ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166x/ConcurrentSkipListMap.java
(Generate patch)

Comparing jsr166/src/jsr166x/ConcurrentSkipListMap.java (file contents):
Revision 1.3 by dl, Tue Sep 7 11:37:57 2004 UTC vs.
Revision 1.6 by dl, Tue Mar 1 12:48:27 2005 UTC

# Line 27 | Line 27 | import java.util.concurrent.atomic.*;
27   * elements reflecting the state of the map at some point at or since
28   * the creation of the iterator.  They do <em>not</em> throw {@link
29   * ConcurrentModificationException}, and may proceed concurrently with
30 < * other operations.
30 > * other operations. Ascending key ordered views and their iterators
31 > * are faster than descending ones.
32   *
33 < * <p> All <tt>Map.Entry</tt> pairs returned by methods in this class
33 > * <p>All <tt>Map.Entry</tt> pairs returned by methods in this class
34   * and its views represent snapshots of mappings at the time they were
35   * produced. They do <em>not</em> support the <tt>Entry.setValue</tt>
36   * method. (Note however that it is possible to change mappings in the
# Line 39 | Line 40 | import java.util.concurrent.atomic.*;
40   * <p>Beware that, unlike in most collections, the <tt>size</tt>
41   * method is <em>not</em> a constant-time operation. Because of the
42   * asynchronous nature of these maps, determining the current number
43 < * of elements requires a traversal of the elements.
43 > * of elements requires a traversal of the elements.  Additionally,
44 > * the bulk operations <tt>putAll</tt>, <tt>equals</tt>, and
45 > * <tt>clear</tt> are <em>not</em> guaranteed to be performed
46 > * atomically. For example, an iterator operating concurrently with a
47 > * <tt>putAll</tt> operation might view only some of the added
48 > * elements.
49   *
50   * <p>This class and its views and iterators implement all of the
51   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
# Line 68 | Line 74 | public class ConcurrentSkipListMap<K,V>
74       * possible list with 2 levels of index:
75       *
76       * Head nodes          Index nodes
77 <     * +-+     right       +-+                      +-+                
77 >     * +-+    right        +-+                      +-+                
78       * |2|---------------->| |--------------------->| |->null
79       * +-+                 +-+                      +-+                
80       *  | down              |                        |
# Line 76 | Line 82 | public class ConcurrentSkipListMap<K,V>
82       * +-+            +-+  +-+       +-+            +-+       +-+  
83       * |1|----------->| |->| |------>| |----------->| |------>| |->null
84       * +-+            +-+  +-+       +-+            +-+       +-+  
85 <     *  |              |    |         |              |         |
86 <     *  v   Nodes      v    v         v              v         v
85 >     *  v              |    |         |              |         |
86 >     * Nodes  next     v    v         v              v         v
87       * +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  
88       * | |->|A|->|B|->|C|->|D|->|E|->|F|->|G|->|H|->|I|->|J|->|K|->null
89       * +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  
90       *
91       * The base lists use a variant of the HM linked ordered set
92 <     * algorithm (See Tim Harris, "A pragmatic implementation of
92 >     * algorithm. See Tim Harris, "A pragmatic implementation of
93       * non-blocking linked lists"
94       * http://www.cl.cam.ac.uk/~tlh20/publications.html and Maged
95       * Michael "High Performance Dynamic Lock-Free Hash Tables and
96       * List-Based Sets"
97 <     * http://www.research.ibm.com/people/m/michael/pubs.htm).  The
98 <     * basic idea in these lists is to mark pointers of deleted nodes
99 <     * when deleting, and when traversing to keep track of triples
97 >     * http://www.research.ibm.com/people/m/michael/pubs.htm.  The
98 >     * basic idea in these lists is to mark the "next" pointers of
99 >     * deleted nodes when deleting to avoid conflicts with concurrent
100 >     * insertions, and when traversing to keep track of triples
101       * (predecessor, node, successor) in order to detect when and how
102       * to unlink these deleted nodes.
103       *
# Line 259 | Line 266 | public class ConcurrentSkipListMap<K,V>
266       * For explanation of algorithms sharing at least a couple of
267       * features with this one, see Mikhail Fomitchev's thesis
268       * (http://www.cs.yorku.ca/~mikhail/), Keir Fraser's thesis
269 <     * (http://www.cl.cam.ac.uk/users/kaf24/), and papers by
270 <     * Håkan Sundell (http://www.cs.chalmers.se/~phs/).
269 >     * (http://www.cl.cam.ac.uk/users/kaf24/), and Hakan Sundell's
270 >     * thesis (http://www.cs.chalmers.se/~phs/).
271       *
272       * Given the use of tree-like index nodes, you might wonder why
273       * this doesn't use some kind of search tree instead, which would
# Line 312 | Line 319 | public class ConcurrentSkipListMap<K,V>
319      private transient EntrySet entrySet;
320      /** Lazily initialized values collection */
321      private transient Values values;
322 +    /** Lazily initialized descending key set */
323 +    private transient DescendingKeySet descendingKeySet;
324 +    /** Lazily initialized descending entry set */
325 +    private transient DescendingEntrySet descendingEntrySet;
326  
327      /**
328       * Initialize or reset state. Needed by constructors, clone,
# Line 322 | Line 333 | public class ConcurrentSkipListMap<K,V>
333          keySet = null;
334          entrySet = null;  
335          values = null;
336 +        descendingEntrySet = null;
337 +        descendingKeySet = null;
338          randomSeed = (int) System.nanoTime();
339          head = new HeadIndex<K,V>(new Node<K,V>(null, BASE_HEADER, null),
340                                    null, null, 1);
# Line 386 | Line 399 | public class ConcurrentSkipListMap<K,V>
399              valueUpdater = AtomicReferenceFieldUpdater.newUpdater
400              (Node.class, Object.class, "value");
401  
389
402          /**
403           * compareAndSet value field
404           */
# Line 495 | Line 507 | public class ConcurrentSkipListMap<K,V>
507          volatile Index<K,V> right;
508  
509          /**
510 <         * Creates index node with unknown right pointer
499 <         */
500 <        Index(Node<K,V> node, Index<K,V> down) {
501 <            this.node = node;
502 <            this.key = node.key;
503 <            this.down = down;
504 <        }
505 <        
506 <        /**
507 <         * Creates index node with known right pointer
510 >         * Creates index node with given values
511           */
512          Index(Node<K,V> node, Index<K,V> down, Index<K,V> right) {
513              this.node = node;
# Line 566 | Line 569 | public class ConcurrentSkipListMap<K,V>
569       */
570      static final class HeadIndex<K,V> extends Index<K,V> {
571          final int level;
572 <        HeadIndex(Node<K,V> node, Index<K,V> down, Index<K,V> right,
570 <                  int level) {
572 >        HeadIndex(Node<K,V> node, Index<K,V> down, Index<K,V> right, int level) {
573              super(node, down, right);
574              this.level = level;
575          }
# Line 707 | Line 709 | public class ConcurrentSkipListMap<K,V>
709  
710      /**
711       * Return true if given key greater than or equal to least and
712 <     * strictly less than fence. Needed mainly in submap operations.
712 >     * strictly less than fence, bypassing either test if least or
713 >     * fence oare null. Needed mainly in submap operations.
714       */
715      boolean inHalfOpenRange(K key, K least, K fence) {
716          if (key == null)
# Line 797 | Line 800 | public class ConcurrentSkipListMap<K,V>
800       *       links, and so will retry anyway.
801       *
802       * The traversal loops in doPut, doRemove, and findNear all
803 <     * include with the same three kinds of checks. And specialized
804 <     * versions appear in doRemoveFirstEntry, findFirst, and
803 >     * include the same three kinds of checks. And specialized
804 >     * versions appear in doRemoveFirst, doRemoveLast, findFirst, and
805       * findLast. They can't easily share code because each uses the
806       * reads of fields held in locals occurring in the orders they
807       * were performed.
# Line 835 | Line 838 | public class ConcurrentSkipListMap<K,V>
838      }
839  
840      /**
841 <     * Specialized variant of findNode to perform map.get. Does a weak
841 >     * Specialized variant of findNode to perform Map.get. Does a weak
842       * traversal, not bothering to fix any deleted index nodes,
843       * returning early if it happens to see key in index, and passing
844       * over any deleted base nodes, falling back to getUsingFindNode
# Line 893 | Line 896 | public class ConcurrentSkipListMap<K,V>
896       * @return the value, or null if absent
897       */
898      private V getUsingFindNode(Comparable<K> key) {
899 <        // Loop needed here and elsewhere to protect against value
900 <        // field going null just as it is about to be returned.
899 >        /*
900 >         * Loop needed here and elsewhere in case value field goes
901 >         * null just as it is about to be returned, in which case we
902 >         * lost a race with a deletion, so must retry.
903 >         */
904          for (;;) {
905              Node<K,V> n = findNode(key);
906              if (n == null)
# Line 992 | Line 998 | public class ConcurrentSkipListMap<K,V>
998          if (level <= max) {
999              Index<K,V> idx = null;
1000              for (int i = 1; i <= level; ++i)
1001 <                idx = new Index<K,V>(z, idx);
1001 >                idx = new Index<K,V>(z, idx, null);
1002              addIndex(idx, h, level);
1003  
1004          } else { // Add a new level
# Line 1008 | Line 1014 | public class ConcurrentSkipListMap<K,V>
1014              Index<K,V>[] idxs = (Index<K,V>[])new Index[level+1];
1015              Index<K,V> idx = null;
1016              for (int i = 1; i <= level; ++i)
1017 <                idxs[i] = idx = new Index<K,V>(z, idx);
1017 >                idxs[i] = idx = new Index<K,V>(z, idx, null);
1018  
1019              HeadIndex<K,V> oldh;
1020              int k;
# Line 1098 | Line 1104 | public class ConcurrentSkipListMap<K,V>
1104       * deletion marker, unlinks predecessor, removes associated index
1105       * nodes, and possibly reduces head index level.
1106       *
1107 <     * Index node are cleared out simply by calling findPredecessor.
1107 >     * Index nodes are cleared out simply by calling findPredecessor.
1108       * which unlinks indexes to deleted nodes found along path to key,
1109       * which will include the indexes to this node.  This is done
1110       * unconditionally. We can't check beforehand whether there are
# Line 1158 | Line 1164 | public class ConcurrentSkipListMap<K,V>
1164       * Possibly reduce head level if it has no nodes.  This method can
1165       * (rarely) make mistakes, in which case levels can disappear even
1166       * though they are about to contain index nodes. This impacts
1167 <     * performance, not correctness.  To minimize mistakes and also to
1168 <     * reduce hysteresis, the level is reduced by one only if the
1167 >     * performance, not correctness.  To minimize mistakes as well as
1168 >     * to reduce hysteresis, the level is reduced by one only if the
1169       * topmost three levels look empty. Also, if the removed level
1170       * looks non-empty after CAS, we try to change it back quick
1171       * before anyone notices our mistake! (This trick works pretty
# Line 1189 | Line 1195 | public class ConcurrentSkipListMap<K,V>
1195              casHead(d, h);   // try to backout
1196      }
1197  
1198 +    /**
1199 +     * Version of remove with boolean return. Needed by view classes
1200 +     */
1201 +    boolean removep(Object key) {
1202 +        return doRemove(key, null) != null;
1203 +    }
1204  
1205 <    /* ---------------- Positional operations -------------- */
1205 >    /* ---------------- Finding and removing first element -------------- */
1206  
1207      /**
1208 <     * Specialized version of find to get first valid node
1208 >     * Specialized variant of findNode to get first valid node
1209       * @return first node or null if empty
1210       */
1211      Node<K,V> findFirst() {
1212          for (;;) {
1201            // cheaper checks because we know head is never deleted
1213              Node<K,V> b = head.node;
1214              Node<K,V> n = b.next;
1215              if (n == null)
# Line 1210 | Line 1221 | public class ConcurrentSkipListMap<K,V>
1221      }
1222  
1223      /**
1224 <     * Remove first entry; return its key or null if empty.
