ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ConcurrentLinkedDeque.java
Revision: 1.4
Committed: Sun Oct 21 06:40:20 2012 UTC (11 years, 6 months ago) by jsr166
Branch: MAIN
Changes since 1.3: +0 -1 lines
Log Message:
no blank line between javadoc and corresponding code

File Contents

# Content
1 /*
2 * Written by Doug Lea and Martin Buchholz with assistance from members of
3 * JCP JSR-166 Expert Group and released to the public domain, as explained
4 * at http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package jsr166y;
8
9 import java.util.AbstractCollection;
10 import java.util.ArrayList;
11 import java.util.Collection;
12 import java.util.Deque;
13 import java.util.Iterator;
14 import java.util.NoSuchElementException;
15 import java.util.Queue;
16
17 /**
18 * An unbounded concurrent {@linkplain Deque deque} based on linked nodes.
19 * Concurrent insertion, removal, and access operations execute safely
20 * across multiple threads.
21 * A {@code ConcurrentLinkedDeque} is an appropriate choice when
22 * many threads will share access to a common collection.
23 * Like most other concurrent collection implementations, this class
24 * does not permit the use of {@code null} elements.
25 *
26 * <p>Iterators are <i>weakly consistent</i>, returning elements
27 * reflecting the state of the deque at some point at or since the
28 * creation of the iterator. They do <em>not</em> throw {@link
29 * java.util.ConcurrentModificationException
30 * ConcurrentModificationException}, and may proceed concurrently with
31 * other operations.
32 *
33 * <p>Beware that, unlike in most collections, the {@code size} method
34 * is <em>NOT</em> a constant-time operation. Because of the
35 * asynchronous nature of these deques, determining the current number
36 * of elements requires a traversal of the elements, and so may report
37 * inaccurate results if this collection is modified during traversal.
38 * Additionally, the bulk operations {@code addAll},
39 * {@code removeAll}, {@code retainAll}, {@code containsAll},
40 * {@code equals}, and {@code toArray} are <em>not</em> guaranteed
41 * to be performed atomically. For example, an iterator operating
42 * concurrently with an {@code addAll} operation might view only some
43 * of the added elements.
44 *
45 * <p>This class and its iterator implement all of the <em>optional</em>
46 * methods of the {@link Deque} and {@link Iterator} interfaces.
47 *
48 * <p>Memory consistency effects: As with other concurrent collections,
49 * actions in a thread prior to placing an object into a
50 * {@code ConcurrentLinkedDeque}
51 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
52 * actions subsequent to the access or removal of that element from
53 * the {@code ConcurrentLinkedDeque} in another thread.
54 *
55 * <p>This class is a member of the
56 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
57 * Java Collections Framework</a>.
58 *
59 * @since 1.7
60 * @author Doug Lea
61 * @author Martin Buchholz
62 * @param <E> the type of elements held in this collection
63 */
64 public class ConcurrentLinkedDeque<E>
65 extends AbstractCollection<E>
66 implements Deque<E>, java.io.Serializable {
67
68 /*
69 * This is an implementation of a concurrent lock-free deque
70 * supporting interior removes but not interior insertions, as
71 * required to support the entire Deque interface.
72 *
73 * We extend the techniques developed for ConcurrentLinkedQueue and
74 * LinkedTransferQueue (see the internal docs for those classes).
75 * Understanding the ConcurrentLinkedQueue implementation is a
76 * prerequisite for understanding the implementation of this class.
77 *
78 * The data structure is a symmetrical doubly-linked "GC-robust"
79 * linked list of nodes. We minimize the number of volatile writes
80 * using two techniques: advancing multiple hops with a single CAS
81 * and mixing volatile and non-volatile writes of the same memory
82 * locations.
83 *
84 * A node contains the expected E ("item") and links to predecessor
85 * ("prev") and successor ("next") nodes:
86 *
87 * class Node<E> { volatile Node<E> prev, next; volatile E item; }
88 *
89 * A node p is considered "live" if it contains a non-null item
90 * (p.item != null). When an item is CASed to null, the item is
91 * atomically logically deleted from the collection.
92 *
93 * At any time, there is precisely one "first" node with a null
94 * prev reference that terminates any chain of prev references
95 * starting at a live node. Similarly there is precisely one
96 * "last" node terminating any chain of next references starting at
97 * a live node. The "first" and "last" nodes may or may not be live.
98 * The "first" and "last" nodes are always mutually reachable.
99 *
100 * A new element is added atomically by CASing the null prev or
101 * next reference in the first or last node to a fresh node
102 * containing the element. The element's node atomically becomes
103 * "live" at that point.
104 *
105 * A node is considered "active" if it is a live node, or the
106 * first or last node. Active nodes cannot be unlinked.
107 *
108 * A "self-link" is a next or prev reference that is the same node:
109 * p.prev == p or p.next == p
110 * Self-links are used in the node unlinking process. Active nodes
111 * never have self-links.
112 *
113 * A node p is active if and only if:
114 *
115 * p.item != null ||
116 * (p.prev == null && p.next != p) ||
117 * (p.next == null && p.prev != p)
118 *
119 * The deque object has two node references, "head" and "tail".
120 * The head and tail are only approximations to the first and last
121 * nodes of the deque. The first node can always be found by
122 * following prev pointers from head; likewise for tail. However,
123 * it is permissible for head and tail to be referring to deleted
124 * nodes that have been unlinked and so may not be reachable from
125 * any live node.
126 *
127 * There are 3 stages of node deletion;
128 * "logical deletion", "unlinking", and "gc-unlinking".
129 *
130 * 1. "logical deletion" by CASing item to null atomically removes
131 * the element from the collection, and makes the containing node
132 * eligible for unlinking.
133 *
134 * 2. "unlinking" makes a deleted node unreachable from active
135 * nodes, and thus eventually reclaimable by GC. Unlinked nodes
136 * may remain reachable indefinitely from an iterator.
137 *
138 * Physical node unlinking is merely an optimization (albeit a
139 * critical one), and so can be performed at our convenience. At
140 * any time, the set of live nodes maintained by prev and next
141 * links are identical, that is, the live nodes found via next
142 * links from the first node is equal to the elements found via
143 * prev links from the last node. However, this is not true for
144 * nodes that have already been logically deleted - such nodes may
145 * be reachable in one direction only.
