ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
Revision: 1.122
Committed: Tue Jan 31 01:51:13 2012 UTC (12 years, 3 months ago) by jsr166
Branch: MAIN
Changes since 1.121: +1 -1 lines
Log Message:
whitespace

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.97 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.1 */
6    
7     package jsr166y;
8 dl 1.112
9 jsr166 1.22 import java.util.ArrayList;
10     import java.util.Arrays;
11     import java.util.Collection;
12     import java.util.Collections;
13     import java.util.List;
14 dl 1.91 import java.util.Random;
15 dl 1.78 import java.util.concurrent.AbstractExecutorService;
16     import java.util.concurrent.Callable;
17     import java.util.concurrent.ExecutorService;
18     import java.util.concurrent.Future;
19     import java.util.concurrent.RejectedExecutionException;
20     import java.util.concurrent.RunnableFuture;
21     import java.util.concurrent.TimeUnit;
22     import java.util.concurrent.atomic.AtomicInteger;
23 dl 1.111 import java.util.concurrent.atomic.AtomicLong;
24 dl 1.119 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
25 dl 1.91 import java.util.concurrent.locks.Condition;
26 dl 1.1
27     /**
28 jsr166 1.29 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
29 jsr166 1.39 * A {@code ForkJoinPool} provides the entry point for submissions
30 dl 1.57 * from non-{@code ForkJoinTask} clients, as well as management and
31 jsr166 1.48 * monitoring operations.
32 dl 1.1 *
33 dl 1.42 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
34     * ExecutorService} mainly by virtue of employing
35     * <em>work-stealing</em>: all threads in the pool attempt to find and
36 dl 1.111 * execute tasks submitted to the pool and/or created by other active
37     * tasks (eventually blocking waiting for work if none exist). This
38     * enables efficient processing when most tasks spawn other subtasks
39     * (as do most {@code ForkJoinTask}s), as well as when many small
40     * tasks are submitted to the pool from external clients. Especially
41     * when setting <em>asyncMode</em> to true in constructors, {@code
42     * ForkJoinPool}s may also be appropriate for use with event-style
43     * tasks that are never joined.
44 dl 1.1 *
45 dl 1.42 * <p>A {@code ForkJoinPool} is constructed with a given target
46     * parallelism level; by default, equal to the number of available
47 dl 1.57 * processors. The pool attempts to maintain enough active (or
48     * available) threads by dynamically adding, suspending, or resuming
49     * internal worker threads, even if some tasks are stalled waiting to
50     * join others. However, no such adjustments are guaranteed in the
51     * face of blocked IO or other unmanaged synchronization. The nested
52     * {@link ManagedBlocker} interface enables extension of the kinds of
53     * synchronization accommodated.
54 dl 1.1 *
55     * <p>In addition to execution and lifecycle control methods, this
56     * class provides status check methods (for example
57 jsr166 1.29 * {@link #getStealCount}) that are intended to aid in developing,
58 dl 1.1 * tuning, and monitoring fork/join applications. Also, method
59 jsr166 1.29 * {@link #toString} returns indications of pool state in a
60 dl 1.2 * convenient form for informal monitoring.
61 dl 1.1 *
62 dl 1.57 * <p> As is the case with other ExecutorServices, there are three
63 jsr166 1.117 * main task execution methods summarized in the following table.
64     * These are designed to be used primarily by clients not already
65     * engaged in fork/join computations in the current pool. The main
66     * forms of these methods accept instances of {@code ForkJoinTask},
67     * but overloaded forms also allow mixed execution of plain {@code
68     * Runnable}- or {@code Callable}- based activities as well. However,
69     * tasks that are already executing in a pool should normally instead
70     * use the within-computation forms listed in the table unless using
71     * async event-style tasks that are not usually joined, in which case
72     * there is little difference among choice of methods.
73 dl 1.57 *
74     * <table BORDER CELLPADDING=3 CELLSPACING=1>
75     * <tr>
76     * <td></td>
77     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
78     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
79     * </tr>
80     * <tr>
81 jsr166 1.67 * <td> <b>Arrange async execution</td>
82 dl 1.57 * <td> {@link #execute(ForkJoinTask)}</td>
83     * <td> {@link ForkJoinTask#fork}</td>
84     * </tr>
85     * <tr>
86     * <td> <b>Await and obtain result</td>
87     * <td> {@link #invoke(ForkJoinTask)}</td>
88     * <td> {@link ForkJoinTask#invoke}</td>
89     * </tr>
90     * <tr>
91     * <td> <b>Arrange exec and obtain Future</td>
92     * <td> {@link #submit(ForkJoinTask)}</td>
93     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
94     * </tr>
95     * </table>
96 dl 1.59 *
97 dl 1.42 * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
98     * used for all parallel task execution in a program or subsystem.
99     * Otherwise, use would not usually outweigh the construction and
100     * bookkeeping overhead of creating a large set of threads. For
101 jsr166 1.43 * example, a common pool could be used for the {@code SortTasks}
102 dl 1.42 * illustrated in {@link RecursiveAction}. Because {@code
103     * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
104 jsr166 1.43 * daemon} mode, there is typically no need to explicitly {@link
105 dl 1.42 * #shutdown} such a pool upon program exit.
106     *
107 jsr166 1.105 * <pre> {@code
108 dl 1.42 * static final ForkJoinPool mainPool = new ForkJoinPool();
109     * ...
110     * public void sort(long[] array) {
111     * mainPool.invoke(new SortTask(array, 0, array.length));
112 jsr166 1.105 * }}</pre>
113 dl 1.42 *
114 dl 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
115 dl 1.2 * maximum number of running threads to 32767. Attempts to create
116 jsr166 1.48 * pools with greater than the maximum number result in
117 jsr166 1.39 * {@code IllegalArgumentException}.
118 jsr166 1.16 *
119 jsr166 1.48 * <p>This implementation rejects submitted tasks (that is, by throwing
120 dl 1.58 * {@link RejectedExecutionException}) only when the pool is shut down
121 dl 1.62 * or internal resources have been exhausted.
122 jsr166 1.48 *
123 jsr166 1.16 * @since 1.7
124     * @author Doug Lea
125 dl 1.1 */
126 dl 1.2 public class ForkJoinPool extends AbstractExecutorService {
127 dl 1.1
128     /*
129 dl 1.53 * Implementation Overview
130     *
131 dl 1.111 * This class and its nested classes provide the main
132     * functionality and control for a set of worker threads:
133 jsr166 1.117 * Submissions from non-FJ threads enter into submission queues.
134     * Workers take these tasks and typically split them into subtasks
135     * that may be stolen by other workers. Preference rules give
136     * first priority to processing tasks from their own queues (LIFO
137     * or FIFO, depending on mode), then to randomized FIFO steals of
138     * tasks in other queues.
139 dl 1.111 *
140 jsr166 1.117 * WorkQueues
141 dl 1.111 * ==========
142     *
143     * Most operations occur within work-stealing queues (in nested
144     * class WorkQueue). These are special forms of Deques that
145     * support only three of the four possible end-operations -- push,
146     * pop, and poll (aka steal), under the further constraints that
147     * push and pop are called only from the owning thread (or, as
148     * extended here, under a lock), while poll may be called from
149     * other threads. (If you are unfamiliar with them, you probably
150     * want to read Herlihy and Shavit's book "The Art of
151     * Multiprocessor programming", chapter 16 describing these in
152     * more detail before proceeding.) The main work-stealing queue
153     * design is roughly similar to those in the papers "Dynamic
154     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
155     * (http://research.sun.com/scalable/pubs/index.html) and
156     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
157     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
158 jsr166 1.117 * The main differences ultimately stem from GC requirements that
159 dl 1.111 * we null out taken slots as soon as we can, to maintain as small
160     * a footprint as possible even in programs generating huge
161     * numbers of tasks. To accomplish this, we shift the CAS
162     * arbitrating pop vs poll (steal) from being on the indices
163     * ("base" and "top") to the slots themselves. So, both a
164     * successful pop and poll mainly entail a CAS of a slot from
165     * non-null to null. Because we rely on CASes of references, we
166     * do not need tag bits on base or top. They are simple ints as
167     * used in any circular array-based queue (see for example
168     * ArrayDeque). Updates to the indices must still be ordered in a
169     * way that guarantees that top == base means the queue is empty,
170     * but otherwise may err on the side of possibly making the queue
171     * appear nonempty when a push, pop, or poll have not fully
172     * committed. Note that this means that the poll operation,
173     * considered individually, is not wait-free. One thief cannot
174     * successfully continue until another in-progress one (or, if
175     * previously empty, a push) completes. However, in the
176     * aggregate, we ensure at least probabilistic non-blockingness.
177     * If an attempted steal fails, a thief always chooses a different
178     * random victim target to try next. So, in order for one thief to
179     * progress, it suffices for any in-progress poll or new push on
180     * any empty queue to complete.
181     *
182 dl 1.112 * This approach also enables support of a user mode in which local
183 dl 1.111 * task processing is in FIFO, not LIFO order, simply by using
184     * poll rather than pop. This can be useful in message-passing
185     * frameworks in which tasks are never joined. However neither
186     * mode considers affinities, loads, cache localities, etc, so
187     * rarely provide the best possible performance on a given
188     * machine, but portably provide good throughput by averaging over
189     * these factors. (Further, even if we did try to use such
190 jsr166 1.117 * information, we do not usually have a basis for exploiting it.
191     * For example, some sets of tasks profit from cache affinities,
192     * but others are harmed by cache pollution effects.)
193 dl 1.111 *
194     * WorkQueues are also used in a similar way for tasks submitted
195     * to the pool. We cannot mix these tasks in the same queues used
196     * for work-stealing (this would contaminate lifo/fifo
197 dl 1.116 * processing). Instead, we loosely associate submission queues
198     * with submitting threads, using a form of hashing. The
199     * ThreadLocal Submitter class contains a value initially used as
200     * a hash code for choosing existing queues, but may be randomly
201     * repositioned upon contention with other submitters. In
202     * essence, submitters act like workers except that they never
203     * take tasks, and they are multiplexed on to a finite number of
204     * shared work queues. However, classes are set up so that future
205     * extensions could allow submitters to optionally help perform
206 dl 1.119 * tasks as well. Insertion of tasks in shared mode requires a
207     * lock (mainly to protect in the case of resizing) but we use
208     * only a simple spinlock (using bits in field runState), because
209     * submitters encountering a busy queue move on to try or create
210     * other queues, so never block.
211 dl 1.111 *
212 jsr166 1.117 * Management
213 dl 1.111 * ==========
214 dl 1.91 *
215     * The main throughput advantages of work-stealing stem from
216     * decentralized control -- workers mostly take tasks from
217     * themselves or each other. We cannot negate this in the
218     * implementation of other management responsibilities. The main
219     * tactic for avoiding bottlenecks is packing nearly all
220 dl 1.111 * essentially atomic control state into two volatile variables
221     * that are by far most often read (not written) as status and
222 jsr166 1.117 * consistency checks.
223 dl 1.111 *
224     * Field "ctl" contains 64 bits holding all the information needed
225     * to atomically decide to add, inactivate, enqueue (on an event
226     * queue), dequeue, and/or re-activate workers. To enable this
227     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
228     * far in excess of normal operating range) to allow ids, counts,
229     * and their negations (used for thresholding) to fit into 16bit
230     * fields.
231     *
232     * Field "runState" contains 32 bits needed to register and
233     * deregister WorkQueues, as well as to enable shutdown. It is
234     * only modified under a lock (normally briefly held, but
235     * occasionally protecting allocations and resizings) but even
236 dl 1.119 * when locked remains available to check consistency. An
237     * auxiliary field "growHints", also only modified under lock,
238     * contains a candidate index for the next WorkQueue and
239     * a mask for submission queue indices.
240 dl 1.111 *
241     * Recording WorkQueues. WorkQueues are recorded in the
242     * "workQueues" array that is created upon pool construction and
243     * expanded if necessary. Updates to the array while recording
244     * new workers and unrecording terminated ones are protected from
245     * each other by a lock but the array is otherwise concurrently
246     * readable, and accessed directly. To simplify index-based
247 dl 1.91 * operations, the array size is always a power of two, and all
248 dl 1.111 * readers must tolerate null slots. Shared (submission) queues
249     * are at even indices, worker queues at odd indices. Grouping
250     * them together in this way simplifies and speeds up task
251     * scanning. To avoid flailing during start-up, the array is
252     * presized to hold twice #parallelism workers (which is unlikely
253     * to need further resizing during execution). But to avoid
254     * dealing with so many null slots, variable runState includes a
255 dl 1.119 * mask for the nearest power of two that contains all currently
256     * used indices.
257     *
258     * All worker thread creation is on-demand, triggered by task
259     * submissions, replacement of terminated workers, and/or
260 dl 1.111 * compensation for blocked workers. However, all other support
261     * code is set up to work with other policies. To ensure that we
262     * do not hold on to worker references that would prevent GC, ALL
263     * accesses to workQueues are via indices into the workQueues
264     * array (which is one source of some of the messy code
265     * constructions here). In essence, the workQueues array serves as
266     * a weak reference mechanism. Thus for example the wait queue
267     * field of ctl stores indices, not references. Access to the
268     * workQueues in associated methods (for example signalWork) must
269     * both index-check and null-check the IDs. All such accesses
270     * ignore bad IDs by returning out early from what they are doing,
271     * since this can only be associated with termination, in which
272 dl 1.119 * case it is OK to give up. All uses of the workQueues array
273     * also check that it is non-null (even if previously
274     * non-null). This allows nulling during termination, which is
275     * currently not necessary, but remains an option for
276     * resource-revocation-based shutdown schemes. It also helps
277     * reduce JIT issuance of uncommon-trap code, which tends to
278 dl 1.111 * unnecessarily complicate control flow in some methods.
279 dl 1.91 *
280 dl 1.111 * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
281 dl 1.95 * let workers spin indefinitely scanning for tasks when none can
282     * be found immediately, and we cannot start/resume workers unless
283     * there appear to be tasks available. On the other hand, we must
284     * quickly prod them into action when new tasks are submitted or
285 dl 1.111 * generated. In many usages, ramp-up time to activate workers is
286     * the main limiting factor in overall performance (this is
287     * compounded at program start-up by JIT compilation and
288     * allocation). So we try to streamline this as much as possible.
