ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
Revision: 1.136
Committed: Mon Oct 29 17:23:34 2012 UTC (11 years, 6 months ago) by dl
Branch: MAIN
Changes since 1.135: +217 -164 lines
Log Message:
Reduce common pool footprint

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.97 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.1 */
6    
7     package jsr166y;
8 dl 1.135
9 jsr166 1.22 import java.util.ArrayList;
10     import java.util.Arrays;
11     import java.util.Collection;
12     import java.util.Collections;
13     import java.util.List;
14 dl 1.91 import java.util.Random;
15 dl 1.78 import java.util.concurrent.AbstractExecutorService;
16     import java.util.concurrent.Callable;
17     import java.util.concurrent.ExecutorService;
18     import java.util.concurrent.Future;
19     import java.util.concurrent.RejectedExecutionException;
20     import java.util.concurrent.RunnableFuture;
21     import java.util.concurrent.TimeUnit;
22     import java.util.concurrent.atomic.AtomicInteger;
23 dl 1.111 import java.util.concurrent.atomic.AtomicLong;
24 dl 1.119 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
25 dl 1.91 import java.util.concurrent.locks.Condition;
26 dl 1.1
27     /**
28 jsr166 1.29 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
29 jsr166 1.39 * A {@code ForkJoinPool} provides the entry point for submissions
30 dl 1.57 * from non-{@code ForkJoinTask} clients, as well as management and
31 jsr166 1.48 * monitoring operations.
32 dl 1.1 *
33 dl 1.42 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
34     * ExecutorService} mainly by virtue of employing
35     * <em>work-stealing</em>: all threads in the pool attempt to find and
36 dl 1.111 * execute tasks submitted to the pool and/or created by other active
37     * tasks (eventually blocking waiting for work if none exist). This
38     * enables efficient processing when most tasks spawn other subtasks
39     * (as do most {@code ForkJoinTask}s), as well as when many small
40     * tasks are submitted to the pool from external clients. Especially
41     * when setting <em>asyncMode</em> to true in constructors, {@code
42     * ForkJoinPool}s may also be appropriate for use with event-style
43     * tasks that are never joined.
44 dl 1.1 *
45 dl 1.135 * <p>A static {@link #commonPool} is available and appropriate for
46 dl 1.136 * most applications. The common pool is used by any ForkJoinTask that
47     * is not explicitly submitted to a specified pool. Using the common
48     * pool normally reduces resource usage (its threads are slowly
49     * reclaimed during periods of non-use, and reinstated upon subsequent
50     * use). The common pool is by default constructed with default
51     * parameters, but these may be controlled by setting any or all of
52     * the three properties {@code
53 dl 1.135 * java.util.concurrent.ForkJoinPool.common.{parallelism,
54     * threadFactory, exceptionHandler}}.
55     *
56     * <p>For applications that require separate or custom pools, a {@code
57     * ForkJoinPool} may be constructed with a given target parallelism
58     * level; by default, equal to the number of available processors. The
59     * pool attempts to maintain enough active (or available) threads by
60     * dynamically adding, suspending, or resuming internal worker
61     * threads, even if some tasks are stalled waiting to join
62     * others. However, no such adjustments are guaranteed in the face of
63     * blocked IO or other unmanaged synchronization. The nested {@link
64     * ManagedBlocker} interface enables extension of the kinds of
65 dl 1.57 * synchronization accommodated.
66 dl 1.1 *
67     * <p>In addition to execution and lifecycle control methods, this
68     * class provides status check methods (for example
69 jsr166 1.29 * {@link #getStealCount}) that are intended to aid in developing,
70 dl 1.1 * tuning, and monitoring fork/join applications. Also, method
71 jsr166 1.29 * {@link #toString} returns indications of pool state in a
72 dl 1.2 * convenient form for informal monitoring.
73 dl 1.1 *
74 dl 1.57 * <p> As is the case with other ExecutorServices, there are three
75 jsr166 1.117 * main task execution methods summarized in the following table.
76     * These are designed to be used primarily by clients not already
77     * engaged in fork/join computations in the current pool. The main
78     * forms of these methods accept instances of {@code ForkJoinTask},
79     * but overloaded forms also allow mixed execution of plain {@code
80     * Runnable}- or {@code Callable}- based activities as well. However,
81     * tasks that are already executing in a pool should normally instead
82     * use the within-computation forms listed in the table unless using
83     * async event-style tasks that are not usually joined, in which case
84     * there is little difference among choice of methods.
85 dl 1.57 *
86     * <table BORDER CELLPADDING=3 CELLSPACING=1>
87     * <tr>
88     * <td></td>
89     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
90     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
91     * </tr>
92     * <tr>
93 jsr166 1.67 * <td> <b>Arrange async execution</td>
94 dl 1.57 * <td> {@link #execute(ForkJoinTask)}</td>
95     * <td> {@link ForkJoinTask#fork}</td>
96     * </tr>
97     * <tr>
98     * <td> <b>Await and obtain result</td>
99     * <td> {@link #invoke(ForkJoinTask)}</td>
100     * <td> {@link ForkJoinTask#invoke}</td>
101     * </tr>
102     * <tr>
103     * <td> <b>Arrange exec and obtain Future</td>
104     * <td> {@link #submit(ForkJoinTask)}</td>
105     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
106     * </tr>
107     * </table>
108 dl 1.59 *
109 dl 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
110 dl 1.2 * maximum number of running threads to 32767. Attempts to create
111 jsr166 1.48 * pools with greater than the maximum number result in
112 jsr166 1.39 * {@code IllegalArgumentException}.
113 jsr166 1.16 *
114 jsr166 1.48 * <p>This implementation rejects submitted tasks (that is, by throwing
115 dl 1.58 * {@link RejectedExecutionException}) only when the pool is shut down
116 dl 1.62 * or internal resources have been exhausted.
117 jsr166 1.48 *
118 jsr166 1.16 * @since 1.7
119     * @author Doug Lea
120 dl 1.1 */
121 dl 1.2 public class ForkJoinPool extends AbstractExecutorService {
122 dl 1.1
123     /*
124 dl 1.53 * Implementation Overview
125     *
126 dl 1.111 * This class and its nested classes provide the main
127     * functionality and control for a set of worker threads:
128 jsr166 1.117 * Submissions from non-FJ threads enter into submission queues.
129     * Workers take these tasks and typically split them into subtasks
130     * that may be stolen by other workers. Preference rules give
131     * first priority to processing tasks from their own queues (LIFO
132     * or FIFO, depending on mode), then to randomized FIFO steals of
133     * tasks in other queues.
134 dl 1.111 *
135 jsr166 1.117 * WorkQueues
136 dl 1.111 * ==========
137     *
138     * Most operations occur within work-stealing queues (in nested
139     * class WorkQueue). These are special forms of Deques that
140     * support only three of the four possible end-operations -- push,
141     * pop, and poll (aka steal), under the further constraints that
142     * push and pop are called only from the owning thread (or, as
143     * extended here, under a lock), while poll may be called from
144     * other threads. (If you are unfamiliar with them, you probably
145     * want to read Herlihy and Shavit's book "The Art of
146     * Multiprocessor programming", chapter 16 describing these in
147     * more detail before proceeding.) The main work-stealing queue
148     * design is roughly similar to those in the papers "Dynamic
149     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
150     * (http://research.sun.com/scalable/pubs/index.html) and
151     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
152     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
153 jsr166 1.117 * The main differences ultimately stem from GC requirements that
154 dl 1.111 * we null out taken slots as soon as we can, to maintain as small
155     * a footprint as possible even in programs generating huge
156     * numbers of tasks. To accomplish this, we shift the CAS
157     * arbitrating pop vs poll (steal) from being on the indices
158     * ("base" and "top") to the slots themselves. So, both a
159     * successful pop and poll mainly entail a CAS of a slot from
160     * non-null to null. Because we rely on CASes of references, we
161     * do not need tag bits on base or top. They are simple ints as
162     * used in any circular array-based queue (see for example
163     * ArrayDeque). Updates to the indices must still be ordered in a
164     * way that guarantees that top == base means the queue is empty,
165     * but otherwise may err on the side of possibly making the queue
166     * appear nonempty when a push, pop, or poll have not fully
167     * committed. Note that this means that the poll operation,
168     * considered individually, is not wait-free. One thief cannot
169     * successfully continue until another in-progress one (or, if
170     * previously empty, a push) completes. However, in the
171     * aggregate, we ensure at least probabilistic non-blockingness.
172     * If an attempted steal fails, a thief always chooses a different
173     * random victim target to try next. So, in order for one thief to
174     * progress, it suffices for any in-progress poll or new push on
175 dl 1.123 * any empty queue to complete. (This is why we normally use
176     * method pollAt and its variants that try once at the apparent
177     * base index, else consider alternative actions, rather than
178     * method poll.)
179 dl 1.111 *
180 dl 1.112 * This approach also enables support of a user mode in which local
181 dl 1.111 * task processing is in FIFO, not LIFO order, simply by using
182     * poll rather than pop. This can be useful in message-passing
183     * frameworks in which tasks are never joined. However neither
184     * mode considers affinities, loads, cache localities, etc, so
185     * rarely provide the best possible performance on a given
186     * machine, but portably provide good throughput by averaging over
187     * these factors. (Further, even if we did try to use such
188 jsr166 1.117 * information, we do not usually have a basis for exploiting it.
189     * For example, some sets of tasks profit from cache affinities,
190     * but others are harmed by cache pollution effects.)
191 dl 1.111 *
192     * WorkQueues are also used in a similar way for tasks submitted
193     * to the pool. We cannot mix these tasks in the same queues used
194     * for work-stealing (this would contaminate lifo/fifo
195 dl 1.116 * processing). Instead, we loosely associate submission queues
196     * with submitting threads, using a form of hashing. The
197     * ThreadLocal Submitter class contains a value initially used as
198     * a hash code for choosing existing queues, but may be randomly
199     * repositioned upon contention with other submitters. In
200     * essence, submitters act like workers except that they never
201     * take tasks, and they are multiplexed on to a finite number of
202     * shared work queues. However, classes are set up so that future
203     * extensions could allow submitters to optionally help perform
204 dl 1.119 * tasks as well. Insertion of tasks in shared mode requires a
205     * lock (mainly to protect in the case of resizing) but we use
206     * only a simple spinlock (using bits in field runState), because
207     * submitters encountering a busy queue move on to try or create
208 dl 1.123 * other queues -- they block only when creating and registering
209     * new queues.
210 dl 1.111 *
211 jsr166 1.117 * Management
212 dl 1.111 * ==========
213 dl 1.91 *
214     * The main throughput advantages of work-stealing stem from
215     * decentralized control -- workers mostly take tasks from
216     * themselves or each other. We cannot negate this in the
217     * implementation of other management responsibilities. The main
218     * tactic for avoiding bottlenecks is packing nearly all
219 dl 1.111 * essentially atomic control state into two volatile variables
220     * that are by far most often read (not written) as status and
221 jsr166 1.117 * consistency checks.
222 dl 1.111 *
223     * Field "ctl" contains 64 bits holding all the information needed
224     * to atomically decide to add, inactivate, enqueue (on an event
225     * queue), dequeue, and/or re-activate workers. To enable this
226     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
227     * far in excess of normal operating range) to allow ids, counts,
228     * and their negations (used for thresholding) to fit into 16bit
229     * fields.
230     *
231     * Field "runState" contains 32 bits needed to register and
232     * deregister WorkQueues, as well as to enable shutdown. It is
233     * only modified under a lock (normally briefly held, but
234     * occasionally protecting allocations and resizings) but even
235 dl 1.123 * when locked remains available to check consistency.
236 dl 1.111 *
237     * Recording WorkQueues. WorkQueues are recorded in the
238 dl 1.136 * "workQueues" array that is created upon first use and expanded
239     * if necessary. Updates to the array while recording new workers
240     * and unrecording terminated ones are protected from each other
241     * by a lock but the array is otherwise concurrently readable, and
242     * accessed directly. To simplify index-based operations, the
243     * array size is always a power of two, and all readers must
244     * tolerate null slots. Shared (submission) queues are at even
245     * indices, worker queues at odd indices. Grouping them together
246     * in this way simplifies and speeds up task scanning.
247 dl 1.119 *
248     * All worker thread creation is on-demand, triggered by task
249     * submissions, replacement of terminated workers, and/or
250 dl 1.111 * compensation for blocked workers. However, all other support
251     * code is set up to work with other policies. To ensure that we
252     * do not hold on to worker references that would prevent GC, ALL
253     * accesses to workQueues are via indices into the workQueues
254     * array (which is one source of some of the messy code
255     * constructions here). In essence, the workQueues array serves as
256     * a weak reference mechanism. Thus for example the wait queue
257     * field of ctl stores indices, not references. Access to the
258     * workQueues in associated methods (for example signalWork) must
259     * both index-check and null-check the IDs. All such accesses
260     * ignore bad IDs by returning out early from what they are doing,
261     * since this can only be associated with termination, in which
262 dl 1.119 * case it is OK to give up. All uses of the workQueues array
263     * also check that it is non-null (even if previously
264     * non-null). This allows nulling during termination, which is
265     * currently not necessary, but remains an option for
266     * resource-revocation-based shutdown schemes. It also helps
267     * reduce JIT issuance of uncommon-trap code, which tends to
268 dl 1.111 * unnecessarily complicate control flow in some methods.
269 dl 1.91 *
270 dl 1.111 * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
271 dl 1.95 * let workers spin indefinitely scanning for tasks when none can
272     * be found immediately, and we cannot start/resume workers unless
273     * there appear to be tasks available. On the other hand, we must
274     * quickly prod them into action when new tasks are submitted or
275 dl 1.111 * generated. In many usages, ramp-up time to activate workers is
276     * the main limiting factor in overall performance (this is
277     * compounded at program start-up by JIT compilation and
278     * allocation). So we try to streamline this as much as possible.
279     * We park/unpark workers after placing in an event wait queue
280     * when they cannot find work. This "queue" is actually a simple
281     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
282     * counter value (that reflects the number of times a worker has
283     * been inactivated) to avoid ABA effects (we need only as many
284     * version numbers as worker threads). Successors are held in
285     * field WorkQueue.nextWait. Queuing deals with several intrinsic
286     * races, mainly that a task-producing thread can miss seeing (and
287 dl 1.95 * signalling) another thread that gave up looking for work but
288     * has not yet entered the wait queue. We solve this by requiring
289 dl 1.111 * a full sweep of all workers (via repeated calls to method
290     * scan()) both before and after a newly waiting worker is added
291     * to the wait queue. During a rescan, the worker might release
292     * some other queued worker rather than itself, which has the same
293     * net effect. Because enqueued workers may actually be rescanning
294     * rather than waiting, we set and clear the "parker" field of
295 jsr166 1.117 * WorkQueues to reduce unnecessary calls to unpark. (This
296 dl 1.111 * requires a secondary recheck to avoid missed signals.) Note
297     * the unusual conventions about Thread.interrupts surrounding
298     * parking and other blocking: Because interrupts are used solely
299     * to alert threads to check termination, which is checked anyway
300     * upon blocking, we clear status (using Thread.interrupted)
301     * before any call to park, so that park does not immediately
302     * return due to status being set via some other unrelated call to
303     * interrupt in user code.
304 dl 1.91 *
305     * Signalling. We create or wake up workers only when there
306     * appears to be at least one task they might be able to find and
307     * execute. When a submission is added or another worker adds a
308 dl 1.111 * task to a queue that previously had fewer than two tasks, they
309 dl 1.91 * signal waiting workers (or trigger creation of new ones if
310     * fewer than the given parallelism level -- see signalWork).
311 dl 1.111 * These primary signals are buttressed by signals during rescans;
312     * together these cover the signals needed in cases when more
313     * tasks are pushed but untaken, and improve performance compared
314     * to having one thread wake up all workers.
315 dl 1.91 *
316     * Trimming workers. To release resources after periods of lack of
317     * use, a worker starting to wait when the pool is quiescent will
318 dl 1.135 * time out and terminate if the pool has remained quiescent for a
319     * given period -- a short period if there are more threads than
320     * parallelism, longer as the number of threads decreases. This
321     * will slowly propagate, eventually terminating all workers after
322     * periods of non-use.
323 dl 1.91 *
324 dl 1.111 * Shutdown and Termination. A call to shutdownNow atomically sets
325 jsr166 1.117 * a runState bit and then (non-atomically) sets each worker's
326 dl 1.111 * runState status, cancels all unprocessed tasks, and wakes up
327     * all waiting workers. Detecting whether termination should
328     * commence after a non-abrupt shutdown() call requires more work
329     * and bookkeeping. We need consensus about quiescence (i.e., that
330     * there is no more work). The active count provides a primary
331     * indication but non-abrupt shutdown still requires a rechecking
332     * scan for any workers that are inactive but not queued.
