ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
Revision: 1.139
Committed: Wed Oct 31 12:49:24 2012 UTC (11 years, 6 months ago) by dl
Branch: MAIN
Changes since 1.138: +94 -113 lines
Log Message:
commonPool improvements

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.97 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.1 */
6    
7     package jsr166y;
8 dl 1.135
9 jsr166 1.22 import java.util.ArrayList;
10     import java.util.Arrays;
11     import java.util.Collection;
12     import java.util.Collections;
13     import java.util.List;
14 dl 1.91 import java.util.Random;
15 dl 1.78 import java.util.concurrent.AbstractExecutorService;
16     import java.util.concurrent.Callable;
17     import java.util.concurrent.ExecutorService;
18     import java.util.concurrent.Future;
19     import java.util.concurrent.RejectedExecutionException;
20     import java.util.concurrent.RunnableFuture;
21     import java.util.concurrent.TimeUnit;
22     import java.util.concurrent.atomic.AtomicInteger;
23 dl 1.111 import java.util.concurrent.atomic.AtomicLong;
24 dl 1.119 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
25 dl 1.91 import java.util.concurrent.locks.Condition;
26 dl 1.1
27     /**
28 jsr166 1.29 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
29 jsr166 1.39 * A {@code ForkJoinPool} provides the entry point for submissions
30 dl 1.57 * from non-{@code ForkJoinTask} clients, as well as management and
31 jsr166 1.48 * monitoring operations.
32 dl 1.1 *
33 dl 1.42 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
34     * ExecutorService} mainly by virtue of employing
35     * <em>work-stealing</em>: all threads in the pool attempt to find and
36 dl 1.111 * execute tasks submitted to the pool and/or created by other active
37     * tasks (eventually blocking waiting for work if none exist). This
38     * enables efficient processing when most tasks spawn other subtasks
39     * (as do most {@code ForkJoinTask}s), as well as when many small
40     * tasks are submitted to the pool from external clients. Especially
41     * when setting <em>asyncMode</em> to true in constructors, {@code
42     * ForkJoinPool}s may also be appropriate for use with event-style
43     * tasks that are never joined.
44 dl 1.1 *
45 dl 1.135 * <p>A static {@link #commonPool} is available and appropriate for
46 dl 1.136 * most applications. The common pool is used by any ForkJoinTask that
47     * is not explicitly submitted to a specified pool. Using the common
48     * pool normally reduces resource usage (its threads are slowly
49     * reclaimed during periods of non-use, and reinstated upon subsequent
50     * use). The common pool is by default constructed with default
51     * parameters, but these may be controlled by setting any or all of
52     * the three properties {@code
53 dl 1.135 * java.util.concurrent.ForkJoinPool.common.{parallelism,
54     * threadFactory, exceptionHandler}}.
55     *
56     * <p>For applications that require separate or custom pools, a {@code
57     * ForkJoinPool} may be constructed with a given target parallelism
58     * level; by default, equal to the number of available processors. The
59     * pool attempts to maintain enough active (or available) threads by
60     * dynamically adding, suspending, or resuming internal worker
61     * threads, even if some tasks are stalled waiting to join
62     * others. However, no such adjustments are guaranteed in the face of
63     * blocked IO or other unmanaged synchronization. The nested {@link
64     * ManagedBlocker} interface enables extension of the kinds of
65 dl 1.57 * synchronization accommodated.
66 dl 1.1 *
67     * <p>In addition to execution and lifecycle control methods, this
68     * class provides status check methods (for example
69 jsr166 1.29 * {@link #getStealCount}) that are intended to aid in developing,
70 dl 1.1 * tuning, and monitoring fork/join applications. Also, method
71 jsr166 1.29 * {@link #toString} returns indications of pool state in a
72 dl 1.2 * convenient form for informal monitoring.
73 dl 1.1 *
74 dl 1.57 * <p> As is the case with other ExecutorServices, there are three
75 jsr166 1.117 * main task execution methods summarized in the following table.
76     * These are designed to be used primarily by clients not already
77     * engaged in fork/join computations in the current pool. The main
78     * forms of these methods accept instances of {@code ForkJoinTask},
79     * but overloaded forms also allow mixed execution of plain {@code
80     * Runnable}- or {@code Callable}- based activities as well. However,
81     * tasks that are already executing in a pool should normally instead
82     * use the within-computation forms listed in the table unless using
83     * async event-style tasks that are not usually joined, in which case
84     * there is little difference among choice of methods.
85 dl 1.57 *
86     * <table BORDER CELLPADDING=3 CELLSPACING=1>
87     * <tr>
88     * <td></td>
89     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
90     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
91     * </tr>
92     * <tr>
93 jsr166 1.67 * <td> <b>Arrange async execution</td>
94 dl 1.57 * <td> {@link #execute(ForkJoinTask)}</td>
95     * <td> {@link ForkJoinTask#fork}</td>
96     * </tr>
97     * <tr>
98     * <td> <b>Await and obtain result</td>
99     * <td> {@link #invoke(ForkJoinTask)}</td>
100     * <td> {@link ForkJoinTask#invoke}</td>
101     * </tr>
102     * <tr>
103     * <td> <b>Arrange exec and obtain Future</td>
104     * <td> {@link #submit(ForkJoinTask)}</td>
105     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
106     * </tr>
107     * </table>
108 dl 1.59 *
109 dl 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
110 dl 1.2 * maximum number of running threads to 32767. Attempts to create
111 jsr166 1.48 * pools with greater than the maximum number result in
112 jsr166 1.39 * {@code IllegalArgumentException}.
113 jsr166 1.16 *
114 jsr166 1.48 * <p>This implementation rejects submitted tasks (that is, by throwing
115 dl 1.58 * {@link RejectedExecutionException}) only when the pool is shut down
116 dl 1.62 * or internal resources have been exhausted.
117 jsr166 1.48 *
118 jsr166 1.16 * @since 1.7
119     * @author Doug Lea
120 dl 1.1 */
121 dl 1.2 public class ForkJoinPool extends AbstractExecutorService {
122 dl 1.1
123     /*
124 dl 1.53 * Implementation Overview
125     *
126 dl 1.111 * This class and its nested classes provide the main
127     * functionality and control for a set of worker threads:
128 jsr166 1.117 * Submissions from non-FJ threads enter into submission queues.
129     * Workers take these tasks and typically split them into subtasks
130     * that may be stolen by other workers. Preference rules give
131     * first priority to processing tasks from their own queues (LIFO
132     * or FIFO, depending on mode), then to randomized FIFO steals of
133     * tasks in other queues.
134 dl 1.111 *
135 jsr166 1.117 * WorkQueues
136 dl 1.111 * ==========
137     *
138     * Most operations occur within work-stealing queues (in nested
139     * class WorkQueue). These are special forms of Deques that
140     * support only three of the four possible end-operations -- push,
141     * pop, and poll (aka steal), under the further constraints that
142     * push and pop are called only from the owning thread (or, as
143     * extended here, under a lock), while poll may be called from
144     * other threads. (If you are unfamiliar with them, you probably
145     * want to read Herlihy and Shavit's book "The Art of
146     * Multiprocessor programming", chapter 16 describing these in
147     * more detail before proceeding.) The main work-stealing queue
148     * design is roughly similar to those in the papers "Dynamic
149     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
150     * (http://research.sun.com/scalable/pubs/index.html) and
151     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
152     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
153 jsr166 1.117 * The main differences ultimately stem from GC requirements that
154 dl 1.111 * we null out taken slots as soon as we can, to maintain as small
155     * a footprint as possible even in programs generating huge
156     * numbers of tasks. To accomplish this, we shift the CAS
157     * arbitrating pop vs poll (steal) from being on the indices
158     * ("base" and "top") to the slots themselves. So, both a
159     * successful pop and poll mainly entail a CAS of a slot from
160     * non-null to null. Because we rely on CASes of references, we
161     * do not need tag bits on base or top. They are simple ints as
162     * used in any circular array-based queue (see for example
163     * ArrayDeque). Updates to the indices must still be ordered in a
164     * way that guarantees that top == base means the queue is empty,
165     * but otherwise may err on the side of possibly making the queue
166     * appear nonempty when a push, pop, or poll have not fully
167     * committed. Note that this means that the poll operation,
168     * considered individually, is not wait-free. One thief cannot
169     * successfully continue until another in-progress one (or, if
170     * previously empty, a push) completes. However, in the
171     * aggregate, we ensure at least probabilistic non-blockingness.
172     * If an attempted steal fails, a thief always chooses a different
173     * random victim target to try next. So, in order for one thief to
174     * progress, it suffices for any in-progress poll or new push on
175 dl 1.123 * any empty queue to complete. (This is why we normally use
176     * method pollAt and its variants that try once at the apparent
177     * base index, else consider alternative actions, rather than
178     * method poll.)
179 dl 1.111 *
180 dl 1.112 * This approach also enables support of a user mode in which local
181 dl 1.111 * task processing is in FIFO, not LIFO order, simply by using
182     * poll rather than pop. This can be useful in message-passing
183     * frameworks in which tasks are never joined. However neither
184     * mode considers affinities, loads, cache localities, etc, so
185     * rarely provide the best possible performance on a given
186     * machine, but portably provide good throughput by averaging over
187     * these factors. (Further, even if we did try to use such
188 jsr166 1.117 * information, we do not usually have a basis for exploiting it.
189     * For example, some sets of tasks profit from cache affinities,
190     * but others are harmed by cache pollution effects.)
191 dl 1.111 *
192     * WorkQueues are also used in a similar way for tasks submitted
193     * to the pool. We cannot mix these tasks in the same queues used
194     * for work-stealing (this would contaminate lifo/fifo
195 dl 1.116 * processing). Instead, we loosely associate submission queues
196     * with submitting threads, using a form of hashing. The
197     * ThreadLocal Submitter class contains a value initially used as
198     * a hash code for choosing existing queues, but may be randomly
199     * repositioned upon contention with other submitters. In
200     * essence, submitters act like workers except that they never
201     * take tasks, and they are multiplexed on to a finite number of
202     * shared work queues. However, classes are set up so that future
203     * extensions could allow submitters to optionally help perform
204 dl 1.119 * tasks as well. Insertion of tasks in shared mode requires a
205     * lock (mainly to protect in the case of resizing) but we use
206     * only a simple spinlock (using bits in field runState), because
207     * submitters encountering a busy queue move on to try or create
208 dl 1.123 * other queues -- they block only when creating and registering
209     * new queues.
210 dl 1.111 *
211 jsr166 1.117 * Management
212 dl 1.111 * ==========
213 dl 1.91 *
214     * The main throughput advantages of work-stealing stem from
215     * decentralized control -- workers mostly take tasks from
216     * themselves or each other. We cannot negate this in the
217     * implementation of other management responsibilities. The main
218     * tactic for avoiding bottlenecks is packing nearly all
219 dl 1.111 * essentially atomic control state into two volatile variables
220     * that are by far most often read (not written) as status and
221 jsr166 1.117 * consistency checks.
222 dl 1.111 *
223     * Field "ctl" contains 64 bits holding all the information needed
224     * to atomically decide to add, inactivate, enqueue (on an event
225     * queue), dequeue, and/or re-activate workers. To enable this
226     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
227     * far in excess of normal operating range) to allow ids, counts,
228     * and their negations (used for thresholding) to fit into 16bit
229     * fields.
230     *
231     * Field "runState" contains 32 bits needed to register and
232     * deregister WorkQueues, as well as to enable shutdown. It is
233     * only modified under a lock (normally briefly held, but
234     * occasionally protecting allocations and resizings) but even
235 dl 1.123 * when locked remains available to check consistency.
236 dl 1.111 *
237     * Recording WorkQueues. WorkQueues are recorded in the
238 dl 1.136 * "workQueues" array that is created upon first use and expanded
239     * if necessary. Updates to the array while recording new workers
240     * and unrecording terminated ones are protected from each other
241     * by a lock but the array is otherwise concurrently readable, and
242     * accessed directly. To simplify index-based operations, the
243     * array size is always a power of two, and all readers must
244     * tolerate null slots. Shared (submission) queues are at even
245     * indices, worker queues at odd indices. Grouping them together
246     * in this way simplifies and speeds up task scanning.
247 dl 1.119 *
248     * All worker thread creation is on-demand, triggered by task
249     * submissions, replacement of terminated workers, and/or
250 dl 1.111 * compensation for blocked workers. However, all other support
251     * code is set up to work with other policies. To ensure that we
252     * do not hold on to worker references that would prevent GC, ALL
253     * accesses to workQueues are via indices into the workQueues
254     * array (which is one source of some of the messy code
255     * constructions here). In essence, the workQueues array serves as
256     * a weak reference mechanism. Thus for example the wait queue
257     * field of ctl stores indices, not references. Access to the
258     * workQueues in associated methods (for example signalWork) must
259     * both index-check and null-check the IDs. All such accesses
260     * ignore bad IDs by returning out early from what they are doing,
261     * since this can only be associated with termination, in which
262 dl 1.119 * case it is OK to give up. All uses of the workQueues array
263     * also check that it is non-null (even if previously
264     * non-null). This allows nulling during termination, which is
265     * currently not necessary, but remains an option for
266     * resource-revocation-based shutdown schemes. It also helps
267     * reduce JIT issuance of uncommon-trap code, which tends to
268 dl 1.111 * unnecessarily complicate control flow in some methods.
269 dl 1.91 *
270 dl 1.111 * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
271 dl 1.95 * let workers spin indefinitely scanning for tasks when none can
272     * be found immediately, and we cannot start/resume workers unless
273     * there appear to be tasks available. On the other hand, we must
274     * quickly prod them into action when new tasks are submitted or
275 dl 1.111 * generated. In many usages, ramp-up time to activate workers is
276     * the main limiting factor in overall performance (this is
277     * compounded at program start-up by JIT compilation and
278     * allocation). So we try to streamline this as much as possible.
279     * We park/unpark workers after placing in an event wait queue
280     * when they cannot find work. This "queue" is actually a simple
281     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
282     * counter value (that reflects the number of times a worker has
283     * been inactivated) to avoid ABA effects (we need only as many
284     * version numbers as worker threads). Successors are held in
285     * field WorkQueue.nextWait. Queuing deals with several intrinsic
286     * races, mainly that a task-producing thread can miss seeing (and
287 dl 1.95 * signalling) another thread that gave up looking for work but
288     * has not yet entered the wait queue. We solve this by requiring
289 dl 1.111 * a full sweep of all workers (via repeated calls to method
290     * scan()) both before and after a newly waiting worker is added
291     * to the wait queue. During a rescan, the worker might release
292     * some other queued worker rather than itself, which has the same
293     * net effect. Because enqueued workers may actually be rescanning
294     * rather than waiting, we set and clear the "parker" field of
295 jsr166 1.117 * WorkQueues to reduce unnecessary calls to unpark. (This
296 dl 1.111 * requires a secondary recheck to avoid missed signals.) Note
297     * the unusual conventions about Thread.interrupts surrounding
298     * parking and other blocking: Because interrupts are used solely
299     * to alert threads to check termination, which is checked anyway
300     * upon blocking, we clear status (using Thread.interrupted)
301     * before any call to park, so that park does not immediately
302     * return due to status being set via some other unrelated call to
303     * interrupt in user code.
304 dl 1.91 *
305     * Signalling. We create or wake up workers only when there
306     * appears to be at least one task they might be able to find and
307     * execute. When a submission is added or another worker adds a
308 dl 1.111 * task to a queue that previously had fewer than two tasks, they
309 dl 1.91 * signal waiting workers (or trigger creation of new ones if
310     * fewer than the given parallelism level -- see signalWork).
311 dl 1.111 * These primary signals are buttressed by signals during rescans;
312     * together these cover the signals needed in cases when more
313     * tasks are pushed but untaken, and improve performance compared
314     * to having one thread wake up all workers.
315 dl 1.91 *
316     * Trimming workers. To release resources after periods of lack of
317     * use, a worker starting to wait when the pool is quiescent will
318 dl 1.135 * time out and terminate if the pool has remained quiescent for a
319     * given period -- a short period if there are more threads than
320     * parallelism, longer as the number of threads decreases. This
321     * will slowly propagate, eventually terminating all workers after
322     * periods of non-use.
323 dl 1.91 *
324 dl 1.111 * Shutdown and Termination. A call to shutdownNow atomically sets
325 jsr166 1.117 * a runState bit and then (non-atomically) sets each worker's
326 dl 1.111 * runState status, cancels all unprocessed tasks, and wakes up
327     * all waiting workers. Detecting whether termination should
328     * commence after a non-abrupt shutdown() call requires more work
329     * and bookkeeping. We need consensus about quiescence (i.e., that
330     * there is no more work). The active count provides a primary
331     * indication but non-abrupt shutdown still requires a rechecking
332     * scan for any workers that are inactive but not queued.
333     *
334 jsr166 1.117 * Joining Tasks
335     * =============
336 dl 1.111 *
337     * Any of several actions may be taken when one worker is waiting
338 jsr166 1.117 * to join a task stolen (or always held) by another. Because we
339 dl 1.111 * are multiplexing many tasks on to a pool of workers, we can't
340     * just let them block (as in Thread.join). We also cannot just
341     * reassign the joiner's run-time stack with another and replace
342     * it later, which would be a form of "continuation", that even if
343     * possible is not necessarily a good idea since we sometimes need
344 jsr166 1.117 * both an unblocked task and its continuation to progress.