289     * We park/unpark workers after placing in an event wait queue
290     * when they cannot find work. This "queue" is actually a simple
291     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
292     * counter value (that reflects the number of times a worker has
293     * been inactivated) to avoid ABA effects (we need only as many
294     * version numbers as worker threads). Successors are held in
295     * field WorkQueue.nextWait. Queuing deals with several intrinsic
296     * races, mainly that a task-producing thread can miss seeing (and
297 dl 1.95 * signalling) another thread that gave up looking for work but
298     * has not yet entered the wait queue. We solve this by requiring
299 dl 1.111 * a full sweep of all workers (via repeated calls to method
300     * scan()) both before and after a newly waiting worker is added
301     * to the wait queue. During a rescan, the worker might release
302     * some other queued worker rather than itself, which has the same
303     * net effect. Because enqueued workers may actually be rescanning
304     * rather than waiting, we set and clear the "parker" field of
305 jsr166 1.117 * WorkQueues to reduce unnecessary calls to unpark. (This
306 dl 1.111 * requires a secondary recheck to avoid missed signals.) Note
307     * the unusual conventions about Thread.interrupts surrounding
308     * parking and other blocking: Because interrupts are used solely
309     * to alert threads to check termination, which is checked anyway
310     * upon blocking, we clear status (using Thread.interrupted)
311     * before any call to park, so that park does not immediately
312     * return due to status being set via some other unrelated call to
313     * interrupt in user code.
314 dl 1.91 *
315     * Signalling. We create or wake up workers only when there
316     * appears to be at least one task they might be able to find and
317     * execute. When a submission is added or another worker adds a
318 dl 1.111 * task to a queue that previously had fewer than two tasks, they
319 dl 1.91 * signal waiting workers (or trigger creation of new ones if
320     * fewer than the given parallelism level -- see signalWork).
321 dl 1.111 * These primary signals are buttressed by signals during rescans;
322     * together these cover the signals needed in cases when more
323     * tasks are pushed but untaken, and improve performance compared
324     * to having one thread wake up all workers.
325 dl 1.91 *
326     * Trimming workers. To release resources after periods of lack of
327     * use, a worker starting to wait when the pool is quiescent will
328     * time out and terminate if the pool has remained quiescent for
329 dl 1.95 * SHRINK_RATE nanosecs. This will slowly propagate, eventually
330     * terminating all workers after long periods of non-use.
331 dl 1.91 *
332 dl 1.111 * Shutdown and Termination. A call to shutdownNow atomically sets
333 jsr166 1.117 * a runState bit and then (non-atomically) sets each worker's
334 dl 1.111 * runState status, cancels all unprocessed tasks, and wakes up
335     * all waiting workers. Detecting whether termination should
336     * commence after a non-abrupt shutdown() call requires more work
337     * and bookkeeping. We need consensus about quiescence (i.e., that
338     * there is no more work). The active count provides a primary
339     * indication but non-abrupt shutdown still requires a rechecking
340     * scan for any workers that are inactive but not queued.
341     *
342 jsr166 1.117 * Joining Tasks
343     * =============
344 dl 1.111 *
345     * Any of several actions may be taken when one worker is waiting
346 jsr166 1.117 * to join a task stolen (or always held) by another. Because we
347 dl 1.111 * are multiplexing many tasks on to a pool of workers, we can't
348     * just let them block (as in Thread.join). We also cannot just
349     * reassign the joiner's run-time stack with another and replace
350     * it later, which would be a form of "continuation", that even if
351     * possible is not necessarily a good idea since we sometimes need
352 jsr166 1.117 * both an unblocked task and its continuation to progress.
353     * Instead we combine two tactics:
354 dl 1.58 *
355 dl 1.60 * Helping: Arranging for the joiner to execute some task that it
356 dl 1.111 * would be running if the steal had not occurred.
357 dl 1.58 *
358 dl 1.61 * Compensating: Unless there are already enough live threads,
359 dl 1.111 * method tryCompensate() may create or re-activate a spare
360     * thread to compensate for blocked joiners until they unblock.
361     *
362     * A third form (implemented in tryRemoveAndExec and
363     * tryPollForAndExec) amounts to helping a hypothetical
364     * compensator: If we can readily tell that a possible action of a
365     * compensator is to steal and execute the task being joined, the
366     * joining thread can do so directly, without the need for a
367     * compensation thread (although at the expense of larger run-time
368     * stacks, but the tradeoff is typically worthwhile).
369 dl 1.91 *
370     * The ManagedBlocker extension API can't use helping so relies
371     * only on compensation in method awaitBlocker.
372 dl 1.58 *
373 dl 1.111 * The algorithm in tryHelpStealer entails a form of "linear"
374     * helping: Each worker records (in field currentSteal) the most
375     * recent task it stole from some other worker. Plus, it records
376     * (in field currentJoin) the task it is currently actively
377     * joining. Method tryHelpStealer uses these markers to try to
378     * find a worker to help (i.e., steal back a task from and execute
379     * it) that could hasten completion of the actively joined task.
380     * In essence, the joiner executes a task that would be on its own
381     * local deque had the to-be-joined task not been stolen. This may
382     * be seen as a conservative variant of the approach in Wagner &
383     * Calder "Leapfrogging: a portable technique for implementing
384     * efficient futures" SIGPLAN Notices, 1993
385     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
386     * that: (1) We only maintain dependency links across workers upon
387     * steals, rather than use per-task bookkeeping. This sometimes
388 dl 1.119 * requires a linear scan of workQueues array to locate stealers, but
389 dl 1.111 * often doesn't because stealers leave hints (that may become
390     * stale/wrong) of where to locate them. A stealHint is only a
391     * hint because a worker might have had multiple steals and the
392     * hint records only one of them (usually the most current).
393     * Hinting isolates cost to when it is needed, rather than adding
394     * to per-task overhead. (2) It is "shallow", ignoring nesting
395     * and potentially cyclic mutual steals. (3) It is intentionally
396     * racy: field currentJoin is updated only while actively joining,
397     * which means that we miss links in the chain during long-lived
398     * tasks, GC stalls etc (which is OK since blocking in such cases
399     * is usually a good idea). (4) We bound the number of attempts
400     * to find work (see MAX_HELP_DEPTH) and fall back to suspending
401     * the worker and if necessary replacing it with another.
402     *
403 dl 1.91 * It is impossible to keep exactly the target parallelism number
404     * of threads running at any given time. Determining the
405 dl 1.66 * existence of conservatively safe helping targets, the
406     * availability of already-created spares, and the apparent need
407 dl 1.111 * to create new spares are all racy, so we rely on multiple
408     * retries of each. Currently, in keeping with on-demand
409     * signalling policy, we compensate only if blocking would leave
410     * less than one active (non-waiting, non-blocked) worker.
411     * Additionally, to avoid some false alarms due to GC, lagging
412     * counters, system activity, etc, compensated blocking for joins
413     * is only attempted after rechecks stabilize in
414     * ForkJoinTask.awaitJoin. (Retries are interspersed with
415     * Thread.yield, for good citizenship.)
416 dl 1.58 *
417 dl 1.91 * Style notes: There is a lot of representation-level coupling
418 dl 1.53 * among classes ForkJoinPool, ForkJoinWorkerThread, and
419 dl 1.111 * ForkJoinTask. The fields of WorkQueue maintain data structures
420     * managed by ForkJoinPool, so are directly accessed. There is
421     * little point trying to reduce this, since any associated future
422     * changes in representations will need to be accompanied by
423 dl 1.119 * algorithmic changes anyway. Several methods intrinsically
424     * sprawl because they must accumulate sets of consistent reads of
425     * volatiles held in local variables. Methods signalWork() and
426     * scan() are the main bottlenecks, so are especially heavily
427     * micro-optimized/mangled. There are lots of inline assignments
428     * (of form "while ((local = field) != 0)") which are usually the
429     * simplest way to ensure the required read orderings (which are
430     * sometimes critical). This leads to a "C"-like style of listing
431     * declarations of these locals at the heads of methods or blocks.
432     * There are several occurrences of the unusual "do {} while
433     * (!cas...)" which is the simplest way to force an update of a
434     * CAS'ed variable. There are also other coding oddities that help
435     * some methods perform reasonably even when interpreted (not
436     * compiled).
437 dl 1.91 *
438 jsr166 1.117 * The order of declarations in this file is:
439 dl 1.119 * (1) Static utility functions
440     * (2) Nested (static) classes
441     * (3) Static fields
442     * (4) Fields, along with constants used when unpacking some of them
443     * (5) Internal control methods
444     * (6) Callbacks and other support for ForkJoinTask methods
445     * (7) Exported methods
446     * (8) Static block initializing statics in minimally dependent order
447     */
448    
449     // Static utilities
450    
451     /**
452     * Computes an initial hash code (also serving as a non-zero
453     * random seed) for a thread id. This method is expected to
454     * provide higher-quality hash codes than using method hashCode().
455     */
456     static final int hashId(long id) {
457     int h = (int)id ^ (int)(id >>> 32); // Use MurmurHash of thread id
458     h ^= h >>> 16; h *= 0x85ebca6b;
459     h ^= h >>> 13; h *= 0xc2b2ae35;
460     h ^= h >>> 16;
461 jsr166 1.121 return (h == 0) ? 1 : h; // ensure nonzero
462 dl 1.119 }
463    
464     /**
465     * If there is a security manager, makes sure caller has
466     * permission to modify threads.
467 dl 1.1 */
468 dl 1.119 private static void checkPermission() {
469     SecurityManager security = System.getSecurityManager();
470     if (security != null)
471     security.checkPermission(modifyThreadPermission);
472     }
473    
474     // Nested classes
475 dl 1.1
476     /**
477 jsr166 1.35 * Factory for creating new {@link ForkJoinWorkerThread}s.
478     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
479     * for {@code ForkJoinWorkerThread} subclasses that extend base
480     * functionality or initialize threads with different contexts.
481 dl 1.1 */
482     public static interface ForkJoinWorkerThreadFactory {
483     /**
484     * Returns a new worker thread operating in the given pool.
485     *
486     * @param pool the pool this thread works in
487 jsr166 1.48 * @throws NullPointerException if the pool is null
488 dl 1.1 */
489     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
490     }
491    
492     /**
493 jsr166 1.17 * Default ForkJoinWorkerThreadFactory implementation; creates a
494 dl 1.1 * new ForkJoinWorkerThread.
495     */
496 dl 1.57 static class DefaultForkJoinWorkerThreadFactory
497 dl 1.1 implements ForkJoinWorkerThreadFactory {
498     public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
499 dl 1.53 return new ForkJoinWorkerThread(pool);
500 dl 1.1 }
501     }
502    
503     /**
504 dl 1.119 * A simple non-reentrant lock used for exclusion when managing
505     * queues and workers. We use a custom lock so that we can readily
506     * probe lock state in constructions that check among alternative
507     * actions. The lock is normally only very briefly held, and
508     * sometimes treated as a spinlock, but other usages block to
509     * reduce overall contention in those cases where locked code
510     * bodies perform allocation/resizing.
511     */
512     static final class Mutex extends AbstractQueuedSynchronizer {
513     public final boolean tryAcquire(int ignore) {
514     return compareAndSetState(0, 1);
515     }
516     public final boolean tryRelease(int ignore) {
517     setState(0);
518     return true;
519     }
520     public final void lock() { acquire(0); }
521     public final void unlock() { release(0); }
522     public final boolean isHeldExclusively() { return getState() == 1; }
523     public final Condition newCondition() { return new ConditionObject(); }
524     }
525 dl 1.1
526     /**
527 dl 1.119 * Class for artificial tasks that are used to replace the target
528     * of local joins if they are removed from an interior queue slot
529     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
530     * actually do anything beyond having a unique identity.
531 dl 1.1 */
532 dl 1.119 static final class EmptyTask extends ForkJoinTask<Void> {
533     EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
534     public final Void getRawResult() { return null; }
535     public final void setRawResult(Void x) {}
536     public final boolean exec() { return true; }
537 dl 1.1 }
538    
539     /**
540 dl 1.111 * Queues supporting work-stealing as well as external task
541     * submission. See above for main rationale and algorithms.
542     * Implementation relies heavily on "Unsafe" intrinsics
543     * and selective use of "volatile":
544     *
545     * Field "base" is the index (mod array.length) of the least valid
546     * queue slot, which is always the next position to steal (poll)
547     * from if nonempty. Reads and writes require volatile orderings
548     * but not CAS, because updates are only performed after slot
549     * CASes.
550     *
551     * Field "top" is the index (mod array.length) of the next queue
552     * slot to push to or pop from. It is written only by owner thread
553     * for push, or under lock for trySharedPush, and accessed by
554     * other threads only after reading (volatile) base. Both top and
555     * base are allowed to wrap around on overflow, but (top - base)
556 jsr166 1.114 * (or more commonly -(base - top) to force volatile read of base
557 dl 1.111 * before top) still estimates size.
558     *
559     * The array slots are read and written using the emulation of
560     * volatiles/atomics provided by Unsafe. Insertions must in
561     * general use putOrderedObject as a form of releasing store to
562     * ensure that all writes to the task object are ordered before
563     * its publication in the queue. (Although we can avoid one case
564     * of this when locked in trySharedPush.) All removals entail a
565     * CAS to null. The array is always a power of two. To ensure
566     * safety of Unsafe array operations, all accesses perform
567     * explicit null checks and implicit bounds checks via
568     * power-of-two masking.
569     *
570     * In addition to basic queuing support, this class contains
571     * fields described elsewhere to control execution. It turns out
572     * to work better memory-layout-wise to include them in this
573     * class rather than a separate class.
574     *
575     * Performance on most platforms is very sensitive to placement of
576     * instances of both WorkQueues and their arrays -- we absolutely
577     * do not want multiple WorkQueue instances or multiple queue
578     * arrays sharing cache lines. (It would be best for queue objects
579     * and their arrays to share, but there is nothing available to
580     * help arrange that). Unfortunately, because they are recorded
581     * in a common array, WorkQueue instances are often moved to be
582     * adjacent by garbage collectors. To reduce impact, we use field
583     * padding that works OK on common platforms; this effectively
584     * trades off slightly slower average field access for the sake of
585     * avoiding really bad worst-case access. (Until better JVM
586     * support is in place, this padding is dependent on transient
587     * properties of JVM field layout rules.) We also take care in
588 dl 1.119 * allocating, sizing and resizing the array. Non-shared queue
589 dl 1.111 * arrays are initialized (via method growArray) by workers before
590     * use. Others are allocated on first use.
