ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
Revision: 1.116
Committed: Fri Jan 27 17:27:28 2012 UTC (12 years, 3 months ago) by dl
Branch: MAIN
Changes since 1.115: +111 -85 lines
Log Message:
Add Submitter thread-local to scaffold changes; fix indexing error

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.97 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.1 */
6    
7     package jsr166y;
8 dl 1.112
9 jsr166 1.22 import java.util.ArrayList;
10     import java.util.Arrays;
11     import java.util.Collection;
12     import java.util.Collections;
13     import java.util.List;
14 dl 1.91 import java.util.Random;
15 dl 1.78 import java.util.concurrent.AbstractExecutorService;
16     import java.util.concurrent.Callable;
17     import java.util.concurrent.ExecutorService;
18     import java.util.concurrent.Future;
19     import java.util.concurrent.RejectedExecutionException;
20     import java.util.concurrent.RunnableFuture;
21     import java.util.concurrent.TimeUnit;
22     import java.util.concurrent.atomic.AtomicInteger;
23 dl 1.111 import java.util.concurrent.atomic.AtomicLong;
24 jsr166 1.22 import java.util.concurrent.locks.ReentrantLock;
25 dl 1.91 import java.util.concurrent.locks.Condition;
26 dl 1.1
27     /**
28 jsr166 1.29 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
29 jsr166 1.39 * A {@code ForkJoinPool} provides the entry point for submissions
30 dl 1.57 * from non-{@code ForkJoinTask} clients, as well as management and
31 jsr166 1.48 * monitoring operations.
32 dl 1.1 *
33 dl 1.42 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
34     * ExecutorService} mainly by virtue of employing
35     * <em>work-stealing</em>: all threads in the pool attempt to find and
36 dl 1.111 * execute tasks submitted to the pool and/or created by other active
37     * tasks (eventually blocking waiting for work if none exist). This
38     * enables efficient processing when most tasks spawn other subtasks
39     * (as do most {@code ForkJoinTask}s), as well as when many small
40     * tasks are submitted to the pool from external clients. Especially
41     * when setting <em>asyncMode</em> to true in constructors, {@code
42     * ForkJoinPool}s may also be appropriate for use with event-style
43     * tasks that are never joined.
44 dl 1.1 *
45 dl 1.42 * <p>A {@code ForkJoinPool} is constructed with a given target
46     * parallelism level; by default, equal to the number of available
47 dl 1.57 * processors. The pool attempts to maintain enough active (or
48     * available) threads by dynamically adding, suspending, or resuming
49     * internal worker threads, even if some tasks are stalled waiting to
50     * join others. However, no such adjustments are guaranteed in the
51     * face of blocked IO or other unmanaged synchronization. The nested
52     * {@link ManagedBlocker} interface enables extension of the kinds of
53     * synchronization accommodated.
54 dl 1.1 *
55     * <p>In addition to execution and lifecycle control methods, this
56     * class provides status check methods (for example
57 jsr166 1.29 * {@link #getStealCount}) that are intended to aid in developing,
58 dl 1.1 * tuning, and monitoring fork/join applications. Also, method
59 jsr166 1.29 * {@link #toString} returns indications of pool state in a
60 dl 1.2 * convenient form for informal monitoring.
61 dl 1.1 *
62 dl 1.57 * <p> As is the case with other ExecutorServices, there are three
63 dl 1.60 * main task execution methods summarized in the following
64 dl 1.111 * table. These are designed to be used primarily by clients not
65     * already engaged in fork/join computations in the current pool. The
66     * main forms of these methods accept instances of {@code
67     * ForkJoinTask}, but overloaded forms also allow mixed execution of
68     * plain {@code Runnable}- or {@code Callable}- based activities as
69     * well. However, tasks that are already executing in a pool should
70     * normally instead use the within-computation forms listed in the
71     * table unless using async event-style tasks that are not usually
72     * joined, in which case there is little difference among choice of
73     * methods.
74 dl 1.57 *
75     * <table BORDER CELLPADDING=3 CELLSPACING=1>
76     * <tr>
77     * <td></td>
78     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
79     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
80     * </tr>
81     * <tr>
82 jsr166 1.67 * <td> <b>Arrange async execution</td>
83 dl 1.57 * <td> {@link #execute(ForkJoinTask)}</td>
84     * <td> {@link ForkJoinTask#fork}</td>
85     * </tr>
86     * <tr>
87     * <td> <b>Await and obtain result</td>
88     * <td> {@link #invoke(ForkJoinTask)}</td>
89     * <td> {@link ForkJoinTask#invoke}</td>
90     * </tr>
91     * <tr>
92     * <td> <b>Arrange exec and obtain Future</td>
93     * <td> {@link #submit(ForkJoinTask)}</td>
94     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
95     * </tr>
96     * </table>
97 dl 1.59 *
98 dl 1.42 * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
99     * used for all parallel task execution in a program or subsystem.
100     * Otherwise, use would not usually outweigh the construction and
101     * bookkeeping overhead of creating a large set of threads. For
102 jsr166 1.43 * example, a common pool could be used for the {@code SortTasks}
103 dl 1.42 * illustrated in {@link RecursiveAction}. Because {@code
104     * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
105 jsr166 1.43 * daemon} mode, there is typically no need to explicitly {@link
106 dl 1.42 * #shutdown} such a pool upon program exit.
107     *
108 jsr166 1.105 * <pre> {@code
109 dl 1.42 * static final ForkJoinPool mainPool = new ForkJoinPool();
110     * ...
111     * public void sort(long[] array) {
112     * mainPool.invoke(new SortTask(array, 0, array.length));
113 jsr166 1.105 * }}</pre>
114 dl 1.42 *
115 dl 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
116 dl 1.2 * maximum number of running threads to 32767. Attempts to create
117 jsr166 1.48 * pools with greater than the maximum number result in
118 jsr166 1.39 * {@code IllegalArgumentException}.
119 jsr166 1.16 *
120 jsr166 1.48 * <p>This implementation rejects submitted tasks (that is, by throwing
121 dl 1.58 * {@link RejectedExecutionException}) only when the pool is shut down
122 dl 1.62 * or internal resources have been exhausted.
123 jsr166 1.48 *
124 jsr166 1.16 * @since 1.7
125     * @author Doug Lea
126 dl 1.1 */
127 dl 1.2 public class ForkJoinPool extends AbstractExecutorService {
128 dl 1.1
129     /*
130 dl 1.53 * Implementation Overview
131     *
132 dl 1.111 * This class and its nested classes provide the main
133     * functionality and control for a set of worker threads:
134     * Submissions from non-FJ threads enter into submission
135     * queues. Workers take these tasks and typically split them into
136     * subtasks that may be stolen by other workers. Preference rules
137     * give first priority to processing tasks from their own queues
138     * (LIFO or FIFO, depending on mode), then to randomized FIFO
139     * steals of tasks in other queues.
140     *
141     * WorkQueues.
142     * ==========
143     *
144     * Most operations occur within work-stealing queues (in nested
145     * class WorkQueue). These are special forms of Deques that
146     * support only three of the four possible end-operations -- push,
147     * pop, and poll (aka steal), under the further constraints that
148     * push and pop are called only from the owning thread (or, as
149     * extended here, under a lock), while poll may be called from
150     * other threads. (If you are unfamiliar with them, you probably
151     * want to read Herlihy and Shavit's book "The Art of
152     * Multiprocessor programming", chapter 16 describing these in
153     * more detail before proceeding.) The main work-stealing queue
154     * design is roughly similar to those in the papers "Dynamic
155     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
156     * (http://research.sun.com/scalable/pubs/index.html) and
157     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
158     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
159     * The main differences ultimately stem from gc requirements that
160     * we null out taken slots as soon as we can, to maintain as small
161     * a footprint as possible even in programs generating huge
162     * numbers of tasks. To accomplish this, we shift the CAS
163     * arbitrating pop vs poll (steal) from being on the indices
164     * ("base" and "top") to the slots themselves. So, both a
165     * successful pop and poll mainly entail a CAS of a slot from
166     * non-null to null. Because we rely on CASes of references, we
167     * do not need tag bits on base or top. They are simple ints as
168     * used in any circular array-based queue (see for example
169     * ArrayDeque). Updates to the indices must still be ordered in a
170     * way that guarantees that top == base means the queue is empty,
171     * but otherwise may err on the side of possibly making the queue
172     * appear nonempty when a push, pop, or poll have not fully
173     * committed. Note that this means that the poll operation,
174     * considered individually, is not wait-free. One thief cannot
175     * successfully continue until another in-progress one (or, if
176     * previously empty, a push) completes. However, in the
177     * aggregate, we ensure at least probabilistic non-blockingness.
178     * If an attempted steal fails, a thief always chooses a different
179     * random victim target to try next. So, in order for one thief to
180     * progress, it suffices for any in-progress poll or new push on
181     * any empty queue to complete.
182     *
183 dl 1.112 * This approach also enables support of a user mode in which local
184 dl 1.111 * task processing is in FIFO, not LIFO order, simply by using
185     * poll rather than pop. This can be useful in message-passing
186     * frameworks in which tasks are never joined. However neither
187     * mode considers affinities, loads, cache localities, etc, so
188     * rarely provide the best possible performance on a given
189     * machine, but portably provide good throughput by averaging over
190     * these factors. (Further, even if we did try to use such
191     * information, we do not usually have a basis for exploiting
192     * it. For example, some sets of tasks profit from cache
193     * affinities, but others are harmed by cache pollution effects.)
194     *
195     * WorkQueues are also used in a similar way for tasks submitted
196     * to the pool. We cannot mix these tasks in the same queues used
197     * for work-stealing (this would contaminate lifo/fifo
198 dl 1.116 * processing). Instead, we loosely associate submission queues
199     * with submitting threads, using a form of hashing. The
200     * ThreadLocal Submitter class contains a value initially used as
201     * a hash code for choosing existing queues, but may be randomly
202     * repositioned upon contention with other submitters. In
203     * essence, submitters act like workers except that they never
204     * take tasks, and they are multiplexed on to a finite number of
205     * shared work queues. However, classes are set up so that future
206     * extensions could allow submitters to optionally help perform
207     * tasks as well. Pool submissions from internal workers are also
208     * allowed, but use randomized rather than thread-hashed queue
209     * indices to avoid imbalance. Insertion of tasks in shared mode
210     * requires a lock (mainly to protect in the case of resizing) but
211     * we use only a simple spinlock (using bits in field runState),
212     * because submitters encountering a busy queue try or create
213     * others so never block.
214 dl 1.111 *
215     * Management.
216     * ==========
217 dl 1.91 *
218     * The main throughput advantages of work-stealing stem from
219     * decentralized control -- workers mostly take tasks from
220     * themselves or each other. We cannot negate this in the
221     * implementation of other management responsibilities. The main
222     * tactic for avoiding bottlenecks is packing nearly all
223 dl 1.111 * essentially atomic control state into two volatile variables
224     * that are by far most often read (not written) as status and
225     * consistency checks
226     *
227     * Field "ctl" contains 64 bits holding all the information needed
228     * to atomically decide to add, inactivate, enqueue (on an event
229     * queue), dequeue, and/or re-activate workers. To enable this
230     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
231     * far in excess of normal operating range) to allow ids, counts,
232     * and their negations (used for thresholding) to fit into 16bit
233     * fields.
234     *
235     * Field "runState" contains 32 bits needed to register and
236     * deregister WorkQueues, as well as to enable shutdown. It is
237     * only modified under a lock (normally briefly held, but
238     * occasionally protecting allocations and resizings) but even
239     * when locked remains available to check consistency.
240     *
241     * Recording WorkQueues. WorkQueues are recorded in the
242     * "workQueues" array that is created upon pool construction and
243     * expanded if necessary. Updates to the array while recording
244     * new workers and unrecording terminated ones are protected from
245     * each other by a lock but the array is otherwise concurrently
246     * readable, and accessed directly. To simplify index-based
247 dl 1.91 * operations, the array size is always a power of two, and all
248 dl 1.111 * readers must tolerate null slots. Shared (submission) queues
249     * are at even indices, worker queues at odd indices. Grouping
250     * them together in this way simplifies and speeds up task
251     * scanning. To avoid flailing during start-up, the array is
252     * presized to hold twice #parallelism workers (which is unlikely
253     * to need further resizing during execution). But to avoid
254     * dealing with so many null slots, variable runState includes a
255     * mask for the nearest power of two that contains all current
256     * workers. All worker thread creation is on-demand, triggered by
257     * task submissions, replacement of terminated workers, and/or
258     * compensation for blocked workers. However, all other support
259     * code is set up to work with other policies. To ensure that we
260     * do not hold on to worker references that would prevent GC, ALL
261     * accesses to workQueues are via indices into the workQueues
262     * array (which is one source of some of the messy code
263     * constructions here). In essence, the workQueues array serves as
264     * a weak reference mechanism. Thus for example the wait queue
265     * field of ctl stores indices, not references. Access to the
266     * workQueues in associated methods (for example signalWork) must
267     * both index-check and null-check the IDs. All such accesses
268     * ignore bad IDs by returning out early from what they are doing,
269     * since this can only be associated with termination, in which
270     * case it is OK to give up.
271     *
272     * All uses of the workQueues array check that it is non-null
273     * (even if previously non-null). This allows nulling during
274     * termination, which is currently not necessary, but remains an
275     * option for resource-revocation-based shutdown schemes. It also
276     * helps reduce JIT issuance of uncommon-trap code, which tends to
277     * unnecessarily complicate control flow in some methods.
278 dl 1.91 *
279 dl 1.111 * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
280 dl 1.95 * let workers spin indefinitely scanning for tasks when none can
281     * be found immediately, and we cannot start/resume workers unless
282     * there appear to be tasks available. On the other hand, we must
283     * quickly prod them into action when new tasks are submitted or
284 dl 1.111 * generated. In many usages, ramp-up time to activate workers is
285     * the main limiting factor in overall performance (this is
286     * compounded at program start-up by JIT compilation and
287     * allocation). So we try to streamline this as much as possible.
288     * We park/unpark workers after placing in an event wait queue
289     * when they cannot find work. This "queue" is actually a simple
290     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
291     * counter value (that reflects the number of times a worker has
292     * been inactivated) to avoid ABA effects (we need only as many
293     * version numbers as worker threads). Successors are held in
294     * field WorkQueue.nextWait. Queuing deals with several intrinsic
295     * races, mainly that a task-producing thread can miss seeing (and
296 dl 1.95 * signalling) another thread that gave up looking for work but
297     * has not yet entered the wait queue. We solve this by requiring
298 dl 1.111 * a full sweep of all workers (via repeated calls to method
299     * scan()) both before and after a newly waiting worker is added
300     * to the wait queue. During a rescan, the worker might release
301     * some other queued worker rather than itself, which has the same
302     * net effect. Because enqueued workers may actually be rescanning
303     * rather than waiting, we set and clear the "parker" field of
304 dl 1.112 * Workqueues to reduce unnecessary calls to unpark. (This
305 dl 1.111 * requires a secondary recheck to avoid missed signals.) Note
306     * the unusual conventions about Thread.interrupts surrounding
307     * parking and other blocking: Because interrupts are used solely
308     * to alert threads to check termination, which is checked anyway
309     * upon blocking, we clear status (using Thread.interrupted)
310     * before any call to park, so that park does not immediately
311     * return due to status being set via some other unrelated call to
312     * interrupt in user code.
313 dl 1.91 *
314     * Signalling. We create or wake up workers only when there
315     * appears to be at least one task they might be able to find and
316     * execute. When a submission is added or another worker adds a
317 dl 1.111 * task to a queue that previously had fewer than two tasks, they
318 dl 1.91 * signal waiting workers (or trigger creation of new ones if
319     * fewer than the given parallelism level -- see signalWork).
320 dl 1.111 * These primary signals are buttressed by signals during rescans;
321     * together these cover the signals needed in cases when more
322     * tasks are pushed but untaken, and improve performance compared
323     * to having one thread wake up all workers.
324 dl 1.91 *
325     * Trimming workers. To release resources after periods of lack of
326     * use, a worker starting to wait when the pool is quiescent will
327     * time out and terminate if the pool has remained quiescent for
328 dl 1.95 * SHRINK_RATE nanosecs. This will slowly propagate, eventually
329     * terminating all workers after long periods of non-use.
330 dl 1.91 *
331 dl 1.111 * Shutdown and Termination. A call to shutdownNow atomically sets
332     * a runState bit and then (non-atomically) sets each workers
333     * runState status, cancels all unprocessed tasks, and wakes up
334     * all waiting workers. Detecting whether termination should
335     * commence after a non-abrupt shutdown() call requires more work
336     * and bookkeeping. We need consensus about quiescence (i.e., that
337     * there is no more work). The active count provides a primary
338     * indication but non-abrupt shutdown still requires a rechecking
339     * scan for any workers that are inactive but not queued.
340     *
341     * Joining Tasks.
342     * ==============
343     *
344     * Any of several actions may be taken when one worker is waiting
345     * to join a task stolen (or always held by) another. Because we
346     * are multiplexing many tasks on to a pool of workers, we can't
347     * just let them block (as in Thread.join). We also cannot just
348     * reassign the joiner's run-time stack with another and replace
349     * it later, which would be a form of "continuation", that even if
350     * possible is not necessarily a good idea since we sometimes need
351     * both an unblocked task and its continuation to
352     * progress. Instead we combine two tactics:
353 dl 1.58 *
354 dl 1.60 * Helping: Arranging for the joiner to execute some task that it
355 dl 1.111 * would be running if the steal had not occurred.
356 dl 1.58 *
357 dl 1.61 * Compensating: Unless there are already enough live threads,
358 dl 1.111 * method tryCompensate() may create or re-activate a spare
359     * thread to compensate for blocked joiners until they unblock.
360     *
361     * A third form (implemented in tryRemoveAndExec and
362     * tryPollForAndExec) amounts to helping a hypothetical
363     * compensator: If we can readily tell that a possible action of a
364     * compensator is to steal and execute the task being joined, the
365     * joining thread can do so directly, without the need for a
366     * compensation thread (although at the expense of larger run-time
367     * stacks, but the tradeoff is typically worthwhile).
368 dl 1.91 *
369     * The ManagedBlocker extension API can't use helping so relies
370     * only on compensation in method awaitBlocker.
371 dl 1.58 *
372 dl 1.111 * The algorithm in tryHelpStealer entails a form of "linear"
373     * helping: Each worker records (in field currentSteal) the most
374     * recent task it stole from some other worker. Plus, it records
375     * (in field currentJoin) the task it is currently actively
376     * joining. Method tryHelpStealer uses these markers to try to
377     * find a worker to help (i.e., steal back a task from and execute
378     * it) that could hasten completion of the actively joined task.
379     * In essence, the joiner executes a task that would be on its own
380     * local deque had the to-be-joined task not been stolen. This may
381     * be seen as a conservative variant of the approach in Wagner &
382     * Calder "Leapfrogging: a portable technique for implementing
383     * efficient futures" SIGPLAN Notices, 1993
384     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
385     * that: (1) We only maintain dependency links across workers upon
386     * steals, rather than use per-task bookkeeping. This sometimes
387     * requires a linear scan of workers array to locate stealers, but
388     * often doesn't because stealers leave hints (that may become
389     * stale/wrong) of where to locate them. A stealHint is only a
390     * hint because a worker might have had multiple steals and the
391     * hint records only one of them (usually the most current).
392     * Hinting isolates cost to when it is needed, rather than adding
393     * to per-task overhead. (2) It is "shallow", ignoring nesting
394     * and potentially cyclic mutual steals. (3) It is intentionally
395     * racy: field currentJoin is updated only while actively joining,
396     * which means that we miss links in the chain during long-lived
397     * tasks, GC stalls etc (which is OK since blocking in such cases
398     * is usually a good idea). (4) We bound the number of attempts
399     * to find work (see MAX_HELP_DEPTH) and fall back to suspending
400     * the worker and if necessary replacing it with another.
401     *
402 dl 1.91 * It is impossible to keep exactly the target parallelism number
403     * of threads running at any given time. Determining the
404 dl 1.66 * existence of conservatively safe helping targets, the
405     * availability of already-created spares, and the apparent need
406 dl 1.111 * to create new spares are all racy, so we rely on multiple
407     * retries of each. Currently, in keeping with on-demand
408     * signalling policy, we compensate only if blocking would leave
409     * less than one active (non-waiting, non-blocked) worker.
410     * Additionally, to avoid some false alarms due to GC, lagging
411     * counters, system activity, etc, compensated blocking for joins
412     * is only attempted after rechecks stabilize in
413     * ForkJoinTask.awaitJoin. (Retries are interspersed with
414     * Thread.yield, for good citizenship.)
415 dl 1.58 *
416 dl 1.91 * Style notes: There is a lot of representation-level coupling
417 dl 1.53 * among classes ForkJoinPool, ForkJoinWorkerThread, and
418 dl 1.111 * ForkJoinTask. The fields of WorkQueue maintain data structures
419     * managed by ForkJoinPool, so are directly accessed. There is
420     * little point trying to reduce this, since any associated future
421     * changes in representations will need to be accompanied by
422     * algorithmic changes anyway. All together, these low-level
423     * implementation choices produce as much as a factor of 4
424     * performance improvement compared to naive implementations, and
425     * enable the processing of billions of tasks per second, at the
426     * expense of some ugliness.
427 dl 1.91 *
428     * Methods signalWork() and scan() are the main bottlenecks so are
429     * especially heavily micro-optimized/mangled. There are lots of
430     * inline assignments (of form "while ((local = field) != 0)")
431     * which are usually the simplest way to ensure the required read
432     * orderings (which are sometimes critical). This leads to a
433     * "C"-like style of listing declarations of these locals at the
434     * heads of methods or blocks. There are several occurrences of
435     * the unusual "do {} while (!cas...)" which is the simplest way
436     * to force an update of a CAS'ed variable. There are also other
437     * coding oddities that help some methods perform reasonably even
438     * when interpreted (not compiled).
439     *
440     * The order of declarations in this file is: (1) declarations of
441     * statics (2) fields (along with constants used when unpacking
442     * some of them), listed in an order that tends to reduce
443 dl 1.111 * contention among them a bit under most JVMs; (3) nested
444     * classes; (4) internal control methods; (5) callbacks and other
445     * support for ForkJoinTask methods; (6) exported methods (plus a
446     * few little helpers); (7) static block initializing all statics
447     * in a minimally dependent order.
448 dl 1.1 */
449    
450     /**
451 jsr166 1.35 * Factory for creating new {@link ForkJoinWorkerThread}s.
452     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
453     * for {@code ForkJoinWorkerThread} subclasses that extend base
454     * functionality or initialize threads with different contexts.
455 dl 1.1 */
456     public static interface ForkJoinWorkerThreadFactory {
457     /**
458     * Returns a new worker thread operating in the given pool.
459     *
460     * @param pool the pool this thread works in
461 jsr166 1.48 * @throws NullPointerException if the pool is null
462 dl 1.1 */
463     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
464     }
465    
466     /**
467 jsr166 1.17 * Default ForkJoinWorkerThreadFactory implementation; creates a
468 dl 1.1 * new ForkJoinWorkerThread.
469     */
470 dl 1.57 static class DefaultForkJoinWorkerThreadFactory
471 dl 1.1 implements ForkJoinWorkerThreadFactory {
472     public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
473 dl 1.53 return new ForkJoinWorkerThread(pool);
474 dl 1.1 }
475     }
476    
477     /**
478 dl 1.2 * Creates a new ForkJoinWorkerThread. This factory is used unless
479     * overridden in ForkJoinPool constructors.
480 dl 1.1 */
481 dl 1.2 public static final ForkJoinWorkerThreadFactory
482 dl 1.91 defaultForkJoinWorkerThreadFactory;
483 dl 1.1
484     /**
485     * Permission required for callers of methods that may start or
486     * kill threads.
487     */
488 dl 1.91 private static final RuntimePermission modifyThreadPermission;
489 dl 1.1
490     /**
491     * If there is a security manager, makes sure caller has
492     * permission to modify threads.
493     */
494     private static void checkPermission() {
495     SecurityManager security = System.getSecurityManager();
496     if (security != null)
497     security.checkPermission(modifyThreadPermission);
498     }
499    
500     /**
501     * Generator for assigning sequence numbers as pool names.
502     */
503 dl 1.91 private static final AtomicInteger poolNumberGenerator;
504 dl 1.1
505     /**
506 dl 1.111 * Bits and masks for control variables
507     *
508     * Field ctl is a long packed with:
509 dl 1.91 * AC: Number of active running workers minus target parallelism (16 bits)
510 jsr166 1.106 * TC: Number of total workers minus target parallelism (16 bits)
511 dl 1.91 * ST: true if pool is terminating (1 bit)
512     * EC: the wait count of top waiting thread (15 bits)
513 dl 1.111 * ID: ~(poolIndex >>> 1) of top of Treiber stack of waiters (16 bits)
514 dl 1.91 *
515     * When convenient, we can extract the upper 32 bits of counts and
516     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
517     * (int)ctl. The ec field is never accessed alone, but always
518     * together with id and st. The offsets of counts by the target
519     * parallelism and the positionings of fields makes it possible to
520     * perform the most common checks via sign tests of fields: When
521     * ac is negative, there are not enough active workers, when tc is
522     * negative, there are not enough total workers, when id is
523     * negative, there is at least one waiting worker, and when e is
524     * negative, the pool is terminating. To deal with these possibly
525     * negative fields, we use casts in and out of "short" and/or
526 dl 1.94 * signed shifts to maintain signedness.
527 dl 1.111 *
528     * When a thread is queued (inactivated), its eventCount field is
529     * negative, which is the only way to tell if a worker is
530     * prevented from executing tasks, even though it must continue to
531     * scan for them to avoid queuing races.
532     *
533     * Field runState is an int packed with:
534     * SHUTDOWN: true if shutdown is enabled (1 bit)
535     * SEQ: a sequence number updated upon (de)registering workers (15 bits)
536     * MASK: mask (power of 2 - 1) covering all registered poolIndexes (16 bits)
537     *
538     * The combination of mask and sequence number enables simple
539     * consistency checks: Staleness of read-only operations on the
540     * workers and queues arrays can be checked by comparing runState
541     * before vs after the reads. The low 16 bits (i.e, anding with
542     * SMASK) hold (the smallest power of two covering all worker
543     * indices, minus one. The mask for queues (vs workers) is twice
544     * this value plus 1.
545 dl 1.91 */
546    
547     // bit positions/shifts for fields
548     private static final int AC_SHIFT = 48;
549     private static final int TC_SHIFT = 32;
550     private static final int ST_SHIFT = 31;
551     private static final int EC_SHIFT = 16;
552    
553     // bounds
554     private static final int MAX_ID = 0x7fff; // max poolIndex
555     private static final int SMASK = 0xffff; // mask short bits
556     private static final int SHORT_SIGN = 1 << 15;
557     private static final int INT_SIGN = 1 << 31;
558    
559     // masks
560     private static final long STOP_BIT = 0x0001L << ST_SHIFT;
561     private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
562     private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
563    
564     // units for incrementing and decrementing
565     private static final long TC_UNIT = 1L << TC_SHIFT;
566     private static final long AC_UNIT = 1L << AC_SHIFT;
567    
568     // masks and units for dealing with u = (int)(ctl >>> 32)
569     private static final int UAC_SHIFT = AC_SHIFT - 32;
570     private static final int UTC_SHIFT = TC_SHIFT - 32;
571     private static final int UAC_MASK = SMASK << UAC_SHIFT;
572     private static final int UTC_MASK = SMASK << UTC_SHIFT;
573     private static final int UAC_UNIT = 1 << UAC_SHIFT;
574     private static final int UTC_UNIT = 1 << UTC_SHIFT;
575    
576     // masks and units for dealing with e = (int)ctl
577 dl 1.111 private static final int E_MASK = 0x7fffffff; // no STOP_BIT
578     private static final int E_SEQ = 1 << EC_SHIFT;
579    
580     // runState bits
581     private static final int SHUTDOWN = 1 << 31;
582     private static final int RS_SEQ = 1 << 16;
583     private static final int RS_SEQ_MASK = 0x7fff0000;
584    
585     // access mode for WorkQueue
586     static final int LIFO_QUEUE = 0;
587     static final int FIFO_QUEUE = 1;
588     static final int SHARED_QUEUE = -1;
589 dl 1.53
590     /**
591 dl 1.111 * The wakeup interval (in nanoseconds) for a worker waiting for a
592     * task when the pool is quiescent to instead try to shrink the
593     * number of workers. The exact value does not matter too
594     * much. It must be short enough to release resources during
595     * sustained periods of idleness, but not so short that threads
596     * are continually re-created.
