ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
Revision: 1.135
Committed: Sun Oct 28 22:36:01 2012 UTC (11 years, 6 months ago) by dl
Branch: MAIN
Changes since 1.134: +237 -72 lines
Log Message:
Introduce ForkJoinPool.commonPool

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.97 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.1 */
6    
7     package jsr166y;
8 dl 1.135
9 jsr166 1.22 import java.util.ArrayList;
10     import java.util.Arrays;
11     import java.util.Collection;
12     import java.util.Collections;
13     import java.util.List;
14 dl 1.91 import java.util.Random;
15 dl 1.78 import java.util.concurrent.AbstractExecutorService;
16     import java.util.concurrent.Callable;
17     import java.util.concurrent.ExecutorService;
18     import java.util.concurrent.Future;
19     import java.util.concurrent.RejectedExecutionException;
20     import java.util.concurrent.RunnableFuture;
21     import java.util.concurrent.TimeUnit;
22     import java.util.concurrent.atomic.AtomicInteger;
23 dl 1.111 import java.util.concurrent.atomic.AtomicLong;
24 dl 1.119 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
25 dl 1.91 import java.util.concurrent.locks.Condition;
26 dl 1.1
27     /**
28 jsr166 1.29 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
29 jsr166 1.39 * A {@code ForkJoinPool} provides the entry point for submissions
30 dl 1.57 * from non-{@code ForkJoinTask} clients, as well as management and
31 jsr166 1.48 * monitoring operations.
32 dl 1.1 *
33 dl 1.42 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
34     * ExecutorService} mainly by virtue of employing
35     * <em>work-stealing</em>: all threads in the pool attempt to find and
36 dl 1.111 * execute tasks submitted to the pool and/or created by other active
37     * tasks (eventually blocking waiting for work if none exist). This
38     * enables efficient processing when most tasks spawn other subtasks
39     * (as do most {@code ForkJoinTask}s), as well as when many small
40     * tasks are submitted to the pool from external clients. Especially
41     * when setting <em>asyncMode</em> to true in constructors, {@code
42     * ForkJoinPool}s may also be appropriate for use with event-style
43     * tasks that are never joined.
44 dl 1.1 *
45 dl 1.135 * <p>A static {@link #commonPool} is available and appropriate for
46     * most applications. The common pool is constructed upon first
47     * access, or upon usage by any ForkJoinTask that is not explictly
48     * submitted to a specified pool. Using the common pool normally
49     * reduces resource usage (its threads are slowly reclaimed during
50     * periods of non-use, and reinstated upon subsequent use). The
51     * common pool is by default constructed with default parameters, but
52     * these may be controlled by setting any or all of the three
53     * properties {@code
54     * java.util.concurrent.ForkJoinPool.common.{parallelism,
55     * threadFactory, exceptionHandler}}.
56     *
57     * <p>For applications that require separate or custom pools, a {@code
58     * ForkJoinPool} may be constructed with a given target parallelism
59     * level; by default, equal to the number of available processors. The
60     * pool attempts to maintain enough active (or available) threads by
61     * dynamically adding, suspending, or resuming internal worker
62     * threads, even if some tasks are stalled waiting to join
63     * others. However, no such adjustments are guaranteed in the face of
64     * blocked IO or other unmanaged synchronization. The nested {@link
65     * ManagedBlocker} interface enables extension of the kinds of
66 dl 1.57 * synchronization accommodated.
67 dl 1.1 *
68     * <p>In addition to execution and lifecycle control methods, this
69     * class provides status check methods (for example
70 jsr166 1.29 * {@link #getStealCount}) that are intended to aid in developing,
71 dl 1.1 * tuning, and monitoring fork/join applications. Also, method
72 jsr166 1.29 * {@link #toString} returns indications of pool state in a
73 dl 1.2 * convenient form for informal monitoring.
74 dl 1.1 *
75 dl 1.57 * <p> As is the case with other ExecutorServices, there are three
76 jsr166 1.117 * main task execution methods summarized in the following table.
77     * These are designed to be used primarily by clients not already
78     * engaged in fork/join computations in the current pool. The main
79     * forms of these methods accept instances of {@code ForkJoinTask},
80     * but overloaded forms also allow mixed execution of plain {@code
81     * Runnable}- or {@code Callable}- based activities as well. However,
82     * tasks that are already executing in a pool should normally instead
83     * use the within-computation forms listed in the table unless using
84     * async event-style tasks that are not usually joined, in which case
85     * there is little difference among choice of methods.
86 dl 1.57 *
87     * <table BORDER CELLPADDING=3 CELLSPACING=1>
88     * <tr>
89     * <td></td>
90     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
91     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
92     * </tr>
93     * <tr>
94 jsr166 1.67 * <td> <b>Arrange async execution</td>
95 dl 1.57 * <td> {@link #execute(ForkJoinTask)}</td>
96     * <td> {@link ForkJoinTask#fork}</td>
97     * </tr>
98     * <tr>
99     * <td> <b>Await and obtain result</td>
100     * <td> {@link #invoke(ForkJoinTask)}</td>
101     * <td> {@link ForkJoinTask#invoke}</td>
102     * </tr>
103     * <tr>
104     * <td> <b>Arrange exec and obtain Future</td>
105     * <td> {@link #submit(ForkJoinTask)}</td>
106     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
107     * </tr>
108     * </table>
109 dl 1.59 *
110 dl 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
111 dl 1.2 * maximum number of running threads to 32767. Attempts to create
112 jsr166 1.48 * pools with greater than the maximum number result in
113 jsr166 1.39 * {@code IllegalArgumentException}.
114 jsr166 1.16 *
115 jsr166 1.48 * <p>This implementation rejects submitted tasks (that is, by throwing
116 dl 1.58 * {@link RejectedExecutionException}) only when the pool is shut down
117 dl 1.62 * or internal resources have been exhausted.
118 jsr166 1.48 *
119 jsr166 1.16 * @since 1.7
120     * @author Doug Lea
121 dl 1.1 */
122 dl 1.2 public class ForkJoinPool extends AbstractExecutorService {
123 dl 1.1
124     /*
125 dl 1.53 * Implementation Overview
126     *
127 dl 1.111 * This class and its nested classes provide the main
128     * functionality and control for a set of worker threads:
129 jsr166 1.117 * Submissions from non-FJ threads enter into submission queues.
130     * Workers take these tasks and typically split them into subtasks
131     * that may be stolen by other workers. Preference rules give
132     * first priority to processing tasks from their own queues (LIFO
133     * or FIFO, depending on mode), then to randomized FIFO steals of
134     * tasks in other queues.
135 dl 1.111 *
136 jsr166 1.117 * WorkQueues
137 dl 1.111 * ==========
138     *
139     * Most operations occur within work-stealing queues (in nested
140     * class WorkQueue). These are special forms of Deques that
141     * support only three of the four possible end-operations -- push,
142     * pop, and poll (aka steal), under the further constraints that
143     * push and pop are called only from the owning thread (or, as
144     * extended here, under a lock), while poll may be called from
145     * other threads. (If you are unfamiliar with them, you probably
146     * want to read Herlihy and Shavit's book "The Art of
147     * Multiprocessor programming", chapter 16 describing these in
148     * more detail before proceeding.) The main work-stealing queue
149     * design is roughly similar to those in the papers "Dynamic
150     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
151     * (http://research.sun.com/scalable/pubs/index.html) and
152     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
153     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
154 jsr166 1.117 * The main differences ultimately stem from GC requirements that
155 dl 1.111 * we null out taken slots as soon as we can, to maintain as small
156     * a footprint as possible even in programs generating huge
157     * numbers of tasks. To accomplish this, we shift the CAS
158     * arbitrating pop vs poll (steal) from being on the indices
159     * ("base" and "top") to the slots themselves. So, both a
160     * successful pop and poll mainly entail a CAS of a slot from
161     * non-null to null. Because we rely on CASes of references, we
162     * do not need tag bits on base or top. They are simple ints as
163     * used in any circular array-based queue (see for example
164     * ArrayDeque). Updates to the indices must still be ordered in a
165     * way that guarantees that top == base means the queue is empty,
166     * but otherwise may err on the side of possibly making the queue
167     * appear nonempty when a push, pop, or poll have not fully
168     * committed. Note that this means that the poll operation,
169     * considered individually, is not wait-free. One thief cannot
170     * successfully continue until another in-progress one (or, if
171     * previously empty, a push) completes. However, in the
172     * aggregate, we ensure at least probabilistic non-blockingness.
173     * If an attempted steal fails, a thief always chooses a different
174     * random victim target to try next. So, in order for one thief to
175     * progress, it suffices for any in-progress poll or new push on
176 dl 1.123 * any empty queue to complete. (This is why we normally use
177     * method pollAt and its variants that try once at the apparent
178     * base index, else consider alternative actions, rather than
179     * method poll.)
180 dl 1.111 *
181 dl 1.112 * This approach also enables support of a user mode in which local
182 dl 1.111 * task processing is in FIFO, not LIFO order, simply by using
183     * poll rather than pop. This can be useful in message-passing
184     * frameworks in which tasks are never joined. However neither
185     * mode considers affinities, loads, cache localities, etc, so
186     * rarely provide the best possible performance on a given
187     * machine, but portably provide good throughput by averaging over
188     * these factors. (Further, even if we did try to use such
189 jsr166 1.117 * information, we do not usually have a basis for exploiting it.
190     * For example, some sets of tasks profit from cache affinities,
191     * but others are harmed by cache pollution effects.)
192 dl 1.111 *
193     * WorkQueues are also used in a similar way for tasks submitted
194     * to the pool. We cannot mix these tasks in the same queues used
195     * for work-stealing (this would contaminate lifo/fifo
196 dl 1.116 * processing). Instead, we loosely associate submission queues
197     * with submitting threads, using a form of hashing. The
198     * ThreadLocal Submitter class contains a value initially used as
199     * a hash code for choosing existing queues, but may be randomly
200     * repositioned upon contention with other submitters. In
201     * essence, submitters act like workers except that they never
202     * take tasks, and they are multiplexed on to a finite number of
203     * shared work queues. However, classes are set up so that future
204     * extensions could allow submitters to optionally help perform
205 dl 1.119 * tasks as well. Insertion of tasks in shared mode requires a
206     * lock (mainly to protect in the case of resizing) but we use
207     * only a simple spinlock (using bits in field runState), because
208     * submitters encountering a busy queue move on to try or create
209 dl 1.123 * other queues -- they block only when creating and registering
210     * new queues.
211 dl 1.111 *
212 jsr166 1.117 * Management
213 dl 1.111 * ==========
214 dl 1.91 *
215     * The main throughput advantages of work-stealing stem from
216     * decentralized control -- workers mostly take tasks from
217     * themselves or each other. We cannot negate this in the
218     * implementation of other management responsibilities. The main
219     * tactic for avoiding bottlenecks is packing nearly all
220 dl 1.111 * essentially atomic control state into two volatile variables
221     * that are by far most often read (not written) as status and
222 jsr166 1.117 * consistency checks.
223 dl 1.111 *
224     * Field "ctl" contains 64 bits holding all the information needed
225     * to atomically decide to add, inactivate, enqueue (on an event
226     * queue), dequeue, and/or re-activate workers. To enable this
227     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
228     * far in excess of normal operating range) to allow ids, counts,
229     * and their negations (used for thresholding) to fit into 16bit
230     * fields.
231     *
232     * Field "runState" contains 32 bits needed to register and
233     * deregister WorkQueues, as well as to enable shutdown. It is
234     * only modified under a lock (normally briefly held, but
235     * occasionally protecting allocations and resizings) but even
236 dl 1.123 * when locked remains available to check consistency.
237 dl 1.111 *
238     * Recording WorkQueues. WorkQueues are recorded in the
239     * "workQueues" array that is created upon pool construction and
240     * expanded if necessary. Updates to the array while recording
241     * new workers and unrecording terminated ones are protected from
242     * each other by a lock but the array is otherwise concurrently
243     * readable, and accessed directly. To simplify index-based
244 dl 1.91 * operations, the array size is always a power of two, and all
245 dl 1.111 * readers must tolerate null slots. Shared (submission) queues
246     * are at even indices, worker queues at odd indices. Grouping
247     * them together in this way simplifies and speeds up task
248 dl 1.123 * scanning.
249 dl 1.119 *
250     * All worker thread creation is on-demand, triggered by task
251     * submissions, replacement of terminated workers, and/or
252 dl 1.111 * compensation for blocked workers. However, all other support
253     * code is set up to work with other policies. To ensure that we
254     * do not hold on to worker references that would prevent GC, ALL
255     * accesses to workQueues are via indices into the workQueues
256     * array (which is one source of some of the messy code
257     * constructions here). In essence, the workQueues array serves as
258     * a weak reference mechanism. Thus for example the wait queue
259     * field of ctl stores indices, not references. Access to the
260     * workQueues in associated methods (for example signalWork) must
261     * both index-check and null-check the IDs. All such accesses
262     * ignore bad IDs by returning out early from what they are doing,
263     * since this can only be associated with termination, in which
264 dl 1.119 * case it is OK to give up. All uses of the workQueues array
265     * also check that it is non-null (even if previously
266     * non-null). This allows nulling during termination, which is
267     * currently not necessary, but remains an option for
268     * resource-revocation-based shutdown schemes. It also helps
269     * reduce JIT issuance of uncommon-trap code, which tends to
270 dl 1.111 * unnecessarily complicate control flow in some methods.
271 dl 1.91 *
272 dl 1.111 * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
273 dl 1.95 * let workers spin indefinitely scanning for tasks when none can
274     * be found immediately, and we cannot start/resume workers unless
275     * there appear to be tasks available. On the other hand, we must
276     * quickly prod them into action when new tasks are submitted or
277 dl 1.111 * generated. In many usages, ramp-up time to activate workers is
278     * the main limiting factor in overall performance (this is
279     * compounded at program start-up by JIT compilation and
280     * allocation). So we try to streamline this as much as possible.
281     * We park/unpark workers after placing in an event wait queue
282     * when they cannot find work. This "queue" is actually a simple
283     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
284     * counter value (that reflects the number of times a worker has
285     * been inactivated) to avoid ABA effects (we need only as many
286     * version numbers as worker threads). Successors are held in
287     * field WorkQueue.nextWait. Queuing deals with several intrinsic
288     * races, mainly that a task-producing thread can miss seeing (and
289 dl 1.95 * signalling) another thread that gave up looking for work but
290     * has not yet entered the wait queue. We solve this by requiring
291 dl 1.111 * a full sweep of all workers (via repeated calls to method
292     * scan()) both before and after a newly waiting worker is added
293     * to the wait queue. During a rescan, the worker might release
294     * some other queued worker rather than itself, which has the same
295     * net effect. Because enqueued workers may actually be rescanning
296     * rather than waiting, we set and clear the "parker" field of
297 jsr166 1.117 * WorkQueues to reduce unnecessary calls to unpark. (This
298 dl 1.111 * requires a secondary recheck to avoid missed signals.) Note
299     * the unusual conventions about Thread.interrupts surrounding
300     * parking and other blocking: Because interrupts are used solely
301     * to alert threads to check termination, which is checked anyway
302     * upon blocking, we clear status (using Thread.interrupted)
303     * before any call to park, so that park does not immediately
304     * return due to status being set via some other unrelated call to
305     * interrupt in user code.
306 dl 1.91 *
307     * Signalling. We create or wake up workers only when there
308     * appears to be at least one task they might be able to find and
309     * execute. When a submission is added or another worker adds a
310 dl 1.111 * task to a queue that previously had fewer than two tasks, they
311 dl 1.91 * signal waiting workers (or trigger creation of new ones if
312     * fewer than the given parallelism level -- see signalWork).
313 dl 1.111 * These primary signals are buttressed by signals during rescans;
314     * together these cover the signals needed in cases when more
315     * tasks are pushed but untaken, and improve performance compared
316     * to having one thread wake up all workers.
317 dl 1.91 *
318     * Trimming workers. To release resources after periods of lack of
319     * use, a worker starting to wait when the pool is quiescent will
320 dl 1.135 * time out and terminate if the pool has remained quiescent for a
321     * given period -- a short period if there are more threads than
322     * parallelism, longer as the number of threads decreases. This
323     * will slowly propagate, eventually terminating all workers after
324     * periods of non-use.
