ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
Revision: 1.111
Committed: Thu Jan 26 00:08:13 2012 UTC (12 years, 3 months ago) by dl
Branch: MAIN
Changes since 1.110: +1526 -1045 lines
Log Message:
Preliminary release of next version

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.97 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.1 */
6    
7     package jsr166y;
8 jsr166 1.22 import java.util.ArrayList;
9     import java.util.Arrays;
10     import java.util.Collection;
11     import java.util.Collections;
12     import java.util.List;
13 dl 1.91 import java.util.Random;
14 dl 1.78 import java.util.concurrent.AbstractExecutorService;
15     import java.util.concurrent.Callable;
16     import java.util.concurrent.ExecutorService;
17     import java.util.concurrent.Future;
18     import java.util.concurrent.RejectedExecutionException;
19     import java.util.concurrent.RunnableFuture;
20     import java.util.concurrent.TimeUnit;
21     import java.util.concurrent.atomic.AtomicInteger;
22 dl 1.111 import java.util.concurrent.atomic.AtomicLong;
23 jsr166 1.22 import java.util.concurrent.locks.ReentrantLock;
24 dl 1.91 import java.util.concurrent.locks.Condition;
25 dl 1.1
26     /**
27 jsr166 1.29 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
28 jsr166 1.39 * A {@code ForkJoinPool} provides the entry point for submissions
29 dl 1.57 * from non-{@code ForkJoinTask} clients, as well as management and
30 jsr166 1.48 * monitoring operations.
31 dl 1.1 *
32 dl 1.42 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
33     * ExecutorService} mainly by virtue of employing
34     * <em>work-stealing</em>: all threads in the pool attempt to find and
35 dl 1.111 * execute tasks submitted to the pool and/or created by other active
36     * tasks (eventually blocking waiting for work if none exist). This
37     * enables efficient processing when most tasks spawn other subtasks
38     * (as do most {@code ForkJoinTask}s), as well as when many small
39     * tasks are submitted to the pool from external clients. Especially
40     * when setting <em>asyncMode</em> to true in constructors, {@code
41     * ForkJoinPool}s may also be appropriate for use with event-style
42     * tasks that are never joined.
43 dl 1.1 *
44 dl 1.42 * <p>A {@code ForkJoinPool} is constructed with a given target
45     * parallelism level; by default, equal to the number of available
46 dl 1.57 * processors. The pool attempts to maintain enough active (or
47     * available) threads by dynamically adding, suspending, or resuming
48     * internal worker threads, even if some tasks are stalled waiting to
49     * join others. However, no such adjustments are guaranteed in the
50     * face of blocked IO or other unmanaged synchronization. The nested
51     * {@link ManagedBlocker} interface enables extension of the kinds of
52     * synchronization accommodated.
53 dl 1.1 *
54     * <p>In addition to execution and lifecycle control methods, this
55     * class provides status check methods (for example
56 jsr166 1.29 * {@link #getStealCount}) that are intended to aid in developing,
57 dl 1.1 * tuning, and monitoring fork/join applications. Also, method
58 jsr166 1.29 * {@link #toString} returns indications of pool state in a
59 dl 1.2 * convenient form for informal monitoring.
60 dl 1.1 *
61 dl 1.57 * <p> As is the case with other ExecutorServices, there are three
62 dl 1.60 * main task execution methods summarized in the following
63 dl 1.111 * table. These are designed to be used primarily by clients not
64     * already engaged in fork/join computations in the current pool. The
65     * main forms of these methods accept instances of {@code
66     * ForkJoinTask}, but overloaded forms also allow mixed execution of
67     * plain {@code Runnable}- or {@code Callable}- based activities as
68     * well. However, tasks that are already executing in a pool should
69     * normally instead use the within-computation forms listed in the
70     * table unless using async event-style tasks that are not usually
71     * joined, in which case there is little difference among choice of
72     * methods.
73 dl 1.57 *
74     * <table BORDER CELLPADDING=3 CELLSPACING=1>
75     * <tr>
76     * <td></td>
77     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
78     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
79     * </tr>
80     * <tr>
81 jsr166 1.67 * <td> <b>Arrange async execution</td>
82 dl 1.57 * <td> {@link #execute(ForkJoinTask)}</td>
83     * <td> {@link ForkJoinTask#fork}</td>
84     * </tr>
85     * <tr>
86     * <td> <b>Await and obtain result</td>
87     * <td> {@link #invoke(ForkJoinTask)}</td>
88     * <td> {@link ForkJoinTask#invoke}</td>
89     * </tr>
90     * <tr>
91     * <td> <b>Arrange exec and obtain Future</td>
92     * <td> {@link #submit(ForkJoinTask)}</td>
93     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
94     * </tr>
95     * </table>
96 dl 1.59 *
97 dl 1.42 * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
98     * used for all parallel task execution in a program or subsystem.
99     * Otherwise, use would not usually outweigh the construction and
100     * bookkeeping overhead of creating a large set of threads. For
101 jsr166 1.43 * example, a common pool could be used for the {@code SortTasks}
102 dl 1.42 * illustrated in {@link RecursiveAction}. Because {@code
103     * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
104 jsr166 1.43 * daemon} mode, there is typically no need to explicitly {@link
105 dl 1.42 * #shutdown} such a pool upon program exit.
106     *
107 jsr166 1.105 * <pre> {@code
108 dl 1.42 * static final ForkJoinPool mainPool = new ForkJoinPool();
109     * ...
110     * public void sort(long[] array) {
111     * mainPool.invoke(new SortTask(array, 0, array.length));
112 jsr166 1.105 * }}</pre>
113 dl 1.42 *
114 dl 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
115 dl 1.2 * maximum number of running threads to 32767. Attempts to create
116 jsr166 1.48 * pools with greater than the maximum number result in
117 jsr166 1.39 * {@code IllegalArgumentException}.
118 jsr166 1.16 *
119 jsr166 1.48 * <p>This implementation rejects submitted tasks (that is, by throwing
120 dl 1.58 * {@link RejectedExecutionException}) only when the pool is shut down
121 dl 1.62 * or internal resources have been exhausted.
122 jsr166 1.48 *
123 jsr166 1.16 * @since 1.7
124     * @author Doug Lea
125 dl 1.1 */
126 dl 1.2 public class ForkJoinPool extends AbstractExecutorService {
127 dl 1.1
128     /*
129 dl 1.53 * Implementation Overview
130     *
131 dl 1.111 * This class and its nested classes provide the main
132     * functionality and control for a set of worker threads:
133     * Submissions from non-FJ threads enter into submission
134     * queues. Workers take these tasks and typically split them into
135     * subtasks that may be stolen by other workers. Preference rules
136     * give first priority to processing tasks from their own queues
137     * (LIFO or FIFO, depending on mode), then to randomized FIFO
138     * steals of tasks in other queues.
139     *
140     * WorkQueues.
141     * ==========
142     *
143     * Most operations occur within work-stealing queues (in nested
144     * class WorkQueue). These are special forms of Deques that
145     * support only three of the four possible end-operations -- push,
146     * pop, and poll (aka steal), under the further constraints that
147     * push and pop are called only from the owning thread (or, as
148     * extended here, under a lock), while poll may be called from
149     * other threads. (If you are unfamiliar with them, you probably
150     * want to read Herlihy and Shavit's book "The Art of
151     * Multiprocessor programming", chapter 16 describing these in
152     * more detail before proceeding.) The main work-stealing queue
153     * design is roughly similar to those in the papers "Dynamic
154     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
155     * (http://research.sun.com/scalable/pubs/index.html) and
156     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
157     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
158     * The main differences ultimately stem from gc requirements that
159     * we null out taken slots as soon as we can, to maintain as small
160     * a footprint as possible even in programs generating huge
161     * numbers of tasks. To accomplish this, we shift the CAS
162     * arbitrating pop vs poll (steal) from being on the indices
163     * ("base" and "top") to the slots themselves. So, both a
164     * successful pop and poll mainly entail a CAS of a slot from
165     * non-null to null. Because we rely on CASes of references, we
166     * do not need tag bits on base or top. They are simple ints as
167     * used in any circular array-based queue (see for example
168     * ArrayDeque). Updates to the indices must still be ordered in a
169     * way that guarantees that top == base means the queue is empty,
170     * but otherwise may err on the side of possibly making the queue
171     * appear nonempty when a push, pop, or poll have not fully
172     * committed. Note that this means that the poll operation,
173     * considered individually, is not wait-free. One thief cannot
174     * successfully continue until another in-progress one (or, if
175     * previously empty, a push) completes. However, in the
176     * aggregate, we ensure at least probabilistic non-blockingness.
177     * If an attempted steal fails, a thief always chooses a different
178     * random victim target to try next. So, in order for one thief to
179     * progress, it suffices for any in-progress poll or new push on
180     * any empty queue to complete.
181     *
182     * This approach also enables support a user mode in which local
183     * task processing is in FIFO, not LIFO order, simply by using
184     * poll rather than pop. This can be useful in message-passing
185     * frameworks in which tasks are never joined. However neither
186     * mode considers affinities, loads, cache localities, etc, so
187     * rarely provide the best possible performance on a given
188     * machine, but portably provide good throughput by averaging over
189     * these factors. (Further, even if we did try to use such
190     * information, we do not usually have a basis for exploiting
191     * it. For example, some sets of tasks profit from cache
192     * affinities, but others are harmed by cache pollution effects.)
193     *
194     * WorkQueues are also used in a similar way for tasks submitted
195     * to the pool. We cannot mix these tasks in the same queues used
196     * for work-stealing (this would contaminate lifo/fifo
197     * processing). Instead, we loosely associate (via hashing)
198     * submission queues with submitting threads, and randomly scan
199     * these queues as well when looking for work. In essence,
200     * submitters act like workers except that they never take tasks,
201     * and they are multiplexed on to a finite number of shared work
202     * queues. However, classes are set up so that future extensions
203     * could allow submitters to optionally help perform tasks as
204     * well. Pool submissions from internal workers are also allowed,
205     * but use randomized rather than thread-hashed queue indices to
206     * avoid imbalance. Insertion of tasks in shared mode requires a
207     * lock (mainly to protect in the case of resizing) but we use
208     * only a simple spinlock (using bits in field runState), because
209     * submitters encountering a busy queue try others so never block.
210     *
211     * Management.
212     * ==========
213 dl 1.91 *
214     * The main throughput advantages of work-stealing stem from
215     * decentralized control -- workers mostly take tasks from
216     * themselves or each other. We cannot negate this in the
217     * implementation of other management responsibilities. The main
218     * tactic for avoiding bottlenecks is packing nearly all
219 dl 1.111 * essentially atomic control state into two volatile variables
220     * that are by far most often read (not written) as status and
221     * consistency checks
222     *
223     * Field "ctl" contains 64 bits holding all the information needed
224     * to atomically decide to add, inactivate, enqueue (on an event
225     * queue), dequeue, and/or re-activate workers. To enable this
226     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
227     * far in excess of normal operating range) to allow ids, counts,
228     * and their negations (used for thresholding) to fit into 16bit
229     * fields.
230     *
231     * Field "runState" contains 32 bits needed to register and
232     * deregister WorkQueues, as well as to enable shutdown. It is
233     * only modified under a lock (normally briefly held, but
234     * occasionally protecting allocations and resizings) but even
235     * when locked remains available to check consistency.
236     *
237     * Recording WorkQueues. WorkQueues are recorded in the
238     * "workQueues" array that is created upon pool construction and
239     * expanded if necessary. Updates to the array while recording
240     * new workers and unrecording terminated ones are protected from
241     * each other by a lock but the array is otherwise concurrently
242     * readable, and accessed directly. To simplify index-based
243 dl 1.91 * operations, the array size is always a power of two, and all
244 dl 1.111 * readers must tolerate null slots. Shared (submission) queues
245     * are at even indices, worker queues at odd indices. Grouping
246     * them together in this way simplifies and speeds up task
247     * scanning. To avoid flailing during start-up, the array is
248     * presized to hold twice #parallelism workers (which is unlikely
249     * to need further resizing during execution). But to avoid
250     * dealing with so many null slots, variable runState includes a
251     * mask for the nearest power of two that contains all current
252     * workers. All worker thread creation is on-demand, triggered by
253     * task submissions, replacement of terminated workers, and/or
254     * compensation for blocked workers. However, all other support
255     * code is set up to work with other policies. To ensure that we
256     * do not hold on to worker references that would prevent GC, ALL
257     * accesses to workQueues are via indices into the workQueues
258     * array (which is one source of some of the messy code
259     * constructions here). In essence, the workQueues array serves as
260     * a weak reference mechanism. Thus for example the wait queue
261     * field of ctl stores indices, not references. Access to the
262     * workQueues in associated methods (for example signalWork) must
263     * both index-check and null-check the IDs. All such accesses
264     * ignore bad IDs by returning out early from what they are doing,
265     * since this can only be associated with termination, in which
266     * case it is OK to give up.
267     *
268     * All uses of the workQueues array check that it is non-null
269     * (even if previously non-null). This allows nulling during
270     * termination, which is currently not necessary, but remains an
271     * option for resource-revocation-based shutdown schemes. It also
272     * helps reduce JIT issuance of uncommon-trap code, which tends to
273     * unnecessarily complicate control flow in some methods.
274 dl 1.91 *
275 dl 1.111 * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
276 dl 1.95 * let workers spin indefinitely scanning for tasks when none can
277     * be found immediately, and we cannot start/resume workers unless
278     * there appear to be tasks available. On the other hand, we must
279     * quickly prod them into action when new tasks are submitted or
280 dl 1.111 * generated. In many usages, ramp-up time to activate workers is
281     * the main limiting factor in overall performance (this is
282     * compounded at program start-up by JIT compilation and
283     * allocation). So we try to streamline this as much as possible.
284     * We park/unpark workers after placing in an event wait queue
285     * when they cannot find work. This "queue" is actually a simple
286     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
287     * counter value (that reflects the number of times a worker has
288     * been inactivated) to avoid ABA effects (we need only as many
289     * version numbers as worker threads). Successors are held in
290     * field WorkQueue.nextWait. Queuing deals with several intrinsic
291     * races, mainly that a task-producing thread can miss seeing (and
292 dl 1.95 * signalling) another thread that gave up looking for work but
293     * has not yet entered the wait queue. We solve this by requiring
294 dl 1.111 * a full sweep of all workers (via repeated calls to method
295     * scan()) both before and after a newly waiting worker is added
296     * to the wait queue. During a rescan, the worker might release
297     * some other queued worker rather than itself, which has the same
298     * net effect. Because enqueued workers may actually be rescanning
299     * rather than waiting, we set and clear the "parker" field of
300     * Workqueues to reduce unnecessary calls to unpark. (this
301     * requires a secondary recheck to avoid missed signals.) Note
302     * the unusual conventions about Thread.interrupts surrounding
303     * parking and other blocking: Because interrupts are used solely
304     * to alert threads to check termination, which is checked anyway
305     * upon blocking, we clear status (using Thread.interrupted)
306     * before any call to park, so that park does not immediately
307     * return due to status being set via some other unrelated call to
308     * interrupt in user code.
309 dl 1.91 *
310     * Signalling. We create or wake up workers only when there
311     * appears to be at least one task they might be able to find and
312     * execute. When a submission is added or another worker adds a
313 dl 1.111 * task to a queue that previously had fewer than two tasks, they
314 dl 1.91 * signal waiting workers (or trigger creation of new ones if
315     * fewer than the given parallelism level -- see signalWork).
316 dl 1.111 * These primary signals are buttressed by signals during rescans;
317     * together these cover the signals needed in cases when more
318     * tasks are pushed but untaken, and improve performance compared
319     * to having one thread wake up all workers.
320 dl 1.91 *
321     * Trimming workers. To release resources after periods of lack of
322     * use, a worker starting to wait when the pool is quiescent will
323     * time out and terminate if the pool has remained quiescent for
324 dl 1.95 * SHRINK_RATE nanosecs. This will slowly propagate, eventually
325     * terminating all workers after long periods of non-use.
326 dl 1.91 *
327 dl 1.111 * Shutdown and Termination. A call to shutdownNow atomically sets
328     * a runState bit and then (non-atomically) sets each workers
329     * runState status, cancels all unprocessed tasks, and wakes up
330     * all waiting workers. Detecting whether termination should
331     * commence after a non-abrupt shutdown() call requires more work
332     * and bookkeeping. We need consensus about quiescence (i.e., that
333     * there is no more work). The active count provides a primary
334     * indication but non-abrupt shutdown still requires a rechecking
335     * scan for any workers that are inactive but not queued.
336     *
337     * Joining Tasks.
338     * ==============
339     *
340     * Any of several actions may be taken when one worker is waiting
341     * to join a task stolen (or always held by) another. Because we
342     * are multiplexing many tasks on to a pool of workers, we can't
343     * just let them block (as in Thread.join). We also cannot just
344     * reassign the joiner's run-time stack with another and replace
345     * it later, which would be a form of "continuation", that even if
346     * possible is not necessarily a good idea since we sometimes need
347     * both an unblocked task and its continuation to
348     * progress. Instead we combine two tactics:
349 dl 1.58 *
350 dl 1.60 * Helping: Arranging for the joiner to execute some task that it
351 dl 1.111 * would be running if the steal had not occurred.
352 dl 1.58 *
353 dl 1.61 * Compensating: Unless there are already enough live threads,
354 dl 1.111 * method tryCompensate() may create or re-activate a spare
355     * thread to compensate for blocked joiners until they unblock.
356     *
357     * A third form (implemented in tryRemoveAndExec and
358     * tryPollForAndExec) amounts to helping a hypothetical
359     * compensator: If we can readily tell that a possible action of a
360     * compensator is to steal and execute the task being joined, the
361     * joining thread can do so directly, without the need for a
362     * compensation thread (although at the expense of larger run-time
363     * stacks, but the tradeoff is typically worthwhile).
364 dl 1.91 *
365     * The ManagedBlocker extension API can't use helping so relies
366     * only on compensation in method awaitBlocker.
367 dl 1.58 *
368 dl 1.111 * The algorithm in tryHelpStealer entails a form of "linear"
369     * helping: Each worker records (in field currentSteal) the most
370     * recent task it stole from some other worker. Plus, it records
371     * (in field currentJoin) the task it is currently actively
372     * joining. Method tryHelpStealer uses these markers to try to
373     * find a worker to help (i.e., steal back a task from and execute
374     * it) that could hasten completion of the actively joined task.
375     * In essence, the joiner executes a task that would be on its own
376     * local deque had the to-be-joined task not been stolen. This may
377     * be seen as a conservative variant of the approach in Wagner &
378     * Calder "Leapfrogging: a portable technique for implementing
379     * efficient futures" SIGPLAN Notices, 1993
380     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
381     * that: (1) We only maintain dependency links across workers upon
382     * steals, rather than use per-task bookkeeping. This sometimes
383     * requires a linear scan of workers array to locate stealers, but
384     * often doesn't because stealers leave hints (that may become
385     * stale/wrong) of where to locate them. A stealHint is only a
386     * hint because a worker might have had multiple steals and the
387     * hint records only one of them (usually the most current).
388     * Hinting isolates cost to when it is needed, rather than adding
389     * to per-task overhead. (2) It is "shallow", ignoring nesting
390     * and potentially cyclic mutual steals. (3) It is intentionally
391     * racy: field currentJoin is updated only while actively joining,
392     * which means that we miss links in the chain during long-lived
393     * tasks, GC stalls etc (which is OK since blocking in such cases
394     * is usually a good idea). (4) We bound the number of attempts
395     * to find work (see MAX_HELP_DEPTH) and fall back to suspending
396     * the worker and if necessary replacing it with another.
397     *
398 dl 1.91 * It is impossible to keep exactly the target parallelism number
399     * of threads running at any given time. Determining the
400 dl 1.66 * existence of conservatively safe helping targets, the
401     * availability of already-created spares, and the apparent need
402 dl 1.111 * to create new spares are all racy, so we rely on multiple
403     * retries of each. Currently, in keeping with on-demand
404     * signalling policy, we compensate only if blocking would leave
405     * less than one active (non-waiting, non-blocked) worker.
406     * Additionally, to avoid some false alarms due to GC, lagging
407     * counters, system activity, etc, compensated blocking for joins
408     * is only attempted after rechecks stabilize in
409     * ForkJoinTask.awaitJoin. (Retries are interspersed with
410     * Thread.yield, for good citizenship.)
411 dl 1.58 *
412 dl 1.91 * Style notes: There is a lot of representation-level coupling
413 dl 1.53 * among classes ForkJoinPool, ForkJoinWorkerThread, and
414 dl 1.111 * ForkJoinTask. The fields of WorkQueue maintain data structures
415     * managed by ForkJoinPool, so are directly accessed. There is
416     * little point trying to reduce this, since any associated future
417     * changes in representations will need to be accompanied by
418     * algorithmic changes anyway. All together, these low-level
419     * implementation choices produce as much as a factor of 4
420     * performance improvement compared to naive implementations, and
421     * enable the processing of billions of tasks per second, at the
422     * expense of some ugliness.
423 dl 1.91 *
424     * Methods signalWork() and scan() are the main bottlenecks so are
425     * especially heavily micro-optimized/mangled. There are lots of
426     * inline assignments (of form "while ((local = field) != 0)")
427     * which are usually the simplest way to ensure the required read
428     * orderings (which are sometimes critical). This leads to a
429     * "C"-like style of listing declarations of these locals at the
430     * heads of methods or blocks. There are several occurrences of
431     * the unusual "do {} while (!cas...)" which is the simplest way
432     * to force an update of a CAS'ed variable. There are also other
433     * coding oddities that help some methods perform reasonably even
434     * when interpreted (not compiled).
435     *
436     * The order of declarations in this file is: (1) declarations of
437     * statics (2) fields (along with constants used when unpacking
438     * some of them), listed in an order that tends to reduce
439 dl 1.111 * contention among them a bit under most JVMs; (3) nested
440     * classes; (4) internal control methods; (5) callbacks and other
441     * support for ForkJoinTask methods; (6) exported methods (plus a
442     * few little helpers); (7) static block initializing all statics
443     * in a minimally dependent order.
444 dl 1.1 */
445    
446     /**
447 jsr166 1.35 * Factory for creating new {@link ForkJoinWorkerThread}s.
448     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
449     * for {@code ForkJoinWorkerThread} subclasses that extend base
450     * functionality or initialize threads with different contexts.
451 dl 1.1 */
452     public static interface ForkJoinWorkerThreadFactory {
453     /**
454     * Returns a new worker thread operating in the given pool.
455     *
456     * @param pool the pool this thread works in
457 jsr166 1.48 * @throws NullPointerException if the pool is null
458 dl 1.1 */
459     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
460     }
461    
462     /**
463 jsr166 1.17 * Default ForkJoinWorkerThreadFactory implementation; creates a
464 dl 1.1 * new ForkJoinWorkerThread.
465     */
466 dl 1.57 static class DefaultForkJoinWorkerThreadFactory
467 dl 1.1 implements ForkJoinWorkerThreadFactory {
468     public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
469 dl 1.53 return new ForkJoinWorkerThread(pool);
470 dl 1.1 }
471     }
472    
473     /**
474 dl 1.2 * Creates a new ForkJoinWorkerThread. This factory is used unless
475     * overridden in ForkJoinPool constructors.
476 dl 1.1 */
477 dl 1.2 public static final ForkJoinWorkerThreadFactory
478 dl 1.91 defaultForkJoinWorkerThreadFactory;
479 dl 1.1
480     /**
481     * Permission required for callers of methods that may start or
482     * kill threads.
483     */
484 dl 1.91 private static final RuntimePermission modifyThreadPermission;
485 dl 1.1
486     /**
487     * If there is a security manager, makes sure caller has
488     * permission to modify threads.
489     */
490     private static void checkPermission() {
491     SecurityManager security = System.getSecurityManager();
492     if (security != null)
493     security.checkPermission(modifyThreadPermission);
494     }
495    
496     /**
497     * Generator for assigning sequence numbers as pool names.
498     */
499 dl 1.91 private static final AtomicInteger poolNumberGenerator;
500 dl 1.1
501     /**
502 dl 1.111 * Bits and masks for control variables
503     *
504     * Field ctl is a long packed with:
505 dl 1.91 * AC: Number of active running workers minus target parallelism (16 bits)
506 jsr166 1.106 * TC: Number of total workers minus target parallelism (16 bits)
507 dl 1.91 * ST: true if pool is terminating (1 bit)
508     * EC: the wait count of top waiting thread (15 bits)
509 dl 1.111 * ID: ~(poolIndex >>> 1) of top of Treiber stack of waiters (16 bits)
510 dl 1.91 *
511     * When convenient, we can extract the upper 32 bits of counts and
512     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
513     * (int)ctl. The ec field is never accessed alone, but always
514     * together with id and st. The offsets of counts by the target
515     * parallelism and the positionings of fields makes it possible to
516     * perform the most common checks via sign tests of fields: When
517     * ac is negative, there are not enough active workers, when tc is
518     * negative, there are not enough total workers, when id is
519     * negative, there is at least one waiting worker, and when e is
520     * negative, the pool is terminating. To deal with these possibly
521     * negative fields, we use casts in and out of "short" and/or
522 dl 1.94 * signed shifts to maintain signedness.
523 dl 1.111 *
524     * When a thread is queued (inactivated), its eventCount field is
525     * negative, which is the only way to tell if a worker is
526     * prevented from executing tasks, even though it must continue to
527     * scan for them to avoid queuing races.
528     *
529     * Field runState is an int packed with:
530     * SHUTDOWN: true if shutdown is enabled (1 bit)
531     * SEQ: a sequence number updated upon (de)registering workers (15 bits)
532     * MASK: mask (power of 2 - 1) covering all registered poolIndexes (16 bits)
533     *
534     * The combination of mask and sequence number enables simple
535     * consistency checks: Staleness of read-only operations on the
536     * workers and queues arrays can be checked by comparing runState
537     * before vs after the reads. The low 16 bits (i.e, anding with
538     * SMASK) hold (the smallest power of two covering all worker
539     * indices, minus one. The mask for queues (vs workers) is twice
540     * this value plus 1.
541 dl 1.91 */
542    
543     // bit positions/shifts for fields
544     private static final int AC_SHIFT = 48;
545     private static final int TC_SHIFT = 32;
546     private static final int ST_SHIFT = 31;
547     private static final int EC_SHIFT = 16;
548    
549     // bounds
550     private static final int MAX_ID = 0x7fff; // max poolIndex
551     private static final int SMASK = 0xffff; // mask short bits
552     private static final int SHORT_SIGN = 1 << 15;
553     private static final int INT_SIGN = 1 << 31;
554    
555     // masks
556     private static final long STOP_BIT = 0x0001L << ST_SHIFT;
557     private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
558     private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
559    
560     // units for incrementing and decrementing
561     private static final long TC_UNIT = 1L << TC_SHIFT;
562     private static final long AC_UNIT = 1L << AC_SHIFT;
563    
564     // masks and units for dealing with u = (int)(ctl >>> 32)
565     private static final int UAC_SHIFT = AC_SHIFT - 32;
566     private static final int UTC_SHIFT = TC_SHIFT - 32;
567     private static final int UAC_MASK = SMASK << UAC_SHIFT;
568     private static final int UTC_MASK = SMASK << UTC_SHIFT;
569     private static final int UAC_UNIT = 1 << UAC_SHIFT;
570     private static final int UTC_UNIT = 1 << UTC_SHIFT;
571    
572     // masks and units for dealing with e = (int)ctl
573 dl 1.111 private static final int E_MASK = 0x7fffffff; // no STOP_BIT
574     private static final int E_SEQ = 1 << EC_SHIFT;
575    
576     // runState bits
577     private static final int SHUTDOWN = 1 << 31;
578     private static final int RS_SEQ = 1 << 16;
579     private static final int RS_SEQ_MASK = 0x7fff0000;
580    
581     // access mode for WorkQueue
582     static final int LIFO_QUEUE = 0;
583     static final int FIFO_QUEUE = 1;
584     static final int SHARED_QUEUE = -1;
585 dl 1.53
586     /**
587 dl 1.111 * The wakeup interval (in nanoseconds) for a worker waiting for a
588     * task when the pool is quiescent to instead try to shrink the
589     * number of workers. The exact value does not matter too
590     * much. It must be short enough to release resources during
591     * sustained periods of idleness, but not so short that threads
592     * are continually re-created.
593 dl 1.61 */
594 dl 1.111 private static final long SHRINK_RATE =
595     4L * 1000L * 1000L * 1000L; // 4 seconds
596 dl 1.61
597     /**
598 dl 1.111 * The timeout value for attempted shrinkage, includes
599     * some slop to cope with system timer imprecision.
600 dl 1.53 */
601 dl 1.111 private static final long SHRINK_TIMEOUT = SHRINK_RATE - (SHRINK_RATE / 10);
602 dl 1.1
603     /**
604 dl 1.111 * The maximum stolen->joining link depth allowed in tryHelpStealer.
605     * Depths for legitimate chains are unbounded, but we use a fixed
606     * constant to avoid (otherwise unchecked) cycles and to bound
607     * staleness of traversal parameters at the expense of sometimes
608     * blocking when we could be helping.
609     */
610     private static final int MAX_HELP_DEPTH = 16;
611    
612     /*
613     * Field layout order in this class tends to matter more than one
614     * would like. Runtime layout order is only loosely related to
615     * declaration order and may differ across JVMs, but the following
616     * empirically works OK on current JVMs.
617     */
618    
619     volatile long ctl; // main pool control
620     final int parallelism; // parallelism level
621     final int localMode; // per-worker scheduling mode
622     int nextPoolIndex; // hint used in registerWorker
623     volatile int runState; // shutdown status, seq, and mask
624     WorkQueue[] workQueues; // main registry
625     final ReentrantLock lock; // for registration
626     final Condition termination; // for awaitTermination
627     final ForkJoinWorkerThreadFactory factory; // factory for new workers
628     final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
629     final AtomicLong stealCount; // collect counts when terminated
630     final AtomicInteger nextWorkerNumber; // to create worker name string
631     final String workerNamePrefix; // Prefix for assigning worker names
632    
633     /**
634     * Queues supporting work-stealing as well as external task
635     * submission. See above for main rationale and algorithms.
636     * Implementation relies heavily on "Unsafe" intrinsics
637     * and selective use of "volatile":
638     *
639     * Field "base" is the index (mod array.length) of the least valid
640     * queue slot, which is always the next position to steal (poll)
641     * from if nonempty. Reads and writes require volatile orderings
642     * but not CAS, because updates are only performed after slot
643     * CASes.
644     *
645     * Field "top" is the index (mod array.length) of the next queue
646     * slot to push to or pop from. It is written only by owner thread
647     * for push, or under lock for trySharedPush, and accessed by
648     * other threads only after reading (volatile) base. Both top and
649     * base are allowed to wrap around on overflow, but (top - base)
650     * (or more comonly -(base - top) to force volatile read of base
651     * before top) still estimates size.
652     *
653     * The array slots are read and written using the emulation of
654     * volatiles/atomics provided by Unsafe. Insertions must in
655     * general use putOrderedObject as a form of releasing store to
656     * ensure that all writes to the task object are ordered before
657     * its publication in the queue. (Although we can avoid one case
658     * of this when locked in trySharedPush.) All removals entail a
659     * CAS to null. The array is always a power of two. To ensure
660     * safety of Unsafe array operations, all accesses perform
661     * explicit null checks and implicit bounds checks via
662     * power-of-two masking.
663     *
664     * In addition to basic queuing support, this class contains
665     * fields described elsewhere to control execution. It turns out
666     * to work better memory-layout-wise to include them in this
667     * class rather than a separate class.
668     *
669     * Performance on most platforms is very sensitive to placement of
670     * instances of both WorkQueues and their arrays -- we absolutely
671     * do not want multiple WorkQueue instances or multiple queue
672     * arrays sharing cache lines. (It would be best for queue objects
673     * and their arrays to share, but there is nothing available to
674     * help arrange that). Unfortunately, because they are recorded
675     * in a common array, WorkQueue instances are often moved to be
676     * adjacent by garbage collectors. To reduce impact, we use field
677     * padding that works OK on common platforms; this effectively
678     * trades off slightly slower average field access for the sake of
679     * avoiding really bad worst-case access. (Until better JVM
680     * support is in place, this padding is dependent on transient
681     * properties of JVM field layout rules.) We also take care in
682     * allocating and sizing and resizing the array. Non-shared queue
683     * arrays are initialized (via method growArray) by workers before
684     * use. Others are allocated on first use.
685 dl 1.53 */
686 dl 1.111 static final class WorkQueue {
687     /**
688     * Capacity of work-stealing queue array upon initialization.
689     * Must be a power of two; at least 4, but set larger to
690     * reduce cacheline sharing among queues.
691     */
692     static final int INITIAL_QUEUE_CAPACITY = 1 << 8;
693    
694     /**
695     * Maximum size for queue arrays. Must be a power of two less
696     * than or equal to 1 << (31 - width of array entry) to ensure
697     * lack of wraparound of index calculations, but defined to a
698     * value a bit less than this to help users trap runaway
699     * programs before saturating systems.
700     */
701     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
702    
703     volatile long totalSteals; // cumulative number of steals
704     int seed; // for random scanning; initialize nonzero
705     volatile int eventCount; // encoded inactivation count; < 0 if inactive
706     int nextWait; // encoded record of next event waiter
707     int rescans; // remaining scans until block
708     int nsteals; // top-level task executions since last idle
709     final int mode; // lifo, fifo, or shared
710     int poolIndex; // index of this queue in pool (or 0)
711     int stealHint; // index of most recent known stealer
712     volatile int runState; // 1: locked, -1: terminate; else 0
713     volatile int base; // index of next slot for poll
714     int top; // index of next slot for push
715     ForkJoinTask<?>[] array; // the elements (initially unallocated)
716     final ForkJoinWorkerThread owner; // owning thread or null if shared
717     volatile Thread parker; // == owner during call to park; else null
718     ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
719     ForkJoinTask<?> currentSteal; // current non-local task being executed
720     // Heuristic padding to ameliorate unfortunate memory placements
721     Object p00, p01, p02, p03, p04, p05, p06, p07, p08, p09, p0a;
722    
723     WorkQueue(ForkJoinWorkerThread owner, int mode) {
724     this.owner = owner;
725     this.mode = mode;
726     // Place indices in the center of array (that is not yet allocated)
727     base = top = INITIAL_QUEUE_CAPACITY >>> 1;
728     }
729    
730     /**
731     * Returns number of tasks in the queue
732     */
733     final int queueSize() {
734     int n = base - top; // non-owner callers must read base first
735     return (n >= 0) ? 0 : -n;
736     }
737    
738     /**
739     * Pushes a task. Call only by owner in unshared queues.
740     *
741     * @param task the task. Caller must ensure non-null.
742     * @param p, if non-null, pool to signal if necessary
743     * @throw RejectedExecutionException if array cannot
744     * be resized
745     */
746     final void push(ForkJoinTask<?> task, ForkJoinPool p) {
747     boolean signal = false;
748     ForkJoinTask<?>[] a;
749     int s = top, m, n;
750     if ((a = array) != null) { // ignore if queue removed
751     U.putOrderedObject
752     (a, (((m = a.length - 1) & s) << ASHIFT) + ABASE, task);
753     if ((n = (top = s + 1) - base) <= 2) {
754     if (p != null)
755     p.signalWork();
756     }
757     else if (n >= m)
758     growArray(true);
759     }
760     }
761    
762     /**
763     * Pushes a task if lock is free and array is either big
764     * enough or can be resized to be big enough.
765     *
766     * @param task the task. Caller must ensure non-null.
767     * @return true if submitted
768     */
769     final boolean trySharedPush(ForkJoinTask<?> task) {
770     boolean submitted = false;
771     if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
772     ForkJoinTask<?>[] a = array;
773     int s = top, n = s - base;
774     try {
775     if ((a != null && n < a.length - 1) ||
776     (a = growArray(false)) != null) { // must presize
777     int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
778     U.putObject(a, (long)j, task); // don't need "ordered"
779     top = s + 1;
780     submitted = true;
781     }
782     } finally {
783     runState = 0; // unlock
784     }
785     }
786     return submitted;
787     }
788    
789     /**
790     * Takes next task, if one exists, in FIFO order.
791     */
792     final ForkJoinTask<?> poll() {
793     ForkJoinTask<?>[] a; int b, i;
794     while ((b = base) - top < 0 && (a = array) != null &&
795     (i = (a.length - 1) & b) >= 0) {
796     int j = (i << ASHIFT) + ABASE;
797     ForkJoinTask<?> t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
798     if (t != null && base == b &&
799     U.compareAndSwapObject(a, j, t, null)) {
800     base = b + 1;
801     return t;
802     }
803     }
804     return null;
805     }
806    
807     /**
808     * Takes next task, if one exists, in LIFO order.
809     * Call only by owner in unshared queues.
810     */
811     final ForkJoinTask<?> pop() {
812     ForkJoinTask<?> t; int m;
813     ForkJoinTask<?>[] a = array;
814     if (a != null && (m = a.length - 1) >= 0) {
815     for (int s; (s = top - 1) - base >= 0;) {
816     int j = ((m & s) << ASHIFT) + ABASE;
817     if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) == null)
818     break;
819     if (U.compareAndSwapObject(a, j, t, null)) {
820     top = s;
821     return t;
822     }
823     }
824     }
825     return null;
826     }
827    
828     /**
829     * Takes next task, if one exists, in order specified by mode.
830     */
831     final ForkJoinTask<?> nextLocalTask() {
832     return mode == 0 ? pop() : poll();
833     }
834    
835     /**
836     * Returns next task, if one exists, in order specified by mode.
837     */
838     final ForkJoinTask<?> peek() {
839     ForkJoinTask<?>[] a = array; int m;
840     if (a == null || (m = a.length - 1) < 0)
841     return null;
842     int i = mode == 0 ? top - 1 : base;
843     int j = ((i & m) << ASHIFT) + ABASE;
844     return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
845     }
846    
847     /**
848     * Returns task at index b if b is current base of queue.
849     */
850     final ForkJoinTask<?> pollAt(int b) {
851     ForkJoinTask<?>[] a; int i;
852     ForkJoinTask<?> task = null;
853     if ((a = array) != null && (i = ((a.length - 1) & b)) >= 0) {
854     int j = (i << ASHIFT) + ABASE;
855     ForkJoinTask<?> t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
856     if (t != null && base == b &&
857     U.compareAndSwapObject(a, j, t, null)) {
858     base = b + 1;
859     task = t;
860     }
861     }
862     return task;
863     }
864    
865     /**
866     * Pops the given task only if it is at the current top.
867     */
868     final boolean tryUnpush(ForkJoinTask<?> t) {
869     ForkJoinTask<?>[] a; int s;
870     if ((a = array) != null && (s = top) != base &&
871     U.compareAndSwapObject
872     (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
873     top = s;
874     return true;
875     }
876     return false;
877     }
878    
879     /**
880     * Polls the given task only if it is at the current base.
881     */
882     final boolean pollFor(ForkJoinTask<?> task) {
883     ForkJoinTask<?>[] a; int b, i;
884     if ((b = base) - top < 0 && (a = array) != null &&
885     (i = (a.length - 1) & b) >= 0) {
886     int j = (i << ASHIFT) + ABASE;
887     if (U.getObjectVolatile(a, j) == task && base == b &&
888     U.compareAndSwapObject(a, j, task, null)) {
889     base = b + 1;
890     return true;
891     }
892     }
893     return false;
894     }
895    
896     /**
897     * If present, removes from queue and executes the given task, or
898     * any other cancelled task. Returns (true) immediately on any CAS
899     * or consistency check failure so caller can retry.
900     *
901     * @return false if no progress can be made
902     */
903     final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
904     boolean removed = false, empty = true, progress = true;
905     ForkJoinTask<?>[] a; int m, s, b, n;
906     if ((a = array) != null && (m = a.length - 1) >= 0 &&
907     (n = (s = top) - (b = base)) > 0) {
908     for (ForkJoinTask<?> t;;) { // traverse from s to b
909     int j = ((--s & m) << ASHIFT) + ABASE;
910     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
911     if (t == null) // inconsistent length
912     break;
913     else if (t == task) {
914     if (s + 1 == top) { // pop
915     if (!U.compareAndSwapObject(a, j, task, null))
916     break;
917     top = s;
918     removed = true;
919     }
920     else if (base == b) // replace with proxy
921     removed = U.compareAndSwapObject(a, j, task,
922     new EmptyTask());
923     break;
924     }
925     else if (t.status >= 0)
926     empty = false;
927     else if (s + 1 == top) { // pop and throw away
928     if (U.compareAndSwapObject(a, j, t, null))
929     top = s;
930     break;
931     }
932     if (--n == 0) {
933     if (!empty && base == b)
934     progress = false;
935     break;
936     }
937     }
938     }
939     if (removed)
940     task.doExec();
941     return progress;
942     }
943    
944     /**
945     * Initializes or doubles the capacity of array. Call either
946     * by owner or with lock held -- it is OK for base, but not
947     * top, to move while resizings are in progress.
948     *
949     * @param rejectOnFailure if true, throw exception if capacity
950     * exceeded (relayed ultimately to user); else return null.
