ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/CountedCompleter.java
Revision: 1.18
Committed: Sat Nov 24 03:56:07 2012 UTC (11 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.17: +1 -1 lines
Log Message:
typos

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package jsr166y;
8
9 /**
10 * A {@link ForkJoinTask} with a completion action performed when
11 * triggered and there are no remaining pending
12 * actions. CountedCompleters are in general more robust in the
13 * presence of subtask stalls and blockage than are other forms of
14 * ForkJoinTasks, but are less intuitive to program. Uses of
15 * CountedCompleter are similar to those of other completion based
16 * components (such as {@link java.nio.channels.CompletionHandler})
17 * except that multiple <em>pending</em> completions may be necessary
18 * to trigger the {@link #onCompletion} action, not just one. Unless
19 * initialized otherwise, the {@link #getPendingCount pending count}
20 * starts at zero, but may be (atomically) changed using methods
21 * {@link #setPendingCount}, {@link #addToPendingCount}, and {@link
22 * #compareAndSetPendingCount}. Upon invocation of {@link
23 * #tryComplete}, if the pending action count is nonzero, it is
24 * decremented; otherwise, the completion action is performed, and if
25 * this completer itself has a completer, the process is continued
26 * with its completer. As is the case with related synchronization
27 * components such as {@link java.util.concurrent.Phaser Phaser} and
28 * {@link java.util.concurrent.Semaphore Semaphore}, these methods
29 * affect only internal counts; they do not establish any further
30 * internal bookkeeping. In particular, the identities of pending
31 * tasks are not maintained. As illustrated below, you can create
32 * subclasses that do record some or all pending tasks or their
33 * results when needed. As illustrated below, utility methods
34 * supporting customization of completion traversals are also
35 * provided. However, because CountedCompleters provide only basic
36 * synchronization mechanisms, it may be useful to create further
37 * abstract subclasses that maintain linkages, fields, and additional
38 * support methods appropriate for a set of related usages.
39 *
40 * <p>A concrete CountedCompleter class must define method {@link
41 * #compute}, that should in most cases (as illustrated below), invoke
42 * {@code tryComplete()} once before returning. The class may also
43 * optionally override method {@link #onCompletion} to perform an
44 * action upon normal completion, and method {@link
45 * #onExceptionalCompletion} to perform an action upon any exception.
46 *
47 * <p>CountedCompleters most often do not bear results, in which case
48 * they are normally declared as {@code CountedCompleter<Void>}, and
49 * will always return {@code null} as a result value. In other cases,
50 * you should override method {@link #getRawResult} to provide a
51 * result from {@code join(), invoke()}, and related methods. In
52 * general, this method should return the value of a field (or a
53 * function of one or more fields) of the CountedCompleter object that
54 * holds the result upon completion. Method {@link #setRawResult} by
55 * default plays no role in CountedCompleters. It is possible, but
56 * rarely applicable, to override this method to maintain other
57 * objects or fields holding result data.
58 *
59 * <p>A CountedCompleter that does not itself have a completer (i.e.,
60 * one for which {@link #getCompleter} returns {@code null}) can be
61 * used as a regular ForkJoinTask with this added functionality.
62 * However, any completer that in turn has another completer serves
63 * only as an internal helper for other computations, so its own task
64 * status (as reported in methods such as {@link ForkJoinTask#isDone})
65 * is arbitrary; this status changes only upon explicit invocations of
66 * {@link #complete}, {@link ForkJoinTask#cancel}, {@link
67 * ForkJoinTask#completeExceptionally} or upon exceptional completion
68 * of method {@code compute}. Upon any exceptional completion, the
69 * exception may be relayed to a task's completer (and its completer,
70 * and so on), if one exists and it has not otherwise already
71 * completed. Similarly, cancelling an internal CountedCompleter has
72 * only a local effect on that completer, so is not often useful.