325 dl 1.91 *
326 dl 1.111 * Shutdown and Termination. A call to shutdownNow atomically sets
327 jsr166 1.117 * a runState bit and then (non-atomically) sets each worker's
328 dl 1.111 * runState status, cancels all unprocessed tasks, and wakes up
329     * all waiting workers. Detecting whether termination should
330     * commence after a non-abrupt shutdown() call requires more work
331     * and bookkeeping. We need consensus about quiescence (i.e., that
332     * there is no more work). The active count provides a primary
333     * indication but non-abrupt shutdown still requires a rechecking
334     * scan for any workers that are inactive but not queued.
335     *
336 jsr166 1.117 * Joining Tasks
337     * =============
338 dl 1.111 *
339     * Any of several actions may be taken when one worker is waiting
340 jsr166 1.117 * to join a task stolen (or always held) by another. Because we
341 dl 1.111 * are multiplexing many tasks on to a pool of workers, we can't
342     * just let them block (as in Thread.join). We also cannot just
343     * reassign the joiner's run-time stack with another and replace
344     * it later, which would be a form of "continuation", that even if
345     * possible is not necessarily a good idea since we sometimes need
346 jsr166 1.117 * both an unblocked task and its continuation to progress.
347     * Instead we combine two tactics:
348 dl 1.58 *
349 dl 1.60 * Helping: Arranging for the joiner to execute some task that it
350 dl 1.111 * would be running if the steal had not occurred.
351 dl 1.58 *
352 dl 1.61 * Compensating: Unless there are already enough live threads,
353 dl 1.111 * method tryCompensate() may create or re-activate a spare
354     * thread to compensate for blocked joiners until they unblock.
355     *
356     * A third form (implemented in tryRemoveAndExec and
357     * tryPollForAndExec) amounts to helping a hypothetical
358     * compensator: If we can readily tell that a possible action of a
359     * compensator is to steal and execute the task being joined, the
360     * joining thread can do so directly, without the need for a
361     * compensation thread (although at the expense of larger run-time
362     * stacks, but the tradeoff is typically worthwhile).
363 dl 1.91 *
364     * The ManagedBlocker extension API can't use helping so relies
365     * only on compensation in method awaitBlocker.
366 dl 1.58 *
367 dl 1.111 * The algorithm in tryHelpStealer entails a form of "linear"
368     * helping: Each worker records (in field currentSteal) the most
369     * recent task it stole from some other worker. Plus, it records
370     * (in field currentJoin) the task it is currently actively
371     * joining. Method tryHelpStealer uses these markers to try to
372     * find a worker to help (i.e., steal back a task from and execute
373     * it) that could hasten completion of the actively joined task.
374     * In essence, the joiner executes a task that would be on its own
375     * local deque had the to-be-joined task not been stolen. This may
376     * be seen as a conservative variant of the approach in Wagner &
377     * Calder "Leapfrogging: a portable technique for implementing
378     * efficient futures" SIGPLAN Notices, 1993
379     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
380     * that: (1) We only maintain dependency links across workers upon
381     * steals, rather than use per-task bookkeeping. This sometimes
382 dl 1.123 * requires a linear scan of workQueues array to locate stealers,
383     * but often doesn't because stealers leave hints (that may become
384 dl 1.111 * stale/wrong) of where to locate them. A stealHint is only a
385     * hint because a worker might have had multiple steals and the
386     * hint records only one of them (usually the most current).
387     * Hinting isolates cost to when it is needed, rather than adding
388     * to per-task overhead. (2) It is "shallow", ignoring nesting
389     * and potentially cyclic mutual steals. (3) It is intentionally
390     * racy: field currentJoin is updated only while actively joining,
391     * which means that we miss links in the chain during long-lived
392     * tasks, GC stalls etc (which is OK since blocking in such cases
393     * is usually a good idea). (4) We bound the number of attempts
394 dl 1.123 * to find work (see MAX_HELP) and fall back to suspending the
395     * worker and if necessary replacing it with another.
396 dl 1.111 *
397 dl 1.91 * It is impossible to keep exactly the target parallelism number
398     * of threads running at any given time. Determining the
399 dl 1.66 * existence of conservatively safe helping targets, the
400     * availability of already-created spares, and the apparent need
401 dl 1.111 * to create new spares are all racy, so we rely on multiple
402 dl 1.123 * retries of each. Compensation in the apparent absence of
403     * helping opportunities is challenging to control on JVMs, where
404     * GC and other activities can stall progress of tasks that in
405     * turn stall out many other dependent tasks, without us being
406     * able to determine whether they will ever require compensation.
407     * Even though work-stealing otherwise encounters little
408     * degradation in the presence of more threads than cores,
409     * aggressively adding new threads in such cases entails risk of
410     * unwanted positive feedback control loops in which more threads
411     * cause more dependent stalls (as well as delayed progress of
412     * unblocked threads to the point that we know they are available)
413     * leading to more situations requiring more threads, and so
414     * on. This aspect of control can be seen as an (analytically
415 jsr166 1.125 * intractable) game with an opponent that may choose the worst
416 dl 1.123 * (for us) active thread to stall at any time. We take several
417     * precautions to bound losses (and thus bound gains), mainly in
418     * methods tryCompensate and awaitJoin: (1) We only try
419     * compensation after attempting enough helping steps (measured
420     * via counting and timing) that we have already consumed the
421     * estimated cost of creating and activating a new thread. (2) We
422     * allow up to 50% of threads to be blocked before initially
423     * adding any others, and unless completely saturated, check that
424     * some work is available for a new worker before adding. Also, we
425     * create up to only 50% more threads until entering a mode that
426     * only adds a thread if all others are possibly blocked. All
427     * together, this means that we might be half as fast to react,
428     * and create half as many threads as possible in the ideal case,
429     * but present vastly fewer anomalies in all other cases compared
430     * to both more aggressive and more conservative alternatives.
431 dl 1.58 *
432 dl 1.91 * Style notes: There is a lot of representation-level coupling
433 dl 1.53 * among classes ForkJoinPool, ForkJoinWorkerThread, and
434 dl 1.111 * ForkJoinTask. The fields of WorkQueue maintain data structures
435     * managed by ForkJoinPool, so are directly accessed. There is
436     * little point trying to reduce this, since any associated future
437     * changes in representations will need to be accompanied by
438 dl 1.119 * algorithmic changes anyway. Several methods intrinsically
439     * sprawl because they must accumulate sets of consistent reads of
440     * volatiles held in local variables. Methods signalWork() and
441     * scan() are the main bottlenecks, so are especially heavily
442     * micro-optimized/mangled. There are lots of inline assignments
443     * (of form "while ((local = field) != 0)") which are usually the
444     * simplest way to ensure the required read orderings (which are
445     * sometimes critical). This leads to a "C"-like style of listing
446     * declarations of these locals at the heads of methods or blocks.
447     * There are several occurrences of the unusual "do {} while
448     * (!cas...)" which is the simplest way to force an update of a
449     * CAS'ed variable. There are also other coding oddities that help
450     * some methods perform reasonably even when interpreted (not
451     * compiled).
452 dl 1.91 *
453 jsr166 1.117 * The order of declarations in this file is:
454 dl 1.119 * (1) Static utility functions
455     * (2) Nested (static) classes
456     * (3) Static fields
457     * (4) Fields, along with constants used when unpacking some of them
458     * (5) Internal control methods
459     * (6) Callbacks and other support for ForkJoinTask methods
460     * (7) Exported methods
461     * (8) Static block initializing statics in minimally dependent order
462     */
463    
464     // Static utilities
465    
466     /**
467     * If there is a security manager, makes sure caller has
468     * permission to modify threads.
469 dl 1.1 */
470 dl 1.119 private static void checkPermission() {
471     SecurityManager security = System.getSecurityManager();
472     if (security != null)
473     security.checkPermission(modifyThreadPermission);
474     }
475    
476     // Nested classes
477 dl 1.1
478     /**
479 jsr166 1.35 * Factory for creating new {@link ForkJoinWorkerThread}s.
480     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
481     * for {@code ForkJoinWorkerThread} subclasses that extend base
482     * functionality or initialize threads with different contexts.
483 dl 1.1 */
484     public static interface ForkJoinWorkerThreadFactory {
485     /**
486     * Returns a new worker thread operating in the given pool.
487     *
488     * @param pool the pool this thread works in
489 jsr166 1.48 * @throws NullPointerException if the pool is null
490 dl 1.1 */
491     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
492     }
493    
494     /**
495 jsr166 1.17 * Default ForkJoinWorkerThreadFactory implementation; creates a
496 dl 1.1 * new ForkJoinWorkerThread.
497     */
498 dl 1.57 static class DefaultForkJoinWorkerThreadFactory
499 dl 1.1 implements ForkJoinWorkerThreadFactory {
500     public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
501 dl 1.53 return new ForkJoinWorkerThread(pool);
502 dl 1.1 }
503     }
504    
505     /**
506 dl 1.119 * A simple non-reentrant lock used for exclusion when managing
507     * queues and workers. We use a custom lock so that we can readily
508     * probe lock state in constructions that check among alternative
509     * actions. The lock is normally only very briefly held, and
510     * sometimes treated as a spinlock, but other usages block to
511     * reduce overall contention in those cases where locked code
512     * bodies perform allocation/resizing.
513     */
514     static final class Mutex extends AbstractQueuedSynchronizer {
515     public final boolean tryAcquire(int ignore) {
516     return compareAndSetState(0, 1);
517     }
518     public final boolean tryRelease(int ignore) {
519     setState(0);
520     return true;
521     }
522     public final void lock() { acquire(0); }
523     public final void unlock() { release(0); }
524     public final boolean isHeldExclusively() { return getState() == 1; }
525     public final Condition newCondition() { return new ConditionObject(); }
526     }
527 dl 1.1
528     /**
529 dl 1.119 * Class for artificial tasks that are used to replace the target
530     * of local joins if they are removed from an interior queue slot
531     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
532     * actually do anything beyond having a unique identity.
533 dl 1.1 */
534 dl 1.119 static final class EmptyTask extends ForkJoinTask<Void> {
535     EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
536     public final Void getRawResult() { return null; }
537     public final void setRawResult(Void x) {}
538     public final boolean exec() { return true; }
539 dl 1.1 }
540    
541     /**
542 dl 1.111 * Queues supporting work-stealing as well as external task
543     * submission. See above for main rationale and algorithms.
544     * Implementation relies heavily on "Unsafe" intrinsics
545     * and selective use of "volatile":
546     *
547     * Field "base" is the index (mod array.length) of the least valid
548     * queue slot, which is always the next position to steal (poll)
549     * from if nonempty. Reads and writes require volatile orderings
550     * but not CAS, because updates are only performed after slot
551     * CASes.
552     *
553     * Field "top" is the index (mod array.length) of the next queue
554     * slot to push to or pop from. It is written only by owner thread
555     * for push, or under lock for trySharedPush, and accessed by
556     * other threads only after reading (volatile) base. Both top and
557     * base are allowed to wrap around on overflow, but (top - base)
558 jsr166 1.114 * (or more commonly -(base - top) to force volatile read of base
559 dl 1.111 * before top) still estimates size.
560     *
561     * The array slots are read and written using the emulation of
562     * volatiles/atomics provided by Unsafe. Insertions must in
563     * general use putOrderedObject as a form of releasing store to
564     * ensure that all writes to the task object are ordered before
565     * its publication in the queue. (Although we can avoid one case
566     * of this when locked in trySharedPush.) All removals entail a
567     * CAS to null. The array is always a power of two. To ensure
568     * safety of Unsafe array operations, all accesses perform
569     * explicit null checks and implicit bounds checks via
570     * power-of-two masking.
571     *
572     * In addition to basic queuing support, this class contains
573     * fields described elsewhere to control execution. It turns out
574     * to work better memory-layout-wise to include them in this
575     * class rather than a separate class.
576     *
577     * Performance on most platforms is very sensitive to placement of
578     * instances of both WorkQueues and their arrays -- we absolutely
579     * do not want multiple WorkQueue instances or multiple queue
580     * arrays sharing cache lines. (It would be best for queue objects
581     * and their arrays to share, but there is nothing available to
582     * help arrange that). Unfortunately, because they are recorded
583     * in a common array, WorkQueue instances are often moved to be
584     * adjacent by garbage collectors. To reduce impact, we use field
585     * padding that works OK on common platforms; this effectively
586     * trades off slightly slower average field access for the sake of
587     * avoiding really bad worst-case access. (Until better JVM
588     * support is in place, this padding is dependent on transient
589     * properties of JVM field layout rules.) We also take care in
590 dl 1.119 * allocating, sizing and resizing the array. Non-shared queue
591 dl 1.111 * arrays are initialized (via method growArray) by workers before
592     * use. Others are allocated on first use.
593 dl 1.53 */
594 dl 1.111 static final class WorkQueue {
595     /**
596     * Capacity of work-stealing queue array upon initialization.
597 dl 1.123 * Must be a power of two; at least 4, but should be larger to
598     * reduce or eliminate cacheline sharing among queues.
599     * Currently, it is much larger, as a partial workaround for
600     * the fact that JVMs often place arrays in locations that
601     * share GC bookkeeping (especially cardmarks) such that
602     * per-write accesses encounter serious memory contention.
603 dl 1.111 */
604 dl 1.123 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
605 dl 1.111
606     /**
607     * Maximum size for queue arrays. Must be a power of two less
608     * than or equal to 1 << (31 - width of array entry) to ensure
609     * lack of wraparound of index calculations, but defined to a
610     * value a bit less than this to help users trap runaway
611     * programs before saturating systems.
612     */
613     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
614    
615     volatile long totalSteals; // cumulative number of steals
616     int seed; // for random scanning; initialize nonzero
617     volatile int eventCount; // encoded inactivation count; < 0 if inactive
618     int nextWait; // encoded record of next event waiter
619     int rescans; // remaining scans until block
620     int nsteals; // top-level task executions since last idle
621     final int mode; // lifo, fifo, or shared
622     int poolIndex; // index of this queue in pool (or 0)
623     int stealHint; // index of most recent known stealer
624     volatile int runState; // 1: locked, -1: terminate; else 0
625     volatile int base; // index of next slot for poll
626     int top; // index of next slot for push
627     ForkJoinTask<?>[] array; // the elements (initially unallocated)
628 dl 1.123 final ForkJoinPool pool; // the containing pool (may be null)
629 dl 1.111 final ForkJoinWorkerThread owner; // owning thread or null if shared
630     volatile Thread parker; // == owner during call to park; else null
631 dl 1.128 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
632 dl 1.111 ForkJoinTask<?> currentSteal; // current non-local task being executed
633     // Heuristic padding to ameliorate unfortunate memory placements
634 dl 1.123 Object p00, p01, p02, p03, p04, p05, p06, p07;
635     Object p08, p09, p0a, p0b, p0c, p0d, p0e;
636 dl 1.111
637 dl 1.123 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode) {
638     this.mode = mode;
639     this.pool = pool;
640 dl 1.111 this.owner = owner;
641     // Place indices in the center of array (that is not yet allocated)
642     base = top = INITIAL_QUEUE_CAPACITY >>> 1;
643     }
644    
645     /**
646 dl 1.123 * Returns the approximate number of tasks in the queue.
647 dl 1.111 */
648     final int queueSize() {
649 dl 1.123 int n = base - top; // non-owner callers must read base first
650     return (n >= 0) ? 0 : -n; // ignore transient negative
651     }
652    
653     /**
654     * Provides a more accurate estimate of whether this queue has
655     * any tasks than does queueSize, by checking whether a
656     * near-empty queue has at least one unclaimed task.
657     */
658     final boolean isEmpty() {
659     ForkJoinTask<?>[] a; int m, s;
660     int n = base - (s = top);
661     return (n >= 0 ||
662     (n == -1 &&
663     ((a = array) == null ||
664     (m = a.length - 1) < 0 ||
665     U.getObjectVolatile
666     (a, ((m & (s - 1)) << ASHIFT) + ABASE) == null)));
667 dl 1.111 }
668    
669     /**
670     * Pushes a task. Call only by owner in unshared queues.
671     *
672     * @param task the task. Caller must ensure non-null.
673 jsr166 1.117 * @throw RejectedExecutionException if array cannot be resized
674 dl 1.111 */
675 dl 1.123 final void push(ForkJoinTask<?> task) {
676     ForkJoinTask<?>[] a; ForkJoinPool p;
677 dl 1.111 int s = top, m, n;
678     if ((a = array) != null) { // ignore if queue removed
679     U.putOrderedObject
680     (a, (((m = a.length - 1) & s) << ASHIFT) + ABASE, task);
681     if ((n = (top = s + 1) - base) <= 2) {
682 dl 1.123 if ((p = pool) != null)
683 dl 1.111 p.signalWork();
684     }
685     else if (n >= m)
686     growArray(true);
687     }
688     }
689    
690     /**
691     * Pushes a task if lock is free and array is either big
692     * enough or can be resized to be big enough.
693     *
694     * @param task the task. Caller must ensure non-null.
695     * @return true if submitted
696     */
697     final boolean trySharedPush(ForkJoinTask<?> task) {
698     boolean submitted = false;
699     if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
700     ForkJoinTask<?>[] a = array;
701 dl 1.119 int s = top;
702 dl 1.111 try {
703 dl 1.119 if ((a != null && a.length > s + 1 - base) ||
704 dl 1.111 (a = growArray(false)) != null) { // must presize
705     int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
706     U.putObject(a, (long)j, task); // don't need "ordered"
707     top = s + 1;
708     submitted = true;
709     }
710     } finally {
711     runState = 0; // unlock
712     }
713     }
714     return submitted;
715     }
716    
717     /**
718 dl 1.123 * Takes next task, if one exists, in LIFO order. Call only
719     * by owner in unshared queues. (We do not have a shared
720     * version of this method because it is never needed.)
721     */
722     final ForkJoinTask<?> pop() {
723 dl 1.127 ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
724     if ((a = array) != null && (m = a.length - 1) >= 0) {
725 dl 1.123 for (int s; (s = top - 1) - base >= 0;) {
726 dl 1.127 long j = ((m & s) << ASHIFT) + ABASE;
727     if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
728 dl 1.123 break;
729     if (U.compareAndSwapObject(a, j, t, null)) {
730     top = s;
731     return t;
732     }
733     }
734     }
735     return null;
736     }
737    
738     /**
739     * Takes a task in FIFO order if b is base of queue and a task
740     * can be claimed without contention. Specialized versions
741     * appear in ForkJoinPool methods scan and tryHelpStealer.
742 dl 1.111 */
743 dl 1.123 final ForkJoinTask<?> pollAt(int b) {
744     ForkJoinTask<?> t; ForkJoinTask<?>[] a;
745     if ((a = array) != null) {
746 dl 1.119 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
747     if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
748     base == b &&
749 dl 1.111 U.compareAndSwapObject(a, j, t, null)) {
750     base = b + 1;
751     return t;
752     }
753     }
754     return null;
755     }
756    
757     /**
758 dl 1.123 * Takes next task, if one exists, in FIFO order.
759 dl 1.111 */
760 dl 1.123 final ForkJoinTask<?> poll() {
761     ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
762     while ((b = base) - top < 0 && (a = array) != null) {
763     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
764     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
765     if (t != null) {
766     if (base == b &&
767     U.compareAndSwapObject(a, j, t, null)) {
768     base = b + 1;
769 dl 1.111 return t;
770     }
771     }
772 dl 1.123 else if (base == b) {
773     if (b + 1 == top)
774     break;
775     Thread.yield(); // wait for lagging update
776     }
777 dl 1.111 }
778     return null;
779     }
780    
781     /**
782     * Takes next task, if one exists, in order specified by mode.
783     */
784     final ForkJoinTask<?> nextLocalTask() {
785     return mode == 0 ? pop() : poll();
786     }
787    
788     /**
789     * Returns next task, if one exists, in order specified by mode.
790     */
791     final ForkJoinTask<?> peek() {
792     ForkJoinTask<?>[] a = array; int m;
793     if (a == null || (m = a.length - 1) < 0)
794     return null;
795     int i = mode == 0 ? top - 1 : base;
796     int j = ((i & m) << ASHIFT) + ABASE;
797     return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
798     }
799    
800     /**
801     * Pops the given task only if it is at the current top.
802     */
803     final boolean tryUnpush(ForkJoinTask<?> t) {
804     ForkJoinTask<?>[] a; int s;
805     if ((a = array) != null && (s = top) != base &&
806     U.compareAndSwapObject
807     (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
808     top = s;
809     return true;
810     }
811     return false;
812     }
813    
814     /**
815 dl 1.135 * Version of tryUnpush for shared queues; called by non-FJ
816     * submitters. Conservatively fails to unpush if all workers
817     * are active unless there are multiple tasks in queue.
818     */
819     final boolean trySharedUnpush(ForkJoinTask<?> task, ForkJoinPool p) {
820     boolean success = false;
821     if (task != null && top != base && runState == 0 &&
822     U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
823     try {
824     ForkJoinTask<?>[] a; int n, s;
825     if ((a = array) != null && (n = (s = top) - base) > 0 &&
826     (n > 1 || p == null || (int)(p.ctl >> AC_SHIFT) < 0)) {
827     int j = (((a.length - 1) & --s) << ASHIFT) + ABASE;
828     if (U.getObjectVolatile(a, j) == task &&
829     U.compareAndSwapObject(a, j, task, null)) {
830     top = s;
831     success = true;
832     }
833     }
834     } finally {
835     runState = 0; // unlock
836     }
837     }
838     return success;
839     }
840    
841     /**
842 dl 1.111 * Polls the given task only if it is at the current base.
843     */
844     final boolean pollFor(ForkJoinTask<?> task) {
845 dl 1.119 ForkJoinTask<?>[] a; int b;
846     if ((b = base) - top < 0 && (a = array) != null) {
847     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
848 dl 1.111 if (U.getObjectVolatile(a, j) == task && base == b &&
849     U.compareAndSwapObject(a, j, task, null)) {
850     base = b + 1;
851     return true;
852     }
853     }
854     return false;
855     }
856    
857     /**
858     * Initializes or doubles the capacity of array. Call either
859     * by owner or with lock held -- it is OK for base, but not
860     * top, to move while resizings are in progress.
861     *
862     * @param rejectOnFailure if true, throw exception if capacity
863     * exceeded (relayed ultimately to user); else return null.
864     */
865     final ForkJoinTask<?>[] growArray(boolean rejectOnFailure) {
866     ForkJoinTask<?>[] oldA = array;
867     int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
868     if (size <= MAXIMUM_QUEUE_CAPACITY) {
869     int oldMask, t, b;
870     ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
871     if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
872     (t = top) - (b = base) > 0) {
873     int mask = size - 1;
874     do {
875     ForkJoinTask<?> x;
876     int oldj = ((b & oldMask) << ASHIFT) + ABASE;
877     int j = ((b & mask) << ASHIFT) + ABASE;
878     x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
879     if (x != null &&
880     U.compareAndSwapObject(oldA, oldj, x, null))
881     U.putObjectVolatile(a, j, x);
882     } while (++b != t);
883     }
884     return a;
885     }
886     else if (!rejectOnFailure)
887     return null;
888     else
889     throw new RejectedExecutionException("Queue capacity exceeded");
890     }
891    
892     /**
893 jsr166 1.117 * Removes and cancels all known tasks, ignoring any exceptions.
894 dl 1.111 */
895     final void cancelAll() {
896     ForkJoinTask.cancelIgnoringExceptions(currentJoin);
897     ForkJoinTask.cancelIgnoringExceptions(currentSteal);
898     for (ForkJoinTask<?> t; (t = poll()) != null; )
899     ForkJoinTask.cancelIgnoringExceptions(t);
900     }
901    
902 dl 1.119 /**
903     * Computes next value for random probes. Scans don't require
904     * a very high quality generator, but also not a crummy one.
905     * Marsaglia xor-shift is cheap and works well enough. Note:
906 dl 1.123 * This is manually inlined in its usages in ForkJoinPool to
907     * avoid writes inside busy scan loops.
908 dl 1.119 */
909     final int nextSeed() {
910     int r = seed;
911     r ^= r << 13;
912     r ^= r >>> 17;
913     return seed = r ^= r << 5;
914     }
915    
916 dl 1.111 // Execution methods
917    
918     /**
919 dl 1.127 * Pops and runs tasks until empty.
920 dl 1.111 */
921 dl 1.127 private void popAndExecAll() {
922     // A bit faster than repeated pop calls
923     ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
924     while ((a = array) != null && (m = a.length - 1) >= 0 &&
925     (s = top - 1) - base >= 0 &&
926     (t = ((ForkJoinTask<?>)
927     U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
928     != null) {
929     if (U.compareAndSwapObject(a, j, t, null)) {
930     top = s;
931     t.doExec();
932 dl 1.123 }
933 dl 1.127 }
934     }
935    
936     /**
937     * Polls and runs tasks until empty.
938     */
939     private void pollAndExecAll() {
940     for (ForkJoinTask<?> t; (t = poll()) != null;)
941     t.doExec();
942     }
943    
944     /**
945     * If present, removes from queue and executes the given task, or
946     * any other cancelled task. Returns (true) immediately on any CAS
947     * or consistency check failure so caller can retry.
948     *
949 dl 1.128 * @return 0 if no progress can be made, else positive
950     * (this unusual convention simplifies use with tryHelpStealer.)
951 dl 1.127 */
952 dl 1.128 final int tryRemoveAndExec(ForkJoinTask<?> task) {
953     int stat = 1;
954     boolean removed = false, empty = true;
955 dl 1.127 ForkJoinTask<?>[] a; int m, s, b, n;
956     if ((a = array) != null && (m = a.length - 1) >= 0 &&
957     (n = (s = top) - (b = base)) > 0) {
958     for (ForkJoinTask<?> t;;) { // traverse from s to b
959     int j = ((--s & m) << ASHIFT) + ABASE;
960     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
961     if (t == null) // inconsistent length
962     break;
963     else if (t == task) {
964     if (s + 1 == top) { // pop
965     if (!U.compareAndSwapObject(a, j, task, null))
966 dl 1.123 break;
967 dl 1.127 top = s;
968     removed = true;
969 dl 1.123 }
970 dl 1.127 else if (base == b) // replace with proxy
971     removed = U.compareAndSwapObject(a, j, task,
972     new EmptyTask());
973     break;
974     }
975     else if (t.status >= 0)
976     empty = false;
977     else if (s + 1 == top) { // pop and throw away
978     if (U.compareAndSwapObject(a, j, t, null))
979     top = s;
980     break;
981     }
982     if (--n == 0) {
983     if (!empty && base == b)
984 dl 1.128 stat = 0;
985 dl 1.127 break;
986 dl 1.123 }
987     }
988 dl 1.111 }
989 dl 1.127 if (removed)
990     task.doExec();
991 dl 1.128 return stat;
992 dl 1.111 }
993    
994     /**
995     * Executes a top-level task and any local tasks remaining
996     * after execution.
997     */
998 dl 1.127 final void runTask(ForkJoinTask<?> t) {
999 dl 1.111 if (t != null) {
1000     currentSteal = t;
1001     t.doExec();
1002 dl 1.127 if (top != base) { // process remaining local tasks
1003     if (mode == 0)
1004     popAndExecAll();
1005     else
1006     pollAndExecAll();
1007     }
1008 dl 1.111 ++nsteals;
1009     currentSteal = null;
1010     }
1011     }
1012    
1013     /**
1014 jsr166 1.117 * Executes a non-top-level (stolen) task.
1015 dl 1.111 */
1016     final void runSubtask(ForkJoinTask<?> t) {
1017     if (t != null) {
1018     ForkJoinTask<?> ps = currentSteal;
1019     currentSteal = t;
1020     t.doExec();
1021     currentSteal = ps;
1022     }
1023     }
1024    
1025     /**
1026 dl 1.119 * Returns true if owned and not known to be blocked.
1027     */
1028     final boolean isApparentlyUnblocked() {
1029     Thread wt; Thread.State s;
1030     return (eventCount >= 0 &&
1031     (wt = owner) != null &&
1032     (s = wt.getState()) != Thread.State.BLOCKED &&
1033     s != Thread.State.WAITING &&
1034     s != Thread.State.TIMED_WAITING);
1035     }
1036    
1037     /**
1038     * If this owned and is not already interrupted, try to
1039     * interrupt and/or unpark, ignoring exceptions.
1040 dl 1.111 */
1041 dl 1.119 final void interruptOwner() {
1042     Thread wt, p;
1043     if ((wt = owner) != null && !wt.isInterrupted()) {
1044     try {
1045     wt.interrupt();
1046     } catch (SecurityException ignore) {
1047     }
1048     }
1049     if ((p = parker) != null)
1050     U.unpark(p);
1051 dl 1.111 }
1052    
1053     // Unsafe mechanics
1054     private static final sun.misc.Unsafe U;
1055     private static final long RUNSTATE;
1056     private static final int ABASE;
1057     private static final int ASHIFT;
1058     static {
1059     int s;
1060     try {
1061     U = getUnsafe();
1062     Class<?> k = WorkQueue.class;
1063     Class<?> ak = ForkJoinTask[].class;
1064     RUNSTATE = U.objectFieldOffset
1065     (k.getDeclaredField("runState"));
1066     ABASE = U.arrayBaseOffset(ak);
1067     s = U.arrayIndexScale(ak);
1068     } catch (Exception e) {
1069     throw new Error(e);
1070     }
1071     if ((s & (s-1)) != 0)
1072     throw new Error("data type scale not a power of two");
1073     ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
1074     }
1075     }
1076 jsr166 1.131
1077 dl 1.1 /**
1078 dl 1.119 * Per-thread records for threads that submit to pools. Currently
1079 jsr166 1.120 * holds only pseudo-random seed / index that is used to choose
1080 dl 1.119 * submission queues in method doSubmit. In the future, this may
1081     * also incorporate a means to implement different task rejection
1082     * and resubmission policies.
1083 dl 1.123 *
1084     * Seeds for submitters and workers/workQueues work in basically
1085     * the same way but are initialized and updated using slightly
1086     * different mechanics. Both are initialized using the same
1087     * approach as in class ThreadLocal, where successive values are
1088     * unlikely to collide with previous values. This is done during
1089     * registration for workers, but requires a separate AtomicInteger
1090     * for submitters. Seeds are then randomly modified upon
1091     * collisions using xorshifts, which requires a non-zero seed.
1092 dl 1.116 */
1093     static final class Submitter {
1094 dl 1.119 int seed;
1095 dl 1.123 Submitter() {
1096     int s = nextSubmitterSeed.getAndAdd(SEED_INCREMENT);
1097     seed = (s == 0) ? 1 : s; // ensure non-zero
1098     }
1099 dl 1.116 }
1100    
1101     /** ThreadLocal class for Submitters */
1102     static final class ThreadSubmitter extends ThreadLocal<Submitter> {
1103     public Submitter initialValue() { return new Submitter(); }
1104 dl 1.111 }
1105 dl 1.1
1106 dl 1.119 // static fields (initialized in static initializer below)
1107    
1108     /**
1109     * Creates a new ForkJoinWorkerThread. This factory is used unless
1110     * overridden in ForkJoinPool constructors.
1111     */
1112     public static final ForkJoinWorkerThreadFactory
1113     defaultForkJoinWorkerThreadFactory;
1114    
1115     /**
1116     * Generator for assigning sequence numbers as pool names.
1117     */
1118     private static final AtomicInteger poolNumberGenerator;
1119    
1120     /**
1121 dl 1.123 * Generator for initial hashes/seeds for submitters. Accessed by
1122     * Submitter class constructor.
1123     */
1124     static final AtomicInteger nextSubmitterSeed;
1125    
1126     /**
1127 dl 1.119 * Permission required for callers of methods that may start or
1128     * kill threads.
1129     */
1130     private static final RuntimePermission modifyThreadPermission;
1131    
1132 dl 1.1 /**
1133 jsr166 1.130 * Per-thread submission bookkeeping. Shared across all pools
1134 dl 1.116 * to reduce ThreadLocal pollution and because random motion
1135     * to avoid contention in one pool is likely to hold for others.
1136     */
1137 dl 1.119 private static final ThreadSubmitter submitters;
1138    
1139 dl 1.135 /** Common default pool */
1140     static volatile ForkJoinPool commonPool;
1141    
1142     // commonPool construction parameters
1143     private static final String propPrefix =
1144     "java.util.concurrent.ForkJoinPool.common.";
1145     private static final Thread.UncaughtExceptionHandler commonPoolUEH;
1146     private static final ForkJoinWorkerThreadFactory commonPoolFactory;
1147     static final int commonPoolParallelism;
1148    
1149     /** Static initialization lock */
1150     private static final Mutex initializationLock;
1151    
1152 dl 1.119 // static constants
1153    
1154     /**
1155 dl 1.135 * Initial timeout value (in nanoseconds) for the tread triggering
1156     * quiescence to park waiting for new work. On timeout, the thread
1157     * will instead try to shrink the number of workers.
1158 dl 1.119 */
1159 dl 1.135 private static final long IDLE_TIMEOUT = 1000L * 1000L * 1000L; // 1sec
1160 dl 1.119
1161     /**
1162 dl 1.135 * Timeout value when there are more threads than parallelism level
1163 dl 1.119 */
1164 dl 1.135 private static final long FAST_IDLE_TIMEOUT = 100L * 1000L * 1000L;
1165 dl 1.119
1166     /**
1167 dl 1.123 * The maximum stolen->joining link depth allowed in method
1168     * tryHelpStealer. Must be a power of two. This value also
1169     * controls the maximum number of times to try to help join a task
1170     * without any apparent progress or change in pool state before
1171     * giving up and blocking (see awaitJoin). Depths for legitimate
1172     * chains are unbounded, but we use a fixed constant to avoid
1173     * (otherwise unchecked) cycles and to bound staleness of
1174     * traversal parameters at the expense of sometimes blocking when
1175     * we could be helping.
1176     */
1177 dl 1.128 private static final int MAX_HELP = 64;
1178 dl 1.123
1179     /**
1180     * Secondary time-based bound (in nanosecs) for helping attempts
1181     * before trying compensated blocking in awaitJoin. Used in
1182     * conjunction with MAX_HELP to reduce variance due to different
1183     * polling rates associated with different helping options. The
1184     * value should roughly approximate the time required to create
1185     * and/or activate a worker thread.
1186     */
1187 dl 1.128 private static final long COMPENSATION_DELAY = 1L << 18; // ~0.25 millisec
1188 dl 1.123
1189     /**
1190     * Increment for seed generators. See class ThreadLocal for
1191     * explanation.
1192 dl 1.119 */
1193 dl 1.123 private static final int SEED_INCREMENT = 0x61c88647;
1194 dl 1.116
1195     /**
1196 dl 1.119 * Bits and masks for control variables
1197     *
1198     * Field ctl is a long packed with:
1199     * AC: Number of active running workers minus target parallelism (16 bits)
1200     * TC: Number of total workers minus target parallelism (16 bits)
1201     * ST: true if pool is terminating (1 bit)
1202     * EC: the wait count of top waiting thread (15 bits)
1203     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1204     *
1205     * When convenient, we can extract the upper 32 bits of counts and
1206     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1207     * (int)ctl. The ec field is never accessed alone, but always
1208     * together with id and st. The offsets of counts by the target
1209     * parallelism and the positionings of fields makes it possible to
1210     * perform the most common checks via sign tests of fields: When
1211     * ac is negative, there are not enough active workers, when tc is
1212     * negative, there are not enough total workers, and when e is
1213     * negative, the pool is terminating. To deal with these possibly
1214     * negative fields, we use casts in and out of "short" and/or
1215     * signed shifts to maintain signedness.
1216     *
1217     * When a thread is queued (inactivated), its eventCount field is
1218     * set negative, which is the only way to tell if a worker is
1219     * prevented from executing tasks, even though it must continue to
1220     * scan for them to avoid queuing races. Note however that
1221     * eventCount updates lag releases so usage requires care.
1222     *
1223     * Field runState is an int packed with:
1224     * SHUTDOWN: true if shutdown is enabled (1 bit)
1225 dl 1.123 * SEQ: a sequence number updated upon (de)registering workers (30 bits)
1226     * INIT: set true after workQueues array construction (1 bit)
1227 dl 1.119 *
1228 dl 1.123 * The sequence number enables simple consistency checks:
1229     * Staleness of read-only operations on the workQueues array can
1230     * be checked by comparing runState before vs after the reads.
1231 dl 1.119 */
1232    
1233     // bit positions/shifts for fields
1234     private static final int AC_SHIFT = 48;
1235     private static final int TC_SHIFT = 32;
1236     private static final int ST_SHIFT = 31;
1237     private static final int EC_SHIFT = 16;
1238    
1239     // bounds
1240     private static final int SMASK = 0xffff; // short bits
1241 dl 1.123 private static final int MAX_CAP = 0x7fff; // max #workers - 1
1242 dl 1.119 private static final int SQMASK = 0xfffe; // even short bits
1243     private static final int SHORT_SIGN = 1 << 15;
1244     private static final int INT_SIGN = 1 << 31;
1245    
1246     // masks
1247     private static final long STOP_BIT = 0x0001L << ST_SHIFT;
1248     private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
1249     private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
1250    
1251     // units for incrementing and decrementing
1252     private static final long TC_UNIT = 1L << TC_SHIFT;
1253     private static final long AC_UNIT = 1L << AC_SHIFT;
1254    
1255     // masks and units for dealing with u = (int)(ctl >>> 32)
1256     private static final int UAC_SHIFT = AC_SHIFT - 32;
1257     private static final int UTC_SHIFT = TC_SHIFT - 32;
1258     private static final int UAC_MASK = SMASK << UAC_SHIFT;
1259     private static final int UTC_MASK = SMASK << UTC_SHIFT;
1260     private static final int UAC_UNIT = 1 << UAC_SHIFT;
1261     private static final int UTC_UNIT = 1 << UTC_SHIFT;
1262    
1263     // masks and units for dealing with e = (int)ctl
1264     private static final int E_MASK = 0x7fffffff; // no STOP_BIT
1265     private static final int E_SEQ = 1 << EC_SHIFT;
1266    
1267     // runState bits
1268     private static final int SHUTDOWN = 1 << 31;
1269    
1270     // access mode for WorkQueue
1271     static final int LIFO_QUEUE = 0;
1272     static final int FIFO_QUEUE = 1;
1273     static final int SHARED_QUEUE = -1;
1274    
1275     // Instance fields
1276    
1277     /*
1278     * Field layout order in this class tends to matter more than one
1279     * would like. Runtime layout order is only loosely related to
1280     * declaration order and may differ across JVMs, but the following
1281     * empirically works OK on current JVMs.
1282 dl 1.1 */
1283 dl 1.111
1284 dl 1.119 volatile long ctl; // main pool control
1285     final int parallelism; // parallelism level
1286     final int localMode; // per-worker scheduling mode
1287 dl 1.123 final int submitMask; // submit queue index bound
1288     int nextSeed; // for initializing worker seeds
1289     volatile int runState; // shutdown status and seq
1290 dl 1.119 WorkQueue[] workQueues; // main registry
1291     final Mutex lock; // for registration
1292     final Condition termination; // for awaitTermination
1293     final ForkJoinWorkerThreadFactory factory; // factory for new workers
1294     final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1295     final AtomicLong stealCount; // collect counts when terminated
1296     final AtomicInteger nextWorkerNumber; // to create worker name string
1297 dl 1.135 String workerNamePrefix; // to create worker name string
1298 dl 1.111
1299 dl 1.123 // Creating, registering, and deregistering workers
1300 dl 1.6
1301     /**
1302 dl 1.111 * Tries to create and start a worker
1303 dl 1.1 */
1304 dl 1.111 private void addWorker() {
1305     Throwable ex = null;
1306 dl 1.119 ForkJoinWorkerThread wt = null;
1307 dl 1.111 try {
1308 dl 1.119 if ((wt = factory.newThread(this)) != null) {
1309     wt.start();
1310 dl 1.111 return;
1311     }
1312     } catch (Throwable e) {
1313     ex = e;
1314     }
1315 dl 1.119 deregisterWorker(wt, ex); // adjust counts etc on failure
1316 dl 1.111 }
1317 dl 1.1
1318 dl 1.91 /**
1319 dl 1.111 * Callback from ForkJoinWorkerThread constructor to assign a
1320     * public name. This must be separate from registerWorker because
1321     * it is called during the "super" constructor call in
1322     * ForkJoinWorkerThread.
1323 dl 1.91 */
1324 dl 1.111 final String nextWorkerName() {
1325     return workerNamePrefix.concat
1326     (Integer.toString(nextWorkerNumber.addAndGet(1)));
1327     }
1328 dl 1.1
1329     /**
1330 dl 1.123 * Callback from ForkJoinWorkerThread constructor to establish its
1331     * poolIndex and record its WorkQueue. To avoid scanning bias due
1332     * to packing entries in front of the workQueues array, we treat
1333     * the array as a simple power-of-two hash table using per-thread
1334     * seed as hash, expanding as needed.
1335 dl 1.111 *
1336 dl 1.123 * @param w the worker's queue
1337 dl 1.1 */
1338 dl 1.123 final void registerWorker(WorkQueue w) {
1339 dl 1.119 Mutex lock = this.lock;
1340 dl 1.111 lock.lock();
1341     try {
1342     WorkQueue[] ws = workQueues;
1343 dl 1.123 if (w != null && ws != null) { // skip on shutdown/failure
1344 jsr166 1.132 int rs, n = ws.length, m = n - 1;
1345 dl 1.123 int s = nextSeed += SEED_INCREMENT; // rarely-colliding sequence
1346     w.seed = (s == 0) ? 1 : s; // ensure non-zero seed
1347     int r = (s << 1) | 1; // use odd-numbered indices
1348 dl 1.127 if (ws[r &= m] != null) { // collision
1349     int probes = 0; // step by approx half size
1350     int step = (n <= 4) ? 2 : ((n >>> 1) & SQMASK) + 2;
1351     while (ws[r = (r + step) & m] != null) {
1352     if (++probes >= n) {
1353     workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1354     m = n - 1;
1355     probes = 0;
1356     }
1357     }
1358     }
1359 dl 1.123 w.eventCount = w.poolIndex = r; // establish before recording
1360     ws[r] = w; // also update seq
1361     runState = ((rs = runState) & SHUTDOWN) | ((rs + 2) & ~SHUTDOWN);
1362 dl 1.111 }
1363     } finally {
1364     lock.unlock();
1365     }
1366     }
1367 dl 1.58
1368 dl 1.1 /**
1369 dl 1.119 * Final callback from terminating worker, as well as upon failure
1370     * to construct or start a worker in addWorker. Removes record of
1371 dl 1.111 * worker from array, and adjusts counts. If pool is shutting
1372     * down, tries to complete termination.
1373     *
1374     * @param wt the worker thread or null if addWorker failed
1375     * @param ex the exception causing failure, or null if none
1376 dl 1.85 */
1377 dl 1.111 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1378 dl 1.123 Mutex lock = this.lock;
1379 dl 1.111 WorkQueue w = null;
1380     if (wt != null && (w = wt.workQueue) != null) {
1381     w.runState = -1; // ensure runState is set
1382     stealCount.getAndAdd(w.totalSteals + w.nsteals);
1383     int idx = w.poolIndex;
1384     lock.lock();
1385     try { // remove record from array
1386     WorkQueue[] ws = workQueues;
1387 dl 1.123 if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1388 dl 1.119 ws[idx] = null;
1389 dl 1.111 } finally {
1390     lock.unlock();
1391     }
1392     }
1393    
1394     long c; // adjust ctl counts
1395     do {} while (!U.compareAndSwapLong
1396     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1397     ((c - TC_UNIT) & TC_MASK) |
1398     (c & ~(AC_MASK|TC_MASK)))));
1399    
1400 dl 1.119 if (!tryTerminate(false, false) && w != null) {
1401 dl 1.111 w.cancelAll(); // cancel remaining tasks
1402     if (w.array != null) // suppress signal if never ran
1403     signalWork(); // wake up or create replacement
1404 dl 1.119 if (ex == null) // help clean refs on way out
1405     ForkJoinTask.helpExpungeStaleExceptions();
1406 dl 1.111 }
1407    
1408     if (ex != null) // rethrow
1409     U.throwException(ex);
1410     }
1411 dl 1.91
1412 dl 1.119 // Submissions
1413    
1414     /**
1415     * Unless shutting down, adds the given task to a submission queue
1416     * at submitter's current queue index (modulo submission
1417 dl 1.123 * range). If no queue exists at the index, one is created. If
1418     * the queue is busy, another index is randomly chosen. The
1419     * submitMask bounds the effective number of queues to the
1420 jsr166 1.125 * (nearest power of two for) parallelism level.
1421 dl 1.123 *
1422     * @param task the task. Caller must ensure non-null.
1423 dl 1.119 */
1424     private void doSubmit(ForkJoinTask<?> task) {
1425     Submitter s = submitters.get();
1426 dl 1.123 for (int r = s.seed, m = submitMask;;) {
1427     WorkQueue[] ws; WorkQueue q;
1428 dl 1.119 int k = r & m & SQMASK; // use only even indices
1429     if (runState < 0 || (ws = workQueues) == null || ws.length <= k)
1430     throw new RejectedExecutionException(); // shutting down
1431 dl 1.123 else if ((q = ws[k]) == null) { // create new queue
1432     WorkQueue nq = new WorkQueue(this, null, SHARED_QUEUE);
1433     Mutex lock = this.lock; // construct outside lock
1434     lock.lock();
1435     try { // recheck under lock
1436     int rs = runState; // to update seq
1437     if (ws == workQueues && ws[k] == null) {
1438     ws[k] = nq;
1439     runState = ((rs & SHUTDOWN) | ((rs + 2) & ~SHUTDOWN));
1440 dl 1.116 }
1441     } finally {
1442 dl 1.123 lock.unlock();
1443 dl 1.116 }
1444     }
1445 dl 1.123 else if (q.trySharedPush(task)) {
1446     signalWork();
1447     return;
1448     }
1449     else if (m > 1) { // move to a different index
1450     r ^= r << 13; // same xorshift as WorkQueues
1451     r ^= r >>> 17;
1452 dl 1.119 s.seed = r ^= r << 5;
1453     }
1454 dl 1.123 else
1455     Thread.yield(); // yield if no alternatives
1456 dl 1.116 }
1457     }
1458 dl 1.85
1459 dl 1.135 /**
1460     * Submits the given (non-null) task to the common pool, if possible.
1461     */
1462     static void submitToCommonPool(ForkJoinTask<?> task) {
1463     ForkJoinPool p;
1464     if ((p = commonPool) == null)
1465     p = ensureCommonPool();
1466     p.doSubmit(task);
1467     }
1468    
1469     /**
1470     * Returns true if the given task was submitted to common pool
1471     * and has not yet commenced execution, and is available for
1472     * removal according to execution policies; if so removing the
1473     * submission from the pool.
1474     *
1475     * @param task the task
1476     * @return true if successful
1477     */
1478     static boolean tryUnsubmitFromCommonPool(ForkJoinTask<?> task) {
1479     ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
1480     int k = submitters.get().seed & SQMASK;
1481     return ((p = commonPool) != null &&
1482     (ws = p.workQueues) != null &&
1483     ws.length > (k &= p.submitMask) &&
1484     (q = ws[k]) != null &&
1485     q.trySharedUnpush(task, p));
1486     }
1487    
1488 dl 1.111 // Maintaining ctl counts
1489 dl 1.56
1490     /**
1491 jsr166 1.117 * Increments active count; mainly called upon return from blocking.
1492 dl 1.58 */
1493 dl 1.111 final void incrementActiveCount() {
1494 dl 1.91 long c;
1495 dl 1.111 do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1496 dl 1.61 }
1497    
1498     /**
1499 dl 1.135 * Tries to create one or activate one or more workers if too few are active.
1500 dl 1.53 */
1501 dl 1.91 final void signalWork() {
1502 dl 1.119 long c; int u;
1503     while ((u = (int)((c = ctl) >>> 32)) < 0) { // too few active
1504     WorkQueue[] ws = workQueues; int e, i; WorkQueue w; Thread p;
1505     if ((e = (int)c) > 0) { // at least one waiting
1506     if (ws != null && (i = e & SMASK) < ws.length &&
1507     (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1508     long nc = (((long)(w.nextWait & E_MASK)) |
1509     ((long)(u + UAC_UNIT) << 32));
1510     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1511     w.eventCount = (e + E_SEQ) & E_MASK;
1512     if ((p = w.parker) != null)
1513     U.unpark(p); // activate and release
1514     break;
1515     }
1516     }
1517     else
1518 dl 1.91 break;
1519 dl 1.111 }
1520 dl 1.119 else if (e == 0 && (u & SHORT_SIGN) != 0) { // too few total
1521     long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1522     ((u + UAC_UNIT) & UAC_MASK)) << 32;
1523     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1524     addWorker();
1525 dl 1.91 break;
1526     }
1527     }
1528 dl 1.111 else
1529 dl 1.91 break;
1530     }
1531 dl 1.53 }
1532    
1533 dl 1.123 // Scanning for tasks
1534    
1535 dl 1.53 /**
1536 dl 1.123 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1537 dl 1.53 */
1538 dl 1.123 final void runWorker(WorkQueue w) {
1539     w.growArray(false); // initialize queue array in this thread
1540 dl 1.127 do { w.runTask(scan(w)); } while (w.runState >= 0);
1541 dl 1.53 }
1542    
1543     /**
1544 dl 1.111 * Scans for and, if found, returns one task, else possibly
1545     * inactivates the worker. This method operates on single reads of
1546 dl 1.123 * volatile state and is designed to be re-invoked continuously,
1547     * in part because it returns upon detecting inconsistencies,
1548 dl 1.111 * contention, or state changes that indicate possible success on
1549     * re-invocation.
1550     *
1551 dl 1.123 * The scan searches for tasks across a random permutation of
1552     * queues (starting at a random index and stepping by a random
1553     * relative prime, checking each at least once). The scan
1554     * terminates upon either finding a non-empty queue, or completing
1555     * the sweep. If the worker is not inactivated, it takes and
1556     * returns a task from this queue. On failure to find a task, we
1557     * take one of the following actions, after which the caller will
1558     * retry calling this method unless terminated.
1559 dl 1.111 *
1560 dl 1.119 * * If pool is terminating, terminate the worker.
1561     *
1562 dl 1.111 * * If not a complete sweep, try to release a waiting worker. If
1563     * the scan terminated because the worker is inactivated, then the
1564     * released worker will often be the calling worker, and it can
1565     * succeed obtaining a task on the next call. Or maybe it is
1566     * another worker, but with same net effect. Releasing in other
1567     * cases as well ensures that we have enough workers running.
1568     *
1569     * * If not already enqueued, try to inactivate and enqueue the
1570 dl 1.123 * worker on wait queue. Or, if inactivating has caused the pool
1571     * to be quiescent, relay to idleAwaitWork to check for
1572     * termination and possibly shrink pool.
1573     *
1574     * * If already inactive, and the caller has run a task since the
1575     * last empty scan, return (to allow rescan) unless others are
1576     * also inactivated. Field WorkQueue.rescans counts down on each
1577     * scan to ensure eventual inactivation and blocking.
1578 dl 1.111 *
1579 dl 1.123 * * If already enqueued and none of the above apply, park
1580     * awaiting signal,
1581 dl 1.111 *
1582     * @param w the worker (via its WorkQueue)
1583 jsr166 1.133 * @return a task or null if none found
1584 dl 1.111 */
1585     private final ForkJoinTask<?> scan(WorkQueue w) {
1586 dl 1.123 WorkQueue[] ws; // first update random seed
1587     int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1588     int rs = runState, m; // volatile read order matters
1589     if ((ws = workQueues) != null && (m = ws.length - 1) > 0) {
1590     int ec = w.eventCount; // ec is negative if inactive
1591     int step = (r >>> 16) | 1; // relative prime
1592     for (int j = (m + 1) << 2; ; r += step) {
1593     WorkQueue q; ForkJoinTask<?> t; ForkJoinTask<?>[] a; int b;
1594     if ((q = ws[r & m]) != null && (b = q.base) - q.top < 0 &&
1595     (a = q.array) != null) { // probably nonempty
1596     int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1597     t = (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1598     if (q.base == b && ec >= 0 && t != null &&
1599     U.compareAndSwapObject(a, i, t, null)) {
1600 dl 1.135 if (q.top - (q.base = b + 1) > 0)
1601 dl 1.129 signalWork(); // help pushes signal
1602 dl 1.119 return t;
1603 dl 1.123 }
1604 dl 1.127 else if (ec < 0 || j <= m) {
1605 dl 1.123 rs = 0; // mark scan as imcomplete
1606     break; // caller can retry after release
1607     }
1608 dl 1.111 }
1609 dl 1.123 if (--j < 0)
1610 dl 1.93 break;
1611 dl 1.91 }
1612 dl 1.128
1613 dl 1.119 long c = ctl; int e = (int)c, a = (int)(c >> AC_SHIFT), nr, ns;
1614 dl 1.123 if (e < 0) // decode ctl on empty scan
1615     w.runState = -1; // pool is terminating
1616     else if (rs == 0 || rs != runState) { // incomplete scan
1617     WorkQueue v; Thread p; // try to release a waiter
1618     if (e > 0 && a < 0 && w.eventCount == ec &&
1619     (v = ws[e & m]) != null && v.eventCount == (e | INT_SIGN)) {
1620 dl 1.119 long nc = ((long)(v.nextWait & E_MASK) |
1621     ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
1622 dl 1.123 if (ctl == c && U.compareAndSwapLong(this, CTL, c, nc)) {
1623 dl 1.119 v.eventCount = (e + E_SEQ) & E_MASK;
1624     if ((p = v.parker) != null)
1625     U.unpark(p);
1626     }
1627     }
1628     }
1629 dl 1.123 else if (ec >= 0) { // try to enqueue/inactivate
1630 dl 1.119 long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1631     w.nextWait = e;
1632 dl 1.123 w.eventCount = ec | INT_SIGN; // mark as inactive
1633     if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1634     w.eventCount = ec; // unmark on CAS failure
1635     else {
1636     if ((ns = w.nsteals) != 0) {
1637     w.nsteals = 0; // set rescans if ran task
1638 jsr166 1.124 w.rescans = (a > 0) ? 0 : a + parallelism;
1639 dl 1.123 w.totalSteals += ns;
1640     }
1641     if (a == 1 - parallelism) // quiescent
1642     idleAwaitWork(w, nc, c);
1643 dl 1.119 }
1644 dl 1.111 }
1645 dl 1.123 else if (w.eventCount < 0) { // already queued
1646 dl 1.135 int ac = a + parallelism;
1647     if ((nr = w.rescans) > 0) // continue rescanning
1648     w.rescans = (ac < nr) ? ac : nr - 1;
1649     else if (((w.seed >>> 16) & ac) == 0) { // randomize park
1650 dl 1.123 Thread.interrupted(); // clear status
1651     Thread wt = Thread.currentThread();
1652 dl 1.119 U.putObject(wt, PARKBLOCKER, this);
1653 dl 1.123 w.parker = wt; // emulate LockSupport.park
1654     if (w.eventCount < 0) // recheck
1655     U.park(false, 0L);
1656 dl 1.119 w.parker = null;
1657     U.putObject(wt, PARKBLOCKER, null);
1658     }
1659 dl 1.111 }
1660 dl 1.91 }
1661 dl 1.111 return null;
1662 dl 1.53 }
1663    
1664     /**
1665 dl 1.123 * If inactivating worker w has caused the pool to become
1666     * quiescent, checks for pool termination, and, so long as this is
1667 dl 1.135 * not the only worker, waits for event for up to a given
1668     * duration. On timeout, if ctl has not changed, terminates the
1669 dl 1.123 * worker, which will in turn wake up another worker to possibly
1670     * repeat this process.
1671 dl 1.91 *
1672 dl 1.111 * @param w the calling worker
1673 dl 1.123 * @param currentCtl the ctl value triggering possible quiescence
1674     * @param prevCtl the ctl value to restore if thread is terminated
1675 dl 1.53 */
1676 dl 1.123 private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1677     if (w.eventCount < 0 && !tryTerminate(false, false) &&
1678 dl 1.127 (int)prevCtl != 0 && !hasQueuedSubmissions() && ctl == currentCtl) {
1679 dl 1.135 int dc = -(short)(currentCtl >>> TC_SHIFT);
1680     long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1681     long deadline = System.nanoTime() + parkTime - 100000L; // 1ms slop
1682 dl 1.123 Thread wt = Thread.currentThread();
1683     while (ctl == currentCtl) {
1684 dl 1.111 Thread.interrupted(); // timed variant of version in scan()
1685     U.putObject(wt, PARKBLOCKER, this);
1686     w.parker = wt;
1687 dl 1.123 if (ctl == currentCtl)
1688 dl 1.135 U.park(false, parkTime);
1689 dl 1.111 w.parker = null;
1690     U.putObject(wt, PARKBLOCKER, null);
1691 dl 1.123 if (ctl != currentCtl)
1692 dl 1.111 break;
1693 dl 1.135 if (deadline - System.nanoTime() <= 0L &&
1694 dl 1.123 U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1695     w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1696     w.runState = -1; // shrink
1697 dl 1.111 break;
1698     }
1699 dl 1.66 }
1700 dl 1.53 }
1701     }
1702    
1703     /**
1704 dl 1.111 * Tries to locate and execute tasks for a stealer of the given
1705     * task, or in turn one of its stealers, Traces currentSteal ->
1706     * currentJoin links looking for a thread working on a descendant
1707     * of the given task and with a non-empty queue to steal back and
1708     * execute tasks from. The first call to this method upon a
1709     * waiting join will often entail scanning/search, (which is OK
1710     * because the joiner has nothing better to do), but this method
1711     * leaves hints in workers to speed up subsequent calls. The
1712     * implementation is very branchy to cope with potential
1713     * inconsistencies or loops encountering chains that are stale,
1714 dl 1.128 * unknown, or so long that they are likely cyclic.
1715 dl 1.111 *
1716     * @param joiner the joining worker
1717     * @param task the task to join
1718 dl 1.128 * @return 0 if no progress can be made, negative if task
1719     * known complete, else positive
1720 dl 1.111 */
1721 dl 1.128 private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1722     int stat = 0, steps = 0; // bound to avoid cycles
1723     if (joiner != null && task != null) { // hoist null checks
1724     restart: for (;;) {
1725     ForkJoinTask<?> subtask = task; // current target
1726     for (WorkQueue j = joiner, v;;) { // v is stealer of subtask
1727     WorkQueue[] ws; int m, s, h;
1728     if ((s = task.status) < 0) {
1729     stat = s;
1730     break restart;
1731     }
1732     if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1733     break restart; // shutting down
1734     if ((v = ws[h = (j.stealHint | 1) & m]) == null ||
1735     v.currentSteal != subtask) {
1736     for (int origin = h;;) { // find stealer
1737     if (((h = (h + 2) & m) & 15) == 1 &&
1738     (subtask.status < 0 || j.currentJoin != subtask))
1739     continue restart; // occasional staleness check
1740     if ((v = ws[h]) != null &&
1741     v.currentSteal == subtask) {
1742     j.stealHint = h; // save hint
1743     break;
1744     }
1745     if (h == origin)
1746     break restart; // cannot find stealer
1747 dl 1.111 }
1748     }
1749 dl 1.128 for (;;) { // help stealer or descend to its stealer
1750     ForkJoinTask[] a; int b;
1751     if (subtask.status < 0) // surround probes with
1752     continue restart; // consistency checks
1753     if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1754     int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1755     ForkJoinTask<?> t =
1756     (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1757     if (subtask.status < 0 || j.currentJoin != subtask ||
1758     v.currentSteal != subtask)
1759     continue restart; // stale
1760     stat = 1; // apparent progress
1761     if (t != null && v.base == b &&
1762     U.compareAndSwapObject(a, i, t, null)) {
1763     v.base = b + 1; // help stealer
1764     joiner.runSubtask(t);
1765     }
1766     else if (v.base == b && ++steps == MAX_HELP)
1767     break restart; // v apparently stalled
1768     }
1769     else { // empty -- try to descend
1770     ForkJoinTask<?> next = v.currentJoin;
1771     if (subtask.status < 0 || j.currentJoin != subtask ||
1772     v.currentSteal != subtask)
1773     continue restart; // stale
1774     else if (next == null || ++steps == MAX_HELP)
1775     break restart; // dead-end or maybe cyclic
1776     else {
1777     subtask = next;
1778     j = v;
1779     break;
1780     }
1781 dl 1.111 }
1782 dl 1.91 }
1783 dl 1.61 }
1784 dl 1.111 }
1785 dl 1.53 }
1786 dl 1.128 return stat;
1787 dl 1.64 }
1788    
1789 dl 1.91 /**
1790 dl 1.111 * If task is at base of some steal queue, steals and executes it.
1791 dl 1.91 *
1792 dl 1.111 * @param joiner the joining worker
1793     * @param task the task
1794 dl 1.61 */
1795 dl 1.123 private void tryPollForAndExec(WorkQueue joiner, ForkJoinTask<?> task) {
1796 dl 1.111 WorkQueue[] ws;
1797 dl 1.123 if ((ws = workQueues) != null) {
1798     for (int j = 1; j < ws.length && task.status >= 0; j += 2) {
1799 dl 1.111 WorkQueue q = ws[j];
1800     if (q != null && q.pollFor(task)) {
1801     joiner.runSubtask(task);
1802     break;
1803     }
1804 dl 1.91 }
1805     }
1806 dl 1.61 }
1807    
1808     /**
1809 dl 1.123 * Tries to decrement active count (sometimes implicitly) and
1810     * possibly release or create a compensating worker in preparation
1811     * for blocking. Fails on contention or termination. Otherwise,
1812     * adds a new thread if no idle workers are available and either
1813     * pool would become completely starved or: (at least half
1814     * starved, and fewer than 50% spares exist, and there is at least
1815 jsr166 1.125 * one task apparently available). Even though the availability
1816 dl 1.123 * check requires a full scan, it is worthwhile in reducing false
1817     * alarms.
1818     *
1819 jsr166 1.126 * @param task if non-null, a task being waited for
1820     * @param blocker if non-null, a blocker being waited for
1821 dl 1.123 * @return true if the caller can block, else should recheck and retry
1822     */
1823     final boolean tryCompensate(ForkJoinTask<?> task, ManagedBlocker blocker) {
1824     int pc = parallelism, e;
1825     long c = ctl;
1826     WorkQueue[] ws = workQueues;
1827     if ((e = (int)c) >= 0 && ws != null) {
1828     int u, a, ac, hc;
1829     int tc = (short)((u = (int)(c >>> 32)) >>> UTC_SHIFT) + pc;
1830     boolean replace = false;
1831     if ((a = u >> UAC_SHIFT) <= 0) {
1832     if ((ac = a + pc) <= 1)
1833     replace = true;
1834     else if ((e > 0 || (task != null &&
1835     ac <= (hc = pc >>> 1) && tc < pc + hc))) {
1836     WorkQueue w;
1837     for (int j = 0; j < ws.length; ++j) {
1838     if ((w = ws[j]) != null && !w.isEmpty()) {
1839     replace = true;
1840     break; // in compensation range and tasks available
1841     }
1842     }
1843     }
1844     }
1845     if ((task == null || task.status >= 0) && // recheck need to block
1846     (blocker == null || !blocker.isReleasable()) && ctl == c) {
1847     if (!replace) { // no compensation
1848     long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1849     if (U.compareAndSwapLong(this, CTL, c, nc))
1850     return true;
1851     }
1852     else if (e != 0) { // release an idle worker
1853     WorkQueue w; Thread p; int i;
1854     if ((i = e & SMASK) < ws.length && (w = ws[i]) != null) {
1855     long nc = ((long)(w.nextWait & E_MASK) |
1856     (c & (AC_MASK|TC_MASK)));
1857     if (w.eventCount == (e | INT_SIGN) &&
1858     U.compareAndSwapLong(this, CTL, c, nc)) {
1859     w.eventCount = (e + E_SEQ) & E_MASK;
1860     if ((p = w.parker) != null)
1861     U.unpark(p);
1862     return true;
1863     }
1864     }
1865     }
1866     else if (tc < MAX_CAP) { // create replacement
1867     long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1868     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1869     addWorker();
1870     return true;
1871     }
1872     }
1873     }
1874     }
1875     return false;
1876     }
1877    
1878     /**
1879 jsr166 1.126 * Helps and/or blocks until the given task is done.
1880 dl 1.123 *
1881     * @param joiner the joining worker
1882     * @param task the task
1883     * @return task status on exit
1884     */
1885     final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1886 dl 1.127 int s;
1887     if ((s = task.status) >= 0) {
1888 dl 1.128 ForkJoinTask<?> prevJoin = joiner.currentJoin;
1889 dl 1.127 joiner.currentJoin = task;
1890     long startTime = 0L;
1891     for (int k = 0;;) {
1892 dl 1.128 if ((s = (joiner.isEmpty() ? // try to help
1893     tryHelpStealer(joiner, task) :
1894     joiner.tryRemoveAndExec(task))) == 0 &&
1895     (s = task.status) >= 0) {
1896 dl 1.127 if (k == 0) {
1897     startTime = System.nanoTime();
1898     tryPollForAndExec(joiner, task); // check uncommon case
1899     }
1900     else if ((k & (MAX_HELP - 1)) == 0 &&
1901     System.nanoTime() - startTime >=
1902     COMPENSATION_DELAY &&
1903     tryCompensate(task, null)) {
1904 dl 1.128 if (task.trySetSignal()) {
1905 dl 1.127 synchronized (task) {
1906     if (task.status >= 0) {
1907     try { // see ForkJoinTask
1908     task.wait(); // for explanation
1909     } catch (InterruptedException ie) {
1910     }
1911 dl 1.123 }
1912 dl 1.127 else
1913     task.notifyAll();
1914 dl 1.123 }
1915     }
1916 dl 1.127 long c; // re-activate
1917     do {} while (!U.compareAndSwapLong
1918     (this, CTL, c = ctl, c + AC_UNIT));
1919 dl 1.123 }
1920     }
1921 dl 1.128 if (s < 0 || (s = task.status) < 0) {
1922 dl 1.127 joiner.currentJoin = prevJoin;
1923     break;
1924     }
1925     else if ((k++ & (MAX_HELP - 1)) == MAX_HELP >>> 1)
1926     Thread.yield(); // for politeness
1927 dl 1.123 }
1928     }
1929 dl 1.127 return s;
1930 dl 1.123 }
1931    
1932     /**
1933     * Stripped-down variant of awaitJoin used by timed joins. Tries
1934     * to help join only while there is continuous progress. (Caller
1935     * will then enter a timed wait.)
1936     *
1937     * @param joiner the joining worker
1938     * @param task the task
1939     * @return task status on exit
1940     */
1941     final int helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
1942     int s;
1943     while ((s = task.status) >= 0 &&
1944     (joiner.isEmpty() ?
1945     tryHelpStealer(joiner, task) :
1946 dl 1.128 joiner.tryRemoveAndExec(task)) != 0)
1947 dl 1.123 ;
1948     return s;
1949     }
1950    
1951     /**
1952     * Returns a (probably) non-empty steal queue, if one is found
1953     * during a random, then cyclic scan, else null. This method must
1954     * be retried by caller if, by the time it tries to use the queue,
1955     * it is empty.
1956 dl 1.111 */
1957     private WorkQueue findNonEmptyStealQueue(WorkQueue w) {
1958 dl 1.123 // Similar to loop in scan(), but ignoring submissions
1959 dl 1.135 int r;
1960     if (w == null) // allow external callers
1961     r = ThreadLocalRandom.current().nextInt();
1962     else {
1963     r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1964     }
1965 dl 1.123 int step = (r >>> 16) | 1;
1966 dl 1.111 for (WorkQueue[] ws;;) {
1967 dl 1.123 int rs = runState, m;
1968     if ((ws = workQueues) == null || (m = ws.length - 1) < 1)
1969 dl 1.111 return null;
1970 dl 1.123 for (int j = (m + 1) << 2; ; r += step) {
1971     WorkQueue q = ws[((r << 1) | 1) & m];
1972     if (q != null && !q.isEmpty())
1973     return q;
1974     else if (--j < 0) {
1975     if (runState == rs)
1976 dl 1.111 return null;
1977 dl 1.123 break;
1978 dl 1.91 }
1979     }
1980 dl 1.64 }
1981     }
1982    
1983     /**
1984 dl 1.111 * Runs tasks until {@code isQuiescent()}. We piggyback on
1985     * active count ctl maintenance, but rather than blocking
1986     * when tasks cannot be found, we rescan until all others cannot
1987     * find tasks either.
1988     */
1989     final void helpQuiescePool(WorkQueue w) {
1990     for (boolean active = true;;) {
1991 dl 1.127 ForkJoinTask<?> localTask; // exhaust local queue
1992     while ((localTask = w.nextLocalTask()) != null)
1993     localTask.doExec();
1994 dl 1.111 WorkQueue q = findNonEmptyStealQueue(w);
1995     if (q != null) {
1996 dl 1.123 ForkJoinTask<?> t; int b;
1997 dl 1.111 if (!active) { // re-establish active count
1998     long c;
1999     active = true;
2000     do {} while (!U.compareAndSwapLong
2001     (this, CTL, c = ctl, c + AC_UNIT));
2002     }
2003 dl 1.123 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2004 dl 1.111 w.runSubtask(t);
2005     }
2006     else {
2007     long c;
2008     if (active) { // decrement active count without queuing
2009     active = false;
2010     do {} while (!U.compareAndSwapLong
2011     (this, CTL, c = ctl, c -= AC_UNIT));
2012     }
2013     else
2014     c = ctl; // re-increment on exit
2015     if ((int)(c >> AC_SHIFT) + parallelism == 0) {
2016     do {} while (!U.compareAndSwapLong
2017     (this, CTL, c = ctl, c + AC_UNIT));
2018     break;
2019 dl 1.66 }
2020 dl 1.64 }
2021     }
2022     }
2023    
2024     /**
2025 dl 1.135 * Restricted version of helpQuiescePool for non-FJ callers
2026     */
2027     static void externalHelpQuiescePool() {
2028     ForkJoinPool p; WorkQueue[] ws; WorkQueue w, q;
2029     ForkJoinTask<?> t; int b;
2030     int k = submitters.get().seed & SQMASK;
2031     if ((p = commonPool) != null &&
2032     (ws = p.workQueues) != null &&
2033     ws.length > (k &= p.submitMask) &&
2034     (w = ws[k]) != null &&
2035     (q = p.findNonEmptyStealQueue(w)) != null &&
2036     (b = q.base) - q.top < 0 &&
2037     (t = q.pollAt(b)) != null)
2038     t.doExec();
2039     }
2040    
2041     /**
2042 jsr166 1.117 * Gets and removes a local or stolen task for the given worker.
2043 dl 1.111 *
2044     * @return a task, if available
2045 dl 1.64 */
2046 dl 1.111 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2047     for (ForkJoinTask<?> t;;) {
2048 dl 1.123 WorkQueue q; int b;
2049 dl 1.111 if ((t = w.nextLocalTask()) != null)
2050     return t;
2051     if ((q = findNonEmptyStealQueue(w)) == null)
2052     return null;
2053 dl 1.123 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2054 dl 1.111 return t;
2055 dl 1.91 }
2056 dl 1.61 }
2057    
2058 dl 1.53 /**
2059 dl 1.111 * Returns the approximate (non-atomic) number of idle threads per
2060     * active thread to offset steal queue size for method
2061     * ForkJoinTask.getSurplusQueuedTaskCount().
2062 dl 1.53 */
2063 dl 1.111 final int idlePerActive() {
2064     // Approximate at powers of two for small values, saturate past 4
2065     int p = parallelism;
2066     int a = p + (int)(ctl >> AC_SHIFT);
2067     return (a > (p >>>= 1) ? 0 :
2068     a > (p >>>= 1) ? 1 :
2069     a > (p >>>= 1) ? 2 :
2070     a > (p >>>= 1) ? 4 :
2071     8);
2072 dl 1.53 }
2073    
2074 dl 1.135 /**
2075     * Returns approximate submission queue length for the given caller
2076     */
2077     static int getEstimatedSubmitterQueueLength() {
2078     ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
2079     int k = submitters.get().seed & SQMASK;
2080     return ((p = commonPool) != null &&
2081     p.runState >= 0 &&
2082     (ws = p.workQueues) != null &&
2083     ws.length > (k &= p.submitMask) &&
2084     (q = ws[k]) != null) ?
2085     q.queueSize() : 0;
2086     }
2087    
2088 dl 1.119 // Termination
2089 dl 1.53
2090     /**
2091 dl 1.119 * Possibly initiates and/or completes termination. The caller
2092     * triggering termination runs three passes through workQueues:
2093     * (0) Setting termination status, followed by wakeups of queued
2094     * workers; (1) cancelling all tasks; (2) interrupting lagging
2095     * threads (likely in external tasks, but possibly also blocked in
2096     * joins). Each pass repeats previous steps because of potential
2097     * lagging thread creation.
2098 dl 1.53 *
2099     * @param now if true, unconditionally terminate, else only
2100 dl 1.111 * if no work and no active workers
2101 jsr166 1.120 * @param enable if true, enable shutdown when next possible
2102 dl 1.53 * @return true if now terminating or terminated
2103 dl 1.1 */
2104 dl 1.119 private boolean tryTerminate(boolean now, boolean enable) {
2105     Mutex lock = this.lock;
2106 dl 1.111 for (long c;;) {
2107     if (((c = ctl) & STOP_BIT) != 0) { // already terminating
2108     if ((short)(c >>> TC_SHIFT) == -parallelism) {
2109     lock.lock(); // don't need try/finally
2110     termination.signalAll(); // signal when 0 workers
2111     lock.unlock();
2112     }
2113     return true;
2114     }
2115 dl 1.119 if (runState >= 0) { // not yet enabled
2116     if (!enable)
2117     return false;
2118     lock.lock();
2119     runState |= SHUTDOWN;
2120     lock.unlock();
2121     }
2122     if (!now) { // check if idle & no tasks
2123     if ((int)(c >> AC_SHIFT) != -parallelism ||
2124 dl 1.111 hasQueuedSubmissions())
2125 dl 1.91 return false;
2126 dl 1.111 // Check for unqueued inactive workers. One pass suffices.
2127     WorkQueue[] ws = workQueues; WorkQueue w;
2128     if (ws != null) {
2129 dl 1.119 for (int i = 1; i < ws.length; i += 2) {
2130 dl 1.111 if ((w = ws[i]) != null && w.eventCount >= 0)
2131     return false;
2132     }
2133 dl 1.91 }
2134     }
2135 dl 1.119 if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2136     for (int pass = 0; pass < 3; ++pass) {
2137     WorkQueue[] ws = workQueues;
2138     if (ws != null) {
2139     WorkQueue w;
2140     int n = ws.length;
2141     for (int i = 0; i < n; ++i) {
2142     if ((w = ws[i]) != null) {
2143     w.runState = -1;
2144     if (pass > 0) {
2145     w.cancelAll();
2146     if (pass > 1)
2147     w.interruptOwner();
2148 dl 1.91 }
2149 dl 1.61 }
2150     }
2151 dl 1.119 // Wake up workers parked on event queue
2152     int i, e; long cc; Thread p;
2153     while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2154     (i = e & SMASK) < n &&
2155     (w = ws[i]) != null) {
2156     long nc = ((long)(w.nextWait & E_MASK) |
2157     ((cc + AC_UNIT) & AC_MASK) |
2158     (cc & (TC_MASK|STOP_BIT)));
2159     if (w.eventCount == (e | INT_SIGN) &&
2160     U.compareAndSwapLong(this, CTL, cc, nc)) {
2161     w.eventCount = (e + E_SEQ) & E_MASK;
2162     w.runState = -1;
2163     if ((p = w.parker) != null)
2164     U.unpark(p);
2165     }
2166     }
2167 dl 1.111 }
2168 dl 1.91 }
2169 dl 1.53 }
2170     }
2171 dl 1.56 }
2172    
2173 dl 1.91 // Exported methods
2174 dl 1.1
2175     // Constructors
2176    
2177     /**
2178 dl 1.42 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2179 dl 1.57 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2180     * #defaultForkJoinWorkerThreadFactory default thread factory},
2181     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2182 jsr166 1.17 *
2183 dl 1.1 * @throws SecurityException if a security manager exists and
2184     * the caller is not permitted to modify threads
2185     * because it does not hold {@link
2186 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
2187 dl 1.1 */
2188     public ForkJoinPool() {
2189     this(Runtime.getRuntime().availableProcessors(),
2190 dl 1.57 defaultForkJoinWorkerThreadFactory, null, false);
2191 dl 1.1 }
2192    
2193     /**
2194 dl 1.42 * Creates a {@code ForkJoinPool} with the indicated parallelism
2195 dl 1.57 * level, the {@linkplain
2196     * #defaultForkJoinWorkerThreadFactory default thread factory},
2197     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2198 jsr166 1.17 *
2199 dl 1.42 * @param parallelism the parallelism level
2200 dl 1.1 * @throws IllegalArgumentException if parallelism less than or
2201 jsr166 1.47 * equal to zero, or greater than implementation limit
2202 dl 1.1 * @throws SecurityException if a security manager exists and
2203     * the caller is not permitted to modify threads
2204     * because it does not hold {@link
2205 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
2206 dl 1.1 */
2207     public ForkJoinPool(int parallelism) {
2208 dl 1.57 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2209 dl 1.1 }
2210    
2211     /**
2212 dl 1.57 * Creates a {@code ForkJoinPool} with the given parameters.
2213 jsr166 1.17 *
2214 dl 1.57 * @param parallelism the parallelism level. For default value,
2215     * use {@link java.lang.Runtime#availableProcessors}.
2216     * @param factory the factory for creating new threads. For default value,
2217     * use {@link #defaultForkJoinWorkerThreadFactory}.
2218 dl 1.59 * @param handler the handler for internal worker threads that
2219     * terminate due to unrecoverable errors encountered while executing
2220 jsr166 1.73 * tasks. For default value, use {@code null}.
2221 dl 1.59 * @param asyncMode if true,
2222 dl 1.57 * establishes local first-in-first-out scheduling mode for forked
2223     * tasks that are never joined. This mode may be more appropriate
2224     * than default locally stack-based mode in applications in which
2225     * worker threads only process event-style asynchronous tasks.
2226 jsr166 1.73 * For default value, use {@code false}.
2227 dl 1.1 * @throws IllegalArgumentException if parallelism less than or
2228 jsr166 1.47 * equal to zero, or greater than implementation limit
2229 jsr166 1.48 * @throws NullPointerException if the factory is null
2230 dl 1.1 * @throws SecurityException if a security manager exists and
2231     * the caller is not permitted to modify threads
2232     * because it does not hold {@link
2233 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
2234 dl 1.1 */
2235 dl 1.59 public ForkJoinPool(int parallelism,
2236 dl 1.57 ForkJoinWorkerThreadFactory factory,
2237     Thread.UncaughtExceptionHandler handler,
2238     boolean asyncMode) {
2239 dl 1.53 checkPermission();
2240     if (factory == null)
2241     throw new NullPointerException();
2242 dl 1.123 if (parallelism <= 0 || parallelism > MAX_CAP)
2243 dl 1.1 throw new IllegalArgumentException();
2244 dl 1.53 this.parallelism = parallelism;
2245 dl 1.1 this.factory = factory;
2246 dl 1.57 this.ueh = handler;
2247 dl 1.111 this.localMode = asyncMode ? FIFO_QUEUE : LIFO_QUEUE;
2248 dl 1.91 long np = (long)(-parallelism); // offset ctl counts
2249     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2250 dl 1.123 // Use nearest power 2 for workQueues size. See Hackers Delight sec 3.2.