591 dl 1.53 */
592 dl 1.111 static final class WorkQueue {
593     /**
594     * Capacity of work-stealing queue array upon initialization.
595     * Must be a power of two; at least 4, but set larger to
596     * reduce cacheline sharing among queues.
597     */
598     static final int INITIAL_QUEUE_CAPACITY = 1 << 8;
599    
600     /**
601     * Maximum size for queue arrays. Must be a power of two less
602     * than or equal to 1 << (31 - width of array entry) to ensure
603     * lack of wraparound of index calculations, but defined to a
604     * value a bit less than this to help users trap runaway
605     * programs before saturating systems.
606     */
607     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
608    
609     volatile long totalSteals; // cumulative number of steals
610     int seed; // for random scanning; initialize nonzero
611     volatile int eventCount; // encoded inactivation count; < 0 if inactive
612     int nextWait; // encoded record of next event waiter
613     int rescans; // remaining scans until block
614     int nsteals; // top-level task executions since last idle
615     final int mode; // lifo, fifo, or shared
616     int poolIndex; // index of this queue in pool (or 0)
617     int stealHint; // index of most recent known stealer
618     volatile int runState; // 1: locked, -1: terminate; else 0
619     volatile int base; // index of next slot for poll
620     int top; // index of next slot for push
621     ForkJoinTask<?>[] array; // the elements (initially unallocated)
622     final ForkJoinWorkerThread owner; // owning thread or null if shared
623     volatile Thread parker; // == owner during call to park; else null
624     ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
625     ForkJoinTask<?> currentSteal; // current non-local task being executed
626     // Heuristic padding to ameliorate unfortunate memory placements
627     Object p00, p01, p02, p03, p04, p05, p06, p07, p08, p09, p0a;
628    
629     WorkQueue(ForkJoinWorkerThread owner, int mode) {
630     this.owner = owner;
631     this.mode = mode;
632     // Place indices in the center of array (that is not yet allocated)
633     base = top = INITIAL_QUEUE_CAPACITY >>> 1;
634     }
635    
636     /**
637 jsr166 1.117 * Returns number of tasks in the queue.
638 dl 1.111 */
639     final int queueSize() {
640     int n = base - top; // non-owner callers must read base first
641     return (n >= 0) ? 0 : -n;
642     }
643    
644     /**
645     * Pushes a task. Call only by owner in unshared queues.
646     *
647     * @param task the task. Caller must ensure non-null.
648 jsr166 1.117 * @param p if non-null, pool to signal if necessary
649     * @throw RejectedExecutionException if array cannot be resized
650 dl 1.111 */
651     final void push(ForkJoinTask<?> task, ForkJoinPool p) {
652     ForkJoinTask<?>[] a;
653     int s = top, m, n;
654     if ((a = array) != null) { // ignore if queue removed
655     U.putOrderedObject
656     (a, (((m = a.length - 1) & s) << ASHIFT) + ABASE, task);
657     if ((n = (top = s + 1) - base) <= 2) {
658     if (p != null)
659     p.signalWork();
660     }
661     else if (n >= m)
662     growArray(true);
663     }
664     }
665    
666     /**
667     * Pushes a task if lock is free and array is either big
668     * enough or can be resized to be big enough.
669     *
670     * @param task the task. Caller must ensure non-null.
671     * @return true if submitted
672     */
673     final boolean trySharedPush(ForkJoinTask<?> task) {
674     boolean submitted = false;
675     if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
676     ForkJoinTask<?>[] a = array;
677 dl 1.119 int s = top;
678 dl 1.111 try {
679 dl 1.119 if ((a != null && a.length > s + 1 - base) ||
680 dl 1.111 (a = growArray(false)) != null) { // must presize
681     int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
682     U.putObject(a, (long)j, task); // don't need "ordered"
683     top = s + 1;
684     submitted = true;
685     }
686     } finally {
687     runState = 0; // unlock
688     }
689     }
690     return submitted;
691     }
692    
693     /**
694     * Takes next task, if one exists, in FIFO order.
695     */
696     final ForkJoinTask<?> poll() {
697 dl 1.119 ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
698     while ((b = base) - top < 0 && (a = array) != null) {
699     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
700     if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
701     base == b &&
702 dl 1.111 U.compareAndSwapObject(a, j, t, null)) {
703     base = b + 1;
704     return t;
705     }
706     }
707     return null;
708     }
709    
710     /**
711 dl 1.119 * Takes next task, if one exists, in LIFO order. Call only
712     * by owner in unshared queues. (We do not have a shared
713     * version of this method because it is never needed.)
714 dl 1.111 */
715     final ForkJoinTask<?> pop() {
716     ForkJoinTask<?> t; int m;
717     ForkJoinTask<?>[] a = array;
718     if (a != null && (m = a.length - 1) >= 0) {
719     for (int s; (s = top - 1) - base >= 0;) {
720     int j = ((m & s) << ASHIFT) + ABASE;
721     if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) == null)
722     break;
723     if (U.compareAndSwapObject(a, j, t, null)) {
724     top = s;
725     return t;
726     }
727     }
728     }
729     return null;
730     }
731    
732     /**
733     * Takes next task, if one exists, in order specified by mode.
734     */
735     final ForkJoinTask<?> nextLocalTask() {
736     return mode == 0 ? pop() : poll();
737     }
738    
739     /**
740     * Returns next task, if one exists, in order specified by mode.
741     */
742     final ForkJoinTask<?> peek() {
743     ForkJoinTask<?>[] a = array; int m;
744     if (a == null || (m = a.length - 1) < 0)
745     return null;
746     int i = mode == 0 ? top - 1 : base;
747     int j = ((i & m) << ASHIFT) + ABASE;
748     return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
749     }
750    
751     /**
752     * Returns task at index b if b is current base of queue.
753     */
754     final ForkJoinTask<?> pollAt(int b) {
755 dl 1.119 ForkJoinTask<?> t; ForkJoinTask<?>[] a;
756     if ((a = array) != null) {
757     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
758     if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
759     base == b &&
760 dl 1.111 U.compareAndSwapObject(a, j, t, null)) {
761     base = b + 1;
762 dl 1.119 return t;
763 dl 1.111 }
764     }
765 dl 1.119 return null;
766 dl 1.111 }
767    
768     /**
769     * Pops the given task only if it is at the current top.
770     */
771     final boolean tryUnpush(ForkJoinTask<?> t) {
772     ForkJoinTask<?>[] a; int s;
773     if ((a = array) != null && (s = top) != base &&
774     U.compareAndSwapObject
775     (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
776     top = s;
777     return true;
778     }
779     return false;
780     }
781    
782     /**
783     * Polls the given task only if it is at the current base.
784     */
785     final boolean pollFor(ForkJoinTask<?> task) {
786 dl 1.119 ForkJoinTask<?>[] a; int b;
787     if ((b = base) - top < 0 && (a = array) != null) {
788     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
789 dl 1.111 if (U.getObjectVolatile(a, j) == task && base == b &&
790     U.compareAndSwapObject(a, j, task, null)) {
791     base = b + 1;
792     return true;
793     }
794     }
795     return false;
796     }
797    
798     /**
799     * If present, removes from queue and executes the given task, or
800     * any other cancelled task. Returns (true) immediately on any CAS
801     * or consistency check failure so caller can retry.
802     *
803     * @return false if no progress can be made
804     */
805     final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
806     boolean removed = false, empty = true, progress = true;
807     ForkJoinTask<?>[] a; int m, s, b, n;
808     if ((a = array) != null && (m = a.length - 1) >= 0 &&
809     (n = (s = top) - (b = base)) > 0) {
810     for (ForkJoinTask<?> t;;) { // traverse from s to b
811     int j = ((--s & m) << ASHIFT) + ABASE;
812     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
813     if (t == null) // inconsistent length
814     break;
815     else if (t == task) {
816     if (s + 1 == top) { // pop
817     if (!U.compareAndSwapObject(a, j, task, null))
818     break;
819     top = s;
820     removed = true;
821     }
822     else if (base == b) // replace with proxy
823     removed = U.compareAndSwapObject(a, j, task,
824     new EmptyTask());
825     break;
826     }
827     else if (t.status >= 0)
828     empty = false;
829     else if (s + 1 == top) { // pop and throw away
830     if (U.compareAndSwapObject(a, j, t, null))
831     top = s;
832     break;
833     }
834     if (--n == 0) {
835     if (!empty && base == b)
836     progress = false;
837     break;
838     }
839     }
840     }
841     if (removed)
842     task.doExec();
843     return progress;
844     }
845    
846     /**
847     * Initializes or doubles the capacity of array. Call either
848     * by owner or with lock held -- it is OK for base, but not
849     * top, to move while resizings are in progress.
850     *
851     * @param rejectOnFailure if true, throw exception if capacity
852     * exceeded (relayed ultimately to user); else return null.
853     */
854     final ForkJoinTask<?>[] growArray(boolean rejectOnFailure) {
855     ForkJoinTask<?>[] oldA = array;
856     int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
857     if (size <= MAXIMUM_QUEUE_CAPACITY) {
858     int oldMask, t, b;
859     ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
860     if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
861     (t = top) - (b = base) > 0) {
862     int mask = size - 1;
863     do {
864     ForkJoinTask<?> x;
865     int oldj = ((b & oldMask) << ASHIFT) + ABASE;
866     int j = ((b & mask) << ASHIFT) + ABASE;
867     x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
868     if (x != null &&
869     U.compareAndSwapObject(oldA, oldj, x, null))
870     U.putObjectVolatile(a, j, x);
871     } while (++b != t);
872     }
873     return a;
874     }
875     else if (!rejectOnFailure)
876     return null;
877     else
878     throw new RejectedExecutionException("Queue capacity exceeded");
879     }
880    
881     /**
882 jsr166 1.117 * Removes and cancels all known tasks, ignoring any exceptions.
883 dl 1.111 */
884     final void cancelAll() {
885     ForkJoinTask.cancelIgnoringExceptions(currentJoin);
886     ForkJoinTask.cancelIgnoringExceptions(currentSteal);
887     for (ForkJoinTask<?> t; (t = poll()) != null; )
888     ForkJoinTask.cancelIgnoringExceptions(t);
889     }
890    
891 dl 1.119 /**
892     * Computes next value for random probes. Scans don't require
893     * a very high quality generator, but also not a crummy one.
894     * Marsaglia xor-shift is cheap and works well enough. Note:
895     * This is manually inlined in several usages in ForkJoinPool
896     * to avoid writes inside busy scan loops.
897     */
898     final int nextSeed() {
899     int r = seed;
900     r ^= r << 13;
901     r ^= r >>> 17;
902     return seed = r ^= r << 5;
903     }
904    
905 dl 1.111 // Execution methods
906    
907     /**
908     * Removes and runs tasks until empty, using local mode
909     * ordering.
910     */
911     final void runLocalTasks() {
912     if (base - top < 0) {
913     for (ForkJoinTask<?> t; (t = nextLocalTask()) != null; )
914     t.doExec();
915     }
916     }
917    
918     /**
919     * Executes a top-level task and any local tasks remaining
920     * after execution.
921     *
922     * @return true unless terminating
923     */
924     final boolean runTask(ForkJoinTask<?> t) {
925     boolean alive = true;
926     if (t != null) {
927     currentSteal = t;
928     t.doExec();
929     runLocalTasks();
930     ++nsteals;
931     currentSteal = null;
932     }
933     else if (runState < 0) // terminating
934     alive = false;
935     return alive;
936     }
937    
938     /**
939 jsr166 1.117 * Executes a non-top-level (stolen) task.
940 dl 1.111 */
941     final void runSubtask(ForkJoinTask<?> t) {
942     if (t != null) {
943     ForkJoinTask<?> ps = currentSteal;
944     currentSteal = t;
945     t.doExec();
946     currentSteal = ps;
947     }
948     }
949    
950     /**
951 dl 1.119 * Returns true if owned and not known to be blocked.
952     */
953     final boolean isApparentlyUnblocked() {
954     Thread wt; Thread.State s;
955     return (eventCount >= 0 &&
956     (wt = owner) != null &&
957     (s = wt.getState()) != Thread.State.BLOCKED &&
958     s != Thread.State.WAITING &&
959     s != Thread.State.TIMED_WAITING);
960     }
961    
962     /**
963     * If this owned and is not already interrupted, try to
964     * interrupt and/or unpark, ignoring exceptions.
965 dl 1.111 */
966 dl 1.119 final void interruptOwner() {
967     Thread wt, p;
968     if ((wt = owner) != null && !wt.isInterrupted()) {
969     try {
970     wt.interrupt();
971     } catch (SecurityException ignore) {
972     }
973     }
974     if ((p = parker) != null)
975     U.unpark(p);
976 dl 1.111 }
977    
978     // Unsafe mechanics
979     private static final sun.misc.Unsafe U;
980     private static final long RUNSTATE;
981     private static final int ABASE;
982     private static final int ASHIFT;
983     static {
984     int s;
985     try {
986     U = getUnsafe();
987     Class<?> k = WorkQueue.class;
988     Class<?> ak = ForkJoinTask[].class;
989     RUNSTATE = U.objectFieldOffset
990     (k.getDeclaredField("runState"));
991     ABASE = U.arrayBaseOffset(ak);
992     s = U.arrayIndexScale(ak);
993     } catch (Exception e) {
994     throw new Error(e);
995     }
996     if ((s & (s-1)) != 0)
997     throw new Error("data type scale not a power of two");
998     ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
999     }
1000     }
1001 dl 1.53
1002 dl 1.1 /**
1003 dl 1.119 * Per-thread records for threads that submit to pools. Currently
1004 jsr166 1.120 * holds only pseudo-random seed / index that is used to choose
1005 dl 1.119 * submission queues in method doSubmit. In the future, this may
1006     * also incorporate a means to implement different task rejection
1007     * and resubmission policies.
1008 dl 1.116 */
1009     static final class Submitter {
1010 dl 1.119 int seed;
1011     Submitter() { seed = hashId(Thread.currentThread().getId()); }
1012 dl 1.116 }
1013    
1014     /** ThreadLocal class for Submitters */
1015     static final class ThreadSubmitter extends ThreadLocal<Submitter> {
1016     public Submitter initialValue() { return new Submitter(); }
1017 dl 1.111 }
1018 dl 1.1
1019 dl 1.119 // static fields (initialized in static initializer below)
1020    
1021     /**
1022     * Creates a new ForkJoinWorkerThread. This factory is used unless
1023     * overridden in ForkJoinPool constructors.
1024     */
1025     public static final ForkJoinWorkerThreadFactory
1026     defaultForkJoinWorkerThreadFactory;
1027    
1028     /**
1029     * Generator for assigning sequence numbers as pool names.
1030     */
1031     private static final AtomicInteger poolNumberGenerator;
1032    
1033     /**
1034     * Permission required for callers of methods that may start or
1035     * kill threads.
1036     */
1037     private static final RuntimePermission modifyThreadPermission;
1038    
1039 dl 1.1 /**
1040 dl 1.116 * Per-thread submission bookeeping. Shared across all pools
1041     * to reduce ThreadLocal pollution and because random motion
1042     * to avoid contention in one pool is likely to hold for others.
1043     */
1044 dl 1.119 private static final ThreadSubmitter submitters;
1045    
1046     // static constants
1047    
1048     /**
1049     * The wakeup interval (in nanoseconds) for a worker waiting for a
1050     * task when the pool is quiescent to instead try to shrink the
1051     * number of workers. The exact value does not matter too
1052     * much. It must be short enough to release resources during
1053     * sustained periods of idleness, but not so short that threads
1054     * are continually re-created.
1055     */
1056     private static final long SHRINK_RATE =
1057     4L * 1000L * 1000L * 1000L; // 4 seconds
1058    
1059     /**
1060     * The timeout value for attempted shrinkage, includes
1061     * some slop to cope with system timer imprecision.
1062     */
1063     private static final long SHRINK_TIMEOUT = SHRINK_RATE - (SHRINK_RATE / 10);
1064    
1065     /**
1066     * The maximum stolen->joining link depth allowed in tryHelpStealer.
1067     * Depths for legitimate chains are unbounded, but we use a fixed
1068     * constant to avoid (otherwise unchecked) cycles and to bound
1069     * staleness of traversal parameters at the expense of sometimes
1070     * blocking when we could be helping.
1071     */
1072     private static final int MAX_HELP_DEPTH = 16;
1073 dl 1.116
1074     /**
1075 dl 1.119 * Bits and masks for control variables
1076     *
1077     * Field ctl is a long packed with:
1078     * AC: Number of active running workers minus target parallelism (16 bits)
1079     * TC: Number of total workers minus target parallelism (16 bits)
1080     * ST: true if pool is terminating (1 bit)
1081     * EC: the wait count of top waiting thread (15 bits)
1082     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1083     *
1084     * When convenient, we can extract the upper 32 bits of counts and
1085     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1086     * (int)ctl. The ec field is never accessed alone, but always
1087     * together with id and st. The offsets of counts by the target
1088     * parallelism and the positionings of fields makes it possible to
1089     * perform the most common checks via sign tests of fields: When
1090     * ac is negative, there are not enough active workers, when tc is
1091     * negative, there are not enough total workers, and when e is
1092     * negative, the pool is terminating. To deal with these possibly
1093     * negative fields, we use casts in and out of "short" and/or
1094     * signed shifts to maintain signedness.
1095     *
1096     * When a thread is queued (inactivated), its eventCount field is
1097     * set negative, which is the only way to tell if a worker is
1098     * prevented from executing tasks, even though it must continue to
1099     * scan for them to avoid queuing races. Note however that
1100     * eventCount updates lag releases so usage requires care.
1101     *
1102     * Field runState is an int packed with:
1103     * SHUTDOWN: true if shutdown is enabled (1 bit)
1104     * SEQ: a sequence number updated upon (de)registering workers (15 bits)
1105     * MASK: mask (power of 2 - 1) covering all registered poolIndexes (16 bits)
1106     *
1107     * The combination of mask and sequence number enables simple
1108     * consistency checks: Staleness of read-only operations on the
1109     * workQueues array can be checked by comparing runState before vs
1110     * after the reads. The low 16 bits (i.e, anding with SMASK) hold
1111     * the smallest power of two covering all indices, minus
1112     * one.
1113     */
1114    
1115     // bit positions/shifts for fields
1116     private static final int AC_SHIFT = 48;
1117     private static final int TC_SHIFT = 32;
1118     private static final int ST_SHIFT = 31;
1119     private static final int EC_SHIFT = 16;
1120    
1121     // bounds
1122     private static final int POOL_MAX = 0x7fff; // max #workers - 1
1123     private static final int SMASK = 0xffff; // short bits
1124     private static final int SQMASK = 0xfffe; // even short bits
1125     private static final int SHORT_SIGN = 1 << 15;
1126     private static final int INT_SIGN = 1 << 31;
1127    
1128     // masks
1129     private static final long STOP_BIT = 0x0001L << ST_SHIFT;
1130     private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
1131     private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
1132    
1133     // units for incrementing and decrementing
1134     private static final long TC_UNIT = 1L << TC_SHIFT;
1135     private static final long AC_UNIT = 1L << AC_SHIFT;
1136    
1137     // masks and units for dealing with u = (int)(ctl >>> 32)
1138     private static final int UAC_SHIFT = AC_SHIFT - 32;
1139     private static final int UTC_SHIFT = TC_SHIFT - 32;
1140     private static final int UAC_MASK = SMASK << UAC_SHIFT;
1141     private static final int UTC_MASK = SMASK << UTC_SHIFT;
1142     private static final int UAC_UNIT = 1 << UAC_SHIFT;
1143     private static final int UTC_UNIT = 1 << UTC_SHIFT;
1144    
1145     // masks and units for dealing with e = (int)ctl
1146     private static final int E_MASK = 0x7fffffff; // no STOP_BIT
1147     private static final int E_SEQ = 1 << EC_SHIFT;
1148    
1149     // runState bits
1150     private static final int SHUTDOWN = 1 << 31;
1151     private static final int RS_SEQ = 1 << 16;
1152     private static final int RS_SEQ_MASK = 0x7fff0000;
1153    
1154     // access mode for WorkQueue
1155     static final int LIFO_QUEUE = 0;
1156     static final int FIFO_QUEUE = 1;
1157     static final int SHARED_QUEUE = -1;
1158    
1159     // Instance fields
1160    
1161     /*
1162     * Field layout order in this class tends to matter more than one
1163     * would like. Runtime layout order is only loosely related to
1164     * declaration order and may differ across JVMs, but the following
1165     * empirically works OK on current JVMs.
1166 dl 1.1 */
1167 dl 1.111
1168 dl 1.119 volatile long ctl; // main pool control
1169     final int parallelism; // parallelism level
1170     final int localMode; // per-worker scheduling mode
1171     int growHints; // for expanding indices/ranges
1172     volatile int runState; // shutdown status, seq, and mask
1173     WorkQueue[] workQueues; // main registry
1174     final Mutex lock; // for registration
1175     final Condition termination; // for awaitTermination
1176     final ForkJoinWorkerThreadFactory factory; // factory for new workers
1177     final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1178     final AtomicLong stealCount; // collect counts when terminated
1179     final AtomicInteger nextWorkerNumber; // to create worker name string
1180     final String workerNamePrefix; // to create worker name string
1181 dl 1.111
1182 dl 1.119 // Creating, registering, deregistering and running workers
1183 dl 1.6
1184     /**
1185 dl 1.111 * Tries to create and start a worker
1186 dl 1.1 */
1187 dl 1.111 private void addWorker() {
1188     Throwable ex = null;
1189 dl 1.119 ForkJoinWorkerThread wt = null;
1190 dl 1.111 try {
1191 dl 1.119 if ((wt = factory.newThread(this)) != null) {
1192     wt.start();
1193 dl 1.111 return;
1194     }
1195     } catch (Throwable e) {
1196     ex = e;
1197     }
1198 dl 1.119 deregisterWorker(wt, ex); // adjust counts etc on failure
1199 dl 1.111 }
1200 dl 1.1
1201 dl 1.91 /**
1202 dl 1.111 * Callback from ForkJoinWorkerThread constructor to assign a
1203     * public name. This must be separate from registerWorker because
1204     * it is called during the "super" constructor call in
1205     * ForkJoinWorkerThread.
1206 dl 1.91 */
1207 dl 1.111 final String nextWorkerName() {
1208     return workerNamePrefix.concat
1209     (Integer.toString(nextWorkerNumber.addAndGet(1)));
1210     }
1211 dl 1.1
1212     /**
1213 dl 1.111 * Callback from ForkJoinWorkerThread constructor to establish and
1214 jsr166 1.117 * record its WorkQueue.
1215 dl 1.111 *
1216     * @param wt the worker thread
1217 dl 1.1 */
1218 dl 1.111 final void registerWorker(ForkJoinWorkerThread wt) {
1219     WorkQueue w = wt.workQueue;
1220 dl 1.119 Mutex lock = this.lock;
1221 dl 1.111 lock.lock();
1222     try {
1223 dl 1.119 int g = growHints, k = g & SMASK;
1224 dl 1.111 WorkQueue[] ws = workQueues;
1225     if (ws != null) { // ignore on shutdown
1226     int n = ws.length;
1227 dl 1.119 if ((k & 1) == 0 || k >= n || ws[k] != null) {
1228 dl 1.111 for (k = 1; k < n && ws[k] != null; k += 2)
1229     ; // workers are at odd indices
1230     if (k >= n) // resize
1231     workQueues = ws = Arrays.copyOf(ws, n << 1);
1232     }
1233 dl 1.119 w.eventCount = w.poolIndex = k; // establish before recording
1234     ws[k] = w;
1235     growHints = (g & ~SMASK) | ((k + 2) & SMASK);
1236 dl 1.111 int rs = runState;
1237     int m = rs & SMASK; // recalculate runState mask
1238     if (k > m)
1239     m = (m << 1) + 1;
1240     runState = (rs & SHUTDOWN) | ((rs + RS_SEQ) & RS_SEQ_MASK) | m;
1241     }
1242     } finally {
1243     lock.unlock();
1244     }
1245     }
1246 dl 1.58
1247 dl 1.1 /**
1248 dl 1.119 * Final callback from terminating worker, as well as upon failure
1249     * to construct or start a worker in addWorker. Removes record of
1250 dl 1.111 * worker from array, and adjusts counts. If pool is shutting
1251     * down, tries to complete termination.
1252     *
1253     * @param wt the worker thread or null if addWorker failed
1254     * @param ex the exception causing failure, or null if none
1255 dl 1.85 */
1256 dl 1.111 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1257     WorkQueue w = null;
1258     if (wt != null && (w = wt.workQueue) != null) {
1259     w.runState = -1; // ensure runState is set
1260     stealCount.getAndAdd(w.totalSteals + w.nsteals);
1261     int idx = w.poolIndex;
1262 dl 1.119 Mutex lock = this.lock;
1263 dl 1.111 lock.lock();
1264     try { // remove record from array
1265     WorkQueue[] ws = workQueues;
1266 dl 1.119 if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w) {
1267     ws[idx] = null;
1268     growHints = (growHints & ~SMASK) | idx;
1269     }
1270 dl 1.111 } finally {
1271     lock.unlock();
1272     }
1273     }
1274    
1275     long c; // adjust ctl counts
1276     do {} while (!U.compareAndSwapLong
1277     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1278     ((c - TC_UNIT) & TC_MASK) |
1279     (c & ~(AC_MASK|TC_MASK)))));
1280    
1281 dl 1.119 if (!tryTerminate(false, false) && w != null) {
1282 dl 1.111 w.cancelAll(); // cancel remaining tasks
1283     if (w.array != null) // suppress signal if never ran
1284     signalWork(); // wake up or create replacement
1285 dl 1.119 if (ex == null) // help clean refs on way out
1286     ForkJoinTask.helpExpungeStaleExceptions();
1287 dl 1.111 }
1288    
1289     if (ex != null) // rethrow
1290     U.throwException(ex);
1291     }
1292 dl 1.91
1293 dl 1.116 /**
1294 dl 1.119 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1295     */
1296     final void runWorker(ForkJoinWorkerThread wt) {
1297     // Initialize queue array and seed in this thread
1298     WorkQueue w = wt.workQueue;
1299     w.growArray(false);
1300     w.seed = hashId(Thread.currentThread().getId());
1301    
1302     do {} while (w.runTask(scan(w)));
1303     }
1304    
1305     // Submissions
1306    
1307     /**
1308     * Unless shutting down, adds the given task to a submission queue
1309     * at submitter's current queue index (modulo submission
1310     * range). If no queue exists at the index, one is created unless
1311     * pool lock is busy. If the queue and/or lock are busy, another
1312     * index is randomly chosen. The mask in growHints controls the
1313     * effective index range of queues considered. The mask is
1314     * expanded, up to the current workerQueue mask, upon any detected
1315     * contention but otherwise remains small to avoid needlessly
1316     * creating queues when there is no contention.
1317     */
1318     private void doSubmit(ForkJoinTask<?> task) {
1319     if (task == null)
1320     throw new NullPointerException();
1321     Submitter s = submitters.get();
1322     for (int r = s.seed, m = growHints >>> 16;;) {
1323     WorkQueue[] ws; WorkQueue q; Mutex lk;
1324     int k = r & m & SQMASK; // use only even indices
1325     if (runState < 0 || (ws = workQueues) == null || ws.length <= k)
1326     throw new RejectedExecutionException(); // shutting down
1327     if ((q = ws[k]) == null && (lk = lock).tryAcquire(0)) {
1328     try { // try to create new queue
1329     if (ws == workQueues && (q = ws[k]) == null) {
1330     int rs; // update runState seq
1331     ws[k] = q = new WorkQueue(null, SHARED_QUEUE);
1332     runState = (((rs = runState) & SHUTDOWN) |
1333     ((rs + RS_SEQ) & ~SHUTDOWN));
1334 dl 1.116 }
1335     } finally {
1336 dl 1.119 lk.unlock();
1337 dl 1.116 }
1338     }
1339 dl 1.119 if (q != null) {
1340     if (q.trySharedPush(task)) {
1341     signalWork();
1342     return;
1343     }
1344     else if (m < parallelism - 1 && m < (runState & SMASK)) {
1345     Mutex lock = this.lock;
1346     lock.lock(); // block until lock free
1347     int g = growHints;
1348     if (g >>> 16 == m) // expand range
1349     growHints = (((m << 1) + 1) << 16) | (g & SMASK);
1350     lock.unlock(); // no need for try/finally
1351     }
1352     else if ((r & m) == 0)
1353     Thread.yield(); // occasionally yield if busy
1354     }
1355     if (m == (m = growHints >>> 16)) {
1356     r ^= r << 13; // update seed unless new range
1357     r ^= r >>> 17; // same xorshift as WorkQueues
1358     s.seed = r ^= r << 5;
1359     }
1360 dl 1.116 }
1361     }
1362 dl 1.85
1363 dl 1.111 // Maintaining ctl counts
1364 dl 1.56
1365     /**
1366 jsr166 1.117 * Increments active count; mainly called upon return from blocking.
1367 dl 1.58 */
1368 dl 1.111 final void incrementActiveCount() {
1369 dl 1.91 long c;
1370 dl 1.111 do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1371 dl 1.61 }
1372    
1373     /**
1374 dl 1.119 * Tries to activate or create a worker if too few are active.
1375 dl 1.53 */
1376 dl 1.91 final void signalWork() {
1377 dl 1.119 long c; int u;
1378     while ((u = (int)((c = ctl) >>> 32)) < 0) { // too few active
1379     WorkQueue[] ws = workQueues; int e, i; WorkQueue w; Thread p;
1380     if ((e = (int)c) > 0) { // at least one waiting
1381     if (ws != null && (i = e & SMASK) < ws.length &&
1382     (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1383     long nc = (((long)(w.nextWait & E_MASK)) |
1384     ((long)(u + UAC_UNIT) << 32));
1385     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1386     w.eventCount = (e + E_SEQ) & E_MASK;
1387     if ((p = w.parker) != null)
1388     U.unpark(p); // activate and release
1389     break;
1390     }
1391     }
1392     else
1393 dl 1.91 break;
1394 dl 1.111 }
1395 dl 1.119 else if (e == 0 && (u & SHORT_SIGN) != 0) { // too few total
1396     long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1397     ((u + UAC_UNIT) & UAC_MASK)) << 32;
1398     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1399     addWorker();
1400 dl 1.91 break;
1401     }
1402     }
1403 dl 1.111 else
1404 dl 1.91 break;
1405     }
1406 dl 1.53 }
1407    
1408     /**
1409 dl 1.111 * Tries to decrement active count (sometimes implicitly) and
1410     * possibly release or create a compensating worker in preparation
1411     * for blocking. Fails on contention or termination.
1412 dl 1.91 *
1413 dl 1.111 * @return true if the caller can block, else should recheck and retry
1414 dl 1.53 */
1415 dl 1.111 final boolean tryCompensate() {
1416 dl 1.119 WorkQueue w; Thread p;
1417 dl 1.111 int pc = parallelism, e, u, ac, tc, i;
1418     long c = ctl;
1419 dl 1.119 WorkQueue[] ws = workQueues;
1420 dl 1.111 if ((e = (int)c) >= 0) {
1421     if ((ac = ((u = (int)(c >>> 32)) >> UAC_SHIFT)) <= 0 &&
1422 dl 1.119 e != 0 && ws != null && (i = e & SMASK) < ws.length &&
1423 dl 1.111 (w = ws[i]) != null) {
1424 dl 1.119 long nc = (long)(w.nextWait & E_MASK) | (c & (AC_MASK|TC_MASK));
1425 dl 1.111 if (w.eventCount == (e | INT_SIGN) &&
1426 dl 1.119 U.compareAndSwapLong(this, CTL, c, nc)) {
1427 dl 1.111 w.eventCount = (e + E_SEQ) & E_MASK;
1428     if ((p = w.parker) != null)
1429     U.unpark(p);
1430     return true; // release an idle worker
1431     }
1432     }
1433     else if ((tc = (short)(u >>> UTC_SHIFT)) >= 0 && ac + pc > 1) {
1434     long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1435     if (U.compareAndSwapLong(this, CTL, c, nc))
1436     return true; // no compensation needed
1437     }
1438 dl 1.119 else if (tc + pc < POOL_MAX) {
1439 dl 1.111 long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1440     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1441     addWorker();
1442     return true; // create replacement
1443     }
1444     }
1445 dl 1.53 }
1446 dl 1.111 return false;
1447 dl 1.53 }
1448    
1449 dl 1.111 // Scanning for tasks
1450    
1451 dl 1.53 /**
1452 dl 1.111 * Scans for and, if found, returns one task, else possibly
1453     * inactivates the worker. This method operates on single reads of
1454     * volatile state and is designed to be re-invoked continuously in
1455     * part because it returns upon detecting inconsistencies,
1456     * contention, or state changes that indicate possible success on
1457     * re-invocation.
1458     *
1459     * The scan searches for tasks across queues, randomly selecting
1460 dl 1.119 * the first #queues probes, favoring steals over submissions
1461 dl 1.111 * (by exploiting even/odd indexing), and then performing a
1462     * circular sweep of all queues. The scan terminates upon either
1463     * finding a non-empty queue, or completing a full sweep. If the
1464     * worker is not inactivated, it takes and returns a task from
1465     * this queue. On failure to find a task, we take one of the
1466     * following actions, after which the caller will retry calling
1467     * this method unless terminated.
1468     *
1469 dl 1.119 * * If pool is terminating, terminate the worker.
1470     *
1471 dl 1.111 * * If not a complete sweep, try to release a waiting worker. If
1472     * the scan terminated because the worker is inactivated, then the
1473     * released worker will often be the calling worker, and it can
1474     * succeed obtaining a task on the next call. Or maybe it is
1475     * another worker, but with same net effect. Releasing in other
1476     * cases as well ensures that we have enough workers running.
1477     *
1478 jsr166 1.118 * * If the caller has run a task since the last empty scan,
1479 dl 1.111 * return (to allow rescan) if other workers are not also yet
1480     * enqueued. Field WorkQueue.rescans counts down on each scan to
1481 dl 1.119 * ensure eventual inactivation and blocking.
1482 dl 1.111 *
1483     * * If not already enqueued, try to inactivate and enqueue the
1484     * worker on wait queue.
1485     *
1486     * * If already enqueued and none of the above apply, either park
1487     * awaiting signal, or if this is the most recent waiter and pool
1488     * is quiescent, relay to idleAwaitWork to check for termination
1489     * and possibly shrink pool.
1490     *
1491     * @param w the worker (via its WorkQueue)
1492     * @return a task or null of none found
1493     */
1494     private final ForkJoinTask<?> scan(WorkQueue w) {
1495 dl 1.119 boolean swept = false; // true after full empty scan
1496     WorkQueue[] ws; // volatile read order matters
1497     int r = w.seed, ec = w.eventCount; // ec is negative if inactive
1498 dl 1.111 int rs = runState, m = rs & SMASK;
1499 dl 1.119 if ((ws = workQueues) != null && ws.length > m) { // consistency check
1500     for (int k = 0, j = -1 - m; ; ++j) {
1501 dl 1.111 WorkQueue q; int b;
1502 dl 1.119 if (j < 0) { // random probes while j negative
1503 dl 1.111 r ^= r << 13; r ^= r >>> 17; k = (r ^= r << 5) | (j & 1);
1504 dl 1.119 } // worker (not submit) for odd j
1505     else // cyclic scan when j >= 0
1506     k += 7; // step 7 reduces array packing bias
1507 dl 1.111 if ((q = ws[k & m]) != null && (b = q.base) - q.top < 0) {
1508 dl 1.119 ForkJoinTask<?> t = (ec >= 0) ? q.pollAt(b) : null;
1509     w.seed = r; // save seed for next scan
1510     if (t != null)
1511     return t;
1512 dl 1.93 break;
1513 dl 1.111 }
1514 dl 1.119 else if (j - m > m) {
1515     if (rs == runState) // staleness check
1516 dl 1.111 swept = true;
1517 dl 1.93 break;
1518 dl 1.91 }
1519     }
1520 dl 1.119
1521     // Decode ctl on empty scan
1522     long c = ctl; int e = (int)c, a = (int)(c >> AC_SHIFT), nr, ns;
1523     if (e < 0) // pool is terminating
1524     w.runState = -1;
1525     else if (!swept) { // try to release a waiter
1526     WorkQueue v; Thread p;
1527     if (e > 0 && a < 0 && (v = ws[e & m]) != null &&
1528     v.eventCount == (e | INT_SIGN)) {
1529     long nc = ((long)(v.nextWait & E_MASK) |
1530     ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
1531     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1532     v.eventCount = (e + E_SEQ) & E_MASK;
1533     if ((p = v.parker) != null)
1534     U.unpark(p);
1535     }
1536     }
1537     }
1538     else if ((nr = w.rescans) > 0) { // continue rescanning
1539     int ac = a + parallelism;
1540     if (((w.rescans = (ac < nr) ? ac : nr - 1) & 3) == 0 &&
1541     w.eventCount == ec)
1542     Thread.yield(); // occasionally yield
1543     }
1544     else if (ec >= 0) { // try to enqueue
1545     long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1546     w.nextWait = e;
1547     w.eventCount = ec | INT_SIGN;// mark as inactive
1548     if (!U.compareAndSwapLong(this, CTL, c, nc))
1549     w.eventCount = ec; // unmark on CAS failure
1550     else if ((ns = w.nsteals) != 0) {
1551     w.nsteals = 0; // set rescans if ran task
1552 dl 1.111 w.rescans = a + parallelism;
1553 dl 1.119 w.totalSteals += ns;
1554     }
1555 dl 1.111 }
1556 jsr166 1.122 else { // already queued
1557 dl 1.119 if (parallelism == -a)
1558     idleAwaitWork(w); // quiescent
1559     if (w.eventCount == ec) {
1560     Thread.interrupted(); // clear status
1561     ForkJoinWorkerThread wt = w.owner;
1562     U.putObject(wt, PARKBLOCKER, this);
1563     w.parker = wt; // emulate LockSupport.park
1564     if (w.eventCount == ec) // recheck
1565     U.park(false, 0L); // block
1566     w.parker = null;
1567     U.putObject(wt, PARKBLOCKER, null);
1568     }
1569 dl 1.111 }
1570 dl 1.91 }
1571 dl 1.111 return null;
1572 dl 1.53 }
1573    
1574     /**
1575 dl 1.111 * If inactivating worker w has caused pool to become quiescent,
1576 jsr166 1.117 * checks for pool termination, and, so long as this is not the
1577     * only worker, waits for event for up to SHRINK_RATE nanosecs.
1578     * On timeout, if ctl has not changed, terminates the worker,
1579     * which will in turn wake up another worker to possibly repeat
1580     * this process.
1581 dl 1.91 *
1582 dl 1.111 * @param w the calling worker
1583 dl 1.53 */
1584 dl 1.111 private void idleAwaitWork(WorkQueue w) {
1585     long c; int nw, ec;
1586 dl 1.119 if (!tryTerminate(false, false) &&
1587 dl 1.111 (int)((c = ctl) >> AC_SHIFT) + parallelism == 0 &&
1588     (ec = w.eventCount) == ((int)c | INT_SIGN) &&
1589     (nw = w.nextWait) != 0) {
1590     long nc = ((long)(nw & E_MASK) | // ctl to restore on timeout
1591     ((c + AC_UNIT) & AC_MASK) | (c & TC_MASK));
1592     ForkJoinWorkerThread wt = w.owner;
1593     while (ctl == c) {
1594     long startTime = System.nanoTime();
1595     Thread.interrupted(); // timed variant of version in scan()
1596     U.putObject(wt, PARKBLOCKER, this);
1597     w.parker = wt;
1598     if (ctl == c)
1599     U.park(false, SHRINK_RATE);
1600     w.parker = null;
1601     U.putObject(wt, PARKBLOCKER, null);
1602     if (ctl != c)
1603     break;
1604     if (System.nanoTime() - startTime >= SHRINK_TIMEOUT &&
1605     U.compareAndSwapLong(this, CTL, c, nc)) {
1606 dl 1.119 w.eventCount = (ec + E_SEQ) | E_MASK;
1607 dl 1.111 w.runState = -1; // shrink
1608     break;
1609     }
1610 dl 1.66 }
1611 dl 1.53 }
1612     }
1613    
1614     /**
1615 dl 1.111 * Tries to locate and execute tasks for a stealer of the given
1616     * task, or in turn one of its stealers, Traces currentSteal ->
1617     * currentJoin links looking for a thread working on a descendant
1618     * of the given task and with a non-empty queue to steal back and
1619     * execute tasks from. The first call to this method upon a
1620     * waiting join will often entail scanning/search, (which is OK
1621     * because the joiner has nothing better to do), but this method
1622     * leaves hints in workers to speed up subsequent calls. The
1623     * implementation is very branchy to cope with potential
1624     * inconsistencies or loops encountering chains that are stale,
1625     * unknown, or of length greater than MAX_HELP_DEPTH links. All
1626     * of these cases are dealt with by just retrying by caller.
1627     *
1628     * @param joiner the joining worker
1629     * @param task the task to join
1630     * @return true if found or ran a task (and so is immediately retryable)
1631     */
1632     final boolean tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1633     ForkJoinTask<?> subtask; // current target
1634     boolean progress = false;
1635     int depth = 0; // current chain depth
1636     int m = runState & SMASK;
1637     WorkQueue[] ws = workQueues;
1638    
1639     if (ws != null && ws.length > m && (subtask = task).status >= 0) {
1640     outer:for (WorkQueue j = joiner;;) {
1641     // Try to find the stealer of subtask, by first using hint
1642     WorkQueue stealer = null;
1643     WorkQueue v = ws[j.stealHint & m];
1644     if (v != null && v.currentSteal == subtask)
1645     stealer = v;
1646     else {
1647     for (int i = 1; i <= m; i += 2) {
1648     if ((v = ws[i]) != null && v.currentSteal == subtask) {
1649     stealer = v;
1650     j.stealHint = i; // save hint
1651     break;
1652     }
1653     }
1654     if (stealer == null)
1655     break;
1656     }
1657 dl 1.64
1658 dl 1.111 for (WorkQueue q = stealer;;) { // Try to help stealer
1659     ForkJoinTask<?> t; int b;
1660     if (task.status < 0)
1661     break outer;
1662     if ((b = q.base) - q.top < 0) {
1663     progress = true;
1664     if (subtask.status < 0)
1665     break outer; // stale
1666     if ((t = q.pollAt(b)) != null) {
1667     stealer.stealHint = joiner.poolIndex;
1668     joiner.runSubtask(t);
1669     }
1670 dl 1.91 }
1671 dl 1.111 else { // empty - try to descend to find stealer's stealer
1672     ForkJoinTask<?> next = stealer.currentJoin;
1673     if (++depth == MAX_HELP_DEPTH || subtask.status < 0 ||
1674     next == null || next == subtask)
1675     break outer; // max depth, stale, dead-end, cyclic
1676     subtask = next;
1677     j = stealer;
1678     break;
1679 dl 1.91 }
1680 dl 1.61 }
1681 dl 1.111 }
1682 dl 1.53 }
1683 dl 1.111 return progress;
1684 dl 1.64 }
1685    
1686 dl 1.91 /**
1687 dl 1.111 * If task is at base of some steal queue, steals and executes it.
1688 dl 1.91 *
1689 dl 1.111 * @param joiner the joining worker
1690     * @param task the task
1691 dl 1.61 */
1692 dl 1.111 final void tryPollForAndExec(WorkQueue joiner, ForkJoinTask<?> task) {
1693     WorkQueue[] ws;
1694     int m = runState & SMASK;
1695     if ((ws = workQueues) != null && ws.length > m) {
1696     for (int j = 1; j <= m && task.status >= 0; j += 2) {
1697     WorkQueue q = ws[j];
1698     if (q != null && q.pollFor(task)) {
1699     joiner.runSubtask(task);
1700     break;
1701     }
1702 dl 1.91 }
1703     }
1704 dl 1.61 }
1705    
1706     /**
1707 dl 1.112 * Returns a non-empty steal queue, if one is found during a random,
1708 dl 1.111 * then cyclic scan, else null. This method must be retried by
1709     * caller if, by the time it tries to use the queue, it is empty.
1710     */
1711     private WorkQueue findNonEmptyStealQueue(WorkQueue w) {
1712     int r = w.seed; // Same idea as scan(), but ignoring submissions
1713     for (WorkQueue[] ws;;) {
1714     int m = runState & SMASK;
1715     if ((ws = workQueues) == null)
1716     return null;
1717     if (ws.length > m) {
1718     WorkQueue q;
1719 dl 1.119 for (int k = 0, j = -1 - m;; ++j) {
1720     if (j < 0) {
1721     r ^= r << 13; r ^= r >>> 17; k = r ^= r << 5;
1722     }
1723     else
1724     k += 7;
1725 dl 1.111 if ((q = ws[(k | 1) & m]) != null && q.base - q.top < 0) {
1726     w.seed = r;
1727     return q;
1728 dl 1.91 }
1729 dl 1.119 else if (j - m > m)
1730 dl 1.111 return null;
1731 dl 1.91 }
1732     }
1733 dl 1.64 }
1734     }
1735    
1736     /**
1737 dl 1.111 * Runs tasks until {@code isQuiescent()}. We piggyback on
1738     * active count ctl maintenance, but rather than blocking
1739     * when tasks cannot be found, we rescan until all others cannot
1740     * find tasks either.
1741     */
1742     final void helpQuiescePool(WorkQueue w) {
1743     for (boolean active = true;;) {
1744     w.runLocalTasks(); // exhaust local queue
1745     WorkQueue q = findNonEmptyStealQueue(w);
1746     if (q != null) {
1747     ForkJoinTask<?> t;
1748     if (!active) { // re-establish active count
1749     long c;
1750     active = true;
1751     do {} while (!U.compareAndSwapLong
1752     (this, CTL, c = ctl, c + AC_UNIT));
1753     }
1754     if ((t = q.poll()) != null)
1755     w.runSubtask(t);
1756     }
1757     else {
1758     long c;
1759     if (active) { // decrement active count without queuing
1760     active = false;
1761     do {} while (!U.compareAndSwapLong
1762     (this, CTL, c = ctl, c -= AC_UNIT));
1763     }
1764     else
1765     c = ctl; // re-increment on exit
1766     if ((int)(c >> AC_SHIFT) + parallelism == 0) {
1767     do {} while (!U.compareAndSwapLong
1768     (this, CTL, c = ctl, c + AC_UNIT));
1769     break;
1770 dl 1.66 }
1771 dl 1.64 }
1772     }
1773     }
1774    
1775     /**
1776 jsr166 1.117 * Gets and removes a local or stolen task for the given worker.
1777 dl 1.111 *
1778     * @return a task, if available
1779 dl 1.64 */
1780 dl 1.111 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
1781     for (ForkJoinTask<?> t;;) {
1782     WorkQueue q;
1783     if ((t = w.nextLocalTask()) != null)
1784     return t;
1785     if ((q = findNonEmptyStealQueue(w)) == null)
1786     return null;
1787     if ((t = q.poll()) != null)
1788     return t;
1789 dl 1.91 }
1790 dl 1.61 }
1791    
1792 dl 1.53 /**
1793 dl 1.111 * Returns the approximate (non-atomic) number of idle threads per
1794     * active thread to offset steal queue size for method
1795     * ForkJoinTask.getSurplusQueuedTaskCount().
1796 dl 1.53 */
1797 dl 1.111 final int idlePerActive() {
1798     // Approximate at powers of two for small values, saturate past 4
1799     int p = parallelism;
1800     int a = p + (int)(ctl >> AC_SHIFT);
1801     return (a > (p >>>= 1) ? 0 :
1802     a > (p >>>= 1) ? 1 :
1803     a > (p >>>= 1) ? 2 :
1804     a > (p >>>= 1) ? 4 :
1805     8);
1806 dl 1.53 }
1807    
1808 dl 1.119 // Termination
1809 dl 1.53
1810     /**
1811 dl 1.119 * Possibly initiates and/or completes termination. The caller
1812     * triggering termination runs three passes through workQueues:
1813     * (0) Setting termination status, followed by wakeups of queued
1814     * workers; (1) cancelling all tasks; (2) interrupting lagging
1815     * threads (likely in external tasks, but possibly also blocked in
1816     * joins). Each pass repeats previous steps because of potential
1817     * lagging thread creation.
1818 dl 1.53 *
1819     * @param now if true, unconditionally terminate, else only
1820 dl 1.111 * if no work and no active workers
1821 jsr166 1.120 * @param enable if true, enable shutdown when next possible
1822 dl 1.53 * @return true if now terminating or terminated
1823 dl 1.1 */
1824 dl 1.119 private boolean tryTerminate(boolean now, boolean enable) {
1825     Mutex lock = this.lock;
1826 dl 1.111 for (long c;;) {
1827     if (((c = ctl) & STOP_BIT) != 0) { // already terminating
1828     if ((short)(c >>> TC_SHIFT) == -parallelism) {
1829     lock.lock(); // don't need try/finally
1830     termination.signalAll(); // signal when 0 workers
1831     lock.unlock();
1832     }
1833     return true;
1834     }
1835 dl 1.119 if (runState >= 0) { // not yet enabled
1836     if (!enable)
1837     return false;
1838     lock.lock();
1839     runState |= SHUTDOWN;
1840     lock.unlock();
1841     }
1842     if (!now) { // check if idle & no tasks
1843     if ((int)(c >> AC_SHIFT) != -parallelism ||
1844 dl 1.111 hasQueuedSubmissions())
1845 dl 1.91 return false;
1846 dl 1.111 // Check for unqueued inactive workers. One pass suffices.
1847     WorkQueue[] ws = workQueues; WorkQueue w;
1848     if (ws != null) {
1849 dl 1.119 for (int i = 1; i < ws.length; i += 2) {
1850 dl 1.111 if ((w = ws[i]) != null && w.eventCount >= 0)
1851     return false;
1852     }
1853 dl 1.91 }
1854     }
1855 dl 1.119 if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
1856     for (int pass = 0; pass < 3; ++pass) {
1857     WorkQueue[] ws = workQueues;
1858     if (ws != null) {
1859     WorkQueue w;
1860     int n = ws.length;
1861     for (int i = 0; i < n; ++i) {
1862     if ((w = ws[i]) != null) {
1863     w.runState = -1;
1864     if (pass > 0) {
1865     w.cancelAll();
1866     if (pass > 1)
1867     w.interruptOwner();
1868 dl 1.91 }
1869 dl 1.61 }
1870     }
1871 dl 1.119 // Wake up workers parked on event queue
1872     int i, e; long cc; Thread p;
1873     while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
1874     (i = e & SMASK) < n &&
1875     (w = ws[i]) != null) {
1876     long nc = ((long)(w.nextWait & E_MASK) |
1877     ((cc + AC_UNIT) & AC_MASK) |
1878     (cc & (TC_MASK|STOP_BIT)));
1879     if (w.eventCount == (e | INT_SIGN) &&
1880     U.compareAndSwapLong(this, CTL, cc, nc)) {
1881     w.eventCount = (e + E_SEQ) & E_MASK;
1882     w.runState = -1;
1883     if ((p = w.parker) != null)
1884     U.unpark(p);
1885     }
1886     }
1887 dl 1.111 }
1888 dl 1.91 }
1889 dl 1.53 }
1890     }
1891 dl 1.56 }
1892    
1893 dl 1.91 // Exported methods
1894 dl 1.1
1895     // Constructors
1896    
1897     /**
1898 dl 1.42 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1899 dl 1.57 * java.lang.Runtime#availableProcessors}, using the {@linkplain
1900     * #defaultForkJoinWorkerThreadFactory default thread factory},
1901     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1902 jsr166 1.17 *
1903 dl 1.1 * @throws SecurityException if a security manager exists and
1904     * the caller is not permitted to modify threads
1905     * because it does not hold {@link
1906 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1907 dl 1.1 */
1908     public ForkJoinPool() {
1909     this(Runtime.getRuntime().availableProcessors(),
1910 dl 1.57 defaultForkJoinWorkerThreadFactory, null, false);
1911 dl 1.1 }
1912    
1913     /**
1914 dl 1.42 * Creates a {@code ForkJoinPool} with the indicated parallelism
1915 dl 1.57 * level, the {@linkplain
1916     * #defaultForkJoinWorkerThreadFactory default thread factory},
1917     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1918 jsr166 1.17 *
1919 dl 1.42 * @param parallelism the parallelism level
1920 dl 1.1 * @throws IllegalArgumentException if parallelism less than or
1921 jsr166 1.47 * equal to zero, or greater than implementation limit
1922 dl 1.1 * @throws SecurityException if a security manager exists and
1923     * the caller is not permitted to modify threads
1924     * because it does not hold {@link
1925 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1926 dl 1.1 */
1927     public ForkJoinPool(int parallelism) {
1928 dl 1.57 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1929 dl 1.1 }
1930    
1931     /**
1932 dl 1.57 * Creates a {@code ForkJoinPool} with the given parameters.
1933 jsr166 1.17 *
1934 dl 1.57 * @param parallelism the parallelism level. For default value,
1935     * use {@link java.lang.Runtime#availableProcessors}.
1936     * @param factory the factory for creating new threads. For default value,
1937     * use {@link #defaultForkJoinWorkerThreadFactory}.
1938 dl 1.59 * @param handler the handler for internal worker threads that
1939     * terminate due to unrecoverable errors encountered while executing
1940 jsr166 1.73 * tasks. For default value, use {@code null}.
1941 dl 1.59 * @param asyncMode if true,
1942 dl 1.57 * establishes local first-in-first-out scheduling mode for forked
1943     * tasks that are never joined. This mode may be more appropriate
1944     * than default locally stack-based mode in applications in which
1945     * worker threads only process event-style asynchronous tasks.
1946 jsr166 1.73 * For default value, use {@code false}.
1947 dl 1.1 * @throws IllegalArgumentException if parallelism less than or
1948 jsr166 1.47 * equal to zero, or greater than implementation limit
1949 jsr166 1.48 * @throws NullPointerException if the factory is null
1950 dl 1.1 * @throws SecurityException if a security manager exists and
1951     * the caller is not permitted to modify threads
1952     * because it does not hold {@link
1953 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1954 dl 1.1 */
1955 dl 1.59 public ForkJoinPool(int parallelism,
1956 dl 1.57 ForkJoinWorkerThreadFactory factory,
1957     Thread.UncaughtExceptionHandler handler,
1958     boolean asyncMode) {
1959 dl 1.53 checkPermission();
1960     if (factory == null)
1961     throw new NullPointerException();
1962 dl 1.119 if (parallelism <= 0 || parallelism > POOL_MAX)
1963 dl 1.1 throw new IllegalArgumentException();
1964 dl 1.53 this.parallelism = parallelism;
1965 dl 1.1 this.factory = factory;
1966 dl 1.57 this.ueh = handler;
1967 dl 1.111 this.localMode = asyncMode ? FIFO_QUEUE : LIFO_QUEUE;
1968 dl 1.119 this.growHints = 1;
1969 dl 1.91 long np = (long)(-parallelism); // offset ctl counts
1970     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
1971 dl 1.111 // initialize workQueues array with room for 2*parallelism if possible
1972 dl 1.91 int n = parallelism << 1;
1973 dl 1.119 if (n >= POOL_MAX)
1974     n = POOL_MAX;
1975 dl 1.91 else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
1976     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8;
1977     }
1978 dl 1.119 this.workQueues = new WorkQueue[(n + 1) << 1]; // #slots = 2 * #workers
1979     this.termination = (this.lock = new Mutex()).newCondition();
1980 dl 1.111 this.stealCount = new AtomicLong();
1981     this.nextWorkerNumber = new AtomicInteger();
1982 dl 1.91 StringBuilder sb = new StringBuilder("ForkJoinPool-");
1983     sb.append(poolNumberGenerator.incrementAndGet());
1984     sb.append("-worker-");
1985     this.workerNamePrefix = sb.toString();
1986 dl 1.1 }
1987    
1988     // Execution methods
1989    
1990     /**
1991 jsr166 1.17 * Performs the given task, returning its result upon completion.
