e != null)
# Line 3336 | Line 3302 | public class ConcurrentSkipListMap<K,V>
3302              }
3303          }
3304  
3339        /**
3340         * Returns a key-value mapping associated with the greatest
3341         * key in this map, or <tt>null</tt> if the map is empty.
3342         * The returned entry does <em>not</em> support
3343         * the <tt>Entry.setValue</tt> method.
3344         *
3345         * @return an Entry with greatest key, or <tt>null</tt>
3346         * if the map is empty.
3347         */
3305          public Map.Entry<K,V> lastEntry() {
3306              for (;;) {
3307                  ConcurrentSkipListMap.Node<K,V> n = lastNode();
# Line 3356 | Line 3313 | public class ConcurrentSkipListMap<K,V>
3313              }
3314          }
3315  
3359        /**
3360         * Removes and returns a key-value mapping associated with
3361         * the least key in this map, or <tt>null</tt> if the map is empty.
3362         * The returned entry does <em>not</em> support
3363         * the <tt>Entry.setValue</tt> method.
3364         *
3365         * @return the removed first entry of this map, or <tt>null</tt>
3366         * if the map is empty.
3367         */
3316          public Map.Entry<K,V> pollFirstEntry() {
3317 <            return m.removeFirstEntryOfSubrange(least, fence);
3317 >            return (SnapshotEntry<K,V>)
3318 >                m.removeFirstEntryOfSubrange(least, fence, false);
3319          }
3320  
3372        /**
3373         * Removes and returns a key-value mapping associated with
3374         * the greatest key in this map, or <tt>null</tt> if the map is empty.
3375         * The returned entry does <em>not</em> support
3376         * the <tt>Entry.setValue</tt> method.
3377         *
3378         * @return the removed last entry of this map, or <tt>null</tt>
3379         * if the map is empty.
3380         */
3321          public Map.Entry<K,V> pollLastEntry() {
3322 <            return m.removeLastEntryOfSubrange(least, fence);
3322 >            return (SnapshotEntry<K,V>)
3323 >                m.removeLastEntryOfSubrange(least, fence, false);
3324          }
3325  
3326          /* ---------------- Submap Views -------------- */
3327  
3387        /**
3388         * Returns a set view of the keys contained in this map.  The
3389         * set is backed by the map, so changes to the map are
3390         * reflected in the set, and vice-versa.  The set supports
3391         * element removal, which removes the corresponding mapping
3392         * from this map, via the <tt>Iterator.remove</tt>,
3393         * <tt>Set.remove</tt>, <tt>removeAll</tt>,
3394         * <tt>retainAll</tt>, and <tt>clear</tt> operations.  It does
3395         * not support the <tt>add</tt> or <tt>addAll</tt> operations.
3396         * The view's <tt>iterator</tt> is a "weakly consistent"
3397         * iterator that will never throw {@link
3398         * java.util.ConcurrentModificationException}, and guarantees
3399         * to traverse elements as they existed upon construction of
3400         * the iterator, and may (but is not guaranteed to) reflect
3401         * any modifications subsequent to construction.
3402         *
3403         * @return a set view of the keys contained in this map.
3404         */
3328          public Set<K> keySet() {
3329              Set<K> ks = keySetView;
3330              return (ks != null) ? ks : (keySetView = new KeySetView());
# Line 3434 | Line 3357 | public class ConcurrentSkipListMap<K,V>
3357              }
3358          }
3359  
3360 <        /**
3361 <         * Returns a collection view of the values contained in this
3362 <         * map.  The collection is backed by the map, so changes to
3363 <         * the map are reflected in the collection, and vice-versa.
3364 <         * The collection supports element removal, which removes the
3365 <         * corresponding mapping from this map, via the
3366 <         * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
3367 <         * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
3368 <         * operations.  It does not support the <tt>add</tt> or
3369 <         * <tt>addAll</tt> operations.  The view's <tt>iterator</tt>
3370 <         * is a "weakly consistent" iterator that will never throw
3448 <         * {@link java.util.ConcurrentModificationException}, and
3449 <         * guarantees to traverse elements as they existed upon
3450 <         * construction of the iterator, and may (but is not
3451 <         * guaranteed to) reflect any modifications subsequent to
3452 <         * construction.