597 dl 1.61 */
598 dl 1.111 private static final long SHRINK_RATE =
599     4L * 1000L * 1000L * 1000L; // 4 seconds
600 dl 1.61
601     /**
602 dl 1.111 * The timeout value for attempted shrinkage, includes
603     * some slop to cope with system timer imprecision.
604 dl 1.53 */
605 dl 1.111 private static final long SHRINK_TIMEOUT = SHRINK_RATE - (SHRINK_RATE / 10);
606 dl 1.1
607     /**
608 dl 1.111 * The maximum stolen->joining link depth allowed in tryHelpStealer.
609     * Depths for legitimate chains are unbounded, but we use a fixed
610     * constant to avoid (otherwise unchecked) cycles and to bound
611     * staleness of traversal parameters at the expense of sometimes
612     * blocking when we could be helping.
613     */
614     private static final int MAX_HELP_DEPTH = 16;
615    
616     /*
617     * Field layout order in this class tends to matter more than one
618     * would like. Runtime layout order is only loosely related to
619     * declaration order and may differ across JVMs, but the following
620     * empirically works OK on current JVMs.
621     */
622    
623     volatile long ctl; // main pool control
624     final int parallelism; // parallelism level
625     final int localMode; // per-worker scheduling mode
626     int nextPoolIndex; // hint used in registerWorker
627     volatile int runState; // shutdown status, seq, and mask
628     WorkQueue[] workQueues; // main registry
629     final ReentrantLock lock; // for registration
630     final Condition termination; // for awaitTermination
631     final ForkJoinWorkerThreadFactory factory; // factory for new workers
632     final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
633     final AtomicLong stealCount; // collect counts when terminated
634     final AtomicInteger nextWorkerNumber; // to create worker name string
635     final String workerNamePrefix; // Prefix for assigning worker names
636    
637     /**
638     * Queues supporting work-stealing as well as external task
639     * submission. See above for main rationale and algorithms.
640     * Implementation relies heavily on "Unsafe" intrinsics
641     * and selective use of "volatile":
642     *
643     * Field "base" is the index (mod array.length) of the least valid
644     * queue slot, which is always the next position to steal (poll)
645     * from if nonempty. Reads and writes require volatile orderings
646     * but not CAS, because updates are only performed after slot
647     * CASes.
648     *
649     * Field "top" is the index (mod array.length) of the next queue
650     * slot to push to or pop from. It is written only by owner thread
651     * for push, or under lock for trySharedPush, and accessed by
652     * other threads only after reading (volatile) base. Both top and
653     * base are allowed to wrap around on overflow, but (top - base)
654 jsr166 1.114 * (or more commonly -(base - top) to force volatile read of base
655 dl 1.111 * before top) still estimates size.
656     *
657     * The array slots are read and written using the emulation of
658     * volatiles/atomics provided by Unsafe. Insertions must in
659     * general use putOrderedObject as a form of releasing store to
660     * ensure that all writes to the task object are ordered before
661     * its publication in the queue. (Although we can avoid one case
662     * of this when locked in trySharedPush.) All removals entail a
663     * CAS to null. The array is always a power of two. To ensure
664     * safety of Unsafe array operations, all accesses perform
665     * explicit null checks and implicit bounds checks via
666     * power-of-two masking.
667     *
668     * In addition to basic queuing support, this class contains
669     * fields described elsewhere to control execution. It turns out
670     * to work better memory-layout-wise to include them in this
671     * class rather than a separate class.
672     *
673     * Performance on most platforms is very sensitive to placement of
674     * instances of both WorkQueues and their arrays -- we absolutely
675     * do not want multiple WorkQueue instances or multiple queue
676     * arrays sharing cache lines. (It would be best for queue objects
677     * and their arrays to share, but there is nothing available to
678     * help arrange that). Unfortunately, because they are recorded
679     * in a common array, WorkQueue instances are often moved to be
680     * adjacent by garbage collectors. To reduce impact, we use field
681     * padding that works OK on common platforms; this effectively
682     * trades off slightly slower average field access for the sake of
683     * avoiding really bad worst-case access. (Until better JVM
684     * support is in place, this padding is dependent on transient
685     * properties of JVM field layout rules.) We also take care in
686     * allocating and sizing and resizing the array. Non-shared queue
687     * arrays are initialized (via method growArray) by workers before
688     * use. Others are allocated on first use.
689 dl 1.53 */
690 dl 1.111 static final class WorkQueue {
691     /**
692     * Capacity of work-stealing queue array upon initialization.
693     * Must be a power of two; at least 4, but set larger to
694     * reduce cacheline sharing among queues.
695     */
696     static final int INITIAL_QUEUE_CAPACITY = 1 << 8;
697    
698     /**
699     * Maximum size for queue arrays. Must be a power of two less
700     * than or equal to 1 << (31 - width of array entry) to ensure
701     * lack of wraparound of index calculations, but defined to a
702     * value a bit less than this to help users trap runaway
703     * programs before saturating systems.
704     */
705     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
706    
707     volatile long totalSteals; // cumulative number of steals
708     int seed; // for random scanning; initialize nonzero
709     volatile int eventCount; // encoded inactivation count; < 0 if inactive
710     int nextWait; // encoded record of next event waiter
711     int rescans; // remaining scans until block
712     int nsteals; // top-level task executions since last idle
713     final int mode; // lifo, fifo, or shared
714     int poolIndex; // index of this queue in pool (or 0)
715     int stealHint; // index of most recent known stealer
716     volatile int runState; // 1: locked, -1: terminate; else 0
717     volatile int base; // index of next slot for poll
718     int top; // index of next slot for push
719     ForkJoinTask<?>[] array; // the elements (initially unallocated)
720     final ForkJoinWorkerThread owner; // owning thread or null if shared
721     volatile Thread parker; // == owner during call to park; else null
722     ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
723     ForkJoinTask<?> currentSteal; // current non-local task being executed
724     // Heuristic padding to ameliorate unfortunate memory placements
725     Object p00, p01, p02, p03, p04, p05, p06, p07, p08, p09, p0a;
726    
727     WorkQueue(ForkJoinWorkerThread owner, int mode) {
728     this.owner = owner;
729     this.mode = mode;
730     // Place indices in the center of array (that is not yet allocated)
731     base = top = INITIAL_QUEUE_CAPACITY >>> 1;
732     }
733    
734     /**
735     * Returns number of tasks in the queue
736     */
737     final int queueSize() {
738     int n = base - top; // non-owner callers must read base first
739     return (n >= 0) ? 0 : -n;
740     }
741    
742     /**
743     * Pushes a task. Call only by owner in unshared queues.
744     *
745     * @param task the task. Caller must ensure non-null.
746     * @param p, if non-null, pool to signal if necessary
747     * @throw RejectedExecutionException if array cannot
748     * be resized
749     */
750     final void push(ForkJoinTask<?> task, ForkJoinPool p) {
751     ForkJoinTask<?>[] a;
752     int s = top, m, n;
753     if ((a = array) != null) { // ignore if queue removed
754     U.putOrderedObject
755     (a, (((m = a.length - 1) & s) << ASHIFT) + ABASE, task);
756     if ((n = (top = s + 1) - base) <= 2) {
757     if (p != null)
758     p.signalWork();
759     }
760     else if (n >= m)
761     growArray(true);
762     }
763     }
764    
765     /**
766     * Pushes a task if lock is free and array is either big
767     * enough or can be resized to be big enough.
768     *
769     * @param task the task. Caller must ensure non-null.
770     * @return true if submitted
771     */
772     final boolean trySharedPush(ForkJoinTask<?> task) {
773     boolean submitted = false;
774     if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
775     ForkJoinTask<?>[] a = array;
776     int s = top, n = s - base;
777     try {
778     if ((a != null && n < a.length - 1) ||
779     (a = growArray(false)) != null) { // must presize
780     int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
781     U.putObject(a, (long)j, task); // don't need "ordered"
782     top = s + 1;
783     submitted = true;
784     }
785     } finally {
786     runState = 0; // unlock
787     }
788     }
789     return submitted;
790     }
791    
792     /**
793     * Takes next task, if one exists, in FIFO order.
794     */
795     final ForkJoinTask<?> poll() {
796     ForkJoinTask<?>[] a; int b, i;
797     while ((b = base) - top < 0 && (a = array) != null &&
798     (i = (a.length - 1) & b) >= 0) {
799     int j = (i << ASHIFT) + ABASE;
800     ForkJoinTask<?> t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
801     if (t != null && base == b &&
802     U.compareAndSwapObject(a, j, t, null)) {
803     base = b + 1;
804     return t;
805     }
806     }
807     return null;
808     }
809    
810     /**
811     * Takes next task, if one exists, in LIFO order.
812     * Call only by owner in unshared queues.
813     */
814     final ForkJoinTask<?> pop() {
815     ForkJoinTask<?> t; int m;
816     ForkJoinTask<?>[] a = array;
817     if (a != null && (m = a.length - 1) >= 0) {
818     for (int s; (s = top - 1) - base >= 0;) {
819     int j = ((m & s) << ASHIFT) + ABASE;
820     if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) == null)
821     break;
822     if (U.compareAndSwapObject(a, j, t, null)) {
823     top = s;
824     return t;
825     }
826     }
827     }
828     return null;
829     }
830    
831     /**
832     * Takes next task, if one exists, in order specified by mode.
833     */
834     final ForkJoinTask<?> nextLocalTask() {
835     return mode == 0 ? pop() : poll();
836     }
837    
838     /**
839     * Returns next task, if one exists, in order specified by mode.
840     */
841     final ForkJoinTask<?> peek() {
842     ForkJoinTask<?>[] a = array; int m;
843     if (a == null || (m = a.length - 1) < 0)
844     return null;
845     int i = mode == 0 ? top - 1 : base;
846     int j = ((i & m) << ASHIFT) + ABASE;
847     return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
848     }
849    
850     /**
851     * Returns task at index b if b is current base of queue.
852     */
853     final ForkJoinTask<?> pollAt(int b) {
854     ForkJoinTask<?>[] a; int i;
855     ForkJoinTask<?> task = null;
856     if ((a = array) != null && (i = ((a.length - 1) & b)) >= 0) {
857     int j = (i << ASHIFT) + ABASE;
858     ForkJoinTask<?> t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
859     if (t != null && base == b &&
860     U.compareAndSwapObject(a, j, t, null)) {
861     base = b + 1;
862     task = t;
863     }
864     }
865     return task;
866     }
867    
868     /**
869     * Pops the given task only if it is at the current top.
870     */
871     final boolean tryUnpush(ForkJoinTask<?> t) {
872     ForkJoinTask<?>[] a; int s;
873     if ((a = array) != null && (s = top) != base &&
874     U.compareAndSwapObject
875     (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
876     top = s;
877     return true;
878     }
879     return false;
880     }
881    
882     /**
883     * Polls the given task only if it is at the current base.
884     */
885     final boolean pollFor(ForkJoinTask<?> task) {
886     ForkJoinTask<?>[] a; int b, i;
887     if ((b = base) - top < 0 && (a = array) != null &&
888     (i = (a.length - 1) & b) >= 0) {
889     int j = (i << ASHIFT) + ABASE;
890     if (U.getObjectVolatile(a, j) == task && base == b &&
891     U.compareAndSwapObject(a, j, task, null)) {
892     base = b + 1;
893     return true;
894     }
895     }
896     return false;
897     }
898    
899     /**
900     * If present, removes from queue and executes the given task, or
901     * any other cancelled task. Returns (true) immediately on any CAS
902     * or consistency check failure so caller can retry.
903     *
904     * @return false if no progress can be made
905     */
906     final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
907     boolean removed = false, empty = true, progress = true;
908     ForkJoinTask<?>[] a; int m, s, b, n;
909     if ((a = array) != null && (m = a.length - 1) >= 0 &&
910     (n = (s = top) - (b = base)) > 0) {
911     for (ForkJoinTask<?> t;;) { // traverse from s to b
912     int j = ((--s & m) << ASHIFT) + ABASE;
913     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
914     if (t == null) // inconsistent length
915     break;
916     else if (t == task) {
917     if (s + 1 == top) { // pop
918     if (!U.compareAndSwapObject(a, j, task, null))
919     break;
920     top = s;
921     removed = true;
922     }
923     else if (base == b) // replace with proxy
924     removed = U.compareAndSwapObject(a, j, task,
925     new EmptyTask());
926     break;
927     }
928     else if (t.status >= 0)
929     empty = false;
930     else if (s + 1 == top) { // pop and throw away
931     if (U.compareAndSwapObject(a, j, t, null))
932     top = s;
933     break;
934     }
935     if (--n == 0) {
936     if (!empty && base == b)
937     progress = false;
938     break;
939     }
940     }
941     }
942     if (removed)
943     task.doExec();
944     return progress;
945     }
946    
947     /**
948     * Initializes or doubles the capacity of array. Call either
949     * by owner or with lock held -- it is OK for base, but not
950     * top, to move while resizings are in progress.
951     *
952     * @param rejectOnFailure if true, throw exception if capacity
953     * exceeded (relayed ultimately to user); else return null.