345     * Instead we combine two tactics:
346 dl 1.58 *
347 dl 1.60 * Helping: Arranging for the joiner to execute some task that it
348 dl 1.111 * would be running if the steal had not occurred.
349 dl 1.58 *
350 dl 1.61 * Compensating: Unless there are already enough live threads,
351 dl 1.111 * method tryCompensate() may create or re-activate a spare
352     * thread to compensate for blocked joiners until they unblock.
353     *
354     * A third form (implemented in tryRemoveAndExec and
355     * tryPollForAndExec) amounts to helping a hypothetical
356     * compensator: If we can readily tell that a possible action of a
357     * compensator is to steal and execute the task being joined, the
358     * joining thread can do so directly, without the need for a
359     * compensation thread (although at the expense of larger run-time
360     * stacks, but the tradeoff is typically worthwhile).
361 dl 1.91 *
362     * The ManagedBlocker extension API can't use helping so relies
363     * only on compensation in method awaitBlocker.
364 dl 1.58 *
365 dl 1.111 * The algorithm in tryHelpStealer entails a form of "linear"
366     * helping: Each worker records (in field currentSteal) the most
367     * recent task it stole from some other worker. Plus, it records
368     * (in field currentJoin) the task it is currently actively
369     * joining. Method tryHelpStealer uses these markers to try to
370     * find a worker to help (i.e., steal back a task from and execute
371     * it) that could hasten completion of the actively joined task.
372     * In essence, the joiner executes a task that would be on its own
373     * local deque had the to-be-joined task not been stolen. This may
374     * be seen as a conservative variant of the approach in Wagner &
375     * Calder "Leapfrogging: a portable technique for implementing
376     * efficient futures" SIGPLAN Notices, 1993
377     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
378     * that: (1) We only maintain dependency links across workers upon
379     * steals, rather than use per-task bookkeeping. This sometimes
380 dl 1.123 * requires a linear scan of workQueues array to locate stealers,
381     * but often doesn't because stealers leave hints (that may become
382 dl 1.111 * stale/wrong) of where to locate them. A stealHint is only a
383     * hint because a worker might have had multiple steals and the
384     * hint records only one of them (usually the most current).
385     * Hinting isolates cost to when it is needed, rather than adding
386     * to per-task overhead. (2) It is "shallow", ignoring nesting
387     * and potentially cyclic mutual steals. (3) It is intentionally
388     * racy: field currentJoin is updated only while actively joining,
389     * which means that we miss links in the chain during long-lived
390     * tasks, GC stalls etc (which is OK since blocking in such cases
391     * is usually a good idea). (4) We bound the number of attempts
392 dl 1.123 * to find work (see MAX_HELP) and fall back to suspending the
393     * worker and if necessary replacing it with another.
394 dl 1.111 *
395 dl 1.91 * It is impossible to keep exactly the target parallelism number
396     * of threads running at any given time. Determining the
397 dl 1.66 * existence of conservatively safe helping targets, the
398     * availability of already-created spares, and the apparent need
399 dl 1.111 * to create new spares are all racy, so we rely on multiple
400 dl 1.123 * retries of each. Compensation in the apparent absence of
401     * helping opportunities is challenging to control on JVMs, where
402     * GC and other activities can stall progress of tasks that in
403     * turn stall out many other dependent tasks, without us being
404     * able to determine whether they will ever require compensation.
405     * Even though work-stealing otherwise encounters little
406     * degradation in the presence of more threads than cores,
407     * aggressively adding new threads in such cases entails risk of
408     * unwanted positive feedback control loops in which more threads
409     * cause more dependent stalls (as well as delayed progress of
410     * unblocked threads to the point that we know they are available)
411     * leading to more situations requiring more threads, and so
412     * on. This aspect of control can be seen as an (analytically
413 jsr166 1.125 * intractable) game with an opponent that may choose the worst
414 dl 1.123 * (for us) active thread to stall at any time. We take several
415     * precautions to bound losses (and thus bound gains), mainly in
416     * methods tryCompensate and awaitJoin: (1) We only try
417     * compensation after attempting enough helping steps (measured
418     * via counting and timing) that we have already consumed the
419     * estimated cost of creating and activating a new thread. (2) We
420     * allow up to 50% of threads to be blocked before initially
421     * adding any others, and unless completely saturated, check that
422     * some work is available for a new worker before adding. Also, we
423     * create up to only 50% more threads until entering a mode that
424     * only adds a thread if all others are possibly blocked. All
425     * together, this means that we might be half as fast to react,
426     * and create half as many threads as possible in the ideal case,
427     * but present vastly fewer anomalies in all other cases compared
428     * to both more aggressive and more conservative alternatives.
429 dl 1.58 *
430 dl 1.91 * Style notes: There is a lot of representation-level coupling
431 dl 1.53 * among classes ForkJoinPool, ForkJoinWorkerThread, and
432 dl 1.111 * ForkJoinTask. The fields of WorkQueue maintain data structures
433     * managed by ForkJoinPool, so are directly accessed. There is
434     * little point trying to reduce this, since any associated future
435     * changes in representations will need to be accompanied by
436 dl 1.119 * algorithmic changes anyway. Several methods intrinsically
437     * sprawl because they must accumulate sets of consistent reads of
438     * volatiles held in local variables. Methods signalWork() and
439     * scan() are the main bottlenecks, so are especially heavily
440     * micro-optimized/mangled. There are lots of inline assignments
441     * (of form "while ((local = field) != 0)") which are usually the
442     * simplest way to ensure the required read orderings (which are
443     * sometimes critical). This leads to a "C"-like style of listing
444     * declarations of these locals at the heads of methods or blocks.
445     * There are several occurrences of the unusual "do {} while
446     * (!cas...)" which is the simplest way to force an update of a
447     * CAS'ed variable. There are also other coding oddities that help
448     * some methods perform reasonably even when interpreted (not
449     * compiled).
450 dl 1.91 *
451 jsr166 1.117 * The order of declarations in this file is:
452 dl 1.119 * (1) Static utility functions
453     * (2) Nested (static) classes
454     * (3) Static fields
455     * (4) Fields, along with constants used when unpacking some of them
456     * (5) Internal control methods
457     * (6) Callbacks and other support for ForkJoinTask methods
458     * (7) Exported methods
459     * (8) Static block initializing statics in minimally dependent order
460     */
461    
462     // Static utilities
463    
464     /**
465     * If there is a security manager, makes sure caller has
466     * permission to modify threads.
467 dl 1.1 */
468 dl 1.119 private static void checkPermission() {
469     SecurityManager security = System.getSecurityManager();
470     if (security != null)
471     security.checkPermission(modifyThreadPermission);
472     }
473    
474     // Nested classes
475 dl 1.1
476     /**
477 jsr166 1.35 * Factory for creating new {@link ForkJoinWorkerThread}s.
478     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
479     * for {@code ForkJoinWorkerThread} subclasses that extend base
480     * functionality or initialize threads with different contexts.
481 dl 1.1 */
482     public static interface ForkJoinWorkerThreadFactory {
483     /**
484     * Returns a new worker thread operating in the given pool.
485     *
486     * @param pool the pool this thread works in
487 jsr166 1.48 * @throws NullPointerException if the pool is null
488 dl 1.1 */
489     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
490     }
491    
492     /**
493 jsr166 1.17 * Default ForkJoinWorkerThreadFactory implementation; creates a
494 dl 1.1 * new ForkJoinWorkerThread.
495     */
496 dl 1.57 static class DefaultForkJoinWorkerThreadFactory
497 dl 1.1 implements ForkJoinWorkerThreadFactory {
498     public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
499 dl 1.53 return new ForkJoinWorkerThread(pool);
500 dl 1.1 }
501     }
502    
503     /**
504 dl 1.119 * Class for artificial tasks that are used to replace the target
505     * of local joins if they are removed from an interior queue slot
506     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
507     * actually do anything beyond having a unique identity.
508 dl 1.1 */
509 dl 1.119 static final class EmptyTask extends ForkJoinTask<Void> {
510     EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
511     public final Void getRawResult() { return null; }
512     public final void setRawResult(Void x) {}
513     public final boolean exec() { return true; }
514 dl 1.1 }
515    
516     /**
517 dl 1.111 * Queues supporting work-stealing as well as external task
518     * submission. See above for main rationale and algorithms.
519     * Implementation relies heavily on "Unsafe" intrinsics
520     * and selective use of "volatile":
521     *
522     * Field "base" is the index (mod array.length) of the least valid
523     * queue slot, which is always the next position to steal (poll)
524     * from if nonempty. Reads and writes require volatile orderings
525     * but not CAS, because updates are only performed after slot
526     * CASes.
527     *
528     * Field "top" is the index (mod array.length) of the next queue
529     * slot to push to or pop from. It is written only by owner thread
530     * for push, or under lock for trySharedPush, and accessed by
531     * other threads only after reading (volatile) base. Both top and
532     * base are allowed to wrap around on overflow, but (top - base)
533 jsr166 1.114 * (or more commonly -(base - top) to force volatile read of base
534 dl 1.111 * before top) still estimates size.
535     *
536     * The array slots are read and written using the emulation of
537     * volatiles/atomics provided by Unsafe. Insertions must in
538     * general use putOrderedObject as a form of releasing store to
539     * ensure that all writes to the task object are ordered before
540     * its publication in the queue. (Although we can avoid one case
541     * of this when locked in trySharedPush.) All removals entail a
542     * CAS to null. The array is always a power of two. To ensure
543     * safety of Unsafe array operations, all accesses perform
544     * explicit null checks and implicit bounds checks via
545     * power-of-two masking.
546     *
547     * In addition to basic queuing support, this class contains
548     * fields described elsewhere to control execution. It turns out
549     * to work better memory-layout-wise to include them in this
550     * class rather than a separate class.
551     *
552     * Performance on most platforms is very sensitive to placement of
553     * instances of both WorkQueues and their arrays -- we absolutely
554     * do not want multiple WorkQueue instances or multiple queue
555     * arrays sharing cache lines. (It would be best for queue objects
556     * and their arrays to share, but there is nothing available to
557     * help arrange that). Unfortunately, because they are recorded
558     * in a common array, WorkQueue instances are often moved to be
559     * adjacent by garbage collectors. To reduce impact, we use field
560     * padding that works OK on common platforms; this effectively
561     * trades off slightly slower average field access for the sake of
562     * avoiding really bad worst-case access. (Until better JVM
563     * support is in place, this padding is dependent on transient
564     * properties of JVM field layout rules.) We also take care in
565 dl 1.119 * allocating, sizing and resizing the array. Non-shared queue
566 dl 1.111 * arrays are initialized (via method growArray) by workers before
567     * use. Others are allocated on first use.
568 dl 1.53 */
569 dl 1.111 static final class WorkQueue {
570     /**
571     * Capacity of work-stealing queue array upon initialization.
572 dl 1.123 * Must be a power of two; at least 4, but should be larger to
573     * reduce or eliminate cacheline sharing among queues.
574     * Currently, it is much larger, as a partial workaround for
575     * the fact that JVMs often place arrays in locations that
576     * share GC bookkeeping (especially cardmarks) such that
577     * per-write accesses encounter serious memory contention.
578 dl 1.111 */
579 dl 1.123 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
580 dl 1.111
581     /**
582     * Maximum size for queue arrays. Must be a power of two less
583     * than or equal to 1 << (31 - width of array entry) to ensure
584     * lack of wraparound of index calculations, but defined to a
585     * value a bit less than this to help users trap runaway
586     * programs before saturating systems.
587     */
588     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
589    
590     volatile long totalSteals; // cumulative number of steals
591     int seed; // for random scanning; initialize nonzero
592     volatile int eventCount; // encoded inactivation count; < 0 if inactive
593     int nextWait; // encoded record of next event waiter
594     int rescans; // remaining scans until block
595     int nsteals; // top-level task executions since last idle
596     final int mode; // lifo, fifo, or shared
597     int poolIndex; // index of this queue in pool (or 0)
598     int stealHint; // index of most recent known stealer
599     volatile int runState; // 1: locked, -1: terminate; else 0
600     volatile int base; // index of next slot for poll
601     int top; // index of next slot for push
602     ForkJoinTask<?>[] array; // the elements (initially unallocated)
603 dl 1.123 final ForkJoinPool pool; // the containing pool (may be null)
604 dl 1.111 final ForkJoinWorkerThread owner; // owning thread or null if shared
605     volatile Thread parker; // == owner during call to park; else null
606 dl 1.128 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
607 dl 1.111 ForkJoinTask<?> currentSteal; // current non-local task being executed
608     // Heuristic padding to ameliorate unfortunate memory placements
609 dl 1.123 Object p00, p01, p02, p03, p04, p05, p06, p07;
610     Object p08, p09, p0a, p0b, p0c, p0d, p0e;
611 dl 1.111
612 dl 1.123 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode) {
613     this.mode = mode;
614     this.pool = pool;
615 dl 1.111 this.owner = owner;
616     // Place indices in the center of array (that is not yet allocated)
617     base = top = INITIAL_QUEUE_CAPACITY >>> 1;
618     }
619    
620     /**
621 dl 1.123 * Returns the approximate number of tasks in the queue.
622 dl 1.111 */
623     final int queueSize() {
624 dl 1.123 int n = base - top; // non-owner callers must read base first
625     return (n >= 0) ? 0 : -n; // ignore transient negative
626     }
627    
628     /**
629     * Provides a more accurate estimate of whether this queue has
630     * any tasks than does queueSize, by checking whether a
631     * near-empty queue has at least one unclaimed task.
632     */
633     final boolean isEmpty() {
634     ForkJoinTask<?>[] a; int m, s;
635     int n = base - (s = top);
636     return (n >= 0 ||
637     (n == -1 &&
638     ((a = array) == null ||
639     (m = a.length - 1) < 0 ||
640     U.getObjectVolatile
641     (a, ((m & (s - 1)) << ASHIFT) + ABASE) == null)));
642 dl 1.111 }
643    
644     /**
645     * Pushes a task. Call only by owner in unshared queues.
646     *
647     * @param task the task. Caller must ensure non-null.
648 jsr166 1.117 * @throw RejectedExecutionException if array cannot be resized
649 dl 1.111 */
650 dl 1.123 final void push(ForkJoinTask<?> task) {
651     ForkJoinTask<?>[] a; ForkJoinPool p;
652 dl 1.111 int s = top, m, n;
653     if ((a = array) != null) { // ignore if queue removed
654     U.putOrderedObject
655     (a, (((m = a.length - 1) & s) << ASHIFT) + ABASE, task);
656     if ((n = (top = s + 1) - base) <= 2) {
657 dl 1.123 if ((p = pool) != null)
658 dl 1.111 p.signalWork();
659     }
660     else if (n >= m)
661     growArray(true);
662     }
663     }
664    
665     /**
666     * Pushes a task if lock is free and array is either big
667     * enough or can be resized to be big enough.
668     *
669     * @param task the task. Caller must ensure non-null.
670     * @return true if submitted
671     */
672     final boolean trySharedPush(ForkJoinTask<?> task) {
673     boolean submitted = false;
674     if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
675     ForkJoinTask<?>[] a = array;
676 dl 1.119 int s = top;
677 dl 1.111 try {
678 dl 1.119 if ((a != null && a.length > s + 1 - base) ||
679 dl 1.111 (a = growArray(false)) != null) { // must presize
680     int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
681     U.putObject(a, (long)j, task); // don't need "ordered"
682     top = s + 1;
683     submitted = true;
684     }
685     } finally {
686     runState = 0; // unlock
687     }
688     }
689     return submitted;
690     }
691    
692     /**
693 dl 1.123 * Takes next task, if one exists, in LIFO order. Call only
694 dl 1.137 * by owner in unshared queues.
695 dl 1.123 */
696     final ForkJoinTask<?> pop() {
697 dl 1.127 ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
698     if ((a = array) != null && (m = a.length - 1) >= 0) {
699 dl 1.123 for (int s; (s = top - 1) - base >= 0;) {
700 dl 1.127 long j = ((m & s) << ASHIFT) + ABASE;
701     if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
702 dl 1.123 break;
703     if (U.compareAndSwapObject(a, j, t, null)) {
704     top = s;
705     return t;
706     }
707     }
708     }
709     return null;
710     }
711    
712 dl 1.137 final ForkJoinTask<?> sharedPop() {
713     ForkJoinTask<?> task = null;
714     if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
715     try {
716     ForkJoinTask<?>[] a; int m;
717     if ((a = array) != null && (m = a.length - 1) >= 0) {
718     for (int s; (s = top - 1) - base >= 0;) {
719     long j = ((m & s) << ASHIFT) + ABASE;
720     ForkJoinTask<?> t =
721     (ForkJoinTask<?>)U.getObject(a, j);
722     if (t == null)
723     break;
724     if (U.compareAndSwapObject(a, j, t, null)) {
725     top = s;
726     task = t;
727     break;
728     }
729     }
730     }
731     } finally {
732     runState = 0;
733     }
734     }
735     return task;
736     }
737    
738    
739 dl 1.123 /**
740     * Takes a task in FIFO order if b is base of queue and a task
741     * can be claimed without contention. Specialized versions
742     * appear in ForkJoinPool methods scan and tryHelpStealer.
743 dl 1.111 */
744 dl 1.123 final ForkJoinTask<?> pollAt(int b) {
745     ForkJoinTask<?> t; ForkJoinTask<?>[] a;
746     if ((a = array) != null) {
747 dl 1.119 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
748     if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
749     base == b &&
750 dl 1.111 U.compareAndSwapObject(a, j, t, null)) {
751     base = b + 1;
752     return t;
753     }
754     }
755     return null;
756     }
757    
758     /**
759 dl 1.123 * Takes next task, if one exists, in FIFO order.
760 dl 1.111 */
761 dl 1.123 final ForkJoinTask<?> poll() {
762     ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
763     while ((b = base) - top < 0 && (a = array) != null) {
764     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
765     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
766     if (t != null) {
767     if (base == b &&
768     U.compareAndSwapObject(a, j, t, null)) {
769     base = b + 1;
770 dl 1.111 return t;
771     }
772     }
773 dl 1.123 else if (base == b) {
774     if (b + 1 == top)
775     break;
776     Thread.yield(); // wait for lagging update
777     }
778 dl 1.111 }
779     return null;
780     }
781    
782     /**
783     * Takes next task, if one exists, in order specified by mode.
784     */
785     final ForkJoinTask<?> nextLocalTask() {
786     return mode == 0 ? pop() : poll();
787     }
788    
789     /**
790     * Returns next task, if one exists, in order specified by mode.
791     */
792     final ForkJoinTask<?> peek() {
793     ForkJoinTask<?>[] a = array; int m;
794     if (a == null || (m = a.length - 1) < 0)
795     return null;
796     int i = mode == 0 ? top - 1 : base;
797     int j = ((i & m) << ASHIFT) + ABASE;
798     return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
799     }
800    
801     /**
802     * Pops the given task only if it is at the current top.
803     */
804     final boolean tryUnpush(ForkJoinTask<?> t) {
805     ForkJoinTask<?>[] a; int s;
806     if ((a = array) != null && (s = top) != base &&
807     U.compareAndSwapObject
808     (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
809     top = s;
810     return true;
811     }
812     return false;
813     }
814    
815     /**
816 dl 1.135 * Version of tryUnpush for shared queues; called by non-FJ
817 dl 1.136 * submitters after prechecking that task probably exists.
818 dl 1.135 */
819 dl 1.136 final boolean trySharedUnpush(ForkJoinTask<?> t) {
820 dl 1.135 boolean success = false;
821 dl 1.136 if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
822 dl 1.135 try {
823 dl 1.136 ForkJoinTask<?>[] a; int s;
824     if ((a = array) != null && (s = top) != base &&
825     U.compareAndSwapObject
826     (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
827     top = s;
828     success = true;
829 dl 1.135 }
830     } finally {
831     runState = 0; // unlock
832     }
833     }
834     return success;
835     }
836    
837     /**
838 dl 1.111 * Polls the given task only if it is at the current base.
839     */
840     final boolean pollFor(ForkJoinTask<?> task) {
841 dl 1.119 ForkJoinTask<?>[] a; int b;
842     if ((b = base) - top < 0 && (a = array) != null) {
843     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
844 dl 1.111 if (U.getObjectVolatile(a, j) == task && base == b &&
845     U.compareAndSwapObject(a, j, task, null)) {
846     base = b + 1;
847     return true;
848     }
849     }
850     return false;
851     }
852    
853     /**
854     * Initializes or doubles the capacity of array. Call either
855     * by owner or with lock held -- it is OK for base, but not
856     * top, to move while resizings are in progress.
857     *
858     * @param rejectOnFailure if true, throw exception if capacity
859     * exceeded (relayed ultimately to user); else return null.
860     */
861     final ForkJoinTask<?>[] growArray(boolean rejectOnFailure) {
862     ForkJoinTask<?>[] oldA = array;
863     int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
864     if (size <= MAXIMUM_QUEUE_CAPACITY) {
865     int oldMask, t, b;
866     ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
867     if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
868     (t = top) - (b = base) > 0) {
869     int mask = size - 1;
870     do {
871     ForkJoinTask<?> x;
872     int oldj = ((b & oldMask) << ASHIFT) + ABASE;
873     int j = ((b & mask) << ASHIFT) + ABASE;
874     x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
875     if (x != null &&
876     U.compareAndSwapObject(oldA, oldj, x, null))
877     U.putObjectVolatile(a, j, x);
878     } while (++b != t);
879     }
880     return a;
881     }
882     else if (!rejectOnFailure)
883     return null;
884     else
885     throw new RejectedExecutionException("Queue capacity exceeded");
886     }
887    
888     /**
889 jsr166 1.117 * Removes and cancels all known tasks, ignoring any exceptions.
890 dl 1.111 */
891     final void cancelAll() {
892     ForkJoinTask.cancelIgnoringExceptions(currentJoin);
893     ForkJoinTask.cancelIgnoringExceptions(currentSteal);
894     for (ForkJoinTask<?> t; (t = poll()) != null; )
895     ForkJoinTask.cancelIgnoringExceptions(t);
896     }
897    
898 dl 1.119 /**
899     * Computes next value for random probes. Scans don't require
900     * a very high quality generator, but also not a crummy one.
901     * Marsaglia xor-shift is cheap and works well enough. Note:
902 dl 1.123 * This is manually inlined in its usages in ForkJoinPool to
903     * avoid writes inside busy scan loops.
904 dl 1.119 */
905     final int nextSeed() {
906     int r = seed;
907     r ^= r << 13;
908     r ^= r >>> 17;
909     return seed = r ^= r << 5;
910     }
911    
912 dl 1.139 // Specialized execution methods
913 dl 1.111
914     /**
915 dl 1.127 * Pops and runs tasks until empty.
916 dl 1.111 */
917 dl 1.127 private void popAndExecAll() {
918     // A bit faster than repeated pop calls
919     ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
920     while ((a = array) != null && (m = a.length - 1) >= 0 &&
921     (s = top - 1) - base >= 0 &&
922     (t = ((ForkJoinTask<?>)
923     U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
924     != null) {
925     if (U.compareAndSwapObject(a, j, t, null)) {
926     top = s;
927     t.doExec();
928 dl 1.123 }
929 dl 1.127 }
930     }
931    
932     /**
933     * Polls and runs tasks until empty.
934     */
935     private void pollAndExecAll() {
936     for (ForkJoinTask<?> t; (t = poll()) != null;)
937     t.doExec();
938     }
939    
940     /**
941     * If present, removes from queue and executes the given task, or
942     * any other cancelled task. Returns (true) immediately on any CAS
943     * or consistency check failure so caller can retry.
944     *
945 dl 1.128 * @return 0 if no progress can be made, else positive
946     * (this unusual convention simplifies use with tryHelpStealer.)
947 dl 1.127 */
948 dl 1.128 final int tryRemoveAndExec(ForkJoinTask<?> task) {
949     int stat = 1;
950     boolean removed = false, empty = true;
951 dl 1.127 ForkJoinTask<?>[] a; int m, s, b, n;
952     if ((a = array) != null && (m = a.length - 1) >= 0 &&
953     (n = (s = top) - (b = base)) > 0) {
954     for (ForkJoinTask<?> t;;) { // traverse from s to b
955     int j = ((--s & m) << ASHIFT) + ABASE;
956     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
957     if (t == null) // inconsistent length
958     break;
959     else if (t == task) {
960     if (s + 1 == top) { // pop
961     if (!U.compareAndSwapObject(a, j, task, null))
962 dl 1.123 break;
963 dl 1.127 top = s;
964     removed = true;
965 dl 1.123 }
966 dl 1.127 else if (base == b) // replace with proxy
967     removed = U.compareAndSwapObject(a, j, task,
968     new EmptyTask());
969     break;
970     }
971     else if (t.status >= 0)
972     empty = false;
973     else if (s + 1 == top) { // pop and throw away
974     if (U.compareAndSwapObject(a, j, t, null))
975     top = s;
976     break;
977     }
978     if (--n == 0) {
979     if (!empty && base == b)
980 dl 1.128 stat = 0;
981 dl 1.127 break;
982 dl 1.123 }
983     }
984 dl 1.111 }
985 dl 1.127 if (removed)
986     task.doExec();
987 dl 1.128 return stat;
988 dl 1.111 }
989    
990     /**
991 dl 1.139 * Version of shared pop that takes top element only if it
992     * its root is the given CountedCompleter.
993     */
994     final CountedCompleter<?> sharedPopCC(CountedCompleter<?> root) {
995     CountedCompleter<?> task = null;
996     if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
997     try {
998     ForkJoinTask<?>[] a; int m;
999     if ((a = array) != null && (m = a.length - 1) >= 0) {
1000     outer:for (int s; (s = top - 1) - base >= 0;) {
1001     long j = ((m & s) << ASHIFT) + ABASE;
1002     ForkJoinTask<?> t =
1003     (ForkJoinTask<?>)U.getObject(a, j);
1004     if (t == null || !(t instanceof CountedCompleter))
1005     break;
1006     CountedCompleter<?> cc = (CountedCompleter<?>)t;
1007     for (CountedCompleter<?> q = cc, p;;) {
1008     if (q == root) {
1009     if (U.compareAndSwapObject(a, j, cc, null)) {
1010     top = s;
1011     task = cc;
1012     break outer;
1013     }
1014     break;
1015     }
1016     if ((p = q.completer) == null)
1017     break outer;
1018     q = p;
1019     }
1020     }
1021     }
1022     } finally {
1023     runState = 0;
1024     }
1025     }
1026     return task;
1027     }
1028    
1029     /**
1030 dl 1.111 * Executes a top-level task and any local tasks remaining
1031     * after execution.
1032     */
1033 dl 1.127 final void runTask(ForkJoinTask<?> t) {
1034 dl 1.111 if (t != null) {
1035     currentSteal = t;
1036     t.doExec();
1037 dl 1.127 if (top != base) { // process remaining local tasks
1038     if (mode == 0)
1039     popAndExecAll();
1040     else
1041     pollAndExecAll();
1042     }
1043 dl 1.111 ++nsteals;
1044     currentSteal = null;
1045     }
1046     }
1047    
1048     /**
1049 jsr166 1.117 * Executes a non-top-level (stolen) task.
1050 dl 1.111 */
1051     final void runSubtask(ForkJoinTask<?> t) {
1052     if (t != null) {
1053     ForkJoinTask<?> ps = currentSteal;
1054     currentSteal = t;
1055     t.doExec();
1056     currentSteal = ps;
1057     }
1058     }
1059    
1060     /**
1061 dl 1.119 * Returns true if owned and not known to be blocked.
1062     */
1063     final boolean isApparentlyUnblocked() {
1064     Thread wt; Thread.State s;
1065     return (eventCount >= 0 &&
1066     (wt = owner) != null &&
1067     (s = wt.getState()) != Thread.State.BLOCKED &&
1068     s != Thread.State.WAITING &&
1069     s != Thread.State.TIMED_WAITING);
1070     }
1071    
1072     /**
1073     * If this owned and is not already interrupted, try to
1074     * interrupt and/or unpark, ignoring exceptions.
1075 dl 1.111 */
1076 dl 1.119 final void interruptOwner() {
1077     Thread wt, p;
1078     if ((wt = owner) != null && !wt.isInterrupted()) {
1079     try {
1080     wt.interrupt();
1081     } catch (SecurityException ignore) {
1082     }
1083     }
1084     if ((p = parker) != null)
1085     U.unpark(p);
1086 dl 1.111 }
1087    
1088     // Unsafe mechanics
1089     private static final sun.misc.Unsafe U;
1090     private static final long RUNSTATE;
1091     private static final int ABASE;
1092     private static final int ASHIFT;
1093     static {
1094     int s;
1095     try {
1096     U = getUnsafe();
1097     Class<?> k = WorkQueue.class;
1098     Class<?> ak = ForkJoinTask[].class;
1099     RUNSTATE = U.objectFieldOffset
1100     (k.getDeclaredField("runState"));
1101     ABASE = U.arrayBaseOffset(ak);
1102     s = U.arrayIndexScale(ak);
1103     } catch (Exception e) {
1104     throw new Error(e);
1105     }
1106     if ((s & (s-1)) != 0)
1107     throw new Error("data type scale not a power of two");
1108     ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
1109     }
1110     }
1111 jsr166 1.131
1112 dl 1.1 /**
1113 dl 1.119 * Per-thread records for threads that submit to pools. Currently
1114 jsr166 1.120 * holds only pseudo-random seed / index that is used to choose
1115 dl 1.119 * submission queues in method doSubmit. In the future, this may
1116     * also incorporate a means to implement different task rejection
1117     * and resubmission policies.
1118 dl 1.123 *
1119     * Seeds for submitters and workers/workQueues work in basically
1120     * the same way but are initialized and updated using slightly
1121     * different mechanics. Both are initialized using the same
1122     * approach as in class ThreadLocal, where successive values are
1123     * unlikely to collide with previous values. This is done during
1124     * registration for workers, but requires a separate AtomicInteger
1125     * for submitters. Seeds are then randomly modified upon
1126     * collisions using xorshifts, which requires a non-zero seed.
1127 dl 1.116 */
1128     static final class Submitter {
1129 dl 1.119 int seed;
1130 dl 1.123 Submitter() {
1131     int s = nextSubmitterSeed.getAndAdd(SEED_INCREMENT);
1132     seed = (s == 0) ? 1 : s; // ensure non-zero
1133     }
1134 dl 1.116 }
1135    
1136     /** ThreadLocal class for Submitters */
1137     static final class ThreadSubmitter extends ThreadLocal<Submitter> {
1138     public Submitter initialValue() { return new Submitter(); }
1139 dl 1.111 }
1140 dl 1.1
1141 dl 1.119 // static fields (initialized in static initializer below)
1142    
1143     /**
1144     * Creates a new ForkJoinWorkerThread. This factory is used unless
1145     * overridden in ForkJoinPool constructors.
1146     */
1147     public static final ForkJoinWorkerThreadFactory
1148     defaultForkJoinWorkerThreadFactory;
1149    
1150 dl 1.136 /** Property prefix for constructing common pool */
1151     private static final String propPrefix =
1152     "java.util.concurrent.ForkJoinPool.common.";
1153    
1154     /**
1155     * Common (static) pool. Non-null for public use unless a static
1156     * construction exception, but internal usages must null-check on
1157     * use.
1158     */
1159     static final ForkJoinPool commonPool;
1160    
1161     /**
1162     * Common pool parallelism. Must equal commonPool.parallelism.
1163     */
1164     static final int commonPoolParallelism;
1165    
1166 dl 1.119 /**
1167     * Generator for assigning sequence numbers as pool names.
1168     */
1169     private static final AtomicInteger poolNumberGenerator;
1170    
1171     /**
1172 dl 1.123 * Generator for initial hashes/seeds for submitters. Accessed by
1173     * Submitter class constructor.
1174     */
1175     static final AtomicInteger nextSubmitterSeed;
1176    
1177     /**
1178 dl 1.119 * Permission required for callers of methods that may start or
1179     * kill threads.
1180     */
1181     private static final RuntimePermission modifyThreadPermission;
1182    
1183 dl 1.1 /**
1184 jsr166 1.130 * Per-thread submission bookkeeping. Shared across all pools
1185 dl 1.116 * to reduce ThreadLocal pollution and because random motion
1186     * to avoid contention in one pool is likely to hold for others.
1187     */
1188 dl 1.119 private static final ThreadSubmitter submitters;
1189    
1190     // static constants
1191    
1192     /**
1193 dl 1.136 * Initial timeout value (in nanoseconds) for the thread triggering
1194 dl 1.135 * quiescence to park waiting for new work. On timeout, the thread
1195     * will instead try to shrink the number of workers.
1196 dl 1.119 */
1197 dl 1.135 private static final long IDLE_TIMEOUT = 1000L * 1000L * 1000L; // 1sec
1198 dl 1.119
1199     /**
1200 dl 1.135 * Timeout value when there are more threads than parallelism level
1201 dl 1.119 */
1202 dl 1.135 private static final long FAST_IDLE_TIMEOUT = 100L * 1000L * 1000L;
1203 dl 1.119
1204     /**
1205 dl 1.123 * The maximum stolen->joining link depth allowed in method
1206     * tryHelpStealer. Must be a power of two. This value also
1207     * controls the maximum number of times to try to help join a task
1208     * without any apparent progress or change in pool state before
1209     * giving up and blocking (see awaitJoin). Depths for legitimate
1210     * chains are unbounded, but we use a fixed constant to avoid
1211     * (otherwise unchecked) cycles and to bound staleness of
1212     * traversal parameters at the expense of sometimes blocking when
1213     * we could be helping.