146 *
147 * 3. "gc-unlinking" takes unlinking further by making active
148 * nodes unreachable from deleted nodes, making it easier for the
149 * GC to reclaim future deleted nodes. This step makes the data
150 * structure "gc-robust", as first described in detail by Boehm
151 * (http://portal.acm.org/citation.cfm?doid=503272.503282).
152 *
153 * GC-unlinked nodes may remain reachable indefinitely from an
154 * iterator, but unlike unlinked nodes, are never reachable from
155 * head or tail.
156 *
157 * Making the data structure GC-robust will eliminate the risk of
158 * unbounded memory retention with conservative GCs and is likely
159 * to improve performance with generational GCs.
160 *
161 * When a node is dequeued at either end, e.g. via poll(), we would
162 * like to break any references from the node to active nodes. We
163 * develop further the use of self-links that was very effective in
164 * other concurrent collection classes. The idea is to replace
165 * prev and next pointers with special values that are interpreted
166 * to mean off-the-list-at-one-end. These are approximations, but
167 * good enough to preserve the properties we want in our
168 * traversals, e.g. we guarantee that a traversal will never visit
169 * the same element twice, but we don't guarantee whether a
170 * traversal that runs out of elements will be able to see more
171 * elements later after enqueues at that end. Doing gc-unlinking
172 * safely is particularly tricky, since any node can be in use
173 * indefinitely (for example by an iterator). We must ensure that
174 * the nodes pointed at by head/tail never get gc-unlinked, since
175 * head/tail are needed to get "back on track" by other nodes that
176 * are gc-unlinked. gc-unlinking accounts for much of the
177 * implementation complexity.
178 *
179 * Since neither unlinking nor gc-unlinking are necessary for
180 * correctness, there are many implementation choices regarding
181 * frequency (eagerness) of these operations. Since volatile
182 * reads are likely to be much cheaper than CASes, saving CASes by
183 * unlinking multiple adjacent nodes at a time may be a win.
184 * gc-unlinking can be performed rarely and still be effective,
185 * since it is most important that long chains of deleted nodes
186 * are occasionally broken.
187 *
188 * The actual representation we use is that p.next == p means to
189 * goto the first node (which in turn is reached by following prev
190 * pointers from head), and p.next == null && p.prev == p means
191 * that the iteration is at an end and that p is a (static final)
192 * dummy node, NEXT_TERMINATOR, and not the last active node.
193 * Finishing the iteration when encountering such a TERMINATOR is
194 * good enough for read-only traversals, so such traversals can use
195 * p.next == null as the termination condition. When we need to
196 * find the last (active) node, for enqueueing a new node, we need
197 * to check whether we have reached a TERMINATOR node; if so,
198 * restart traversal from tail.
199 *
200 * The implementation is completely directionally symmetrical,
201 * except that most public methods that iterate through the list
202 * follow next pointers ("forward" direction).
203 *
204 * We believe (without full proof) that all single-element deque
205 * operations (e.g., addFirst, peekLast, pollLast) are linearizable
206 * (see Herlihy and Shavit's book). However, some combinations of
207 * operations are known not to be linearizable. In particular,
208 * when an addFirst(A) is racing with pollFirst() removing B, it is
209 * possible for an observer iterating over the elements to observe
210 * A B C and subsequently observe A C, even though no interior
211 * removes are ever performed. Nevertheless, iterators behave
212 * reasonably, providing the "weakly consistent" guarantees.
213 *
214 * Empirically, microbenchmarks suggest that this class adds about
215 * 40% overhead relative to ConcurrentLinkedQueue, which feels as
216 * good as we can hope for.
217 */
218
219 private static final long serialVersionUID = 876323262645176354L;
220
221 /**
222 * A node from which the first node on list (that is, the unique node p
223 * with p.prev == null && p.next != p) can be reached in O(1) time.
224 * Invariants:
225 * - the first node is always O(1) reachable from head via prev links
226 * - all live nodes are reachable from the first node via succ()
227 * - head != null
228 * - (tmp = head).next != tmp || tmp != head
229 * - head is never gc-unlinked (but may be unlinked)
230 * Non-invariants:
231 * - head.item may or may not be null
232 * - head may not be reachable from the first or last node, or from tail
233 */
234 private transient volatile Node<E> head;
235
236 /**
237 * A node from which the last node on list (that is, the unique node p
238 * with p.next == null && p.prev != p) can be reached in O(1) time.
239 * Invariants:
240 * - the last node is always O(1) reachable from tail via next links
241 * - all live nodes are reachable from the last node via pred()
242 * - tail != null
243 * - tail is never gc-unlinked (but may be unlinked)
244 * Non-invariants:
245 * - tail.item may or may not be null
246 * - tail may not be reachable from the first or last node, or from head
247 */
248 private transient volatile Node<E> tail;
249
250 private static final Node<Object> PREV_TERMINATOR, NEXT_TERMINATOR;
251
252 @SuppressWarnings("unchecked")
253 Node<E> prevTerminator() {
254 return (Node<E>) PREV_TERMINATOR;
255 }
256
257 @SuppressWarnings("unchecked")
258 Node<E> nextTerminator() {
259 return (Node<E>) NEXT_TERMINATOR;
260 }
261
262 static final class Node<E> {
263 volatile Node<E> prev;
264 volatile E item;
265 volatile Node<E> next;
266
267 Node() { // default constructor for NEXT_TERMINATOR, PREV_TERMINATOR
268 }
269
270 /**
271 * Constructs a new node. Uses relaxed write because item can
272 * only be seen after publication via casNext or casPrev.
273 */
274 Node(E item) {
275 UNSAFE.putObject(this, itemOffset, item);
276 }
277
278 boolean casItem(E cmp, E val) {
279 return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
280 }
281
282 void lazySetNext(Node<E> val) {
283 UNSAFE.putOrderedObject(this, nextOffset, val);
284 }
285
286 boolean casNext(Node<E> cmp, Node<E> val) {
287 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
288 }
289
290 void lazySetPrev(Node<E> val) {
291 UNSAFE.putOrderedObject(this, prevOffset, val);
292 }
293
294 boolean casPrev(Node<E> cmp, Node<E> val) {
295 return UNSAFE.compareAndSwapObject(this, prevOffset, cmp, val);
296 }
297
298 // Unsafe mechanics
299
300 private static final sun.misc.Unsafe UNSAFE;
301 private static final long prevOffset;
302 private static final long itemOffset;
303 private static final long nextOffset;
304
305 static {
306 try {
307 UNSAFE = getUnsafe();
308 Class<?> k = Node.class;
309 prevOffset = UNSAFE.objectFieldOffset
310 (k.getDeclaredField("prev"));
311 itemOffset = UNSAFE.objectFieldOffset
312 (k.getDeclaredField("item"));
313 nextOffset = UNSAFE.objectFieldOffset
314 (k.getDeclaredField("next"));
315 } catch (Exception e) {
316 throw new Error(e);
317 }
318 }
319 }
320
321 /**
322 * Links e as first element.
323 */
324 private void linkFirst(E e) {
325 checkNotNull(e);
326 final Node<E> newNode = new Node<E>(e);
327
328 restartFromHead:
329 for (;;)
330 for (Node<E> h = head, p = h, q;;) {
331 if ((q = p.prev) != null &&
332 (q = (p = q).prev) != null)
333 // Check for head updates every other hop.
334 // If p == q, we are sure to follow head instead.
335 p = (h != (h = head)) ? h : q;
336 else if (p.next == p) // PREV_TERMINATOR
337 continue restartFromHead;
338 else {
339 // p is first node
340 newNode.lazySetNext(p); // CAS piggyback
341 if (p.casPrev(null, newNode)) {
342 // Successful CAS is the linearization point
343 // for e to become an element of this deque,
344 // and for newNode to become "live".
345 if (p != h) // hop two nodes at a time
346 casHead(h, newNode); // Failure is OK.
347 return;
348 }
349 // Lost CAS race to another thread; re-read prev
350 }
351 }
352 }
353
354 /**
355 * Links e as last element.
356 */
357 private void linkLast(E e) {
358 checkNotNull(e);
359 final Node<E> newNode = new Node<E>(e);
360
361 restartFromTail:
362 for (;;)
363 for (Node<E> t = tail, p = t, q;;) {
364 if ((q = p.next) != null &&
365 (q = (p = q).next) != null)
366 // Check for tail updates every other hop.
367 // If p == q, we are sure to follow tail instead.
368 p = (t != (t = tail)) ? t : q;
369 else if (p.prev == p) // NEXT_TERMINATOR
370 continue restartFromTail;
371 else {
372 // p is last node
373 newNode.lazySetPrev(p); // CAS piggyback
374 if (p.casNext(null, newNode)) {
375 // Successful CAS is the linearization point
376 // for e to become an element of this deque,
377 // and for newNode to become "live".
378 if (p != t) // hop two nodes at a time
379 casTail(t, newNode); // Failure is OK.
380 return;
381 }
382 // Lost CAS race to another thread; re-read next
383 }
384 }
385 }
386
387 private static final int HOPS = 2;
388
389 /**
390 * Unlinks non-null node x.
391 */
392 void unlink(Node<E> x) {
393 // assert x != null;
394 // assert x.item == null;
395 // assert x != PREV_TERMINATOR;
396 // assert x != NEXT_TERMINATOR;
397
398 final Node<E> prev = x.prev;
399 final Node<E> next = x.next;
400 if (prev == null) {
401 unlinkFirst(x, next);
402 } else if (next == null) {
403 unlinkLast(x, prev);
404 } else {
405 // Unlink interior node.
406 //
407 // This is the common case, since a series of polls at the
408 // same end will be "interior" removes, except perhaps for
409 // the first one, since end nodes cannot be unlinked.
410 //
411 // At any time, all active nodes are mutually reachable by
412 // following a sequence of either next or prev pointers.
413 //
414 // Our strategy is to find the unique active predecessor
415 // and successor of x. Try to fix up their links so that
416 // they point to each other, leaving x unreachable from
417 // active nodes. If successful, and if x has no live
418 // predecessor/successor, we additionally try to gc-unlink,
419 // leaving active nodes unreachable from x, by rechecking
420 // that the status of predecessor and successor are
421 // unchanged and ensuring that x is not reachable from
422 // tail/head, before setting x's prev/next links to their
423 // logical approximate replacements, self/TERMINATOR.
424 Node<E> activePred, activeSucc;
425 boolean isFirst, isLast;
426 int hops = 1;
427
428 // Find active predecessor
429 for (Node<E> p = prev; ; ++hops) {
430 if (p.item != null) {
431 activePred = p;
432 isFirst = false;
433 break;
434 }
435 Node<E> q = p.prev;
436 if (q == null) {
437 if (p.next == p)
438 return;
439 activePred = p;
440 isFirst = true;
441 break;
442 }
443 else if (p == q)
444 return;
445 else
446 p = q;
447 }
448
449 // Find active successor
450 for (Node<E> p = next; ; ++hops) {
451 if (p.item != null) {
452 activeSucc = p;
453 isLast = false;
454 break;
455 }
456 Node<E> q = p.next;
457 if (q == null) {
458 if (p.prev == p)
459 return;
460 activeSucc = p;
461 isLast = true;
462 break;
463 }
464 else if (p == q)
465 return;
466 else
467 p = q;
468 }
469
470 // TODO: better HOP heuristics
471 if (hops < HOPS
472 // always squeeze out interior deleted nodes
473 && (isFirst | isLast))
474 return;
475
476 // Squeeze out deleted nodes between activePred and
477 // activeSucc, including x.
