ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
Revision: 1.127
Committed: Sun Mar 4 15:52:45 2012 UTC (12 years, 2 months ago) by dl
Branch: MAIN
Changes since 1.126: +129 -141 lines
Log Message:
marking -> taging; registerWorker fix

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.97 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.1 */
6    
7     package jsr166y;
8 jsr166 1.22 import java.util.ArrayList;
9     import java.util.Arrays;
10     import java.util.Collection;
11     import java.util.Collections;
12     import java.util.List;
13 dl 1.91 import java.util.Random;
14 dl 1.78 import java.util.concurrent.AbstractExecutorService;
15     import java.util.concurrent.Callable;
16     import java.util.concurrent.ExecutorService;
17     import java.util.concurrent.Future;
18     import java.util.concurrent.RejectedExecutionException;
19     import java.util.concurrent.RunnableFuture;
20     import java.util.concurrent.TimeUnit;
21     import java.util.concurrent.atomic.AtomicInteger;
22 dl 1.111 import java.util.concurrent.atomic.AtomicLong;
23 dl 1.119 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
24 dl 1.91 import java.util.concurrent.locks.Condition;
25 dl 1.1
26     /**
27 jsr166 1.29 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
28 jsr166 1.39 * A {@code ForkJoinPool} provides the entry point for submissions
29 dl 1.57 * from non-{@code ForkJoinTask} clients, as well as management and
30 jsr166 1.48 * monitoring operations.
31 dl 1.1 *
32 dl 1.42 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
33     * ExecutorService} mainly by virtue of employing
34     * <em>work-stealing</em>: all threads in the pool attempt to find and
35 dl 1.111 * execute tasks submitted to the pool and/or created by other active
36     * tasks (eventually blocking waiting for work if none exist). This
37     * enables efficient processing when most tasks spawn other subtasks
38     * (as do most {@code ForkJoinTask}s), as well as when many small
39     * tasks are submitted to the pool from external clients. Especially
40     * when setting <em>asyncMode</em> to true in constructors, {@code
41     * ForkJoinPool}s may also be appropriate for use with event-style
42     * tasks that are never joined.
43 dl 1.1 *
44 dl 1.42 * <p>A {@code ForkJoinPool} is constructed with a given target
45     * parallelism level; by default, equal to the number of available
46 dl 1.57 * processors. The pool attempts to maintain enough active (or
47     * available) threads by dynamically adding, suspending, or resuming
48     * internal worker threads, even if some tasks are stalled waiting to
49     * join others. However, no such adjustments are guaranteed in the
50     * face of blocked IO or other unmanaged synchronization. The nested
51     * {@link ManagedBlocker} interface enables extension of the kinds of
52     * synchronization accommodated.
53 dl 1.1 *
54     * <p>In addition to execution and lifecycle control methods, this
55     * class provides status check methods (for example
56 jsr166 1.29 * {@link #getStealCount}) that are intended to aid in developing,
57 dl 1.1 * tuning, and monitoring fork/join applications. Also, method
58 jsr166 1.29 * {@link #toString} returns indications of pool state in a
59 dl 1.2 * convenient form for informal monitoring.
60 dl 1.1 *
61 dl 1.57 * <p> As is the case with other ExecutorServices, there are three
62 jsr166 1.117 * main task execution methods summarized in the following table.
63     * These are designed to be used primarily by clients not already
64     * engaged in fork/join computations in the current pool. The main
65     * forms of these methods accept instances of {@code ForkJoinTask},
66     * but overloaded forms also allow mixed execution of plain {@code
67     * Runnable}- or {@code Callable}- based activities as well. However,
68     * tasks that are already executing in a pool should normally instead
69     * use the within-computation forms listed in the table unless using
70     * async event-style tasks that are not usually joined, in which case
71     * there is little difference among choice of methods.
72 dl 1.57 *
73     * <table BORDER CELLPADDING=3 CELLSPACING=1>
74     * <tr>
75     * <td></td>
76     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
77     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
78     * </tr>
79     * <tr>
80 jsr166 1.67 * <td> <b>Arrange async execution</td>
81 dl 1.57 * <td> {@link #execute(ForkJoinTask)}</td>
82     * <td> {@link ForkJoinTask#fork}</td>
83     * </tr>
84     * <tr>
85     * <td> <b>Await and obtain result</td>
86     * <td> {@link #invoke(ForkJoinTask)}</td>
87     * <td> {@link ForkJoinTask#invoke}</td>
88     * </tr>
89     * <tr>
90     * <td> <b>Arrange exec and obtain Future</td>
91     * <td> {@link #submit(ForkJoinTask)}</td>
92     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
93     * </tr>
94     * </table>
95 dl 1.59 *
96 dl 1.42 * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
97     * used for all parallel task execution in a program or subsystem.
98     * Otherwise, use would not usually outweigh the construction and
99     * bookkeeping overhead of creating a large set of threads. For
100 jsr166 1.43 * example, a common pool could be used for the {@code SortTasks}
101 dl 1.42 * illustrated in {@link RecursiveAction}. Because {@code
102     * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
103 jsr166 1.43 * daemon} mode, there is typically no need to explicitly {@link
104 dl 1.42 * #shutdown} such a pool upon program exit.
105     *
106 jsr166 1.105 * <pre> {@code
107 dl 1.42 * static final ForkJoinPool mainPool = new ForkJoinPool();
108     * ...
109     * public void sort(long[] array) {
110     * mainPool.invoke(new SortTask(array, 0, array.length));
111 jsr166 1.105 * }}</pre>
112 dl 1.42 *
113 dl 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
114 dl 1.2 * maximum number of running threads to 32767. Attempts to create
115 jsr166 1.48 * pools with greater than the maximum number result in
116 jsr166 1.39 * {@code IllegalArgumentException}.
117 jsr166 1.16 *
118 jsr166 1.48 * <p>This implementation rejects submitted tasks (that is, by throwing
119 dl 1.58 * {@link RejectedExecutionException}) only when the pool is shut down
120 dl 1.62 * or internal resources have been exhausted.
121 jsr166 1.48 *
122 jsr166 1.16 * @since 1.7
123     * @author Doug Lea
124 dl 1.1 */
125 dl 1.2 public class ForkJoinPool extends AbstractExecutorService {
126 dl 1.1
127     /*
128 dl 1.53 * Implementation Overview
129     *
130 dl 1.111 * This class and its nested classes provide the main
131     * functionality and control for a set of worker threads:
132 jsr166 1.117 * Submissions from non-FJ threads enter into submission queues.
133     * Workers take these tasks and typically split them into subtasks
134     * that may be stolen by other workers. Preference rules give
135     * first priority to processing tasks from their own queues (LIFO
136     * or FIFO, depending on mode), then to randomized FIFO steals of
137     * tasks in other queues.
138 dl 1.111 *
139 jsr166 1.117 * WorkQueues
140 dl 1.111 * ==========
141     *
142     * Most operations occur within work-stealing queues (in nested
143     * class WorkQueue). These are special forms of Deques that
144     * support only three of the four possible end-operations -- push,
145     * pop, and poll (aka steal), under the further constraints that
146     * push and pop are called only from the owning thread (or, as
147     * extended here, under a lock), while poll may be called from
148     * other threads. (If you are unfamiliar with them, you probably
149     * want to read Herlihy and Shavit's book "The Art of
150     * Multiprocessor programming", chapter 16 describing these in
151     * more detail before proceeding.) The main work-stealing queue
152     * design is roughly similar to those in the papers "Dynamic
153     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
154     * (http://research.sun.com/scalable/pubs/index.html) and
155     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
156     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
157 jsr166 1.117 * The main differences ultimately stem from GC requirements that
158 dl 1.111 * we null out taken slots as soon as we can, to maintain as small
159     * a footprint as possible even in programs generating huge
160     * numbers of tasks. To accomplish this, we shift the CAS
161     * arbitrating pop vs poll (steal) from being on the indices
162     * ("base" and "top") to the slots themselves. So, both a
163     * successful pop and poll mainly entail a CAS of a slot from
164     * non-null to null. Because we rely on CASes of references, we
165     * do not need tag bits on base or top. They are simple ints as
166     * used in any circular array-based queue (see for example
167     * ArrayDeque). Updates to the indices must still be ordered in a
168     * way that guarantees that top == base means the queue is empty,
169     * but otherwise may err on the side of possibly making the queue
170     * appear nonempty when a push, pop, or poll have not fully
171     * committed. Note that this means that the poll operation,
172     * considered individually, is not wait-free. One thief cannot
173     * successfully continue until another in-progress one (or, if
174     * previously empty, a push) completes. However, in the
175     * aggregate, we ensure at least probabilistic non-blockingness.
176     * If an attempted steal fails, a thief always chooses a different
177     * random victim target to try next. So, in order for one thief to
178     * progress, it suffices for any in-progress poll or new push on
179 dl 1.123 * any empty queue to complete. (This is why we normally use
180     * method pollAt and its variants that try once at the apparent
181     * base index, else consider alternative actions, rather than
182     * method poll.)
183 dl 1.111 *
184 dl 1.112 * This approach also enables support of a user mode in which local
185 dl 1.111 * task processing is in FIFO, not LIFO order, simply by using
186     * poll rather than pop. This can be useful in message-passing
187     * frameworks in which tasks are never joined. However neither
188     * mode considers affinities, loads, cache localities, etc, so
189     * rarely provide the best possible performance on a given
190     * machine, but portably provide good throughput by averaging over
191     * these factors. (Further, even if we did try to use such
192 jsr166 1.117 * information, we do not usually have a basis for exploiting it.
193     * For example, some sets of tasks profit from cache affinities,
194     * but others are harmed by cache pollution effects.)
195 dl 1.111 *
196     * WorkQueues are also used in a similar way for tasks submitted
197     * to the pool. We cannot mix these tasks in the same queues used
198     * for work-stealing (this would contaminate lifo/fifo
199 dl 1.116 * processing). Instead, we loosely associate submission queues
200     * with submitting threads, using a form of hashing. The
201     * ThreadLocal Submitter class contains a value initially used as
202     * a hash code for choosing existing queues, but may be randomly
203     * repositioned upon contention with other submitters. In
204     * essence, submitters act like workers except that they never
205     * take tasks, and they are multiplexed on to a finite number of
206     * shared work queues. However, classes are set up so that future
207     * extensions could allow submitters to optionally help perform
208 dl 1.119 * tasks as well. Insertion of tasks in shared mode requires a
209     * lock (mainly to protect in the case of resizing) but we use
210     * only a simple spinlock (using bits in field runState), because
211     * submitters encountering a busy queue move on to try or create
212 dl 1.123 * other queues -- they block only when creating and registering
213     * new queues.
214 dl 1.111 *
215 jsr166 1.117 * Management
216 dl 1.111 * ==========
217 dl 1.91 *
218     * The main throughput advantages of work-stealing stem from
219     * decentralized control -- workers mostly take tasks from
220     * themselves or each other. We cannot negate this in the
221     * implementation of other management responsibilities. The main
222     * tactic for avoiding bottlenecks is packing nearly all
223 dl 1.111 * essentially atomic control state into two volatile variables
224     * that are by far most often read (not written) as status and
225 jsr166 1.117 * consistency checks.
226 dl 1.111 *
227     * Field "ctl" contains 64 bits holding all the information needed
228     * to atomically decide to add, inactivate, enqueue (on an event
229     * queue), dequeue, and/or re-activate workers. To enable this
230     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
231     * far in excess of normal operating range) to allow ids, counts,
232     * and their negations (used for thresholding) to fit into 16bit
233     * fields.
234     *
235     * Field "runState" contains 32 bits needed to register and
236     * deregister WorkQueues, as well as to enable shutdown. It is
237     * only modified under a lock (normally briefly held, but
238     * occasionally protecting allocations and resizings) but even
239 dl 1.123 * when locked remains available to check consistency.
240 dl 1.111 *
241     * Recording WorkQueues. WorkQueues are recorded in the
242     * "workQueues" array that is created upon pool construction and
243     * expanded if necessary. Updates to the array while recording
244     * new workers and unrecording terminated ones are protected from
245     * each other by a lock but the array is otherwise concurrently
246     * readable, and accessed directly. To simplify index-based
247 dl 1.91 * operations, the array size is always a power of two, and all
248 dl 1.111 * readers must tolerate null slots. Shared (submission) queues
249     * are at even indices, worker queues at odd indices. Grouping
250     * them together in this way simplifies and speeds up task
251 dl 1.123 * scanning.
252 dl 1.119 *
253     * All worker thread creation is on-demand, triggered by task
254     * submissions, replacement of terminated workers, and/or
255 dl 1.111 * compensation for blocked workers. However, all other support
256     * code is set up to work with other policies. To ensure that we
257     * do not hold on to worker references that would prevent GC, ALL
258     * accesses to workQueues are via indices into the workQueues
259     * array (which is one source of some of the messy code
260     * constructions here). In essence, the workQueues array serves as
261     * a weak reference mechanism. Thus for example the wait queue
262     * field of ctl stores indices, not references. Access to the
263     * workQueues in associated methods (for example signalWork) must
264     * both index-check and null-check the IDs. All such accesses
265     * ignore bad IDs by returning out early from what they are doing,
266     * since this can only be associated with termination, in which
267 dl 1.119 * case it is OK to give up. All uses of the workQueues array
268     * also check that it is non-null (even if previously
269     * non-null). This allows nulling during termination, which is
270     * currently not necessary, but remains an option for
271     * resource-revocation-based shutdown schemes. It also helps
272     * reduce JIT issuance of uncommon-trap code, which tends to
273 dl 1.111 * unnecessarily complicate control flow in some methods.
274 dl 1.91 *
275 dl 1.111 * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
276 dl 1.95 * let workers spin indefinitely scanning for tasks when none can
277     * be found immediately, and we cannot start/resume workers unless
278     * there appear to be tasks available. On the other hand, we must
279     * quickly prod them into action when new tasks are submitted or
280 dl 1.111 * generated. In many usages, ramp-up time to activate workers is
281     * the main limiting factor in overall performance (this is
282     * compounded at program start-up by JIT compilation and
283     * allocation). So we try to streamline this as much as possible.
284     * We park/unpark workers after placing in an event wait queue
285     * when they cannot find work. This "queue" is actually a simple
286     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
287     * counter value (that reflects the number of times a worker has
288     * been inactivated) to avoid ABA effects (we need only as many
289     * version numbers as worker threads). Successors are held in
290     * field WorkQueue.nextWait. Queuing deals with several intrinsic
291     * races, mainly that a task-producing thread can miss seeing (and
292 dl 1.95 * signalling) another thread that gave up looking for work but
293     * has not yet entered the wait queue. We solve this by requiring
294 dl 1.111 * a full sweep of all workers (via repeated calls to method
295     * scan()) both before and after a newly waiting worker is added
296     * to the wait queue. During a rescan, the worker might release
297     * some other queued worker rather than itself, which has the same
298     * net effect. Because enqueued workers may actually be rescanning
299     * rather than waiting, we set and clear the "parker" field of
300 jsr166 1.117 * WorkQueues to reduce unnecessary calls to unpark. (This
301 dl 1.111 * requires a secondary recheck to avoid missed signals.) Note
302     * the unusual conventions about Thread.interrupts surrounding
303     * parking and other blocking: Because interrupts are used solely
304     * to alert threads to check termination, which is checked anyway
305     * upon blocking, we clear status (using Thread.interrupted)
306     * before any call to park, so that park does not immediately
307     * return due to status being set via some other unrelated call to
308     * interrupt in user code.
309 dl 1.91 *
310     * Signalling. We create or wake up workers only when there
311     * appears to be at least one task they might be able to find and
312     * execute. When a submission is added or another worker adds a
313 dl 1.111 * task to a queue that previously had fewer than two tasks, they
314 dl 1.91 * signal waiting workers (or trigger creation of new ones if
315     * fewer than the given parallelism level -- see signalWork).
316 dl 1.111 * These primary signals are buttressed by signals during rescans;
317     * together these cover the signals needed in cases when more
318     * tasks are pushed but untaken, and improve performance compared
319     * to having one thread wake up all workers.
320 dl 1.91 *
321     * Trimming workers. To release resources after periods of lack of
322     * use, a worker starting to wait when the pool is quiescent will
323     * time out and terminate if the pool has remained quiescent for
324 dl 1.95 * SHRINK_RATE nanosecs. This will slowly propagate, eventually
325     * terminating all workers after long periods of non-use.
326 dl 1.91 *
327 dl 1.111 * Shutdown and Termination. A call to shutdownNow atomically sets
328 jsr166 1.117 * a runState bit and then (non-atomically) sets each worker's
329 dl 1.111 * runState status, cancels all unprocessed tasks, and wakes up
330     * all waiting workers. Detecting whether termination should
331     * commence after a non-abrupt shutdown() call requires more work
332     * and bookkeeping. We need consensus about quiescence (i.e., that
333     * there is no more work). The active count provides a primary
334     * indication but non-abrupt shutdown still requires a rechecking
335     * scan for any workers that are inactive but not queued.
336     *
337 jsr166 1.117 * Joining Tasks
338     * =============
339 dl 1.111 *
340     * Any of several actions may be taken when one worker is waiting
341 jsr166 1.117 * to join a task stolen (or always held) by another. Because we
342 dl 1.111 * are multiplexing many tasks on to a pool of workers, we can't
343     * just let them block (as in Thread.join). We also cannot just
344     * reassign the joiner's run-time stack with another and replace
345     * it later, which would be a form of "continuation", that even if
346     * possible is not necessarily a good idea since we sometimes need
347 jsr166 1.117 * both an unblocked task and its continuation to progress.
348     * Instead we combine two tactics:
349 dl 1.58 *
350 dl 1.60 * Helping: Arranging for the joiner to execute some task that it
351 dl 1.111 * would be running if the steal had not occurred.
352 dl 1.58 *
353 dl 1.61 * Compensating: Unless there are already enough live threads,
354 dl 1.111 * method tryCompensate() may create or re-activate a spare
355     * thread to compensate for blocked joiners until they unblock.
356     *
357     * A third form (implemented in tryRemoveAndExec and
358     * tryPollForAndExec) amounts to helping a hypothetical
359     * compensator: If we can readily tell that a possible action of a
360     * compensator is to steal and execute the task being joined, the
361     * joining thread can do so directly, without the need for a
362     * compensation thread (although at the expense of larger run-time
363     * stacks, but the tradeoff is typically worthwhile).
364 dl 1.91 *
365     * The ManagedBlocker extension API can't use helping so relies
366     * only on compensation in method awaitBlocker.
367 dl 1.58 *
368 dl 1.111 * The algorithm in tryHelpStealer entails a form of "linear"
369     * helping: Each worker records (in field currentSteal) the most
370     * recent task it stole from some other worker. Plus, it records
371     * (in field currentJoin) the task it is currently actively
372     * joining. Method tryHelpStealer uses these markers to try to
373     * find a worker to help (i.e., steal back a task from and execute
374     * it) that could hasten completion of the actively joined task.
375     * In essence, the joiner executes a task that would be on its own
376     * local deque had the to-be-joined task not been stolen. This may
377     * be seen as a conservative variant of the approach in Wagner &
378     * Calder "Leapfrogging: a portable technique for implementing
379     * efficient futures" SIGPLAN Notices, 1993
380     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
381     * that: (1) We only maintain dependency links across workers upon
382     * steals, rather than use per-task bookkeeping. This sometimes
383 dl 1.123 * requires a linear scan of workQueues array to locate stealers,
384     * but often doesn't because stealers leave hints (that may become
385 dl 1.111 * stale/wrong) of where to locate them. A stealHint is only a
386     * hint because a worker might have had multiple steals and the
387     * hint records only one of them (usually the most current).
388     * Hinting isolates cost to when it is needed, rather than adding
389     * to per-task overhead. (2) It is "shallow", ignoring nesting
390     * and potentially cyclic mutual steals. (3) It is intentionally
391     * racy: field currentJoin is updated only while actively joining,
392     * which means that we miss links in the chain during long-lived
393     * tasks, GC stalls etc (which is OK since blocking in such cases
394     * is usually a good idea). (4) We bound the number of attempts
395 dl 1.123 * to find work (see MAX_HELP) and fall back to suspending the
396     * worker and if necessary replacing it with another.
397 dl 1.111 *
398 dl 1.91 * It is impossible to keep exactly the target parallelism number
399     * of threads running at any given time. Determining the
400 dl 1.66 * existence of conservatively safe helping targets, the
401     * availability of already-created spares, and the apparent need
402 dl 1.111 * to create new spares are all racy, so we rely on multiple
403 dl 1.123 * retries of each. Compensation in the apparent absence of
404     * helping opportunities is challenging to control on JVMs, where
405     * GC and other activities can stall progress of tasks that in
406     * turn stall out many other dependent tasks, without us being
407     * able to determine whether they will ever require compensation.
408     * Even though work-stealing otherwise encounters little
409     * degradation in the presence of more threads than cores,
410     * aggressively adding new threads in such cases entails risk of
411     * unwanted positive feedback control loops in which more threads
412     * cause more dependent stalls (as well as delayed progress of
413     * unblocked threads to the point that we know they are available)
414     * leading to more situations requiring more threads, and so
415     * on. This aspect of control can be seen as an (analytically
416 jsr166 1.125 * intractable) game with an opponent that may choose the worst
417 dl 1.123 * (for us) active thread to stall at any time. We take several
418     * precautions to bound losses (and thus bound gains), mainly in
419     * methods tryCompensate and awaitJoin: (1) We only try
420     * compensation after attempting enough helping steps (measured
421     * via counting and timing) that we have already consumed the
422     * estimated cost of creating and activating a new thread. (2) We
423     * allow up to 50% of threads to be blocked before initially
424     * adding any others, and unless completely saturated, check that
425     * some work is available for a new worker before adding. Also, we
426     * create up to only 50% more threads until entering a mode that
427     * only adds a thread if all others are possibly blocked. All
428     * together, this means that we might be half as fast to react,
429     * and create half as many threads as possible in the ideal case,
430     * but present vastly fewer anomalies in all other cases compared
431     * to both more aggressive and more conservative alternatives.
432 dl 1.58 *
433 dl 1.91 * Style notes: There is a lot of representation-level coupling
434 dl 1.53 * among classes ForkJoinPool, ForkJoinWorkerThread, and
435 dl 1.111 * ForkJoinTask. The fields of WorkQueue maintain data structures
436     * managed by ForkJoinPool, so are directly accessed. There is
437     * little point trying to reduce this, since any associated future
438     * changes in representations will need to be accompanied by
439 dl 1.119 * algorithmic changes anyway. Several methods intrinsically
440     * sprawl because they must accumulate sets of consistent reads of
441     * volatiles held in local variables. Methods signalWork() and
442     * scan() are the main bottlenecks, so are especially heavily
443     * micro-optimized/mangled. There are lots of inline assignments
444     * (of form "while ((local = field) != 0)") which are usually the
445     * simplest way to ensure the required read orderings (which are
446     * sometimes critical). This leads to a "C"-like style of listing
447     * declarations of these locals at the heads of methods or blocks.
448     * There are several occurrences of the unusual "do {} while
449     * (!cas...)" which is the simplest way to force an update of a
450     * CAS'ed variable. There are also other coding oddities that help
451     * some methods perform reasonably even when interpreted (not
452     * compiled).
453 dl 1.91 *
454 jsr166 1.117 * The order of declarations in this file is:
455 dl 1.119 * (1) Static utility functions
456     * (2) Nested (static) classes
457     * (3) Static fields
458     * (4) Fields, along with constants used when unpacking some of them
459     * (5) Internal control methods
460     * (6) Callbacks and other support for ForkJoinTask methods
461     * (7) Exported methods
462     * (8) Static block initializing statics in minimally dependent order
463     */
464    
465     // Static utilities
466    
467     /**
468     * If there is a security manager, makes sure caller has
469     * permission to modify threads.
470 dl 1.1 */
471 dl 1.119 private static void checkPermission() {
472     SecurityManager security = System.getSecurityManager();
473     if (security != null)
474     security.checkPermission(modifyThreadPermission);
475     }
476    
477     // Nested classes
478 dl 1.1
479     /**
480 jsr166 1.35 * Factory for creating new {@link ForkJoinWorkerThread}s.
481     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
482     * for {@code ForkJoinWorkerThread} subclasses that extend base
483     * functionality or initialize threads with different contexts.
484 dl 1.1 */
485     public static interface ForkJoinWorkerThreadFactory {
486     /**
487     * Returns a new worker thread operating in the given pool.
488     *
489     * @param pool the pool this thread works in
490 jsr166 1.48 * @throws NullPointerException if the pool is null
491 dl 1.1 */
492     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
493     }
494    
495     /**
496 jsr166 1.17 * Default ForkJoinWorkerThreadFactory implementation; creates a
497 dl 1.1 * new ForkJoinWorkerThread.
498     */
499 dl 1.57 static class DefaultForkJoinWorkerThreadFactory
500 dl 1.1 implements ForkJoinWorkerThreadFactory {
501     public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
502 dl 1.53 return new ForkJoinWorkerThread(pool);
503 dl 1.1 }
504     }
505    
506     /**
507 dl 1.119 * A simple non-reentrant lock used for exclusion when managing
508     * queues and workers. We use a custom lock so that we can readily
509     * probe lock state in constructions that check among alternative
510     * actions. The lock is normally only very briefly held, and
511     * sometimes treated as a spinlock, but other usages block to
512     * reduce overall contention in those cases where locked code
513     * bodies perform allocation/resizing.
514     */
515     static final class Mutex extends AbstractQueuedSynchronizer {
516     public final boolean tryAcquire(int ignore) {
517     return compareAndSetState(0, 1);
518     }
519     public final boolean tryRelease(int ignore) {
520     setState(0);
521     return true;
522     }
523     public final void lock() { acquire(0); }
524     public final void unlock() { release(0); }
525     public final boolean isHeldExclusively() { return getState() == 1; }
526     public final Condition newCondition() { return new ConditionObject(); }
527     }
528 dl 1.1
529     /**
530 dl 1.119 * Class for artificial tasks that are used to replace the target
531     * of local joins if they are removed from an interior queue slot
532     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
533     * actually do anything beyond having a unique identity.
534 dl 1.1 */
535 dl 1.119 static final class EmptyTask extends ForkJoinTask<Void> {
536     EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
537     public final Void getRawResult() { return null; }
538     public final void setRawResult(Void x) {}
539     public final boolean exec() { return true; }
540 dl 1.1 }
541    
542     /**
543 dl 1.111 * Queues supporting work-stealing as well as external task
544     * submission. See above for main rationale and algorithms.
545     * Implementation relies heavily on "Unsafe" intrinsics
546     * and selective use of "volatile":
547     *
548     * Field "base" is the index (mod array.length) of the least valid
549     * queue slot, which is always the next position to steal (poll)
550     * from if nonempty. Reads and writes require volatile orderings
551     * but not CAS, because updates are only performed after slot
552     * CASes.
553     *
554     * Field "top" is the index (mod array.length) of the next queue
555     * slot to push to or pop from. It is written only by owner thread
556     * for push, or under lock for trySharedPush, and accessed by
557     * other threads only after reading (volatile) base. Both top and
558     * base are allowed to wrap around on overflow, but (top - base)
559 jsr166 1.114 * (or more commonly -(base - top) to force volatile read of base
560 dl 1.111 * before top) still estimates size.
561     *
562     * The array slots are read and written using the emulation of
563     * volatiles/atomics provided by Unsafe. Insertions must in
564     * general use putOrderedObject as a form of releasing store to
565     * ensure that all writes to the task object are ordered before
566     * its publication in the queue. (Although we can avoid one case
567     * of this when locked in trySharedPush.) All removals entail a
568     * CAS to null. The array is always a power of two. To ensure
569     * safety of Unsafe array operations, all accesses perform
570     * explicit null checks and implicit bounds checks via
571     * power-of-two masking.
572     *
573     * In addition to basic queuing support, this class contains
574     * fields described elsewhere to control execution. It turns out
575     * to work better memory-layout-wise to include them in this
576     * class rather than a separate class.
577     *
578     * Performance on most platforms is very sensitive to placement of
579     * instances of both WorkQueues and their arrays -- we absolutely
580     * do not want multiple WorkQueue instances or multiple queue
581     * arrays sharing cache lines. (It would be best for queue objects
582     * and their arrays to share, but there is nothing available to
583     * help arrange that). Unfortunately, because they are recorded
584     * in a common array, WorkQueue instances are often moved to be
585     * adjacent by garbage collectors. To reduce impact, we use field
586     * padding that works OK on common platforms; this effectively
587     * trades off slightly slower average field access for the sake of
588     * avoiding really bad worst-case access. (Until better JVM
589     * support is in place, this padding is dependent on transient
590     * properties of JVM field layout rules.) We also take care in
591 dl 1.119 * allocating, sizing and resizing the array. Non-shared queue
592 dl 1.111 * arrays are initialized (via method growArray) by workers before
593     * use. Others are allocated on first use.
594 dl 1.53 */
595 dl 1.111 static final class WorkQueue {
596     /**
597     * Capacity of work-stealing queue array upon initialization.
598 dl 1.123 * Must be a power of two; at least 4, but should be larger to
599     * reduce or eliminate cacheline sharing among queues.
600     * Currently, it is much larger, as a partial workaround for
601     * the fact that JVMs often place arrays in locations that
602     * share GC bookkeeping (especially cardmarks) such that
603     * per-write accesses encounter serious memory contention.
604 dl 1.111 */
605 dl 1.123 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
606 dl 1.111
607     /**
608     * Maximum size for queue arrays. Must be a power of two less
609     * than or equal to 1 << (31 - width of array entry) to ensure
610     * lack of wraparound of index calculations, but defined to a
611     * value a bit less than this to help users trap runaway
612     * programs before saturating systems.
613     */
614     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
615    
616     volatile long totalSteals; // cumulative number of steals
617     int seed; // for random scanning; initialize nonzero
618     volatile int eventCount; // encoded inactivation count; < 0 if inactive
619     int nextWait; // encoded record of next event waiter
620     int rescans; // remaining scans until block
621     int nsteals; // top-level task executions since last idle
622     final int mode; // lifo, fifo, or shared
623     int poolIndex; // index of this queue in pool (or 0)
624     int stealHint; // index of most recent known stealer
625     volatile int runState; // 1: locked, -1: terminate; else 0
626     volatile int base; // index of next slot for poll
627     int top; // index of next slot for push
628     ForkJoinTask<?>[] array; // the elements (initially unallocated)
629 dl 1.123 final ForkJoinPool pool; // the containing pool (may be null)
630 dl 1.111 final ForkJoinWorkerThread owner; // owning thread or null if shared
631     volatile Thread parker; // == owner during call to park; else null
632     ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
633     ForkJoinTask<?> currentSteal; // current non-local task being executed
634     // Heuristic padding to ameliorate unfortunate memory placements
635 dl 1.123 Object p00, p01, p02, p03, p04, p05, p06, p07;
636     Object p08, p09, p0a, p0b, p0c, p0d, p0e;
637 dl 1.111
638 dl 1.123 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode) {
639     this.mode = mode;
640     this.pool = pool;
641 dl 1.111 this.owner = owner;
642     // Place indices in the center of array (that is not yet allocated)
643     base = top = INITIAL_QUEUE_CAPACITY >>> 1;
644     }
645    
646     /**
647 dl 1.123 * Returns the approximate number of tasks in the queue.
648 dl 1.111 */
649     final int queueSize() {
650 dl 1.123 int n = base - top; // non-owner callers must read base first
651     return (n >= 0) ? 0 : -n; // ignore transient negative
652     }
653    
654     /**
655     * Provides a more accurate estimate of whether this queue has
656     * any tasks than does queueSize, by checking whether a
657     * near-empty queue has at least one unclaimed task.
658     */
659     final boolean isEmpty() {
660     ForkJoinTask<?>[] a; int m, s;
661     int n = base - (s = top);
662     return (n >= 0 ||
663     (n == -1 &&
664     ((a = array) == null ||
665     (m = a.length - 1) < 0 ||
666     U.getObjectVolatile
667     (a, ((m & (s - 1)) << ASHIFT) + ABASE) == null)));
668 dl 1.111 }
669    
670     /**
671     * Pushes a task. Call only by owner in unshared queues.
672     *
673     * @param task the task. Caller must ensure non-null.
674 jsr166 1.117 * @throw RejectedExecutionException if array cannot be resized
675 dl 1.111 */
676 dl 1.123 final void push(ForkJoinTask<?> task) {
677     ForkJoinTask<?>[] a; ForkJoinPool p;
678 dl 1.111 int s = top, m, n;
679     if ((a = array) != null) { // ignore if queue removed
680     U.putOrderedObject
681     (a, (((m = a.length - 1) & s) << ASHIFT) + ABASE, task);
682     if ((n = (top = s + 1) - base) <= 2) {
683 dl 1.123 if ((p = pool) != null)
684 dl 1.111 p.signalWork();
685     }
686     else if (n >= m)
687     growArray(true);
688     }
689     }
690    
691     /**
692     * Pushes a task if lock is free and array is either big
693     * enough or can be resized to be big enough.
694     *
695     * @param task the task. Caller must ensure non-null.
696     * @return true if submitted
697     */
698     final boolean trySharedPush(ForkJoinTask<?> task) {
699     boolean submitted = false;
700     if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
701     ForkJoinTask<?>[] a = array;
702 dl 1.119 int s = top;
703 dl 1.111 try {
704 dl 1.119 if ((a != null && a.length > s + 1 - base) ||
705 dl 1.111 (a = growArray(false)) != null) { // must presize
706     int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
707     U.putObject(a, (long)j, task); // don't need "ordered"
708     top = s + 1;
709     submitted = true;
710     }
711     } finally {
712     runState = 0; // unlock
713     }
714     }
715     return submitted;
716     }
717    
718     /**
719 dl 1.123 * Takes next task, if one exists, in LIFO order. Call only
720     * by owner in unshared queues. (We do not have a shared
721     * version of this method because it is never needed.)
722     */
723     final ForkJoinTask<?> pop() {
724 dl 1.127 ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
725     if ((a = array) != null && (m = a.length - 1) >= 0) {
726 dl 1.123 for (int s; (s = top - 1) - base >= 0;) {
727 dl 1.127 long j = ((m & s) << ASHIFT) + ABASE;
728     if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
729 dl 1.123 break;
730     if (U.compareAndSwapObject(a, j, t, null)) {
731     top = s;
732     return t;
733     }
734     }
735     }
736     return null;
737     }
738    
739     /**
740     * Takes a task in FIFO order if b is base of queue and a task
741     * can be claimed without contention. Specialized versions
742     * appear in ForkJoinPool methods scan and tryHelpStealer.
743 dl 1.111 */
744 dl 1.123 final ForkJoinTask<?> pollAt(int b) {
745     ForkJoinTask<?> t; ForkJoinTask<?>[] a;
746     if ((a = array) != null) {
747 dl 1.119 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
748     if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
749     base == b &&
750 dl 1.111 U.compareAndSwapObject(a, j, t, null)) {
751     base = b + 1;
752     return t;
753     }
754     }
755     return null;
756     }
757    
758     /**
759 dl 1.123 * Takes next task, if one exists, in FIFO order.
760 dl 1.111 */
761 dl 1.123 final ForkJoinTask<?> poll() {
762     ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
763     while ((b = base) - top < 0 && (a = array) != null) {
764     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
765     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
766     if (t != null) {
767     if (base == b &&
768     U.compareAndSwapObject(a, j, t, null)) {
769     base = b + 1;
770 dl 1.111 return t;
771     }
772     }
773 dl 1.123 else if (base == b) {
774     if (b + 1 == top)
775     break;
776     Thread.yield(); // wait for lagging update
777     }
778 dl 1.111 }
779     return null;
780     }
781    
782     /**
783     * Takes next task, if one exists, in order specified by mode.
784     */
785     final ForkJoinTask<?> nextLocalTask() {
786     return mode == 0 ? pop() : poll();
787     }
788    
789     /**
790     * Returns next task, if one exists, in order specified by mode.
791     */
792     final ForkJoinTask<?> peek() {
793     ForkJoinTask<?>[] a = array; int m;
794     if (a == null || (m = a.length - 1) < 0)
795     return null;
796     int i = mode == 0 ? top - 1 : base;
797     int j = ((i & m) << ASHIFT) + ABASE;
798     return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
799     }
800    
801     /**
802     * Pops the given task only if it is at the current top.
803     */
804     final boolean tryUnpush(ForkJoinTask<?> t) {
805     ForkJoinTask<?>[] a; int s;
806     if ((a = array) != null && (s = top) != base &&
807     U.compareAndSwapObject
808     (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
809     top = s;
810     return true;
811     }
812     return false;
813     }
814    
815     /**
816     * Polls the given task only if it is at the current base.
817     */
818     final boolean pollFor(ForkJoinTask<?> task) {
819 dl 1.119 ForkJoinTask<?>[] a; int b;
820     if ((b = base) - top < 0 && (a = array) != null) {
821     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
822 dl 1.111 if (U.getObjectVolatile(a, j) == task && base == b &&
823     U.compareAndSwapObject(a, j, task, null)) {
824     base = b + 1;
825     return true;
826     }
827     }
828     return false;
829     }
830    
831     /**
832     * Initializes or doubles the capacity of array. Call either
833     * by owner or with lock held -- it is OK for base, but not
834     * top, to move while resizings are in progress.
835     *
836     * @param rejectOnFailure if true, throw exception if capacity
837     * exceeded (relayed ultimately to user); else return null.
838     */
839     final ForkJoinTask<?>[] growArray(boolean rejectOnFailure) {
840     ForkJoinTask<?>[] oldA = array;
841     int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
842     if (size <= MAXIMUM_QUEUE_CAPACITY) {
843     int oldMask, t, b;
844     ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
845     if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
846     (t = top) - (b = base) > 0) {
847     int mask = size - 1;
848     do {
849     ForkJoinTask<?> x;
850     int oldj = ((b & oldMask) << ASHIFT) + ABASE;
851     int j = ((b & mask) << ASHIFT) + ABASE;
852     x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
853     if (x != null &&
854     U.compareAndSwapObject(oldA, oldj, x, null))
855     U.putObjectVolatile(a, j, x);
856     } while (++b != t);
857     }
858     return a;
859     }
860     else if (!rejectOnFailure)
861     return null;
862     else
863     throw new RejectedExecutionException("Queue capacity exceeded");
864     }
865    
866     /**
867 jsr166 1.117 * Removes and cancels all known tasks, ignoring any exceptions.
868 dl 1.111 */
869     final void cancelAll() {
870     ForkJoinTask.cancelIgnoringExceptions(currentJoin);
871     ForkJoinTask.cancelIgnoringExceptions(currentSteal);
872     for (ForkJoinTask<?> t; (t = poll()) != null; )
873     ForkJoinTask.cancelIgnoringExceptions(t);
874     }
875    
876 dl 1.119 /**
877     * Computes next value for random probes. Scans don't require
878     * a very high quality generator, but also not a crummy one.
879     * Marsaglia xor-shift is cheap and works well enough. Note:
880 dl 1.123 * This is manually inlined in its usages in ForkJoinPool to
881     * avoid writes inside busy scan loops.
882 dl 1.119 */
883     final int nextSeed() {
884     int r = seed;
885     r ^= r << 13;
886     r ^= r >>> 17;
887     return seed = r ^= r << 5;
888     }
889    
890 dl 1.111 // Execution methods
891    
892     /**
893 dl 1.127 * Pops and runs tasks until empty.
894 dl 1.111 */
895 dl 1.127 private void popAndExecAll() {
896     // A bit faster than repeated pop calls
897     ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
898     while ((a = array) != null && (m = a.length - 1) >= 0 &&
899     (s = top - 1) - base >= 0 &&
900     (t = ((ForkJoinTask<?>)
901     U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
902     != null) {
903     if (U.compareAndSwapObject(a, j, t, null)) {
904     top = s;
905     t.doExec();
906 dl 1.123 }
907 dl 1.127 }
908     }
909    
910     /**
911     * Polls and runs tasks until empty.
912     */
913     private void pollAndExecAll() {
914     for (ForkJoinTask<?> t; (t = poll()) != null;)
915     t.doExec();
916     }
917    
918     /**
919     * If present, removes from queue and executes the given task, or
920     * any other cancelled task. Returns (true) immediately on any CAS
921     * or consistency check failure so caller can retry.
922     *
923     * @return false if no progress can be made
924     */
925     final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
926     boolean removed = false, empty = true, progress = true;
927     ForkJoinTask<?>[] a; int m, s, b, n;
928     if ((a = array) != null && (m = a.length - 1) >= 0 &&
929     (n = (s = top) - (b = base)) > 0) {
930     for (ForkJoinTask<?> t;;) { // traverse from s to b
931     int j = ((--s & m) << ASHIFT) + ABASE;
932     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
933     if (t == null) // inconsistent length
934     break;
935     else if (t == task) {
936     if (s + 1 == top) { // pop
937     if (!U.compareAndSwapObject(a, j, task, null))
938 dl 1.123 break;
939 dl 1.127 top = s;
940     removed = true;
941 dl 1.123 }
942 dl 1.127 else if (base == b) // replace with proxy
943     removed = U.compareAndSwapObject(a, j, task,
944     new EmptyTask());
945     break;
946     }
947     else if (t.status >= 0)
948     empty = false;
949     else if (s + 1 == top) { // pop and throw away
950     if (U.compareAndSwapObject(a, j, t, null))
951     top = s;
952     break;
953     }
954     if (--n == 0) {
955     if (!empty && base == b)
956     progress = false;
957     break;
958 dl 1.123 }
959     }
960 dl 1.111 }
961 dl 1.127 if (removed)
962     task.doExec();
963     return progress;
964 dl 1.111 }
965    
966     /**
967     * Executes a top-level task and any local tasks remaining
968     * after execution.
969     */
970 dl 1.127 final void runTask(ForkJoinTask<?> t) {
971 dl 1.111 if (t != null) {
972     currentSteal = t;
973     t.doExec();
974 dl 1.127 if (top != base) { // process remaining local tasks
975     if (mode == 0)
976     popAndExecAll();
977     else
978     pollAndExecAll();
979     }
980 dl 1.111 ++nsteals;
981     currentSteal = null;
982     }
983     }
984    
985     /**
986 jsr166 1.117 * Executes a non-top-level (stolen) task.
987 dl 1.111 */
988     final void runSubtask(ForkJoinTask<?> t) {
989     if (t != null) {
990     ForkJoinTask<?> ps = currentSteal;
991     currentSteal = t;
992     t.doExec();
993     currentSteal = ps;
994     }
995     }
996    
997     /**
998 dl 1.119 * Returns true if owned and not known to be blocked.
999     */
1000     final boolean isApparentlyUnblocked() {
1001     Thread wt; Thread.State s;
1002     return (eventCount >= 0 &&
1003     (wt = owner) != null &&
1004     (s = wt.getState()) != Thread.State.BLOCKED &&
1005     s != Thread.State.WAITING &&
1006     s != Thread.State.TIMED_WAITING);
1007     }
1008    
1009     /**
1010     * If this owned and is not already interrupted, try to
1011     * interrupt and/or unpark, ignoring exceptions.
1012 dl 1.111 */
1013 dl 1.119 final void interruptOwner() {
1014     Thread wt, p;
1015     if ((wt = owner) != null && !wt.isInterrupted()) {
1016     try {
1017     wt.interrupt();
1018     } catch (SecurityException ignore) {
1019     }
1020     }
1021     if ((p = parker) != null)
1022     U.unpark(p);
1023 dl 1.111 }
1024    
1025     // Unsafe mechanics
1026     private static final sun.misc.Unsafe U;
1027     private static final long RUNSTATE;
1028     private static final int ABASE;
1029     private static final int ASHIFT;
1030     static {
1031     int s;
1032     try {
1033     U = getUnsafe();
1034     Class<?> k = WorkQueue.class;
1035     Class<?> ak = ForkJoinTask[].class;
1036     RUNSTATE = U.objectFieldOffset
1037     (k.getDeclaredField("runState"));
1038     ABASE = U.arrayBaseOffset(ak);
1039     s = U.arrayIndexScale(ak);
1040     } catch (Exception e) {
1041     throw new Error(e);
1042     }
1043     if ((s & (s-1)) != 0)
1044     throw new Error("data type scale not a power of two");
1045     ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
1046     }
1047     }
1048 dl 1.53
1049 dl 1.1 /**
1050 dl 1.119 * Per-thread records for threads that submit to pools. Currently
1051 jsr166 1.120 * holds only pseudo-random seed / index that is used to choose
1052 dl 1.119 * submission queues in method doSubmit. In the future, this may
1053     * also incorporate a means to implement different task rejection
1054     * and resubmission policies.
1055 dl 1.123 *
1056     * Seeds for submitters and workers/workQueues work in basically
1057     * the same way but are initialized and updated using slightly
1058     * different mechanics. Both are initialized using the same
1059     * approach as in class ThreadLocal, where successive values are
1060     * unlikely to collide with previous values. This is done during
1061     * registration for workers, but requires a separate AtomicInteger
1062     * for submitters. Seeds are then randomly modified upon
1063     * collisions using xorshifts, which requires a non-zero seed.
1064 dl 1.116 */
1065     static final class Submitter {
1066 dl 1.119 int seed;
1067 dl 1.123 Submitter() {
1068     int s = nextSubmitterSeed.getAndAdd(SEED_INCREMENT);
1069     seed = (s == 0) ? 1 : s; // ensure non-zero
1070     }
1071 dl 1.116 }
1072    
1073     /** ThreadLocal class for Submitters */
1074     static final class ThreadSubmitter extends ThreadLocal<Submitter> {
1075     public Submitter initialValue() { return new Submitter(); }
1076 dl 1.111 }
1077 dl 1.1
1078 dl 1.119 // static fields (initialized in static initializer below)
1079    
1080     /**
1081     * Creates a new ForkJoinWorkerThread. This factory is used unless
1082     * overridden in ForkJoinPool constructors.
1083     */
1084     public static final ForkJoinWorkerThreadFactory
1085     defaultForkJoinWorkerThreadFactory;
1086    
1087     /**
1088     * Generator for assigning sequence numbers as pool names.
1089     */
1090     private static final AtomicInteger poolNumberGenerator;
1091    
1092     /**
1093 dl 1.123 * Generator for initial hashes/seeds for submitters. Accessed by
1094     * Submitter class constructor.
1095     */
1096     static final AtomicInteger nextSubmitterSeed;
1097    
1098     /**
1099 dl 1.119 * Permission required for callers of methods that may start or
1100     * kill threads.
1101     */
1102     private static final RuntimePermission modifyThreadPermission;
1103    
1104 dl 1.1 /**
1105 dl 1.116 * Per-thread submission bookeeping. Shared across all pools
1106     * to reduce ThreadLocal pollution and because random motion
1107     * to avoid contention in one pool is likely to hold for others.
1108     */
1109 dl 1.119 private static final ThreadSubmitter submitters;
1110    
1111     // static constants
1112    
1113     /**
1114     * The wakeup interval (in nanoseconds) for a worker waiting for a
1115     * task when the pool is quiescent to instead try to shrink the
1116     * number of workers. The exact value does not matter too
1117     * much. It must be short enough to release resources during
1118     * sustained periods of idleness, but not so short that threads
1119     * are continually re-created.
1120     */
1121     private static final long SHRINK_RATE =
1122     4L * 1000L * 1000L * 1000L; // 4 seconds
1123    
1124     /**
1125     * The timeout value for attempted shrinkage, includes
1126     * some slop to cope with system timer imprecision.
1127     */
1128     private static final long SHRINK_TIMEOUT = SHRINK_RATE - (SHRINK_RATE / 10);
1129    
1130     /**
1131 dl 1.123 * The maximum stolen->joining link depth allowed in method
1132     * tryHelpStealer. Must be a power of two. This value also
1133     * controls the maximum number of times to try to help join a task
1134     * without any apparent progress or change in pool state before
1135     * giving up and blocking (see awaitJoin). Depths for legitimate
1136     * chains are unbounded, but we use a fixed constant to avoid
1137     * (otherwise unchecked) cycles and to bound staleness of
1138     * traversal parameters at the expense of sometimes blocking when
1139     * we could be helping.
1140     */
1141     private static final int MAX_HELP = 32;
1142    
1143     /**
1144     * Secondary time-based bound (in nanosecs) for helping attempts
1145     * before trying compensated blocking in awaitJoin. Used in
1146     * conjunction with MAX_HELP to reduce variance due to different
1147     * polling rates associated with different helping options. The
1148     * value should roughly approximate the time required to create
1149     * and/or activate a worker thread.
1150     */
1151     private static final long COMPENSATION_DELAY = 100L * 1000L; // 0.1 millisec
1152    
1153     /**
1154     * Increment for seed generators. See class ThreadLocal for
1155     * explanation.
1156 dl 1.119 */
1157 dl 1.123 private static final int SEED_INCREMENT = 0x61c88647;
1158 dl 1.116
1159     /**
1160 dl 1.119 * Bits and masks for control variables
1161     *
1162     * Field ctl is a long packed with:
1163     * AC: Number of active running workers minus target parallelism (16 bits)
1164     * TC: Number of total workers minus target parallelism (16 bits)
1165     * ST: true if pool is terminating (1 bit)
1166     * EC: the wait count of top waiting thread (15 bits)
1167     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1168     *
1169     * When convenient, we can extract the upper 32 bits of counts and
1170     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1171     * (int)ctl. The ec field is never accessed alone, but always
1172     * together with id and st. The offsets of counts by the target
1173     * parallelism and the positionings of fields makes it possible to
1174     * perform the most common checks via sign tests of fields: When
1175     * ac is negative, there are not enough active workers, when tc is
1176     * negative, there are not enough total workers, and when e is
1177     * negative, the pool is terminating. To deal with these possibly
1178     * negative fields, we use casts in and out of "short" and/or
1179     * signed shifts to maintain signedness.
1180     *
1181     * When a thread is queued (inactivated), its eventCount field is
1182     * set negative, which is the only way to tell if a worker is
1183     * prevented from executing tasks, even though it must continue to
1184     * scan for them to avoid queuing races. Note however that
1185     * eventCount updates lag releases so usage requires care.
1186     *
1187     * Field runState is an int packed with:
1188     * SHUTDOWN: true if shutdown is enabled (1 bit)
1189 dl 1.123 * SEQ: a sequence number updated upon (de)registering workers (30 bits)
1190     * INIT: set true after workQueues array construction (1 bit)
1191 dl 1.119 *
1192 dl 1.123 * The sequence number enables simple consistency checks:
1193     * Staleness of read-only operations on the workQueues array can
1194     * be checked by comparing runState before vs after the reads.
1195 dl 1.119 */
1196    
1197     // bit positions/shifts for fields
1198     private static final int AC_SHIFT = 48;
1199     private static final int TC_SHIFT = 32;
1200     private static final int ST_SHIFT = 31;
1201     private static final int EC_SHIFT = 16;
1202    
1203     // bounds
1204     private static final int SMASK = 0xffff; // short bits
1205 dl 1.123 private static final int MAX_CAP = 0x7fff; // max #workers - 1
1206 dl 1.119 private static final int SQMASK = 0xfffe; // even short bits
1207     private static final int SHORT_SIGN = 1 << 15;
1208     private static final int INT_SIGN = 1 << 31;
1209    
1210     // masks
1211     private static final long STOP_BIT = 0x0001L << ST_SHIFT;
1212     private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
1213     private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
1214    
1215     // units for incrementing and decrementing
1216     private static final long TC_UNIT = 1L << TC_SHIFT;
1217     private static final long AC_UNIT = 1L << AC_SHIFT;
1218    
1219     // masks and units for dealing with u = (int)(ctl >>> 32)
1220     private static final int UAC_SHIFT = AC_SHIFT - 32;
1221     private static final int UTC_SHIFT = TC_SHIFT - 32;
1222     private static final int UAC_MASK = SMASK << UAC_SHIFT;
1223     private static final int UTC_MASK = SMASK << UTC_SHIFT;
1224     private static final int UAC_UNIT = 1 << UAC_SHIFT;
1225     private static final int UTC_UNIT = 1 << UTC_SHIFT;
1226    
1227     // masks and units for dealing with e = (int)ctl
1228     private static final int E_MASK = 0x7fffffff; // no STOP_BIT
1229     private static final int E_SEQ = 1 << EC_SHIFT;
1230    
1231     // runState bits
1232     private static final int SHUTDOWN = 1 << 31;
1233    
1234     // access mode for WorkQueue
1235     static final int LIFO_QUEUE = 0;
1236     static final int FIFO_QUEUE = 1;
1237     static final int SHARED_QUEUE = -1;
1238    
1239     // Instance fields
1240    
1241     /*
1242     * Field layout order in this class tends to matter more than one
1243     * would like. Runtime layout order is only loosely related to
1244     * declaration order and may differ across JVMs, but the following
1245     * empirically works OK on current JVMs.
1246 dl 1.1 */
1247 dl 1.111
1248 dl 1.119 volatile long ctl; // main pool control
1249     final int parallelism; // parallelism level
1250     final int localMode; // per-worker scheduling mode
1251 dl 1.123 final int submitMask; // submit queue index bound
1252     int nextSeed; // for initializing worker seeds
1253     volatile int runState; // shutdown status and seq
1254 dl 1.119 WorkQueue[] workQueues; // main registry
1255     final Mutex lock; // for registration
1256     final Condition termination; // for awaitTermination
1257     final ForkJoinWorkerThreadFactory factory; // factory for new workers
1258     final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1259     final AtomicLong stealCount; // collect counts when terminated
1260     final AtomicInteger nextWorkerNumber; // to create worker name string
1261     final String workerNamePrefix; // to create worker name string
1262 dl 1.111
1263 dl 1.123 // Creating, registering, and deregistering workers
1264 dl 1.6
1265     /**
1266 dl 1.111 * Tries to create and start a worker
1267 dl 1.1 */
1268 dl 1.111 private void addWorker() {
1269     Throwable ex = null;
1270 dl 1.119 ForkJoinWorkerThread wt = null;
1271 dl 1.111 try {
1272 dl 1.119 if ((wt = factory.newThread(this)) != null) {
1273     wt.start();
1274 dl 1.111 return;
1275     }
1276     } catch (Throwable e) {
1277     ex = e;
1278     }
1279 dl 1.119 deregisterWorker(wt, ex); // adjust counts etc on failure
1280 dl 1.111 }
1281 dl 1.1
1282 dl 1.91 /**
1283 dl 1.111 * Callback from ForkJoinWorkerThread constructor to assign a
1284     * public name. This must be separate from registerWorker because
1285     * it is called during the "super" constructor call in
1286     * ForkJoinWorkerThread.
1287 dl 1.91 */
1288 dl 1.111 final String nextWorkerName() {
1289     return workerNamePrefix.concat
1290     (Integer.toString(nextWorkerNumber.addAndGet(1)));
1291     }
1292 dl 1.1
1293     /**
1294 dl 1.123 * Callback from ForkJoinWorkerThread constructor to establish its
1295     * poolIndex and record its WorkQueue. To avoid scanning bias due
1296     * to packing entries in front of the workQueues array, we treat
1297     * the array as a simple power-of-two hash table using per-thread
1298     * seed as hash, expanding as needed.
1299 dl 1.111 *
1300 dl 1.123 * @param w the worker's queue
1301 dl 1.1 */
1302 dl 1.127
1303 dl 1.123 final void registerWorker(WorkQueue w) {
1304 dl 1.119 Mutex lock = this.lock;
1305 dl 1.111 lock.lock();
1306     try {
1307     WorkQueue[] ws = workQueues;
1308 dl 1.123 if (w != null && ws != null) { // skip on shutdown/failure
1309 dl 1.127 int rs, n = ws.length, m = n - 1;
1310 dl 1.123 int s = nextSeed += SEED_INCREMENT; // rarely-colliding sequence
1311     w.seed = (s == 0) ? 1 : s; // ensure non-zero seed
1312     int r = (s << 1) | 1; // use odd-numbered indices
1313 dl 1.127 if (ws[r &= m] != null) { // collision
1314     int probes = 0; // step by approx half size
1315     int step = (n <= 4) ? 2 : ((n >>> 1) & SQMASK) + 2;
1316     while (ws[r = (r + step) & m] != null) {
1317     if (++probes >= n) {
1318     workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1319     m = n - 1;
1320     probes = 0;
1321     }
1322     }
1323     }
1324 dl 1.123 w.eventCount = w.poolIndex = r; // establish before recording
1325     ws[r] = w; // also update seq
1326     runState = ((rs = runState) & SHUTDOWN) | ((rs + 2) & ~SHUTDOWN);
1327 dl 1.111 }
1328     } finally {
1329     lock.unlock();
1330     }
1331     }
1332 dl 1.58
1333 dl 1.1 /**
1334 dl 1.119 * Final callback from terminating worker, as well as upon failure
1335     * to construct or start a worker in addWorker. Removes record of
1336 dl 1.111 * worker from array, and adjusts counts. If pool is shutting
1337     * down, tries to complete termination.
1338     *
1339     * @param wt the worker thread or null if addWorker failed
1340     * @param ex the exception causing failure, or null if none
1341 dl 1.85 */
1342 dl 1.111 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1343 dl 1.123 Mutex lock = this.lock;
1344 dl 1.111 WorkQueue w = null;
1345     if (wt != null && (w = wt.workQueue) != null) {
1346     w.runState = -1; // ensure runState is set
1347     stealCount.getAndAdd(w.totalSteals + w.nsteals);
1348     int idx = w.poolIndex;
1349     lock.lock();
1350     try { // remove record from array
1351     WorkQueue[] ws = workQueues;
1352 dl 1.123 if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1353 dl 1.119 ws[idx] = null;
1354 dl 1.111 } finally {
1355     lock.unlock();
1356     }
1357     }
1358    
1359     long c; // adjust ctl counts
1360     do {} while (!U.compareAndSwapLong
1361     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1362     ((c - TC_UNIT) & TC_MASK) |
1363     (c & ~(AC_MASK|TC_MASK)))));
1364    
1365 dl 1.119 if (!tryTerminate(false, false) && w != null) {
1366 dl 1.111 w.cancelAll(); // cancel remaining tasks
1367     if (w.array != null) // suppress signal if never ran
1368     signalWork(); // wake up or create replacement
1369 dl 1.119 if (ex == null) // help clean refs on way out
1370     ForkJoinTask.helpExpungeStaleExceptions();
1371 dl 1.111 }
1372    
1373     if (ex != null) // rethrow
1374     U.throwException(ex);
1375     }
1376 dl 1.91
1377 dl 1.119
1378     // Submissions
1379    
1380     /**
1381     * Unless shutting down, adds the given task to a submission queue
1382     * at submitter's current queue index (modulo submission
1383 dl 1.123 * range). If no queue exists at the index, one is created. If
1384     * the queue is busy, another index is randomly chosen. The
1385     * submitMask bounds the effective number of queues to the
1386 jsr166 1.125 * (nearest power of two for) parallelism level.
1387 dl 1.123 *
1388     * @param task the task. Caller must ensure non-null.
1389 dl 1.119 */
1390     private void doSubmit(ForkJoinTask<?> task) {
1391     Submitter s = submitters.get();
1392 dl 1.123 for (int r = s.seed, m = submitMask;;) {
1393     WorkQueue[] ws; WorkQueue q;
1394 dl 1.119 int k = r & m & SQMASK; // use only even indices
1395     if (runState < 0 || (ws = workQueues) == null || ws.length <= k)
1396     throw new RejectedExecutionException(); // shutting down
1397 dl 1.123 else if ((q = ws[k]) == null) { // create new queue
1398     WorkQueue nq = new WorkQueue(this, null, SHARED_QUEUE);
1399     Mutex lock = this.lock; // construct outside lock
1400     lock.lock();
1401     try { // recheck under lock
1402     int rs = runState; // to update seq
1403     if (ws == workQueues && ws[k] == null) {
1404     ws[k] = nq;
1405     runState = ((rs & SHUTDOWN) | ((rs + 2) & ~SHUTDOWN));
1406 dl 1.116 }
1407     } finally {
1408 dl 1.123 lock.unlock();
1409 dl 1.116 }
1410     }
1411 dl 1.123 else if (q.trySharedPush(task)) {
1412     signalWork();
1413     return;
1414     }
1415     else if (m > 1) { // move to a different index
1416     r ^= r << 13; // same xorshift as WorkQueues
1417     r ^= r >>> 17;
1418 dl 1.119 s.seed = r ^= r << 5;
1419     }
1420 dl 1.123 else
1421     Thread.yield(); // yield if no alternatives
1422 dl 1.116 }
1423     }
1424 dl 1.85
1425 dl 1.111 // Maintaining ctl counts
1426 dl 1.56
1427     /**
1428 jsr166 1.117 * Increments active count; mainly called upon return from blocking.
1429 dl 1.58 */
1430 dl 1.111 final void incrementActiveCount() {
1431 dl 1.91 long c;
1432 dl 1.111 do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1433 dl 1.61 }
1434    
1435     /**
1436 dl 1.119 * Tries to activate or create a worker if too few are active.
1437 dl 1.53 */
1438 dl 1.91 final void signalWork() {
1439 dl 1.119 long c; int u;
1440     while ((u = (int)((c = ctl) >>> 32)) < 0) { // too few active
1441     WorkQueue[] ws = workQueues; int e, i; WorkQueue w; Thread p;
1442     if ((e = (int)c) > 0) { // at least one waiting
1443     if (ws != null && (i = e & SMASK) < ws.length &&
1444     (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1445     long nc = (((long)(w.nextWait & E_MASK)) |
1446     ((long)(u + UAC_UNIT) << 32));
1447     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1448     w.eventCount = (e + E_SEQ) & E_MASK;
1449     if ((p = w.parker) != null)
1450     U.unpark(p); // activate and release
1451     break;
1452     }
1453     }
1454     else
1455 dl 1.91 break;
1456 dl 1.111 }
1457 dl 1.119 else if (e == 0 && (u & SHORT_SIGN) != 0) { // too few total
1458     long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1459     ((u + UAC_UNIT) & UAC_MASK)) << 32;
1460     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1461     addWorker();
1462 dl 1.91 break;
1463     }
1464     }
1465 dl 1.111 else
1466 dl 1.91 break;
1467     }
1468 dl 1.53 }
1469    
1470 dl 1.123 // Scanning for tasks
1471    
1472 dl 1.53 /**
1473 dl 1.123 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1474 dl 1.53 */
1475 dl 1.123 final void runWorker(WorkQueue w) {
1476     w.growArray(false); // initialize queue array in this thread
1477 dl 1.127 do { w.runTask(scan(w)); } while (w.runState >= 0);
1478 dl 1.53 }
1479    
1480     /**
1481 dl 1.111 * Scans for and, if found, returns one task, else possibly
1482     * inactivates the worker. This method operates on single reads of
1483 dl 1.123 * volatile state and is designed to be re-invoked continuously,
1484     * in part because it returns upon detecting inconsistencies,
1485 dl 1.111 * contention, or state changes that indicate possible success on
1486     * re-invocation.
1487     *
1488 dl 1.123 * The scan searches for tasks across a random permutation of
1489     * queues (starting at a random index and stepping by a random
1490     * relative prime, checking each at least once). The scan
1491     * terminates upon either finding a non-empty queue, or completing
1492     * the sweep. If the worker is not inactivated, it takes and
1493     * returns a task from this queue. On failure to find a task, we
1494     * take one of the following actions, after which the caller will
1495     * retry calling this method unless terminated.
1496 dl 1.111 *
1497 dl 1.119 * * If pool is terminating, terminate the worker.
1498     *
1499 dl 1.111 * * If not a complete sweep, try to release a waiting worker. If
1500     * the scan terminated because the worker is inactivated, then the
1501     * released worker will often be the calling worker, and it can
1502     * succeed obtaining a task on the next call. Or maybe it is
1503     * another worker, but with same net effect. Releasing in other
1504     * cases as well ensures that we have enough workers running.
1505     *
1506     * * If not already enqueued, try to inactivate and enqueue the
1507 dl 1.123 * worker on wait queue. Or, if inactivating has caused the pool
1508     * to be quiescent, relay to idleAwaitWork to check for
1509     * termination and possibly shrink pool.
1510     *
1511     * * If already inactive, and the caller has run a task since the
1512     * last empty scan, return (to allow rescan) unless others are
1513     * also inactivated. Field WorkQueue.rescans counts down on each
1514     * scan to ensure eventual inactivation and blocking.
1515 dl 1.111 *
1516 dl 1.123 * * If already enqueued and none of the above apply, park
1517     * awaiting signal,
1518 dl 1.111 *
1519     * @param w the worker (via its WorkQueue)
1520     * @return a task or null of none found
1521     */
1522     private final ForkJoinTask<?> scan(WorkQueue w) {
1523 dl 1.123 WorkQueue[] ws; // first update random seed
1524     int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1525     int rs = runState, m; // volatile read order matters
1526     if ((ws = workQueues) != null && (m = ws.length - 1) > 0) {
1527     int ec = w.eventCount; // ec is negative if inactive
1528     int step = (r >>> 16) | 1; // relative prime
1529     for (int j = (m + 1) << 2; ; r += step) {
1530     WorkQueue q; ForkJoinTask<?> t; ForkJoinTask<?>[] a; int b;
1531     if ((q = ws[r & m]) != null && (b = q.base) - q.top < 0 &&
1532     (a = q.array) != null) { // probably nonempty
1533     int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1534     t = (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1535     if (q.base == b && ec >= 0 && t != null &&
1536     U.compareAndSwapObject(a, i, t, null)) {
1537     q.base = b + 1; // specialization of pollAt
1538 dl 1.119 return t;
1539 dl 1.123 }
1540 dl 1.127 else if (ec < 0 || j <= m) {
1541 dl 1.123 rs = 0; // mark scan as imcomplete
1542     break; // caller can retry after release
1543     }
1544 dl 1.111 }
1545 dl 1.123 if (--j < 0)
1546 dl 1.93 break;
1547 dl 1.91 }
1548 dl 1.119 long c = ctl; int e = (int)c, a = (int)(c >> AC_SHIFT), nr, ns;
1549 dl 1.123 if (e < 0) // decode ctl on empty scan
1550     w.runState = -1; // pool is terminating
1551     else if (rs == 0 || rs != runState) { // incomplete scan
1552     WorkQueue v; Thread p; // try to release a waiter
1553     if (e > 0 && a < 0 && w.eventCount == ec &&
1554     (v = ws[e & m]) != null && v.eventCount == (e | INT_SIGN)) {
1555 dl 1.119 long nc = ((long)(v.nextWait & E_MASK) |
1556     ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
1557 dl 1.123 if (ctl == c && U.compareAndSwapLong(this, CTL, c, nc)) {
1558 dl 1.119 v.eventCount = (e + E_SEQ) & E_MASK;
1559     if ((p = v.parker) != null)
1560     U.unpark(p);
1561     }
1562     }
1563     }
1564 dl 1.123 else if (ec >= 0) { // try to enqueue/inactivate
1565 dl 1.119 long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1566     w.nextWait = e;
1567 dl 1.123 w.eventCount = ec | INT_SIGN; // mark as inactive
1568     if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1569     w.eventCount = ec; // unmark on CAS failure
1570     else {
1571     if ((ns = w.nsteals) != 0) {
1572     w.nsteals = 0; // set rescans if ran task
1573 jsr166 1.124 w.rescans = (a > 0) ? 0 : a + parallelism;
1574 dl 1.123 w.totalSteals += ns;
1575     }
1576     if (a == 1 - parallelism) // quiescent
1577     idleAwaitWork(w, nc, c);
1578 dl 1.119 }
1579 dl 1.111 }
1580 dl 1.123 else if (w.eventCount < 0) { // already queued
1581     if ((nr = w.rescans) > 0) { // continue rescanning
1582     int ac = a + parallelism;
1583     if (((w.rescans = (ac < nr) ? ac : nr - 1) & 3) == 0)
1584     Thread.yield(); // yield before block
1585     }
1586     else {
1587     Thread.interrupted(); // clear status
1588     Thread wt = Thread.currentThread();
1589 dl 1.119 U.putObject(wt, PARKBLOCKER, this);
1590 dl 1.123 w.parker = wt; // emulate LockSupport.park
1591     if (w.eventCount < 0) // recheck
1592     U.park(false, 0L);
1593 dl 1.119 w.parker = null;
1594     U.putObject(wt, PARKBLOCKER, null);
1595     }
1596 dl 1.111 }
1597 dl 1.91 }
1598 dl 1.111 return null;
1599 dl 1.53 }
1600    
1601     /**
1602 dl 1.123 * If inactivating worker w has caused the pool to become
1603     * quiescent, checks for pool termination, and, so long as this is
1604     * not the only worker, waits for event for up to SHRINK_RATE
1605     * nanosecs. On timeout, if ctl has not changed, terminates the
1606     * worker, which will in turn wake up another worker to possibly
1607     * repeat this process.
1608 dl 1.91 *
1609 dl 1.111 * @param w the calling worker
1610 dl 1.123 * @param currentCtl the ctl value triggering possible quiescence
1611     * @param prevCtl the ctl value to restore if thread is terminated
1612 dl 1.53 */
1613 dl 1.123 private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1614     if (w.eventCount < 0 && !tryTerminate(false, false) &&
1615 dl 1.127 (int)prevCtl != 0 && !hasQueuedSubmissions() && ctl == currentCtl) {
1616 dl 1.123 Thread wt = Thread.currentThread();
1617     Thread.yield(); // yield before block
1618     while (ctl == currentCtl) {
1619 dl 1.111 long startTime = System.nanoTime();
1620     Thread.interrupted(); // timed variant of version in scan()
1621     U.putObject(wt, PARKBLOCKER, this);
1622     w.parker = wt;
1623 dl 1.123 if (ctl == currentCtl)
1624 dl 1.111 U.park(false, SHRINK_RATE);
1625     w.parker = null;
1626     U.putObject(wt, PARKBLOCKER, null);
1627 dl 1.123 if (ctl != currentCtl)
1628 dl 1.111 break;
1629     if (System.nanoTime() - startTime >= SHRINK_TIMEOUT &&
1630 dl 1.123 U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1631     w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1632     w.runState = -1; // shrink
1633 dl 1.111 break;
1634     }
1635 dl 1.66 }
1636 dl 1.53 }
1637     }
1638    
1639     /**
1640 dl 1.111 * Tries to locate and execute tasks for a stealer of the given
1641     * task, or in turn one of its stealers, Traces currentSteal ->
1642     * currentJoin links looking for a thread working on a descendant
1643     * of the given task and with a non-empty queue to steal back and
1644     * execute tasks from. The first call to this method upon a
1645     * waiting join will often entail scanning/search, (which is OK
1646     * because the joiner has nothing better to do), but this method
1647     * leaves hints in workers to speed up subsequent calls. The
1648     * implementation is very branchy to cope with potential
1649     * inconsistencies or loops encountering chains that are stale,
1650 dl 1.123 * unknown, or so long that they are likely cyclic. All of these
1651     * cases are dealt with by just retrying by caller.
1652 dl 1.111 *
1653     * @param joiner the joining worker
1654     * @param task the task to join
1655     * @return true if found or ran a task (and so is immediately retryable)
1656     */
1657 dl 1.123 private boolean tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1658     WorkQueue[] ws;
1659     int m, depth = MAX_HELP; // remaining chain depth
1660 dl 1.111 boolean progress = false;
1661 dl 1.123 if ((ws = workQueues) != null && (m = ws.length - 1) > 0 &&
1662     task.status >= 0) {
1663     ForkJoinTask<?> subtask = task; // current target
1664     outer: for (WorkQueue j = joiner;;) {
1665     WorkQueue stealer = null; // find stealer of subtask
1666     WorkQueue v = ws[j.stealHint & m]; // try hint
1667 dl 1.111 if (v != null && v.currentSteal == subtask)
1668     stealer = v;
1669 dl 1.123 else { // scan
1670 dl 1.111 for (int i = 1; i <= m; i += 2) {
1671 dl 1.123 if ((v = ws[i]) != null && v.currentSteal == subtask &&
1672     v != joiner) {
1673 dl 1.111 stealer = v;
1674 dl 1.123 j.stealHint = i; // save hint
1675 dl 1.111 break;
1676     }
1677     }
1678     if (stealer == null)
1679     break;
1680     }
1681 dl 1.64
1682 dl 1.123 for (WorkQueue q = stealer;;) { // try to help stealer
1683     ForkJoinTask[] a; ForkJoinTask<?> t; int b;
1684 dl 1.111 if (task.status < 0)
1685     break outer;
1686 dl 1.123 if ((b = q.base) - q.top < 0 && (a = q.array) != null) {
1687 dl 1.111 progress = true;
1688 dl 1.123 int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1689     t = (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1690     if (subtask.status < 0) // must recheck before taking
1691     break outer;
1692     if (t != null &&
1693     q.base == b &&
1694     U.compareAndSwapObject(a, i, t, null)) {
1695     q.base = b + 1;
1696 dl 1.111 joiner.runSubtask(t);
1697     }
1698 dl 1.123 else if (q.base == b)
1699     break outer; // possibly stalled
1700 dl 1.91 }
1701 dl 1.123 else { // descend
1702 dl 1.111 ForkJoinTask<?> next = stealer.currentJoin;
1703 dl 1.123 if (--depth <= 0 || subtask.status < 0 ||
1704 dl 1.111 next == null || next == subtask)
1705 dl 1.123 break outer; // stale, dead-end, or cyclic
1706 dl 1.111 subtask = next;
1707     j = stealer;
1708     break;
1709 dl 1.91 }
1710 dl 1.61 }
1711 dl 1.111 }
1712 dl 1.53 }
1713 dl 1.111 return progress;
1714 dl 1.64 }
1715    
1716 dl 1.91 /**
1717 dl 1.111 * If task is at base of some steal queue, steals and executes it.
1718 dl 1.91 *
1719 dl 1.111 * @param joiner the joining worker
1720     * @param task the task
1721 dl 1.61 */
1722 dl 1.123 private void tryPollForAndExec(WorkQueue joiner, ForkJoinTask<?> task) {
1723 dl 1.111 WorkQueue[] ws;
1724 dl 1.123 if ((ws = workQueues) != null) {
1725     for (int j = 1; j < ws.length && task.status >= 0; j += 2) {
1726 dl 1.111 WorkQueue q = ws[j];
1727     if (q != null && q.pollFor(task)) {
1728     joiner.runSubtask(task);
1729     break;
1730     }
1731 dl 1.91 }
1732     }
1733 dl 1.61 }
1734    
1735     /**
1736 dl 1.123 * Tries to decrement active count (sometimes implicitly) and
1737     * possibly release or create a compensating worker in preparation
1738     * for blocking. Fails on contention or termination. Otherwise,
1739     * adds a new thread if no idle workers are available and either
1740     * pool would become completely starved or: (at least half
1741     * starved, and fewer than 50% spares exist, and there is at least
1742 jsr166 1.125 * one task apparently available). Even though the availability
1743 dl 1.123 * check requires a full scan, it is worthwhile in reducing false
1744     * alarms.
1745     *
1746 jsr166 1.126 * @param task if non-null, a task being waited for
1747     * @param blocker if non-null, a blocker being waited for
1748 dl 1.123 * @return true if the caller can block, else should recheck and retry
1749     */
1750     final boolean tryCompensate(ForkJoinTask<?> task, ManagedBlocker blocker) {
1751     int pc = parallelism, e;
1752     long c = ctl;
1753     WorkQueue[] ws = workQueues;
1754     if ((e = (int)c) >= 0 && ws != null) {
1755     int u, a, ac, hc;
1756     int tc = (short)((u = (int)(c >>> 32)) >>> UTC_SHIFT) + pc;
1757     boolean replace = false;
1758     if ((a = u >> UAC_SHIFT) <= 0) {
1759     if ((ac = a + pc) <= 1)
1760     replace = true;
1761     else if ((e > 0 || (task != null &&
1762     ac <= (hc = pc >>> 1) && tc < pc + hc))) {
1763     WorkQueue w;
1764     for (int j = 0; j < ws.length; ++j) {
1765     if ((w = ws[j]) != null && !w.isEmpty()) {
1766     replace = true;
1767     break; // in compensation range and tasks available
1768     }
1769     }
1770     }
1771     }
1772     if ((task == null || task.status >= 0) && // recheck need to block
1773     (blocker == null || !blocker.isReleasable()) && ctl == c) {
1774     if (!replace) { // no compensation
1775     long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1776     if (U.compareAndSwapLong(this, CTL, c, nc))
1777     return true;
1778     }
1779     else if (e != 0) { // release an idle worker
1780     WorkQueue w; Thread p; int i;
1781     if ((i = e & SMASK) < ws.length && (w = ws[i]) != null) {
1782     long nc = ((long)(w.nextWait & E_MASK) |
1783     (c & (AC_MASK|TC_MASK)));
1784     if (w.eventCount == (e | INT_SIGN) &&
1785     U.compareAndSwapLong(this, CTL, c, nc)) {
1786     w.eventCount = (e + E_SEQ) & E_MASK;
1787     if ((p = w.parker) != null)
1788     U.unpark(p);
1789     return true;
1790     }
1791     }
1792     }
1793     else if (tc < MAX_CAP) { // create replacement
1794     long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1795     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1796     addWorker();
1797     return true;
1798     }
1799     }
1800     }
1801     }
1802     return false;
1803     }
1804    
1805     /**
1806 jsr166 1.126 * Helps and/or blocks until the given task is done.
1807 dl 1.123 *
1808     * @param joiner the joining worker
1809     * @param task the task
1810     * @return task status on exit
1811     */
1812     final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1813 dl 1.127 int s;
1814 dl 1.123 ForkJoinTask<?> prevJoin = joiner.currentJoin;
1815 dl 1.127 if ((s = task.status) >= 0) {
1816     joiner.currentJoin = task;
1817     long startTime = 0L;
1818     for (int k = 0;;) {
1819     if ((joiner.isEmpty() ? // try to help
1820     !tryHelpStealer(joiner, task) :
1821     !joiner.tryRemoveAndExec(task))) {
1822     if (k == 0) {
1823     startTime = System.nanoTime();
1824     tryPollForAndExec(joiner, task); // check uncommon case
1825     }
1826     else if ((k & (MAX_HELP - 1)) == 0 &&
1827     System.nanoTime() - startTime >=
1828     COMPENSATION_DELAY &&
1829     tryCompensate(task, null)) {
1830     if (task.trySetSignal() && task.status >= 0) {
1831     synchronized (task) {
1832     if (task.status >= 0) {
1833     try { // see ForkJoinTask
1834     task.wait(); // for explanation
1835     } catch (InterruptedException ie) {
1836     }
1837 dl 1.123 }
1838 dl 1.127 else
1839     task.notifyAll();
1840 dl 1.123 }
1841     }
1842 dl 1.127 long c; // re-activate
1843     do {} while (!U.compareAndSwapLong
1844     (this, CTL, c = ctl, c + AC_UNIT));
1845 dl 1.123 }
1846     }
1847 dl 1.127 if ((s = task.status) < 0) {
1848     joiner.currentJoin = prevJoin;
1849     break;
1850     }
1851     else if ((k++ & (MAX_HELP - 1)) == MAX_HELP >>> 1)
1852     Thread.yield(); // for politeness
1853 dl 1.123 }
1854     }
1855 dl 1.127 return s;
1856 dl 1.123 }
1857    
1858     /**
1859     * Stripped-down variant of awaitJoin used by timed joins. Tries
1860     * to help join only while there is continuous progress. (Caller
1861     * will then enter a timed wait.)
1862     *
1863     * @param joiner the joining worker
1864     * @param task the task
1865     * @return task status on exit
1866     */
1867     final int helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
1868     int s;
1869     while ((s = task.status) >= 0 &&
1870     (joiner.isEmpty() ?
1871     tryHelpStealer(joiner, task) :
1872     joiner.tryRemoveAndExec(task)))
1873     ;
1874     return s;
1875     }
1876    
1877     /**
1878     * Returns a (probably) non-empty steal queue, if one is found
1879     * during a random, then cyclic scan, else null. This method must
1880     * be retried by caller if, by the time it tries to use the queue,
1881     * it is empty.
1882 dl 1.111 */
1883     private WorkQueue findNonEmptyStealQueue(WorkQueue w) {
1884 dl 1.123 // Similar to loop in scan(), but ignoring submissions
1885     int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1886     int step = (r >>> 16) | 1;
1887 dl 1.111 for (WorkQueue[] ws;;) {
1888 dl 1.123 int rs = runState, m;
1889     if ((ws = workQueues) == null || (m = ws.length - 1) < 1)
1890 dl 1.111 return null;
1891 dl 1.123 for (int j = (m + 1) << 2; ; r += step) {
1892     WorkQueue q = ws[((r << 1) | 1) & m];
1893     if (q != null && !q.isEmpty())
1894     return q;
1895     else if (--j < 0) {
1896     if (runState == rs)
1897 dl 1.111 return null;
1898 dl 1.123 break;
1899 dl 1.91 }
1900     }
1901 dl 1.64 }
1902     }
1903    
1904     /**
1905 dl 1.111 * Runs tasks until {@code isQuiescent()}. We piggyback on
1906     * active count ctl maintenance, but rather than blocking
1907     * when tasks cannot be found, we rescan until all others cannot
1908     * find tasks either.
1909     */
1910     final void helpQuiescePool(WorkQueue w) {
1911     for (boolean active = true;;) {
1912 dl 1.127 ForkJoinTask<?> localTask; // exhaust local queue
1913     while ((localTask = w.nextLocalTask()) != null)
1914     localTask.doExec();
1915 dl 1.111 WorkQueue q = findNonEmptyStealQueue(w);
1916     if (q != null) {
1917 dl 1.123 ForkJoinTask<?> t; int b;
1918 dl 1.111 if (!active) { // re-establish active count
1919     long c;
1920     active = true;
1921     do {} while (!U.compareAndSwapLong
1922     (this, CTL, c = ctl, c + AC_UNIT));
1923     }
1924 dl 1.123 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
1925 dl 1.111 w.runSubtask(t);
1926     }
1927     else {
1928     long c;
1929     if (active) { // decrement active count without queuing
1930     active = false;
1931     do {} while (!U.compareAndSwapLong
1932     (this, CTL, c = ctl, c -= AC_UNIT));
1933     }
1934     else
1935     c = ctl; // re-increment on exit
1936     if ((int)(c >> AC_SHIFT) + parallelism == 0) {
1937     do {} while (!U.compareAndSwapLong
1938     (this, CTL, c = ctl, c + AC_UNIT));
1939     break;
1940 dl 1.66 }
1941 dl 1.64 }
1942     }
1943     }
1944    
1945     /**
1946 jsr166 1.117 * Gets and removes a local or stolen task for the given worker.
1947 dl 1.111 *
1948     * @return a task, if available
1949 dl 1.64 */
1950 dl 1.111 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
1951     for (ForkJoinTask<?> t;;) {
1952 dl 1.123 WorkQueue q; int b;
1953 dl 1.111 if ((t = w.nextLocalTask()) != null)
1954     return t;
1955     if ((q = findNonEmptyStealQueue(w)) == null)
1956     return null;
1957 dl 1.123 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
1958 dl 1.111 return t;
1959 dl 1.91 }
1960 dl 1.61 }
1961    
1962 dl 1.53 /**
1963 dl 1.111 * Returns the approximate (non-atomic) number of idle threads per
1964     * active thread to offset steal queue size for method
1965     * ForkJoinTask.getSurplusQueuedTaskCount().
1966 dl 1.53 */
1967 dl 1.111 final int idlePerActive() {
1968     // Approximate at powers of two for small values, saturate past 4
1969     int p = parallelism;
1970     int a = p + (int)(ctl >> AC_SHIFT);
1971     return (a > (p >>>= 1) ? 0 :
1972     a > (p >>>= 1) ? 1 :
1973     a > (p >>>= 1) ? 2 :
1974     a > (p >>>= 1) ? 4 :
1975     8);
1976 dl 1.53 }
1977    
1978 dl 1.119 // Termination
1979 dl 1.53
1980     /**
1981 dl 1.119 * Possibly initiates and/or completes termination. The caller
1982     * triggering termination runs three passes through workQueues:
1983     * (0) Setting termination status, followed by wakeups of queued
1984     * workers; (1) cancelling all tasks; (2) interrupting lagging
1985     * threads (likely in external tasks, but possibly also blocked in
1986     * joins). Each pass repeats previous steps because of potential
1987     * lagging thread creation.
1988 dl 1.53 *
1989     * @param now if true, unconditionally terminate, else only
1990 dl 1.111 * if no work and no active workers
1991 jsr166 1.120 * @param enable if true, enable shutdown when next possible
1992 dl 1.53 * @return true if now terminating or terminated
1993 dl 1.1 */
1994 dl 1.119 private boolean tryTerminate(boolean now, boolean enable) {
1995     Mutex lock = this.lock;
1996 dl 1.111 for (long c;;) {
1997     if (((c = ctl) & STOP_BIT) != 0) { // already terminating
1998     if ((short)(c >>> TC_SHIFT) == -parallelism) {
1999     lock.lock(); // don't need try/finally
2000     termination.signalAll(); // signal when 0 workers
2001     lock.unlock();
2002     }
2003     return true;
2004     }
2005 dl 1.119 if (runState >= 0) { // not yet enabled
2006     if (!enable)
2007     return false;
2008     lock.lock();
2009     runState |= SHUTDOWN;
2010     lock.unlock();
2011     }
2012     if (!now) { // check if idle & no tasks
2013     if ((int)(c >> AC_SHIFT) != -parallelism ||
2014 dl 1.111 hasQueuedSubmissions())
2015 dl 1.91 return false;
2016 dl 1.111 // Check for unqueued inactive workers. One pass suffices.
2017     WorkQueue[] ws = workQueues; WorkQueue w;
2018     if (ws != null) {
2019 dl 1.119 for (int i = 1; i < ws.length; i += 2) {
2020 dl 1.111 if ((w = ws[i]) != null && w.eventCount >= 0)
2021     return false;
2022     }
2023 dl 1.91 }
2024     }
2025 dl 1.119 if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2026     for (int pass = 0; pass < 3; ++pass) {
2027     WorkQueue[] ws = workQueues;
2028     if (ws != null) {
2029     WorkQueue w;
2030     int n = ws.length;
2031     for (int i = 0; i < n; ++i) {
2032     if ((w = ws[i]) != null) {
2033     w.runState = -1;
2034     if (pass > 0) {
2035     w.cancelAll();
2036     if (pass > 1)
2037     w.interruptOwner();
2038 dl 1.91 }
2039 dl 1.61 }
2040     }
2041 dl 1.119 // Wake up workers parked on event queue
2042     int i, e; long cc; Thread p;
2043     while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2044     (i = e & SMASK) < n &&
2045     (w = ws[i]) != null) {
2046     long nc = ((long)(w.nextWait & E_MASK) |
2047     ((cc + AC_UNIT) & AC_MASK) |
2048     (cc & (TC_MASK|STOP_BIT)));
2049     if (w.eventCount == (e | INT_SIGN) &&
2050     U.compareAndSwapLong(this, CTL, cc, nc)) {
2051     w.eventCount = (e + E_SEQ) & E_MASK;
2052     w.runState = -1;
2053     if ((p = w.parker) != null)
2054     U.unpark(p);
2055     }
2056     }
2057 dl 1.111 }
2058 dl 1.91 }
2059 dl 1.53 }
2060     }
2061 dl 1.56 }
2062    
2063 dl 1.91 // Exported methods
2064 dl 1.1
2065     // Constructors
2066    
2067     /**
2068 dl 1.42 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2069 dl 1.57 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2070     * #defaultForkJoinWorkerThreadFactory default thread factory},
2071     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2072 jsr166 1.17 *
2073 dl 1.1 * @throws SecurityException if a security manager exists and
2074     * the caller is not permitted to modify threads
2075     * because it does not hold {@link
2076 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
2077 dl 1.1 */
2078     public ForkJoinPool() {
2079     this(Runtime.getRuntime().availableProcessors(),
2080 dl 1.57 defaultForkJoinWorkerThreadFactory, null, false);
2081 dl 1.1 }
2082    
2083     /**
2084 dl 1.42 * Creates a {@code ForkJoinPool} with the indicated parallelism
2085 dl 1.57 * level, the {@linkplain
2086     * #defaultForkJoinWorkerThreadFactory default thread factory},
2087     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2088 jsr166 1.17 *
2089 dl 1.42 * @param parallelism the parallelism level
2090 dl 1.1 * @throws IllegalArgumentException if parallelism less than or
2091 jsr166 1.47 * equal to zero, or greater than implementation limit
2092 dl 1.1 * @throws SecurityException if a security manager exists and
2093     * the caller is not permitted to modify threads
2094     * because it does not hold {@link
2095 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
2096 dl 1.1 */
2097     public ForkJoinPool(int parallelism) {
2098 dl 1.57 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2099 dl 1.1 }
2100    
2101     /**
2102 dl 1.57 * Creates a {@code ForkJoinPool} with the given parameters.
2103 jsr166 1.17 *
2104 dl 1.57 * @param parallelism the parallelism level. For default value,
2105     * use {@link java.lang.Runtime#availableProcessors}.
2106     * @param factory the factory for creating new threads. For default value,
2107     * use {@link #defaultForkJoinWorkerThreadFactory}.
2108 dl 1.59 * @param handler the handler for internal worker threads that
2109     * terminate due to unrecoverable errors encountered while executing
2110 jsr166 1.73 * tasks. For default value, use {@code null}.
2111 dl 1.59 * @param asyncMode if true,
2112 dl 1.57 * establishes local first-in-first-out scheduling mode for forked
2113     * tasks that are never joined. This mode may be more appropriate
2114     * than default locally stack-based mode in applications in which
2115     * worker threads only process event-style asynchronous tasks.
2116 jsr166 1.73 * For default value, use {@code false}.
2117 dl 1.1 * @throws IllegalArgumentException if parallelism less than or
2118 jsr166 1.47 * equal to zero, or greater than implementation limit
2119 jsr166 1.48 * @throws NullPointerException if the factory is null
2120 dl 1.1 * @throws SecurityException if a security manager exists and
2121     * the caller is not permitted to modify threads
2122     * because it does not hold {@link
2123 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
2124 dl 1.1 */
2125 dl 1.59 public ForkJoinPool(int parallelism,
2126 dl 1.57 ForkJoinWorkerThreadFactory factory,
2127     Thread.UncaughtExceptionHandler handler,
2128     boolean asyncMode) {
2129 dl 1.53 checkPermission();
2130     if (factory == null)
2131     throw new NullPointerException();
2132 dl 1.123 if (parallelism <= 0 || parallelism > MAX_CAP)
2133 dl 1.1 throw new IllegalArgumentException();
2134 dl 1.53 this.parallelism = parallelism;
2135 dl 1.1 this.factory = factory;
2136 dl 1.57 this.ueh = handler;
2137 dl 1.111 this.localMode = asyncMode ? FIFO_QUEUE : LIFO_QUEUE;
2138 dl 1.91 long np = (long)(-parallelism); // offset ctl counts
2139     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2140 dl 1.123 // Use nearest power 2 for workQueues size. See Hackers Delight sec 3.2.
