ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
Revision: 1.138
Committed: Tue Oct 30 16:05:35 2012 UTC (11 years, 6 months ago) by jsr166
Branch: MAIN
Changes since 1.137: +7 -7 lines
Log Message:
whitespace

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.97 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.1 */
6    
7     package jsr166y;
8 dl 1.135
9 jsr166 1.22 import java.util.ArrayList;
10     import java.util.Arrays;
11     import java.util.Collection;
12     import java.util.Collections;
13     import java.util.List;
14 dl 1.91 import java.util.Random;
15 dl 1.78 import java.util.concurrent.AbstractExecutorService;
16     import java.util.concurrent.Callable;
17     import java.util.concurrent.ExecutorService;
18     import java.util.concurrent.Future;
19     import java.util.concurrent.RejectedExecutionException;
20     import java.util.concurrent.RunnableFuture;
21     import java.util.concurrent.TimeUnit;
22     import java.util.concurrent.atomic.AtomicInteger;
23 dl 1.111 import java.util.concurrent.atomic.AtomicLong;
24 dl 1.119 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
25 dl 1.91 import java.util.concurrent.locks.Condition;
26 dl 1.1
27     /**
28 jsr166 1.29 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
29 jsr166 1.39 * A {@code ForkJoinPool} provides the entry point for submissions
30 dl 1.57 * from non-{@code ForkJoinTask} clients, as well as management and
31 jsr166 1.48 * monitoring operations.
32 dl 1.1 *
33 dl 1.42 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
34     * ExecutorService} mainly by virtue of employing
35     * <em>work-stealing</em>: all threads in the pool attempt to find and
36 dl 1.111 * execute tasks submitted to the pool and/or created by other active
37     * tasks (eventually blocking waiting for work if none exist). This
38     * enables efficient processing when most tasks spawn other subtasks
39     * (as do most {@code ForkJoinTask}s), as well as when many small
40     * tasks are submitted to the pool from external clients. Especially
41     * when setting <em>asyncMode</em> to true in constructors, {@code
42     * ForkJoinPool}s may also be appropriate for use with event-style
43     * tasks that are never joined.
44 dl 1.1 *
45 dl 1.135 * <p>A static {@link #commonPool} is available and appropriate for
46 dl 1.136 * most applications. The common pool is used by any ForkJoinTask that
47     * is not explicitly submitted to a specified pool. Using the common
48     * pool normally reduces resource usage (its threads are slowly
49     * reclaimed during periods of non-use, and reinstated upon subsequent
50     * use). The common pool is by default constructed with default
51     * parameters, but these may be controlled by setting any or all of
52     * the three properties {@code
53 dl 1.135 * java.util.concurrent.ForkJoinPool.common.{parallelism,
54     * threadFactory, exceptionHandler}}.
55     *
56     * <p>For applications that require separate or custom pools, a {@code
57     * ForkJoinPool} may be constructed with a given target parallelism
58     * level; by default, equal to the number of available processors. The
59     * pool attempts to maintain enough active (or available) threads by
60     * dynamically adding, suspending, or resuming internal worker
61     * threads, even if some tasks are stalled waiting to join
62     * others. However, no such adjustments are guaranteed in the face of
63     * blocked IO or other unmanaged synchronization. The nested {@link
64     * ManagedBlocker} interface enables extension of the kinds of
65 dl 1.57 * synchronization accommodated.
66 dl 1.1 *
67     * <p>In addition to execution and lifecycle control methods, this
68     * class provides status check methods (for example
69 jsr166 1.29 * {@link #getStealCount}) that are intended to aid in developing,
70 dl 1.1 * tuning, and monitoring fork/join applications. Also, method
71 jsr166 1.29 * {@link #toString} returns indications of pool state in a
72 dl 1.2 * convenient form for informal monitoring.
73 dl 1.1 *
74 dl 1.57 * <p> As is the case with other ExecutorServices, there are three
75 jsr166 1.117 * main task execution methods summarized in the following table.
76     * These are designed to be used primarily by clients not already
77     * engaged in fork/join computations in the current pool. The main
78     * forms of these methods accept instances of {@code ForkJoinTask},
79     * but overloaded forms also allow mixed execution of plain {@code
80     * Runnable}- or {@code Callable}- based activities as well. However,
81     * tasks that are already executing in a pool should normally instead
82     * use the within-computation forms listed in the table unless using
83     * async event-style tasks that are not usually joined, in which case
84     * there is little difference among choice of methods.
85 dl 1.57 *
86     * <table BORDER CELLPADDING=3 CELLSPACING=1>
87     * <tr>
88     * <td></td>
89     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
90     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
91     * </tr>
92     * <tr>
93 jsr166 1.67 * <td> <b>Arrange async execution</td>
94 dl 1.57 * <td> {@link #execute(ForkJoinTask)}</td>
95     * <td> {@link ForkJoinTask#fork}</td>
96     * </tr>
97     * <tr>
98     * <td> <b>Await and obtain result</td>
99     * <td> {@link #invoke(ForkJoinTask)}</td>
100     * <td> {@link ForkJoinTask#invoke}</td>
101     * </tr>
102     * <tr>
103     * <td> <b>Arrange exec and obtain Future</td>
104     * <td> {@link #submit(ForkJoinTask)}</td>
105     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
106     * </tr>
107     * </table>
108 dl 1.59 *
109 dl 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
110 dl 1.2 * maximum number of running threads to 32767. Attempts to create
111 jsr166 1.48 * pools with greater than the maximum number result in
112 jsr166 1.39 * {@code IllegalArgumentException}.
113 jsr166 1.16 *
114 jsr166 1.48 * <p>This implementation rejects submitted tasks (that is, by throwing
115 dl 1.58 * {@link RejectedExecutionException}) only when the pool is shut down
116 dl 1.62 * or internal resources have been exhausted.
117 jsr166 1.48 *
118 jsr166 1.16 * @since 1.7
119     * @author Doug Lea
120 dl 1.1 */
121 dl 1.2 public class ForkJoinPool extends AbstractExecutorService {
122 dl 1.1
123     /*
124 dl 1.53 * Implementation Overview
125     *
126 dl 1.111 * This class and its nested classes provide the main
127     * functionality and control for a set of worker threads:
128 jsr166 1.117 * Submissions from non-FJ threads enter into submission queues.
129     * Workers take these tasks and typically split them into subtasks
130     * that may be stolen by other workers. Preference rules give
131     * first priority to processing tasks from their own queues (LIFO
132     * or FIFO, depending on mode), then to randomized FIFO steals of
133     * tasks in other queues.
134 dl 1.111 *
135 jsr166 1.117 * WorkQueues
136 dl 1.111 * ==========
137     *
138     * Most operations occur within work-stealing queues (in nested
139     * class WorkQueue). These are special forms of Deques that
140     * support only three of the four possible end-operations -- push,
141     * pop, and poll (aka steal), under the further constraints that
142     * push and pop are called only from the owning thread (or, as
143     * extended here, under a lock), while poll may be called from
144     * other threads. (If you are unfamiliar with them, you probably
145     * want to read Herlihy and Shavit's book "The Art of
146     * Multiprocessor programming", chapter 16 describing these in
147     * more detail before proceeding.) The main work-stealing queue
148     * design is roughly similar to those in the papers "Dynamic
149     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
150     * (http://research.sun.com/scalable/pubs/index.html) and
151     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
152     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
153 jsr166 1.117 * The main differences ultimately stem from GC requirements that
154 dl 1.111 * we null out taken slots as soon as we can, to maintain as small
155     * a footprint as possible even in programs generating huge
156     * numbers of tasks. To accomplish this, we shift the CAS
157     * arbitrating pop vs poll (steal) from being on the indices
158     * ("base" and "top") to the slots themselves. So, both a
159     * successful pop and poll mainly entail a CAS of a slot from
160     * non-null to null. Because we rely on CASes of references, we
161     * do not need tag bits on base or top. They are simple ints as
162     * used in any circular array-based queue (see for example
163     * ArrayDeque). Updates to the indices must still be ordered in a
164     * way that guarantees that top == base means the queue is empty,
165     * but otherwise may err on the side of possibly making the queue
166     * appear nonempty when a push, pop, or poll have not fully
167     * committed. Note that this means that the poll operation,
168     * considered individually, is not wait-free. One thief cannot
169     * successfully continue until another in-progress one (or, if
170     * previously empty, a push) completes. However, in the
171     * aggregate, we ensure at least probabilistic non-blockingness.
172     * If an attempted steal fails, a thief always chooses a different
173     * random victim target to try next. So, in order for one thief to
174     * progress, it suffices for any in-progress poll or new push on
175 dl 1.123 * any empty queue to complete. (This is why we normally use
176     * method pollAt and its variants that try once at the apparent
177     * base index, else consider alternative actions, rather than
178     * method poll.)
179 dl 1.111 *
180 dl 1.112 * This approach also enables support of a user mode in which local
181 dl 1.111 * task processing is in FIFO, not LIFO order, simply by using
182     * poll rather than pop. This can be useful in message-passing
183     * frameworks in which tasks are never joined. However neither
184     * mode considers affinities, loads, cache localities, etc, so
185     * rarely provide the best possible performance on a given
186     * machine, but portably provide good throughput by averaging over
187     * these factors. (Further, even if we did try to use such
188 jsr166 1.117 * information, we do not usually have a basis for exploiting it.
189     * For example, some sets of tasks profit from cache affinities,
190     * but others are harmed by cache pollution effects.)
191 dl 1.111 *
192     * WorkQueues are also used in a similar way for tasks submitted
193     * to the pool. We cannot mix these tasks in the same queues used
194     * for work-stealing (this would contaminate lifo/fifo
195 dl 1.116 * processing). Instead, we loosely associate submission queues
196     * with submitting threads, using a form of hashing. The
197     * ThreadLocal Submitter class contains a value initially used as
198     * a hash code for choosing existing queues, but may be randomly
199     * repositioned upon contention with other submitters. In
200     * essence, submitters act like workers except that they never
201     * take tasks, and they are multiplexed on to a finite number of
202     * shared work queues. However, classes are set up so that future
203     * extensions could allow submitters to optionally help perform
204 dl 1.119 * tasks as well. Insertion of tasks in shared mode requires a
205     * lock (mainly to protect in the case of resizing) but we use
206     * only a simple spinlock (using bits in field runState), because
207     * submitters encountering a busy queue move on to try or create
208 dl 1.123 * other queues -- they block only when creating and registering
209     * new queues.
210 dl 1.111 *
211 jsr166 1.117 * Management
212 dl 1.111 * ==========
213 dl 1.91 *
214     * The main throughput advantages of work-stealing stem from
215     * decentralized control -- workers mostly take tasks from
216     * themselves or each other. We cannot negate this in the
217     * implementation of other management responsibilities. The main
218     * tactic for avoiding bottlenecks is packing nearly all
219 dl 1.111 * essentially atomic control state into two volatile variables
220     * that are by far most often read (not written) as status and
221 jsr166 1.117 * consistency checks.
222 dl 1.111 *
223     * Field "ctl" contains 64 bits holding all the information needed
224     * to atomically decide to add, inactivate, enqueue (on an event
225     * queue), dequeue, and/or re-activate workers. To enable this
226     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
227     * far in excess of normal operating range) to allow ids, counts,
228     * and their negations (used for thresholding) to fit into 16bit
229     * fields.
230     *
231     * Field "runState" contains 32 bits needed to register and
232     * deregister WorkQueues, as well as to enable shutdown. It is
233     * only modified under a lock (normally briefly held, but
234     * occasionally protecting allocations and resizings) but even
235 dl 1.123 * when locked remains available to check consistency.
236 dl 1.111 *
237     * Recording WorkQueues. WorkQueues are recorded in the
238 dl 1.136 * "workQueues" array that is created upon first use and expanded
239     * if necessary. Updates to the array while recording new workers
240     * and unrecording terminated ones are protected from each other
241     * by a lock but the array is otherwise concurrently readable, and
242     * accessed directly. To simplify index-based operations, the
243     * array size is always a power of two, and all readers must
244     * tolerate null slots. Shared (submission) queues are at even
245     * indices, worker queues at odd indices. Grouping them together
246     * in this way simplifies and speeds up task scanning.
247 dl 1.119 *
248     * All worker thread creation is on-demand, triggered by task
249     * submissions, replacement of terminated workers, and/or
250 dl 1.111 * compensation for blocked workers. However, all other support
251     * code is set up to work with other policies. To ensure that we
252     * do not hold on to worker references that would prevent GC, ALL
253     * accesses to workQueues are via indices into the workQueues
254     * array (which is one source of some of the messy code
255     * constructions here). In essence, the workQueues array serves as
256     * a weak reference mechanism. Thus for example the wait queue
257     * field of ctl stores indices, not references. Access to the
258     * workQueues in associated methods (for example signalWork) must
259     * both index-check and null-check the IDs. All such accesses
260     * ignore bad IDs by returning out early from what they are doing,
261     * since this can only be associated with termination, in which
262 dl 1.119 * case it is OK to give up. All uses of the workQueues array
263     * also check that it is non-null (even if previously
264     * non-null). This allows nulling during termination, which is
265     * currently not necessary, but remains an option for
266     * resource-revocation-based shutdown schemes. It also helps
267     * reduce JIT issuance of uncommon-trap code, which tends to
268 dl 1.111 * unnecessarily complicate control flow in some methods.
269 dl 1.91 *
270 dl 1.111 * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
271 dl 1.95 * let workers spin indefinitely scanning for tasks when none can
272     * be found immediately, and we cannot start/resume workers unless
273     * there appear to be tasks available. On the other hand, we must
274     * quickly prod them into action when new tasks are submitted or
275 dl 1.111 * generated. In many usages, ramp-up time to activate workers is
276     * the main limiting factor in overall performance (this is
277     * compounded at program start-up by JIT compilation and
278     * allocation). So we try to streamline this as much as possible.
279     * We park/unpark workers after placing in an event wait queue
280     * when they cannot find work. This "queue" is actually a simple
281     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
282     * counter value (that reflects the number of times a worker has
283     * been inactivated) to avoid ABA effects (we need only as many
284     * version numbers as worker threads). Successors are held in
285     * field WorkQueue.nextWait. Queuing deals with several intrinsic
286     * races, mainly that a task-producing thread can miss seeing (and
287 dl 1.95 * signalling) another thread that gave up looking for work but
288     * has not yet entered the wait queue. We solve this by requiring
289 dl 1.111 * a full sweep of all workers (via repeated calls to method
290     * scan()) both before and after a newly waiting worker is added
291     * to the wait queue. During a rescan, the worker might release
292     * some other queued worker rather than itself, which has the same
293     * net effect. Because enqueued workers may actually be rescanning
294     * rather than waiting, we set and clear the "parker" field of
295 jsr166 1.117 * WorkQueues to reduce unnecessary calls to unpark. (This
296 dl 1.111 * requires a secondary recheck to avoid missed signals.) Note
297     * the unusual conventions about Thread.interrupts surrounding
298     * parking and other blocking: Because interrupts are used solely
299     * to alert threads to check termination, which is checked anyway
300     * upon blocking, we clear status (using Thread.interrupted)
301     * before any call to park, so that park does not immediately
302     * return due to status being set via some other unrelated call to
303     * interrupt in user code.
304 dl 1.91 *
305     * Signalling. We create or wake up workers only when there
306     * appears to be at least one task they might be able to find and
307     * execute. When a submission is added or another worker adds a
308 dl 1.111 * task to a queue that previously had fewer than two tasks, they
309 dl 1.91 * signal waiting workers (or trigger creation of new ones if
310     * fewer than the given parallelism level -- see signalWork).
311 dl 1.111 * These primary signals are buttressed by signals during rescans;
312     * together these cover the signals needed in cases when more
313     * tasks are pushed but untaken, and improve performance compared
314     * to having one thread wake up all workers.
315 dl 1.91 *
316     * Trimming workers. To release resources after periods of lack of
317     * use, a worker starting to wait when the pool is quiescent will
318 dl 1.135 * time out and terminate if the pool has remained quiescent for a
319     * given period -- a short period if there are more threads than
320     * parallelism, longer as the number of threads decreases. This
321     * will slowly propagate, eventually terminating all workers after
322     * periods of non-use.
323 dl 1.91 *
324 dl 1.111 * Shutdown and Termination. A call to shutdownNow atomically sets
325 jsr166 1.117 * a runState bit and then (non-atomically) sets each worker's
326 dl 1.111 * runState status, cancels all unprocessed tasks, and wakes up
327     * all waiting workers. Detecting whether termination should
328     * commence after a non-abrupt shutdown() call requires more work
329     * and bookkeeping. We need consensus about quiescence (i.e., that
330     * there is no more work). The active count provides a primary
331     * indication but non-abrupt shutdown still requires a rechecking
332     * scan for any workers that are inactive but not queued.
333     *
334 jsr166 1.117 * Joining Tasks
335     * =============
336 dl 1.111 *
337     * Any of several actions may be taken when one worker is waiting
338 jsr166 1.117 * to join a task stolen (or always held) by another. Because we
339 dl 1.111 * are multiplexing many tasks on to a pool of workers, we can't
340     * just let them block (as in Thread.join). We also cannot just
341     * reassign the joiner's run-time stack with another and replace
342     * it later, which would be a form of "continuation", that even if
343     * possible is not necessarily a good idea since we sometimes need
344 jsr166 1.117 * both an unblocked task and its continuation to progress.