3453 <         *
3454 <         * @return a collection view of the values contained in this map.
3455 <         */
3360 >        public Set<K> descendingKeySet() {
3361 >            Set<K> ks = descendingKeySetView;
3362 >            return (ks != null) ? ks : (descendingKeySetView = new DescendingKeySetView());
3363 >        }
3364 >
3365 >        class DescendingKeySetView extends KeySetView {
3366 >            public Iterator<K> iterator() {
3367 >                return m.descendingSubMapKeyIterator(least, fence);
3368 >            }
3369 >        }
3370 >
3371          public Collection<V> values() {
3372              Collection<V> vs = valuesView;
3373              return (vs != null) ? vs : (valuesView = new ValuesView());
# Line 3485 | Line 3400 | public class ConcurrentSkipListMap<K,V>
3400              }
3401          }
3402  
3488        /**
3489         * Returns a collection view of the mappings contained in this
3490         * map.  Each element in the returned collection is a
3491         * <tt>Map.Entry</tt>.  The collection is backed by the map,
3492         * so changes to the map are reflected in the collection, and
3493         * vice-versa.  The collection supports element removal, which
3494         * removes the corresponding mapping from the map, via the
3495         * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
3496         * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
3497         * operations.  It does not support the <tt>add</tt> or
3498         * <tt>addAll</tt> operations.  The view's <tt>iterator</tt>
3499         * is a "weakly consistent" iterator that will never throw
3500         * {@link java.util.ConcurrentModificationException}, and
3501         * guarantees to traverse elements as they existed upon
3502         * construction of the iterator, and may (but is not
3503         * guaranteed to) reflect any modifications subsequent to
3504         * construction. The <tt>Map.Entry</tt> elements returned by
3505         * <tt>iterator.next()</tt> do <em>not</em> support the
3506         * <tt>setValue</tt> operation.
3507         *
3508         * @return a collection view of the mappings contained in this map.
3509         */
3403          public Set<Map.Entry<K,V>> entrySet() {
3404              Set<Map.Entry<K,V>> es = entrySetView;
3405              return (es != null) ? es : (entrySetView = new EntrySetView());
# Line 3543 | Line 3436 | public class ConcurrentSkipListMap<K,V>
3436              }
3437              public Object[] toArray() {
3438                  Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
3439 <                for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
3440 <                     isBeforeEnd(n);
3548 <                     n = n.next) {
3549 <                    Map.Entry<K,V> e = n.createSnapshot();
3550 <                    if (e != null)
3551 <                        c.add(e);
3552 <                }
3439 >                for (Map.Entry e : this)
3440 >                    c.add(new SnapshotEntry(e.getKey(), e.getValue()));
3441                  return c.toArray();
3442              }
3443              public <T> T[] toArray(T[] a) {
3444                  Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
3445 <                for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
3446 <                     isBeforeEnd(n);
3559 <                     n = n.next) {
3560 <                    Map.Entry<K,V> e = n.createSnapshot();
3561 <                    if (e != null)
3562 <                        c.add(e);
3563 <                }
3445 >                for (Map.Entry e : this)
3446 >                    c.add(new SnapshotEntry(e.getKey(), e.getValue()));
3447                  return c.toArray(a);
3448              }
3449          }
3567    }
3450  
3451 +        public Set<Map.Entry<K,V>> descendingEntrySet() {
3452 +            Set<Map.Entry<K,V>> es = descendingEntrySetView;
3453 +            return (es != null) ? es : (descendingEntrySetView = new DescendingEntrySetView());
3454 +        }
3455 +
3456 +        class DescendingEntrySetView extends EntrySetView {
3457 +            public Iterator<Map.Entry<K,V>> iterator() {
3458 +                return m.descendingSubMapEntryIterator(least, fence);
3459 +            }
3460 +        }
3461 +    }
3462   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines