ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/CountedCompleter.java
Revision: 1.3
Committed: Thu Aug 16 12:25:03 2012 UTC (11 years, 8 months ago) by dl
Branch: MAIN
Changes since 1.2: +55 -39 lines
Log Message:
Parameterize CountedCompleters

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package jsr166y;
8
9 /**
10 * A {@link ForkJoinTask} with a completion action
11 * performed when triggered and there are no remaining pending
12 * actions. Uses of CountedCompleter are similar to those of other
13 * completion based components (such as {@link
14 * java.nio.channels.CompletionHandler}) except that multiple
15 * <em>pending</em> completions may be necessary to trigger the {@link
16 * #onCompletion} action, not just one. Unless initialized otherwise,
17 * the {@link #getPendingCount pending count} starts at zero, but may
18 * be (atomically) changed using methods {@link #setPendingCount},
19 * {@link #addToPendingCount}, and {@link
20 * #compareAndSetPendingCount}. Upon invocation of {@link
21 * #tryComplete}, if the pending action count is nonzero, it is
22 * decremented; otherwise, the completion action is performed, and if
23 * this completer itself has a completer, the process is continued
24 * with its completer. As is the case with related synchronization
25 * components such as {@link Phaser} and {@link
26 * java.util.concurrent.Semaphore} these methods affect only internal
27 * counts; they do not establish any further internal bookkeeping. In
28 * particular, the identities of pending tasks are not maintained. As
29 * illustrated below, you can create subclasses that do record some or
30 * all pended tasks or their results when needed.
31 *
32 * <p>A concrete CountedCompleter class must define method {@link
33 * #compute}, that should, in almost all use cases, invoke {@code
34 * tryComplete()} once before returning. The class may also optionally
35 * override method {@link #onCompletion} to perform an action upon
36 * normal completion, and method {@link #onExceptionalCompletion} to
37 * perform an action upon any exception.
38 *
39 * <p>CountedCompleters most often do not bear results, in which case
40 * they are normally declared as {@code CountedCompleter<Void>}, and
41 * will always return {@code null} as a result value. In other cases,
42 * you should override method {@link #getRawResult} to provide a
43 * result from {@code join(), invoke()}, and related methods. (Method
44 * {@link #setRawResult} by default plays no role in CountedCompleters
45 * but may be overridden for example to maintain fields holding result
46 * data.)
47 *
48 * <p>A CountedCompleter that does not itself have a completer (i.e.,
49 * one for which {@link #getCompleter} returns {@code null}) can be
50 * used as a regular ForkJoinTask with this added functionality.
51 * However, any completer that in turn has another completer serves
52 * only as an internal helper for other computations, so its own task
53 * status (as reported in methods such as {@link ForkJoinTask#isDone})
54 * is arbitrary; this status changes only upon explicit invocations of
55 * {@link #complete}, {@link ForkJoinTask#cancel}, {@link
56 * ForkJoinTask#completeExceptionally} or upon exceptional completion
57 * of method {@code compute}. Upon any exceptional completion, the
58 * exception may be relayed to a task's completer (and its completer,
59 * and so on), if one exists and it has not otherwise already
60 * completed.
61 *
62 * <p><b>Sample Usages.</b>
63 *
64 * <p><b>Parallel recursive decomposition.</b> CountedCompleters may
65 * be arranged in trees similar to those often used with {@link
66 * RecursiveAction}s, although the constructions involved in setting
67 * them up typically vary. Here, the completer of each task is its
68 * parent in the computation tree. Even though they entail a bit more
69 * bookkeeping, CountedCompleters may be better choices when applying
70 * a possibly time-consuming operation (that cannot be further
71 * subdivided) to each element of an array or collection; especially
72 * when the operation takes a significantly different amount of time
73 * to complete for some elements than others, either because of
74 * intrinsic variation (for example IO) or auxiliary effects such as
75 * garbage collection. Because CountedCompleters provide their own
76 * continuations, other threads need not block waiting to perform
77 * them.