478 skipDeletedSuccessors(activePred);
479 skipDeletedPredecessors(activeSucc);
480
481 // Try to gc-unlink, if possible
482 if ((isFirst | isLast) &&
483
484 // Recheck expected state of predecessor and successor
485 (activePred.next == activeSucc) &&
486 (activeSucc.prev == activePred) &&
487 (isFirst ? activePred.prev == null : activePred.item != null) &&
488 (isLast ? activeSucc.next == null : activeSucc.item != null)) {
489
490 updateHead(); // Ensure x is not reachable from head
491 updateTail(); // Ensure x is not reachable from tail
492
493 // Finally, actually gc-unlink
494 x.lazySetPrev(isFirst ? prevTerminator() : x);
495 x.lazySetNext(isLast ? nextTerminator() : x);
496 }
497 }
498 }
499
500 /**
501 * Unlinks non-null first node.
502 */
503 private void unlinkFirst(Node<E> first, Node<E> next) {
504 // assert first != null;
505 // assert next != null;
506 // assert first.item == null;
507 for (Node<E> o = null, p = next, q;;) {
508 if (p.item != null || (q = p.next) == null) {
509 if (o != null && p.prev != p && first.casNext(next, p)) {
510 skipDeletedPredecessors(p);
511 if (first.prev == null &&
512 (p.next == null || p.item != null) &&
513 p.prev == first) {
514
515 updateHead(); // Ensure o is not reachable from head
516 updateTail(); // Ensure o is not reachable from tail
517
518 // Finally, actually gc-unlink
519 o.lazySetNext(o);
520 o.lazySetPrev(prevTerminator());
521 }
522 }
523 return;
524 }
525 else if (p == q)
526 return;
527 else {
528 o = p;
529 p = q;
530 }
531 }
532 }
533
534 /**
535 * Unlinks non-null last node.
536 */
537 private void unlinkLast(Node<E> last, Node<E> prev) {
538 // assert last != null;
539 // assert prev != null;
540 // assert last.item == null;
541 for (Node<E> o = null, p = prev, q;;) {
542 if (p.item != null || (q = p.prev) == null) {
543 if (o != null && p.next != p && last.casPrev(prev, p)) {
544 skipDeletedSuccessors(p);
545 if (last.next == null &&
546 (p.prev == null || p.item != null) &&
547 p.next == last) {
548
549 updateHead(); // Ensure o is not reachable from head
550 updateTail(); // Ensure o is not reachable from tail
551
552 // Finally, actually gc-unlink
553 o.lazySetPrev(o);
554 o.lazySetNext(nextTerminator());
555 }
556 }
557 return;
558 }
559 else if (p == q)
560 return;
561 else {
562 o = p;
563 p = q;
564 }
565 }
566 }
567
568 /**
569 * Guarantees that any node which was unlinked before a call to
570 * this method will be unreachable from head after it returns.
571 * Does not guarantee to eliminate slack, only that head will
572 * point to a node that was active while this method was running.
573 */
574 private final void updateHead() {
575 // Either head already points to an active node, or we keep
576 // trying to cas it to the first node until it does.
577 Node<E> h, p, q;
578 restartFromHead:
579 while ((h = head).item == null && (p = h.prev) != null) {
580 for (;;) {
581 if ((q = p.prev) == null ||
582 (q = (p = q).prev) == null) {
583 // It is possible that p is PREV_TERMINATOR,
584 // but if so, the CAS is guaranteed to fail.
585 if (casHead(h, p))
586 return;
587 else
588 continue restartFromHead;
589 }
590 else if (h != head)
591 continue restartFromHead;
592 else
593 p = q;
594 }
595 }
596 }
597
598 /**
599 * Guarantees that any node which was unlinked before a call to
600 * this method will be unreachable from tail after it returns.
601 * Does not guarantee to eliminate slack, only that tail will
602 * point to a node that was active while this method was running.
603 */
604 private final void updateTail() {
605 // Either tail already points to an active node, or we keep
606 // trying to cas it to the last node until it does.
607 Node<E> t, p, q;
608 restartFromTail:
609 while ((t = tail).item == null && (p = t.next) != null) {
610 for (;;) {
611 if ((q = p.next) == null ||
612 (q = (p = q).next) == null) {
613 // It is possible that p is NEXT_TERMINATOR,
614 // but if so, the CAS is guaranteed to fail.
615 if (casTail(t, p))
616 return;
617 else
618 continue restartFromTail;
619 }
620 else if (t != tail)
621 continue restartFromTail;
622 else
623 p = q;
624 }
625 }
626 }
627
628 private void skipDeletedPredecessors(Node<E> x) {
629 whileActive:
630 do {
631 Node<E> prev = x.prev;
632 // assert prev != null;
633 // assert x != NEXT_TERMINATOR;
634 // assert x != PREV_TERMINATOR;
635 Node<E> p = prev;
636 findActive:
637 for (;;) {
638 if (p.item != null)
639 break findActive;
640 Node<E> q = p.prev;
641 if (q == null) {
642 if (p.next == p)
643 continue whileActive;
644 break findActive;
645 }
646 else if (p == q)
647 continue whileActive;
648 else
649 p = q;
650 }
651
652 // found active CAS target
653 if (prev == p || x.casPrev(prev, p))
654 return;
655
656 } while (x.item != null || x.next == null);
657 }
658
659 private void skipDeletedSuccessors(Node<E> x) {
660 whileActive:
661 do {
662 Node<E> next = x.next;
663 // assert next != null;
664 // assert x != NEXT_TERMINATOR;
665 // assert x != PREV_TERMINATOR;
666 Node<E> p = next;
667 findActive:
668 for (;;) {
669 if (p.item != null)
670 break findActive;
671 Node<E> q = p.next;
672 if (q == null) {
673 if (p.prev == p)
674 continue whileActive;
675 break findActive;
676 }
677 else if (p == q)
678 continue whileActive;
679 else
680 p = q;
681 }
682
683 // found active CAS target
684 if (next == p || x.casNext(next, p))
685 return;
686
687 } while (x.item != null || x.prev == null);
688 }
689
690 /**
691 * Returns the successor of p, or the first node if p.next has been
692 * linked to self, which will only be true if traversing with a
693 * stale pointer that is now off the list.
694 */
695 final Node<E> succ(Node<E> p) {
696 // TODO: should we skip deleted nodes here?