1225 <     * Used by ConcurrentSkipListSet
1224 >     * Remove first entry; return either its key or a snapshot.
1225 >     * @param keyOnly if true return key, else return SnapshotEntry
1226 >     * (This is a little ugly, but avoids code duplication.)
1227 >     * @return null if empty, first key if keyOnly true, else key,value entry
1228       */
1229 <    K removeFirstKey() {
1229 >    Object doRemoveFirst(boolean keyOnly) {
1230          for (;;) {
1231              Node<K,V> b = head.node;
1232              Node<K,V> n = b.next;
# Line 1232 | Line 1245 | public class ConcurrentSkipListMap<K,V>
1245              if (!n.appendMarker(f) || !b.casNext(n, f))
1246                  findFirst(); // retry
1247              clearIndexToFirst();
1248 <            return n.key;
1249 <        }
1237 <    }
1238 <
1239 <    /**
1240 <     * Remove first entry; return SnapshotEntry or null if empty.
1241 <     */
1242 <    private SnapshotEntry<K,V> doRemoveFirstEntry() {
1243 <        /*
1244 <         * This must be mostly duplicated from removeFirstKey because we
1245 <         * need to save the last value read before it is nulled out
1246 <         */
1247 <        for (;;) {
1248 <            Node<K,V> b = head.node;
1249 <            Node<K,V> n = b.next;
1250 <            if (n == null)
1251 <                return null;
1252 <            Node<K,V> f = n.next;
1253 <            if (n != b.next)
1254 <                continue;
1255 <            Object v = n.value;
1256 <            if (v == null) {
1257 <                n.helpDelete(b, f);
1258 <                continue;
1259 <            }
1260 <            if (!n.casValue(v, null))
1261 <                continue;
1262 <            if (!n.appendMarker(f) || !b.casNext(n, f))
1263 <                findFirst(); // retry
1264 <            clearIndexToFirst();
1265 <            return new SnapshotEntry<K,V>(n.key, (V)v);
1248 >            K key = n.key;
1249 >            return (keyOnly)? key : new SnapshotEntry<K,V>(key, (V)v);
1250          }
1251      }
1252  
1253      /**
1254       * Clear out index nodes associated with deleted first entry.
1255 <     * Needed by removeFirstKey and removeFirstEntry
1255 >     * Needed by doRemoveFirst
1256       */
1257      private void clearIndexToFirst() {
1258          for (;;) {
# Line 1286 | Line 1270 | public class ConcurrentSkipListMap<K,V>
1270          }
1271      }
1272  
1273 +   /**
1274 +     * Remove first entry; return key or null if empty.
1275 +     */
1276 +    K pollFirstKey() {
1277 +        return (K)doRemoveFirst(true);
1278 +    }
1279 +
1280 +    /* ---------------- Finding and removing last element -------------- */
1281 +
1282      /**
1283       * Specialized version of find to get last valid node
1284       * @return last node or null if empty
# Line 1332 | Line 1325 | public class ConcurrentSkipListMap<K,V>
1325          }
1326      }
1327  
1328 +
1329      /**
1330 <     * Temporary helper method for two-pass implementation of
1331 <     * removeLastEntry, mostly pasted from doRemove.
1332 <     * TODO: replace with one-pass implementation
1330 >     * Specialized version of doRemove for last entry.
1331 >     * @param keyOnly if true return key, else return SnapshotEntry
1332 >     * @return null if empty, last key if keyOnly true, else key,value entry
1333       */
1334 <    private Object removeIfLast(K kkey) {
1341 <        Comparable<K> key = comparable(kkey);
1334 >    Object doRemoveLast(boolean keyOnly) {
1335          for (;;) {
1336 <            Node<K,V> b = findPredecessor(key);
1336 >            Node<K,V> b = findPredecessorOfLast();
1337              Node<K,V> n = b.next;
1338 <            for (;;) {
1339 <                if (n == null)
1338 >            if (n == null) {
1339 >                if (b.isBaseHeader())               // empty
1340                      return null;
1341 +                else            
1342 +                    continue; // all b's successors are deleted; retry
1343 +            }
1344 +            for (;;) {
1345                  Node<K,V> f = n.next;
1346                  if (n != b.next)                    // inconsistent read
1347                      break;
# Line 1355 | Line 1352 | public class ConcurrentSkipListMap<K,V>
1352                  }
1353                  if (v == n || b.value == null)      // b is deleted
1354                      break;
1355 <                int c = key.compareTo(n.key);
1359 <                if (c < 0)
1360 <                    return null;
1361 <                if (c > 0) {
1355 >                if (f != null) {
1356                      b = n;
1357                      n = f;
1358                      continue;
1359                  }
1366                if (f != null)                       // fail if n not last
1367                    return null;
1360                  if (!n.casValue(v, null))  
1361 <                    return null;
1361 >                    break;
1362 >                K key = n.key;
1363 >                Comparable<K> ck = comparable(key);
1364                  if (!n.appendMarker(f) || !b.casNext(n, f))
1365 <                    findNode(key);                  // Retry via findNode
1365 >                    findNode(ck);                  // Retry via findNode
1366                  else {
1367 <                    findPredecessor(key);           // Clean index
1367 >                    findPredecessor(ck);           // Clean index
1368                      if (head.right == null)
1369                          tryReduceLevel();
1370                  }
1371 <                return v;
1371 >                return (keyOnly)? key : new SnapshotEntry<K,V>(key, (V)v);
1372              }
1373          }
1374      }
1375  
1376      /**
1377 <     * Remove last entry; return SnapshotEntry or null if empty.
1377 >     * Specialized variant of findPredecessor to get predecessor of
1378 >     * last valid node. Needed by doRemoveLast. It is possible that
1379 >     * all successors of returned node will have been deleted upon
1380 >     * return, in which case this method can be retried.
1381 >     * @return likely predecessor of last node.
1382       */
1383 <    private SnapshotEntry<K,V> doRemoveLastEntry() {
1383 >    private Node<K,V> findPredecessorOfLast() {
1384          for (;;) {
1385 <            Node<K,V> l = findLast();
1386 <            if (l == null)
1387 <                return null;
1388 <            K k = l.key;
1389 <            Object v = removeIfLast(k);
1390 <            if (v != null)
1391 <                return new SnapshotEntry<K, V>(k, (V)v);
1385 >            Index<K,V> q = head;
1386 >            for (;;) {
1387 >                Index<K,V> d, r;
1388 >                if ((r = q.right) != null) {
1389 >                    if (r.indexesDeletedNode()) {
1390 >                        q.unlink(r);
1391 >                        break;    // must restart
1392 >                    }
1393 >                    // proceed as far across as possible without overshooting
1394 >                    if (r.node.next != null) {
1395 >                        q = r;
1396 >                        continue;
1397 >                    }
1398 >                }
1399 >                if ((d = q.down) != null)
1400 >                    q = d;
1401 >                else
1402 >                    return q.node;
1403 >            }
1404          }
1405      }
1406 <    
1406 >
1407      /**
1408       * Remove last entry; return key or null if empty.
1409       */
1410 <    K removeLastKey() {
1411 <        for (;;) {
1402 <            Node<K,V> l = findLast();
1403 <            if (l == null)
1404 <                return null;
1405 <            K k = l.key;
1406 <            if (removeIfLast(k) != null)
1407 <                return k;
1408 <        }
1410 >    K pollLastKey() {
1411 >        return (K)doRemoveLast(true);
1412      }
1413  
1414      /* ---------------- Relational operations -------------- */
# Line 1414 | Line 1417 | public class ConcurrentSkipListMap<K,V>
1417  
1418      private static final int EQ = 1;
1419      private static final int LT = 2;
1420 <    private static final int GT = 0;
1420 >    private static final int GT = 0; // Actually checked as !LT
1421  
1422      /**
1423       * Utility for ceiling, floor, lower, higher methods.
# Line 1469 | Line 1472 | public class ConcurrentSkipListMap<K,V>
1472          }
1473      }
1474  
1475 +    /**
1476 +     * Return ceiling, or first node if key is <tt>null</tt>
1477 +     */
1478 +    Node<K,V> findCeiling(K key) {
1479 +        return (key == null)? findFirst() : findNear(key, GT|EQ);
1480 +    }
1481 +
1482 +    /**
1483 +     * Return lower node, or last node if key is <tt>null</tt>
1484 +     */
1485 +    Node<K,V> findLower(K key) {
1486 +        return (key == null)? findLast() : findNear(key, LT);
1487 +    }
1488 +
1489 +    /**
1490 +     * Return SnapshotEntry or key for results of findNear ofter screening
1491 +     * to ensure result is in given range. Needed by submaps.
1492 +     * @param kkey the key
1493 +     * @param rel the relation -- OR'ed combination of EQ, LT, GT
1494 +     * @param least minimum allowed key value
1495 +     * @param fence key greater than maximum allowed key value
1496 +     * @param keyOnly if true return key, else return SnapshotEntry
1497 +     * @return Key or Entry fitting relation, or <tt>null</tt> if no such
1498 +     */
1499 +    Object getNear(K kkey, int rel, K least, K fence, boolean keyOnly) {
1500 +        K key = kkey;
1501 +        // Don't return keys less than least
1502 +        if ((rel & LT) == 0) {
1503 +            if (compare(key, least) < 0) {
1504 +                key = least;
1505 +                rel = rel | EQ;
1506 +            }
1507 +        }
1508 +
1509 +        for (;;) {
1510 +            Node<K,V> n = findNear(key, rel);
1511 +            if (n == null || !inHalfOpenRange(n.key, least, fence))
1512 +                return null;
1513 +            K k = n.key;
1514 +            V v = n.getValidValue();
1515 +            if (v != null)
1516 +                return keyOnly? k : new SnapshotEntry<K,V>(k, v);
1517 +        }
1518 +    }
1519 +
1520 +    /**
1521 +     * Find and remove least element of subrange.
1522 +     * @param least minimum allowed key value
1523 +     * @param fence key greater than maximum allowed key value
1524 +     * @param keyOnly if true return key, else return SnapshotEntry
1525 +     * @return least Key or Entry, or <tt>null</tt> if no such
1526 +     */
1527 +    Object removeFirstEntryOfSubrange(K least, K fence, boolean keyOnly) {
1528 +        for (;;) {
1529 +            Node<K,V> n = findCeiling(least);
1530 +            if (n == null)
1531 +                return null;
1532 +            K k = n.key;
1533 +            if (fence != null && compare(k, fence) >= 0)
1534 +                return null;
1535 +            V v = doRemove(k, null);
1536 +            if (v != null)
1537 +                return (keyOnly)? k : new SnapshotEntry<K,V>(k, v);
1538 +        }
1539 +    }
1540 +
1541 +    /**
1542 +     * Find and remove greatest element of subrange.
1543 +     * @param least minimum allowed key value
1544 +     * @param fence key greater than maximum allowed key value
1545 +     * @param keyOnly if true return key, else return SnapshotEntry
1546 +     * @return least Key or Entry, or <tt>null</tt> if no such
1547 +     */
1548 +    Object removeLastEntryOfSubrange(K least, K fence, boolean keyOnly) {
1549 +        for (;;) {
1550 +            Node<K,V> n = findLower(fence);
1551 +            if (n == null)
1552 +                return null;
1553 +            K k = n.key;
1554 +            if (least != null && compare(k, least) < 0)
1555 +                return null;
1556 +            V v = doRemove(k, null);
1557 +            if (v != null)
1558 +                return (keyOnly)? k : new SnapshotEntry<K,V>(k, v);
1559 +        }
1560 +    }
1561 +
1562      /* ---------------- Constructors -------------- */
1563  
1564      /**
# Line 1510 | Line 1600 | public class ConcurrentSkipListMap<K,V>
1600      /**
1601       * Constructs a new map containing the same mappings as the given
1602       * <tt>SortedMap</tt>, sorted according to the same ordering.  
1603 <     * @param  m the sorted map whose mappings are to be placed in this map,
1604 <     *         and whose comparator is to be used to sort this map.
1605 <     * @throws NullPointerException if the specified sorted map is <tt>null</tt>.
1603 >     * @param m the sorted map whose mappings are to be placed in this
1604 >     * map, and whose comparator is to be used to sort this map.
1605 >     * @throws NullPointerException if the specified sorted map is
1606 >     * <tt>null</tt>.
1607       */
1608      public ConcurrentSkipListMap(SortedMap<K, ? extends V> m) {
1609          this.comparator = m.comparator();
# Line 1580 | Line 1671 | public class ConcurrentSkipListMap<K,V>
1671              if (j > 0) {
1672                  Index<K,V> idx = null;
1673                  for (int i = 1; i <= j; ++i) {
1674 <                    idx = new Index<K,V>(z, idx);
1674 >                    idx = new Index<K,V>(z, idx, null);
1675                      if (i > h.level)
1676                          h = new HeadIndex<K,V>(h.node, h, idx, i);
1677  
# Line 1633 | Line 1724 | public class ConcurrentSkipListMap<K,V>
1724          initialize();
1725  
1726          /*
1727 <         * This is basically identical to buildFromSorted, but is
1727 >         * This is nearly identical to buildFromSorted, but is
1728           * distinct because readObject calls can't be nicely adapted
1729           * as the kind of iterator needed by buildFromSorted. (They
1730           * can be, but doing so requires type cheats and/or creation
# Line 1668 | Line 1759 | public class ConcurrentSkipListMap<K,V>
1759              if (j > 0) {
1760                  Index<K,V> idx = null;
1761                  for (int i = 1; i <= j; ++i) {
1762 <                    idx = new Index<K,V>(z, idx);
1762 >                    idx = new Index<K,V>(z, idx, null);
1763                      if (i > h.level)
1764                          h = new HeadIndex<K,V>(h.node, h, idx, i);
1765  
# Line 1841 | Line 1932 | public class ConcurrentSkipListMap<K,V>
1932      }
1933  
1934      /**
1935 +     * Returns a set view of the keys contained in this map in
1936 +     * descending order.  The set is backed by the map, so changes to
1937 +     * the map are reflected in the set, and vice-versa.  The set
1938 +     * supports element removal, which removes the corresponding
1939 +     * mapping from this map, via the <tt>Iterator.remove</tt>,
1940 +     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>,
1941 +     * and <tt>clear</tt> operations.  It does not support the
1942 +     * <tt>add</tt> or <tt>addAll</tt> operations.  The view's
1943 +     * <tt>iterator</tt> is a "weakly consistent" iterator that will
1944 +     * never throw {@link java.util.ConcurrentModificationException},
1945 +     * and guarantees to traverse elements as they existed upon
1946 +     * construction of the iterator, and may (but is not guaranteed
1947 +     * to) reflect any modifications subsequent to construction.
1948 +     *
1949 +     * @return a set view of the keys contained in this map.
1950 +     */
1951 +    public Set<K> descendingKeySet() {
1952 +        /*
1953 +         * Note: Lazy intialization works here and for other views
1954 +         * because view classes are stateless/immutable so it doesn't
1955 +         * matter wrt correctness if more than one is created (which
1956 +         * will only rarely happen).  Even so, the following idiom
1957 +         * conservatively ensures that the method returns the one it
1958 +         * created if it does so, not one created by another racing
1959 +         * thread.
1960 +         */
1961 +        DescendingKeySet ks = descendingKeySet;
1962 +        return (ks != null) ? ks : (descendingKeySet = new DescendingKeySet());
1963 +    }
1964 +
1965 +    /**
1966       * Returns a collection view of the values contained in this map.
1967       * The collection is backed by the map, so changes to the map are
1968       * reflected in the collection, and vice-versa.  The collection
# Line 1890 | Line 2012 | public class ConcurrentSkipListMap<K,V>
2012          return (es != null) ? es : (entrySet = new EntrySet());
2013      }
2014  
2015 +    /**
2016 +     * Returns a collection view of the mappings contained in this
2017 +     * map, in descending order.  Each element in the returned
2018 +     * collection is a <tt>Map.Entry</tt>.  The collection is backed
2019 +     * by the map, so changes to the map are reflected in the
2020 +     * collection, and vice-versa.  The collection supports element
2021 +     * removal, which removes the corresponding mapping from the map,
2022 +     * via the <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
2023 +     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
2024 +     * operations.  It does not support the <tt>add</tt> or
2025 +     * <tt>addAll</tt> operations.  The view's <tt>iterator</tt> is a
2026 +     * "weakly consistent" iterator that will never throw {@link
2027 +     * java.util.ConcurrentModificationException}, and guarantees to
2028 +     * traverse elements as they existed upon construction of the
2029 +     * iterator, and may (but is not guaranteed to) reflect any
2030 +     * modifications subsequent to construction. The
2031 +     * <tt>Map.Entry</tt> elements returned by
2032 +     * <tt>iterator.next()</tt> do <em>not</em> support the
2033 +     * <tt>setValue</tt> operation.
2034 +     *
2035 +     * @return a collection view of the mappings contained in this map.
2036 +     */
2037 +    public Set<Map.Entry<K,V>> descendingEntrySet() {
2038 +        DescendingEntrySet es = descendingEntrySet;
2039 +        return (es != null) ? es : (descendingEntrySet = new DescendingEntrySet());
2040 +    }
2041 +
2042 +    /* ---------------- AbstractMap Overrides -------------- */
2043 +
2044 +    /**
2045 +     * Compares the specified object with this map for equality.
2046 +     * Returns <tt>true</tt> if the given object is also a map and the
2047 +     * two maps represent the same mappings.  More formally, two maps
2048 +     * <tt>t1</tt> and <tt>t2</tt> represent the same mappings if
2049 +     * <tt>t1.keySet().equals(t2.keySet())</tt> and for every key
2050 +     * <tt>k</tt> in <tt>t1.keySet()</tt>, <tt> (t1.get(k)==null ?
2051 +     * t2.get(k)==null : t1.get(k).equals(t2.get(k))) </tt>.  This
2052 +     * operation may return misleading results if either map is
2053 +     * concurrently modified during execution of this method.
2054 +     *
2055 +     * @param o object to be compared for equality with this map.
2056 +     * @return <tt>true</tt> if the specified object is equal to this map.
2057 +     */
2058 +    public boolean equals(Object o) {
2059 +        if (o == this)
2060 +            return true;
2061 +        if (!(o instanceof Map))
2062 +            return false;
2063 +        Map<K,V> t = (Map<K,V>) o;
2064 +        try {
2065 +            return (containsAllMappings(this, t) &&
2066 +                    containsAllMappings(t, this));
2067 +        } catch(ClassCastException unused) {
2068 +            return false;
2069 +        } catch(NullPointerException unused) {
2070 +            return false;
2071 +        }
2072 +    }
2073 +
2074 +    /**
2075 +     * Helper for equals -- check for containment, avoiding nulls.
2076 +     */
2077 +    static <K,V> boolean containsAllMappings(Map<K,V> a, Map<K,V> b) {
2078 +        Iterator<Entry<K,V>> it = b.entrySet().iterator();
2079 +        while (it.hasNext()) {
2080 +            Entry<K,V> e = it.next();
2081 +            Object k = e.getKey();
2082 +            Object v = e.getValue();
2083 +            if (k == null || v == null || !v.equals(a.get(k)))
2084 +                return false;
2085 +        }
2086 +        return true;
2087 +    }
2088 +
2089      /* ------ ConcurrentMap API methods ------ */
2090  
2091      /**
# Line 1902 | Line 2098 | public class ConcurrentSkipListMap<K,V>
2098       *   else
2099       *      return map.get(key);
2100       * </pre>
2101 <     * Except that the action is performed atomically.
2101 >     * except that the action is performed atomically.
2102       * @param key key with which the specified value is to be associated.
2103       * @param value value to be associated with the specified key.
2104       * @return previous value associated with specified key, or <tt>null</tt>
# Line 2076 | Line 2272 | public class ConcurrentSkipListMap<K,V>
2272      }
2273  
2274      /**
2275 <     * Returns a view of the portion of this map whose keys are strictly less
2276 <     * than <tt>toKey</tt>.  The returned sorted map is backed by this map, so
2277 <     * changes in the returned sorted map are reflected in this map, and
2278 <     * vice-versa.  
2275 >     * Returns a view of the portion of this map whose keys are
2276 >     * strictly less than <tt>toKey</tt>.  The returned sorted map is
2277 >     * backed by this map, so changes in the returned sorted map are
2278 >     * reflected in this map, and vice-versa.
2279       * @param toKey high endpoint (exclusive) of the headMap.
2280 <     * @return a view of the portion of this map whose keys are strictly
2281 <     *                less than <tt>toKey</tt>.
2280 >     * @return a view of the portion of this map whose keys are
2281 >     * strictly less than <tt>toKey</tt>.
2282       *
2283       * @throws ClassCastException if <tt>toKey</tt> is not compatible
2284 <     *         with this map's comparator (or, if the map has no comparator,
2285 <     *         if <tt>toKey</tt> does not implement <tt>Comparable</tt>).
2284 >     * with this map's comparator (or, if the map has no comparator,
2285 >     * if <tt>toKey</tt> does not implement <tt>Comparable</tt>).
2286       * @throws NullPointerException if <tt>toKey</tt> is <tt>null</tt>.
2287       */
2288      public ConcurrentNavigableMap<K,V> headMap(K toKey) {
# Line 2101 | Line 2297 | public class ConcurrentSkipListMap<K,V>
2297       * map is backed by this map, so changes in the returned sorted
2298       * map are reflected in this map, and vice-versa.
2299       * @param fromKey low endpoint (inclusive) of the tailMap.
2300 <     * @return a view of the portion of this map whose keys are greater
2301 <     *                than or equal to <tt>fromKey</tt>.
2302 <     * @throws ClassCastException if <tt>fromKey</tt> is not compatible
2303 <     *         with this map's comparator (or, if the map has no comparator,
2304 <     *         if <tt>fromKey</tt> does not implement <tt>Comparable</tt>).
2300 >     * @return a view of the portion of this map whose keys are
2301 >     * greater than or equal to <tt>fromKey</tt>.