1214     */
1215 dl 1.128 private static final int MAX_HELP = 64;
1216 dl 1.123
1217     /**
1218     * Secondary time-based bound (in nanosecs) for helping attempts
1219     * before trying compensated blocking in awaitJoin. Used in
1220     * conjunction with MAX_HELP to reduce variance due to different
1221     * polling rates associated with different helping options. The
1222     * value should roughly approximate the time required to create
1223     * and/or activate a worker thread.
1224     */
1225 dl 1.128 private static final long COMPENSATION_DELAY = 1L << 18; // ~0.25 millisec
1226 dl 1.123
1227     /**
1228     * Increment for seed generators. See class ThreadLocal for
1229     * explanation.
1230 dl 1.119 */
1231 dl 1.123 private static final int SEED_INCREMENT = 0x61c88647;
1232 dl 1.116
1233     /**
1234 dl 1.119 * Bits and masks for control variables
1235     *
1236     * Field ctl is a long packed with:
1237     * AC: Number of active running workers minus target parallelism (16 bits)
1238     * TC: Number of total workers minus target parallelism (16 bits)
1239     * ST: true if pool is terminating (1 bit)
1240     * EC: the wait count of top waiting thread (15 bits)
1241     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1242     *
1243     * When convenient, we can extract the upper 32 bits of counts and
1244     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1245     * (int)ctl. The ec field is never accessed alone, but always
1246     * together with id and st. The offsets of counts by the target
1247     * parallelism and the positionings of fields makes it possible to
1248     * perform the most common checks via sign tests of fields: When
1249     * ac is negative, there are not enough active workers, when tc is
1250     * negative, there are not enough total workers, and when e is
1251     * negative, the pool is terminating. To deal with these possibly
1252     * negative fields, we use casts in and out of "short" and/or
1253     * signed shifts to maintain signedness.
1254     *
1255     * When a thread is queued (inactivated), its eventCount field is
1256     * set negative, which is the only way to tell if a worker is
1257     * prevented from executing tasks, even though it must continue to
1258     * scan for them to avoid queuing races. Note however that
1259     * eventCount updates lag releases so usage requires care.
1260     *
1261     * Field runState is an int packed with:
1262     * SHUTDOWN: true if shutdown is enabled (1 bit)
1263 dl 1.123 * SEQ: a sequence number updated upon (de)registering workers (30 bits)
1264     * INIT: set true after workQueues array construction (1 bit)
1265 dl 1.119 *
1266 dl 1.123 * The sequence number enables simple consistency checks:
1267     * Staleness of read-only operations on the workQueues array can
1268     * be checked by comparing runState before vs after the reads.
1269 dl 1.119 */
1270    
1271     // bit positions/shifts for fields
1272     private static final int AC_SHIFT = 48;
1273     private static final int TC_SHIFT = 32;
1274     private static final int ST_SHIFT = 31;
1275     private static final int EC_SHIFT = 16;
1276    
1277     // bounds
1278     private static final int SMASK = 0xffff; // short bits
1279 dl 1.123 private static final int MAX_CAP = 0x7fff; // max #workers - 1
1280 dl 1.119 private static final int SQMASK = 0xfffe; // even short bits
1281     private static final int SHORT_SIGN = 1 << 15;
1282     private static final int INT_SIGN = 1 << 31;
1283    
1284     // masks
1285     private static final long STOP_BIT = 0x0001L << ST_SHIFT;
1286     private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
1287     private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
1288    
1289     // units for incrementing and decrementing
1290     private static final long TC_UNIT = 1L << TC_SHIFT;
1291     private static final long AC_UNIT = 1L << AC_SHIFT;
1292    
1293     // masks and units for dealing with u = (int)(ctl >>> 32)
1294     private static final int UAC_SHIFT = AC_SHIFT - 32;
1295     private static final int UTC_SHIFT = TC_SHIFT - 32;
1296     private static final int UAC_MASK = SMASK << UAC_SHIFT;
1297     private static final int UTC_MASK = SMASK << UTC_SHIFT;
1298     private static final int UAC_UNIT = 1 << UAC_SHIFT;
1299     private static final int UTC_UNIT = 1 << UTC_SHIFT;
1300    
1301     // masks and units for dealing with e = (int)ctl
1302     private static final int E_MASK = 0x7fffffff; // no STOP_BIT
1303     private static final int E_SEQ = 1 << EC_SHIFT;
1304    
1305     // runState bits
1306     private static final int SHUTDOWN = 1 << 31;
1307    
1308     // access mode for WorkQueue
1309     static final int LIFO_QUEUE = 0;
1310     static final int FIFO_QUEUE = 1;
1311     static final int SHARED_QUEUE = -1;
1312    
1313     // Instance fields
1314    
1315     /*
1316     * Field layout order in this class tends to matter more than one
1317     * would like. Runtime layout order is only loosely related to
1318     * declaration order and may differ across JVMs, but the following
1319     * empirically works OK on current JVMs.
1320 dl 1.1 */
1321 dl 1.111
1322 dl 1.136 volatile long stealCount; // collects worker counts
1323 dl 1.119 volatile long ctl; // main pool control
1324     final int parallelism; // parallelism level
1325     final int localMode; // per-worker scheduling mode
1326 dl 1.136 volatile int nextWorkerNumber; // to create worker name string
1327 dl 1.123 final int submitMask; // submit queue index bound
1328     int nextSeed; // for initializing worker seeds
1329 dl 1.136 volatile int mainLock; // spinlock for array updates
1330 dl 1.123 volatile int runState; // shutdown status and seq
1331 dl 1.119 WorkQueue[] workQueues; // main registry
1332     final ForkJoinWorkerThreadFactory factory; // factory for new workers
1333     final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1334 dl 1.136 final String workerNamePrefix; // to create worker name string
1335    
1336     /*
1337     * Mechanics for main lock protecting worker array updates. Uses
1338     * the same strategy as ConcurrentHashMap bins -- a spinLock for
1339     * normal cases, but falling back to builtin lock when (rarely)
1340     * needed. See internal ConcurrentHashMap documentation for
1341     * explanation.
1342     */
1343    
1344     static final int LOCK_WAITING = 2; // bit to indicate need for signal
1345     static final int MAX_LOCK_SPINS = 1 << 8;
1346    
1347     private void tryAwaitMainLock() {
1348     int spins = MAX_LOCK_SPINS, r = 0, h;
1349     while (((h = mainLock) & 1) != 0) {
1350     if (r == 0)
1351     r = ThreadLocalRandom.current().nextInt(); // randomize spins
1352     else if (spins >= 0) {
1353     r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
1354     if (r >= 0)
1355     --spins;
1356     }
1357     else if (U.compareAndSwapInt(this, MAINLOCK, h, h | LOCK_WAITING)) {
1358     synchronized (this) {
1359     if ((mainLock & LOCK_WAITING) != 0) {
1360     try {
1361     wait();
1362     } catch (InterruptedException ie) {
1363 dl 1.139 try {
1364     Thread.currentThread().interrupt();
1365     } catch (SecurityException ignore) {
1366     }
1367 dl 1.136 }
1368     }
1369     else
1370     notifyAll(); // possibly won race vs signaller
1371     }
1372     break;
1373     }
1374     }
1375     }
1376 dl 1.111
1377 dl 1.123 // Creating, registering, and deregistering workers
1378 dl 1.6
1379     /**
1380 dl 1.111 * Tries to create and start a worker
1381 dl 1.1 */
1382 dl 1.111 private void addWorker() {
1383     Throwable ex = null;
1384 dl 1.119 ForkJoinWorkerThread wt = null;
1385 dl 1.111 try {
1386 dl 1.119 if ((wt = factory.newThread(this)) != null) {
1387     wt.start();
1388 dl 1.111 return;
1389     }
1390     } catch (Throwable e) {
1391     ex = e;
1392     }
1393 dl 1.119 deregisterWorker(wt, ex); // adjust counts etc on failure
1394 dl 1.111 }
1395 dl 1.1
1396 dl 1.91 /**
1397 dl 1.111 * Callback from ForkJoinWorkerThread constructor to assign a
1398     * public name. This must be separate from registerWorker because
1399     * it is called during the "super" constructor call in
1400     * ForkJoinWorkerThread.
1401 dl 1.91 */
1402 dl 1.111 final String nextWorkerName() {
1403 dl 1.136 int n;
1404 jsr166 1.138 do {} while (!U.compareAndSwapInt(this, NEXTWORKERNUMBER,
1405     n = nextWorkerNumber, ++n));
1406 dl 1.136 return workerNamePrefix.concat(Integer.toString(n));
1407 dl 1.111 }
1408 dl 1.1
1409     /**
1410 dl 1.123 * Callback from ForkJoinWorkerThread constructor to establish its
1411     * poolIndex and record its WorkQueue. To avoid scanning bias due
1412     * to packing entries in front of the workQueues array, we treat
1413     * the array as a simple power-of-two hash table using per-thread
1414     * seed as hash, expanding as needed.
1415 dl 1.111 *
1416 dl 1.123 * @param w the worker's queue
1417 dl 1.1 */
1418 dl 1.123 final void registerWorker(WorkQueue w) {
1419 dl 1.136 while (!U.compareAndSwapInt(this, MAINLOCK, 0, 1))
1420     tryAwaitMainLock();
1421 dl 1.111 try {
1422 dl 1.136 WorkQueue[] ws;
1423     if ((ws = workQueues) == null)
1424     ws = workQueues = new WorkQueue[submitMask + 1];
1425     if (w != null) {
1426     int rs, n = ws.length, m = n - 1;
1427 dl 1.123 int s = nextSeed += SEED_INCREMENT; // rarely-colliding sequence
1428     w.seed = (s == 0) ? 1 : s; // ensure non-zero seed
1429     int r = (s << 1) | 1; // use odd-numbered indices
1430 dl 1.127 if (ws[r &= m] != null) { // collision
1431     int probes = 0; // step by approx half size
1432     int step = (n <= 4) ? 2 : ((n >>> 1) & SQMASK) + 2;
1433     while (ws[r = (r + step) & m] != null) {
1434     if (++probes >= n) {
1435     workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1436     m = n - 1;
1437     probes = 0;
1438     }
1439     }
1440     }
1441 dl 1.123 w.eventCount = w.poolIndex = r; // establish before recording
1442     ws[r] = w; // also update seq
1443     runState = ((rs = runState) & SHUTDOWN) | ((rs + 2) & ~SHUTDOWN);
1444 dl 1.111 }
1445     } finally {
1446 dl 1.136 if (!U.compareAndSwapInt(this, MAINLOCK, 1, 0)) {
1447     mainLock = 0;
1448     synchronized (this) { notifyAll(); };
1449     }
1450 dl 1.111 }
1451     }
1452 dl 1.58
1453 dl 1.1 /**
1454 dl 1.119 * Final callback from terminating worker, as well as upon failure
1455     * to construct or start a worker in addWorker. Removes record of
1456 dl 1.111 * worker from array, and adjusts counts. If pool is shutting
1457     * down, tries to complete termination.
1458     *
1459     * @param wt the worker thread or null if addWorker failed
1460     * @param ex the exception causing failure, or null if none
1461 dl 1.85 */
1462 dl 1.111 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1463     WorkQueue w = null;
1464     if (wt != null && (w = wt.workQueue) != null) {
1465     w.runState = -1; // ensure runState is set
1466 dl 1.136 long steals = w.totalSteals + w.nsteals, sc;
1467 jsr166 1.138 do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1468     sc = stealCount, sc + steals));
1469 dl 1.111 int idx = w.poolIndex;
1470 dl 1.136 while (!U.compareAndSwapInt(this, MAINLOCK, 0, 1))
1471     tryAwaitMainLock();
1472     try {
1473 dl 1.111 WorkQueue[] ws = workQueues;
1474 dl 1.123 if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1475 dl 1.119 ws[idx] = null;
1476 dl 1.111 } finally {
1477 dl 1.136 if (!U.compareAndSwapInt(this, MAINLOCK, 1, 0)) {
1478     mainLock = 0;
1479     synchronized (this) { notifyAll(); };
1480     }
1481 dl 1.111 }
1482     }
1483    
1484     long c; // adjust ctl counts
1485     do {} while (!U.compareAndSwapLong
1486     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1487     ((c - TC_UNIT) & TC_MASK) |
1488     (c & ~(AC_MASK|TC_MASK)))));
1489    
1490 dl 1.119 if (!tryTerminate(false, false) && w != null) {
1491 dl 1.111 w.cancelAll(); // cancel remaining tasks
1492     if (w.array != null) // suppress signal if never ran
1493     signalWork(); // wake up or create replacement
1494 dl 1.119 if (ex == null) // help clean refs on way out
1495     ForkJoinTask.helpExpungeStaleExceptions();
1496 dl 1.111 }
1497    
1498     if (ex != null) // rethrow
1499 dl 1.139 ForkJoinTask.rethrow(ex);
1500 dl 1.111 }
1501 dl 1.91
1502 dl 1.119 // Submissions
1503    
1504     /**
1505     * Unless shutting down, adds the given task to a submission queue
1506     * at submitter's current queue index (modulo submission
1507 dl 1.123 * range). If no queue exists at the index, one is created. If
1508     * the queue is busy, another index is randomly chosen. The
1509     * submitMask bounds the effective number of queues to the
1510 jsr166 1.125 * (nearest power of two for) parallelism level.
1511 dl 1.123 *
1512     * @param task the task. Caller must ensure non-null.
1513 dl 1.119 */
1514     private void doSubmit(ForkJoinTask<?> task) {
1515     Submitter s = submitters.get();
1516 dl 1.123 for (int r = s.seed, m = submitMask;;) {
1517     WorkQueue[] ws; WorkQueue q;
1518 dl 1.119 int k = r & m & SQMASK; // use only even indices
1519 dl 1.136 if (runState < 0)
1520 dl 1.119 throw new RejectedExecutionException(); // shutting down
1521 dl 1.136 else if ((ws = workQueues) == null || ws.length <= k) {
1522     while (!U.compareAndSwapInt(this, MAINLOCK, 0, 1))
1523     tryAwaitMainLock();
1524     try {
1525     if (workQueues == null)
1526     workQueues = new WorkQueue[submitMask + 1];
1527     } finally {
1528     if (!U.compareAndSwapInt(this, MAINLOCK, 1, 0)) {
1529     mainLock = 0;
1530     synchronized (this) { notifyAll(); };
1531     }
1532     }
1533     }
1534 dl 1.123 else if ((q = ws[k]) == null) { // create new queue
1535     WorkQueue nq = new WorkQueue(this, null, SHARED_QUEUE);
1536 dl 1.136 while (!U.compareAndSwapInt(this, MAINLOCK, 0, 1))
1537     tryAwaitMainLock();
1538     try {
1539 dl 1.123 int rs = runState; // to update seq
1540     if (ws == workQueues && ws[k] == null) {
1541     ws[k] = nq;
1542     runState = ((rs & SHUTDOWN) | ((rs + 2) & ~SHUTDOWN));
1543 dl 1.116 }
1544     } finally {
1545 dl 1.136 if (!U.compareAndSwapInt(this, MAINLOCK, 1, 0)) {
1546     mainLock = 0;
1547     synchronized (this) { notifyAll(); };
1548     }
1549 dl 1.116 }
1550     }
1551 dl 1.123 else if (q.trySharedPush(task)) {
1552     signalWork();
1553     return;
1554     }
1555     else if (m > 1) { // move to a different index
1556     r ^= r << 13; // same xorshift as WorkQueues
1557     r ^= r >>> 17;
1558 dl 1.119 s.seed = r ^= r << 5;
1559     }
1560 dl 1.123 else
1561     Thread.yield(); // yield if no alternatives
1562 dl 1.116 }
1563     }
1564 dl 1.85
1565 dl 1.135 /**
1566     * Submits the given (non-null) task to the common pool, if possible.
1567     */
1568     static void submitToCommonPool(ForkJoinTask<?> task) {
1569     ForkJoinPool p;
1570     if ((p = commonPool) == null)
1571 dl 1.136 throw new RejectedExecutionException("Common Pool Unavailable");
1572 dl 1.135 p.doSubmit(task);
1573     }
1574    
1575     /**
1576     * Returns true if the given task was submitted to common pool
1577     * and has not yet commenced execution, and is available for
1578     * removal according to execution policies; if so removing the
1579     * submission from the pool.