954     */
955     final ForkJoinTask<?>[] growArray(boolean rejectOnFailure) {
956     ForkJoinTask<?>[] oldA = array;
957     int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
958     if (size <= MAXIMUM_QUEUE_CAPACITY) {
959     int oldMask, t, b;
960     ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
961     if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
962     (t = top) - (b = base) > 0) {
963     int mask = size - 1;
964     do {
965     ForkJoinTask<?> x;
966     int oldj = ((b & oldMask) << ASHIFT) + ABASE;
967     int j = ((b & mask) << ASHIFT) + ABASE;
968     x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
969     if (x != null &&
970     U.compareAndSwapObject(oldA, oldj, x, null))
971     U.putObjectVolatile(a, j, x);
972     } while (++b != t);
973     }
974     return a;
975     }
976     else if (!rejectOnFailure)
977     return null;
978     else
979     throw new RejectedExecutionException("Queue capacity exceeded");
980     }
981    
982     /**
983     * Removes and cancels all known tasks, ignoring any exceptions
984     */
985     final void cancelAll() {
986     ForkJoinTask.cancelIgnoringExceptions(currentJoin);
987     ForkJoinTask.cancelIgnoringExceptions(currentSteal);
988     for (ForkJoinTask<?> t; (t = poll()) != null; )
989     ForkJoinTask.cancelIgnoringExceptions(t);
990     }
991    
992     // Execution methods
993    
994     /**
995     * Removes and runs tasks until empty, using local mode
996     * ordering.
997     */
998     final void runLocalTasks() {
999     if (base - top < 0) {
1000     for (ForkJoinTask<?> t; (t = nextLocalTask()) != null; )
1001     t.doExec();
1002     }
1003     }
1004    
1005     /**
1006     * Executes a top-level task and any local tasks remaining
1007     * after execution.
1008     *
1009     * @return true unless terminating
1010     */
1011     final boolean runTask(ForkJoinTask<?> t) {
1012     boolean alive = true;
1013     if (t != null) {
1014     currentSteal = t;
1015     t.doExec();
1016     runLocalTasks();
1017     ++nsteals;
1018     currentSteal = null;
1019     }
1020     else if (runState < 0) // terminating
1021     alive = false;
1022     return alive;
1023     }
1024    
1025     /**
1026     * Executes a non-top-level (stolen) task
1027     */
1028     final void runSubtask(ForkJoinTask<?> t) {
1029     if (t != null) {
1030     ForkJoinTask<?> ps = currentSteal;
1031     currentSteal = t;
1032     t.doExec();
1033     currentSteal = ps;
1034     }
1035     }
1036    
1037     /**
1038     * Computes next value for random probes. Scans don't require
1039     * a very high quality generator, but also not a crummy one.
1040     * Marsaglia xor-shift is cheap and works well enough. Note:
1041     * This is manually inlined in several usages in ForkJoinPool
1042     * to avoid writes inside busy scan loops.
1043     */
1044     final int nextSeed() {
1045     int r = seed;
1046     r ^= r << 13;
1047     r ^= r >>> 17;
1048     r ^= r << 5;
1049     return seed = r;
1050     }
1051    
1052     // Unsafe mechanics
1053     private static final sun.misc.Unsafe U;
1054     private static final long RUNSTATE;
1055     private static final int ABASE;
1056     private static final int ASHIFT;
1057     static {
1058     int s;
1059     try {
1060     U = getUnsafe();
1061     Class<?> k = WorkQueue.class;
1062     Class<?> ak = ForkJoinTask[].class;
1063     RUNSTATE = U.objectFieldOffset
1064     (k.getDeclaredField("runState"));
1065     ABASE = U.arrayBaseOffset(ak);
1066     s = U.arrayIndexScale(ak);
1067     } catch (Exception e) {
1068     throw new Error(e);
1069     }
1070     if ((s & (s-1)) != 0)
1071     throw new Error("data type scale not a power of two");
1072     ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
1073     }
1074     }
1075 dl 1.53
1076 dl 1.1 /**
1077 dl 1.111 * Class for artificial tasks that are used to replace the target
1078     * of local joins if they are removed from an interior queue slot
1079     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
1080     * actually do anything beyond having a unique identity.
1081 dl 1.1 */
1082 dl 1.111 static final class EmptyTask extends ForkJoinTask<Void> {
1083     EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
1084     public Void getRawResult() { return null; }
1085     public void setRawResult(Void x) {}
1086     public boolean exec() { return true; }
1087     }
1088 dl 1.1
1089     /**
1090 dl 1.116 <<<<<<< ForkJoinPool.java
1091     * Per-thread records for (typically non-FJ) threads that submit
1092     * to pools. Cureently holds only psuedo-random seed / index that
1093     * is used to chose submission queues in method doSubmit. In the
1094     * future, this may incorporate a means to implement different
1095     * task rejection and resubmission policies.
1096     */
1097     static final class Submitter {
1098     int seed; // seed for random submission queue selection
1099    
1100     // Heuristic padding to ameliorate unfortunate memory placements
1101     int p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pa, pb, pc, pd, pe;
1102    
1103     Submitter() {
1104     // Use identityHashCode, forced negative, for seed
1105     seed = System.identityHashCode(Thread.currentThread()) | (1 << 31);
1106     }
1107    
1108     /**
1109     * Computes next value for random probes. Like method
1110     * WorkQueue.nextSeed, this is manually inlined in several
1111     * usages to avoid writes inside busy loops.
1112     */
1113     final int nextSeed() {
1114     int r = seed;
1115     r ^= r << 13;
1116     r ^= r >>> 17;
1117     return seed = r ^= r << 5;
1118     }
1119     }
1120    
1121     /** ThreadLocal class for Submitters */
1122     static final class ThreadSubmitter extends ThreadLocal<Submitter> {
1123     public Submitter initialValue() { return new Submitter(); }
1124 dl 1.111 }
1125 dl 1.1
1126     /**
1127 dl 1.116 * Per-thread submission bookeeping. Shared across all pools
1128     * to reduce ThreadLocal pollution and because random motion
1129     * to avoid contention in one pool is likely to hold for others.
1130     */
1131     static final ThreadSubmitter submitters = new ThreadSubmitter();
1132    
1133     /**
1134 dl 1.111 * Top-level runloop for workers
1135 dl 1.1 */
1136 dl 1.111 final void runWorker(ForkJoinWorkerThread wt) {
1137 dl 1.116 // Initialize queue array and seed in this thread
1138 dl 1.111 WorkQueue w = wt.workQueue;
1139 dl 1.116 w.growArray(false);
1140     // Same initial hash as Submitters
1141     w.seed = System.identityHashCode(Thread.currentThread()) | (1 << 31);
1142 dl 1.111
1143     do {} while (w.runTask(scan(w)));
1144     }
1145    
1146     // Creating, registering and deregistering workers
1147 dl 1.6
1148     /**
1149 dl 1.111 * Tries to create and start a worker
1150 dl 1.1 */
1151 dl 1.111 private void addWorker() {
1152     Throwable ex = null;
1153     ForkJoinWorkerThread w = null;
1154     try {
1155     if ((w = factory.newThread(this)) != null) {
1156     w.start();
1157     return;
1158     }
1159     } catch (Throwable e) {
1160     ex = e;
1161     }
1162     deregisterWorker(w, ex);
1163     }
1164 dl 1.1
1165 dl 1.91 /**
1166 dl 1.111 * Callback from ForkJoinWorkerThread constructor to assign a
1167     * public name. This must be separate from registerWorker because
1168     * it is called during the "super" constructor call in
1169     * ForkJoinWorkerThread.
1170 dl 1.91 */
1171 dl 1.111 final String nextWorkerName() {
1172     return workerNamePrefix.concat
1173     (Integer.toString(nextWorkerNumber.addAndGet(1)));
1174     }
1175 dl 1.1
1176     /**
1177 dl 1.111 * Callback from ForkJoinWorkerThread constructor to establish and
1178     * record its WorkQueue
1179     *
1180     * @param wt the worker thread
1181 dl 1.1 */
1182 dl 1.111 final void registerWorker(ForkJoinWorkerThread wt) {
1183     WorkQueue w = wt.workQueue;
1184     ReentrantLock lock = this.lock;
1185     lock.lock();
1186     try {
1187     int k = nextPoolIndex;
1188     WorkQueue[] ws = workQueues;
1189     if (ws != null) { // ignore on shutdown
1190     int n = ws.length;
1191     if (k < 0 || (k & 1) == 0 || k >= n || ws[k] != null) {
1192     for (k = 1; k < n && ws[k] != null; k += 2)
1193     ; // workers are at odd indices
1194     if (k >= n) // resize
1195     workQueues = ws = Arrays.copyOf(ws, n << 1);
1196     }
1197     w.poolIndex = k;
1198     w.eventCount = ~(k >>> 1) & SMASK; // Set up wait count
1199     ws[k] = w; // record worker
1200     nextPoolIndex = k + 2;
1201     int rs = runState;
1202     int m = rs & SMASK; // recalculate runState mask
1203     if (k > m)
1204     m = (m << 1) + 1;
1205     runState = (rs & SHUTDOWN) | ((rs + RS_SEQ) & RS_SEQ_MASK) | m;
1206     }
1207     } finally {
1208     lock.unlock();
1209     }
1210     }
1211 dl 1.58
1212 dl 1.1 /**
1213 dl 1.111 * Final callback from terminating worker, as well as failure to
1214     * construct or start a worker in addWorker. Removes record of
1215     * worker from array, and adjusts counts. If pool is shutting
1216     * down, tries to complete termination.
1217     *
1218     * @param wt the worker thread or null if addWorker failed
1219     * @param ex the exception causing failure, or null if none
1220 dl 1.85 */
1221 dl 1.111 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1222     WorkQueue w = null;
1223     if (wt != null && (w = wt.workQueue) != null) {
1224     w.runState = -1; // ensure runState is set
1225     stealCount.getAndAdd(w.totalSteals + w.nsteals);
1226     int idx = w.poolIndex;
1227     ReentrantLock lock = this.lock;
1228     lock.lock();
1229     try { // remove record from array
1230     WorkQueue[] ws = workQueues;
1231     if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1232     ws[nextPoolIndex = idx] = null;
1233     } finally {
1234     lock.unlock();
1235     }
1236     }
1237    
1238     long c; // adjust ctl counts
1239     do {} while (!U.compareAndSwapLong
1240     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1241     ((c - TC_UNIT) & TC_MASK) |
1242     (c & ~(AC_MASK|TC_MASK)))));
1243    
1244     if (!tryTerminate(false) && w != null) {
1245     w.cancelAll(); // cancel remaining tasks
1246     if (w.array != null) // suppress signal if never ran
1247     signalWork(); // wake up or create replacement
1248     }
1249    
1250     if (ex != null) // rethrow
1251     U.throwException(ex);
1252     }
1253 dl 1.91
1254 dl 1.116 /**
1255     * Tries to add and register a new queue at the given index.
1256     *
1257     * @param idx the workQueues array index to register the queue
1258     * @return the queue, or null if could not add because could
1259     * not acquire lock or idx is unusable
1260     */
1261     private WorkQueue tryAddSharedQueue(int idx) {
1262     WorkQueue q = null;
1263     ReentrantLock lock = this.lock;
1264     if (idx >= 0 && (idx & 1) == 0 && !lock.isLocked()) {
1265     // create queue outside of lock but only if apparently free
1266     WorkQueue nq = new WorkQueue(null, SHARED_QUEUE);
1267     if (lock.tryLock()) {
1268     try {
1269     WorkQueue[] ws = workQueues;
1270     if (ws != null && idx < ws.length) {
1271     if ((q = ws[idx]) == null) {
1272     int rs; // update runState seq
1273     ws[idx] = q = nq;
1274     runState = (((rs = runState) & SHUTDOWN) |
1275     ((rs + RS_SEQ) & ~SHUTDOWN));
1276     }
1277     }
1278     } finally {
1279     lock.unlock();
1280     }
1281     }
1282     }
1283     return q;
1284     }
1285 dl 1.85
1286 dl 1.111 // Maintaining ctl counts
1287 dl 1.56
1288     /**
1289 dl 1.111 * Increments active count; mainly called upon return from blocking
1290 dl 1.58 */
1291 dl 1.111 final void incrementActiveCount() {
1292 dl 1.91 long c;
1293 dl 1.111 do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1294 dl 1.61 }
1295    
1296     /**
1297 dl 1.111 * Activates or creates a worker
1298 dl 1.53 */
1299 dl 1.91 final void signalWork() {
1300     /*
1301     * The while condition is true if: (there is are too few total
1302     * workers OR there is at least one waiter) AND (there are too
1303     * few active workers OR the pool is terminating). The value
1304     * of e distinguishes the remaining cases: zero (no waiters)
1305     * for create, negative if terminating (in which case do
1306     * nothing), else release a waiter. The secondary checks for
1307     * release (non-null array etc) can fail if the pool begins
1308     * terminating after the test, and don't impose any added cost
1309     * because JVMs must perform null and bounds checks anyway.
1310     */
1311     long c; int e, u;
1312     while ((((e = (int)(c = ctl)) | (u = (int)(c >>> 32))) &
1313 dl 1.111 (INT_SIGN|SHORT_SIGN)) == (INT_SIGN|SHORT_SIGN)) {
1314     WorkQueue[] ws = workQueues; int i; WorkQueue w; Thread p;
1315     if (e == 0) { // add a new worker
1316     if (U.compareAndSwapLong
1317     (this, CTL, c, (long)(((u + UTC_UNIT) & UTC_MASK) |
1318     ((u + UAC_UNIT) & UAC_MASK)) << 32)) {
1319     addWorker();
1320 dl 1.91 break;
1321 dl 1.111 }
1322     }
1323     else if (e > 0 && ws != null &&
1324     (i = ((~e << 1) | 1) & SMASK) < ws.length &&
1325     (w = ws[i]) != null &&
1326     w.eventCount == (e | INT_SIGN)) {
1327     if (U.compareAndSwapLong
1328     (this, CTL, c, (((long)(w.nextWait & E_MASK)) |
1329     ((long)(u + UAC_UNIT) << 32)))) {
1330     w.eventCount = (e + E_SEQ) & E_MASK;
1331     if ((p = w.parker) != null)
1332     U.unpark(p); // release a waiting worker
1333 dl 1.91 break;
1334     }
1335     }
1336 dl 1.111 else
1337 dl 1.91 break;
1338     }
1339 dl 1.53 }
1340    
1341     /**
1342 dl 1.111 * Tries to decrement active count (sometimes implicitly) and
1343     * possibly release or create a compensating worker in preparation
1344     * for blocking. Fails on contention or termination.