697 Node<E> q = p.next;
698 return (p == q) ? first() : q;
699 }
700
701 /**
702 * Returns the predecessor of p, or the last node if p.prev has been
703 * linked to self, which will only be true if traversing with a
704 * stale pointer that is now off the list.
705 */
706 final Node<E> pred(Node<E> p) {
707 Node<E> q = p.prev;
708 return (p == q) ? last() : q;
709 }
710
711 /**
712 * Returns the first node, the unique node p for which:
713 * p.prev == null && p.next != p
714 * The returned node may or may not be logically deleted.
715 * Guarantees that head is set to the returned node.
716 */
717 Node<E> first() {
718 restartFromHead:
719 for (;;)
720 for (Node<E> h = head, p = h, q;;) {
721 if ((q = p.prev) != null &&
722 (q = (p = q).prev) != null)
723 // Check for head updates every other hop.
724 // If p == q, we are sure to follow head instead.
725 p = (h != (h = head)) ? h : q;
726 else if (p == h
727 // It is possible that p is PREV_TERMINATOR,
728 // but if so, the CAS is guaranteed to fail.
729 || casHead(h, p))
730 return p;
731 else
732 continue restartFromHead;
733 }
734 }
735
736 /**
737 * Returns the last node, the unique node p for which:
738 * p.next == null && p.prev != p
739 * The returned node may or may not be logically deleted.
740 * Guarantees that tail is set to the returned node.
741 */
742 Node<E> last() {
743 restartFromTail:
744 for (;;)
745 for (Node<E> t = tail, p = t, q;;) {
746 if ((q = p.next) != null &&
747 (q = (p = q).next) != null)
748 // Check for tail updates every other hop.
749 // If p == q, we are sure to follow tail instead.
750 p = (t != (t = tail)) ? t : q;
751 else if (p == t
752 // It is possible that p is NEXT_TERMINATOR,
753 // but if so, the CAS is guaranteed to fail.
754 || casTail(t, p))
755 return p;
756 else
757 continue restartFromTail;
758 }
759 }
760
761 // Minor convenience utilities
762
763 /**
764 * Throws NullPointerException if argument is null.
765 *
766 * @param v the element
767 */
768 private static void checkNotNull(Object v) {
769 if (v == null)
770 throw new NullPointerException();
771 }
772
773 /**
774 * Returns element unless it is null, in which case throws
775 * NoSuchElementException.
776 *
777 * @param v the element
778 * @return the element
779 */
780 private E screenNullResult(E v) {
781 if (v == null)
782 throw new NoSuchElementException();
783 return v;
784 }
785
786 /**
787 * Creates an array list and fills it with elements of this list.
788 * Used by toArray.
789 *
790 * @return the arrayList
791 */
792 private ArrayList<E> toArrayList() {
793 ArrayList<E> list = new ArrayList<E>();
794 for (Node<E> p = first(); p != null; p = succ(p)) {
795 E item = p.item;
796 if (item != null)
797 list.add(item);
798 }
799 return list;
800 }
801
802 /**
803 * Constructs an empty deque.
804 */
805 public ConcurrentLinkedDeque() {
806 head = tail = new Node<E>(null);
807 }
808
809 /**
810 * Constructs a deque initially containing the elements of
811 * the given collection, added in traversal order of the
812 * collection's iterator.
813 *
814 * @param c the collection of elements to initially contain
815 * @throws NullPointerException if the specified collection or any
816 * of its elements are null
817 */
818 public ConcurrentLinkedDeque(Collection<? extends E> c) {
819 // Copy c into a private chain of Nodes
820 Node<E> h = null, t = null;
821 for (E e : c) {
822 checkNotNull(e);
823 Node<E> newNode = new Node<E>(e);
824 if (h == null)
825 h = t = newNode;
826 else {
827 t.lazySetNext(newNode);
828 newNode.lazySetPrev(t);
829 t = newNode;
830 }
831 }
832 initHeadTail(h, t);
833 }
834
835 /**
836 * Initializes head and tail, ensuring invariants hold.
837 */
838 private void initHeadTail(Node<E> h, Node<E> t) {
839 if (h == t) {
840 if (h == null)
841 h = t = new Node<E>(null);
842 else {
843 // Avoid edge case of a single Node with non-null item.
844 Node<E> newNode = new Node<E>(null);
845 t.lazySetNext(newNode);
846 newNode.lazySetPrev(t);
847 t = newNode;
848 }
849 }
850 head = h;
851 tail = t;
852 }
853
854 /**
855 * Inserts the specified element at the front of this deque.
856 * As the deque is unbounded, this method will never throw
857 * {@link IllegalStateException}.
858 *
859 * @throws NullPointerException if the specified element is null
860 */
861 public void addFirst(E e) {
862 linkFirst(e);
863 }
864
865 /**
866 * Inserts the specified element at the end of this deque.
867 * As the deque is unbounded, this method will never throw
868 * {@link IllegalStateException}.
869 *
870 * <p>This method is equivalent to {@link #add}.
871 *
872 * @throws NullPointerException if the specified element is null
873 */
874 public void addLast(E e) {
875 linkLast(e);
876 }
877
878 /**
879 * Inserts the specified element at the front of this deque.
880 * As the deque is unbounded, this method will never return {@code false}.
881 *
882 * @return {@code true} (as specified by {@link Deque#offerFirst})
883 * @throws NullPointerException if the specified element is null
884 */
885 public boolean offerFirst(E e) {
886 linkFirst(e);
887 return true;
888 }
889
890 /**
891 * Inserts the specified element at the end of this deque.
892 * As the deque is unbounded, this method will never return {@code false}.
893 *
894 * <p>This method is equivalent to {@link #add}.
