ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/CountedCompleter.java
Revision: 1.4
Committed: Sun Oct 21 05:22:35 2012 UTC (11 years, 6 months ago) by jsr166
Branch: MAIN
Changes since 1.3: +7 -6 lines
Log Message:
fix a javadoc warning

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package jsr166y;
8
9 /**
10 * A {@link ForkJoinTask} with a completion action
11 * performed when triggered and there are no remaining pending
12 * actions. Uses of CountedCompleter are similar to those of other
13 * completion based components (such as {@link
14 * java.nio.channels.CompletionHandler}) except that multiple
15 * <em>pending</em> completions may be necessary to trigger the {@link
16 * #onCompletion} action, not just one. Unless initialized otherwise,
17 * the {@link #getPendingCount pending count} starts at zero, but may
18 * be (atomically) changed using methods {@link #setPendingCount},
19 * {@link #addToPendingCount}, and {@link
20 * #compareAndSetPendingCount}. Upon invocation of {@link
21 * #tryComplete}, if the pending action count is nonzero, it is
22 * decremented; otherwise, the completion action is performed, and if
23 * this completer itself has a completer, the process is continued
24 * with its completer. As is the case with related synchronization
25 * components such as {@link java.util.concurrent.Phaser Phaser} and
26 * {@link java.util.concurrent.Semaphore Semaphore}, these methods
27 * affect only internal counts; they do not establish any further
28 * internal bookkeeping. In particular, the identities of pending
29 * tasks are not maintained. As illustrated below, you can create
30 * subclasses that do record some or all pended tasks or their results
31 * when needed.
32 *
33 * <p>A concrete CountedCompleter class must define method {@link
34 * #compute}, that should, in almost all use cases, invoke {@code
35 * tryComplete()} once before returning. The class may also optionally
36 * override method {@link #onCompletion} to perform an action upon
37 * normal completion, and method {@link #onExceptionalCompletion} to
38 * perform an action upon any exception.
39 *
40 * <p>CountedCompleters most often do not bear results, in which case
41 * they are normally declared as {@code CountedCompleter<Void>}, and
42 * will always return {@code null} as a result value. In other cases,
43 * you should override method {@link #getRawResult} to provide a
44 * result from {@code join(), invoke()}, and related methods. (Method
45 * {@link #setRawResult} by default plays no role in CountedCompleters
46 * but may be overridden for example to maintain fields holding result
47 * data.)
48 *
49 * <p>A CountedCompleter that does not itself have a completer (i.e.,
50 * one for which {@link #getCompleter} returns {@code null}) can be
51 * used as a regular ForkJoinTask with this added functionality.
52 * However, any completer that in turn has another completer serves
53 * only as an internal helper for other computations, so its own task
54 * status (as reported in methods such as {@link ForkJoinTask#isDone})
55 * is arbitrary; this status changes only upon explicit invocations of
56 * {@link #complete}, {@link ForkJoinTask#cancel}, {@link
57 * ForkJoinTask#completeExceptionally} or upon exceptional completion
58 * of method {@code compute}. Upon any exceptional completion, the
59 * exception may be relayed to a task's completer (and its completer,
60 * and so on), if one exists and it has not otherwise already
61 * completed.
62 *
63 * <p><b>Sample Usages.</b>
64 *
65 * <p><b>Parallel recursive decomposition.</b> CountedCompleters may
66 * be arranged in trees similar to those often used with {@link
67 * RecursiveAction}s, although the constructions involved in setting
68 * them up typically vary. Here, the completer of each task is its
69 * parent in the computation tree. Even though they entail a bit more
70 * bookkeeping, CountedCompleters may be better choices when applying
71 * a possibly time-consuming operation (that cannot be further
72 * subdivided) to each element of an array or collection; especially
73 * when the operation takes a significantly different amount of time
74 * to complete for some elements than others, either because of
75 * intrinsic variation (for example IO) or auxiliary effects such as
76 * garbage collection. Because CountedCompleters provide their own
77 * continuations, other threads need not block waiting to perform
78 * them.