73 *
74 * <p><b>Sample Usages.</b>
75 *
76 * <p><b>Parallel recursive decomposition.</b> CountedCompleters may
77 * be arranged in trees similar to those often used with {@link
78 * RecursiveAction}s, although the constructions involved in setting
79 * them up typically vary. Here, the completer of each task is its
80 * parent in the computation tree. Even though they entail a bit more
81 * bookkeeping, CountedCompleters may be better choices when applying
82 * a possibly time-consuming operation (that cannot be further
83 * subdivided) to each element of an array or collection; especially
84 * when the operation takes a significantly different amount of time
85 * to complete for some elements than others, either because of
86 * intrinsic variation (for example IO) or auxiliary effects such as
87 * garbage collection. Because CountedCompleters provide their own
88 * continuations, other threads need not block waiting to perform
89 * them.
90 *
91 * <p>For example, here is an initial version of a class that uses
92 * divide-by-two recursive decomposition to divide work into single
93 * pieces (leaf tasks). Even when work is split into individual calls,
94 * tree-based techniques are usually preferable to directly forking
95 * leaf tasks, because they reduce inter-thread communication and
96 * improve load balancing. In the recursive case, the second of each
97 * pair of subtasks to finish triggers completion of its parent
98 * (because no result combination is performed, the default no-op
99 * implementation of method {@code onCompletion} is not overridden). A
100 * static utility method sets up the base task and invokes it
101 * (here, implicitly using the {@link ForkJoinPool#commonPool()}).
102 *
103 * <pre> {@code
104 * class MyOperation<E> { void apply(E e) { ... } }
105 *
106 * class ForEach<E> extends CountedCompleter<Void> {
107 *
108 * public static <E> void forEach(E[] array, MyOperation<E> op) {
109 * new ForEach<E>(null, array, op, 0, array.length).invoke();
110 * }
111 *
112 * final E[] array; final MyOperation<E> op; final int lo, hi;
113 * ForEach(CountedCompleter<?> p, E[] array, MyOperation<E> op, int lo, int hi) {
114 * super(p);
115 * this.array = array; this.op = op; this.lo = lo; this.hi = hi;
116 * }
117 *
118 * public void compute() { // version 1
119 * if (hi - lo >= 2) {
120 * int mid = (lo + hi) >>> 1;
121 * setPendingCount(2); // must set pending count before fork
122 * new ForEach(this, array, op, mid, hi).fork(); // right child
123 * new ForEach(this, array, op, lo, mid).fork(); // left child
124 * }
125 * else if (hi > lo)
126 * op.apply(array[lo]);
127 * tryComplete();
128 * }
129 * } }</pre>
130 *
131 * This design can be improved by noticing that in the recursive case,
132 * the task has nothing to do after forking its right task, so can
133 * directly invoke its left task before returning. (This is an analog
134 * of tail recursion removal.) Also, because the task returns upon
135 * executing its left task (rather than falling through to invoke
136 * tryComplete) the pending count is set to one:
137 *
138 * <pre> {@code
139 * class ForEach<E> ...
140 * public void compute() { // version 2
141 * if (hi - lo >= 2) {
142 * int mid = (lo + hi) >>> 1;
143 * setPendingCount(1); // only one pending
144 * new ForEach(this, array, op, mid, hi).fork(); // right child
145 * new ForEach(this, array, op, lo, mid).compute(); // direct invoke
146 * }
147 * else {
148 * if (hi > lo)
149 * op.apply(array[lo]);
150 * tryComplete();
151 * }
152 * }
153 * }</pre>
154 *
155 * As a further improvement, notice that the left task need not even
156 * exist. Instead of creating a new one, we can iterate using the
157 * original task, and add a pending count for each fork. Additionally,
158 * because no task in this tree implements an {@link #onCompletion}
159 * method, {@code tryComplete()} can be replaced with {@link
160 * #propagateCompletion}.
161 *
162 * <pre> {@code
163 * class ForEach<E> ...
164 * public void compute() { // version 3
165 * int l = lo, h = hi;
166 * while (h - l >= 2) {
167 * int mid = (l + h) >>> 1;
168 * addToPendingCount(1);
169 * new ForEach(this, array, op, mid, h).fork(); // right child
170 * h = mid;
171 * }
172 * if (h > l)
173 * op.apply(array[l]);
174 * propagateCompletion();
175 * }
176 * }</pre>
177 *
178 * Additional improvements of such classes might entail precomputing
179 * pending counts so that they can be established in constructors,
180 * specializing classes for leaf steps, subdividing by say, four,
181 * instead of two per iteration, and using an adaptive threshold
182 * instead of always subdividing down to single elements.