78 *
79 * <p> For example, here is an initial version of a class that uses
80 * divide-by-two recursive decomposition to divide work into single
81 * pieces (leaf tasks). Even when work is split into individual calls,
82 * tree-based techniques are usually preferable to directly forking
83 * leaf tasks, because they reduce inter-thread communication and
84 * improve load balancing. In the recursive case, the second of each
85 * pair of subtasks to finish triggers completion of its parent
86 * (because no result combination is performed, the default no-op
87 * implementation of method {@code onCompletion} is not overridden). A
88 * static utility method sets up the base task and invokes it:
89 *
90 * <pre> {@code
91 * class MyOperation<E> { void apply(E e) { ... } }
92 *
93 * class ForEach<E> extends CountedCompleter<Void> {
94 *
95 * public static <E> void forEach(ForkJoinPool pool, E[] array, MyOperation<E> op) {
96 * pool.invoke(new ForEach<E>(null, array, op, 0, array.length));
97 * }
98 *
99 * final E[] array; final MyOperation<E> op; final int lo, hi;
100 * ForEach(CountedCompleter<?> p, E[] array, MyOperation<E> op, int lo, int hi) {
101 * super(p);
102 * this.array = array; this.op = op; this.lo = lo; this.hi = hi;
103 * }
104 *
105 * public void compute() { // version 1
106 * if (hi - lo >= 2) {
107 * int mid = (lo + hi) >>> 1;
108 * setPendingCount(2); // must set pending count before fork
109 * new ForEach(this, array, op, mid, hi).fork(); // right child
110 * new ForEach(this, array, op, lo, mid).fork(); // left child
111 * }
112 * else if (hi > lo)
113 * op.apply(array[lo]);
114 * tryComplete();
115 * }
116 * } }</pre>
117 *
118 * This design can be improved by noticing that in the recursive case,
119 * the task has nothing to do after forking its right task, so can
120 * directly invoke its left task before returning. (This is an analog
121 * of tail recursion removal.) Also, because the task returns upon
122 * executing its left task (rather than falling through to invoke
123 * tryComplete) the pending count is set to one:
124 *
125 * <pre> {@code
126 * class ForEach<E> ...
127 * public void compute() { // version 2
128 * if (hi - lo >= 2) {
129 * int mid = (lo + hi) >>> 1;
130 * setPendingCount(1); // only one pending
131 * new ForEach(this, array, op, mid, hi).fork(); // right child
132 * new ForEach(this, array, op, lo, mid).compute(); // direct invoke
133 * }
134 * else {
135 * if (hi > lo)
136 * op.apply(array[lo]);
137 * tryComplete();
138 * }
139 * }
140 * }</pre>
141 *
142 * As a further improvement, notice that the left task need not even
143 * exist. Instead of creating a new one, we can iterate using the
144 * original task, and add a pending count for each fork:
145 *
146 * <pre> {@code
147 * class ForEach<E> ...
148 * public void compute() { // version 3
149 * int l = lo, h = hi;
150 * while (h - l >= 2) {
151 * int mid = (l + h) >>> 1;
152 * addToPendingCount(1);
153 * new ForEach(this, array, op, mid, h).fork(); // right child
154 * h = mid;
155 * }
156 * if (h > l)
157 * op.apply(array[l]);
158 * tryComplete();
159 * }
160 * }</pre>
161 *
162 * Additional improvements of such classes might entail precomputing
163 * pending counts so that they can be established in constructors,
164 * specializing classes for leaf steps, subdividing by say, four,
165 * instead of two per iteration, and using an adaptive threshold
166 * instead of always subdividing down to single elements.
167 *
168 * <p><b>Recording subtasks.</b> CountedCompleter tasks that combine
169 * results of multiple subtasks usually need to access these results
170 * in method {@link #onCompletion}. As illustrated in the following
171 * class (that performs a simplified form of map-reduce where mappings
172 * and reductions are all of type {@code E}), one way to do this in
173 * divide and conquer designs is to have each subtask record its
174 * sibling, so that it can be accessed in method {@code onCompletion}.
175 * This technique applies to reductions in which the order of
176 * combining left and right results does not matter; ordered
177 * reductions require explicit left/right designations. Variants of
178 * other streamlinings seen in the above examples may also apply.
