ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
Revision: 1.114
Committed: Thu Jan 26 19:09:03 2012 UTC (12 years, 3 months ago) by jsr166
Branch: MAIN
Changes since 1.113: +1 -1 lines
Log Message:
typos

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.97 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.1 */
6    
7     package jsr166y;
8 dl 1.112
9 jsr166 1.22 import java.util.ArrayList;
10     import java.util.Arrays;
11     import java.util.Collection;
12     import java.util.Collections;
13     import java.util.List;
14 dl 1.91 import java.util.Random;
15 dl 1.78 import java.util.concurrent.AbstractExecutorService;
16     import java.util.concurrent.Callable;
17     import java.util.concurrent.ExecutorService;
18     import java.util.concurrent.Future;
19     import java.util.concurrent.RejectedExecutionException;
20     import java.util.concurrent.RunnableFuture;
21     import java.util.concurrent.TimeUnit;
22     import java.util.concurrent.atomic.AtomicInteger;
23 dl 1.111 import java.util.concurrent.atomic.AtomicLong;
24 jsr166 1.22 import java.util.concurrent.locks.ReentrantLock;
25 dl 1.91 import java.util.concurrent.locks.Condition;
26 dl 1.1
27     /**
28 jsr166 1.29 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
29 jsr166 1.39 * A {@code ForkJoinPool} provides the entry point for submissions
30 dl 1.57 * from non-{@code ForkJoinTask} clients, as well as management and
31 jsr166 1.48 * monitoring operations.
32 dl 1.1 *
33 dl 1.42 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
34     * ExecutorService} mainly by virtue of employing
35     * <em>work-stealing</em>: all threads in the pool attempt to find and
36 dl 1.111 * execute tasks submitted to the pool and/or created by other active
37     * tasks (eventually blocking waiting for work if none exist). This
38     * enables efficient processing when most tasks spawn other subtasks
39     * (as do most {@code ForkJoinTask}s), as well as when many small
40     * tasks are submitted to the pool from external clients. Especially
41     * when setting <em>asyncMode</em> to true in constructors, {@code
42     * ForkJoinPool}s may also be appropriate for use with event-style
43     * tasks that are never joined.
44 dl 1.1 *
45 dl 1.42 * <p>A {@code ForkJoinPool} is constructed with a given target
46     * parallelism level; by default, equal to the number of available
47 dl 1.57 * processors. The pool attempts to maintain enough active (or
48     * available) threads by dynamically adding, suspending, or resuming
49     * internal worker threads, even if some tasks are stalled waiting to
50     * join others. However, no such adjustments are guaranteed in the
51     * face of blocked IO or other unmanaged synchronization. The nested
52     * {@link ManagedBlocker} interface enables extension of the kinds of
53     * synchronization accommodated.
54 dl 1.1 *
55     * <p>In addition to execution and lifecycle control methods, this
56     * class provides status check methods (for example
57 jsr166 1.29 * {@link #getStealCount}) that are intended to aid in developing,
58 dl 1.1 * tuning, and monitoring fork/join applications. Also, method
59 jsr166 1.29 * {@link #toString} returns indications of pool state in a
60 dl 1.2 * convenient form for informal monitoring.
61 dl 1.1 *
62 dl 1.57 * <p> As is the case with other ExecutorServices, there are three
63 dl 1.60 * main task execution methods summarized in the following
64 dl 1.111 * table. These are designed to be used primarily by clients not
65     * already engaged in fork/join computations in the current pool. The
66     * main forms of these methods accept instances of {@code
67     * ForkJoinTask}, but overloaded forms also allow mixed execution of
68     * plain {@code Runnable}- or {@code Callable}- based activities as
69     * well. However, tasks that are already executing in a pool should
70     * normally instead use the within-computation forms listed in the
71     * table unless using async event-style tasks that are not usually
72     * joined, in which case there is little difference among choice of
73     * methods.
74 dl 1.57 *
75     * <table BORDER CELLPADDING=3 CELLSPACING=1>
76     * <tr>
77     * <td></td>
78     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
79     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
80     * </tr>
81     * <tr>
82 jsr166 1.67 * <td> <b>Arrange async execution</td>
83 dl 1.57 * <td> {@link #execute(ForkJoinTask)}</td>
84     * <td> {@link ForkJoinTask#fork}</td>
85     * </tr>
86     * <tr>
87     * <td> <b>Await and obtain result</td>
88     * <td> {@link #invoke(ForkJoinTask)}</td>
89     * <td> {@link ForkJoinTask#invoke}</td>
90     * </tr>
91     * <tr>
92     * <td> <b>Arrange exec and obtain Future</td>
93     * <td> {@link #submit(ForkJoinTask)}</td>
94     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
95     * </tr>
96     * </table>
97 dl 1.59 *
98 dl 1.42 * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
99     * used for all parallel task execution in a program or subsystem.
100     * Otherwise, use would not usually outweigh the construction and
101     * bookkeeping overhead of creating a large set of threads. For
102 jsr166 1.43 * example, a common pool could be used for the {@code SortTasks}
103 dl 1.42 * illustrated in {@link RecursiveAction}. Because {@code
104     * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
105 jsr166 1.43 * daemon} mode, there is typically no need to explicitly {@link
106 dl 1.42 * #shutdown} such a pool upon program exit.
107     *
108 jsr166 1.105 * <pre> {@code
109 dl 1.42 * static final ForkJoinPool mainPool = new ForkJoinPool();
110     * ...
111     * public void sort(long[] array) {
112     * mainPool.invoke(new SortTask(array, 0, array.length));
113 jsr166 1.105 * }}</pre>
114 dl 1.42 *
115 dl 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
116 dl 1.2 * maximum number of running threads to 32767. Attempts to create
117 jsr166 1.48 * pools with greater than the maximum number result in
118 jsr166 1.39 * {@code IllegalArgumentException}.
119 jsr166 1.16 *
120 jsr166 1.48 * <p>This implementation rejects submitted tasks (that is, by throwing
121 dl 1.58 * {@link RejectedExecutionException}) only when the pool is shut down
122 dl 1.62 * or internal resources have been exhausted.
123 jsr166 1.48 *
124 jsr166 1.16 * @since 1.7
125     * @author Doug Lea
126 dl 1.1 */
127 dl 1.2 public class ForkJoinPool extends AbstractExecutorService {
128 dl 1.1
129     /*
130 dl 1.53 * Implementation Overview
131     *
132 dl 1.111 * This class and its nested classes provide the main
133     * functionality and control for a set of worker threads:
134     * Submissions from non-FJ threads enter into submission
135     * queues. Workers take these tasks and typically split them into
136     * subtasks that may be stolen by other workers. Preference rules
137     * give first priority to processing tasks from their own queues
138     * (LIFO or FIFO, depending on mode), then to randomized FIFO
139     * steals of tasks in other queues.
140     *
141     * WorkQueues.
142     * ==========
143     *
144     * Most operations occur within work-stealing queues (in nested
145     * class WorkQueue). These are special forms of Deques that
146     * support only three of the four possible end-operations -- push,
147     * pop, and poll (aka steal), under the further constraints that
148     * push and pop are called only from the owning thread (or, as
149     * extended here, under a lock), while poll may be called from
150     * other threads. (If you are unfamiliar with them, you probably
151     * want to read Herlihy and Shavit's book "The Art of
152     * Multiprocessor programming", chapter 16 describing these in
153     * more detail before proceeding.) The main work-stealing queue
154     * design is roughly similar to those in the papers "Dynamic
155     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
156     * (http://research.sun.com/scalable/pubs/index.html) and
157     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
158     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
159     * The main differences ultimately stem from gc requirements that
160     * we null out taken slots as soon as we can, to maintain as small
161     * a footprint as possible even in programs generating huge
162     * numbers of tasks. To accomplish this, we shift the CAS
163     * arbitrating pop vs poll (steal) from being on the indices
164     * ("base" and "top") to the slots themselves. So, both a
165     * successful pop and poll mainly entail a CAS of a slot from
166     * non-null to null. Because we rely on CASes of references, we
167     * do not need tag bits on base or top. They are simple ints as
168     * used in any circular array-based queue (see for example
169     * ArrayDeque). Updates to the indices must still be ordered in a
170     * way that guarantees that top == base means the queue is empty,
171     * but otherwise may err on the side of possibly making the queue
172     * appear nonempty when a push, pop, or poll have not fully
173     * committed. Note that this means that the poll operation,
174     * considered individually, is not wait-free. One thief cannot
175     * successfully continue until another in-progress one (or, if
176     * previously empty, a push) completes. However, in the
177     * aggregate, we ensure at least probabilistic non-blockingness.
178     * If an attempted steal fails, a thief always chooses a different
179     * random victim target to try next. So, in order for one thief to
180     * progress, it suffices for any in-progress poll or new push on
181     * any empty queue to complete.
182     *
183 dl 1.112 * This approach also enables support of a user mode in which local
184 dl 1.111 * task processing is in FIFO, not LIFO order, simply by using
185     * poll rather than pop. This can be useful in message-passing
186     * frameworks in which tasks are never joined. However neither
187     * mode considers affinities, loads, cache localities, etc, so
188     * rarely provide the best possible performance on a given
189     * machine, but portably provide good throughput by averaging over
190     * these factors. (Further, even if we did try to use such
191     * information, we do not usually have a basis for exploiting
192     * it. For example, some sets of tasks profit from cache
193     * affinities, but others are harmed by cache pollution effects.)
194     *
195     * WorkQueues are also used in a similar way for tasks submitted
196     * to the pool. We cannot mix these tasks in the same queues used
197     * for work-stealing (this would contaminate lifo/fifo
198     * processing). Instead, we loosely associate (via hashing)
199     * submission queues with submitting threads, and randomly scan
200     * these queues as well when looking for work. In essence,
201     * submitters act like workers except that they never take tasks,
202     * and they are multiplexed on to a finite number of shared work
203     * queues. However, classes are set up so that future extensions
204     * could allow submitters to optionally help perform tasks as
205     * well. Pool submissions from internal workers are also allowed,
206     * but use randomized rather than thread-hashed queue indices to
207     * avoid imbalance. Insertion of tasks in shared mode requires a
208     * lock (mainly to protect in the case of resizing) but we use
209     * only a simple spinlock (using bits in field runState), because
210 dl 1.112 * submitters encountering a busy queue try or create others so
211     * never block.
212 dl 1.111 *
213     * Management.
214     * ==========
215 dl 1.91 *
216     * The main throughput advantages of work-stealing stem from
217     * decentralized control -- workers mostly take tasks from
218     * themselves or each other. We cannot negate this in the
219     * implementation of other management responsibilities. The main
220     * tactic for avoiding bottlenecks is packing nearly all
221 dl 1.111 * essentially atomic control state into two volatile variables
222     * that are by far most often read (not written) as status and
223     * consistency checks
224     *
225     * Field "ctl" contains 64 bits holding all the information needed
226     * to atomically decide to add, inactivate, enqueue (on an event
227     * queue), dequeue, and/or re-activate workers. To enable this
228     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
229     * far in excess of normal operating range) to allow ids, counts,
230     * and their negations (used for thresholding) to fit into 16bit
231     * fields.
232     *
233     * Field "runState" contains 32 bits needed to register and
234     * deregister WorkQueues, as well as to enable shutdown. It is
235     * only modified under a lock (normally briefly held, but
236     * occasionally protecting allocations and resizings) but even
237     * when locked remains available to check consistency.
238     *
239     * Recording WorkQueues. WorkQueues are recorded in the
240     * "workQueues" array that is created upon pool construction and
241     * expanded if necessary. Updates to the array while recording
242     * new workers and unrecording terminated ones are protected from
243     * each other by a lock but the array is otherwise concurrently
244     * readable, and accessed directly. To simplify index-based
245 dl 1.91 * operations, the array size is always a power of two, and all
246 dl 1.111 * readers must tolerate null slots. Shared (submission) queues
247     * are at even indices, worker queues at odd indices. Grouping
248     * them together in this way simplifies and speeds up task
249     * scanning. To avoid flailing during start-up, the array is
250     * presized to hold twice #parallelism workers (which is unlikely
251     * to need further resizing during execution). But to avoid
252     * dealing with so many null slots, variable runState includes a
253     * mask for the nearest power of two that contains all current
254     * workers. All worker thread creation is on-demand, triggered by
255     * task submissions, replacement of terminated workers, and/or
256     * compensation for blocked workers. However, all other support
257     * code is set up to work with other policies. To ensure that we
258     * do not hold on to worker references that would prevent GC, ALL
259     * accesses to workQueues are via indices into the workQueues
260     * array (which is one source of some of the messy code
261     * constructions here). In essence, the workQueues array serves as
262     * a weak reference mechanism. Thus for example the wait queue
263     * field of ctl stores indices, not references. Access to the
264     * workQueues in associated methods (for example signalWork) must
265     * both index-check and null-check the IDs. All such accesses
266     * ignore bad IDs by returning out early from what they are doing,
267     * since this can only be associated with termination, in which
268     * case it is OK to give up.
269     *
270     * All uses of the workQueues array check that it is non-null
271     * (even if previously non-null). This allows nulling during
272     * termination, which is currently not necessary, but remains an
273     * option for resource-revocation-based shutdown schemes. It also
274     * helps reduce JIT issuance of uncommon-trap code, which tends to
275     * unnecessarily complicate control flow in some methods.
276 dl 1.91 *
277 dl 1.111 * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
278 dl 1.95 * let workers spin indefinitely scanning for tasks when none can
279     * be found immediately, and we cannot start/resume workers unless
280     * there appear to be tasks available. On the other hand, we must
281     * quickly prod them into action when new tasks are submitted or
282 dl 1.111 * generated. In many usages, ramp-up time to activate workers is
283     * the main limiting factor in overall performance (this is
284     * compounded at program start-up by JIT compilation and
285     * allocation). So we try to streamline this as much as possible.
286     * We park/unpark workers after placing in an event wait queue
287     * when they cannot find work. This "queue" is actually a simple
288     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
289     * counter value (that reflects the number of times a worker has
290     * been inactivated) to avoid ABA effects (we need only as many
291     * version numbers as worker threads). Successors are held in
292     * field WorkQueue.nextWait. Queuing deals with several intrinsic
293     * races, mainly that a task-producing thread can miss seeing (and
294 dl 1.95 * signalling) another thread that gave up looking for work but
295     * has not yet entered the wait queue. We solve this by requiring
296 dl 1.111 * a full sweep of all workers (via repeated calls to method
297     * scan()) both before and after a newly waiting worker is added
298     * to the wait queue. During a rescan, the worker might release
299     * some other queued worker rather than itself, which has the same
300     * net effect. Because enqueued workers may actually be rescanning
301     * rather than waiting, we set and clear the "parker" field of
302 dl 1.112 * Workqueues to reduce unnecessary calls to unpark. (This
303 dl 1.111 * requires a secondary recheck to avoid missed signals.) Note
304     * the unusual conventions about Thread.interrupts surrounding
305     * parking and other blocking: Because interrupts are used solely
306     * to alert threads to check termination, which is checked anyway
307     * upon blocking, we clear status (using Thread.interrupted)
308     * before any call to park, so that park does not immediately
309     * return due to status being set via some other unrelated call to
310     * interrupt in user code.
311 dl 1.91 *
312     * Signalling. We create or wake up workers only when there
313     * appears to be at least one task they might be able to find and
314     * execute. When a submission is added or another worker adds a
315 dl 1.111 * task to a queue that previously had fewer than two tasks, they
316 dl 1.91 * signal waiting workers (or trigger creation of new ones if
317     * fewer than the given parallelism level -- see signalWork).
318 dl 1.111 * These primary signals are buttressed by signals during rescans;
319     * together these cover the signals needed in cases when more
320     * tasks are pushed but untaken, and improve performance compared
321     * to having one thread wake up all workers.
322 dl 1.91 *
323     * Trimming workers. To release resources after periods of lack of
324     * use, a worker starting to wait when the pool is quiescent will
325     * time out and terminate if the pool has remained quiescent for
326 dl 1.95 * SHRINK_RATE nanosecs. This will slowly propagate, eventually
327     * terminating all workers after long periods of non-use.
328 dl 1.91 *
329 dl 1.111 * Shutdown and Termination. A call to shutdownNow atomically sets
330     * a runState bit and then (non-atomically) sets each workers
331     * runState status, cancels all unprocessed tasks, and wakes up
332     * all waiting workers. Detecting whether termination should
333     * commence after a non-abrupt shutdown() call requires more work
334     * and bookkeeping. We need consensus about quiescence (i.e., that
335     * there is no more work). The active count provides a primary
336     * indication but non-abrupt shutdown still requires a rechecking
337     * scan for any workers that are inactive but not queued.
338     *
339     * Joining Tasks.
340     * ==============
341     *
342     * Any of several actions may be taken when one worker is waiting
343     * to join a task stolen (or always held by) another. Because we
344     * are multiplexing many tasks on to a pool of workers, we can't
345     * just let them block (as in Thread.join). We also cannot just
346     * reassign the joiner's run-time stack with another and replace
347     * it later, which would be a form of "continuation", that even if
348     * possible is not necessarily a good idea since we sometimes need
349     * both an unblocked task and its continuation to
350     * progress. Instead we combine two tactics:
351 dl 1.58 *
352 dl 1.60 * Helping: Arranging for the joiner to execute some task that it
353 dl 1.111 * would be running if the steal had not occurred.
354 dl 1.58 *
355 dl 1.61 * Compensating: Unless there are already enough live threads,
356 dl 1.111 * method tryCompensate() may create or re-activate a spare
357     * thread to compensate for blocked joiners until they unblock.
358     *
359     * A third form (implemented in tryRemoveAndExec and
360     * tryPollForAndExec) amounts to helping a hypothetical
361     * compensator: If we can readily tell that a possible action of a
362     * compensator is to steal and execute the task being joined, the
363     * joining thread can do so directly, without the need for a
364     * compensation thread (although at the expense of larger run-time
365     * stacks, but the tradeoff is typically worthwhile).
366 dl 1.91 *
367     * The ManagedBlocker extension API can't use helping so relies
368     * only on compensation in method awaitBlocker.
369 dl 1.58 *
370 dl 1.111 * The algorithm in tryHelpStealer entails a form of "linear"
371     * helping: Each worker records (in field currentSteal) the most
372     * recent task it stole from some other worker. Plus, it records
373     * (in field currentJoin) the task it is currently actively
374     * joining. Method tryHelpStealer uses these markers to try to
375     * find a worker to help (i.e., steal back a task from and execute
376     * it) that could hasten completion of the actively joined task.
377     * In essence, the joiner executes a task that would be on its own
378     * local deque had the to-be-joined task not been stolen. This may
379     * be seen as a conservative variant of the approach in Wagner &
380     * Calder "Leapfrogging: a portable technique for implementing
381     * efficient futures" SIGPLAN Notices, 1993
382     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
383     * that: (1) We only maintain dependency links across workers upon
384     * steals, rather than use per-task bookkeeping. This sometimes
385     * requires a linear scan of workers array to locate stealers, but
386     * often doesn't because stealers leave hints (that may become
387     * stale/wrong) of where to locate them. A stealHint is only a
388     * hint because a worker might have had multiple steals and the
389     * hint records only one of them (usually the most current).
390     * Hinting isolates cost to when it is needed, rather than adding
391     * to per-task overhead. (2) It is "shallow", ignoring nesting
392     * and potentially cyclic mutual steals. (3) It is intentionally
393     * racy: field currentJoin is updated only while actively joining,
394     * which means that we miss links in the chain during long-lived
395     * tasks, GC stalls etc (which is OK since blocking in such cases
396     * is usually a good idea). (4) We bound the number of attempts
397     * to find work (see MAX_HELP_DEPTH) and fall back to suspending
398     * the worker and if necessary replacing it with another.
399     *
400 dl 1.91 * It is impossible to keep exactly the target parallelism number
401     * of threads running at any given time. Determining the
402 dl 1.66 * existence of conservatively safe helping targets, the
403     * availability of already-created spares, and the apparent need
404 dl 1.111 * to create new spares are all racy, so we rely on multiple
405     * retries of each. Currently, in keeping with on-demand
406     * signalling policy, we compensate only if blocking would leave
407     * less than one active (non-waiting, non-blocked) worker.
408     * Additionally, to avoid some false alarms due to GC, lagging
409     * counters, system activity, etc, compensated blocking for joins
410     * is only attempted after rechecks stabilize in
411     * ForkJoinTask.awaitJoin. (Retries are interspersed with
412     * Thread.yield, for good citizenship.)
413 dl 1.58 *
414 dl 1.91 * Style notes: There is a lot of representation-level coupling
415 dl 1.53 * among classes ForkJoinPool, ForkJoinWorkerThread, and
416 dl 1.111 * ForkJoinTask. The fields of WorkQueue maintain data structures
417     * managed by ForkJoinPool, so are directly accessed. There is
418     * little point trying to reduce this, since any associated future
419     * changes in representations will need to be accompanied by
420     * algorithmic changes anyway. All together, these low-level
421     * implementation choices produce as much as a factor of 4
422     * performance improvement compared to naive implementations, and
423     * enable the processing of billions of tasks per second, at the
424     * expense of some ugliness.
425 dl 1.91 *
426     * Methods signalWork() and scan() are the main bottlenecks so are
427     * especially heavily micro-optimized/mangled. There are lots of
428     * inline assignments (of form "while ((local = field) != 0)")
429     * which are usually the simplest way to ensure the required read
430     * orderings (which are sometimes critical). This leads to a
431     * "C"-like style of listing declarations of these locals at the
432     * heads of methods or blocks. There are several occurrences of
433     * the unusual "do {} while (!cas...)" which is the simplest way
434     * to force an update of a CAS'ed variable. There are also other
435     * coding oddities that help some methods perform reasonably even
436     * when interpreted (not compiled).
437     *
438     * The order of declarations in this file is: (1) declarations of
439     * statics (2) fields (along with constants used when unpacking
440     * some of them), listed in an order that tends to reduce
441 dl 1.111 * contention among them a bit under most JVMs; (3) nested
442     * classes; (4) internal control methods; (5) callbacks and other
443     * support for ForkJoinTask methods; (6) exported methods (plus a
444     * few little helpers); (7) static block initializing all statics
445     * in a minimally dependent order.
446 dl 1.1 */
447    
448     /**
449 jsr166 1.35 * Factory for creating new {@link ForkJoinWorkerThread}s.
450     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
451     * for {@code ForkJoinWorkerThread} subclasses that extend base
452     * functionality or initialize threads with different contexts.
453 dl 1.1 */
454     public static interface ForkJoinWorkerThreadFactory {
455     /**
456     * Returns a new worker thread operating in the given pool.
457     *
458     * @param pool the pool this thread works in
459 jsr166 1.48 * @throws NullPointerException if the pool is null
460 dl 1.1 */
461     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
462     }
463    
464     /**
465 jsr166 1.17 * Default ForkJoinWorkerThreadFactory implementation; creates a
466 dl 1.1 * new ForkJoinWorkerThread.
467     */
468 dl 1.57 static class DefaultForkJoinWorkerThreadFactory
469 dl 1.1 implements ForkJoinWorkerThreadFactory {
470     public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
471 dl 1.53 return new ForkJoinWorkerThread(pool);
472 dl 1.1 }
473     }
474    
475     /**
476 dl 1.2 * Creates a new ForkJoinWorkerThread. This factory is used unless
477     * overridden in ForkJoinPool constructors.
478 dl 1.1 */
479 dl 1.2 public static final ForkJoinWorkerThreadFactory
480 dl 1.91 defaultForkJoinWorkerThreadFactory;
481 dl 1.1
482     /**
483     * Permission required for callers of methods that may start or
484     * kill threads.
485     */
486 dl 1.91 private static final RuntimePermission modifyThreadPermission;
487 dl 1.1
488     /**
489     * If there is a security manager, makes sure caller has
490     * permission to modify threads.
491     */
492     private static void checkPermission() {
493     SecurityManager security = System.getSecurityManager();
494     if (security != null)
495     security.checkPermission(modifyThreadPermission);
496     }
497    
498     /**
499     * Generator for assigning sequence numbers as pool names.
500     */
501 dl 1.91 private static final AtomicInteger poolNumberGenerator;
502 dl 1.1
503     /**
504 dl 1.111 * Bits and masks for control variables
505     *
506     * Field ctl is a long packed with:
507 dl 1.91 * AC: Number of active running workers minus target parallelism (16 bits)
508 jsr166 1.106 * TC: Number of total workers minus target parallelism (16 bits)
509 dl 1.91 * ST: true if pool is terminating (1 bit)
510     * EC: the wait count of top waiting thread (15 bits)
511 dl 1.111 * ID: ~(poolIndex >>> 1) of top of Treiber stack of waiters (16 bits)
512 dl 1.91 *
513     * When convenient, we can extract the upper 32 bits of counts and
514     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
515     * (int)ctl. The ec field is never accessed alone, but always
516     * together with id and st. The offsets of counts by the target
517     * parallelism and the positionings of fields makes it possible to
518     * perform the most common checks via sign tests of fields: When
519     * ac is negative, there are not enough active workers, when tc is
520     * negative, there are not enough total workers, when id is
521     * negative, there is at least one waiting worker, and when e is
522     * negative, the pool is terminating. To deal with these possibly
523     * negative fields, we use casts in and out of "short" and/or
524 dl 1.94 * signed shifts to maintain signedness.
525 dl 1.111 *
526     * When a thread is queued (inactivated), its eventCount field is
527     * negative, which is the only way to tell if a worker is
528     * prevented from executing tasks, even though it must continue to
529     * scan for them to avoid queuing races.
530     *
531     * Field runState is an int packed with:
532     * SHUTDOWN: true if shutdown is enabled (1 bit)
533     * SEQ: a sequence number updated upon (de)registering workers (15 bits)
534     * MASK: mask (power of 2 - 1) covering all registered poolIndexes (16 bits)
535     *
536     * The combination of mask and sequence number enables simple
537     * consistency checks: Staleness of read-only operations on the
538     * workers and queues arrays can be checked by comparing runState
539     * before vs after the reads. The low 16 bits (i.e, anding with
540     * SMASK) hold (the smallest power of two covering all worker
541     * indices, minus one. The mask for queues (vs workers) is twice
542     * this value plus 1.
543 dl 1.91 */
544    
545     // bit positions/shifts for fields
546     private static final int AC_SHIFT = 48;
547     private static final int TC_SHIFT = 32;
548     private static final int ST_SHIFT = 31;
549     private static final int EC_SHIFT = 16;
550    
551     // bounds
552     private static final int MAX_ID = 0x7fff; // max poolIndex
553     private static final int SMASK = 0xffff; // mask short bits
554     private static final int SHORT_SIGN = 1 << 15;
555     private static final int INT_SIGN = 1 << 31;
556    
557     // masks
558     private static final long STOP_BIT = 0x0001L << ST_SHIFT;
559     private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
560     private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
561    
562     // units for incrementing and decrementing
563     private static final long TC_UNIT = 1L << TC_SHIFT;
564     private static final long AC_UNIT = 1L << AC_SHIFT;
565    
566     // masks and units for dealing with u = (int)(ctl >>> 32)
567     private static final int UAC_SHIFT = AC_SHIFT - 32;
568     private static final int UTC_SHIFT = TC_SHIFT - 32;
569     private static final int UAC_MASK = SMASK << UAC_SHIFT;
570     private static final int UTC_MASK = SMASK << UTC_SHIFT;
571     private static final int UAC_UNIT = 1 << UAC_SHIFT;
572     private static final int UTC_UNIT = 1 << UTC_SHIFT;
573    
574     // masks and units for dealing with e = (int)ctl
575 dl 1.111 private static final int E_MASK = 0x7fffffff; // no STOP_BIT
576     private static final int E_SEQ = 1 << EC_SHIFT;
577    
578     // runState bits
579     private static final int SHUTDOWN = 1 << 31;
580     private static final int RS_SEQ = 1 << 16;
581     private static final int RS_SEQ_MASK = 0x7fff0000;
582    
583     // access mode for WorkQueue
584     static final int LIFO_QUEUE = 0;
585     static final int FIFO_QUEUE = 1;
586     static final int SHARED_QUEUE = -1;
587 dl 1.53
588     /**
589 dl 1.111 * The wakeup interval (in nanoseconds) for a worker waiting for a
590     * task when the pool is quiescent to instead try to shrink the
591     * number of workers. The exact value does not matter too
592     * much. It must be short enough to release resources during
593     * sustained periods of idleness, but not so short that threads
594     * are continually re-created.
595 dl 1.61 */
596 dl 1.111 private static final long SHRINK_RATE =
597     4L * 1000L * 1000L * 1000L; // 4 seconds
598 dl 1.61
599     /**
600 dl 1.111 * The timeout value for attempted shrinkage, includes
601     * some slop to cope with system timer imprecision.
602 dl 1.53 */
603 dl 1.111 private static final long SHRINK_TIMEOUT = SHRINK_RATE - (SHRINK_RATE / 10);
604 dl 1.1
605     /**
606 dl 1.111 * The maximum stolen->joining link depth allowed in tryHelpStealer.
607     * Depths for legitimate chains are unbounded, but we use a fixed
608     * constant to avoid (otherwise unchecked) cycles and to bound
609     * staleness of traversal parameters at the expense of sometimes
610     * blocking when we could be helping.
611     */
612     private static final int MAX_HELP_DEPTH = 16;
613    
614     /*
615     * Field layout order in this class tends to matter more than one
616     * would like. Runtime layout order is only loosely related to
617     * declaration order and may differ across JVMs, but the following
618     * empirically works OK on current JVMs.
619     */
620    
621     volatile long ctl; // main pool control
622     final int parallelism; // parallelism level
623     final int localMode; // per-worker scheduling mode
624     int nextPoolIndex; // hint used in registerWorker
625     volatile int runState; // shutdown status, seq, and mask
626     WorkQueue[] workQueues; // main registry
627     final ReentrantLock lock; // for registration
628     final Condition termination; // for awaitTermination
629     final ForkJoinWorkerThreadFactory factory; // factory for new workers
630     final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
631     final AtomicLong stealCount; // collect counts when terminated
632     final AtomicInteger nextWorkerNumber; // to create worker name string
633     final String workerNamePrefix; // Prefix for assigning worker names
634    
635     /**
636     * Queues supporting work-stealing as well as external task
637     * submission. See above for main rationale and algorithms.
638     * Implementation relies heavily on "Unsafe" intrinsics
639     * and selective use of "volatile":
640     *
641     * Field "base" is the index (mod array.length) of the least valid
642     * queue slot, which is always the next position to steal (poll)
643     * from if nonempty. Reads and writes require volatile orderings
644     * but not CAS, because updates are only performed after slot
645     * CASes.
646     *
647     * Field "top" is the index (mod array.length) of the next queue
648     * slot to push to or pop from. It is written only by owner thread
649     * for push, or under lock for trySharedPush, and accessed by
650     * other threads only after reading (volatile) base. Both top and
651     * base are allowed to wrap around on overflow, but (top - base)
652 jsr166 1.114 * (or more commonly -(base - top) to force volatile read of base
653 dl 1.111 * before top) still estimates size.
654     *
655     * The array slots are read and written using the emulation of
656     * volatiles/atomics provided by Unsafe. Insertions must in
657     * general use putOrderedObject as a form of releasing store to
658     * ensure that all writes to the task object are ordered before
659     * its publication in the queue. (Although we can avoid one case
660     * of this when locked in trySharedPush.) All removals entail a
661     * CAS to null. The array is always a power of two. To ensure
662     * safety of Unsafe array operations, all accesses perform
663     * explicit null checks and implicit bounds checks via
664     * power-of-two masking.
665     *
666     * In addition to basic queuing support, this class contains
667     * fields described elsewhere to control execution. It turns out
668     * to work better memory-layout-wise to include them in this
669     * class rather than a separate class.
670     *
671     * Performance on most platforms is very sensitive to placement of
672     * instances of both WorkQueues and their arrays -- we absolutely
673     * do not want multiple WorkQueue instances or multiple queue
674     * arrays sharing cache lines. (It would be best for queue objects
675     * and their arrays to share, but there is nothing available to
676     * help arrange that). Unfortunately, because they are recorded
677     * in a common array, WorkQueue instances are often moved to be
678     * adjacent by garbage collectors. To reduce impact, we use field
679     * padding that works OK on common platforms; this effectively
680     * trades off slightly slower average field access for the sake of
681     * avoiding really bad worst-case access. (Until better JVM
682     * support is in place, this padding is dependent on transient
683     * properties of JVM field layout rules.) We also take care in
684     * allocating and sizing and resizing the array. Non-shared queue
685     * arrays are initialized (via method growArray) by workers before
686     * use. Others are allocated on first use.
687 dl 1.53 */
688 dl 1.111 static final class WorkQueue {
689     /**
690     * Capacity of work-stealing queue array upon initialization.
691     * Must be a power of two; at least 4, but set larger to
692     * reduce cacheline sharing among queues.
693     */
694     static final int INITIAL_QUEUE_CAPACITY = 1 << 8;
695    
696     /**
697     * Maximum size for queue arrays. Must be a power of two less
698     * than or equal to 1 << (31 - width of array entry) to ensure
699     * lack of wraparound of index calculations, but defined to a
700     * value a bit less than this to help users trap runaway
701     * programs before saturating systems.
702     */
703     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
704    
705     volatile long totalSteals; // cumulative number of steals
706     int seed; // for random scanning; initialize nonzero
707     volatile int eventCount; // encoded inactivation count; < 0 if inactive
708     int nextWait; // encoded record of next event waiter
709     int rescans; // remaining scans until block
710     int nsteals; // top-level task executions since last idle
711     final int mode; // lifo, fifo, or shared
712     int poolIndex; // index of this queue in pool (or 0)
713     int stealHint; // index of most recent known stealer
714     volatile int runState; // 1: locked, -1: terminate; else 0
715     volatile int base; // index of next slot for poll
716     int top; // index of next slot for push
717     ForkJoinTask<?>[] array; // the elements (initially unallocated)
718     final ForkJoinWorkerThread owner; // owning thread or null if shared
719     volatile Thread parker; // == owner during call to park; else null
720     ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
721     ForkJoinTask<?> currentSteal; // current non-local task being executed
722     // Heuristic padding to ameliorate unfortunate memory placements
723     Object p00, p01, p02, p03, p04, p05, p06, p07, p08, p09, p0a;
724    
725     WorkQueue(ForkJoinWorkerThread owner, int mode) {
726     this.owner = owner;
727     this.mode = mode;
728     // Place indices in the center of array (that is not yet allocated)
729     base = top = INITIAL_QUEUE_CAPACITY >>> 1;
730     }
731    
732     /**
733     * Returns number of tasks in the queue
734     */
735     final int queueSize() {
736     int n = base - top; // non-owner callers must read base first
737     return (n >= 0) ? 0 : -n;
738     }
739    
740     /**
741     * Pushes a task. Call only by owner in unshared queues.
742     *
743     * @param task the task. Caller must ensure non-null.
744     * @param p, if non-null, pool to signal if necessary
745     * @throw RejectedExecutionException if array cannot
746     * be resized
747     */
748     final void push(ForkJoinTask<?> task, ForkJoinPool p) {
749     ForkJoinTask<?>[] a;
750     int s = top, m, n;
751     if ((a = array) != null) { // ignore if queue removed
752     U.putOrderedObject
753     (a, (((m = a.length - 1) & s) << ASHIFT) + ABASE, task);
754     if ((n = (top = s + 1) - base) <= 2) {
755     if (p != null)
756     p.signalWork();
757     }
758     else if (n >= m)
759     growArray(true);
760     }
761     }
762    
763     /**
764     * Pushes a task if lock is free and array is either big
765     * enough or can be resized to be big enough.
766     *
767     * @param task the task. Caller must ensure non-null.
768     * @return true if submitted
769     */
770     final boolean trySharedPush(ForkJoinTask<?> task) {
771     boolean submitted = false;
772     if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
773     ForkJoinTask<?>[] a = array;
774     int s = top, n = s - base;
775     try {
776     if ((a != null && n < a.length - 1) ||
777     (a = growArray(false)) != null) { // must presize
778     int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
779     U.putObject(a, (long)j, task); // don't need "ordered"
780     top = s + 1;
781     submitted = true;
782     }
783     } finally {
784     runState = 0; // unlock
785     }
786     }
787     return submitted;
788     }
789    
790     /**
791     * Takes next task, if one exists, in FIFO order.
792     */
793     final ForkJoinTask<?> poll() {
794     ForkJoinTask<?>[] a; int b, i;
795     while ((b = base) - top < 0 && (a = array) != null &&
796     (i = (a.length - 1) & b) >= 0) {
797     int j = (i << ASHIFT) + ABASE;
798     ForkJoinTask<?> t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
799     if (t != null && base == b &&
800     U.compareAndSwapObject(a, j, t, null)) {
801     base = b + 1;
802     return t;
803     }
804     }
805     return null;
806     }
807    
808     /**
809     * Takes next task, if one exists, in LIFO order.
810     * Call only by owner in unshared queues.
811     */
812     final ForkJoinTask<?> pop() {
813     ForkJoinTask<?> t; int m;
814     ForkJoinTask<?>[] a = array;
815     if (a != null && (m = a.length - 1) >= 0) {
816     for (int s; (s = top - 1) - base >= 0;) {
817     int j = ((m & s) << ASHIFT) + ABASE;
818     if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) == null)
819     break;
820     if (U.compareAndSwapObject(a, j, t, null)) {
821     top = s;
822     return t;
823     }
824     }
825     }
826     return null;
827     }
828    
829     /**
830     * Takes next task, if one exists, in order specified by mode.
831     */
832     final ForkJoinTask<?> nextLocalTask() {
833     return mode == 0 ? pop() : poll();
834     }
835    
836     /**
837     * Returns next task, if one exists, in order specified by mode.
838     */
839     final ForkJoinTask<?> peek() {
840     ForkJoinTask<?>[] a = array; int m;
841     if (a == null || (m = a.length - 1) < 0)
842     return null;
843     int i = mode == 0 ? top - 1 : base;
844     int j = ((i & m) << ASHIFT) + ABASE;
845     return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
846     }
847    
848     /**
849     * Returns task at index b if b is current base of queue.
850     */
851     final ForkJoinTask<?> pollAt(int b) {
852     ForkJoinTask<?>[] a; int i;
853     ForkJoinTask<?> task = null;
854     if ((a = array) != null && (i = ((a.length - 1) & b)) >= 0) {
855     int j = (i << ASHIFT) + ABASE;
856     ForkJoinTask<?> t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
857     if (t != null && base == b &&
858     U.compareAndSwapObject(a, j, t, null)) {
859     base = b + 1;
860     task = t;
861     }
862     }
863     return task;
864     }
865    
866     /**
867     * Pops the given task only if it is at the current top.
868     */
869     final boolean tryUnpush(ForkJoinTask<?> t) {
870     ForkJoinTask<?>[] a; int s;
871     if ((a = array) != null && (s = top) != base &&
872     U.compareAndSwapObject
873     (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
874     top = s;
875     return true;
876     }
877     return false;
878     }
879    
880     /**
881     * Polls the given task only if it is at the current base.
882     */
883     final boolean pollFor(ForkJoinTask<?> task) {
884     ForkJoinTask<?>[] a; int b, i;
885     if ((b = base) - top < 0 && (a = array) != null &&
886     (i = (a.length - 1) & b) >= 0) {
887     int j = (i << ASHIFT) + ABASE;
888     if (U.getObjectVolatile(a, j) == task && base == b &&
889     U.compareAndSwapObject(a, j, task, null)) {
890     base = b + 1;
891     return true;
892     }
893     }
894     return false;
895     }
896    
897     /**
898     * If present, removes from queue and executes the given task, or
899     * any other cancelled task. Returns (true) immediately on any CAS
900     * or consistency check failure so caller can retry.
901     *
902     * @return false if no progress can be made
903     */
904     final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
905     boolean removed = false, empty = true, progress = true;
906     ForkJoinTask<?>[] a; int m, s, b, n;
907     if ((a = array) != null && (m = a.length - 1) >= 0 &&
908     (n = (s = top) - (b = base)) > 0) {
909     for (ForkJoinTask<?> t;;) { // traverse from s to b
910     int j = ((--s & m) << ASHIFT) + ABASE;
911     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
912     if (t == null) // inconsistent length
913     break;
914     else if (t == task) {
915     if (s + 1 == top) { // pop
916     if (!U.compareAndSwapObject(a, j, task, null))
917     break;
918     top = s;
919     removed = true;
920     }
921     else if (base == b) // replace with proxy
922     removed = U.compareAndSwapObject(a, j, task,
923     new EmptyTask());
924     break;
925     }
926     else if (t.status >= 0)
927     empty = false;
928     else if (s + 1 == top) { // pop and throw away
929     if (U.compareAndSwapObject(a, j, t, null))
930     top = s;
931     break;
932     }
933     if (--n == 0) {
934     if (!empty && base == b)
935     progress = false;
936     break;
937     }
938     }
939     }
940     if (removed)
941     task.doExec();
942     return progress;
943     }
944    
945     /**
946     * Initializes or doubles the capacity of array. Call either
947     * by owner or with lock held -- it is OK for base, but not
948     * top, to move while resizings are in progress.
949     *
950     * @param rejectOnFailure if true, throw exception if capacity
951     * exceeded (relayed ultimately to user); else return null.
952     */
953     final ForkJoinTask<?>[] growArray(boolean rejectOnFailure) {
954     ForkJoinTask<?>[] oldA = array;
955     int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
956     if (size <= MAXIMUM_QUEUE_CAPACITY) {
957     int oldMask, t, b;
958     ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
959     if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
960     (t = top) - (b = base) > 0) {
961     int mask = size - 1;
962     do {
963     ForkJoinTask<?> x;
964     int oldj = ((b & oldMask) << ASHIFT) + ABASE;
965     int j = ((b & mask) << ASHIFT) + ABASE;
966     x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
967     if (x != null &&
968     U.compareAndSwapObject(oldA, oldj, x, null))
969     U.putObjectVolatile(a, j, x);
970     } while (++b != t);
971     }
972     return a;
973     }
974     else if (!rejectOnFailure)
975     return null;
976     else
977     throw new RejectedExecutionException("Queue capacity exceeded");
978     }
979    
980     /**
981     * Removes and cancels all known tasks, ignoring any exceptions
982     */
983     final void cancelAll() {
984     ForkJoinTask.cancelIgnoringExceptions(currentJoin);
985     ForkJoinTask.cancelIgnoringExceptions(currentSteal);
986     for (ForkJoinTask<?> t; (t = poll()) != null; )
987     ForkJoinTask.cancelIgnoringExceptions(t);
988     }
989    
990     // Execution methods
991    
992     /**
993     * Removes and runs tasks until empty, using local mode
994     * ordering.
995     */
996     final void runLocalTasks() {
997     if (base - top < 0) {
998     for (ForkJoinTask<?> t; (t = nextLocalTask()) != null; )
999     t.doExec();
1000     }
1001     }
1002    
1003     /**
1004     * Executes a top-level task and any local tasks remaining
1005     * after execution.
1006     *
1007     * @return true unless terminating
1008     */
1009     final boolean runTask(ForkJoinTask<?> t) {
1010     boolean alive = true;
1011     if (t != null) {
1012     currentSteal = t;
1013     t.doExec();
1014     runLocalTasks();
1015     ++nsteals;
1016     currentSteal = null;
1017     }
1018     else if (runState < 0) // terminating
1019     alive = false;
1020     return alive;
1021     }
1022    
1023     /**
1024     * Executes a non-top-level (stolen) task
1025     */
1026     final void runSubtask(ForkJoinTask<?> t) {
1027     if (t != null) {
1028     ForkJoinTask<?> ps = currentSteal;
1029     currentSteal = t;
1030     t.doExec();
1031     currentSteal = ps;
1032     }
1033     }
1034    
1035     /**
1036     * Computes next value for random probes. Scans don't require
1037     * a very high quality generator, but also not a crummy one.
1038     * Marsaglia xor-shift is cheap and works well enough. Note:
1039     * This is manually inlined in several usages in ForkJoinPool
1040     * to avoid writes inside busy scan loops.
1041     */
1042     final int nextSeed() {
1043     int r = seed;
1044     r ^= r << 13;
1045     r ^= r >>> 17;
1046     r ^= r << 5;
1047     return seed = r;
1048     }
1049    
1050     // Unsafe mechanics
1051     private static final sun.misc.Unsafe U;
1052     private static final long RUNSTATE;
1053     private static final int ABASE;
1054     private static final int ASHIFT;
1055     static {
1056     int s;
1057     try {
1058     U = getUnsafe();
1059     Class<?> k = WorkQueue.class;
1060     Class<?> ak = ForkJoinTask[].class;
1061     RUNSTATE = U.objectFieldOffset
1062     (k.getDeclaredField("runState"));
1063     ABASE = U.arrayBaseOffset(ak);
1064     s = U.arrayIndexScale(ak);
1065     } catch (Exception e) {
1066     throw new Error(e);
1067     }
1068     if ((s & (s-1)) != 0)
1069     throw new Error("data type scale not a power of two");
1070     ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
1071     }
1072     }
1073 dl 1.53
1074 dl 1.1 /**
1075 dl 1.111 * Class for artificial tasks that are used to replace the target
1076     * of local joins if they are removed from an interior queue slot
1077     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
1078     * actually do anything beyond having a unique identity.
1079 dl 1.1 */
1080 dl 1.111 static final class EmptyTask extends ForkJoinTask<Void> {
1081     EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
1082     public Void getRawResult() { return null; }
1083     public void setRawResult(Void x) {}
1084     public boolean exec() { return true; }
1085     }
1086 dl 1.1
1087     /**
1088 dl 1.111 * Computes a hash code for the given thread. This method is
1089     * expected to provide higher-quality hash codes than those using
1090     * method hashCode().
1091 dl 1.1 */
1092 dl 1.111 static final int hashThread(Thread t) {
1093 jsr166 1.113 long id = (t == null) ? 0L : t.getId(); // Use MurmurHash of thread id
1094 dl 1.111 int h = (int)id ^ (int)(id >>> 32);
1095     h ^= h >>> 16;
1096     h *= 0x85ebca6b;
1097     h ^= h >>> 13;
1098     h *= 0xc2b2ae35;
1099     return h ^ (h >>> 16);
1100     }
1101 dl 1.1
1102     /**
1103 dl 1.111 * Top-level runloop for workers
1104 dl 1.1 */
1105 dl 1.111 final void runWorker(ForkJoinWorkerThread wt) {
1106     WorkQueue w = wt.workQueue;
1107     w.growArray(false); // Initialize queue array and seed in this thread
1108     w.seed = hashThread(Thread.currentThread()) | (1 << 31); // force < 0
1109    
1110     do {} while (w.runTask(scan(w)));
1111     }
1112    
1113     // Creating, registering and deregistering workers
1114 dl 1.6
1115     /**
1116 dl 1.111 * Tries to create and start a worker
1117 dl 1.1 */
1118 dl 1.111 private void addWorker() {
1119     Throwable ex = null;
1120     ForkJoinWorkerThread w = null;
1121     try {
1122     if ((w = factory.newThread(this)) != null) {
1123     w.start();
1124     return;
1125     }
1126     } catch (Throwable e) {
1127     ex = e;
1128     }
1129     deregisterWorker(w, ex);
1130     }
1131 dl 1.1
1132 dl 1.91 /**
1133 dl 1.111 * Callback from ForkJoinWorkerThread constructor to assign a
1134     * public name. This must be separate from registerWorker because
1135     * it is called during the "super" constructor call in
1136     * ForkJoinWorkerThread.
1137 dl 1.91 */
1138 dl 1.111 final String nextWorkerName() {
1139     return workerNamePrefix.concat
1140     (Integer.toString(nextWorkerNumber.addAndGet(1)));
1141     }
1142 dl 1.1
1143     /**
1144 dl 1.111 * Callback from ForkJoinWorkerThread constructor to establish and
1145     * record its WorkQueue
1146     *
1147     * @param wt the worker thread
1148 dl 1.1 */
1149 dl 1.111 final void registerWorker(ForkJoinWorkerThread wt) {
1150     WorkQueue w = wt.workQueue;
1151     ReentrantLock lock = this.lock;
1152     lock.lock();
1153     try {
1154     int k = nextPoolIndex;
1155     WorkQueue[] ws = workQueues;
1156     if (ws != null) { // ignore on shutdown
1157     int n = ws.length;
1158     if (k < 0 || (k & 1) == 0 || k >= n || ws[k] != null) {
1159     for (k = 1; k < n && ws[k] != null; k += 2)
1160     ; // workers are at odd indices
1161     if (k >= n) // resize
1162     workQueues = ws = Arrays.copyOf(ws, n << 1);
1163     }
1164     w.poolIndex = k;
1165     w.eventCount = ~(k >>> 1) & SMASK; // Set up wait count
1166     ws[k] = w; // record worker
1167     nextPoolIndex = k + 2;
1168     int rs = runState;
1169     int m = rs & SMASK; // recalculate runState mask
1170     if (k > m)
1171     m = (m << 1) + 1;
1172     runState = (rs & SHUTDOWN) | ((rs + RS_SEQ) & RS_SEQ_MASK) | m;
1173     }
1174     } finally {
1175     lock.unlock();
1176     }
1177     }
1178 dl 1.58
1179 dl 1.1 /**
1180 dl 1.111 * Final callback from terminating worker, as well as failure to
1181     * construct or start a worker in addWorker. Removes record of
1182     * worker from array, and adjusts counts. If pool is shutting
1183     * down, tries to complete termination.
1184     *
1185     * @param wt the worker thread or null if addWorker failed
1186     * @param ex the exception causing failure, or null if none
1187 dl 1.85 */
1188 dl 1.111 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1189     WorkQueue w = null;
1190     if (wt != null && (w = wt.workQueue) != null) {
1191     w.runState = -1; // ensure runState is set
1192     stealCount.getAndAdd(w.totalSteals + w.nsteals);
1193     int idx = w.poolIndex;
1194     ReentrantLock lock = this.lock;
1195     lock.lock();
1196     try { // remove record from array
1197     WorkQueue[] ws = workQueues;
1198     if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1199     ws[nextPoolIndex = idx] = null;
1200     } finally {
1201     lock.unlock();
1202     }
1203     }
1204    
1205     long c; // adjust ctl counts
1206     do {} while (!U.compareAndSwapLong
1207     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1208     ((c - TC_UNIT) & TC_MASK) |
1209     (c & ~(AC_MASK|TC_MASK)))));
1210    
1211     if (!tryTerminate(false) && w != null) {
1212     w.cancelAll(); // cancel remaining tasks
1213     if (w.array != null) // suppress signal if never ran
1214     signalWork(); // wake up or create replacement
1215     }
1216    
1217     if (ex != null) // rethrow
1218     U.throwException(ex);
1219     }
1220 dl 1.91
1221 dl 1.85
1222 dl 1.111 // Maintaining ctl counts
1223 dl 1.56
1224     /**
1225 dl 1.111 * Increments active count; mainly called upon return from blocking
1226 dl 1.58 */
1227 dl 1.111 final void incrementActiveCount() {
1228 dl 1.91 long c;
1229 dl 1.111 do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1230 dl 1.61 }
1231    
1232     /**
1233 dl 1.111 * Activates or creates a worker
1234 dl 1.53 */
1235 dl 1.91 final void signalWork() {
1236     /*
1237     * The while condition is true if: (there is are too few total
1238     * workers OR there is at least one waiter) AND (there are too
1239     * few active workers OR the pool is terminating). The value
1240     * of e distinguishes the remaining cases: zero (no waiters)
1241     * for create, negative if terminating (in which case do
1242     * nothing), else release a waiter. The secondary checks for
1243     * release (non-null array etc) can fail if the pool begins
1244     * terminating after the test, and don't impose any added cost
1245     * because JVMs must perform null and bounds checks anyway.
1246     */
1247     long c; int e, u;
1248     while ((((e = (int)(c = ctl)) | (u = (int)(c >>> 32))) &
1249 dl 1.111 (INT_SIGN|SHORT_SIGN)) == (INT_SIGN|SHORT_SIGN)) {
1250     WorkQueue[] ws = workQueues; int i; WorkQueue w; Thread p;
1251     if (e == 0) { // add a new worker
1252     if (U.compareAndSwapLong
1253     (this, CTL, c, (long)(((u + UTC_UNIT) & UTC_MASK) |
1254     ((u + UAC_UNIT) & UAC_MASK)) << 32)) {
1255     addWorker();
1256 dl 1.91 break;
1257 dl 1.111 }
1258     }
1259     else if (e > 0 && ws != null &&
1260     (i = ((~e << 1) | 1) & SMASK) < ws.length &&
1261     (w = ws[i]) != null &&
1262     w.eventCount == (e | INT_SIGN)) {
1263     if (U.compareAndSwapLong
1264     (this, CTL, c, (((long)(w.nextWait & E_MASK)) |
1265     ((long)(u + UAC_UNIT) << 32)))) {
1266     w.eventCount = (e + E_SEQ) & E_MASK;
1267     if ((p = w.parker) != null)
1268     U.unpark(p); // release a waiting worker
1269 dl 1.91 break;
1270     }
1271     }
1272 dl 1.111 else
1273 dl 1.91 break;
1274     }
1275 dl 1.53 }
1276    
1277     /**
1278 dl 1.111 * Tries to decrement active count (sometimes implicitly) and
1279     * possibly release or create a compensating worker in preparation
1280     * for blocking. Fails on contention or termination.
1281 dl 1.91 *
1282 dl 1.111 * @return true if the caller can block, else should recheck and retry
1283 dl 1.53 */
1284 dl 1.111 final boolean tryCompensate() {
1285     WorkQueue[] ws; WorkQueue w; Thread p;
1286     int pc = parallelism, e, u, ac, tc, i;
1287     long c = ctl;
1288    
1289     if ((e = (int)c) >= 0) {
1290     if ((ac = ((u = (int)(c >>> 32)) >> UAC_SHIFT)) <= 0 &&
1291     e != 0 && (ws = workQueues) != null &&
1292     (i = ((~e << 1) | 1) & SMASK) < ws.length &&
1293     (w = ws[i]) != null) {
1294     if (w.eventCount == (e | INT_SIGN) &&
1295     U.compareAndSwapLong
1296     (this, CTL, c, ((long)(w.nextWait & E_MASK) |
1297     (c & (AC_MASK|TC_MASK))))) {
1298     w.eventCount = (e + E_SEQ) & E_MASK;
1299     if ((p = w.parker) != null)
1300     U.unpark(p);
1301     return true; // release an idle worker
1302     }
1303     }
1304     else if ((tc = (short)(u >>> UTC_SHIFT)) >= 0 && ac + pc > 1) {
1305     long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1306     if (U.compareAndSwapLong(this, CTL, c, nc))
1307     return true; // no compensation needed
1308     }
1309     else if (tc + pc < MAX_ID) {
1310     long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1311     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1312     addWorker();
1313     return true; // create replacement
1314     }
1315     }
1316 dl 1.53 }
1317 dl 1.111 return false;
1318 dl 1.53 }
1319    
1320 dl 1.111 // Submissions
1321 dl 1.53
1322     /**
1323 dl 1.111 * Unless shutting down, adds the given task to some submission
1324     * queue; using a randomly chosen queue index if the caller is a
1325     * ForkJoinWorkerThread, else one based on caller thread's hash
1326     * code. If no queue exists at the index, one is created. If the
1327     * queue is busy, another is chosen by sweeping through the queues
1328     * array.
1329     */
1330     private void doSubmit(ForkJoinTask<?> task) {
1331     if (task == null)
1332     throw new NullPointerException();
1333     Thread t = Thread.currentThread();
1334     int r = ((t instanceof ForkJoinWorkerThread) ?
1335     ((ForkJoinWorkerThread)t).workQueue.nextSeed() : hashThread(t));
1336     for (;;) {
1337     int rs = runState, m = rs & SMASK;
1338     int j = r &= (m & ~1); // even numbered queues
1339     WorkQueue[] ws = workQueues;
1340     if (rs < 0 || ws == null)
1341     throw new RejectedExecutionException(); // shutting down
1342     if (ws.length > m) { // consistency check
1343     for (WorkQueue q;;) { // circular sweep
1344     if (((q = ws[j]) != null ||
1345     (q = tryAddSharedQueue(j)) != null) &&
1346     q.trySharedPush(task)) {
1347     signalWork();
1348     return;
1349     }
1350     if ((j = (j + 2) & m) == r) {
1351     Thread.yield(); // all queues busy
1352     break;
1353     }
1354 dl 1.91 }
1355     }
1356 dl 1.53 }
1357     }
1358    
1359     /**
1360 dl 1.111 * Tries to add and register a new queue at the given index.
1361 dl 1.91 *
1362 dl 1.111 * @param idx the workQueues array index to register the queue
1363     * @return the queue, or null if could not add because could
1364     * not acquire lock or idx is unusable
1365     */
1366     private WorkQueue tryAddSharedQueue(int idx) {
1367     WorkQueue q = null;
1368     ReentrantLock lock = this.lock;
1369     if (idx >= 0 && (idx & 1) == 0 && !lock.isLocked()) {
1370     // create queue outside of lock but only if apparently free
1371     WorkQueue nq = new WorkQueue(null, SHARED_QUEUE);
1372     if (lock.tryLock()) {
1373     try {
1374     WorkQueue[] ws = workQueues;
1375     if (ws != null && idx < ws.length) {
1376     if ((q = ws[idx]) == null) {
1377     int rs; // update runState seq
1378     ws[idx] = q = nq;
1379     runState = (((rs = runState) & SHUTDOWN) |
1380     ((rs + RS_SEQ) & ~SHUTDOWN));
1381 dl 1.91 }
1382     }
1383 dl 1.111 } finally {
1384     lock.unlock();
1385 dl 1.91 }
1386     }
1387 dl 1.53 }
1388 dl 1.111 return q;
1389 dl 1.53 }
1390    
1391 dl 1.111 // Scanning for tasks
1392    
1393 dl 1.53 /**
1394 dl 1.111 * Scans for and, if found, returns one task, else possibly
1395     * inactivates the worker. This method operates on single reads of
1396     * volatile state and is designed to be re-invoked continuously in
1397     * part because it returns upon detecting inconsistencies,
1398     * contention, or state changes that indicate possible success on
1399     * re-invocation.
1400     *
1401     * The scan searches for tasks across queues, randomly selecting
1402     * the first #queues probes, favoring steals 2:1 over submissions
1403     * (by exploiting even/odd indexing), and then performing a
1404     * circular sweep of all queues. The scan terminates upon either
1405     * finding a non-empty queue, or completing a full sweep. If the
1406     * worker is not inactivated, it takes and returns a task from
1407     * this queue. On failure to find a task, we take one of the
1408     * following actions, after which the caller will retry calling
1409     * this method unless terminated.
1410     *
1411     * * If not a complete sweep, try to release a waiting worker. If
1412     * the scan terminated because the worker is inactivated, then the
1413     * released worker will often be the calling worker, and it can
1414     * succeed obtaining a task on the next call. Or maybe it is
1415     * another worker, but with same net effect. Releasing in other
1416     * cases as well ensures that we have enough workers running.
1417     *
1418     * * If the caller has run a task since the the last empty scan,
1419     * return (to allow rescan) if other workers are not also yet
1420     * enqueued. Field WorkQueue.rescans counts down on each scan to
1421     * ensure eventual inactivation, and occasional calls to
1422     * Thread.yield to help avoid interference with more useful
1423     * activities on the system.
1424     *
1425     * * If pool is terminating, terminate the worker
1426     *
1427     * * If not already enqueued, try to inactivate and enqueue the
1428     * worker on wait queue.
1429     *
1430     * * If already enqueued and none of the above apply, either park
1431     * awaiting signal, or if this is the most recent waiter and pool
1432     * is quiescent, relay to idleAwaitWork to check for termination
1433     * and possibly shrink pool.
1434     *
1435     * @param w the worker (via its WorkQueue)
1436     * @return a task or null of none found
1437     */
1438     private final ForkJoinTask<?> scan(WorkQueue w) {
1439     boolean swept = false; // true after full empty scan
1440     WorkQueue[] ws; // volatile read order matters
1441     int r = w.seed, ec = w.eventCount; // ec is negative if inactive
1442     int rs = runState, m = rs & SMASK;
1443     if ((ws = workQueues) != null && ws.length > m) {
1444     ForkJoinTask<?> task = null;
1445     for (int k = 0, j = -2 - m; ; ++j) {
1446     WorkQueue q; int b;
1447     if (j < 0) { // random probes while j negative
1448     r ^= r << 13; r ^= r >>> 17; k = (r ^= r << 5) | (j & 1);
1449     } // worker (not submit) for odd j
1450     else // cyclic scan when j >= 0
1451     k += (m >>> 1) | 1; // step by half to reduce bias
1452    
1453     if ((q = ws[k & m]) != null && (b = q.base) - q.top < 0) {
1454     if (ec >= 0)
1455     task = q.pollAt(b); // steal
1456 dl 1.93 break;
1457 dl 1.111 }
1458     else if (j > m) {
1459     if (rs == runState) // staleness check
1460     swept = true;
1461 dl 1.93 break;
1462 dl 1.91 }
1463     }
1464 dl 1.111 w.seed = r; // save seed for next scan
1465     if (task != null)
1466     return task;
1467     }
1468    
1469     // Decode ctl on empty scan
1470     long c = ctl; int e = (int)c, a = (int)(c >> AC_SHIFT), nr, ns;
1471     if (!swept) { // try to release a waiter
1472     WorkQueue v; Thread p;
1473     if (e > 0 && a < 0 && ws != null &&
1474     (v = ws[((~e << 1) | 1) & m]) != null &&
1475     v.eventCount == (e | INT_SIGN) && U.compareAndSwapLong
1476     (this, CTL, c, ((long)(v.nextWait & E_MASK) |
1477     ((c + AC_UNIT) & (AC_MASK|TC_MASK))))) {
1478     v.eventCount = (e + E_SEQ) & E_MASK;
1479     if ((p = v.parker) != null)
1480     U.unpark(p);
1481     }
1482     }
1483     else if ((nr = w.rescans) > 0) { // continue rescanning
1484     int ac = a + parallelism;
1485     if ((w.rescans = (ac < nr) ? ac : nr - 1) > 0 && w.seed < 0 &&
1486     w.eventCount == ec)
1487     Thread.yield(); // 1 bit randomness for yield call
1488     }
1489     else if (e < 0) // pool is terminating
1490     w.runState = -1;
1491     else if (ec >= 0) { // try to enqueue
1492     long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1493     w.nextWait = e;
1494     w.eventCount = ec | INT_SIGN; // mark as inactive
1495     if (!U.compareAndSwapLong(this, CTL, c, nc))
1496     w.eventCount = ec; // back out on CAS failure
1497     else if ((ns = w.nsteals) != 0) { // set rescans if ran task
1498     if (a <= 0) // ... unless too many active
1499     w.rescans = a + parallelism;
1500     w.nsteals = 0;
1501     w.totalSteals += ns;
1502     }
1503     }
1504     else{ // already queued
1505     if (parallelism == -a)
1506     idleAwaitWork(w); // quiescent
1507     if (w.eventCount == ec) {
1508     Thread.interrupted(); // clear status
1509     ForkJoinWorkerThread wt = w.owner;
1510     U.putObject(wt, PARKBLOCKER, this);
1511     w.parker = wt; // emulate LockSupport.park
1512     if (w.eventCount == ec) // recheck
1513     U.park(false, 0L); // block
1514     w.parker = null;
1515     U.putObject(wt, PARKBLOCKER, null);
1516     }
1517 dl 1.91 }
1518 dl 1.111 return null;
1519 dl 1.53 }
1520    
1521     /**
1522 dl 1.111 * If inactivating worker w has caused pool to become quiescent,
1523     * check for pool termination, and, so long as this is not the
1524     * only worker, wait for event for up to SHRINK_RATE nanosecs On
1525     * timeout, if ctl has not changed, terminate the worker, which
1526     * will in turn wake up another worker to possibly repeat this
1527     * process.
1528 dl 1.91 *
1529 dl 1.111 * @param w the calling worker
1530 dl 1.53 */
1531 dl 1.111 private void idleAwaitWork(WorkQueue w) {
1532     long c; int nw, ec;
1533     if (!tryTerminate(false) &&
1534     (int)((c = ctl) >> AC_SHIFT) + parallelism == 0 &&
1535     (ec = w.eventCount) == ((int)c | INT_SIGN) &&
1536     (nw = w.nextWait) != 0) {
1537     long nc = ((long)(nw & E_MASK) | // ctl to restore on timeout
1538     ((c + AC_UNIT) & AC_MASK) | (c & TC_MASK));
1539     ForkJoinTask.helpExpungeStaleExceptions(); // help clean
1540     ForkJoinWorkerThread wt = w.owner;
1541     while (ctl == c) {
1542     long startTime = System.nanoTime();
1543     Thread.interrupted(); // timed variant of version in scan()
1544     U.putObject(wt, PARKBLOCKER, this);
1545     w.parker = wt;
1546     if (ctl == c)
1547     U.park(false, SHRINK_RATE);
1548     w.parker = null;
1549     U.putObject(wt, PARKBLOCKER, null);
1550     if (ctl != c)
1551     break;
1552     if (System.nanoTime() - startTime >= SHRINK_TIMEOUT &&
1553     U.compareAndSwapLong(this, CTL, c, nc)) {
1554     w.runState = -1; // shrink
1555     w.eventCount = (ec + E_SEQ) | E_MASK;
1556     break;
1557     }
1558 dl 1.66 }
1559 dl 1.53 }
1560     }
1561    
1562     /**
1563 dl 1.111 * Tries to locate and execute tasks for a stealer of the given
1564     * task, or in turn one of its stealers, Traces currentSteal ->
1565     * currentJoin links looking for a thread working on a descendant
1566     * of the given task and with a non-empty queue to steal back and
1567     * execute tasks from. The first call to this method upon a
1568     * waiting join will often entail scanning/search, (which is OK
1569     * because the joiner has nothing better to do), but this method
1570     * leaves hints in workers to speed up subsequent calls. The
1571     * implementation is very branchy to cope with potential
1572     * inconsistencies or loops encountering chains that are stale,
1573     * unknown, or of length greater than MAX_HELP_DEPTH links. All
1574     * of these cases are dealt with by just retrying by caller.
1575     *
1576     * @param joiner the joining worker
1577     * @param task the task to join
1578     * @return true if found or ran a task (and so is immediately retryable)
1579     */
1580     final boolean tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1581     ForkJoinTask<?> subtask; // current target
1582     boolean progress = false;
1583     int depth = 0; // current chain depth
1584     int m = runState & SMASK;
1585     WorkQueue[] ws = workQueues;
1586    
1587     if (ws != null && ws.length > m && (subtask = task).status >= 0) {
1588     outer:for (WorkQueue j = joiner;;) {
1589     // Try to find the stealer of subtask, by first using hint
1590     WorkQueue stealer = null;
1591     WorkQueue v = ws[j.stealHint & m];
1592     if (v != null && v.currentSteal == subtask)
1593     stealer = v;
1594     else {
1595     for (int i = 1; i <= m; i += 2) {
1596     if ((v = ws[i]) != null && v.currentSteal == subtask) {
1597     stealer = v;
1598     j.stealHint = i; // save hint
1599     break;
1600     }
1601     }
1602     if (stealer == null)
1603     break;
1604     }
1605 dl 1.64
1606 dl 1.111 for (WorkQueue q = stealer;;) { // Try to help stealer
1607     ForkJoinTask<?> t; int b;
1608     if (task.status < 0)
1609     break outer;
1610     if ((b = q.base) - q.top < 0) {
1611     progress = true;
1612     if (subtask.status < 0)
1613     break outer; // stale
1614     if ((t = q.pollAt(b)) != null) {
1615     stealer.stealHint = joiner.poolIndex;
1616     joiner.runSubtask(t);
1617     }
1618 dl 1.91 }
1619 dl 1.111 else { // empty - try to descend to find stealer's stealer
1620     ForkJoinTask<?> next = stealer.currentJoin;
1621     if (++depth == MAX_HELP_DEPTH || subtask.status < 0 ||
1622     next == null || next == subtask)
1623     break outer; // max depth, stale, dead-end, cyclic
1624     subtask = next;
1625     j = stealer;
1626     break;
1627 dl 1.91 }
1628 dl 1.61 }
1629 dl 1.111 }
1630 dl 1.53 }
1631 dl 1.111 return progress;
1632 dl 1.64 }
1633    
1634 dl 1.91 /**
1635 dl 1.111 * If task is at base of some steal queue, steals and executes it.
1636 dl 1.91 *
1637 dl 1.111 * @param joiner the joining worker
1638     * @param task the task
1639 dl 1.61 */
1640 dl 1.111 final void tryPollForAndExec(WorkQueue joiner, ForkJoinTask<?> task) {
1641     WorkQueue[] ws;
1642     int m = runState & SMASK;
1643     if ((ws = workQueues) != null && ws.length > m) {
1644     for (int j = 1; j <= m && task.status >= 0; j += 2) {
1645     WorkQueue q = ws[j];
1646     if (q != null && q.pollFor(task)) {
1647     joiner.runSubtask(task);
1648     break;
1649     }
1650 dl 1.91 }
1651     }
1652 dl 1.61 }
1653    
1654     /**
1655 dl 1.112 * Returns a non-empty steal queue, if one is found during a random,
1656 dl 1.111 * then cyclic scan, else null. This method must be retried by
1657     * caller if, by the time it tries to use the queue, it is empty.
1658     */
1659     private WorkQueue findNonEmptyStealQueue(WorkQueue w) {
1660     int r = w.seed; // Same idea as scan(), but ignoring submissions
1661     for (WorkQueue[] ws;;) {
1662     int m = runState & SMASK;
1663     if ((ws = workQueues) == null)
1664     return null;
1665     if (ws.length > m) {
1666     WorkQueue q;
1667     for (int n = m << 2, k = r, j = -n;;) {
1668     r ^= r << 13; r ^= r >>> 17; r ^= r << 5;
1669     if ((q = ws[(k | 1) & m]) != null && q.base - q.top < 0) {
1670     w.seed = r;
1671     return q;
1672 dl 1.91 }
1673 dl 1.111 else if (j > n)
1674     return null;
1675     else
1676     k = (j++ < 0) ? r : k + ((m >>> 1) | 1);
1677    
1678 dl 1.91 }
1679     }
1680 dl 1.64 }
1681     }
1682    
1683     /**
1684 dl 1.111 * Runs tasks until {@code isQuiescent()}. We piggyback on
1685     * active count ctl maintenance, but rather than blocking
1686     * when tasks cannot be found, we rescan until all others cannot
1687     * find tasks either.
1688     */
1689     final void helpQuiescePool(WorkQueue w) {
1690     for (boolean active = true;;) {
1691     w.runLocalTasks(); // exhaust local queue
1692     WorkQueue q = findNonEmptyStealQueue(w);
1693     if (q != null) {
1694     ForkJoinTask<?> t;
1695     if (!active) { // re-establish active count
1696     long c;
1697     active = true;
1698     do {} while (!U.compareAndSwapLong
1699     (this, CTL, c = ctl, c + AC_UNIT));
1700     }
1701     if ((t = q.poll()) != null)
1702     w.runSubtask(t);
1703     }
1704     else {
1705     long c;
1706     if (active) { // decrement active count without queuing
1707     active = false;
1708     do {} while (!U.compareAndSwapLong
1709     (this, CTL, c = ctl, c -= AC_UNIT));
1710     }
1711     else
1712     c = ctl; // re-increment on exit
1713     if ((int)(c >> AC_SHIFT) + parallelism == 0) {
1714     do {} while (!U.compareAndSwapLong
1715     (this, CTL, c = ctl, c + AC_UNIT));
1716     break;
1717 dl 1.66 }
1718 dl 1.64 }
1719     }
1720     }
1721    
1722     /**
1723 dl 1.111 * Gets and removes a local or stolen task for the given worker
1724     *
1725     * @return a task, if available
1726 dl 1.64 */
1727 dl 1.111 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
1728     for (ForkJoinTask<?> t;;) {
1729     WorkQueue q;
1730     if ((t = w.nextLocalTask()) != null)
1731     return t;
1732     if ((q = findNonEmptyStealQueue(w)) == null)
1733     return null;
1734     if ((t = q.poll()) != null)
1735     return t;
1736 dl 1.91 }
1737 dl 1.61 }
1738    
1739 dl 1.53 /**
1740 dl 1.111 * Returns the approximate (non-atomic) number of idle threads per
1741     * active thread to offset steal queue size for method
1742     * ForkJoinTask.getSurplusQueuedTaskCount().
1743 dl 1.53 */
1744 dl 1.111 final int idlePerActive() {
1745     // Approximate at powers of two for small values, saturate past 4
1746     int p = parallelism;
1747     int a = p + (int)(ctl >> AC_SHIFT);
1748     return (a > (p >>>= 1) ? 0 :
1749     a > (p >>>= 1) ? 1 :
1750     a > (p >>>= 1) ? 2 :
1751     a > (p >>>= 1) ? 4 :
1752     8);
1753 dl 1.53 }
1754    
1755 dl 1.111 // Termination
1756 dl 1.53
1757     /**
1758 dl 1.111 * Sets SHUTDOWN bit of runState under lock
1759 dl 1.53 */
1760 dl 1.111 private void enableShutdown() {
1761     ReentrantLock lock = this.lock;
1762     if (runState >= 0) {
1763     lock.lock(); // don't need try/finally
1764     runState |= SHUTDOWN;
1765     lock.unlock();
1766 dl 1.53 }
1767 dl 1.59 }
1768 dl 1.54
1769     /**
1770 dl 1.111 * Possibly initiates and/or completes termination. Upon
1771     * termination, cancels all queued tasks and then
1772 dl 1.53 *
1773     * @param now if true, unconditionally terminate, else only
1774 dl 1.111 * if no work and no active workers
1775 dl 1.53 * @return true if now terminating or terminated
1776 dl 1.1 */
1777 dl 1.53 private boolean tryTerminate(boolean now) {
1778 dl 1.111 for (long c;;) {
1779     if (((c = ctl) & STOP_BIT) != 0) { // already terminating
1780     if ((short)(c >>> TC_SHIFT) == -parallelism) {
1781     ReentrantLock lock = this.lock; // signal when no workers
1782     lock.lock(); // don't need try/finally
1783     termination.signalAll(); // signal when 0 workers
1784     lock.unlock();
1785     }
1786     return true;
1787     }
1788 dl 1.91 if (!now) {
1789 dl 1.111 if ((int)(c >> AC_SHIFT) != -parallelism || runState >= 0 ||
1790     hasQueuedSubmissions())
1791 dl 1.91 return false;
1792 dl 1.111 // Check for unqueued inactive workers. One pass suffices.
1793     WorkQueue[] ws = workQueues; WorkQueue w;
1794     if (ws != null) {
1795     int n = ws.length;
1796     for (int i = 1; i < n; i += 2) {
1797     if ((w = ws[i]) != null && w.eventCount >= 0)
1798     return false;
1799     }
1800 dl 1.91 }
1801     }
1802 dl 1.111 if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT))
1803 dl 1.91 startTerminating();
1804     }
1805 dl 1.1 }
1806    
1807     /**
1808 dl 1.111 * Initiates termination: Runs three passes through workQueues:
1809     * (0) Setting termination status, followed by wakeups of queued
1810     * workers; (1) cancelling all tasks; (2) interrupting lagging
1811     * threads (likely in external tasks, but possibly also blocked in
1812     * joins). Each pass repeats previous steps because of potential
1813     * lagging thread creation.
1814 dl 1.53 */
1815     private void startTerminating() {
1816 dl 1.91 for (int pass = 0; pass < 3; ++pass) {
1817 dl 1.111 WorkQueue[] ws = workQueues;
1818 dl 1.91 if (ws != null) {
1819 dl 1.111 WorkQueue w; Thread wt;
1820     int n = ws.length;
1821     for (int j = 0; j < n; ++j) {
1822     if ((w = ws[j]) != null) {
1823     w.runState = -1;
1824 dl 1.91 if (pass > 0) {
1825 dl 1.111 w.cancelAll();
1826     if (pass > 1 && (wt = w.owner) != null &&
1827     !wt.isInterrupted()) {
1828 dl 1.91 try {
1829 dl 1.111 wt.interrupt();
1830 dl 1.91 } catch (SecurityException ignore) {
1831     }
1832 dl 1.61 }
1833     }
1834     }
1835     }
1836 dl 1.111 // Wake up workers parked on event queue
1837     int i, e; long c; Thread p;
1838     while ((i = ((~(e = (int)(c = ctl)) << 1) | 1) & SMASK) < n &&
1839     (w = ws[i]) != null &&
1840     w.eventCount == (e | INT_SIGN)) {
1841     long nc = ((long)(w.nextWait & E_MASK) |
1842     ((c + AC_UNIT) & AC_MASK) |
1843     (c & (TC_MASK|STOP_BIT)));
1844     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1845     w.eventCount = (e + E_SEQ) & E_MASK;
1846     if ((p = w.parker) != null)
1847     U.unpark(p);
1848     }
1849 dl 1.91 }
1850 dl 1.53 }
1851     }
1852 dl 1.56 }
1853    
1854 dl 1.91 // Exported methods
1855 dl 1.1
1856     // Constructors
1857    
1858     /**
1859 dl 1.42 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1860 dl 1.57 * java.lang.Runtime#availableProcessors}, using the {@linkplain
1861     * #defaultForkJoinWorkerThreadFactory default thread factory},
1862     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1863 jsr166 1.17 *
1864 dl 1.1 * @throws SecurityException if a security manager exists and
1865     * the caller is not permitted to modify threads
1866     * because it does not hold {@link
1867 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1868 dl 1.1 */
1869     public ForkJoinPool() {
1870     this(Runtime.getRuntime().availableProcessors(),
1871 dl 1.57 defaultForkJoinWorkerThreadFactory, null, false);
1872 dl 1.1 }
1873    
1874     /**
1875 dl 1.42 * Creates a {@code ForkJoinPool} with the indicated parallelism
1876 dl 1.57 * level, the {@linkplain
1877     * #defaultForkJoinWorkerThreadFactory default thread factory},
1878     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1879 jsr166 1.17 *
1880 dl 1.42 * @param parallelism the parallelism level
1881 dl 1.1 * @throws IllegalArgumentException if parallelism less than or
1882 jsr166 1.47 * equal to zero, or greater than implementation limit
1883 dl 1.1 * @throws SecurityException if a security manager exists and
1884     * the caller is not permitted to modify threads
1885     * because it does not hold {@link
1886 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1887 dl 1.1 */
1888     public ForkJoinPool(int parallelism) {
1889 dl 1.57 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1890 dl 1.1 }
1891    
1892     /**
1893 dl 1.57 * Creates a {@code ForkJoinPool} with the given parameters.
1894 jsr166 1.17 *
1895 dl 1.57 * @param parallelism the parallelism level. For default value,
1896     * use {@link java.lang.Runtime#availableProcessors}.
1897     * @param factory the factory for creating new threads. For default value,
1898     * use {@link #defaultForkJoinWorkerThreadFactory}.
1899 dl 1.59 * @param handler the handler for internal worker threads that
1900     * terminate due to unrecoverable errors encountered while executing
1901 jsr166 1.73 * tasks. For default value, use {@code null}.
1902 dl 1.59 * @param asyncMode if true,
1903 dl 1.57 * establishes local first-in-first-out scheduling mode for forked
1904     * tasks that are never joined. This mode may be more appropriate
1905     * than default locally stack-based mode in applications in which
1906     * worker threads only process event-style asynchronous tasks.
1907 jsr166 1.73 * For default value, use {@code false}.
1908 dl 1.1 * @throws IllegalArgumentException if parallelism less than or
1909 jsr166 1.47 * equal to zero, or greater than implementation limit
1910 jsr166 1.48 * @throws NullPointerException if the factory is null
1911 dl 1.1 * @throws SecurityException if a security manager exists and
1912     * the caller is not permitted to modify threads
1913     * because it does not hold {@link
1914 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1915 dl 1.1 */
1916 dl 1.59 public ForkJoinPool(int parallelism,
1917 dl 1.57 ForkJoinWorkerThreadFactory factory,
1918     Thread.UncaughtExceptionHandler handler,
1919     boolean asyncMode) {
1920 dl 1.53 checkPermission();
1921     if (factory == null)
1922     throw new NullPointerException();
1923 dl 1.91 if (parallelism <= 0 || parallelism > MAX_ID)
1924 dl 1.1 throw new IllegalArgumentException();
1925 dl 1.53 this.parallelism = parallelism;
1926 dl 1.1 this.factory = factory;
1927 dl 1.57 this.ueh = handler;
1928 dl 1.111 this.localMode = asyncMode ? FIFO_QUEUE : LIFO_QUEUE;
1929     this.nextPoolIndex = 1;
1930 dl 1.91 long np = (long)(-parallelism); // offset ctl counts
1931     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
1932 dl 1.111 // initialize workQueues array with room for 2*parallelism if possible
1933 dl 1.91 int n = parallelism << 1;
1934     if (n >= MAX_ID)
1935     n = MAX_ID;
1936     else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
1937     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8;
1938     }
1939 dl 1.111 this.workQueues = new WorkQueue[(n + 1) << 1];
1940     ReentrantLock lck = this.lock = new ReentrantLock();
1941     this.termination = lck.newCondition();
1942     this.stealCount = new AtomicLong();
1943     this.nextWorkerNumber = new AtomicInteger();
1944 dl 1.91 StringBuilder sb = new StringBuilder("ForkJoinPool-");
1945     sb.append(poolNumberGenerator.incrementAndGet());
1946     sb.append("-worker-");
1947     this.workerNamePrefix = sb.toString();
1948 dl 1.111 // Create initial submission queue
1949     WorkQueue sq = tryAddSharedQueue(0);
1950     if (sq != null)
1951     sq.growArray(false);
1952 dl 1.1 }
1953    
1954     // Execution methods
1955    
1956     /**
1957 jsr166 1.17 * Performs the given task, returning its result upon completion.
1958 dl 1.91 * If the computation encounters an unchecked Exception or Error,
1959     * it is rethrown as the outcome of this invocation. Rethrown
1960     * exceptions behave in the same way as regular exceptions, but,
1961     * when possible, contain stack traces (as displayed for example
1962     * using {@code ex.printStackTrace()}) of both the current thread
1963     * as well as the thread actually encountering the exception;
1964     * minimally only the latter.