2302 >     * @throws ClassCastException if <tt>fromKey</tt> is not
2303 >     * compatible with this map's comparator (or, if the map has no
2304 >     * comparator, if <tt>fromKey</tt> does not implement
2305 >     * <tt>Comparable</tt>).
2306       * @throws NullPointerException if <tt>fromKey</tt> is <tt>null</tt>.
2307       */
2308      public ConcurrentNavigableMap<K,V>  tailMap(K fromKey) {
# Line 2118 | Line 2315 | public class ConcurrentSkipListMap<K,V>
2315  
2316      /**
2317       * Returns a key-value mapping associated with the least key
2318 <     * greater than or equal to the given key, or <tt>null</tt> if there is
2319 <     * no such entry. The returned entry does <em>not</em> support
2320 <     * the <tt>Entry.setValue</tt> method.
2318 >     * greater than or equal to the given key, or <tt>null</tt> if
2319 >     * there is no such entry. The returned entry does <em>not</em>
2320 >     * support the <tt>Entry.setValue</tt> method.
2321       *
2322       * @param key the key.
2323 <     * @return an Entry associated with ceiling of given key, or <tt>null</tt>
2324 <     * if there is no such Entry.
2325 <     * @throws ClassCastException if key cannot be compared with the keys
2326 <     *            currently in the map.
2323 >     * @return an Entry associated with ceiling of given key, or
2324 >     * <tt>null</tt> if there is no such Entry.
2325 >     * @throws ClassCastException if key cannot be compared with the
2326 >     * keys currently in the map.
2327       * @throws NullPointerException if key is <tt>null</tt>.
2328       */
2329      public Map.Entry<K,V> ceilingEntry(K key) {
# Line 2134 | Line 2331 | public class ConcurrentSkipListMap<K,V>
2331      }
2332  
2333      /**
2334 +     * Returns least key greater than or equal to the given key, or
2335 +     * <tt>null</tt> if there is no such key.
2336 +     *
2337 +     * @param key the key.
2338 +     * @return the ceiling key, or <tt>null</tt>
2339 +     * if there is no such key.
2340 +     * @throws ClassCastException if key cannot be compared with the keys
2341 +     *            currently in the map.
2342 +     * @throws NullPointerException if key is <tt>null</tt>.
2343 +     */
2344 +    public K ceilingKey(K key) {
2345 +        Node<K,V> n = findNear(key, GT|EQ);
2346 +        return (n == null)? null : n.key;
2347 +    }
2348 +
2349 +    /**
2350       * Returns a key-value mapping associated with the greatest
2351       * key strictly less than the given key, or <tt>null</tt> if there is no
2352       * such entry. The returned entry does <em>not</em> support
# Line 2151 | Line 2364 | public class ConcurrentSkipListMap<K,V>
2364      }
2365  
2366      /**
2367 <     * Returns a key-value mapping associated with the greatest
2368 <     * key less than or equal to the given key, or <tt>null</tt> if there is no
2369 <     * such entry. The returned entry does <em>not</em> support
2367 >     * Returns the greatest key strictly less than the given key, or
2368 >     * <tt>null</tt> if there is no such key.
2369 >     *
2370 >     * @param key the key.
2371 >     * @return the greatest key less than the given
2372 >     * key, or <tt>null</tt> if there is no such key.
2373 >     * @throws ClassCastException if key cannot be compared with the keys
2374 >     *            currently in the map.
2375 >     * @throws NullPointerException if key is <tt>null</tt>.
2376 >     */
2377 >    public K lowerKey(K key) {
2378 >        Node<K,V> n = findNear(key, LT);
2379 >        return (n == null)? null : n.key;
2380 >    }
2381 >
2382 >    /**
2383 >     * Returns a key-value mapping associated with the greatest key
2384 >     * less than or equal to the given key, or <tt>null</tt> if there
2385 >     * is no such entry. The returned entry does <em>not</em> support
2386       * the <tt>Entry.setValue</tt> method.
2387       *
2388       * @param key the key.
# Line 2168 | Line 2397 | public class ConcurrentSkipListMap<K,V>
2397      }
2398  
2399      /**
2400 <     * Returns a key-value mapping associated with the least
2401 <     * key strictly greater than the given key, or <tt>null</tt> if there is no
2402 <     * such entry. The returned entry does <em>not</em> support
2400 >     * Returns the greatest key
2401 >     * less than or equal to the given key, or <tt>null</tt> if there
2402 >     * is no such key.
2403 >     *
2404 >     * @param key the key.
2405 >     * @return the floor of given key, or <tt>null</tt> if there is no
2406 >     * such key.
2407 >     * @throws ClassCastException if key cannot be compared with the keys
2408 >     *            currently in the map.
2409 >     * @throws NullPointerException if key is <tt>null</tt>.
2410 >     */
2411 >    public K floorKey(K key) {
2412 >        Node<K,V> n = findNear(key, LT|EQ);
2413 >        return (n == null)? null : n.key;
2414 >    }
2415 >
2416 >    /**
2417 >     * Returns a key-value mapping associated with the least key
2418 >     * strictly greater than the given key, or <tt>null</tt> if there
2419 >     * is no such entry. The returned entry does <em>not</em> support
2420       * the <tt>Entry.setValue</tt> method.
2421       *
2422       * @param key the key.
# Line 2185 | Line 2431 | public class ConcurrentSkipListMap<K,V>
2431      }
2432  
2433      /**
2434 +     * Returns the least key strictly greater than the given key, or
2435 +     * <tt>null</tt> if there is no such key.
2436 +     *
2437 +     * @param key the key.
2438 +     * @return the least key greater than the given key, or
2439 +     * <tt>null</tt> if there is no such key.
2440 +     * @throws ClassCastException if key cannot be compared with the keys
2441 +     *            currently in the map.
2442 +     * @throws NullPointerException if key is <tt>null</tt>.
2443 +     */
2444 +    public K higherKey(K key) {
2445 +        Node<K,V> n = findNear(key, GT);
2446 +        return (n == null)? null : n.key;
2447 +    }
2448 +
2449 +    /**
2450       * Returns a key-value mapping associated with the least
2451       * key in this map, or <tt>null</tt> if the map is empty.
2452       * The returned entry does <em>not</em> support
# Line 2234 | Line 2496 | public class ConcurrentSkipListMap<K,V>
2496       * if the map is empty.
2497       */
2498      public Map.Entry<K,V> pollFirstEntry() {
2499 <        return doRemoveFirstEntry();
2499 >        return (SnapshotEntry<K,V>)doRemoveFirst(false);
2500      }
2501  
2502      /**
# Line 2247 | Line 2509 | public class ConcurrentSkipListMap<K,V>
2509       * if the map is empty.
2510       */
2511      public Map.Entry<K,V> pollLastEntry() {
2512 <        return doRemoveLastEntry();
2512 >        return (SnapshotEntry<K,V>)doRemoveLast(false);
2513      }
2514  
2515 +
2516      /* ---------------- Iterators -------------- */
2517  
2518      /**
2519 <     * Base of iterator classes.
2520 <     * (Six kinds: {key, value, entry} X {map, submap})
2519 >     * Base of ten kinds of iterator classes:
2520 >     *   ascending:  {map, submap} X {key, value, entry}
2521 >     *   descending: {map, submap} X {key, entry}
2522       */
2523 <    abstract class ConcurrentSkipListMapIterator {
2523 >    abstract class Iter {
2524          /** the last node returned by next() */
2525          Node<K,V> last;
2526          /** the next node to return from next(); */
# Line 2264 | Line 2528 | public class ConcurrentSkipListMap<K,V>
2528          /** Cache of next value field to maintain weak consistency */
2529          Object nextValue;
2530  
2531 <        /** Create normal iterator for entire range  */
2532 <        ConcurrentSkipListMapIterator() {
2531 >        Iter() {}
2532 >
2533 >        public final boolean hasNext() {
2534 >            return next != null;
2535 >        }
2536 >
2537 >        /** initialize ascending iterator for entire range  */
2538 >        final void initAscending() {
2539              for (;;) {
2540                  next = findFirst();
2541                  if (next == null)
# Line 2277 | Line 2547 | public class ConcurrentSkipListMap<K,V>
2547          }
2548  
2549          /**
2550 <         * Create a submap iterator starting at given least key, or
2551 <         * first node if least is <tt>null</tt>, but not greater or equal to
2552 <         * fence, or end if fence is <tt>null</tt>.
2550 >         * initialize ascending iterator starting at given least key,
2551 >         * or first node if least is <tt>null</tt>, but not greater or
2552 >         * equal to fence, or end if fence is <tt>null</tt>.
2553           */
2554 <        ConcurrentSkipListMapIterator(K least, K fence) {
2554 >        final void initAscending(K least, K fence) {
2555              for (;;) {
2556                  next = findCeiling(least);
2557                  if (next == null)
# Line 2296 | Line 2566 | public class ConcurrentSkipListMap<K,V>
2566                  }
2567              }
2568          }
2569 <
2570 <        public final boolean hasNext() {
2301 <            return next != null;
2302 <        }
2303 <
2304 <        final void advance() {
2569 >        /** advance next to higher entry */
2570 >        final void ascend() {
2571              if ((last = next) == null)
2572                  throw new NoSuchElementException();
2573              for (;;) {
# Line 2315 | Line 2581 | public class ConcurrentSkipListMap<K,V>
2581          }
2582  
2583          /**
2584 <         * Version of advance for submaps to stop at fence
2584 >         * Version of ascend for submaps to stop at fence
2585           */
2586 <        final void advance(K fence) {
2586 >        final void ascend(K fence) {
2587              if ((last = next) == null)
2588                  throw new NoSuchElementException();
2589              for (;;) {
# Line 2335 | Line 2601 | public class ConcurrentSkipListMap<K,V>
2601              }
2602          }
2603  
2604 +        /** initialize descending iterator for entire range  */
2605 +        final void initDescending() {
2606 +            for (;;) {
2607 +                next = findLast();
2608 +                if (next == null)
2609 +                    break;
2610 +                nextValue = next.value;
2611 +                if (nextValue != null && nextValue != next)
2612 +                    break;
2613 +            }
2614 +        }
2615 +
2616 +        /**
2617 +         * initialize descending iterator starting at key less
2618 +         * than or equal to given fence key, or
2619 +         * last node if fence is <tt>null</tt>, but not less than
2620 +         * least, or beginning if lest is <tt>null</tt>.
2621 +         */
2622 +        final void initDescending(K least, K fence) {
2623 +            for (;;) {
2624 +                next = findLower(fence);
2625 +                if (next == null)
2626 +                    break;
2627 +                nextValue = next.value;
2628 +                if (nextValue != null && nextValue != next) {
2629 +                    if (least != null && compare(least, next.key) > 0) {
2630 +                        next = null;
2631 +                        nextValue = null;
2632 +                    }
2633 +                    break;
2634 +                }
2635 +            }
2636 +        }
2637 +
2638 +        /** advance next to lower entry */
2639 +        final void descend() {
2640 +            if ((last = next) == null)
2641 +                throw new NoSuchElementException();
2642 +            K k = last.key;
2643 +            for (;;) {
2644 +                next = findNear(k, LT);
2645 +                if (next == null)
2646 +                    break;
2647 +                nextValue = next.value;
2648 +                if (nextValue != null && nextValue != next)
2649 +                    break;
2650 +            }
2651 +        }
2652 +
2653 +        /**
2654 +         * Version of descend for submaps to stop at least
2655 +         */
2656 +        final void descend(K least) {
2657 +            if ((last = next) == null)
2658 +                throw new NoSuchElementException();
2659 +            K k = last.key;
2660 +            for (;;) {
2661 +                next = findNear(k, LT);
2662 +                if (next == null)
2663 +                    break;
2664 +                nextValue = next.value;
2665 +                if (nextValue != null && nextValue != next) {
2666 +                    if (least != null && compare(least, next.key) > 0) {
2667 +                        next = null;
2668 +                        nextValue = null;
2669 +                    }
2670 +                    break;
2671 +                }
2672 +            }
2673 +        }
2674 +
2675          public void remove() {
2676              Node<K,V> l = last;
2677              if (l == null)
# Line 2343 | Line 2680 | public class ConcurrentSkipListMap<K,V>
2680              // unlink from here. Using remove is fast enough.