951     */
952     final ForkJoinTask<?>[] growArray(boolean rejectOnFailure) {
953     ForkJoinTask<?>[] oldA = array;
954     int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
955     if (size <= MAXIMUM_QUEUE_CAPACITY) {
956     int oldMask, t, b;
957     ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
958     if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
959     (t = top) - (b = base) > 0) {
960     int mask = size - 1;
961     do {
962     ForkJoinTask<?> x;
963     int oldj = ((b & oldMask) << ASHIFT) + ABASE;
964     int j = ((b & mask) << ASHIFT) + ABASE;
965     x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
966     if (x != null &&
967     U.compareAndSwapObject(oldA, oldj, x, null))
968     U.putObjectVolatile(a, j, x);
969     } while (++b != t);
970     }
971     return a;
972     }
973     else if (!rejectOnFailure)
974     return null;
975     else
976     throw new RejectedExecutionException("Queue capacity exceeded");
977     }
978    
979     /**
980     * Removes and cancels all known tasks, ignoring any exceptions
981     */
982     final void cancelAll() {
983     ForkJoinTask.cancelIgnoringExceptions(currentJoin);
984     ForkJoinTask.cancelIgnoringExceptions(currentSteal);
985     for (ForkJoinTask<?> t; (t = poll()) != null; )
986     ForkJoinTask.cancelIgnoringExceptions(t);
987     }
988    
989     // Execution methods
990    
991     /**
992     * Removes and runs tasks until empty, using local mode
993     * ordering.
994     */
995     final void runLocalTasks() {
996     if (base - top < 0) {
997     for (ForkJoinTask<?> t; (t = nextLocalTask()) != null; )
998     t.doExec();
999     }
1000     }
1001    
1002     /**
1003     * Executes a top-level task and any local tasks remaining
1004     * after execution.
1005     *
1006     * @return true unless terminating
1007     */
1008     final boolean runTask(ForkJoinTask<?> t) {
1009     boolean alive = true;
1010     if (t != null) {
1011     currentSteal = t;
1012     t.doExec();
1013     runLocalTasks();
1014     ++nsteals;
1015     currentSteal = null;
1016     }
1017     else if (runState < 0) // terminating
1018     alive = false;
1019     return alive;
1020     }
1021    
1022     /**
1023     * Executes a non-top-level (stolen) task
1024     */
1025     final void runSubtask(ForkJoinTask<?> t) {
1026     if (t != null) {
1027     ForkJoinTask<?> ps = currentSteal;
1028     currentSteal = t;
1029     t.doExec();
1030     currentSteal = ps;
1031     }
1032     }
1033    
1034     /**
1035     * Computes next value for random probes. Scans don't require
1036     * a very high quality generator, but also not a crummy one.
1037     * Marsaglia xor-shift is cheap and works well enough. Note:
1038     * This is manually inlined in several usages in ForkJoinPool
1039     * to avoid writes inside busy scan loops.
1040     */
1041     final int nextSeed() {
1042     int r = seed;
1043     r ^= r << 13;
1044     r ^= r >>> 17;
1045     r ^= r << 5;
1046     return seed = r;
1047     }
1048    
1049     // Unsafe mechanics
1050     private static final sun.misc.Unsafe U;
1051     private static final long RUNSTATE;
1052     private static final int ABASE;
1053     private static final int ASHIFT;
1054     static {
1055     int s;
1056     try {
1057     U = getUnsafe();
1058     Class<?> k = WorkQueue.class;
1059     Class<?> ak = ForkJoinTask[].class;
1060     RUNSTATE = U.objectFieldOffset
1061     (k.getDeclaredField("runState"));
1062     ABASE = U.arrayBaseOffset(ak);
1063     s = U.arrayIndexScale(ak);
1064     } catch (Exception e) {
1065     throw new Error(e);
1066     }
1067     if ((s & (s-1)) != 0)
1068     throw new Error("data type scale not a power of two");
1069     ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
1070     }
1071     }
1072 dl 1.53
1073 dl 1.1 /**
1074 dl 1.111 * Class for artificial tasks that are used to replace the target
1075     * of local joins if they are removed from an interior queue slot
1076     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
1077     * actually do anything beyond having a unique identity.
1078 dl 1.1 */
1079 dl 1.111 static final class EmptyTask extends ForkJoinTask<Void> {
1080     EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
1081     public Void getRawResult() { return null; }
1082     public void setRawResult(Void x) {}
1083     public boolean exec() { return true; }
1084     }
1085 dl 1.1
1086     /**
1087 dl 1.111 * Computes a hash code for the given thread. This method is
1088     * expected to provide higher-quality hash codes than those using
1089     * method hashCode().
1090 dl 1.1 */
1091 dl 1.111 static final int hashThread(Thread t) {
1092     long id = (t == null)? 0L : t.getId(); // Use MurmurHash of thread id
1093     int h = (int)id ^ (int)(id >>> 32);
1094     h ^= h >>> 16;
1095     h *= 0x85ebca6b;
1096     h ^= h >>> 13;
1097     h *= 0xc2b2ae35;
1098     return h ^ (h >>> 16);
1099     }
1100 dl 1.1
1101     /**
1102 dl 1.111 * Top-level runloop for workers
1103 dl 1.1 */
1104 dl 1.111 final void runWorker(ForkJoinWorkerThread wt) {
1105     WorkQueue w = wt.workQueue;
1106     w.growArray(false); // Initialize queue array and seed in this thread
1107     w.seed = hashThread(Thread.currentThread()) | (1 << 31); // force < 0
1108    
1109     do {} while (w.runTask(scan(w)));
1110     }
1111    
1112     // Creating, registering and deregistering workers
1113 dl 1.6
1114     /**
1115 dl 1.111 * Tries to create and start a worker
1116 dl 1.1 */
1117 dl 1.111 private void addWorker() {
1118     Throwable ex = null;
1119     ForkJoinWorkerThread w = null;
1120     try {
1121     if ((w = factory.newThread(this)) != null) {
1122     w.start();
1123     return;
1124     }
1125     } catch (Throwable e) {
1126     ex = e;
1127     }
1128     deregisterWorker(w, ex);
1129     }
1130 dl 1.1
1131 dl 1.91 /**
1132 dl 1.111 * Callback from ForkJoinWorkerThread constructor to assign a
1133     * public name. This must be separate from registerWorker because
1134     * it is called during the "super" constructor call in
1135     * ForkJoinWorkerThread.
1136 dl 1.91 */
1137 dl 1.111 final String nextWorkerName() {
1138     return workerNamePrefix.concat
1139     (Integer.toString(nextWorkerNumber.addAndGet(1)));
1140     }
1141 dl 1.1
1142     /**
1143 dl 1.111 * Callback from ForkJoinWorkerThread constructor to establish and
1144     * record its WorkQueue
1145     *
1146     * @param wt the worker thread
1147 dl 1.1 */
1148 dl 1.111 final void registerWorker(ForkJoinWorkerThread wt) {
1149     WorkQueue w = wt.workQueue;
1150     ReentrantLock lock = this.lock;
1151     lock.lock();
1152     try {
1153     int k = nextPoolIndex;
1154     WorkQueue[] ws = workQueues;
1155     if (ws != null) { // ignore on shutdown
1156     int n = ws.length;
1157     if (k < 0 || (k & 1) == 0 || k >= n || ws[k] != null) {
1158     for (k = 1; k < n && ws[k] != null; k += 2)
1159     ; // workers are at odd indices
1160     if (k >= n) // resize
1161     workQueues = ws = Arrays.copyOf(ws, n << 1);
1162     }
1163     w.poolIndex = k;
1164     w.eventCount = ~(k >>> 1) & SMASK; // Set up wait count
1165     ws[k] = w; // record worker
1166     nextPoolIndex = k + 2;
1167     int rs = runState;
1168     int m = rs & SMASK; // recalculate runState mask
1169     if (k > m)
1170     m = (m << 1) + 1;
1171     runState = (rs & SHUTDOWN) | ((rs + RS_SEQ) & RS_SEQ_MASK) | m;
1172     }
1173     } finally {
1174     lock.unlock();
1175     }
1176     }
1177 dl 1.58
1178 dl 1.1 /**
1179 dl 1.111 * Final callback from terminating worker, as well as failure to
1180     * construct or start a worker in addWorker. Removes record of
1181     * worker from array, and adjusts counts. If pool is shutting
1182     * down, tries to complete termination.
1183     *
1184     * @param wt the worker thread or null if addWorker failed
1185     * @param ex the exception causing failure, or null if none
1186 dl 1.85 */
1187 dl 1.111 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1188     WorkQueue w = null;
1189     if (wt != null && (w = wt.workQueue) != null) {
1190     w.runState = -1; // ensure runState is set
1191     stealCount.getAndAdd(w.totalSteals + w.nsteals);
1192     int idx = w.poolIndex;
1193     ReentrantLock lock = this.lock;
1194     lock.lock();
1195     try { // remove record from array
1196     WorkQueue[] ws = workQueues;
1197     if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1198     ws[nextPoolIndex = idx] = null;
1199     } finally {
1200     lock.unlock();
1201     }
1202     }
1203    
1204     long c; // adjust ctl counts
1205     do {} while (!U.compareAndSwapLong
1206     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1207     ((c - TC_UNIT) & TC_MASK) |
1208     (c & ~(AC_MASK|TC_MASK)))));
1209    
1210     if (!tryTerminate(false) && w != null) {
1211     w.cancelAll(); // cancel remaining tasks
1212     if (w.array != null) // suppress signal if never ran
1213     signalWork(); // wake up or create replacement
1214     }
1215    
1216     if (ex != null) // rethrow
1217     U.throwException(ex);
1218     }
1219 dl 1.91
1220 dl 1.85
1221 dl 1.111 // Maintaining ctl counts
1222 dl 1.56
1223     /**
1224 dl 1.111 * Increments active count; mainly called upon return from blocking
1225 dl 1.58 */
1226 dl 1.111 final void incrementActiveCount() {
1227 dl 1.91 long c;
1228 dl 1.111 do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1229 dl 1.61 }
1230    
1231     /**
1232 dl 1.111 * Activates or creates a worker
1233 dl 1.53 */
1234 dl 1.91 final void signalWork() {
1235     /*
1236     * The while condition is true if: (there is are too few total
1237     * workers OR there is at least one waiter) AND (there are too
1238     * few active workers OR the pool is terminating). The value
1239     * of e distinguishes the remaining cases: zero (no waiters)
1240     * for create, negative if terminating (in which case do
1241     * nothing), else release a waiter. The secondary checks for
1242     * release (non-null array etc) can fail if the pool begins
1243     * terminating after the test, and don't impose any added cost
1244     * because JVMs must perform null and bounds checks anyway.
1245     */
1246     long c; int e, u;
1247     while ((((e = (int)(c = ctl)) | (u = (int)(c >>> 32))) &
1248 dl 1.111 (INT_SIGN|SHORT_SIGN)) == (INT_SIGN|SHORT_SIGN)) {
1249     WorkQueue[] ws = workQueues; int i; WorkQueue w; Thread p;
1250     if (e == 0) { // add a new worker
1251     if (U.compareAndSwapLong
1252     (this, CTL, c, (long)(((u + UTC_UNIT) & UTC_MASK) |
1253     ((u + UAC_UNIT) & UAC_MASK)) << 32)) {
1254     addWorker();
1255 dl 1.91 break;
1256 dl 1.111 }
1257     }
1258     else if (e > 0 && ws != null &&
1259     (i = ((~e << 1) | 1) & SMASK) < ws.length &&
1260     (w = ws[i]) != null &&
1261     w.eventCount == (e | INT_SIGN)) {
1262     if (U.compareAndSwapLong
1263     (this, CTL, c, (((long)(w.nextWait & E_MASK)) |
1264     ((long)(u + UAC_UNIT) << 32)))) {
1265     w.eventCount = (e + E_SEQ) & E_MASK;
1266     if ((p = w.parker) != null)
1267     U.unpark(p); // release a waiting worker
1268 dl 1.91 break;
1269     }
1270     }
1271 dl 1.111 else
1272 dl 1.91 break;
1273     }
1274 dl 1.53 }
1275    
1276     /**
1277 dl 1.111 * Tries to decrement active count (sometimes implicitly) and
1278     * possibly release or create a compensating worker in preparation
1279     * for blocking. Fails on contention or termination.
1280 dl 1.91 *
1281 dl 1.111 * @return true if the caller can block, else should recheck and retry
1282 dl 1.53 */
1283 dl 1.111 final boolean tryCompensate() {
1284     WorkQueue[] ws; WorkQueue w; Thread p;
1285     int pc = parallelism, e, u, ac, tc, i;
1286     long c = ctl;
1287    
1288     if ((e = (int)c) >= 0) {
1289     if ((ac = ((u = (int)(c >>> 32)) >> UAC_SHIFT)) <= 0 &&
1290     e != 0 && (ws = workQueues) != null &&
1291     (i = ((~e << 1) | 1) & SMASK) < ws.length &&
1292     (w = ws[i]) != null) {
1293     if (w.eventCount == (e | INT_SIGN) &&
1294     U.compareAndSwapLong
1295     (this, CTL, c, ((long)(w.nextWait & E_MASK) |
1296     (c & (AC_MASK|TC_MASK))))) {
1297     w.eventCount = (e + E_SEQ) & E_MASK;
1298     if ((p = w.parker) != null)
1299     U.unpark(p);
1300     return true; // release an idle worker
1301     }
1302     }
1303     else if ((tc = (short)(u >>> UTC_SHIFT)) >= 0 && ac + pc > 1) {
1304     long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1305     if (U.compareAndSwapLong(this, CTL, c, nc))
1306     return true; // no compensation needed
1307     }
1308     else if (tc + pc < MAX_ID) {
1309     long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1310     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1311     addWorker();
1312     return true; // create replacement
1313     }
1314     }
1315 dl 1.53 }
1316 dl 1.111 return false;
1317 dl 1.53 }
1318    
1319 dl 1.111 // Submissions
1320 dl 1.53
1321     /**
1322 dl 1.111 * Unless shutting down, adds the given task to some submission
1323     * queue; using a randomly chosen queue index if the caller is a
1324     * ForkJoinWorkerThread, else one based on caller thread's hash
1325     * code. If no queue exists at the index, one is created. If the
1326     * queue is busy, another is chosen by sweeping through the queues
1327     * array.