183 *
184 * <p><b>Searching.</b> A tree of CountedCompleters can search for a
185 * value or property in different parts of a data structure, and
186 * report a result in an {@link java.util.concurrent.AtomicReference}
187 * as soon as one is found. The others can poll the result to avoid
188 * unnecessary work. (You could additionally {@link #cancel} other
189 * tasks, but it is usually simpler and more efficient to just let
190 * them notice that the result is set and if so skip further
191 * processing.) Illustrating again with an array using full
192 * partitioning (again, in practice, leaf tasks will almost always
193 * process more than one element):
194 *
195 * <pre> {@code
196 * class Searcher<E> extends CountedCompleter<E> {
197 * final E[] array; final AtomicReference<E> result; final int lo, hi;
198 * Searcher(CountedCompleter<?> p, E[] array, AtomicReference<E> result, int lo, int hi) {
199 * super(p);
200 * this.array = array; this.result = result; this.lo = lo; this.hi = hi;
201 * }
202 * public E getRawResult() { return result.get(); }
203 * public void compute() { // similar to ForEach version 3
204 * int l = lo, h = hi;
205 * while (result.get() == null && h >= l) {
206 * if (h - l >= 2) {
207 * int mid = (l + h) >>> 1;
208 * addToPendingCount(1);
209 * new Searcher(this, array, result, mid, h).fork();
210 * h = mid;
211 * }
212 * else {
213 * E x = array[l];
214 * if (matches(x) && result.compareAndSet(null, x))
215 * quietlyCompleteRoot(); // root task is now joinable
216 * break;
217 * }
218 * }
219 * tryComplete(); // normally complete whether or not found
220 * }
221 * boolean matches(E e) { ... } // return true if found
222 *
223 * public static <E> E search(E[] array) {
224 * return new Searcher<E>(null, array, new AtomicReference<E>(), 0, array.length).invoke();
225 * }
226 *}}</pre>
227 *
228 * In this example, as well as others in which tasks have no other
229 * effects except to compareAndSet a common result, the trailing
230 * unconditional invocation of {@code tryComplete} could be made
231 * conditional ({@code if (result.get() == null) tryComplete();})
232 * because no further bookkeeping is required to manage completions
233 * once the root task completes.
234 *
235 * <p><b>Recording subtasks.</b> CountedCompleter tasks that combine
236 * results of multiple subtasks usually need to access these results
237 * in method {@link #onCompletion}. As illustrated in the following
238 * class (that performs a simplified form of map-reduce where mappings
239 * and reductions are all of type {@code E}), one way to do this in
240 * divide and conquer designs is to have each subtask record its
241 * sibling, so that it can be accessed in method {@code onCompletion}.
242 * This technique applies to reductions in which the order of
243 * combining left and right results does not matter; ordered
244 * reductions require explicit left/right designations. Variants of
245 * other streamlinings seen in the above examples may also apply.
