ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
Revision: 1.1
Committed: Tue Jan 6 14:30:31 2009 UTC (15 years, 4 months ago) by dl
Branch: MAIN
Log Message:
Refactored and repackaged ForkJoin classes

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package jsr166y;
8     import java.util.*;
9     import java.util.concurrent.*;
10     import java.util.concurrent.locks.*;
11     import java.util.concurrent.atomic.*;
12     import sun.misc.Unsafe;
13     import java.lang.reflect.*;
14    
15     /**
16     * Host for a group of ForkJoinWorkerThreads. A ForkJoinPool provides
17     * the entry point for tasks submitted from non-ForkJoinTasks, as well
18     * as management and monitoring operations. Normally a single
19     * ForkJoinPool is used for a large number of submitted
20     * tasks. Otherwise, use would not usually outweigh the construction
21     * and bookkeeping overhead of creating a large set of threads.
22     *
23     * <p>ForkJoinPools differ from other kinds of Executor mainly in that
24     * they provide <em>work-stealing</em>: all threads in the pool
25     * attempt to find and execute subtasks created by other active tasks
26     * (eventually blocking if none exist). This makes them efficient when
27     * most tasks spawn other subtasks (as do most ForkJoinTasks) but
28     * possibly less so otherwise. It is however fine to combine execution
29     * of some plain Runnable- or Callable- based activities with that of
30     * ForkJoinTasks.
31     *
32     * <p>A ForkJoinPool may be constructed with a given parallelism level
33     * (target pool size), which it attempts to maintain by dynamically
34     * adding, suspending, or resuming threads, even if some tasks have
35     * blocked waiting to join others. However, no such adjustments are
36     * performed in the face of blocked IO or other unmanaged
37     * synchronization. The nested ManagedBlocker interface enables
38     * extension of the kinds of synchronization accommodated.
39     *
40     * <p>The target parallelism level may also be set dynamically. You
41     * can limit the number of threads dynamically constructed using
42     * method <tt>setMaximumPoolSize</tt> and/or
43     * <tt>setMaintainParallelism</tt>.
44     *
45     * <p>In addition to execution and lifecycle control methods, this
46     * class provides status check methods (for example
47     * <tt>getStealCount</tt>) that are intended to aid in developing,
48     * tuning, and monitoring fork/join applications. Also, method
49     * <tt>toString</tt> returns indications of pool state in a convenient
50     * form for informal monitoring.
51     *
52     * <p><b>Implementation notes</b>: This implementation restricts the
53     * maximum parallelism to 32767. Attempts to create pools with greater
54     * than the maximum result in IllegalArgumentExceptions.
55     */
56     public class ForkJoinPool extends AbstractExecutorService
57     implements ExecutorService {
58    
59     /*
60     * See the extended comments interspersed below for design,
61     * rationale, and walkthroughs.
62     */
63    
64     /** Mask for packing and unpacking shorts */
65     private static final int shortMask = 0xffff;
66    
67     /** Max pool size -- must be a power of two minus 1 */
68     private static final int MAX_THREADS = 0x7FFF;
69    
70     /**
71     * Factory for creating new ForkJoinWorkerThreads. A
72     * ForkJoinWorkerThreadFactory must be defined and used for
73     * ForkJoinWorkerThread subclasses that extend base functionality
74     * or initialize threads with different contexts.
75     */
76     public static interface ForkJoinWorkerThreadFactory {
77     /**
78     * Returns a new worker thread operating in the given pool.
79     *
80     * @param pool the pool this thread works in
81     * @throws NullPointerException if pool is null;
82     */
83     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
84     }
85    
86     /**
87     * Default ForkJoinWorkerThreadFactory implementation, creates a
88     * new ForkJoinWorkerThread.
89     */
90     public static class DefaultForkJoinWorkerThreadFactory
91     implements ForkJoinWorkerThreadFactory {
92     public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
93     try {
94     return new ForkJoinWorkerThread(pool);
95     } catch (OutOfMemoryError oom) {
96     return null;
97     }
98     }
99     }
100    
101     /**
102     * The default ForkJoinWorkerThreadFactory, used unless overridden
103     * in ForkJoinPool constructors.
104     */
105     private static final DefaultForkJoinWorkerThreadFactory
106     defaultForkJoinWorkerThreadFactory =
107     new DefaultForkJoinWorkerThreadFactory();
108    
109    
110     /**
111     * Permission required for callers of methods that may start or
112     * kill threads.
113     */
114     private static final RuntimePermission modifyThreadPermission =
115     new RuntimePermission("modifyThread");
116    
117     /**
118     * If there is a security manager, makes sure caller has
119     * permission to modify threads.
120     */
121     private static void checkPermission() {
122     SecurityManager security = System.getSecurityManager();
123     if (security != null)
124     security.checkPermission(modifyThreadPermission);
125     }
126    
127     /**
128     * Generator for assigning sequence numbers as pool names.
129     */
130     private static final AtomicInteger poolNumberGenerator =
131     new AtomicInteger();
132    
133     /**
134     * Array holding all worker threads in the pool. Array size must
135     * be a power of two. Updates and replacements are protected by
136     * workerLock, but it is always kept in a consistent enough state
137     * to be randomly accessed without locking by workers performing
138     * work-stealing.
139     */
140     volatile ForkJoinWorkerThread[] workers;
141    
142     /**
143     * Lock protecting access to workers.
144     */
145     private final ReentrantLock workerLock;
146    
147     /**
148     * Condition for awaitTermination.
149     */
150     private final Condition termination;
151    
152     /**
153     * The uncaught exception handler used when any worker
154     * abrupty terminates
155     */
156     private Thread.UncaughtExceptionHandler ueh;
157    
158     /**
159     * Creation factory for worker threads.
160     */
161     private final ForkJoinWorkerThreadFactory factory;
162    
163     /**
164     * Head of stack of threads that were created to maintain
165     * parallelism when other threads blocked, but have since
166     * suspended when the parallelism level rose.
167     */
168     private volatile WaitQueueNode spareStack;
169    
170     /**
171     * Sum of per-thread steal counts, updated only when threads are
172     * idle or terminating.
173     */
174     private final AtomicLong stealCount;
175    
176     /**
177     * Queue for external submissions.
178     */
179     private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
180    
181     /**
182     * Head of Treiber stack for barrier sync. See below for explanation
183     */
184     private volatile WaitQueueNode barrierStack;
185    
186     /**
187     * The count for event barrier
188     */
189     private volatile long eventCount;
190    
191     /**
192     * Pool number, just for assigning useful names to worker threads
193     */
194     private final int poolNumber;
195    
196     /**
197     * The maximum allowed pool size
198     */
199     private volatile int maxPoolSize;
200    
201     /**
202     * The desired parallelism level, updated only under workerLock.
203     */
204     private volatile int parallelism;
205    
206     /**
207     * Holds number of total (i.e., created and not yet terminated)
208     * and running (i.e., not blocked on joins or other managed sync)
209     * threads, packed into one int to ensure consistent snapshot when
210     * making decisions about creating and suspending spare
211     * threads. Updated only by CAS. Note: CASes in
212     * updateRunningCount and preJoin running active count is in low
213     * word, so need to be modified if this changes
214     */
215     private volatile int workerCounts;
216    
217     private static int totalCountOf(int s) { return s >>> 16; }
218     private static int runningCountOf(int s) { return s & shortMask; }
219     private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
220    
221     /**
222     * Add delta (which may be negative) to running count. This must
223     * be called before (with negative arg) and after (with positive)
224     * any managed synchronization (i.e., mainly, joins)
225     * @param delta the number to add
226     */
227     final void updateRunningCount(int delta) {
228     int s;
229     do;while (!casWorkerCounts(s = workerCounts, s + delta));
230     }
231    
232     /**
233     * Add delta (which may be negative) to both total and running
234     * count. This must be called upon creation and termination of
235     * worker threads.
236     * @param delta the number to add
237     */
238     private void updateWorkerCount(int delta) {
239     int d = delta + (delta << 16); // add to both lo and hi parts
240     int s;
241     do;while (!casWorkerCounts(s = workerCounts, s + d));
242     }
243    
244     /**
245     * Lifecycle control. High word contains runState, low word
246     * contains the number of workers that are (probably) executing
247     * tasks. This value is atomically incremented before a worker
248     * gets a task to run, and decremented when worker has no tasks
249     * and cannot find any. These two fields are bundled together to
250     * support correct termination triggering. Note: activeCount
251     * CAS'es cheat by assuming active count is in low word, so need
252     * to be modified if this changes
253     */
254     private volatile int runControl;
255    
256     // RunState values. Order among values matters
257     private static final int RUNNING = 0;
258     private static final int SHUTDOWN = 1;
259     private static final int TERMINATING = 2;
260     private static final int TERMINATED = 3;
261    
262     private static int runStateOf(int c) { return c >>> 16; }
263     private static int activeCountOf(int c) { return c & shortMask; }
264     private static int runControlFor(int r, int a) { return (r << 16) + a; }
265    
266     /**
267     * Increment active count. Called by workers before/during
268     * executing tasks.
269     */
270     final void incrementActiveCount() {
271     int c;
272     do;while (!casRunControl(c = runControl, c+1));
273     }
274    
275     /**
276     * Decrement active count; possibly trigger termination.
277     * Called by workers when they can't find tasks.
278     */
279     final void decrementActiveCount() {
280     int c, nextc;
281     do;while (!casRunControl(c = runControl, nextc = c-1));
282     if (canTerminateOnShutdown(nextc))
283     terminateOnShutdown();
284     }
285    
286     /**
287     * Return true if argument represents zero active count and
288     * nonzero runstate, which is the triggering condition for
289     * terminating on shutdown.
290     */
291     private static boolean canTerminateOnShutdown(int c) {
292     return ((c & -c) >>> 16) != 0; // i.e. least bit is nonzero runState bit
293     }
294    
295     /**
296     * Transition run state to at least the given state. Return true
297     * if not already at least given state.
298     */
299     private boolean transitionRunStateTo(int state) {
300     for (;;) {
301     int c = runControl;
302     if (runStateOf(c) >= state)
303     return false;
304     if (casRunControl(c, runControlFor(state, activeCountOf(c))))
305     return true;
306     }
307     }
308    
309     /**
310     * Controls whether to add spares to maintain parallelism
311     */
312     private volatile boolean maintainsParallelism;
313    
314     // Constructors
315    
316     /**
317     * Creates a ForkJoinPool with a pool size equal to the number of
318     * processors available on the system and using the default
319     * ForkJoinWorkerThreadFactory,
320     * @throws SecurityException if a security manager exists and
321     * the caller is not permitted to modify threads
322     * because it does not hold {@link
323     * java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
324     */
325     public ForkJoinPool() {
326     this(Runtime.getRuntime().availableProcessors(),
327     defaultForkJoinWorkerThreadFactory);
328     }
329    
330     /**
331     * Creates a ForkJoinPool with the indicated parellelism level
332     * threads, and using the default ForkJoinWorkerThreadFactory,
333     * @param parallelism the number of worker threads
334     * @throws IllegalArgumentException if parallelism less than or
335     * equal to zero
336     * @throws SecurityException if a security manager exists and
337     * the caller is not permitted to modify threads
338     * because it does not hold {@link
339     * java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
340     */
341     public ForkJoinPool(int parallelism) {
342     this(parallelism, defaultForkJoinWorkerThreadFactory);
343     }
344    
345     /**
346     * Creates a ForkJoinPool with a pool size equal to the number of
347     * processors available on the system and using the given
348     * ForkJoinWorkerThreadFactory,
349     * @param factory the factory for creating new threads
350     * @throws NullPointerException if factory is null
351     * @throws SecurityException if a security manager exists and
352     * the caller is not permitted to modify threads
353     * because it does not hold {@link
354     * java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
355     */
356     public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
357     this(Runtime.getRuntime().availableProcessors(), factory);
358     }
359    
360     /**
361     * Creates a ForkJoinPool with the indicated target number of
362     * worker threads and the given factory.
363     *
364     * @param parallelism the targeted number of worker threads
365     * @param factory the factory for creating new threads
366     * @throws IllegalArgumentException if parallelism less than or
367     * equal to zero, or greater than implementation limit.
368     * @throws NullPointerException if factory is null
369     * @throws SecurityException if a security manager exists and
370     * the caller is not permitted to modify threads
371     * because it does not hold {@link
372     * java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
373     */
374     public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
375     if (parallelism <= 0 || parallelism > MAX_THREADS)
376     throw new IllegalArgumentException();
377     if (factory == null)
378     throw new NullPointerException();
379     checkPermission();
380     this.factory = factory;
381     this.parallelism = parallelism;
382     this.maxPoolSize = MAX_THREADS;
383     this.maintainsParallelism = true;
384     this.poolNumber = poolNumberGenerator.incrementAndGet();
385     this.workerLock = new ReentrantLock();
386     this.termination = workerLock.newCondition();
387     this.stealCount = new AtomicLong();
388     this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
389     createAndStartInitialWorkers(parallelism);
390     }
391    
392     /**
393     * Create new worker using factory.
394     * @param index the index to assign worker
395     * @return new worker, or null of factory failed
396     */
397     private ForkJoinWorkerThread createWorker(int index) {
398     Thread.UncaughtExceptionHandler h = ueh;
399     ForkJoinWorkerThread w = factory.newThread(this);
400     if (w != null) {
401     w.poolIndex = index;
402     w.setDaemon(true);
403     w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
404     if (h != null)
405     w.setUncaughtExceptionHandler(h);
406     }
407     return w;
408     }
409    
410     /**
411     * Return a good size for worker array given pool size.
412     * Currently requires size to be a power of two.
413     */
414     private static int arraySizeFor(int ps) {
415     return ps <= 1? 1 : (1 << (32 - Integer.numberOfLeadingZeros(ps-1)));
416     }
417    
418     /**
419     * Create or resize array if necessary to hold newLength
420     * @return the array
421     */
422     private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
423     ForkJoinWorkerThread[] ws = workers;
424     if (ws == null)
425     return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
426     else if (newLength > ws.length)
427     return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
428     else
429     return ws;
430     }
431    
432     /**
433     * Try to shrink workers into smaller array after one or more terminate
434     */
435     private void tryShrinkWorkerArray() {
436     ForkJoinWorkerThread[] ws = workers;
437     int len = ws.length;
438     int last = len - 1;
439     while (last >= 0 && ws[last] == null)
440     --last;
441     int newLength = arraySizeFor(last+1);
442     if (newLength < len)
443     workers = Arrays.copyOf(ws, newLength);
444     }
445    
446     /**
447     * Initial worker array and worker creation and startup. (This
448     * must be done under lock to avoid interference by some of the
449     * newly started threads while creating others.)