79 *
80 * <p> For example, here is an initial version of a class that uses
81 * divide-by-two recursive decomposition to divide work into single
82 * pieces (leaf tasks). Even when work is split into individual calls,
83 * tree-based techniques are usually preferable to directly forking
84 * leaf tasks, because they reduce inter-thread communication and
85 * improve load balancing. In the recursive case, the second of each
86 * pair of subtasks to finish triggers completion of its parent
87 * (because no result combination is performed, the default no-op
88 * implementation of method {@code onCompletion} is not overridden). A
89 * static utility method sets up the base task and invokes it:
90 *
91 * <pre> {@code
92 * class MyOperation<E> { void apply(E e) { ... } }
93 *
94 * class ForEach<E> extends CountedCompleter<Void> {
95 *
96 * public static <E> void forEach(ForkJoinPool pool, E[] array, MyOperation<E> op) {
97 * pool.invoke(new ForEach<E>(null, array, op, 0, array.length));
98 * }
99 *
100 * final E[] array; final MyOperation<E> op; final int lo, hi;
101 * ForEach(CountedCompleter<?> p, E[] array, MyOperation<E> op, int lo, int hi) {
102 * super(p);
103 * this.array = array; this.op = op; this.lo = lo; this.hi = hi;
104 * }
105 *
106 * public void compute() { // version 1
107 * if (hi - lo >= 2) {
108 * int mid = (lo + hi) >>> 1;
109 * setPendingCount(2); // must set pending count before fork
110 * new ForEach(this, array, op, mid, hi).fork(); // right child
111 * new ForEach(this, array, op, lo, mid).fork(); // left child
112 * }
113 * else if (hi > lo)
114 * op.apply(array[lo]);
115 * tryComplete();
116 * }
117 * } }</pre>
118 *
119 * This design can be improved by noticing that in the recursive case,
120 * the task has nothing to do after forking its right task, so can
121 * directly invoke its left task before returning. (This is an analog
122 * of tail recursion removal.) Also, because the task returns upon
123 * executing its left task (rather than falling through to invoke
124 * tryComplete) the pending count is set to one:
125 *
126 * <pre> {@code
127 * class ForEach<E> ...
128 * public void compute() { // version 2
129 * if (hi - lo >= 2) {
130 * int mid = (lo + hi) >>> 1;
131 * setPendingCount(1); // only one pending
132 * new ForEach(this, array, op, mid, hi).fork(); // right child
133 * new ForEach(this, array, op, lo, mid).compute(); // direct invoke
134 * }
135 * else {
136 * if (hi > lo)
137 * op.apply(array[lo]);
138 * tryComplete();
139 * }
140 * }
141 * }</pre>
142 *
143 * As a further improvement, notice that the left task need not even
144 * exist. Instead of creating a new one, we can iterate using the
145 * original task, and add a pending count for each fork:
146 *
147 * <pre> {@code
148 * class ForEach<E> ...
149 * public void compute() { // version 3
150 * int l = lo, h = hi;
151 * while (h - l >= 2) {
152 * int mid = (l + h) >>> 1;
153 * addToPendingCount(1);
154 * new ForEach(this, array, op, mid, h).fork(); // right child
155 * h = mid;
156 * }
157 * if (h > l)
158 * op.apply(array[l]);
159 * tryComplete();
160 * }
161 * }</pre>
162 *
163 * Additional improvements of such classes might entail precomputing
164 * pending counts so that they can be established in constructors,
165 * specializing classes for leaf steps, subdividing by say, four,
166 * instead of two per iteration, and using an adaptive threshold
167 * instead of always subdividing down to single elements.
168 *
169 * <p><b>Recording subtasks.</b> CountedCompleter tasks that combine
170 * results of multiple subtasks usually need to access these results
171 * in method {@link #onCompletion}. As illustrated in the following
172 * class (that performs a simplified form of map-reduce where mappings
173 * and reductions are all of type {@code E}), one way to do this in
174 * divide and conquer designs is to have each subtask record its
175 * sibling, so that it can be accessed in method {@code onCompletion}.
176 * This technique applies to reductions in which the order of
177 * combining left and right results does not matter; ordered
178 * reductions require explicit left/right designations. Variants of
179 * other streamlinings seen in the above examples may also apply.