2681              ConcurrentSkipListMap.this.remove(l.key);
2682          }
2683 +
2684 +    }
2685 +
2686 +    final class ValueIterator extends Iter implements Iterator<V> {
2687 +        ValueIterator() {
2688 +            initAscending();
2689 +        }
2690 +        public V next() {
2691 +            Object v = nextValue;
2692 +            ascend();
2693 +            return (V)v;
2694 +        }
2695 +    }
2696 +
2697 +    final class KeyIterator extends Iter implements Iterator<K> {
2698 +        KeyIterator() {
2699 +            initAscending();
2700 +        }
2701 +        public K next() {
2702 +            Node<K,V> n = next;
2703 +            ascend();
2704 +            return n.key;
2705 +        }
2706      }
2707  
2708 <    final class ValueIterator extends ConcurrentSkipListMapIterator
2709 <        implements Iterator<V> {
2708 >    class SubMapValueIterator extends Iter implements Iterator<V> {
2709 >        final K fence;
2710 >        SubMapValueIterator(K least, K fence) {
2711 >            initAscending(least, fence);
2712 >            this.fence = fence;
2713 >        }
2714 >
2715          public V next() {
2716              Object v = nextValue;
2717 <            advance();
2717 >            ascend(fence);
2718              return (V)v;
2719          }
2720      }
2721  
2722 <    final class KeyIterator extends ConcurrentSkipListMapIterator
2723 <        implements Iterator<K> {
2722 >    final class SubMapKeyIterator extends Iter implements Iterator<K> {
2723 >        final K fence;
2724 >        SubMapKeyIterator(K least, K fence) {
2725 >            initAscending(least, fence);
2726 >            this.fence = fence;
2727 >        }
2728 >
2729 >        public K next() {
2730 >            Node<K,V> n = next;
2731 >            ascend(fence);
2732 >            return n.key;
2733 >        }
2734 >    }
2735 >
2736 >    final class DescendingKeyIterator extends Iter implements Iterator<K> {
2737 >        DescendingKeyIterator() {
2738 >            initDescending();
2739 >        }
2740          public K next() {
2741              Node<K,V> n = next;
2742 <            advance();
2742 >            descend();
2743 >            return n.key;
2744 >        }
2745 >    }
2746 >
2747 >    final class DescendingSubMapKeyIterator extends Iter implements Iterator<K> {
2748 >        final K least;
2749 >        DescendingSubMapKeyIterator(K least, K fence) {
2750 >            initDescending(least, fence);
2751 >            this.least = least;
2752 >        }
2753 >
2754 >        public K next() {
2755 >            Node<K,V> n = next;
2756 >            descend(least);
2757              return n.key;
2758          }
2759      }
# Line 2368 | Line 2763 | public class ConcurrentSkipListMap<K,V>
2763       * elsewhere of using the iterator itself to represent entries,
2764       * thus avoiding having to create entry objects in next().
2765       */
2766 <    class EntryIterator extends ConcurrentSkipListMapIterator
2372 <        implements Map.Entry<K,V>, Iterator<Map.Entry<K,V>>  {
2766 >    abstract class EntryIter extends Iter implements Map.Entry<K,V> {
2767          /** Cache of last value returned */
2768          Object lastValue;
2769  
2770 <        EntryIterator() {
2377 <            super();
2378 <        }
2379 <
2380 <        EntryIterator(K least, K fence) {
2381 <            super(least, fence);
2382 <        }
2383 <
2384 <        public Map.Entry<K,V> next() {
2385 <            lastValue = nextValue;
2386 <            advance();
2387 <            return this;
2770 >        EntryIter() {
2771          }
2772  
2773          public K getKey() {
# Line 2431 | Line 2814 | public class ConcurrentSkipListMap<K,V>
2814          }
2815      }
2816  
2817 <    /**
2818 <     * Submap iterators start at given starting point at beginning of
2819 <     * submap range, and advance until they are at end of range.
2820 <     */
2821 <    class SubMapEntryIterator extends EntryIterator {
2817 >    final class EntryIterator extends EntryIter
2818 >        implements Iterator<Map.Entry<K,V>> {
2819 >        EntryIterator() {
2820 >            initAscending();
2821 >        }
2822 >        public Map.Entry<K,V> next() {
2823 >            lastValue = nextValue;
2824 >            ascend();
2825 >            return this;
2826 >        }
2827 >    }
2828 >
2829 >    final class SubMapEntryIterator extends EntryIter
2830 >        implements Iterator<Map.Entry<K,V>> {
2831          final K fence;
2832          SubMapEntryIterator(K least, K fence) {
2833 <            super(least, fence);
2833 >            initAscending(least, fence);
2834              this.fence = fence;
2835          }
2836  
2837          public Map.Entry<K,V> next() {
2838              lastValue = nextValue;
2839 <            advance(fence);
2839 >            ascend(fence);
2840              return this;
2841          }
2842      }
2843  
2844 <    class SubMapValueIterator extends ConcurrentSkipListMapIterator
2845 <        implements Iterator<V> {
2846 <        final K fence;
2847 <        SubMapValueIterator(K least, K fence) {
2456 <            super(least, fence);
2457 <            this.fence = fence;
2844 >    final class DescendingEntryIterator extends EntryIter
2845 >        implements Iterator<Map.Entry<K,V>>  {
2846 >        DescendingEntryIterator() {
2847 >            initDescending();
2848          }
2849 <
2850 <        public V next() {
2851 <            Object v = nextValue;
2852 <            advance(fence);
2463 <            return (V)v;
2849 >        public Map.Entry<K,V> next() {
2850 >            lastValue = nextValue;
2851 >            descend();
2852 >            return this;
2853          }
2854      }
2855  
2856 <    class SubMapKeyIterator extends ConcurrentSkipListMapIterator
2857 <        implements Iterator<K> {
2858 <        final K fence;
2859 <        SubMapKeyIterator(K least, K fence) {
2860 <            super(least, fence);
2861 <            this.fence = fence;
2856 >    final class DescendingSubMapEntryIterator extends EntryIter
2857 >        implements Iterator<Map.Entry<K,V>>  {
2858 >        final K least;
2859 >        DescendingSubMapEntryIterator(K least, K fence) {
2860 >            initDescending(least, fence);
2861 >            this.least = least;
2862          }
2863  
2864 <        public K next() {
2865 <            Node<K,V> n = next;
2866 <            advance(fence);
2867 <            return n.key;
2864 >        public Map.Entry<K,V> next() {
2865 >            lastValue = nextValue;
2866 >            descend(least);
2867 >            return this;
2868          }
2869      }
2870  
2482    /* ---------------- Utilities for views, sets, submaps -------------- */
2483    
2871      // Factory methods for iterators needed by submaps and/or
2872      // ConcurrentSkipListSet
2873  
# Line 2488 | Line 2875 | public class ConcurrentSkipListMap<K,V>
2875          return new KeyIterator();
2876      }
2877  
2878 <    SubMapEntryIterator subMapEntryIterator(K least, K fence) {
2879 <        return new SubMapEntryIterator(least, fence);
2493 <    }
2494 <
2495 <    SubMapKeyIterator subMapKeyIterator(K least, K fence) {
2496 <        return new SubMapKeyIterator(least, fence);
2497 <    }
2498 <
2499 <    SubMapValueIterator subMapValueIterator(K least, K fence) {
2500 <        return new SubMapValueIterator(least, fence);
2501 <    }
2502 <
2503 <
2504 <    /**
2505 <     * Version of remove with boolean return. Needed by
2506 <     * view classes and ConcurrentSkipListSet
2507 <     */
2508 <    boolean removep(Object key) {
2509 <        return doRemove(key, null) != null;
2878 >    Iterator<K> descendingKeyIterator() {
2879 >        return new DescendingKeyIterator();
2880      }
2881  
2882 <    /**
2883 <     * Return SnapshotEntry for results of findNear ofter screening
2514 <     * to ensure result is in given range. Needed by submaps.
2515 <     * @param kkey the key
2516 <     * @param rel the relation -- OR'ed combination of EQ, LT, GT
2517 <     * @param least minimum allowed key value
2518 <     * @param fence key greater than maximum allowed key value
2519 <     * @return Entry fitting relation, or <tt>null</tt> if no such
2520 <     */
2521 <    SnapshotEntry<K,V> getNear(K kkey, int rel, K least, K fence) {
2522 <        K key = kkey;
2523 <        // Don't return keys less than least
2524 <        if ((rel & LT) == 0) {
2525 <            if (compare(key, least) < 0) {
2526 <                key = least;
2527 <                rel = rel | EQ;
2528 <            }
2529 <        }
2530 <
2531 <        for (;;) {
2532 <            Node<K,V> n = findNear(key, rel);
2533 <            if (n == null || !inHalfOpenRange(n.key, least, fence))
2534 <                return null;
2535 <            SnapshotEntry<K,V> e = n.createSnapshot();
2536 <            if (e != null)
2537 <                return e;
2538 <        }
2539 <    }
2540 <
2541 <    // Methods expanding out relational operations for submaps
2542 <
2543 <    /**
2544 <     * Return ceiling, or first node if key is <tt>null</tt>
2545 <     */
2546 <    Node<K,V> findCeiling(K key) {
2547 <        return (key == null)? findFirst() : findNear(key, GT|EQ);
2548 <    }
2549 <
2550 <    /**
2551 <     * Return lower node, or last node if key is <tt>null</tt>
2552 <     */
2553 <    Node<K,V> findLower(K key) {
2554 <        return (key == null)? findLast() : findNear(key, LT);
2555 <    }
2556 <
2557 <    /**
2558 <     * Find and remove least element of subrange.
2559 <     */
2560 <    SnapshotEntry<K,V> removeFirstEntryOfSubrange(K least, K fence) {
2561 <        for (;;) {
2562 <            Node<K,V> n = findCeiling(least);
2563 <            if (n == null)
2564 <                return null;
2565 <            K k = n.key;
2566 <            if (fence != null && compare(k, fence) >= 0)
2567 <                return null;
2568 <            V v = doRemove(k, null);
2569 <            if (v != null)
2570 <                return new SnapshotEntry<K,V>(k,v);
2571 <        }
2572 <    }
2573 <
2574 <
2575 <    /**
2576 <     * Find and remove greatest element of subrange.