450     */
451     private void createAndStartInitialWorkers(int ps) {
452     final ReentrantLock lock = this.workerLock;
453     lock.lock();
454     try {
455     ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
456     for (int i = 0; i < ps; ++i) {
457     ForkJoinWorkerThread w = createWorker(i);
458     if (w != null) {
459     ws[i] = w;
460     w.start();
461     updateWorkerCount(1);
462     }
463     }
464     } finally {
465     lock.unlock();
466     }
467     }
468    
469     /**
470     * Worker creation and startup for threads added via setParallelism.
471     */
472     private void createAndStartAddedWorkers() {
473     resumeAllSpares(); // Allow spares to convert to nonspare
474     int ps = parallelism;
475     ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
476     int len = ws.length;
477     // Sweep through slots, to keep lowest indices most populated
478     int k = 0;
479     while (k < len) {
480     if (ws[k] != null) {
481     ++k;
482     continue;
483     }
484     int s = workerCounts;
485     int tc = totalCountOf(s);
486     int rc = runningCountOf(s);
487     if (rc >= ps || tc >= ps)
488     break;
489     if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
490     ForkJoinWorkerThread w = createWorker(k);
491     if (w != null) {
492     ws[k++] = w;
493     w.start();
494     }
495     else {
496     updateWorkerCount(-1); // back out on failed creation
497     break;
498     }
499     }
500     }
501     }
502    
503     /**
504     * Sets the handler for internal worker threads that terminate due
505     * to unrecoverable errors encountered while executing tasks.
506     * Unless set, the current default or ThreadGroup handler is used
507     * as handler.
508     *
509     * @param h the new handler
510     * @return the old handler, or null if none
511     * @throws SecurityException if a security manager exists and
512     * the caller is not permitted to modify threads
513     * because it does not hold {@link
514     * java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
515     */
516     public Thread.UncaughtExceptionHandler
517     setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
518     checkPermission();
519     Thread.UncaughtExceptionHandler old = null;
520     final ReentrantLock lock = this.workerLock;
521     lock.lock();
522     try {
523     old = ueh;
524     ueh = h;
525     ForkJoinWorkerThread[] ws = workers;
526     for (int i = 0; i < ws.length; ++i) {
527     ForkJoinWorkerThread w = ws[i];
528     if (w != null)
529     w.setUncaughtExceptionHandler(h);
530     }
531     } finally {
532     lock.unlock();
533     }
534     return old;
535     }
536    
537     /**
538     * Returns the handler for internal worker threads that terminate
539     * due to unrecoverable errors encountered while executing tasks.
540     * @return the handler, or null if none
541     */
542     public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
543     Thread.UncaughtExceptionHandler h;
544     final ReentrantLock lock = this.workerLock;
545     lock.lock();
546     try {
547     h = ueh;
548     } finally {
549     lock.unlock();
550     }
551     return h;
552     }
553    
554     // Execution methods
555    
556     /**
557     * Common code for execute, invoke and submit
558     */
559     private <T> void doSubmit(ForkJoinTask<T> task) {
560     if (isShutdown())
561     throw new RejectedExecutionException();
562     submissionQueue.offer(task);
563     signalIdleWorkers(true);
564     }
565    
566     /**
567     * Performs the given task; returning its result upon completion
568     * @param task the task
569     * @return the task's result
570     * @throws NullPointerException if task is null
571     * @throws RejectedExecutionException if pool is shut down
572     */
573     public <T> T invoke(ForkJoinTask<T> task) {
574     doSubmit(task);
575     return task.join();
576     }
577    
578     /**
579     * Arranges for (asynchronous) execution of the given task.
580     * @param task the task
581     * @throws NullPointerException if task is null
582     * @throws RejectedExecutionException if pool is shut down
583     */
584     public <T> void execute(ForkJoinTask<T> task) {
585     doSubmit(task);
586     }
587    
588     // AbstractExecutorService methods
589    
590     public void execute(Runnable task) {
591     doSubmit(new AdaptedRunnable<Void>(task, null));
592     }
593    
594     public <T> ForkJoinTask<T> submit(Callable<T> task) {
595     ForkJoinTask<T> job = new AdaptedCallable<T>(task);
596     doSubmit(job);
597     return job;
598     }
599    
600     public <T> ForkJoinTask<T> submit(Runnable task, T result) {
601     ForkJoinTask<T> job = new AdaptedRunnable<T>(task, result);
602     doSubmit(job);
603     return job;
604     }
605    
606     public ForkJoinTask<?> submit(Runnable task) {
607     ForkJoinTask<Void> job = new AdaptedRunnable<Void>(task, null);
608     doSubmit(job);
609     return job;
610     }
611    
612     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
613     return new AdaptedRunnable(runnable, value);
614     }
615    
616     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
617     return new AdaptedCallable(callable);
618     }
619    
620     /**
621     * Adaptor for Runnables. This implements RunnableFuture
622     * to be compliant with AbstractExecutorService constraints
623     */
624     static final class AdaptedRunnable<T> extends ForkJoinTask<T>
625     implements RunnableFuture<T> {
626     final Runnable runnable;
627     final T resultOnCompletion;
628     T result;
629     AdaptedRunnable(Runnable runnable, T result) {
630     if (runnable == null) throw new NullPointerException();
631     this.runnable = runnable;
632     this.resultOnCompletion = result;
633     }
634     public T getRawResult() { return result; }
635     public void setRawResult(T v) { result = v; }
636     public boolean exec() {
637     runnable.run();
638     result = resultOnCompletion;
639     return true;
640     }
641     public void run() { invoke(); }
642     }
643    
644     /**
645     * Adaptor for Callables
646     */
647     static final class AdaptedCallable<T> extends ForkJoinTask<T>
648     implements RunnableFuture<T> {
649     final Callable<T> callable;
650     T result;
651     AdaptedCallable(Callable<T> callable) {
652     if (callable == null) throw new NullPointerException();
653     this.callable = callable;
654     }
655     public T getRawResult() { return result; }
656     public void setRawResult(T v) { result = v; }
657     public boolean exec() {
658     try {
659     result = callable.call();
660     return true;
661     } catch (Error err) {
662     throw err;
663     } catch (RuntimeException rex) {
664     throw rex;
665     } catch (Exception ex) {
666     throw new RuntimeException(ex);
667     }
668     }
669     public void run() { invoke(); }
670     }
671    
672     public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
673     ArrayList<ForkJoinTask<T>> ts =
674     new ArrayList<ForkJoinTask<T>>(tasks.size());
675     for (Callable<T> c : tasks)
676     ts.add(new AdaptedCallable<T>(c));
677     invoke(new InvokeAll<T>(ts));
678     return (List<Future<T>>)(List)ts;
679     }
680    
681     static final class InvokeAll<T> extends RecursiveAction {
682     final ArrayList<ForkJoinTask<T>> tasks;
683     InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
684     public void compute() {
685     try { invokeAll(tasks); } catch(Exception ignore) {}
686     }
687     }
688    
689     // Configuration and status settings and queries
690    
691     /**
692     * Returns the factory used for constructing new workers
693     *
694     * @return the factory used for constructing new workers
695     */
696     public ForkJoinWorkerThreadFactory getFactory() {
697     return factory;
698     }
699    
700     /**
701     * Sets the target paralleism level of this pool.
702     * @param parallelism the target parallelism
703     * @throws IllegalArgumentException if parallelism less than or
704     * equal to zero or greater than maximum size bounds.
705     * @throws SecurityException if a security manager exists and
706     * the caller is not permitted to modify threads
707     * because it does not hold {@link
708     * java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
709     */
710     public void setParallelism(int parallelism) {
711     checkPermission();
712     if (parallelism <= 0 || parallelism > maxPoolSize)
713     throw new IllegalArgumentException();
714     final ReentrantLock lock = this.workerLock;
715     lock.lock();
716     try {
717     if (!isTerminating()) {
718     int p = this.parallelism;
719     this.parallelism = parallelism;
720     if (parallelism > p)
721     createAndStartAddedWorkers();
722     else
723     trimSpares();
724     }
725     } finally {
726     lock.unlock();
727     }
728     signalIdleWorkers(false);
729     }
730    
731     /**
732     * Returns the targeted number of worker threads in this pool.
733     * This value does not necessarily reflect transient changes as
734     * threads are added, removed, or abruptly terminate.
735     *
736     * @return the targeted number of worker threads in this pool
737     */
738     public int getParallelism() {
739     return parallelism;
740     }
741    
742     /**
743     * Returns the number of worker threads that have started but not
744     * yet terminated. This result returned by this method may differ
745     * from <tt>getParallelism</tt> when threads are created to
746     * maintain parallelism when others are cooperatively blocked.
747     *
748     * @return the number of worker threads
749     */
750     public int getPoolSize() {
751     return totalCountOf(workerCounts);
752     }
753    
754     /**
755     * Returns the maximum number of threads allowed to exist in the
756     * pool, even if there are insufficient unblocked running threads.
757     * @return the maximum
758     */
759     public int getMaximumPoolSize() {
760     return maxPoolSize;
761     }
762    
763     /**
764     * Sets the maximum number of threads allowed to exist in the
765     * pool, even if there are insufficient unblocked running threads.
766     * Setting this value has no effect on current pool size. It
767     * controls construction of new threads.
768     * @throws IllegalArgumentException if negative or greater then
769     * internal implementation limit.
770     */
771     public void setMaximumPoolSize(int newMax) {
772     if (newMax < 0 || newMax > MAX_THREADS)
773     throw new IllegalArgumentException();
774     maxPoolSize = newMax;
775     }
776    
777    
778     /**
779     * Returns true if this pool dynamically maintains its target
780     * parallelism level. If false, new threads are added only to
781     * avoid possible starvation.
782     * This setting is by default true;
783     * @return true if maintains parallelism
784     */
785     public boolean getMaintainsParallelism() {
786     return maintainsParallelism;
787     }
788    
789     /**
790     * Sets whether this pool dynamically maintains its target
791     * parallelism level. If false, new threads are added only to
792     * avoid possible starvation.
793     * @param enable true to maintains parallelism
794     */
795     public void setMaintainsParallelism(boolean enable) {
796     maintainsParallelism = enable;
797     }
798    
799     /**
800     * Returns the approximate number of worker threads that are not
801     * blocked waiting to join tasks or for other managed
802     * synchronization.
803     *
804     * @return the number of worker threads
805     */
806     public int getRunningThreadCount() {
807     return runningCountOf(workerCounts);
808     }
809    
810     /**
811     * Returns the approximate number of threads that are currently
812     * stealing or executing tasks. This method may overestimate the
813     * number of active threads.
814     * @return the number of active threads.
815     */
816     public int getActiveThreadCount() {
817     return activeCountOf(runControl);
818     }
819    
820     /**
821     * Returns the approximate number of threads that are currently
822     * idle waiting for tasks. This method may underestimate the
823     * number of idle threads.
824     * @return the number of idle threads.
825     */
826     final int getIdleThreadCount() {
827     int c = runningCountOf(workerCounts) - activeCountOf(runControl);
828     return (c <= 0)? 0 : c;
829     }
830    
831     /**
832     * Returns true if all worker threads are currently idle. An idle
833     * worker is one that cannot obtain a task to execute because none
834     * are available to steal from other threads, and there are no
835     * pending submissions to the pool. This method is conservative:
836     * It might not return true immediately upon idleness of all
837     * threads, but will eventually become true if threads remain
838     * inactive.
839     * @return true if all threads are currently idle
840     */
841     public boolean isQuiescent() {
842     return activeCountOf(runControl) == 0;
843     }
844    
845     /**
846     * Returns an estimate of the total number of tasks stolen from
847     * one thread's work queue by another. The reported value
848     * underestimates the actual total number of steals when the pool
849     * is not quiescent. This value may be useful for monitoring and
850     * tuning fork/join programs: In general, steal counts should be
851     * high enough to keep threads busy, but low enough to avoid
852     * overhead and contention across threads.
853     * @return the number of steals.
854     */
855     public long getStealCount() {
856     return stealCount.get();
857     }
858    
859     /**
860     * Accumulate steal count from a worker. Call only
861     * when worker known to be idle.
862     */
863     private void updateStealCount(ForkJoinWorkerThread w) {
864     int sc = w.getAndClearStealCount();
865     if (sc != 0)
866     stealCount.addAndGet(sc);
867     }
868    
869     /**
870     * Returns the total number of tasks currently held in queues by
871     * worker threads (but not including tasks submitted to the pool
872     * that have not begun executing). This value is only an
873     * approximation, obtained by iterating across all threads in the
874     * pool. This method may be useful for tuning task granularities.
875     * @return the number of queued tasks.
876     */
877     public long getQueuedTaskCount() {
878     long count = 0;
879     ForkJoinWorkerThread[] ws = workers;
880     for (int i = 0; i < ws.length; ++i) {
881     ForkJoinWorkerThread t = ws[i];
882     if (t != null)
883     count += t.getQueueSize();
884     }
885     return count;
886     }
887    
888     /**
889     * Returns the approximate number tasks submitted to this pool
890     * that have not yet begun executing. This method takes time
891     * proportional to the number of submissions.
892     * @return the number of queued submissions.
893     */
894     public int getQueuedSubmissionCount() {
895     return submissionQueue.size();
896     }
897    
898     /**
899     * Returns true if there are any tasks submitted to this pool
900     * that have not yet begun executing.
901     * @return <tt>true</tt> if there are any queued submissions.
902     */
903     public boolean hasQueuedSubmissions() {
904     return !submissionQueue.isEmpty();
905     }
906    
907     /**
908     * Removes and returns the next unexecuted submission if one is
909     * available. This method may be useful in extensions to this
910     * class that re-assign work in systems with multiple pools.
911     * @return the next submission, or null if none
912     */
913     protected ForkJoinTask<?> pollSubmission() {
914     return submissionQueue.poll();
915     }
916    
917     /**
918     * Returns a string identifying this pool, as well as its state,
919     * including indications of run state, parallelism level, and
920     * worker and task counts.