2141     int n = parallelism - 1;
2142     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
2143     int size = (n + 1) << 1; // #slots = 2*#workers
2144     this.submitMask = size - 1; // room for max # of submit queues
2145     this.workQueues = new WorkQueue[size];
2146 dl 1.119 this.termination = (this.lock = new Mutex()).newCondition();
2147 dl 1.111 this.stealCount = new AtomicLong();
2148     this.nextWorkerNumber = new AtomicInteger();
2149 dl 1.123 int pn = poolNumberGenerator.incrementAndGet();
2150 dl 1.91 StringBuilder sb = new StringBuilder("ForkJoinPool-");
2151 dl 1.123 sb.append(Integer.toString(pn));
2152 dl 1.91 sb.append("-worker-");
2153     this.workerNamePrefix = sb.toString();
2154 dl 1.123 lock.lock();
2155     this.runState = 1; // set init flag
2156     lock.unlock();
2157 dl 1.1 }
2158    
2159     // Execution methods
2160    
2161     /**
2162 jsr166 1.17 * Performs the given task, returning its result upon completion.
2163 dl 1.91 * If the computation encounters an unchecked Exception or Error,
2164     * it is rethrown as the outcome of this invocation. Rethrown
2165     * exceptions behave in the same way as regular exceptions, but,
2166     * when possible, contain stack traces (as displayed for example
2167     * using {@code ex.printStackTrace()}) of both the current thread
2168     * as well as the thread actually encountering the exception;
2169     * minimally only the latter.
2170 jsr166 1.17 *
2171 dl 1.1 * @param task the task
2172     * @return the task's result
2173 jsr166 1.48 * @throws NullPointerException if the task is null
2174     * @throws RejectedExecutionException if the task cannot be
2175     * scheduled for execution
2176 dl 1.1 */
2177     public <T> T invoke(ForkJoinTask<T> task) {
2178 dl 1.123 if (task == null)
2179     throw new NullPointerException();
2180 dl 1.111 doSubmit(task);
2181     return task.join();
2182 dl 1.1 }
2183    
2184     /**
2185     * Arranges for (asynchronous) execution of the given task.
2186 jsr166 1.17 *
2187 dl 1.1 * @param task the task
2188 jsr166 1.48 * @throws NullPointerException if the task is null
2189     * @throws RejectedExecutionException if the task cannot be
2190     * scheduled for execution
2191 dl 1.1 */
2192 dl 1.37 public void execute(ForkJoinTask<?> task) {
2193 dl 1.123 if (task == null)
2194     throw new NullPointerException();
2195 dl 1.111 doSubmit(task);
2196 dl 1.1 }
2197    
2198     // AbstractExecutorService methods
2199    
2200 jsr166 1.48 /**
2201     * @throws NullPointerException if the task is null
2202     * @throws RejectedExecutionException if the task cannot be
2203     * scheduled for execution
2204     */
2205 dl 1.1 public void execute(Runnable task) {
2206 dl 1.82 if (task == null)
2207     throw new NullPointerException();
2208 dl 1.23 ForkJoinTask<?> job;
2209 jsr166 1.26 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2210     job = (ForkJoinTask<?>) task;
2211 dl 1.23 else
2212 dl 1.123 job = new ForkJoinTask.AdaptedRunnableAction(task);
2213 dl 1.111 doSubmit(job);
2214 dl 1.1 }
2215    
2216 jsr166 1.48 /**
2217 dl 1.57 * Submits a ForkJoinTask for execution.
2218     *
2219     * @param task the task to submit
2220     * @return the task
2221     * @throws NullPointerException if the task is null
2222     * @throws RejectedExecutionException if the task cannot be
2223     * scheduled for execution
2224     */
2225     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2226 dl 1.123 if (task == null)
2227     throw new NullPointerException();
2228 dl 1.111 doSubmit(task);
2229 dl 1.57 return task;
2230     }
2231    
2232     /**
2233 jsr166 1.48 * @throws NullPointerException if the task is null
2234     * @throws RejectedExecutionException if the task cannot be
2235     * scheduled for execution
2236     */
2237 dl 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2238 dl 1.123 ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2239 dl 1.111 doSubmit(job);
2240 dl 1.1 return job;
2241     }
2242    
2243 jsr166 1.48 /**
2244     * @throws NullPointerException if the task is null
2245     * @throws RejectedExecutionException if the task cannot be
2246     * scheduled for execution
2247     */
2248 dl 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2249 dl 1.123 ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2250 dl 1.111 doSubmit(job);
2251 dl 1.1 return job;
2252     }
2253    
2254 jsr166 1.48 /**
2255     * @throws NullPointerException if the task is null
2256     * @throws RejectedExecutionException if the task cannot be
2257     * scheduled for execution
2258     */
2259 dl 1.1 public ForkJoinTask<?> submit(Runnable task) {
2260 dl 1.82 if (task == null)
2261     throw new NullPointerException();
2262 dl 1.23 ForkJoinTask<?> job;
2263 jsr166 1.26 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2264     job = (ForkJoinTask<?>) task;
2265 dl 1.23 else
2266 dl 1.123 job = new ForkJoinTask.AdaptedRunnableAction(task);
2267 dl 1.111 doSubmit(job);
2268 dl 1.1 return job;
2269     }
2270    
2271     /**
2272 jsr166 1.48 * @throws NullPointerException {@inheritDoc}
2273     * @throws RejectedExecutionException {@inheritDoc}
2274     */
2275 dl 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2276 dl 1.119 // In previous versions of this class, this method constructed
2277     // a task to run ForkJoinTask.invokeAll, but now external
2278     // invocation of multiple tasks is at least as efficient.
2279     List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2280     // Workaround needed because method wasn't declared with
2281     // wildcards in return type but should have been.
2282 jsr166 1.20 @SuppressWarnings({"unchecked", "rawtypes"})
2283 dl 1.119 List<Future<T>> futures = (List<Future<T>>) (List) fs;
2284 dl 1.1
2285 dl 1.119 boolean done = false;
2286     try {
2287     for (Callable<T> t : tasks) {
2288 dl 1.123 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2289 dl 1.119 doSubmit(f);
2290     fs.add(f);
2291     }
2292     for (ForkJoinTask<T> f : fs)
2293     f.quietlyJoin();
2294     done = true;
2295     return futures;
2296     } finally {
2297     if (!done)
2298     for (ForkJoinTask<T> f : fs)
2299     f.cancel(false);
2300 dl 1.1 }
2301     }
2302    
2303     /**
2304 jsr166 1.17 * Returns the factory used for constructing new workers.
2305 dl 1.1 *
2306     * @return the factory used for constructing new workers
2307     */
2308     public ForkJoinWorkerThreadFactory getFactory() {
2309     return factory;
2310     }
2311    
2312     /**
2313 dl 1.2 * Returns the handler for internal worker threads that terminate
2314     * due to unrecoverable errors encountered while executing tasks.
2315 jsr166 1.17 *
2316 jsr166 1.28 * @return the handler, or {@code null} if none
2317 dl 1.2 */
2318     public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
2319 dl 1.53 return ueh;
2320 dl 1.2 }
2321    
2322     /**
2323 dl 1.42 * Returns the targeted parallelism level of this pool.
2324 dl 1.1 *
2325 dl 1.42 * @return the targeted parallelism level of this pool
2326 dl 1.1 */
2327     public int getParallelism() {
2328     return parallelism;
2329     }
2330    
2331     /**
2332     * Returns the number of worker threads that have started but not
2333 jsr166 1.76 * yet terminated. The result returned by this method may differ
2334 jsr166 1.29 * from {@link #getParallelism} when threads are created to
2335 dl 1.1 * maintain parallelism when others are cooperatively blocked.
2336     *
2337     * @return the number of worker threads
2338     */
2339     public int getPoolSize() {
2340 dl 1.91 return parallelism + (short)(ctl >>> TC_SHIFT);
2341 dl 1.1 }
2342    
2343     /**
2344 jsr166 1.28 * Returns {@code true} if this pool uses local first-in-first-out
2345 jsr166 1.16 * scheduling mode for forked tasks that are never joined.
2346 dl 1.6 *
2347 jsr166 1.28 * @return {@code true} if this pool uses async mode
2348 dl 1.6 */
2349     public boolean getAsyncMode() {
2350 dl 1.111 return localMode != 0;
2351 dl 1.6 }
2352    
2353     /**
2354 dl 1.2 * Returns an estimate of the number of worker threads that are
2355     * not blocked waiting to join tasks or for other managed
2356 dl 1.53 * synchronization. This method may overestimate the
2357     * number of running threads.
2358 dl 1.1 *
2359     * @return the number of worker threads
2360     */
2361     public int getRunningThreadCount() {
2362 dl 1.111 int rc = 0;
2363     WorkQueue[] ws; WorkQueue w;
2364     if ((ws = workQueues) != null) {
2365 dl 1.119 for (int i = 1; i < ws.length; i += 2) {
2366     if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2367 dl 1.111 ++rc;
2368     }
2369     }
2370     return rc;
2371 dl 1.1 }
2372    
2373     /**
2374 dl 1.2 * Returns an estimate of the number of threads that are currently
2375 dl 1.1 * stealing or executing tasks. This method may overestimate the
2376     * number of active threads.
2377 jsr166 1.17 *
2378 jsr166 1.16 * @return the number of active threads
2379 dl 1.1 */
2380     public int getActiveThreadCount() {
2381 dl 1.111 int r = parallelism + (int)(ctl >> AC_SHIFT);
2382 jsr166 1.102 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2383 dl 1.1 }
2384    
2385     /**
2386 jsr166 1.28 * Returns {@code true} if all worker threads are currently idle.
2387     * An idle worker is one that cannot obtain a task to execute
2388     * because none are available to steal from other threads, and
2389     * there are no pending submissions to the pool. This method is
2390     * conservative; it might not return {@code true} immediately upon
2391     * idleness of all threads, but will eventually become true if
2392     * threads remain inactive.
2393 jsr166 1.17 *
2394 jsr166 1.28 * @return {@code true} if all threads are currently idle
2395 dl 1.1 */
2396     public boolean isQuiescent() {
2397 dl 1.111 return (int)(ctl >> AC_SHIFT) + parallelism == 0;
2398 dl 1.1 }
2399    
2400     /**
2401     * Returns an estimate of the total number of tasks stolen from
2402     * one thread's work queue by another. The reported value
2403     * underestimates the actual total number of steals when the pool
2404     * is not quiescent. This value may be useful for monitoring and
2405 jsr166 1.17 * tuning fork/join programs: in general, steal counts should be
2406 dl 1.1 * high enough to keep threads busy, but low enough to avoid
2407     * overhead and contention across threads.
2408 jsr166 1.17 *
2409 jsr166 1.16 * @return the number of steals
2410 dl 1.1 */
2411     public long getStealCount() {
2412 dl 1.111 long count = stealCount.get();
2413     WorkQueue[] ws; WorkQueue w;
2414     if ((ws = workQueues) != null) {
2415 dl 1.119 for (int i = 1; i < ws.length; i += 2) {
2416 dl 1.111 if ((w = ws[i]) != null)
2417     count += w.totalSteals;
2418     }
2419     }
2420     return count;
2421 dl 1.1 }
2422    
2423     /**
2424 dl 1.2 * Returns an estimate of the total number of tasks currently held
2425     * in queues by worker threads (but not including tasks submitted
2426     * to the pool that have not begun executing). This value is only
2427     * an approximation, obtained by iterating across all threads in
2428     * the pool. This method may be useful for tuning task
2429     * granularities.
2430 jsr166 1.17 *
2431 jsr166 1.16 * @return the number of queued tasks
2432 dl 1.1 */
2433     public long getQueuedTaskCount() {
2434     long count = 0;
2435 dl 1.111 WorkQueue[] ws; WorkQueue w;
2436     if ((ws = workQueues) != null) {
2437 dl 1.119 for (int i = 1; i < ws.length; i += 2) {
2438 dl 1.111 if ((w = ws[i]) != null)
2439     count += w.queueSize();
2440     }
2441 dl 1.91 }
2442 dl 1.1 return count;
2443     }
2444    
2445     /**
2446 jsr166 1.40 * Returns an estimate of the number of tasks submitted to this
2447 dl 1.94 * pool that have not yet begun executing. This method may take
2448 dl 1.91 * time proportional to the number of submissions.
2449 jsr166 1.17 *
2450 jsr166 1.16 * @return the number of queued submissions
2451 dl 1.1 */
2452     public int getQueuedSubmissionCount() {
2453 dl 1.111 int count = 0;
2454     WorkQueue[] ws; WorkQueue w;
2455     if ((ws = workQueues) != null) {
2456 dl 1.119 for (int i = 0; i < ws.length; i += 2) {
2457 dl 1.111 if ((w = ws[i]) != null)
2458     count += w.queueSize();
2459     }
2460     }
2461     return count;
2462 dl 1.1 }
2463    
2464     /**
2465 jsr166 1.28 * Returns {@code true} if there are any tasks submitted to this
2466     * pool that have not yet begun executing.
2467 jsr166 1.17 *
2468 jsr166 1.16 * @return {@code true} if there are any queued submissions
2469 dl 1.1 */
2470     public boolean hasQueuedSubmissions() {
2471 dl 1.111 WorkQueue[] ws; WorkQueue w;
2472     if ((ws = workQueues) != null) {
2473 dl 1.119 for (int i = 0; i < ws.length; i += 2) {
2474 dl 1.123 if ((w = ws[i]) != null && !w.isEmpty())
2475 dl 1.111 return true;
2476     }
2477     }
2478     return false;
2479 dl 1.1 }
2480    
2481     /**
2482     * Removes and returns the next unexecuted submission if one is
2483     * available. This method may be useful in extensions to this
2484     * class that re-assign work in systems with multiple pools.
2485 jsr166 1.17 *
2486 jsr166 1.28 * @return the next submission, or {@code null} if none
2487 dl 1.1 */
2488     protected ForkJoinTask<?> pollSubmission() {
2489 dl 1.111 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2490     if ((ws = workQueues) != null) {
2491 dl 1.119 for (int i = 0; i < ws.length; i += 2) {
2492 dl 1.111 if ((w = ws[i]) != null && (t = w.poll()) != null)
2493     return t;
2494 dl 1.91 }
2495     }
2496     return null;
2497 dl 1.1 }
2498    
2499     /**
2500 dl 1.6 * Removes all available unexecuted submitted and forked tasks
2501     * from scheduling queues and adds them to the given collection,
2502     * without altering their execution status. These may include
2503 jsr166 1.41 * artificially generated or wrapped tasks. This method is
2504     * designed to be invoked only when the pool is known to be
2505 dl 1.6 * quiescent. Invocations at other times may not remove all
2506     * tasks. A failure encountered while attempting to add elements
2507 jsr166 1.16 * to collection {@code c} may result in elements being in
2508 dl 1.6 * neither, either or both collections when the associated
2509     * exception is thrown. The behavior of this operation is
2510     * undefined if the specified collection is modified while the
2511     * operation is in progress.