345     * Instead we combine two tactics:
346 dl 1.58 *
347 dl 1.60 * Helping: Arranging for the joiner to execute some task that it
348 dl 1.111 * would be running if the steal had not occurred.
349 dl 1.58 *
350 dl 1.61 * Compensating: Unless there are already enough live threads,
351 dl 1.111 * method tryCompensate() may create or re-activate a spare
352     * thread to compensate for blocked joiners until they unblock.
353     *
354     * A third form (implemented in tryRemoveAndExec and
355     * tryPollForAndExec) amounts to helping a hypothetical
356     * compensator: If we can readily tell that a possible action of a
357     * compensator is to steal and execute the task being joined, the
358     * joining thread can do so directly, without the need for a
359     * compensation thread (although at the expense of larger run-time
360     * stacks, but the tradeoff is typically worthwhile).
361 dl 1.91 *
362     * The ManagedBlocker extension API can't use helping so relies
363     * only on compensation in method awaitBlocker.
364 dl 1.58 *
365 dl 1.111 * The algorithm in tryHelpStealer entails a form of "linear"
366     * helping: Each worker records (in field currentSteal) the most
367     * recent task it stole from some other worker. Plus, it records
368     * (in field currentJoin) the task it is currently actively
369     * joining. Method tryHelpStealer uses these markers to try to
370     * find a worker to help (i.e., steal back a task from and execute
371     * it) that could hasten completion of the actively joined task.
372     * In essence, the joiner executes a task that would be on its own
373     * local deque had the to-be-joined task not been stolen. This may
374     * be seen as a conservative variant of the approach in Wagner &
375     * Calder "Leapfrogging: a portable technique for implementing
376     * efficient futures" SIGPLAN Notices, 1993
377     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
378     * that: (1) We only maintain dependency links across workers upon
379     * steals, rather than use per-task bookkeeping. This sometimes
380 dl 1.123 * requires a linear scan of workQueues array to locate stealers,
381     * but often doesn't because stealers leave hints (that may become
382 dl 1.111 * stale/wrong) of where to locate them. A stealHint is only a
383     * hint because a worker might have had multiple steals and the
384     * hint records only one of them (usually the most current).
385     * Hinting isolates cost to when it is needed, rather than adding
386     * to per-task overhead. (2) It is "shallow", ignoring nesting
387     * and potentially cyclic mutual steals. (3) It is intentionally
388     * racy: field currentJoin is updated only while actively joining,
389     * which means that we miss links in the chain during long-lived
390     * tasks, GC stalls etc (which is OK since blocking in such cases
391     * is usually a good idea). (4) We bound the number of attempts
392 dl 1.123 * to find work (see MAX_HELP) and fall back to suspending the
393     * worker and if necessary replacing it with another.
394 dl 1.111 *
395 dl 1.91 * It is impossible to keep exactly the target parallelism number
396     * of threads running at any given time. Determining the
397 dl 1.66 * existence of conservatively safe helping targets, the
398     * availability of already-created spares, and the apparent need
399 dl 1.111 * to create new spares are all racy, so we rely on multiple
400 dl 1.123 * retries of each. Compensation in the apparent absence of
401     * helping opportunities is challenging to control on JVMs, where
402     * GC and other activities can stall progress of tasks that in
403     * turn stall out many other dependent tasks, without us being
404     * able to determine whether they will ever require compensation.
405     * Even though work-stealing otherwise encounters little
406     * degradation in the presence of more threads than cores,
407     * aggressively adding new threads in such cases entails risk of
408     * unwanted positive feedback control loops in which more threads
409     * cause more dependent stalls (as well as delayed progress of
410     * unblocked threads to the point that we know they are available)
411     * leading to more situations requiring more threads, and so
412     * on. This aspect of control can be seen as an (analytically
413 jsr166 1.125 * intractable) game with an opponent that may choose the worst
414 dl 1.123 * (for us) active thread to stall at any time. We take several
415     * precautions to bound losses (and thus bound gains), mainly in
416     * methods tryCompensate and awaitJoin: (1) We only try
417     * compensation after attempting enough helping steps (measured
418     * via counting and timing) that we have already consumed the
419     * estimated cost of creating and activating a new thread. (2) We
420     * allow up to 50% of threads to be blocked before initially
421     * adding any others, and unless completely saturated, check that
422     * some work is available for a new worker before adding. Also, we
423     * create up to only 50% more threads until entering a mode that
424     * only adds a thread if all others are possibly blocked. All
425     * together, this means that we might be half as fast to react,
426     * and create half as many threads as possible in the ideal case,
427     * but present vastly fewer anomalies in all other cases compared
428     * to both more aggressive and more conservative alternatives.
429 dl 1.58 *
430 dl 1.91 * Style notes: There is a lot of representation-level coupling
431 dl 1.53 * among classes ForkJoinPool, ForkJoinWorkerThread, and
432 dl 1.111 * ForkJoinTask. The fields of WorkQueue maintain data structures
433     * managed by ForkJoinPool, so are directly accessed. There is
434     * little point trying to reduce this, since any associated future
435     * changes in representations will need to be accompanied by
436 dl 1.119 * algorithmic changes anyway. Several methods intrinsically
437     * sprawl because they must accumulate sets of consistent reads of
438     * volatiles held in local variables. Methods signalWork() and
439     * scan() are the main bottlenecks, so are especially heavily
440     * micro-optimized/mangled. There are lots of inline assignments
441     * (of form "while ((local = field) != 0)") which are usually the
442     * simplest way to ensure the required read orderings (which are
443     * sometimes critical). This leads to a "C"-like style of listing
444     * declarations of these locals at the heads of methods or blocks.
445     * There are several occurrences of the unusual "do {} while
446     * (!cas...)" which is the simplest way to force an update of a
447     * CAS'ed variable. There are also other coding oddities that help
448     * some methods perform reasonably even when interpreted (not
449     * compiled).
450 dl 1.91 *
451 jsr166 1.117 * The order of declarations in this file is:
452 dl 1.119 * (1) Static utility functions
453     * (2) Nested (static) classes
454     * (3) Static fields
455     * (4) Fields, along with constants used when unpacking some of them
456     * (5) Internal control methods
457     * (6) Callbacks and other support for ForkJoinTask methods
458     * (7) Exported methods
459     * (8) Static block initializing statics in minimally dependent order
460     */
461    
462     // Static utilities
463    
464     /**
465     * If there is a security manager, makes sure caller has
466     * permission to modify threads.
467 dl 1.1 */
468 dl 1.119 private static void checkPermission() {
469     SecurityManager security = System.getSecurityManager();
470     if (security != null)
471     security.checkPermission(modifyThreadPermission);
472     }
473    
474     // Nested classes
475 dl 1.1
476     /**
477 jsr166 1.35 * Factory for creating new {@link ForkJoinWorkerThread}s.
478     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
479     * for {@code ForkJoinWorkerThread} subclasses that extend base
480     * functionality or initialize threads with different contexts.
481 dl 1.1 */
482     public static interface ForkJoinWorkerThreadFactory {
483     /**
484     * Returns a new worker thread operating in the given pool.
485     *
486     * @param pool the pool this thread works in
487 jsr166 1.48 * @throws NullPointerException if the pool is null
488 dl 1.1 */
489     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
490     }
491    
492     /**
493 jsr166 1.17 * Default ForkJoinWorkerThreadFactory implementation; creates a
494 dl 1.1 * new ForkJoinWorkerThread.
495     */
496 dl 1.57 static class DefaultForkJoinWorkerThreadFactory
497 dl 1.1 implements ForkJoinWorkerThreadFactory {
498     public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
499 dl 1.53 return new ForkJoinWorkerThread(pool);
500 dl 1.1 }
501     }
502    
503     /**
504 dl 1.119 * Class for artificial tasks that are used to replace the target
505     * of local joins if they are removed from an interior queue slot
506     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
507     * actually do anything beyond having a unique identity.
508 dl 1.1 */
509 dl 1.119 static final class EmptyTask extends ForkJoinTask<Void> {
510     EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
511     public final Void getRawResult() { return null; }
512     public final void setRawResult(Void x) {}
513     public final boolean exec() { return true; }
514 dl 1.1 }
515    
516     /**
517 dl 1.111 * Queues supporting work-stealing as well as external task
518     * submission. See above for main rationale and algorithms.
519     * Implementation relies heavily on "Unsafe" intrinsics
520     * and selective use of "volatile":
521     *
522     * Field "base" is the index (mod array.length) of the least valid
523     * queue slot, which is always the next position to steal (poll)
524     * from if nonempty. Reads and writes require volatile orderings
525     * but not CAS, because updates are only performed after slot
526     * CASes.
527     *
528     * Field "top" is the index (mod array.length) of the next queue
529     * slot to push to or pop from. It is written only by owner thread
530     * for push, or under lock for trySharedPush, and accessed by
531     * other threads only after reading (volatile) base. Both top and
532     * base are allowed to wrap around on overflow, but (top - base)
533 jsr166 1.114 * (or more commonly -(base - top) to force volatile read of base
534 dl 1.111 * before top) still estimates size.
535     *
536     * The array slots are read and written using the emulation of
537     * volatiles/atomics provided by Unsafe. Insertions must in
538     * general use putOrderedObject as a form of releasing store to
539     * ensure that all writes to the task object are ordered before
540     * its publication in the queue. (Although we can avoid one case
541     * of this when locked in trySharedPush.) All removals entail a
542     * CAS to null. The array is always a power of two. To ensure
543     * safety of Unsafe array operations, all accesses perform
544     * explicit null checks and implicit bounds checks via
545     * power-of-two masking.
546     *
547     * In addition to basic queuing support, this class contains
548     * fields described elsewhere to control execution. It turns out
549     * to work better memory-layout-wise to include them in this
550     * class rather than a separate class.
551     *
552     * Performance on most platforms is very sensitive to placement of
553     * instances of both WorkQueues and their arrays -- we absolutely
554     * do not want multiple WorkQueue instances or multiple queue
555     * arrays sharing cache lines. (It would be best for queue objects
556     * and their arrays to share, but there is nothing available to
557     * help arrange that). Unfortunately, because they are recorded
558     * in a common array, WorkQueue instances are often moved to be
559     * adjacent by garbage collectors. To reduce impact, we use field
560     * padding that works OK on common platforms; this effectively
561     * trades off slightly slower average field access for the sake of
562     * avoiding really bad worst-case access. (Until better JVM
563     * support is in place, this padding is dependent on transient
564     * properties of JVM field layout rules.) We also take care in
565 dl 1.119 * allocating, sizing and resizing the array. Non-shared queue
566 dl 1.111 * arrays are initialized (via method growArray) by workers before
567     * use. Others are allocated on first use.
568 dl 1.53 */
569 dl 1.111 static final class WorkQueue {
570     /**
571     * Capacity of work-stealing queue array upon initialization.
572 dl 1.123 * Must be a power of two; at least 4, but should be larger to
573     * reduce or eliminate cacheline sharing among queues.
574     * Currently, it is much larger, as a partial workaround for
575     * the fact that JVMs often place arrays in locations that
576     * share GC bookkeeping (especially cardmarks) such that
577     * per-write accesses encounter serious memory contention.
578 dl 1.111 */
579 dl 1.123 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
580 dl 1.111
581     /**
582     * Maximum size for queue arrays. Must be a power of two less
583     * than or equal to 1 << (31 - width of array entry) to ensure
584     * lack of wraparound of index calculations, but defined to a
585     * value a bit less than this to help users trap runaway
586     * programs before saturating systems.
587     */
588     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
589    
590     volatile long totalSteals; // cumulative number of steals
591     int seed; // for random scanning; initialize nonzero
592     volatile int eventCount; // encoded inactivation count; < 0 if inactive
593     int nextWait; // encoded record of next event waiter
594     int rescans; // remaining scans until block
595     int nsteals; // top-level task executions since last idle
596     final int mode; // lifo, fifo, or shared
597     int poolIndex; // index of this queue in pool (or 0)
598     int stealHint; // index of most recent known stealer
599     volatile int runState; // 1: locked, -1: terminate; else 0
600     volatile int base; // index of next slot for poll
601     int top; // index of next slot for push
602     ForkJoinTask<?>[] array; // the elements (initially unallocated)
603 dl 1.123 final ForkJoinPool pool; // the containing pool (may be null)
604 dl 1.111 final ForkJoinWorkerThread owner; // owning thread or null if shared
605     volatile Thread parker; // == owner during call to park; else null
606 dl 1.128 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
607 dl 1.111 ForkJoinTask<?> currentSteal; // current non-local task being executed
608     // Heuristic padding to ameliorate unfortunate memory placements
609 dl 1.123 Object p00, p01, p02, p03, p04, p05, p06, p07;
610     Object p08, p09, p0a, p0b, p0c, p0d, p0e;
611 dl 1.111
612 dl 1.123 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode) {
613     this.mode = mode;
614     this.pool = pool;
615 dl 1.111 this.owner = owner;
616     // Place indices in the center of array (that is not yet allocated)
617     base = top = INITIAL_QUEUE_CAPACITY >>> 1;
618     }
619    
620     /**
621 dl 1.123 * Returns the approximate number of tasks in the queue.
622 dl 1.111 */
623     final int queueSize() {
624 dl 1.123 int n = base - top; // non-owner callers must read base first
625     return (n >= 0) ? 0 : -n; // ignore transient negative
626     }
627    
628     /**
629     * Provides a more accurate estimate of whether this queue has
630     * any tasks than does queueSize, by checking whether a
631     * near-empty queue has at least one unclaimed task.
632     */
633     final boolean isEmpty() {
634     ForkJoinTask<?>[] a; int m, s;
635     int n = base - (s = top);
636     return (n >= 0 ||
637     (n == -1 &&
638     ((a = array) == null ||
639     (m = a.length - 1) < 0 ||
640     U.getObjectVolatile
641     (a, ((m & (s - 1)) << ASHIFT) + ABASE) == null)));
642 dl 1.111 }
643    
644     /**
645     * Pushes a task. Call only by owner in unshared queues.
646     *
647     * @param task the task. Caller must ensure non-null.
648 jsr166 1.117 * @throw RejectedExecutionException if array cannot be resized
649 dl 1.111 */
650 dl 1.123 final void push(ForkJoinTask<?> task) {
651     ForkJoinTask<?>[] a; ForkJoinPool p;
652 dl 1.111 int s = top, m, n;
653     if ((a = array) != null) { // ignore if queue removed
654     U.putOrderedObject
655     (a, (((m = a.length - 1) & s) << ASHIFT) + ABASE, task);
656     if ((n = (top = s + 1) - base) <= 2) {
657 dl 1.123 if ((p = pool) != null)
658 dl 1.111 p.signalWork();
659     }
660     else if (n >= m)
661     growArray(true);
662     }
663     }
664    
665     /**
666     * Pushes a task if lock is free and array is either big
667     * enough or can be resized to be big enough.
668     *
669     * @param task the task. Caller must ensure non-null.
670     * @return true if submitted
671     */
672     final boolean trySharedPush(ForkJoinTask<?> task) {
673     boolean submitted = false;
674     if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
675     ForkJoinTask<?>[] a = array;
676 dl 1.119 int s = top;
677 dl 1.111 try {
678 dl 1.119 if ((a != null && a.length > s + 1 - base) ||
679 dl 1.111 (a = growArray(false)) != null) { // must presize
680     int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
681     U.putObject(a, (long)j, task); // don't need "ordered"
682     top = s + 1;
683     submitted = true;
684     }
685     } finally {
686     runState = 0; // unlock
687     }
688     }
689     return submitted;
690     }
691    
692     /**
693 dl 1.123 * Takes next task, if one exists, in LIFO order. Call only
694 dl 1.137 * by owner in unshared queues.
695 dl 1.123 */
696     final ForkJoinTask<?> pop() {
697 dl 1.127 ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
698     if ((a = array) != null && (m = a.length - 1) >= 0) {
699 dl 1.123 for (int s; (s = top - 1) - base >= 0;) {
700 dl 1.127 long j = ((m & s) << ASHIFT) + ABASE;
701     if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
702 dl 1.123 break;
703     if (U.compareAndSwapObject(a, j, t, null)) {
704     top = s;
705     return t;
706     }
707     }
708     }
709     return null;
710     }
711    
712 dl 1.137 final ForkJoinTask<?> sharedPop() {
713     ForkJoinTask<?> task = null;
714     if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
715     try {
716     ForkJoinTask<?>[] a; int m;
717     if ((a = array) != null && (m = a.length - 1) >= 0) {
718     for (int s; (s = top - 1) - base >= 0;) {
719     long j = ((m & s) << ASHIFT) + ABASE;
720     ForkJoinTask<?> t =
721     (ForkJoinTask<?>)U.getObject(a, j);
722     if (t == null)
723     break;
724     if (U.compareAndSwapObject(a, j, t, null)) {
725     top = s;
726     task = t;
727     break;
728     }
729     }
730     }
731     } finally {
732     runState = 0;
733     }
734     }
735     return task;
736     }
737    
738     /**
739     * Version of pop that takes top element only if it
740     * its root is the given CountedCompleter.
741     */
742     final ForkJoinTask<?> popCC(CountedCompleter<?> root) {
743     ForkJoinTask<?>[] a; int m;
744     if (root != null && (a = array) != null && (m = a.length - 1) >= 0) {
745     for (int s; (s = top - 1) - base >= 0;) {
746     long j = ((m & s) << ASHIFT) + ABASE;
747     ForkJoinTask<?> t =
748     (ForkJoinTask<?>)U.getObject(a, j);
749     if (t == null || !(t instanceof CountedCompleter) ||
750     ((CountedCompleter<?>)t).getRoot() != root)
751     break;
752     if (U.compareAndSwapObject(a, j, t, null)) {
753     top = s;
754     return t;
755     }
756     if (root.status < 0)
757     break;
758     }
759     }
760     return null;
761     }
762    
763     /**
764     * Shared version of popCC
765     */
766     final ForkJoinTask<?> sharedPopCC(CountedCompleter<?> root) {
767     ForkJoinTask<?> task = null;
768     if (root != null &&
769     runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
770     try {
771     ForkJoinTask<?>[] a; int m;
772     if ((a = array) != null && (m = a.length - 1) >= 0) {
773     for (int s; (s = top - 1) - base >= 0;) {
774     long j = ((m & s) << ASHIFT) + ABASE;
775     ForkJoinTask<?> t =
776     (ForkJoinTask<?>)U.getObject(a, j);
777     if (t == null || !(t instanceof CountedCompleter) ||
778     ((CountedCompleter<?>)t).getRoot() != root)
779     break;
780     if (U.compareAndSwapObject(a, j, t, null)) {
781     top = s;
782     task = t;
783     break;
784     }
785     if (root.status < 0)
786     break;
787     }
788     }
789     } finally {
790     runState = 0;
791     }
792     }
793     return task;
794     }
795    
796 dl 1.123 /**
797     * Takes a task in FIFO order if b is base of queue and a task
798     * can be claimed without contention. Specialized versions
799     * appear in ForkJoinPool methods scan and tryHelpStealer.
800 dl 1.111 */
801 dl 1.123 final ForkJoinTask<?> pollAt(int b) {
802     ForkJoinTask<?> t; ForkJoinTask<?>[] a;
803     if ((a = array) != null) {
804 dl 1.119 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
805     if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
806     base == b &&
807 dl 1.111 U.compareAndSwapObject(a, j, t, null)) {
808     base = b + 1;
809     return t;
810     }
811     }
812     return null;
813     }
814    
815     /**
816 dl 1.123 * Takes next task, if one exists, in FIFO order.
817 dl 1.111 */
818 dl 1.123 final ForkJoinTask<?> poll() {
819     ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
820     while ((b = base) - top < 0 && (a = array) != null) {
821     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
822     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
823     if (t != null) {
824     if (base == b &&
825     U.compareAndSwapObject(a, j, t, null)) {
826     base = b + 1;
827 dl 1.111 return t;
828     }
829     }
830 dl 1.123 else if (base == b) {
831     if (b + 1 == top)
832     break;
833     Thread.yield(); // wait for lagging update
834     }
835 dl 1.111 }
836     return null;
837     }
838    
839     /**
840     * Takes next task, if one exists, in order specified by mode.
841     */
842     final ForkJoinTask<?> nextLocalTask() {
843     return mode == 0 ? pop() : poll();
844     }
845    
846     /**
847     * Returns next task, if one exists, in order specified by mode.
848     */
849     final ForkJoinTask<?> peek() {
850     ForkJoinTask<?>[] a = array; int m;
851     if (a == null || (m = a.length - 1) < 0)
852     return null;
853     int i = mode == 0 ? top - 1 : base;
854     int j = ((i & m) << ASHIFT) + ABASE;
855     return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
856     }
857    
858     /**
859     * Pops the given task only if it is at the current top.
860     */
861     final boolean tryUnpush(ForkJoinTask<?> t) {
862     ForkJoinTask<?>[] a; int s;
863     if ((a = array) != null && (s = top) != base &&
864     U.compareAndSwapObject
865     (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
866     top = s;
867     return true;
868     }
869     return false;
870     }
871    
872     /**
873 dl 1.135 * Version of tryUnpush for shared queues; called by non-FJ
874 dl 1.136 * submitters after prechecking that task probably exists.
875 dl 1.135 */
876 dl 1.136 final boolean trySharedUnpush(ForkJoinTask<?> t) {
877 dl 1.135 boolean success = false;
878 dl 1.136 if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
879 dl 1.135 try {
880 dl 1.136 ForkJoinTask<?>[] a; int s;
881     if ((a = array) != null && (s = top) != base &&
882     U.compareAndSwapObject
883     (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
884     top = s;
885     success = true;
886 dl 1.135 }
887     } finally {
888     runState = 0; // unlock
889     }
890     }
891     return success;
892     }
893    
894     /**
895 dl 1.111 * Polls the given task only if it is at the current base.
896     */
897     final boolean pollFor(ForkJoinTask<?> task) {
898 dl 1.119 ForkJoinTask<?>[] a; int b;
899     if ((b = base) - top < 0 && (a = array) != null) {
900     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
901 dl 1.111 if (U.getObjectVolatile(a, j) == task && base == b &&
902     U.compareAndSwapObject(a, j, task, null)) {
903     base = b + 1;
904     return true;
905     }
906     }
907     return false;
908     }
909    
910     /**
911     * Initializes or doubles the capacity of array. Call either
912     * by owner or with lock held -- it is OK for base, but not
913     * top, to move while resizings are in progress.
914     *
915     * @param rejectOnFailure if true, throw exception if capacity
916     * exceeded (relayed ultimately to user); else return null.
917     */
918     final ForkJoinTask<?>[] growArray(boolean rejectOnFailure) {
919     ForkJoinTask<?>[] oldA = array;
920     int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
921     if (size <= MAXIMUM_QUEUE_CAPACITY) {
922     int oldMask, t, b;
923     ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
924     if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
925     (t = top) - (b = base) > 0) {
926     int mask = size - 1;
927     do {
928     ForkJoinTask<?> x;
929     int oldj = ((b & oldMask) << ASHIFT) + ABASE;
930     int j = ((b & mask) << ASHIFT) + ABASE;
931     x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
932     if (x != null &&
933     U.compareAndSwapObject(oldA, oldj, x, null))
934     U.putObjectVolatile(a, j, x);
935     } while (++b != t);
936     }
937     return a;
938     }
939     else if (!rejectOnFailure)
940     return null;
941     else
942     throw new RejectedExecutionException("Queue capacity exceeded");
943     }
944    
945     /**
946 jsr166 1.117 * Removes and cancels all known tasks, ignoring any exceptions.
947 dl 1.111 */
948     final void cancelAll() {
949     ForkJoinTask.cancelIgnoringExceptions(currentJoin);
950     ForkJoinTask.cancelIgnoringExceptions(currentSteal);
951     for (ForkJoinTask<?> t; (t = poll()) != null; )
952     ForkJoinTask.cancelIgnoringExceptions(t);
953     }
954    
955 dl 1.119 /**
956     * Computes next value for random probes. Scans don't require
957     * a very high quality generator, but also not a crummy one.
958     * Marsaglia xor-shift is cheap and works well enough. Note:
959 dl 1.123 * This is manually inlined in its usages in ForkJoinPool to
960     * avoid writes inside busy scan loops.
961 dl 1.119 */
962     final int nextSeed() {
963     int r = seed;
964     r ^= r << 13;
965     r ^= r >>> 17;
966     return seed = r ^= r << 5;
967     }
968    
969 dl 1.111 // Execution methods
970    
971     /**
972 dl 1.127 * Pops and runs tasks until empty.
973 dl 1.111 */
974 dl 1.127 private void popAndExecAll() {
975     // A bit faster than repeated pop calls
976     ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
977     while ((a = array) != null && (m = a.length - 1) >= 0 &&
978     (s = top - 1) - base >= 0 &&
979     (t = ((ForkJoinTask<?>)
980     U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
981     != null) {
982     if (U.compareAndSwapObject(a, j, t, null)) {
983     top = s;
984     t.doExec();
985 dl 1.123 }
986 dl 1.127 }
987     }
988    
989     /**
990     * Polls and runs tasks until empty.
991     */
992     private void pollAndExecAll() {
993     for (ForkJoinTask<?> t; (t = poll()) != null;)
994     t.doExec();
995     }
996    
997     /**
998     * If present, removes from queue and executes the given task, or
999     * any other cancelled task. Returns (true) immediately on any CAS
1000     * or consistency check failure so caller can retry.
1001     *
1002 dl 1.128 * @return 0 if no progress can be made, else positive
1003     * (this unusual convention simplifies use with tryHelpStealer.)
1004 dl 1.127 */
1005 dl 1.128 final int tryRemoveAndExec(ForkJoinTask<?> task) {
1006     int stat = 1;
1007     boolean removed = false, empty = true;
1008 dl 1.127 ForkJoinTask<?>[] a; int m, s, b, n;
1009     if ((a = array) != null && (m = a.length - 1) >= 0 &&
1010     (n = (s = top) - (b = base)) > 0) {
1011     for (ForkJoinTask<?> t;;) { // traverse from s to b
1012     int j = ((--s & m) << ASHIFT) + ABASE;
1013     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
1014     if (t == null) // inconsistent length
1015     break;
1016     else if (t == task) {
1017     if (s + 1 == top) { // pop
1018     if (!U.compareAndSwapObject(a, j, task, null))
1019 dl 1.123 break;
1020 dl 1.127 top = s;
1021     removed = true;
1022 dl 1.123 }
1023 dl 1.127 else if (base == b) // replace with proxy
1024     removed = U.compareAndSwapObject(a, j, task,
1025     new EmptyTask());
1026     break;
1027     }
1028     else if (t.status >= 0)
1029     empty = false;
1030     else if (s + 1 == top) { // pop and throw away
1031     if (U.compareAndSwapObject(a, j, t, null))
1032     top = s;
1033     break;
1034     }
1035     if (--n == 0) {
1036     if (!empty && base == b)
1037 dl 1.128 stat = 0;
1038 dl 1.127 break;
1039 dl 1.123 }
1040     }
1041 dl 1.111 }
1042 dl 1.127 if (removed)
1043     task.doExec();
1044 dl 1.128 return stat;
1045 dl 1.111 }
1046    
1047     /**
1048     * Executes a top-level task and any local tasks remaining
1049     * after execution.
1050     */
1051 dl 1.127 final void runTask(ForkJoinTask<?> t) {
1052 dl 1.111 if (t != null) {
1053     currentSteal = t;
1054     t.doExec();
1055 dl 1.127 if (top != base) { // process remaining local tasks
1056     if (mode == 0)
1057     popAndExecAll();
1058     else
1059     pollAndExecAll();
1060     }
1061 dl 1.111 ++nsteals;
1062     currentSteal = null;
1063     }
1064     }
1065    
1066     /**
1067 jsr166 1.117 * Executes a non-top-level (stolen) task.
1068 dl 1.111 */
1069     final void runSubtask(ForkJoinTask<?> t) {
1070     if (t != null) {
1071     ForkJoinTask<?> ps = currentSteal;
1072     currentSteal = t;
1073     t.doExec();
1074     currentSteal = ps;
1075     }
1076     }
1077    
1078     /**
1079 dl 1.119 * Returns true if owned and not known to be blocked.
1080     */
1081     final boolean isApparentlyUnblocked() {
1082     Thread wt; Thread.State s;
1083     return (eventCount >= 0 &&
1084     (wt = owner) != null &&
1085     (s = wt.getState()) != Thread.State.BLOCKED &&
1086     s != Thread.State.WAITING &&
1087     s != Thread.State.TIMED_WAITING);
1088     }
1089    
1090     /**
1091     * If this owned and is not already interrupted, try to
1092     * interrupt and/or unpark, ignoring exceptions.
1093 dl 1.111 */
1094 dl 1.119 final void interruptOwner() {
1095     Thread wt, p;
1096     if ((wt = owner) != null && !wt.isInterrupted()) {
1097     try {
1098     wt.interrupt();
1099     } catch (SecurityException ignore) {
1100     }
1101     }
1102     if ((p = parker) != null)
1103     U.unpark(p);
1104 dl 1.111 }
1105    
1106     // Unsafe mechanics
1107     private static final sun.misc.Unsafe U;
1108     private static final long RUNSTATE;
1109     private static final int ABASE;
1110     private static final int ASHIFT;
1111     static {
1112     int s;
1113     try {
1114     U = getUnsafe();
1115     Class<?> k = WorkQueue.class;
1116     Class<?> ak = ForkJoinTask[].class;
1117     RUNSTATE = U.objectFieldOffset
1118     (k.getDeclaredField("runState"));
1119     ABASE = U.arrayBaseOffset(ak);
1120     s = U.arrayIndexScale(ak);
1121     } catch (Exception e) {
1122     throw new Error(e);
1123     }
1124     if ((s & (s-1)) != 0)
1125     throw new Error("data type scale not a power of two");
1126     ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
1127     }
1128     }
1129 jsr166 1.131
1130 dl 1.1 /**
1131 dl 1.119 * Per-thread records for threads that submit to pools. Currently
1132 jsr166 1.120 * holds only pseudo-random seed / index that is used to choose
1133 dl 1.119 * submission queues in method doSubmit. In the future, this may
1134     * also incorporate a means to implement different task rejection
1135     * and resubmission policies.
1136 dl 1.123 *
1137     * Seeds for submitters and workers/workQueues work in basically
1138     * the same way but are initialized and updated using slightly
1139     * different mechanics. Both are initialized using the same
1140     * approach as in class ThreadLocal, where successive values are
1141     * unlikely to collide with previous values. This is done during
1142     * registration for workers, but requires a separate AtomicInteger
1143     * for submitters. Seeds are then randomly modified upon
1144     * collisions using xorshifts, which requires a non-zero seed.
1145 dl 1.116 */
1146     static final class Submitter {
1147 dl 1.119 int seed;
1148 dl 1.123 Submitter() {
1149     int s = nextSubmitterSeed.getAndAdd(SEED_INCREMENT);
1150     seed = (s == 0) ? 1 : s; // ensure non-zero
1151     }
1152 dl 1.116 }
1153    
1154     /** ThreadLocal class for Submitters */
1155     static final class ThreadSubmitter extends ThreadLocal<Submitter> {
1156     public Submitter initialValue() { return new Submitter(); }
1157 dl 1.111 }
1158 dl 1.1
1159 dl 1.119 // static fields (initialized in static initializer below)
1160    
1161     /**
1162     * Creates a new ForkJoinWorkerThread. This factory is used unless
1163     * overridden in ForkJoinPool constructors.
1164     */
1165     public static final ForkJoinWorkerThreadFactory
1166     defaultForkJoinWorkerThreadFactory;
1167    
1168 dl 1.136
1169     /** Property prefix for constructing common pool */
1170     private static final String propPrefix =
1171     "java.util.concurrent.ForkJoinPool.common.";
1172    
1173     /**
1174     * Common (static) pool. Non-null for public use unless a static
1175     * construction exception, but internal usages must null-check on
1176     * use.
1177     */
1178     static final ForkJoinPool commonPool;
1179    
1180     /**
1181     * Common pool parallelism. Must equal commonPool.parallelism.
1182     */
1183     static final int commonPoolParallelism;
1184    
1185 dl 1.119 /**
1186     * Generator for assigning sequence numbers as pool names.
1187     */
1188     private static final AtomicInteger poolNumberGenerator;
1189    
1190     /**
1191 dl 1.123 * Generator for initial hashes/seeds for submitters. Accessed by
1192     * Submitter class constructor.
1193     */
1194     static final AtomicInteger nextSubmitterSeed;
1195    
1196     /**
1197 dl 1.119 * Permission required for callers of methods that may start or
1198     * kill threads.
1199     */
1200     private static final RuntimePermission modifyThreadPermission;
1201    
1202 dl 1.1 /**
1203 jsr166 1.130 * Per-thread submission bookkeeping. Shared across all pools
1204 dl 1.116 * to reduce ThreadLocal pollution and because random motion
1205     * to avoid contention in one pool is likely to hold for others.
1206     */
1207 dl 1.119 private static final ThreadSubmitter submitters;
1208    
1209     // static constants
1210    
1211     /**
1212 dl 1.136 * Initial timeout value (in nanoseconds) for the thread triggering
1213 dl 1.135 * quiescence to park waiting for new work. On timeout, the thread
1214     * will instead try to shrink the number of workers.
1215 dl 1.119 */
1216 dl 1.135 private static final long IDLE_TIMEOUT = 1000L * 1000L * 1000L; // 1sec
1217 dl 1.119
1218     /**
1219 dl 1.135 * Timeout value when there are more threads than parallelism level
1220 dl 1.119 */
1221 dl 1.135 private static final long FAST_IDLE_TIMEOUT = 100L * 1000L * 1000L;
1222 dl 1.119
1223     /**
1224 dl 1.123 * The maximum stolen->joining link depth allowed in method
1225     * tryHelpStealer. Must be a power of two. This value also
1226     * controls the maximum number of times to try to help join a task
1227     * without any apparent progress or change in pool state before
1228     * giving up and blocking (see awaitJoin). Depths for legitimate
1229     * chains are unbounded, but we use a fixed constant to avoid
1230     * (otherwise unchecked) cycles and to bound staleness of
1231     * traversal parameters at the expense of sometimes blocking when
1232     * we could be helping.
1233     */
1234 dl 1.128 private static final int MAX_HELP = 64;
1235 dl 1.123
1236     /**
1237     * Secondary time-based bound (in nanosecs) for helping attempts
1238     * before trying compensated blocking in awaitJoin. Used in
1239     * conjunction with MAX_HELP to reduce variance due to different
1240     * polling rates associated with different helping options. The
1241     * value should roughly approximate the time required to create
1242     * and/or activate a worker thread.
1243     */
1244 dl 1.128 private static final long COMPENSATION_DELAY = 1L << 18; // ~0.25 millisec
1245 dl 1.123
1246     /**
1247     * Increment for seed generators. See class ThreadLocal for
1248     * explanation.
1249 dl 1.119 */
1250 dl 1.123 private static final int SEED_INCREMENT = 0x61c88647;
1251 dl 1.116
1252     /**
1253 dl 1.119 * Bits and masks for control variables
1254     *
1255     * Field ctl is a long packed with:
1256     * AC: Number of active running workers minus target parallelism (16 bits)
1257     * TC: Number of total workers minus target parallelism (16 bits)
1258     * ST: true if pool is terminating (1 bit)
1259     * EC: the wait count of top waiting thread (15 bits)
1260     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1261     *
1262     * When convenient, we can extract the upper 32 bits of counts and
1263     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1264     * (int)ctl. The ec field is never accessed alone, but always
1265     * together with id and st. The offsets of counts by the target
1266     * parallelism and the positionings of fields makes it possible to
1267     * perform the most common checks via sign tests of fields: When
1268     * ac is negative, there are not enough active workers, when tc is
1269     * negative, there are not enough total workers, and when e is
1270     * negative, the pool is terminating. To deal with these possibly
1271     * negative fields, we use casts in and out of "short" and/or
1272     * signed shifts to maintain signedness.
1273     *
1274     * When a thread is queued (inactivated), its eventCount field is
1275     * set negative, which is the only way to tell if a worker is
1276     * prevented from executing tasks, even though it must continue to
1277     * scan for them to avoid queuing races. Note however that
1278     * eventCount updates lag releases so usage requires care.
1279     *
1280     * Field runState is an int packed with:
1281     * SHUTDOWN: true if shutdown is enabled (1 bit)
1282 dl 1.123 * SEQ: a sequence number updated upon (de)registering workers (30 bits)
1283     * INIT: set true after workQueues array construction (1 bit)
1284 dl 1.119 *
1285 dl 1.123 * The sequence number enables simple consistency checks:
1286     * Staleness of read-only operations on the workQueues array can
1287     * be checked by comparing runState before vs after the reads.
1288 dl 1.119 */
1289    
1290     // bit positions/shifts for fields
1291     private static final int AC_SHIFT = 48;
1292     private static final int TC_SHIFT = 32;
1293     private static final int ST_SHIFT = 31;
1294     private static final int EC_SHIFT = 16;
1295    
1296     // bounds
1297     private static final int SMASK = 0xffff; // short bits
1298 dl 1.123 private static final int MAX_CAP = 0x7fff; // max #workers - 1
1299 dl 1.119 private static final int SQMASK = 0xfffe; // even short bits
1300     private static final int SHORT_SIGN = 1 << 15;
1301     private static final int INT_SIGN = 1 << 31;
1302    
1303     // masks
1304     private static final long STOP_BIT = 0x0001L << ST_SHIFT;
1305     private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
1306     private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
1307    
1308     // units for incrementing and decrementing
1309     private static final long TC_UNIT = 1L << TC_SHIFT;
1310     private static final long AC_UNIT = 1L << AC_SHIFT;
1311    
1312     // masks and units for dealing with u = (int)(ctl >>> 32)
1313     private static final int UAC_SHIFT = AC_SHIFT - 32;
1314     private static final int UTC_SHIFT = TC_SHIFT - 32;
1315     private static final int UAC_MASK = SMASK << UAC_SHIFT;
1316     private static final int UTC_MASK = SMASK << UTC_SHIFT;
1317     private static final int UAC_UNIT = 1 << UAC_SHIFT;
1318     private static final int UTC_UNIT = 1 << UTC_SHIFT;
1319    
1320     // masks and units for dealing with e = (int)ctl
1321     private static final int E_MASK = 0x7fffffff; // no STOP_BIT
1322     private static final int E_SEQ = 1 << EC_SHIFT;
1323    
1324     // runState bits
1325     private static final int SHUTDOWN = 1 << 31;
1326    
1327     // access mode for WorkQueue
1328     static final int LIFO_QUEUE = 0;
1329     static final int FIFO_QUEUE = 1;
1330     static final int SHARED_QUEUE = -1;
1331    
1332     // Instance fields
1333    
1334     /*
1335     * Field layout order in this class tends to matter more than one
1336     * would like. Runtime layout order is only loosely related to
1337     * declaration order and may differ across JVMs, but the following
1338     * empirically works OK on current JVMs.
1339 dl 1.1 */
1340 dl 1.111
1341 dl 1.136 volatile long stealCount; // collects worker counts
1342 dl 1.119 volatile long ctl; // main pool control
1343     final int parallelism; // parallelism level
1344     final int localMode; // per-worker scheduling mode
1345 dl 1.136 volatile int nextWorkerNumber; // to create worker name string
1346 dl 1.123 final int submitMask; // submit queue index bound
1347     int nextSeed; // for initializing worker seeds
1348 dl 1.136 volatile int mainLock; // spinlock for array updates
1349 dl 1.123 volatile int runState; // shutdown status and seq
1350 dl 1.119 WorkQueue[] workQueues; // main registry
1351     final ForkJoinWorkerThreadFactory factory; // factory for new workers
1352     final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1353 dl 1.136 final String workerNamePrefix; // to create worker name string
1354    
1355     /*
1356     * Mechanics for main lock protecting worker array updates. Uses
1357     * the same strategy as ConcurrentHashMap bins -- a spinLock for
1358     * normal cases, but falling back to builtin lock when (rarely)
1359     * needed. See internal ConcurrentHashMap documentation for
1360     * explanation.
1361     */
1362    
1363     static final int LOCK_WAITING = 2; // bit to indicate need for signal
1364     static final int MAX_LOCK_SPINS = 1 << 8;
1365    
1366     private void tryAwaitMainLock() {
1367     int spins = MAX_LOCK_SPINS, r = 0, h;
1368     while (((h = mainLock) & 1) != 0) {
1369     if (r == 0)
1370     r = ThreadLocalRandom.current().nextInt(); // randomize spins
1371     else if (spins >= 0) {
1372     r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
1373     if (r >= 0)
1374     --spins;
1375     }
1376     else if (U.compareAndSwapInt(this, MAINLOCK, h, h | LOCK_WAITING)) {
1377     synchronized (this) {
1378     if ((mainLock & LOCK_WAITING) != 0) {
1379     try {
1380     wait();
1381     } catch (InterruptedException ie) {
1382     Thread.currentThread().interrupt();
1383     }
1384     }
1385     else
1386     notifyAll(); // possibly won race vs signaller
1387     }
1388     break;
1389     }
1390     }
1391     }
1392 dl 1.111
1393 dl 1.123 // Creating, registering, and deregistering workers
1394 dl 1.6
1395     /**
1396 dl 1.111 * Tries to create and start a worker
1397 dl 1.1 */
1398 dl 1.111 private void addWorker() {
1399     Throwable ex = null;
1400 dl 1.119 ForkJoinWorkerThread wt = null;
1401 dl 1.111 try {
1402 dl 1.119 if ((wt = factory.newThread(this)) != null) {
1403     wt.start();
1404 dl 1.111 return;
1405     }
1406     } catch (Throwable e) {
1407     ex = e;
1408     }
1409 dl 1.119 deregisterWorker(wt, ex); // adjust counts etc on failure
1410 dl 1.111 }
1411 dl 1.1
1412 dl 1.91 /**
1413 dl 1.111 * Callback from ForkJoinWorkerThread constructor to assign a
1414     * public name. This must be separate from registerWorker because
1415     * it is called during the "super" constructor call in
1416     * ForkJoinWorkerThread.
1417 dl 1.91 */
1418 dl 1.111 final String nextWorkerName() {
1419 dl 1.136 int n;
1420 jsr166 1.138 do {} while (!U.compareAndSwapInt(this, NEXTWORKERNUMBER,
1421     n = nextWorkerNumber, ++n));
1422 dl 1.136 return workerNamePrefix.concat(Integer.toString(n));
1423 dl 1.111 }
1424 dl 1.1
1425     /**
1426 dl 1.123 * Callback from ForkJoinWorkerThread constructor to establish its
1427     * poolIndex and record its WorkQueue. To avoid scanning bias due
1428     * to packing entries in front of the workQueues array, we treat
1429     * the array as a simple power-of-two hash table using per-thread
1430     * seed as hash, expanding as needed.
1431 dl 1.111 *
1432 dl 1.123 * @param w the worker's queue
1433 dl 1.1 */
1434 dl 1.123 final void registerWorker(WorkQueue w) {
1435 dl 1.136 while (!U.compareAndSwapInt(this, MAINLOCK, 0, 1))
1436     tryAwaitMainLock();
1437 dl 1.111 try {
1438 dl 1.136 WorkQueue[] ws;
1439     if ((ws = workQueues) == null)
1440     ws = workQueues = new WorkQueue[submitMask + 1];
1441     if (w != null) {
1442     int rs, n = ws.length, m = n - 1;
1443 dl 1.123 int s = nextSeed += SEED_INCREMENT; // rarely-colliding sequence
1444     w.seed = (s == 0) ? 1 : s; // ensure non-zero seed
1445     int r = (s << 1) | 1; // use odd-numbered indices
1446 dl 1.127 if (ws[r &= m] != null) { // collision
1447     int probes = 0; // step by approx half size
1448     int step = (n <= 4) ? 2 : ((n >>> 1) & SQMASK) + 2;
1449     while (ws[r = (r + step) & m] != null) {
1450     if (++probes >= n) {
1451     workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1452     m = n - 1;
1453     probes = 0;
1454     }
1455     }
1456     }
1457 dl 1.123 w.eventCount = w.poolIndex = r; // establish before recording
1458     ws[r] = w; // also update seq
1459     runState = ((rs = runState) & SHUTDOWN) | ((rs + 2) & ~SHUTDOWN);
1460 dl 1.111 }
1461     } finally {
1462 dl 1.136 if (!U.compareAndSwapInt(this, MAINLOCK, 1, 0)) {
1463     mainLock = 0;
1464     synchronized (this) { notifyAll(); };
1465     }
1466 dl 1.111 }
1467 dl 1.136
1468 dl 1.111 }
1469 dl 1.58
1470 dl 1.1 /**
1471 dl 1.119 * Final callback from terminating worker, as well as upon failure
1472     * to construct or start a worker in addWorker. Removes record of
1473 dl 1.111 * worker from array, and adjusts counts. If pool is shutting
1474     * down, tries to complete termination.
1475     *
1476     * @param wt the worker thread or null if addWorker failed
1477     * @param ex the exception causing failure, or null if none
1478 dl 1.85 */
1479 dl 1.111 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1480     WorkQueue w = null;
1481     if (wt != null && (w = wt.workQueue) != null) {
1482     w.runState = -1; // ensure runState is set
1483 dl 1.136 long steals = w.totalSteals + w.nsteals, sc;
1484 jsr166 1.138 do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1485     sc = stealCount, sc + steals));
1486 dl 1.111 int idx = w.poolIndex;
1487 dl 1.136 while (!U.compareAndSwapInt(this, MAINLOCK, 0, 1))
1488     tryAwaitMainLock();
1489     try {
1490 dl 1.111 WorkQueue[] ws = workQueues;
1491 dl 1.123 if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1492 dl 1.119 ws[idx] = null;
1493 dl 1.111 } finally {
1494 dl 1.136 if (!U.compareAndSwapInt(this, MAINLOCK, 1, 0)) {
1495     mainLock = 0;
1496     synchronized (this) { notifyAll(); };
1497     }
1498 dl 1.111 }
1499     }
1500    
1501     long c; // adjust ctl counts
1502     do {} while (!U.compareAndSwapLong
1503     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1504     ((c - TC_UNIT) & TC_MASK) |
1505     (c & ~(AC_MASK|TC_MASK)))));
1506    
1507 dl 1.119 if (!tryTerminate(false, false) && w != null) {
1508 dl 1.111 w.cancelAll(); // cancel remaining tasks
1509     if (w.array != null) // suppress signal if never ran
1510     signalWork(); // wake up or create replacement
1511 dl 1.119 if (ex == null) // help clean refs on way out
1512     ForkJoinTask.helpExpungeStaleExceptions();
1513 dl 1.111 }
1514    
1515     if (ex != null) // rethrow
1516     U.throwException(ex);
1517     }
1518 dl 1.91
1519 dl 1.119 // Submissions
1520    
1521     /**
1522     * Unless shutting down, adds the given task to a submission queue
1523     * at submitter's current queue index (modulo submission
1524 dl 1.123 * range). If no queue exists at the index, one is created. If
1525     * the queue is busy, another index is randomly chosen. The
1526     * submitMask bounds the effective number of queues to the
1527 jsr166 1.125 * (nearest power of two for) parallelism level.
1528 dl 1.123 *
1529     * @param task the task. Caller must ensure non-null.
1530 dl 1.119 */
1531     private void doSubmit(ForkJoinTask<?> task) {
1532     Submitter s = submitters.get();
1533 dl 1.123 for (int r = s.seed, m = submitMask;;) {
1534     WorkQueue[] ws; WorkQueue q;
1535 dl 1.119 int k = r & m & SQMASK; // use only even indices
1536 dl 1.136 if (runState < 0)
1537 dl 1.119 throw new RejectedExecutionException(); // shutting down
1538 dl 1.136 else if ((ws = workQueues) == null || ws.length <= k) {
1539     while (!U.compareAndSwapInt(this, MAINLOCK, 0, 1))
1540     tryAwaitMainLock();
1541     try {
1542     if (workQueues == null)
1543     workQueues = new WorkQueue[submitMask + 1];
1544     } finally {
1545     if (!U.compareAndSwapInt(this, MAINLOCK, 1, 0)) {
1546     mainLock = 0;
1547     synchronized (this) { notifyAll(); };
1548     }
1549     }
1550     }
1551 dl 1.123 else if ((q = ws[k]) == null) { // create new queue
1552     WorkQueue nq = new WorkQueue(this, null, SHARED_QUEUE);
1553 dl 1.136 while (!U.compareAndSwapInt(this, MAINLOCK, 0, 1))
1554     tryAwaitMainLock();
1555     try {
1556 dl 1.123 int rs = runState; // to update seq
1557     if (ws == workQueues && ws[k] == null) {
1558     ws[k] = nq;
1559     runState = ((rs & SHUTDOWN) | ((rs + 2) & ~SHUTDOWN));
1560 dl 1.116 }
1561     } finally {
1562 dl 1.136 if (!U.compareAndSwapInt(this, MAINLOCK, 1, 0)) {
1563     mainLock = 0;
1564     synchronized (this) { notifyAll(); };
1565     }
1566 dl 1.116 }
1567     }
1568 dl 1.123 else if (q.trySharedPush(task)) {
1569     signalWork();
1570     return;
1571     }
1572     else if (m > 1) { // move to a different index
1573     r ^= r << 13; // same xorshift as WorkQueues
1574     r ^= r >>> 17;
1575 dl 1.119 s.seed = r ^= r << 5;
1576     }
1577 dl 1.123 else
1578     Thread.yield(); // yield if no alternatives
1579 dl 1.116 }
1580     }
1581 dl 1.85
1582 dl 1.135 /**
1583     * Submits the given (non-null) task to the common pool, if possible.
1584     */
1585     static void submitToCommonPool(ForkJoinTask<?> task) {
1586     ForkJoinPool p;
1587     if ((p = commonPool) == null)
1588 dl 1.136 throw new RejectedExecutionException("Common Pool Unavailable");
1589 dl 1.135 p.doSubmit(task);
1590     }
1591    
1592     /**
1593 dl 1.137 * Returns true if caller is (or may be) submitter to the common
1594     * pool, and not all workers are active, and there appear to be
1595     * tasks in the associated submission queue.
1596     */
1597     static boolean canHelpCommonPool() {
1598     ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
1599     int k = submitters.get().seed & SQMASK;
1600     return ((p = commonPool) != null &&
1601     (int)(p.ctl >> AC_SHIFT) < 0 &&
1602     (ws = p.workQueues) != null &&
1603     ws.length > (k &= p.submitMask) &&
1604     (q = ws[k]) != null &&
1605     q.top - q.base > 0);
1606     }
1607    
1608     /**
1609 dl 1.135 * Returns true if the given task was submitted to common pool
1610     * and has not yet commenced execution, and is available for
1611     * removal according to execution policies; if so removing the
1612     * submission from the pool.
1613     *
1614     * @param task the task
1615     * @return true if successful
1616     */
1617     static boolean tryUnsubmitFromCommonPool(ForkJoinTask<?> task) {
1618 dl 1.136 // Peek, looking for task and eligibility before
1619     // using trySharedUnpush to actually take it under lock
1620 dl 1.135 ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
1621 dl 1.137 ForkJoinTask<?>[] a; int s;
1622 dl 1.135 int k = submitters.get().seed & SQMASK;
1623     return ((p = commonPool) != null &&
1624 dl 1.137 (int)(p.ctl >> AC_SHIFT) < 0 &&
1625 dl 1.135 (ws = p.workQueues) != null &&
1626     ws.length > (k &= p.submitMask) &&
1627     (q = ws[k]) != null &&
1628 dl 1.136 (a = q.array) != null &&
1629 dl 1.137 (s = q.top - 1) - q.base >= 0 &&
1630     s >= 0 && s < a.length &&
1631     a[s] == task &&
1632 dl 1.136 q.trySharedUnpush(task));
1633 dl 1.135 }
1634    
1635 dl 1.137 /**
1636     * Tries to pop a task from common pool with given root
1637     */
1638     static ForkJoinTask<?> popCCFromCommonPool(CountedCompleter<?> root) {
1639     ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
1640     ForkJoinTask<?> t;
1641     int k = submitters.get().seed & SQMASK;
1642     if (root != null &&
1643     (p = commonPool) != null &&
1644     (int)(p.ctl >> AC_SHIFT) < 0 &&
1645     (ws = p.workQueues) != null &&
1646     ws.length > (k &= p.submitMask) &&
1647     (q = ws[k]) != null && q.top - q.base > 0 &&
1648     root.status < 0 &&
1649     (t = q.sharedPopCC(root)) != null)
1650     return t;
1651     return null;
1652     }
1653    
1654    
1655 dl 1.111 // Maintaining ctl counts
1656 dl 1.56
1657     /**
1658 jsr166 1.117 * Increments active count; mainly called upon return from blocking.
1659 dl 1.58 */
1660 dl 1.111 final void incrementActiveCount() {
1661 dl 1.91 long c;
1662 dl 1.111 do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1663 dl 1.61 }
1664    
1665     /**
1666 dl 1.135 * Tries to create one or activate one or more workers if too few are active.
1667 dl 1.53 */
1668 dl 1.91 final void signalWork() {
1669 dl 1.119 long c; int u;
1670     while ((u = (int)((c = ctl) >>> 32)) < 0) { // too few active
1671     WorkQueue[] ws = workQueues; int e, i; WorkQueue w; Thread p;
1672     if ((e = (int)c) > 0) { // at least one waiting
1673     if (ws != null && (i = e & SMASK) < ws.length &&
1674     (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1675     long nc = (((long)(w.nextWait & E_MASK)) |
1676     ((long)(u + UAC_UNIT) << 32));
1677     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1678     w.eventCount = (e + E_SEQ) & E_MASK;
1679     if ((p = w.parker) != null)
1680     U.unpark(p); // activate and release
1681     break;
1682     }
1683     }
1684     else
1685 dl 1.91 break;
1686 dl 1.111 }
1687 dl 1.119 else if (e == 0 && (u & SHORT_SIGN) != 0) { // too few total
1688     long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1689     ((u + UAC_UNIT) & UAC_MASK)) << 32;
1690     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1691     addWorker();
1692 dl 1.91 break;
1693     }
1694     }
1695 dl 1.111 else
1696 dl 1.91 break;
1697     }
1698 dl 1.53 }
1699    
1700 dl 1.123 // Scanning for tasks
1701    
1702 dl 1.53 /**
1703 dl 1.123 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1704 dl 1.53 */
1705 dl 1.123 final void runWorker(WorkQueue w) {
1706     w.growArray(false); // initialize queue array in this thread
1707 dl 1.127 do { w.runTask(scan(w)); } while (w.runState >= 0);
1708 dl 1.53 }
1709    
1710     /**
1711 dl 1.111 * Scans for and, if found, returns one task, else possibly
1712     * inactivates the worker. This method operates on single reads of
1713 dl 1.123 * volatile state and is designed to be re-invoked continuously,
1714     * in part because it returns upon detecting inconsistencies,
1715 dl 1.111 * contention, or state changes that indicate possible success on
1716     * re-invocation.
1717     *
1718 dl 1.123 * The scan searches for tasks across a random permutation of
1719     * queues (starting at a random index and stepping by a random
1720     * relative prime, checking each at least once). The scan
1721     * terminates upon either finding a non-empty queue, or completing
1722     * the sweep. If the worker is not inactivated, it takes and
1723     * returns a task from this queue. On failure to find a task, we
1724     * take one of the following actions, after which the caller will
1725     * retry calling this method unless terminated.
1726 dl 1.111 *
1727 dl 1.119 * * If pool is terminating, terminate the worker.
1728     *
1729 dl 1.111 * * If not a complete sweep, try to release a waiting worker. If
1730     * the scan terminated because the worker is inactivated, then the
1731     * released worker will often be the calling worker, and it can
1732     * succeed obtaining a task on the next call. Or maybe it is
1733     * another worker, but with same net effect. Releasing in other
1734     * cases as well ensures that we have enough workers running.
1735     *
1736     * * If not already enqueued, try to inactivate and enqueue the
1737 dl 1.123 * worker on wait queue. Or, if inactivating has caused the pool
1738     * to be quiescent, relay to idleAwaitWork to check for
1739     * termination and possibly shrink pool.
1740     *
1741     * * If already inactive, and the caller has run a task since the
1742     * last empty scan, return (to allow rescan) unless others are
1743     * also inactivated. Field WorkQueue.rescans counts down on each
1744     * scan to ensure eventual inactivation and blocking.
1745 dl 1.111 *
1746 dl 1.123 * * If already enqueued and none of the above apply, park
1747     * awaiting signal,
1748 dl 1.111 *
1749     * @param w the worker (via its WorkQueue)
1750 jsr166 1.133 * @return a task or null if none found
1751 dl 1.111 */
1752     private final ForkJoinTask<?> scan(WorkQueue w) {
1753 dl 1.123 WorkQueue[] ws; // first update random seed
1754     int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1755     int rs = runState, m; // volatile read order matters
1756     if ((ws = workQueues) != null && (m = ws.length - 1) > 0) {
1757     int ec = w.eventCount; // ec is negative if inactive
1758     int step = (r >>> 16) | 1; // relative prime
1759     for (int j = (m + 1) << 2; ; r += step) {
1760     WorkQueue q; ForkJoinTask<?> t; ForkJoinTask<?>[] a; int b;
1761     if ((q = ws[r & m]) != null && (b = q.base) - q.top < 0 &&
1762     (a = q.array) != null) { // probably nonempty
1763     int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1764     t = (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1765     if (q.base == b && ec >= 0 && t != null &&
1766     U.compareAndSwapObject(a, i, t, null)) {
1767 dl 1.135 if (q.top - (q.base = b + 1) > 0)
1768 dl 1.129 signalWork(); // help pushes signal
1769 dl 1.119 return t;
1770 dl 1.123 }
1771 dl 1.127 else if (ec < 0 || j <= m) {
1772 dl 1.123 rs = 0; // mark scan as imcomplete
1773     break; // caller can retry after release
1774     }
1775 dl 1.111 }
1776 dl 1.123 if (--j < 0)
1777 dl 1.93 break;
1778 dl 1.91 }
1779 dl 1.128
1780 dl 1.119 long c = ctl; int e = (int)c, a = (int)(c >> AC_SHIFT), nr, ns;
1781 dl 1.123 if (e < 0) // decode ctl on empty scan
1782     w.runState = -1; // pool is terminating
1783     else if (rs == 0 || rs != runState) { // incomplete scan
1784     WorkQueue v; Thread p; // try to release a waiter
1785     if (e > 0 && a < 0 && w.eventCount == ec &&
1786     (v = ws[e & m]) != null && v.eventCount == (e | INT_SIGN)) {
1787 dl 1.119 long nc = ((long)(v.nextWait & E_MASK) |
1788     ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
1789 dl 1.123 if (ctl == c && U.compareAndSwapLong(this, CTL, c, nc)) {
1790 dl 1.119 v.eventCount = (e + E_SEQ) & E_MASK;
1791     if ((p = v.parker) != null)
1792     U.unpark(p);
1793     }
1794     }
1795     }
1796 dl 1.123 else if (ec >= 0) { // try to enqueue/inactivate
1797 dl 1.119 long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1798     w.nextWait = e;
1799 dl 1.123 w.eventCount = ec | INT_SIGN; // mark as inactive
1800     if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1801     w.eventCount = ec; // unmark on CAS failure
1802     else {
1803     if ((ns = w.nsteals) != 0) {
1804     w.nsteals = 0; // set rescans if ran task
1805 jsr166 1.124 w.rescans = (a > 0) ? 0 : a + parallelism;
1806 dl 1.123 w.totalSteals += ns;
1807     }
1808     if (a == 1 - parallelism) // quiescent
1809     idleAwaitWork(w, nc, c);
1810 dl 1.119 }
1811 dl 1.111 }
1812 dl 1.123 else if (w.eventCount < 0) { // already queued
1813 dl 1.135 int ac = a + parallelism;
1814     if ((nr = w.rescans) > 0) // continue rescanning
1815     w.rescans = (ac < nr) ? ac : nr - 1;
1816     else if (((w.seed >>> 16) & ac) == 0) { // randomize park
1817 dl 1.123 Thread.interrupted(); // clear status
1818     Thread wt = Thread.currentThread();
1819 dl 1.119 U.putObject(wt, PARKBLOCKER, this);
1820 dl 1.123 w.parker = wt; // emulate LockSupport.park
1821     if (w.eventCount < 0) // recheck
1822     U.park(false, 0L);
1823 dl 1.119 w.parker = null;
1824     U.putObject(wt, PARKBLOCKER, null);
1825     }
1826 dl 1.111 }
1827 dl 1.91 }
1828 dl 1.111 return null;
1829 dl 1.53 }
1830    
1831     /**
1832 dl 1.123 * If inactivating worker w has caused the pool to become
1833     * quiescent, checks for pool termination, and, so long as this is
1834 dl 1.135 * not the only worker, waits for event for up to a given
1835     * duration. On timeout, if ctl has not changed, terminates the
1836 dl 1.123 * worker, which will in turn wake up another worker to possibly
1837     * repeat this process.
1838 dl 1.91 *
1839 dl 1.111 * @param w the calling worker
1840 dl 1.123 * @param currentCtl the ctl value triggering possible quiescence
1841     * @param prevCtl the ctl value to restore if thread is terminated
1842 dl 1.53 */
1843 dl 1.123 private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1844     if (w.eventCount < 0 && !tryTerminate(false, false) &&
1845 dl 1.127 (int)prevCtl != 0 && !hasQueuedSubmissions() && ctl == currentCtl) {
1846 dl 1.135 int dc = -(short)(currentCtl >>> TC_SHIFT);
1847     long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1848     long deadline = System.nanoTime() + parkTime - 100000L; // 1ms slop
1849 dl 1.123 Thread wt = Thread.currentThread();
1850     while (ctl == currentCtl) {
1851 dl 1.111 Thread.interrupted(); // timed variant of version in scan()
1852     U.putObject(wt, PARKBLOCKER, this);
1853     w.parker = wt;
1854 dl 1.123 if (ctl == currentCtl)
1855 dl 1.135 U.park(false, parkTime);
1856 dl 1.111 w.parker = null;
1857     U.putObject(wt, PARKBLOCKER, null);
1858 dl 1.123 if (ctl != currentCtl)
1859 dl 1.111 break;
1860 dl 1.135 if (deadline - System.nanoTime() <= 0L &&
1861 dl 1.123 U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1862     w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1863     w.runState = -1; // shrink
1864 dl 1.111 break;
1865     }
1866 dl 1.66 }
1867 dl 1.53 }
1868     }
1869    
1870     /**
1871 dl 1.111 * Tries to locate and execute tasks for a stealer of the given
1872     * task, or in turn one of its stealers, Traces currentSteal ->
1873     * currentJoin links looking for a thread working on a descendant
1874     * of the given task and with a non-empty queue to steal back and
1875     * execute tasks from. The first call to this method upon a
1876     * waiting join will often entail scanning/search, (which is OK
1877     * because the joiner has nothing better to do), but this method
1878     * leaves hints in workers to speed up subsequent calls. The
1879     * implementation is very branchy to cope with potential
1880     * inconsistencies or loops encountering chains that are stale,
1881 dl 1.128 * unknown, or so long that they are likely cyclic.
1882 dl 1.111 *
1883     * @param joiner the joining worker
1884     * @param task the task to join
1885 dl 1.128 * @return 0 if no progress can be made, negative if task
1886     * known complete, else positive
1887 dl 1.111 */
1888 dl 1.128 private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1889     int stat = 0, steps = 0; // bound to avoid cycles
1890     if (joiner != null && task != null) { // hoist null checks
1891     restart: for (;;) {
1892     ForkJoinTask<?> subtask = task; // current target
1893     for (WorkQueue j = joiner, v;;) { // v is stealer of subtask
1894     WorkQueue[] ws; int m, s, h;
1895     if ((s = task.status) < 0) {
1896     stat = s;
1897     break restart;
1898     }
1899     if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1900     break restart; // shutting down
1901     if ((v = ws[h = (j.stealHint | 1) & m]) == null ||
1902     v.currentSteal != subtask) {
1903     for (int origin = h;;) { // find stealer
1904     if (((h = (h + 2) & m) & 15) == 1 &&
1905     (subtask.status < 0 || j.currentJoin != subtask))
1906     continue restart; // occasional staleness check
1907     if ((v = ws[h]) != null &&
1908     v.currentSteal == subtask) {
1909     j.stealHint = h; // save hint
1910     break;
1911     }
1912     if (h == origin)
1913     break restart; // cannot find stealer
1914 dl 1.111 }
1915     }
1916 dl 1.128 for (;;) { // help stealer or descend to its stealer
1917     ForkJoinTask[] a; int b;
1918     if (subtask.status < 0) // surround probes with
1919     continue restart; // consistency checks
1920     if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1921     int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1922     ForkJoinTask<?> t =
1923     (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1924     if (subtask.status < 0 || j.currentJoin != subtask ||
1925     v.currentSteal != subtask)
1926     continue restart; // stale
1927     stat = 1; // apparent progress
1928     if (t != null && v.base == b &&
1929     U.compareAndSwapObject(a, i, t, null)) {
1930     v.base = b + 1; // help stealer
1931     joiner.runSubtask(t);
1932     }
1933     else if (v.base == b && ++steps == MAX_HELP)
1934     break restart; // v apparently stalled
1935     }
1936     else { // empty -- try to descend
1937     ForkJoinTask<?> next = v.currentJoin;
1938     if (subtask.status < 0 || j.currentJoin != subtask ||
1939     v.currentSteal != subtask)
1940     continue restart; // stale
1941     else if (next == null || ++steps == MAX_HELP)
1942     break restart; // dead-end or maybe cyclic
1943     else {
1944     subtask = next;
1945     j = v;
1946     break;
1947     }
1948 dl 1.111 }
1949 dl 1.91 }
1950 dl 1.61 }
1951 dl 1.111 }
1952 dl 1.53 }
1953 dl 1.128 return stat;
1954 dl 1.64 }
1955    
1956 dl 1.91 /**
1957 dl 1.111 * If task is at base of some steal queue, steals and executes it.
1958 dl 1.91 *
1959 dl 1.111 * @param joiner the joining worker
1960     * @param task the task
1961 dl 1.61 */
1962 dl 1.123 private void tryPollForAndExec(WorkQueue joiner, ForkJoinTask<?> task) {
1963 dl 1.111 WorkQueue[] ws;
1964 dl 1.123 if ((ws = workQueues) != null) {
1965     for (int j = 1; j < ws.length && task.status >= 0; j += 2) {
1966 dl 1.111 WorkQueue q = ws[j];
1967     if (q != null && q.pollFor(task)) {
1968     joiner.runSubtask(task);
1969     break;
1970     }
1971 dl 1.91 }
1972     }
1973 dl 1.61 }
1974    
1975     /**
1976 dl 1.123 * Tries to decrement active count (sometimes implicitly) and
1977     * possibly release or create a compensating worker in preparation
1978     * for blocking. Fails on contention or termination. Otherwise,
1979     * adds a new thread if no idle workers are available and either
1980     * pool would become completely starved or: (at least half
1981     * starved, and fewer than 50% spares exist, and there is at least
1982 jsr166 1.125 * one task apparently available). Even though the availability
1983 dl 1.123 * check requires a full scan, it is worthwhile in reducing false
1984     * alarms.