1345 dl 1.91 *
1346 dl 1.111 * @return true if the caller can block, else should recheck and retry
1347 dl 1.53 */
1348 dl 1.111 final boolean tryCompensate() {
1349     WorkQueue[] ws; WorkQueue w; Thread p;
1350     int pc = parallelism, e, u, ac, tc, i;
1351     long c = ctl;
1352    
1353     if ((e = (int)c) >= 0) {
1354     if ((ac = ((u = (int)(c >>> 32)) >> UAC_SHIFT)) <= 0 &&
1355     e != 0 && (ws = workQueues) != null &&
1356     (i = ((~e << 1) | 1) & SMASK) < ws.length &&
1357     (w = ws[i]) != null) {
1358     if (w.eventCount == (e | INT_SIGN) &&
1359     U.compareAndSwapLong
1360     (this, CTL, c, ((long)(w.nextWait & E_MASK) |
1361     (c & (AC_MASK|TC_MASK))))) {
1362     w.eventCount = (e + E_SEQ) & E_MASK;
1363     if ((p = w.parker) != null)
1364     U.unpark(p);
1365     return true; // release an idle worker
1366     }
1367     }
1368     else if ((tc = (short)(u >>> UTC_SHIFT)) >= 0 && ac + pc > 1) {
1369     long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1370     if (U.compareAndSwapLong(this, CTL, c, nc))
1371     return true; // no compensation needed
1372     }
1373     else if (tc + pc < MAX_ID) {
1374     long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1375     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1376     addWorker();
1377     return true; // create replacement
1378     }
1379     }
1380 dl 1.53 }
1381 dl 1.111 return false;
1382 dl 1.53 }
1383    
1384 dl 1.111 // Submissions
1385 dl 1.53
1386     /**
1387 dl 1.116 * Unless shutting down, adds the given task to a submission queue
1388     * at submitter's current queue index. If no queue exists at the
1389     * index, one is created unless pool lock is busy. If the queue
1390     * and/or lock are busy, another index is randomly chosen.
1391 dl 1.111 */
1392     private void doSubmit(ForkJoinTask<?> task) {
1393     if (task == null)
1394     throw new NullPointerException();
1395 dl 1.116 Submitter s = submitters.get();
1396     for (int r = s.seed;;) {
1397     WorkQueue q; int k;
1398 dl 1.111 int rs = runState, m = rs & SMASK;
1399     WorkQueue[] ws = workQueues;
1400 dl 1.116 if (rs < 0 || ws == null) // shutting down
1401     throw new RejectedExecutionException();
1402     if (ws.length > m && // k must be at index
1403     ((q = ws[k = (r << 1) & m]) != null ||
1404     (q = tryAddSharedQueue(k)) != null) &&
1405     q.trySharedPush(task)) {
1406     signalWork();
1407     return;
1408 dl 1.91 }
1409 dl 1.116 r ^= r << 13; // xorshift seed to new position
1410     r ^= r >>> 17;
1411     if (((s.seed = r ^= r << 5) & m) == 0)
1412     Thread.yield(); // occasionally yield if busy
1413 dl 1.53 }
1414     }
1415    
1416    
1417 dl 1.111 // Scanning for tasks
1418    
1419 dl 1.53 /**
1420 dl 1.111 * Scans for and, if found, returns one task, else possibly
1421     * inactivates the worker. This method operates on single reads of
1422     * volatile state and is designed to be re-invoked continuously in
1423     * part because it returns upon detecting inconsistencies,
1424     * contention, or state changes that indicate possible success on
1425     * re-invocation.
1426     *
1427     * The scan searches for tasks across queues, randomly selecting
1428     * the first #queues probes, favoring steals 2:1 over submissions
1429     * (by exploiting even/odd indexing), and then performing a
1430     * circular sweep of all queues. The scan terminates upon either
1431     * finding a non-empty queue, or completing a full sweep. If the
1432     * worker is not inactivated, it takes and returns a task from
1433     * this queue. On failure to find a task, we take one of the
1434     * following actions, after which the caller will retry calling
1435     * this method unless terminated.
1436     *
1437     * * If not a complete sweep, try to release a waiting worker. If
1438     * the scan terminated because the worker is inactivated, then the
1439     * released worker will often be the calling worker, and it can
1440     * succeed obtaining a task on the next call. Or maybe it is
1441     * another worker, but with same net effect. Releasing in other
1442     * cases as well ensures that we have enough workers running.
1443     *
1444     * * If the caller has run a task since the the last empty scan,
1445     * return (to allow rescan) if other workers are not also yet
1446     * enqueued. Field WorkQueue.rescans counts down on each scan to
1447     * ensure eventual inactivation, and occasional calls to
1448     * Thread.yield to help avoid interference with more useful
1449     * activities on the system.
1450     *
1451     * * If pool is terminating, terminate the worker
1452     *
1453     * * If not already enqueued, try to inactivate and enqueue the
1454     * worker on wait queue.
1455     *
1456     * * If already enqueued and none of the above apply, either park
1457     * awaiting signal, or if this is the most recent waiter and pool
1458     * is quiescent, relay to idleAwaitWork to check for termination
1459     * and possibly shrink pool.
1460     *
1461     * @param w the worker (via its WorkQueue)
1462     * @return a task or null of none found
1463     */
1464     private final ForkJoinTask<?> scan(WorkQueue w) {
1465     boolean swept = false; // true after full empty scan
1466     WorkQueue[] ws; // volatile read order matters
1467     int r = w.seed, ec = w.eventCount; // ec is negative if inactive
1468     int rs = runState, m = rs & SMASK;
1469     if ((ws = workQueues) != null && ws.length > m) {
1470     ForkJoinTask<?> task = null;
1471     for (int k = 0, j = -2 - m; ; ++j) {
1472     WorkQueue q; int b;
1473     if (j < 0) { // random probes while j negative
1474     r ^= r << 13; r ^= r >>> 17; k = (r ^= r << 5) | (j & 1);
1475     } // worker (not submit) for odd j
1476     else // cyclic scan when j >= 0
1477     k += (m >>> 1) | 1; // step by half to reduce bias
1478    
1479     if ((q = ws[k & m]) != null && (b = q.base) - q.top < 0) {
1480     if (ec >= 0)
1481     task = q.pollAt(b); // steal
1482 dl 1.93 break;
1483 dl 1.111 }
1484     else if (j > m) {
1485     if (rs == runState) // staleness check
1486     swept = true;
1487 dl 1.93 break;
1488 dl 1.91 }
1489     }
1490 dl 1.111 w.seed = r; // save seed for next scan
1491     if (task != null)
1492     return task;
1493     }
1494    
1495     // Decode ctl on empty scan
1496     long c = ctl; int e = (int)c, a = (int)(c >> AC_SHIFT), nr, ns;
1497     if (!swept) { // try to release a waiter
1498     WorkQueue v; Thread p;
1499     if (e > 0 && a < 0 && ws != null &&
1500     (v = ws[((~e << 1) | 1) & m]) != null &&
1501     v.eventCount == (e | INT_SIGN) && U.compareAndSwapLong
1502     (this, CTL, c, ((long)(v.nextWait & E_MASK) |
1503     ((c + AC_UNIT) & (AC_MASK|TC_MASK))))) {
1504     v.eventCount = (e + E_SEQ) & E_MASK;
1505     if ((p = v.parker) != null)
1506     U.unpark(p);
1507     }
1508     }
1509     else if ((nr = w.rescans) > 0) { // continue rescanning
1510     int ac = a + parallelism;
1511     if ((w.rescans = (ac < nr) ? ac : nr - 1) > 0 && w.seed < 0 &&
1512     w.eventCount == ec)
1513     Thread.yield(); // 1 bit randomness for yield call
1514     }
1515     else if (e < 0) // pool is terminating
1516     w.runState = -1;
1517     else if (ec >= 0) { // try to enqueue
1518     long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1519     w.nextWait = e;
1520     w.eventCount = ec | INT_SIGN; // mark as inactive
1521     if (!U.compareAndSwapLong(this, CTL, c, nc))
1522     w.eventCount = ec; // back out on CAS failure
1523     else if ((ns = w.nsteals) != 0) { // set rescans if ran task
1524     if (a <= 0) // ... unless too many active
1525     w.rescans = a + parallelism;
1526     w.nsteals = 0;
1527     w.totalSteals += ns;
1528     }
1529     }
1530     else{ // already queued
1531     if (parallelism == -a)
1532     idleAwaitWork(w); // quiescent
1533     if (w.eventCount == ec) {
1534     Thread.interrupted(); // clear status
1535     ForkJoinWorkerThread wt = w.owner;
1536     U.putObject(wt, PARKBLOCKER, this);
1537     w.parker = wt; // emulate LockSupport.park
1538     if (w.eventCount == ec) // recheck
1539     U.park(false, 0L); // block
1540     w.parker = null;
1541     U.putObject(wt, PARKBLOCKER, null);
1542     }
1543 dl 1.91 }
1544 dl 1.111 return null;
1545 dl 1.53 }
1546    
1547     /**
1548 dl 1.111 * If inactivating worker w has caused pool to become quiescent,
1549     * check for pool termination, and, so long as this is not the
1550     * only worker, wait for event for up to SHRINK_RATE nanosecs On
1551     * timeout, if ctl has not changed, terminate the worker, which
1552     * will in turn wake up another worker to possibly repeat this
1553     * process.
1554 dl 1.91 *
1555 dl 1.111 * @param w the calling worker
1556 dl 1.53 */
1557 dl 1.111 private void idleAwaitWork(WorkQueue w) {
1558     long c; int nw, ec;
1559     if (!tryTerminate(false) &&
1560     (int)((c = ctl) >> AC_SHIFT) + parallelism == 0 &&
1561     (ec = w.eventCount) == ((int)c | INT_SIGN) &&
1562     (nw = w.nextWait) != 0) {
1563     long nc = ((long)(nw & E_MASK) | // ctl to restore on timeout
1564     ((c + AC_UNIT) & AC_MASK) | (c & TC_MASK));
1565     ForkJoinTask.helpExpungeStaleExceptions(); // help clean
1566     ForkJoinWorkerThread wt = w.owner;
1567     while (ctl == c) {
1568     long startTime = System.nanoTime();
1569     Thread.interrupted(); // timed variant of version in scan()
1570     U.putObject(wt, PARKBLOCKER, this);
1571     w.parker = wt;
1572     if (ctl == c)
1573     U.park(false, SHRINK_RATE);
1574     w.parker = null;
1575     U.putObject(wt, PARKBLOCKER, null);
1576     if (ctl != c)
1577     break;
1578     if (System.nanoTime() - startTime >= SHRINK_TIMEOUT &&
1579     U.compareAndSwapLong(this, CTL, c, nc)) {
1580     w.runState = -1; // shrink
1581     w.eventCount = (ec + E_SEQ) | E_MASK;
1582     break;
1583     }
1584 dl 1.66 }
1585 dl 1.53 }
1586     }
1587    
1588     /**
1589 dl 1.111 * Tries to locate and execute tasks for a stealer of the given
1590     * task, or in turn one of its stealers, Traces currentSteal ->
1591     * currentJoin links looking for a thread working on a descendant
1592     * of the given task and with a non-empty queue to steal back and
1593     * execute tasks from. The first call to this method upon a
1594     * waiting join will often entail scanning/search, (which is OK
1595     * because the joiner has nothing better to do), but this method
1596     * leaves hints in workers to speed up subsequent calls. The
1597     * implementation is very branchy to cope with potential
1598     * inconsistencies or loops encountering chains that are stale,
1599     * unknown, or of length greater than MAX_HELP_DEPTH links. All
1600     * of these cases are dealt with by just retrying by caller.
1601     *
1602     * @param joiner the joining worker
1603     * @param task the task to join
1604     * @return true if found or ran a task (and so is immediately retryable)
1605     */
1606     final boolean tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1607     ForkJoinTask<?> subtask; // current target
1608     boolean progress = false;
1609     int depth = 0; // current chain depth
1610     int m = runState & SMASK;
1611     WorkQueue[] ws = workQueues;
1612    
1613     if (ws != null && ws.length > m && (subtask = task).status >= 0) {
1614     outer:for (WorkQueue j = joiner;;) {
1615     // Try to find the stealer of subtask, by first using hint
1616     WorkQueue stealer = null;
1617     WorkQueue v = ws[j.stealHint & m];
1618     if (v != null && v.currentSteal == subtask)
1619     stealer = v;
1620     else {
1621     for (int i = 1; i <= m; i += 2) {
1622     if ((v = ws[i]) != null && v.currentSteal == subtask) {
1623     stealer = v;
1624     j.stealHint = i; // save hint
1625     break;
1626     }
1627     }
1628     if (stealer == null)
1629     break;
1630     }
1631 dl 1.64
1632 dl 1.111 for (WorkQueue q = stealer;;) { // Try to help stealer
1633     ForkJoinTask<?> t; int b;
1634     if (task.status < 0)
1635     break outer;
1636     if ((b = q.base) - q.top < 0) {
1637     progress = true;
1638     if (subtask.status < 0)
1639     break outer; // stale
1640     if ((t = q.pollAt(b)) != null) {
1641     stealer.stealHint = joiner.poolIndex;
1642     joiner.runSubtask(t);
1643     }
1644 dl 1.91 }
1645 dl 1.111 else { // empty - try to descend to find stealer's stealer
1646     ForkJoinTask<?> next = stealer.currentJoin;
1647     if (++depth == MAX_HELP_DEPTH || subtask.status < 0 ||
1648     next == null || next == subtask)
1649     break outer; // max depth, stale, dead-end, cyclic
1650     subtask = next;
1651     j = stealer;
1652     break;
1653 dl 1.91 }
1654 dl 1.61 }
1655 dl 1.111 }
1656 dl 1.53 }
1657 dl 1.111 return progress;
1658 dl 1.64 }
1659    
1660 dl 1.91 /**
1661 dl 1.111 * If task is at base of some steal queue, steals and executes it.
1662 dl 1.91 *
1663 dl 1.111 * @param joiner the joining worker
1664     * @param task the task
1665 dl 1.61 */
1666 dl 1.111 final void tryPollForAndExec(WorkQueue joiner, ForkJoinTask<?> task) {
1667     WorkQueue[] ws;
1668     int m = runState & SMASK;
1669     if ((ws = workQueues) != null && ws.length > m) {
1670     for (int j = 1; j <= m && task.status >= 0; j += 2) {
1671     WorkQueue q = ws[j];
1672     if (q != null && q.pollFor(task)) {
1673     joiner.runSubtask(task);
1674     break;
1675     }
1676 dl 1.91 }
1677     }
1678 dl 1.61 }
1679    
1680     /**
1681 dl 1.112 * Returns a non-empty steal queue, if one is found during a random,
1682 dl 1.111 * then cyclic scan, else null. This method must be retried by
1683     * caller if, by the time it tries to use the queue, it is empty.
1684     */
1685     private WorkQueue findNonEmptyStealQueue(WorkQueue w) {
1686     int r = w.seed; // Same idea as scan(), but ignoring submissions
1687     for (WorkQueue[] ws;;) {
1688     int m = runState & SMASK;
1689     if ((ws = workQueues) == null)
1690     return null;
1691     if (ws.length > m) {
1692     WorkQueue q;
1693     for (int n = m << 2, k = r, j = -n;;) {
1694     r ^= r << 13; r ^= r >>> 17; r ^= r << 5;
1695     if ((q = ws[(k | 1) & m]) != null && q.base - q.top < 0) {
1696     w.seed = r;
1697     return q;
1698 dl 1.91 }
1699 dl 1.111 else if (j > n)
1700     return null;
1701     else
1702     k = (j++ < 0) ? r : k + ((m >>> 1) | 1);
1703    
1704 dl 1.91 }
1705     }
1706 dl 1.64 }
1707     }
1708    
1709     /**
1710 dl 1.111 * Runs tasks until {@code isQuiescent()}. We piggyback on
1711     * active count ctl maintenance, but rather than blocking
1712     * when tasks cannot be found, we rescan until all others cannot
1713     * find tasks either.
1714     */
1715     final void helpQuiescePool(WorkQueue w) {
1716     for (boolean active = true;;) {
1717     w.runLocalTasks(); // exhaust local queue
1718     WorkQueue q = findNonEmptyStealQueue(w);
1719     if (q != null) {
1720     ForkJoinTask<?> t;
1721     if (!active) { // re-establish active count
1722     long c;
1723     active = true;
1724     do {} while (!U.compareAndSwapLong
1725     (this, CTL, c = ctl, c + AC_UNIT));
1726     }
1727     if ((t = q.poll()) != null)
1728     w.runSubtask(t);
1729     }
1730     else {
1731     long c;
1732     if (active) { // decrement active count without queuing
1733     active = false;
1734     do {} while (!U.compareAndSwapLong
1735     (this, CTL, c = ctl, c -= AC_UNIT));
1736     }
1737     else
1738     c = ctl; // re-increment on exit
1739     if ((int)(c >> AC_SHIFT) + parallelism == 0) {
1740     do {} while (!U.compareAndSwapLong
1741     (this, CTL, c = ctl, c + AC_UNIT));
1742     break;
1743 dl 1.66 }
1744 dl 1.64 }
1745     }
1746     }
1747    
1748     /**
1749 dl 1.111 * Gets and removes a local or stolen task for the given worker
1750     *
1751     * @return a task, if available
1752 dl 1.64 */
1753 dl 1.111 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
1754     for (ForkJoinTask<?> t;;) {
1755     WorkQueue q;
1756     if ((t = w.nextLocalTask()) != null)
1757     return t;
1758     if ((q = findNonEmptyStealQueue(w)) == null)
1759     return null;
1760     if ((t = q.poll()) != null)
1761     return t;
1762 dl 1.91 }
1763 dl 1.61 }
1764    
1765 dl 1.53 /**
1766 dl 1.111 * Returns the approximate (non-atomic) number of idle threads per
1767     * active thread to offset steal queue size for method
1768     * ForkJoinTask.getSurplusQueuedTaskCount().
1769 dl 1.53 */
1770 dl 1.111 final int idlePerActive() {
1771     // Approximate at powers of two for small values, saturate past 4
1772     int p = parallelism;
1773     int a = p + (int)(ctl >> AC_SHIFT);
1774     return (a > (p >>>= 1) ? 0 :
1775     a > (p >>>= 1) ? 1 :
1776     a > (p >>>= 1) ? 2 :
1777     a > (p >>>= 1) ? 4 :
1778     8);
1779 dl 1.53 }
1780    
1781 dl 1.111 // Termination
1782 dl 1.53
1783     /**
1784 dl 1.111 * Sets SHUTDOWN bit of runState under lock
1785 dl 1.53 */
1786 dl 1.111 private void enableShutdown() {
1787     ReentrantLock lock = this.lock;
1788     if (runState >= 0) {
1789     lock.lock(); // don't need try/finally
1790     runState |= SHUTDOWN;
1791     lock.unlock();
1792 dl 1.53 }
1793 dl 1.59 }
1794 dl 1.54
1795     /**
1796 dl 1.111 * Possibly initiates and/or completes termination. Upon
1797     * termination, cancels all queued tasks and then
1798 dl 1.53 *
1799     * @param now if true, unconditionally terminate, else only
1800 dl 1.111 * if no work and no active workers
1801 dl 1.53 * @return true if now terminating or terminated
1802 dl 1.1 */
1803 dl 1.53 private boolean tryTerminate(boolean now) {
1804 dl 1.111 for (long c;;) {
1805     if (((c = ctl) & STOP_BIT) != 0) { // already terminating
1806     if ((short)(c >>> TC_SHIFT) == -parallelism) {
1807     ReentrantLock lock = this.lock; // signal when no workers
1808     lock.lock(); // don't need try/finally
1809     termination.signalAll(); // signal when 0 workers
1810     lock.unlock();
1811     }
1812     return true;
1813     }
1814 dl 1.91 if (!now) {
1815 dl 1.111 if ((int)(c >> AC_SHIFT) != -parallelism || runState >= 0 ||
1816     hasQueuedSubmissions())
1817 dl 1.91 return false;
1818 dl 1.111 // Check for unqueued inactive workers. One pass suffices.
1819     WorkQueue[] ws = workQueues; WorkQueue w;
1820     if (ws != null) {
1821     int n = ws.length;
1822     for (int i = 1; i < n; i += 2) {
1823     if ((w = ws[i]) != null && w.eventCount >= 0)
1824     return false;
1825     }
1826 dl 1.91 }
1827     }
1828 dl 1.111 if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT))
1829 dl 1.91 startTerminating();
1830     }
1831 dl 1.1 }
1832    
1833     /**
1834 dl 1.111 * Initiates termination: Runs three passes through workQueues:
1835     * (0) Setting termination status, followed by wakeups of queued
1836     * workers; (1) cancelling all tasks; (2) interrupting lagging
1837     * threads (likely in external tasks, but possibly also blocked in
1838     * joins). Each pass repeats previous steps because of potential
1839     * lagging thread creation.
1840 dl 1.53 */
1841     private void startTerminating() {
1842 dl 1.91 for (int pass = 0; pass < 3; ++pass) {
1843 dl 1.111 WorkQueue[] ws = workQueues;
1844 dl 1.91 if (ws != null) {
1845 dl 1.111 WorkQueue w; Thread wt;
1846     int n = ws.length;
1847     for (int j = 0; j < n; ++j) {
1848     if ((w = ws[j]) != null) {
1849     w.runState = -1;
1850 dl 1.91 if (pass > 0) {
1851 dl 1.111 w.cancelAll();
1852     if (pass > 1 && (wt = w.owner) != null &&
1853     !wt.isInterrupted()) {
1854 dl 1.91 try {
1855 dl 1.111 wt.interrupt();
1856 dl 1.91 } catch (SecurityException ignore) {
1857     }
1858 dl 1.61 }
1859     }
1860     }
1861     }
1862 dl 1.111 // Wake up workers parked on event queue
1863     int i, e; long c; Thread p;
1864     while ((i = ((~(e = (int)(c = ctl)) << 1) | 1) & SMASK) < n &&
1865     (w = ws[i]) != null &&
1866     w.eventCount == (e | INT_SIGN)) {
1867     long nc = ((long)(w.nextWait & E_MASK) |
1868     ((c + AC_UNIT) & AC_MASK) |
1869     (c & (TC_MASK|STOP_BIT)));
1870     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1871     w.eventCount = (e + E_SEQ) & E_MASK;
1872     if ((p = w.parker) != null)
1873     U.unpark(p);
1874     }
1875 dl 1.91 }
1876 dl 1.53 }
1877     }
1878 dl 1.56 }
1879    
1880 dl 1.91 // Exported methods
1881 dl 1.1
1882     // Constructors
1883    
1884     /**
1885 dl 1.42 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1886 dl 1.57 * java.lang.Runtime#availableProcessors}, using the {@linkplain
1887     * #defaultForkJoinWorkerThreadFactory default thread factory},
1888     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1889 jsr166 1.17 *
1890 dl 1.1 * @throws SecurityException if a security manager exists and
1891     * the caller is not permitted to modify threads
1892     * because it does not hold {@link
1893 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1894 dl 1.1 */
1895     public ForkJoinPool() {
1896     this(Runtime.getRuntime().availableProcessors(),
1897 dl 1.57 defaultForkJoinWorkerThreadFactory, null, false);
1898 dl 1.1 }
1899    
1900     /**
1901 dl 1.42 * Creates a {@code ForkJoinPool} with the indicated parallelism
1902 dl 1.57 * level, the {@linkplain
1903     * #defaultForkJoinWorkerThreadFactory default thread factory},
1904     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1905 jsr166 1.17 *
1906 dl 1.42 * @param parallelism the parallelism level
1907 dl 1.1 * @throws IllegalArgumentException if parallelism less than or
1908 jsr166 1.47 * equal to zero, or greater than implementation limit
1909 dl 1.1 * @throws SecurityException if a security manager exists and
1910     * the caller is not permitted to modify threads
1911     * because it does not hold {@link
1912 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1913 dl 1.1 */
1914     public ForkJoinPool(int parallelism) {
1915 dl 1.57 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1916 dl 1.1 }
1917    
1918     /**
1919 dl 1.57 * Creates a {@code ForkJoinPool} with the given parameters.
1920 jsr166 1.17 *
1921 dl 1.57 * @param parallelism the parallelism level. For default value,
1922     * use {@link java.lang.Runtime#availableProcessors}.
1923     * @param factory the factory for creating new threads. For default value,
1924     * use {@link #defaultForkJoinWorkerThreadFactory}.
1925 dl 1.59 * @param handler the handler for internal worker threads that
1926     * terminate due to unrecoverable errors encountered while executing
1927 jsr166 1.73 * tasks. For default value, use {@code null}.
1928 dl 1.59 * @param asyncMode if true,
1929 dl 1.57 * establishes local first-in-first-out scheduling mode for forked
1930     * tasks that are never joined. This mode may be more appropriate
1931     * than default locally stack-based mode in applications in which
1932     * worker threads only process event-style asynchronous tasks.
1933 jsr166 1.73 * For default value, use {@code false}.
1934 dl 1.1 * @throws IllegalArgumentException if parallelism less than or
1935 jsr166 1.47 * equal to zero, or greater than implementation limit
1936 jsr166 1.48 * @throws NullPointerException if the factory is null
1937 dl 1.1 * @throws SecurityException if a security manager exists and
1938     * the caller is not permitted to modify threads
1939     * because it does not hold {@link
1940 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1941 dl 1.1 */
1942 dl 1.59 public ForkJoinPool(int parallelism,
1943 dl 1.57 ForkJoinWorkerThreadFactory factory,
1944     Thread.UncaughtExceptionHandler handler,
1945     boolean asyncMode) {
1946 dl 1.53 checkPermission();
1947     if (factory == null)
1948     throw new NullPointerException();
1949 dl 1.91 if (parallelism <= 0 || parallelism > MAX_ID)
1950 dl 1.1 throw new IllegalArgumentException();
1951 dl 1.53 this.parallelism = parallelism;
1952 dl 1.1 this.factory = factory;
1953 dl 1.57 this.ueh = handler;
1954 dl 1.111 this.localMode = asyncMode ? FIFO_QUEUE : LIFO_QUEUE;
1955     this.nextPoolIndex = 1;
1956 dl 1.91 long np = (long)(-parallelism); // offset ctl counts
1957     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
1958 dl 1.111 // initialize workQueues array with room for 2*parallelism if possible
1959 dl 1.91 int n = parallelism << 1;
1960     if (n >= MAX_ID)
1961     n = MAX_ID;
1962     else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
1963     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8;
1964     }
1965 dl 1.111 this.workQueues = new WorkQueue[(n + 1) << 1];
1966     ReentrantLock lck = this.lock = new ReentrantLock();
1967     this.termination = lck.newCondition();
1968     this.stealCount = new AtomicLong();
1969     this.nextWorkerNumber = new AtomicInteger();
1970 dl 1.91 StringBuilder sb = new StringBuilder("ForkJoinPool-");
1971     sb.append(poolNumberGenerator.incrementAndGet());
1972     sb.append("-worker-");
1973     this.workerNamePrefix = sb.toString();
1974 dl 1.111 // Create initial submission queue
1975     WorkQueue sq = tryAddSharedQueue(0);
1976     if (sq != null)
1977     sq.growArray(false);
1978 dl 1.1 }
1979    
1980     // Execution methods
1981    
1982     /**
1983 jsr166 1.17 * Performs the given task, returning its result upon completion.