2512 jsr166 1.17 *
2513 dl 1.6 * @param c the collection to transfer elements into
2514     * @return the number of elements transferred
2515     */
2516 dl 1.30 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2517 dl 1.91 int count = 0;
2518 dl 1.111 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2519     if ((ws = workQueues) != null) {
2520 dl 1.119 for (int i = 0; i < ws.length; ++i) {
2521 dl 1.111 if ((w = ws[i]) != null) {
2522     while ((t = w.poll()) != null) {
2523     c.add(t);
2524     ++count;
2525     }
2526     }
2527 dl 1.91 }
2528     }
2529 dl 1.57 return count;
2530     }
2531    
2532     /**
2533 dl 1.1 * Returns a string identifying this pool, as well as its state,
2534     * including indications of run state, parallelism level, and
2535     * worker and task counts.
2536     *
2537     * @return a string identifying this pool, as well as its state
2538     */
2539     public String toString() {
2540 dl 1.119 // Use a single pass through workQueues to collect counts
2541     long qt = 0L, qs = 0L; int rc = 0;
2542     long st = stealCount.get();
2543     long c = ctl;
2544     WorkQueue[] ws; WorkQueue w;
2545     if ((ws = workQueues) != null) {
2546     for (int i = 0; i < ws.length; ++i) {
2547     if ((w = ws[i]) != null) {
2548     int size = w.queueSize();
2549     if ((i & 1) == 0)
2550     qs += size;
2551     else {
2552     qt += size;
2553     st += w.totalSteals;
2554     if (w.isApparentlyUnblocked())
2555     ++rc;
2556     }
2557     }
2558     }
2559     }
2560 dl 1.53 int pc = parallelism;
2561 dl 1.91 int tc = pc + (short)(c >>> TC_SHIFT);
2562 dl 1.111 int ac = pc + (int)(c >> AC_SHIFT);
2563     if (ac < 0) // ignore transient negative
2564     ac = 0;
2565 dl 1.91 String level;
2566     if ((c & STOP_BIT) != 0)
2567 jsr166 1.102 level = (tc == 0) ? "Terminated" : "Terminating";
2568 dl 1.91 else
2569 dl 1.111 level = runState < 0 ? "Shutting down" : "Running";
2570 dl 1.1 return super.toString() +
2571 dl 1.91 "[" + level +
2572 dl 1.53 ", parallelism = " + pc +
2573     ", size = " + tc +
2574     ", active = " + ac +
2575     ", running = " + rc +
2576 dl 1.1 ", steals = " + st +
2577     ", tasks = " + qt +
2578     ", submissions = " + qs +
2579     "]";
2580     }
2581    
2582     /**
2583     * Initiates an orderly shutdown in which previously submitted
2584     * tasks are executed, but no new tasks will be accepted.
2585     * Invocation has no additional effect if already shut down.
2586     * Tasks that are in the process of being submitted concurrently
2587     * during the course of this method may or may not be rejected.
2588 jsr166 1.17 *
2589 dl 1.1 * @throws SecurityException if a security manager exists and
2590     * the caller is not permitted to modify threads
2591     * because it does not hold {@link
2592 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
2593 dl 1.1 */
2594     public void shutdown() {
2595     checkPermission();
2596 dl 1.119 tryTerminate(false, true);
2597 dl 1.1 }
2598    
2599     /**
2600 dl 1.42 * Attempts to cancel and/or stop all tasks, and reject all
2601     * subsequently submitted tasks. Tasks that are in the process of
2602     * being submitted or executed concurrently during the course of
2603     * this method may or may not be rejected. This method cancels
2604     * both existing and unexecuted tasks, in order to permit
2605     * termination in the presence of task dependencies. So the method
2606     * always returns an empty list (unlike the case for some other
2607     * Executors).
2608 jsr166 1.17 *
2609 dl 1.1 * @return an empty list
2610     * @throws SecurityException if a security manager exists and
2611     * the caller is not permitted to modify threads
2612     * because it does not hold {@link
2613 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
2614 dl 1.1 */
2615     public List<Runnable> shutdownNow() {
2616     checkPermission();
2617 dl 1.119 tryTerminate(true, true);
2618 dl 1.1 return Collections.emptyList();
2619     }
2620    
2621     /**
2622 jsr166 1.16 * Returns {@code true} if all tasks have completed following shut down.
2623 dl 1.1 *
2624 jsr166 1.16 * @return {@code true} if all tasks have completed following shut down
2625 dl 1.1 */
2626     public boolean isTerminated() {
2627 dl 1.91 long c = ctl;
2628     return ((c & STOP_BIT) != 0L &&
2629     (short)(c >>> TC_SHIFT) == -parallelism);
2630 dl 1.1 }
2631    
2632     /**
2633 jsr166 1.16 * Returns {@code true} if the process of termination has
2634 dl 1.42 * commenced but not yet completed. This method may be useful for
2635     * debugging. A return of {@code true} reported a sufficient
2636     * period after shutdown may indicate that submitted tasks have
2637 dl 1.88 * ignored or suppressed interruption, or are waiting for IO,
2638     * causing this executor not to properly terminate. (See the
2639     * advisory notes for class {@link ForkJoinTask} stating that
2640     * tasks should not normally entail blocking operations. But if
2641     * they do, they must abort them on interrupt.)
2642 dl 1.1 *
2643 dl 1.42 * @return {@code true} if terminating but not yet terminated
2644 dl 1.1 */
2645     public boolean isTerminating() {
2646 dl 1.91 long c = ctl;
2647     return ((c & STOP_BIT) != 0L &&
2648     (short)(c >>> TC_SHIFT) != -parallelism);
2649 dl 1.1 }
2650    
2651     /**
2652 jsr166 1.16 * Returns {@code true} if this pool has been shut down.
2653 dl 1.1 *
2654 jsr166 1.16 * @return {@code true} if this pool has been shut down
2655 dl 1.1 */
2656     public boolean isShutdown() {
2657 dl 1.111 return runState < 0;
2658 dl 1.42 }
2659    
2660     /**
2661 dl 1.1 * Blocks until all tasks have completed execution after a shutdown
2662     * request, or the timeout occurs, or the current thread is
2663     * interrupted, whichever happens first.
2664     *
2665     * @param timeout the maximum time to wait
2666     * @param unit the time unit of the timeout argument
2667 jsr166 1.16 * @return {@code true} if this executor terminated and
2668     * {@code false} if the timeout elapsed before termination
2669 dl 1.1 * @throws InterruptedException if interrupted while waiting
2670     */
2671     public boolean awaitTermination(long timeout, TimeUnit unit)
2672     throws InterruptedException {
2673 dl 1.91 long nanos = unit.toNanos(timeout);
2674 dl 1.119 final Mutex lock = this.lock;
2675 dl 1.91 lock.lock();
2676 dl 1.57 try {
2677 dl 1.91 for (;;) {
2678     if (isTerminated())
2679     return true;
2680     if (nanos <= 0)
2681     return false;
2682     nanos = termination.awaitNanos(nanos);
2683     }
2684     } finally {
2685     lock.unlock();
2686 dl 1.57 }
2687 dl 1.1 }
2688    
2689     /**
2690     * Interface for extending managed parallelism for tasks running
2691 jsr166 1.35 * in {@link ForkJoinPool}s.
2692     *
2693 dl 1.61 * <p>A {@code ManagedBlocker} provides two methods. Method
2694     * {@code isReleasable} must return {@code true} if blocking is
2695     * not necessary. Method {@code block} blocks the current thread
2696     * if necessary (perhaps internally invoking {@code isReleasable}
2697 dl 1.93 * before actually blocking). These actions are performed by any
2698     * thread invoking {@link ForkJoinPool#managedBlock}. The
2699     * unusual methods in this API accommodate synchronizers that may,
2700     * but don't usually, block for long periods. Similarly, they
2701     * allow more efficient internal handling of cases in which
2702     * additional workers may be, but usually are not, needed to
2703     * ensure sufficient parallelism. Toward this end,
2704     * implementations of method {@code isReleasable} must be amenable
2705     * to repeated invocation.
2706 jsr166 1.17 *
2707 dl 1.1 * <p>For example, here is a ManagedBlocker based on a
2708     * ReentrantLock:
2709 jsr166 1.17 * <pre> {@code
2710     * class ManagedLocker implements ManagedBlocker {
2711     * final ReentrantLock lock;
2712     * boolean hasLock = false;
2713     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
2714     * public boolean block() {
2715     * if (!hasLock)
2716     * lock.lock();
2717     * return true;
2718     * }
2719     * public boolean isReleasable() {
2720     * return hasLock || (hasLock = lock.tryLock());
2721 dl 1.1 * }
2722 jsr166 1.17 * }}</pre>
2723 dl 1.61 *
2724     * <p>Here is a class that possibly blocks waiting for an
2725     * item on a given queue:
2726     * <pre> {@code
2727     * class QueueTaker<E> implements ManagedBlocker {
2728     * final BlockingQueue<E> queue;
2729     * volatile E item = null;
2730     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
2731     * public boolean block() throws InterruptedException {
2732     * if (item == null)
2733 dl 1.65 * item = queue.take();
2734 dl 1.61 * return true;
2735     * }
2736     * public boolean isReleasable() {
2737 dl 1.65 * return item != null || (item = queue.poll()) != null;
2738 dl 1.61 * }
2739     * public E getItem() { // call after pool.managedBlock completes
2740     * return item;
2741     * }
2742     * }}</pre>
2743 dl 1.1 */
2744     public static interface ManagedBlocker {
2745     /**
2746     * Possibly blocks the current thread, for example waiting for
2747     * a lock or condition.
2748 jsr166 1.17 *
2749 jsr166 1.28 * @return {@code true} if no additional blocking is necessary
2750     * (i.e., if isReleasable would return true)
2751 dl 1.1 * @throws InterruptedException if interrupted while waiting
2752 jsr166 1.17 * (the method is not required to do so, but is allowed to)
2753 dl 1.1 */
2754     boolean block() throws InterruptedException;
2755    
2756     /**
2757 jsr166 1.28 * Returns {@code true} if blocking is unnecessary.
2758 dl 1.1 */
2759     boolean isReleasable();
2760     }
2761    
2762     /**
2763     * Blocks in accord with the given blocker. If the current thread
2764 jsr166 1.38 * is a {@link ForkJoinWorkerThread}, this method possibly
2765     * arranges for a spare thread to be activated if necessary to
2766 dl 1.57 * ensure sufficient parallelism while the current thread is blocked.
2767 jsr166 1.38 *
2768     * <p>If the caller is not a {@link ForkJoinTask}, this method is
2769     * behaviorally equivalent to
2770 jsr166 1.115 * <pre> {@code
2771 jsr166 1.17 * while (!blocker.isReleasable())
2772     * if (blocker.block())
2773     * return;
2774     * }</pre>
2775 jsr166 1.38 *
2776     * If the caller is a {@code ForkJoinTask}, then the pool may
2777     * first be expanded to ensure parallelism, and later adjusted.
2778 dl 1.1 *
2779     * @param blocker the blocker
2780 jsr166 1.16 * @throws InterruptedException if blocker.block did so
2781 dl 1.1 */
2782 dl 1.57 public static void managedBlock(ManagedBlocker blocker)
2783 dl 1.1 throws InterruptedException {
2784     Thread t = Thread.currentThread();
2785 dl 1.111 ForkJoinPool p = ((t instanceof ForkJoinWorkerThread) ?
2786     ((ForkJoinWorkerThread)t).pool : null);
2787     while (!blocker.isReleasable()) {
2788 dl 1.123 if (p == null || p.tryCompensate(null, blocker)) {
2789 dl 1.111 try {
2790     do {} while (!blocker.isReleasable() && !blocker.block());
2791     } finally {
2792     if (p != null)
2793     p.incrementActiveCount();
2794     }
2795     break;
2796     }
2797 dl 1.57 }
2798 dl 1.1 }
2799    
2800 dl 1.33 // AbstractExecutorService overrides. These rely on undocumented
2801     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
2802     // implement RunnableFuture.
2803 dl 1.2
2804     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
2805 dl 1.123 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
2806 dl 1.2 }
2807    
2808     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
2809 dl 1.123 return new ForkJoinTask.AdaptedCallable<T>(callable);
2810 dl 1.2 }
2811    
2812 jsr166 1.27 // Unsafe mechanics
2813 dl 1.111 private static final sun.misc.Unsafe U;
2814     private static final long CTL;
2815     private static final long PARKBLOCKER;
2816 dl 1.123 private static final int ABASE;
2817     private static final int ASHIFT;
2818 dl 1.91
2819     static {
2820     poolNumberGenerator = new AtomicInteger();
2821 dl 1.123 nextSubmitterSeed = new AtomicInteger(0x55555555);
2822 dl 1.91 modifyThreadPermission = new RuntimePermission("modifyThread");
2823     defaultForkJoinWorkerThreadFactory =
2824     new DefaultForkJoinWorkerThreadFactory();
2825 dl 1.119 submitters = new ThreadSubmitter();
2826 dl 1.123 int s;
2827 jsr166 1.27 try {
2828 dl 1.111 U = getUnsafe();
2829 jsr166 1.103 Class<?> k = ForkJoinPool.class;
2830 dl 1.123 Class<?> ak = ForkJoinTask[].class;
2831 dl 1.111 CTL = U.objectFieldOffset
2832 dl 1.91 (k.getDeclaredField("ctl"));
2833 dl 1.119 Class<?> tk = Thread.class;
2834 dl 1.111 PARKBLOCKER = U.objectFieldOffset
2835     (tk.getDeclaredField("parkBlocker"));
2836 dl 1.123 ABASE = U.arrayBaseOffset(ak);
2837     s = U.arrayIndexScale(ak);
2838 dl 1.91 } catch (Exception e) {
2839     throw new Error(e);
2840     }
2841 dl 1.123 if ((s & (s-1)) != 0)
2842     throw new Error("data type scale not a power of two");
2843     ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
2844 jsr166 1.27 }
2845    
2846     /**
2847     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
2848     * Replace with a simple call to Unsafe.getUnsafe when integrating
2849     * into a jdk.
2850     *
2851     * @return a sun.misc.Unsafe
2852     */
2853     private static sun.misc.Unsafe getUnsafe() {
2854     try {
2855     return sun.misc.Unsafe.getUnsafe();
2856     } catch (SecurityException se) {
2857     try {
2858     return java.security.AccessController.doPrivileged
2859     (new java.security
2860     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
2861     public sun.misc.Unsafe run() throws Exception {
2862     java.lang.reflect.Field f = sun.misc
2863     .Unsafe.class.getDeclaredField("theUnsafe");
2864     f.setAccessible(true);
2865     return (sun.misc.Unsafe) f.get(null);
2866     }});
2867     } catch (java.security.PrivilegedActionException e) {
2868     throw new RuntimeException("Could not initialize intrinsics",
2869     e.getCause());
2870     }
2871     }
2872     }
2873 dl 1.112
2874 dl 1.1 }