ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
Revision: 1.100
Committed: Fri Apr 1 20:20:37 2011 UTC (13 years, 1 month ago) by dl
Branch: MAIN
Changes since 1.99: +14 -13 lines
Log Message:
Don't trim if only one worker

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.97 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.1 */
6    
7     package jsr166y;
8 jsr166 1.22
9     import java.util.ArrayList;
10     import java.util.Arrays;
11     import java.util.Collection;
12     import java.util.Collections;
13     import java.util.List;
14 dl 1.91 import java.util.Random;
15 dl 1.78 import java.util.concurrent.AbstractExecutorService;
16     import java.util.concurrent.Callable;
17     import java.util.concurrent.ExecutorService;
18     import java.util.concurrent.Future;
19     import java.util.concurrent.RejectedExecutionException;
20     import java.util.concurrent.RunnableFuture;
21     import java.util.concurrent.TimeUnit;
22     import java.util.concurrent.TimeoutException;
23     import java.util.concurrent.atomic.AtomicInteger;
24 jsr166 1.22 import java.util.concurrent.locks.LockSupport;
25     import java.util.concurrent.locks.ReentrantLock;
26 dl 1.91 import java.util.concurrent.locks.Condition;
27 dl 1.1
28     /**
29 jsr166 1.29 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
30 jsr166 1.39 * A {@code ForkJoinPool} provides the entry point for submissions
31 dl 1.57 * from non-{@code ForkJoinTask} clients, as well as management and
32 jsr166 1.48 * monitoring operations.
33 dl 1.1 *
34 dl 1.42 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
35     * ExecutorService} mainly by virtue of employing
36     * <em>work-stealing</em>: all threads in the pool attempt to find and
37     * execute subtasks created by other active tasks (eventually blocking
38     * waiting for work if none exist). This enables efficient processing
39     * when most tasks spawn other subtasks (as do most {@code
40 dl 1.57 * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
41     * constructors, {@code ForkJoinPool}s may also be appropriate for use
42     * with event-style tasks that are never joined.
43 dl 1.1 *
44 dl 1.42 * <p>A {@code ForkJoinPool} is constructed with a given target
45     * parallelism level; by default, equal to the number of available
46 dl 1.57 * processors. The pool attempts to maintain enough active (or
47     * available) threads by dynamically adding, suspending, or resuming
48     * internal worker threads, even if some tasks are stalled waiting to
49     * join others. However, no such adjustments are guaranteed in the
50     * face of blocked IO or other unmanaged synchronization. The nested
51     * {@link ManagedBlocker} interface enables extension of the kinds of
52     * synchronization accommodated.
53 dl 1.1 *
54     * <p>In addition to execution and lifecycle control methods, this
55     * class provides status check methods (for example
56 jsr166 1.29 * {@link #getStealCount}) that are intended to aid in developing,
57 dl 1.1 * tuning, and monitoring fork/join applications. Also, method
58 jsr166 1.29 * {@link #toString} returns indications of pool state in a
59 dl 1.2 * convenient form for informal monitoring.
60 dl 1.1 *
61 dl 1.57 * <p> As is the case with other ExecutorServices, there are three
62 dl 1.60 * main task execution methods summarized in the following
63 dl 1.57 * table. These are designed to be used by clients not already engaged
64     * in fork/join computations in the current pool. The main forms of
65     * these methods accept instances of {@code ForkJoinTask}, but
66     * overloaded forms also allow mixed execution of plain {@code
67     * Runnable}- or {@code Callable}- based activities as well. However,
68     * tasks that are already executing in a pool should normally
69     * <em>NOT</em> use these pool execution methods, but instead use the
70 dl 1.59 * within-computation forms listed in the table.
71 dl 1.57 *
72     * <table BORDER CELLPADDING=3 CELLSPACING=1>
73     * <tr>
74     * <td></td>
75     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
76     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
77     * </tr>
78     * <tr>
79 jsr166 1.67 * <td> <b>Arrange async execution</td>
80 dl 1.57 * <td> {@link #execute(ForkJoinTask)}</td>
81     * <td> {@link ForkJoinTask#fork}</td>
82     * </tr>
83     * <tr>
84     * <td> <b>Await and obtain result</td>
85     * <td> {@link #invoke(ForkJoinTask)}</td>
86     * <td> {@link ForkJoinTask#invoke}</td>
87     * </tr>
88     * <tr>
89     * <td> <b>Arrange exec and obtain Future</td>
90     * <td> {@link #submit(ForkJoinTask)}</td>
91     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
92     * </tr>
93     * </table>
94 dl 1.59 *
95 dl 1.42 * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
96     * used for all parallel task execution in a program or subsystem.
97     * Otherwise, use would not usually outweigh the construction and
98     * bookkeeping overhead of creating a large set of threads. For
99 jsr166 1.43 * example, a common pool could be used for the {@code SortTasks}
100 dl 1.42 * illustrated in {@link RecursiveAction}. Because {@code
101     * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
102 jsr166 1.43 * daemon} mode, there is typically no need to explicitly {@link
103 dl 1.42 * #shutdown} such a pool upon program exit.
104     *
105     * <pre>
106     * static final ForkJoinPool mainPool = new ForkJoinPool();
107     * ...
108     * public void sort(long[] array) {
109     * mainPool.invoke(new SortTask(array, 0, array.length));
110     * }
111     * </pre>
112     *
113 dl 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
114 dl 1.2 * maximum number of running threads to 32767. Attempts to create
115 jsr166 1.48 * pools with greater than the maximum number result in
116 jsr166 1.39 * {@code IllegalArgumentException}.
117 jsr166 1.16 *
118 jsr166 1.48 * <p>This implementation rejects submitted tasks (that is, by throwing
119 dl 1.58 * {@link RejectedExecutionException}) only when the pool is shut down
120 dl 1.62 * or internal resources have been exhausted.
121 jsr166 1.48 *
122 jsr166 1.16 * @since 1.7
123     * @author Doug Lea
124 dl 1.1 */
125 dl 1.2 public class ForkJoinPool extends AbstractExecutorService {
126 dl 1.1
127     /*
128 dl 1.53 * Implementation Overview
129     *
130     * This class provides the central bookkeeping and control for a
131     * set of worker threads: Submissions from non-FJ threads enter
132     * into a submission queue. Workers take these tasks and typically
133     * split them into subtasks that may be stolen by other workers.
134 dl 1.91 * Preference rules give first priority to processing tasks from
135     * their own queues (LIFO or FIFO, depending on mode), then to
136     * randomized FIFO steals of tasks in other worker queues, and
137     * lastly to new submissions.
138     *
139     * The main throughput advantages of work-stealing stem from
140     * decentralized control -- workers mostly take tasks from
141     * themselves or each other. We cannot negate this in the
142     * implementation of other management responsibilities. The main
143     * tactic for avoiding bottlenecks is packing nearly all
144     * essentially atomic control state into a single 64bit volatile
145     * variable ("ctl"). This variable is read on the order of 10-100
146     * times as often as it is modified (always via CAS). (There is
147     * some additional control state, for example variable "shutdown"
148     * for which we can cope with uncoordinated updates.) This
149     * streamlines synchronization and control at the expense of messy
150     * constructions needed to repack status bits upon updates.
151     * Updates tend not to contend with each other except during
152     * bursts while submitted tasks begin or end. In some cases when
153     * they do contend, threads can instead do something else
154 dl 1.95 * (usually, scan for tasks) until contention subsides.
155 dl 1.91 *
156     * To enable packing, we restrict maximum parallelism to (1<<15)-1
157     * (which is far in excess of normal operating range) to allow
158     * ids, counts, and their negations (used for thresholding) to fit
159     * into 16bit fields.
160     *
161     * Recording Workers. Workers are recorded in the "workers" array
162     * that is created upon pool construction and expanded if (rarely)
163     * necessary. This is an array as opposed to some other data
164     * structure to support index-based random steals by workers.
165     * Updates to the array recording new workers and unrecording
166     * terminated ones are protected from each other by a seqLock
167     * (scanGuard) but the array is otherwise concurrently readable,
168     * and accessed directly by workers. To simplify index-based
169     * operations, the array size is always a power of two, and all
170     * readers must tolerate null slots. To avoid flailing during
171     * start-up, the array is presized to hold twice #parallelism
172     * workers (which is unlikely to need further resizing during
173     * execution). But to avoid dealing with so many null slots,
174     * variable scanGuard includes a mask for the nearest power of two
175     * that contains all current workers. All worker thread creation
176     * is on-demand, triggered by task submissions, replacement of
177     * terminated workers, and/or compensation for blocked
178     * workers. However, all other support code is set up to work with
179     * other policies. To ensure that we do not hold on to worker
180     * references that would prevent GC, ALL accesses to workers are
181     * via indices into the workers array (which is one source of some
182     * of the messy code constructions here). In essence, the workers
183     * array serves as a weak reference mechanism. Thus for example
184     * the wait queue field of ctl stores worker indices, not worker
185     * references. Access to the workers in associated methods (for
186     * example signalWork) must both index-check and null-check the
187     * IDs. All such accesses ignore bad IDs by returning out early
188     * from what they are doing, since this can only be associated
189     * with termination, in which case it is OK to give up.
190     *
191     * All uses of the workers array, as well as queue arrays, check
192     * that the array is non-null (even if previously non-null). This
193     * allows nulling during termination, which is currently not
194     * necessary, but remains an option for resource-revocation-based
195     * shutdown schemes.
196     *
197     * Wait Queuing. Unlike HPC work-stealing frameworks, we cannot
198 dl 1.95 * let workers spin indefinitely scanning for tasks when none can
199     * be found immediately, and we cannot start/resume workers unless
200     * there appear to be tasks available. On the other hand, we must
201     * quickly prod them into action when new tasks are submitted or
202     * generated. We park/unpark workers after placing in an event
203     * wait queue when they cannot find work. This "queue" is actually
204     * a simple Treiber stack, headed by the "id" field of ctl, plus a
205     * 15bit counter value to both wake up waiters (by advancing their
206     * count) and avoid ABA effects. Successors are held in worker
207     * field "nextWait". Queuing deals with several intrinsic races,
208     * mainly that a task-producing thread can miss seeing (and
209     * signalling) another thread that gave up looking for work but
210     * has not yet entered the wait queue. We solve this by requiring
211     * a full sweep of all workers both before (in scan()) and after
212     * (in tryAwaitWork()) a newly waiting worker is added to the wait
213     * queue. During a rescan, the worker might release some other
214     * queued worker rather than itself, which has the same net
215     * effect. Because enqueued workers may actually be rescanning
216     * rather than waiting, we set and clear the "parked" field of
217     * ForkJoinWorkerThread to reduce unnecessary calls to unpark.
218     * (Use of the parked field requires a secondary recheck to avoid
219     * missed signals.)
220 dl 1.91 *
221     * Signalling. We create or wake up workers only when there
222     * appears to be at least one task they might be able to find and
223     * execute. When a submission is added or another worker adds a
224     * task to a queue that previously had two or fewer tasks, they
225     * signal waiting workers (or trigger creation of new ones if
226     * fewer than the given parallelism level -- see signalWork).
227     * These primary signals are buttressed by signals during rescans
228     * as well as those performed when a worker steals a task and
229     * notices that there are more tasks too; together these cover the
230     * signals needed in cases when more than two tasks are pushed
231     * but untaken.