246 *
247 * <pre> {@code
248 * class MyMapper<E> { E apply(E v) { ... } }
249 * class MyReducer<E> { E apply(E x, E y) { ... } }
250 * class MapReducer<E> extends CountedCompleter<E> {
251 * final E[] array; final MyMapper<E> mapper;
252 * final MyReducer<E> reducer; final int lo, hi;
253 * MapReducer<E> sibling;
254 * E result;
255 * MapReducer(CountedCompleter<?> p, E[] array, MyMapper<E> mapper,
256 * MyReducer<E> reducer, int lo, int hi) {
257 * super(p);
258 * this.array = array; this.mapper = mapper;
259 * this.reducer = reducer; this.lo = lo; this.hi = hi;
260 * }
261 * public void compute() {
262 * if (hi - lo >= 2) {
263 * int mid = (lo + hi) >>> 1;
264 * MapReducer<E> left = new MapReducer(this, array, mapper, reducer, lo, mid);
265 * MapReducer<E> right = new MapReducer(this, array, mapper, reducer, mid, hi);
266 * left.sibling = right;
267 * right.sibling = left;
268 * setPendingCount(1); // only right is pending
269 * right.fork();
270 * left.compute(); // directly execute left
271 * }
272 * else {
273 * if (hi > lo)
274 * result = mapper.apply(array[lo]);
275 * tryComplete();
276 * }
277 * }
278 * public void onCompletion(CountedCompleter<?> caller) {
279 * if (caller != this) {
280 * MapReducer<E> child = (MapReducer<E>)caller;
281 * MapReducer<E> sib = child.sibling;
282 * if (sib == null || sib.result == null)
283 * result = child.result;
284 * else
285 * result = reducer.apply(child.result, sib.result);
286 * }
287 * }
288 * public E getRawResult() { return result; }
289 *
290 * public static <E> E mapReduce(E[] array, MyMapper<E> mapper, MyReducer<E> reducer) {
291 * return new MapReducer<E>(null, array, mapper, reducer,
292 * 0, array.length).invoke();
293 * }
294 * } }</pre>
295 *
296 * Here, method {@code onCompletion} takes a form common to many
297 * completion designs that combine results. This callback-style method
298 * is triggered once per task, in either of the two different contexts
299 * in which the pending count is, or becomes, zero: (1) by a task
300 * itself, if its pending count is zero upon invocation of {@code
301 * tryComplete}, or (2) by any of its subtasks when they complete and
302 * decrement the pending count to zero. The {@code caller} argument
303 * distinguishes cases. Most often, when the caller is {@code this},
304 * no action is necessary. Otherwise the caller argument can be used
305 * (usually via a cast) to supply a value (and/or links to other
306 * values) to be combined. Asuuming proper use of pending counts, the
307 * actions inside {@code onCompletion} occur (once) upon completion of
308 * a task and its subtasks. No additional synchronization is required
309 * within this method to ensure thread safety of accesses to fields of
310 * this task or other completed tasks.
311 *
312 * <p><b>Completion Traversals</b>. If using {@code onCompletion} to
313 * process completions is inapplicable or inconvenient, you can use
314 * methods {@link #firstComplete} and {@link #nextComplete} to create
315 * custom traversals. For example, to define a MapReducer that only
316 * splits out right-hand tasks in the form of the third ForEach
317 * example, the completions must cooperatively reduce along
318 * unexhausted subtask links, which can be done as follows:
319 *
320 * <pre> {@code
321 * class MapReducer<E> extends CountedCompleter<E> { // version 2
322 * final E[] array; final MyMapper<E> mapper;
323 * final MyReducer<E> reducer; final int lo, hi;
324 * MapReducer<E> forks, next; // record subtask forks in list
325 * E result;
326 * MapReducer(CountedCompleter<?> p, E[] array, MyMapper<E> mapper,
327 * MyReducer<E> reducer, int lo, int hi, MapReducer<E> next) {
328 * super(p);
329 * this.array = array; this.mapper = mapper;
330 * this.reducer = reducer; this.lo = lo; this.hi = hi;
331 * this.next = next;
332 * }
333 * public void compute() {
334 * int l = lo, h = hi;
335 * while (h - l >= 2) {
336 * int mid = (l + h) >>> 1;
337 * addToPendingCount(1);
338 * (forks = new MapReducer(this, array, mapper, reducer, mid, h, forks)).fork;
339 * h = mid;
340 * }
341 * if (h > l)
342 * result = mapper.apply(array[l]);
343 * // process completions by reducing along and advancing subtask links
344 * for (CountedCompleter<?> c = firstComplete(); c != null; c = c.nextComplete()) {
345 * for (MapReducer t = (MapReducer)c, s = t.forks; s != null; s = t.forks = s.next)
346 * t.result = reducer.apply(t.result, s.result);
347 * }
348 * }
349 * public E getRawResult() { return result; }