1992 dl 1.91 * If the computation encounters an unchecked Exception or Error,
1993     * it is rethrown as the outcome of this invocation. Rethrown
1994     * exceptions behave in the same way as regular exceptions, but,
1995     * when possible, contain stack traces (as displayed for example
1996     * using {@code ex.printStackTrace()}) of both the current thread
1997     * as well as the thread actually encountering the exception;
1998     * minimally only the latter.
1999 jsr166 1.17 *
2000 dl 1.1 * @param task the task
2001     * @return the task's result
2002 jsr166 1.48 * @throws NullPointerException if the task is null
2003     * @throws RejectedExecutionException if the task cannot be
2004     * scheduled for execution
2005 dl 1.1 */
2006     public <T> T invoke(ForkJoinTask<T> task) {
2007 dl 1.111 doSubmit(task);
2008     return task.join();
2009 dl 1.1 }
2010    
2011     /**
2012     * Arranges for (asynchronous) execution of the given task.
2013 jsr166 1.17 *
2014 dl 1.1 * @param task the task
2015 jsr166 1.48 * @throws NullPointerException if the task is null
2016     * @throws RejectedExecutionException if the task cannot be
2017     * scheduled for execution
2018 dl 1.1 */
2019 dl 1.37 public void execute(ForkJoinTask<?> task) {
2020 dl 1.111 doSubmit(task);
2021 dl 1.1 }
2022    
2023     // AbstractExecutorService methods
2024    
2025 jsr166 1.48 /**
2026     * @throws NullPointerException if the task is null
2027     * @throws RejectedExecutionException if the task cannot be
2028     * scheduled for execution
2029     */
2030 dl 1.1 public void execute(Runnable task) {
2031 dl 1.82 if (task == null)
2032     throw new NullPointerException();
2033 dl 1.23 ForkJoinTask<?> job;
2034 jsr166 1.26 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2035     job = (ForkJoinTask<?>) task;
2036 dl 1.23 else
2037 dl 1.33 job = ForkJoinTask.adapt(task, null);
2038 dl 1.111 doSubmit(job);
2039 dl 1.1 }
2040    
2041 jsr166 1.48 /**
2042 dl 1.57 * Submits a ForkJoinTask for execution.
2043     *
2044     * @param task the task to submit
2045     * @return the task
2046     * @throws NullPointerException if the task is null
2047     * @throws RejectedExecutionException if the task cannot be
2048     * scheduled for execution
2049     */
2050     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2051 dl 1.111 doSubmit(task);
2052 dl 1.57 return task;
2053     }
2054    
2055     /**
2056 jsr166 1.48 * @throws NullPointerException if the task is null
2057     * @throws RejectedExecutionException if the task cannot be
2058     * scheduled for execution
2059     */
2060 dl 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2061 dl 1.82 if (task == null)
2062     throw new NullPointerException();
2063 dl 1.33 ForkJoinTask<T> job = ForkJoinTask.adapt(task);
2064 dl 1.111 doSubmit(job);
2065 dl 1.1 return job;
2066     }
2067    
2068 jsr166 1.48 /**
2069     * @throws NullPointerException if the task is null
2070     * @throws RejectedExecutionException if the task cannot be
2071     * scheduled for execution
2072     */
2073 dl 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2074 dl 1.82 if (task == null)
2075     throw new NullPointerException();
2076 dl 1.33 ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
2077 dl 1.111 doSubmit(job);
2078 dl 1.1 return job;
2079     }
2080    
2081 jsr166 1.48 /**
2082     * @throws NullPointerException if the task is null
2083     * @throws RejectedExecutionException if the task cannot be
2084     * scheduled for execution
2085     */
2086 dl 1.1 public ForkJoinTask<?> submit(Runnable task) {
2087 dl 1.82 if (task == null)
2088     throw new NullPointerException();
2089 dl 1.23 ForkJoinTask<?> job;
2090 jsr166 1.26 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2091     job = (ForkJoinTask<?>) task;
2092 dl 1.23 else
2093 dl 1.33 job = ForkJoinTask.adapt(task, null);
2094 dl 1.111 doSubmit(job);
2095 dl 1.1 return job;
2096     }
2097    
2098     /**
2099 jsr166 1.48 * @throws NullPointerException {@inheritDoc}
2100     * @throws RejectedExecutionException {@inheritDoc}
2101     */
2102 dl 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2103 dl 1.119 // In previous versions of this class, this method constructed
2104     // a task to run ForkJoinTask.invokeAll, but now external
2105     // invocation of multiple tasks is at least as efficient.
2106     List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2107     // Workaround needed because method wasn't declared with
2108     // wildcards in return type but should have been.
2109 jsr166 1.20 @SuppressWarnings({"unchecked", "rawtypes"})
2110 dl 1.119 List<Future<T>> futures = (List<Future<T>>) (List) fs;
2111 dl 1.1
2112 dl 1.119 boolean done = false;
2113     try {
2114     for (Callable<T> t : tasks) {
2115     ForkJoinTask<T> f = ForkJoinTask.adapt(t);
2116     doSubmit(f);
2117     fs.add(f);
2118     }
2119     for (ForkJoinTask<T> f : fs)
2120     f.quietlyJoin();
2121     done = true;
2122     return futures;
2123     } finally {
2124     if (!done)
2125     for (ForkJoinTask<T> f : fs)
2126     f.cancel(false);
2127 dl 1.1 }
2128     }
2129    
2130     /**
2131 jsr166 1.17 * Returns the factory used for constructing new workers.
2132 dl 1.1 *
2133     * @return the factory used for constructing new workers
2134     */
2135     public ForkJoinWorkerThreadFactory getFactory() {
2136     return factory;
2137     }
2138    
2139     /**
2140 dl 1.2 * Returns the handler for internal worker threads that terminate
2141     * due to unrecoverable errors encountered while executing tasks.
2142 jsr166 1.17 *
2143 jsr166 1.28 * @return the handler, or {@code null} if none
2144 dl 1.2 */
2145     public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
2146 dl 1.53 return ueh;
2147 dl 1.2 }
2148    
2149     /**
2150 dl 1.42 * Returns the targeted parallelism level of this pool.
2151 dl 1.1 *
2152 dl 1.42 * @return the targeted parallelism level of this pool
2153 dl 1.1 */
2154     public int getParallelism() {
2155     return parallelism;
2156     }
2157    
2158     /**
2159     * Returns the number of worker threads that have started but not
2160 jsr166 1.76 * yet terminated. The result returned by this method may differ
2161 jsr166 1.29 * from {@link #getParallelism} when threads are created to
2162 dl 1.1 * maintain parallelism when others are cooperatively blocked.
2163     *
2164     * @return the number of worker threads
2165     */
2166     public int getPoolSize() {
2167 dl 1.91 return parallelism + (short)(ctl >>> TC_SHIFT);
2168 dl 1.1 }
2169    
2170     /**
2171 jsr166 1.28 * Returns {@code true} if this pool uses local first-in-first-out
2172 jsr166 1.16 * scheduling mode for forked tasks that are never joined.
2173 dl 1.6 *
2174 jsr166 1.28 * @return {@code true} if this pool uses async mode
2175 dl 1.6 */
2176     public boolean getAsyncMode() {
2177 dl 1.111 return localMode != 0;
2178 dl 1.6 }
2179    
2180     /**
2181 dl 1.2 * Returns an estimate of the number of worker threads that are
2182     * not blocked waiting to join tasks or for other managed
2183 dl 1.53 * synchronization. This method may overestimate the
2184     * number of running threads.
2185 dl 1.1 *
2186     * @return the number of worker threads
2187     */
2188     public int getRunningThreadCount() {
2189 dl 1.111 int rc = 0;
2190     WorkQueue[] ws; WorkQueue w;
2191     if ((ws = workQueues) != null) {
2192 dl 1.119 for (int i = 1; i < ws.length; i += 2) {
2193     if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2194 dl 1.111 ++rc;
2195     }
2196     }
2197     return rc;
2198 dl 1.1 }
2199    
2200     /**
2201 dl 1.2 * Returns an estimate of the number of threads that are currently
2202 dl 1.1 * stealing or executing tasks. This method may overestimate the
2203     * number of active threads.
2204 jsr166 1.17 *
2205 jsr166 1.16 * @return the number of active threads
2206 dl 1.1 */
2207     public int getActiveThreadCount() {
2208 dl 1.111 int r = parallelism + (int)(ctl >> AC_SHIFT);
2209 jsr166 1.102 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2210 dl 1.1 }
2211    
2212     /**
2213 jsr166 1.28 * Returns {@code true} if all worker threads are currently idle.
2214     * An idle worker is one that cannot obtain a task to execute
2215     * because none are available to steal from other threads, and
2216     * there are no pending submissions to the pool. This method is
2217     * conservative; it might not return {@code true} immediately upon
2218     * idleness of all threads, but will eventually become true if
2219     * threads remain inactive.
2220 jsr166 1.17 *
2221 jsr166 1.28 * @return {@code true} if all threads are currently idle
2222 dl 1.1 */
2223     public boolean isQuiescent() {
2224 dl 1.111 return (int)(ctl >> AC_SHIFT) + parallelism == 0;
2225 dl 1.1 }
2226    
2227     /**
2228     * Returns an estimate of the total number of tasks stolen from
2229     * one thread's work queue by another. The reported value
2230     * underestimates the actual total number of steals when the pool
2231     * is not quiescent. This value may be useful for monitoring and
2232 jsr166 1.17 * tuning fork/join programs: in general, steal counts should be
2233 dl 1.1 * high enough to keep threads busy, but low enough to avoid
2234     * overhead and contention across threads.
2235 jsr166 1.17 *
2236 jsr166 1.16 * @return the number of steals
2237 dl 1.1 */
2238     public long getStealCount() {
2239 dl 1.111 long count = stealCount.get();
2240     WorkQueue[] ws; WorkQueue w;
2241     if ((ws = workQueues) != null) {
2242 dl 1.119 for (int i = 1; i < ws.length; i += 2) {
2243 dl 1.111 if ((w = ws[i]) != null)
2244     count += w.totalSteals;
2245     }
2246     }
2247     return count;
2248 dl 1.1 }
2249    
2250     /**
2251 dl 1.2 * Returns an estimate of the total number of tasks currently held
2252     * in queues by worker threads (but not including tasks submitted
2253     * to the pool that have not begun executing). This value is only
2254     * an approximation, obtained by iterating across all threads in
2255     * the pool. This method may be useful for tuning task
2256     * granularities.
2257 jsr166 1.17 *
2258 jsr166 1.16 * @return the number of queued tasks
2259 dl 1.1 */
2260     public long getQueuedTaskCount() {
2261     long count = 0;
2262 dl 1.111 WorkQueue[] ws; WorkQueue w;
2263     if ((ws = workQueues) != null) {
2264 dl 1.119 for (int i = 1; i < ws.length; i += 2) {
2265 dl 1.111 if ((w = ws[i]) != null)
2266     count += w.queueSize();
2267     }
2268 dl 1.91 }
2269 dl 1.1 return count;
2270     }
2271    
2272     /**
2273 jsr166 1.40 * Returns an estimate of the number of tasks submitted to this
2274 dl 1.94 * pool that have not yet begun executing. This method may take
2275 dl 1.91 * time proportional to the number of submissions.
2276 jsr166 1.17 *
2277 jsr166 1.16 * @return the number of queued submissions
2278 dl 1.1 */
2279     public int getQueuedSubmissionCount() {
2280 dl 1.111 int count = 0;
2281     WorkQueue[] ws; WorkQueue w;
2282     if ((ws = workQueues) != null) {
2283 dl 1.119 for (int i = 0; i < ws.length; i += 2) {
2284 dl 1.111 if ((w = ws[i]) != null)
2285     count += w.queueSize();
2286     }
2287     }
2288     return count;
2289 dl 1.1 }
2290    
2291     /**
2292 jsr166 1.28 * Returns {@code true} if there are any tasks submitted to this
2293     * pool that have not yet begun executing.
2294 jsr166 1.17 *
2295 jsr166 1.16 * @return {@code true} if there are any queued submissions
2296 dl 1.1 */
2297     public boolean hasQueuedSubmissions() {
2298 dl 1.111 WorkQueue[] ws; WorkQueue w;
2299     if ((ws = workQueues) != null) {
2300 dl 1.119 for (int i = 0; i < ws.length; i += 2) {
2301 dl 1.111 if ((w = ws[i]) != null && w.queueSize() != 0)
2302     return true;
2303     }
2304     }
2305     return false;
2306 dl 1.1 }
2307    
2308     /**
2309     * Removes and returns the next unexecuted submission if one is
2310     * available. This method may be useful in extensions to this
2311     * class that re-assign work in systems with multiple pools.
2312 jsr166 1.17 *
2313 jsr166 1.28 * @return the next submission, or {@code null} if none
2314 dl 1.1 */
2315     protected ForkJoinTask<?> pollSubmission() {
2316 dl 1.111 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2317     if ((ws = workQueues) != null) {
2318 dl 1.119 for (int i = 0; i < ws.length; i += 2) {
2319 dl 1.111 if ((w = ws[i]) != null && (t = w.poll()) != null)
2320     return t;
2321 dl 1.91 }
2322     }
2323     return null;
2324 dl 1.1 }
2325    
2326     /**
2327 dl 1.6 * Removes all available unexecuted submitted and forked tasks
2328     * from scheduling queues and adds them to the given collection,
2329     * without altering their execution status. These may include
2330 jsr166 1.41 * artificially generated or wrapped tasks. This method is
2331     * designed to be invoked only when the pool is known to be
2332 dl 1.6 * quiescent. Invocations at other times may not remove all
2333     * tasks. A failure encountered while attempting to add elements
2334 jsr166 1.16 * to collection {@code c} may result in elements being in
2335 dl 1.6 * neither, either or both collections when the associated
2336     * exception is thrown. The behavior of this operation is
2337     * undefined if the specified collection is modified while the
2338     * operation is in progress.