333     *
334 jsr166 1.117 * Joining Tasks
335     * =============
336 dl 1.111 *
337     * Any of several actions may be taken when one worker is waiting
338 jsr166 1.117 * to join a task stolen (or always held) by another. Because we
339 dl 1.111 * are multiplexing many tasks on to a pool of workers, we can't
340     * just let them block (as in Thread.join). We also cannot just
341     * reassign the joiner's run-time stack with another and replace
342     * it later, which would be a form of "continuation", that even if
343     * possible is not necessarily a good idea since we sometimes need
344 jsr166 1.117 * both an unblocked task and its continuation to progress.
345     * Instead we combine two tactics:
346 dl 1.58 *
347 dl 1.60 * Helping: Arranging for the joiner to execute some task that it
348 dl 1.111 * would be running if the steal had not occurred.
349 dl 1.58 *
350 dl 1.61 * Compensating: Unless there are already enough live threads,
351 dl 1.111 * method tryCompensate() may create or re-activate a spare
352     * thread to compensate for blocked joiners until they unblock.
353     *
354     * A third form (implemented in tryRemoveAndExec and
355     * tryPollForAndExec) amounts to helping a hypothetical
356     * compensator: If we can readily tell that a possible action of a
357     * compensator is to steal and execute the task being joined, the
358     * joining thread can do so directly, without the need for a
359     * compensation thread (although at the expense of larger run-time
360     * stacks, but the tradeoff is typically worthwhile).
361 dl 1.91 *
362     * The ManagedBlocker extension API can't use helping so relies
363     * only on compensation in method awaitBlocker.
364 dl 1.58 *
365 dl 1.111 * The algorithm in tryHelpStealer entails a form of "linear"
366     * helping: Each worker records (in field currentSteal) the most
367     * recent task it stole from some other worker. Plus, it records
368     * (in field currentJoin) the task it is currently actively
369     * joining. Method tryHelpStealer uses these markers to try to
370     * find a worker to help (i.e., steal back a task from and execute
371     * it) that could hasten completion of the actively joined task.
372     * In essence, the joiner executes a task that would be on its own
373     * local deque had the to-be-joined task not been stolen. This may
374     * be seen as a conservative variant of the approach in Wagner &
375     * Calder "Leapfrogging: a portable technique for implementing
376     * efficient futures" SIGPLAN Notices, 1993
377     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
378     * that: (1) We only maintain dependency links across workers upon
379     * steals, rather than use per-task bookkeeping. This sometimes
380 dl 1.123 * requires a linear scan of workQueues array to locate stealers,
381     * but often doesn't because stealers leave hints (that may become
382 dl 1.111 * stale/wrong) of where to locate them. A stealHint is only a
383     * hint because a worker might have had multiple steals and the
384     * hint records only one of them (usually the most current).
385     * Hinting isolates cost to when it is needed, rather than adding
386     * to per-task overhead. (2) It is "shallow", ignoring nesting
387     * and potentially cyclic mutual steals. (3) It is intentionally
388     * racy: field currentJoin is updated only while actively joining,
389     * which means that we miss links in the chain during long-lived
390     * tasks, GC stalls etc (which is OK since blocking in such cases
391     * is usually a good idea). (4) We bound the number of attempts
392 dl 1.123 * to find work (see MAX_HELP) and fall back to suspending the
393     * worker and if necessary replacing it with another.
394 dl 1.111 *
395 dl 1.91 * It is impossible to keep exactly the target parallelism number
396     * of threads running at any given time. Determining the
397 dl 1.66 * existence of conservatively safe helping targets, the
398     * availability of already-created spares, and the apparent need
399 dl 1.111 * to create new spares are all racy, so we rely on multiple
400 dl 1.123 * retries of each. Compensation in the apparent absence of
401     * helping opportunities is challenging to control on JVMs, where
402     * GC and other activities can stall progress of tasks that in
403     * turn stall out many other dependent tasks, without us being
404     * able to determine whether they will ever require compensation.
405     * Even though work-stealing otherwise encounters little
406     * degradation in the presence of more threads than cores,
407     * aggressively adding new threads in such cases entails risk of
408     * unwanted positive feedback control loops in which more threads
409     * cause more dependent stalls (as well as delayed progress of
410     * unblocked threads to the point that we know they are available)
411     * leading to more situations requiring more threads, and so
412     * on. This aspect of control can be seen as an (analytically
413 jsr166 1.125 * intractable) game with an opponent that may choose the worst
414 dl 1.123 * (for us) active thread to stall at any time. We take several
415     * precautions to bound losses (and thus bound gains), mainly in
416     * methods tryCompensate and awaitJoin: (1) We only try
417     * compensation after attempting enough helping steps (measured
418     * via counting and timing) that we have already consumed the
419     * estimated cost of creating and activating a new thread. (2) We
420     * allow up to 50% of threads to be blocked before initially
421     * adding any others, and unless completely saturated, check that
422     * some work is available for a new worker before adding. Also, we
423     * create up to only 50% more threads until entering a mode that
424     * only adds a thread if all others are possibly blocked. All
425     * together, this means that we might be half as fast to react,
426     * and create half as many threads as possible in the ideal case,
427     * but present vastly fewer anomalies in all other cases compared
428     * to both more aggressive and more conservative alternatives.
429 dl 1.58 *
430 dl 1.91 * Style notes: There is a lot of representation-level coupling
431 dl 1.53 * among classes ForkJoinPool, ForkJoinWorkerThread, and
432 dl 1.111 * ForkJoinTask. The fields of WorkQueue maintain data structures
433     * managed by ForkJoinPool, so are directly accessed. There is
434     * little point trying to reduce this, since any associated future
435     * changes in representations will need to be accompanied by
436 dl 1.119 * algorithmic changes anyway. Several methods intrinsically
437     * sprawl because they must accumulate sets of consistent reads of
438     * volatiles held in local variables. Methods signalWork() and
439     * scan() are the main bottlenecks, so are especially heavily
440     * micro-optimized/mangled. There are lots of inline assignments
441     * (of form "while ((local = field) != 0)") which are usually the
442     * simplest way to ensure the required read orderings (which are
443     * sometimes critical). This leads to a "C"-like style of listing
444     * declarations of these locals at the heads of methods or blocks.
445     * There are several occurrences of the unusual "do {} while
446     * (!cas...)" which is the simplest way to force an update of a
447     * CAS'ed variable. There are also other coding oddities that help
448     * some methods perform reasonably even when interpreted (not
449     * compiled).
450 dl 1.91 *
451 jsr166 1.117 * The order of declarations in this file is:
452 dl 1.119 * (1) Static utility functions
453     * (2) Nested (static) classes
454     * (3) Static fields
455     * (4) Fields, along with constants used when unpacking some of them
456     * (5) Internal control methods
457     * (6) Callbacks and other support for ForkJoinTask methods
458     * (7) Exported methods
459     * (8) Static block initializing statics in minimally dependent order
460     */
461    
462     // Static utilities
463    
464     /**
465     * If there is a security manager, makes sure caller has
466     * permission to modify threads.
467 dl 1.1 */
468 dl 1.119 private static void checkPermission() {
469     SecurityManager security = System.getSecurityManager();
470     if (security != null)
471     security.checkPermission(modifyThreadPermission);
472     }
473    
474     // Nested classes
475 dl 1.1
476     /**
477 jsr166 1.35 * Factory for creating new {@link ForkJoinWorkerThread}s.
478     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
479     * for {@code ForkJoinWorkerThread} subclasses that extend base
480     * functionality or initialize threads with different contexts.
481 dl 1.1 */
482     public static interface ForkJoinWorkerThreadFactory {
483     /**
484     * Returns a new worker thread operating in the given pool.
485     *
486     * @param pool the pool this thread works in
487 jsr166 1.48 * @throws NullPointerException if the pool is null
488 dl 1.1 */
489     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
490     }
491    
492     /**
493 jsr166 1.17 * Default ForkJoinWorkerThreadFactory implementation; creates a
494 dl 1.1 * new ForkJoinWorkerThread.
495     */
496 dl 1.57 static class DefaultForkJoinWorkerThreadFactory
497 dl 1.1 implements ForkJoinWorkerThreadFactory {
498     public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
499 dl 1.53 return new ForkJoinWorkerThread(pool);
500 dl 1.1 }
501     }
502    
503     /**
504 dl 1.119 * Class for artificial tasks that are used to replace the target
505     * of local joins if they are removed from an interior queue slot
506     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
507     * actually do anything beyond having a unique identity.
508 dl 1.1 */
509 dl 1.119 static final class EmptyTask extends ForkJoinTask<Void> {
510     EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
511     public final Void getRawResult() { return null; }
512     public final void setRawResult(Void x) {}
513     public final boolean exec() { return true; }
514 dl 1.1 }
515    
516     /**
517 dl 1.111 * Queues supporting work-stealing as well as external task
518     * submission. See above for main rationale and algorithms.
519     * Implementation relies heavily on "Unsafe" intrinsics
520     * and selective use of "volatile":
521     *
522     * Field "base" is the index (mod array.length) of the least valid
523     * queue slot, which is always the next position to steal (poll)
524     * from if nonempty. Reads and writes require volatile orderings
525     * but not CAS, because updates are only performed after slot
526     * CASes.
527     *
528     * Field "top" is the index (mod array.length) of the next queue
529     * slot to push to or pop from. It is written only by owner thread
530     * for push, or under lock for trySharedPush, and accessed by
531     * other threads only after reading (volatile) base. Both top and
532     * base are allowed to wrap around on overflow, but (top - base)
533 jsr166 1.114 * (or more commonly -(base - top) to force volatile read of base
534 dl 1.111 * before top) still estimates size.
535     *
536     * The array slots are read and written using the emulation of
537     * volatiles/atomics provided by Unsafe. Insertions must in
538     * general use putOrderedObject as a form of releasing store to
539     * ensure that all writes to the task object are ordered before
540     * its publication in the queue. (Although we can avoid one case
541     * of this when locked in trySharedPush.) All removals entail a
542     * CAS to null. The array is always a power of two. To ensure
543     * safety of Unsafe array operations, all accesses perform
544     * explicit null checks and implicit bounds checks via
545     * power-of-two masking.
546     *
547     * In addition to basic queuing support, this class contains
548     * fields described elsewhere to control execution. It turns out
549     * to work better memory-layout-wise to include them in this
550     * class rather than a separate class.
551     *
552     * Performance on most platforms is very sensitive to placement of
553     * instances of both WorkQueues and their arrays -- we absolutely
554     * do not want multiple WorkQueue instances or multiple queue
555     * arrays sharing cache lines. (It would be best for queue objects
556     * and their arrays to share, but there is nothing available to
557     * help arrange that). Unfortunately, because they are recorded
558     * in a common array, WorkQueue instances are often moved to be
559     * adjacent by garbage collectors. To reduce impact, we use field
560     * padding that works OK on common platforms; this effectively
561     * trades off slightly slower average field access for the sake of
562     * avoiding really bad worst-case access. (Until better JVM
563     * support is in place, this padding is dependent on transient
564     * properties of JVM field layout rules.) We also take care in
565 dl 1.119 * allocating, sizing and resizing the array. Non-shared queue
566 dl 1.111 * arrays are initialized (via method growArray) by workers before
567     * use. Others are allocated on first use.
568 dl 1.53 */
569 dl 1.111 static final class WorkQueue {
570     /**
571     * Capacity of work-stealing queue array upon initialization.
572 dl 1.123 * Must be a power of two; at least 4, but should be larger to
573     * reduce or eliminate cacheline sharing among queues.
574     * Currently, it is much larger, as a partial workaround for
575     * the fact that JVMs often place arrays in locations that
576     * share GC bookkeeping (especially cardmarks) such that
577     * per-write accesses encounter serious memory contention.
578 dl 1.111 */
579 dl 1.123 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
580 dl 1.111
581     /**
582     * Maximum size for queue arrays. Must be a power of two less
583     * than or equal to 1 << (31 - width of array entry) to ensure
584     * lack of wraparound of index calculations, but defined to a
585     * value a bit less than this to help users trap runaway
586     * programs before saturating systems.
587     */
588     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
589    
590     volatile long totalSteals; // cumulative number of steals
591     int seed; // for random scanning; initialize nonzero
592     volatile int eventCount; // encoded inactivation count; < 0 if inactive
593     int nextWait; // encoded record of next event waiter
594     int rescans; // remaining scans until block
595     int nsteals; // top-level task executions since last idle
596     final int mode; // lifo, fifo, or shared
597     int poolIndex; // index of this queue in pool (or 0)
598     int stealHint; // index of most recent known stealer
599     volatile int runState; // 1: locked, -1: terminate; else 0
600     volatile int base; // index of next slot for poll
601     int top; // index of next slot for push
602     ForkJoinTask<?>[] array; // the elements (initially unallocated)
603 dl 1.123 final ForkJoinPool pool; // the containing pool (may be null)
604 dl 1.111 final ForkJoinWorkerThread owner; // owning thread or null if shared
605     volatile Thread parker; // == owner during call to park; else null
606 dl 1.128 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
607 dl 1.111 ForkJoinTask<?> currentSteal; // current non-local task being executed
608     // Heuristic padding to ameliorate unfortunate memory placements
609 dl 1.123 Object p00, p01, p02, p03, p04, p05, p06, p07;
610     Object p08, p09, p0a, p0b, p0c, p0d, p0e;
611 dl 1.111
612 dl 1.123 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode) {
613     this.mode = mode;
614     this.pool = pool;
615 dl 1.111 this.owner = owner;
616     // Place indices in the center of array (that is not yet allocated)
617     base = top = INITIAL_QUEUE_CAPACITY >>> 1;
618     }
619    
620     /**
621 dl 1.123 * Returns the approximate number of tasks in the queue.
622 dl 1.111 */
623     final int queueSize() {
624 dl 1.123 int n = base - top; // non-owner callers must read base first
625     return (n >= 0) ? 0 : -n; // ignore transient negative
626     }
627    
628     /**
629     * Provides a more accurate estimate of whether this queue has
630     * any tasks than does queueSize, by checking whether a
631     * near-empty queue has at least one unclaimed task.
632     */
633     final boolean isEmpty() {
634     ForkJoinTask<?>[] a; int m, s;
635     int n = base - (s = top);
636     return (n >= 0 ||
637     (n == -1 &&
638     ((a = array) == null ||
639     (m = a.length - 1) < 0 ||
640     U.getObjectVolatile
641     (a, ((m & (s - 1)) << ASHIFT) + ABASE) == null)));
642 dl 1.111 }
643    
644     /**
645     * Pushes a task. Call only by owner in unshared queues.
646     *
647     * @param task the task. Caller must ensure non-null.
648 jsr166 1.117 * @throw RejectedExecutionException if array cannot be resized
649 dl 1.111 */
650 dl 1.123 final void push(ForkJoinTask<?> task) {
651     ForkJoinTask<?>[] a; ForkJoinPool p;
652 dl 1.111 int s = top, m, n;
653     if ((a = array) != null) { // ignore if queue removed
654     U.putOrderedObject
655     (a, (((m = a.length - 1) & s) << ASHIFT) + ABASE, task);
656     if ((n = (top = s + 1) - base) <= 2) {
657 dl 1.123 if ((p = pool) != null)
658 dl 1.111 p.signalWork();
659     }
660     else if (n >= m)
661     growArray(true);
662     }
663     }
664    
665     /**
666     * Pushes a task if lock is free and array is either big
667     * enough or can be resized to be big enough.
668     *
669     * @param task the task. Caller must ensure non-null.
670     * @return true if submitted
671     */
672     final boolean trySharedPush(ForkJoinTask<?> task) {
673     boolean submitted = false;
674     if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
675     ForkJoinTask<?>[] a = array;
676 dl 1.119 int s = top;
677 dl 1.111 try {
678 dl 1.119 if ((a != null && a.length > s + 1 - base) ||
679 dl 1.111 (a = growArray(false)) != null) { // must presize
680     int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
681     U.putObject(a, (long)j, task); // don't need "ordered"
682     top = s + 1;
683     submitted = true;
684     }
685     } finally {
686     runState = 0; // unlock
687     }
688     }
689     return submitted;
690     }
691    
692     /**
693 dl 1.123 * Takes next task, if one exists, in LIFO order. Call only
694     * by owner in unshared queues. (We do not have a shared
695     * version of this method because it is never needed.)