895 *
896 * @return {@code true} (as specified by {@link Deque#offerLast})
897 * @throws NullPointerException if the specified element is null
898 */
899 public boolean offerLast(E e) {
900 linkLast(e);
901 return true;
902 }
903
904 public E peekFirst() {
905 for (Node<E> p = first(); p != null; p = succ(p)) {
906 E item = p.item;
907 if (item != null)
908 return item;
909 }
910 return null;
911 }
912
913 public E peekLast() {
914 for (Node<E> p = last(); p != null; p = pred(p)) {
915 E item = p.item;
916 if (item != null)
917 return item;
918 }
919 return null;
920 }
921
922 /**
923 * @throws NoSuchElementException {@inheritDoc}
924 */
925 public E getFirst() {
926 return screenNullResult(peekFirst());
927 }
928
929 /**
930 * @throws NoSuchElementException {@inheritDoc}
931 */
932 public E getLast() {
933 return screenNullResult(peekLast());
934 }
935
936 public E pollFirst() {
937 for (Node<E> p = first(); p != null; p = succ(p)) {
938 E item = p.item;
939 if (item != null && p.casItem(item, null)) {
940 unlink(p);
941 return item;
942 }
943 }
944 return null;
945 }
946
947 public E pollLast() {
948 for (Node<E> p = last(); p != null; p = pred(p)) {
949 E item = p.item;
950 if (item != null && p.casItem(item, null)) {
951 unlink(p);
952 return item;
953 }
954 }
955 return null;
956 }
957
958 /**
959 * @throws NoSuchElementException {@inheritDoc}
960 */
961 public E removeFirst() {
962 return screenNullResult(pollFirst());
963 }
964
965 /**
966 * @throws NoSuchElementException {@inheritDoc}
967 */
968 public E removeLast() {
969 return screenNullResult(pollLast());
970 }
971
972 // *** Queue and stack methods ***
973
974 /**
975 * Inserts the specified element at the tail of this deque.
976 * As the deque is unbounded, this method will never return {@code false}.
977 *
978 * @return {@code true} (as specified by {@link Queue#offer})
979 * @throws NullPointerException if the specified element is null
980 */
981 public boolean offer(E e) {
982 return offerLast(e);
983 }
984
985 /**
986 * Inserts the specified element at the tail of this deque.
987 * As the deque is unbounded, this method will never throw
988 * {@link IllegalStateException} or return {@code false}.
989 *
990 * @return {@code true} (as specified by {@link Collection#add})
991 * @throws NullPointerException if the specified element is null
992 */
993 public boolean add(E e) {
994 return offerLast(e);
995 }
996
997 public E poll() { return pollFirst(); }
998 public E remove() { return removeFirst(); }
999 public E peek() { return peekFirst(); }
1000 public E element() { return getFirst(); }
1001 public void push(E e) { addFirst(e); }
1002 public E pop() { return removeFirst(); }
1003
1004 /**
1005 * Removes the first element {@code e} such that
1006 * {@code o.equals(e)}, if such an element exists in this deque.
1007 * If the deque does not contain the element, it is unchanged.
1008 *
1009 * @param o element to be removed from this deque, if present
1010 * @return {@code true} if the deque contained the specified element
1011 * @throws NullPointerException if the specified element is null
1012 */
1013 public boolean removeFirstOccurrence(Object o) {
1014 checkNotNull(o);
1015 for (Node<E> p = first(); p != null; p = succ(p)) {
1016 E item = p.item;
1017 if (item != null && o.equals(item) && p.casItem(item, null)) {
1018 unlink(p);
1019 return true;
1020 }
1021 }
1022 return false;
1023 }
1024
1025 /**
1026 * Removes the last element {@code e} such that
1027 * {@code o.equals(e)}, if such an element exists in this deque.
1028 * If the deque does not contain the element, it is unchanged.
1029 *
1030 * @param o element to be removed from this deque, if present
1031 * @return {@code true} if the deque contained the specified element
1032 * @throws NullPointerException if the specified element is null
1033 */
1034 public boolean removeLastOccurrence(Object o) {
1035 checkNotNull(o);
1036 for (Node<E> p = last(); p != null; p = pred(p)) {
1037 E item = p.item;
1038 if (item != null && o.equals(item) && p.casItem(item, null)) {
1039 unlink(p);
1040 return true;
1041 }
1042 }
1043 return false;
1044 }
1045
1046 /**
1047 * Returns {@code true} if this deque contains at least one
1048 * element {@code e} such that {@code o.equals(e)}.
1049 *
1050 * @param o element whose presence in this deque is to be tested
1051 * @return {@code true} if this deque contains the specified element
1052 */
1053 public boolean contains(Object o) {
1054 if (o == null) return false;
1055 for (Node<E> p = first(); p != null; p = succ(p)) {
1056 E item = p.item;
1057 if (item != null && o.equals(item))
1058 return true;
1059 }
1060 return false;
1061 }
1062
1063 /**
1064 * Returns {@code true} if this collection contains no elements.
1065 *
1066 * @return {@code true} if this collection contains no elements
1067 */
1068 public boolean isEmpty() {
1069 return peekFirst() == null;
1070 }
1071
1072 /**
1073 * Returns the number of elements in this deque. If this deque
1074 * contains more than {@code Integer.MAX_VALUE} elements, it
1075 * returns {@code Integer.MAX_VALUE}.
1076 *
1077 * <p>Beware that, unlike in most collections, this method is
1078 * <em>NOT</em> a constant-time operation. Because of the
1079 * asynchronous nature of these deques, determining the current
1080 * number of elements requires traversing them all to count them.
1081 * Additionally, it is possible for the size to change during
1082 * execution of this method, in which case the returned result
1083 * will be inaccurate. Thus, this method is typically not very
1084 * useful in concurrent applications.
1085 *
1086 * @return the number of elements in this deque
1087 */
1088 public int size() {
1089 int count = 0;
1090 for (Node<E> p = first(); p != null; p = succ(p))
1091 if (p.item != null)
1092 // Collection.size() spec says to max out
1093 if (++count == Integer.MAX_VALUE)
1094 break;
1095 return count;
1096 }
1097
1098 /**
1099 * Removes the first element {@code e} such that
1100 * {@code o.equals(e)}, if such an element exists in this deque.
1101 * If the deque does not contain the element, it is unchanged.
1102 *
1103 * @param o element to be removed from this deque, if present
1104 * @return {@code true} if the deque contained the specified element
1105 * @throws NullPointerException if the specified element is null
1106 */
1107 public boolean remove(Object o) {
1108 return removeFirstOccurrence(o);
1109 }
1110
1111 /**
1112 * Appends all of the elements in the specified collection to the end of
1113 * this deque, in the order that they are returned by the specified
1114 * collection's iterator. Attempts to {@code addAll} of a deque to
1115 * itself result in {@code IllegalArgumentException}.