180 *
181 * <pre> {@code
182 * class MyMapper<E> { E apply(E v) { ... } }
183 * class MyReducer<E> { E apply(E x, E y) { ... } }
184 * class MapReducer<E> extends CountedCompleter<E> {
185 * final E[] array; final MyMapper<E> mapper;
186 * final MyReducer<E> reducer; final int lo, hi;
187 * MapReducer<E> sibling;
188 * E result;
189 * MapReducer(CountedCompleter p, E[] array, MyMapper<E> mapper,
190 * MyReducer<E> reducer, int lo, int hi) {
191 * super(p);
192 * this.array = array; this.mapper = mapper;
193 * this.reducer = reducer; this.lo = lo; this.hi = hi;
194 * }
195 * public void compute() {
196 * if (hi - lo >= 2) {
197 * int mid = (lo + hi) >>> 1;
198 * MapReducer<E> left = new MapReducer(this, array, mapper, reducer, lo, mid);
199 * MapReducer<E> right = new MapReducer(this, array, mapper, reducer, mid, hi);
200 * left.sibling = right;
201 * right.sibling = left;
202 * setPendingCount(1); // only right is pending
203 * right.fork();
204 * left.compute(); // directly execute left
205 * }
206 * else {
207 * if (hi > lo)
208 * result = mapper.apply(array[lo]);
209 * tryComplete();
210 * }
211 * }
212 * public void onCompletion(CountedCompleter caller) {
213 * if (caller != this) {
214 * MapReducer<E> child = (MapReducer<E>)caller;
215 * MapReducer<E> sib = child.sibling;
216 * if (sib == null || sib.result == null)
217 * result = child.result;
218 * else
219 * result = reducer.apply(child.result, sib.result);
220 * }
221 * }
222 * public E getRawResult() { return result; }
223 *
224 * public static <E> E mapReduce(ForkJoinPool pool, E[] array,
225 * MyMapper<E> mapper, MyReducer<E> reducer) {
226 * return pool.invoke(new MapReducer<E>(null, array, mapper,
227 * reducer, 0, array.length));
228 * }
229 * } }</pre>
230 *
231 * <p><b>Triggers.</b> Some CountedCompleters are themselves never
232 * forked, but instead serve as bits of plumbing in other designs;
233 * including those in which the completion of one of more async tasks
234 * triggers another async task. For example:
235 *
236 * <pre> {@code
237 * class HeaderBuilder extends CountedCompleter<...> { ... }
238 * class BodyBuilder extends CountedCompleter<...> { ... }
239 * class PacketSender extends CountedCompleter<...> {
240 * PacketSender(...) { super(null, 1); ... } // trigger on second completion
241 * public void compute() { } // never called
242 * public void onCompletion(CountedCompleter<?> caller) { sendPacket(); }
243 * }
244 * // sample use:
245 * PacketSender p = new PacketSender();
246 * new HeaderBuilder(p, ...).fork();
247 * new BodyBuilder(p, ...).fork();
248 * }</pre>
249 *
250 * @since 1.8
251 * @author Doug Lea
252 */
253 public abstract class CountedCompleter<T> extends ForkJoinTask<T> {
254 private static final long serialVersionUID = 5232453752276485070L;
255
256 /** This task's completer, or null if none */
257 final CountedCompleter<?> completer;
258 /** The number of pending tasks until completion */
259 volatile int pending;
260
261 /**
262 * Creates a new CountedCompleter with the given completer
263 * and initial pending count.
264 *
265 * @param completer this tasks completer, or {@code null} if none
266 * @param initialPendingCount the initial pending count
267 */
268 protected CountedCompleter(CountedCompleter<?> completer,
269 int initialPendingCount) {
270 this.completer = completer;
271 this.pending = initialPendingCount;
272 }
273
274 /**
275 * Creates a new CountedCompleter with the given completer
276 * and an initial pending count of zero.
277 *
278 * @param completer this tasks completer, or {@code null} if none
279 */
280 protected CountedCompleter(CountedCompleter<?> completer) {
281 this.completer = completer;
282 }
283
284 /**
285 * Creates a new CountedCompleter with no completer
286 * and an initial pending count of zero.
287 */
288 protected CountedCompleter() {
289 this.completer = null;
290 }
291
292 /**
293 * The main computation performed by this task.
294 */
295 public abstract void compute();
296
297 /**
298 * Performs an action when method {@link #tryComplete} is invoked
299 * and there are no pending counts, or when the unconditional
300 * method {@link #complete} is invoked. By default, this method
301 * does nothing.
302 *
303 * @param caller the task invoking this method (which may
304 * be this task itself).
305 */
306 public void onCompletion(CountedCompleter<?> caller) {
307 }
308
309 /**
310 * Performs an action when method {@link #completeExceptionally}
311 * is invoked or method {@link #compute} throws an exception, and
312 * this task has not otherwise already completed normally. On
313 * entry to this method, this task {@link
314 * ForkJoinTask#isCompletedAbnormally}. The return value of this
315 * method controls further propagation: If {@code true} and this
316 * task has a completer, then this completer is also completed
317 * exceptionally. The default implementation of this method does
318 * nothing except return {@code true}.
319 *
320 * @param ex the exception
321 * @param caller the task invoking this method (which may
322 * be this task itself).
323 * @return true if this exception should be propagated to this
324 * tasks completer, if one exists.
325 */
326 public boolean onExceptionalCompletion(Throwable ex, CountedCompleter<?> caller) {
327 return true;
328 }
329
330 /**
331 * Returns the completer established in this task's constructor,
332 * or {@code null} if none.
333 *
334 * @return the completer
335 */
336 public final CountedCompleter<?> getCompleter() {
337 return completer;
338 }
339
340 /**
341 * Returns the current pending count.