232     *
233     * Trimming workers. To release resources after periods of lack of
234     * use, a worker starting to wait when the pool is quiescent will
235     * time out and terminate if the pool has remained quiescent for
236 dl 1.95 * SHRINK_RATE nanosecs. This will slowly propagate, eventually
237     * terminating all workers after long periods of non-use.
238 dl 1.91 *
239     * Submissions. External submissions are maintained in an
240     * array-based queue that is structured identically to
241 dl 1.95 * ForkJoinWorkerThread queues except for the use of
242     * submissionLock in method addSubmission. Unlike the case for
243     * worker queues, multiple external threads can add new
244     * submissions, so adding requires a lock.
245 dl 1.91 *
246     * Compensation. Beyond work-stealing support and lifecycle
247     * control, the main responsibility of this framework is to take
248     * actions when one worker is waiting to join a task stolen (or
249     * always held by) another. Because we are multiplexing many
250     * tasks on to a pool of workers, we can't just let them block (as
251     * in Thread.join). We also cannot just reassign the joiner's
252     * run-time stack with another and replace it later, which would
253     * be a form of "continuation", that even if possible is not
254     * necessarily a good idea since we sometimes need both an
255     * unblocked task and its continuation to progress. Instead we
256 dl 1.60 * combine two tactics:
257 dl 1.58 *
258 dl 1.60 * Helping: Arranging for the joiner to execute some task that it
259 dl 1.58 * would be running if the steal had not occurred. Method
260 dl 1.91 * ForkJoinWorkerThread.joinTask tracks joining->stealing
261 dl 1.58 * links to try to find such a task.
262     *
263 dl 1.61 * Compensating: Unless there are already enough live threads,
264 dl 1.91 * method tryPreBlock() may create or re-activate a spare
265     * thread to compensate for blocked joiners until they
266     * unblock.
267     *
268     * The ManagedBlocker extension API can't use helping so relies
269     * only on compensation in method awaitBlocker.
270 dl 1.58 *
271 dl 1.91 * It is impossible to keep exactly the target parallelism number
272     * of threads running at any given time. Determining the
273 dl 1.66 * existence of conservatively safe helping targets, the
274     * availability of already-created spares, and the apparent need
275     * to create new spares are all racy and require heuristic
276 dl 1.91 * guidance, so we rely on multiple retries of each. Currently,
277     * in keeping with on-demand signalling policy, we compensate only
278     * if blocking would leave less than one active (non-waiting,
279     * non-blocked) worker. Additionally, to avoid some false alarms
280     * due to GC, lagging counters, system activity, etc, compensated
281 dl 1.95 * blocking for joins is only attempted after rechecks stabilize
282     * (retries are interspersed with Thread.yield, for good
283     * citizenship). The variable blockedCount, incremented before
284     * blocking and decremented after, is sometimes needed to
285     * distinguish cases of waiting for work vs blocking on joins or
286     * other managed sync. Both cases are equivalent for most pool
287     * control, so we can update non-atomically. (Additionally,
288     * contention on blockedCount alleviates some contention on ctl).
289 dl 1.91 *
290     * Shutdown and Termination. A call to shutdownNow atomically sets
291     * the ctl stop bit and then (non-atomically) sets each workers
292     * "terminate" status, cancels all unprocessed tasks, and wakes up
293     * all waiting workers. Detecting whether termination should
294     * commence after a non-abrupt shutdown() call requires more work
295     * and bookkeeping. We need consensus about quiesence (i.e., that
296     * there is no more work) which is reflected in active counts so
297     * long as there are no current blockers, as well as possible
298     * re-evaluations during independent changes in blocking or
299     * quiescing workers.
300 dl 1.58 *
301 dl 1.91 * Style notes: There is a lot of representation-level coupling
302 dl 1.53 * among classes ForkJoinPool, ForkJoinWorkerThread, and
303 dl 1.91 * ForkJoinTask. Most fields of ForkJoinWorkerThread maintain
304     * data structures managed by ForkJoinPool, so are directly
305     * accessed. Conversely we allow access to "workers" array by
306 dl 1.53 * workers, and direct access to ForkJoinTask.status by both
307     * ForkJoinPool and ForkJoinWorkerThread. There is little point
308     * trying to reduce this, since any associated future changes in
309     * representations will need to be accompanied by algorithmic
310 dl 1.91 * changes anyway. All together, these low-level implementation
311     * choices produce as much as a factor of 4 performance
312     * improvement compared to naive implementations, and enable the
313     * processing of billions of tasks per second, at the expense of
314     * some ugliness.
315     *
316     * Methods signalWork() and scan() are the main bottlenecks so are
317     * especially heavily micro-optimized/mangled. There are lots of
318     * inline assignments (of form "while ((local = field) != 0)")
319     * which are usually the simplest way to ensure the required read
320     * orderings (which are sometimes critical). This leads to a
321     * "C"-like style of listing declarations of these locals at the
322     * heads of methods or blocks. There are several occurrences of
323     * the unusual "do {} while (!cas...)" which is the simplest way
324     * to force an update of a CAS'ed variable. There are also other
325     * coding oddities that help some methods perform reasonably even
326     * when interpreted (not compiled).
327     *
328     * The order of declarations in this file is: (1) declarations of
329     * statics (2) fields (along with constants used when unpacking
330     * some of them), listed in an order that tends to reduce
331     * contention among them a bit under most JVMs. (3) internal
332     * control methods (4) callbacks and other support for
333     * ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
334     * methods (plus a few little helpers). (6) static block
335     * initializing all statics in a minimally dependent order.
336 dl 1.1 */
337    
338     /**
339 jsr166 1.35 * Factory for creating new {@link ForkJoinWorkerThread}s.
340     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
341     * for {@code ForkJoinWorkerThread} subclasses that extend base
342     * functionality or initialize threads with different contexts.
343 dl 1.1 */
344     public static interface ForkJoinWorkerThreadFactory {
345     /**
346     * Returns a new worker thread operating in the given pool.
347     *
348     * @param pool the pool this thread works in
349 jsr166 1.48 * @throws NullPointerException if the pool is null
350 dl 1.1 */
351     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
352     }
353    
354     /**
355 jsr166 1.17 * Default ForkJoinWorkerThreadFactory implementation; creates a
356 dl 1.1 * new ForkJoinWorkerThread.
357     */
358 dl 1.57 static class DefaultForkJoinWorkerThreadFactory
359 dl 1.1 implements ForkJoinWorkerThreadFactory {
360     public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
361 dl 1.53 return new ForkJoinWorkerThread(pool);
362 dl 1.1 }
363     }
364    
365     /**
366 dl 1.2 * Creates a new ForkJoinWorkerThread. This factory is used unless
367     * overridden in ForkJoinPool constructors.
368 dl 1.1 */
369 dl 1.2 public static final ForkJoinWorkerThreadFactory
370 dl 1.91 defaultForkJoinWorkerThreadFactory;
371 dl 1.1
372     /**
373     * Permission required for callers of methods that may start or
374     * kill threads.
375     */
376 dl 1.91 private static final RuntimePermission modifyThreadPermission;
377 dl 1.1
378     /**
379     * If there is a security manager, makes sure caller has
380     * permission to modify threads.
381     */
382     private static void checkPermission() {
383     SecurityManager security = System.getSecurityManager();
384     if (security != null)
385     security.checkPermission(modifyThreadPermission);
386     }
387    
388     /**
389     * Generator for assigning sequence numbers as pool names.
390     */
391 dl 1.91 private static final AtomicInteger poolNumberGenerator;
392 dl 1.1
393     /**
394 dl 1.91 * Generator for initial random seeds for worker victim
395     * selection. This is used only to create initial seeds. Random
396     * steals use a cheaper xorshift generator per steal attempt. We
397     * don't expect much contention on seedGenerator, so just use a
398     * plain Random.
399 dl 1.66 */
400 dl 1.91 static final Random workerSeedGenerator;
401 dl 1.66
402     /**
403 dl 1.91 * Array holding all worker threads in the pool. Initialized upon
404     * construction. Array size must be a power of two. Updates and
405     * replacements are protected by scanGuard, but the array is
406     * always kept in a consistent enough state to be randomly
407     * accessed without locking by workers performing work-stealing,
408     * as well as other traversal-based methods in this class, so long
409     * as reads memory-acquire by first reading ctl. All readers must
410     * tolerate that some array slots may be null.
411 dl 1.64 */
412 dl 1.91 ForkJoinWorkerThread[] workers;
413 dl 1.64
414     /**
415 dl 1.91 * Initial size for submission queue array. Must be a power of
416     * two. In many applications, these always stay small so we use a
417     * small initial cap.
418 dl 1.53 */
419 dl 1.91 private static final int INITIAL_QUEUE_CAPACITY = 8;
420 dl 1.53
421     /**
422 dl 1.91 * Maximum size for submission queue array. Must be a power of two
423     * less than or equal to 1 << (31 - width of array entry) to
424     * ensure lack of index wraparound, but is capped at a lower
425     * value to help users trap runaway computations.
426 dl 1.1 */
427 dl 1.91 private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 24; // 16M
428 dl 1.1
429     /**
430 dl 1.91 * Array serving as submission queue. Initialized upon construction.
431 dl 1.1 */
432 dl 1.91 private ForkJoinTask<?>[] submissionQueue;
433 dl 1.1
434     /**
435 dl 1.91 * Lock protecting submissions array for addSubmission
436 dl 1.1 */
437 dl 1.91 private final ReentrantLock submissionLock;
438 dl 1.1
439     /**
440 dl 1.91 * Condition for awaitTermination, using submissionLock for
441     * convenience.
442 dl 1.1 */
443 dl 1.91 private final Condition termination;
444 dl 1.1
445     /**
446     * Creation factory for worker threads.
447     */
448     private final ForkJoinWorkerThreadFactory factory;
449    
450     /**
451 dl 1.91 * The uncaught exception handler used when any worker abruptly
452     * terminates.
453 dl 1.1 */
454 dl 1.91 final Thread.UncaughtExceptionHandler ueh;
455 dl 1.1
456     /**
457 dl 1.91 * Prefix for assigning names to worker threads
458 dl 1.1 */
459 dl 1.91 private final String workerNamePrefix;
460 dl 1.53
461 dl 1.91 /**
462     * Sum of per-thread steal counts, updated only when threads are
463     * idle or terminating.
464     */
465     private volatile long stealCount;
466 dl 1.1
467     /**
468 dl 1.91 * Main pool control -- a long packed with:
469     * AC: Number of active running workers minus target parallelism (16 bits)
470     * TC: Number of total workers minus target parallelism (16bits)
471     * ST: true if pool is terminating (1 bit)
472     * EC: the wait count of top waiting thread (15 bits)
473     * ID: ~poolIndex of top of Treiber stack of waiting threads (16 bits)
474     *
475     * When convenient, we can extract the upper 32 bits of counts and
476     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
477     * (int)ctl. The ec field is never accessed alone, but always
478     * together with id and st. The offsets of counts by the target
479     * parallelism and the positionings of fields makes it possible to
480     * perform the most common checks via sign tests of fields: When
481     * ac is negative, there are not enough active workers, when tc is
482     * negative, there are not enough total workers, when id is
483     * negative, there is at least one waiting worker, and when e is
484     * negative, the pool is terminating. To deal with these possibly
485     * negative fields, we use casts in and out of "short" and/or
486 dl 1.94 * signed shifts to maintain signedness.
487 dl 1.91 */
488     volatile long ctl;
489    
490     // bit positions/shifts for fields
491     private static final int AC_SHIFT = 48;
492     private static final int TC_SHIFT = 32;
493     private static final int ST_SHIFT = 31;
494     private static final int EC_SHIFT = 16;
495    
496     // bounds
497     private static final int MAX_ID = 0x7fff; // max poolIndex
498     private static final int SMASK = 0xffff; // mask short bits
499     private static final int SHORT_SIGN = 1 << 15;
500     private static final int INT_SIGN = 1 << 31;
501    
502     // masks
503     private static final long STOP_BIT = 0x0001L << ST_SHIFT;
504     private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
505     private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
506    
507     // units for incrementing and decrementing
508     private static final long TC_UNIT = 1L << TC_SHIFT;
509     private static final long AC_UNIT = 1L << AC_SHIFT;
510    
511     // masks and units for dealing with u = (int)(ctl >>> 32)
512     private static final int UAC_SHIFT = AC_SHIFT - 32;
513     private static final int UTC_SHIFT = TC_SHIFT - 32;
514     private static final int UAC_MASK = SMASK << UAC_SHIFT;
515     private static final int UTC_MASK = SMASK << UTC_SHIFT;
516     private static final int UAC_UNIT = 1 << UAC_SHIFT;
517     private static final int UTC_UNIT = 1 << UTC_SHIFT;
518    
519     // masks and units for dealing with e = (int)ctl
520     private static final int E_MASK = 0x7fffffff; // no STOP_BIT
521     private static final int EC_UNIT = 1 << EC_SHIFT;
522 dl 1.53
523     /**
524 dl 1.91 * The target parallelism level.
525 dl 1.61 */
526 dl 1.91 final int parallelism;
527 dl 1.61
528     /**
529 dl 1.91 * Index (mod submission queue length) of next element to take
530 dl 1.95 * from submission queue. Usage is identical to that for
531     * per-worker queues -- see ForkJoinWorkerThread internal
532     * documentation.
533 dl 1.53 */
534 dl 1.91 volatile int queueBase;
535 dl 1.1
536     /**
537 dl 1.91 * Index (mod submission queue length) of next element to add
538 dl 1.95 * in submission queue. Usage is identical to that for
539     * per-worker queues -- see ForkJoinWorkerThread internal
540     * documentation.
541 dl 1.53 */
542 dl 1.91 int queueTop;
543 dl 1.53
544 dl 1.1 /**
545 dl 1.91 * True when shutdown() has been called.
546 dl 1.1 */
547 dl 1.91 volatile boolean shutdown;
548 dl 1.1
549     /**
550 dl 1.53 * True if use local fifo, not default lifo, for local polling
551 dl 1.57 * Read by, and replicated by ForkJoinWorkerThreads
552 dl 1.1 */
553 dl 1.57 final boolean locallyFifo;
554 dl 1.1
555     /**
556 dl 1.91 * The number of threads in ForkJoinWorkerThreads.helpQuiescePool.
557     * When non-zero, suppresses automatic shutdown when active
558     * counts become zero.
559 dl 1.1 */
560 dl 1.91 volatile int quiescerCount;
561 dl 1.6
562     /**
563 dl 1.91 * The number of threads blocked in join.
564 dl 1.1 */
565 dl 1.91 volatile int blockedCount;
566 dl 1.1
567 dl 1.91 /**
568     * Counter for worker Thread names (unrelated to their poolIndex)
569     */
570     private volatile int nextWorkerNumber;
571 dl 1.1
572     /**
573 dl 1.91 * The index for the next created worker. Accessed under scanGuard.
574 dl 1.1 */
575 dl 1.91 private int nextWorkerIndex;
576 dl 1.58
577 dl 1.1 /**
578 dl 1.95 * SeqLock and index masking for updates to workers array. Locked
579     * when SG_UNIT is set. Unlocking clears bit by adding
580 dl 1.91 * SG_UNIT. Staleness of read-only operations can be checked by
581     * comparing scanGuard to value before the reads. The low 16 bits
582     * (i.e, anding with SMASK) hold (the smallest power of two
583     * covering all worker indices, minus one, and is used to avoid
584     * dealing with large numbers of null slots when the workers array
585     * is overallocated.
586 dl 1.85 */
587 dl 1.91 volatile int scanGuard;
588    
589     private static final int SG_UNIT = 1 << 16;
590 dl 1.85
591     /**
592 dl 1.91 * The wakeup interval (in nanoseconds) for a worker waiting for a
593     * task when the pool is quiescent to instead try to shrink the
594     * number of workers. The exact value does not matter too
595     * much. It must be short enough to release resources during
596     * sustained periods of idleness, but not so short that threads
597     * are continually re-created.
598 dl 1.56 */
599 dl 1.91 private static final long SHRINK_RATE =
600     4L * 1000L * 1000L * 1000L; // 4 seconds
601 dl 1.56
602     /**
603 dl 1.91 * Top-level loop for worker threads: On each step: if the
604     * previous step swept through all queues and found no tasks, or
605     * there are excess threads, then possibly blocks. Otherwise,
606     * scans for and, if found, executes a task. Returns when pool
607     * and/or worker terminate.
608 dl 1.61 *
609 dl 1.91 * @param w the worker
610 dl 1.58 */
611 dl 1.91 final void work(ForkJoinWorkerThread w) {
612     boolean swept = false; // true on empty scans
613     long c;
614     while (!w.terminate && (int)(c = ctl) >= 0) {
615     int a; // active count
616     if (!swept && (a = (int)(c >> AC_SHIFT)) <= 0)
617     swept = scan(w, a);
618     else if (tryAwaitWork(w, c))
619     swept = false;
620 dl 1.61 }
621     }
622    
623 dl 1.91 // Signalling
624    
625 dl 1.61 /**
626 dl 1.91 * Wakes up or creates a worker.
627 dl 1.53 */
628 dl 1.91 final void signalWork() {
629     /*
630     * The while condition is true if: (there is are too few total
631     * workers OR there is at least one waiter) AND (there are too
632     * few active workers OR the pool is terminating). The value
633     * of e distinguishes the remaining cases: zero (no waiters)
634     * for create, negative if terminating (in which case do
635     * nothing), else release a waiter. The secondary checks for
636     * release (non-null array etc) can fail if the pool begins
637     * terminating after the test, and don't impose any added cost
638     * because JVMs must perform null and bounds checks anyway.
639     */
640     long c; int e, u;
641     while ((((e = (int)(c = ctl)) | (u = (int)(c >>> 32))) &
642     (INT_SIGN|SHORT_SIGN)) == (INT_SIGN|SHORT_SIGN) && e >= 0) {
643     if (e > 0) { // release a waiting worker
644     int i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
645     if ((ws = workers) == null ||
646     (i = ~e & SMASK) >= ws.length ||
647     (w = ws[i]) == null)
648     break;
649     long nc = (((long)(w.nextWait & E_MASK)) |
650     ((long)(u + UAC_UNIT) << 32));
651     if (w.eventCount == e &&
652     UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
653     w.eventCount = (e + EC_UNIT) & E_MASK;
654     if (w.parked)
655     UNSAFE.unpark(w);
656     break;
657     }
658     }
659     else if (UNSAFE.compareAndSwapLong
660     (this, ctlOffset, c,
661     (long)(((u + UTC_UNIT) & UTC_MASK) |
662     ((u + UAC_UNIT) & UAC_MASK)) << 32)) {
663     addWorker();
664     break;
665     }
666     }
667 dl 1.53 }
668    
669     /**
670 dl 1.91 * Variant of signalWork to help release waiters on rescans.
671     * Tries once to release a waiter if active count < 0.
672     *
673     * @return false if failed due to contention, else true
674 dl 1.53 */
675 dl 1.91 private boolean tryReleaseWaiter() {
676     long c; int e, i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
677     if ((e = (int)(c = ctl)) > 0 &&
678     (int)(c >> AC_SHIFT) < 0 &&
679     (ws = workers) != null &&
680     (i = ~e & SMASK) < ws.length &&
681     (w = ws[i]) != null) {
682     long nc = ((long)(w.nextWait & E_MASK) |
683     ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
684     if (w.eventCount != e ||
685     !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
686 dl 1.53 return false;
687 dl 1.91 w.eventCount = (e + EC_UNIT) & E_MASK;
688     if (w.parked)
689     UNSAFE.unpark(w);
690 dl 1.53 }
691 dl 1.91 return true;
692 dl 1.53 }
693    
694 dl 1.91 // Scanning for tasks
695 dl 1.53
696     /**
697 dl 1.91 * Scans for and, if found, executes one task. Scans start at a
698     * random index of workers array, and randomly select the first
699     * (2*#workers)-1 probes, and then, if all empty, resort to 2
700     * circular sweeps, which is necessary to check quiescence. and
701     * taking a submission only if no stealable tasks were found. The
702     * steal code inside the loop is a specialized form of
703     * ForkJoinWorkerThread.deqTask, followed bookkeeping to support
704     * helpJoinTask and signal propagation. The code for submission
705     * queues is almost identical. On each steal, the worker completes
706     * not only the task, but also all local tasks that this task may
707     * have generated. On detecting staleness or contention when
708     * trying to take a task, this method returns without finishing
709     * sweep, which allows global state rechecks before retry.
710     *
711     * @param w the worker
712     * @param a the number of active workers
713     * @return true if swept all queues without finding a task
714 dl 1.53 */
715 dl 1.91 private boolean scan(ForkJoinWorkerThread w, int a) {
716     int g = scanGuard; // mask 0 avoids useless scans if only one active
717 dl 1.96 int m = (parallelism == 1 - a && blockedCount == 0) ? 0 : g & SMASK;
718 dl 1.91 ForkJoinWorkerThread[] ws = workers;
719     if (ws == null || ws.length <= m) // staleness check
720     return false;
721     for (int r = w.seed, k = r, j = -(m + m); j <= m + m; ++j) {
722     ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
723     ForkJoinWorkerThread v = ws[k & m];
724     if (v != null && (b = v.queueBase) != v.queueTop &&
725     (q = v.queue) != null && (i = (q.length - 1) & b) >= 0) {
726     long u = (i << ASHIFT) + ABASE;
727     if ((t = q[i]) != null && v.queueBase == b &&
728     UNSAFE.compareAndSwapObject(q, u, t, null)) {
729     int d = (v.queueBase = b + 1) - v.queueTop;
730     v.stealHint = w.poolIndex;
731     if (d != 0)
732     signalWork(); // propagate if nonempty
733     w.execTask(t);
734     }
735     r ^= r << 13; r ^= r >>> 17; w.seed = r ^ (r << 5);
736     return false; // store next seed
737     }
738     else if (j < 0) { // xorshift
739     r ^= r << 13; r ^= r >>> 17; k = r ^= r << 5;
740     }
741     else
742     ++k;
743     }
744     if (scanGuard != g) // staleness check
745     return false;
746     else { // try to take submission
747     ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
748     if ((b = queueBase) != queueTop &&
749     (q = submissionQueue) != null &&
750     (i = (q.length - 1) & b) >= 0) {
751     long u = (i << ASHIFT) + ABASE;
752     if ((t = q[i]) != null && queueBase == b &&
753     UNSAFE.compareAndSwapObject(q, u, t, null)) {
754     queueBase = b + 1;
755     w.execTask(t);
756     }
757     return false;
758     }
759     return true; // all queues empty
760 dl 1.53 }
761     }
762    
763     /**
764 dl 1.93 * Tries to enqueue worker w in wait queue and await change in
765 dl 1.100 * worker's eventCount. If the pool is quiescent and there is
766     * more than one worker, possibly terminates worker upon exit.
767     * Otherwise, before blocking, rescans queues to avoid missed
768     * signals. Upon finding work, releases at least one worker
769     * (which may be the current worker). Rescans restart upon
770     * detected staleness or failure to release due to
771     * contention. Note the unusual conventions about Thread.interrupt
772     * here and elsewhere: Because interrupts are used solely to alert
773     * threads to check termination, which is checked here anyway, we
774     * clear status (using Thread.interrupted) before any call to
775     * park, so that park does not immediately return due to status
776     * being set via some other unrelated call to interrupt in user
777     * code.
778 dl 1.91 *
779     * @param w the calling worker
780     * @param c the ctl value on entry
781     * @return true if waited or another thread was released upon enq
782 dl 1.53 */
783 dl 1.91 private boolean tryAwaitWork(ForkJoinWorkerThread w, long c) {
784     int v = w.eventCount;
785 dl 1.93 w.nextWait = (int)c; // w's successor record
786 dl 1.91 long nc = (long)(v & E_MASK) | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
787     if (ctl != c || !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
788 dl 1.93 long d = ctl; // return true if lost to a deq, to force scan
789 dl 1.91 return (int)d != (int)c && ((d - c) & AC_MASK) >= 0L;
790     }
791 dl 1.93 for (int sc = w.stealCount; sc != 0;) { // accumulate stealCount
792     long s = stealCount;
793     if (UNSAFE.compareAndSwapLong(this, stealCountOffset, s, s + sc))
794     sc = w.stealCount = 0;
795     else if (w.eventCount != v)
796     return true; // update next time
797     }
798 dl 1.100 if ((int)c != 0 && parallelism + (int)(nc >> AC_SHIFT) == 0 &&
799 dl 1.92 blockedCount == 0 && quiescerCount == 0)
800 dl 1.93 idleAwaitWork(w, nc, c, v); // quiescent
801     for (boolean rescanned = false;;) {
802 dl 1.91 if (w.eventCount != v)
803     return true;
804 dl 1.93 if (!rescanned) {
805 dl 1.91 int g = scanGuard, m = g & SMASK;
806     ForkJoinWorkerThread[] ws = workers;
807     if (ws != null && m < ws.length) {
808     rescanned = true;
809     for (int i = 0; i <= m; ++i) {
810     ForkJoinWorkerThread u = ws[i];
811     if (u != null) {
812     if (u.queueBase != u.queueTop &&
813     !tryReleaseWaiter())
814     rescanned = false; // contended
815     if (w.eventCount != v)
816     return true;
817     }
818     }
819     }
820     if (scanGuard != g || // stale
821     (queueBase != queueTop && !tryReleaseWaiter()))
822     rescanned = false;
823     if (!rescanned)
824     Thread.yield(); // reduce contention
825     else
826     Thread.interrupted(); // clear before park
827     }
828     else {
829     w.parked = true; // must recheck
830     if (w.eventCount != v) {
831     w.parked = false;
832     return true;
833     }
834     LockSupport.park(this);
835     rescanned = w.parked = false;
836     }
837 dl 1.53 }
838     }
839    
840     /**
841 dl 1.93 * If inactivating worker w has caused pool to become
842     * quiescent, check for pool termination, and wait for event
843     * for up to SHRINK_RATE nanosecs (rescans are unnecessary in
844     * this case because quiescence reflects consensus about lack
845     * of work). On timeout, if ctl has not changed, terminate the
846     * worker. Upon its termination (see deregisterWorker), it may
847     * wake up another worker to possibly repeat this process.
848 dl 1.91 *
849     * @param w the calling worker
850 dl 1.93 * @param currentCtl the ctl value after enqueuing w
851     * @param prevCtl the ctl value if w terminated
852     * @param v the eventCount w awaits change
853     */
854     private void idleAwaitWork(ForkJoinWorkerThread w, long currentCtl,
855     long prevCtl, int v) {
856     if (w.eventCount == v) {
857     if (shutdown)
858     tryTerminate(false);
859     ForkJoinTask.helpExpungeStaleExceptions(); // help clean weak refs
860     while (ctl == currentCtl) {
861     long startTime = System.nanoTime();
862 dl 1.91 w.parked = true;
863 dl 1.93 if (w.eventCount == v) // must recheck
864 dl 1.91 LockSupport.parkNanos(this, SHRINK_RATE);
865     w.parked = false;
866 dl 1.93 if (w.eventCount != v)
867     break;
868 dl 1.99 else if (System.nanoTime() - startTime <
869     SHRINK_RATE - (SHRINK_RATE / 10)) // timing slop
870 dl 1.93 Thread.interrupted(); // spurious wakeup
871     else if (UNSAFE.compareAndSwapLong(this, ctlOffset,
872     currentCtl, prevCtl)) {
873     w.terminate = true; // restore previous
874     w.eventCount = ((int)currentCtl + EC_UNIT) & E_MASK;
875     break;
876 dl 1.91 }
877     }
878     }
879 dl 1.53 }
880    
881 dl 1.91 // Submissions
882 dl 1.53
883     /**
884 dl 1.91 * Enqueues the given task in the submissionQueue. Same idea as
885     * ForkJoinWorkerThread.pushTask except for use of submissionLock.
886     *
887     * @param t the task
888 dl 1.53 */
889 dl 1.91 private void addSubmission(ForkJoinTask<?> t) {
890     final ReentrantLock lock = this.submissionLock;
891     lock.lock();
892     try {
893     ForkJoinTask<?>[] q; int s, m;
894     if ((q = submissionQueue) != null) { // ignore if queue removed
895     long u = (((s = queueTop) & (m = q.length-1)) << ASHIFT)+ABASE;
896     UNSAFE.putOrderedObject(q, u, t);
897     queueTop = s + 1;
898     if (s - queueBase == m)
899     growSubmissionQueue();
900 dl 1.66 }
901 dl 1.91 } finally {
902     lock.unlock();
903 dl 1.53 }
904 dl 1.91 signalWork();
905 dl 1.53 }
906    
907 dl 1.91 // (pollSubmission is defined below with exported methods)
908    
909 dl 1.53 /**
910 dl 1.91 * Creates or doubles submissionQueue array.
911 dl 1.95 * Basically identical to ForkJoinWorkerThread version.
912 dl 1.53 */
913 dl 1.91 private void growSubmissionQueue() {
914     ForkJoinTask<?>[] oldQ = submissionQueue;
915     int size = oldQ != null ? oldQ.length << 1 : INITIAL_QUEUE_CAPACITY;
916     if (size > MAXIMUM_QUEUE_CAPACITY)
917     throw new RejectedExecutionException("Queue capacity exceeded");
918     if (size < INITIAL_QUEUE_CAPACITY)
919     size = INITIAL_QUEUE_CAPACITY;
920     ForkJoinTask<?>[] q = submissionQueue = new ForkJoinTask<?>[size];
921     int mask = size - 1;
922     int top = queueTop;
923     int oldMask;
924     if (oldQ != null && (oldMask = oldQ.length - 1) >= 0) {
925     for (int b = queueBase; b != top; ++b) {
926     long u = ((b & oldMask) << ASHIFT) + ABASE;
927     Object x = UNSAFE.getObjectVolatile(oldQ, u);
928     if (x != null && UNSAFE.compareAndSwapObject(oldQ, u, x, null))
929     UNSAFE.putObjectVolatile
930     (q, ((b & mask) << ASHIFT) + ABASE, x);
931 dl 1.64 }
932     }
933     }
934    
935 dl 1.91 // Blocking support
936    
937 dl 1.64 /**
938 dl 1.91 * Tries to increment blockedCount, decrement active count
939     * (sometimes implicitly) and possibly release or create a
940     * compensating worker in preparation for blocking. Fails
941     * on contention or termination.
942     *
943     * @return true if the caller can block, else should recheck and retry
944     */
945     private boolean tryPreBlock() {
946     int b = blockedCount;
947     if (UNSAFE.compareAndSwapInt(this, blockedCountOffset, b, b + 1)) {
948     int pc = parallelism;
949     do {
950     ForkJoinWorkerThread[] ws; ForkJoinWorkerThread w;
951     int e, ac, tc, rc, i;
952     long c = ctl;
953     int u = (int)(c >>> 32);
954     if ((e = (int)c) < 0) {
955     // skip -- terminating
956     }
957     else if ((ac = (u >> UAC_SHIFT)) <= 0 && e != 0 &&
958     (ws = workers) != null &&
959     (i = ~e & SMASK) < ws.length &&
960     (w = ws[i]) != null) {
961     long nc = ((long)(w.nextWait & E_MASK) |
962     (c & (AC_MASK|TC_MASK)));
963     if (w.eventCount == e &&
964     UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
965     w.eventCount = (e + EC_UNIT) & E_MASK;
966     if (w.parked)
967     UNSAFE.unpark(w);
968     return true; // release an idle worker
969     }
970     }
971     else if ((tc = (short)(u >>> UTC_SHIFT)) >= 0 && ac + pc > 1) {
972     long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
973     if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
974     return true; // no compensation needed
975     }
976     else if (tc + pc < MAX_ID) {
977     long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
978     if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
979     addWorker();
980     return true; // create a replacement
981     }
982 dl 1.61 }
983 dl 1.91 // try to back out on any failure and let caller retry
984     } while (!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
985     b = blockedCount, b - 1));
986 dl 1.53 }
987 dl 1.91 return false;
988 dl 1.64 }
989    
990 dl 1.91 /**
991     * Decrements blockedCount and increments active count
992     */
993     private void postBlock() {
994     long c;
995     do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset, // no mask
996     c = ctl, c + AC_UNIT));
997     int b;
998     do {} while(!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
999     b = blockedCount, b - 1));
1000     }
1001 dl 1.61
1002     /**
1003 dl 1.91 * Possibly blocks waiting for the given task to complete, or
1004     * cancels the task if terminating. Fails to wait if contended.
1005     *
1006     * @param joinMe the task
1007 dl 1.61 */
1008 dl 1.91 final void tryAwaitJoin(ForkJoinTask<?> joinMe) {
1009     int s;
1010     Thread.interrupted(); // clear interrupts before checking termination
1011     if (joinMe.status >= 0) {
1012     if (tryPreBlock()) {
1013     joinMe.tryAwaitDone(0L);
1014     postBlock();
1015     }
1016 dl 1.95 else if ((ctl & STOP_BIT) != 0L)
1017 dl 1.91 joinMe.cancelIgnoringExceptions();
1018     }
1019 dl 1.61 }
1020    
1021     /**
1022 dl 1.91 * Possibly blocks the given worker waiting for joinMe to
1023     * complete or timeout
1024     *
1025     * @param joinMe the task
1026     * @param millis the wait time for underlying Object.wait
1027 dl 1.61 */
1028 dl 1.91 final void timedAwaitJoin(ForkJoinTask<?> joinMe, long nanos) {
1029     while (joinMe.status >= 0) {
1030     Thread.interrupted();
1031     if ((ctl & STOP_BIT) != 0L) {
1032     joinMe.cancelIgnoringExceptions();
1033     break;
1034     }
1035     if (tryPreBlock()) {
1036     long last = System.nanoTime();
1037     while (joinMe.status >= 0) {
1038     long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
1039     if (millis <= 0)
1040     break;
1041     joinMe.tryAwaitDone(millis);
1042     if (joinMe.status < 0)
1043     break;
1044     if ((ctl & STOP_BIT) != 0L) {
1045     joinMe.cancelIgnoringExceptions();
1046     break;
1047     }
1048     long now = System.nanoTime();
1049     nanos -= now - last;
1050     last = now;
1051     }
1052     postBlock();
1053     break;
1054     }
1055 dl 1.64 }
1056     }
1057    
1058     /**
1059 dl 1.91 * If necessary, compensates for blocker, and blocks
1060 dl 1.64 */
1061 dl 1.91 private void awaitBlocker(ManagedBlocker blocker)
1062     throws InterruptedException {
1063     while (!blocker.isReleasable()) {
1064     if (tryPreBlock()) {
1065 dl 1.66 try {
1066 dl 1.91 do {} while (!blocker.isReleasable() && !blocker.block());
1067     } finally {
1068     postBlock();
1069 dl 1.66 }
1070 dl 1.91 break;
1071 dl 1.64 }
1072     }
1073     }
1074    
1075 dl 1.91 // Creating, registering and deregistring workers
1076    
1077 dl 1.64 /**
1078 dl 1.91 * Tries to create and start a worker; minimally rolls back counts
1079     * on failure.