1328     */
1329     private void doSubmit(ForkJoinTask<?> task) {
1330     if (task == null)
1331     throw new NullPointerException();
1332     Thread t = Thread.currentThread();
1333     int r = ((t instanceof ForkJoinWorkerThread) ?
1334     ((ForkJoinWorkerThread)t).workQueue.nextSeed() : hashThread(t));
1335     for (;;) {
1336     int rs = runState, m = rs & SMASK;
1337     int j = r &= (m & ~1); // even numbered queues
1338     WorkQueue[] ws = workQueues;
1339     if (rs < 0 || ws == null)
1340     throw new RejectedExecutionException(); // shutting down
1341     if (ws.length > m) { // consistency check
1342     for (WorkQueue q;;) { // circular sweep
1343     if (((q = ws[j]) != null ||
1344     (q = tryAddSharedQueue(j)) != null) &&
1345     q.trySharedPush(task)) {
1346     signalWork();
1347     return;
1348     }
1349     if ((j = (j + 2) & m) == r) {
1350     Thread.yield(); // all queues busy
1351     break;
1352     }
1353 dl 1.91 }
1354     }
1355 dl 1.53 }
1356     }
1357    
1358     /**
1359 dl 1.111 * Tries to add and register a new queue at the given index.
1360 dl 1.91 *
1361 dl 1.111 * @param idx the workQueues array index to register the queue
1362     * @return the queue, or null if could not add because could
1363     * not acquire lock or idx is unusable
1364     */
1365     private WorkQueue tryAddSharedQueue(int idx) {
1366     WorkQueue q = null;
1367     ReentrantLock lock = this.lock;
1368     if (idx >= 0 && (idx & 1) == 0 && !lock.isLocked()) {
1369     // create queue outside of lock but only if apparently free
1370     WorkQueue nq = new WorkQueue(null, SHARED_QUEUE);
1371     if (lock.tryLock()) {
1372     try {
1373     WorkQueue[] ws = workQueues;
1374     if (ws != null && idx < ws.length) {
1375     if ((q = ws[idx]) == null) {
1376     int rs; // update runState seq
1377     ws[idx] = q = nq;
1378     runState = (((rs = runState) & SHUTDOWN) |
1379     ((rs + RS_SEQ) & ~SHUTDOWN));
1380 dl 1.91 }
1381     }
1382 dl 1.111 } finally {
1383     lock.unlock();
1384 dl 1.91 }
1385     }
1386 dl 1.53 }
1387 dl 1.111 return q;
1388 dl 1.53 }
1389    
1390 dl 1.111 // Scanning for tasks
1391    
1392 dl 1.53 /**
1393 dl 1.111 * Scans for and, if found, returns one task, else possibly
1394     * inactivates the worker. This method operates on single reads of
1395     * volatile state and is designed to be re-invoked continuously in
1396     * part because it returns upon detecting inconsistencies,
1397     * contention, or state changes that indicate possible success on
1398     * re-invocation.
1399     *
1400     * The scan searches for tasks across queues, randomly selecting
1401     * the first #queues probes, favoring steals 2:1 over submissions
1402     * (by exploiting even/odd indexing), and then performing a
1403     * circular sweep of all queues. The scan terminates upon either
1404     * finding a non-empty queue, or completing a full sweep. If the
1405     * worker is not inactivated, it takes and returns a task from
1406     * this queue. On failure to find a task, we take one of the
1407     * following actions, after which the caller will retry calling
1408     * this method unless terminated.
1409     *
1410     * * If not a complete sweep, try to release a waiting worker. If
1411     * the scan terminated because the worker is inactivated, then the
1412     * released worker will often be the calling worker, and it can
1413     * succeed obtaining a task on the next call. Or maybe it is
1414     * another worker, but with same net effect. Releasing in other
1415     * cases as well ensures that we have enough workers running.
1416     *
1417     * * If the caller has run a task since the the last empty scan,
1418     * return (to allow rescan) if other workers are not also yet
1419     * enqueued. Field WorkQueue.rescans counts down on each scan to
1420     * ensure eventual inactivation, and occasional calls to
1421     * Thread.yield to help avoid interference with more useful
1422     * activities on the system.
1423     *
1424     * * If pool is terminating, terminate the worker
1425     *
1426     * * If not already enqueued, try to inactivate and enqueue the
1427     * worker on wait queue.
1428     *
1429     * * If already enqueued and none of the above apply, either park
1430     * awaiting signal, or if this is the most recent waiter and pool
1431     * is quiescent, relay to idleAwaitWork to check for termination
1432     * and possibly shrink pool.
1433     *
1434     * @param w the worker (via its WorkQueue)
1435     * @return a task or null of none found
1436     */
1437     private final ForkJoinTask<?> scan(WorkQueue w) {
1438     boolean swept = false; // true after full empty scan
1439     WorkQueue[] ws; // volatile read order matters
1440     int r = w.seed, ec = w.eventCount; // ec is negative if inactive
1441     int rs = runState, m = rs & SMASK;
1442     if ((ws = workQueues) != null && ws.length > m) {
1443     ForkJoinTask<?> task = null;
1444     for (int k = 0, j = -2 - m; ; ++j) {
1445     WorkQueue q; int b;
1446     if (j < 0) { // random probes while j negative
1447     r ^= r << 13; r ^= r >>> 17; k = (r ^= r << 5) | (j & 1);
1448     } // worker (not submit) for odd j
1449     else // cyclic scan when j >= 0
1450     k += (m >>> 1) | 1; // step by half to reduce bias
1451    
1452     if ((q = ws[k & m]) != null && (b = q.base) - q.top < 0) {
1453     if (ec >= 0)
1454     task = q.pollAt(b); // steal
1455 dl 1.93 break;
1456 dl 1.111 }
1457     else if (j > m) {
1458     if (rs == runState) // staleness check
1459     swept = true;
1460 dl 1.93 break;
1461 dl 1.91 }
1462     }
1463 dl 1.111 w.seed = r; // save seed for next scan
1464     if (task != null)
1465     return task;
1466     }
1467    
1468     // Decode ctl on empty scan
1469     long c = ctl; int e = (int)c, a = (int)(c >> AC_SHIFT), nr, ns;
1470     if (!swept) { // try to release a waiter
1471     WorkQueue v; Thread p;
1472     if (e > 0 && a < 0 && ws != null &&
1473     (v = ws[((~e << 1) | 1) & m]) != null &&
1474     v.eventCount == (e | INT_SIGN) && U.compareAndSwapLong
1475     (this, CTL, c, ((long)(v.nextWait & E_MASK) |
1476     ((c + AC_UNIT) & (AC_MASK|TC_MASK))))) {
1477     v.eventCount = (e + E_SEQ) & E_MASK;
1478     if ((p = v.parker) != null)
1479     U.unpark(p);
1480     }
1481     }
1482     else if ((nr = w.rescans) > 0) { // continue rescanning
1483     int ac = a + parallelism;
1484     if ((w.rescans = (ac < nr) ? ac : nr - 1) > 0 && w.seed < 0 &&
1485     w.eventCount == ec)
1486     Thread.yield(); // 1 bit randomness for yield call
1487     }
1488     else if (e < 0) // pool is terminating
1489     w.runState = -1;
1490     else if (ec >= 0) { // try to enqueue
1491     long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1492     w.nextWait = e;
1493     w.eventCount = ec | INT_SIGN; // mark as inactive
1494     if (!U.compareAndSwapLong(this, CTL, c, nc))
1495     w.eventCount = ec; // back out on CAS failure
1496     else if ((ns = w.nsteals) != 0) { // set rescans if ran task
1497     if (a <= 0) // ... unless too many active
1498     w.rescans = a + parallelism;
1499     w.nsteals = 0;
1500     w.totalSteals += ns;
1501     }
1502     }
1503     else{ // already queued
1504     if (parallelism == -a)
1505     idleAwaitWork(w); // quiescent
1506     if (w.eventCount == ec) {
1507     Thread.interrupted(); // clear status
1508     ForkJoinWorkerThread wt = w.owner;
1509     U.putObject(wt, PARKBLOCKER, this);
1510     w.parker = wt; // emulate LockSupport.park
1511     if (w.eventCount == ec) // recheck
1512     U.park(false, 0L); // block
1513     w.parker = null;
1514     U.putObject(wt, PARKBLOCKER, null);
1515     }
1516 dl 1.91 }
1517 dl 1.111 return null;
1518 dl 1.53 }
1519    
1520     /**
1521 dl 1.111 * If inactivating worker w has caused pool to become quiescent,
1522     * check for pool termination, and, so long as this is not the
1523     * only worker, wait for event for up to SHRINK_RATE nanosecs On
1524     * timeout, if ctl has not changed, terminate the worker, which
1525     * will in turn wake up another worker to possibly repeat this
1526     * process.
1527 dl 1.91 *
1528 dl 1.111 * @param w the calling worker
1529 dl 1.53 */
1530 dl 1.111 private void idleAwaitWork(WorkQueue w) {
1531     long c; int nw, ec;
1532     if (!tryTerminate(false) &&
1533     (int)((c = ctl) >> AC_SHIFT) + parallelism == 0 &&
1534     (ec = w.eventCount) == ((int)c | INT_SIGN) &&
1535     (nw = w.nextWait) != 0) {
1536     long nc = ((long)(nw & E_MASK) | // ctl to restore on timeout
1537     ((c + AC_UNIT) & AC_MASK) | (c & TC_MASK));
1538     ForkJoinTask.helpExpungeStaleExceptions(); // help clean
1539     ForkJoinWorkerThread wt = w.owner;
1540     while (ctl == c) {
1541     long startTime = System.nanoTime();
1542     Thread.interrupted(); // timed variant of version in scan()
1543     U.putObject(wt, PARKBLOCKER, this);
1544     w.parker = wt;
1545     if (ctl == c)
1546     U.park(false, SHRINK_RATE);
1547     w.parker = null;
1548     U.putObject(wt, PARKBLOCKER, null);
1549     if (ctl != c)
1550     break;
1551     if (System.nanoTime() - startTime >= SHRINK_TIMEOUT &&
1552     U.compareAndSwapLong(this, CTL, c, nc)) {
1553     w.runState = -1; // shrink
1554     w.eventCount = (ec + E_SEQ) | E_MASK;
1555     break;
1556     }
1557 dl 1.66 }
1558 dl 1.53 }
1559     }
1560    
1561     /**
1562 dl 1.111 * Tries to locate and execute tasks for a stealer of the given
1563     * task, or in turn one of its stealers, Traces currentSteal ->
1564     * currentJoin links looking for a thread working on a descendant
1565     * of the given task and with a non-empty queue to steal back and
1566     * execute tasks from. The first call to this method upon a
1567     * waiting join will often entail scanning/search, (which is OK
1568     * because the joiner has nothing better to do), but this method
1569     * leaves hints in workers to speed up subsequent calls. The
1570     * implementation is very branchy to cope with potential
1571     * inconsistencies or loops encountering chains that are stale,
1572     * unknown, or of length greater than MAX_HELP_DEPTH links. All
1573     * of these cases are dealt with by just retrying by caller.
1574     *
1575     * @param joiner the joining worker
1576     * @param task the task to join
1577     * @return true if found or ran a task (and so is immediately retryable)
1578     */
1579     final boolean tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1580     ForkJoinTask<?> subtask; // current target
1581     boolean progress = false;
1582     int depth = 0; // current chain depth
1583     int m = runState & SMASK;
1584     WorkQueue[] ws = workQueues;
1585    
1586     if (ws != null && ws.length > m && (subtask = task).status >= 0) {
1587     outer:for (WorkQueue j = joiner;;) {
1588     // Try to find the stealer of subtask, by first using hint
1589     WorkQueue stealer = null;
1590     WorkQueue v = ws[j.stealHint & m];
1591     if (v != null && v.currentSteal == subtask)
1592     stealer = v;
1593     else {
1594     for (int i = 1; i <= m; i += 2) {
1595     if ((v = ws[i]) != null && v.currentSteal == subtask) {
1596     stealer = v;
1597     j.stealHint = i; // save hint
1598     break;
1599     }
1600     }
1601     if (stealer == null)
1602     break;
1603     }
1604 dl 1.64
1605 dl 1.111 for (WorkQueue q = stealer;;) { // Try to help stealer
1606     ForkJoinTask<?> t; int b;
1607     if (task.status < 0)
1608     break outer;
1609     if ((b = q.base) - q.top < 0) {
1610     progress = true;
1611     if (subtask.status < 0)
1612     break outer; // stale
1613     if ((t = q.pollAt(b)) != null) {
1614     stealer.stealHint = joiner.poolIndex;
1615     joiner.runSubtask(t);
1616     }
1617 dl 1.91 }
1618 dl 1.111 else { // empty - try to descend to find stealer's stealer
1619     ForkJoinTask<?> next = stealer.currentJoin;
1620     if (++depth == MAX_HELP_DEPTH || subtask.status < 0 ||
1621     next == null || next == subtask)
1622     break outer; // max depth, stale, dead-end, cyclic
1623     subtask = next;
1624     j = stealer;
1625     break;
1626 dl 1.91 }
1627 dl 1.61 }
1628 dl 1.111 }
1629 dl 1.53 }
1630 dl 1.111 return progress;
1631 dl 1.64 }
1632    
1633 dl 1.91 /**
1634 dl 1.111 * If task is at base of some steal queue, steals and executes it.