342 *
343 * @return the current pending count
344 */
345 public final int getPendingCount() {
346 return pending;
347 }
348
349 /**
350 * Sets the pending count to the given value.
351 *
352 * @param count the count
353 */
354 public final void setPendingCount(int count) {
355 pending = count;
356 }
357
358 /**
359 * Adds (atomically) the given value to the pending count.
360 *
361 * @param delta the value to add
362 */
363 public final void addToPendingCount(int delta) {
364 int c; // note: can replace with intrinsic in jdk8
365 do {} while (!U.compareAndSwapInt(this, PENDING, c = pending, c+delta));
366 }
367
368 /**
369 * Sets (atomically) the pending count to the given count only if
370 * it currently holds the given expected value.
371 *
372 * @param expected the expected value
373 * @param count the new value
374 * @return true is successful
375 */
376 public final boolean compareAndSetPendingCount(int expected, int count) {
377 return U.compareAndSwapInt(this, PENDING, expected, count);
378 }
379
380 /**
381 * If the pending count is nonzero, decrements the count;
382 * otherwise invokes {@link #onCompletion} and then similarly
383 * tries to complete this task's completer, if one exists,
384 * else marks this task as complete.
385 */
386 public final void tryComplete() {
387 CountedCompleter<?> a = this, s = a;
388 for (int c;;) {
389 if ((c = a.pending) == 0) {
390 a.onCompletion(s);
391 if ((a = (s = a).completer) == null) {
392 s.quietlyComplete();
393 return;
394 }
395 }
396 else if (U.compareAndSwapInt(a, PENDING, c, c - 1))
397 return;
398 }
399 }
400
401 /**
402 * Regardless of pending count, invokes {@link #onCompletion},
403 * marks this task as complete and further triggers {@link
404 * #tryComplete} on this task's completer, if one exists. This
405 * method may be useful when forcing completion as soon as any one
406 * (versus all) of several subtask results are obtained. The
407 * given rawResult is used as an argument to {@link #setRawResult}
408 * before marking this task as complete; its value is meaningful
409 * only for classes overriding {@code setRawResult}.
410 *
411 * @param rawResult the raw result
412 */
413 public void complete(T rawResult) {
414 CountedCompleter<?> p;
415 onCompletion(this);
416 setRawResult(rawResult);
417 quietlyComplete();
418 if ((p = completer) != null)
419 p.tryComplete();
420 }
421
422 /**
423 * Support for FJT exception propagation
424 */
425 void internalPropagateException(Throwable ex) {
426 CountedCompleter<?> a = this, s = a;
427 while (a.onExceptionalCompletion(ex, s) &&
428 (a = (s = a).completer) != null && a.status >= 0)
429 a.recordExceptionalCompletion(ex);
430 }
431
432 /**
433 * Implements execution conventions for CountedCompleters
434 */
435 protected final boolean exec() {
436 compute();
437 return false;
438 }
439
440 /**
441 * Returns the result of the computation. By default
442 * returns {@code null}, which is appropriate for {@code Void}
443 * actions, but in other cases should be overridden.
444 *
445 * @return the result of the computation
446 */
447 public T getRawResult() { return null; }
448
449 /**
450 * A method that result-bearing CountedCompleters may optionally
451 * use to help maintain result data. By default, does nothing.
452 */
453 protected void setRawResult(T t) { }
454
455 // Unsafe mechanics
456 private static final sun.misc.Unsafe U;
457 private static final long PENDING;
458 static {
459 try {
460 U = getUnsafe();
461 PENDING = U.objectFieldOffset
462 (CountedCompleter.class.getDeclaredField("pending"));
463 } catch (Exception e) {
464 throw new Error(e);
465 }
466 }
467
468
469 /**
470 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
471 * Replace with a simple call to Unsafe.getUnsafe when integrating
472 * into a jdk.
473 *
474 * @return a sun.misc.Unsafe
475 */
476 private static sun.misc.Unsafe getUnsafe() {
477 try {
478 return sun.misc.Unsafe.getUnsafe();
479 } catch (SecurityException se) {
480 try {
481 return java.security.AccessController.doPrivileged
482 (new java.security
483 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
484 public sun.misc.Unsafe run() throws Exception {
485 java.lang.reflect.Field f = sun.misc
486 .Unsafe.class.getDeclaredField("theUnsafe");
487 f.setAccessible(true);
488 return (sun.misc.Unsafe) f.get(null);
489 }});
490 } catch (java.security.PrivilegedActionException e) {
491 throw new RuntimeException("Could not initialize intrinsics",
492 e.getCause());
493 }
494 }
495 }
496
497 }