1080 dl 1.64 */
1081 dl 1.91 private void addWorker() {
1082     Throwable ex = null;
1083     ForkJoinWorkerThread t = null;
1084     try {
1085     t = factory.newThread(this);
1086     } catch (Throwable e) {
1087     ex = e;
1088     }
1089     if (t == null) { // null or exceptional factory return
1090     long c; // adjust counts
1091     do {} while (!UNSAFE.compareAndSwapLong
1092     (this, ctlOffset, c = ctl,
1093     (((c - AC_UNIT) & AC_MASK) |
1094     ((c - TC_UNIT) & TC_MASK) |
1095     (c & ~(AC_MASK|TC_MASK)))));
1096     // Propagate exception if originating from an external caller
1097     if (!tryTerminate(false) && ex != null &&
1098     !(Thread.currentThread() instanceof ForkJoinWorkerThread))
1099     UNSAFE.throwException(ex);
1100     }
1101     else
1102     t.start();
1103 dl 1.61 }
1104    
1105 dl 1.53 /**
1106 dl 1.91 * Callback from ForkJoinWorkerThread constructor to assign a
1107     * public name
1108 dl 1.53 */
1109 dl 1.91 final String nextWorkerName() {
1110     for (int n;;) {
1111     if (UNSAFE.compareAndSwapInt(this, nextWorkerNumberOffset,
1112     n = nextWorkerNumber, ++n))
1113     return workerNamePrefix + n;
1114 dl 1.53 }
1115     }
1116    
1117     /**
1118 dl 1.91 * Callback from ForkJoinWorkerThread constructor to
1119     * determine its poolIndex and record in workers array.
1120 dl 1.56 *
1121 dl 1.91 * @param w the worker
1122     * @return the worker's pool index
1123 dl 1.53 */
1124 dl 1.91 final int registerWorker(ForkJoinWorkerThread w) {
1125     /*
1126     * In the typical case, a new worker acquires the lock, uses
1127     * next available index and returns quickly. Since we should
1128     * not block callers (ultimately from signalWork or
1129     * tryPreBlock) waiting for the lock needed to do this, we
1130     * instead help release other workers while waiting for the
1131     * lock.
1132     */
1133     for (int g;;) {
1134     ForkJoinWorkerThread[] ws;
1135     if (((g = scanGuard) & SG_UNIT) == 0 &&
1136     UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1137     g, g | SG_UNIT)) {
1138     int k = nextWorkerIndex;
1139     try {
1140     if ((ws = workers) != null) { // ignore on shutdown
1141     int n = ws.length;
1142     if (k < 0 || k >= n || ws[k] != null) {
1143     for (k = 0; k < n && ws[k] != null; ++k)
1144     ;
1145     if (k == n)
1146     ws = workers = Arrays.copyOf(ws, n << 1);
1147     }
1148     ws[k] = w;
1149     nextWorkerIndex = k + 1;
1150     int m = g & SMASK;
1151 dl 1.98 g = k > m? ((m << 1) + 1) & SMASK : g + (SG_UNIT<<1);
1152 dl 1.91 }
1153     } finally {
1154     scanGuard = g;
1155     }
1156     return k;
1157 dl 1.82 }
1158 dl 1.91 else if ((ws = workers) != null) { // help release others
1159     for (ForkJoinWorkerThread u : ws) {
1160     if (u != null && u.queueBase != u.queueTop) {
1161     if (tryReleaseWaiter())
1162 dl 1.85 break;
1163 dl 1.83 }
1164     }
1165 dl 1.53 }
1166     }
1167     }
1168    
1169     /**
1170 dl 1.91 * Final callback from terminating worker. Removes record of
1171     * worker from array, and adjusts counts. If pool is shutting
1172     * down, tries to complete termination.
1173     *
1174     * @param w the worker
1175 dl 1.53 */
1176 dl 1.91 final void deregisterWorker(ForkJoinWorkerThread w, Throwable ex) {
1177     int idx = w.poolIndex;
1178     int sc = w.stealCount;
1179     int steps = 0;
1180     // Remove from array, adjust worker counts and collect steal count.
1181     // We can intermix failed removes or adjusts with steal updates
1182     do {
1183     long s, c;
1184     int g;
1185     if (steps == 0 && ((g = scanGuard) & SG_UNIT) == 0 &&
1186     UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1187     g, g |= SG_UNIT)) {
1188     ForkJoinWorkerThread[] ws = workers;
1189     if (ws != null && idx >= 0 &&
1190     idx < ws.length && ws[idx] == w)
1191     ws[idx] = null; // verify
1192     nextWorkerIndex = idx;
1193     scanGuard = g + SG_UNIT;
1194     steps = 1;
1195 dl 1.60 }
1196 dl 1.91 if (steps == 1 &&
1197     UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1198     (((c - AC_UNIT) & AC_MASK) |
1199     ((c - TC_UNIT) & TC_MASK) |
1200     (c & ~(AC_MASK|TC_MASK)))))
1201     steps = 2;
1202     if (sc != 0 &&
1203     UNSAFE.compareAndSwapLong(this, stealCountOffset,
1204     s = stealCount, s + sc))
1205     sc = 0;
1206     } while (steps != 2 || sc != 0);
1207     if (!tryTerminate(false)) {
1208     if (ex != null) // possibly replace if died abnormally
1209     signalWork();
1210     else
1211     tryReleaseWaiter();
1212 dl 1.53 }
1213 dl 1.59 }
1214 dl 1.54
1215 dl 1.91 // Shutdown and termination
1216    
1217 dl 1.54 /**
1218 dl 1.53 * Possibly initiates and/or completes termination.
1219     *
1220     * @param now if true, unconditionally terminate, else only
1221     * if shutdown and empty queue and no active workers
1222     * @return true if now terminating or terminated
1223 dl 1.1 */
1224 dl 1.53 private boolean tryTerminate(boolean now) {
1225 dl 1.91 long c;
1226     while (((c = ctl) & STOP_BIT) == 0) {
1227     if (!now) {
1228     if ((int)(c >> AC_SHIFT) != -parallelism)
1229     return false;
1230     if (!shutdown || blockedCount != 0 || quiescerCount != 0 ||
1231 dl 1.95 queueBase != queueTop) {
1232 dl 1.91 if (ctl == c) // staleness check
1233     return false;
1234     continue;
1235     }
1236     }
1237     if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, c | STOP_BIT))
1238     startTerminating();
1239     }
1240 dl 1.95 if ((short)(c >>> TC_SHIFT) == -parallelism) { // signal when 0 workers
1241     final ReentrantLock lock = this.submissionLock;
1242     lock.lock();
1243     try {
1244     termination.signalAll();
1245     } finally {
1246     lock.unlock();
1247     }
1248 dl 1.53 }
1249 dl 1.4 return true;
1250 dl 1.1 }
1251    
1252     /**
1253 dl 1.91 * Runs up to three passes through workers: (0) Setting
1254 dl 1.95 * termination status for each worker, followed by wakeups up to
1255     * queued workers; (1) helping cancel tasks; (2) interrupting
1256 dl 1.91 * lagging threads (likely in external tasks, but possibly also
1257     * blocked in joins). Each pass repeats previous steps because of
1258     * potential lagging thread creation.
1259 dl 1.53 */
1260     private void startTerminating() {
1261 dl 1.61 cancelSubmissions();
1262 dl 1.91 for (int pass = 0; pass < 3; ++pass) {
1263     ForkJoinWorkerThread[] ws = workers;
1264     if (ws != null) {
1265     for (ForkJoinWorkerThread w : ws) {
1266     if (w != null) {
1267     w.terminate = true;
1268     if (pass > 0) {
1269     w.cancelTasks();
1270     if (pass > 1 && !w.isInterrupted()) {
1271     try {
1272     w.interrupt();
1273     } catch (SecurityException ignore) {
1274     }
1275 dl 1.61 }
1276     }
1277     }
1278     }
1279 dl 1.91 terminateWaiters();
1280 dl 1.61 }
1281 dl 1.56 }
1282     }
1283    
1284     /**
1285 dl 1.91 * Polls and cancels all submissions. Called only during termination.
1286 dl 1.56 */
1287     private void cancelSubmissions() {
1288 dl 1.91 while (queueBase != queueTop) {
1289     ForkJoinTask<?> task = pollSubmission();
1290     if (task != null) {
1291     try {
1292     task.cancel(false);
1293     } catch (Throwable ignore) {
1294     }
1295     }
1296     }
1297     }
1298    
1299     /**
1300     * Tries to set the termination status of waiting workers, and
1301 dl 1.95 * then wakes them up (after which they will terminate).
1302 dl 1.91 */
1303     private void terminateWaiters() {
1304     ForkJoinWorkerThread[] ws = workers;
1305     if (ws != null) {
1306     ForkJoinWorkerThread w; long c; int i, e;
1307     int n = ws.length;
1308     while ((i = ~(e = (int)(c = ctl)) & SMASK) < n &&
1309     (w = ws[i]) != null && w.eventCount == (e & E_MASK)) {
1310     if (UNSAFE.compareAndSwapLong(this, ctlOffset, c,
1311     (long)(w.nextWait & E_MASK) |
1312     ((c + AC_UNIT) & AC_MASK) |
1313     (c & (TC_MASK|STOP_BIT)))) {
1314     w.terminate = true;
1315     w.eventCount = e + EC_UNIT;
1316     if (w.parked)
1317     UNSAFE.unpark(w);
1318     }
1319 dl 1.53 }
1320     }
1321 dl 1.56 }
1322    
1323 dl 1.91 // misc ForkJoinWorkerThread support
1324 dl 1.53
1325     /**
1326 dl 1.91 * Increment or decrement quiescerCount. Needed only to prevent
1327     * triggering shutdown if a worker is transiently inactive while
1328     * checking quiescence.
1329     *
1330     * @param delta 1 for increment, -1 for decrement
1331 dl 1.1 */
1332 dl 1.91 final void addQuiescerCount(int delta) {
1333     int c;
1334     do {} while(!UNSAFE.compareAndSwapInt(this, quiescerCountOffset,
1335     c = quiescerCount, c + delta));
1336 dl 1.1 }
1337    
1338     /**
1339 dl 1.91 * Directly increment or decrement active count without
1340     * queuing. This method is used to transiently assert inactivation
1341     * while checking quiescence.