1985     *
1986 jsr166 1.126 * @param task if non-null, a task being waited for
1987     * @param blocker if non-null, a blocker being waited for
1988 dl 1.123 * @return true if the caller can block, else should recheck and retry
1989     */
1990     final boolean tryCompensate(ForkJoinTask<?> task, ManagedBlocker blocker) {
1991     int pc = parallelism, e;
1992     long c = ctl;
1993     WorkQueue[] ws = workQueues;
1994     if ((e = (int)c) >= 0 && ws != null) {
1995     int u, a, ac, hc;
1996     int tc = (short)((u = (int)(c >>> 32)) >>> UTC_SHIFT) + pc;
1997     boolean replace = false;
1998     if ((a = u >> UAC_SHIFT) <= 0) {
1999     if ((ac = a + pc) <= 1)
2000     replace = true;
2001     else if ((e > 0 || (task != null &&
2002     ac <= (hc = pc >>> 1) && tc < pc + hc))) {
2003     WorkQueue w;
2004     for (int j = 0; j < ws.length; ++j) {
2005     if ((w = ws[j]) != null && !w.isEmpty()) {
2006     replace = true;
2007     break; // in compensation range and tasks available
2008     }
2009     }
2010     }
2011     }
2012     if ((task == null || task.status >= 0) && // recheck need to block
2013     (blocker == null || !blocker.isReleasable()) && ctl == c) {
2014     if (!replace) { // no compensation
2015     long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
2016     if (U.compareAndSwapLong(this, CTL, c, nc))
2017     return true;
2018     }
2019     else if (e != 0) { // release an idle worker
2020     WorkQueue w; Thread p; int i;
2021     if ((i = e & SMASK) < ws.length && (w = ws[i]) != null) {
2022     long nc = ((long)(w.nextWait & E_MASK) |
2023     (c & (AC_MASK|TC_MASK)));
2024     if (w.eventCount == (e | INT_SIGN) &&
2025     U.compareAndSwapLong(this, CTL, c, nc)) {
2026     w.eventCount = (e + E_SEQ) & E_MASK;
2027     if ((p = w.parker) != null)
2028     U.unpark(p);
2029     return true;
2030     }
2031     }
2032     }
2033     else if (tc < MAX_CAP) { // create replacement
2034     long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
2035     if (U.compareAndSwapLong(this, CTL, c, nc)) {
2036     addWorker();
2037     return true;
2038     }
2039     }
2040     }
2041     }
2042     return false;
2043     }
2044    
2045     /**
2046 jsr166 1.126 * Helps and/or blocks until the given task is done.
2047 dl 1.123 *
2048     * @param joiner the joining worker
2049     * @param task the task
2050     * @return task status on exit
2051     */
2052     final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
2053 dl 1.127 int s;
2054     if ((s = task.status) >= 0) {
2055 dl 1.128 ForkJoinTask<?> prevJoin = joiner.currentJoin;
2056 dl 1.127 joiner.currentJoin = task;
2057     long startTime = 0L;
2058     for (int k = 0;;) {
2059 dl 1.128 if ((s = (joiner.isEmpty() ? // try to help
2060     tryHelpStealer(joiner, task) :
2061     joiner.tryRemoveAndExec(task))) == 0 &&
2062     (s = task.status) >= 0) {
2063 dl 1.127 if (k == 0) {
2064     startTime = System.nanoTime();
2065     tryPollForAndExec(joiner, task); // check uncommon case
2066     }
2067     else if ((k & (MAX_HELP - 1)) == 0 &&
2068     System.nanoTime() - startTime >=
2069     COMPENSATION_DELAY &&
2070     tryCompensate(task, null)) {
2071 dl 1.128 if (task.trySetSignal()) {
2072 dl 1.127 synchronized (task) {
2073     if (task.status >= 0) {
2074     try { // see ForkJoinTask
2075     task.wait(); // for explanation
2076     } catch (InterruptedException ie) {
2077     }
2078 dl 1.123 }
2079 dl 1.127 else
2080     task.notifyAll();
2081 dl 1.123 }
2082     }
2083 dl 1.127 long c; // re-activate
2084     do {} while (!U.compareAndSwapLong
2085     (this, CTL, c = ctl, c + AC_UNIT));
2086 dl 1.123 }
2087     }
2088 dl 1.128 if (s < 0 || (s = task.status) < 0) {
2089 dl 1.127 joiner.currentJoin = prevJoin;
2090     break;
2091     }
2092     else if ((k++ & (MAX_HELP - 1)) == MAX_HELP >>> 1)
2093     Thread.yield(); // for politeness
2094 dl 1.123 }
2095     }
2096 dl 1.127 return s;
2097 dl 1.123 }
2098    
2099     /**
2100     * Stripped-down variant of awaitJoin used by timed joins. Tries
2101     * to help join only while there is continuous progress. (Caller
2102     * will then enter a timed wait.)
2103     *
2104     * @param joiner the joining worker
2105     * @param task the task
2106     * @return task status on exit
2107     */
2108     final int helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2109     int s;
2110     while ((s = task.status) >= 0 &&
2111     (joiner.isEmpty() ?
2112     tryHelpStealer(joiner, task) :
2113 dl 1.128 joiner.tryRemoveAndExec(task)) != 0)
2114 dl 1.123 ;
2115     return s;
2116     }
2117    
2118     /**
2119     * Returns a (probably) non-empty steal queue, if one is found
2120     * during a random, then cyclic scan, else null. This method must
2121     * be retried by caller if, by the time it tries to use the queue,
2122     * it is empty.
2123 dl 1.111 */
2124     private WorkQueue findNonEmptyStealQueue(WorkQueue w) {
2125 dl 1.123 // Similar to loop in scan(), but ignoring submissions
2126 dl 1.136 int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
2127 dl 1.123 int step = (r >>> 16) | 1;
2128 dl 1.111 for (WorkQueue[] ws;;) {
2129 dl 1.123 int rs = runState, m;
2130     if ((ws = workQueues) == null || (m = ws.length - 1) < 1)
2131 dl 1.111 return null;
2132 dl 1.123 for (int j = (m + 1) << 2; ; r += step) {
2133     WorkQueue q = ws[((r << 1) | 1) & m];
2134     if (q != null && !q.isEmpty())
2135     return q;
2136     else if (--j < 0) {
2137     if (runState == rs)
2138 dl 1.111 return null;
2139 dl 1.123 break;
2140 dl 1.91 }
2141     }
2142 dl 1.64 }
2143     }
2144    
2145     /**
2146 dl 1.111 * Runs tasks until {@code isQuiescent()}. We piggyback on
2147     * active count ctl maintenance, but rather than blocking
2148     * when tasks cannot be found, we rescan until all others cannot
2149     * find tasks either.
2150     */
2151     final void helpQuiescePool(WorkQueue w) {
2152     for (boolean active = true;;) {
2153 dl 1.127 ForkJoinTask<?> localTask; // exhaust local queue
2154     while ((localTask = w.nextLocalTask()) != null)
2155     localTask.doExec();
2156 dl 1.111 WorkQueue q = findNonEmptyStealQueue(w);
2157     if (q != null) {
2158 dl 1.123 ForkJoinTask<?> t; int b;
2159 dl 1.111 if (!active) { // re-establish active count
2160     long c;
2161     active = true;
2162     do {} while (!U.compareAndSwapLong
2163     (this, CTL, c = ctl, c + AC_UNIT));
2164     }
2165 dl 1.123 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2166 dl 1.111 w.runSubtask(t);
2167     }
2168     else {
2169     long c;
2170     if (active) { // decrement active count without queuing
2171     active = false;
2172     do {} while (!U.compareAndSwapLong
2173     (this, CTL, c = ctl, c -= AC_UNIT));
2174     }
2175     else
2176     c = ctl; // re-increment on exit
2177     if ((int)(c >> AC_SHIFT) + parallelism == 0) {
2178     do {} while (!U.compareAndSwapLong
2179     (this, CTL, c = ctl, c + AC_UNIT));
2180     break;
2181 dl 1.66 }
2182 dl 1.64 }
2183     }
2184     }
2185    
2186     /**
2187 dl 1.135 * Restricted version of helpQuiescePool for non-FJ callers
2188     */
2189     static void externalHelpQuiescePool() {
2190 dl 1.137 ForkJoinPool p; WorkQueue[] ws; WorkQueue q, sq;
2191     ForkJoinTask<?>[] a; int b;
2192     ForkJoinTask<?> t = null;
2193 dl 1.135 int k = submitters.get().seed & SQMASK;
2194     if ((p = commonPool) != null &&
2195 dl 1.137 (int)(p.ctl >> AC_SHIFT) < 0 &&
2196 dl 1.135 (ws = p.workQueues) != null &&
2197     ws.length > (k &= p.submitMask) &&
2198 dl 1.137 (q = ws[k]) != null) {
2199     while (q.top - q.base > 0) {
2200     if ((t = q.sharedPop()) != null)
2201     break;
2202     }
2203     if (t == null && (sq = p.findNonEmptyStealQueue(q)) != null &&
2204     (b = sq.base) - sq.top < 0)
2205     t = sq.pollAt(b);
2206     if (t != null)
2207     t.doExec();
2208     }
2209 dl 1.135 }
2210    
2211     /**
2212 jsr166 1.117 * Gets and removes a local or stolen task for the given worker.
2213 dl 1.111 *
2214     * @return a task, if available
2215 dl 1.64 */
2216 dl 1.111 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2217     for (ForkJoinTask<?> t;;) {
2218 dl 1.123 WorkQueue q; int b;
2219 dl 1.111 if ((t = w.nextLocalTask()) != null)
2220     return t;
2221     if ((q = findNonEmptyStealQueue(w)) == null)
2222     return null;
2223 dl 1.123 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2224 dl 1.111 return t;
2225 dl 1.91 }
2226 dl 1.61 }
2227    
2228 dl 1.53 /**
2229 dl 1.111 * Returns the approximate (non-atomic) number of idle threads per
2230     * active thread to offset steal queue size for method
2231     * ForkJoinTask.getSurplusQueuedTaskCount().
2232 dl 1.53 */
2233 dl 1.111 final int idlePerActive() {
2234     // Approximate at powers of two for small values, saturate past 4
2235     int p = parallelism;
2236     int a = p + (int)(ctl >> AC_SHIFT);
2237     return (a > (p >>>= 1) ? 0 :
2238     a > (p >>>= 1) ? 1 :
2239     a > (p >>>= 1) ? 2 :
2240     a > (p >>>= 1) ? 4 :
2241     8);
2242 dl 1.53 }
2243    
2244 dl 1.135 /**
2245     * Returns approximate submission queue length for the given caller
2246     */
2247     static int getEstimatedSubmitterQueueLength() {
2248     ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
2249     int k = submitters.get().seed & SQMASK;
2250     return ((p = commonPool) != null &&
2251     p.runState >= 0 &&
2252     (ws = p.workQueues) != null &&
2253     ws.length > (k &= p.submitMask) &&
2254     (q = ws[k]) != null) ?
2255     q.queueSize() : 0;
2256     }
2257    
2258 dl 1.119 // Termination
2259 dl 1.53
2260     /**
2261 dl 1.119 * Possibly initiates and/or completes termination. The caller
2262     * triggering termination runs three passes through workQueues:
2263     * (0) Setting termination status, followed by wakeups of queued
2264     * workers; (1) cancelling all tasks; (2) interrupting lagging
2265     * threads (likely in external tasks, but possibly also blocked in
2266     * joins). Each pass repeats previous steps because of potential
2267     * lagging thread creation.
2268 dl 1.53 *
2269     * @param now if true, unconditionally terminate, else only
2270 dl 1.111 * if no work and no active workers
2271 jsr166 1.120 * @param enable if true, enable shutdown when next possible
2272 dl 1.53 * @return true if now terminating or terminated
2273 dl 1.1 */
2274 dl 1.119 private boolean tryTerminate(boolean now, boolean enable) {
2275 dl 1.111 for (long c;;) {
2276     if (((c = ctl) & STOP_BIT) != 0) { // already terminating
2277     if ((short)(c >>> TC_SHIFT) == -parallelism) {
2278 jsr166 1.138 synchronized (this) {
2279 dl 1.136 notifyAll(); // signal when 0 workers
2280     }
2281 dl 1.111 }
2282     return true;
2283     }
2284 dl 1.119 if (runState >= 0) { // not yet enabled
2285     if (!enable)
2286     return false;
2287 dl 1.136 while (!U.compareAndSwapInt(this, MAINLOCK, 0, 1))
2288     tryAwaitMainLock();
2289     try {
2290     runState |= SHUTDOWN;
2291     } finally {
2292     if (!U.compareAndSwapInt(this, MAINLOCK, 1, 0)) {
2293     mainLock = 0;
2294     synchronized (this) { notifyAll(); };
2295     }
2296     }
2297 dl 1.119 }
2298     if (!now) { // check if idle & no tasks
2299     if ((int)(c >> AC_SHIFT) != -parallelism ||
2300 dl 1.111 hasQueuedSubmissions())
2301 dl 1.91 return false;
2302 dl 1.111 // Check for unqueued inactive workers. One pass suffices.
2303     WorkQueue[] ws = workQueues; WorkQueue w;
2304     if (ws != null) {
2305 dl 1.119 for (int i = 1; i < ws.length; i += 2) {
2306 dl 1.111 if ((w = ws[i]) != null && w.eventCount >= 0)
2307     return false;
2308     }
2309 dl 1.91 }
2310     }
2311 dl 1.119 if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2312     for (int pass = 0; pass < 3; ++pass) {
2313     WorkQueue[] ws = workQueues;
2314     if (ws != null) {
2315     WorkQueue w;
2316     int n = ws.length;
2317     for (int i = 0; i < n; ++i) {
2318     if ((w = ws[i]) != null) {
2319     w.runState = -1;
2320     if (pass > 0) {
2321     w.cancelAll();
2322     if (pass > 1)
2323     w.interruptOwner();
2324 dl 1.91 }
2325 dl 1.61 }
2326     }
2327 dl 1.119 // Wake up workers parked on event queue
2328     int i, e; long cc; Thread p;
2329     while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2330     (i = e & SMASK) < n &&
2331     (w = ws[i]) != null) {
2332     long nc = ((long)(w.nextWait & E_MASK) |
2333     ((cc + AC_UNIT) & AC_MASK) |
2334     (cc & (TC_MASK|STOP_BIT)));
2335     if (w.eventCount == (e | INT_SIGN) &&
2336     U.compareAndSwapLong(this, CTL, cc, nc)) {
2337     w.eventCount = (e + E_SEQ) & E_MASK;
2338     w.runState = -1;
2339     if ((p = w.parker) != null)
2340     U.unpark(p);
2341     }
2342     }
2343 dl 1.111 }
2344 dl 1.91 }
2345 dl 1.53 }
2346     }
2347 dl 1.56 }
2348    
2349 dl 1.91 // Exported methods
2350 dl 1.1
2351     // Constructors
2352    
2353     /**
2354 dl 1.42 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2355 dl 1.57 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2356     * #defaultForkJoinWorkerThreadFactory default thread factory},
2357     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2358 jsr166 1.17 *
2359 dl 1.1 * @throws SecurityException if a security manager exists and
2360     * the caller is not permitted to modify threads
2361     * because it does not hold {@link
2362 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
2363 dl 1.1 */
2364     public ForkJoinPool() {
2365     this(Runtime.getRuntime().availableProcessors(),
2366 dl 1.57 defaultForkJoinWorkerThreadFactory, null, false);
2367 dl 1.1 }
2368    
2369     /**
2370 dl 1.42 * Creates a {@code ForkJoinPool} with the indicated parallelism
2371 dl 1.57 * level, the {@linkplain
2372     * #defaultForkJoinWorkerThreadFactory default thread factory},
2373     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2374 jsr166 1.17 *
2375 dl 1.42 * @param parallelism the parallelism level
2376 dl 1.1 * @throws IllegalArgumentException if parallelism less than or
2377 jsr166 1.47 * equal to zero, or greater than implementation limit
2378 dl 1.1 * @throws SecurityException if a security manager exists and
2379     * the caller is not permitted to modify threads
2380     * because it does not hold {@link
2381 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
2382 dl 1.1 */
2383     public ForkJoinPool(int parallelism) {
2384 dl 1.57 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2385 dl 1.1 }
2386    
2387     /**
2388 dl 1.57 * Creates a {@code ForkJoinPool} with the given parameters.
2389 jsr166 1.17 *
2390 dl 1.57 * @param parallelism the parallelism level. For default value,
2391     * use {@link java.lang.Runtime#availableProcessors}.
2392     * @param factory the factory for creating new threads. For default value,
2393     * use {@link #defaultForkJoinWorkerThreadFactory}.
2394 dl 1.59 * @param handler the handler for internal worker threads that
2395     * terminate due to unrecoverable errors encountered while executing
2396 jsr166 1.73 * tasks. For default value, use {@code null}.
2397 dl 1.59 * @param asyncMode if true,
2398 dl 1.57 * establishes local first-in-first-out scheduling mode for forked
2399     * tasks that are never joined. This mode may be more appropriate
2400     * than default locally stack-based mode in applications in which
2401     * worker threads only process event-style asynchronous tasks.
2402 jsr166 1.73 * For default value, use {@code false}.
2403 dl 1.1 * @throws IllegalArgumentException if parallelism less than or
2404 jsr166 1.47 * equal to zero, or greater than implementation limit
2405 jsr166 1.48 * @throws NullPointerException if the factory is null
2406 dl 1.1 * @throws SecurityException if a security manager exists and
2407     * the caller is not permitted to modify threads
2408     * because it does not hold {@link
2409 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
2410 dl 1.1 */
2411 dl 1.59 public ForkJoinPool(int parallelism,
2412 dl 1.57 ForkJoinWorkerThreadFactory factory,
2413     Thread.UncaughtExceptionHandler handler,
2414     boolean asyncMode) {
2415 dl 1.53 checkPermission();
2416     if (factory == null)
2417     throw new NullPointerException();
2418 dl 1.123 if (parallelism <= 0 || parallelism > MAX_CAP)
2419 dl 1.1 throw new IllegalArgumentException();
2420 dl 1.53 this.parallelism = parallelism;
2421 dl 1.1 this.factory = factory;
2422 dl 1.57 this.ueh = handler;
2423 dl 1.111 this.localMode = asyncMode ? FIFO_QUEUE : LIFO_QUEUE;
2424 dl 1.91 long np = (long)(-parallelism); // offset ctl counts
2425     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2426 dl 1.123 // Use nearest power 2 for workQueues size. See Hackers Delight sec 3.2.
2427     int n = parallelism - 1;
2428     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
2429 dl 1.136 this.submitMask = ((n + 1) << 1) - 1;
2430 dl 1.123 int pn = poolNumberGenerator.incrementAndGet();
2431 dl 1.91 StringBuilder sb = new StringBuilder("ForkJoinPool-");
2432 dl 1.123 sb.append(Integer.toString(pn));
2433 dl 1.91 sb.append("-worker-");
2434     this.workerNamePrefix = sb.toString();
2435 dl 1.123 this.runState = 1; // set init flag
2436 dl 1.1 }
2437    
2438 dl 1.135 /**
2439 dl 1.136 * Constructor for common pool, suitable only for static initialization.
2440     * Basically the same as above, but uses smallest possible initial footprint.
2441     */
2442     ForkJoinPool(int parallelism, int submitMask,
2443     ForkJoinWorkerThreadFactory factory,
2444     Thread.UncaughtExceptionHandler handler) {
2445     this.factory = factory;
2446     this.ueh = handler;
2447     this.submitMask = submitMask;
2448     this.parallelism = parallelism;
2449     long np = (long)(-parallelism);
2450     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2451     this.localMode = LIFO_QUEUE;
2452     this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2453     this.runState = 1;
2454     }
2455    
2456     /**
2457     * Returns the common pool instance.
2458 dl 1.135 *
2459     * @return the common pool instance
2460     */
2461     public static ForkJoinPool commonPool() {
2462     ForkJoinPool p;
2463 dl 1.136 if ((p = commonPool) == null)
2464     throw new Error("Common Pool Unavailable");
2465 dl 1.135 return p;
2466     }
2467    
2468 dl 1.1 // Execution methods
2469    
2470     /**
2471 jsr166 1.17 * Performs the given task, returning its result upon completion.
2472 dl 1.91 * If the computation encounters an unchecked Exception or Error,
2473     * it is rethrown as the outcome of this invocation. Rethrown
2474     * exceptions behave in the same way as regular exceptions, but,
2475     * when possible, contain stack traces (as displayed for example
2476     * using {@code ex.printStackTrace()}) of both the current thread
2477     * as well as the thread actually encountering the exception;
2478     * minimally only the latter.
2479 jsr166 1.17 *
2480 dl 1.1 * @param task the task
2481     * @return the task's result
2482 jsr166 1.48 * @throws NullPointerException if the task is null
2483     * @throws RejectedExecutionException if the task cannot be
2484     * scheduled for execution
2485 dl 1.1 */
2486     public <T> T invoke(ForkJoinTask<T> task) {
2487 dl 1.123 if (task == null)
2488     throw new NullPointerException();
2489 dl 1.111 doSubmit(task);
2490     return task.join();
2491 dl 1.1 }
2492    
2493     /**
2494     * Arranges for (asynchronous) execution of the given task.
2495 jsr166 1.17 *
2496 dl 1.1 * @param task the task
2497 jsr166 1.48 * @throws NullPointerException if the task is null
2498     * @throws RejectedExecutionException if the task cannot be
2499     * scheduled for execution
2500 dl 1.1 */
2501 dl 1.37 public void execute(ForkJoinTask<?> task) {
2502 dl 1.123 if (task == null)
2503     throw new NullPointerException();
2504 dl 1.111 doSubmit(task);
2505 dl 1.1 }
2506    
2507     // AbstractExecutorService methods
2508    
2509 jsr166 1.48 /**
2510     * @throws NullPointerException if the task is null
2511     * @throws RejectedExecutionException if the task cannot be
2512     * scheduled for execution
2513     */
2514 dl 1.1 public void execute(Runnable task) {
2515 dl 1.82 if (task == null)
2516     throw new NullPointerException();
2517 dl 1.23 ForkJoinTask<?> job;
2518 jsr166 1.26 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2519     job = (ForkJoinTask<?>) task;
2520 dl 1.23 else
2521 dl 1.123 job = new ForkJoinTask.AdaptedRunnableAction(task);
2522 dl 1.111 doSubmit(job);
2523 dl 1.1 }
2524    
2525 jsr166 1.48 /**
2526 dl 1.57 * Submits a ForkJoinTask for execution.
2527     *
2528     * @param task the task to submit
2529     * @return the task
2530     * @throws NullPointerException if the task is null
2531     * @throws RejectedExecutionException if the task cannot be
2532     * scheduled for execution
2533     */
2534     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2535 dl 1.123 if (task == null)
2536     throw new NullPointerException();
2537 dl 1.111 doSubmit(task);
2538 dl 1.57 return task;
2539     }
2540    
2541     /**
2542 jsr166 1.48 * @throws NullPointerException if the task is null
2543     * @throws RejectedExecutionException if the task cannot be
2544     * scheduled for execution
2545     */
2546 dl 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2547 dl 1.123 ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2548 dl 1.111 doSubmit(job);
2549 dl 1.1 return job;
2550     }
2551    
2552 jsr166 1.48 /**
2553     * @throws NullPointerException if the task is null
2554     * @throws RejectedExecutionException if the task cannot be
2555     * scheduled for execution
2556     */
2557 dl 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2558 dl 1.123 ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2559 dl 1.111 doSubmit(job);
2560 dl 1.1 return job;
2561     }
2562    
2563 jsr166 1.48 /**
2564     * @throws NullPointerException if the task is null
2565     * @throws RejectedExecutionException if the task cannot be
2566     * scheduled for execution
2567     */
2568 dl 1.1 public ForkJoinTask<?> submit(Runnable task) {
2569 dl 1.82 if (task == null)
2570     throw new NullPointerException();
2571 dl 1.23 ForkJoinTask<?> job;
2572 jsr166 1.26 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2573     job = (ForkJoinTask<?>) task;
2574 dl 1.23 else
2575 dl 1.123 job = new ForkJoinTask.AdaptedRunnableAction(task);
2576 dl 1.111 doSubmit(job);
2577 dl 1.1 return job;
2578     }
2579    
2580     /**
2581 jsr166 1.48 * @throws NullPointerException {@inheritDoc}
2582     * @throws RejectedExecutionException {@inheritDoc}
2583     */
2584 dl 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2585 dl 1.119 // In previous versions of this class, this method constructed
2586     // a task to run ForkJoinTask.invokeAll, but now external
2587     // invocation of multiple tasks is at least as efficient.
2588     List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2589     // Workaround needed because method wasn't declared with
2590     // wildcards in return type but should have been.
2591 jsr166 1.20 @SuppressWarnings({"unchecked", "rawtypes"})
2592 dl 1.119 List<Future<T>> futures = (List<Future<T>>) (List) fs;
2593 dl 1.1
2594 dl 1.119 boolean done = false;
2595     try {
2596     for (Callable<T> t : tasks) {
2597 dl 1.123 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2598 dl 1.119 doSubmit(f);
2599     fs.add(f);
2600     }
2601     for (ForkJoinTask<T> f : fs)
2602     f.quietlyJoin();
2603     done = true;
2604     return futures;
2605     } finally {
2606     if (!done)
2607     for (ForkJoinTask<T> f : fs)
2608     f.cancel(false);
2609 dl 1.1 }
2610     }
2611    
2612     /**
2613 jsr166 1.17 * Returns the factory used for constructing new workers.
2614 dl 1.1 *
2615     * @return the factory used for constructing new workers
2616     */
2617     public ForkJoinWorkerThreadFactory getFactory() {
2618     return factory;
2619     }
2620    
2621     /**
2622 dl 1.2 * Returns the handler for internal worker threads that terminate
2623     * due to unrecoverable errors encountered while executing tasks.
2624 jsr166 1.17 *
2625 jsr166 1.28 * @return the handler, or {@code null} if none
2626 dl 1.2 */
2627     public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
2628 dl 1.53 return ueh;
2629 dl 1.2 }
2630    
2631     /**
2632 dl 1.42 * Returns the targeted parallelism level of this pool.
2633 dl 1.1 *
2634 dl 1.42 * @return the targeted parallelism level of this pool
2635 dl 1.1 */
2636     public int getParallelism() {
2637     return parallelism;
2638     }
2639    
2640     /**
2641 dl 1.135 * Returns the targeted parallelism level of the common pool.
2642     *
2643     * @return the targeted parallelism level of the common pool
2644     */
2645     public static int getCommonPoolParallelism() {
2646     return commonPoolParallelism;
2647     }
2648    
2649     /**
2650 dl 1.1 * Returns the number of worker threads that have started but not
2651 jsr166 1.76 * yet terminated. The result returned by this method may differ
2652 jsr166 1.29 * from {@link #getParallelism} when threads are created to
2653 dl 1.1 * maintain parallelism when others are cooperatively blocked.
2654     *
2655     * @return the number of worker threads
2656     */
2657     public int getPoolSize() {
2658 dl 1.91 return parallelism + (short)(ctl >>> TC_SHIFT);
2659 dl 1.1 }
2660    
2661     /**
2662 jsr166 1.28 * Returns {@code true} if this pool uses local first-in-first-out
2663 jsr166 1.16 * scheduling mode for forked tasks that are never joined.
2664 dl 1.6 *
2665 jsr166 1.28 * @return {@code true} if this pool uses async mode
2666 dl 1.6 */
2667     public boolean getAsyncMode() {
2668 dl 1.111 return localMode != 0;
2669 dl 1.6 }
2670    
2671     /**
2672 dl 1.2 * Returns an estimate of the number of worker threads that are
2673     * not blocked waiting to join tasks or for other managed
2674 dl 1.53 * synchronization. This method may overestimate the
2675     * number of running threads.
2676 dl 1.1 *
2677     * @return the number of worker threads
2678     */
2679     public int getRunningThreadCount() {
2680 dl 1.111 int rc = 0;
2681     WorkQueue[] ws; WorkQueue w;
2682     if ((ws = workQueues) != null) {
2683 dl 1.119 for (int i = 1; i < ws.length; i += 2) {
2684     if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2685 dl 1.111 ++rc;
2686     }
2687     }
2688     return rc;
2689 dl 1.1 }
2690    
2691     /**
2692 dl 1.2 * Returns an estimate of the number of threads that are currently
2693 dl 1.1 * stealing or executing tasks. This method may overestimate the
2694     * number of active threads.
2695 jsr166 1.17 *
2696 jsr166 1.16 * @return the number of active threads
2697 dl 1.1 */
2698     public int getActiveThreadCount() {
2699 dl 1.111 int r = parallelism + (int)(ctl >> AC_SHIFT);
2700 jsr166 1.102 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2701 dl 1.1 }
2702    
2703     /**
2704 jsr166 1.28 * Returns {@code true} if all worker threads are currently idle.
2705     * An idle worker is one that cannot obtain a task to execute
2706     * because none are available to steal from other threads, and
2707     * there are no pending submissions to the pool. This method is
2708     * conservative; it might not return {@code true} immediately upon
2709     * idleness of all threads, but will eventually become true if
2710     * threads remain inactive.
2711 jsr166 1.17 *
2712 jsr166 1.28 * @return {@code true} if all threads are currently idle
2713 dl 1.1 */
2714     public boolean isQuiescent() {
2715 dl 1.111 return (int)(ctl >> AC_SHIFT) + parallelism == 0;
2716 dl 1.1 }
2717    
2718     /**
2719     * Returns an estimate of the total number of tasks stolen from
2720     * one thread's work queue by another. The reported value
2721     * underestimates the actual total number of steals when the pool
2722     * is not quiescent. This value may be useful for monitoring and
2723 jsr166 1.17 * tuning fork/join programs: in general, steal counts should be
2724 dl 1.1 * high enough to keep threads busy, but low enough to avoid
2725     * overhead and contention across threads.
2726 jsr166 1.17 *
2727 jsr166 1.16 * @return the number of steals
2728 dl 1.1 */
2729     public long getStealCount() {
2730 dl 1.136 long count = stealCount;
2731 dl 1.111 WorkQueue[] ws; WorkQueue w;
2732     if ((ws = workQueues) != null) {
2733 dl 1.119 for (int i = 1; i < ws.length; i += 2) {
2734 dl 1.111 if ((w = ws[i]) != null)
2735     count += w.totalSteals;
2736     }
2737     }
2738     return count;
2739 dl 1.1 }
2740    
2741     /**
2742 dl 1.2 * Returns an estimate of the total number of tasks currently held
2743     * in queues by worker threads (but not including tasks submitted
2744     * to the pool that have not begun executing). This value is only
2745     * an approximation, obtained by iterating across all threads in
2746     * the pool. This method may be useful for tuning task
2747     * granularities.
2748 jsr166 1.17 *
2749 jsr166 1.16 * @return the number of queued tasks
2750 dl 1.1 */
2751     public long getQueuedTaskCount() {
2752     long count = 0;
2753 dl 1.111 WorkQueue[] ws; WorkQueue w;
2754     if ((ws = workQueues) != null) {
2755 dl 1.119 for (int i = 1; i < ws.length; i += 2) {
2756 dl 1.111 if ((w = ws[i]) != null)
2757     count += w.queueSize();
2758     }
2759 dl 1.91 }
2760 dl 1.1 return count;
2761     }
2762    
2763     /**
2764 jsr166 1.40 * Returns an estimate of the number of tasks submitted to this
2765 dl 1.94 * pool that have not yet begun executing. This method may take
2766 dl 1.91 * time proportional to the number of submissions.
2767 jsr166 1.17 *
2768 jsr166 1.16 * @return the number of queued submissions
2769 dl 1.1 */
2770     public int getQueuedSubmissionCount() {
2771 dl 1.111 int count = 0;
2772     WorkQueue[] ws; WorkQueue w;
2773     if ((ws = workQueues) != null) {
2774 dl 1.119 for (int i = 0; i < ws.length; i += 2) {
2775 dl 1.111 if ((w = ws[i]) != null)
2776     count += w.queueSize();
2777     }
2778     }
2779     return count;
2780 dl 1.1 }
2781    
2782     /**
2783 jsr166 1.28 * Returns {@code true} if there are any tasks submitted to this
2784     * pool that have not yet begun executing.
2785 jsr166 1.17 *
2786 jsr166 1.16 * @return {@code true} if there are any queued submissions
2787 dl 1.1 */
2788     public boolean hasQueuedSubmissions() {
2789 dl 1.111 WorkQueue[] ws; WorkQueue w;
2790     if ((ws = workQueues) != null) {
2791 dl 1.119 for (int i = 0; i < ws.length; i += 2) {
2792 dl 1.123 if ((w = ws[i]) != null && !w.isEmpty())
2793 dl 1.111 return true;
2794     }
2795     }
2796     return false;
2797 dl 1.1 }
2798    
2799     /**
2800     * Removes and returns the next unexecuted submission if one is
2801     * available. This method may be useful in extensions to this
2802     * class that re-assign work in systems with multiple pools.
2803 jsr166 1.17 *
2804 jsr166 1.28 * @return the next submission, or {@code null} if none
2805 dl 1.1 */
2806     protected ForkJoinTask<?> pollSubmission() {
2807 dl 1.111 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2808     if ((ws = workQueues) != null) {
2809 dl 1.119 for (int i = 0; i < ws.length; i += 2) {
2810 dl 1.111 if ((w = ws[i]) != null && (t = w.poll()) != null)
2811     return t;
2812 dl 1.91 }
2813     }
2814     return null;
2815 dl 1.1 }
2816    
2817     /**
2818 dl 1.6 * Removes all available unexecuted submitted and forked tasks
2819     * from scheduling queues and adds them to the given collection,
2820     * without altering their execution status. These may include
2821 jsr166 1.41 * artificially generated or wrapped tasks. This method is
2822     * designed to be invoked only when the pool is known to be
2823 dl 1.6 * quiescent. Invocations at other times may not remove all
2824     * tasks. A failure encountered while attempting to add elements
2825 jsr166 1.16 * to collection {@code c} may result in elements being in
2826 dl 1.6 * neither, either or both collections when the associated
2827     * exception is thrown. The behavior of this operation is
2828     * undefined if the specified collection is modified while the
2829     * operation is in progress.