179 *
180 * <pre> {@code
181 * class MyMapper<E> { E apply(E v) { ... } }
182 * class MyReducer<E> { E apply(E x, E y) { ... } }
183 * class MapReducer<E> extends CountedCompleter<E> {
184 * final E[] array; final MyMapper<E> mapper;
185 * final MyReducer<E> reducer; final int lo, hi;
186 * MapReducer<E> sibling;
187 * E result;
188 * MapReducer(CountedCompleter p, E[] array, MyMapper<E> mapper,
189 * MyReducer<E> reducer, int lo, int hi) {
190 * super(p);
191 * this.array = array; this.mapper = mapper;
192 * this.reducer = reducer; this.lo = lo; this.hi = hi;
193 * }
194 * public void compute() {
195 * if (hi - lo >= 2) {
196 * int mid = (lo + hi) >>> 1;
197 * MapReducer<E> left = new MapReducer(this, array, mapper, reducer, lo, mid);
198 * MapReducer<E> right = new MapReducer(this, array, mapper, reducer, mid, hi);
199 * left.sibling = right;
200 * right.sibling = left;
201 * setPendingCount(1); // only right is pending
202 * right.fork();
203 * left.compute(); // directly execute left
204 * }
205 * else {
206 * if (hi > lo)
207 * result = mapper.apply(array[lo]);
208 * tryComplete();
209 * }
210 * }
211 * public void onCompletion(CountedCompleter caller) {
212 * if (caller != this) {
213 * MapReducer<E> child = (MapReducer<E>)caller;
214 * MapReducer<E> sib = child.sibling;
215 * if (sib == null || sib.result == null)
216 * result = child.result;
217 * else
218 * result = reducer.apply(child.result, sib.result);
219 * }
220 * }
221 * public E getRawResult() { return result; }
222 *
223 * public static <E> E mapReduce(ForkJoinPool pool, E[] array,
224 * MyMapper<E> mapper, MyReducer<E> reducer) {
225 * return pool.invoke(new MapReducer<E>(null, array, mapper,
226 * reducer, 0, array.length));
227 * }
228 * } }</pre>
229 *
230 * <p><b>Triggers.</b> Some CountedCompleters are themselves never
231 * forked, but instead serve as bits of plumbing in other designs;
232 * including those in which the completion of one of more async tasks
233 * triggers another async task. For example:
234 *
235 * <pre> {@code
236 * class HeaderBuilder extends CountedCompleter<...> { ... }
237 * class BodyBuilder extends CountedCompleter<...> { ... }
238 * class PacketSender extends CountedCompleter<...> {
239 * PacketSender(...) { super(null, 1); ... } // trigger on second completion
240 * public void compute() { } // never called
241 * public void onCompletion(CountedCompleter<?> caller) { sendPacket(); }
242 * }
243 * // sample use:
244 * PacketSender p = new PacketSender();
245 * new HeaderBuilder(p, ...).fork();
246 * new BodyBuilder(p, ...).fork();
247 * }</pre>
248 *
249 * @since 1.8
250 * @author Doug Lea
251 */
252 public abstract class CountedCompleter<T> extends ForkJoinTask<T> {
253 private static final long serialVersionUID = 5232453752276485070L;
254
255 /** This task's completer, or null if none */
256 final CountedCompleter<?> completer;
257 /** The number of pending tasks until completion */
258 volatile int pending;
259
260 /**
261 * Creates a new CountedCompleter with the given completer
262 * and initial pending count.
263 *
264 * @param completer this tasks completer, or {@code null} if none
265 * @param initialPendingCount the initial pending count
266 */
267 protected CountedCompleter(CountedCompleter<?> completer,
268 int initialPendingCount) {
269 this.completer = completer;
270 this.pending = initialPendingCount;
271 }
272
273 /**
274 * Creates a new CountedCompleter with the given completer
275 * and an initial pending count of zero.
276 *
277 * @param completer this tasks completer, or {@code null} if none
278 */
279 protected CountedCompleter(CountedCompleter<?> completer) {
280 this.completer = completer;
281 }
282
283 /**
284 * Creates a new CountedCompleter with no completer
285 * and an initial pending count of zero.
286 */
287 protected CountedCompleter() {
288 this.completer = null;
289 }
290
291 /**
292 * The main computation performed by this task.
293 */
294 public abstract void compute();
295
296 /**
297 * Performs an action when method {@link #tryComplete} is invoked
298 * and there are no pending counts, or when the unconditional
299 * method {@link #complete} is invoked. By default, this method
300 * does nothing.
301 *
302 * @param caller the task invoking this method (which may
303 * be this task itself).
304 */
305 public void onCompletion(CountedCompleter<?> caller) {
306 }
307
308 /**
309 * Performs an action when method {@link #completeExceptionally}
310 * is invoked or method {@link #compute} throws an exception, and
311 * this task has not otherwise already completed normally. On
312 * entry to this method, this task {@link
313 * ForkJoinTask#isCompletedAbnormally}. The return value of this
314 * method controls further propagation: If {@code true} and this
315 * task has a completer, then this completer is also completed
316 * exceptionally. The default implementation of this method does
317 * nothing except return {@code true}.
318 *
319 * @param ex the exception
320 * @param caller the task invoking this method (which may
321 * be this task itself).
322 * @return true if this exception should be propagated to this
323 * tasks completer, if one exists.
324 */
325 public boolean onExceptionalCompletion(Throwable ex, CountedCompleter<?> caller) {
326 return true;
327 }
328
329 /**
330 * Returns the completer established in this task's constructor,
331 * or {@code null} if none.
332 *
333 * @return the completer
334 */
335 public final CountedCompleter<?> getCompleter() {
336 return completer;
337 }
338
339 /**
340 * Returns the current pending count.