1965 jsr166 1.17 *
1966 dl 1.1 * @param task the task
1967     * @return the task's result
1968 jsr166 1.48 * @throws NullPointerException if the task is null
1969     * @throws RejectedExecutionException if the task cannot be
1970     * scheduled for execution
1971 dl 1.1 */
1972     public <T> T invoke(ForkJoinTask<T> task) {
1973 dl 1.111 doSubmit(task);
1974     return task.join();
1975 dl 1.1 }
1976    
1977     /**
1978     * Arranges for (asynchronous) execution of the given task.
1979 jsr166 1.17 *
1980 dl 1.1 * @param task the task
1981 jsr166 1.48 * @throws NullPointerException if the task is null
1982     * @throws RejectedExecutionException if the task cannot be
1983     * scheduled for execution
1984 dl 1.1 */
1985 dl 1.37 public void execute(ForkJoinTask<?> task) {
1986 dl 1.111 doSubmit(task);
1987 dl 1.1 }
1988    
1989     // AbstractExecutorService methods
1990    
1991 jsr166 1.48 /**
1992     * @throws NullPointerException if the task is null
1993     * @throws RejectedExecutionException if the task cannot be
1994     * scheduled for execution
1995     */
1996 dl 1.1 public void execute(Runnable task) {
1997 dl 1.82 if (task == null)
1998     throw new NullPointerException();
1999 dl 1.23 ForkJoinTask<?> job;
2000 jsr166 1.26 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2001     job = (ForkJoinTask<?>) task;
2002 dl 1.23 else
2003 dl 1.33 job = ForkJoinTask.adapt(task, null);
2004 dl 1.111 doSubmit(job);
2005 dl 1.1 }
2006    
2007 jsr166 1.48 /**
2008 dl 1.57 * Submits a ForkJoinTask for execution.
2009     *
2010     * @param task the task to submit
2011     * @return the task
2012     * @throws NullPointerException if the task is null
2013     * @throws RejectedExecutionException if the task cannot be
2014     * scheduled for execution
2015     */
2016     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2017 dl 1.111 doSubmit(task);
2018 dl 1.57 return task;
2019     }
2020    
2021     /**
2022 jsr166 1.48 * @throws NullPointerException if the task is null
2023     * @throws RejectedExecutionException if the task cannot be
2024     * scheduled for execution
2025     */
2026 dl 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2027 dl 1.82 if (task == null)
2028     throw new NullPointerException();
2029 dl 1.33 ForkJoinTask<T> job = ForkJoinTask.adapt(task);
2030 dl 1.111 doSubmit(job);
2031 dl 1.1 return job;
2032     }
2033    
2034 jsr166 1.48 /**
2035     * @throws NullPointerException if the task is null
2036     * @throws RejectedExecutionException if the task cannot be
2037     * scheduled for execution
2038     */
2039 dl 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2040 dl 1.82 if (task == null)
2041     throw new NullPointerException();
2042 dl 1.33 ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
2043 dl 1.111 doSubmit(job);
2044 dl 1.1 return job;
2045     }
2046    
2047 jsr166 1.48 /**
2048     * @throws NullPointerException if the task is null
2049     * @throws RejectedExecutionException if the task cannot be
2050     * scheduled for execution
2051     */
2052 dl 1.1 public ForkJoinTask<?> submit(Runnable task) {
2053 dl 1.82 if (task == null)
2054     throw new NullPointerException();
2055 dl 1.23 ForkJoinTask<?> job;
2056 jsr166 1.26 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2057     job = (ForkJoinTask<?>) task;
2058 dl 1.23 else
2059 dl 1.33 job = ForkJoinTask.adapt(task, null);
2060 dl 1.111 doSubmit(job);
2061 dl 1.1 return job;
2062     }
2063    
2064     /**
2065 jsr166 1.48 * @throws NullPointerException {@inheritDoc}
2066     * @throws RejectedExecutionException {@inheritDoc}
2067     */
2068 dl 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2069 jsr166 1.20 ArrayList<ForkJoinTask<T>> forkJoinTasks =
2070 dl 1.1 new ArrayList<ForkJoinTask<T>>(tasks.size());
2071 jsr166 1.20 for (Callable<T> task : tasks)
2072 dl 1.33 forkJoinTasks.add(ForkJoinTask.adapt(task));
2073 jsr166 1.20 invoke(new InvokeAll<T>(forkJoinTasks));
2074    
2075     @SuppressWarnings({"unchecked", "rawtypes"})
2076 dl 1.54 List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
2077 jsr166 1.20 return futures;
2078 dl 1.1 }
2079    
2080     static final class InvokeAll<T> extends RecursiveAction {
2081     final ArrayList<ForkJoinTask<T>> tasks;
2082     InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
2083     public void compute() {
2084 jsr166 1.17 try { invokeAll(tasks); }
2085     catch (Exception ignore) {}
2086 dl 1.1 }
2087 jsr166 1.18 private static final long serialVersionUID = -7914297376763021607L;
2088 dl 1.1 }
2089    
2090     /**
2091 jsr166 1.17 * Returns the factory used for constructing new workers.
2092 dl 1.1 *
2093     * @return the factory used for constructing new workers
2094     */
2095     public ForkJoinWorkerThreadFactory getFactory() {
2096     return factory;
2097     }
2098    
2099     /**
2100 dl 1.2 * Returns the handler for internal worker threads that terminate
2101     * due to unrecoverable errors encountered while executing tasks.
2102 jsr166 1.17 *
2103 jsr166 1.28 * @return the handler, or {@code null} if none
2104 dl 1.2 */
2105     public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
2106 dl 1.53 return ueh;
2107 dl 1.2 }
2108    
2109     /**
2110 dl 1.42 * Returns the targeted parallelism level of this pool.
2111 dl 1.1 *
2112 dl 1.42 * @return the targeted parallelism level of this pool
2113 dl 1.1 */
2114     public int getParallelism() {
2115     return parallelism;
2116     }
2117    
2118     /**
2119     * Returns the number of worker threads that have started but not
2120 jsr166 1.76 * yet terminated. The result returned by this method may differ
2121 jsr166 1.29 * from {@link #getParallelism} when threads are created to
2122 dl 1.1 * maintain parallelism when others are cooperatively blocked.
2123     *
2124     * @return the number of worker threads
2125     */
2126     public int getPoolSize() {
2127 dl 1.91 return parallelism + (short)(ctl >>> TC_SHIFT);
2128 dl 1.1 }
2129    
2130     /**
2131 jsr166 1.28 * Returns {@code true} if this pool uses local first-in-first-out
2132 jsr166 1.16 * scheduling mode for forked tasks that are never joined.
2133 dl 1.6 *
2134 jsr166 1.28 * @return {@code true} if this pool uses async mode
2135 dl 1.6 */
2136     public boolean getAsyncMode() {
2137 dl 1.111 return localMode != 0;
2138 dl 1.6 }
2139    
2140     /**
2141 dl 1.2 * Returns an estimate of the number of worker threads that are
2142     * not blocked waiting to join tasks or for other managed
2143 dl 1.53 * synchronization. This method may overestimate the
2144     * number of running threads.
2145 dl 1.1 *
2146     * @return the number of worker threads
2147     */
2148     public int getRunningThreadCount() {
2149 dl 1.111 int rc = 0;
2150     WorkQueue[] ws; WorkQueue w;
2151     if ((ws = workQueues) != null) {
2152     int n = ws.length;
2153     for (int i = 1; i < n; i += 2) {
2154     Thread.State s; ForkJoinWorkerThread wt;
2155     if ((w = ws[i]) != null && (wt = w.owner) != null &&
2156     w.eventCount >= 0 &&
2157     (s = wt.getState()) != Thread.State.BLOCKED &&
2158     s != Thread.State.WAITING &&
2159     s != Thread.State.TIMED_WAITING)
2160     ++rc;
2161     }
2162     }
2163     return rc;
2164 dl 1.1 }
2165    
2166     /**
2167 dl 1.2 * Returns an estimate of the number of threads that are currently
2168 dl 1.1 * stealing or executing tasks. This method may overestimate the
2169     * number of active threads.
2170 jsr166 1.17 *
2171 jsr166 1.16 * @return the number of active threads
2172 dl 1.1 */
2173     public int getActiveThreadCount() {
2174 dl 1.111 int r = parallelism + (int)(ctl >> AC_SHIFT);
2175 jsr166 1.102 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2176 dl 1.1 }
2177    
2178     /**
2179 jsr166 1.28 * Returns {@code true} if all worker threads are currently idle.
2180     * An idle worker is one that cannot obtain a task to execute
2181     * because none are available to steal from other threads, and
2182     * there are no pending submissions to the pool. This method is
2183     * conservative; it might not return {@code true} immediately upon
2184     * idleness of all threads, but will eventually become true if
2185     * threads remain inactive.
2186 jsr166 1.17 *
2187 jsr166 1.28 * @return {@code true} if all threads are currently idle
2188 dl 1.1 */
2189     public boolean isQuiescent() {
2190 dl 1.111 return (int)(ctl >> AC_SHIFT) + parallelism == 0;
2191 dl 1.1 }
2192    
2193     /**
2194     * Returns an estimate of the total number of tasks stolen from
2195     * one thread's work queue by another. The reported value
2196     * underestimates the actual total number of steals when the pool
2197     * is not quiescent. This value may be useful for monitoring and
2198 jsr166 1.17 * tuning fork/join programs: in general, steal counts should be
2199 dl 1.1 * high enough to keep threads busy, but low enough to avoid
2200     * overhead and contention across threads.
2201 jsr166 1.17 *
2202 jsr166 1.16 * @return the number of steals
2203 dl 1.1 */
2204     public long getStealCount() {
2205 dl 1.111 long count = stealCount.get();
2206     WorkQueue[] ws; WorkQueue w;
2207     if ((ws = workQueues) != null) {
2208     int n = ws.length;
2209     for (int i = 1; i < n; i += 2) {
2210     if ((w = ws[i]) != null)
2211     count += w.totalSteals;
2212     }
2213     }
2214     return count;
2215 dl 1.1 }
2216    
2217     /**
2218 dl 1.2 * Returns an estimate of the total number of tasks currently held
2219     * in queues by worker threads (but not including tasks submitted
2220     * to the pool that have not begun executing). This value is only
2221     * an approximation, obtained by iterating across all threads in
2222     * the pool. This method may be useful for tuning task
2223     * granularities.
2224 jsr166 1.17 *
2225 jsr166 1.16 * @return the number of queued tasks
2226 dl 1.1 */
2227     public long getQueuedTaskCount() {
2228     long count = 0;
2229 dl 1.111 WorkQueue[] ws; WorkQueue w;
2230     if ((ws = workQueues) != null) {
2231     int n = ws.length;
2232     for (int i = 1; i < n; i += 2) {
2233     if ((w = ws[i]) != null)
2234     count += w.queueSize();
2235     }
2236 dl 1.91 }
2237 dl 1.1 return count;
2238     }
2239    
2240     /**
2241 jsr166 1.40 * Returns an estimate of the number of tasks submitted to this
2242 dl 1.94 * pool that have not yet begun executing. This method may take
2243 dl 1.91 * time proportional to the number of submissions.
2244 jsr166 1.17 *
2245 jsr166 1.16 * @return the number of queued submissions
2246 dl 1.1 */
2247     public int getQueuedSubmissionCount() {
2248 dl 1.111 int count = 0;
2249     WorkQueue[] ws; WorkQueue w;
2250     if ((ws = workQueues) != null) {
2251     int n = ws.length;
2252     for (int i = 0; i < n; i += 2) {
2253     if ((w = ws[i]) != null)
2254     count += w.queueSize();
2255     }
2256     }
2257     return count;
2258 dl 1.1 }
2259    
2260     /**
2261 jsr166 1.28 * Returns {@code true} if there are any tasks submitted to this
2262     * pool that have not yet begun executing.
2263 jsr166 1.17 *
2264 jsr166 1.16 * @return {@code true} if there are any queued submissions
2265 dl 1.1 */
2266     public boolean hasQueuedSubmissions() {
2267 dl 1.111 WorkQueue[] ws; WorkQueue w;
2268     if ((ws = workQueues) != null) {
2269     int n = ws.length;
2270     for (int i = 0; i < n; i += 2) {
2271     if ((w = ws[i]) != null && w.queueSize() != 0)
2272     return true;
2273     }
2274     }
2275     return false;
2276 dl 1.1 }
2277    
2278     /**
2279     * Removes and returns the next unexecuted submission if one is
2280     * available. This method may be useful in extensions to this
2281     * class that re-assign work in systems with multiple pools.
2282 jsr166 1.17 *
2283 jsr166 1.28 * @return the next submission, or {@code null} if none
2284 dl 1.1 */
2285     protected ForkJoinTask<?> pollSubmission() {
2286 dl 1.111 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2287     if ((ws = workQueues) != null) {
2288     int n = ws.length;
2289     for (int i = 0; i < n; i += 2) {
2290     if ((w = ws[i]) != null && (t = w.poll()) != null)
2291     return t;
2292 dl 1.91 }
2293     }
2294     return null;
2295 dl 1.1 }
2296    
2297     /**
2298 dl 1.6 * Removes all available unexecuted submitted and forked tasks
2299     * from scheduling queues and adds them to the given collection,
2300     * without altering their execution status. These may include
2301 jsr166 1.41 * artificially generated or wrapped tasks. This method is
2302     * designed to be invoked only when the pool is known to be
2303 dl 1.6 * quiescent. Invocations at other times may not remove all
2304     * tasks. A failure encountered while attempting to add elements
2305 jsr166 1.16 * to collection {@code c} may result in elements being in
2306 dl 1.6 * neither, either or both collections when the associated
2307     * exception is thrown. The behavior of this operation is
2308     * undefined if the specified collection is modified while the
2309     * operation is in progress.