2830 jsr166 1.17 *
2831 dl 1.6 * @param c the collection to transfer elements into
2832     * @return the number of elements transferred
2833     */
2834 dl 1.30 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2835 dl 1.91 int count = 0;
2836 dl 1.111 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2837     if ((ws = workQueues) != null) {
2838 dl 1.119 for (int i = 0; i < ws.length; ++i) {
2839 dl 1.111 if ((w = ws[i]) != null) {
2840     while ((t = w.poll()) != null) {
2841     c.add(t);
2842     ++count;
2843     }
2844     }
2845 dl 1.91 }
2846     }
2847 dl 1.57 return count;
2848     }
2849    
2850     /**
2851 dl 1.1 * Returns a string identifying this pool, as well as its state,
2852     * including indications of run state, parallelism level, and
2853     * worker and task counts.
2854     *
2855     * @return a string identifying this pool, as well as its state
2856     */
2857     public String toString() {
2858 dl 1.119 // Use a single pass through workQueues to collect counts
2859     long qt = 0L, qs = 0L; int rc = 0;
2860 dl 1.136 long st = stealCount;
2861 dl 1.119 long c = ctl;
2862     WorkQueue[] ws; WorkQueue w;
2863     if ((ws = workQueues) != null) {
2864     for (int i = 0; i < ws.length; ++i) {
2865     if ((w = ws[i]) != null) {
2866     int size = w.queueSize();
2867     if ((i & 1) == 0)
2868     qs += size;
2869     else {
2870     qt += size;
2871     st += w.totalSteals;
2872     if (w.isApparentlyUnblocked())
2873     ++rc;
2874     }
2875     }
2876     }
2877     }
2878 dl 1.53 int pc = parallelism;
2879 dl 1.91 int tc = pc + (short)(c >>> TC_SHIFT);
2880 dl 1.111 int ac = pc + (int)(c >> AC_SHIFT);
2881     if (ac < 0) // ignore transient negative
2882     ac = 0;
2883 dl 1.91 String level;
2884     if ((c & STOP_BIT) != 0)
2885 jsr166 1.102 level = (tc == 0) ? "Terminated" : "Terminating";
2886 dl 1.91 else
2887 dl 1.111 level = runState < 0 ? "Shutting down" : "Running";
2888 dl 1.1 return super.toString() +
2889 dl 1.91 "[" + level +
2890 dl 1.53 ", parallelism = " + pc +
2891     ", size = " + tc +
2892     ", active = " + ac +
2893     ", running = " + rc +
2894 dl 1.1 ", steals = " + st +
2895     ", tasks = " + qt +
2896     ", submissions = " + qs +
2897     "]";
2898     }
2899    
2900     /**
2901 dl 1.135 * Possibly initiates an orderly shutdown in which previously
2902     * submitted tasks are executed, but no new tasks will be
2903     * accepted. Invocation has no effect on execution state if this
2904     * is the {@link #commonPool}, and no additional effect if
2905     * already shut down. Tasks that are in the process of being
2906     * submitted concurrently during the course of this method may or
2907     * may not be rejected.
2908 jsr166 1.17 *
2909 dl 1.1 * @throws SecurityException if a security manager exists and
2910     * the caller is not permitted to modify threads
2911     * because it does not hold {@link
2912 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
2913 dl 1.1 */
2914     public void shutdown() {
2915     checkPermission();
2916 dl 1.135 if (this != commonPool)
2917     tryTerminate(false, true);
2918 dl 1.1 }
2919    
2920     /**
2921 dl 1.135 * Possibly attempts to cancel and/or stop all tasks, and reject
2922     * all subsequently submitted tasks. Invocation has no effect on
2923     * execution state if this is the {@link #commonPool}, and no
2924     * additional effect if already shut down. Otherwise, tasks that
2925     * are in the process of being submitted or executed concurrently
2926     * during the course of this method may or may not be
2927     * rejected. This method cancels both existing and unexecuted
2928     * tasks, in order to permit termination in the presence of task
2929     * dependencies. So the method always returns an empty list
2930     * (unlike the case for some other Executors).
2931 jsr166 1.17 *
2932 dl 1.1 * @return an empty list
2933     * @throws SecurityException if a security manager exists and
2934     * the caller is not permitted to modify threads
2935     * because it does not hold {@link
2936 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
2937 dl 1.1 */
2938     public List<Runnable> shutdownNow() {
2939     checkPermission();
2940 dl 1.135 if (this != commonPool)
2941     tryTerminate(true, true);
2942 dl 1.1 return Collections.emptyList();
2943     }
2944    
2945     /**
2946 jsr166 1.16 * Returns {@code true} if all tasks have completed following shut down.
2947 dl 1.1 *
2948 jsr166 1.16 * @return {@code true} if all tasks have completed following shut down
2949 dl 1.1 */
2950     public boolean isTerminated() {
2951 dl 1.91 long c = ctl;
2952     return ((c & STOP_BIT) != 0L &&
2953     (short)(c >>> TC_SHIFT) == -parallelism);
2954 dl 1.1 }
2955    
2956     /**
2957 jsr166 1.16 * Returns {@code true} if the process of termination has
2958 dl 1.42 * commenced but not yet completed. This method may be useful for
2959     * debugging. A return of {@code true} reported a sufficient
2960     * period after shutdown may indicate that submitted tasks have
2961 dl 1.88 * ignored or suppressed interruption, or are waiting for IO,
2962     * causing this executor not to properly terminate. (See the
2963     * advisory notes for class {@link ForkJoinTask} stating that
2964     * tasks should not normally entail blocking operations. But if
2965     * they do, they must abort them on interrupt.)
2966 dl 1.1 *
2967 dl 1.42 * @return {@code true} if terminating but not yet terminated
2968 dl 1.1 */
2969     public boolean isTerminating() {
2970 dl 1.91 long c = ctl;
2971     return ((c & STOP_BIT) != 0L &&
2972     (short)(c >>> TC_SHIFT) != -parallelism);
2973 dl 1.1 }
2974    
2975     /**
2976 jsr166 1.16 * Returns {@code true} if this pool has been shut down.
2977 dl 1.1 *
2978 jsr166 1.16 * @return {@code true} if this pool has been shut down
2979 dl 1.1 */
2980     public boolean isShutdown() {
2981 dl 1.111 return runState < 0;
2982 dl 1.42 }
2983    
2984     /**
2985 dl 1.1 * Blocks until all tasks have completed execution after a shutdown
2986     * request, or the timeout occurs, or the current thread is
2987     * interrupted, whichever happens first.
2988     *
2989     * @param timeout the maximum time to wait
2990     * @param unit the time unit of the timeout argument
2991 jsr166 1.16 * @return {@code true} if this executor terminated and
2992     * {@code false} if the timeout elapsed before termination
2993 dl 1.1 * @throws InterruptedException if interrupted while waiting
2994     */
2995     public boolean awaitTermination(long timeout, TimeUnit unit)
2996     throws InterruptedException {
2997 dl 1.91 long nanos = unit.toNanos(timeout);
2998 dl 1.136 if (isTerminated())
2999     return true;
3000     long startTime = System.nanoTime();
3001     boolean terminated = false;
3002 jsr166 1.138 synchronized (this) {
3003 dl 1.136 for (long waitTime = nanos, millis = 0L;;) {
3004     if (terminated = isTerminated() ||
3005     waitTime <= 0L ||
3006     (millis = unit.toMillis(waitTime)) <= 0L)
3007     break;
3008     wait(millis);
3009     waitTime = nanos - (System.nanoTime() - startTime);
3010 dl 1.91 }
3011 dl 1.57 }
3012 dl 1.136 return terminated;
3013 dl 1.1 }
3014    
3015     /**
3016     * Interface for extending managed parallelism for tasks running
3017 jsr166 1.35 * in {@link ForkJoinPool}s.
3018     *
3019 dl 1.61 * <p>A {@code ManagedBlocker} provides two methods. Method
3020     * {@code isReleasable} must return {@code true} if blocking is
3021     * not necessary. Method {@code block} blocks the current thread
3022     * if necessary (perhaps internally invoking {@code isReleasable}
3023 dl 1.93 * before actually blocking). These actions are performed by any
3024     * thread invoking {@link ForkJoinPool#managedBlock}. The
3025     * unusual methods in this API accommodate synchronizers that may,
3026     * but don't usually, block for long periods. Similarly, they
3027     * allow more efficient internal handling of cases in which
3028     * additional workers may be, but usually are not, needed to
3029     * ensure sufficient parallelism. Toward this end,
3030     * implementations of method {@code isReleasable} must be amenable
3031     * to repeated invocation.
3032 jsr166 1.17 *
3033 dl 1.1 * <p>For example, here is a ManagedBlocker based on a
3034     * ReentrantLock:
3035 jsr166 1.17 * <pre> {@code
3036     * class ManagedLocker implements ManagedBlocker {
3037     * final ReentrantLock lock;
3038     * boolean hasLock = false;
3039     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3040     * public boolean block() {
3041     * if (!hasLock)
3042     * lock.lock();
3043     * return true;
3044     * }
3045     * public boolean isReleasable() {
3046     * return hasLock || (hasLock = lock.tryLock());
3047 dl 1.1 * }
3048 jsr166 1.17 * }}</pre>
3049 dl 1.61 *
3050     * <p>Here is a class that possibly blocks waiting for an
3051     * item on a given queue:
3052     * <pre> {@code
3053     * class QueueTaker<E> implements ManagedBlocker {
3054     * final BlockingQueue<E> queue;
3055     * volatile E item = null;
3056     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3057     * public boolean block() throws InterruptedException {
3058     * if (item == null)
3059 dl 1.65 * item = queue.take();
3060 dl 1.61 * return true;
3061     * }
3062     * public boolean isReleasable() {
3063 dl 1.65 * return item != null || (item = queue.poll()) != null;
3064 dl 1.61 * }
3065     * public E getItem() { // call after pool.managedBlock completes
3066     * return item;
3067     * }
3068     * }}</pre>
3069 dl 1.1 */
3070     public static interface ManagedBlocker {
3071     /**
3072     * Possibly blocks the current thread, for example waiting for
3073     * a lock or condition.
3074 jsr166 1.17 *
3075 jsr166 1.28 * @return {@code true} if no additional blocking is necessary
3076     * (i.e., if isReleasable would return true)
3077 dl 1.1 * @throws InterruptedException if interrupted while waiting
3078 jsr166 1.17 * (the method is not required to do so, but is allowed to)
3079 dl 1.1 */
3080     boolean block() throws InterruptedException;
3081    
3082     /**
3083 jsr166 1.28 * Returns {@code true} if blocking is unnecessary.
3084 dl 1.1 */
3085     boolean isReleasable();
3086     }
3087    
3088     /**
3089     * Blocks in accord with the given blocker. If the current thread
3090 jsr166 1.38 * is a {@link ForkJoinWorkerThread}, this method possibly
3091     * arranges for a spare thread to be activated if necessary to
3092 dl 1.57 * ensure sufficient parallelism while the current thread is blocked.
3093 jsr166 1.38 *
3094     * <p>If the caller is not a {@link ForkJoinTask}, this method is
3095     * behaviorally equivalent to
3096 jsr166 1.115 * <pre> {@code
3097 jsr166 1.17 * while (!blocker.isReleasable())
3098     * if (blocker.block())
3099     * return;
3100     * }</pre>
3101 jsr166 1.38 *
3102     * If the caller is a {@code ForkJoinTask}, then the pool may
3103     * first be expanded to ensure parallelism, and later adjusted.
3104 dl 1.1 *
3105     * @param blocker the blocker
3106 jsr166 1.16 * @throws InterruptedException if blocker.block did so
3107 dl 1.1 */
3108 dl 1.57 public static void managedBlock(ManagedBlocker blocker)
3109 dl 1.1 throws InterruptedException {
3110     Thread t = Thread.currentThread();
3111 dl 1.111 ForkJoinPool p = ((t instanceof ForkJoinWorkerThread) ?
3112     ((ForkJoinWorkerThread)t).pool : null);
3113     while (!blocker.isReleasable()) {
3114 dl 1.123 if (p == null || p.tryCompensate(null, blocker)) {
3115 dl 1.111 try {
3116     do {} while (!blocker.isReleasable() && !blocker.block());
3117     } finally {
3118     if (p != null)
3119     p.incrementActiveCount();
3120     }
3121     break;
3122     }
3123 dl 1.57 }
3124 dl 1.1 }
3125    
3126 dl 1.33 // AbstractExecutorService overrides. These rely on undocumented
3127     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3128     // implement RunnableFuture.
3129 dl 1.2
3130     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3131 dl 1.123 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3132 dl 1.2 }
3133    
3134     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3135 dl 1.123 return new ForkJoinTask.AdaptedCallable<T>(callable);
3136 dl 1.2 }
3137    
3138 jsr166 1.27 // Unsafe mechanics
3139 dl 1.111 private static final sun.misc.Unsafe U;
3140     private static final long CTL;
3141     private static final long PARKBLOCKER;
3142 dl 1.123 private static final int ABASE;
3143     private static final int ASHIFT;
3144 dl 1.136 private static final long NEXTWORKERNUMBER;
3145     private static final long STEALCOUNT;
3146     private static final long MAINLOCK;
3147 dl 1.91
3148     static {
3149     poolNumberGenerator = new AtomicInteger();
3150 dl 1.123 nextSubmitterSeed = new AtomicInteger(0x55555555);
3151 dl 1.91 modifyThreadPermission = new RuntimePermission("modifyThread");
3152     defaultForkJoinWorkerThreadFactory =
3153     new DefaultForkJoinWorkerThreadFactory();
3154 dl 1.119 submitters = new ThreadSubmitter();
3155 dl 1.123 int s;
3156 jsr166 1.27 try {
3157 dl 1.111 U = getUnsafe();
3158 jsr166 1.103 Class<?> k = ForkJoinPool.class;
3159 dl 1.123 Class<?> ak = ForkJoinTask[].class;
3160 dl 1.111 CTL = U.objectFieldOffset
3161 dl 1.91 (k.getDeclaredField("ctl"));
3162 dl 1.136 NEXTWORKERNUMBER = U.objectFieldOffset
3163     (k.getDeclaredField("nextWorkerNumber"));
3164     STEALCOUNT = U.objectFieldOffset
3165     (k.getDeclaredField("stealCount"));
3166     MAINLOCK = U.objectFieldOffset
3167     (k.getDeclaredField("mainLock"));
3168 dl 1.119 Class<?> tk = Thread.class;
3169 dl 1.111 PARKBLOCKER = U.objectFieldOffset
3170     (tk.getDeclaredField("parkBlocker"));
3171 dl 1.123 ABASE = U.arrayBaseOffset(ak);
3172     s = U.arrayIndexScale(ak);
3173 dl 1.136 ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3174 dl 1.91 } catch (Exception e) {
3175     throw new Error(e);
3176     }
3177 dl 1.123 if ((s & (s-1)) != 0)
3178     throw new Error("data type scale not a power of two");
3179 dl 1.136 try { // Establish common pool
3180 dl 1.135 String pp = System.getProperty(propPrefix + "parallelism");
3181     String fp = System.getProperty(propPrefix + "threadFactory");
3182     String up = System.getProperty(propPrefix + "exceptionHandler");
3183 dl 1.136 ForkJoinWorkerThreadFactory fac = (fp == null) ?
3184     defaultForkJoinWorkerThreadFactory :
3185     ((ForkJoinWorkerThreadFactory)ClassLoader.
3186     getSystemClassLoader().loadClass(fp).newInstance());
3187 jsr166 1.138 Thread.UncaughtExceptionHandler ueh = (up == null) ? null :
3188 dl 1.136 ((Thread.UncaughtExceptionHandler)ClassLoader.
3189     getSystemClassLoader().loadClass(up).newInstance());
3190 dl 1.135 int par;
3191     if ((pp == null || (par = Integer.parseInt(pp)) <= 0))
3192     par = Runtime.getRuntime().availableProcessors();
3193 dl 1.136 if (par > MAX_CAP)
3194     par = MAX_CAP;
3195 dl 1.135 commonPoolParallelism = par;
3196 dl 1.136 int n = par - 1; // precompute submit mask
3197     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
3198     n |= n >>> 8; n |= n >>> 16;
3199     int mask = ((n + 1) << 1) - 1;
3200     commonPool = new ForkJoinPool(par, mask, fac, ueh);
3201 dl 1.135 } catch (Exception e) {
3202     throw new Error(e);
3203     }
3204 jsr166 1.27 }
3205    
3206     /**
3207     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
3208     * Replace with a simple call to Unsafe.getUnsafe when integrating
3209     * into a jdk.
3210     *
3211     * @return a sun.misc.Unsafe
3212     */
3213     private static sun.misc.Unsafe getUnsafe() {
3214     try {
3215     return sun.misc.Unsafe.getUnsafe();
3216     } catch (SecurityException se) {
3217     try {
3218     return java.security.AccessController.doPrivileged
3219     (new java.security
3220     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
3221     public sun.misc.Unsafe run() throws Exception {
3222     java.lang.reflect.Field f = sun.misc
3223     .Unsafe.class.getDeclaredField("theUnsafe");
3224     f.setAccessible(true);
3225     return (sun.misc.Unsafe) f.get(null);
3226     }});
3227     } catch (java.security.PrivilegedActionException e) {
3228     throw new RuntimeException("Could not initialize intrinsics",
3229     e.getCause());
3230     }
3231     }
3232     }
3233 dl 1.112
3234 dl 1.1 }