341 *
342 * @return the current pending count
343 */
344 public final int getPendingCount() {
345 return pending;
346 }
347
348 /**
349 * Sets the pending count to the given value.
350 *
351 * @param count the count
352 */
353 public final void setPendingCount(int count) {
354 pending = count;
355 }
356
357 /**
358 * Adds (atomically) the given value to the pending count.
359 *
360 * @param delta the value to add
361 */
362 public final void addToPendingCount(int delta) {
363 int c; // note: can replace with intrinsic in jdk8
364 do {} while (!U.compareAndSwapInt(this, PENDING, c = pending, c+delta));
365 }
366
367 /**
368 * Sets (atomically) the pending count to the given count only if
369 * it currently holds the given expected value.
370 *
371 * @param expected the expected value
372 * @param count the new value
373 * @return true is successful
374 */
375 public final boolean compareAndSetPendingCount(int expected, int count) {
376 return U.compareAndSwapInt(this, PENDING, expected, count);
377 }
378
379 /**
380 * If the pending count is nonzero, decrements the count;
381 * otherwise invokes {@link #onCompletion} and then similarly
382 * tries to complete this task's completer, if one exists,
383 * else marks this task as complete.
384 */
385 public final void tryComplete() {
386 CountedCompleter<?> a = this, s = a;
387 for (int c;;) {
388 if ((c = a.pending) == 0) {
389 a.onCompletion(s);
390 if ((a = (s = a).completer) == null) {
391 s.quietlyComplete();
392 return;
393 }
394 }
395 else if (U.compareAndSwapInt(a, PENDING, c, c - 1))
396 return;
397 }
398 }
399
400 /**
401 * Regardless of pending count, invokes {@link #onCompletion},
402 * marks this task as complete and further triggers {@link
403 * #tryComplete} on this task's completer, if one exists. This
404 * method may be useful when forcing completion as soon as any one
405 * (versus all) of several subtask results are obtained. The
406 * given rawResult is used as an argument to {@link #setRawResult}
407 * before marking this task as complete; its value is meaningful
408 * only for classes overriding {@code setRawResult}.
409 *
410 * @param rawResult the raw result
411 */
412 public void complete(T rawResult) {
413 CountedCompleter<?> p;
414 onCompletion(this);
415 setRawResult(rawResult);
416 quietlyComplete();
417 if ((p = completer) != null)
418 p.tryComplete();
419 }
420
421 /**
422 * Support for FJT exception propagation
423 */
424 void internalPropagateException(Throwable ex) {
425 CountedCompleter<?> a = this, s = a;
426 while (a.onExceptionalCompletion(ex, s) &&
427 (a = (s = a).completer) != null && a.status >= 0)
428 a.recordExceptionalCompletion(ex);
429 }
430
431 /**
432 * Implements execution conventions for CountedCompleters
433 */
434 protected final boolean exec() {
435 compute();
436 return false;
437 }
438
439 /**
440 * Returns the result of the computation. By default
441 * returns {@code null}, which is appropriate for {@code Void}
442 * actions, but in other cases should be overridden.
443 *
444 * @return the result of the computation
445 */
446 public T getRawResult() { return null; }
447
448 /**
449 * A method that result-bearing CountedCompleters may optionally
450 * use to help maintain result data. By default, does nothing.
451 */
452 protected void setRawResult(T t) { }
453
454 // Unsafe mechanics
455 private static final sun.misc.Unsafe U;
456 private static final long PENDING;
457 static {
458 try {
459 U = getUnsafe();
460 PENDING = U.objectFieldOffset
461 (CountedCompleter.class.getDeclaredField("pending"));
462 } catch (Exception e) {
463 throw new Error(e);
464 }
465 }
466
467
468 /**
469 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
470 * Replace with a simple call to Unsafe.getUnsafe when integrating
471 * into a jdk.
472 *
473 * @return a sun.misc.Unsafe
474 */
475 private static sun.misc.Unsafe getUnsafe() {
476 try {
477 return sun.misc.Unsafe.getUnsafe();
478 } catch (SecurityException se) {
479 try {
480 return java.security.AccessController.doPrivileged
481 (new java.security
482 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
483 public sun.misc.Unsafe run() throws Exception {
484 java.lang.reflect.Field f = sun.misc
485 .Unsafe.class.getDeclaredField("theUnsafe");
486 f.setAccessible(true);
487 return (sun.misc.Unsafe) f.get(null);
488 }});
489 } catch (java.security.PrivilegedActionException e) {
490 throw new RuntimeException("Could not initialize intrinsics",
491 e.getCause());
492 }
493 }
494 }
495
496 }