1342 dl 1.61 *
1343 dl 1.91 * @param delta 1 for increment, -1 for decrement
1344 dl 1.1 */
1345 dl 1.91 final void addActiveCount(int delta) {
1346     long d = delta < 0 ? -AC_UNIT : AC_UNIT;
1347     long c;
1348     do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1349     ((c + d) & AC_MASK) |
1350     (c & ~AC_MASK)));
1351 dl 1.1 }
1352    
1353     /**
1354 dl 1.53 * Returns the approximate (non-atomic) number of idle threads per
1355     * active thread.
1356     */
1357     final int idlePerActive() {
1358 dl 1.91 // Approximate at powers of two for small values, saturate past 4
1359     int p = parallelism;
1360     int a = p + (int)(ctl >> AC_SHIFT);
1361     return (a > (p >>>= 1) ? 0 :
1362     a > (p >>>= 1) ? 1 :
1363     a > (p >>>= 1) ? 2 :
1364     a > (p >>>= 1) ? 4 :
1365     8);
1366 dl 1.53 }
1367    
1368 dl 1.91 // Exported methods
1369 dl 1.1
1370     // Constructors
1371    
1372     /**
1373 dl 1.42 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1374 dl 1.57 * java.lang.Runtime#availableProcessors}, using the {@linkplain
1375     * #defaultForkJoinWorkerThreadFactory default thread factory},
1376     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1377 jsr166 1.17 *
1378 dl 1.1 * @throws SecurityException if a security manager exists and
1379     * the caller is not permitted to modify threads
1380     * because it does not hold {@link
1381 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1382 dl 1.1 */
1383     public ForkJoinPool() {
1384     this(Runtime.getRuntime().availableProcessors(),
1385 dl 1.57 defaultForkJoinWorkerThreadFactory, null, false);
1386 dl 1.1 }
1387    
1388     /**
1389 dl 1.42 * Creates a {@code ForkJoinPool} with the indicated parallelism
1390 dl 1.57 * level, the {@linkplain
1391     * #defaultForkJoinWorkerThreadFactory default thread factory},
1392     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1393 jsr166 1.17 *
1394 dl 1.42 * @param parallelism the parallelism level
1395 dl 1.1 * @throws IllegalArgumentException if parallelism less than or
1396 jsr166 1.47 * equal to zero, or greater than implementation limit
1397 dl 1.1 * @throws SecurityException if a security manager exists and
1398     * the caller is not permitted to modify threads
1399     * because it does not hold {@link
1400 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1401 dl 1.1 */
1402     public ForkJoinPool(int parallelism) {
1403 dl 1.57 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1404 dl 1.1 }
1405    
1406     /**
1407 dl 1.57 * Creates a {@code ForkJoinPool} with the given parameters.
1408 jsr166 1.17 *
1409 dl 1.57 * @param parallelism the parallelism level. For default value,
1410     * use {@link java.lang.Runtime#availableProcessors}.
1411     * @param factory the factory for creating new threads. For default value,
1412     * use {@link #defaultForkJoinWorkerThreadFactory}.
1413 dl 1.59 * @param handler the handler for internal worker threads that
1414     * terminate due to unrecoverable errors encountered while executing
1415 jsr166 1.73 * tasks. For default value, use {@code null}.
1416 dl 1.59 * @param asyncMode if true,
1417 dl 1.57 * establishes local first-in-first-out scheduling mode for forked
1418     * tasks that are never joined. This mode may be more appropriate
1419     * than default locally stack-based mode in applications in which
1420     * worker threads only process event-style asynchronous tasks.
1421 jsr166 1.73 * For default value, use {@code false}.
1422 dl 1.1 * @throws IllegalArgumentException if parallelism less than or
1423 jsr166 1.47 * equal to zero, or greater than implementation limit
1424 jsr166 1.48 * @throws NullPointerException if the factory is null
1425 dl 1.1 * @throws SecurityException if a security manager exists and
1426     * the caller is not permitted to modify threads
1427     * because it does not hold {@link
1428 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1429 dl 1.1 */
1430 dl 1.59 public ForkJoinPool(int parallelism,
1431 dl 1.57 ForkJoinWorkerThreadFactory factory,
1432     Thread.UncaughtExceptionHandler handler,
1433     boolean asyncMode) {
1434 dl 1.53 checkPermission();
1435     if (factory == null)
1436     throw new NullPointerException();
1437 dl 1.91 if (parallelism <= 0 || parallelism > MAX_ID)
1438 dl 1.1 throw new IllegalArgumentException();
1439 dl 1.53 this.parallelism = parallelism;
1440 dl 1.1 this.factory = factory;
1441 dl 1.57 this.ueh = handler;
1442     this.locallyFifo = asyncMode;
1443 dl 1.91 long np = (long)(-parallelism); // offset ctl counts
1444     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
1445     this.submissionQueue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
1446     // initialize workers array with room for 2*parallelism if possible
1447     int n = parallelism << 1;
1448     if (n >= MAX_ID)
1449     n = MAX_ID;
1450     else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
1451     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8;
1452     }
1453     workers = new ForkJoinWorkerThread[n + 1];
1454     this.submissionLock = new ReentrantLock();
1455     this.termination = submissionLock.newCondition();
1456     StringBuilder sb = new StringBuilder("ForkJoinPool-");
1457     sb.append(poolNumberGenerator.incrementAndGet());
1458     sb.append("-worker-");
1459     this.workerNamePrefix = sb.toString();
1460 dl 1.1 }
1461    
1462     // Execution methods
1463    
1464     /**
1465 jsr166 1.17 * Performs the given task, returning its result upon completion.
1466 dl 1.91 * If the computation encounters an unchecked Exception or Error,
1467     * it is rethrown as the outcome of this invocation. Rethrown
1468     * exceptions behave in the same way as regular exceptions, but,
1469     * when possible, contain stack traces (as displayed for example
1470     * using {@code ex.printStackTrace()}) of both the current thread
1471     * as well as the thread actually encountering the exception;
1472     * minimally only the latter.
1473 jsr166 1.17 *
1474 dl 1.1 * @param task the task
1475     * @return the task's result
1476 jsr166 1.48 * @throws NullPointerException if the task is null
1477     * @throws RejectedExecutionException if the task cannot be
1478     * scheduled for execution
1479 dl 1.1 */
1480     public <T> T invoke(ForkJoinTask<T> task) {
1481 dl 1.91 Thread t = Thread.currentThread();
1482 dl 1.82 if (task == null)
1483     throw new NullPointerException();
1484 dl 1.91 if (shutdown)
1485 dl 1.82 throw new RejectedExecutionException();
1486     if ((t instanceof ForkJoinWorkerThread) &&
1487     ((ForkJoinWorkerThread)t).pool == this)
1488     return task.invoke(); // bypass submit if in same pool
1489     else {
1490 dl 1.91 addSubmission(task);
1491 dl 1.82 return task.join();
1492     }
1493     }
1494    
1495     /**
1496     * Unless terminating, forks task if within an ongoing FJ
1497     * computation in the current pool, else submits as external task.
1498     */
1499     private <T> void forkOrSubmit(ForkJoinTask<T> task) {
1500 dl 1.91 ForkJoinWorkerThread w;
1501     Thread t = Thread.currentThread();
1502     if (shutdown)
1503 dl 1.82 throw new RejectedExecutionException();
1504     if ((t instanceof ForkJoinWorkerThread) &&
1505 dl 1.91 (w = (ForkJoinWorkerThread)t).pool == this)
1506     w.pushTask(task);
1507 dl 1.82 else
1508 dl 1.91 addSubmission(task);
1509 dl 1.1 }
1510    
1511     /**
1512     * Arranges for (asynchronous) execution of the given task.
1513 jsr166 1.17 *
1514 dl 1.1 * @param task the task
1515 jsr166 1.48 * @throws NullPointerException if the task is null
1516     * @throws RejectedExecutionException if the task cannot be
1517     * scheduled for execution
1518 dl 1.1 */
1519 dl 1.37 public void execute(ForkJoinTask<?> task) {
1520 dl 1.82 if (task == null)
1521     throw new NullPointerException();
1522     forkOrSubmit(task);
1523 dl 1.1 }
1524    
1525     // AbstractExecutorService methods
1526    
1527 jsr166 1.48 /**
1528     * @throws NullPointerException if the task is null
1529     * @throws RejectedExecutionException if the task cannot be
1530     * scheduled for execution
1531     */
1532 dl 1.1 public void execute(Runnable task) {
1533 dl 1.82 if (task == null)
1534     throw new NullPointerException();
1535 dl 1.23 ForkJoinTask<?> job;
1536 jsr166 1.26 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1537     job = (ForkJoinTask<?>) task;
1538 dl 1.23 else
1539 dl 1.33 job = ForkJoinTask.adapt(task, null);
1540 dl 1.82 forkOrSubmit(job);
1541 dl 1.1 }
1542    
1543 jsr166 1.48 /**
1544 dl 1.57 * Submits a ForkJoinTask for execution.
1545     *
1546     * @param task the task to submit
1547     * @return the task
1548     * @throws NullPointerException if the task is null
1549     * @throws RejectedExecutionException if the task cannot be
1550     * scheduled for execution
1551     */
1552     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1553 dl 1.82 if (task == null)
1554     throw new NullPointerException();
1555     forkOrSubmit(task);
1556 dl 1.57 return task;
1557     }
1558    
1559     /**
1560 jsr166 1.48 * @throws NullPointerException if the task is null
1561     * @throws RejectedExecutionException if the task cannot be
1562     * scheduled for execution
1563     */
1564 dl 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
1565 dl 1.82 if (task == null)
1566     throw new NullPointerException();
1567 dl 1.33 ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1568 dl 1.82 forkOrSubmit(job);
1569 dl 1.1 return job;
1570     }
1571    
1572 jsr166 1.48 /**
1573     * @throws NullPointerException if the task is null
1574     * @throws RejectedExecutionException if the task cannot be
1575     * scheduled for execution
1576     */
1577 dl 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
1578 dl 1.82 if (task == null)
1579     throw new NullPointerException();
1580 dl 1.33 ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1581 dl 1.82 forkOrSubmit(job);
1582 dl 1.1 return job;
1583     }
1584    
1585 jsr166 1.48 /**
1586     * @throws NullPointerException if the task is null
1587     * @throws RejectedExecutionException if the task cannot be
1588     * scheduled for execution
1589     */
1590 dl 1.1 public ForkJoinTask<?> submit(Runnable task) {
1591 dl 1.82 if (task == null)
1592     throw new NullPointerException();
1593 dl 1.23 ForkJoinTask<?> job;
1594 jsr166 1.26 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1595     job = (ForkJoinTask<?>) task;
1596 dl 1.23 else
1597 dl 1.33 job = ForkJoinTask.adapt(task, null);
1598 dl 1.82 forkOrSubmit(job);
1599 dl 1.1 return job;
1600     }
1601    
1602     /**
1603 jsr166 1.48 * @throws NullPointerException {@inheritDoc}
1604     * @throws RejectedExecutionException {@inheritDoc}
1605     */
1606 dl 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
1607 jsr166 1.20 ArrayList<ForkJoinTask<T>> forkJoinTasks =
1608 dl 1.1 new ArrayList<ForkJoinTask<T>>(tasks.size());
1609 jsr166 1.20 for (Callable<T> task : tasks)
1610 dl 1.33 forkJoinTasks.add(ForkJoinTask.adapt(task));
1611 jsr166 1.20 invoke(new InvokeAll<T>(forkJoinTasks));
1612    
1613     @SuppressWarnings({"unchecked", "rawtypes"})
1614 dl 1.54 List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1615 jsr166 1.20 return futures;
1616 dl 1.1 }
1617    
1618     static final class InvokeAll<T> extends RecursiveAction {
1619     final ArrayList<ForkJoinTask<T>> tasks;
1620     InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
1621     public void compute() {
1622 jsr166 1.17 try { invokeAll(tasks); }
1623     catch (Exception ignore) {}
1624 dl 1.1 }
1625 jsr166 1.18 private static final long serialVersionUID = -7914297376763021607L;
1626 dl 1.1 }
1627    
1628     /**
1629 jsr166 1.17 * Returns the factory used for constructing new workers.