1984 dl 1.91 * If the computation encounters an unchecked Exception or Error,
1985     * it is rethrown as the outcome of this invocation. Rethrown
1986     * exceptions behave in the same way as regular exceptions, but,
1987     * when possible, contain stack traces (as displayed for example
1988     * using {@code ex.printStackTrace()}) of both the current thread
1989     * as well as the thread actually encountering the exception;
1990     * minimally only the latter.
1991 jsr166 1.17 *
1992 dl 1.1 * @param task the task
1993     * @return the task's result
1994 jsr166 1.48 * @throws NullPointerException if the task is null
1995     * @throws RejectedExecutionException if the task cannot be
1996     * scheduled for execution
1997 dl 1.1 */
1998     public <T> T invoke(ForkJoinTask<T> task) {
1999 dl 1.111 doSubmit(task);
2000     return task.join();
2001 dl 1.1 }
2002    
2003     /**
2004     * Arranges for (asynchronous) execution of the given task.
2005 jsr166 1.17 *
2006 dl 1.1 * @param task the task
2007 jsr166 1.48 * @throws NullPointerException if the task is null
2008     * @throws RejectedExecutionException if the task cannot be
2009     * scheduled for execution
2010 dl 1.1 */
2011 dl 1.37 public void execute(ForkJoinTask<?> task) {
2012 dl 1.111 doSubmit(task);
2013 dl 1.1 }
2014    
2015     // AbstractExecutorService methods
2016    
2017 jsr166 1.48 /**
2018     * @throws NullPointerException if the task is null
2019     * @throws RejectedExecutionException if the task cannot be
2020     * scheduled for execution
2021     */
2022 dl 1.1 public void execute(Runnable task) {
2023 dl 1.82 if (task == null)
2024     throw new NullPointerException();
2025 dl 1.23 ForkJoinTask<?> job;
2026 jsr166 1.26 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2027     job = (ForkJoinTask<?>) task;
2028 dl 1.23 else
2029 dl 1.33 job = ForkJoinTask.adapt(task, null);
2030 dl 1.111 doSubmit(job);
2031 dl 1.1 }
2032    
2033 jsr166 1.48 /**
2034 dl 1.57 * Submits a ForkJoinTask for execution.
2035     *
2036     * @param task the task to submit
2037     * @return the task
2038     * @throws NullPointerException if the task is null
2039     * @throws RejectedExecutionException if the task cannot be
2040     * scheduled for execution
2041     */
2042     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2043 dl 1.111 doSubmit(task);
2044 dl 1.57 return task;
2045     }
2046    
2047     /**
2048 jsr166 1.48 * @throws NullPointerException if the task is null
2049     * @throws RejectedExecutionException if the task cannot be
2050     * scheduled for execution
2051     */
2052 dl 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2053 dl 1.82 if (task == null)
2054     throw new NullPointerException();
2055 dl 1.33 ForkJoinTask<T> job = ForkJoinTask.adapt(task);
2056 dl 1.111 doSubmit(job);
2057 dl 1.1 return job;
2058     }
2059    
2060 jsr166 1.48 /**
2061     * @throws NullPointerException if the task is null
2062     * @throws RejectedExecutionException if the task cannot be
2063     * scheduled for execution
2064     */
2065 dl 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2066 dl 1.82 if (task == null)
2067     throw new NullPointerException();
2068 dl 1.33 ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
2069 dl 1.111 doSubmit(job);
2070 dl 1.1 return job;
2071     }
2072    
2073 jsr166 1.48 /**
2074     * @throws NullPointerException if the task is null
2075     * @throws RejectedExecutionException if the task cannot be
2076     * scheduled for execution
2077     */
2078 dl 1.1 public ForkJoinTask<?> submit(Runnable task) {
2079 dl 1.82 if (task == null)
2080     throw new NullPointerException();
2081 dl 1.23 ForkJoinTask<?> job;
2082 jsr166 1.26 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2083     job = (ForkJoinTask<?>) task;
2084 dl 1.23 else
2085 dl 1.33 job = ForkJoinTask.adapt(task, null);
2086 dl 1.111 doSubmit(job);
2087 dl 1.1 return job;
2088     }
2089    
2090     /**
2091 jsr166 1.48 * @throws NullPointerException {@inheritDoc}
2092     * @throws RejectedExecutionException {@inheritDoc}
2093     */
2094 dl 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2095 jsr166 1.20 ArrayList<ForkJoinTask<T>> forkJoinTasks =
2096 dl 1.1 new ArrayList<ForkJoinTask<T>>(tasks.size());
2097 jsr166 1.20 for (Callable<T> task : tasks)
2098 dl 1.33 forkJoinTasks.add(ForkJoinTask.adapt(task));
2099 jsr166 1.20 invoke(new InvokeAll<T>(forkJoinTasks));
2100    
2101     @SuppressWarnings({"unchecked", "rawtypes"})
2102 dl 1.54 List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
2103 jsr166 1.20 return futures;
2104 dl 1.1 }
2105    
2106     static final class InvokeAll<T> extends RecursiveAction {
2107     final ArrayList<ForkJoinTask<T>> tasks;
2108     InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
2109     public void compute() {
2110 jsr166 1.17 try { invokeAll(tasks); }
2111     catch (Exception ignore) {}
2112 dl 1.1 }
2113 jsr166 1.18 private static final long serialVersionUID = -7914297376763021607L;
2114 dl 1.1 }
2115    
2116     /**
2117 jsr166 1.17 * Returns the factory used for constructing new workers.
2118 dl 1.1 *
2119     * @return the factory used for constructing new workers
2120     */
2121     public ForkJoinWorkerThreadFactory getFactory() {
2122     return factory;
2123     }
2124    
2125     /**
2126 dl 1.2 * Returns the handler for internal worker threads that terminate
2127     * due to unrecoverable errors encountered while executing tasks.
2128 jsr166 1.17 *
2129 jsr166 1.28 * @return the handler, or {@code null} if none
2130 dl 1.2 */
2131     public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
2132 dl 1.53 return ueh;
2133 dl 1.2 }
2134    
2135     /**
2136 dl 1.42 * Returns the targeted parallelism level of this pool.
2137 dl 1.1 *
2138 dl 1.42 * @return the targeted parallelism level of this pool
2139 dl 1.1 */
2140     public int getParallelism() {
2141     return parallelism;
2142     }
2143    
2144     /**
2145     * Returns the number of worker threads that have started but not
2146 jsr166 1.76 * yet terminated. The result returned by this method may differ
2147 jsr166 1.29 * from {@link #getParallelism} when threads are created to
2148 dl 1.1 * maintain parallelism when others are cooperatively blocked.
2149     *
2150     * @return the number of worker threads
2151     */
2152     public int getPoolSize() {
2153 dl 1.91 return parallelism + (short)(ctl >>> TC_SHIFT);
2154 dl 1.1 }
2155    
2156     /**
2157 jsr166 1.28 * Returns {@code true} if this pool uses local first-in-first-out
2158 jsr166 1.16 * scheduling mode for forked tasks that are never joined.
2159 dl 1.6 *
2160 jsr166 1.28 * @return {@code true} if this pool uses async mode
2161 dl 1.6 */
2162     public boolean getAsyncMode() {
2163 dl 1.111 return localMode != 0;
2164 dl 1.6 }
2165    
2166     /**
2167 dl 1.2 * Returns an estimate of the number of worker threads that are
2168     * not blocked waiting to join tasks or for other managed
2169 dl 1.53 * synchronization. This method may overestimate the
2170     * number of running threads.
2171 dl 1.1 *
2172     * @return the number of worker threads
2173     */
2174     public int getRunningThreadCount() {
2175 dl 1.111 int rc = 0;
2176     WorkQueue[] ws; WorkQueue w;
2177     if ((ws = workQueues) != null) {
2178     int n = ws.length;
2179     for (int i = 1; i < n; i += 2) {
2180     Thread.State s; ForkJoinWorkerThread wt;
2181     if ((w = ws[i]) != null && (wt = w.owner) != null &&
2182     w.eventCount >= 0 &&
2183     (s = wt.getState()) != Thread.State.BLOCKED &&
2184     s != Thread.State.WAITING &&
2185     s != Thread.State.TIMED_WAITING)
2186     ++rc;
2187     }
2188     }
2189     return rc;
2190 dl 1.1 }
2191    
2192     /**
2193 dl 1.2 * Returns an estimate of the number of threads that are currently
2194 dl 1.1 * stealing or executing tasks. This method may overestimate the
2195     * number of active threads.
2196 jsr166 1.17 *
2197 jsr166 1.16 * @return the number of active threads
2198 dl 1.1 */
2199     public int getActiveThreadCount() {
2200 dl 1.111 int r = parallelism + (int)(ctl >> AC_SHIFT);
2201 jsr166 1.102 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2202 dl 1.1 }
2203    
2204     /**
2205 jsr166 1.28 * Returns {@code true} if all worker threads are currently idle.
2206     * An idle worker is one that cannot obtain a task to execute
2207     * because none are available to steal from other threads, and
2208     * there are no pending submissions to the pool. This method is
2209     * conservative; it might not return {@code true} immediately upon
2210     * idleness of all threads, but will eventually become true if
2211     * threads remain inactive.
2212 jsr166 1.17 *
2213 jsr166 1.28 * @return {@code true} if all threads are currently idle
2214 dl 1.1 */
2215     public boolean isQuiescent() {
2216 dl 1.111 return (int)(ctl >> AC_SHIFT) + parallelism == 0;
2217 dl 1.1 }
2218    
2219     /**
2220     * Returns an estimate of the total number of tasks stolen from
2221     * one thread's work queue by another. The reported value
2222     * underestimates the actual total number of steals when the pool
2223     * is not quiescent. This value may be useful for monitoring and
2224 jsr166 1.17 * tuning fork/join programs: in general, steal counts should be
2225 dl 1.1 * high enough to keep threads busy, but low enough to avoid
2226     * overhead and contention across threads.
2227 jsr166 1.17 *
2228 jsr166 1.16 * @return the number of steals
2229 dl 1.1 */
2230     public long getStealCount() {
2231 dl 1.111 long count = stealCount.get();
2232     WorkQueue[] ws; WorkQueue w;
2233     if ((ws = workQueues) != null) {
2234     int n = ws.length;
2235     for (int i = 1; i < n; i += 2) {
2236     if ((w = ws[i]) != null)
2237     count += w.totalSteals;
2238     }
2239     }
2240     return count;
2241 dl 1.1 }
2242    
2243     /**
2244 dl 1.2 * Returns an estimate of the total number of tasks currently held
2245     * in queues by worker threads (but not including tasks submitted
2246     * to the pool that have not begun executing). This value is only
2247     * an approximation, obtained by iterating across all threads in
2248     * the pool. This method may be useful for tuning task
2249     * granularities.
2250 jsr166 1.17 *
2251 jsr166 1.16 * @return the number of queued tasks
2252 dl 1.1 */
2253     public long getQueuedTaskCount() {
2254     long count = 0;
2255 dl 1.111 WorkQueue[] ws; WorkQueue w;
2256     if ((ws = workQueues) != null) {
2257     int n = ws.length;
2258     for (int i = 1; i < n; i += 2) {
2259     if ((w = ws[i]) != null)
2260     count += w.queueSize();
2261     }
2262 dl 1.91 }
2263 dl 1.1 return count;
2264     }
2265    
2266     /**
2267 jsr166 1.40 * Returns an estimate of the number of tasks submitted to this
2268 dl 1.94 * pool that have not yet begun executing. This method may take
2269 dl 1.91 * time proportional to the number of submissions.
2270 jsr166 1.17 *
2271 jsr166 1.16 * @return the number of queued submissions
2272 dl 1.1 */
2273     public int getQueuedSubmissionCount() {
2274 dl 1.111 int count = 0;
2275     WorkQueue[] ws; WorkQueue w;
2276     if ((ws = workQueues) != null) {
2277     int n = ws.length;
2278     for (int i = 0; i < n; i += 2) {
2279     if ((w = ws[i]) != null)
2280     count += w.queueSize();
2281     }
2282     }
2283     return count;
2284 dl 1.1 }
2285    
2286     /**
2287 jsr166 1.28 * Returns {@code true} if there are any tasks submitted to this
2288     * pool that have not yet begun executing.
2289 jsr166 1.17 *
2290 jsr166 1.16 * @return {@code true} if there are any queued submissions
2291 dl 1.1 */
2292     public boolean hasQueuedSubmissions() {
2293 dl 1.111 WorkQueue[] ws; WorkQueue w;
2294     if ((ws = workQueues) != null) {
2295     int n = ws.length;
2296     for (int i = 0; i < n; i += 2) {
2297     if ((w = ws[i]) != null && w.queueSize() != 0)
2298     return true;
2299     }
2300     }
2301     return false;
2302 dl 1.1 }
2303    
2304     /**
2305     * Removes and returns the next unexecuted submission if one is
2306     * available. This method may be useful in extensions to this
2307     * class that re-assign work in systems with multiple pools.
2308 jsr166 1.17 *
2309 jsr166 1.28 * @return the next submission, or {@code null} if none
2310 dl 1.1 */
2311     protected ForkJoinTask<?> pollSubmission() {
2312 dl 1.111 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2313     if ((ws = workQueues) != null) {
2314     int n = ws.length;
2315     for (int i = 0; i < n; i += 2) {
2316     if ((w = ws[i]) != null && (t = w.poll()) != null)
2317     return t;
2318 dl 1.91 }
2319     }
2320     return null;
2321 dl 1.1 }
2322    
2323     /**
2324 dl 1.6 * Removes all available unexecuted submitted and forked tasks
2325     * from scheduling queues and adds them to the given collection,
2326     * without altering their execution status. These may include
2327 jsr166 1.41 * artificially generated or wrapped tasks. This method is
2328     * designed to be invoked only when the pool is known to be
2329 dl 1.6 * quiescent. Invocations at other times may not remove all
2330     * tasks. A failure encountered while attempting to add elements
2331 jsr166 1.16 * to collection {@code c} may result in elements being in
2332 dl 1.6 * neither, either or both collections when the associated
2333     * exception is thrown. The behavior of this operation is
2334     * undefined if the specified collection is modified while the
2335     * operation is in progress.