1116 *
1117 * @param c the elements to be inserted into this deque
1118 * @return {@code true} if this deque changed as a result of the call
1119 * @throws NullPointerException if the specified collection or any
1120 * of its elements are null
1121 * @throws IllegalArgumentException if the collection is this deque
1122 */
1123 public boolean addAll(Collection<? extends E> c) {
1124 if (c == this)
1125 // As historically specified in AbstractQueue#addAll
1126 throw new IllegalArgumentException();
1127
1128 // Copy c into a private chain of Nodes
1129 Node<E> beginningOfTheEnd = null, last = null;
1130 for (E e : c) {
1131 checkNotNull(e);
1132 Node<E> newNode = new Node<E>(e);
1133 if (beginningOfTheEnd == null)
1134 beginningOfTheEnd = last = newNode;
1135 else {
1136 last.lazySetNext(newNode);
1137 newNode.lazySetPrev(last);
1138 last = newNode;
1139 }
1140 }
1141 if (beginningOfTheEnd == null)
1142 return false;
1143
1144 // Atomically append the chain at the tail of this collection
1145 restartFromTail:
1146 for (;;)
1147 for (Node<E> t = tail, p = t, q;;) {
1148 if ((q = p.next) != null &&
1149 (q = (p = q).next) != null)
1150 // Check for tail updates every other hop.
1151 // If p == q, we are sure to follow tail instead.
1152 p = (t != (t = tail)) ? t : q;
1153 else if (p.prev == p) // NEXT_TERMINATOR
1154 continue restartFromTail;
1155 else {
1156 // p is last node
1157 beginningOfTheEnd.lazySetPrev(p); // CAS piggyback
1158 if (p.casNext(null, beginningOfTheEnd)) {
1159 // Successful CAS is the linearization point
1160 // for all elements to be added to this deque.
1161 if (!casTail(t, last)) {
1162 // Try a little harder to update tail,
1163 // since we may be adding many elements.
1164 t = tail;
1165 if (last.next == null)
1166 casTail(t, last);
1167 }
1168 return true;
1169 }
1170 // Lost CAS race to another thread; re-read next
1171 }
1172 }
1173 }
1174
1175 /**
1176 * Removes all of the elements from this deque.
1177 */
1178 public void clear() {
1179 while (pollFirst() != null)
1180 ;
1181 }
1182
1183 /**
1184 * Returns an array containing all of the elements in this deque, in
1185 * proper sequence (from first to last element).
1186 *
1187 * <p>The returned array will be "safe" in that no references to it are
1188 * maintained by this deque. (In other words, this method must allocate
1189 * a new array). The caller is thus free to modify the returned array.
1190 *
1191 * <p>This method acts as bridge between array-based and collection-based
1192 * APIs.
1193 *
1194 * @return an array containing all of the elements in this deque
1195 */
1196 public Object[] toArray() {
1197 return toArrayList().toArray();
1198 }
1199
1200 /**
1201 * Returns an array containing all of the elements in this deque,
1202 * in proper sequence (from first to last element); the runtime
1203 * type of the returned array is that of the specified array. If
1204 * the deque fits in the specified array, it is returned therein.
1205 * Otherwise, a new array is allocated with the runtime type of
1206 * the specified array and the size of this deque.
1207 *
1208 * <p>If this deque fits in the specified array with room to spare
1209 * (i.e., the array has more elements than this deque), the element in
1210 * the array immediately following the end of the deque is set to
1211 * {@code null}.
1212 *
1213 * <p>Like the {@link #toArray()} method, this method acts as
1214 * bridge between array-based and collection-based APIs. Further,
1215 * this method allows precise control over the runtime type of the
1216 * output array, and may, under certain circumstances, be used to
1217 * save allocation costs.
1218 *
1219 * <p>Suppose {@code x} is a deque known to contain only strings.
1220 * The following code can be used to dump the deque into a newly
1221 * allocated array of {@code String}:
1222 *
1223 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1224 *
1225 * Note that {@code toArray(new Object[0])} is identical in function to
1226 * {@code toArray()}.
1227 *
1228 * @param a the array into which the elements of the deque are to
1229 * be stored, if it is big enough; otherwise, a new array of the
1230 * same runtime type is allocated for this purpose
1231 * @return an array containing all of the elements in this deque
1232 * @throws ArrayStoreException if the runtime type of the specified array
1233 * is not a supertype of the runtime type of every element in
1234 * this deque
1235 * @throws NullPointerException if the specified array is null
1236 */
1237 public <T> T[] toArray(T[] a) {
1238 return toArrayList().toArray(a);
1239 }
1240
1241 /**
1242 * Returns an iterator over the elements in this deque in proper sequence.
1243 * The elements will be returned in order from first (head) to last (tail).
1244 *
1245 * <p>The returned iterator is a "weakly consistent" iterator that
1246 * will never throw {@link java.util.ConcurrentModificationException
1247 * ConcurrentModificationException}, and guarantees to traverse
1248 * elements as they existed upon construction of the iterator, and
1249 * may (but is not guaranteed to) reflect any modifications
1250 * subsequent to construction.
1251 *
1252 * @return an iterator over the elements in this deque in proper sequence
1253 */
1254 public Iterator<E> iterator() {
1255 return new Itr();
1256 }
1257
1258 /**
1259 * Returns an iterator over the elements in this deque in reverse
1260 * sequential order. The elements will be returned in order from
1261 * last (tail) to first (head).
1262 *
1263 * <p>The returned iterator is a "weakly consistent" iterator that
1264 * will never throw {@link java.util.ConcurrentModificationException
1265 * ConcurrentModificationException}, and guarantees to traverse
1266 * elements as they existed upon construction of the iterator, and
1267 * may (but is not guaranteed to) reflect any modifications
1268 * subsequent to construction.