696     */
697     final ForkJoinTask<?> pop() {
698 dl 1.127 ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
699     if ((a = array) != null && (m = a.length - 1) >= 0) {
700 dl 1.123 for (int s; (s = top - 1) - base >= 0;) {
701 dl 1.127 long j = ((m & s) << ASHIFT) + ABASE;
702     if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
703 dl 1.123 break;
704     if (U.compareAndSwapObject(a, j, t, null)) {
705     top = s;
706     return t;
707     }
708     }
709     }
710     return null;
711     }
712    
713     /**
714     * Takes a task in FIFO order if b is base of queue and a task
715     * can be claimed without contention. Specialized versions
716     * appear in ForkJoinPool methods scan and tryHelpStealer.
717 dl 1.111 */
718 dl 1.123 final ForkJoinTask<?> pollAt(int b) {
719     ForkJoinTask<?> t; ForkJoinTask<?>[] a;
720     if ((a = array) != null) {
721 dl 1.119 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
722     if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
723     base == b &&
724 dl 1.111 U.compareAndSwapObject(a, j, t, null)) {
725     base = b + 1;
726     return t;
727     }
728     }
729     return null;
730     }
731    
732     /**
733 dl 1.123 * Takes next task, if one exists, in FIFO order.
734 dl 1.111 */
735 dl 1.123 final ForkJoinTask<?> poll() {
736     ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
737     while ((b = base) - top < 0 && (a = array) != null) {
738     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
739     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
740     if (t != null) {
741     if (base == b &&
742     U.compareAndSwapObject(a, j, t, null)) {
743     base = b + 1;
744 dl 1.111 return t;
745     }
746     }
747 dl 1.123 else if (base == b) {
748     if (b + 1 == top)
749     break;
750     Thread.yield(); // wait for lagging update
751     }
752 dl 1.111 }
753     return null;
754     }
755    
756     /**
757     * Takes next task, if one exists, in order specified by mode.
758     */
759     final ForkJoinTask<?> nextLocalTask() {
760     return mode == 0 ? pop() : poll();
761     }
762    
763     /**
764     * Returns next task, if one exists, in order specified by mode.
765     */
766     final ForkJoinTask<?> peek() {
767     ForkJoinTask<?>[] a = array; int m;
768     if (a == null || (m = a.length - 1) < 0)
769     return null;
770     int i = mode == 0 ? top - 1 : base;
771     int j = ((i & m) << ASHIFT) + ABASE;
772     return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
773     }
774    
775     /**
776     * Pops the given task only if it is at the current top.
777     */
778     final boolean tryUnpush(ForkJoinTask<?> t) {
779     ForkJoinTask<?>[] a; int s;
780     if ((a = array) != null && (s = top) != base &&
781     U.compareAndSwapObject
782     (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
783     top = s;
784     return true;
785     }
786     return false;
787     }
788    
789     /**
790 dl 1.135 * Version of tryUnpush for shared queues; called by non-FJ
791 dl 1.136 * submitters after prechecking that task probably exists.
792 dl 1.135 */
793 dl 1.136 final boolean trySharedUnpush(ForkJoinTask<?> t) {
794 dl 1.135 boolean success = false;
795 dl 1.136 if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
796 dl 1.135 try {
797 dl 1.136 ForkJoinTask<?>[] a; int s;
798     if ((a = array) != null && (s = top) != base &&
799     U.compareAndSwapObject
800     (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
801     top = s;
802     success = true;
803 dl 1.135 }
804     } finally {
805     runState = 0; // unlock
806     }
807     }
808     return success;
809     }
810    
811     /**
812 dl 1.111 * Polls the given task only if it is at the current base.
813     */
814     final boolean pollFor(ForkJoinTask<?> task) {
815 dl 1.119 ForkJoinTask<?>[] a; int b;
816     if ((b = base) - top < 0 && (a = array) != null) {
817     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
818 dl 1.111 if (U.getObjectVolatile(a, j) == task && base == b &&
819     U.compareAndSwapObject(a, j, task, null)) {
820     base = b + 1;
821     return true;
822     }
823     }
824     return false;
825     }
826    
827     /**
828     * Initializes or doubles the capacity of array. Call either
829     * by owner or with lock held -- it is OK for base, but not
830     * top, to move while resizings are in progress.
831     *
832     * @param rejectOnFailure if true, throw exception if capacity
833     * exceeded (relayed ultimately to user); else return null.
834     */
835     final ForkJoinTask<?>[] growArray(boolean rejectOnFailure) {
836     ForkJoinTask<?>[] oldA = array;
837     int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
838     if (size <= MAXIMUM_QUEUE_CAPACITY) {
839     int oldMask, t, b;
840     ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
841     if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
842     (t = top) - (b = base) > 0) {
843     int mask = size - 1;
844     do {
845     ForkJoinTask<?> x;
846     int oldj = ((b & oldMask) << ASHIFT) + ABASE;
847     int j = ((b & mask) << ASHIFT) + ABASE;
848     x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
849     if (x != null &&
850     U.compareAndSwapObject(oldA, oldj, x, null))
851     U.putObjectVolatile(a, j, x);
852     } while (++b != t);
853     }
854     return a;
855     }
856     else if (!rejectOnFailure)
857     return null;
858     else
859     throw new RejectedExecutionException("Queue capacity exceeded");
860     }
861    
862     /**
863 jsr166 1.117 * Removes and cancels all known tasks, ignoring any exceptions.
864 dl 1.111 */
865     final void cancelAll() {
866     ForkJoinTask.cancelIgnoringExceptions(currentJoin);
867     ForkJoinTask.cancelIgnoringExceptions(currentSteal);
868     for (ForkJoinTask<?> t; (t = poll()) != null; )
869     ForkJoinTask.cancelIgnoringExceptions(t);
870     }
871    
872 dl 1.119 /**
873     * Computes next value for random probes. Scans don't require
874     * a very high quality generator, but also not a crummy one.
875     * Marsaglia xor-shift is cheap and works well enough. Note:
876 dl 1.123 * This is manually inlined in its usages in ForkJoinPool to
877     * avoid writes inside busy scan loops.
878 dl 1.119 */
879     final int nextSeed() {
880     int r = seed;
881     r ^= r << 13;
882     r ^= r >>> 17;
883     return seed = r ^= r << 5;
884     }
885    
886 dl 1.111 // Execution methods
887    
888     /**
889 dl 1.127 * Pops and runs tasks until empty.
890 dl 1.111 */
891 dl 1.127 private void popAndExecAll() {
892     // A bit faster than repeated pop calls
893     ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
894     while ((a = array) != null && (m = a.length - 1) >= 0 &&
895     (s = top - 1) - base >= 0 &&
896     (t = ((ForkJoinTask<?>)
897     U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
898     != null) {
899     if (U.compareAndSwapObject(a, j, t, null)) {
900     top = s;
901     t.doExec();
902 dl 1.123 }
903 dl 1.127 }
904     }
905    
906     /**
907     * Polls and runs tasks until empty.
908     */
909     private void pollAndExecAll() {
910     for (ForkJoinTask<?> t; (t = poll()) != null;)
911     t.doExec();
912     }
913    
914     /**
915     * If present, removes from queue and executes the given task, or
916     * any other cancelled task. Returns (true) immediately on any CAS
917     * or consistency check failure so caller can retry.
918     *
919 dl 1.128 * @return 0 if no progress can be made, else positive
920     * (this unusual convention simplifies use with tryHelpStealer.)
921 dl 1.127 */
922 dl 1.128 final int tryRemoveAndExec(ForkJoinTask<?> task) {
923     int stat = 1;
924     boolean removed = false, empty = true;
925 dl 1.127 ForkJoinTask<?>[] a; int m, s, b, n;
926     if ((a = array) != null && (m = a.length - 1) >= 0 &&
927     (n = (s = top) - (b = base)) > 0) {
928     for (ForkJoinTask<?> t;;) { // traverse from s to b
929     int j = ((--s & m) << ASHIFT) + ABASE;
930     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
931     if (t == null) // inconsistent length
932     break;
933     else if (t == task) {
934     if (s + 1 == top) { // pop
935     if (!U.compareAndSwapObject(a, j, task, null))
936 dl 1.123 break;
937 dl 1.127 top = s;
938     removed = true;
939 dl 1.123 }
940 dl 1.127 else if (base == b) // replace with proxy
941     removed = U.compareAndSwapObject(a, j, task,
942     new EmptyTask());
943     break;
944     }
945     else if (t.status >= 0)
946     empty = false;
947     else if (s + 1 == top) { // pop and throw away
948     if (U.compareAndSwapObject(a, j, t, null))
949     top = s;
950     break;
951     }
952     if (--n == 0) {
953     if (!empty && base == b)
954 dl 1.128 stat = 0;
955 dl 1.127 break;
956 dl 1.123 }
957     }
958 dl 1.111 }
959 dl 1.127 if (removed)
960     task.doExec();
961 dl 1.128 return stat;
962 dl 1.111 }
963    
964     /**
965     * Executes a top-level task and any local tasks remaining
966     * after execution.
967     */
968 dl 1.127 final void runTask(ForkJoinTask<?> t) {
969 dl 1.111 if (t != null) {
970     currentSteal = t;
971     t.doExec();
972 dl 1.127 if (top != base) { // process remaining local tasks
973     if (mode == 0)
974     popAndExecAll();
975     else
976     pollAndExecAll();
977     }
978 dl 1.111 ++nsteals;
979     currentSteal = null;
980     }
981     }
982    
983     /**
984 jsr166 1.117 * Executes a non-top-level (stolen) task.
985 dl 1.111 */
986     final void runSubtask(ForkJoinTask<?> t) {
987     if (t != null) {
988     ForkJoinTask<?> ps = currentSteal;
989     currentSteal = t;
990     t.doExec();
991     currentSteal = ps;
992     }
993     }
994    
995     /**
996 dl 1.119 * Returns true if owned and not known to be blocked.
997     */
998     final boolean isApparentlyUnblocked() {
999     Thread wt; Thread.State s;
1000     return (eventCount >= 0 &&
1001     (wt = owner) != null &&
1002     (s = wt.getState()) != Thread.State.BLOCKED &&
1003     s != Thread.State.WAITING &&
1004     s != Thread.State.TIMED_WAITING);
1005     }
1006    
1007     /**
1008     * If this owned and is not already interrupted, try to
1009     * interrupt and/or unpark, ignoring exceptions.
1010 dl 1.111 */
1011 dl 1.119 final void interruptOwner() {
1012     Thread wt, p;
1013     if ((wt = owner) != null && !wt.isInterrupted()) {
1014     try {
1015     wt.interrupt();
1016     } catch (SecurityException ignore) {
1017     }
1018     }
1019     if ((p = parker) != null)
1020     U.unpark(p);
1021 dl 1.111 }
1022    
1023     // Unsafe mechanics
1024     private static final sun.misc.Unsafe U;
1025     private static final long RUNSTATE;
1026     private static final int ABASE;
1027     private static final int ASHIFT;
1028     static {
1029     int s;
1030     try {
1031     U = getUnsafe();
1032     Class<?> k = WorkQueue.class;
1033     Class<?> ak = ForkJoinTask[].class;
1034     RUNSTATE = U.objectFieldOffset
1035     (k.getDeclaredField("runState"));
1036     ABASE = U.arrayBaseOffset(ak);
1037     s = U.arrayIndexScale(ak);
1038     } catch (Exception e) {
1039     throw new Error(e);
1040     }
1041     if ((s & (s-1)) != 0)
1042     throw new Error("data type scale not a power of two");
1043     ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
1044     }
1045     }
1046 jsr166 1.131
1047 dl 1.1 /**
1048 dl 1.119 * Per-thread records for threads that submit to pools. Currently
1049 jsr166 1.120 * holds only pseudo-random seed / index that is used to choose
1050 dl 1.119 * submission queues in method doSubmit. In the future, this may
1051     * also incorporate a means to implement different task rejection
1052     * and resubmission policies.
1053 dl 1.123 *
1054     * Seeds for submitters and workers/workQueues work in basically
1055     * the same way but are initialized and updated using slightly
1056     * different mechanics. Both are initialized using the same
1057     * approach as in class ThreadLocal, where successive values are
1058     * unlikely to collide with previous values. This is done during
1059     * registration for workers, but requires a separate AtomicInteger
1060     * for submitters. Seeds are then randomly modified upon
1061     * collisions using xorshifts, which requires a non-zero seed.
1062 dl 1.116 */
1063     static final class Submitter {
1064 dl 1.119 int seed;
1065 dl 1.123 Submitter() {
1066     int s = nextSubmitterSeed.getAndAdd(SEED_INCREMENT);
1067     seed = (s == 0) ? 1 : s; // ensure non-zero
1068     }
1069 dl 1.116 }
1070    
1071     /** ThreadLocal class for Submitters */
1072     static final class ThreadSubmitter extends ThreadLocal<Submitter> {
1073     public Submitter initialValue() { return new Submitter(); }
1074 dl 1.111 }
1075 dl 1.1
1076 dl 1.119 // static fields (initialized in static initializer below)
1077    
1078     /**
1079     * Creates a new ForkJoinWorkerThread. This factory is used unless
1080     * overridden in ForkJoinPool constructors.
1081     */
1082     public static final ForkJoinWorkerThreadFactory
1083     defaultForkJoinWorkerThreadFactory;
1084    
1085 dl 1.136
1086     /** Property prefix for constructing common pool */
1087     private static final String propPrefix =
1088     "java.util.concurrent.ForkJoinPool.common.";
1089    
1090     /**
1091     * Common (static) pool. Non-null for public use unless a static
1092     * construction exception, but internal usages must null-check on
1093     * use.
1094     */
1095     static final ForkJoinPool commonPool;
1096    
1097     /**
1098     * Common pool parallelism. Must equal commonPool.parallelism.
1099     */
1100     static final int commonPoolParallelism;
1101    
1102 dl 1.119 /**
1103     * Generator for assigning sequence numbers as pool names.
1104     */
1105     private static final AtomicInteger poolNumberGenerator;
1106    
1107     /**
1108 dl 1.123 * Generator for initial hashes/seeds for submitters. Accessed by
1109     * Submitter class constructor.
1110     */
1111     static final AtomicInteger nextSubmitterSeed;
1112    
1113     /**
1114 dl 1.119 * Permission required for callers of methods that may start or
1115     * kill threads.
1116     */
1117     private static final RuntimePermission modifyThreadPermission;
1118    
1119 dl 1.1 /**
1120 jsr166 1.130 * Per-thread submission bookkeeping. Shared across all pools
1121 dl 1.116 * to reduce ThreadLocal pollution and because random motion
1122     * to avoid contention in one pool is likely to hold for others.
1123     */
1124 dl 1.119 private static final ThreadSubmitter submitters;
1125    
1126     // static constants
1127    
1128     /**
1129 dl 1.136 * Initial timeout value (in nanoseconds) for the thread triggering
1130 dl 1.135 * quiescence to park waiting for new work. On timeout, the thread
1131     * will instead try to shrink the number of workers.
1132 dl 1.119 */
1133 dl 1.135 private static final long IDLE_TIMEOUT = 1000L * 1000L * 1000L; // 1sec
1134 dl 1.119
1135     /**
1136 dl 1.135 * Timeout value when there are more threads than parallelism level
1137 dl 1.119 */
1138 dl 1.135 private static final long FAST_IDLE_TIMEOUT = 100L * 1000L * 1000L;
1139 dl 1.119
1140     /**
1141 dl 1.123 * The maximum stolen->joining link depth allowed in method
1142     * tryHelpStealer. Must be a power of two. This value also
1143     * controls the maximum number of times to try to help join a task
1144     * without any apparent progress or change in pool state before
1145     * giving up and blocking (see awaitJoin). Depths for legitimate
1146     * chains are unbounded, but we use a fixed constant to avoid
1147     * (otherwise unchecked) cycles and to bound staleness of
1148     * traversal parameters at the expense of sometimes blocking when
1149     * we could be helping.
1150     */
1151 dl 1.128 private static final int MAX_HELP = 64;
1152 dl 1.123
1153     /**
1154     * Secondary time-based bound (in nanosecs) for helping attempts
1155     * before trying compensated blocking in awaitJoin. Used in
1156     * conjunction with MAX_HELP to reduce variance due to different
1157     * polling rates associated with different helping options. The
1158     * value should roughly approximate the time required to create
1159     * and/or activate a worker thread.
1160     */
1161 dl 1.128 private static final long COMPENSATION_DELAY = 1L << 18; // ~0.25 millisec
1162 dl 1.123
1163     /**
1164     * Increment for seed generators. See class ThreadLocal for
1165     * explanation.
1166 dl 1.119 */
1167 dl 1.123 private static final int SEED_INCREMENT = 0x61c88647;
1168 dl 1.116
1169     /**
1170 dl 1.119 * Bits and masks for control variables
1171     *
1172     * Field ctl is a long packed with:
1173     * AC: Number of active running workers minus target parallelism (16 bits)
1174     * TC: Number of total workers minus target parallelism (16 bits)
1175     * ST: true if pool is terminating (1 bit)
1176     * EC: the wait count of top waiting thread (15 bits)
1177     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1178     *
1179     * When convenient, we can extract the upper 32 bits of counts and
1180     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1181     * (int)ctl. The ec field is never accessed alone, but always
1182     * together with id and st. The offsets of counts by the target
1183     * parallelism and the positionings of fields makes it possible to
1184     * perform the most common checks via sign tests of fields: When
1185     * ac is negative, there are not enough active workers, when tc is
1186     * negative, there are not enough total workers, and when e is
1187     * negative, the pool is terminating. To deal with these possibly
1188     * negative fields, we use casts in and out of "short" and/or
1189     * signed shifts to maintain signedness.
1190     *
1191     * When a thread is queued (inactivated), its eventCount field is
1192     * set negative, which is the only way to tell if a worker is
1193     * prevented from executing tasks, even though it must continue to
1194     * scan for them to avoid queuing races. Note however that
1195     * eventCount updates lag releases so usage requires care.
1196     *
1197     * Field runState is an int packed with:
1198     * SHUTDOWN: true if shutdown is enabled (1 bit)
1199 dl 1.123 * SEQ: a sequence number updated upon (de)registering workers (30 bits)
1200     * INIT: set true after workQueues array construction (1 bit)
1201 dl 1.119 *
1202 dl 1.123 * The sequence number enables simple consistency checks:
1203     * Staleness of read-only operations on the workQueues array can
1204     * be checked by comparing runState before vs after the reads.
1205 dl 1.119 */
1206    
1207     // bit positions/shifts for fields
1208     private static final int AC_SHIFT = 48;
1209     private static final int TC_SHIFT = 32;
1210     private static final int ST_SHIFT = 31;
1211     private static final int EC_SHIFT = 16;
1212    
1213     // bounds
1214     private static final int SMASK = 0xffff; // short bits
1215 dl 1.123 private static final int MAX_CAP = 0x7fff; // max #workers - 1
1216 dl 1.119 private static final int SQMASK = 0xfffe; // even short bits
1217     private static final int SHORT_SIGN = 1 << 15;
1218     private static final int INT_SIGN = 1 << 31;
1219    
1220     // masks
1221     private static final long STOP_BIT = 0x0001L << ST_SHIFT;
1222     private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
1223     private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
1224    
1225     // units for incrementing and decrementing
1226     private static final long TC_UNIT = 1L << TC_SHIFT;
1227     private static final long AC_UNIT = 1L << AC_SHIFT;
1228    
1229     // masks and units for dealing with u = (int)(ctl >>> 32)
1230     private static final int UAC_SHIFT = AC_SHIFT - 32;
1231     private static final int UTC_SHIFT = TC_SHIFT - 32;
1232     private static final int UAC_MASK = SMASK << UAC_SHIFT;
1233     private static final int UTC_MASK = SMASK << UTC_SHIFT;
1234     private static final int UAC_UNIT = 1 << UAC_SHIFT;
1235     private static final int UTC_UNIT = 1 << UTC_SHIFT;
1236    
1237     // masks and units for dealing with e = (int)ctl
1238     private static final int E_MASK = 0x7fffffff; // no STOP_BIT
1239     private static final int E_SEQ = 1 << EC_SHIFT;
1240    
1241     // runState bits
1242     private static final int SHUTDOWN = 1 << 31;
1243    
1244     // access mode for WorkQueue
1245     static final int LIFO_QUEUE = 0;
1246     static final int FIFO_QUEUE = 1;
1247     static final int SHARED_QUEUE = -1;
1248    
1249     // Instance fields
1250    
1251     /*
1252     * Field layout order in this class tends to matter more than one
1253     * would like. Runtime layout order is only loosely related to
1254     * declaration order and may differ across JVMs, but the following
1255     * empirically works OK on current JVMs.
1256 dl 1.1 */
1257 dl 1.111
1258 dl 1.136 volatile long stealCount; // collects worker counts
1259 dl 1.119 volatile long ctl; // main pool control
1260     final int parallelism; // parallelism level
1261     final int localMode; // per-worker scheduling mode
1262 dl 1.136 volatile int nextWorkerNumber; // to create worker name string
1263 dl 1.123 final int submitMask; // submit queue index bound
1264     int nextSeed; // for initializing worker seeds
1265 dl 1.136 volatile int mainLock; // spinlock for array updates
1266 dl 1.123 volatile int runState; // shutdown status and seq
1267 dl 1.119 WorkQueue[] workQueues; // main registry
1268     final ForkJoinWorkerThreadFactory factory; // factory for new workers
1269     final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1270 dl 1.136 final String workerNamePrefix; // to create worker name string
1271    
1272     /*
1273     * Mechanics for main lock protecting worker array updates. Uses
1274     * the same strategy as ConcurrentHashMap bins -- a spinLock for
1275     * normal cases, but falling back to builtin lock when (rarely)
1276     * needed. See internal ConcurrentHashMap documentation for
1277     * explanation.
1278     */
1279    
1280     static final int LOCK_WAITING = 2; // bit to indicate need for signal
1281     static final int MAX_LOCK_SPINS = 1 << 8;
1282    
1283     private void tryAwaitMainLock() {
1284     int spins = MAX_LOCK_SPINS, r = 0, h;
1285     while (((h = mainLock) & 1) != 0) {
1286     if (r == 0)
1287     r = ThreadLocalRandom.current().nextInt(); // randomize spins
1288     else if (spins >= 0) {
1289     r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
1290     if (r >= 0)
1291     --spins;
1292     }
1293     else if (U.compareAndSwapInt(this, MAINLOCK, h, h | LOCK_WAITING)) {
1294     synchronized (this) {
1295     if ((mainLock & LOCK_WAITING) != 0) {
1296     try {
1297     wait();
1298     } catch (InterruptedException ie) {
1299     Thread.currentThread().interrupt();
1300     }
1301     }
1302     else
1303     notifyAll(); // possibly won race vs signaller
1304     }
1305     break;
1306     }
1307     }
1308     }
1309 dl 1.111
1310 dl 1.123 // Creating, registering, and deregistering workers
1311 dl 1.6
1312     /**
1313 dl 1.111 * Tries to create and start a worker
1314 dl 1.1 */
1315 dl 1.111 private void addWorker() {
1316     Throwable ex = null;
1317 dl 1.119 ForkJoinWorkerThread wt = null;
1318 dl 1.111 try {
1319 dl 1.119 if ((wt = factory.newThread(this)) != null) {
1320     wt.start();
1321 dl 1.111 return;
1322     }
1323     } catch (Throwable e) {
1324     ex = e;
1325     }
1326 dl 1.119 deregisterWorker(wt, ex); // adjust counts etc on failure
1327 dl 1.111 }
1328 dl 1.1
1329 dl 1.91 /**
1330 dl 1.111 * Callback from ForkJoinWorkerThread constructor to assign a
1331     * public name. This must be separate from registerWorker because
1332     * it is called during the "super" constructor call in
1333     * ForkJoinWorkerThread.
1334 dl 1.91 */
1335 dl 1.111 final String nextWorkerName() {
1336 dl 1.136 int n;
1337     do {} while(!U.compareAndSwapInt(this, NEXTWORKERNUMBER,
1338     n = nextWorkerNumber, ++n));
1339     return workerNamePrefix.concat(Integer.toString(n));
1340 dl 1.111 }
1341 dl 1.1
1342     /**
1343 dl 1.123 * Callback from ForkJoinWorkerThread constructor to establish its
1344     * poolIndex and record its WorkQueue. To avoid scanning bias due
1345     * to packing entries in front of the workQueues array, we treat
1346     * the array as a simple power-of-two hash table using per-thread
1347     * seed as hash, expanding as needed.
1348 dl 1.111 *
1349 dl 1.123 * @param w the worker's queue
1350 dl 1.1 */
1351 dl 1.123 final void registerWorker(WorkQueue w) {
1352 dl 1.136 while (!U.compareAndSwapInt(this, MAINLOCK, 0, 1))
1353     tryAwaitMainLock();
1354 dl 1.111 try {
1355 dl 1.136 WorkQueue[] ws;
1356     if ((ws = workQueues) == null)
1357     ws = workQueues = new WorkQueue[submitMask + 1];
1358     if (w != null) {
1359     int rs, n = ws.length, m = n - 1;
1360 dl 1.123 int s = nextSeed += SEED_INCREMENT; // rarely-colliding sequence
1361     w.seed = (s == 0) ? 1 : s; // ensure non-zero seed
1362     int r = (s << 1) | 1; // use odd-numbered indices
1363 dl 1.127 if (ws[r &= m] != null) { // collision
1364     int probes = 0; // step by approx half size
1365     int step = (n <= 4) ? 2 : ((n >>> 1) & SQMASK) + 2;
1366     while (ws[r = (r + step) & m] != null) {
1367     if (++probes >= n) {
1368     workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1369     m = n - 1;
1370     probes = 0;
1371     }
1372     }
1373     }
1374 dl 1.123 w.eventCount = w.poolIndex = r; // establish before recording
1375     ws[r] = w; // also update seq
1376     runState = ((rs = runState) & SHUTDOWN) | ((rs + 2) & ~SHUTDOWN);
1377 dl 1.111 }
1378     } finally {
1379 dl 1.136 if (!U.compareAndSwapInt(this, MAINLOCK, 1, 0)) {
1380     mainLock = 0;
1381     synchronized (this) { notifyAll(); };
1382     }
1383 dl 1.111 }
1384 dl 1.136
1385 dl 1.111 }
1386 dl 1.58
1387 dl 1.1 /**
1388 dl 1.119 * Final callback from terminating worker, as well as upon failure
1389     * to construct or start a worker in addWorker. Removes record of
1390 dl 1.111 * worker from array, and adjusts counts. If pool is shutting
1391     * down, tries to complete termination.
1392     *
1393     * @param wt the worker thread or null if addWorker failed
1394     * @param ex the exception causing failure, or null if none
1395 dl 1.85 */
1396 dl 1.111 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1397     WorkQueue w = null;
1398     if (wt != null && (w = wt.workQueue) != null) {
1399     w.runState = -1; // ensure runState is set
1400 dl 1.136 long steals = w.totalSteals + w.nsteals, sc;
1401     do {} while(!U.compareAndSwapLong(this, STEALCOUNT,
1402     sc = stealCount, sc + steals));
1403 dl 1.111 int idx = w.poolIndex;
1404 dl 1.136 while (!U.compareAndSwapInt(this, MAINLOCK, 0, 1))
1405     tryAwaitMainLock();
1406     try {
1407 dl 1.111 WorkQueue[] ws = workQueues;
1408 dl 1.123 if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1409 dl 1.119 ws[idx] = null;
1410 dl 1.111 } finally {
1411 dl 1.136 if (!U.compareAndSwapInt(this, MAINLOCK, 1, 0)) {
1412     mainLock = 0;
1413     synchronized (this) { notifyAll(); };
1414     }
1415 dl 1.111 }
1416     }
1417    
1418     long c; // adjust ctl counts
1419     do {} while (!U.compareAndSwapLong
1420     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1421     ((c - TC_UNIT) & TC_MASK) |
1422     (c & ~(AC_MASK|TC_MASK)))));
1423    
1424 dl 1.119 if (!tryTerminate(false, false) && w != null) {
1425 dl 1.111 w.cancelAll(); // cancel remaining tasks
1426     if (w.array != null) // suppress signal if never ran
1427     signalWork(); // wake up or create replacement
1428 dl 1.119 if (ex == null) // help clean refs on way out
1429     ForkJoinTask.helpExpungeStaleExceptions();
1430 dl 1.111 }
1431    
1432     if (ex != null) // rethrow
1433     U.throwException(ex);
1434     }
1435 dl 1.91
1436 dl 1.119 // Submissions
1437    
1438     /**
1439     * Unless shutting down, adds the given task to a submission queue
1440     * at submitter's current queue index (modulo submission
1441 dl 1.123 * range). If no queue exists at the index, one is created. If
1442     * the queue is busy, another index is randomly chosen. The
1443     * submitMask bounds the effective number of queues to the
1444 jsr166 1.125 * (nearest power of two for) parallelism level.
1445 dl 1.123 *
1446     * @param task the task. Caller must ensure non-null.
1447 dl 1.119 */
1448     private void doSubmit(ForkJoinTask<?> task) {
1449     Submitter s = submitters.get();
1450 dl 1.123 for (int r = s.seed, m = submitMask;;) {
1451     WorkQueue[] ws; WorkQueue q;
1452 dl 1.119 int k = r & m & SQMASK; // use only even indices
1453 dl 1.136 if (runState < 0)
1454 dl 1.119 throw new RejectedExecutionException(); // shutting down
1455 dl 1.136 else if ((ws = workQueues) == null || ws.length <= k) {
1456     while (!U.compareAndSwapInt(this, MAINLOCK, 0, 1))
1457     tryAwaitMainLock();
1458     try {
1459     if (workQueues == null)
1460     workQueues = new WorkQueue[submitMask + 1];
1461     } finally {
1462     if (!U.compareAndSwapInt(this, MAINLOCK, 1, 0)) {
1463     mainLock = 0;
1464     synchronized (this) { notifyAll(); };
1465     }
1466     }
1467     }
1468 dl 1.123 else if ((q = ws[k]) == null) { // create new queue
1469     WorkQueue nq = new WorkQueue(this, null, SHARED_QUEUE);
1470 dl 1.136 while (!U.compareAndSwapInt(this, MAINLOCK, 0, 1))
1471     tryAwaitMainLock();
1472     try {
1473 dl 1.123 int rs = runState; // to update seq
1474     if (ws == workQueues && ws[k] == null) {
1475     ws[k] = nq;
1476     runState = ((rs & SHUTDOWN) | ((rs + 2) & ~SHUTDOWN));
1477 dl 1.116 }
1478     } finally {
1479 dl 1.136 if (!U.compareAndSwapInt(this, MAINLOCK, 1, 0)) {
1480     mainLock = 0;
1481     synchronized (this) { notifyAll(); };
1482     }
1483 dl 1.116 }
1484     }
1485 dl 1.123 else if (q.trySharedPush(task)) {
1486     signalWork();
1487     return;
1488     }
1489     else if (m > 1) { // move to a different index
1490     r ^= r << 13; // same xorshift as WorkQueues
1491     r ^= r >>> 17;
1492 dl 1.119 s.seed = r ^= r << 5;
1493     }
1494 dl 1.123 else
1495     Thread.yield(); // yield if no alternatives
1496 dl 1.116 }
1497     }
1498 dl 1.85
1499 dl 1.135 /**
1500     * Submits the given (non-null) task to the common pool, if possible.
1501     */
1502     static void submitToCommonPool(ForkJoinTask<?> task) {
1503     ForkJoinPool p;
1504     if ((p = commonPool) == null)
1505 dl 1.136 throw new RejectedExecutionException("Common Pool Unavailable");
1506 dl 1.135 p.doSubmit(task);
1507     }
1508    
1509     /**
1510     * Returns true if the given task was submitted to common pool
1511     * and has not yet commenced execution, and is available for
1512     * removal according to execution policies; if so removing the
1513     * submission from the pool.
1514     *
1515     * @param task the task
1516     * @return true if successful
1517     */
1518     static boolean tryUnsubmitFromCommonPool(ForkJoinTask<?> task) {
1519 dl 1.136 // Peek, looking for task and eligibility before
1520     // using trySharedUnpush to actually take it under lock
1521 dl 1.135 ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
1522 dl 1.136 ForkJoinTask<?>[] a; int t, s, n;
1523 dl 1.135 int k = submitters.get().seed & SQMASK;
1524     return ((p = commonPool) != null &&
1525     (ws = p.workQueues) != null &&
1526     ws.length > (k &= p.submitMask) &&
1527     (q = ws[k]) != null &&
1528 dl 1.136 (a = q.array) != null &&
1529     (n = (t = q.top) - q.base) > 0 &&
1530     (n > 1 || (int)(p.ctl >> AC_SHIFT) < 0) &&
1531     (s = t - 1) >= 0 && s < a.length && a[s] == task &&
1532     q.trySharedUnpush(task));
1533 dl 1.135 }
1534    
1535 dl 1.111 // Maintaining ctl counts
1536 dl 1.56
1537     /**
1538 jsr166 1.117 * Increments active count; mainly called upon return from blocking.
1539 dl 1.58 */
1540 dl 1.111 final void incrementActiveCount() {
1541 dl 1.91 long c;
1542 dl 1.111 do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1543 dl 1.61 }
1544    
1545     /**
1546 dl 1.135 * Tries to create one or activate one or more workers if too few are active.
1547 dl 1.53 */
1548 dl 1.91 final void signalWork() {
1549 dl 1.119 long c; int u;
1550     while ((u = (int)((c = ctl) >>> 32)) < 0) { // too few active
1551     WorkQueue[] ws = workQueues; int e, i; WorkQueue w; Thread p;
1552     if ((e = (int)c) > 0) { // at least one waiting
1553     if (ws != null && (i = e & SMASK) < ws.length &&
1554     (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1555     long nc = (((long)(w.nextWait & E_MASK)) |
1556     ((long)(u + UAC_UNIT) << 32));
1557     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1558     w.eventCount = (e + E_SEQ) & E_MASK;
1559     if ((p = w.parker) != null)
1560     U.unpark(p); // activate and release
1561     break;
1562     }
1563     }
1564     else
1565 dl 1.91 break;
1566 dl 1.111 }
1567 dl 1.119 else if (e == 0 && (u & SHORT_SIGN) != 0) { // too few total
1568     long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1569     ((u + UAC_UNIT) & UAC_MASK)) << 32;
1570     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1571     addWorker();
1572 dl 1.91 break;
1573     }
1574     }
1575 dl 1.111 else
1576 dl 1.91 break;
1577     }
1578 dl 1.53 }
1579    
1580 dl 1.123 // Scanning for tasks
1581    
1582 dl 1.53 /**
1583 dl 1.123 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1584 dl 1.53 */
1585 dl 1.123 final void runWorker(WorkQueue w) {
1586     w.growArray(false); // initialize queue array in this thread
1587 dl 1.127 do { w.runTask(scan(w)); } while (w.runState >= 0);
1588 dl 1.53 }
1589    
1590     /**
1591 dl 1.111 * Scans for and, if found, returns one task, else possibly
1592     * inactivates the worker. This method operates on single reads of
1593 dl 1.123 * volatile state and is designed to be re-invoked continuously,
1594     * in part because it returns upon detecting inconsistencies,
1595 dl 1.111 * contention, or state changes that indicate possible success on
1596     * re-invocation.
1597     *
1598 dl 1.123 * The scan searches for tasks across a random permutation of
1599     * queues (starting at a random index and stepping by a random
1600     * relative prime, checking each at least once). The scan
1601     * terminates upon either finding a non-empty queue, or completing
1602     * the sweep. If the worker is not inactivated, it takes and
1603     * returns a task from this queue. On failure to find a task, we
1604     * take one of the following actions, after which the caller will
1605     * retry calling this method unless terminated.
1606 dl 1.111 *
1607 dl 1.119 * * If pool is terminating, terminate the worker.
1608     *
1609 dl 1.111 * * If not a complete sweep, try to release a waiting worker. If
1610     * the scan terminated because the worker is inactivated, then the
1611     * released worker will often be the calling worker, and it can
1612     * succeed obtaining a task on the next call. Or maybe it is
1613     * another worker, but with same net effect. Releasing in other
1614     * cases as well ensures that we have enough workers running.
1615     *
1616     * * If not already enqueued, try to inactivate and enqueue the
1617 dl 1.123 * worker on wait queue. Or, if inactivating has caused the pool
1618     * to be quiescent, relay to idleAwaitWork to check for
1619     * termination and possibly shrink pool.
1620     *
1621     * * If already inactive, and the caller has run a task since the
1622     * last empty scan, return (to allow rescan) unless others are
1623     * also inactivated. Field WorkQueue.rescans counts down on each
1624     * scan to ensure eventual inactivation and blocking.
1625 dl 1.111 *
1626 dl 1.123 * * If already enqueued and none of the above apply, park
1627     * awaiting signal,
1628 dl 1.111 *
1629     * @param w the worker (via its WorkQueue)
1630 jsr166 1.133 * @return a task or null if none found
1631 dl 1.111 */
1632     private final ForkJoinTask<?> scan(WorkQueue w) {
1633 dl 1.123 WorkQueue[] ws; // first update random seed
1634     int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1635     int rs = runState, m; // volatile read order matters
1636     if ((ws = workQueues) != null && (m = ws.length - 1) > 0) {
1637     int ec = w.eventCount; // ec is negative if inactive
1638     int step = (r >>> 16) | 1; // relative prime
1639     for (int j = (m + 1) << 2; ; r += step) {
1640     WorkQueue q; ForkJoinTask<?> t; ForkJoinTask<?>[] a; int b;
1641     if ((q = ws[r & m]) != null && (b = q.base) - q.top < 0 &&
1642     (a = q.array) != null) { // probably nonempty
1643     int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1644     t = (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1645     if (q.base == b && ec >= 0 && t != null &&
1646     U.compareAndSwapObject(a, i, t, null)) {
1647 dl 1.135 if (q.top - (q.base = b + 1) > 0)
1648 dl 1.129 signalWork(); // help pushes signal
1649 dl 1.119 return t;
1650 dl 1.123 }
1651 dl 1.127 else if (ec < 0 || j <= m) {
1652 dl 1.123 rs = 0; // mark scan as imcomplete
1653     break; // caller can retry after release
1654     }
1655 dl 1.111 }
1656 dl 1.123 if (--j < 0)
1657 dl 1.93 break;
1658 dl 1.91 }
1659 dl 1.128
1660 dl 1.119 long c = ctl; int e = (int)c, a = (int)(c >> AC_SHIFT), nr, ns;
1661 dl 1.123 if (e < 0) // decode ctl on empty scan
1662     w.runState = -1; // pool is terminating
1663     else if (rs == 0 || rs != runState) { // incomplete scan
1664     WorkQueue v; Thread p; // try to release a waiter
1665     if (e > 0 && a < 0 && w.eventCount == ec &&
1666     (v = ws[e & m]) != null && v.eventCount == (e | INT_SIGN)) {
1667 dl 1.119 long nc = ((long)(v.nextWait & E_MASK) |
1668     ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
1669 dl 1.123 if (ctl == c && U.compareAndSwapLong(this, CTL, c, nc)) {
1670 dl 1.119 v.eventCount = (e + E_SEQ) & E_MASK;
1671     if ((p = v.parker) != null)
1672     U.unpark(p);
1673     }
1674     }
1675     }
1676 dl 1.123 else if (ec >= 0) { // try to enqueue/inactivate
1677 dl 1.119 long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1678     w.nextWait = e;
1679 dl 1.123 w.eventCount = ec | INT_SIGN; // mark as inactive
1680     if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1681     w.eventCount = ec; // unmark on CAS failure
1682     else {
1683     if ((ns = w.nsteals) != 0) {
1684     w.nsteals = 0; // set rescans if ran task
1685 jsr166 1.124 w.rescans = (a > 0) ? 0 : a + parallelism;
1686 dl 1.123 w.totalSteals += ns;
1687     }
1688     if (a == 1 - parallelism) // quiescent
1689     idleAwaitWork(w, nc, c);
1690 dl 1.119 }
1691 dl 1.111 }
1692 dl 1.123 else if (w.eventCount < 0) { // already queued
1693 dl 1.135 int ac = a + parallelism;
1694     if ((nr = w.rescans) > 0) // continue rescanning
1695     w.rescans = (ac < nr) ? ac : nr - 1;
1696     else if (((w.seed >>> 16) & ac) == 0) { // randomize park
1697 dl 1.123 Thread.interrupted(); // clear status
1698     Thread wt = Thread.currentThread();
1699 dl 1.119 U.putObject(wt, PARKBLOCKER, this);
1700 dl 1.123 w.parker = wt; // emulate LockSupport.park
1701     if (w.eventCount < 0) // recheck
1702     U.park(false, 0L);
1703 dl 1.119 w.parker = null;
1704     U.putObject(wt, PARKBLOCKER, null);
1705     }
1706 dl 1.111 }
1707 dl 1.91 }
1708 dl 1.111 return null;
1709 dl 1.53 }
1710    
1711     /**
1712 dl 1.123 * If inactivating worker w has caused the pool to become
1713     * quiescent, checks for pool termination, and, so long as this is
1714 dl 1.135 * not the only worker, waits for event for up to a given
1715     * duration. On timeout, if ctl has not changed, terminates the
1716 dl 1.123 * worker, which will in turn wake up another worker to possibly
1717     * repeat this process.
1718 dl 1.91 *
1719 dl 1.111 * @param w the calling worker
1720 dl 1.123 * @param currentCtl the ctl value triggering possible quiescence
1721     * @param prevCtl the ctl value to restore if thread is terminated
1722 dl 1.53 */
1723 dl 1.123 private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1724     if (w.eventCount < 0 && !tryTerminate(false, false) &&
1725 dl 1.127 (int)prevCtl != 0 && !hasQueuedSubmissions() && ctl == currentCtl) {
1726 dl 1.135 int dc = -(short)(currentCtl >>> TC_SHIFT);
1727     long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1728     long deadline = System.nanoTime() + parkTime - 100000L; // 1ms slop
1729 dl 1.123 Thread wt = Thread.currentThread();
1730     while (ctl == currentCtl) {
1731 dl 1.111 Thread.interrupted(); // timed variant of version in scan()
1732     U.putObject(wt, PARKBLOCKER, this);
1733     w.parker = wt;
1734 dl 1.123 if (ctl == currentCtl)
1735 dl 1.135 U.park(false, parkTime);
1736 dl 1.111 w.parker = null;
1737     U.putObject(wt, PARKBLOCKER, null);
1738 dl 1.123 if (ctl != currentCtl)
1739 dl 1.111 break;
1740 dl 1.135 if (deadline - System.nanoTime() <= 0L &&
1741 dl 1.123 U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1742     w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1743     w.runState = -1; // shrink
1744 dl 1.111 break;
1745     }
1746 dl 1.66 }
1747 dl 1.53 }
1748     }
1749    
1750     /**
1751 dl 1.111 * Tries to locate and execute tasks for a stealer of the given
1752     * task, or in turn one of its stealers, Traces currentSteal ->
1753     * currentJoin links looking for a thread working on a descendant
1754     * of the given task and with a non-empty queue to steal back and
1755     * execute tasks from. The first call to this method upon a
1756     * waiting join will often entail scanning/search, (which is OK
1757     * because the joiner has nothing better to do), but this method
1758     * leaves hints in workers to speed up subsequent calls. The
1759     * implementation is very branchy to cope with potential
1760     * inconsistencies or loops encountering chains that are stale,
1761 dl 1.128 * unknown, or so long that they are likely cyclic.
1762 dl 1.111 *
1763     * @param joiner the joining worker
1764     * @param task the task to join
1765 dl 1.128 * @return 0 if no progress can be made, negative if task
1766     * known complete, else positive
1767 dl 1.111 */
1768 dl 1.128 private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1769     int stat = 0, steps = 0; // bound to avoid cycles
1770     if (joiner != null && task != null) { // hoist null checks
1771     restart: for (;;) {
1772     ForkJoinTask<?> subtask = task; // current target
1773     for (WorkQueue j = joiner, v;;) { // v is stealer of subtask
1774     WorkQueue[] ws; int m, s, h;
1775     if ((s = task.status) < 0) {
1776     stat = s;
1777     break restart;
1778     }
1779     if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1780     break restart; // shutting down
1781     if ((v = ws[h = (j.stealHint | 1) & m]) == null ||
1782     v.currentSteal != subtask) {
1783     for (int origin = h;;) { // find stealer
1784     if (((h = (h + 2) & m) & 15) == 1 &&
1785     (subtask.status < 0 || j.currentJoin != subtask))
1786     continue restart; // occasional staleness check
1787     if ((v = ws[h]) != null &&
1788     v.currentSteal == subtask) {
1789     j.stealHint = h; // save hint
1790     break;
1791     }
1792     if (h == origin)
1793     break restart; // cannot find stealer
1794 dl 1.111 }
1795     }
1796 dl 1.128 for (;;) { // help stealer or descend to its stealer
1797     ForkJoinTask[] a; int b;
1798     if (subtask.status < 0) // surround probes with
1799     continue restart; // consistency checks
1800     if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1801     int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1802     ForkJoinTask<?> t =
1803     (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1804     if (subtask.status < 0 || j.currentJoin != subtask ||
1805     v.currentSteal != subtask)
1806     continue restart; // stale
1807     stat = 1; // apparent progress
1808     if (t != null && v.base == b &&
1809     U.compareAndSwapObject(a, i, t, null)) {
1810     v.base = b + 1; // help stealer
1811     joiner.runSubtask(t);
1812     }
1813     else if (v.base == b && ++steps == MAX_HELP)
1814     break restart; // v apparently stalled
1815     }
1816     else { // empty -- try to descend
1817     ForkJoinTask<?> next = v.currentJoin;
1818     if (subtask.status < 0 || j.currentJoin != subtask ||
1819     v.currentSteal != subtask)
1820     continue restart; // stale
1821     else if (next == null || ++steps == MAX_HELP)
1822     break restart; // dead-end or maybe cyclic
1823     else {
1824     subtask = next;
1825     j = v;
1826     break;
1827     }
1828 dl 1.111 }
1829 dl 1.91 }
1830 dl 1.61 }
1831 dl 1.111 }
1832 dl 1.53 }
1833 dl 1.128 return stat;
1834 dl 1.64 }
1835    
1836 dl 1.91 /**
1837 dl 1.111 * If task is at base of some steal queue, steals and executes it.
1838 dl 1.91 *
1839 dl 1.111 * @param joiner the joining worker
1840     * @param task the task
1841 dl 1.61 */
1842 dl 1.123 private void tryPollForAndExec(WorkQueue joiner, ForkJoinTask<?> task) {
1843 dl 1.111 WorkQueue[] ws;
1844 dl 1.123 if ((ws = workQueues) != null) {
1845     for (int j = 1; j < ws.length && task.status >= 0; j += 2) {
1846 dl 1.111 WorkQueue q = ws[j];
1847     if (q != null && q.pollFor(task)) {
1848     joiner.runSubtask(task);
1849     break;
1850     }
1851 dl 1.91 }
1852     }
1853 dl 1.61 }
1854    
1855     /**
1856 dl 1.123 * Tries to decrement active count (sometimes implicitly) and
1857     * possibly release or create a compensating worker in preparation
1858     * for blocking. Fails on contention or termination. Otherwise,
1859     * adds a new thread if no idle workers are available and either
1860     * pool would become completely starved or: (at least half
1861     * starved, and fewer than 50% spares exist, and there is at least
1862 jsr166 1.125 * one task apparently available). Even though the availability
1863 dl 1.123 * check requires a full scan, it is worthwhile in reducing false
1864     * alarms.
1865     *
1866 jsr166 1.126 * @param task if non-null, a task being waited for
1867     * @param blocker if non-null, a blocker being waited for
1868 dl 1.123 * @return true if the caller can block, else should recheck and retry
1869     */
1870     final boolean tryCompensate(ForkJoinTask<?> task, ManagedBlocker blocker) {
1871     int pc = parallelism, e;
1872     long c = ctl;
1873     WorkQueue[] ws = workQueues;
1874     if ((e = (int)c) >= 0 && ws != null) {
1875     int u, a, ac, hc;
1876     int tc = (short)((u = (int)(c >>> 32)) >>> UTC_SHIFT) + pc;
1877     boolean replace = false;
1878     if ((a = u >> UAC_SHIFT) <= 0) {
1879     if ((ac = a + pc) <= 1)
1880     replace = true;
1881     else if ((e > 0 || (task != null &&
1882     ac <= (hc = pc >>> 1) && tc < pc + hc))) {
1883     WorkQueue w;
1884     for (int j = 0; j < ws.length; ++j) {
1885     if ((w = ws[j]) != null && !w.isEmpty()) {
1886     replace = true;
1887     break; // in compensation range and tasks available
1888     }
1889     }
1890     }
1891     }
1892     if ((task == null || task.status >= 0) && // recheck need to block
1893     (blocker == null || !blocker.isReleasable()) && ctl == c) {
1894     if (!replace) { // no compensation
1895     long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1896     if (U.compareAndSwapLong(this, CTL, c, nc))
1897     return true;
1898     }
1899     else if (e != 0) { // release an idle worker
1900     WorkQueue w; Thread p; int i;
1901     if ((i = e & SMASK) < ws.length && (w = ws[i]) != null) {
1902     long nc = ((long)(w.nextWait & E_MASK) |
1903     (c & (AC_MASK|TC_MASK)));
1904     if (w.eventCount == (e | INT_SIGN) &&
1905     U.compareAndSwapLong(this, CTL, c, nc)) {
1906     w.eventCount = (e + E_SEQ) & E_MASK;
1907     if ((p = w.parker) != null)
1908     U.unpark(p);
1909     return true;
1910     }
1911     }
1912     }
1913     else if (tc < MAX_CAP) { // create replacement
1914     long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1915     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1916     addWorker();
1917     return true;
1918     }
1919     }
1920     }
1921     }
1922     return false;
1923     }
1924    
1925     /**
1926 jsr166 1.126 * Helps and/or blocks until the given task is done.
1927 dl 1.123 *
1928     * @param joiner the joining worker
1929     * @param task the task
1930     * @return task status on exit
1931     */
1932     final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1933 dl 1.127 int s;
1934     if ((s = task.status) >= 0) {
1935 dl 1.128 ForkJoinTask<?> prevJoin = joiner.currentJoin;
1936 dl 1.127 joiner.currentJoin = task;
1937     long startTime = 0L;
1938     for (int k = 0;;) {
1939 dl 1.128 if ((s = (joiner.isEmpty() ? // try to help
1940     tryHelpStealer(joiner, task) :
1941     joiner.tryRemoveAndExec(task))) == 0 &&
1942     (s = task.status) >= 0) {
1943 dl 1.127 if (k == 0) {
1944     startTime = System.nanoTime();
1945     tryPollForAndExec(joiner, task); // check uncommon case
1946     }
1947     else if ((k & (MAX_HELP - 1)) == 0 &&
1948     System.nanoTime() - startTime >=
1949     COMPENSATION_DELAY &&
1950     tryCompensate(task, null)) {
1951 dl 1.128 if (task.trySetSignal()) {
1952 dl 1.127 synchronized (task) {
1953     if (task.status >= 0) {
1954     try { // see ForkJoinTask
1955     task.wait(); // for explanation
1956     } catch (InterruptedException ie) {
1957     }
1958 dl 1.123 }
1959 dl 1.127 else
1960     task.notifyAll();
1961 dl 1.123 }
1962     }
1963 dl 1.127 long c; // re-activate
1964     do {} while (!U.compareAndSwapLong
1965     (this, CTL, c = ctl, c + AC_UNIT));
1966 dl 1.123 }
1967     }
1968 dl 1.128 if (s < 0 || (s = task.status) < 0) {
1969 dl 1.127 joiner.currentJoin = prevJoin;
1970     break;
1971     }
1972     else if ((k++ & (MAX_HELP - 1)) == MAX_HELP >>> 1)
1973     Thread.yield(); // for politeness
1974 dl 1.123 }
1975     }
1976 dl 1.127 return s;
1977 dl 1.123 }
1978    
1979     /**
1980     * Stripped-down variant of awaitJoin used by timed joins. Tries
1981     * to help join only while there is continuous progress. (Caller
1982     * will then enter a timed wait.)
1983     *
1984     * @param joiner the joining worker
1985     * @param task the task
1986     * @return task status on exit
1987     */
1988     final int helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
1989     int s;
1990     while ((s = task.status) >= 0 &&
1991     (joiner.isEmpty() ?
1992     tryHelpStealer(joiner, task) :
1993 dl 1.128 joiner.tryRemoveAndExec(task)) != 0)
1994 dl 1.123 ;
1995     return s;
1996     }
1997    
1998     /**
1999     * Returns a (probably) non-empty steal queue, if one is found
2000     * during a random, then cyclic scan, else null. This method must
2001     * be retried by caller if, by the time it tries to use the queue,
2002     * it is empty.
2003 dl 1.111 */
2004     private WorkQueue findNonEmptyStealQueue(WorkQueue w) {
2005 dl 1.123 // Similar to loop in scan(), but ignoring submissions
2006 dl 1.136 int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
2007 dl 1.123 int step = (r >>> 16) | 1;
2008 dl 1.111 for (WorkQueue[] ws;;) {
2009 dl 1.123 int rs = runState, m;
2010     if ((ws = workQueues) == null || (m = ws.length - 1) < 1)
2011 dl 1.111 return null;
2012 dl 1.123 for (int j = (m + 1) << 2; ; r += step) {
2013     WorkQueue q = ws[((r << 1) | 1) & m];
2014     if (q != null && !q.isEmpty())
2015     return q;
2016     else if (--j < 0) {
2017     if (runState == rs)
2018 dl 1.111 return null;
2019 dl 1.123 break;
2020 dl 1.91 }
2021     }
2022 dl 1.64 }
2023     }
2024    
2025     /**
2026 dl 1.111 * Runs tasks until {@code isQuiescent()}. We piggyback on
2027     * active count ctl maintenance, but rather than blocking
2028     * when tasks cannot be found, we rescan until all others cannot
2029     * find tasks either.
2030     */
2031     final void helpQuiescePool(WorkQueue w) {
2032     for (boolean active = true;;) {
2033 dl 1.127 ForkJoinTask<?> localTask; // exhaust local queue
2034     while ((localTask = w.nextLocalTask()) != null)
2035     localTask.doExec();
2036 dl 1.111 WorkQueue q = findNonEmptyStealQueue(w);
2037     if (q != null) {
2038 dl 1.123 ForkJoinTask<?> t; int b;
2039 dl 1.111 if (!active) { // re-establish active count
2040     long c;
2041     active = true;
2042     do {} while (!U.compareAndSwapLong
2043     (this, CTL, c = ctl, c + AC_UNIT));
2044     }
2045 dl 1.123 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2046 dl 1.111 w.runSubtask(t);
2047     }
2048     else {
2049     long c;
2050     if (active) { // decrement active count without queuing
2051     active = false;
2052     do {} while (!U.compareAndSwapLong
2053     (this, CTL, c = ctl, c -= AC_UNIT));
2054     }
2055     else
2056     c = ctl; // re-increment on exit
2057     if ((int)(c >> AC_SHIFT) + parallelism == 0) {
2058     do {} while (!U.compareAndSwapLong
2059     (this, CTL, c = ctl, c + AC_UNIT));
2060     break;
2061 dl 1.66 }
2062 dl 1.64 }
2063     }
2064     }
2065    
2066     /**
2067 dl 1.135 * Restricted version of helpQuiescePool for non-FJ callers
2068     */
2069     static void externalHelpQuiescePool() {
2070     ForkJoinPool p; WorkQueue[] ws; WorkQueue w, q;
2071     ForkJoinTask<?> t; int b;
2072     int k = submitters.get().seed & SQMASK;
2073     if ((p = commonPool) != null &&
2074     (ws = p.workQueues) != null &&
2075     ws.length > (k &= p.submitMask) &&
2076     (w = ws[k]) != null &&
2077     (q = p.findNonEmptyStealQueue(w)) != null &&
2078     (b = q.base) - q.top < 0 &&
2079     (t = q.pollAt(b)) != null)
2080     t.doExec();
2081     }
2082    
2083     /**
2084 jsr166 1.117 * Gets and removes a local or stolen task for the given worker.
2085 dl 1.111 *
2086     * @return a task, if available
2087 dl 1.64 */
2088 dl 1.111 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2089     for (ForkJoinTask<?> t;;) {
2090 dl 1.123 WorkQueue q; int b;
2091 dl 1.111 if ((t = w.nextLocalTask()) != null)
2092     return t;
2093     if ((q = findNonEmptyStealQueue(w)) == null)
2094     return null;
2095 dl 1.123 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2096 dl 1.111 return t;
2097 dl 1.91 }
2098 dl 1.61 }
2099    
2100 dl 1.53 /**
2101 dl 1.111 * Returns the approximate (non-atomic) number of idle threads per
2102     * active thread to offset steal queue size for method
2103     * ForkJoinTask.getSurplusQueuedTaskCount().
2104 dl 1.53 */
2105 dl 1.111 final int idlePerActive() {
2106     // Approximate at powers of two for small values, saturate past 4
2107     int p = parallelism;
2108     int a = p + (int)(ctl >> AC_SHIFT);
2109     return (a > (p >>>= 1) ? 0 :
2110     a > (p >>>= 1) ? 1 :
2111     a > (p >>>= 1) ? 2 :
2112     a > (p >>>= 1) ? 4 :
2113     8);
2114 dl 1.53 }
2115    
2116 dl 1.135 /**
2117     * Returns approximate submission queue length for the given caller
2118     */
2119     static int getEstimatedSubmitterQueueLength() {
2120     ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
2121     int k = submitters.get().seed & SQMASK;
2122     return ((p = commonPool) != null &&
2123     p.runState >= 0 &&
2124     (ws = p.workQueues) != null &&
2125     ws.length > (k &= p.submitMask) &&
2126     (q = ws[k]) != null) ?
2127     q.queueSize() : 0;
2128     }
2129    
2130 dl 1.119 // Termination
2131 dl 1.53
2132     /**
2133 dl 1.119 * Possibly initiates and/or completes termination. The caller
2134     * triggering termination runs three passes through workQueues:
2135     * (0) Setting termination status, followed by wakeups of queued
2136     * workers; (1) cancelling all tasks; (2) interrupting lagging
2137     * threads (likely in external tasks, but possibly also blocked in
2138     * joins). Each pass repeats previous steps because of potential
2139     * lagging thread creation.
2140 dl 1.53 *
2141     * @param now if true, unconditionally terminate, else only
2142 dl 1.111 * if no work and no active workers
2143 jsr166 1.120 * @param enable if true, enable shutdown when next possible
2144 dl 1.53 * @return true if now terminating or terminated
2145 dl 1.1 */
2146 dl 1.119 private boolean tryTerminate(boolean now, boolean enable) {
2147 dl 1.111 for (long c;;) {
2148     if (((c = ctl) & STOP_BIT) != 0) { // already terminating
2149     if ((short)(c >>> TC_SHIFT) == -parallelism) {
2150 dl 1.136 synchronized(this) {
2151     notifyAll(); // signal when 0 workers
2152     }
2153 dl 1.111 }
2154     return true;
2155     }
2156 dl 1.119 if (runState >= 0) { // not yet enabled
2157     if (!enable)
2158     return false;
2159 dl 1.136 while (!U.compareAndSwapInt(this, MAINLOCK, 0, 1))
2160     tryAwaitMainLock();
2161     try {
2162     runState |= SHUTDOWN;
2163     } finally {
2164     if (!U.compareAndSwapInt(this, MAINLOCK, 1, 0)) {
2165     mainLock = 0;
2166     synchronized (this) { notifyAll(); };
2167     }
2168     }
2169 dl 1.119 }
2170     if (!now) { // check if idle & no tasks
2171     if ((int)(c >> AC_SHIFT) != -parallelism ||
2172 dl 1.111 hasQueuedSubmissions())
2173 dl 1.91 return false;
2174 dl 1.111 // Check for unqueued inactive workers. One pass suffices.
2175     WorkQueue[] ws = workQueues; WorkQueue w;
2176     if (ws != null) {
2177 dl 1.119 for (int i = 1; i < ws.length; i += 2) {
2178 dl 1.111 if ((w = ws[i]) != null && w.eventCount >= 0)
2179     return false;
2180     }
2181 dl 1.91 }
2182     }
2183 dl 1.119 if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2184     for (int pass = 0; pass < 3; ++pass) {
2185     WorkQueue[] ws = workQueues;
2186     if (ws != null) {
2187     WorkQueue w;
2188     int n = ws.length;
2189     for (int i = 0; i < n; ++i) {
2190     if ((w = ws[i]) != null) {
2191     w.runState = -1;
2192     if (pass > 0) {
2193     w.cancelAll();
2194     if (pass > 1)
2195     w.interruptOwner();
2196 dl 1.91 }
2197 dl 1.61 }
2198     }
2199 dl 1.119 // Wake up workers parked on event queue
2200     int i, e; long cc; Thread p;
2201     while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2202     (i = e & SMASK) < n &&
2203     (w = ws[i]) != null) {
2204     long nc = ((long)(w.nextWait & E_MASK) |
2205     ((cc + AC_UNIT) & AC_MASK) |
2206     (cc & (TC_MASK|STOP_BIT)));
2207     if (w.eventCount == (e | INT_SIGN) &&
2208     U.compareAndSwapLong(this, CTL, cc, nc)) {
2209     w.eventCount = (e + E_SEQ) & E_MASK;
2210     w.runState = -1;
2211     if ((p = w.parker) != null)
2212     U.unpark(p);
2213     }
2214     }
2215 dl 1.111 }
2216 dl 1.91 }
2217 dl 1.53 }
2218     }
2219 dl 1.56 }
2220    
2221 dl 1.91 // Exported methods
2222 dl 1.1
2223     // Constructors
2224    
2225     /**
2226 dl 1.42 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2227 dl 1.57 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2228     * #defaultForkJoinWorkerThreadFactory default thread factory},
2229     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2230 jsr166 1.17 *
2231 dl 1.1 * @throws SecurityException if a security manager exists and
2232     * the caller is not permitted to modify threads
2233     * because it does not hold {@link
2234 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
2235 dl 1.1 */
2236     public ForkJoinPool() {
2237     this(Runtime.getRuntime().availableProcessors(),
2238 dl 1.57 defaultForkJoinWorkerThreadFactory, null, false);
2239 dl 1.1 }
2240    
2241     /**
2242 dl 1.42 * Creates a {@code ForkJoinPool} with the indicated parallelism
2243 dl 1.57 * level, the {@linkplain
2244     * #defaultForkJoinWorkerThreadFactory default thread factory},
2245     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2246 jsr166 1.17 *
2247 dl 1.42 * @param parallelism the parallelism level
2248 dl 1.1 * @throws IllegalArgumentException if parallelism less than or
2249 jsr166 1.47 * equal to zero, or greater than implementation limit
2250 dl 1.1 * @throws SecurityException if a security manager exists and
2251     * the caller is not permitted to modify threads
2252     * because it does not hold {@link
2253 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
2254 dl 1.1 */
2255     public ForkJoinPool(int parallelism) {
2256 dl 1.57 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2257 dl 1.1 }
2258    
2259     /**
2260 dl 1.57 * Creates a {@code ForkJoinPool} with the given parameters.
2261 jsr166 1.17 *
2262 dl 1.57 * @param parallelism the parallelism level. For default value,
2263     * use {@link java.lang.Runtime#availableProcessors}.
2264     * @param factory the factory for creating new threads. For default value,
2265     * use {@link #defaultForkJoinWorkerThreadFactory}.
2266 dl 1.59 * @param handler the handler for internal worker threads that
2267     * terminate due to unrecoverable errors encountered while executing
2268 jsr166 1.73 * tasks. For default value, use {@code null}.
2269 dl 1.59 * @param asyncMode if true,
2270 dl 1.57 * establishes local first-in-first-out scheduling mode for forked
2271     * tasks that are never joined. This mode may be more appropriate
2272     * than default locally stack-based mode in applications in which
2273     * worker threads only process event-style asynchronous tasks.
2274 jsr166 1.73 * For default value, use {@code false}.
2275 dl 1.1 * @throws IllegalArgumentException if parallelism less than or
2276 jsr166 1.47 * equal to zero, or greater than implementation limit
2277 jsr166 1.48 * @throws NullPointerException if the factory is null
2278 dl 1.1 * @throws SecurityException if a security manager exists and
2279     * the caller is not permitted to modify threads
2280     * because it does not hold {@link
2281 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
2282 dl 1.1 */
2283 dl 1.59 public ForkJoinPool(int parallelism,
2284 dl 1.57 ForkJoinWorkerThreadFactory factory,
2285     Thread.UncaughtExceptionHandler handler,
2286     boolean asyncMode) {
2287 dl 1.53 checkPermission();
2288     if (factory == null)
2289     throw new NullPointerException();
2290 dl 1.123 if (parallelism <= 0 || parallelism > MAX_CAP)
2291 dl 1.1 throw new IllegalArgumentException();
2292 dl 1.53 this.parallelism = parallelism;
2293 dl 1.1 this.factory = factory;
2294 dl 1.57 this.ueh = handler;
2295 dl 1.111 this.localMode = asyncMode ? FIFO_QUEUE : LIFO_QUEUE;
2296 dl 1.91 long np = (long)(-parallelism); // offset ctl counts
2297     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2298 dl 1.123 // Use nearest power 2 for workQueues size. See Hackers Delight sec 3.2.