2577 <     */
2578 <    SnapshotEntry<K,V> removeLastEntryOfSubrange(K least, K fence) {
2579 <        for (;;) {
2580 <            Node<K,V> n = findLower(fence);
2581 <            if (n == null)
2582 <                return null;
2583 <            K k = n.key;
2584 <            if (least != null && compare(k, least) < 0)
2585 <                return null;
2586 <            V v = doRemove(k, null);
2587 <            if (v != null)
2588 <                return new SnapshotEntry<K,V>(k,v);
2589 <        }
2590 <    }
2591 <
2592 <
2593 <    SnapshotEntry<K,V> getCeiling(K key, K least, K fence) {
2594 <        return getNear(key, GT|EQ, least, fence);
2595 <    }
2596 <
2597 <    SnapshotEntry<K,V> getLower(K key, K least, K fence) {
2598 <        return getNear(key, LT, least, fence);
2599 <    }
2600 <
2601 <    SnapshotEntry<K,V> getFloor(K key, K least, K fence) {
2602 <        return getNear(key, LT|EQ, least, fence);
2603 <    }
2604 <
2605 <    SnapshotEntry<K,V> getHigher(K key, K least, K fence) {
2606 <        return getNear(key, GT, least, fence);
2607 <    }
2608 <
2609 <    // Key-returning relational methods for ConcurrentSkipListSet
2610 <
2611 <    K ceilingKey(K key) {
2612 <        Node<K,V> n = findNear(key, GT|EQ);
2613 <        return (n == null)? null : n.key;
2614 <    }
2615 <
2616 <    K lowerKey(K key) {
2617 <        Node<K,V> n = findNear(key, LT);
2618 <        return (n == null)? null : n.key;
2882 >    SubMapEntryIterator subMapEntryIterator(K least, K fence) {
2883 >        return new SubMapEntryIterator(least, fence);
2884      }
2885  
2886 <    K floorKey(K key) {
2887 <        Node<K,V> n = findNear(key, LT|EQ);
2623 <        return (n == null)? null : n.key;
2886 >    DescendingSubMapEntryIterator descendingSubMapEntryIterator(K least, K fence) {
2887 >        return new DescendingSubMapEntryIterator(least, fence);
2888      }
2889  
2890 <    K higherKey(K key) {
2891 <        Node<K,V> n = findNear(key, GT);
2628 <        return (n == null)? null : n.key;
2890 >    SubMapKeyIterator subMapKeyIterator(K least, K fence) {
2891 >        return new SubMapKeyIterator(least, fence);
2892      }
2893  
2894 <    K lowestKey() {
2895 <        Node<K,V> n = findFirst();
2633 <        return (n == null)? null : n.key;
2894 >    DescendingSubMapKeyIterator descendingSubMapKeyIterator(K least, K fence) {
2895 >        return new DescendingSubMapKeyIterator(least, fence);
2896      }
2897  
2898 <    K highestKey() {
2899 <        Node<K,V> n = findLast();
2638 <        return (n == null)? null : n.key;
2898 >    SubMapValueIterator subMapValueIterator(K least, K fence) {
2899 >        return new SubMapValueIterator(least, fence);
2900      }
2901  
2902      /* ---------------- Views -------------- */
2903  
2904 <    final class KeySet extends AbstractSet<K> {
2904 >    class KeySet extends AbstractSet<K> {
2905          public Iterator<K> iterator() {
2906              return new KeyIterator();
2907          }
# Line 2673 | Line 2934 | public class ConcurrentSkipListMap<K,V>
2934          }
2935      }
2936  
2937 +    class DescendingKeySet extends KeySet {
2938 +        public Iterator<K> iterator() {
2939 +            return new DescendingKeyIterator();
2940 +        }
2941 +    }
2942  
2943      final class Values extends AbstractCollection<V> {
2944          public Iterator<V> iterator() {
# Line 2704 | Line 2970 | public class ConcurrentSkipListMap<K,V>
2970          }
2971      }
2972  
2973 <    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
2973 >    class EntrySet extends AbstractSet<Map.Entry<K,V>> {
2974          public Iterator<Map.Entry<K,V>> iterator() {
2975              return new EntryIterator();
2976          }
# Line 2719 | Line 2985 | public class ConcurrentSkipListMap<K,V>
2985              if (!(o instanceof Map.Entry))
2986                  return false;
2987              Map.Entry<K,V> e = (Map.Entry<K,V>)o;
2988 <            return ConcurrentSkipListMap.this.remove(e.getKey(), e.getValue());
2988 >            return ConcurrentSkipListMap.this.remove(e.getKey(),
2989 >                                                     e.getValue());
2990          }
2991          public boolean isEmpty() {
2992              return ConcurrentSkipListMap.this.isEmpty();
# Line 2733 | Line 3000 | public class ConcurrentSkipListMap<K,V>
3000  
3001          public Object[] toArray() {
3002              Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
3003 <            for (Node<K,V> n = findFirst(); n != null; n = n.next) {
3004 <                Map.Entry<K,V> e = n.createSnapshot();
2738 <                if (e != null)
2739 <                    c.add(e);
2740 <            }
3003 >            for (Map.Entry e : this)
3004 >                c.add(new SnapshotEntry(e.getKey(), e.getValue()));
3005              return c.toArray();
3006          }
3007          public <T> T[] toArray(T[] a) {
3008              Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
3009 <            for (Node<K,V> n = findFirst(); n != null; n = n.next) {
3010 <                Map.Entry<K,V> e = n.createSnapshot();
2747 <                if (e != null)
2748 <                    c.add(e);
2749 <            }
3009 >            for (Map.Entry e : this)
3010 >                c.add(new SnapshotEntry(e.getKey(), e.getValue()));
3011              return c.toArray(a);
3012          }
3013      }
3014  
3015 +    class DescendingEntrySet extends EntrySet {
3016 +        public Iterator<Map.Entry<K,V>> iterator() {
3017 +            return new DescendingEntryIterator();
3018 +        }
3019 +    }
3020 +
3021      /**
3022       * Submaps returned by {@link ConcurrentSkipListMap} submap operations
3023       * represent a subrange of mappings of their underlying
# Line 2776 | Line 3043 | public class ConcurrentSkipListMap<K,V>
3043          private transient Set<K> keySetView;
3044          private transient Set<Map.Entry<K,V>> entrySetView;
3045          private transient Collection<V> valuesView;
3046 +        private transient Set<K> descendingKeySetView;
3047 +        private transient Set<Map.Entry<K,V>> descendingEntrySetView;
3048  
3049          /**
3050           * Creates a new submap.
# Line 2786 | Line 3055 | public class ConcurrentSkipListMap<K,V>
3055           */
3056          ConcurrentSkipListSubMap(ConcurrentSkipListMap<K,V> map,
3057                                   K least, K fence) {
3058 <            if (least != null && fence != null && map.compare(least, fence) > 0)
3058 >            if (least != null &&
3059 >                fence != null &&
3060 >                map.compare(least, fence) > 0)
3061                  throw new IllegalArgumentException("inconsistent range");
3062              this.m = map;
3063              this.least = least;
# Line 2847 | Line 3118 | public class ConcurrentSkipListMap<K,V>
3118              return fence;
3119          }
3120  
2850        /**
2851         * Non-exception throwing version of firstKey needed by
2852         * ConcurrentSkipListSubSet
2853         * @return first key, or <tt>null</tt> if empty
2854         */
2855        K lowestKey() {
2856            ConcurrentSkipListMap.Node<K,V> n = firstNode();
2857            if (isBeforeEnd(n))
2858                return n.key;
2859            else
2860                return null;
2861        }
2862
2863        /**
2864         * Non-exception throwing version of highestKey needed by
2865         * ConcurrentSkipListSubSet
2866         * @return last key, or <tt>null</tt> if empty
2867         */
2868        K highestKey() {
2869            ConcurrentSkipListMap.Node<K,V> n = lastNode();
2870            if (isBeforeEnd(n))
2871                return n.key;
2872            else
2873                return null;
2874        }
3121  
3122          /* ----------------  Map API methods -------------- */
3123  
2878        /**
2879         * Returns <tt>true</tt> if this map contains a mapping for
2880         * the specified key.
2881         * @param key key whose presence in this map is to be tested.
2882         * @return <tt>true</tt> if this map contains a mapping for
2883         * the specified key.
2884         * @throws ClassCastException if the key cannot be compared
2885         * with the keys currently in the map.
2886         * @throws NullPointerException if the key is <tt>null</tt>.
2887         */
3124          public boolean containsKey(Object key) {
3125              K k = (K)key;
3126              return inHalfOpenRange(k) && m.containsKey(k);
3127          }
3128  
2893        /**
2894         * Returns the value to which this map maps the specified key.
2895         * Returns <tt>null</tt> if the map contains no mapping for
2896         * this key.
2897         *
2898         * @param key key whose associated value is to be returned.
2899         * @return the value to which this map maps the specified key,
2900         * or <tt>null</tt> if the map contains no mapping for the
2901         * key.
2902         * @throws ClassCastException if the key cannot be compared
2903         * with the keys currently in the map.
2904         * @throws NullPointerException if the key is <tt>null</tt>.
2905         */
3129          public V get(Object key) {
3130              K k = (K)key;
3131              return ((!inHalfOpenRange(k)) ? null : m.get(k));
3132          }
3133  
2911        /**
2912         * Associates the specified value with the specified key in
2913         * this map.  If the map previously contained a mapping for
2914         * this key, the old value is replaced.
2915         *
2916         * @param key key with which the specified value is to be associated.
2917         * @param value value to be associated with the specified key.
2918         *
2919         * @return previous value associated with specified key, or
2920         * <tt>null</tt> if there was no mapping for key.
2921         * @throws ClassCastException if the key cannot be compared
2922         * with the keys currently in the map.
2923         * @throws IllegalArgumentException if key outside range of
2924         * this submap.
2925         * @throws NullPointerException if the key or value are <tt>null</tt>.
2926         */
3134          public V put(K key, V value) {
3135              checkKey(key);
3136              return m.put(key, value);
3137          }
3138  
2932        /**
2933         * Removes the mapping for this key from this Map if present.
2934         *
2935         * @param key key for which mapping should be removed
2936         * @return previous value associated with specified key, or
2937         * <tt>null</tt> if there was no mapping for key.
2938         *
2939         * @throws ClassCastException if the key cannot be compared
2940         * with the keys currently in the map.
2941         * @throws NullPointerException if the key is <tt>null</tt>.
2942         */
3139          public V remove(Object key) {
3140              K k = (K)key;
3141              return (!inHalfOpenRange(k))? null : m.remove(k);
3142          }
3143  
2948        /**
2949         * Returns the number of elements in this map.  If this map
2950         * contains more than <tt>Integer.MAX_VALUE</tt> elements, it
2951         * returns <tt>Integer.MAX_VALUE</tt>.
2952         *
2953         * <p>Beware that, unlike in most collections, this method is
2954         * <em>NOT</em> a constant-time operation. Because of the
2955         * asynchronous nature of these maps, determining the current
2956         * number of elements requires traversing them all to count them.
2957         * Additionally, it is possible for the size to change during
2958         * execution of this method, in which case the returned result
2959         * will be inaccurate. Thus, this method is typically not very
2960         * useful in concurrent applications.
2961         *
2962         * @return  the number of elements in this map.
2963         */
3144          public int size() {
3145              long count = 0;
3146              for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
# Line 2972 | Line 3152 | public class ConcurrentSkipListMap<K,V>
3152              return count >= Integer.MAX_VALUE? Integer.MAX_VALUE : (int)count;
3153          }
3154  
2975        /**
2976         * Returns <tt>true</tt> if this map contains no key-value mappings.
2977         * @return <tt>true</tt> if this map contains no key-value mappings.