1635 dl 1.91 *
1636 dl 1.111 * @param joiner the joining worker
1637     * @param task the task
1638 dl 1.61 */
1639 dl 1.111 final void tryPollForAndExec(WorkQueue joiner, ForkJoinTask<?> task) {
1640     WorkQueue[] ws;
1641     int m = runState & SMASK;
1642     if ((ws = workQueues) != null && ws.length > m) {
1643     for (int j = 1; j <= m && task.status >= 0; j += 2) {
1644     WorkQueue q = ws[j];
1645     if (q != null && q.pollFor(task)) {
1646     joiner.runSubtask(task);
1647     break;
1648     }
1649 dl 1.91 }
1650     }
1651 dl 1.61 }
1652    
1653     /**
1654 dl 1.111 * Returns a non-empty steal queue, if is found during a random,
1655     * then cyclic scan, else null. This method must be retried by
1656     * caller if, by the time it tries to use the queue, it is empty.
1657     */
1658     private WorkQueue findNonEmptyStealQueue(WorkQueue w) {
1659     int r = w.seed; // Same idea as scan(), but ignoring submissions
1660     for (WorkQueue[] ws;;) {
1661     int m = runState & SMASK;
1662     if ((ws = workQueues) == null)
1663     return null;
1664     if (ws.length > m) {
1665     WorkQueue q;
1666     for (int n = m << 2, k = r, j = -n;;) {
1667     r ^= r << 13; r ^= r >>> 17; r ^= r << 5;
1668     if ((q = ws[(k | 1) & m]) != null && q.base - q.top < 0) {
1669     w.seed = r;
1670     return q;
1671 dl 1.91 }
1672 dl 1.111 else if (j > n)
1673     return null;
1674     else
1675     k = (j++ < 0) ? r : k + ((m >>> 1) | 1);
1676    
1677 dl 1.91 }
1678     }
1679 dl 1.64 }
1680     }
1681    
1682     /**
1683 dl 1.111 * Runs tasks until {@code isQuiescent()}. We piggyback on
1684     * active count ctl maintenance, but rather than blocking
1685     * when tasks cannot be found, we rescan until all others cannot
1686     * find tasks either.
1687     */
1688     final void helpQuiescePool(WorkQueue w) {
1689     for (boolean active = true;;) {
1690     w.runLocalTasks(); // exhaust local queue
1691     WorkQueue q = findNonEmptyStealQueue(w);
1692     if (q != null) {
1693     ForkJoinTask<?> t;
1694     if (!active) { // re-establish active count
1695     long c;
1696     active = true;
1697     do {} while (!U.compareAndSwapLong
1698     (this, CTL, c = ctl, c + AC_UNIT));
1699     }
1700     if ((t = q.poll()) != null)
1701     w.runSubtask(t);
1702     }
1703     else {
1704     long c;
1705     if (active) { // decrement active count without queuing
1706     active = false;
1707     do {} while (!U.compareAndSwapLong
1708     (this, CTL, c = ctl, c -= AC_UNIT));
1709     }
1710     else
1711     c = ctl; // re-increment on exit
1712     if ((int)(c >> AC_SHIFT) + parallelism == 0) {
1713     do {} while (!U.compareAndSwapLong
1714     (this, CTL, c = ctl, c + AC_UNIT));
1715     break;
1716 dl 1.66 }
1717 dl 1.64 }
1718     }
1719     }
1720    
1721     /**
1722 dl 1.111 * Gets and removes a local or stolen task for the given worker
1723     *
1724     * @return a task, if available
1725 dl 1.64 */
1726 dl 1.111 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
1727     for (ForkJoinTask<?> t;;) {
1728     WorkQueue q;
1729     if ((t = w.nextLocalTask()) != null)
1730     return t;
1731     if ((q = findNonEmptyStealQueue(w)) == null)
1732     return null;
1733     if ((t = q.poll()) != null)
1734     return t;
1735 dl 1.91 }
1736 dl 1.61 }
1737    
1738 dl 1.53 /**
1739 dl 1.111 * Returns the approximate (non-atomic) number of idle threads per
1740     * active thread to offset steal queue size for method
1741     * ForkJoinTask.getSurplusQueuedTaskCount().
1742 dl 1.53 */
1743 dl 1.111 final int idlePerActive() {
1744     // Approximate at powers of two for small values, saturate past 4
1745     int p = parallelism;
1746     int a = p + (int)(ctl >> AC_SHIFT);
1747     return (a > (p >>>= 1) ? 0 :
1748     a > (p >>>= 1) ? 1 :
1749     a > (p >>>= 1) ? 2 :
1750     a > (p >>>= 1) ? 4 :
1751     8);
1752 dl 1.53 }
1753    
1754 dl 1.111 // Termination
1755 dl 1.53
1756     /**
1757 dl 1.111 * Sets SHUTDOWN bit of runState under lock
1758 dl 1.53 */
1759 dl 1.111 private void enableShutdown() {
1760     ReentrantLock lock = this.lock;
1761     if (runState >= 0) {
1762     lock.lock(); // don't need try/finally
1763     runState |= SHUTDOWN;
1764     lock.unlock();
1765 dl 1.53 }
1766 dl 1.59 }
1767 dl 1.54
1768     /**
1769 dl 1.111 * Possibly initiates and/or completes termination. Upon
1770     * termination, cancels all queued tasks and then
1771 dl 1.53 *
1772     * @param now if true, unconditionally terminate, else only
1773 dl 1.111 * if no work and no active workers
1774 dl 1.53 * @return true if now terminating or terminated
1775 dl 1.1 */
1776 dl 1.53 private boolean tryTerminate(boolean now) {
1777 dl 1.111 for (long c;;) {
1778     if (((c = ctl) & STOP_BIT) != 0) { // already terminating
1779     if ((short)(c >>> TC_SHIFT) == -parallelism) {
1780     ReentrantLock lock = this.lock; // signal when no workers
1781     lock.lock(); // don't need try/finally
1782     termination.signalAll(); // signal when 0 workers
1783     lock.unlock();
1784     }
1785     return true;
1786     }
1787 dl 1.91 if (!now) {
1788 dl 1.111 if ((int)(c >> AC_SHIFT) != -parallelism || runState >= 0 ||
1789     hasQueuedSubmissions())
1790 dl 1.91 return false;
1791 dl 1.111 // Check for unqueued inactive workers. One pass suffices.
1792     WorkQueue[] ws = workQueues; WorkQueue w;
1793     if (ws != null) {
1794     int n = ws.length;
1795     for (int i = 1; i < n; i += 2) {
1796     if ((w = ws[i]) != null && w.eventCount >= 0)
1797     return false;
1798     }
1799 dl 1.91 }
1800     }
1801 dl 1.111 if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT))
1802 dl 1.91 startTerminating();
1803     }
1804 dl 1.1 }
1805    
1806     /**
1807 dl 1.111 * Initiates termination: Runs three passes through workQueues:
1808     * (0) Setting termination status, followed by wakeups of queued
1809     * workers; (1) cancelling all tasks; (2) interrupting lagging
1810     * threads (likely in external tasks, but possibly also blocked in
1811     * joins). Each pass repeats previous steps because of potential
1812     * lagging thread creation.
1813 dl 1.53 */
1814     private void startTerminating() {
1815 dl 1.91 for (int pass = 0; pass < 3; ++pass) {
1816 dl 1.111 WorkQueue[] ws = workQueues;
1817 dl 1.91 if (ws != null) {
1818 dl 1.111 WorkQueue w; Thread wt;
1819     int n = ws.length;
1820     for (int j = 0; j < n; ++j) {
1821     if ((w = ws[j]) != null) {
1822     w.runState = -1;
1823 dl 1.91 if (pass > 0) {
1824 dl 1.111 w.cancelAll();
1825     if (pass > 1 && (wt = w.owner) != null &&
1826     !wt.isInterrupted()) {
1827 dl 1.91 try {
1828 dl 1.111 wt.interrupt();
1829 dl 1.91 } catch (SecurityException ignore) {
1830     }
1831 dl 1.61 }
1832     }
1833     }
1834     }
1835 dl 1.111 // Wake up workers parked on event queue
1836     int i, e; long c; Thread p;
1837     while ((i = ((~(e = (int)(c = ctl)) << 1) | 1) & SMASK) < n &&
1838     (w = ws[i]) != null &&
1839     w.eventCount == (e | INT_SIGN)) {
1840     long nc = ((long)(w.nextWait & E_MASK) |
1841     ((c + AC_UNIT) & AC_MASK) |
1842     (c & (TC_MASK|STOP_BIT)));
1843     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1844     w.eventCount = (e + E_SEQ) & E_MASK;
1845     if ((p = w.parker) != null)
1846     U.unpark(p);
1847     }
1848 dl 1.91 }
1849 dl 1.53 }
1850     }
1851 dl 1.56 }
1852    
1853 dl 1.91 // Exported methods
1854 dl 1.1
1855     // Constructors
1856    
1857     /**
1858 dl 1.42 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1859 dl 1.57 * java.lang.Runtime#availableProcessors}, using the {@linkplain
1860     * #defaultForkJoinWorkerThreadFactory default thread factory},
1861     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1862 jsr166 1.17 *
1863 dl 1.1 * @throws SecurityException if a security manager exists and
1864     * the caller is not permitted to modify threads
1865     * because it does not hold {@link
1866 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1867 dl 1.1 */
1868     public ForkJoinPool() {
1869     this(Runtime.getRuntime().availableProcessors(),
1870 dl 1.57 defaultForkJoinWorkerThreadFactory, null, false);
1871 dl 1.1 }
1872    
1873     /**
1874 dl 1.42 * Creates a {@code ForkJoinPool} with the indicated parallelism
1875 dl 1.57 * level, the {@linkplain
1876     * #defaultForkJoinWorkerThreadFactory default thread factory},
1877     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1878 jsr166 1.17 *
1879 dl 1.42 * @param parallelism the parallelism level
1880 dl 1.1 * @throws IllegalArgumentException if parallelism less than or
1881 jsr166 1.47 * equal to zero, or greater than implementation limit
1882 dl 1.1 * @throws SecurityException if a security manager exists and
1883     * the caller is not permitted to modify threads
1884     * because it does not hold {@link
1885 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1886 dl 1.1 */
1887     public ForkJoinPool(int parallelism) {
1888 dl 1.57 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1889 dl 1.1 }
1890    
1891     /**
1892 dl 1.57 * Creates a {@code ForkJoinPool} with the given parameters.
1893 jsr166 1.17 *
1894 dl 1.57 * @param parallelism the parallelism level. For default value,
1895     * use {@link java.lang.Runtime#availableProcessors}.
1896     * @param factory the factory for creating new threads. For default value,
1897     * use {@link #defaultForkJoinWorkerThreadFactory}.
1898 dl 1.59 * @param handler the handler for internal worker threads that
1899     * terminate due to unrecoverable errors encountered while executing
1900 jsr166 1.73 * tasks. For default value, use {@code null}.
1901 dl 1.59 * @param asyncMode if true,
1902 dl 1.57 * establishes local first-in-first-out scheduling mode for forked
1903     * tasks that are never joined. This mode may be more appropriate
1904     * than default locally stack-based mode in applications in which
1905     * worker threads only process event-style asynchronous tasks.
1906 jsr166 1.73 * For default value, use {@code false}.
1907 dl 1.1 * @throws IllegalArgumentException if parallelism less than or
1908 jsr166 1.47 * equal to zero, or greater than implementation limit
1909 jsr166 1.48 * @throws NullPointerException if the factory is null
1910 dl 1.1 * @throws SecurityException if a security manager exists and
1911     * the caller is not permitted to modify threads
1912     * because it does not hold {@link
1913 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1914 dl 1.1 */
1915 dl 1.59 public ForkJoinPool(int parallelism,
1916 dl 1.57 ForkJoinWorkerThreadFactory factory,
1917     Thread.UncaughtExceptionHandler handler,
1918     boolean asyncMode) {
1919 dl 1.53 checkPermission();
1920     if (factory == null)
1921     throw new NullPointerException();
1922 dl 1.91 if (parallelism <= 0 || parallelism > MAX_ID)
1923 dl 1.1 throw new IllegalArgumentException();
1924 dl 1.53 this.parallelism = parallelism;
1925 dl 1.1 this.factory = factory;
1926 dl 1.57 this.ueh = handler;
1927 dl 1.111 this.localMode = asyncMode ? FIFO_QUEUE : LIFO_QUEUE;
1928     this.nextPoolIndex = 1;
1929 dl 1.91 long np = (long)(-parallelism); // offset ctl counts
1930     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
1931 dl 1.111 // initialize workQueues array with room for 2*parallelism if possible
1932 dl 1.91 int n = parallelism << 1;
1933     if (n >= MAX_ID)
1934     n = MAX_ID;
1935     else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
1936     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8;
1937     }
1938 dl 1.111 this.workQueues = new WorkQueue[(n + 1) << 1];
1939     ReentrantLock lck = this.lock = new ReentrantLock();
1940     this.termination = lck.newCondition();
1941     this.stealCount = new AtomicLong();
1942     this.nextWorkerNumber = new AtomicInteger();
1943 dl 1.91 StringBuilder sb = new StringBuilder("ForkJoinPool-");
1944     sb.append(poolNumberGenerator.incrementAndGet());
1945     sb.append("-worker-");
1946     this.workerNamePrefix = sb.toString();
1947 dl 1.111 // Create initial submission queue
1948     WorkQueue sq = tryAddSharedQueue(0);
1949     if (sq != null)
1950     sq.growArray(false);
1951 dl 1.1 }
1952    
1953     // Execution methods
1954    
1955     /**
1956 jsr166 1.17 * Performs the given task, returning its result upon completion.
1957 dl 1.91 * If the computation encounters an unchecked Exception or Error,
1958     * it is rethrown as the outcome of this invocation. Rethrown
1959     * exceptions behave in the same way as regular exceptions, but,
1960     * when possible, contain stack traces (as displayed for example
1961     * using {@code ex.printStackTrace()}) of both the current thread
1962     * as well as the thread actually encountering the exception;
1963     * minimally only the latter.