1580     *
1581     * @param task the task
1582     * @return true if successful
1583     */
1584     static boolean tryUnsubmitFromCommonPool(ForkJoinTask<?> task) {
1585 dl 1.139 // If not oversaturating platform, peek, looking for task and
1586     // eligibility before using trySharedUnpush to actually take
1587     // it under lock
1588     ForkJoinPool p; WorkQueue[] ws; WorkQueue w, q;
1589     ForkJoinTask<?>[] a; int ac, s, m;
1590     if ((p = commonPool) != null && (ws = p.workQueues) != null) {
1591     int k = submitters.get().seed & p.submitMask & SQMASK;
1592     if ((m = ws.length - 1) >= k && (q = ws[k]) != null &&
1593     (ac = (int)(p.ctl >> AC_SHIFT)) <= 0) {
1594     if (ac == 0) { // double check if all workers active
1595     for (int i = 1; i <= m; i += 2) {
1596     if ((w = ws[i]) != null && w.parker != null) {
1597     ac = -1;
1598     break;
1599     }
1600     }
1601     }
1602     return (ac < 0 && (a = q.array) != null &&
1603     (s = q.top - 1) - q.base >= 0 &&
1604     s >= 0 && s < a.length &&
1605     a[s] == task &&
1606     q.trySharedUnpush(task));
1607     }
1608     }
1609     return false;
1610 dl 1.135 }
1611    
1612 dl 1.137 /**
1613 dl 1.139 * Tries to pop and run a task within same computation from common pool
1614 dl 1.137 */
1615 dl 1.139 static void popAndExecCCFromCommonPool(CountedCompleter<?> cc) {
1616     ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w; int m, ac;
1617     CountedCompleter<?> par, task;
1618     if ((p = commonPool) != null && (ws = p.workQueues) != null) {
1619     while ((par = cc.completer) != null) // find root
1620     cc = par;
1621     int k = submitters.get().seed & p.submitMask & SQMASK;
1622     if ((m = ws.length - 1) >= k && (q = ws[k]) != null &&
1623     (ac = (int)(p.ctl >> AC_SHIFT)) <= 0) {
1624     if (ac == 0) {
1625     for (int i = 1; i <= m; i += 2) {
1626     if ((w = ws[i]) != null && w.parker != null) {
1627     ac = -1;
1628     break;
1629     }
1630     }
1631     }
1632     if (ac < 0 && q.top - q.base > 0 &&
1633     (task = q.sharedPopCC(cc)) != null)
1634     task.exec();
1635     }
1636     }
1637 dl 1.137 }
1638    
1639 dl 1.111 // Maintaining ctl counts
1640 dl 1.56
1641     /**
1642 jsr166 1.117 * Increments active count; mainly called upon return from blocking.
1643 dl 1.58 */
1644 dl 1.111 final void incrementActiveCount() {
1645 dl 1.91 long c;
1646 dl 1.111 do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1647 dl 1.61 }
1648    
1649     /**
1650 dl 1.135 * Tries to create one or activate one or more workers if too few are active.
1651 dl 1.53 */
1652 dl 1.91 final void signalWork() {
1653 dl 1.119 long c; int u;
1654     while ((u = (int)((c = ctl) >>> 32)) < 0) { // too few active
1655     WorkQueue[] ws = workQueues; int e, i; WorkQueue w; Thread p;
1656     if ((e = (int)c) > 0) { // at least one waiting
1657     if (ws != null && (i = e & SMASK) < ws.length &&
1658     (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1659     long nc = (((long)(w.nextWait & E_MASK)) |
1660     ((long)(u + UAC_UNIT) << 32));
1661     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1662     w.eventCount = (e + E_SEQ) & E_MASK;
1663     if ((p = w.parker) != null)
1664     U.unpark(p); // activate and release
1665     break;
1666     }
1667     }
1668     else
1669 dl 1.91 break;
1670 dl 1.111 }
1671 dl 1.119 else if (e == 0 && (u & SHORT_SIGN) != 0) { // too few total
1672     long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1673     ((u + UAC_UNIT) & UAC_MASK)) << 32;
1674     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1675     addWorker();
1676 dl 1.91 break;
1677     }
1678     }
1679 dl 1.111 else
1680 dl 1.91 break;
1681     }
1682 dl 1.53 }
1683    
1684 dl 1.123 // Scanning for tasks
1685    
1686 dl 1.53 /**
1687 dl 1.123 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1688 dl 1.53 */
1689 dl 1.123 final void runWorker(WorkQueue w) {
1690     w.growArray(false); // initialize queue array in this thread
1691 dl 1.127 do { w.runTask(scan(w)); } while (w.runState >= 0);
1692 dl 1.53 }
1693    
1694     /**
1695 dl 1.111 * Scans for and, if found, returns one task, else possibly
1696     * inactivates the worker. This method operates on single reads of
1697 dl 1.123 * volatile state and is designed to be re-invoked continuously,
1698     * in part because it returns upon detecting inconsistencies,
1699 dl 1.111 * contention, or state changes that indicate possible success on
1700     * re-invocation.
1701     *
1702 dl 1.123 * The scan searches for tasks across a random permutation of
1703     * queues (starting at a random index and stepping by a random
1704     * relative prime, checking each at least once). The scan
1705     * terminates upon either finding a non-empty queue, or completing
1706     * the sweep. If the worker is not inactivated, it takes and
1707     * returns a task from this queue. On failure to find a task, we
1708     * take one of the following actions, after which the caller will
1709     * retry calling this method unless terminated.
1710 dl 1.111 *
1711 dl 1.119 * * If pool is terminating, terminate the worker.
1712     *
1713 dl 1.111 * * If not a complete sweep, try to release a waiting worker. If
1714     * the scan terminated because the worker is inactivated, then the
1715     * released worker will often be the calling worker, and it can
1716     * succeed obtaining a task on the next call. Or maybe it is
1717     * another worker, but with same net effect. Releasing in other
1718     * cases as well ensures that we have enough workers running.
1719     *
1720     * * If not already enqueued, try to inactivate and enqueue the
1721 dl 1.123 * worker on wait queue. Or, if inactivating has caused the pool
1722     * to be quiescent, relay to idleAwaitWork to check for
1723     * termination and possibly shrink pool.
1724     *
1725     * * If already inactive, and the caller has run a task since the
1726     * last empty scan, return (to allow rescan) unless others are
1727     * also inactivated. Field WorkQueue.rescans counts down on each
1728     * scan to ensure eventual inactivation and blocking.
1729 dl 1.111 *
1730 dl 1.123 * * If already enqueued and none of the above apply, park
1731     * awaiting signal,
1732 dl 1.111 *
1733     * @param w the worker (via its WorkQueue)
1734 jsr166 1.133 * @return a task or null if none found
1735 dl 1.111 */
1736     private final ForkJoinTask<?> scan(WorkQueue w) {
1737 dl 1.123 WorkQueue[] ws; // first update random seed
1738     int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1739     int rs = runState, m; // volatile read order matters
1740     if ((ws = workQueues) != null && (m = ws.length - 1) > 0) {
1741     int ec = w.eventCount; // ec is negative if inactive
1742     int step = (r >>> 16) | 1; // relative prime
1743     for (int j = (m + 1) << 2; ; r += step) {
1744     WorkQueue q; ForkJoinTask<?> t; ForkJoinTask<?>[] a; int b;
1745     if ((q = ws[r & m]) != null && (b = q.base) - q.top < 0 &&
1746     (a = q.array) != null) { // probably nonempty
1747     int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1748     t = (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1749     if (q.base == b && ec >= 0 && t != null &&
1750     U.compareAndSwapObject(a, i, t, null)) {
1751 dl 1.135 if (q.top - (q.base = b + 1) > 0)
1752 dl 1.129 signalWork(); // help pushes signal
1753 dl 1.119 return t;
1754 dl 1.123 }
1755 dl 1.127 else if (ec < 0 || j <= m) {
1756 dl 1.123 rs = 0; // mark scan as imcomplete
1757     break; // caller can retry after release
1758     }
1759 dl 1.111 }
1760 dl 1.123 if (--j < 0)
1761 dl 1.93 break;
1762 dl 1.91 }
1763 dl 1.128
1764 dl 1.119 long c = ctl; int e = (int)c, a = (int)(c >> AC_SHIFT), nr, ns;
1765 dl 1.123 if (e < 0) // decode ctl on empty scan
1766     w.runState = -1; // pool is terminating
1767     else if (rs == 0 || rs != runState) { // incomplete scan
1768     WorkQueue v; Thread p; // try to release a waiter
1769     if (e > 0 && a < 0 && w.eventCount == ec &&
1770     (v = ws[e & m]) != null && v.eventCount == (e | INT_SIGN)) {
1771 dl 1.119 long nc = ((long)(v.nextWait & E_MASK) |
1772     ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
1773 dl 1.123 if (ctl == c && U.compareAndSwapLong(this, CTL, c, nc)) {
1774 dl 1.119 v.eventCount = (e + E_SEQ) & E_MASK;
1775     if ((p = v.parker) != null)
1776     U.unpark(p);
1777     }
1778     }
1779     }
1780 dl 1.123 else if (ec >= 0) { // try to enqueue/inactivate
1781 dl 1.119 long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1782     w.nextWait = e;
1783 dl 1.123 w.eventCount = ec | INT_SIGN; // mark as inactive
1784     if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1785     w.eventCount = ec; // unmark on CAS failure
1786     else {
1787     if ((ns = w.nsteals) != 0) {
1788     w.nsteals = 0; // set rescans if ran task
1789 jsr166 1.124 w.rescans = (a > 0) ? 0 : a + parallelism;
1790 dl 1.123 w.totalSteals += ns;
1791     }
1792     if (a == 1 - parallelism) // quiescent
1793     idleAwaitWork(w, nc, c);
1794 dl 1.119 }
1795 dl 1.111 }
1796 dl 1.123 else if (w.eventCount < 0) { // already queued
1797 dl 1.135 int ac = a + parallelism;
1798     if ((nr = w.rescans) > 0) // continue rescanning
1799     w.rescans = (ac < nr) ? ac : nr - 1;
1800     else if (((w.seed >>> 16) & ac) == 0) { // randomize park
1801 dl 1.123 Thread.interrupted(); // clear status
1802     Thread wt = Thread.currentThread();
1803 dl 1.119 U.putObject(wt, PARKBLOCKER, this);
1804 dl 1.123 w.parker = wt; // emulate LockSupport.park
1805     if (w.eventCount < 0) // recheck
1806     U.park(false, 0L);
1807 dl 1.119 w.parker = null;
1808     U.putObject(wt, PARKBLOCKER, null);
1809     }
1810 dl 1.111 }
1811 dl 1.91 }
1812 dl 1.111 return null;
1813 dl 1.53 }
1814    
1815     /**
1816 dl 1.123 * If inactivating worker w has caused the pool to become
1817     * quiescent, checks for pool termination, and, so long as this is
1818 dl 1.135 * not the only worker, waits for event for up to a given
1819     * duration. On timeout, if ctl has not changed, terminates the
1820 dl 1.123 * worker, which will in turn wake up another worker to possibly
1821     * repeat this process.
1822 dl 1.91 *
1823 dl 1.111 * @param w the calling worker
1824 dl 1.123 * @param currentCtl the ctl value triggering possible quiescence
1825     * @param prevCtl the ctl value to restore if thread is terminated
1826 dl 1.53 */
1827 dl 1.123 private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1828     if (w.eventCount < 0 && !tryTerminate(false, false) &&
1829 dl 1.127 (int)prevCtl != 0 && !hasQueuedSubmissions() && ctl == currentCtl) {
1830 dl 1.135 int dc = -(short)(currentCtl >>> TC_SHIFT);
1831     long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1832     long deadline = System.nanoTime() + parkTime - 100000L; // 1ms slop
1833 dl 1.123 Thread wt = Thread.currentThread();
1834     while (ctl == currentCtl) {
1835 dl 1.111 Thread.interrupted(); // timed variant of version in scan()
1836     U.putObject(wt, PARKBLOCKER, this);
1837     w.parker = wt;
1838 dl 1.123 if (ctl == currentCtl)
1839 dl 1.135 U.park(false, parkTime);
1840 dl 1.111 w.parker = null;
1841     U.putObject(wt, PARKBLOCKER, null);
1842 dl 1.123 if (ctl != currentCtl)
1843 dl 1.111 break;
1844 dl 1.135 if (deadline - System.nanoTime() <= 0L &&
1845 dl 1.123 U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1846     w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1847     w.runState = -1; // shrink
1848 dl 1.111 break;
1849     }
1850 dl 1.66 }
1851 dl 1.53 }
1852     }
1853    
1854     /**
1855 dl 1.111 * Tries to locate and execute tasks for a stealer of the given
1856     * task, or in turn one of its stealers, Traces currentSteal ->
1857     * currentJoin links looking for a thread working on a descendant
1858     * of the given task and with a non-empty queue to steal back and
1859     * execute tasks from. The first call to this method upon a
1860     * waiting join will often entail scanning/search, (which is OK
1861     * because the joiner has nothing better to do), but this method
1862     * leaves hints in workers to speed up subsequent calls. The
1863     * implementation is very branchy to cope with potential
1864     * inconsistencies or loops encountering chains that are stale,
1865 dl 1.128 * unknown, or so long that they are likely cyclic.
1866 dl 1.111 *
1867     * @param joiner the joining worker
1868     * @param task the task to join
1869 dl 1.128 * @return 0 if no progress can be made, negative if task
1870     * known complete, else positive
1871 dl 1.111 */
1872 dl 1.128 private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1873     int stat = 0, steps = 0; // bound to avoid cycles
1874     if (joiner != null && task != null) { // hoist null checks
1875     restart: for (;;) {
1876     ForkJoinTask<?> subtask = task; // current target
1877     for (WorkQueue j = joiner, v;;) { // v is stealer of subtask
1878     WorkQueue[] ws; int m, s, h;
1879     if ((s = task.status) < 0) {
1880     stat = s;
1881     break restart;
1882     }
1883     if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1884     break restart; // shutting down
1885     if ((v = ws[h = (j.stealHint | 1) & m]) == null ||
1886     v.currentSteal != subtask) {
1887     for (int origin = h;;) { // find stealer
1888     if (((h = (h + 2) & m) & 15) == 1 &&
1889     (subtask.status < 0 || j.currentJoin != subtask))
1890     continue restart; // occasional staleness check
1891     if ((v = ws[h]) != null &&
1892     v.currentSteal == subtask) {
1893     j.stealHint = h; // save hint
1894     break;
1895     }
1896     if (h == origin)
1897     break restart; // cannot find stealer
1898 dl 1.111 }
1899     }
1900 dl 1.128 for (;;) { // help stealer or descend to its stealer
1901     ForkJoinTask[] a; int b;
1902     if (subtask.status < 0) // surround probes with
1903     continue restart; // consistency checks
1904     if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1905     int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1906     ForkJoinTask<?> t =
1907     (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1908     if (subtask.status < 0 || j.currentJoin != subtask ||
1909     v.currentSteal != subtask)
1910     continue restart; // stale
1911     stat = 1; // apparent progress
1912     if (t != null && v.base == b &&
1913     U.compareAndSwapObject(a, i, t, null)) {
1914     v.base = b + 1; // help stealer
1915     joiner.runSubtask(t);
1916     }
1917     else if (v.base == b && ++steps == MAX_HELP)
1918     break restart; // v apparently stalled
1919     }
1920     else { // empty -- try to descend
1921     ForkJoinTask<?> next = v.currentJoin;
1922     if (subtask.status < 0 || j.currentJoin != subtask ||
1923     v.currentSteal != subtask)
1924     continue restart; // stale
1925     else if (next == null || ++steps == MAX_HELP)
1926     break restart; // dead-end or maybe cyclic
1927     else {
1928     subtask = next;
1929     j = v;
1930     break;
1931     }
1932 dl 1.111 }
1933 dl 1.91 }
1934 dl 1.61 }
1935 dl 1.111 }
1936 dl 1.53 }
1937 dl 1.128 return stat;
1938 dl 1.64 }
1939    
1940 dl 1.91 /**
1941 dl 1.111 * If task is at base of some steal queue, steals and executes it.
1942 dl 1.91 *
1943 dl 1.111 * @param joiner the joining worker
1944     * @param task the task
1945 dl 1.61 */
1946 dl 1.123 private void tryPollForAndExec(WorkQueue joiner, ForkJoinTask<?> task) {
1947 dl 1.111 WorkQueue[] ws;
1948 dl 1.123 if ((ws = workQueues) != null) {
1949     for (int j = 1; j < ws.length && task.status >= 0; j += 2) {
1950 dl 1.111 WorkQueue q = ws[j];
1951     if (q != null && q.pollFor(task)) {
1952     joiner.runSubtask(task);
1953     break;
1954     }
1955 dl 1.91 }
1956     }
1957 dl 1.61 }
1958    
1959     /**
1960 dl 1.123 * Tries to decrement active count (sometimes implicitly) and
1961     * possibly release or create a compensating worker in preparation
1962     * for blocking. Fails on contention or termination. Otherwise,
1963     * adds a new thread if no idle workers are available and either
1964     * pool would become completely starved or: (at least half
1965     * starved, and fewer than 50% spares exist, and there is at least
1966 jsr166 1.125 * one task apparently available). Even though the availability
1967 dl 1.123 * check requires a full scan, it is worthwhile in reducing false
1968     * alarms.