350 *
351 * public static <E> E mapReduce(E[] array, MyMapper<E> mapper, MyReducer<E> reducer) {
352 * return new MapReducer<E>(null, array, mapper, reducer,
353 * 0, array.length, null).invoke();
354 * }
355 * }}</pre>
356 *
357 * <p><b>Triggers.</b> Some CountedCompleters are themselves never
358 * forked, but instead serve as bits of plumbing in other designs;
359 * including those in which the completion of one of more async tasks
360 * triggers another async task. For example:
361 *
362 * <pre> {@code
363 * class HeaderBuilder extends CountedCompleter<...> { ... }
364 * class BodyBuilder extends CountedCompleter<...> { ... }
365 * class PacketSender extends CountedCompleter<...> {
366 * PacketSender(...) { super(null, 1); ... } // trigger on second completion
367 * public void compute() { } // never called
368 * public void onCompletion(CountedCompleter<?> caller) { sendPacket(); }
369 * }
370 * // sample use:
371 * PacketSender p = new PacketSender();
372 * new HeaderBuilder(p, ...).fork();
373 * new BodyBuilder(p, ...).fork();
374 * }</pre>
375 *
376 * @since 1.8
377 * @author Doug Lea
378 */
379 public abstract class CountedCompleter<T> extends ForkJoinTask<T> {
380 private static final long serialVersionUID = 5232453752276485070L;
381
382 /** This task's completer, or null if none */
383 final CountedCompleter<?> completer;
384 /** The number of pending tasks until completion */
385 volatile int pending;
386
387 /**
388 * Creates a new CountedCompleter with the given completer
389 * and initial pending count.
390 *
391 * @param completer this tasks completer, or {@code null} if none
392 * @param initialPendingCount the initial pending count
393 */
394 protected CountedCompleter(CountedCompleter<?> completer,
395 int initialPendingCount) {
396 this.completer = completer;
397 this.pending = initialPendingCount;
398 }
399
400 /**
401 * Creates a new CountedCompleter with the given completer
402 * and an initial pending count of zero.
403 *
404 * @param completer this tasks completer, or {@code null} if none
405 */
406 protected CountedCompleter(CountedCompleter<?> completer) {
407 this.completer = completer;
408 }
409
410 /**
411 * Creates a new CountedCompleter with no completer
412 * and an initial pending count of zero.
413 */
414 protected CountedCompleter() {
415 this.completer = null;
416 }
417
418 /**
419 * The main computation performed by this task.
420 */
421 public abstract void compute();
422
423 /**
424 * Performs an action when method {@link #tryComplete} is invoked
425 * and there are no pending counts, or when the unconditional
426 * method {@link #complete} is invoked. By default, this method
427 * does nothing. You can distinguish cases by checking the
428 * identity of the given caller argument. If not equal to {@code
429 * this}, then it is typically a subtask that may contain results
430 * (and/or links to other results) to combine.
431 *
432 * @param caller the task invoking this method (which may
433 * be this task itself).
434 */
435 public void onCompletion(CountedCompleter<?> caller) {
436 }
437
438 /**
439 * Performs an action when method {@link #completeExceptionally}
440 * is invoked or method {@link #compute} throws an exception, and
441 * this task has not otherwise already completed normally. On
442 * entry to this method, this task {@link
443 * ForkJoinTask#isCompletedAbnormally}. The return value of this
444 * method controls further propagation: If {@code true} and this
445 * task has a completer, then this completer is also completed
446 * exceptionally. The default implementation of this method does
447 * nothing except return {@code true}.
448 *
449 * @param ex the exception
450 * @param caller the task invoking this method (which may
451 * be this task itself).
452 * @return true if this exception should be propagated to this
453 * tasks completer, if one exists.
454 */
455 public boolean onExceptionalCompletion(Throwable ex, CountedCompleter<?> caller) {
456 return true;
457 }
458
459 /**
460 * Returns the completer established in this task's constructor,
461 * or {@code null} if none.
462 *
463 * @return the completer
464 */
465 public final CountedCompleter<?> getCompleter() {
466 return completer;
467 }
468
469 /**
470 * Returns the current pending count.
471 *
472 * @return the current pending count
473 */
474 public final int getPendingCount() {
475 return pending;
476 }
477
478 /**
479 * Sets the pending count to the given value.