1269 *
1270 * @return an iterator over the elements in this deque in reverse order
1271 */
1272 public Iterator<E> descendingIterator() {
1273 return new DescendingItr();
1274 }
1275
1276 private abstract class AbstractItr implements Iterator<E> {
1277 /**
1278 * Next node to return item for.
1279 */
1280 private Node<E> nextNode;
1281
1282 /**
1283 * nextItem holds on to item fields because once we claim
1284 * that an element exists in hasNext(), we must return it in
1285 * the following next() call even if it was in the process of
1286 * being removed when hasNext() was called.
1287 */
1288 private E nextItem;
1289
1290 /**
1291 * Node returned by most recent call to next. Needed by remove.
1292 * Reset to null if this element is deleted by a call to remove.
1293 */
1294 private Node<E> lastRet;
1295
1296 abstract Node<E> startNode();
1297 abstract Node<E> nextNode(Node<E> p);
1298
1299 AbstractItr() {
1300 advance();
1301 }
1302
1303 /**
1304 * Sets nextNode and nextItem to next valid node, or to null
1305 * if no such.
1306 */
1307 private void advance() {
1308 lastRet = nextNode;
1309
1310 Node<E> p = (nextNode == null) ? startNode() : nextNode(nextNode);
1311 for (;; p = nextNode(p)) {
1312 if (p == null) {
1313 // p might be active end or TERMINATOR node; both are OK
1314 nextNode = null;
1315 nextItem = null;
1316 break;
1317 }
1318 E item = p.item;
1319 if (item != null) {
1320 nextNode = p;
1321 nextItem = item;
1322 break;
1323 }
1324 }
1325 }
1326
1327 public boolean hasNext() {
1328 return nextItem != null;
1329 }
1330
1331 public E next() {
1332 E item = nextItem;
1333 if (item == null) throw new NoSuchElementException();
1334 advance();
1335 return item;
1336 }
1337
1338 public void remove() {
1339 Node<E> l = lastRet;
1340 if (l == null) throw new IllegalStateException();
1341 l.item = null;
1342 unlink(l);
1343 lastRet = null;
1344 }
1345 }
1346
1347 /** Forward iterator */
1348 private class Itr extends AbstractItr {
1349 Node<E> startNode() { return first(); }
1350 Node<E> nextNode(Node<E> p) { return succ(p); }
1351 }
1352
1353 /** Descending iterator */
1354 private class DescendingItr extends AbstractItr {
1355 Node<E> startNode() { return last(); }
1356 Node<E> nextNode(Node<E> p) { return pred(p); }
1357 }
1358
1359 /**
1360 * Saves the state to a stream (that is, serializes it).
1361 *
1362 * @serialData All of the elements (each an {@code E}) in
1363 * the proper order, followed by a null
1364 * @param s the stream
1365 */
1366 private void writeObject(java.io.ObjectOutputStream s)
1367 throws java.io.IOException {
1368
1369 // Write out any hidden stuff
1370 s.defaultWriteObject();
1371
1372 // Write out all elements in the proper order.
1373 for (Node<E> p = first(); p != null; p = succ(p)) {
1374 E item = p.item;
1375 if (item != null)
1376 s.writeObject(item);
1377 }
1378
1379 // Use trailing null as sentinel
1380 s.writeObject(null);
1381 }
1382
1383 /**
1384 * Reconstitutes the instance from a stream (that is, deserializes it).
1385 * @param s the stream
1386 */
1387 private void readObject(java.io.ObjectInputStream s)
1388 throws java.io.IOException, ClassNotFoundException {
1389 s.defaultReadObject();
1390
1391 // Read in elements until trailing null sentinel found
1392 Node<E> h = null, t = null;
1393 Object item;
1394 while ((item = s.readObject()) != null) {
1395 @SuppressWarnings("unchecked")
1396 Node<E> newNode = new Node<E>((E) item);
1397 if (h == null)
1398 h = t = newNode;
1399 else {
1400 t.lazySetNext(newNode);
1401 newNode.lazySetPrev(t);
1402 t = newNode;
1403 }
1404 }
1405 initHeadTail(h, t);
1406 }
1407
1408
1409 private boolean casHead(Node<E> cmp, Node<E> val) {
1410 return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
1411 }
1412
1413 private boolean casTail(Node<E> cmp, Node<E> val) {
1414 return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
1415 }
1416
1417 // Unsafe mechanics
1418
1419 private static final sun.misc.Unsafe UNSAFE;
1420 private static final long headOffset;
1421 private static final long tailOffset;
1422 static {
1423 PREV_TERMINATOR = new Node<Object>();
1424 PREV_TERMINATOR.next = PREV_TERMINATOR;
1425 NEXT_TERMINATOR = new Node<Object>();
1426 NEXT_TERMINATOR.prev = NEXT_TERMINATOR;
1427 try {
1428 UNSAFE = getUnsafe();
1429 Class<?> k = ConcurrentLinkedDeque.class;
1430 headOffset = UNSAFE.objectFieldOffset
1431 (k.getDeclaredField("head"));
1432 tailOffset = UNSAFE.objectFieldOffset
1433 (k.getDeclaredField("tail"));
1434 } catch (Exception e) {
1435 throw new Error(e);
1436 }
1437 }
1438
1439 /**
1440 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1441 * Replace with a simple call to Unsafe.getUnsafe when integrating
1442 * into a jdk.
1443 *
1444 * @return a sun.misc.Unsafe
1445 */
1446 static sun.misc.Unsafe getUnsafe() {
1447 try {
1448 return sun.misc.Unsafe.getUnsafe();
1449 } catch (SecurityException se) {
1450 try {
1451 return java.security.AccessController.doPrivileged
1452 (new java.security
1453 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1454 public sun.misc.Unsafe run() throws Exception {
1455 java.lang.reflect.Field f = sun.misc
1456 .Unsafe.class.getDeclaredField("theUnsafe");
1457 f.setAccessible(true);
1458 return (sun.misc.Unsafe) f.get(null);
1459 }});
1460 } catch (java.security.PrivilegedActionException e) {
1461 throw new RuntimeException("Could not initialize intrinsics",
1462 e.getCause());
1463 }
1464 }
1465 }
1466
1467 }