1964 jsr166 1.17 *
1965 dl 1.1 * @param task the task
1966     * @return the task's result
1967 jsr166 1.48 * @throws NullPointerException if the task is null
1968     * @throws RejectedExecutionException if the task cannot be
1969     * scheduled for execution
1970 dl 1.1 */
1971     public <T> T invoke(ForkJoinTask<T> task) {
1972 dl 1.111 doSubmit(task);
1973     return task.join();
1974 dl 1.1 }
1975    
1976     /**
1977     * Arranges for (asynchronous) execution of the given task.
1978 jsr166 1.17 *
1979 dl 1.1 * @param task the task
1980 jsr166 1.48 * @throws NullPointerException if the task is null
1981     * @throws RejectedExecutionException if the task cannot be
1982     * scheduled for execution
1983 dl 1.1 */
1984 dl 1.37 public void execute(ForkJoinTask<?> task) {
1985 dl 1.111 doSubmit(task);
1986 dl 1.1 }
1987    
1988     // AbstractExecutorService methods
1989    
1990 jsr166 1.48 /**
1991     * @throws NullPointerException if the task is null
1992     * @throws RejectedExecutionException if the task cannot be
1993     * scheduled for execution
1994     */
1995 dl 1.1 public void execute(Runnable task) {
1996 dl 1.82 if (task == null)
1997     throw new NullPointerException();
1998 dl 1.23 ForkJoinTask<?> job;
1999 jsr166 1.26 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2000     job = (ForkJoinTask<?>) task;
2001 dl 1.23 else
2002 dl 1.33 job = ForkJoinTask.adapt(task, null);
2003 dl 1.111 doSubmit(job);
2004 dl 1.1 }
2005    
2006 jsr166 1.48 /**
2007 dl 1.57 * Submits a ForkJoinTask for execution.
2008     *
2009     * @param task the task to submit
2010     * @return the task
2011     * @throws NullPointerException if the task is null
2012     * @throws RejectedExecutionException if the task cannot be
2013     * scheduled for execution
2014     */
2015     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2016 dl 1.111 doSubmit(task);
2017 dl 1.57 return task;
2018     }
2019    
2020     /**
2021 jsr166 1.48 * @throws NullPointerException if the task is null
2022     * @throws RejectedExecutionException if the task cannot be
2023     * scheduled for execution
2024     */
2025 dl 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2026 dl 1.82 if (task == null)
2027     throw new NullPointerException();
2028 dl 1.33 ForkJoinTask<T> job = ForkJoinTask.adapt(task);
2029 dl 1.111 doSubmit(job);
2030 dl 1.1 return job;
2031     }
2032    
2033 jsr166 1.48 /**
2034     * @throws NullPointerException if the task is null
2035     * @throws RejectedExecutionException if the task cannot be
2036     * scheduled for execution
2037     */
2038 dl 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2039 dl 1.82 if (task == null)
2040     throw new NullPointerException();
2041 dl 1.33 ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
2042 dl 1.111 doSubmit(job);
2043 dl 1.1 return job;
2044     }
2045    
2046 jsr166 1.48 /**
2047     * @throws NullPointerException if the task is null
2048     * @throws RejectedExecutionException if the task cannot be
2049     * scheduled for execution
2050     */
2051 dl 1.1 public ForkJoinTask<?> submit(Runnable task) {
2052 dl 1.82 if (task == null)
2053     throw new NullPointerException();
2054 dl 1.23 ForkJoinTask<?> job;
2055 jsr166 1.26 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2056     job = (ForkJoinTask<?>) task;
2057 dl 1.23 else
2058 dl 1.33 job = ForkJoinTask.adapt(task, null);
2059 dl 1.111 doSubmit(job);
2060 dl 1.1 return job;
2061     }
2062    
2063     /**
2064 jsr166 1.48 * @throws NullPointerException {@inheritDoc}
2065     * @throws RejectedExecutionException {@inheritDoc}
2066     */
2067 dl 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2068 jsr166 1.20 ArrayList<ForkJoinTask<T>> forkJoinTasks =
2069 dl 1.1 new ArrayList<ForkJoinTask<T>>(tasks.size());
2070 jsr166 1.20 for (Callable<T> task : tasks)
2071 dl 1.33 forkJoinTasks.add(ForkJoinTask.adapt(task));
2072 jsr166 1.20 invoke(new InvokeAll<T>(forkJoinTasks));
2073    
2074     @SuppressWarnings({"unchecked", "rawtypes"})
2075 dl 1.54 List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
2076 jsr166 1.20 return futures;
2077 dl 1.1 }
2078    
2079     static final class InvokeAll<T> extends RecursiveAction {
2080     final ArrayList<ForkJoinTask<T>> tasks;
2081     InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
2082     public void compute() {
2083 jsr166 1.17 try { invokeAll(tasks); }
2084     catch (Exception ignore) {}
2085 dl 1.1 }
2086 jsr166 1.18 private static final long serialVersionUID = -7914297376763021607L;
2087 dl 1.1 }
2088    
2089     /**
2090 jsr166 1.17 * Returns the factory used for constructing new workers.
2091 dl 1.1 *
2092     * @return the factory used for constructing new workers
2093     */
2094     public ForkJoinWorkerThreadFactory getFactory() {
2095     return factory;
2096     }
2097    
2098     /**
2099 dl 1.2 * Returns the handler for internal worker threads that terminate
2100     * due to unrecoverable errors encountered while executing tasks.
2101 jsr166 1.17 *
2102 jsr166 1.28 * @return the handler, or {@code null} if none
2103 dl 1.2 */
2104     public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
2105 dl 1.53 return ueh;
2106 dl 1.2 }
2107    
2108     /**
2109 dl 1.42 * Returns the targeted parallelism level of this pool.
2110 dl 1.1 *
2111 dl 1.42 * @return the targeted parallelism level of this pool
2112 dl 1.1 */
2113     public int getParallelism() {
2114     return parallelism;
2115     }
2116    
2117     /**
2118     * Returns the number of worker threads that have started but not
2119 jsr166 1.76 * yet terminated. The result returned by this method may differ
2120 jsr166 1.29 * from {@link #getParallelism} when threads are created to
2121 dl 1.1 * maintain parallelism when others are cooperatively blocked.
2122     *
2123     * @return the number of worker threads
2124     */
2125     public int getPoolSize() {
2126 dl 1.91 return parallelism + (short)(ctl >>> TC_SHIFT);
2127 dl 1.1 }
2128    
2129     /**
2130 jsr166 1.28 * Returns {@code true} if this pool uses local first-in-first-out
2131 jsr166 1.16 * scheduling mode for forked tasks that are never joined.
2132 dl 1.6 *
2133 jsr166 1.28 * @return {@code true} if this pool uses async mode
2134 dl 1.6 */
2135     public boolean getAsyncMode() {
2136 dl 1.111 return localMode != 0;
2137 dl 1.6 }
2138    
2139     /**
2140 dl 1.2 * Returns an estimate of the number of worker threads that are
2141     * not blocked waiting to join tasks or for other managed
2142 dl 1.53 * synchronization. This method may overestimate the
2143     * number of running threads.
2144 dl 1.1 *
2145     * @return the number of worker threads
2146     */
2147     public int getRunningThreadCount() {
2148 dl 1.111 int rc = 0;
2149     WorkQueue[] ws; WorkQueue w;
2150     if ((ws = workQueues) != null) {
2151     int n = ws.length;
2152     for (int i = 1; i < n; i += 2) {
2153     Thread.State s; ForkJoinWorkerThread wt;
2154     if ((w = ws[i]) != null && (wt = w.owner) != null &&
2155     w.eventCount >= 0 &&
2156     (s = wt.getState()) != Thread.State.BLOCKED &&
2157     s != Thread.State.WAITING &&
2158     s != Thread.State.TIMED_WAITING)
2159     ++rc;
2160     }
2161     }
2162     return rc;
2163 dl 1.1 }
2164    
2165     /**
2166 dl 1.2 * Returns an estimate of the number of threads that are currently
2167 dl 1.1 * stealing or executing tasks. This method may overestimate the
2168     * number of active threads.
2169 jsr166 1.17 *
2170 jsr166 1.16 * @return the number of active threads
2171 dl 1.1 */
2172     public int getActiveThreadCount() {
2173 dl 1.111 int r = parallelism + (int)(ctl >> AC_SHIFT);
2174 jsr166 1.102 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2175 dl 1.1 }
2176    
2177     /**
2178 jsr166 1.28 * Returns {@code true} if all worker threads are currently idle.
2179     * An idle worker is one that cannot obtain a task to execute
2180     * because none are available to steal from other threads, and
2181     * there are no pending submissions to the pool. This method is
2182     * conservative; it might not return {@code true} immediately upon
2183     * idleness of all threads, but will eventually become true if
2184     * threads remain inactive.
2185 jsr166 1.17 *
2186 jsr166 1.28 * @return {@code true} if all threads are currently idle
2187 dl 1.1 */
2188     public boolean isQuiescent() {
2189 dl 1.111 return (int)(ctl >> AC_SHIFT) + parallelism == 0;
2190 dl 1.1 }
2191    
2192     /**
2193     * Returns an estimate of the total number of tasks stolen from
2194     * one thread's work queue by another. The reported value
2195     * underestimates the actual total number of steals when the pool
2196     * is not quiescent. This value may be useful for monitoring and
2197 jsr166 1.17 * tuning fork/join programs: in general, steal counts should be
2198 dl 1.1 * high enough to keep threads busy, but low enough to avoid
2199     * overhead and contention across threads.
2200 jsr166 1.17 *
2201 jsr166 1.16 * @return the number of steals
2202 dl 1.1 */
2203     public long getStealCount() {
2204 dl 1.111 long count = stealCount.get();
2205     WorkQueue[] ws; WorkQueue w;
2206     if ((ws = workQueues) != null) {
2207     int n = ws.length;
2208     for (int i = 1; i < n; i += 2) {
2209     if ((w = ws[i]) != null)
2210     count += w.totalSteals;
2211     }
2212     }
2213     return count;
2214 dl 1.1 }
2215    
2216     /**
2217 dl 1.2 * Returns an estimate of the total number of tasks currently held
2218     * in queues by worker threads (but not including tasks submitted
2219     * to the pool that have not begun executing). This value is only
2220     * an approximation, obtained by iterating across all threads in
2221     * the pool. This method may be useful for tuning task
2222     * granularities.
2223 jsr166 1.17 *
2224 jsr166 1.16 * @return the number of queued tasks
2225 dl 1.1 */
2226     public long getQueuedTaskCount() {
2227     long count = 0;
2228 dl 1.111 WorkQueue[] ws; WorkQueue w;
2229     if ((ws = workQueues) != null) {
2230     int n = ws.length;
2231     for (int i = 1; i < n; i += 2) {
2232     if ((w = ws[i]) != null)
2233     count += w.queueSize();
2234     }
2235 dl 1.91 }
2236 dl 1.1 return count;
2237     }
2238    
2239     /**
2240 jsr166 1.40 * Returns an estimate of the number of tasks submitted to this
2241 dl 1.94 * pool that have not yet begun executing. This method may take
2242 dl 1.91 * time proportional to the number of submissions.
2243 jsr166 1.17 *
2244 jsr166 1.16 * @return the number of queued submissions
2245 dl 1.1 */
2246     public int getQueuedSubmissionCount() {
2247 dl 1.111 int count = 0;
2248     WorkQueue[] ws; WorkQueue w;
2249     if ((ws = workQueues) != null) {
2250     int n = ws.length;
2251     for (int i = 0; i < n; i += 2) {
2252     if ((w = ws[i]) != null)
2253     count += w.queueSize();
2254     }
2255     }
2256     return count;
2257 dl 1.1 }
2258    
2259     /**
2260 jsr166 1.28 * Returns {@code true} if there are any tasks submitted to this
2261     * pool that have not yet begun executing.
2262 jsr166 1.17 *
2263 jsr166 1.16 * @return {@code true} if there are any queued submissions
2264 dl 1.1 */
2265     public boolean hasQueuedSubmissions() {
2266 dl 1.111 WorkQueue[] ws; WorkQueue w;
2267     if ((ws = workQueues) != null) {
2268     int n = ws.length;
2269     for (int i = 0; i < n; i += 2) {
2270     if ((w = ws[i]) != null && w.queueSize() != 0)
2271     return true;
2272     }
2273     }
2274     return false;
2275 dl 1.1 }
2276    
2277     /**
2278     * Removes and returns the next unexecuted submission if one is
2279     * available. This method may be useful in extensions to this
2280     * class that re-assign work in systems with multiple pools.
2281 jsr166 1.17 *
2282 jsr166 1.28 * @return the next submission, or {@code null} if none
2283 dl 1.1 */
2284     protected ForkJoinTask<?> pollSubmission() {
2285 dl 1.111 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2286     if ((ws = workQueues) != null) {
2287     int n = ws.length;
2288     for (int i = 0; i < n; i += 2) {
2289     if ((w = ws[i]) != null && (t = w.poll()) != null)
2290     return t;
2291 dl 1.91 }
2292     }
2293     return null;
2294 dl 1.1 }
2295    
2296     /**
2297 dl 1.6 * Removes all available unexecuted submitted and forked tasks
2298     * from scheduling queues and adds them to the given collection,
2299     * without altering their execution status. These may include
2300 jsr166 1.41 * artificially generated or wrapped tasks. This method is
2301     * designed to be invoked only when the pool is known to be
2302 dl 1.6 * quiescent. Invocations at other times may not remove all
2303     * tasks. A failure encountered while attempting to add elements
2304 jsr166 1.16 * to collection {@code c} may result in elements being in
2305 dl 1.6 * neither, either or both collections when the associated
2306     * exception is thrown. The behavior of this operation is
2307     * undefined if the specified collection is modified while the
2308     * operation is in progress.