1969     *
1970 jsr166 1.126 * @param task if non-null, a task being waited for
1971     * @param blocker if non-null, a blocker being waited for
1972 dl 1.123 * @return true if the caller can block, else should recheck and retry
1973     */
1974     final boolean tryCompensate(ForkJoinTask<?> task, ManagedBlocker blocker) {
1975     int pc = parallelism, e;
1976     long c = ctl;
1977     WorkQueue[] ws = workQueues;
1978     if ((e = (int)c) >= 0 && ws != null) {
1979     int u, a, ac, hc;
1980     int tc = (short)((u = (int)(c >>> 32)) >>> UTC_SHIFT) + pc;
1981     boolean replace = false;
1982     if ((a = u >> UAC_SHIFT) <= 0) {
1983     if ((ac = a + pc) <= 1)
1984     replace = true;
1985     else if ((e > 0 || (task != null &&
1986     ac <= (hc = pc >>> 1) && tc < pc + hc))) {
1987     WorkQueue w;
1988     for (int j = 0; j < ws.length; ++j) {
1989     if ((w = ws[j]) != null && !w.isEmpty()) {
1990     replace = true;
1991     break; // in compensation range and tasks available
1992     }
1993     }
1994     }
1995     }
1996     if ((task == null || task.status >= 0) && // recheck need to block
1997     (blocker == null || !blocker.isReleasable()) && ctl == c) {
1998     if (!replace) { // no compensation
1999     long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
2000     if (U.compareAndSwapLong(this, CTL, c, nc))
2001     return true;
2002     }
2003     else if (e != 0) { // release an idle worker
2004     WorkQueue w; Thread p; int i;
2005     if ((i = e & SMASK) < ws.length && (w = ws[i]) != null) {
2006     long nc = ((long)(w.nextWait & E_MASK) |
2007     (c & (AC_MASK|TC_MASK)));
2008     if (w.eventCount == (e | INT_SIGN) &&
2009     U.compareAndSwapLong(this, CTL, c, nc)) {
2010     w.eventCount = (e + E_SEQ) & E_MASK;
2011     if ((p = w.parker) != null)
2012     U.unpark(p);
2013     return true;
2014     }
2015     }
2016     }
2017     else if (tc < MAX_CAP) { // create replacement
2018     long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
2019     if (U.compareAndSwapLong(this, CTL, c, nc)) {
2020     addWorker();
2021     return true;
2022     }
2023     }
2024     }
2025     }
2026     return false;
2027     }
2028    
2029     /**
2030 jsr166 1.126 * Helps and/or blocks until the given task is done.
2031 dl 1.123 *
2032     * @param joiner the joining worker
2033     * @param task the task
2034     * @return task status on exit
2035     */
2036     final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
2037 dl 1.127 int s;
2038     if ((s = task.status) >= 0) {
2039 dl 1.128 ForkJoinTask<?> prevJoin = joiner.currentJoin;
2040 dl 1.127 joiner.currentJoin = task;
2041     long startTime = 0L;
2042     for (int k = 0;;) {
2043 dl 1.128 if ((s = (joiner.isEmpty() ? // try to help
2044     tryHelpStealer(joiner, task) :
2045     joiner.tryRemoveAndExec(task))) == 0 &&
2046     (s = task.status) >= 0) {
2047 dl 1.127 if (k == 0) {
2048     startTime = System.nanoTime();
2049     tryPollForAndExec(joiner, task); // check uncommon case
2050     }
2051     else if ((k & (MAX_HELP - 1)) == 0 &&
2052     System.nanoTime() - startTime >=
2053     COMPENSATION_DELAY &&
2054     tryCompensate(task, null)) {
2055 dl 1.128 if (task.trySetSignal()) {
2056 dl 1.127 synchronized (task) {
2057     if (task.status >= 0) {
2058     try { // see ForkJoinTask
2059     task.wait(); // for explanation
2060     } catch (InterruptedException ie) {
2061     }
2062 dl 1.123 }
2063 dl 1.127 else
2064     task.notifyAll();
2065 dl 1.123 }
2066     }
2067 dl 1.127 long c; // re-activate
2068     do {} while (!U.compareAndSwapLong
2069     (this, CTL, c = ctl, c + AC_UNIT));
2070 dl 1.123 }
2071     }
2072 dl 1.128 if (s < 0 || (s = task.status) < 0) {
2073 dl 1.127 joiner.currentJoin = prevJoin;
2074     break;
2075     }
2076     else if ((k++ & (MAX_HELP - 1)) == MAX_HELP >>> 1)
2077     Thread.yield(); // for politeness
2078 dl 1.123 }
2079     }
2080 dl 1.127 return s;
2081 dl 1.123 }
2082    
2083     /**
2084     * Stripped-down variant of awaitJoin used by timed joins. Tries
2085     * to help join only while there is continuous progress. (Caller
2086     * will then enter a timed wait.)
2087     *
2088     * @param joiner the joining worker
2089     * @param task the task
2090     * @return task status on exit
2091     */
2092     final int helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2093     int s;
2094     while ((s = task.status) >= 0 &&
2095     (joiner.isEmpty() ?
2096     tryHelpStealer(joiner, task) :
2097 dl 1.128 joiner.tryRemoveAndExec(task)) != 0)
2098 dl 1.123 ;
2099     return s;
2100     }
2101    
2102     /**
2103     * Returns a (probably) non-empty steal queue, if one is found
2104     * during a random, then cyclic scan, else null. This method must
2105     * be retried by caller if, by the time it tries to use the queue,
2106     * it is empty.
2107 dl 1.111 */
2108     private WorkQueue findNonEmptyStealQueue(WorkQueue w) {
2109 dl 1.123 // Similar to loop in scan(), but ignoring submissions
2110 dl 1.136 int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
2111 dl 1.123 int step = (r >>> 16) | 1;
2112 dl 1.111 for (WorkQueue[] ws;;) {
2113 dl 1.123 int rs = runState, m;
2114     if ((ws = workQueues) == null || (m = ws.length - 1) < 1)
2115 dl 1.111 return null;
2116 dl 1.123 for (int j = (m + 1) << 2; ; r += step) {
2117     WorkQueue q = ws[((r << 1) | 1) & m];
2118     if (q != null && !q.isEmpty())
2119     return q;
2120     else if (--j < 0) {
2121     if (runState == rs)
2122 dl 1.111 return null;
2123 dl 1.123 break;
2124 dl 1.91 }
2125     }
2126 dl 1.64 }
2127     }
2128    
2129     /**
2130 dl 1.111 * Runs tasks until {@code isQuiescent()}. We piggyback on
2131     * active count ctl maintenance, but rather than blocking
2132     * when tasks cannot be found, we rescan until all others cannot
2133     * find tasks either.
2134     */
2135     final void helpQuiescePool(WorkQueue w) {
2136     for (boolean active = true;;) {
2137 dl 1.127 ForkJoinTask<?> localTask; // exhaust local queue
2138     while ((localTask = w.nextLocalTask()) != null)
2139     localTask.doExec();
2140 dl 1.111 WorkQueue q = findNonEmptyStealQueue(w);
2141     if (q != null) {
2142 dl 1.123 ForkJoinTask<?> t; int b;
2143 dl 1.111 if (!active) { // re-establish active count
2144     long c;
2145     active = true;
2146     do {} while (!U.compareAndSwapLong
2147     (this, CTL, c = ctl, c + AC_UNIT));
2148     }
2149 dl 1.123 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2150 dl 1.111 w.runSubtask(t);
2151     }
2152     else {
2153     long c;
2154     if (active) { // decrement active count without queuing
2155     active = false;
2156     do {} while (!U.compareAndSwapLong
2157     (this, CTL, c = ctl, c -= AC_UNIT));
2158     }
2159     else
2160     c = ctl; // re-increment on exit
2161     if ((int)(c >> AC_SHIFT) + parallelism == 0) {
2162     do {} while (!U.compareAndSwapLong
2163     (this, CTL, c = ctl, c + AC_UNIT));
2164     break;
2165 dl 1.66 }
2166 dl 1.64 }
2167     }
2168     }
2169    
2170     /**
2171 dl 1.135 * Restricted version of helpQuiescePool for non-FJ callers
2172     */
2173     static void externalHelpQuiescePool() {
2174 dl 1.137 ForkJoinPool p; WorkQueue[] ws; WorkQueue q, sq;
2175     ForkJoinTask<?>[] a; int b;
2176     ForkJoinTask<?> t = null;
2177 dl 1.135 int k = submitters.get().seed & SQMASK;
2178     if ((p = commonPool) != null &&
2179     (ws = p.workQueues) != null &&
2180     ws.length > (k &= p.submitMask) &&
2181 dl 1.137 (q = ws[k]) != null) {
2182     while (q.top - q.base > 0) {
2183     if ((t = q.sharedPop()) != null)
2184     break;
2185     }
2186     if (t == null && (sq = p.findNonEmptyStealQueue(q)) != null &&
2187     (b = sq.base) - sq.top < 0)
2188     t = sq.pollAt(b);
2189     if (t != null)
2190     t.doExec();
2191     }
2192 dl 1.135 }
2193    
2194     /**
2195 jsr166 1.117 * Gets and removes a local or stolen task for the given worker.
2196 dl 1.111 *
2197     * @return a task, if available
2198 dl 1.64 */
2199 dl 1.111 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2200     for (ForkJoinTask<?> t;;) {
2201 dl 1.123 WorkQueue q; int b;
2202 dl 1.111 if ((t = w.nextLocalTask()) != null)
2203     return t;
2204     if ((q = findNonEmptyStealQueue(w)) == null)
2205     return null;
2206 dl 1.123 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2207 dl 1.111 return t;
2208 dl 1.91 }
2209 dl 1.61 }
2210    
2211 dl 1.53 /**
2212 dl 1.111 * Returns the approximate (non-atomic) number of idle threads per
2213     * active thread to offset steal queue size for method
2214     * ForkJoinTask.getSurplusQueuedTaskCount().
2215 dl 1.53 */
2216 dl 1.111 final int idlePerActive() {
2217     // Approximate at powers of two for small values, saturate past 4
2218     int p = parallelism;
2219     int a = p + (int)(ctl >> AC_SHIFT);
2220     return (a > (p >>>= 1) ? 0 :
2221     a > (p >>>= 1) ? 1 :
2222     a > (p >>>= 1) ? 2 :
2223     a > (p >>>= 1) ? 4 :
2224     8);
2225 dl 1.53 }
2226    
2227 dl 1.135 /**
2228     * Returns approximate submission queue length for the given caller
2229     */
2230     static int getEstimatedSubmitterQueueLength() {
2231     ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
2232     int k = submitters.get().seed & SQMASK;
2233 dl 1.139 return ((p = commonPool) != null && (ws = p.workQueues) != null &&
2234 dl 1.135 ws.length > (k &= p.submitMask) &&
2235     (q = ws[k]) != null) ?
2236     q.queueSize() : 0;
2237     }
2238    
2239 dl 1.119 // Termination
2240 dl 1.53
2241     /**
2242 dl 1.119 * Possibly initiates and/or completes termination. The caller
2243     * triggering termination runs three passes through workQueues:
2244     * (0) Setting termination status, followed by wakeups of queued
2245     * workers; (1) cancelling all tasks; (2) interrupting lagging
2246     * threads (likely in external tasks, but possibly also blocked in
2247     * joins). Each pass repeats previous steps because of potential
2248     * lagging thread creation.
2249 dl 1.53 *
2250     * @param now if true, unconditionally terminate, else only
2251 dl 1.111 * if no work and no active workers
2252 jsr166 1.120 * @param enable if true, enable shutdown when next possible
2253 dl 1.53 * @return true if now terminating or terminated
2254 dl 1.1 */
2255 dl 1.119 private boolean tryTerminate(boolean now, boolean enable) {
2256 dl 1.111 for (long c;;) {
2257     if (((c = ctl) & STOP_BIT) != 0) { // already terminating
2258     if ((short)(c >>> TC_SHIFT) == -parallelism) {
2259 jsr166 1.138 synchronized (this) {
2260 dl 1.136 notifyAll(); // signal when 0 workers
2261     }
2262 dl 1.111 }
2263     return true;
2264     }
2265 dl 1.119 if (runState >= 0) { // not yet enabled
2266     if (!enable)
2267     return false;
2268 dl 1.136 while (!U.compareAndSwapInt(this, MAINLOCK, 0, 1))
2269     tryAwaitMainLock();
2270     try {
2271     runState |= SHUTDOWN;
2272     } finally {
2273     if (!U.compareAndSwapInt(this, MAINLOCK, 1, 0)) {
2274     mainLock = 0;
2275     synchronized (this) { notifyAll(); };
2276     }
2277     }
2278 dl 1.119 }
2279     if (!now) { // check if idle & no tasks
2280     if ((int)(c >> AC_SHIFT) != -parallelism ||
2281 dl 1.111 hasQueuedSubmissions())
2282 dl 1.91 return false;
2283 dl 1.111 // Check for unqueued inactive workers. One pass suffices.
2284     WorkQueue[] ws = workQueues; WorkQueue w;
2285     if (ws != null) {
2286 dl 1.119 for (int i = 1; i < ws.length; i += 2) {
2287 dl 1.111 if ((w = ws[i]) != null && w.eventCount >= 0)
2288     return false;
2289     }
2290 dl 1.91 }
2291     }
2292 dl 1.119 if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2293     for (int pass = 0; pass < 3; ++pass) {
2294     WorkQueue[] ws = workQueues;
2295     if (ws != null) {
2296     WorkQueue w;
2297     int n = ws.length;
2298     for (int i = 0; i < n; ++i) {
2299     if ((w = ws[i]) != null) {
2300     w.runState = -1;
2301     if (pass > 0) {
2302     w.cancelAll();
2303     if (pass > 1)
2304     w.interruptOwner();
2305 dl 1.91 }
2306 dl 1.61 }
2307     }
2308 dl 1.119 // Wake up workers parked on event queue
2309     int i, e; long cc; Thread p;
2310     while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2311     (i = e & SMASK) < n &&
2312     (w = ws[i]) != null) {
2313     long nc = ((long)(w.nextWait & E_MASK) |
2314     ((cc + AC_UNIT) & AC_MASK) |
2315     (cc & (TC_MASK|STOP_BIT)));
2316     if (w.eventCount == (e | INT_SIGN) &&
2317     U.compareAndSwapLong(this, CTL, cc, nc)) {
2318     w.eventCount = (e + E_SEQ) & E_MASK;
2319     w.runState = -1;
2320     if ((p = w.parker) != null)
2321     U.unpark(p);
2322     }
2323     }
2324 dl 1.111 }
2325 dl 1.91 }
2326 dl 1.53 }
2327     }
2328 dl 1.56 }
2329    
2330 dl 1.91 // Exported methods
2331 dl 1.1
2332     // Constructors
2333    
2334     /**
2335 dl 1.42 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2336 dl 1.57 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2337     * #defaultForkJoinWorkerThreadFactory default thread factory},
2338     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2339 jsr166 1.17 *
2340 dl 1.1 * @throws SecurityException if a security manager exists and
2341     * the caller is not permitted to modify threads
2342     * because it does not hold {@link
2343 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
2344 dl 1.1 */
2345     public ForkJoinPool() {
2346     this(Runtime.getRuntime().availableProcessors(),
2347 dl 1.57 defaultForkJoinWorkerThreadFactory, null, false);
2348 dl 1.1 }
2349    
2350     /**
2351 dl 1.42 * Creates a {@code ForkJoinPool} with the indicated parallelism
2352 dl 1.57 * level, the {@linkplain
2353     * #defaultForkJoinWorkerThreadFactory default thread factory},
2354     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2355 jsr166 1.17 *
2356 dl 1.42 * @param parallelism the parallelism level
2357 dl 1.1 * @throws IllegalArgumentException if parallelism less than or
2358 jsr166 1.47 * equal to zero, or greater than implementation limit
2359 dl 1.1 * @throws SecurityException if a security manager exists and
2360     * the caller is not permitted to modify threads
2361     * because it does not hold {@link
2362 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
2363 dl 1.1 */
2364     public ForkJoinPool(int parallelism) {
2365 dl 1.57 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2366 dl 1.1 }
2367    
2368     /**
2369 dl 1.57 * Creates a {@code ForkJoinPool} with the given parameters.
2370 jsr166 1.17 *
2371 dl 1.57 * @param parallelism the parallelism level. For default value,
2372     * use {@link java.lang.Runtime#availableProcessors}.
2373     * @param factory the factory for creating new threads. For default value,
2374     * use {@link #defaultForkJoinWorkerThreadFactory}.
2375 dl 1.59 * @param handler the handler for internal worker threads that
2376     * terminate due to unrecoverable errors encountered while executing
2377 jsr166 1.73 * tasks. For default value, use {@code null}.
2378 dl 1.59 * @param asyncMode if true,
2379 dl 1.57 * establishes local first-in-first-out scheduling mode for forked
2380     * tasks that are never joined. This mode may be more appropriate
2381     * than default locally stack-based mode in applications in which
2382     * worker threads only process event-style asynchronous tasks.
2383 jsr166 1.73 * For default value, use {@code false}.