921     *
922     * @return a string identifying this pool, as well as its state
923     */
924     public String toString() {
925     int ps = parallelism;
926     int wc = workerCounts;
927     int rc = runControl;
928     long st = getStealCount();
929     long qt = getQueuedTaskCount();
930     long qs = getQueuedSubmissionCount();
931     return super.toString() +
932     "[" + runStateToString(runStateOf(rc)) +
933     ", parallelism = " + ps +
934     ", size = " + totalCountOf(wc) +
935     ", active = " + activeCountOf(rc) +
936     ", running = " + runningCountOf(wc) +
937     ", steals = " + st +
938     ", tasks = " + qt +
939     ", submissions = " + qs +
940     "]";
941     }
942    
943     private static String runStateToString(int rs) {
944     switch(rs) {
945     case RUNNING: return "Running";
946     case SHUTDOWN: return "Shutting down";
947     case TERMINATING: return "Terminating";
948     case TERMINATED: return "Terminated";
949     default: throw new Error("Unknown run state");
950     }
951     }
952    
953     // lifecycle control
954    
955     /**
956     * Initiates an orderly shutdown in which previously submitted
957     * tasks are executed, but no new tasks will be accepted.
958     * Invocation has no additional effect if already shut down.
959     * Tasks that are in the process of being submitted concurrently
960     * during the course of this method may or may not be rejected.
961     * @throws SecurityException if a security manager exists and
962     * the caller is not permitted to modify threads
963     * because it does not hold {@link
964     * java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
965     */
966     public void shutdown() {
967     checkPermission();
968     transitionRunStateTo(SHUTDOWN);
969     if (canTerminateOnShutdown(runControl))
970     terminateOnShutdown();
971     }
972    
973     /**
974     * Attempts to stop all actively executing tasks, and cancels all
975     * waiting tasks. Tasks that are in the process of being
976     * submitted or executed concurrently during the course of this
977     * method may or may not be rejected. Unlike some other executors,
978     * this method cancels rather than collects non-executed tasks,
979     * so always returns an empty list.
980     * @return an empty list
981     * @throws SecurityException if a security manager exists and
982     * the caller is not permitted to modify threads
983     * because it does not hold {@link
984     * java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
985     */
986     public List<Runnable> shutdownNow() {
987     checkPermission();
988     terminate();
989     return Collections.emptyList();
990     }
991    
992     /**
993     * Returns <tt>true</tt> if all tasks have completed following shut down.
994     *
995     * @return <tt>true</tt> if all tasks have completed following shut down
996     */
997     public boolean isTerminated() {
998     return runStateOf(runControl) == TERMINATED;
999     }
1000    
1001     /**
1002     * Returns <tt>true</tt> if the process of termination has
1003     * commenced but possibly not yet completed.
1004     *
1005     * @return <tt>true</tt> if terminating
1006     */
1007     public boolean isTerminating() {
1008     return runStateOf(runControl) >= TERMINATING;
1009     }
1010    
1011     /**
1012     * Returns <tt>true</tt> if this pool has been shut down.
1013     *
1014     * @return <tt>true</tt> if this pool has been shut down
1015     */
1016     public boolean isShutdown() {
1017     return runStateOf(runControl) >= SHUTDOWN;
1018     }
1019    
1020     /**
1021     * Blocks until all tasks have completed execution after a shutdown
1022     * request, or the timeout occurs, or the current thread is
1023     * interrupted, whichever happens first.
1024     *
1025     * @param timeout the maximum time to wait
1026     * @param unit the time unit of the timeout argument
1027     * @return <tt>true</tt> if this executor terminated and
1028     * <tt>false</tt> if the timeout elapsed before termination
1029     * @throws InterruptedException if interrupted while waiting
1030     */
1031     public boolean awaitTermination(long timeout, TimeUnit unit)
1032     throws InterruptedException {
1033     long nanos = unit.toNanos(timeout);
1034     final ReentrantLock lock = this.workerLock;
1035     lock.lock();
1036     try {
1037     for (;;) {
1038     if (isTerminated())
1039     return true;
1040     if (nanos <= 0)
1041     return false;
1042     nanos = termination.awaitNanos(nanos);
1043     }
1044     } finally {
1045     lock.unlock();
1046     }
1047     }
1048    
1049     // Shutdown and termination support
1050    
1051     /**
1052     * Callback from terminating worker. Null out the corresponding
1053     * workers slot, and if terminating, try to terminate, else try to
1054     * shrink workers array.
1055     * @param w the worker
1056     */
1057     final void workerTerminated(ForkJoinWorkerThread w) {
1058     updateStealCount(w);
1059     updateWorkerCount(-1);
1060     final ReentrantLock lock = this.workerLock;
1061     lock.lock();
1062     try {
1063     ForkJoinWorkerThread[] ws = workers;
1064     int idx = w.poolIndex;
1065     if (idx >= 0 && idx < ws.length && ws[idx] == w)
1066     ws[idx] = null;
1067     if (totalCountOf(workerCounts) == 0) {
1068     terminate(); // no-op if already terminating
1069     transitionRunStateTo(TERMINATED);
1070     termination.signalAll();
1071     }
1072     else if (!isTerminating()) {
1073     tryShrinkWorkerArray();
1074     tryResumeSpare(true); // allow replacement
1075     }
1076     } finally {
1077     lock.unlock();
1078     }
1079     signalIdleWorkers(false);
1080     }
1081    
1082     /**
1083     * Initiate termination.
1084     */
1085     private void terminate() {
1086     if (transitionRunStateTo(TERMINATING)) {
1087     stopAllWorkers();
1088     resumeAllSpares();
1089     signalIdleWorkers(true);
1090     cancelQueuedSubmissions();
1091     cancelQueuedWorkerTasks();
1092     interruptUnterminatedWorkers();
1093     signalIdleWorkers(true); // resignal after interrupt
1094     }
1095     }
1096    
1097     /**
1098     * Possibly terminate when on shutdown state
1099     */
1100     private void terminateOnShutdown() {
1101     if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1102     terminate();
1103     }
1104    
1105     /**
1106     * Clear out and cancel submissions
1107     */
1108     private void cancelQueuedSubmissions() {
1109     ForkJoinTask<?> task;
1110     while ((task = pollSubmission()) != null)
1111     task.cancel(false);
1112     }
1113    
1114     /**
1115     * Clean out worker queues.
1116     */
1117     private void cancelQueuedWorkerTasks() {
1118     final ReentrantLock lock = this.workerLock;
1119     lock.lock();
1120     try {
1121     ForkJoinWorkerThread[] ws = workers;
1122     for (int i = 0; i < ws.length; ++i) {
1123     ForkJoinWorkerThread t = ws[i];
1124     if (t != null)
1125     t.cancelTasks();
1126     }
1127     } finally {
1128     lock.unlock();
1129     }
1130     }
1131    
1132     /**
1133     * Set each worker's status to terminating. Requires lock to avoid
1134     * conflicts with add/remove
1135     */
1136     private void stopAllWorkers() {
1137     final ReentrantLock lock = this.workerLock;
1138     lock.lock();
1139     try {
1140     ForkJoinWorkerThread[] ws = workers;
1141     for (int i = 0; i < ws.length; ++i) {
1142     ForkJoinWorkerThread t = ws[i];
1143     if (t != null)
1144     t.shutdownNow();
1145     }
1146     } finally {
1147     lock.unlock();
1148     }
1149     }
1150    
1151     /**
1152     * Interrupt all unterminated workers. This is not required for
1153     * sake of internal control, but may help unstick user code during
1154     * shutdown.