480 *
481 * @param count the count
482 */
483 public final void setPendingCount(int count) {
484 pending = count;
485 }
486
487 /**
488 * Adds (atomically) the given value to the pending count.
489 *
490 * @param delta the value to add
491 */
492 public final void addToPendingCount(int delta) {
493 int c; // note: can replace with intrinsic in jdk8
494 do {} while (!U.compareAndSwapInt(this, PENDING, c = pending, c+delta));
495 }
496
497 /**
498 * Sets (atomically) the pending count to the given count only if
499 * it currently holds the given expected value.
500 *
501 * @param expected the expected value
502 * @param count the new value
503 * @return true if successful
504 */
505 public final boolean compareAndSetPendingCount(int expected, int count) {
506 return U.compareAndSwapInt(this, PENDING, expected, count);
507 }
508
509 /**
510 * If the pending count is nonzero, (atomically) decrements it.
511 *
512 * @return the initial (undecremented) pending count holding on entry
513 * to this method
514 */
515 public final int decrementPendingCountUnlessZero() {
516 int c;
517 do {} while ((c = pending) != 0 &&
518 !U.compareAndSwapInt(this, PENDING, c, c - 1));
519 return c;
520 }
521
522 /**
523 * Returns the root of the current computation; i.e., this
524 * task if it has no completer, else its completer's root.
525 *
526 * @return the root of the current computation
527 */
528 public final CountedCompleter<?> getRoot() {
529 CountedCompleter<?> a = this, p;
530 while ((p = a.completer) != null)
531 a = p;
532 return a;
533 }
534
535 /**
536 * If the pending count is nonzero, decrements the count;
537 * otherwise invokes {@link #onCompletion} and then similarly
538 * tries to complete this task's completer, if one exists,
539 * else marks this task as complete.
540 */
541 public final void tryComplete() {
542 CountedCompleter<?> a = this, s = a;
543 for (int c;;) {
544 if ((c = a.pending) == 0) {
545 a.onCompletion(s);
546 if ((a = (s = a).completer) == null) {
547 s.quietlyComplete();
548 return;
549 }
550 }
551 else if (U.compareAndSwapInt(a, PENDING, c, c - 1))
552 return;
553 }
554 }
555
556 /**
557 * Equivalent to {@link #tryComplete} but does not invoke {@link
558 * #onCompletion} along the completion path: If the pending count
559 * is nonzero, decrements the count; otherwise, similarly tries to
560 * complete this task's completer, if one exists, else marks this
561 * task as complete. This method may be useful in cases where
562 * {@code onCompletion} should not, or need not, be invoked for
563 * each completer in a computation.
564 */
565 public final void propagateCompletion() {
566 CountedCompleter<?> a = this, s = a;
567 for (int c;;) {
568 if ((c = a.pending) == 0) {
569 if ((a = (s = a).completer) == null) {
570 s.quietlyComplete();
571 return;
572 }
573 }
574 else if (U.compareAndSwapInt(a, PENDING, c, c - 1))
575 return;
576 }
577 }
578
579 /**
580 * Regardless of pending count, invokes {@link #onCompletion},
581 * marks this task as complete and further triggers {@link
582 * #tryComplete} on this task's completer, if one exists. The
583 * given rawResult is used as an argument to {@link #setRawResult}
584 * before invoking {@link #onCompletion} or marking this task as
585 * complete; its value is meaningful only for classes overriding
586 * {@code setRawResult}.
587 *
588 * <p>This method may be useful when forcing completion as soon as
589 * any one (versus all) of several subtask results are obtained.
590 * However, in the common (and recommended) case in which {@code
591 * setRawResult} is not overridden, this effect can be obtained
592 * more simply using {@code quietlyCompleteRoot();}.
593 *
594 * @param rawResult the raw result
595 */
596 public void complete(T rawResult) {
597 CountedCompleter<?> p;
598 setRawResult(rawResult);
599 onCompletion(this);
600 quietlyComplete();
601 if ((p = completer) != null)
602 p.tryComplete();
603 }
604
605
606 /**
607 * If this task's pending count is zero, returns this task;
608 * otherwise decrements its pending count and returns {@code
609 * null}. This method is designed to be used with {@link
610 * #nextComplete} in completion traversal loops.