2384 dl 1.1 * @throws IllegalArgumentException if parallelism less than or
2385 jsr166 1.47 * equal to zero, or greater than implementation limit
2386 jsr166 1.48 * @throws NullPointerException if the factory is null
2387 dl 1.1 * @throws SecurityException if a security manager exists and
2388     * the caller is not permitted to modify threads
2389     * because it does not hold {@link
2390 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
2391 dl 1.1 */
2392 dl 1.59 public ForkJoinPool(int parallelism,
2393 dl 1.57 ForkJoinWorkerThreadFactory factory,
2394     Thread.UncaughtExceptionHandler handler,
2395     boolean asyncMode) {
2396 dl 1.53 checkPermission();
2397     if (factory == null)
2398     throw new NullPointerException();
2399 dl 1.123 if (parallelism <= 0 || parallelism > MAX_CAP)
2400 dl 1.1 throw new IllegalArgumentException();
2401 dl 1.53 this.parallelism = parallelism;
2402 dl 1.1 this.factory = factory;
2403 dl 1.57 this.ueh = handler;
2404 dl 1.111 this.localMode = asyncMode ? FIFO_QUEUE : LIFO_QUEUE;
2405 dl 1.91 long np = (long)(-parallelism); // offset ctl counts
2406     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2407 dl 1.123 // Use nearest power 2 for workQueues size. See Hackers Delight sec 3.2.
2408     int n = parallelism - 1;
2409     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
2410 dl 1.136 this.submitMask = ((n + 1) << 1) - 1;
2411 dl 1.123 int pn = poolNumberGenerator.incrementAndGet();
2412 dl 1.91 StringBuilder sb = new StringBuilder("ForkJoinPool-");
2413 dl 1.123 sb.append(Integer.toString(pn));
2414 dl 1.91 sb.append("-worker-");
2415     this.workerNamePrefix = sb.toString();
2416 dl 1.123 this.runState = 1; // set init flag
2417 dl 1.1 }
2418    
2419 dl 1.135 /**
2420 dl 1.136 * Constructor for common pool, suitable only for static initialization.
2421     * Basically the same as above, but uses smallest possible initial footprint.
2422     */
2423     ForkJoinPool(int parallelism, int submitMask,
2424     ForkJoinWorkerThreadFactory factory,
2425     Thread.UncaughtExceptionHandler handler) {
2426     this.factory = factory;
2427     this.ueh = handler;
2428     this.submitMask = submitMask;
2429     this.parallelism = parallelism;
2430     long np = (long)(-parallelism);
2431     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2432     this.localMode = LIFO_QUEUE;
2433     this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2434     this.runState = 1;
2435     }
2436    
2437     /**
2438     * Returns the common pool instance.
2439 dl 1.135 *
2440     * @return the common pool instance
2441     */
2442     public static ForkJoinPool commonPool() {
2443     ForkJoinPool p;
2444 dl 1.136 if ((p = commonPool) == null)
2445     throw new Error("Common Pool Unavailable");
2446 dl 1.135 return p;
2447     }
2448    
2449 dl 1.1 // Execution methods
2450    
2451     /**
2452 jsr166 1.17 * Performs the given task, returning its result upon completion.
2453 dl 1.91 * If the computation encounters an unchecked Exception or Error,
2454     * it is rethrown as the outcome of this invocation. Rethrown
2455     * exceptions behave in the same way as regular exceptions, but,
2456     * when possible, contain stack traces (as displayed for example
2457     * using {@code ex.printStackTrace()}) of both the current thread
2458     * as well as the thread actually encountering the exception;
2459     * minimally only the latter.
2460 jsr166 1.17 *
2461 dl 1.1 * @param task the task
2462     * @return the task's result
2463 jsr166 1.48 * @throws NullPointerException if the task is null
2464     * @throws RejectedExecutionException if the task cannot be
2465     * scheduled for execution
2466 dl 1.1 */
2467     public <T> T invoke(ForkJoinTask<T> task) {
2468 dl 1.123 if (task == null)
2469     throw new NullPointerException();
2470 dl 1.111 doSubmit(task);
2471     return task.join();
2472 dl 1.1 }
2473    
2474     /**
2475     * Arranges for (asynchronous) execution of the given task.
2476 jsr166 1.17 *
2477 dl 1.1 * @param task the task
2478 jsr166 1.48 * @throws NullPointerException if the task is null
2479     * @throws RejectedExecutionException if the task cannot be
2480     * scheduled for execution
2481 dl 1.1 */
2482 dl 1.37 public void execute(ForkJoinTask<?> task) {
2483 dl 1.123 if (task == null)
2484     throw new NullPointerException();
2485 dl 1.111 doSubmit(task);
2486 dl 1.1 }
2487    
2488     // AbstractExecutorService methods
2489    
2490 jsr166 1.48 /**
2491     * @throws NullPointerException if the task is null
2492     * @throws RejectedExecutionException if the task cannot be
2493     * scheduled for execution
2494     */
2495 dl 1.1 public void execute(Runnable task) {
2496 dl 1.82 if (task == null)
2497     throw new NullPointerException();
2498 dl 1.23 ForkJoinTask<?> job;
2499 jsr166 1.26 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2500     job = (ForkJoinTask<?>) task;
2501 dl 1.23 else
2502 dl 1.123 job = new ForkJoinTask.AdaptedRunnableAction(task);
2503 dl 1.111 doSubmit(job);
2504 dl 1.1 }
2505    
2506 jsr166 1.48 /**
2507 dl 1.57 * Submits a ForkJoinTask for execution.
2508     *
2509     * @param task the task to submit
2510     * @return the task
2511     * @throws NullPointerException if the task is null
2512     * @throws RejectedExecutionException if the task cannot be
2513     * scheduled for execution
2514     */
2515     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2516 dl 1.123 if (task == null)
2517     throw new NullPointerException();
2518 dl 1.111 doSubmit(task);
2519 dl 1.57 return task;
2520     }
2521    
2522     /**
2523 jsr166 1.48 * @throws NullPointerException if the task is null
2524     * @throws RejectedExecutionException if the task cannot be
2525     * scheduled for execution
2526     */
2527 dl 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2528 dl 1.123 ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2529 dl 1.111 doSubmit(job);
2530 dl 1.1 return job;
2531     }
2532    
2533 jsr166 1.48 /**
2534     * @throws NullPointerException if the task is null
2535     * @throws RejectedExecutionException if the task cannot be
2536     * scheduled for execution
2537     */
2538 dl 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2539 dl 1.123 ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2540 dl 1.111 doSubmit(job);
2541 dl 1.1 return job;
2542     }
2543    
2544 jsr166 1.48 /**
2545     * @throws NullPointerException if the task is null
2546     * @throws RejectedExecutionException if the task cannot be
2547     * scheduled for execution
2548     */
2549 dl 1.1 public ForkJoinTask<?> submit(Runnable task) {
2550 dl 1.82 if (task == null)
2551     throw new NullPointerException();
2552 dl 1.23 ForkJoinTask<?> job;
2553 jsr166 1.26 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2554     job = (ForkJoinTask<?>) task;
2555 dl 1.23 else
2556 dl 1.123 job = new ForkJoinTask.AdaptedRunnableAction(task);
2557 dl 1.111 doSubmit(job);
2558 dl 1.1 return job;
2559     }
2560    
2561     /**
2562 jsr166 1.48 * @throws NullPointerException {@inheritDoc}
2563     * @throws RejectedExecutionException {@inheritDoc}
2564     */
2565 dl 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2566 dl 1.119 // In previous versions of this class, this method constructed
2567     // a task to run ForkJoinTask.invokeAll, but now external
2568     // invocation of multiple tasks is at least as efficient.
2569     List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2570     // Workaround needed because method wasn't declared with
2571     // wildcards in return type but should have been.
2572 jsr166 1.20 @SuppressWarnings({"unchecked", "rawtypes"})
2573 dl 1.119 List<Future<T>> futures = (List<Future<T>>) (List) fs;
2574 dl 1.1
2575 dl 1.119 boolean done = false;
2576     try {
2577     for (Callable<T> t : tasks) {
2578 dl 1.123 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2579 dl 1.119 doSubmit(f);
2580     fs.add(f);
2581     }
2582     for (ForkJoinTask<T> f : fs)
2583     f.quietlyJoin();
2584     done = true;
2585     return futures;
2586     } finally {
2587     if (!done)
2588     for (ForkJoinTask<T> f : fs)
2589     f.cancel(false);
2590 dl 1.1 }
2591     }
2592    
2593     /**
2594 jsr166 1.17 * Returns the factory used for constructing new workers.
2595 dl 1.1 *
2596     * @return the factory used for constructing new workers
2597     */
2598     public ForkJoinWorkerThreadFactory getFactory() {
2599     return factory;
2600     }
2601    
2602     /**
2603 dl 1.2 * Returns the handler for internal worker threads that terminate
2604     * due to unrecoverable errors encountered while executing tasks.
2605 jsr166 1.17 *
2606 jsr166 1.28 * @return the handler, or {@code null} if none
2607 dl 1.2 */
2608     public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
2609 dl 1.53 return ueh;
2610 dl 1.2 }
2611    
2612     /**
2613 dl 1.42 * Returns the targeted parallelism level of this pool.
2614 dl 1.1 *
2615 dl 1.42 * @return the targeted parallelism level of this pool
2616 dl 1.1 */
2617     public int getParallelism() {
2618     return parallelism;
2619     }
2620    
2621     /**
2622 dl 1.135 * Returns the targeted parallelism level of the common pool.
2623     *
2624     * @return the targeted parallelism level of the common pool
2625     */
2626     public static int getCommonPoolParallelism() {
2627     return commonPoolParallelism;
2628     }
2629    
2630     /**
2631 dl 1.1 * Returns the number of worker threads that have started but not
2632 jsr166 1.76 * yet terminated. The result returned by this method may differ
2633 jsr166 1.29 * from {@link #getParallelism} when threads are created to
2634 dl 1.1 * maintain parallelism when others are cooperatively blocked.
2635     *
2636     * @return the number of worker threads
2637     */
2638     public int getPoolSize() {
2639 dl 1.91 return parallelism + (short)(ctl >>> TC_SHIFT);
2640 dl 1.1 }
2641    
2642     /**
2643 jsr166 1.28 * Returns {@code true} if this pool uses local first-in-first-out
2644 jsr166 1.16 * scheduling mode for forked tasks that are never joined.
2645 dl 1.6 *
2646 jsr166 1.28 * @return {@code true} if this pool uses async mode
2647 dl 1.6 */
2648     public boolean getAsyncMode() {
2649 dl 1.111 return localMode != 0;
2650 dl 1.6 }
2651    
2652     /**
2653 dl 1.2 * Returns an estimate of the number of worker threads that are
2654     * not blocked waiting to join tasks or for other managed
2655 dl 1.53 * synchronization. This method may overestimate the
2656     * number of running threads.
2657 dl 1.1 *
2658     * @return the number of worker threads
2659     */
2660     public int getRunningThreadCount() {
2661 dl 1.111 int rc = 0;
2662     WorkQueue[] ws; WorkQueue w;
2663     if ((ws = workQueues) != null) {
2664 dl 1.119 for (int i = 1; i < ws.length; i += 2) {
2665     if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2666 dl 1.111 ++rc;
2667     }
2668     }
2669     return rc;
2670 dl 1.1 }
2671    
2672     /**
2673 dl 1.2 * Returns an estimate of the number of threads that are currently
2674 dl 1.1 * stealing or executing tasks. This method may overestimate the
2675     * number of active threads.
2676 jsr166 1.17 *
2677 jsr166 1.16 * @return the number of active threads
2678 dl 1.1 */
2679     public int getActiveThreadCount() {
2680 dl 1.111 int r = parallelism + (int)(ctl >> AC_SHIFT);
2681 jsr166 1.102 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2682 dl 1.1 }
2683    
2684     /**
2685 jsr166 1.28 * Returns {@code true} if all worker threads are currently idle.
2686     * An idle worker is one that cannot obtain a task to execute
2687     * because none are available to steal from other threads, and
2688     * there are no pending submissions to the pool. This method is
2689     * conservative; it might not return {@code true} immediately upon
2690     * idleness of all threads, but will eventually become true if
2691     * threads remain inactive.
2692 jsr166 1.17 *
2693 jsr166 1.28 * @return {@code true} if all threads are currently idle
2694 dl 1.1 */
2695     public boolean isQuiescent() {
2696 dl 1.111 return (int)(ctl >> AC_SHIFT) + parallelism == 0;
2697 dl 1.1 }
2698    
2699     /**
2700     * Returns an estimate of the total number of tasks stolen from
2701     * one thread's work queue by another. The reported value
2702     * underestimates the actual total number of steals when the pool
2703     * is not quiescent. This value may be useful for monitoring and
2704 jsr166 1.17 * tuning fork/join programs: in general, steal counts should be
2705 dl 1.1 * high enough to keep threads busy, but low enough to avoid
2706     * overhead and contention across threads.
2707 jsr166 1.17 *
2708 jsr166 1.16 * @return the number of steals
2709 dl 1.1 */
2710     public long getStealCount() {
2711 dl 1.136 long count = stealCount;
2712 dl 1.111 WorkQueue[] ws; WorkQueue w;
2713     if ((ws = workQueues) != null) {
2714 dl 1.119 for (int i = 1; i < ws.length; i += 2) {
2715 dl 1.111 if ((w = ws[i]) != null)
2716     count += w.totalSteals;
2717     }
2718     }
2719     return count;
2720 dl 1.1 }
2721    
2722     /**
2723 dl 1.2 * Returns an estimate of the total number of tasks currently held
2724     * in queues by worker threads (but not including tasks submitted
2725     * to the pool that have not begun executing). This value is only
2726     * an approximation, obtained by iterating across all threads in
2727     * the pool. This method may be useful for tuning task
2728     * granularities.
2729 jsr166 1.17 *
2730 jsr166 1.16 * @return the number of queued tasks
2731 dl 1.1 */
2732     public long getQueuedTaskCount() {
2733     long count = 0;
2734 dl 1.111 WorkQueue[] ws; WorkQueue w;
2735     if ((ws = workQueues) != null) {
2736 dl 1.119 for (int i = 1; i < ws.length; i += 2) {
2737 dl 1.111 if ((w = ws[i]) != null)
2738     count += w.queueSize();
2739     }
2740 dl 1.91 }
2741 dl 1.1 return count;
2742     }
2743    
2744     /**
2745 jsr166 1.40 * Returns an estimate of the number of tasks submitted to this
2746 dl 1.94 * pool that have not yet begun executing. This method may take
2747 dl 1.91 * time proportional to the number of submissions.
2748 jsr166 1.17 *
2749 jsr166 1.16 * @return the number of queued submissions
2750 dl 1.1 */
2751     public int getQueuedSubmissionCount() {
2752 dl 1.111 int count = 0;
2753     WorkQueue[] ws; WorkQueue w;
2754     if ((ws = workQueues) != null) {
2755 dl 1.119 for (int i = 0; i < ws.length; i += 2) {
2756 dl 1.111 if ((w = ws[i]) != null)
2757     count += w.queueSize();
2758     }
2759     }
2760     return count;
2761 dl 1.1 }
2762    
2763     /**
2764 jsr166 1.28 * Returns {@code true} if there are any tasks submitted to this
2765     * pool that have not yet begun executing.
2766 jsr166 1.17 *
2767 jsr166 1.16 * @return {@code true} if there are any queued submissions
2768 dl 1.1 */
2769     public boolean hasQueuedSubmissions() {
2770 dl 1.111 WorkQueue[] ws; WorkQueue w;
2771     if ((ws = workQueues) != null) {
2772 dl 1.119 for (int i = 0; i < ws.length; i += 2) {
2773 dl 1.123 if ((w = ws[i]) != null && !w.isEmpty())
2774 dl 1.111 return true;
2775     }
2776     }
2777     return false;
2778 dl 1.1 }
2779    
2780     /**
2781     * Removes and returns the next unexecuted submission if one is
2782     * available. This method may be useful in extensions to this
2783     * class that re-assign work in systems with multiple pools.
2784 jsr166 1.17 *
2785 jsr166 1.28 * @return the next submission, or {@code null} if none
2786 dl 1.1 */
2787     protected ForkJoinTask<?> pollSubmission() {
2788 dl 1.111 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2789     if ((ws = workQueues) != null) {
2790 dl 1.119 for (int i = 0; i < ws.length; i += 2) {
2791 dl 1.111 if ((w = ws[i]) != null && (t = w.poll()) != null)
2792     return t;
2793 dl 1.91 }
2794     }
2795     return null;
2796 dl 1.1 }
2797    
2798     /**
2799 dl 1.6 * Removes all available unexecuted submitted and forked tasks
2800     * from scheduling queues and adds them to the given collection,
2801     * without altering their execution status. These may include
2802 jsr166 1.41 * artificially generated or wrapped tasks. This method is
2803     * designed to be invoked only when the pool is known to be
2804 dl 1.6 * quiescent. Invocations at other times may not remove all
2805     * tasks. A failure encountered while attempting to add elements
2806 jsr166 1.16 * to collection {@code c} may result in elements being in
2807 dl 1.6 * neither, either or both collections when the associated
2808     * exception is thrown. The behavior of this operation is
2809     * undefined if the specified collection is modified while the
2810     * operation is in progress.