2299     int n = parallelism - 1;
2300     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
2301 dl 1.136 this.submitMask = ((n + 1) << 1) - 1;
2302 dl 1.123 int pn = poolNumberGenerator.incrementAndGet();
2303 dl 1.91 StringBuilder sb = new StringBuilder("ForkJoinPool-");
2304 dl 1.123 sb.append(Integer.toString(pn));
2305 dl 1.91 sb.append("-worker-");
2306     this.workerNamePrefix = sb.toString();
2307 dl 1.123 this.runState = 1; // set init flag
2308 dl 1.1 }
2309    
2310 dl 1.135 /**
2311 dl 1.136 * Constructor for common pool, suitable only for static initialization.
2312     * Basically the same as above, but uses smallest possible initial footprint.
2313     */
2314     ForkJoinPool(int parallelism, int submitMask,
2315     ForkJoinWorkerThreadFactory factory,
2316     Thread.UncaughtExceptionHandler handler) {
2317     this.factory = factory;
2318     this.ueh = handler;
2319     this.submitMask = submitMask;
2320     this.parallelism = parallelism;
2321     long np = (long)(-parallelism);
2322     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2323     this.localMode = LIFO_QUEUE;
2324     this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2325     this.runState = 1;
2326     }
2327    
2328     /**
2329     * Returns the common pool instance.
2330 dl 1.135 *
2331     * @return the common pool instance
2332     */
2333     public static ForkJoinPool commonPool() {
2334     ForkJoinPool p;
2335 dl 1.136 if ((p = commonPool) == null)
2336     throw new Error("Common Pool Unavailable");
2337 dl 1.135 return p;
2338     }
2339    
2340 dl 1.1 // Execution methods
2341    
2342     /**
2343 jsr166 1.17 * Performs the given task, returning its result upon completion.
2344 dl 1.91 * If the computation encounters an unchecked Exception or Error,
2345     * it is rethrown as the outcome of this invocation. Rethrown
2346     * exceptions behave in the same way as regular exceptions, but,
2347     * when possible, contain stack traces (as displayed for example
2348     * using {@code ex.printStackTrace()}) of both the current thread
2349     * as well as the thread actually encountering the exception;
2350     * minimally only the latter.
2351 jsr166 1.17 *
2352 dl 1.1 * @param task the task
2353     * @return the task's result
2354 jsr166 1.48 * @throws NullPointerException if the task is null
2355     * @throws RejectedExecutionException if the task cannot be
2356     * scheduled for execution
2357 dl 1.1 */
2358     public <T> T invoke(ForkJoinTask<T> task) {
2359 dl 1.123 if (task == null)
2360     throw new NullPointerException();
2361 dl 1.111 doSubmit(task);
2362     return task.join();
2363 dl 1.1 }
2364    
2365     /**
2366     * Arranges for (asynchronous) execution of the given task.
2367 jsr166 1.17 *
2368 dl 1.1 * @param task the task
2369 jsr166 1.48 * @throws NullPointerException if the task is null
2370     * @throws RejectedExecutionException if the task cannot be
2371     * scheduled for execution
2372 dl 1.1 */
2373 dl 1.37 public void execute(ForkJoinTask<?> task) {
2374 dl 1.123 if (task == null)
2375     throw new NullPointerException();
2376 dl 1.111 doSubmit(task);
2377 dl 1.1 }
2378    
2379     // AbstractExecutorService methods
2380    
2381 jsr166 1.48 /**
2382     * @throws NullPointerException if the task is null
2383     * @throws RejectedExecutionException if the task cannot be
2384     * scheduled for execution
2385     */
2386 dl 1.1 public void execute(Runnable task) {
2387 dl 1.82 if (task == null)
2388     throw new NullPointerException();
2389 dl 1.23 ForkJoinTask<?> job;
2390 jsr166 1.26 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2391     job = (ForkJoinTask<?>) task;
2392 dl 1.23 else
2393 dl 1.123 job = new ForkJoinTask.AdaptedRunnableAction(task);
2394 dl 1.111 doSubmit(job);
2395 dl 1.1 }
2396    
2397 jsr166 1.48 /**
2398 dl 1.57 * Submits a ForkJoinTask for execution.
2399     *
2400     * @param task the task to submit
2401     * @return the task
2402     * @throws NullPointerException if the task is null
2403     * @throws RejectedExecutionException if the task cannot be
2404     * scheduled for execution
2405     */
2406     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2407 dl 1.123 if (task == null)
2408     throw new NullPointerException();
2409 dl 1.111 doSubmit(task);
2410 dl 1.57 return task;
2411     }
2412    
2413     /**
2414 jsr166 1.48 * @throws NullPointerException if the task is null
2415     * @throws RejectedExecutionException if the task cannot be
2416     * scheduled for execution
2417     */
2418 dl 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2419 dl 1.123 ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2420 dl 1.111 doSubmit(job);
2421 dl 1.1 return job;
2422     }
2423    
2424 jsr166 1.48 /**
2425     * @throws NullPointerException if the task is null
2426     * @throws RejectedExecutionException if the task cannot be
2427     * scheduled for execution
2428     */
2429 dl 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2430 dl 1.123 ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2431 dl 1.111 doSubmit(job);
2432 dl 1.1 return job;
2433     }
2434    
2435 jsr166 1.48 /**
2436     * @throws NullPointerException if the task is null
2437     * @throws RejectedExecutionException if the task cannot be
2438     * scheduled for execution
2439     */
2440 dl 1.1 public ForkJoinTask<?> submit(Runnable task) {
2441 dl 1.82 if (task == null)
2442     throw new NullPointerException();
2443 dl 1.23 ForkJoinTask<?> job;
2444 jsr166 1.26 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2445     job = (ForkJoinTask<?>) task;
2446 dl 1.23 else
2447 dl 1.123 job = new ForkJoinTask.AdaptedRunnableAction(task);
2448 dl 1.111 doSubmit(job);
2449 dl 1.1 return job;
2450     }
2451    
2452     /**
2453 jsr166 1.48 * @throws NullPointerException {@inheritDoc}
2454     * @throws RejectedExecutionException {@inheritDoc}
2455     */
2456 dl 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2457 dl 1.119 // In previous versions of this class, this method constructed
2458     // a task to run ForkJoinTask.invokeAll, but now external
2459     // invocation of multiple tasks is at least as efficient.
2460     List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2461     // Workaround needed because method wasn't declared with
2462     // wildcards in return type but should have been.
2463 jsr166 1.20 @SuppressWarnings({"unchecked", "rawtypes"})
2464 dl 1.119 List<Future<T>> futures = (List<Future<T>>) (List) fs;
2465 dl 1.1
2466 dl 1.119 boolean done = false;
2467     try {
2468     for (Callable<T> t : tasks) {
2469 dl 1.123 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2470 dl 1.119 doSubmit(f);
2471     fs.add(f);
2472     }
2473     for (ForkJoinTask<T> f : fs)
2474     f.quietlyJoin();
2475     done = true;
2476     return futures;
2477     } finally {
2478     if (!done)
2479     for (ForkJoinTask<T> f : fs)
2480     f.cancel(false);
2481 dl 1.1 }
2482     }
2483    
2484     /**
2485 jsr166 1.17 * Returns the factory used for constructing new workers.
2486 dl 1.1 *
2487     * @return the factory used for constructing new workers
2488     */
2489     public ForkJoinWorkerThreadFactory getFactory() {
2490     return factory;
2491     }
2492    
2493     /**
2494 dl 1.2 * Returns the handler for internal worker threads that terminate
2495     * due to unrecoverable errors encountered while executing tasks.
2496 jsr166 1.17 *
2497 jsr166 1.28 * @return the handler, or {@code null} if none
2498 dl 1.2 */
2499     public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
2500 dl 1.53 return ueh;
2501 dl 1.2 }
2502    
2503     /**
2504 dl 1.42 * Returns the targeted parallelism level of this pool.
2505 dl 1.1 *
2506 dl 1.42 * @return the targeted parallelism level of this pool
2507 dl 1.1 */
2508     public int getParallelism() {
2509     return parallelism;
2510     }
2511    
2512     /**
2513 dl 1.135 * Returns the targeted parallelism level of the common pool.
2514     *
2515     * @return the targeted parallelism level of the common pool
2516     */
2517     public static int getCommonPoolParallelism() {
2518     return commonPoolParallelism;
2519     }
2520    
2521     /**
2522 dl 1.1 * Returns the number of worker threads that have started but not
2523 jsr166 1.76 * yet terminated. The result returned by this method may differ
2524 jsr166 1.29 * from {@link #getParallelism} when threads are created to
2525 dl 1.1 * maintain parallelism when others are cooperatively blocked.
2526     *
2527     * @return the number of worker threads
2528     */
2529     public int getPoolSize() {
2530 dl 1.91 return parallelism + (short)(ctl >>> TC_SHIFT);
2531 dl 1.1 }
2532    
2533     /**
2534 jsr166 1.28 * Returns {@code true} if this pool uses local first-in-first-out
2535 jsr166 1.16 * scheduling mode for forked tasks that are never joined.
2536 dl 1.6 *
2537 jsr166 1.28 * @return {@code true} if this pool uses async mode
2538 dl 1.6 */
2539     public boolean getAsyncMode() {
2540 dl 1.111 return localMode != 0;
2541 dl 1.6 }
2542    
2543     /**
2544 dl 1.2 * Returns an estimate of the number of worker threads that are
2545     * not blocked waiting to join tasks or for other managed
2546 dl 1.53 * synchronization. This method may overestimate the
2547     * number of running threads.
2548 dl 1.1 *
2549     * @return the number of worker threads
2550     */
2551     public int getRunningThreadCount() {
2552 dl 1.111 int rc = 0;
2553     WorkQueue[] ws; WorkQueue w;
2554     if ((ws = workQueues) != null) {
2555 dl 1.119 for (int i = 1; i < ws.length; i += 2) {
2556     if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2557 dl 1.111 ++rc;
2558     }
2559     }
2560     return rc;
2561 dl 1.1 }
2562    
2563     /**
2564 dl 1.2 * Returns an estimate of the number of threads that are currently
2565 dl 1.1 * stealing or executing tasks. This method may overestimate the
2566     * number of active threads.
2567 jsr166 1.17 *
2568 jsr166 1.16 * @return the number of active threads
2569 dl 1.1 */
2570     public int getActiveThreadCount() {
2571 dl 1.111 int r = parallelism + (int)(ctl >> AC_SHIFT);
2572 jsr166 1.102 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2573 dl 1.1 }
2574    
2575     /**
2576 jsr166 1.28 * Returns {@code true} if all worker threads are currently idle.
2577     * An idle worker is one that cannot obtain a task to execute
2578     * because none are available to steal from other threads, and
2579     * there are no pending submissions to the pool. This method is
2580     * conservative; it might not return {@code true} immediately upon
2581     * idleness of all threads, but will eventually become true if
2582     * threads remain inactive.
2583 jsr166 1.17 *
2584 jsr166 1.28 * @return {@code true} if all threads are currently idle
2585 dl 1.1 */
2586     public boolean isQuiescent() {
2587 dl 1.111 return (int)(ctl >> AC_SHIFT) + parallelism == 0;
2588 dl 1.1 }
2589    
2590     /**
2591     * Returns an estimate of the total number of tasks stolen from
2592     * one thread's work queue by another. The reported value
2593     * underestimates the actual total number of steals when the pool
2594     * is not quiescent. This value may be useful for monitoring and
2595 jsr166 1.17 * tuning fork/join programs: in general, steal counts should be
2596 dl 1.1 * high enough to keep threads busy, but low enough to avoid
2597     * overhead and contention across threads.
2598 jsr166 1.17 *
2599 jsr166 1.16 * @return the number of steals
2600 dl 1.1 */
2601     public long getStealCount() {
2602 dl 1.136 long count = stealCount;
2603 dl 1.111 WorkQueue[] ws; WorkQueue w;
2604     if ((ws = workQueues) != null) {
2605 dl 1.119 for (int i = 1; i < ws.length; i += 2) {
2606 dl 1.111 if ((w = ws[i]) != null)
2607     count += w.totalSteals;
2608     }
2609     }
2610     return count;
2611 dl 1.1 }
2612    
2613     /**
2614 dl 1.2 * Returns an estimate of the total number of tasks currently held
2615     * in queues by worker threads (but not including tasks submitted
2616     * to the pool that have not begun executing). This value is only
2617     * an approximation, obtained by iterating across all threads in
2618     * the pool. This method may be useful for tuning task
2619     * granularities.
2620 jsr166 1.17 *
2621 jsr166 1.16 * @return the number of queued tasks
2622 dl 1.1 */
2623     public long getQueuedTaskCount() {
2624     long count = 0;
2625 dl 1.111 WorkQueue[] ws; WorkQueue w;
2626     if ((ws = workQueues) != null) {
2627 dl 1.119 for (int i = 1; i < ws.length; i += 2) {
2628 dl 1.111 if ((w = ws[i]) != null)
2629     count += w.queueSize();
2630     }
2631 dl 1.91 }
2632 dl 1.1 return count;
2633     }
2634    
2635     /**
2636 jsr166 1.40 * Returns an estimate of the number of tasks submitted to this
2637 dl 1.94 * pool that have not yet begun executing. This method may take
2638 dl 1.91 * time proportional to the number of submissions.
2639 jsr166 1.17 *
2640 jsr166 1.16 * @return the number of queued submissions
2641 dl 1.1 */
2642     public int getQueuedSubmissionCount() {
2643 dl 1.111 int count = 0;
2644     WorkQueue[] ws; WorkQueue w;
2645     if ((ws = workQueues) != null) {
2646 dl 1.119 for (int i = 0; i < ws.length; i += 2) {
2647 dl 1.111 if ((w = ws[i]) != null)
2648     count += w.queueSize();
2649     }
2650     }
2651     return count;
2652 dl 1.1 }
2653    
2654     /**
2655 jsr166 1.28 * Returns {@code true} if there are any tasks submitted to this
2656     * pool that have not yet begun executing.
2657 jsr166 1.17 *
2658 jsr166 1.16 * @return {@code true} if there are any queued submissions
2659 dl 1.1 */
2660     public boolean hasQueuedSubmissions() {
2661 dl 1.111 WorkQueue[] ws; WorkQueue w;
2662     if ((ws = workQueues) != null) {
2663 dl 1.119 for (int i = 0; i < ws.length; i += 2) {
2664 dl 1.123 if ((w = ws[i]) != null && !w.isEmpty())
2665 dl 1.111 return true;
2666     }
2667     }
2668     return false;
2669 dl 1.1 }
2670    
2671     /**
2672     * Removes and returns the next unexecuted submission if one is
2673     * available. This method may be useful in extensions to this
2674     * class that re-assign work in systems with multiple pools.
2675 jsr166 1.17 *
2676 jsr166 1.28 * @return the next submission, or {@code null} if none
2677 dl 1.1 */
2678     protected ForkJoinTask<?> pollSubmission() {
2679 dl 1.111 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2680     if ((ws = workQueues) != null) {
2681 dl 1.119 for (int i = 0; i < ws.length; i += 2) {
2682 dl 1.111 if ((w = ws[i]) != null && (t = w.poll()) != null)
2683     return t;
2684 dl 1.91 }
2685     }
2686     return null;
2687 dl 1.1 }
2688    
2689     /**
2690 dl 1.6 * Removes all available unexecuted submitted and forked tasks
2691     * from scheduling queues and adds them to the given collection,
2692     * without altering their execution status. These may include
2693 jsr166 1.41 * artificially generated or wrapped tasks. This method is
2694     * designed to be invoked only when the pool is known to be
2695 dl 1.6 * quiescent. Invocations at other times may not remove all
2696     * tasks. A failure encountered while attempting to add elements
2697 jsr166 1.16 * to collection {@code c} may result in elements being in
2698 dl 1.6 * neither, either or both collections when the associated
2699     * exception is thrown. The behavior of this operation is
2700     * undefined if the specified collection is modified while the
2701     * operation is in progress.
2702 jsr166 1.17 *
2703 dl 1.6 * @param c the collection to transfer elements into
2704     * @return the number of elements transferred
2705     */
2706 dl 1.30 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2707 dl 1.91 int count = 0;
2708 dl 1.111 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2709     if ((ws = workQueues) != null) {
2710 dl 1.119 for (int i = 0; i < ws.length; ++i) {
2711 dl 1.111 if ((w = ws[i]) != null) {
2712     while ((t = w.poll()) != null) {
2713     c.add(t);
2714     ++count;
2715     }
2716     }
2717 dl 1.91 }
2718     }
2719 dl 1.57 return count;
2720     }
2721    
2722     /**
2723 dl 1.1 * Returns a string identifying this pool, as well as its state,
2724     * including indications of run state, parallelism level, and
2725     * worker and task counts.