611 *
612 * @return this task, if pending count was zero, else {@code null}
613 */
614 public final CountedCompleter<?> firstComplete() {
615 for (int c;;) {
616 if ((c = pending) == 0)
617 return this;
618 else if (U.compareAndSwapInt(this, PENDING, c, c - 1))
619 return null;
620 }
621 }
622
623 /**
624 * If this task does not have a completer, invokes {@link
625 * ForkJoinTask#quietlyComplete} and returns {@code null}. Or, if
626 * this task's pending count is non-zero, decrements its pending
627 * count and returns {@code null}. Otherwise, returns the
628 * completer. This method can be used as part of a completion
629 * traversal loop for homogeneous task hierarchies:
630 *
631 * <pre> {@code
632 * for (CountedCompleter<?> c = firstComplete();
633 * c != null;
634 * c = c.nextComplete()) {
635 * // ... process c ...
636 * }}</pre>
637 *
638 * @return the completer, or {@code null} if none
639 */
640 public final CountedCompleter<?> nextComplete() {
641 CountedCompleter<?> p;
642 if ((p = completer) != null)
643 return p.firstComplete();
644 else {
645 quietlyComplete();
646 return null;
647 }
648 }
649
650 /**
651 * Equivalent to {@code getRoot().quietlyComplete()}.
652 */
653 public final void quietlyCompleteRoot() {
654 for (CountedCompleter<?> a = this, p;;) {
655 if ((p = a.completer) == null) {
656 a.quietlyComplete();
657 return;
658 }
659 a = p;
660 }
661 }
662
663 /**
664 * Support for FJT exception propagation
665 */
666 void internalPropagateException(Throwable ex) {
667 CountedCompleter<?> a = this, s = a;
668 while (a.onExceptionalCompletion(ex, s) &&
669 (a = (s = a).completer) != null && a.status >= 0)
670 a.recordExceptionalCompletion(ex);
671 }
672
673 /**
674 * Implements execution conventions for CountedCompleters
675 */
676 protected final boolean exec() {
677 compute();
678 return false;
679 }
680
681 /**
682 * Returns the result of the computation. By default
683 * returns {@code null}, which is appropriate for {@code Void}
684 * actions, but in other cases should be overridden, almost
685 * always to return a field or function of a field that
686 * holds the result upon completion.
687 *
688 * @return the result of the computation
689 */
690 public T getRawResult() { return null; }
691
692 /**
693 * A method that result-bearing CountedCompleters may optionally
694 * use to help maintain result data. By default, does nothing.
695 * Overrides are not recommended. However, if this method is
696 * overridden to update existing objects or fields, then it must
697 * in general be defined to be thread-safe.
698 */
699 protected void setRawResult(T t) { }
700
701 // Unsafe mechanics
702 private static final sun.misc.Unsafe U;
703 private static final long PENDING;
704 static {
705 try {
706 U = sun.misc.Unsafe.getUnsafe();
707 PENDING = U.objectFieldOffset
708 (CountedCompleter.class.getDeclaredField("pending"));
709 } catch (Exception e) {
710 throw new Error(e);
711 }
712 }
713
714 /**
715 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
716 * Replace with a simple call to Unsafe.getUnsafe when integrating
717 * into a jdk.
718 *
719 * @return a sun.misc.Unsafe
720 */
721 private static sun.misc.Unsafe getUnsafe() {
722 try {
723 return sun.misc.Unsafe.getUnsafe();
724 } catch (SecurityException se) {
725 try {
726 return java.security.AccessController.doPrivileged
727 (new java.security
728 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
729 public sun.misc.Unsafe run() throws Exception {
730 java.lang.reflect.Field f = sun.misc
731 .Unsafe.class.getDeclaredField("theUnsafe");
732 f.setAccessible(true);
733 return (sun.misc.Unsafe) f.get(null);
734 }});
735 } catch (java.security.PrivilegedActionException e) {
736 throw new RuntimeException("Could not initialize intrinsics",
737 e.getCause());
738 }
739 }
740 }
741 }