2978         */
3155          public boolean isEmpty() {
3156              return !isBeforeEnd(firstNode());
3157          }
3158  
2983        /**
2984         * Returns <tt>true</tt> if this map maps one or more keys to the
2985         * specified value.  This operation requires time linear in the
2986         * Map size.
2987         *
2988         * @param value value whose presence in this Map is to be tested.
2989         * @return  <tt>true</tt> if a mapping to <tt>value</tt> exists;
2990         *              <tt>false</tt> otherwise.
2991         * @throws  NullPointerException  if the value is <tt>null</tt>.
2992         */    
3159          public boolean containsValue(Object value) {
3160              if (value == null)
3161                  throw new NullPointerException();
# Line 3003 | Line 3169 | public class ConcurrentSkipListMap<K,V>
3169              return false;
3170          }
3171  
3006        /**
3007         * Removes all mappings from this map.
3008         */
3172          public void clear() {
3173              for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
3174                   isBeforeEnd(n);
# Line 3017 | Line 3180 | public class ConcurrentSkipListMap<K,V>
3180  
3181          /* ----------------  ConcurrentMap API methods -------------- */
3182  
3020        /**
3021         * If the specified key is not already associated
3022         * with a value, associate it with the given value.
3023         * This is equivalent to
3024         * <pre>
3025         *   if (!map.containsKey(key))
3026         *      return map.put(key, value);
3027         *   else
3028         *      return map.get(key);
3029         * </pre>
3030         * Except that the action is performed atomically.
3031         * @param key key with which the specified value is to be associated.
3032         * @param value value to be associated with the specified key.
3033         * @return previous value associated with specified key, or
3034         * <tt>null</tt> if there was no mapping for key.
3035         *
3036         * @throws ClassCastException if the key cannot be compared
3037         * with the keys currently in the map.
3038         * @throws IllegalArgumentException if key outside range of
3039         * this submap.
3040         * @throws NullPointerException if the key or value are <tt>null</tt>.
3041         */
3183          public V putIfAbsent(K key, V value) {
3184              checkKey(key);
3185              return m.putIfAbsent(key, value);
3186          }
3187  
3047        /**
3048         * Remove entry for key only if currently mapped to given value.
3049         * Acts as
3050         * <pre>
3051         *  if ((map.containsKey(key) && map.get(key).equals(value)) {
3052         *     map.remove(key);
3053         *     return true;
3054         * } else return false;
3055         * </pre>
3056         * except that the action is performed atomically.
3057         * @param key key with which the specified value is associated.
3058         * @param value value associated with the specified key.
3059         * @return true if the value was removed, false otherwise
3060         * @throws ClassCastException if the key cannot be compared
3061         * with the keys currently in the map.
3062         * @throws NullPointerException if the key or value are
3063         * <tt>null</tt>.
3064         */
3188          public boolean remove(Object key, Object value) {
3189              K k = (K)key;
3190              return inHalfOpenRange(k) && m.remove(k, value);
3191          }
3192  
3070        /**
3071         * Replace entry for key only if currently mapped to given value.
3072         * Acts as
3073         * <pre>
3074         *  if ((map.containsKey(key) && map.get(key).equals(oldValue)) {
3075         *     map.put(key, newValue);
3076         *     return true;
3077         * } else return false;
3078         * </pre>
3079         * except that the action is performed atomically.
3080         * @param key key with which the specified value is associated.
3081         * @param oldValue value expected to be associated with the specified key.
3082         * @param newValue value to be associated with the specified key.
3083         * @return true if the value was replaced
3084         * @throws ClassCastException if the key cannot be compared
3085         * with the keys currently in the map.
3086         * @throws IllegalArgumentException if key outside range of
3087         * this submap.
3088         * @throws NullPointerException if key, oldValue or newValue
3089         * are <tt>null</tt>.
3090         */
3193          public boolean replace(K key, V oldValue, V newValue) {
3194              checkKey(key);
3195              return m.replace(key, oldValue, newValue);
3196          }
3197  
3096        /**
3097         * Replace entry for key only if currently mapped to some value.
3098         * Acts as
3099         * <pre>
3100         *  if ((map.containsKey(key)) {
3101         *     return map.put(key, value);
3102         * } else return null;
3103         * </pre>
3104         * except that the action is performed atomically.
3105         * @param key key with which the specified value is associated.
3106         * @param value value to be associated with the specified key.
3107         * @return previous value associated with specified key, or
3108         * <tt>null</tt> if there was no mapping for key.
3109         * @throws ClassCastException if the key cannot be compared
3110         * with the keys currently in the map.
3111         * @throws IllegalArgumentException if key outside range of
3112         * this submap.
3113         * @throws NullPointerException if the key or value are
3114         * <tt>null</tt>.
3115         */
3198          public V replace(K key, V value) {
3199              checkKey(key);
3200              return m.replace(key, value);
# Line 3120 | Line 3202 | public class ConcurrentSkipListMap<K,V>
3202  
3203          /* ----------------  SortedMap API methods -------------- */
3204  
3123        /**
3124         * Returns the comparator used to order this map, or <tt>null</tt>
3125         * if this map uses its keys' natural order.
3126         *
3127         * @return the comparator associated with this map, or
3128         * <tt>null</tt> if it uses its keys' natural sort method.
3129         */
3205          public Comparator<? super K> comparator() {
3206              return m.comparator();
3207          }
3208  
3134        /**
3135         * Returns the first (lowest) key currently in this map.
3136         *
3137         * @return the first (lowest) key currently in this map.
3138         * @throws    NoSuchElementException Map is empty.
3139         */
3209          public K firstKey() {
3210              ConcurrentSkipListMap.Node<K,V> n = firstNode();
3211              if (isBeforeEnd(n))
# Line 3145 | Line 3214 | public class ConcurrentSkipListMap<K,V>
3214                  throw new NoSuchElementException();
3215          }
3216  
3148        /**
3149         * Returns the last (highest) key currently in this map.
3150         *
3151         * @return the last (highest) key currently in this map.
3152         * @throws    NoSuchElementException Map is empty.
3153         */
3217          public K lastKey() {
3218              ConcurrentSkipListMap.Node<K,V> n = lastNode();
3219              if (n != null) {
# Line 3161 | Line 3224 | public class ConcurrentSkipListMap<K,V>
3224              throw new NoSuchElementException();
3225          }
3226  
3164        /**
3165         * Returns a view of the portion of this map whose keys range
3166         * from <tt>fromKey</tt>, inclusive, to <tt>toKey</tt>,
3167         * exclusive.  (If <tt>fromKey</tt> and <tt>toKey</tt> are
3168         * equal, the returned sorted map is empty.)  The returned
3169         * sorted map is backed by this map, so changes in the
3170         * returned sorted map are reflected in this map, and
3171         * vice-versa.
3172
3173         * @param fromKey low endpoint (inclusive) of the subMap.
3174         * @param toKey high endpoint (exclusive) of the subMap.
3175         *
3176         * @return a view of the portion of this map whose keys range
3177         * from <tt>fromKey</tt>, inclusive, to <tt>toKey</tt>,
3178         * exclusive.
3179         *
3180         * @throws ClassCastException if <tt>fromKey</tt> and
3181         * <tt>toKey</tt> cannot be compared to one another using this
3182         * map's comparator (or, if the map has no comparator, using
3183         * natural ordering).
3184         * @throws IllegalArgumentException if <tt>fromKey</tt> is
3185         * greater than <tt>toKey</tt> or either key is outside of
3186         * the range of this submap.
3187         * @throws NullPointerException if <tt>fromKey</tt> or
3188         * <tt>toKey</tt> is <tt>null</tt>.
3189         */
3227          public ConcurrentNavigableMap<K,V> subMap(K fromKey, K toKey) {
3228              if (fromKey == null || toKey == null)
3229                  throw new NullPointerException();
# Line 3195 | Line 3232 | public class ConcurrentSkipListMap<K,V>
3232              return new ConcurrentSkipListSubMap(m, fromKey, toKey);
3233          }
3234  
3198        /**
3199         * Returns a view of the portion of this map whose keys are
3200         * strictly less than <tt>toKey</tt>.  The returned sorted map
3201         * is backed by this map, so changes in the returned sorted
3202         * map are reflected in this map, and vice-versa.
3203         * @param toKey high endpoint (exclusive) of the headMap.
3204         * @return a view of the portion of this map whose keys are
3205         * strictly less than <tt>toKey</tt>.
3206         *
3207         * @throws ClassCastException if <tt>toKey</tt> is not
3208         * compatible with this map's comparator (or, if the map has
3209         * no comparator, if <tt>toKey</tt> does not implement
3210         * <tt>Comparable</tt>).
3211         * @throws IllegalArgumentException if <tt>toKey</tt> is
3212         * outside of the range of this submap.
3213         * @throws NullPointerException if <tt>toKey</tt> is
3214         * <tt>null</tt>.
3215         */
3235          public ConcurrentNavigableMap<K,V> headMap(K toKey) {
3236              if (toKey == null)
3237                  throw new NullPointerException();
# Line 3221 | Line 3240 | public class ConcurrentSkipListMap<K,V>
3240              return new ConcurrentSkipListSubMap(m, least, toKey);
3241          }
3242  
3224        /**
3225         * Returns a view of the portion of this map whose keys are
3226         * greater than or equal to <tt>fromKey</tt>.  The returned sorted
3227         * map is backed by this map, so changes in the returned sorted
3228         * map are reflected in this map, and vice-versa.
3229         * @param fromKey low endpoint (inclusive) of the tailMap.
3230         * @return a view of the portion of this map whose keys are
3231         * greater than or equal to <tt>fromKey</tt>.
3232         * @throws ClassCastException if <tt>fromKey</tt> is not
3233         * compatible with this map's comparator (or, if the map has
3234         * no comparator, if <tt>fromKey</tt> does not implement
3235         * <tt>Comparable</tt>).
3236         * @throws IllegalArgumentException if <tt>fromKey</tt> is
3237         * outside of the range of this submap.
3238         * @throws NullPointerException if <tt>fromKey</tt> is
3239         * <tt>null</tt>.
3240         */
3243          public  ConcurrentNavigableMap<K,V> tailMap(K fromKey) {
3244              if (fromKey == null)
3245                  throw new NullPointerException();
# Line 3248 | Line 3250 | public class ConcurrentSkipListMap<K,V>
3250  
3251          /* ----------------  Relational methods -------------- */
3252  
3251        /**
3252         * Returns a key-value mapping associated with the least key
3253         * greater than or equal to the given key, or <tt>null</tt> if there is
3254         * no such entry. The returned entry does <em>not</em> support
3255         * the <tt>Entry.setValue</tt> method.
3256         *
3257         * @param key the key.
3258         * @return an Entry associated with ceiling of given key, or <tt>null</tt>
3259         * if there is no such Entry.
3260         * @throws ClassCastException if key cannot be compared with the keys
3261         *            currently in the map.
3262         * @throws NullPointerException if key is <tt>null</tt>.
3263         */
3253          public Map.Entry<K,V> ceilingEntry(K key) {
3254 <            return m.getCeiling(key, least, fence);
3254 >            return (SnapshotEntry<K,V>)
3255 >                m.getNear(key, m.GT|m.EQ, least, fence, false);
3256 >        }
3257 >
3258 >        public K ceilingKey(K key) {
3259 >            return (K)
3260 >                m.getNear(key, m.GT|m.EQ, least, fence, true);
3261          }
3262  
3268        /**
3269         * Returns a key-value mapping associated with the greatest
3270         * key strictly less than the given key, or <tt>null</tt> if there is no
3271         * such entry. The returned entry does <em>not</em> support
3272         * the <tt>Entry.setValue</tt> method.