2251     int n = parallelism - 1;
2252     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
2253     int size = (n + 1) << 1; // #slots = 2*#workers
2254     this.submitMask = size - 1; // room for max # of submit queues
2255     this.workQueues = new WorkQueue[size];
2256 dl 1.119 this.termination = (this.lock = new Mutex()).newCondition();
2257 dl 1.111 this.stealCount = new AtomicLong();
2258     this.nextWorkerNumber = new AtomicInteger();
2259 dl 1.123 int pn = poolNumberGenerator.incrementAndGet();
2260 dl 1.91 StringBuilder sb = new StringBuilder("ForkJoinPool-");
2261 dl 1.123 sb.append(Integer.toString(pn));
2262 dl 1.91 sb.append("-worker-");
2263     this.workerNamePrefix = sb.toString();
2264 dl 1.123 lock.lock();
2265     this.runState = 1; // set init flag
2266     lock.unlock();
2267 dl 1.1 }
2268    
2269 dl 1.135 /**
2270     * Returns the common pool instance
2271     *
2272     * @return the common pool instance
2273     */
2274     public static ForkJoinPool commonPool() {
2275     ForkJoinPool p;
2276     return (p = commonPool) != null? p : ensureCommonPool();
2277     }
2278    
2279     private static ForkJoinPool ensureCommonPool() {
2280     ForkJoinPool p;
2281     if ((p = commonPool) == null) {
2282     final Mutex lock = initializationLock;
2283     lock.lock();
2284     try {
2285     if ((p = commonPool) == null) {
2286     p = commonPool = new ForkJoinPool(commonPoolParallelism,
2287     commonPoolFactory,
2288     commonPoolUEH, false);
2289     // use a more informative name string for workers
2290     p.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2291     }
2292     } finally {
2293     lock.unlock();
2294     }
2295     }
2296     return p;
2297     }
2298    
2299 dl 1.1 // Execution methods
2300    
2301     /**
2302 jsr166 1.17 * Performs the given task, returning its result upon completion.
2303 dl 1.91 * If the computation encounters an unchecked Exception or Error,
2304     * it is rethrown as the outcome of this invocation. Rethrown
2305     * exceptions behave in the same way as regular exceptions, but,
2306     * when possible, contain stack traces (as displayed for example
2307     * using {@code ex.printStackTrace()}) of both the current thread
2308     * as well as the thread actually encountering the exception;
2309     * minimally only the latter.
2310 jsr166 1.17 *
2311 dl 1.1 * @param task the task
2312     * @return the task's result
2313 jsr166 1.48 * @throws NullPointerException if the task is null
2314     * @throws RejectedExecutionException if the task cannot be
2315     * scheduled for execution
2316 dl 1.1 */
2317     public <T> T invoke(ForkJoinTask<T> task) {
2318 dl 1.123 if (task == null)
2319     throw new NullPointerException();
2320 dl 1.111 doSubmit(task);
2321     return task.join();
2322 dl 1.1 }
2323    
2324     /**
2325     * Arranges for (asynchronous) execution of the given task.
2326 jsr166 1.17 *
2327 dl 1.1 * @param task the task
2328 jsr166 1.48 * @throws NullPointerException if the task is null
2329     * @throws RejectedExecutionException if the task cannot be
2330     * scheduled for execution
2331 dl 1.1 */
2332 dl 1.37 public void execute(ForkJoinTask<?> task) {
2333 dl 1.123 if (task == null)
2334     throw new NullPointerException();
2335 dl 1.111 doSubmit(task);
2336 dl 1.1 }
2337    
2338     // AbstractExecutorService methods
2339    
2340 jsr166 1.48 /**
2341     * @throws NullPointerException if the task is null
2342     * @throws RejectedExecutionException if the task cannot be
2343     * scheduled for execution
2344     */
2345 dl 1.1 public void execute(Runnable task) {
2346 dl 1.82 if (task == null)
2347     throw new NullPointerException();
2348 dl 1.23 ForkJoinTask<?> job;
2349 jsr166 1.26 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2350     job = (ForkJoinTask<?>) task;
2351 dl 1.23 else
2352 dl 1.123 job = new ForkJoinTask.AdaptedRunnableAction(task);
2353 dl 1.111 doSubmit(job);
2354 dl 1.1 }
2355    
2356 jsr166 1.48 /**
2357 dl 1.57 * Submits a ForkJoinTask for execution.
2358     *
2359     * @param task the task to submit
2360     * @return the task
2361     * @throws NullPointerException if the task is null
2362     * @throws RejectedExecutionException if the task cannot be
2363     * scheduled for execution
2364     */
2365     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2366 dl 1.123 if (task == null)
2367     throw new NullPointerException();
2368 dl 1.111 doSubmit(task);
2369 dl 1.57 return task;
2370     }
2371    
2372     /**
2373 jsr166 1.48 * @throws NullPointerException if the task is null
2374     * @throws RejectedExecutionException if the task cannot be
2375     * scheduled for execution
2376     */
2377 dl 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2378 dl 1.123 ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2379 dl 1.111 doSubmit(job);
2380 dl 1.1 return job;
2381     }
2382    
2383 jsr166 1.48 /**
2384     * @throws NullPointerException if the task is null
2385     * @throws RejectedExecutionException if the task cannot be
2386     * scheduled for execution
2387     */
2388 dl 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2389 dl 1.123 ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2390 dl 1.111 doSubmit(job);
2391 dl 1.1 return job;
2392     }
2393    
2394 jsr166 1.48 /**
2395     * @throws NullPointerException if the task is null
2396     * @throws RejectedExecutionException if the task cannot be
2397     * scheduled for execution
2398     */
2399 dl 1.1 public ForkJoinTask<?> submit(Runnable task) {
2400 dl 1.82 if (task == null)
2401     throw new NullPointerException();
2402 dl 1.23 ForkJoinTask<?> job;
2403 jsr166 1.26 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2404     job = (ForkJoinTask<?>) task;
2405 dl 1.23 else
2406 dl 1.123 job = new ForkJoinTask.AdaptedRunnableAction(task);
2407 dl 1.111 doSubmit(job);
2408 dl 1.1 return job;
2409     }
2410    
2411     /**
2412 jsr166 1.48 * @throws NullPointerException {@inheritDoc}
2413     * @throws RejectedExecutionException {@inheritDoc}
2414     */
2415 dl 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2416 dl 1.119 // In previous versions of this class, this method constructed
2417     // a task to run ForkJoinTask.invokeAll, but now external
2418     // invocation of multiple tasks is at least as efficient.
2419     List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2420     // Workaround needed because method wasn't declared with
2421     // wildcards in return type but should have been.
2422 jsr166 1.20 @SuppressWarnings({"unchecked", "rawtypes"})
2423 dl 1.119 List<Future<T>> futures = (List<Future<T>>) (List) fs;
2424 dl 1.1
2425 dl 1.119 boolean done = false;
2426     try {
2427     for (Callable<T> t : tasks) {
2428 dl 1.123 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2429 dl 1.119 doSubmit(f);
2430     fs.add(f);
2431     }
2432     for (ForkJoinTask<T> f : fs)
2433     f.quietlyJoin();
2434     done = true;
2435     return futures;
2436     } finally {
2437     if (!done)
2438     for (ForkJoinTask<T> f : fs)
2439     f.cancel(false);
2440 dl 1.1 }
2441     }
2442    
2443     /**
2444 jsr166 1.17 * Returns the factory used for constructing new workers.
2445 dl 1.1 *
2446     * @return the factory used for constructing new workers
2447     */
2448     public ForkJoinWorkerThreadFactory getFactory() {
2449     return factory;
2450     }
2451    
2452     /**
2453 dl 1.2 * Returns the handler for internal worker threads that terminate
2454     * due to unrecoverable errors encountered while executing tasks.
2455 jsr166 1.17 *
2456 jsr166 1.28 * @return the handler, or {@code null} if none
2457 dl 1.2 */
2458     public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
2459 dl 1.53 return ueh;
2460 dl 1.2 }
2461    
2462     /**
2463 dl 1.42 * Returns the targeted parallelism level of this pool.
2464 dl 1.1 *
2465 dl 1.42 * @return the targeted parallelism level of this pool
2466 dl 1.1 */
2467     public int getParallelism() {
2468     return parallelism;
2469     }
2470    
2471     /**
2472 dl 1.135 * Returns the targeted parallelism level of the common pool.
2473     *
2474     * @return the targeted parallelism level of the common pool
2475     */
2476     public static int getCommonPoolParallelism() {
2477     return commonPoolParallelism;
2478     }
2479    
2480     /**
2481 dl 1.1 * Returns the number of worker threads that have started but not
2482 jsr166 1.76 * yet terminated. The result returned by this method may differ
2483 jsr166 1.29 * from {@link #getParallelism} when threads are created to
2484 dl 1.1 * maintain parallelism when others are cooperatively blocked.
2485     *
2486     * @return the number of worker threads
2487     */
2488     public int getPoolSize() {
2489 dl 1.91 return parallelism + (short)(ctl >>> TC_SHIFT);
2490 dl 1.1 }
2491    
2492     /**
2493 jsr166 1.28 * Returns {@code true} if this pool uses local first-in-first-out
2494 jsr166 1.16 * scheduling mode for forked tasks that are never joined.
2495 dl 1.6 *
2496 jsr166 1.28 * @return {@code true} if this pool uses async mode
2497 dl 1.6 */
2498     public boolean getAsyncMode() {
2499 dl 1.111 return localMode != 0;
2500 dl 1.6 }
2501    
2502     /**
2503 dl 1.2 * Returns an estimate of the number of worker threads that are
2504     * not blocked waiting to join tasks or for other managed
2505 dl 1.53 * synchronization. This method may overestimate the
2506     * number of running threads.
2507 dl 1.1 *
2508     * @return the number of worker threads
2509     */
2510     public int getRunningThreadCount() {
2511 dl 1.111 int rc = 0;
2512     WorkQueue[] ws; WorkQueue w;
2513     if ((ws = workQueues) != null) {
2514 dl 1.119 for (int i = 1; i < ws.length; i += 2) {
2515     if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2516 dl 1.111 ++rc;
2517     }
2518     }
2519     return rc;
2520 dl 1.1 }
2521    
2522     /**
2523 dl 1.2 * Returns an estimate of the number of threads that are currently
2524 dl 1.1 * stealing or executing tasks. This method may overestimate the
2525     * number of active threads.
2526 jsr166 1.17 *
2527 jsr166 1.16 * @return the number of active threads
2528 dl 1.1 */
2529     public int getActiveThreadCount() {
2530 dl 1.111 int r = parallelism + (int)(ctl >> AC_SHIFT);
2531 jsr166 1.102 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2532 dl 1.1 }
2533    
2534     /**
2535 jsr166 1.28 * Returns {@code true} if all worker threads are currently idle.
2536     * An idle worker is one that cannot obtain a task to execute
2537     * because none are available to steal from other threads, and
2538     * there are no pending submissions to the pool. This method is
2539     * conservative; it might not return {@code true} immediately upon
2540     * idleness of all threads, but will eventually become true if
2541     * threads remain inactive.
2542 jsr166 1.17 *
2543 jsr166 1.28 * @return {@code true} if all threads are currently idle
2544 dl 1.1 */
2545     public boolean isQuiescent() {
2546 dl 1.111 return (int)(ctl >> AC_SHIFT) + parallelism == 0;
2547 dl 1.1 }
2548    
2549     /**
2550     * Returns an estimate of the total number of tasks stolen from
2551     * one thread's work queue by another. The reported value
2552     * underestimates the actual total number of steals when the pool
2553     * is not quiescent. This value may be useful for monitoring and
2554 jsr166 1.17 * tuning fork/join programs: in general, steal counts should be
2555 dl 1.1 * high enough to keep threads busy, but low enough to avoid
2556     * overhead and contention across threads.
2557 jsr166 1.17 *
2558 jsr166 1.16 * @return the number of steals
2559 dl 1.1 */
2560     public long getStealCount() {
2561 dl 1.111 long count = stealCount.get();
2562     WorkQueue[] ws; WorkQueue w;
2563     if ((ws = workQueues) != null) {
2564 dl 1.119 for (int i = 1; i < ws.length; i += 2) {
2565 dl 1.111 if ((w = ws[i]) != null)
2566     count += w.totalSteals;
2567     }
2568     }
2569     return count;
2570 dl 1.1 }
2571    
2572     /**
2573 dl 1.2 * Returns an estimate of the total number of tasks currently held
2574     * in queues by worker threads (but not including tasks submitted
2575     * to the pool that have not begun executing). This value is only
2576     * an approximation, obtained by iterating across all threads in
2577     * the pool. This method may be useful for tuning task
2578     * granularities.
2579 jsr166 1.17 *
2580 jsr166 1.16 * @return the number of queued tasks
2581 dl 1.1 */
2582     public long getQueuedTaskCount() {
2583     long count = 0;
2584 dl 1.111 WorkQueue[] ws; WorkQueue w;
2585     if ((ws = workQueues) != null) {
2586 dl 1.119 for (int i = 1; i < ws.length; i += 2) {
2587 dl 1.111 if ((w = ws[i]) != null)
2588     count += w.queueSize();
2589     }
2590 dl 1.91 }
2591 dl 1.1 return count;
2592     }
2593    
2594     /**
2595 jsr166 1.40 * Returns an estimate of the number of tasks submitted to this
2596 dl 1.94 * pool that have not yet begun executing. This method may take
2597 dl 1.91 * time proportional to the number of submissions.
2598 jsr166 1.17 *
2599 jsr166 1.16 * @return the number of queued submissions
2600 dl 1.1 */
2601     public int getQueuedSubmissionCount() {
2602 dl 1.111 int count = 0;
2603     WorkQueue[] ws; WorkQueue w;
2604     if ((ws = workQueues) != null) {
2605 dl 1.119 for (int i = 0; i < ws.length; i += 2) {
2606 dl 1.111 if ((w = ws[i]) != null)
2607     count += w.queueSize();
2608     }
2609     }
2610     return count;
2611 dl 1.1 }
2612    
2613     /**
2614 jsr166 1.28 * Returns {@code true} if there are any tasks submitted to this
2615     * pool that have not yet begun executing.
2616 jsr166 1.17 *
2617 jsr166 1.16 * @return {@code true} if there are any queued submissions
2618 dl 1.1 */
2619     public boolean hasQueuedSubmissions() {
2620 dl 1.111 WorkQueue[] ws; WorkQueue w;
2621     if ((ws = workQueues) != null) {
2622 dl 1.119 for (int i = 0; i < ws.length; i += 2) {
2623 dl 1.123 if ((w = ws[i]) != null && !w.isEmpty())
2624 dl 1.111 return true;
2625     }
2626     }
2627     return false;
2628 dl 1.1 }
2629    
2630     /**
2631     * Removes and returns the next unexecuted submission if one is
2632     * available. This method may be useful in extensions to this
2633     * class that re-assign work in systems with multiple pools.
2634 jsr166 1.17 *
2635 jsr166 1.28 * @return the next submission, or {@code null} if none
2636 dl 1.1 */
2637     protected ForkJoinTask<?> pollSubmission() {
2638 dl 1.111 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2639     if ((ws = workQueues) != null) {
2640 dl 1.119 for (int i = 0; i < ws.length; i += 2) {
2641 dl 1.111 if ((w = ws[i]) != null && (t = w.poll()) != null)
2642     return t;
2643 dl 1.91 }
2644     }
2645     return null;
2646 dl 1.1 }
2647    
2648     /**
2649 dl 1.6 * Removes all available unexecuted submitted and forked tasks
2650     * from scheduling queues and adds them to the given collection,
2651     * without altering their execution status. These may include
2652 jsr166 1.41 * artificially generated or wrapped tasks. This method is
2653     * designed to be invoked only when the pool is known to be
2654 dl 1.6 * quiescent. Invocations at other times may not remove all
2655     * tasks. A failure encountered while attempting to add elements
2656 jsr166 1.16 * to collection {@code c} may result in elements being in
2657 dl 1.6 * neither, either or both collections when the associated
2658     * exception is thrown. The behavior of this operation is
2659     * undefined if the specified collection is modified while the
2660     * operation is in progress.