2339 jsr166 1.17 *
2340 dl 1.6 * @param c the collection to transfer elements into
2341     * @return the number of elements transferred
2342     */
2343 dl 1.30 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2344 dl 1.91 int count = 0;
2345 dl 1.111 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2346     if ((ws = workQueues) != null) {
2347 dl 1.119 for (int i = 0; i < ws.length; ++i) {
2348 dl 1.111 if ((w = ws[i]) != null) {
2349     while ((t = w.poll()) != null) {
2350     c.add(t);
2351     ++count;
2352     }
2353     }
2354 dl 1.91 }
2355     }
2356 dl 1.57 return count;
2357     }
2358    
2359     /**
2360 dl 1.1 * Returns a string identifying this pool, as well as its state,
2361     * including indications of run state, parallelism level, and
2362     * worker and task counts.
2363     *
2364     * @return a string identifying this pool, as well as its state
2365     */
2366     public String toString() {
2367 dl 1.119 // Use a single pass through workQueues to collect counts
2368     long qt = 0L, qs = 0L; int rc = 0;
2369     long st = stealCount.get();
2370     long c = ctl;
2371     WorkQueue[] ws; WorkQueue w;
2372     if ((ws = workQueues) != null) {
2373     for (int i = 0; i < ws.length; ++i) {
2374     if ((w = ws[i]) != null) {
2375     int size = w.queueSize();
2376     if ((i & 1) == 0)
2377     qs += size;
2378     else {
2379     qt += size;
2380     st += w.totalSteals;
2381     if (w.isApparentlyUnblocked())
2382     ++rc;
2383     }
2384     }
2385     }
2386     }
2387 dl 1.53 int pc = parallelism;
2388 dl 1.91 int tc = pc + (short)(c >>> TC_SHIFT);
2389 dl 1.111 int ac = pc + (int)(c >> AC_SHIFT);
2390     if (ac < 0) // ignore transient negative
2391     ac = 0;
2392 dl 1.91 String level;
2393     if ((c & STOP_BIT) != 0)
2394 jsr166 1.102 level = (tc == 0) ? "Terminated" : "Terminating";
2395 dl 1.91 else
2396 dl 1.111 level = runState < 0 ? "Shutting down" : "Running";
2397 dl 1.1 return super.toString() +
2398 dl 1.91 "[" + level +
2399 dl 1.53 ", parallelism = " + pc +
2400     ", size = " + tc +
2401     ", active = " + ac +
2402     ", running = " + rc +
2403 dl 1.1 ", steals = " + st +
2404     ", tasks = " + qt +
2405     ", submissions = " + qs +
2406     "]";
2407     }
2408    
2409     /**
2410     * Initiates an orderly shutdown in which previously submitted
2411     * tasks are executed, but no new tasks will be accepted.
2412     * Invocation has no additional effect if already shut down.
2413     * Tasks that are in the process of being submitted concurrently
2414     * during the course of this method may or may not be rejected.
2415 jsr166 1.17 *
2416 dl 1.1 * @throws SecurityException if a security manager exists and
2417     * the caller is not permitted to modify threads
2418     * because it does not hold {@link
2419 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
2420 dl 1.1 */
2421     public void shutdown() {
2422     checkPermission();
2423 dl 1.119 tryTerminate(false, true);
2424 dl 1.1 }
2425    
2426     /**
2427 dl 1.42 * Attempts to cancel and/or stop all tasks, and reject all
2428     * subsequently submitted tasks. Tasks that are in the process of
2429     * being submitted or executed concurrently during the course of
2430     * this method may or may not be rejected. This method cancels
2431     * both existing and unexecuted tasks, in order to permit
2432     * termination in the presence of task dependencies. So the method
2433     * always returns an empty list (unlike the case for some other
2434     * Executors).
2435 jsr166 1.17 *
2436 dl 1.1 * @return an empty list
2437     * @throws SecurityException if a security manager exists and
2438     * the caller is not permitted to modify threads
2439     * because it does not hold {@link
2440 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
2441 dl 1.1 */
2442     public List<Runnable> shutdownNow() {
2443     checkPermission();
2444 dl 1.119 tryTerminate(true, true);
2445 dl 1.1 return Collections.emptyList();
2446     }
2447    
2448     /**
2449 jsr166 1.16 * Returns {@code true} if all tasks have completed following shut down.
2450 dl 1.1 *
2451 jsr166 1.16 * @return {@code true} if all tasks have completed following shut down
2452 dl 1.1 */
2453     public boolean isTerminated() {
2454 dl 1.91 long c = ctl;
2455     return ((c & STOP_BIT) != 0L &&
2456     (short)(c >>> TC_SHIFT) == -parallelism);
2457 dl 1.1 }
2458    
2459     /**
2460 jsr166 1.16 * Returns {@code true} if the process of termination has
2461 dl 1.42 * commenced but not yet completed. This method may be useful for
2462     * debugging. A return of {@code true} reported a sufficient
2463     * period after shutdown may indicate that submitted tasks have
2464 dl 1.88 * ignored or suppressed interruption, or are waiting for IO,
2465     * causing this executor not to properly terminate. (See the
2466     * advisory notes for class {@link ForkJoinTask} stating that
2467     * tasks should not normally entail blocking operations. But if
2468     * they do, they must abort them on interrupt.)
2469 dl 1.1 *
2470 dl 1.42 * @return {@code true} if terminating but not yet terminated
2471 dl 1.1 */
2472     public boolean isTerminating() {
2473 dl 1.91 long c = ctl;
2474     return ((c & STOP_BIT) != 0L &&
2475     (short)(c >>> TC_SHIFT) != -parallelism);
2476 dl 1.1 }
2477    
2478     /**
2479 jsr166 1.16 * Returns {@code true} if this pool has been shut down.
2480 dl 1.1 *
2481 jsr166 1.16 * @return {@code true} if this pool has been shut down
2482 dl 1.1 */
2483     public boolean isShutdown() {
2484 dl 1.111 return runState < 0;
2485 dl 1.42 }
2486    
2487     /**
2488 dl 1.1 * Blocks until all tasks have completed execution after a shutdown
2489     * request, or the timeout occurs, or the current thread is
2490     * interrupted, whichever happens first.
2491     *
2492     * @param timeout the maximum time to wait
2493     * @param unit the time unit of the timeout argument
2494 jsr166 1.16 * @return {@code true} if this executor terminated and
2495     * {@code false} if the timeout elapsed before termination
2496 dl 1.1 * @throws InterruptedException if interrupted while waiting
2497     */
2498     public boolean awaitTermination(long timeout, TimeUnit unit)
2499     throws InterruptedException {
2500 dl 1.91 long nanos = unit.toNanos(timeout);
2501 dl 1.119 final Mutex lock = this.lock;
2502 dl 1.91 lock.lock();
2503 dl 1.57 try {
2504 dl 1.91 for (;;) {
2505     if (isTerminated())
2506     return true;
2507     if (nanos <= 0)
2508     return false;
2509     nanos = termination.awaitNanos(nanos);
2510     }
2511     } finally {
2512     lock.unlock();
2513 dl 1.57 }
2514 dl 1.1 }
2515    
2516     /**
2517     * Interface for extending managed parallelism for tasks running
2518 jsr166 1.35 * in {@link ForkJoinPool}s.
2519     *
2520 dl 1.61 * <p>A {@code ManagedBlocker} provides two methods. Method
2521     * {@code isReleasable} must return {@code true} if blocking is
2522     * not necessary. Method {@code block} blocks the current thread
2523     * if necessary (perhaps internally invoking {@code isReleasable}
2524 dl 1.93 * before actually blocking). These actions are performed by any
2525     * thread invoking {@link ForkJoinPool#managedBlock}. The
2526     * unusual methods in this API accommodate synchronizers that may,
2527     * but don't usually, block for long periods. Similarly, they
2528     * allow more efficient internal handling of cases in which
2529     * additional workers may be, but usually are not, needed to
2530     * ensure sufficient parallelism. Toward this end,
2531     * implementations of method {@code isReleasable} must be amenable
2532     * to repeated invocation.
2533 jsr166 1.17 *
2534 dl 1.1 * <p>For example, here is a ManagedBlocker based on a
2535     * ReentrantLock:
2536 jsr166 1.17 * <pre> {@code
2537     * class ManagedLocker implements ManagedBlocker {
2538     * final ReentrantLock lock;
2539     * boolean hasLock = false;
2540     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
2541     * public boolean block() {
2542     * if (!hasLock)
2543     * lock.lock();
2544     * return true;
2545     * }
2546     * public boolean isReleasable() {
2547     * return hasLock || (hasLock = lock.tryLock());
2548 dl 1.1 * }
2549 jsr166 1.17 * }}</pre>
2550 dl 1.61 *
2551     * <p>Here is a class that possibly blocks waiting for an
2552     * item on a given queue:
2553     * <pre> {@code
2554     * class QueueTaker<E> implements ManagedBlocker {
2555     * final BlockingQueue<E> queue;
2556     * volatile E item = null;
2557     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
2558     * public boolean block() throws InterruptedException {
2559     * if (item == null)
2560 dl 1.65 * item = queue.take();
2561 dl 1.61 * return true;
2562     * }
2563     * public boolean isReleasable() {
2564 dl 1.65 * return item != null || (item = queue.poll()) != null;
2565 dl 1.61 * }
2566     * public E getItem() { // call after pool.managedBlock completes
2567     * return item;
2568     * }
2569     * }}</pre>
2570 dl 1.1 */
2571     public static interface ManagedBlocker {
2572     /**
2573     * Possibly blocks the current thread, for example waiting for
2574     * a lock or condition.
2575 jsr166 1.17 *
2576 jsr166 1.28 * @return {@code true} if no additional blocking is necessary
2577     * (i.e., if isReleasable would return true)
2578 dl 1.1 * @throws InterruptedException if interrupted while waiting
2579 jsr166 1.17 * (the method is not required to do so, but is allowed to)
2580 dl 1.1 */
2581     boolean block() throws InterruptedException;
2582    
2583     /**
2584 jsr166 1.28 * Returns {@code true} if blocking is unnecessary.
2585 dl 1.1 */
2586     boolean isReleasable();
2587     }
2588    
2589     /**
2590     * Blocks in accord with the given blocker. If the current thread
2591 jsr166 1.38 * is a {@link ForkJoinWorkerThread}, this method possibly
2592     * arranges for a spare thread to be activated if necessary to
2593 dl 1.57 * ensure sufficient parallelism while the current thread is blocked.
2594 jsr166 1.38 *
2595     * <p>If the caller is not a {@link ForkJoinTask}, this method is
2596     * behaviorally equivalent to
2597 jsr166 1.115 * <pre> {@code
2598 jsr166 1.17 * while (!blocker.isReleasable())
2599     * if (blocker.block())
2600     * return;
2601     * }</pre>
2602 jsr166 1.38 *
2603     * If the caller is a {@code ForkJoinTask}, then the pool may
2604     * first be expanded to ensure parallelism, and later adjusted.
2605 dl 1.1 *
2606     * @param blocker the blocker
2607 jsr166 1.16 * @throws InterruptedException if blocker.block did so
2608 dl 1.1 */
2609 dl 1.57 public static void managedBlock(ManagedBlocker blocker)
2610 dl 1.1 throws InterruptedException {
2611     Thread t = Thread.currentThread();
2612 dl 1.111 ForkJoinPool p = ((t instanceof ForkJoinWorkerThread) ?
2613     ((ForkJoinWorkerThread)t).pool : null);
2614     while (!blocker.isReleasable()) {
2615     if (p == null || p.tryCompensate()) {
2616     try {
2617     do {} while (!blocker.isReleasable() && !blocker.block());
2618     } finally {
2619     if (p != null)
2620     p.incrementActiveCount();
2621     }
2622     break;
2623     }
2624 dl 1.57 }
2625 dl 1.1 }
2626    
2627 dl 1.33 // AbstractExecutorService overrides. These rely on undocumented
2628     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
2629     // implement RunnableFuture.
2630 dl 1.2
2631     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
2632 jsr166 1.34 return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
2633 dl 1.2 }
2634    
2635     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
2636 jsr166 1.34 return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
2637 dl 1.2 }
2638    
2639 jsr166 1.27 // Unsafe mechanics
2640 dl 1.111 private static final sun.misc.Unsafe U;
2641     private static final long CTL;
2642     private static final long PARKBLOCKER;
2643 dl 1.91
2644     static {
2645     poolNumberGenerator = new AtomicInteger();
2646     modifyThreadPermission = new RuntimePermission("modifyThread");
2647     defaultForkJoinWorkerThreadFactory =
2648     new DefaultForkJoinWorkerThreadFactory();
2649 dl 1.119 submitters = new ThreadSubmitter();
2650 jsr166 1.27 try {
2651 dl 1.111 U = getUnsafe();
2652 jsr166 1.103 Class<?> k = ForkJoinPool.class;
2653 dl 1.111 CTL = U.objectFieldOffset
2654 dl 1.91 (k.getDeclaredField("ctl"));
2655 dl 1.119 Class<?> tk = Thread.class;
2656 dl 1.111 PARKBLOCKER = U.objectFieldOffset
2657     (tk.getDeclaredField("parkBlocker"));
2658 dl 1.91 } catch (Exception e) {
2659     throw new Error(e);
2660     }
2661 jsr166 1.27 }
2662    
2663     /**
2664     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
2665     * Replace with a simple call to Unsafe.getUnsafe when integrating
2666     * into a jdk.
2667     *
2668     * @return a sun.misc.Unsafe
2669     */
2670     private static sun.misc.Unsafe getUnsafe() {
2671     try {
2672     return sun.misc.Unsafe.getUnsafe();
2673     } catch (SecurityException se) {
2674     try {
2675     return java.security.AccessController.doPrivileged
2676     (new java.security
2677     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
2678     public sun.misc.Unsafe run() throws Exception {
2679     java.lang.reflect.Field f = sun.misc
2680     .Unsafe.class.getDeclaredField("theUnsafe");
2681     f.setAccessible(true);
2682     return (sun.misc.Unsafe) f.get(null);
2683     }});
2684     } catch (java.security.PrivilegedActionException e) {
2685     throw new RuntimeException("Could not initialize intrinsics",
2686     e.getCause());
2687     }
2688     }
2689     }
2690 dl 1.112
2691 dl 1.1 }