2811 jsr166 1.17 *
2812 dl 1.6 * @param c the collection to transfer elements into
2813     * @return the number of elements transferred
2814     */
2815 dl 1.30 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2816 dl 1.91 int count = 0;
2817 dl 1.111 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2818     if ((ws = workQueues) != null) {
2819 dl 1.119 for (int i = 0; i < ws.length; ++i) {
2820 dl 1.111 if ((w = ws[i]) != null) {
2821     while ((t = w.poll()) != null) {
2822     c.add(t);
2823     ++count;
2824     }
2825     }
2826 dl 1.91 }
2827     }
2828 dl 1.57 return count;
2829     }
2830    
2831     /**
2832 dl 1.1 * Returns a string identifying this pool, as well as its state,
2833     * including indications of run state, parallelism level, and
2834     * worker and task counts.
2835     *
2836     * @return a string identifying this pool, as well as its state
2837     */
2838     public String toString() {
2839 dl 1.119 // Use a single pass through workQueues to collect counts
2840     long qt = 0L, qs = 0L; int rc = 0;
2841 dl 1.136 long st = stealCount;
2842 dl 1.119 long c = ctl;
2843     WorkQueue[] ws; WorkQueue w;
2844     if ((ws = workQueues) != null) {
2845     for (int i = 0; i < ws.length; ++i) {
2846     if ((w = ws[i]) != null) {
2847     int size = w.queueSize();
2848     if ((i & 1) == 0)
2849     qs += size;
2850     else {
2851     qt += size;
2852     st += w.totalSteals;
2853     if (w.isApparentlyUnblocked())
2854     ++rc;
2855     }
2856     }
2857     }
2858     }
2859 dl 1.53 int pc = parallelism;
2860 dl 1.91 int tc = pc + (short)(c >>> TC_SHIFT);
2861 dl 1.111 int ac = pc + (int)(c >> AC_SHIFT);
2862     if (ac < 0) // ignore transient negative
2863     ac = 0;
2864 dl 1.91 String level;
2865     if ((c & STOP_BIT) != 0)
2866 jsr166 1.102 level = (tc == 0) ? "Terminated" : "Terminating";
2867 dl 1.91 else
2868 dl 1.111 level = runState < 0 ? "Shutting down" : "Running";
2869 dl 1.1 return super.toString() +
2870 dl 1.91 "[" + level +
2871 dl 1.53 ", parallelism = " + pc +
2872     ", size = " + tc +
2873     ", active = " + ac +
2874     ", running = " + rc +
2875 dl 1.1 ", steals = " + st +
2876     ", tasks = " + qt +
2877     ", submissions = " + qs +
2878     "]";
2879     }
2880    
2881     /**
2882 dl 1.135 * Possibly initiates an orderly shutdown in which previously
2883     * submitted tasks are executed, but no new tasks will be
2884     * accepted. Invocation has no effect on execution state if this
2885     * is the {@link #commonPool}, and no additional effect if
2886     * already shut down. Tasks that are in the process of being
2887     * submitted concurrently during the course of this method may or
2888     * may not be rejected.
2889 jsr166 1.17 *
2890 dl 1.1 * @throws SecurityException if a security manager exists and
2891     * the caller is not permitted to modify threads
2892     * because it does not hold {@link
2893 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
2894 dl 1.1 */
2895     public void shutdown() {
2896     checkPermission();
2897 dl 1.135 if (this != commonPool)
2898     tryTerminate(false, true);
2899 dl 1.1 }
2900    
2901     /**
2902 dl 1.135 * Possibly attempts to cancel and/or stop all tasks, and reject
2903     * all subsequently submitted tasks. Invocation has no effect on
2904     * execution state if this is the {@link #commonPool}, and no
2905     * additional effect if already shut down. Otherwise, tasks that
2906     * are in the process of being submitted or executed concurrently
2907     * during the course of this method may or may not be
2908     * rejected. This method cancels both existing and unexecuted
2909     * tasks, in order to permit termination in the presence of task
2910     * dependencies. So the method always returns an empty list
2911     * (unlike the case for some other Executors).
2912 jsr166 1.17 *
2913 dl 1.1 * @return an empty list
2914     * @throws SecurityException if a security manager exists and
2915     * the caller is not permitted to modify threads
2916     * because it does not hold {@link
2917 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
2918 dl 1.1 */
2919     public List<Runnable> shutdownNow() {
2920     checkPermission();
2921 dl 1.135 if (this != commonPool)
2922     tryTerminate(true, true);
2923 dl 1.1 return Collections.emptyList();
2924     }
2925    
2926     /**
2927 jsr166 1.16 * Returns {@code true} if all tasks have completed following shut down.
2928 dl 1.1 *
2929 jsr166 1.16 * @return {@code true} if all tasks have completed following shut down
2930 dl 1.1 */
2931     public boolean isTerminated() {
2932 dl 1.91 long c = ctl;
2933     return ((c & STOP_BIT) != 0L &&
2934     (short)(c >>> TC_SHIFT) == -parallelism);
2935 dl 1.1 }
2936    
2937     /**
2938 jsr166 1.16 * Returns {@code true} if the process of termination has
2939 dl 1.42 * commenced but not yet completed. This method may be useful for
2940     * debugging. A return of {@code true} reported a sufficient
2941     * period after shutdown may indicate that submitted tasks have
2942 dl 1.88 * ignored or suppressed interruption, or are waiting for IO,
2943     * causing this executor not to properly terminate. (See the
2944     * advisory notes for class {@link ForkJoinTask} stating that
2945     * tasks should not normally entail blocking operations. But if
2946     * they do, they must abort them on interrupt.)
2947 dl 1.1 *
2948 dl 1.42 * @return {@code true} if terminating but not yet terminated
2949 dl 1.1 */
2950     public boolean isTerminating() {
2951 dl 1.91 long c = ctl;
2952     return ((c & STOP_BIT) != 0L &&
2953     (short)(c >>> TC_SHIFT) != -parallelism);
2954 dl 1.1 }
2955    
2956     /**
2957 jsr166 1.16 * Returns {@code true} if this pool has been shut down.
2958 dl 1.1 *
2959 jsr166 1.16 * @return {@code true} if this pool has been shut down
2960 dl 1.1 */
2961     public boolean isShutdown() {
2962 dl 1.111 return runState < 0;
2963 dl 1.42 }
2964    
2965     /**
2966 dl 1.1 * Blocks until all tasks have completed execution after a shutdown
2967     * request, or the timeout occurs, or the current thread is
2968     * interrupted, whichever happens first.
2969     *
2970     * @param timeout the maximum time to wait
2971     * @param unit the time unit of the timeout argument
2972 jsr166 1.16 * @return {@code true} if this executor terminated and
2973     * {@code false} if the timeout elapsed before termination
2974 dl 1.1 * @throws InterruptedException if interrupted while waiting
2975     */
2976     public boolean awaitTermination(long timeout, TimeUnit unit)
2977     throws InterruptedException {
2978 dl 1.91 long nanos = unit.toNanos(timeout);
2979 dl 1.136 if (isTerminated())
2980     return true;
2981     long startTime = System.nanoTime();
2982     boolean terminated = false;
2983 jsr166 1.138 synchronized (this) {
2984 dl 1.136 for (long waitTime = nanos, millis = 0L;;) {
2985     if (terminated = isTerminated() ||
2986     waitTime <= 0L ||
2987     (millis = unit.toMillis(waitTime)) <= 0L)
2988     break;
2989     wait(millis);
2990     waitTime = nanos - (System.nanoTime() - startTime);
2991 dl 1.91 }
2992 dl 1.57 }
2993 dl 1.136 return terminated;
2994 dl 1.1 }
2995    
2996     /**
2997     * Interface for extending managed parallelism for tasks running
2998 jsr166 1.35 * in {@link ForkJoinPool}s.
2999     *
3000 dl 1.61 * <p>A {@code ManagedBlocker} provides two methods. Method
3001     * {@code isReleasable} must return {@code true} if blocking is
3002     * not necessary. Method {@code block} blocks the current thread
3003     * if necessary (perhaps internally invoking {@code isReleasable}
3004 dl 1.93 * before actually blocking). These actions are performed by any
3005     * thread invoking {@link ForkJoinPool#managedBlock}. The
3006     * unusual methods in this API accommodate synchronizers that may,
3007     * but don't usually, block for long periods. Similarly, they
3008     * allow more efficient internal handling of cases in which
3009     * additional workers may be, but usually are not, needed to
3010     * ensure sufficient parallelism. Toward this end,
3011     * implementations of method {@code isReleasable} must be amenable
3012     * to repeated invocation.
3013 jsr166 1.17 *
3014 dl 1.1 * <p>For example, here is a ManagedBlocker based on a
3015     * ReentrantLock:
3016 jsr166 1.17 * <pre> {@code
3017     * class ManagedLocker implements ManagedBlocker {
3018     * final ReentrantLock lock;
3019     * boolean hasLock = false;
3020     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3021     * public boolean block() {
3022     * if (!hasLock)
3023     * lock.lock();
3024     * return true;
3025     * }
3026     * public boolean isReleasable() {
3027     * return hasLock || (hasLock = lock.tryLock());
3028 dl 1.1 * }
3029 jsr166 1.17 * }}</pre>
3030 dl 1.61 *
3031     * <p>Here is a class that possibly blocks waiting for an
3032     * item on a given queue:
3033     * <pre> {@code
3034     * class QueueTaker<E> implements ManagedBlocker {
3035     * final BlockingQueue<E> queue;
3036     * volatile E item = null;
3037     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3038     * public boolean block() throws InterruptedException {
3039     * if (item == null)
3040 dl 1.65 * item = queue.take();
3041 dl 1.61 * return true;
3042     * }
3043     * public boolean isReleasable() {
3044 dl 1.65 * return item != null || (item = queue.poll()) != null;
3045 dl 1.61 * }
3046     * public E getItem() { // call after pool.managedBlock completes
3047     * return item;
3048     * }
3049     * }}</pre>
3050 dl 1.1 */
3051     public static interface ManagedBlocker {
3052     /**
3053     * Possibly blocks the current thread, for example waiting for
3054     * a lock or condition.
3055 jsr166 1.17 *
3056 jsr166 1.28 * @return {@code true} if no additional blocking is necessary
3057     * (i.e., if isReleasable would return true)
3058 dl 1.1 * @throws InterruptedException if interrupted while waiting
3059 jsr166 1.17 * (the method is not required to do so, but is allowed to)
3060 dl 1.1 */
3061     boolean block() throws InterruptedException;
3062    
3063     /**
3064 jsr166 1.28 * Returns {@code true} if blocking is unnecessary.
3065 dl 1.1 */
3066     boolean isReleasable();
3067     }
3068    
3069     /**
3070     * Blocks in accord with the given blocker. If the current thread
3071 jsr166 1.38 * is a {@link ForkJoinWorkerThread}, this method possibly
3072     * arranges for a spare thread to be activated if necessary to
3073 dl 1.57 * ensure sufficient parallelism while the current thread is blocked.
3074 jsr166 1.38 *
3075     * <p>If the caller is not a {@link ForkJoinTask}, this method is
3076     * behaviorally equivalent to
3077 jsr166 1.115 * <pre> {@code
3078 jsr166 1.17 * while (!blocker.isReleasable())
3079     * if (blocker.block())
3080     * return;
3081     * }</pre>
3082 jsr166 1.38 *
3083     * If the caller is a {@code ForkJoinTask}, then the pool may
3084     * first be expanded to ensure parallelism, and later adjusted.
3085 dl 1.1 *
3086     * @param blocker the blocker
3087 jsr166 1.16 * @throws InterruptedException if blocker.block did so
3088 dl 1.1 */
3089 dl 1.57 public static void managedBlock(ManagedBlocker blocker)
3090 dl 1.1 throws InterruptedException {
3091     Thread t = Thread.currentThread();
3092 dl 1.111 ForkJoinPool p = ((t instanceof ForkJoinWorkerThread) ?
3093     ((ForkJoinWorkerThread)t).pool : null);
3094     while (!blocker.isReleasable()) {
3095 dl 1.123 if (p == null || p.tryCompensate(null, blocker)) {
3096 dl 1.111 try {
3097     do {} while (!blocker.isReleasable() && !blocker.block());
3098     } finally {
3099     if (p != null)
3100     p.incrementActiveCount();
3101     }
3102     break;
3103     }
3104 dl 1.57 }
3105 dl 1.1 }
3106    
3107 dl 1.33 // AbstractExecutorService overrides. These rely on undocumented
3108     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3109     // implement RunnableFuture.
3110 dl 1.2
3111     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3112 dl 1.123 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3113 dl 1.2 }
3114    
3115     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3116 dl 1.123 return new ForkJoinTask.AdaptedCallable<T>(callable);
3117 dl 1.2 }
3118    
3119 jsr166 1.27 // Unsafe mechanics
3120 dl 1.111 private static final sun.misc.Unsafe U;
3121     private static final long CTL;
3122     private static final long PARKBLOCKER;
3123 dl 1.123 private static final int ABASE;
3124     private static final int ASHIFT;
3125 dl 1.136 private static final long NEXTWORKERNUMBER;
3126     private static final long STEALCOUNT;
3127     private static final long MAINLOCK;
3128 dl 1.91
3129     static {
3130     poolNumberGenerator = new AtomicInteger();
3131 dl 1.123 nextSubmitterSeed = new AtomicInteger(0x55555555);
3132 dl 1.91 modifyThreadPermission = new RuntimePermission("modifyThread");
3133     defaultForkJoinWorkerThreadFactory =
3134     new DefaultForkJoinWorkerThreadFactory();
3135 dl 1.119 submitters = new ThreadSubmitter();
3136 dl 1.123 int s;
3137 jsr166 1.27 try {
3138 dl 1.111 U = getUnsafe();
3139 jsr166 1.103 Class<?> k = ForkJoinPool.class;
3140 dl 1.123 Class<?> ak = ForkJoinTask[].class;
3141 dl 1.111 CTL = U.objectFieldOffset
3142 dl 1.91 (k.getDeclaredField("ctl"));
3143 dl 1.136 NEXTWORKERNUMBER = U.objectFieldOffset
3144     (k.getDeclaredField("nextWorkerNumber"));
3145     STEALCOUNT = U.objectFieldOffset
3146     (k.getDeclaredField("stealCount"));
3147     MAINLOCK = U.objectFieldOffset
3148     (k.getDeclaredField("mainLock"));
3149 dl 1.119 Class<?> tk = Thread.class;
3150 dl 1.111 PARKBLOCKER = U.objectFieldOffset
3151     (tk.getDeclaredField("parkBlocker"));
3152 dl 1.123 ABASE = U.arrayBaseOffset(ak);
3153     s = U.arrayIndexScale(ak);
3154 dl 1.136 ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3155 dl 1.91 } catch (Exception e) {
3156     throw new Error(e);
3157     }
3158 dl 1.123 if ((s & (s-1)) != 0)
3159     throw new Error("data type scale not a power of two");
3160 dl 1.136 try { // Establish common pool
3161 dl 1.135 String pp = System.getProperty(propPrefix + "parallelism");
3162     String fp = System.getProperty(propPrefix + "threadFactory");
3163     String up = System.getProperty(propPrefix + "exceptionHandler");
3164 dl 1.136 ForkJoinWorkerThreadFactory fac = (fp == null) ?
3165     defaultForkJoinWorkerThreadFactory :
3166     ((ForkJoinWorkerThreadFactory)ClassLoader.
3167     getSystemClassLoader().loadClass(fp).newInstance());
3168 jsr166 1.138 Thread.UncaughtExceptionHandler ueh = (up == null) ? null :
3169 dl 1.136 ((Thread.UncaughtExceptionHandler)ClassLoader.
3170     getSystemClassLoader().loadClass(up).newInstance());
3171 dl 1.135 int par;
3172     if ((pp == null || (par = Integer.parseInt(pp)) <= 0))
3173     par = Runtime.getRuntime().availableProcessors();
3174 dl 1.136 if (par > MAX_CAP)
3175     par = MAX_CAP;
3176 dl 1.135 commonPoolParallelism = par;
3177 dl 1.136 int n = par - 1; // precompute submit mask
3178     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
3179     n |= n >>> 8; n |= n >>> 16;
3180     int mask = ((n + 1) << 1) - 1;
3181     commonPool = new ForkJoinPool(par, mask, fac, ueh);
3182 dl 1.135 } catch (Exception e) {
3183     throw new Error(e);
3184     }
3185 jsr166 1.27 }
3186    
3187     /**
3188     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
3189     * Replace with a simple call to Unsafe.getUnsafe when integrating
3190     * into a jdk.
3191     *
3192     * @return a sun.misc.Unsafe
3193     */
3194     private static sun.misc.Unsafe getUnsafe() {
3195     try {
3196     return sun.misc.Unsafe.getUnsafe();
3197     } catch (SecurityException se) {
3198     try {
3199     return java.security.AccessController.doPrivileged
3200     (new java.security
3201     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
3202     public sun.misc.Unsafe run() throws Exception {
3203     java.lang.reflect.Field f = sun.misc
3204     .Unsafe.class.getDeclaredField("theUnsafe");
3205     f.setAccessible(true);
3206     return (sun.misc.Unsafe) f.get(null);
3207     }});
3208     } catch (java.security.PrivilegedActionException e) {
3209     throw new RuntimeException("Could not initialize intrinsics",
3210     e.getCause());
3211     }
3212     }
3213     }
3214 dl 1.112
3215 dl 1.1 }