2309 jsr166 1.17 *
2310 dl 1.6 * @param c the collection to transfer elements into
2311     * @return the number of elements transferred
2312     */
2313 dl 1.30 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2314 dl 1.91 int count = 0;
2315 dl 1.111 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2316     if ((ws = workQueues) != null) {
2317     int n = ws.length;
2318     for (int i = 0; i < n; ++i) {
2319     if ((w = ws[i]) != null) {
2320     while ((t = w.poll()) != null) {
2321     c.add(t);
2322     ++count;
2323     }
2324     }
2325 dl 1.91 }
2326     }
2327 dl 1.57 return count;
2328     }
2329    
2330     /**
2331 dl 1.1 * Returns a string identifying this pool, as well as its state,
2332     * including indications of run state, parallelism level, and
2333     * worker and task counts.
2334     *
2335     * @return a string identifying this pool, as well as its state
2336     */
2337     public String toString() {
2338     long st = getStealCount();
2339     long qt = getQueuedTaskCount();
2340     long qs = getQueuedSubmissionCount();
2341 dl 1.111 int rc = getRunningThreadCount();
2342 dl 1.53 int pc = parallelism;
2343 dl 1.91 long c = ctl;
2344     int tc = pc + (short)(c >>> TC_SHIFT);
2345 dl 1.111 int ac = pc + (int)(c >> AC_SHIFT);
2346     if (ac < 0) // ignore transient negative
2347     ac = 0;
2348 dl 1.91 String level;
2349     if ((c & STOP_BIT) != 0)
2350 jsr166 1.102 level = (tc == 0) ? "Terminated" : "Terminating";
2351 dl 1.91 else
2352 dl 1.111 level = runState < 0 ? "Shutting down" : "Running";
2353 dl 1.1 return super.toString() +
2354 dl 1.91 "[" + level +
2355 dl 1.53 ", parallelism = " + pc +
2356     ", size = " + tc +
2357     ", active = " + ac +
2358     ", running = " + rc +
2359 dl 1.1 ", steals = " + st +
2360     ", tasks = " + qt +
2361     ", submissions = " + qs +
2362     "]";
2363     }
2364    
2365     /**
2366     * Initiates an orderly shutdown in which previously submitted
2367     * tasks are executed, but no new tasks will be accepted.
2368     * Invocation has no additional effect if already shut down.
2369     * Tasks that are in the process of being submitted concurrently
2370     * during the course of this method may or may not be rejected.
2371 jsr166 1.17 *
2372 dl 1.1 * @throws SecurityException if a security manager exists and
2373     * the caller is not permitted to modify threads
2374     * because it does not hold {@link
2375 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
2376 dl 1.1 */
2377     public void shutdown() {
2378     checkPermission();
2379 dl 1.111 enableShutdown();
2380 dl 1.53 tryTerminate(false);
2381 dl 1.1 }
2382    
2383     /**
2384 dl 1.42 * Attempts to cancel and/or stop all tasks, and reject all
2385     * subsequently submitted tasks. Tasks that are in the process of
2386     * being submitted or executed concurrently during the course of
2387     * this method may or may not be rejected. This method cancels
2388     * both existing and unexecuted tasks, in order to permit
2389     * termination in the presence of task dependencies. So the method
2390     * always returns an empty list (unlike the case for some other
2391     * Executors).
2392 jsr166 1.17 *
2393 dl 1.1 * @return an empty list
2394     * @throws SecurityException if a security manager exists and
2395     * the caller is not permitted to modify threads
2396     * because it does not hold {@link
2397 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
2398 dl 1.1 */
2399     public List<Runnable> shutdownNow() {
2400     checkPermission();
2401 dl 1.111 enableShutdown();
2402 dl 1.53 tryTerminate(true);
2403 dl 1.1 return Collections.emptyList();
2404     }
2405    
2406     /**
2407 jsr166 1.16 * Returns {@code true} if all tasks have completed following shut down.
2408 dl 1.1 *
2409 jsr166 1.16 * @return {@code true} if all tasks have completed following shut down
2410 dl 1.1 */
2411     public boolean isTerminated() {
2412 dl 1.91 long c = ctl;
2413     return ((c & STOP_BIT) != 0L &&
2414     (short)(c >>> TC_SHIFT) == -parallelism);
2415 dl 1.1 }
2416    
2417     /**
2418 jsr166 1.16 * Returns {@code true} if the process of termination has
2419 dl 1.42 * commenced but not yet completed. This method may be useful for
2420     * debugging. A return of {@code true} reported a sufficient
2421     * period after shutdown may indicate that submitted tasks have
2422 dl 1.88 * ignored or suppressed interruption, or are waiting for IO,
2423     * causing this executor not to properly terminate. (See the
2424     * advisory notes for class {@link ForkJoinTask} stating that
2425     * tasks should not normally entail blocking operations. But if
2426     * they do, they must abort them on interrupt.)
2427 dl 1.1 *
2428 dl 1.42 * @return {@code true} if terminating but not yet terminated
2429 dl 1.1 */
2430     public boolean isTerminating() {
2431 dl 1.91 long c = ctl;
2432     return ((c & STOP_BIT) != 0L &&
2433     (short)(c >>> TC_SHIFT) != -parallelism);
2434 dl 1.1 }
2435    
2436     /**
2437 jsr166 1.16 * Returns {@code true} if this pool has been shut down.
2438 dl 1.1 *
2439 jsr166 1.16 * @return {@code true} if this pool has been shut down
2440 dl 1.1 */
2441     public boolean isShutdown() {
2442 dl 1.111 return runState < 0;
2443 dl 1.42 }
2444    
2445     /**
2446 dl 1.1 * Blocks until all tasks have completed execution after a shutdown
2447     * request, or the timeout occurs, or the current thread is
2448     * interrupted, whichever happens first.
2449     *
2450     * @param timeout the maximum time to wait
2451     * @param unit the time unit of the timeout argument
2452 jsr166 1.16 * @return {@code true} if this executor terminated and
2453     * {@code false} if the timeout elapsed before termination
2454 dl 1.1 * @throws InterruptedException if interrupted while waiting
2455     */
2456     public boolean awaitTermination(long timeout, TimeUnit unit)
2457     throws InterruptedException {
2458 dl 1.91 long nanos = unit.toNanos(timeout);
2459 dl 1.111 final ReentrantLock lock = this.lock;
2460 dl 1.91 lock.lock();
2461 dl 1.57 try {
2462 dl 1.91 for (;;) {
2463     if (isTerminated())
2464     return true;
2465     if (nanos <= 0)
2466     return false;
2467     nanos = termination.awaitNanos(nanos);
2468     }
2469     } finally {
2470     lock.unlock();
2471 dl 1.57 }
2472 dl 1.1 }
2473    
2474     /**
2475     * Interface for extending managed parallelism for tasks running
2476 jsr166 1.35 * in {@link ForkJoinPool}s.
2477     *
2478 dl 1.61 * <p>A {@code ManagedBlocker} provides two methods. Method
2479     * {@code isReleasable} must return {@code true} if blocking is
2480     * not necessary. Method {@code block} blocks the current thread
2481     * if necessary (perhaps internally invoking {@code isReleasable}
2482 dl 1.93 * before actually blocking). These actions are performed by any
2483     * thread invoking {@link ForkJoinPool#managedBlock}. The
2484     * unusual methods in this API accommodate synchronizers that may,
2485     * but don't usually, block for long periods. Similarly, they
2486     * allow more efficient internal handling of cases in which
2487     * additional workers may be, but usually are not, needed to
2488     * ensure sufficient parallelism. Toward this end,
2489     * implementations of method {@code isReleasable} must be amenable
2490     * to repeated invocation.
2491 jsr166 1.17 *
2492 dl 1.1 * <p>For example, here is a ManagedBlocker based on a
2493     * ReentrantLock:
2494 jsr166 1.17 * <pre> {@code
2495     * class ManagedLocker implements ManagedBlocker {
2496     * final ReentrantLock lock;
2497     * boolean hasLock = false;
2498     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
2499     * public boolean block() {
2500     * if (!hasLock)
2501     * lock.lock();
2502     * return true;
2503     * }
2504     * public boolean isReleasable() {
2505     * return hasLock || (hasLock = lock.tryLock());
2506 dl 1.1 * }
2507 jsr166 1.17 * }}</pre>
2508 dl 1.61 *
2509     * <p>Here is a class that possibly blocks waiting for an
2510     * item on a given queue:
2511     * <pre> {@code
2512     * class QueueTaker<E> implements ManagedBlocker {
2513     * final BlockingQueue<E> queue;
2514     * volatile E item = null;
2515     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
2516     * public boolean block() throws InterruptedException {
2517     * if (item == null)
2518 dl 1.65 * item = queue.take();
2519 dl 1.61 * return true;
2520     * }
2521     * public boolean isReleasable() {
2522 dl 1.65 * return item != null || (item = queue.poll()) != null;
2523 dl 1.61 * }
2524     * public E getItem() { // call after pool.managedBlock completes
2525     * return item;
2526     * }
2527     * }}</pre>
2528 dl 1.1 */
2529     public static interface ManagedBlocker {
2530     /**
2531     * Possibly blocks the current thread, for example waiting for
2532     * a lock or condition.
2533 jsr166 1.17 *
2534 jsr166 1.28 * @return {@code true} if no additional blocking is necessary
2535     * (i.e., if isReleasable would return true)
2536 dl 1.1 * @throws InterruptedException if interrupted while waiting
2537 jsr166 1.17 * (the method is not required to do so, but is allowed to)
2538 dl 1.1 */
2539     boolean block() throws InterruptedException;
2540    
2541     /**
2542 jsr166 1.28 * Returns {@code true} if blocking is unnecessary.
2543 dl 1.1 */
2544     boolean isReleasable();
2545     }
2546    
2547     /**
2548     * Blocks in accord with the given blocker. If the current thread
2549 jsr166 1.38 * is a {@link ForkJoinWorkerThread}, this method possibly
2550     * arranges for a spare thread to be activated if necessary to
2551 dl 1.57 * ensure sufficient parallelism while the current thread is blocked.
2552 jsr166 1.38 *
2553     * <p>If the caller is not a {@link ForkJoinTask}, this method is
2554     * behaviorally equivalent to
2555 dl 1.111 a * <pre> {@code
2556 jsr166 1.17 * while (!blocker.isReleasable())
2557     * if (blocker.block())
2558     * return;
2559     * }</pre>
2560 jsr166 1.38 *
2561     * If the caller is a {@code ForkJoinTask}, then the pool may
2562     * first be expanded to ensure parallelism, and later adjusted.
2563 dl 1.1 *
2564     * @param blocker the blocker
2565 jsr166 1.16 * @throws InterruptedException if blocker.block did so
2566 dl 1.1 */
2567 dl 1.57 public static void managedBlock(ManagedBlocker blocker)
2568 dl 1.1 throws InterruptedException {
2569     Thread t = Thread.currentThread();
2570 dl 1.111 ForkJoinPool p = ((t instanceof ForkJoinWorkerThread) ?
2571     ((ForkJoinWorkerThread)t).pool : null);
2572     while (!blocker.isReleasable()) {
2573     if (p == null || p.tryCompensate()) {
2574     try {
2575     do {} while (!blocker.isReleasable() && !blocker.block());
2576     } finally {
2577     if (p != null)
2578     p.incrementActiveCount();
2579     }
2580     break;
2581     }
2582 dl 1.57 }
2583 dl 1.1 }
2584    
2585 dl 1.33 // AbstractExecutorService overrides. These rely on undocumented
2586     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
2587     // implement RunnableFuture.
2588 dl 1.2
2589     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
2590 jsr166 1.34 return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
2591 dl 1.2 }
2592    
2593     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
2594 jsr166 1.34 return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
2595 dl 1.2 }
2596    
2597 jsr166 1.27 // Unsafe mechanics
2598 dl 1.111 private static final sun.misc.Unsafe U;
2599     private static final long CTL;
2600     private static final long RUNSTATE;
2601     private static final long PARKBLOCKER;
2602 dl 1.91
2603     static {
2604     poolNumberGenerator = new AtomicInteger();
2605     modifyThreadPermission = new RuntimePermission("modifyThread");
2606     defaultForkJoinWorkerThreadFactory =
2607     new DefaultForkJoinWorkerThreadFactory();
2608 dl 1.111 int s;
2609 jsr166 1.27 try {
2610 dl 1.111 U = getUnsafe();
2611 jsr166 1.103 Class<?> k = ForkJoinPool.class;
2612 dl 1.111 Class<?> tk = Thread.class;
2613     CTL = U.objectFieldOffset
2614 dl 1.91 (k.getDeclaredField("ctl"));
2615 dl 1.111 RUNSTATE = U.objectFieldOffset
2616     (k.getDeclaredField("runState"));
2617     PARKBLOCKER = U.objectFieldOffset
2618     (tk.getDeclaredField("parkBlocker"));
2619 dl 1.91 } catch (Exception e) {
2620     throw new Error(e);
2621     }
2622 jsr166 1.27 }
2623    
2624     /**
2625     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
2626     * Replace with a simple call to Unsafe.getUnsafe when integrating
2627     * into a jdk.
2628     *
2629     * @return a sun.misc.Unsafe
2630     */
2631     private static sun.misc.Unsafe getUnsafe() {
2632     try {
2633     return sun.misc.Unsafe.getUnsafe();
2634     } catch (SecurityException se) {
2635     try {
2636     return java.security.AccessController.doPrivileged
2637     (new java.security
2638     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
2639     public sun.misc.Unsafe run() throws Exception {
2640     java.lang.reflect.Field f = sun.misc
2641     .Unsafe.class.getDeclaredField("theUnsafe");
2642     f.setAccessible(true);
2643     return (sun.misc.Unsafe) f.get(null);
2644     }});
2645     } catch (java.security.PrivilegedActionException e) {
2646     throw new RuntimeException("Could not initialize intrinsics",
2647     e.getCause());
2648     }
2649     }
2650     }
2651 dl 1.1 }