2310 jsr166 1.17 *
2311 dl 1.6 * @param c the collection to transfer elements into
2312     * @return the number of elements transferred
2313     */
2314 dl 1.30 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2315 dl 1.91 int count = 0;
2316 dl 1.111 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2317     if ((ws = workQueues) != null) {
2318     int n = ws.length;
2319     for (int i = 0; i < n; ++i) {
2320     if ((w = ws[i]) != null) {
2321     while ((t = w.poll()) != null) {
2322     c.add(t);
2323     ++count;
2324     }
2325     }
2326 dl 1.91 }
2327     }
2328 dl 1.57 return count;
2329     }
2330    
2331     /**
2332 dl 1.1 * Returns a string identifying this pool, as well as its state,
2333     * including indications of run state, parallelism level, and
2334     * worker and task counts.
2335     *
2336     * @return a string identifying this pool, as well as its state
2337     */
2338     public String toString() {
2339     long st = getStealCount();
2340     long qt = getQueuedTaskCount();
2341     long qs = getQueuedSubmissionCount();
2342 dl 1.111 int rc = getRunningThreadCount();
2343 dl 1.53 int pc = parallelism;
2344 dl 1.91 long c = ctl;
2345     int tc = pc + (short)(c >>> TC_SHIFT);
2346 dl 1.111 int ac = pc + (int)(c >> AC_SHIFT);
2347     if (ac < 0) // ignore transient negative
2348     ac = 0;
2349 dl 1.91 String level;
2350     if ((c & STOP_BIT) != 0)
2351 jsr166 1.102 level = (tc == 0) ? "Terminated" : "Terminating";
2352 dl 1.91 else
2353 dl 1.111 level = runState < 0 ? "Shutting down" : "Running";
2354 dl 1.1 return super.toString() +
2355 dl 1.91 "[" + level +
2356 dl 1.53 ", parallelism = " + pc +
2357     ", size = " + tc +
2358     ", active = " + ac +
2359     ", running = " + rc +
2360 dl 1.1 ", steals = " + st +
2361     ", tasks = " + qt +
2362     ", submissions = " + qs +
2363     "]";
2364     }
2365    
2366     /**
2367     * Initiates an orderly shutdown in which previously submitted
2368     * tasks are executed, but no new tasks will be accepted.
2369     * Invocation has no additional effect if already shut down.
2370     * Tasks that are in the process of being submitted concurrently
2371     * during the course of this method may or may not be rejected.
2372 jsr166 1.17 *
2373 dl 1.1 * @throws SecurityException if a security manager exists and
2374     * the caller is not permitted to modify threads
2375     * because it does not hold {@link
2376 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
2377 dl 1.1 */
2378     public void shutdown() {
2379     checkPermission();
2380 dl 1.111 enableShutdown();
2381 dl 1.53 tryTerminate(false);
2382 dl 1.1 }
2383    
2384     /**
2385 dl 1.42 * Attempts to cancel and/or stop all tasks, and reject all
2386     * subsequently submitted tasks. Tasks that are in the process of
2387     * being submitted or executed concurrently during the course of
2388     * this method may or may not be rejected. This method cancels
2389     * both existing and unexecuted tasks, in order to permit
2390     * termination in the presence of task dependencies. So the method
2391     * always returns an empty list (unlike the case for some other
2392     * Executors).
2393 jsr166 1.17 *
2394 dl 1.1 * @return an empty list
2395     * @throws SecurityException if a security manager exists and
2396     * the caller is not permitted to modify threads
2397     * because it does not hold {@link
2398 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
2399 dl 1.1 */
2400     public List<Runnable> shutdownNow() {
2401     checkPermission();
2402 dl 1.111 enableShutdown();
2403 dl 1.53 tryTerminate(true);
2404 dl 1.1 return Collections.emptyList();
2405     }
2406    
2407     /**
2408 jsr166 1.16 * Returns {@code true} if all tasks have completed following shut down.
2409 dl 1.1 *
2410 jsr166 1.16 * @return {@code true} if all tasks have completed following shut down
2411 dl 1.1 */
2412     public boolean isTerminated() {
2413 dl 1.91 long c = ctl;
2414     return ((c & STOP_BIT) != 0L &&
2415     (short)(c >>> TC_SHIFT) == -parallelism);
2416 dl 1.1 }
2417    
2418     /**
2419 jsr166 1.16 * Returns {@code true} if the process of termination has
2420 dl 1.42 * commenced but not yet completed. This method may be useful for
2421     * debugging. A return of {@code true} reported a sufficient
2422     * period after shutdown may indicate that submitted tasks have
2423 dl 1.88 * ignored or suppressed interruption, or are waiting for IO,
2424     * causing this executor not to properly terminate. (See the
2425     * advisory notes for class {@link ForkJoinTask} stating that
2426     * tasks should not normally entail blocking operations. But if
2427     * they do, they must abort them on interrupt.)
2428 dl 1.1 *
2429 dl 1.42 * @return {@code true} if terminating but not yet terminated
2430 dl 1.1 */
2431     public boolean isTerminating() {
2432 dl 1.91 long c = ctl;
2433     return ((c & STOP_BIT) != 0L &&
2434     (short)(c >>> TC_SHIFT) != -parallelism);
2435 dl 1.1 }
2436    
2437     /**
2438 jsr166 1.16 * Returns {@code true} if this pool has been shut down.
2439 dl 1.1 *
2440 jsr166 1.16 * @return {@code true} if this pool has been shut down
2441 dl 1.1 */
2442     public boolean isShutdown() {
2443 dl 1.111 return runState < 0;
2444 dl 1.42 }
2445    
2446     /**
2447 dl 1.1 * Blocks until all tasks have completed execution after a shutdown
2448     * request, or the timeout occurs, or the current thread is
2449     * interrupted, whichever happens first.
2450     *
2451     * @param timeout the maximum time to wait
2452     * @param unit the time unit of the timeout argument
2453 jsr166 1.16 * @return {@code true} if this executor terminated and
2454     * {@code false} if the timeout elapsed before termination
2455 dl 1.1 * @throws InterruptedException if interrupted while waiting
2456     */
2457     public boolean awaitTermination(long timeout, TimeUnit unit)
2458     throws InterruptedException {
2459 dl 1.91 long nanos = unit.toNanos(timeout);
2460 dl 1.111 final ReentrantLock lock = this.lock;
2461 dl 1.91 lock.lock();
2462 dl 1.57 try {
2463 dl 1.91 for (;;) {
2464     if (isTerminated())
2465     return true;
2466     if (nanos <= 0)
2467     return false;
2468     nanos = termination.awaitNanos(nanos);
2469     }
2470     } finally {
2471     lock.unlock();
2472 dl 1.57 }
2473 dl 1.1 }
2474    
2475     /**
2476     * Interface for extending managed parallelism for tasks running
2477 jsr166 1.35 * in {@link ForkJoinPool}s.
2478     *
2479 dl 1.61 * <p>A {@code ManagedBlocker} provides two methods. Method
2480     * {@code isReleasable} must return {@code true} if blocking is
2481     * not necessary. Method {@code block} blocks the current thread
2482     * if necessary (perhaps internally invoking {@code isReleasable}
2483 dl 1.93 * before actually blocking). These actions are performed by any
2484     * thread invoking {@link ForkJoinPool#managedBlock}. The
2485     * unusual methods in this API accommodate synchronizers that may,
2486     * but don't usually, block for long periods. Similarly, they
2487     * allow more efficient internal handling of cases in which
2488     * additional workers may be, but usually are not, needed to
2489     * ensure sufficient parallelism. Toward this end,
2490     * implementations of method {@code isReleasable} must be amenable
2491     * to repeated invocation.
2492 jsr166 1.17 *
2493 dl 1.1 * <p>For example, here is a ManagedBlocker based on a
2494     * ReentrantLock:
2495 jsr166 1.17 * <pre> {@code
2496     * class ManagedLocker implements ManagedBlocker {
2497     * final ReentrantLock lock;
2498     * boolean hasLock = false;
2499     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
2500     * public boolean block() {
2501     * if (!hasLock)
2502     * lock.lock();
2503     * return true;
2504     * }
2505     * public boolean isReleasable() {
2506     * return hasLock || (hasLock = lock.tryLock());
2507 dl 1.1 * }
2508 jsr166 1.17 * }}</pre>
2509 dl 1.61 *
2510     * <p>Here is a class that possibly blocks waiting for an
2511     * item on a given queue:
2512     * <pre> {@code
2513     * class QueueTaker<E> implements ManagedBlocker {
2514     * final BlockingQueue<E> queue;
2515     * volatile E item = null;
2516     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
2517     * public boolean block() throws InterruptedException {
2518     * if (item == null)
2519 dl 1.65 * item = queue.take();
2520 dl 1.61 * return true;
2521     * }
2522     * public boolean isReleasable() {
2523 dl 1.65 * return item != null || (item = queue.poll()) != null;
2524 dl 1.61 * }
2525     * public E getItem() { // call after pool.managedBlock completes
2526     * return item;
2527     * }
2528     * }}</pre>
2529 dl 1.1 */
2530     public static interface ManagedBlocker {
2531     /**
2532     * Possibly blocks the current thread, for example waiting for
2533     * a lock or condition.
2534 jsr166 1.17 *
2535 jsr166 1.28 * @return {@code true} if no additional blocking is necessary
2536     * (i.e., if isReleasable would return true)
2537 dl 1.1 * @throws InterruptedException if interrupted while waiting
2538 jsr166 1.17 * (the method is not required to do so, but is allowed to)
2539 dl 1.1 */
2540     boolean block() throws InterruptedException;
2541    
2542     /**
2543 jsr166 1.28 * Returns {@code true} if blocking is unnecessary.
2544 dl 1.1 */
2545     boolean isReleasable();
2546     }
2547    
2548     /**
2549     * Blocks in accord with the given blocker. If the current thread
2550 jsr166 1.38 * is a {@link ForkJoinWorkerThread}, this method possibly
2551     * arranges for a spare thread to be activated if necessary to
2552 dl 1.57 * ensure sufficient parallelism while the current thread is blocked.
2553 jsr166 1.38 *
2554     * <p>If the caller is not a {@link ForkJoinTask}, this method is
2555     * behaviorally equivalent to
2556 dl 1.111 a * <pre> {@code
2557 jsr166 1.17 * while (!blocker.isReleasable())
2558     * if (blocker.block())
2559     * return;
2560     * }</pre>
2561 jsr166 1.38 *
2562     * If the caller is a {@code ForkJoinTask}, then the pool may
2563     * first be expanded to ensure parallelism, and later adjusted.
2564 dl 1.1 *
2565     * @param blocker the blocker
2566 jsr166 1.16 * @throws InterruptedException if blocker.block did so
2567 dl 1.1 */
2568 dl 1.57 public static void managedBlock(ManagedBlocker blocker)
2569 dl 1.1 throws InterruptedException {
2570     Thread t = Thread.currentThread();
2571 dl 1.111 ForkJoinPool p = ((t instanceof ForkJoinWorkerThread) ?
2572     ((ForkJoinWorkerThread)t).pool : null);
2573     while (!blocker.isReleasable()) {
2574     if (p == null || p.tryCompensate()) {
2575     try {
2576     do {} while (!blocker.isReleasable() && !blocker.block());
2577     } finally {
2578     if (p != null)
2579     p.incrementActiveCount();
2580     }
2581     break;
2582     }
2583 dl 1.57 }
2584 dl 1.1 }
2585    
2586 dl 1.33 // AbstractExecutorService overrides. These rely on undocumented
2587     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
2588     // implement RunnableFuture.
2589 dl 1.2
2590     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
2591 jsr166 1.34 return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
2592 dl 1.2 }
2593    
2594     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
2595 jsr166 1.34 return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
2596 dl 1.2 }
2597    
2598 jsr166 1.27 // Unsafe mechanics
2599 dl 1.111 private static final sun.misc.Unsafe U;
2600     private static final long CTL;
2601     private static final long RUNSTATE;
2602     private static final long PARKBLOCKER;
2603 dl 1.91
2604     static {
2605     poolNumberGenerator = new AtomicInteger();
2606     modifyThreadPermission = new RuntimePermission("modifyThread");
2607     defaultForkJoinWorkerThreadFactory =
2608     new DefaultForkJoinWorkerThreadFactory();
2609 dl 1.111 int s;
2610 jsr166 1.27 try {
2611 dl 1.111 U = getUnsafe();
2612 jsr166 1.103 Class<?> k = ForkJoinPool.class;
2613 dl 1.111 Class<?> tk = Thread.class;
2614     CTL = U.objectFieldOffset
2615 dl 1.91 (k.getDeclaredField("ctl"));
2616 dl 1.111 RUNSTATE = U.objectFieldOffset
2617     (k.getDeclaredField("runState"));
2618     PARKBLOCKER = U.objectFieldOffset
2619     (tk.getDeclaredField("parkBlocker"));
2620 dl 1.91 } catch (Exception e) {
2621     throw new Error(e);
2622     }
2623 jsr166 1.27 }
2624    
2625     /**
2626     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
2627     * Replace with a simple call to Unsafe.getUnsafe when integrating
2628     * into a jdk.
2629     *
2630     * @return a sun.misc.Unsafe
2631     */
2632     private static sun.misc.Unsafe getUnsafe() {
2633     try {
2634     return sun.misc.Unsafe.getUnsafe();
2635     } catch (SecurityException se) {
2636     try {
2637     return java.security.AccessController.doPrivileged
2638     (new java.security
2639     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
2640     public sun.misc.Unsafe run() throws Exception {
2641     java.lang.reflect.Field f = sun.misc
2642     .Unsafe.class.getDeclaredField("theUnsafe");
2643     f.setAccessible(true);
2644     return (sun.misc.Unsafe) f.get(null);
2645     }});
2646     } catch (java.security.PrivilegedActionException e) {
2647     throw new RuntimeException("Could not initialize intrinsics",
2648     e.getCause());
2649     }
2650     }
2651     }
2652 dl 1.112
2653 dl 1.1 }