2336 jsr166 1.17 *
2337 dl 1.6 * @param c the collection to transfer elements into
2338     * @return the number of elements transferred
2339     */
2340 dl 1.30 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2341 dl 1.91 int count = 0;
2342 dl 1.111 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2343     if ((ws = workQueues) != null) {
2344     int n = ws.length;
2345     for (int i = 0; i < n; ++i) {
2346     if ((w = ws[i]) != null) {
2347     while ((t = w.poll()) != null) {
2348     c.add(t);
2349     ++count;
2350     }
2351     }
2352 dl 1.91 }
2353     }
2354 dl 1.57 return count;
2355     }
2356    
2357     /**
2358 dl 1.1 * Returns a string identifying this pool, as well as its state,
2359     * including indications of run state, parallelism level, and
2360     * worker and task counts.
2361     *
2362     * @return a string identifying this pool, as well as its state
2363     */
2364     public String toString() {
2365     long st = getStealCount();
2366     long qt = getQueuedTaskCount();
2367     long qs = getQueuedSubmissionCount();
2368 dl 1.111 int rc = getRunningThreadCount();
2369 dl 1.53 int pc = parallelism;
2370 dl 1.91 long c = ctl;
2371     int tc = pc + (short)(c >>> TC_SHIFT);
2372 dl 1.111 int ac = pc + (int)(c >> AC_SHIFT);
2373     if (ac < 0) // ignore transient negative
2374     ac = 0;
2375 dl 1.91 String level;
2376     if ((c & STOP_BIT) != 0)
2377 jsr166 1.102 level = (tc == 0) ? "Terminated" : "Terminating";
2378 dl 1.91 else
2379 dl 1.111 level = runState < 0 ? "Shutting down" : "Running";
2380 dl 1.1 return super.toString() +
2381 dl 1.91 "[" + level +
2382 dl 1.53 ", parallelism = " + pc +
2383     ", size = " + tc +
2384     ", active = " + ac +
2385     ", running = " + rc +
2386 dl 1.1 ", steals = " + st +
2387     ", tasks = " + qt +
2388     ", submissions = " + qs +
2389     "]";
2390     }
2391    
2392     /**
2393     * Initiates an orderly shutdown in which previously submitted
2394     * tasks are executed, but no new tasks will be accepted.
2395     * Invocation has no additional effect if already shut down.
2396     * Tasks that are in the process of being submitted concurrently
2397     * during the course of this method may or may not be rejected.
2398 jsr166 1.17 *
2399 dl 1.1 * @throws SecurityException if a security manager exists and
2400     * the caller is not permitted to modify threads
2401     * because it does not hold {@link
2402 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
2403 dl 1.1 */
2404     public void shutdown() {
2405     checkPermission();
2406 dl 1.111 enableShutdown();
2407 dl 1.53 tryTerminate(false);
2408 dl 1.1 }
2409    
2410     /**
2411 dl 1.42 * Attempts to cancel and/or stop all tasks, and reject all
2412     * subsequently submitted tasks. Tasks that are in the process of
2413     * being submitted or executed concurrently during the course of
2414     * this method may or may not be rejected. This method cancels
2415     * both existing and unexecuted tasks, in order to permit
2416     * termination in the presence of task dependencies. So the method
2417     * always returns an empty list (unlike the case for some other
2418     * Executors).
2419 jsr166 1.17 *
2420 dl 1.1 * @return an empty list
2421     * @throws SecurityException if a security manager exists and
2422     * the caller is not permitted to modify threads
2423     * because it does not hold {@link
2424 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
2425 dl 1.1 */
2426     public List<Runnable> shutdownNow() {
2427     checkPermission();
2428 dl 1.111 enableShutdown();
2429 dl 1.53 tryTerminate(true);
2430 dl 1.1 return Collections.emptyList();
2431     }
2432    
2433     /**
2434 jsr166 1.16 * Returns {@code true} if all tasks have completed following shut down.
2435 dl 1.1 *
2436 jsr166 1.16 * @return {@code true} if all tasks have completed following shut down
2437 dl 1.1 */
2438     public boolean isTerminated() {
2439 dl 1.91 long c = ctl;
2440     return ((c & STOP_BIT) != 0L &&
2441     (short)(c >>> TC_SHIFT) == -parallelism);
2442 dl 1.1 }
2443    
2444     /**
2445 jsr166 1.16 * Returns {@code true} if the process of termination has
2446 dl 1.42 * commenced but not yet completed. This method may be useful for
2447     * debugging. A return of {@code true} reported a sufficient
2448     * period after shutdown may indicate that submitted tasks have
2449 dl 1.88 * ignored or suppressed interruption, or are waiting for IO,
2450     * causing this executor not to properly terminate. (See the
2451     * advisory notes for class {@link ForkJoinTask} stating that
2452     * tasks should not normally entail blocking operations. But if
2453     * they do, they must abort them on interrupt.)
2454 dl 1.1 *
2455 dl 1.42 * @return {@code true} if terminating but not yet terminated
2456 dl 1.1 */
2457     public boolean isTerminating() {
2458 dl 1.91 long c = ctl;
2459     return ((c & STOP_BIT) != 0L &&
2460     (short)(c >>> TC_SHIFT) != -parallelism);
2461 dl 1.1 }
2462    
2463     /**
2464 jsr166 1.16 * Returns {@code true} if this pool has been shut down.
2465 dl 1.1 *
2466 jsr166 1.16 * @return {@code true} if this pool has been shut down
2467 dl 1.1 */
2468     public boolean isShutdown() {
2469 dl 1.111 return runState < 0;
2470 dl 1.42 }
2471    
2472     /**
2473 dl 1.1 * Blocks until all tasks have completed execution after a shutdown
2474     * request, or the timeout occurs, or the current thread is
2475     * interrupted, whichever happens first.
2476     *
2477     * @param timeout the maximum time to wait
2478     * @param unit the time unit of the timeout argument
2479 jsr166 1.16 * @return {@code true} if this executor terminated and
2480     * {@code false} if the timeout elapsed before termination
2481 dl 1.1 * @throws InterruptedException if interrupted while waiting
2482     */
2483     public boolean awaitTermination(long timeout, TimeUnit unit)
2484     throws InterruptedException {
2485 dl 1.91 long nanos = unit.toNanos(timeout);
2486 dl 1.111 final ReentrantLock lock = this.lock;
2487 dl 1.91 lock.lock();
2488 dl 1.57 try {
2489 dl 1.91 for (;;) {
2490     if (isTerminated())
2491     return true;
2492     if (nanos <= 0)
2493     return false;
2494     nanos = termination.awaitNanos(nanos);
2495     }
2496     } finally {
2497     lock.unlock();
2498 dl 1.57 }
2499 dl 1.1 }
2500    
2501     /**
2502     * Interface for extending managed parallelism for tasks running
2503 jsr166 1.35 * in {@link ForkJoinPool}s.
2504     *
2505 dl 1.61 * <p>A {@code ManagedBlocker} provides two methods. Method
2506     * {@code isReleasable} must return {@code true} if blocking is
2507     * not necessary. Method {@code block} blocks the current thread
2508     * if necessary (perhaps internally invoking {@code isReleasable}
2509 dl 1.93 * before actually blocking). These actions are performed by any
2510     * thread invoking {@link ForkJoinPool#managedBlock}. The
2511     * unusual methods in this API accommodate synchronizers that may,
2512     * but don't usually, block for long periods. Similarly, they
2513     * allow more efficient internal handling of cases in which
2514     * additional workers may be, but usually are not, needed to
2515     * ensure sufficient parallelism. Toward this end,
2516     * implementations of method {@code isReleasable} must be amenable
2517     * to repeated invocation.
2518 jsr166 1.17 *
2519 dl 1.1 * <p>For example, here is a ManagedBlocker based on a
2520     * ReentrantLock:
2521 jsr166 1.17 * <pre> {@code
2522     * class ManagedLocker implements ManagedBlocker {
2523     * final ReentrantLock lock;
2524     * boolean hasLock = false;
2525     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
2526     * public boolean block() {
2527     * if (!hasLock)
2528     * lock.lock();
2529     * return true;
2530     * }
2531     * public boolean isReleasable() {
2532     * return hasLock || (hasLock = lock.tryLock());
2533 dl 1.1 * }
2534 jsr166 1.17 * }}</pre>
2535 dl 1.61 *
2536     * <p>Here is a class that possibly blocks waiting for an
2537     * item on a given queue:
2538     * <pre> {@code
2539     * class QueueTaker<E> implements ManagedBlocker {
2540     * final BlockingQueue<E> queue;
2541     * volatile E item = null;
2542     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
2543     * public boolean block() throws InterruptedException {
2544     * if (item == null)
2545 dl 1.65 * item = queue.take();
2546 dl 1.61 * return true;
2547     * }
2548     * public boolean isReleasable() {
2549 dl 1.65 * return item != null || (item = queue.poll()) != null;
2550 dl 1.61 * }
2551     * public E getItem() { // call after pool.managedBlock completes
2552     * return item;
2553     * }
2554     * }}</pre>
2555 dl 1.1 */
2556     public static interface ManagedBlocker {
2557     /**
2558     * Possibly blocks the current thread, for example waiting for
2559     * a lock or condition.
2560 jsr166 1.17 *
2561 jsr166 1.28 * @return {@code true} if no additional blocking is necessary
2562     * (i.e., if isReleasable would return true)
2563 dl 1.1 * @throws InterruptedException if interrupted while waiting
2564 jsr166 1.17 * (the method is not required to do so, but is allowed to)
2565 dl 1.1 */
2566     boolean block() throws InterruptedException;
2567    
2568     /**
2569 jsr166 1.28 * Returns {@code true} if blocking is unnecessary.
2570 dl 1.1 */
2571     boolean isReleasable();
2572     }
2573    
2574     /**
2575     * Blocks in accord with the given blocker. If the current thread
2576 jsr166 1.38 * is a {@link ForkJoinWorkerThread}, this method possibly
2577     * arranges for a spare thread to be activated if necessary to
2578 dl 1.57 * ensure sufficient parallelism while the current thread is blocked.
2579 jsr166 1.38 *
2580     * <p>If the caller is not a {@link ForkJoinTask}, this method is
2581     * behaviorally equivalent to
2582 jsr166 1.115 * <pre> {@code
2583 jsr166 1.17 * while (!blocker.isReleasable())
2584     * if (blocker.block())
2585     * return;
2586     * }</pre>
2587 jsr166 1.38 *
2588     * If the caller is a {@code ForkJoinTask}, then the pool may
2589     * first be expanded to ensure parallelism, and later adjusted.
2590 dl 1.1 *
2591     * @param blocker the blocker
2592 jsr166 1.16 * @throws InterruptedException if blocker.block did so
2593 dl 1.1 */
2594 dl 1.57 public static void managedBlock(ManagedBlocker blocker)
2595 dl 1.1 throws InterruptedException {
2596     Thread t = Thread.currentThread();
2597 dl 1.111 ForkJoinPool p = ((t instanceof ForkJoinWorkerThread) ?
2598     ((ForkJoinWorkerThread)t).pool : null);
2599     while (!blocker.isReleasable()) {
2600     if (p == null || p.tryCompensate()) {
2601     try {
2602     do {} while (!blocker.isReleasable() && !blocker.block());
2603     } finally {
2604     if (p != null)
2605     p.incrementActiveCount();
2606     }
2607     break;
2608     }
2609 dl 1.57 }
2610 dl 1.1 }
2611    
2612 dl 1.33 // AbstractExecutorService overrides. These rely on undocumented
2613     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
2614     // implement RunnableFuture.
2615 dl 1.2
2616     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
2617 jsr166 1.34 return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
2618 dl 1.2 }
2619    
2620     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
2621 jsr166 1.34 return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
2622 dl 1.2 }
2623    
2624 jsr166 1.27 // Unsafe mechanics
2625 dl 1.111 private static final sun.misc.Unsafe U;
2626     private static final long CTL;
2627     private static final long RUNSTATE;
2628     private static final long PARKBLOCKER;
2629 dl 1.91
2630     static {
2631     poolNumberGenerator = new AtomicInteger();
2632     modifyThreadPermission = new RuntimePermission("modifyThread");
2633     defaultForkJoinWorkerThreadFactory =
2634     new DefaultForkJoinWorkerThreadFactory();
2635 dl 1.111 int s;
2636 jsr166 1.27 try {
2637 dl 1.111 U = getUnsafe();
2638 jsr166 1.103 Class<?> k = ForkJoinPool.class;
2639 dl 1.111 Class<?> tk = Thread.class;
2640     CTL = U.objectFieldOffset
2641 dl 1.91 (k.getDeclaredField("ctl"));
2642 dl 1.111 RUNSTATE = U.objectFieldOffset
2643     (k.getDeclaredField("runState"));
2644     PARKBLOCKER = U.objectFieldOffset
2645     (tk.getDeclaredField("parkBlocker"));
2646 dl 1.91 } catch (Exception e) {
2647     throw new Error(e);
2648     }
2649 jsr166 1.27 }
2650    
2651     /**
2652     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
2653     * Replace with a simple call to Unsafe.getUnsafe when integrating
2654     * into a jdk.
2655     *
2656     * @return a sun.misc.Unsafe
2657     */
2658     private static sun.misc.Unsafe getUnsafe() {
2659     try {
2660     return sun.misc.Unsafe.getUnsafe();
2661     } catch (SecurityException se) {
2662     try {
2663     return java.security.AccessController.doPrivileged
2664     (new java.security
2665     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
2666     public sun.misc.Unsafe run() throws Exception {
2667     java.lang.reflect.Field f = sun.misc
2668     .Unsafe.class.getDeclaredField("theUnsafe");
2669     f.setAccessible(true);
2670     return (sun.misc.Unsafe) f.get(null);
2671     }});
2672     } catch (java.security.PrivilegedActionException e) {
2673     throw new RuntimeException("Could not initialize intrinsics",
2674     e.getCause());
2675     }
2676     }
2677     }
2678 dl 1.112
2679 dl 1.1 }