1155     */
1156     private void interruptUnterminatedWorkers() {
1157     final ReentrantLock lock = this.workerLock;
1158     lock.lock();
1159     try {
1160     ForkJoinWorkerThread[] ws = workers;
1161     for (int i = 0; i < ws.length; ++i) {
1162     ForkJoinWorkerThread t = ws[i];
1163     if (t != null && !t.isTerminated()) {
1164     try {
1165     t.interrupt();
1166     } catch (SecurityException ignore) {
1167     }
1168     }
1169     }
1170     } finally {
1171     lock.unlock();
1172     }
1173     }
1174    
1175    
1176     /*
1177     * Nodes for event barrier to manage idle threads.
1178     *
1179     * The event barrier has an event count and a wait queue (actually
1180     * a Treiber stack). Workers are enabled to look for work when
1181     * the eventCount is incremented. If they fail to find some,
1182     * they may wait for next count. Synchronization events occur only
1183     * in enough contexts to maintain overall liveness:
1184     *
1185     * - Submission of a new task to the pool
1186     * - Creation or termination of a worker
1187     * - pool termination
1188     * - A worker pushing a task on an empty queue
1189     *
1190     * The last case (pushing a task) occurs often enough, and is
1191     * heavy enough compared to simple stack pushes to require some
1192     * special handling: Method signalNonEmptyWorkerQueue returns
1193     * without advancing count if the queue appears to be empty. This
1194     * would ordinarily result in races causing some queued waiters
1195     * not to be woken up. To avoid this, a worker in sync
1196     * rescans for tasks after being enqueued if it was the first to
1197     * enqueue, and aborts the wait if finding one, also helping to
1198     * signal others. This works well because the worker has nothing
1199     * better to do anyway, and so might as well help alleviate the
1200     * overhead and contention on the threads actually doing work.
1201     *
1202     * Queue nodes are basic Treiber stack nodes, also used for spare
1203     * stack.
1204     */
1205     static final class WaitQueueNode {
1206     WaitQueueNode next; // only written before enqueued
1207     volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1208     final long count; // unused for spare stack
1209     WaitQueueNode(ForkJoinWorkerThread w, long c) {
1210     count = c;
1211     thread = w;
1212     }
1213     final boolean signal() {
1214     ForkJoinWorkerThread t = thread;
1215     thread = null;
1216     if (t != null) {
1217     LockSupport.unpark(t);
1218     return true;
1219     }
1220     return false;
1221     }
1222     }
1223    
1224     /**
1225     * Release at least one thread waiting for event count to advance,
1226     * if one exists. If initial attempt fails, release all threads.
1227     * @param all if false, at first try to only release one thread
1228     * @return current event
1229     */
1230     private long releaseIdleWorkers(boolean all) {
1231     long c;
1232     for (;;) {
1233     WaitQueueNode q = barrierStack;
1234     c = eventCount;
1235     long qc;
1236     if (q == null || (qc = q.count) >= c)
1237     break;
1238     if (!all) {
1239     if (casBarrierStack(q, q.next) && q.signal())
1240     break;
1241     all = true;
1242     }
1243     else if (casBarrierStack(q, null)) {
1244     do {
1245     q.signal();
1246     } while ((q = q.next) != null);
1247     break;
1248     }
1249     }
1250     return c;
1251     }
1252    
1253     /**
1254     * Returns current barrier event count
1255     * @return current barrier event count
1256     */
1257     final long getEventCount() {
1258     long ec = eventCount;
1259     releaseIdleWorkers(true); // release to ensure accurate result
1260     return ec;
1261     }
1262    
1263     /**
1264     * Increment event count and release at least one waiting thread,
1265     * if one exists (released threads will in turn wake up others).
1266     * @param all if true, try to wake up all
1267     */
1268     final void signalIdleWorkers(boolean all) {
1269     long c;
1270     do;while (!casEventCount(c = eventCount, c+1));
1271     releaseIdleWorkers(all);
1272     }
1273    
1274     /**
1275     * Wake up threads waiting to steal a task. Because method
1276     * sync rechecks availability, it is OK to only proceed if
1277     * queue appears to be non-empty.
1278     */
1279     final void signalNonEmptyWorkerQueue() {
1280     // If CAS fails another signaller must have succeeded
1281     long c;
1282     if (barrierStack != null && casEventCount(c = eventCount, c+1))
1283     releaseIdleWorkers(false);
1284     }
1285    
1286     /**
1287     * Waits until event count advances from count, or some thread is
1288     * waiting on a previous count, or there is stealable work
1289     * available. Help wake up others on release.
1290     * @param w the calling worker thread
1291     * @param prev previous value returned by sync (or 0)
1292     * @return current event count
1293     */
1294     final long sync(ForkJoinWorkerThread w, long prev) {
1295     updateStealCount(w);
1296    
1297     while (!w.isShutdown() && !isTerminating() &&
1298     (parallelism >= runningCountOf(workerCounts) ||
1299     !suspendIfSpare(w))) { // prefer suspend to waiting here
1300     WaitQueueNode node = null;
1301     boolean queued = false;
1302     for (;;) {
1303     if (!queued) {
1304     if (eventCount != prev)
1305     break;
1306     WaitQueueNode h = barrierStack;
1307     if (h != null && h.count != prev)
1308     break; // release below and maybe retry
1309     if (node == null)
1310     node = new WaitQueueNode(w, prev);
1311     queued = casBarrierStack(node.next = h, node);
1312     }
1313     else if (Thread.interrupted() ||
1314     node.thread == null ||
1315     (node.next == null && w.prescan()) ||
1316     eventCount != prev) {
1317     node.thread = null;
1318     if (eventCount == prev) // help trigger
1319     casEventCount(prev, prev+1);
1320     break;
1321     }
1322     else
1323     LockSupport.park(this);
1324     }
1325     long ec = eventCount;
1326     if (releaseIdleWorkers(false) != prev)
1327     return ec;
1328     }
1329     return prev; // return old count if aborted
1330     }
1331    
1332     // Parallelism maintenance
1333    
1334     /**
1335     * Decrement running count; if too low, add spare.
1336     *
1337     * Conceptually, all we need to do here is add or resume a
1338     * spare thread when one is about to block (and remove or
1339     * suspend it later when unblocked -- see suspendIfSpare).
1340     * However, implementing this idea requires coping with
1341     * several problems: We have imperfect information about the
1342     * states of threads. Some count updates can and usually do
1343     * lag run state changes, despite arrangements to keep them
1344     * accurate (for example, when possible, updating counts
1345     * before signalling or resuming), especially when running on
1346     * dynamic JVMs that don't optimize the infrequent paths that
1347     * update counts. Generating too many threads can make these
1348     * problems become worse, because excess threads are more
1349     * likely to be context-switched with others, slowing them all
1350     * down, especially if there is no work available, so all are
1351     * busy scanning or idling. Also, excess spare threads can
1352     * only be suspended or removed when they are idle, not
1353     * immediately when they aren't needed. So adding threads will
1354     * raise parallelism level for longer than necessary. Also,
1355     * FJ applications often enounter highly transient peaks when
1356     * many threads are blocked joining, but for less time than it
1357     * takes to create or resume spares.
1358     *
1359     * @param joinMe if non-null, return early if done
1360     * @param maintainParallelism if true, try to stay within
1361     * target counts, else create only to avoid starvation
1362     * @return true if joinMe known to be done
1363     */
1364     final boolean preJoin(ForkJoinTask<?> joinMe, boolean maintainParallelism) {
1365     maintainParallelism &= maintainsParallelism; // overrride
1366     boolean dec = false; // true when running count decremented
1367     while (spareStack == null || !tryResumeSpare(dec)) {
1368     int counts = workerCounts;
1369     if (dec || (dec = casWorkerCounts(counts, --counts))) { // CAS cheat
1370     if (!needSpare(counts, maintainParallelism))
1371     break;
1372     if (joinMe.status < 0)
1373     return true;
1374     if (tryAddSpare(counts))
1375     break;
1376     }
1377     }
1378     return false;
1379     }
1380    
1381     /**
1382     * Same idea as preJoin
1383     */
1384     final boolean preBlock(ManagedBlocker blocker, boolean maintainParallelism){
1385     maintainParallelism &= maintainsParallelism;
1386     boolean dec = false;
1387     while (spareStack == null || !tryResumeSpare(dec)) {
1388     int counts = workerCounts;
1389     if (dec || (dec = casWorkerCounts(counts, --counts))) {
1390     if (!needSpare(counts, maintainParallelism))
1391     break;
1392     if (blocker.isReleasable())
1393     return true;
1394     if (tryAddSpare(counts))
1395     break;
1396     }
1397     }
1398     return false;
1399     }
1400    
1401     /**
1402     * Returns true if a spare thread appears to be needed. If
1403     * maintaining parallelism, returns true when the deficit in
1404     * running threads is more than the surplus of total threads, and
1405     * there is apparently some work to do. This self-limiting rule
1406     * means that the more threads that have already been added, the
1407     * less parallelism we will tolerate before adding another.
1408     * @param counts current worker counts
1409     * @param maintainParallelism try to maintain parallelism
1410     */
1411     private boolean needSpare(int counts, boolean maintainParallelism) {
1412     int ps = parallelism;
1413     int rc = runningCountOf(counts);
1414     int tc = totalCountOf(counts);
1415     int runningDeficit = ps - rc;
1416     int totalSurplus = tc - ps;
1417     return (tc < maxPoolSize &&
1418     (rc == 0 || totalSurplus < 0 ||
1419     (maintainParallelism &&
1420     runningDeficit > totalSurplus && mayHaveQueuedWork())));
1421     }
1422    
1423     /**
1424     * Returns true if at least one worker queue appears to be
1425     * nonempty. This is expensive but not often called. It is not
1426     * critical that this be accurate, but if not, more or fewer
1427     * running threads than desired might be maintained.
1428     */
1429     private boolean mayHaveQueuedWork() {
1430     ForkJoinWorkerThread[] ws = workers;
1431     int len = ws.length;
1432     ForkJoinWorkerThread v;
1433     for (int i = 0; i < len; ++i) {
1434     if ((v = ws[i]) != null && v.getRawQueueSize() > 0) {
1435     releaseIdleWorkers(false); // help wake up stragglers
1436     return true;
1437     }
1438     }
1439     return false;
1440     }
1441    
1442     /**
1443     * Add a spare worker if lock available and no more than the
1444     * expected numbers of threads exist
1445     * @return true if successful
1446     */
1447     private boolean tryAddSpare(int expectedCounts) {
1448     final ReentrantLock lock = this.workerLock;
1449     int expectedRunning = runningCountOf(expectedCounts);
1450     int expectedTotal = totalCountOf(expectedCounts);
1451     boolean success = false;
1452     boolean locked = false;
1453     // confirm counts while locking; CAS after obtaining lock
1454     try {
1455     for (;;) {
1456     int s = workerCounts;
1457     int tc = totalCountOf(s);
1458     int rc = runningCountOf(s);
1459     if (rc > expectedRunning || tc > expectedTotal)
1460     break;
1461     if (!locked && !(locked = lock.tryLock()))
1462     break;
1463     if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1464     createAndStartSpare(tc);
1465     success = true;
1466     break;
1467     }
1468     }
1469     } finally {
1470     if (locked)
1471     lock.unlock();
1472     }
1473     return success;
1474     }
1475    
1476     /**
1477     * Add the kth spare worker. On entry, pool coounts are already
1478     * adjusted to reflect addition.
1479     */
1480     private void createAndStartSpare(int k) {
1481     ForkJoinWorkerThread w = null;
1482     ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1483     int len = ws.length;
1484     // Probably, we can place at slot k. If not, find empty slot
1485     if (k < len && ws[k] != null) {
1486     for (k = 0; k < len && ws[k] != null; ++k)
1487     ;
1488     }
1489     if (k < len && (w = createWorker(k)) != null) {
1490     ws[k] = w;
1491     w.start();
1492     }
1493     else
1494     updateWorkerCount(-1); // adjust on failure
1495     signalIdleWorkers(false);
1496     }
1497    
1498     /**
1499     * Suspend calling thread w if there are excess threads. Called
1500     * only from sync. Spares are enqueued in a Treiber stack
1501     * using the same WaitQueueNodes as barriers. They are resumed
1502     * mainly in preJoin, but are also woken on pool events that
1503     * require all threads to check run state.
1504     * @param w the caller
1505     */
1506     private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1507     WaitQueueNode node = null;
1508     int s;
1509     while (parallelism < runningCountOf(s = workerCounts)) {
1510     if (node == null)
1511     node = new WaitQueueNode(w, 0);
1512     if (casWorkerCounts(s, s-1)) { // representation-dependent
1513     // push onto stack
1514     do;while (!casSpareStack(node.next = spareStack, node));
1515    
1516     // block until released by resumeSpare
1517     while (node.thread != null) {
1518     if (!Thread.interrupted())
1519     LockSupport.park(this);
1520     }
1521     w.activate(); // help warm up
1522     return true;
1523     }
1524     }
1525     return false;
1526     }
1527    
1528     /**
1529     * Try to pop and resume a spare thread.
1530     * @param updateCount if true, increment running count on success
1531     * @return true if successful
1532     */
1533     private boolean tryResumeSpare(boolean updateCount) {
1534     WaitQueueNode q;
1535     while ((q = spareStack) != null) {
1536     if (casSpareStack(q, q.next)) {
1537     if (updateCount)
1538     updateRunningCount(1);
1539     q.signal();
1540     return true;
1541     }
1542     }
1543     return false;
1544     }
1545    
1546     /**
1547     * Pop and resume all spare threads. Same idea as
1548     * releaseIdleWorkers.
1549     * @return true if any spares released
1550     */
1551     private boolean resumeAllSpares() {
1552     WaitQueueNode q;
1553     while ( (q = spareStack) != null) {
1554     if (casSpareStack(q, null)) {
1555     do {
1556     updateRunningCount(1);
1557     q.signal();
1558     } while ((q = q.next) != null);
1559     return true;
1560     }
1561     }
1562     return false;
1563     }
1564    
1565     /**
1566     * Pop and shutdown excessive spare threads. Call only while
1567     * holding lock. This is not guaranteed to eliminate all excess
1568     * threads, only those suspended as spares, which are the ones
1569     * unlikely to be needed in the future.
1570     */
1571     private void trimSpares() {
1572     int surplus = totalCountOf(workerCounts) - parallelism;
1573     WaitQueueNode q;
1574     while (surplus > 0 && (q = spareStack) != null) {
1575     if (casSpareStack(q, null)) {
1576     do {
1577     updateRunningCount(1);
1578     ForkJoinWorkerThread w = q.thread;
1579     if (w != null && surplus > 0 &&
1580     runningCountOf(workerCounts) > 0 && w.shutdown())
1581     --surplus;
1582     q.signal();
1583     } while ((q = q.next) != null);
1584     }
1585     }
1586     }
1587    
1588     /**
1589     * Returns approximate number of spares, just for diagnostics.
1590     */
1591     private int countSpares() {
1592     int sum = 0;
1593     for (WaitQueueNode q = spareStack; q != null; q = q.next)
1594     ++sum;
1595     return sum;
1596     }
1597    
1598     /**
1599     * Interface for extending managed parallelism for tasks running
1600     * in ForkJoinPools. A ManagedBlocker provides two methods.
1601     * Method <tt>isReleasable</tt> must return true if blocking is not
1602     * necessary. Method <tt>block</tt> blocks the current thread
1603     * if necessary (perhaps internally invoking isReleasable before
1604     * actually blocking.).
1605     * <p>For example, here is a ManagedBlocker based on a
1606     * ReentrantLock:
1607     * <pre>
1608     * class ManagedLocker implements ManagedBlocker {
1609     * final ReentrantLock lock;
1610     * boolean hasLock = false;
1611     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1612     * public boolean block() {
1613     * if (!hasLock)
1614     * lock.lock();
1615     * return true;
1616     * }
1617     * public boolean isReleasable() {
1618     * return hasLock || (hasLock = lock.tryLock());
1619     * }
1620     * }
1621     * </pre>
1622     */
1623     public static interface ManagedBlocker {
1624     /**
1625     * Possibly blocks the current thread, for example waiting for
1626     * a lock or condition.
1627     * @return true if no additional blocking is necessary (i.e.,
1628     * if isReleasable would return true).
1629     * @throws InterruptedException if interrupted while waiting
1630     * (the method is not required to do so, but is allowe to).
1631     */
1632     boolean block() throws InterruptedException;
1633    
1634     /**
1635     * Returns true if blocking is unnecessary.
1636     */
1637     boolean isReleasable();
1638     }
1639    
1640     /**
1641     * Blocks in accord with the given blocker. If the current thread
1642     * is a ForkJoinWorkerThread, this method possibly arranges for a
1643     * spare thread to be activated if necessary to ensure parallelism
1644     * while the current thread is blocked. If
1645     * <tt>maintainParallelism</tt> is true and the pool supports it
1646     * (see <tt>getMaintainsParallelism</tt>), this method attempts to
1647     * maintain the pool's nominal parallelism. Otherwise if activates
1648     * a thread only if necessary to avoid complete starvation. This
1649     * option may be preferable when blockages use timeouts, or are
1650     * almost always brief.
1651     *
1652     * <p> If the caller is not a ForkJoinTask, this method is behaviorally
1653     * equivalent to
1654     * <pre>
1655     * while (!blocker.isReleasable())
1656     * if (blocker.block())
1657     * return;
1658     * </pre>
1659     * If the caller is a ForkJoinTask, then the pool may first
1660     * be expanded to ensure parallelism, and later adjusted.
1661     *
1662     * @param blocker the blocker
1663     * @param maintainParallelism if true and supported by this pool,
1664     * attempt to maintain the pool's nominal parallelism; otherwise
1665     * activate a thread only if necessary to avoid complete
1666     * starvation.
1667     * @throws InterruptedException if blocker.block did so.
1668     */
1669     public static void managedBlock(ManagedBlocker blocker,
1670     boolean maintainParallelism)
1671     throws InterruptedException {
1672     Thread t = Thread.currentThread();
1673     ForkJoinPool pool = (t instanceof ForkJoinWorkerThread?
1674     ((ForkJoinWorkerThread)t).pool : null);
1675     if (!blocker.isReleasable()) {
1676     try {
1677     if (pool == null ||
1678     !pool.preBlock(blocker, maintainParallelism))
1679     awaitBlocker(blocker);
1680     } finally {
1681     if (pool != null)
1682     pool.updateRunningCount(1);
1683     }
1684     }
1685     }
1686    
1687     private static void awaitBlocker(ManagedBlocker blocker)
1688     throws InterruptedException {
1689     do;while (!blocker.isReleasable() && !blocker.block());
1690     }
1691    
1692    
1693     // Temporary Unsafe mechanics for preliminary release
1694    
1695     static final Unsafe _unsafe;
1696     static final long eventCountOffset;
1697     static final long workerCountsOffset;
1698     static final long runControlOffset;
1699     static final long barrierStackOffset;
1700     static final long spareStackOffset;
1701    
1702     static {
1703     try {
1704     if (ForkJoinPool.class.getClassLoader() != null) {
1705     Field f = Unsafe.class.getDeclaredField("theUnsafe");
1706     f.setAccessible(true);
1707     _unsafe = (Unsafe)f.get(null);
1708     }
1709     else
1710     _unsafe = Unsafe.getUnsafe();
1711     eventCountOffset = _unsafe.objectFieldOffset
1712     (ForkJoinPool.class.getDeclaredField("eventCount"));
1713     workerCountsOffset = _unsafe.objectFieldOffset
1714     (ForkJoinPool.class.getDeclaredField("workerCounts"));
1715     runControlOffset = _unsafe.objectFieldOffset
1716     (ForkJoinPool.class.getDeclaredField("runControl"));
1717     barrierStackOffset = _unsafe.objectFieldOffset
1718     (ForkJoinPool.class.getDeclaredField("barrierStack"));
1719     spareStackOffset = _unsafe.objectFieldOffset
1720     (ForkJoinPool.class.getDeclaredField("spareStack"));
1721     } catch (Exception e) {
1722     throw new RuntimeException("Could not initialize intrinsics", e);
1723     }
1724     }
1725    
1726     private boolean casEventCount(long cmp, long val) {
1727     return _unsafe.compareAndSwapLong(this, eventCountOffset, cmp, val);
1728     }
1729     private boolean casWorkerCounts(int cmp, int val) {
1730     return _unsafe.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1731     }
1732     private boolean casRunControl(int cmp, int val) {
1733     return _unsafe.compareAndSwapInt(this, runControlOffset, cmp, val);
1734     }
1735     private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1736     return _unsafe.compareAndSwapObject(this, spareStackOffset, cmp, val);
1737     }
1738     private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1739     return _unsafe.compareAndSwapObject(this, barrierStackOffset, cmp, val);
1740     }
1741     }