1630 dl 1.1 *
1631     * @return the factory used for constructing new workers
1632     */
1633     public ForkJoinWorkerThreadFactory getFactory() {
1634     return factory;
1635     }
1636    
1637     /**
1638 dl 1.2 * Returns the handler for internal worker threads that terminate
1639     * due to unrecoverable errors encountered while executing tasks.
1640 jsr166 1.17 *
1641 jsr166 1.28 * @return the handler, or {@code null} if none
1642 dl 1.2 */
1643     public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1644 dl 1.53 return ueh;
1645 dl 1.2 }
1646    
1647     /**
1648 dl 1.42 * Returns the targeted parallelism level of this pool.
1649 dl 1.1 *
1650 dl 1.42 * @return the targeted parallelism level of this pool
1651 dl 1.1 */
1652     public int getParallelism() {
1653     return parallelism;
1654     }
1655    
1656     /**
1657     * Returns the number of worker threads that have started but not
1658 jsr166 1.76 * yet terminated. The result returned by this method may differ
1659 jsr166 1.29 * from {@link #getParallelism} when threads are created to
1660 dl 1.1 * maintain parallelism when others are cooperatively blocked.
1661     *
1662     * @return the number of worker threads
1663     */
1664     public int getPoolSize() {
1665 dl 1.91 return parallelism + (short)(ctl >>> TC_SHIFT);
1666 dl 1.1 }
1667    
1668     /**
1669 jsr166 1.28 * Returns {@code true} if this pool uses local first-in-first-out
1670 jsr166 1.16 * scheduling mode for forked tasks that are never joined.
1671 dl 1.6 *
1672 jsr166 1.28 * @return {@code true} if this pool uses async mode
1673 dl 1.6 */
1674     public boolean getAsyncMode() {
1675     return locallyFifo;
1676     }
1677    
1678     /**
1679 dl 1.2 * Returns an estimate of the number of worker threads that are
1680     * not blocked waiting to join tasks or for other managed
1681 dl 1.53 * synchronization. This method may overestimate the
1682     * number of running threads.
1683 dl 1.1 *
1684     * @return the number of worker threads
1685     */
1686     public int getRunningThreadCount() {
1687 dl 1.91 int r = parallelism + (int)(ctl >> AC_SHIFT);
1688     return r <= 0? 0 : r; // suppress momentarily negative values
1689 dl 1.1 }
1690    
1691     /**
1692 dl 1.2 * Returns an estimate of the number of threads that are currently
1693 dl 1.1 * stealing or executing tasks. This method may overestimate the
1694     * number of active threads.
1695 jsr166 1.17 *
1696 jsr166 1.16 * @return the number of active threads
1697 dl 1.1 */
1698     public int getActiveThreadCount() {
1699 dl 1.91 int r = parallelism + (int)(ctl >> AC_SHIFT) + blockedCount;
1700     return r <= 0? 0 : r; // suppress momentarily negative values
1701 dl 1.1 }
1702    
1703     /**
1704 jsr166 1.28 * Returns {@code true} if all worker threads are currently idle.
1705     * An idle worker is one that cannot obtain a task to execute
1706     * because none are available to steal from other threads, and
1707     * there are no pending submissions to the pool. This method is
1708     * conservative; it might not return {@code true} immediately upon
1709     * idleness of all threads, but will eventually become true if
1710     * threads remain inactive.
1711 jsr166 1.17 *
1712 jsr166 1.28 * @return {@code true} if all threads are currently idle
1713 dl 1.1 */
1714     public boolean isQuiescent() {
1715 dl 1.91 return parallelism + (int)(ctl >> AC_SHIFT) + blockedCount == 0;
1716 dl 1.1 }
1717    
1718     /**
1719     * Returns an estimate of the total number of tasks stolen from
1720     * one thread's work queue by another. The reported value
1721     * underestimates the actual total number of steals when the pool
1722     * is not quiescent. This value may be useful for monitoring and
1723 jsr166 1.17 * tuning fork/join programs: in general, steal counts should be
1724 dl 1.1 * high enough to keep threads busy, but low enough to avoid
1725     * overhead and contention across threads.
1726 jsr166 1.17 *
1727 jsr166 1.16 * @return the number of steals
1728 dl 1.1 */
1729     public long getStealCount() {
1730 dl 1.53 return stealCount;
1731 dl 1.1 }
1732    
1733     /**
1734 dl 1.2 * Returns an estimate of the total number of tasks currently held
1735     * in queues by worker threads (but not including tasks submitted
1736     * to the pool that have not begun executing). This value is only
1737     * an approximation, obtained by iterating across all threads in
1738     * the pool. This method may be useful for tuning task
1739     * granularities.
1740 jsr166 1.17 *
1741 jsr166 1.16 * @return the number of queued tasks
1742 dl 1.1 */
1743     public long getQueuedTaskCount() {
1744     long count = 0;
1745 dl 1.91 ForkJoinWorkerThread[] ws;
1746     if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1747     (ws = workers) != null) {
1748     for (ForkJoinWorkerThread w : ws)
1749     if (w != null)
1750     count -= w.queueBase - w.queueTop; // must read base first
1751     }
1752 dl 1.1 return count;
1753     }
1754    
1755     /**
1756 jsr166 1.40 * Returns an estimate of the number of tasks submitted to this
1757 dl 1.94 * pool that have not yet begun executing. This method may take
1758 dl 1.91 * time proportional to the number of submissions.
1759 jsr166 1.17 *
1760 jsr166 1.16 * @return the number of queued submissions
1761 dl 1.1 */
1762     public int getQueuedSubmissionCount() {
1763 dl 1.91 return -queueBase + queueTop;
1764 dl 1.1 }
1765    
1766     /**
1767 jsr166 1.28 * Returns {@code true} if there are any tasks submitted to this
1768     * pool that have not yet begun executing.
1769 jsr166 1.17 *
1770 jsr166 1.16 * @return {@code true} if there are any queued submissions
1771 dl 1.1 */
1772     public boolean hasQueuedSubmissions() {
1773 dl 1.91 return queueBase != queueTop;
1774 dl 1.1 }
1775    
1776     /**
1777     * Removes and returns the next unexecuted submission if one is
1778     * available. This method may be useful in extensions to this
1779     * class that re-assign work in systems with multiple pools.
1780 jsr166 1.17 *
1781 jsr166 1.28 * @return the next submission, or {@code null} if none
1782 dl 1.1 */
1783     protected ForkJoinTask<?> pollSubmission() {
1784 dl 1.91 ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
1785     while ((b = queueBase) != queueTop &&
1786     (q = submissionQueue) != null &&
1787     (i = (q.length - 1) & b) >= 0) {
1788     long u = (i << ASHIFT) + ABASE;
1789     if ((t = q[i]) != null &&
1790     queueBase == b &&
1791     UNSAFE.compareAndSwapObject(q, u, t, null)) {
1792     queueBase = b + 1;
1793     return t;
1794     }
1795     }
1796     return null;
1797 dl 1.1 }
1798    
1799     /**
1800 dl 1.6 * Removes all available unexecuted submitted and forked tasks
1801     * from scheduling queues and adds them to the given collection,
1802     * without altering their execution status. These may include
1803 jsr166 1.41 * artificially generated or wrapped tasks. This method is
1804     * designed to be invoked only when the pool is known to be
1805 dl 1.6 * quiescent. Invocations at other times may not remove all
1806     * tasks. A failure encountered while attempting to add elements
1807 jsr166 1.16 * to collection {@code c} may result in elements being in
1808 dl 1.6 * neither, either or both collections when the associated
1809     * exception is thrown. The behavior of this operation is
1810     * undefined if the specified collection is modified while the
1811     * operation is in progress.
1812 jsr166 1.17 *
1813 dl 1.6 * @param c the collection to transfer elements into
1814     * @return the number of elements transferred
1815     */
1816 dl 1.30 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1817 dl 1.91 int count = 0;
1818     while (queueBase != queueTop) {
1819     ForkJoinTask<?> t = pollSubmission();
1820     if (t != null) {
1821     c.add(t);
1822     ++count;
1823     }
1824     }
1825     ForkJoinWorkerThread[] ws;
1826     if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1827     (ws = workers) != null) {
1828     for (ForkJoinWorkerThread w : ws)
1829     if (w != null)
1830     count += w.drainTasksTo(c);
1831     }
1832 dl 1.57 return count;
1833     }
1834    
1835     /**
1836 dl 1.1 * Returns a string identifying this pool, as well as its state,
1837     * including indications of run state, parallelism level, and
1838     * worker and task counts.
1839     *
1840     * @return a string identifying this pool, as well as its state
1841     */
1842     public String toString() {
1843     long st = getStealCount();
1844     long qt = getQueuedTaskCount();
1845     long qs = getQueuedSubmissionCount();
1846 dl 1.53 int pc = parallelism;
1847 dl 1.91 long c = ctl;
1848     int tc = pc + (short)(c >>> TC_SHIFT);
1849     int rc = pc + (int)(c >> AC_SHIFT);
1850     if (rc < 0) // ignore transient negative
1851     rc = 0;
1852     int ac = rc + blockedCount;
1853     String level;
1854     if ((c & STOP_BIT) != 0)
1855     level = (tc == 0)? "Terminated" : "Terminating";
1856     else
1857     level = shutdown? "Shutting down" : "Running";
1858 dl 1.1 return super.toString() +
1859 dl 1.91 "[" + level +
1860 dl 1.53 ", parallelism = " + pc +
1861     ", size = " + tc +
1862     ", active = " + ac +
1863     ", running = " + rc +
1864 dl 1.1 ", steals = " + st +
1865     ", tasks = " + qt +
1866     ", submissions = " + qs +
1867     "]";
1868     }
1869    
1870     /**
1871     * Initiates an orderly shutdown in which previously submitted
1872     * tasks are executed, but no new tasks will be accepted.
1873     * Invocation has no additional effect if already shut down.
1874     * Tasks that are in the process of being submitted concurrently
1875     * during the course of this method may or may not be rejected.
1876 jsr166 1.17 *
1877 dl 1.1 * @throws SecurityException if a security manager exists and
1878     * the caller is not permitted to modify threads
1879     * because it does not hold {@link
1880 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1881 dl 1.1 */
1882     public void shutdown() {
1883     checkPermission();
1884 dl 1.91 shutdown = true;
1885 dl 1.53 tryTerminate(false);
1886 dl 1.1 }
1887    
1888     /**
1889 dl 1.42 * Attempts to cancel and/or stop all tasks, and reject all
1890     * subsequently submitted tasks. Tasks that are in the process of
1891     * being submitted or executed concurrently during the course of
1892     * this method may or may not be rejected. This method cancels
1893     * both existing and unexecuted tasks, in order to permit
1894     * termination in the presence of task dependencies. So the method
1895     * always returns an empty list (unlike the case for some other
1896     * Executors).