2726     *
2727     * @return a string identifying this pool, as well as its state
2728     */
2729     public String toString() {
2730 dl 1.119 // Use a single pass through workQueues to collect counts
2731     long qt = 0L, qs = 0L; int rc = 0;
2732 dl 1.136 long st = stealCount;
2733 dl 1.119 long c = ctl;
2734     WorkQueue[] ws; WorkQueue w;
2735     if ((ws = workQueues) != null) {
2736     for (int i = 0; i < ws.length; ++i) {
2737     if ((w = ws[i]) != null) {
2738     int size = w.queueSize();
2739     if ((i & 1) == 0)
2740     qs += size;
2741     else {
2742     qt += size;
2743     st += w.totalSteals;
2744     if (w.isApparentlyUnblocked())
2745     ++rc;
2746     }
2747     }
2748     }
2749     }
2750 dl 1.53 int pc = parallelism;
2751 dl 1.91 int tc = pc + (short)(c >>> TC_SHIFT);
2752 dl 1.111 int ac = pc + (int)(c >> AC_SHIFT);
2753     if (ac < 0) // ignore transient negative
2754     ac = 0;
2755 dl 1.91 String level;
2756     if ((c & STOP_BIT) != 0)
2757 jsr166 1.102 level = (tc == 0) ? "Terminated" : "Terminating";
2758 dl 1.91 else
2759 dl 1.111 level = runState < 0 ? "Shutting down" : "Running";
2760 dl 1.1 return super.toString() +
2761 dl 1.91 "[" + level +
2762 dl 1.53 ", parallelism = " + pc +
2763     ", size = " + tc +
2764     ", active = " + ac +
2765     ", running = " + rc +
2766 dl 1.1 ", steals = " + st +
2767     ", tasks = " + qt +
2768     ", submissions = " + qs +
2769     "]";
2770     }
2771    
2772     /**
2773 dl 1.135 * Possibly initiates an orderly shutdown in which previously
2774     * submitted tasks are executed, but no new tasks will be
2775     * accepted. Invocation has no effect on execution state if this
2776     * is the {@link #commonPool}, and no additional effect if
2777     * already shut down. Tasks that are in the process of being
2778     * submitted concurrently during the course of this method may or
2779     * may not be rejected.
2780 jsr166 1.17 *
2781 dl 1.1 * @throws SecurityException if a security manager exists and
2782     * the caller is not permitted to modify threads
2783     * because it does not hold {@link
2784 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
2785 dl 1.1 */
2786     public void shutdown() {
2787     checkPermission();
2788 dl 1.135 if (this != commonPool)
2789     tryTerminate(false, true);
2790 dl 1.1 }
2791    
2792     /**
2793 dl 1.135 * Possibly attempts to cancel and/or stop all tasks, and reject
2794     * all subsequently submitted tasks. Invocation has no effect on
2795     * execution state if this is the {@link #commonPool}, and no
2796     * additional effect if already shut down. Otherwise, tasks that
2797     * are in the process of being submitted or executed concurrently
2798     * during the course of this method may or may not be
2799     * rejected. This method cancels both existing and unexecuted
2800     * tasks, in order to permit termination in the presence of task
2801     * dependencies. So the method always returns an empty list
2802     * (unlike the case for some other Executors).
2803 jsr166 1.17 *
2804 dl 1.1 * @return an empty list
2805     * @throws SecurityException if a security manager exists and
2806     * the caller is not permitted to modify threads
2807     * because it does not hold {@link
2808 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
2809 dl 1.1 */
2810     public List<Runnable> shutdownNow() {
2811     checkPermission();
2812 dl 1.135 if (this != commonPool)
2813     tryTerminate(true, true);
2814 dl 1.1 return Collections.emptyList();
2815     }
2816    
2817     /**
2818 jsr166 1.16 * Returns {@code true} if all tasks have completed following shut down.
2819 dl 1.1 *
2820 jsr166 1.16 * @return {@code true} if all tasks have completed following shut down
2821 dl 1.1 */
2822     public boolean isTerminated() {
2823 dl 1.91 long c = ctl;
2824     return ((c & STOP_BIT) != 0L &&
2825     (short)(c >>> TC_SHIFT) == -parallelism);
2826 dl 1.1 }
2827    
2828     /**
2829 jsr166 1.16 * Returns {@code true} if the process of termination has
2830 dl 1.42 * commenced but not yet completed. This method may be useful for
2831     * debugging. A return of {@code true} reported a sufficient
2832     * period after shutdown may indicate that submitted tasks have
2833 dl 1.88 * ignored or suppressed interruption, or are waiting for IO,
2834     * causing this executor not to properly terminate. (See the
2835     * advisory notes for class {@link ForkJoinTask} stating that
2836     * tasks should not normally entail blocking operations. But if
2837     * they do, they must abort them on interrupt.)
2838 dl 1.1 *
2839 dl 1.42 * @return {@code true} if terminating but not yet terminated
2840 dl 1.1 */
2841     public boolean isTerminating() {
2842 dl 1.91 long c = ctl;
2843     return ((c & STOP_BIT) != 0L &&
2844     (short)(c >>> TC_SHIFT) != -parallelism);
2845 dl 1.1 }
2846    
2847     /**
2848 jsr166 1.16 * Returns {@code true} if this pool has been shut down.
2849 dl 1.1 *
2850 jsr166 1.16 * @return {@code true} if this pool has been shut down
2851 dl 1.1 */
2852     public boolean isShutdown() {
2853 dl 1.111 return runState < 0;
2854 dl 1.42 }
2855    
2856     /**
2857 dl 1.1 * Blocks until all tasks have completed execution after a shutdown
2858     * request, or the timeout occurs, or the current thread is
2859     * interrupted, whichever happens first.
2860     *
2861     * @param timeout the maximum time to wait
2862     * @param unit the time unit of the timeout argument
2863 jsr166 1.16 * @return {@code true} if this executor terminated and
2864     * {@code false} if the timeout elapsed before termination
2865 dl 1.1 * @throws InterruptedException if interrupted while waiting
2866     */
2867     public boolean awaitTermination(long timeout, TimeUnit unit)
2868     throws InterruptedException {
2869 dl 1.91 long nanos = unit.toNanos(timeout);
2870 dl 1.136 if (isTerminated())
2871     return true;
2872     long startTime = System.nanoTime();
2873     boolean terminated = false;
2874     synchronized(this) {
2875     for (long waitTime = nanos, millis = 0L;;) {
2876     if (terminated = isTerminated() ||
2877     waitTime <= 0L ||
2878     (millis = unit.toMillis(waitTime)) <= 0L)
2879     break;
2880     wait(millis);
2881     waitTime = nanos - (System.nanoTime() - startTime);
2882 dl 1.91 }
2883 dl 1.57 }
2884 dl 1.136 return terminated;
2885 dl 1.1 }
2886    
2887     /**
2888     * Interface for extending managed parallelism for tasks running
2889 jsr166 1.35 * in {@link ForkJoinPool}s.
2890     *
2891 dl 1.61 * <p>A {@code ManagedBlocker} provides two methods. Method
2892     * {@code isReleasable} must return {@code true} if blocking is
2893     * not necessary. Method {@code block} blocks the current thread
2894     * if necessary (perhaps internally invoking {@code isReleasable}
2895 dl 1.93 * before actually blocking). These actions are performed by any
2896     * thread invoking {@link ForkJoinPool#managedBlock}. The
2897     * unusual methods in this API accommodate synchronizers that may,
2898     * but don't usually, block for long periods. Similarly, they
2899     * allow more efficient internal handling of cases in which
2900     * additional workers may be, but usually are not, needed to
2901     * ensure sufficient parallelism. Toward this end,
2902     * implementations of method {@code isReleasable} must be amenable
2903     * to repeated invocation.
2904 jsr166 1.17 *
2905 dl 1.1 * <p>For example, here is a ManagedBlocker based on a
2906     * ReentrantLock:
2907 jsr166 1.17 * <pre> {@code
2908     * class ManagedLocker implements ManagedBlocker {
2909     * final ReentrantLock lock;
2910     * boolean hasLock = false;
2911     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
2912     * public boolean block() {
2913     * if (!hasLock)
2914     * lock.lock();
2915     * return true;
2916     * }
2917     * public boolean isReleasable() {
2918     * return hasLock || (hasLock = lock.tryLock());
2919 dl 1.1 * }
2920 jsr166 1.17 * }}</pre>
2921 dl 1.61 *
2922     * <p>Here is a class that possibly blocks waiting for an
2923     * item on a given queue:
2924     * <pre> {@code
2925     * class QueueTaker<E> implements ManagedBlocker {
2926     * final BlockingQueue<E> queue;
2927     * volatile E item = null;
2928     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
2929     * public boolean block() throws InterruptedException {
2930     * if (item == null)
2931 dl 1.65 * item = queue.take();
2932 dl 1.61 * return true;
2933     * }
2934     * public boolean isReleasable() {
2935 dl 1.65 * return item != null || (item = queue.poll()) != null;
2936 dl 1.61 * }
2937     * public E getItem() { // call after pool.managedBlock completes
2938     * return item;
2939     * }
2940     * }}</pre>
2941 dl 1.1 */
2942     public static interface ManagedBlocker {
2943     /**
2944     * Possibly blocks the current thread, for example waiting for
2945     * a lock or condition.
2946 jsr166 1.17 *
2947 jsr166 1.28 * @return {@code true} if no additional blocking is necessary
2948     * (i.e., if isReleasable would return true)
2949 dl 1.1 * @throws InterruptedException if interrupted while waiting
2950 jsr166 1.17 * (the method is not required to do so, but is allowed to)
2951 dl 1.1 */
2952     boolean block() throws InterruptedException;
2953    
2954     /**
2955 jsr166 1.28 * Returns {@code true} if blocking is unnecessary.
2956 dl 1.1 */
2957     boolean isReleasable();
2958     }
2959    
2960     /**
2961     * Blocks in accord with the given blocker. If the current thread
2962 jsr166 1.38 * is a {@link ForkJoinWorkerThread}, this method possibly
2963     * arranges for a spare thread to be activated if necessary to
2964 dl 1.57 * ensure sufficient parallelism while the current thread is blocked.
2965 jsr166 1.38 *
2966     * <p>If the caller is not a {@link ForkJoinTask}, this method is
2967     * behaviorally equivalent to
2968 jsr166 1.115 * <pre> {@code
2969 jsr166 1.17 * while (!blocker.isReleasable())
2970     * if (blocker.block())
2971     * return;
2972     * }</pre>
2973 jsr166 1.38 *
2974     * If the caller is a {@code ForkJoinTask}, then the pool may
2975     * first be expanded to ensure parallelism, and later adjusted.
2976 dl 1.1 *
2977     * @param blocker the blocker
2978 jsr166 1.16 * @throws InterruptedException if blocker.block did so
2979 dl 1.1 */
2980 dl 1.57 public static void managedBlock(ManagedBlocker blocker)
2981 dl 1.1 throws InterruptedException {
2982     Thread t = Thread.currentThread();
2983 dl 1.111 ForkJoinPool p = ((t instanceof ForkJoinWorkerThread) ?
2984     ((ForkJoinWorkerThread)t).pool : null);
2985     while (!blocker.isReleasable()) {
2986 dl 1.123 if (p == null || p.tryCompensate(null, blocker)) {
2987 dl 1.111 try {
2988     do {} while (!blocker.isReleasable() && !blocker.block());
2989     } finally {
2990     if (p != null)
2991     p.incrementActiveCount();
2992     }
2993     break;
2994     }
2995 dl 1.57 }
2996 dl 1.1 }
2997    
2998 dl 1.33 // AbstractExecutorService overrides. These rely on undocumented
2999     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3000     // implement RunnableFuture.
3001 dl 1.2
3002     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3003 dl 1.123 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3004 dl 1.2 }
3005    
3006     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3007 dl 1.123 return new ForkJoinTask.AdaptedCallable<T>(callable);
3008 dl 1.2 }
3009    
3010 jsr166 1.27 // Unsafe mechanics
3011 dl 1.111 private static final sun.misc.Unsafe U;
3012     private static final long CTL;
3013     private static final long PARKBLOCKER;
3014 dl 1.123 private static final int ABASE;
3015     private static final int ASHIFT;
3016 dl 1.136 private static final long NEXTWORKERNUMBER;
3017     private static final long STEALCOUNT;
3018     private static final long MAINLOCK;
3019 dl 1.91
3020     static {
3021     poolNumberGenerator = new AtomicInteger();
3022 dl 1.123 nextSubmitterSeed = new AtomicInteger(0x55555555);
3023 dl 1.91 modifyThreadPermission = new RuntimePermission("modifyThread");
3024     defaultForkJoinWorkerThreadFactory =
3025     new DefaultForkJoinWorkerThreadFactory();
3026 dl 1.119 submitters = new ThreadSubmitter();
3027 dl 1.123 int s;
3028 jsr166 1.27 try {
3029 dl 1.111 U = getUnsafe();
3030 jsr166 1.103 Class<?> k = ForkJoinPool.class;
3031 dl 1.123 Class<?> ak = ForkJoinTask[].class;
3032 dl 1.111 CTL = U.objectFieldOffset
3033 dl 1.91 (k.getDeclaredField("ctl"));
3034 dl 1.136 NEXTWORKERNUMBER = U.objectFieldOffset
3035     (k.getDeclaredField("nextWorkerNumber"));
3036     STEALCOUNT = U.objectFieldOffset
3037     (k.getDeclaredField("stealCount"));
3038     MAINLOCK = U.objectFieldOffset
3039     (k.getDeclaredField("mainLock"));
3040 dl 1.119 Class<?> tk = Thread.class;
3041 dl 1.111 PARKBLOCKER = U.objectFieldOffset
3042     (tk.getDeclaredField("parkBlocker"));
3043 dl 1.123 ABASE = U.arrayBaseOffset(ak);
3044     s = U.arrayIndexScale(ak);
3045 dl 1.136 ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3046 dl 1.91 } catch (Exception e) {
3047     throw new Error(e);
3048     }
3049 dl 1.123 if ((s & (s-1)) != 0)
3050     throw new Error("data type scale not a power of two");
3051 dl 1.136 try { // Establish common pool
3052 dl 1.135 String pp = System.getProperty(propPrefix + "parallelism");
3053     String fp = System.getProperty(propPrefix + "threadFactory");
3054     String up = System.getProperty(propPrefix + "exceptionHandler");
3055 dl 1.136 ForkJoinWorkerThreadFactory fac = (fp == null) ?
3056     defaultForkJoinWorkerThreadFactory :
3057     ((ForkJoinWorkerThreadFactory)ClassLoader.
3058     getSystemClassLoader().loadClass(fp).newInstance());
3059     Thread.UncaughtExceptionHandler ueh = (up == null)? null :
3060     ((Thread.UncaughtExceptionHandler)ClassLoader.
3061     getSystemClassLoader().loadClass(up).newInstance());
3062 dl 1.135 int par;
3063     if ((pp == null || (par = Integer.parseInt(pp)) <= 0))
3064     par = Runtime.getRuntime().availableProcessors();
3065 dl 1.136 if (par > MAX_CAP)
3066     par = MAX_CAP;
3067 dl 1.135 commonPoolParallelism = par;
3068 dl 1.136 int n = par - 1; // precompute submit mask
3069     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
3070     n |= n >>> 8; n |= n >>> 16;
3071     int mask = ((n + 1) << 1) - 1;
3072     commonPool = new ForkJoinPool(par, mask, fac, ueh);
3073 dl 1.135 } catch (Exception e) {
3074     throw new Error(e);
3075     }
3076 jsr166 1.27 }
3077    
3078     /**
3079     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
3080     * Replace with a simple call to Unsafe.getUnsafe when integrating
3081     * into a jdk.
3082     *
3083     * @return a sun.misc.Unsafe
3084     */
3085     private static sun.misc.Unsafe getUnsafe() {
3086     try {
3087     return sun.misc.Unsafe.getUnsafe();
3088     } catch (SecurityException se) {
3089     try {
3090     return java.security.AccessController.doPrivileged
3091     (new java.security
3092     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
3093     public sun.misc.Unsafe run() throws Exception {
3094     java.lang.reflect.Field f = sun.misc
3095     .Unsafe.class.getDeclaredField("theUnsafe");
3096     f.setAccessible(true);
3097     return (sun.misc.Unsafe) f.get(null);
3098     }});
3099     } catch (java.security.PrivilegedActionException e) {
3100     throw new RuntimeException("Could not initialize intrinsics",
3101     e.getCause());
3102     }
3103     }
3104     }
3105 dl 1.112
3106 dl 1.1 }