2661 jsr166 1.17 *
2662 dl 1.6 * @param c the collection to transfer elements into
2663     * @return the number of elements transferred
2664     */
2665 dl 1.30 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2666 dl 1.91 int count = 0;
2667 dl 1.111 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2668     if ((ws = workQueues) != null) {
2669 dl 1.119 for (int i = 0; i < ws.length; ++i) {
2670 dl 1.111 if ((w = ws[i]) != null) {
2671     while ((t = w.poll()) != null) {
2672     c.add(t);
2673     ++count;
2674     }
2675     }
2676 dl 1.91 }
2677     }
2678 dl 1.57 return count;
2679     }
2680    
2681     /**
2682 dl 1.1 * Returns a string identifying this pool, as well as its state,
2683     * including indications of run state, parallelism level, and
2684     * worker and task counts.
2685     *
2686     * @return a string identifying this pool, as well as its state
2687     */
2688     public String toString() {
2689 dl 1.119 // Use a single pass through workQueues to collect counts
2690     long qt = 0L, qs = 0L; int rc = 0;
2691     long st = stealCount.get();
2692     long c = ctl;
2693     WorkQueue[] ws; WorkQueue w;
2694     if ((ws = workQueues) != null) {
2695     for (int i = 0; i < ws.length; ++i) {
2696     if ((w = ws[i]) != null) {
2697     int size = w.queueSize();
2698     if ((i & 1) == 0)
2699     qs += size;
2700     else {
2701     qt += size;
2702     st += w.totalSteals;
2703     if (w.isApparentlyUnblocked())
2704     ++rc;
2705     }
2706     }
2707     }
2708     }
2709 dl 1.53 int pc = parallelism;
2710 dl 1.91 int tc = pc + (short)(c >>> TC_SHIFT);
2711 dl 1.111 int ac = pc + (int)(c >> AC_SHIFT);
2712     if (ac < 0) // ignore transient negative
2713     ac = 0;
2714 dl 1.91 String level;
2715     if ((c & STOP_BIT) != 0)
2716 jsr166 1.102 level = (tc == 0) ? "Terminated" : "Terminating";
2717 dl 1.91 else
2718 dl 1.111 level = runState < 0 ? "Shutting down" : "Running";
2719 dl 1.1 return super.toString() +
2720 dl 1.91 "[" + level +
2721 dl 1.53 ", parallelism = " + pc +
2722     ", size = " + tc +
2723     ", active = " + ac +
2724     ", running = " + rc +
2725 dl 1.1 ", steals = " + st +
2726     ", tasks = " + qt +
2727     ", submissions = " + qs +
2728     "]";
2729     }
2730    
2731     /**
2732 dl 1.135 * Possibly initiates an orderly shutdown in which previously
2733     * submitted tasks are executed, but no new tasks will be
2734     * accepted. Invocation has no effect on execution state if this
2735     * is the {@link #commonPool}, and no additional effect if
2736     * already shut down. Tasks that are in the process of being
2737     * submitted concurrently during the course of this method may or
2738     * may not be rejected.
2739 jsr166 1.17 *
2740 dl 1.1 * @throws SecurityException if a security manager exists and
2741     * the caller is not permitted to modify threads
2742     * because it does not hold {@link
2743 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
2744 dl 1.1 */
2745     public void shutdown() {
2746     checkPermission();
2747 dl 1.135 if (this != commonPool)
2748     tryTerminate(false, true);
2749 dl 1.1 }
2750    
2751     /**
2752 dl 1.135 * Possibly attempts to cancel and/or stop all tasks, and reject
2753     * all subsequently submitted tasks. Invocation has no effect on
2754     * execution state if this is the {@link #commonPool}, and no
2755     * additional effect if already shut down. Otherwise, tasks that
2756     * are in the process of being submitted or executed concurrently
2757     * during the course of this method may or may not be
2758     * rejected. This method cancels both existing and unexecuted
2759     * tasks, in order to permit termination in the presence of task
2760     * dependencies. So the method always returns an empty list
2761     * (unlike the case for some other Executors).
2762 jsr166 1.17 *
2763 dl 1.1 * @return an empty list
2764     * @throws SecurityException if a security manager exists and
2765     * the caller is not permitted to modify threads
2766     * because it does not hold {@link
2767 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
2768 dl 1.1 */
2769     public List<Runnable> shutdownNow() {
2770     checkPermission();
2771 dl 1.135 if (this != commonPool)
2772     tryTerminate(true, true);
2773 dl 1.1 return Collections.emptyList();
2774     }
2775    
2776     /**
2777 jsr166 1.16 * Returns {@code true} if all tasks have completed following shut down.
2778 dl 1.1 *
2779 jsr166 1.16 * @return {@code true} if all tasks have completed following shut down
2780 dl 1.1 */
2781     public boolean isTerminated() {
2782 dl 1.91 long c = ctl;
2783     return ((c & STOP_BIT) != 0L &&
2784     (short)(c >>> TC_SHIFT) == -parallelism);
2785 dl 1.1 }
2786    
2787     /**
2788 jsr166 1.16 * Returns {@code true} if the process of termination has
2789 dl 1.42 * commenced but not yet completed. This method may be useful for
2790     * debugging. A return of {@code true} reported a sufficient
2791     * period after shutdown may indicate that submitted tasks have
2792 dl 1.88 * ignored or suppressed interruption, or are waiting for IO,
2793     * causing this executor not to properly terminate. (See the
2794     * advisory notes for class {@link ForkJoinTask} stating that
2795     * tasks should not normally entail blocking operations. But if
2796     * they do, they must abort them on interrupt.)
2797 dl 1.1 *
2798 dl 1.42 * @return {@code true} if terminating but not yet terminated
2799 dl 1.1 */
2800     public boolean isTerminating() {
2801 dl 1.91 long c = ctl;
2802     return ((c & STOP_BIT) != 0L &&
2803     (short)(c >>> TC_SHIFT) != -parallelism);
2804 dl 1.1 }
2805    
2806     /**
2807 jsr166 1.16 * Returns {@code true} if this pool has been shut down.
2808 dl 1.1 *
2809 jsr166 1.16 * @return {@code true} if this pool has been shut down
2810 dl 1.1 */
2811     public boolean isShutdown() {
2812 dl 1.111 return runState < 0;
2813 dl 1.42 }
2814    
2815     /**
2816 dl 1.1 * Blocks until all tasks have completed execution after a shutdown
2817     * request, or the timeout occurs, or the current thread is
2818     * interrupted, whichever happens first.
2819     *
2820     * @param timeout the maximum time to wait
2821     * @param unit the time unit of the timeout argument
2822 jsr166 1.16 * @return {@code true} if this executor terminated and
2823     * {@code false} if the timeout elapsed before termination
2824 dl 1.1 * @throws InterruptedException if interrupted while waiting
2825     */
2826     public boolean awaitTermination(long timeout, TimeUnit unit)
2827     throws InterruptedException {
2828 dl 1.91 long nanos = unit.toNanos(timeout);
2829 dl 1.119 final Mutex lock = this.lock;
2830 dl 1.91 lock.lock();
2831 dl 1.57 try {
2832 dl 1.91 for (;;) {
2833     if (isTerminated())
2834     return true;
2835     if (nanos <= 0)
2836     return false;
2837     nanos = termination.awaitNanos(nanos);
2838     }
2839     } finally {
2840     lock.unlock();
2841 dl 1.57 }
2842 dl 1.1 }
2843    
2844     /**
2845     * Interface for extending managed parallelism for tasks running
2846 jsr166 1.35 * in {@link ForkJoinPool}s.
2847     *
2848 dl 1.61 * <p>A {@code ManagedBlocker} provides two methods. Method
2849     * {@code isReleasable} must return {@code true} if blocking is
2850     * not necessary. Method {@code block} blocks the current thread
2851     * if necessary (perhaps internally invoking {@code isReleasable}
2852 dl 1.93 * before actually blocking). These actions are performed by any
2853     * thread invoking {@link ForkJoinPool#managedBlock}. The
2854     * unusual methods in this API accommodate synchronizers that may,
2855     * but don't usually, block for long periods. Similarly, they
2856     * allow more efficient internal handling of cases in which
2857     * additional workers may be, but usually are not, needed to
2858     * ensure sufficient parallelism. Toward this end,
2859     * implementations of method {@code isReleasable} must be amenable
2860     * to repeated invocation.
2861 jsr166 1.17 *
2862 dl 1.1 * <p>For example, here is a ManagedBlocker based on a
2863     * ReentrantLock:
2864 jsr166 1.17 * <pre> {@code
2865     * class ManagedLocker implements ManagedBlocker {
2866     * final ReentrantLock lock;
2867     * boolean hasLock = false;
2868     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
2869     * public boolean block() {
2870     * if (!hasLock)
2871     * lock.lock();
2872     * return true;
2873     * }
2874     * public boolean isReleasable() {
2875     * return hasLock || (hasLock = lock.tryLock());
2876 dl 1.1 * }
2877 jsr166 1.17 * }}</pre>
2878 dl 1.61 *
2879     * <p>Here is a class that possibly blocks waiting for an
2880     * item on a given queue:
2881     * <pre> {@code
2882     * class QueueTaker<E> implements ManagedBlocker {
2883     * final BlockingQueue<E> queue;
2884     * volatile E item = null;
2885     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
2886     * public boolean block() throws InterruptedException {
2887     * if (item == null)
2888 dl 1.65 * item = queue.take();
2889 dl 1.61 * return true;
2890     * }
2891     * public boolean isReleasable() {
2892 dl 1.65 * return item != null || (item = queue.poll()) != null;
2893 dl 1.61 * }
2894     * public E getItem() { // call after pool.managedBlock completes
2895     * return item;
2896     * }
2897     * }}</pre>
2898 dl 1.1 */
2899     public static interface ManagedBlocker {
2900     /**
2901     * Possibly blocks the current thread, for example waiting for
2902     * a lock or condition.
2903 jsr166 1.17 *
2904 jsr166 1.28 * @return {@code true} if no additional blocking is necessary
2905     * (i.e., if isReleasable would return true)
2906 dl 1.1 * @throws InterruptedException if interrupted while waiting
2907 jsr166 1.17 * (the method is not required to do so, but is allowed to)
2908 dl 1.1 */
2909     boolean block() throws InterruptedException;
2910    
2911     /**
2912 jsr166 1.28 * Returns {@code true} if blocking is unnecessary.
2913 dl 1.1 */
2914     boolean isReleasable();
2915     }
2916    
2917     /**
2918     * Blocks in accord with the given blocker. If the current thread
2919 jsr166 1.38 * is a {@link ForkJoinWorkerThread}, this method possibly
2920     * arranges for a spare thread to be activated if necessary to
2921 dl 1.57 * ensure sufficient parallelism while the current thread is blocked.
2922 jsr166 1.38 *
2923     * <p>If the caller is not a {@link ForkJoinTask}, this method is
2924     * behaviorally equivalent to
2925 jsr166 1.115 * <pre> {@code
2926 jsr166 1.17 * while (!blocker.isReleasable())
2927     * if (blocker.block())
2928     * return;
2929     * }</pre>
2930 jsr166 1.38 *
2931     * If the caller is a {@code ForkJoinTask}, then the pool may
2932     * first be expanded to ensure parallelism, and later adjusted.
2933 dl 1.1 *
2934     * @param blocker the blocker
2935 jsr166 1.16 * @throws InterruptedException if blocker.block did so
2936 dl 1.1 */
2937 dl 1.57 public static void managedBlock(ManagedBlocker blocker)
2938 dl 1.1 throws InterruptedException {
2939     Thread t = Thread.currentThread();
2940 dl 1.111 ForkJoinPool p = ((t instanceof ForkJoinWorkerThread) ?
2941     ((ForkJoinWorkerThread)t).pool : null);
2942     while (!blocker.isReleasable()) {
2943 dl 1.123 if (p == null || p.tryCompensate(null, blocker)) {
2944 dl 1.111 try {
2945     do {} while (!blocker.isReleasable() && !blocker.block());
2946     } finally {
2947     if (p != null)
2948     p.incrementActiveCount();
2949     }
2950     break;
2951     }
2952 dl 1.57 }
2953 dl 1.1 }
2954    
2955 dl 1.33 // AbstractExecutorService overrides. These rely on undocumented
2956     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
2957     // implement RunnableFuture.
2958 dl 1.2
2959     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
2960 dl 1.123 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
2961 dl 1.2 }
2962    
2963     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
2964 dl 1.123 return new ForkJoinTask.AdaptedCallable<T>(callable);
2965 dl 1.2 }
2966    
2967 jsr166 1.27 // Unsafe mechanics
2968 dl 1.111 private static final sun.misc.Unsafe U;
2969     private static final long CTL;
2970     private static final long PARKBLOCKER;
2971 dl 1.123 private static final int ABASE;
2972     private static final int ASHIFT;
2973 dl 1.91
2974     static {
2975     poolNumberGenerator = new AtomicInteger();
2976 dl 1.123 nextSubmitterSeed = new AtomicInteger(0x55555555);
2977 dl 1.91 modifyThreadPermission = new RuntimePermission("modifyThread");
2978     defaultForkJoinWorkerThreadFactory =
2979     new DefaultForkJoinWorkerThreadFactory();
2980 dl 1.119 submitters = new ThreadSubmitter();
2981 dl 1.135 initializationLock = new Mutex();
2982 dl 1.123 int s;
2983 jsr166 1.27 try {
2984 dl 1.111 U = getUnsafe();
2985 jsr166 1.103 Class<?> k = ForkJoinPool.class;
2986 dl 1.123 Class<?> ak = ForkJoinTask[].class;
2987 dl 1.111 CTL = U.objectFieldOffset
2988 dl 1.91 (k.getDeclaredField("ctl"));
2989 dl 1.119 Class<?> tk = Thread.class;
2990 dl 1.111 PARKBLOCKER = U.objectFieldOffset
2991     (tk.getDeclaredField("parkBlocker"));
2992 dl 1.123 ABASE = U.arrayBaseOffset(ak);
2993     s = U.arrayIndexScale(ak);
2994 dl 1.91 } catch (Exception e) {
2995     throw new Error(e);
2996     }
2997 dl 1.123 if ((s & (s-1)) != 0)
2998     throw new Error("data type scale not a power of two");
2999     ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3000 dl 1.135
3001     // Establish configuration for default pool
3002     try {
3003     String pp = System.getProperty(propPrefix + "parallelism");
3004     String fp = System.getProperty(propPrefix + "threadFactory");
3005     String up = System.getProperty(propPrefix + "exceptionHandler");
3006     int par;
3007     if ((pp == null || (par = Integer.parseInt(pp)) <= 0))
3008     par = Runtime.getRuntime().availableProcessors();
3009     commonPoolParallelism = par;
3010     if (fp != null)
3011     commonPoolFactory = (ForkJoinWorkerThreadFactory)
3012     ClassLoader.getSystemClassLoader().loadClass(fp).newInstance();
3013     else
3014     commonPoolFactory = defaultForkJoinWorkerThreadFactory;
3015     if (up != null)
3016     commonPoolUEH = (Thread.UncaughtExceptionHandler)
3017     ClassLoader.getSystemClassLoader().loadClass(up).newInstance();
3018     else
3019     commonPoolUEH = null;
3020     } catch (Exception e) {
3021     throw new Error(e);
3022     }
3023 jsr166 1.27 }
3024    
3025     /**
3026     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
3027     * Replace with a simple call to Unsafe.getUnsafe when integrating
3028     * into a jdk.
3029     *
3030     * @return a sun.misc.Unsafe
3031     */
3032     private static sun.misc.Unsafe getUnsafe() {
3033     try {
3034     return sun.misc.Unsafe.getUnsafe();
3035     } catch (SecurityException se) {
3036     try {
3037     return java.security.AccessController.doPrivileged
3038     (new java.security
3039     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
3040     public sun.misc.Unsafe run() throws Exception {
3041     java.lang.reflect.Field f = sun.misc
3042     .Unsafe.class.getDeclaredField("theUnsafe");
3043     f.setAccessible(true);
3044     return (sun.misc.Unsafe) f.get(null);
3045     }});
3046     } catch (java.security.PrivilegedActionException e) {
3047     throw new RuntimeException("Could not initialize intrinsics",
3048     e.getCause());
3049     }
3050     }
3051     }
3052 dl 1.112
3053 dl 1.1 }