1897 jsr166 1.17 *
1898 dl 1.1 * @return an empty list
1899     * @throws SecurityException if a security manager exists and
1900     * the caller is not permitted to modify threads
1901     * because it does not hold {@link
1902 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1903 dl 1.1 */
1904     public List<Runnable> shutdownNow() {
1905     checkPermission();
1906 dl 1.91 shutdown = true;
1907 dl 1.53 tryTerminate(true);
1908 dl 1.1 return Collections.emptyList();
1909     }
1910    
1911     /**
1912 jsr166 1.16 * Returns {@code true} if all tasks have completed following shut down.
1913 dl 1.1 *
1914 jsr166 1.16 * @return {@code true} if all tasks have completed following shut down
1915 dl 1.1 */
1916     public boolean isTerminated() {
1917 dl 1.91 long c = ctl;
1918     return ((c & STOP_BIT) != 0L &&
1919     (short)(c >>> TC_SHIFT) == -parallelism);
1920 dl 1.1 }
1921    
1922     /**
1923 jsr166 1.16 * Returns {@code true} if the process of termination has
1924 dl 1.42 * commenced but not yet completed. This method may be useful for
1925     * debugging. A return of {@code true} reported a sufficient
1926     * period after shutdown may indicate that submitted tasks have
1927 dl 1.88 * ignored or suppressed interruption, or are waiting for IO,
1928     * causing this executor not to properly terminate. (See the
1929     * advisory notes for class {@link ForkJoinTask} stating that
1930     * tasks should not normally entail blocking operations. But if
1931     * they do, they must abort them on interrupt.)
1932 dl 1.1 *
1933 dl 1.42 * @return {@code true} if terminating but not yet terminated
1934 dl 1.1 */
1935     public boolean isTerminating() {
1936 dl 1.91 long c = ctl;
1937     return ((c & STOP_BIT) != 0L &&
1938     (short)(c >>> TC_SHIFT) != -parallelism);
1939 dl 1.1 }
1940    
1941     /**
1942 dl 1.80 * Returns true if terminating or terminated. Used by ForkJoinWorkerThread.
1943     */
1944     final boolean isAtLeastTerminating() {
1945 dl 1.91 return (ctl & STOP_BIT) != 0L;
1946 dl 1.80 }
1947 jsr166 1.81
1948 dl 1.80 /**
1949 jsr166 1.16 * Returns {@code true} if this pool has been shut down.
1950 dl 1.1 *
1951 jsr166 1.16 * @return {@code true} if this pool has been shut down
1952 dl 1.1 */
1953     public boolean isShutdown() {
1954 dl 1.91 return shutdown;
1955 dl 1.42 }
1956    
1957     /**
1958 dl 1.1 * Blocks until all tasks have completed execution after a shutdown
1959     * request, or the timeout occurs, or the current thread is
1960     * interrupted, whichever happens first.
1961     *
1962     * @param timeout the maximum time to wait
1963     * @param unit the time unit of the timeout argument
1964 jsr166 1.16 * @return {@code true} if this executor terminated and
1965     * {@code false} if the timeout elapsed before termination
1966 dl 1.1 * @throws InterruptedException if interrupted while waiting
1967     */
1968     public boolean awaitTermination(long timeout, TimeUnit unit)
1969     throws InterruptedException {
1970 dl 1.91 long nanos = unit.toNanos(timeout);
1971     final ReentrantLock lock = this.submissionLock;
1972     lock.lock();
1973 dl 1.57 try {
1974 dl 1.91 for (;;) {
1975     if (isTerminated())
1976     return true;
1977     if (nanos <= 0)
1978     return false;
1979     nanos = termination.awaitNanos(nanos);
1980     }
1981     } finally {
1982     lock.unlock();
1983 dl 1.57 }
1984 dl 1.1 }
1985    
1986     /**
1987     * Interface for extending managed parallelism for tasks running
1988 jsr166 1.35 * in {@link ForkJoinPool}s.
1989     *
1990 dl 1.61 * <p>A {@code ManagedBlocker} provides two methods. Method
1991     * {@code isReleasable} must return {@code true} if blocking is
1992     * not necessary. Method {@code block} blocks the current thread
1993     * if necessary (perhaps internally invoking {@code isReleasable}
1994 dl 1.93 * before actually blocking). These actions are performed by any
1995     * thread invoking {@link ForkJoinPool#managedBlock}. The
1996     * unusual methods in this API accommodate synchronizers that may,
1997     * but don't usually, block for long periods. Similarly, they
1998     * allow more efficient internal handling of cases in which
1999     * additional workers may be, but usually are not, needed to
2000     * ensure sufficient parallelism. Toward this end,
2001     * implementations of method {@code isReleasable} must be amenable
2002     * to repeated invocation.
2003 jsr166 1.17 *
2004 dl 1.1 * <p>For example, here is a ManagedBlocker based on a
2005     * ReentrantLock:
2006 jsr166 1.17 * <pre> {@code
2007     * class ManagedLocker implements ManagedBlocker {
2008     * final ReentrantLock lock;
2009     * boolean hasLock = false;
2010     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
2011     * public boolean block() {
2012     * if (!hasLock)
2013     * lock.lock();
2014     * return true;
2015     * }
2016     * public boolean isReleasable() {
2017     * return hasLock || (hasLock = lock.tryLock());
2018 dl 1.1 * }
2019 jsr166 1.17 * }}</pre>
2020 dl 1.61 *
2021     * <p>Here is a class that possibly blocks waiting for an
2022     * item on a given queue:
2023     * <pre> {@code
2024     * class QueueTaker<E> implements ManagedBlocker {
2025     * final BlockingQueue<E> queue;
2026     * volatile E item = null;
2027     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
2028     * public boolean block() throws InterruptedException {
2029     * if (item == null)
2030 dl 1.65 * item = queue.take();
2031 dl 1.61 * return true;
2032     * }
2033     * public boolean isReleasable() {
2034 dl 1.65 * return item != null || (item = queue.poll()) != null;
2035 dl 1.61 * }
2036     * public E getItem() { // call after pool.managedBlock completes
2037     * return item;
2038     * }
2039     * }}</pre>
2040 dl 1.1 */
2041     public static interface ManagedBlocker {
2042     /**
2043     * Possibly blocks the current thread, for example waiting for
2044     * a lock or condition.
2045 jsr166 1.17 *
2046 jsr166 1.28 * @return {@code true} if no additional blocking is necessary
2047     * (i.e., if isReleasable would return true)
2048 dl 1.1 * @throws InterruptedException if interrupted while waiting
2049 jsr166 1.17 * (the method is not required to do so, but is allowed to)
2050 dl 1.1 */
2051     boolean block() throws InterruptedException;
2052    
2053     /**
2054 jsr166 1.28 * Returns {@code true} if blocking is unnecessary.
2055 dl 1.1 */
2056     boolean isReleasable();
2057     }
2058    
2059     /**
2060     * Blocks in accord with the given blocker. If the current thread
2061 jsr166 1.38 * is a {@link ForkJoinWorkerThread}, this method possibly
2062     * arranges for a spare thread to be activated if necessary to
2063 dl 1.57 * ensure sufficient parallelism while the current thread is blocked.
2064 jsr166 1.38 *
2065     * <p>If the caller is not a {@link ForkJoinTask}, this method is
2066     * behaviorally equivalent to
2067 jsr166 1.17 * <pre> {@code
2068     * while (!blocker.isReleasable())
2069     * if (blocker.block())
2070     * return;
2071     * }</pre>
2072 jsr166 1.38 *
2073     * If the caller is a {@code ForkJoinTask}, then the pool may
2074     * first be expanded to ensure parallelism, and later adjusted.
2075 dl 1.1 *
2076     * @param blocker the blocker
2077 jsr166 1.16 * @throws InterruptedException if blocker.block did so
2078 dl 1.1 */
2079 dl 1.57 public static void managedBlock(ManagedBlocker blocker)
2080 dl 1.1 throws InterruptedException {
2081     Thread t = Thread.currentThread();
2082 dl 1.61 if (t instanceof ForkJoinWorkerThread) {
2083     ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
2084     w.pool.awaitBlocker(blocker);
2085     }
2086 dl 1.57 else {
2087     do {} while (!blocker.isReleasable() && !blocker.block());
2088     }
2089 dl 1.1 }
2090    
2091 dl 1.33 // AbstractExecutorService overrides. These rely on undocumented
2092     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
2093     // implement RunnableFuture.
2094 dl 1.2
2095     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
2096 jsr166 1.34 return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
2097 dl 1.2 }
2098    
2099     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
2100 jsr166 1.34 return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
2101 dl 1.2 }
2102    
2103 jsr166 1.27 // Unsafe mechanics
2104 dl 1.91 private static final sun.misc.Unsafe UNSAFE;
2105     private static final long ctlOffset;
2106     private static final long stealCountOffset;
2107     private static final long blockedCountOffset;
2108     private static final long quiescerCountOffset;
2109     private static final long scanGuardOffset;
2110     private static final long nextWorkerNumberOffset;
2111     private static final long ABASE;
2112     private static final int ASHIFT;
2113    
2114     static {
2115     poolNumberGenerator = new AtomicInteger();
2116     workerSeedGenerator = new Random();
2117     modifyThreadPermission = new RuntimePermission("modifyThread");
2118     defaultForkJoinWorkerThreadFactory =
2119     new DefaultForkJoinWorkerThreadFactory();
2120     int s;
2121 jsr166 1.27 try {
2122 dl 1.91 UNSAFE = getUnsafe();
2123     Class k = ForkJoinPool.class;
2124     ctlOffset = UNSAFE.objectFieldOffset
2125     (k.getDeclaredField("ctl"));
2126     stealCountOffset = UNSAFE.objectFieldOffset
2127     (k.getDeclaredField("stealCount"));
2128     blockedCountOffset = UNSAFE.objectFieldOffset
2129     (k.getDeclaredField("blockedCount"));
2130     quiescerCountOffset = UNSAFE.objectFieldOffset
2131     (k.getDeclaredField("quiescerCount"));
2132     scanGuardOffset = UNSAFE.objectFieldOffset
2133     (k.getDeclaredField("scanGuard"));
2134     nextWorkerNumberOffset = UNSAFE.objectFieldOffset
2135     (k.getDeclaredField("nextWorkerNumber"));
2136     Class a = ForkJoinTask[].class;
2137     ABASE = UNSAFE.arrayBaseOffset(a);
2138     s = UNSAFE.arrayIndexScale(a);
2139     } catch (Exception e) {
2140     throw new Error(e);
2141     }
2142     if ((s & (s-1)) != 0)
2143     throw new Error("data type scale not a power of two");
2144     ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
2145 jsr166 1.27 }
2146    
2147     /**
2148     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
2149     * Replace with a simple call to Unsafe.getUnsafe when integrating
2150     * into a jdk.
2151     *
2152     * @return a sun.misc.Unsafe
2153     */
2154     private static sun.misc.Unsafe getUnsafe() {
2155     try {
2156     return sun.misc.Unsafe.getUnsafe();
2157     } catch (SecurityException se) {
2158     try {
2159     return java.security.AccessController.doPrivileged
2160     (new java.security
2161     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
2162     public sun.misc.Unsafe run() throws Exception {
2163     java.lang.reflect.Field f = sun.misc
2164     .Unsafe.class.getDeclaredField("theUnsafe");
2165     f.setAccessible(true);
2166     return (sun.misc.Unsafe) f.get(null);
2167     }});
2168     } catch (java.security.PrivilegedActionException e) {
2169     throw new RuntimeException("Could not initialize intrinsics",
2170     e.getCause());
2171     }
2172     }
2173     }
2174 dl 1.1 }