3273         *
3274         * @param key the key.
3275         * @return an Entry with greatest key less than the given
3276         * key, or <tt>null</tt> if there is no such Entry.
3277         * @throws ClassCastException if key cannot be compared with the keys
3278         *            currently in the map.
3279         * @throws NullPointerException if key is <tt>null</tt>.
3280         */
3263          public Map.Entry<K,V> lowerEntry(K key) {
3264 <            return m.getLower(key, least, fence);
3264 >            return (SnapshotEntry<K,V>)
3265 >                m.getNear(key, m.LT, least, fence, false);
3266 >        }
3267 >
3268 >        public K lowerKey(K key) {
3269 >            return (K)
3270 >                m.getNear(key, m.LT, least, fence, true);
3271          }
3272  
3285        /**
3286         * Returns a key-value mapping associated with the greatest
3287         * key less than or equal to the given key, or <tt>null</tt> if there is no
3288         * such entry. The returned entry does <em>not</em> support
3289         * the <tt>Entry.setValue</tt> method.
3290         *
3291         * @param key the key.
3292         * @return an Entry associated with floor of given key, or <tt>null</tt>
3293         * if there is no such Entry.
3294         * @throws ClassCastException if key cannot be compared with the keys
3295         *            currently in the map.
3296         * @throws NullPointerException if key is <tt>null</tt>.
3297         */
3273          public Map.Entry<K,V> floorEntry(K key) {
3274 <            return m.getFloor(key, least, fence);
3274 >            return (SnapshotEntry<K,V>)
3275 >                m.getNear(key, m.LT|m.EQ, least, fence, false);
3276 >        }
3277 >
3278 >        public K floorKey(K key) {
3279 >            return (K)
3280 >                m.getNear(key, m.LT|m.EQ, least, fence, true);
3281          }
3282 +
3283          
3302        /**
3303         * Returns a key-value mapping associated with the least
3304         * key strictly greater than the given key, or <tt>null</tt> if there is no
3305         * such entry. The returned entry does <em>not</em> support
3306         * the <tt>Entry.setValue</tt> method.
3307         *
3308         * @param key the key.
3309         * @return an Entry with least key greater than the given key, or
3310         * <tt>null</tt> if there is no such Entry.
3311         * @throws ClassCastException if key cannot be compared with the keys
3312         *            currently in the map.
3313         * @throws NullPointerException if key is <tt>null</tt>.
3314         */
3284          public Map.Entry<K,V> higherEntry(K key) {
3285 <            return m.getHigher(key, least, fence);
3285 >            return (SnapshotEntry<K,V>)
3286 >                m.getNear(key, m.GT, least, fence, false);
3287 >        }
3288 >
3289 >        public K higherKey(K key) {
3290 >            return (K)
3291 >                m.getNear(key, m.GT, least, fence, true);
3292          }
3293  
3319        /**
3320         * Returns a key-value mapping associated with the least
3321         * key in this map, or <tt>null</tt> if the map is empty.
3322         * The returned entry does <em>not</em> support
3323         * the <tt>Entry.setValue</tt> method.
3324         *
3325         * @return an Entry with least key, or <tt>null</tt>
3326         * if the map is empty.
3327         */
3294          public Map.Entry<K,V> firstEntry() {
3295              for (;;) {
3296                  ConcurrentSkipListMap.Node<K,V> n = firstNode();
# Line 3336 | Line 3302 | public class ConcurrentSkipListMap<K,V>
3302              }
3303          }
3304  
3339        /**
3340         * Returns a key-value mapping associated with the greatest
3341         * key in this map, or <tt>null</tt> if the map is empty.
3342         * The returned entry does <em>not</em> support
3343         * the <tt>Entry.setValue</tt> method.
3344         *
3345         * @return an Entry with greatest key, or <tt>null</tt>
3346         * if the map is empty.
3347         */
3305          public Map.Entry<K,V> lastEntry() {
3306              for (;;) {
3307                  ConcurrentSkipListMap.Node<K,V> n = lastNode();
# Line 3356 | Line 3313 | public class ConcurrentSkipListMap<K,V>
3313              }
3314          }
3315  
3359        /**
3360         * Removes and returns a key-value mapping associated with
3361         * the least key in this map, or <tt>null</tt> if the map is empty.
3362         * The returned entry does <em>not</em> support
3363         * the <tt>Entry.setValue</tt> method.
3364         *
3365         * @return the removed first entry of this map, or <tt>null</tt>
3366         * if the map is empty.
3367         */
3316          public Map.Entry<K,V> pollFirstEntry() {
3317 <            return m.removeFirstEntryOfSubrange(least, fence);
3317 >            return (SnapshotEntry<K,V>)
3318 >                m.removeFirstEntryOfSubrange(least, fence, false);
3319          }
3320  
3372        /**
3373         * Removes and returns a key-value mapping associated with
3374         * the greatest key in this map, or <tt>null</tt> if the map is empty.
3375         * The returned entry does <em>not</em> support
3376         * the <tt>Entry.setValue</tt> method.
3377         *
3378         * @return the removed last entry of this map, or <tt>null</tt>
3379         * if the map is empty.
3380         */
3321          public Map.Entry<K,V> pollLastEntry() {
3322 <            return m.removeLastEntryOfSubrange(least, fence);
3322 >            return (SnapshotEntry<K,V>)
3323 >                m.removeLastEntryOfSubrange(least, fence, false);
3324          }
3325  
3326          /* ---------------- Submap Views -------------- */
3327  
3387        /**
3388         * Returns a set view of the keys contained in this map.  The
3389         * set is backed by the map, so changes to the map are
3390         * reflected in the set, and vice-versa.  The set supports
3391         * element removal, which removes the corresponding mapping
3392         * from this map, via the <tt>Iterator.remove</tt>,
3393         * <tt>Set.remove</tt>, <tt>removeAll</tt>,
3394         * <tt>retainAll</tt>, and <tt>clear</tt> operations.  It does
3395         * not support the <tt>add</tt> or <tt>addAll</tt> operations.
3396         * The view's <tt>iterator</tt> is a "weakly consistent"
3397         * iterator that will never throw {@link
3398         * java.util.ConcurrentModificationException}, and guarantees
3399         * to traverse elements as they existed upon construction of
3400         * the iterator, and may (but is not guaranteed to) reflect
3401         * any modifications subsequent to construction.
3402         *
3403         * @return a set view of the keys contained in this map.
3404         */
3328          public Set<K> keySet() {
3329              Set<K> ks = keySetView;
3330              return (ks != null) ? ks : (keySetView = new KeySetView());
# Line 3434 | Line 3357 | public class ConcurrentSkipListMap<K,V>
3357              }
3358          }
3359  
3360 <        /**
3361 <         * Returns a collection view of the values contained in this
3362 <         * map.  The collection is backed by the map, so changes to
3363 <         * the map are reflected in the collection, and vice-versa.
3364 <         * The collection supports element removal, which removes the
3365 <         * corresponding mapping from this map, via the
3366 <         * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
3367 <         * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
3368 <         * operations.  It does not support the <tt>add</tt> or
3369 <         * <tt>addAll</tt> operations.  The view's <tt>iterator</tt>
3370 <         * is a "weakly consistent" iterator that will never throw
3448 <         * {@link java.util.ConcurrentModificationException}, and
3449 <         * guarantees to traverse elements as they existed upon
3450 <         * construction of the iterator, and may (but is not
3451 <         * guaranteed to) reflect any modifications subsequent to
3452 <         * construction.
3453 <         *
3454 <         * @return a collection view of the values contained in this map.
3455 <         */
3360 >        public Set<K> descendingKeySet() {
3361 >            Set<K> ks = descendingKeySetView;
3362 >            return (ks != null) ? ks : (descendingKeySetView = new DescendingKeySetView());
3363 >        }
3364 >
3365 >        class DescendingKeySetView extends KeySetView {
3366 >            public Iterator<K> iterator() {
3367 >                return m.descendingSubMapKeyIterator(least, fence);
3368 >            }
3369 >        }
3370 >
3371          public Collection<V> values() {
3372              Collection<V> vs = valuesView;
3373              return (vs != null) ? vs : (valuesView = new ValuesView());
# Line 3485 | Line 3400 | public class ConcurrentSkipListMap<K,V>
3400              }
3401          }
3402  
3488        /**
3489         * Returns a collection view of the mappings contained in this
3490         * map.  Each element in the returned collection is a
3491         * <tt>Map.Entry</tt>.  The collection is backed by the map,
3492         * so changes to the map are reflected in the collection, and
3493         * vice-versa.  The collection supports element removal, which
3494         * removes the corresponding mapping from the map, via the
3495         * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
3496         * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
3497         * operations.  It does not support the <tt>add</tt> or
3498         * <tt>addAll</tt> operations.  The view's <tt>iterator</tt>
3499         * is a "weakly consistent" iterator that will never throw
3500         * {@link java.util.ConcurrentModificationException}, and
3501         * guarantees to traverse elements as they existed upon
3502         * construction of the iterator, and may (but is not
3503         * guaranteed to) reflect any modifications subsequent to
3504         * construction. The <tt>Map.Entry</tt> elements returned by
3505         * <tt>iterator.next()</tt> do <em>not</em> support the
3506         * <tt>setValue</tt> operation.
3507         *
3508         * @return a collection view of the mappings contained in this map.
3509         */
3403          public Set<Map.Entry<K,V>> entrySet() {
3404              Set<Map.Entry<K,V>> es = entrySetView;
3405              return (es != null) ? es : (entrySetView = new EntrySetView());
# Line 3543 | Line 3436 | public class ConcurrentSkipListMap<K,V>
3436              }
3437              public Object[] toArray() {
3438                  Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
3439 <                for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
3440 <                     isBeforeEnd(n);
3548 <                     n = n.next) {
3549 <                    Map.Entry<K,V> e = n.createSnapshot();
3550 <                    if (e != null)
3551 <                        c.add(e);
3552 <                }
3439 >                for (Map.Entry e : this)
3440 >                    c.add(new SnapshotEntry(e.getKey(), e.getValue()));
3441                  return c.toArray();
3442              }
3443              public <T> T[] toArray(T[] a) {
3444                  Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
3445 <                for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
3446 <                     isBeforeEnd(n);
3559 <                     n = n.next) {
3560 <                    Map.Entry<K,V> e = n.createSnapshot();
3561 <                    if (e != null)
3562 <                        c.add(e);
3563 <                }
3445 >                for (Map.Entry e : this)
3446 >                    c.add(new SnapshotEntry(e.getKey(), e.getValue()));
3447                  return c.toArray(a);
3448              }
3449          }
3567    }
3450  
3451 +        public Set<Map.Entry<K,V>> descendingEntrySet() {
3452 +            Set<Map.Entry<K,V>> es = descendingEntrySetView;
3453 +            return (es != null) ? es : (descendingEntrySetView = new DescendingEntrySetView());
3454 +        }
3455 +
3456 +        class DescendingEntrySetView extends EntrySetView {
3457 +            public Iterator<Map.Entry<K,V>> iterator() {
3458 +                return m.descendingSubMapEntryIterator(least, fence);
3459 +            }
3460 +        }
3461 +    }
3462   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines