ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
Revision: 1.141
Committed: Wed Nov 14 18:45:53 2012 UTC (11 years, 6 months ago) by jsr166
Branch: MAIN
Changes since 1.140: +4 -4 lines
Log Message:
whitespace

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.97 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.1 */
6    
7     package jsr166y;
8 dl 1.135
9 jsr166 1.22 import java.util.ArrayList;
10     import java.util.Arrays;
11     import java.util.Collection;
12     import java.util.Collections;
13     import java.util.List;
14 dl 1.78 import java.util.concurrent.AbstractExecutorService;
15     import java.util.concurrent.Callable;
16     import java.util.concurrent.ExecutorService;
17     import java.util.concurrent.Future;
18     import java.util.concurrent.RejectedExecutionException;
19     import java.util.concurrent.RunnableFuture;
20     import java.util.concurrent.TimeUnit;
21 dl 1.1
22     /**
23 jsr166 1.29 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
24 jsr166 1.39 * A {@code ForkJoinPool} provides the entry point for submissions
25 dl 1.57 * from non-{@code ForkJoinTask} clients, as well as management and
26 jsr166 1.48 * monitoring operations.
27 dl 1.1 *
28 dl 1.42 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
29     * ExecutorService} mainly by virtue of employing
30     * <em>work-stealing</em>: all threads in the pool attempt to find and
31 dl 1.111 * execute tasks submitted to the pool and/or created by other active
32     * tasks (eventually blocking waiting for work if none exist). This
33     * enables efficient processing when most tasks spawn other subtasks
34     * (as do most {@code ForkJoinTask}s), as well as when many small
35     * tasks are submitted to the pool from external clients. Especially
36     * when setting <em>asyncMode</em> to true in constructors, {@code
37     * ForkJoinPool}s may also be appropriate for use with event-style
38     * tasks that are never joined.
39 dl 1.1 *
40 dl 1.135 * <p>A static {@link #commonPool} is available and appropriate for
41 dl 1.136 * most applications. The common pool is used by any ForkJoinTask that
42     * is not explicitly submitted to a specified pool. Using the common
43     * pool normally reduces resource usage (its threads are slowly
44     * reclaimed during periods of non-use, and reinstated upon subsequent
45 dl 1.140 * use).
46 dl 1.135 *
47     * <p>For applications that require separate or custom pools, a {@code
48     * ForkJoinPool} may be constructed with a given target parallelism
49     * level; by default, equal to the number of available processors. The
50     * pool attempts to maintain enough active (or available) threads by
51     * dynamically adding, suspending, or resuming internal worker
52     * threads, even if some tasks are stalled waiting to join
53     * others. However, no such adjustments are guaranteed in the face of
54     * blocked IO or other unmanaged synchronization. The nested {@link
55     * ManagedBlocker} interface enables extension of the kinds of
56 dl 1.57 * synchronization accommodated.
57 dl 1.1 *
58     * <p>In addition to execution and lifecycle control methods, this
59     * class provides status check methods (for example
60 jsr166 1.29 * {@link #getStealCount}) that are intended to aid in developing,
61 dl 1.1 * tuning, and monitoring fork/join applications. Also, method
62 jsr166 1.29 * {@link #toString} returns indications of pool state in a
63 dl 1.2 * convenient form for informal monitoring.
64 dl 1.1 *
65 dl 1.57 * <p> As is the case with other ExecutorServices, there are three
66 jsr166 1.117 * main task execution methods summarized in the following table.
67     * These are designed to be used primarily by clients not already
68     * engaged in fork/join computations in the current pool. The main
69     * forms of these methods accept instances of {@code ForkJoinTask},
70     * but overloaded forms also allow mixed execution of plain {@code
71     * Runnable}- or {@code Callable}- based activities as well. However,
72     * tasks that are already executing in a pool should normally instead
73     * use the within-computation forms listed in the table unless using
74     * async event-style tasks that are not usually joined, in which case
75     * there is little difference among choice of methods.
76 dl 1.57 *
77     * <table BORDER CELLPADDING=3 CELLSPACING=1>
78     * <tr>
79     * <td></td>
80     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
81     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
82     * </tr>
83     * <tr>
84 jsr166 1.67 * <td> <b>Arrange async execution</td>
85 dl 1.57 * <td> {@link #execute(ForkJoinTask)}</td>
86     * <td> {@link ForkJoinTask#fork}</td>
87     * </tr>
88     * <tr>
89     * <td> <b>Await and obtain result</td>
90     * <td> {@link #invoke(ForkJoinTask)}</td>
91     * <td> {@link ForkJoinTask#invoke}</td>
92     * </tr>
93     * <tr>
94     * <td> <b>Arrange exec and obtain Future</td>
95     * <td> {@link #submit(ForkJoinTask)}</td>
96     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
97     * </tr>
98     * </table>
99 dl 1.59 *
100 dl 1.140 * <p>The common pool is by default constructed with default
101     * parameters, but these may be controlled by setting three {@link
102     * System#getProperty properties} with prefix {@code
103     * java.util.concurrent.ForkJoinPool.common}: {@code parallelism} --
104     * an integer greater than zero, {@code threadFactory} -- the class
105     * name of a {@link ForkJoinWorkerThreadFactory}, and {@code
106     * exceptionHandler} -- the class name of a {@link
107     * Thread.UncaughtExceptionHandler}. Upon any error in establishing
108     * these settings, default parameters are used.
109     *
110 dl 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
111 dl 1.2 * maximum number of running threads to 32767. Attempts to create
112 jsr166 1.48 * pools with greater than the maximum number result in
113 jsr166 1.39 * {@code IllegalArgumentException}.
114 jsr166 1.16 *
115 jsr166 1.48 * <p>This implementation rejects submitted tasks (that is, by throwing
116 dl 1.58 * {@link RejectedExecutionException}) only when the pool is shut down
117 dl 1.62 * or internal resources have been exhausted.
118 jsr166 1.48 *
119 jsr166 1.16 * @since 1.7
120     * @author Doug Lea
121 dl 1.1 */
122 dl 1.2 public class ForkJoinPool extends AbstractExecutorService {
123 dl 1.1
124     /*
125 dl 1.53 * Implementation Overview
126     *
127 dl 1.111 * This class and its nested classes provide the main
128     * functionality and control for a set of worker threads:
129 jsr166 1.117 * Submissions from non-FJ threads enter into submission queues.
130     * Workers take these tasks and typically split them into subtasks
131     * that may be stolen by other workers. Preference rules give
132     * first priority to processing tasks from their own queues (LIFO
133     * or FIFO, depending on mode), then to randomized FIFO steals of
134     * tasks in other queues.
135 dl 1.111 *
136 jsr166 1.117 * WorkQueues
137 dl 1.111 * ==========
138     *
139     * Most operations occur within work-stealing queues (in nested
140     * class WorkQueue). These are special forms of Deques that
141     * support only three of the four possible end-operations -- push,
142     * pop, and poll (aka steal), under the further constraints that
143     * push and pop are called only from the owning thread (or, as
144     * extended here, under a lock), while poll may be called from
145     * other threads. (If you are unfamiliar with them, you probably
146     * want to read Herlihy and Shavit's book "The Art of
147     * Multiprocessor programming", chapter 16 describing these in
148     * more detail before proceeding.) The main work-stealing queue
149     * design is roughly similar to those in the papers "Dynamic
150     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
151     * (http://research.sun.com/scalable/pubs/index.html) and
152     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
153     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
154 jsr166 1.117 * The main differences ultimately stem from GC requirements that
155 dl 1.111 * we null out taken slots as soon as we can, to maintain as small
156     * a footprint as possible even in programs generating huge
157     * numbers of tasks. To accomplish this, we shift the CAS
158     * arbitrating pop vs poll (steal) from being on the indices
159     * ("base" and "top") to the slots themselves. So, both a
160     * successful pop and poll mainly entail a CAS of a slot from
161     * non-null to null. Because we rely on CASes of references, we
162     * do not need tag bits on base or top. They are simple ints as
163     * used in any circular array-based queue (see for example
164     * ArrayDeque). Updates to the indices must still be ordered in a
165     * way that guarantees that top == base means the queue is empty,
166     * but otherwise may err on the side of possibly making the queue
167     * appear nonempty when a push, pop, or poll have not fully
168     * committed. Note that this means that the poll operation,
169     * considered individually, is not wait-free. One thief cannot
170     * successfully continue until another in-progress one (or, if
171     * previously empty, a push) completes. However, in the
172     * aggregate, we ensure at least probabilistic non-blockingness.
173     * If an attempted steal fails, a thief always chooses a different
174     * random victim target to try next. So, in order for one thief to
175     * progress, it suffices for any in-progress poll or new push on
176 dl 1.123 * any empty queue to complete. (This is why we normally use
177     * method pollAt and its variants that try once at the apparent
178     * base index, else consider alternative actions, rather than
179     * method poll.)
180 dl 1.111 *
181 dl 1.112 * This approach also enables support of a user mode in which local
182 dl 1.111 * task processing is in FIFO, not LIFO order, simply by using
183     * poll rather than pop. This can be useful in message-passing
184     * frameworks in which tasks are never joined. However neither
185     * mode considers affinities, loads, cache localities, etc, so
186     * rarely provide the best possible performance on a given
187     * machine, but portably provide good throughput by averaging over
188     * these factors. (Further, even if we did try to use such
189 jsr166 1.117 * information, we do not usually have a basis for exploiting it.
190     * For example, some sets of tasks profit from cache affinities,
191     * but others are harmed by cache pollution effects.)
192 dl 1.111 *
193     * WorkQueues are also used in a similar way for tasks submitted
194     * to the pool. We cannot mix these tasks in the same queues used
195     * for work-stealing (this would contaminate lifo/fifo
196 dl 1.140 * processing). Instead, we randomly associate submission queues
197 dl 1.116 * with submitting threads, using a form of hashing. The
198     * ThreadLocal Submitter class contains a value initially used as
199     * a hash code for choosing existing queues, but may be randomly
200     * repositioned upon contention with other submitters. In
201 dl 1.140 * essence, submitters act like workers except that they are
202     * restricted to executing local tasks that they submitted (or in
203     * the case of CountedCompleters, others with the same root task).
204     * However, because most shared/external queue operations are more
205     * expensive than internal, and because, at steady state, external
206     * submitters will compete for CPU with workers, ForkJoinTask.join
207     * and related methods disable them from repeatedly helping to
208     * process tasks if all workers are active. Insertion of tasks in
209     * shared mode requires a lock (mainly to protect in the case of
210     * resizing) but we use only a simple spinlock (using bits in
211     * field qlock), because submitters encountering a busy queue move
212     * on to try or create other queues -- they block only when
213     * creating and registering new queues.
214 dl 1.111 *
215 jsr166 1.117 * Management
216 dl 1.111 * ==========
217 dl 1.91 *
218     * The main throughput advantages of work-stealing stem from
219     * decentralized control -- workers mostly take tasks from
220     * themselves or each other. We cannot negate this in the
221     * implementation of other management responsibilities. The main
222     * tactic for avoiding bottlenecks is packing nearly all
223 dl 1.111 * essentially atomic control state into two volatile variables
224     * that are by far most often read (not written) as status and
225 jsr166 1.117 * consistency checks.
226 dl 1.111 *
227     * Field "ctl" contains 64 bits holding all the information needed
228     * to atomically decide to add, inactivate, enqueue (on an event
229     * queue), dequeue, and/or re-activate workers. To enable this
230     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
231     * far in excess of normal operating range) to allow ids, counts,
232     * and their negations (used for thresholding) to fit into 16bit
233     * fields.
234     *
235 dl 1.140 * Field "plock" is a form of sequence lock with a saturating
236     * shutdown bit (similarly for per-queue "qlocks"), mainly
237     * protecting updates to the workQueues array, as well as to
238     * enable shutdown. When used as a lock, it is normally only very
239     * briefly held, so is nearly always available after at most a
240     * brief spin, but we use a monitor-based backup strategy to
241     * blocking when needed.
242 dl 1.111 *
243     * Recording WorkQueues. WorkQueues are recorded in the
244 dl 1.136 * "workQueues" array that is created upon first use and expanded
245     * if necessary. Updates to the array while recording new workers
246     * and unrecording terminated ones are protected from each other
247     * by a lock but the array is otherwise concurrently readable, and
248     * accessed directly. To simplify index-based operations, the
249     * array size is always a power of two, and all readers must
250 dl 1.140 * tolerate null slots. Worker queues are at odd indices Shared
251     * (submission) queues are at even indices, up to a maximum of 64
252     * slots, to limit growth even if array needs to expand to add
253     * more workers. Grouping them together in this way simplifies and
254     * speeds up task scanning.
255 dl 1.119 *
256     * All worker thread creation is on-demand, triggered by task
257     * submissions, replacement of terminated workers, and/or
258 dl 1.111 * compensation for blocked workers. However, all other support
259     * code is set up to work with other policies. To ensure that we
260     * do not hold on to worker references that would prevent GC, ALL
261     * accesses to workQueues are via indices into the workQueues
262     * array (which is one source of some of the messy code
263     * constructions here). In essence, the workQueues array serves as
264     * a weak reference mechanism. Thus for example the wait queue
265     * field of ctl stores indices, not references. Access to the
266     * workQueues in associated methods (for example signalWork) must
267     * both index-check and null-check the IDs. All such accesses
268     * ignore bad IDs by returning out early from what they are doing,
269     * since this can only be associated with termination, in which
270 dl 1.119 * case it is OK to give up. All uses of the workQueues array
271     * also check that it is non-null (even if previously
272     * non-null). This allows nulling during termination, which is
273     * currently not necessary, but remains an option for
274     * resource-revocation-based shutdown schemes. It also helps
275     * reduce JIT issuance of uncommon-trap code, which tends to
276 dl 1.111 * unnecessarily complicate control flow in some methods.
277 dl 1.91 *
278 dl 1.111 * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
279 dl 1.95 * let workers spin indefinitely scanning for tasks when none can
280     * be found immediately, and we cannot start/resume workers unless
281     * there appear to be tasks available. On the other hand, we must
282     * quickly prod them into action when new tasks are submitted or
283 dl 1.111 * generated. In many usages, ramp-up time to activate workers is
284     * the main limiting factor in overall performance (this is
285     * compounded at program start-up by JIT compilation and
286     * allocation). So we try to streamline this as much as possible.
287     * We park/unpark workers after placing in an event wait queue
288     * when they cannot find work. This "queue" is actually a simple
289     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
290     * counter value (that reflects the number of times a worker has
291     * been inactivated) to avoid ABA effects (we need only as many
292     * version numbers as worker threads). Successors are held in
293     * field WorkQueue.nextWait. Queuing deals with several intrinsic
294     * races, mainly that a task-producing thread can miss seeing (and
295 dl 1.95 * signalling) another thread that gave up looking for work but
296     * has not yet entered the wait queue. We solve this by requiring
297 dl 1.111 * a full sweep of all workers (via repeated calls to method
298     * scan()) both before and after a newly waiting worker is added
299     * to the wait queue. During a rescan, the worker might release
300     * some other queued worker rather than itself, which has the same
301     * net effect. Because enqueued workers may actually be rescanning
302     * rather than waiting, we set and clear the "parker" field of
303 jsr166 1.117 * WorkQueues to reduce unnecessary calls to unpark. (This
304 dl 1.111 * requires a secondary recheck to avoid missed signals.) Note
305     * the unusual conventions about Thread.interrupts surrounding
306     * parking and other blocking: Because interrupts are used solely
307     * to alert threads to check termination, which is checked anyway
308     * upon blocking, we clear status (using Thread.interrupted)
309     * before any call to park, so that park does not immediately
310     * return due to status being set via some other unrelated call to
311     * interrupt in user code.
312 dl 1.91 *
313     * Signalling. We create or wake up workers only when there
314     * appears to be at least one task they might be able to find and
315 dl 1.140 * execute. However, many other threads may notice the same task
316     * and each signal to wake up a thread that might take it. So in
317     * general, pools will be over-signalled. When a submission is
318     * added or another worker adds a task to a queue that is
319     * apparently empty, they signal waiting workers (or trigger
320     * creation of new ones if fewer than the given parallelism level
321     * -- see signalWork). These primary signals are buttressed by
322     * signals whenever other threads scan for work or do not have a
323     * task to process. On most platforms, signalling (unpark)
324     * overhead time is noticeably long, and the time between
325     * signalling a thread and it actually making progress can be very
326     * noticeably long, so it is worth offloading these delays from
327     * critical paths as much as possible.
328 dl 1.91 *
329     * Trimming workers. To release resources after periods of lack of
330     * use, a worker starting to wait when the pool is quiescent will
331 dl 1.135 * time out and terminate if the pool has remained quiescent for a
332     * given period -- a short period if there are more threads than
333     * parallelism, longer as the number of threads decreases. This
334     * will slowly propagate, eventually terminating all workers after
335     * periods of non-use.
336 dl 1.91 *
337 dl 1.111 * Shutdown and Termination. A call to shutdownNow atomically sets
338 dl 1.140 * a plock bit and then (non-atomically) sets each worker's
339     * qlock status, cancels all unprocessed tasks, and wakes up
340 dl 1.111 * all waiting workers. Detecting whether termination should
341     * commence after a non-abrupt shutdown() call requires more work
342     * and bookkeeping. We need consensus about quiescence (i.e., that
343     * there is no more work). The active count provides a primary
344     * indication but non-abrupt shutdown still requires a rechecking
345     * scan for any workers that are inactive but not queued.
346     *
347 jsr166 1.117 * Joining Tasks
348     * =============
349 dl 1.111 *
350     * Any of several actions may be taken when one worker is waiting
351 jsr166 1.117 * to join a task stolen (or always held) by another. Because we
352 dl 1.111 * are multiplexing many tasks on to a pool of workers, we can't
353     * just let them block (as in Thread.join). We also cannot just
354     * reassign the joiner's run-time stack with another and replace
355     * it later, which would be a form of "continuation", that even if
356     * possible is not necessarily a good idea since we sometimes need
357 jsr166 1.117 * both an unblocked task and its continuation to progress.
358     * Instead we combine two tactics:
359 dl 1.58 *
360 dl 1.60 * Helping: Arranging for the joiner to execute some task that it
361 dl 1.111 * would be running if the steal had not occurred.
362 dl 1.58 *
363 dl 1.61 * Compensating: Unless there are already enough live threads,
364 dl 1.111 * method tryCompensate() may create or re-activate a spare
365     * thread to compensate for blocked joiners until they unblock.
366     *
367 dl 1.140 * A third form (implemented in tryRemoveAndExec) amounts to
368     * helping a hypothetical compensator: If we can readily tell that
369     * a possible action of a compensator is to steal and execute the
370     * task being joined, the joining thread can do so directly,
371     * without the need for a compensation thread (although at the
372     * expense of larger run-time stacks, but the tradeoff is
373     * typically worthwhile).
374 dl 1.91 *
375     * The ManagedBlocker extension API can't use helping so relies
376     * only on compensation in method awaitBlocker.
377 dl 1.58 *
378 dl 1.111 * The algorithm in tryHelpStealer entails a form of "linear"
379     * helping: Each worker records (in field currentSteal) the most
380     * recent task it stole from some other worker. Plus, it records
381     * (in field currentJoin) the task it is currently actively
382     * joining. Method tryHelpStealer uses these markers to try to
383     * find a worker to help (i.e., steal back a task from and execute
384     * it) that could hasten completion of the actively joined task.
385     * In essence, the joiner executes a task that would be on its own
386     * local deque had the to-be-joined task not been stolen. This may
387     * be seen as a conservative variant of the approach in Wagner &
388     * Calder "Leapfrogging: a portable technique for implementing
389     * efficient futures" SIGPLAN Notices, 1993
390     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
391     * that: (1) We only maintain dependency links across workers upon
392     * steals, rather than use per-task bookkeeping. This sometimes
393 dl 1.123 * requires a linear scan of workQueues array to locate stealers,
394     * but often doesn't because stealers leave hints (that may become
395 dl 1.111 * stale/wrong) of where to locate them. A stealHint is only a
396     * hint because a worker might have had multiple steals and the
397     * hint records only one of them (usually the most current).
398     * Hinting isolates cost to when it is needed, rather than adding
399     * to per-task overhead. (2) It is "shallow", ignoring nesting
400     * and potentially cyclic mutual steals. (3) It is intentionally
401     * racy: field currentJoin is updated only while actively joining,
402     * which means that we miss links in the chain during long-lived
403     * tasks, GC stalls etc (which is OK since blocking in such cases
404     * is usually a good idea). (4) We bound the number of attempts
405 dl 1.123 * to find work (see MAX_HELP) and fall back to suspending the
406     * worker and if necessary replacing it with another.
407 dl 1.111 *
408 dl 1.140 * Helping actions for CountedCompleters are much simpler: Method
409     * helpComplete can take and execute any task with the same root
410     * as the task being waited on. However, this still entails some
411     * traversal of completer chains, so is less efficient than using
412     * CountedCompleters without explicit joins.
413     *
414 dl 1.91 * It is impossible to keep exactly the target parallelism number
415     * of threads running at any given time. Determining the
416 dl 1.66 * existence of conservatively safe helping targets, the
417     * availability of already-created spares, and the apparent need
418 dl 1.111 * to create new spares are all racy, so we rely on multiple
419 dl 1.123 * retries of each. Compensation in the apparent absence of
420     * helping opportunities is challenging to control on JVMs, where
421     * GC and other activities can stall progress of tasks that in
422     * turn stall out many other dependent tasks, without us being
423     * able to determine whether they will ever require compensation.
424     * Even though work-stealing otherwise encounters little
425     * degradation in the presence of more threads than cores,
426     * aggressively adding new threads in such cases entails risk of
427     * unwanted positive feedback control loops in which more threads
428     * cause more dependent stalls (as well as delayed progress of
429     * unblocked threads to the point that we know they are available)
430     * leading to more situations requiring more threads, and so
431     * on. This aspect of control can be seen as an (analytically
432 jsr166 1.125 * intractable) game with an opponent that may choose the worst
433 dl 1.123 * (for us) active thread to stall at any time. We take several
434     * precautions to bound losses (and thus bound gains), mainly in
435 dl 1.140 * methods tryCompensate and awaitJoin.
436     *
437     * Common Pool
438     * ===========
439     *
440     * The static commonPool always exists after static
441     * initialization. Since it (or any other created pool) need
442     * never be used, we minimize initial construction overhead and
443     * footprint to the setup of about a dozen fields, with no nested
444     * allocation. Most bootstrapping occurs within method
445     * fullExternalPush during the first submission to the pool.
446     *
447     * When external threads submit to the common pool, they can
448     * perform some subtask processing (see externalHelpJoin and
449     * related methods). We do not need to record whether these
450     * submissions are to the common pool -- if not, externalHelpJoin
451     * returns quicky (at the most helping to signal some common pool
452     * workers). These submitters would otherwise be blocked waiting
453     * for completion, so the extra effort (with liberally sprinkled
454     * task status checks) in inapplicable cases amounts to an odd
455     * form of limited spin-wait before blocking in ForkJoinTask.join.
456     *
457     * Style notes
458     * ===========
459     *
460     * There is a lot of representation-level coupling among classes
461     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
462     * fields of WorkQueue maintain data structures managed by
463     * ForkJoinPool, so are directly accessed. There is little point
464     * trying to reduce this, since any associated future changes in
465     * representations will need to be accompanied by algorithmic
466     * changes anyway. Several methods intrinsically sprawl because
467     * they must accumulate sets of consistent reads of volatiles held
468     * in local variables. Methods signalWork() and scan() are the
469     * main bottlenecks, so are especially heavily
470 dl 1.119 * micro-optimized/mangled. There are lots of inline assignments
471     * (of form "while ((local = field) != 0)") which are usually the
472     * simplest way to ensure the required read orderings (which are
473     * sometimes critical). This leads to a "C"-like style of listing
474     * declarations of these locals at the heads of methods or blocks.
475     * There are several occurrences of the unusual "do {} while
476     * (!cas...)" which is the simplest way to force an update of a
477 dl 1.140 * CAS'ed variable. There are also other coding oddities (including
478     * several unnecessary-looking hoisted null checks) that help
479 dl 1.119 * some methods perform reasonably even when interpreted (not
480     * compiled).
481 dl 1.91 *
482 jsr166 1.117 * The order of declarations in this file is:
483 dl 1.119 * (1) Static utility functions
484     * (2) Nested (static) classes
485     * (3) Static fields
486     * (4) Fields, along with constants used when unpacking some of them
487     * (5) Internal control methods
488     * (6) Callbacks and other support for ForkJoinTask methods
489     * (7) Exported methods
490     * (8) Static block initializing statics in minimally dependent order
491     */
492    
493     // Static utilities
494    
495     /**
496     * If there is a security manager, makes sure caller has
497     * permission to modify threads.
498 dl 1.1 */
499 dl 1.119 private static void checkPermission() {
500     SecurityManager security = System.getSecurityManager();
501     if (security != null)
502     security.checkPermission(modifyThreadPermission);
503     }
504    
505     // Nested classes
506 dl 1.1
507     /**
508 jsr166 1.35 * Factory for creating new {@link ForkJoinWorkerThread}s.
509     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
510     * for {@code ForkJoinWorkerThread} subclasses that extend base
511     * functionality or initialize threads with different contexts.
512 dl 1.1 */
513     public static interface ForkJoinWorkerThreadFactory {
514     /**
515     * Returns a new worker thread operating in the given pool.
516     *
517     * @param pool the pool this thread works in
518 jsr166 1.48 * @throws NullPointerException if the pool is null
519 dl 1.1 */
520     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
521     }
522    
523     /**
524 jsr166 1.17 * Default ForkJoinWorkerThreadFactory implementation; creates a
525 dl 1.1 * new ForkJoinWorkerThread.
526     */
527 dl 1.57 static class DefaultForkJoinWorkerThreadFactory
528 dl 1.1 implements ForkJoinWorkerThreadFactory {
529     public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
530 dl 1.53 return new ForkJoinWorkerThread(pool);
531 dl 1.1 }
532     }
533    
534     /**
535 dl 1.119 * Class for artificial tasks that are used to replace the target
536     * of local joins if they are removed from an interior queue slot
537     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
538     * actually do anything beyond having a unique identity.
539 dl 1.1 */
540 dl 1.119 static final class EmptyTask extends ForkJoinTask<Void> {
541 dl 1.140 private static final long serialVersionUID = -7721805057305804111L;
542 dl 1.119 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
543     public final Void getRawResult() { return null; }
544     public final void setRawResult(Void x) {}
545     public final boolean exec() { return true; }
546 dl 1.1 }
547    
548     /**
549 dl 1.111 * Queues supporting work-stealing as well as external task
550     * submission. See above for main rationale and algorithms.
551     * Implementation relies heavily on "Unsafe" intrinsics
552     * and selective use of "volatile":
553     *
554     * Field "base" is the index (mod array.length) of the least valid
555     * queue slot, which is always the next position to steal (poll)
556     * from if nonempty. Reads and writes require volatile orderings
557     * but not CAS, because updates are only performed after slot
558     * CASes.
559     *
560     * Field "top" is the index (mod array.length) of the next queue
561     * slot to push to or pop from. It is written only by owner thread
562 dl 1.140 * for push, or under lock for external/shared push, and accessed
563     * by other threads only after reading (volatile) base. Both top
564     * and base are allowed to wrap around on overflow, but (top -
565     * base) (or more commonly -(base - top) to force volatile read of
566     * base before top) still estimates size. The lock ("qlock") is
567     * forced to -1 on termination, causing all further lock attempts
568     * to fail. (Note: we don't need CAS for termination state because
569     * upon pool shutdown, all shared-queues will stop being used
570     * anyway.) Nearly all lock bodies are set up so that exceptions
571     * within lock bodies are "impossible" (modulo JVM errors that
572     * would cause failure anyway.)
573 dl 1.111 *
574     * The array slots are read and written using the emulation of
575     * volatiles/atomics provided by Unsafe. Insertions must in
576     * general use putOrderedObject as a form of releasing store to
577     * ensure that all writes to the task object are ordered before
578 dl 1.140 * its publication in the queue. All removals entail a CAS to
579     * null. The array is always a power of two. To ensure safety of
580     * Unsafe array operations, all accesses perform explicit null
581     * checks and implicit bounds checks via power-of-two masking.
582 dl 1.111 *
583     * In addition to basic queuing support, this class contains
584     * fields described elsewhere to control execution. It turns out
585 dl 1.140 * to work better memory-layout-wise to include them in this class
586     * rather than a separate class.
587 dl 1.111 *
588     * Performance on most platforms is very sensitive to placement of
589     * instances of both WorkQueues and their arrays -- we absolutely
590     * do not want multiple WorkQueue instances or multiple queue
591     * arrays sharing cache lines. (It would be best for queue objects
592     * and their arrays to share, but there is nothing available to
593     * help arrange that). Unfortunately, because they are recorded
594     * in a common array, WorkQueue instances are often moved to be
595     * adjacent by garbage collectors. To reduce impact, we use field
596     * padding that works OK on common platforms; this effectively
597     * trades off slightly slower average field access for the sake of
598     * avoiding really bad worst-case access. (Until better JVM
599     * support is in place, this padding is dependent on transient
600     * properties of JVM field layout rules.) We also take care in
601 dl 1.119 * allocating, sizing and resizing the array. Non-shared queue
602 dl 1.140 * arrays are initialized by workers before use. Others are
603     * allocated on first use.
604 dl 1.53 */
605 dl 1.111 static final class WorkQueue {
606     /**
607     * Capacity of work-stealing queue array upon initialization.
608 dl 1.123 * Must be a power of two; at least 4, but should be larger to
609     * reduce or eliminate cacheline sharing among queues.
610     * Currently, it is much larger, as a partial workaround for
611     * the fact that JVMs often place arrays in locations that
612     * share GC bookkeeping (especially cardmarks) such that
613     * per-write accesses encounter serious memory contention.
614 dl 1.111 */
615 dl 1.123 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
616 dl 1.111
617     /**
618     * Maximum size for queue arrays. Must be a power of two less
619     * than or equal to 1 << (31 - width of array entry) to ensure
620     * lack of wraparound of index calculations, but defined to a
621     * value a bit less than this to help users trap runaway
622     * programs before saturating systems.
623     */
624     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
625    
626     int seed; // for random scanning; initialize nonzero
627     volatile int eventCount; // encoded inactivation count; < 0 if inactive
628     int nextWait; // encoded record of next event waiter
629     final int mode; // lifo, fifo, or shared
630 dl 1.140 int nsteals; // cumulative number of steals
631 dl 1.111 int poolIndex; // index of this queue in pool (or 0)
632     int stealHint; // index of most recent known stealer
633 dl 1.140 volatile int qlock; // 1: locked, -1: terminate; else 0
634 dl 1.111 volatile int base; // index of next slot for poll
635     int top; // index of next slot for push
636     ForkJoinTask<?>[] array; // the elements (initially unallocated)
637 dl 1.123 final ForkJoinPool pool; // the containing pool (may be null)
638 dl 1.111 final ForkJoinWorkerThread owner; // owning thread or null if shared
639     volatile Thread parker; // == owner during call to park; else null
640 dl 1.128 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
641 dl 1.111 ForkJoinTask<?> currentSteal; // current non-local task being executed
642     // Heuristic padding to ameliorate unfortunate memory placements
643 dl 1.123 Object p00, p01, p02, p03, p04, p05, p06, p07;
644     Object p08, p09, p0a, p0b, p0c, p0d, p0e;
645 dl 1.111
646 dl 1.123 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode) {
647     this.mode = mode;
648     this.pool = pool;
649 dl 1.111 this.owner = owner;
650     // Place indices in the center of array (that is not yet allocated)
651     base = top = INITIAL_QUEUE_CAPACITY >>> 1;
652     }
653    
654     /**
655     * Pushes a task. Call only by owner in unshared queues.
656 dl 1.140 * Cases needing resizing or rejection are relyaed to fullPush
657     * (that also handles shared queues).
658 dl 1.111 *
659     * @param task the task. Caller must ensure non-null.
660 jsr166 1.117 * @throw RejectedExecutionException if array cannot be resized
661 dl 1.111 */
662 dl 1.123 final void push(ForkJoinTask<?> task) {
663 dl 1.140 ForkJoinPool p; ForkJoinTask<?>[] a;
664     int s = top, n;
665     if ((a = array) != null && a.length > (n = s + 1 - base)) {
666 dl 1.111 U.putOrderedObject
667 dl 1.140 (a, (((a.length - 1) & s) << ASHIFT) + ABASE, task);
668     top = s + 1;
669     if (n <= 1 && (p = pool) != null)
670     p.signalWork(this, 1);
671 dl 1.111 }
672 dl 1.140 else
673     fullPush(task, true);
674 dl 1.111 }
675    
676     /**
677     * Pushes a task if lock is free and array is either big
678 dl 1.140 * enough or can be resized to be big enough. Note: a
679     * specialization of a common fast path of this method is in
680     * ForkJoinPool.externalPush. When called from a FJWT queue,
681     * this can fail only if the pool has been shut down or
682     * an out of memory error.
683 dl 1.111 *
684     * @param task the task. Caller must ensure non-null.
685 dl 1.140 * @param owned if true, throw RJE on failure
686 dl 1.111 */
687 dl 1.140 final boolean fullPush(ForkJoinTask<?> task, boolean owned) {
688     ForkJoinPool p; ForkJoinTask<?>[] a;
689     if (owned) {
690     if (qlock < 0) // must be shutting down
691     throw new RejectedExecutionException();
692     }
693     else if (!U.compareAndSwapInt(this, QLOCK, 0, 1))
694     return false;
695     try {
696     int s = top, oldLen, len;
697     if ((a = array) == null)
698     a = array = new ForkJoinTask<?>[len=INITIAL_QUEUE_CAPACITY];
699     else if ((oldLen = a.length) > s + 1 - base)
700     len = oldLen;
701     else if ((len = oldLen << 1) > MAXIMUM_QUEUE_CAPACITY)
702     throw new RejectedExecutionException("Capacity exceeded");
703     else {
704     int oldMask, b;
705     ForkJoinTask<?>[] oldA = a;
706     a = array = new ForkJoinTask<?>[len];
707     if ((oldMask = oldLen - 1) >= 0 && s - (b = base) > 0) {
708     int mask = len - 1;
709     do {
710     ForkJoinTask<?> x;
711     int oldj = ((b & oldMask) << ASHIFT) + ABASE;
712     int j = ((b & mask) << ASHIFT) + ABASE;
713     x = (ForkJoinTask<?>)
714     U.getObjectVolatile(oldA, oldj);
715     if (x != null &&
716     U.compareAndSwapObject(oldA, oldj, x, null))
717     U.putObjectVolatile(a, j, x);
718     } while (++b != s);
719 dl 1.111 }
720     }
721 dl 1.140 U.putOrderedObject
722     (a, (((len - 1) & s) << ASHIFT) + ABASE, task);
723     top = s + 1;
724     } finally {
725     if (!owned)
726     qlock = 0;
727 dl 1.111 }
728 dl 1.140 if ((p = pool) != null)
729     p.signalWork(this, 1);
730     return true;
731 dl 1.111 }
732    
733     /**
734 dl 1.123 * Takes next task, if one exists, in LIFO order. Call only
735 dl 1.137 * by owner in unshared queues.
736 dl 1.123 */
737     final ForkJoinTask<?> pop() {
738 dl 1.127 ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
739     if ((a = array) != null && (m = a.length - 1) >= 0) {
740 dl 1.123 for (int s; (s = top - 1) - base >= 0;) {
741 dl 1.127 long j = ((m & s) << ASHIFT) + ABASE;
742     if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
743 dl 1.123 break;
744     if (U.compareAndSwapObject(a, j, t, null)) {
745     top = s;
746     return t;
747     }
748     }
749     }
750     return null;
751     }
752    
753     /**
754     * Takes a task in FIFO order if b is base of queue and a task
755     * can be claimed without contention. Specialized versions
756     * appear in ForkJoinPool methods scan and tryHelpStealer.
757 dl 1.111 */
758 dl 1.123 final ForkJoinTask<?> pollAt(int b) {
759     ForkJoinTask<?> t; ForkJoinTask<?>[] a;
760     if ((a = array) != null) {
761 dl 1.119 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
762     if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
763     base == b &&
764 dl 1.111 U.compareAndSwapObject(a, j, t, null)) {
765     base = b + 1;
766     return t;
767     }
768     }
769     return null;
770     }
771    
772     /**
773 dl 1.123 * Takes next task, if one exists, in FIFO order.
774 dl 1.111 */
775 dl 1.123 final ForkJoinTask<?> poll() {
776     ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
777     while ((b = base) - top < 0 && (a = array) != null) {
778     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
779     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
780     if (t != null) {
781     if (base == b &&
782     U.compareAndSwapObject(a, j, t, null)) {
783     base = b + 1;
784 dl 1.111 return t;
785     }
786     }
787 dl 1.123 else if (base == b) {
788     if (b + 1 == top)
789     break;
790 dl 1.140 Thread.yield(); // wait for lagging update (very rare)
791 dl 1.123 }
792 dl 1.111 }
793     return null;
794     }
795    
796     /**
797     * Takes next task, if one exists, in order specified by mode.
798     */
799     final ForkJoinTask<?> nextLocalTask() {
800     return mode == 0 ? pop() : poll();
801     }
802    
803     /**
804     * Returns next task, if one exists, in order specified by mode.
805     */
806     final ForkJoinTask<?> peek() {
807     ForkJoinTask<?>[] a = array; int m;
808     if (a == null || (m = a.length - 1) < 0)
809     return null;
810     int i = mode == 0 ? top - 1 : base;
811     int j = ((i & m) << ASHIFT) + ABASE;
812     return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
813     }
814    
815     /**
816     * Pops the given task only if it is at the current top.
817 dl 1.140 * (A shared version is available only via FJP.tryExternalUnpush)
818 dl 1.111 */
819     final boolean tryUnpush(ForkJoinTask<?> t) {
820     ForkJoinTask<?>[] a; int s;
821     if ((a = array) != null && (s = top) != base &&
822     U.compareAndSwapObject
823     (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
824     top = s;
825     return true;
826     }
827     return false;
828     }
829    
830     /**
831 jsr166 1.117 * Removes and cancels all known tasks, ignoring any exceptions.
832 dl 1.111 */
833     final void cancelAll() {
834     ForkJoinTask.cancelIgnoringExceptions(currentJoin);
835     ForkJoinTask.cancelIgnoringExceptions(currentSteal);
836     for (ForkJoinTask<?> t; (t = poll()) != null; )
837     ForkJoinTask.cancelIgnoringExceptions(t);
838     }
839    
840 dl 1.119 /**
841     * Computes next value for random probes. Scans don't require
842     * a very high quality generator, but also not a crummy one.
843     * Marsaglia xor-shift is cheap and works well enough. Note:
844 dl 1.123 * This is manually inlined in its usages in ForkJoinPool to
845     * avoid writes inside busy scan loops.
846 dl 1.119 */
847     final int nextSeed() {
848     int r = seed;
849     r ^= r << 13;
850     r ^= r >>> 17;
851     return seed = r ^= r << 5;
852     }
853    
854 dl 1.140 /**
855     * Provides a more accurate estimate of size than (top - base)
856     * by ordering reads and checking whether a near-empty queue
857     * has at least one unclaimed task.
858     */
859     final int queueSize() {
860     ForkJoinTask<?>[] a; int k, s, n;
861     return ((n = base - (s = top)) < 0 &&
862     (n != -1 ||
863     ((a = array) != null && (k = a.length) > 0 &&
864     U.getObject
865     (a, (long)((((k - 1) & (s - 1)) << ASHIFT) + ABASE)) != null))) ?
866     -n : 0;
867     }
868    
869 dl 1.139 // Specialized execution methods
870 dl 1.111
871     /**
872 dl 1.127 * Pops and runs tasks until empty.
873 dl 1.111 */
874 dl 1.127 private void popAndExecAll() {
875     // A bit faster than repeated pop calls
876     ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
877     while ((a = array) != null && (m = a.length - 1) >= 0 &&
878     (s = top - 1) - base >= 0 &&
879     (t = ((ForkJoinTask<?>)
880     U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
881     != null) {
882     if (U.compareAndSwapObject(a, j, t, null)) {
883     top = s;
884     t.doExec();
885 dl 1.123 }
886 dl 1.127 }
887     }
888    
889     /**
890     * Polls and runs tasks until empty.
891     */
892     private void pollAndExecAll() {
893     for (ForkJoinTask<?> t; (t = poll()) != null;)
894     t.doExec();
895     }
896    
897     /**
898 dl 1.140 * If present, removes from queue and executes the given task,
899     * or any other cancelled task. Returns (true) on any CAS
900 dl 1.127 * or consistency check failure so caller can retry.
901     *
902 dl 1.140 * @return false if no progress can be made, else true;
903 dl 1.127 */
904 dl 1.140 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
905     boolean stat = true, removed = false, empty = true;
906 dl 1.127 ForkJoinTask<?>[] a; int m, s, b, n;
907     if ((a = array) != null && (m = a.length - 1) >= 0 &&
908     (n = (s = top) - (b = base)) > 0) {
909     for (ForkJoinTask<?> t;;) { // traverse from s to b
910     int j = ((--s & m) << ASHIFT) + ABASE;
911     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
912     if (t == null) // inconsistent length
913     break;
914     else if (t == task) {
915     if (s + 1 == top) { // pop
916     if (!U.compareAndSwapObject(a, j, task, null))
917 dl 1.123 break;
918 dl 1.127 top = s;
919     removed = true;
920 dl 1.123 }
921 dl 1.127 else if (base == b) // replace with proxy
922     removed = U.compareAndSwapObject(a, j, task,
923     new EmptyTask());
924     break;
925     }
926     else if (t.status >= 0)
927     empty = false;
928     else if (s + 1 == top) { // pop and throw away
929     if (U.compareAndSwapObject(a, j, t, null))
930     top = s;
931     break;
932     }
933     if (--n == 0) {
934     if (!empty && base == b)
935 dl 1.140 stat = false;
936 dl 1.127 break;
937 dl 1.123 }
938     }
939 dl 1.111 }
940 dl 1.127 if (removed)
941     task.doExec();
942 dl 1.128 return stat;
943 dl 1.111 }
944    
945     /**
946 dl 1.140 * Polls for and executes the given task or any other task in
947     * its CountedCompleter computation
948 dl 1.139 */
949 dl 1.140 final boolean pollAndExecCC(ForkJoinTask<?> root) {
950     ForkJoinTask<?>[] a; int b; Object o;
951     outer: while ((b = base) - top < 0 && (a = array) != null) {
952     long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
953     if ((o = U.getObject(a, j)) == null ||
954     !(o instanceof CountedCompleter))
955     break;
956     for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
957     if (r == root) {
958     if (base == b &&
959     U.compareAndSwapObject(a, j, t, null)) {
960     base = b + 1;
961     t.doExec();
962     return true;
963 dl 1.139 }
964 dl 1.140 else
965     break; // restart
966 dl 1.139 }
967 dl 1.140 if ((r = r.completer) == null)
968     break outer; // not part of root computation
969 dl 1.139 }
970     }
971 dl 1.140 return false;
972 dl 1.139 }
973    
974     /**
975 dl 1.111 * Executes a top-level task and any local tasks remaining
976     * after execution.
977     */
978 dl 1.127 final void runTask(ForkJoinTask<?> t) {
979 dl 1.111 if (t != null) {
980 dl 1.140 (currentSteal = t).doExec();
981     currentSteal = null;
982     if (++nsteals < 0) { // spill on overflow
983     ForkJoinPool p;
984     if ((p = pool) != null)
985     p.collectStealCount(this);
986     }
987 dl 1.127 if (top != base) { // process remaining local tasks
988     if (mode == 0)
989     popAndExecAll();
990     else
991     pollAndExecAll();
992     }
993 dl 1.111 }
994     }
995    
996     /**
997 jsr166 1.117 * Executes a non-top-level (stolen) task.
998 dl 1.111 */
999     final void runSubtask(ForkJoinTask<?> t) {
1000     if (t != null) {
1001     ForkJoinTask<?> ps = currentSteal;
1002 dl 1.140 (currentSteal = t).doExec();
1003 dl 1.111 currentSteal = ps;
1004     }
1005     }
1006    
1007     /**
1008 dl 1.119 * Returns true if owned and not known to be blocked.
1009     */
1010     final boolean isApparentlyUnblocked() {
1011     Thread wt; Thread.State s;
1012     return (eventCount >= 0 &&
1013     (wt = owner) != null &&
1014     (s = wt.getState()) != Thread.State.BLOCKED &&
1015     s != Thread.State.WAITING &&
1016     s != Thread.State.TIMED_WAITING);
1017     }
1018    
1019     /**
1020     * If this owned and is not already interrupted, try to
1021     * interrupt and/or unpark, ignoring exceptions.
1022 dl 1.111 */
1023 dl 1.119 final void interruptOwner() {
1024     Thread wt, p;
1025     if ((wt = owner) != null && !wt.isInterrupted()) {
1026     try {
1027     wt.interrupt();
1028     } catch (SecurityException ignore) {
1029     }
1030     }
1031     if ((p = parker) != null)
1032     U.unpark(p);
1033 dl 1.111 }
1034    
1035     // Unsafe mechanics
1036     private static final sun.misc.Unsafe U;
1037 dl 1.140 private static final long QLOCK;
1038 dl 1.111 private static final int ABASE;
1039     private static final int ASHIFT;
1040     static {
1041     int s;
1042     try {
1043     U = getUnsafe();
1044     Class<?> k = WorkQueue.class;
1045     Class<?> ak = ForkJoinTask[].class;
1046 dl 1.140 QLOCK = U.objectFieldOffset
1047     (k.getDeclaredField("qlock"));
1048 dl 1.111 ABASE = U.arrayBaseOffset(ak);
1049     s = U.arrayIndexScale(ak);
1050     } catch (Exception e) {
1051     throw new Error(e);
1052     }
1053     if ((s & (s-1)) != 0)
1054     throw new Error("data type scale not a power of two");
1055     ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
1056     }
1057     }
1058 jsr166 1.131
1059 dl 1.1 /**
1060 dl 1.119 * Per-thread records for threads that submit to pools. Currently
1061 jsr166 1.120 * holds only pseudo-random seed / index that is used to choose
1062 dl 1.140 * submission queues in method externalPush. In the future, this may
1063 dl 1.119 * also incorporate a means to implement different task rejection
1064     * and resubmission policies.
1065 dl 1.123 *
1066     * Seeds for submitters and workers/workQueues work in basically
1067     * the same way but are initialized and updated using slightly
1068     * different mechanics. Both are initialized using the same
1069     * approach as in class ThreadLocal, where successive values are
1070 dl 1.140 * unlikely to collide with previous values. Seeds are then
1071     * randomly modified upon collisions using xorshifts, which
1072     * requires a non-zero seed.
1073 dl 1.116 */
1074     static final class Submitter {
1075 dl 1.119 int seed;
1076 dl 1.140 Submitter(int s) { seed = s; }
1077 dl 1.116 }
1078    
1079 dl 1.140 /** Property prefix for constructing common pool */
1080     private static final String propPrefix =
1081     "java.util.concurrent.ForkJoinPool.common.";
1082 dl 1.1
1083 dl 1.119 // static fields (initialized in static initializer below)
1084    
1085     /**
1086     * Creates a new ForkJoinWorkerThread. This factory is used unless
1087     * overridden in ForkJoinPool constructors.
1088     */
1089     public static final ForkJoinWorkerThreadFactory
1090     defaultForkJoinWorkerThreadFactory;
1091    
1092 dl 1.136 /**
1093     * Common (static) pool. Non-null for public use unless a static
1094 dl 1.140 * construction exception, but internal usages null-check on use
1095     * to paranoically avoid potential initialization circularities
1096     * as well as to simplify generated code.
1097 dl 1.136 */
1098     static final ForkJoinPool commonPool;
1099    
1100     /**
1101 dl 1.140 * Permission required for callers of methods that may start or
1102     * kill threads.
1103 dl 1.136 */
1104 dl 1.140 private static final RuntimePermission modifyThreadPermission;
1105 dl 1.136
1106 dl 1.119 /**
1107 dl 1.140 * Per-thread submission bookkeeping. Shared across all pools
1108     * to reduce ThreadLocal pollution and because random motion
1109     * to avoid contention in one pool is likely to hold for others.
1110     * Lazily initialized on first submission (but null-checked
1111     * in other contexts to avoid unnecessary initialization).
1112 dl 1.119 */
1113 dl 1.140 static final ThreadLocal<Submitter> submitters;
1114 dl 1.119
1115     /**
1116 dl 1.140 * Common pool parallelism. Must equal commonPool.parallelism.
1117 dl 1.123 */
1118 dl 1.140 static final int commonPoolParallelism;
1119 dl 1.123
1120     /**
1121 dl 1.140 * Sequence number for creating workerNamePrefix.
1122 dl 1.119 */
1123 dl 1.140 private static int poolNumberSequence;
1124 dl 1.119
1125 dl 1.1 /**
1126 dl 1.140 * Return the next sequence number. We don't expect this to
1127     * ever contend so use simple builtin sync.
1128 dl 1.116 */
1129 dl 1.140 private static final synchronized int nextPoolId() {
1130     return ++poolNumberSequence;
1131     }
1132 dl 1.119
1133     // static constants
1134    
1135     /**
1136 dl 1.140 * Initial timeout value (in nanoseconds) for the thread
1137     * triggering quiescence to park waiting for new work. On timeout,
1138     * the thread will instead try to shrink the number of
1139     * workers. The value should be large enough to avoid overly
1140     * aggressive shrinkage during most transient stalls (long GCs
1141     * etc).
1142 dl 1.119 */
1143 dl 1.140 private static final long IDLE_TIMEOUT = 2000L * 1000L * 1000L; // 2sec
1144 dl 1.119
1145     /**
1146 dl 1.135 * Timeout value when there are more threads than parallelism level
1147 dl 1.119 */
1148 dl 1.140 private static final long FAST_IDLE_TIMEOUT = 200L * 1000L * 1000L;
1149 dl 1.119
1150     /**
1151 dl 1.123 * The maximum stolen->joining link depth allowed in method
1152 dl 1.140 * tryHelpStealer. Must be a power of two. Depths for legitimate
1153 dl 1.123 * chains are unbounded, but we use a fixed constant to avoid
1154     * (otherwise unchecked) cycles and to bound staleness of
1155     * traversal parameters at the expense of sometimes blocking when
1156     * we could be helping.
1157     */
1158 dl 1.128 private static final int MAX_HELP = 64;
1159 dl 1.123
1160     /**
1161     * Increment for seed generators. See class ThreadLocal for
1162     * explanation.
1163 dl 1.119 */
1164 dl 1.123 private static final int SEED_INCREMENT = 0x61c88647;
1165 dl 1.116
1166     /**
1167 dl 1.119 * Bits and masks for control variables
1168     *
1169     * Field ctl is a long packed with:
1170     * AC: Number of active running workers minus target parallelism (16 bits)
1171     * TC: Number of total workers minus target parallelism (16 bits)
1172     * ST: true if pool is terminating (1 bit)
1173     * EC: the wait count of top waiting thread (15 bits)
1174     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1175     *
1176     * When convenient, we can extract the upper 32 bits of counts and
1177     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1178     * (int)ctl. The ec field is never accessed alone, but always
1179     * together with id and st. The offsets of counts by the target
1180     * parallelism and the positionings of fields makes it possible to
1181     * perform the most common checks via sign tests of fields: When
1182     * ac is negative, there are not enough active workers, when tc is
1183     * negative, there are not enough total workers, and when e is
1184     * negative, the pool is terminating. To deal with these possibly
1185     * negative fields, we use casts in and out of "short" and/or
1186     * signed shifts to maintain signedness.
1187     *
1188     * When a thread is queued (inactivated), its eventCount field is
1189     * set negative, which is the only way to tell if a worker is
1190     * prevented from executing tasks, even though it must continue to
1191     * scan for them to avoid queuing races. Note however that
1192     * eventCount updates lag releases so usage requires care.
1193     *
1194 dl 1.140 * Field plock is an int packed with:
1195 dl 1.119 * SHUTDOWN: true if shutdown is enabled (1 bit)
1196 dl 1.140 * SEQ: a sequence lock, with PL_LOCK bit set if locked (30 bits)
1197     * SIGNAL: set when threads may be waiting on the lock (1 bit)
1198 dl 1.119 *
1199 dl 1.123 * The sequence number enables simple consistency checks:
1200     * Staleness of read-only operations on the workQueues array can
1201 dl 1.140 * be checked by comparing plock before vs after the reads.
1202 dl 1.119 */
1203    
1204     // bit positions/shifts for fields
1205     private static final int AC_SHIFT = 48;
1206     private static final int TC_SHIFT = 32;
1207     private static final int ST_SHIFT = 31;
1208     private static final int EC_SHIFT = 16;
1209    
1210     // bounds
1211     private static final int SMASK = 0xffff; // short bits
1212 dl 1.123 private static final int MAX_CAP = 0x7fff; // max #workers - 1
1213 dl 1.140 private static final int EVENMASK = 0xfffe; // even short bits
1214     private static final int SQMASK = 0x007e; // max 64 (even) slots
1215 dl 1.119 private static final int SHORT_SIGN = 1 << 15;
1216     private static final int INT_SIGN = 1 << 31;
1217    
1218     // masks
1219     private static final long STOP_BIT = 0x0001L << ST_SHIFT;
1220     private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
1221     private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
1222    
1223     // units for incrementing and decrementing
1224     private static final long TC_UNIT = 1L << TC_SHIFT;
1225     private static final long AC_UNIT = 1L << AC_SHIFT;
1226    
1227     // masks and units for dealing with u = (int)(ctl >>> 32)
1228     private static final int UAC_SHIFT = AC_SHIFT - 32;
1229     private static final int UTC_SHIFT = TC_SHIFT - 32;
1230     private static final int UAC_MASK = SMASK << UAC_SHIFT;
1231     private static final int UTC_MASK = SMASK << UTC_SHIFT;
1232     private static final int UAC_UNIT = 1 << UAC_SHIFT;
1233     private static final int UTC_UNIT = 1 << UTC_SHIFT;
1234    
1235     // masks and units for dealing with e = (int)ctl
1236     private static final int E_MASK = 0x7fffffff; // no STOP_BIT
1237     private static final int E_SEQ = 1 << EC_SHIFT;
1238    
1239 dl 1.140 // plock bits
1240 dl 1.119 private static final int SHUTDOWN = 1 << 31;
1241 dl 1.140 private static final int PL_LOCK = 2;
1242     private static final int PL_SIGNAL = 1;
1243     private static final int PL_SPINS = 1 << 8;
1244 dl 1.119
1245     // access mode for WorkQueue
1246     static final int LIFO_QUEUE = 0;
1247     static final int FIFO_QUEUE = 1;
1248     static final int SHARED_QUEUE = -1;
1249    
1250     // Instance fields
1251    
1252     /*
1253     * Field layout order in this class tends to matter more than one
1254     * would like. Runtime layout order is only loosely related to
1255     * declaration order and may differ across JVMs, but the following
1256     * empirically works OK on current JVMs.
1257 dl 1.1 */
1258 dl 1.136 volatile long stealCount; // collects worker counts
1259 dl 1.119 volatile long ctl; // main pool control
1260     final int parallelism; // parallelism level
1261     final int localMode; // per-worker scheduling mode
1262 dl 1.140 volatile int indexSeed; // worker/submitter index seed
1263     volatile int plock; // shutdown status and seqLock
1264 dl 1.119 WorkQueue[] workQueues; // main registry
1265     final ForkJoinWorkerThreadFactory factory; // factory for new workers
1266     final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1267 dl 1.136 final String workerNamePrefix; // to create worker name string
1268    
1269     /*
1270 dl 1.140 * Acquires the plock lock to protect worker array and related
1271     * updates. This method is called only if an initial CAS on plock
1272     * fails. This acts as a spinLock for normal cases, but falls back
1273     * to builtin monitor to block when (rarely) needed. This would be
1274     * a terrible idea for a highly contended lock, but works fine as
1275     * a more conservative alternative to a pure spinlock. See
1276     * internal ConcurrentHashMap documentation for further
1277     * explanation of nearly the same construction.
1278     */
1279     private int acquirePlock() {
1280     int spins = PL_SPINS, r = 0, ps, nps;
1281     for (;;) {
1282     if (((ps = plock) & PL_LOCK) == 0 &&
1283     U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1284     return nps;
1285     else if (r == 0)
1286 dl 1.136 r = ThreadLocalRandom.current().nextInt(); // randomize spins
1287     else if (spins >= 0) {
1288     r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
1289     if (r >= 0)
1290     --spins;
1291     }
1292 dl 1.140 else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1293 jsr166 1.141 synchronized (this) {
1294 dl 1.140 if ((plock & PL_SIGNAL) != 0) {
1295 dl 1.136 try {
1296     wait();
1297     } catch (InterruptedException ie) {
1298 dl 1.139 try {
1299     Thread.currentThread().interrupt();
1300     } catch (SecurityException ignore) {
1301     }
1302 dl 1.136 }
1303     }
1304     else
1305 dl 1.140 notifyAll();
1306 dl 1.136 }
1307     }
1308     }
1309     }
1310 dl 1.111
1311 dl 1.6 /**
1312 dl 1.140 * Unlocks and signals any thread waiting for plock. Called only
1313     * when CAS of seq value for unlock fails.
1314 dl 1.1 */
1315 dl 1.140 private void releasePlock(int ps) {
1316     plock = ps;
1317 jsr166 1.141 synchronized (this) { notifyAll(); }
1318 dl 1.111 }
1319 dl 1.1
1320 dl 1.140 // Registering and deregistering workers
1321 dl 1.1
1322     /**
1323 dl 1.123 * Callback from ForkJoinWorkerThread constructor to establish its
1324     * poolIndex and record its WorkQueue. To avoid scanning bias due
1325     * to packing entries in front of the workQueues array, we treat
1326     * the array as a simple power-of-two hash table using per-thread
1327     * seed as hash, expanding as needed.
1328 dl 1.111 *
1329 dl 1.123 * @param w the worker's queue
1330 dl 1.1 */
1331 dl 1.123 final void registerWorker(WorkQueue w) {
1332 dl 1.140 int s, ps; // generate a rarely colliding candidate index seed
1333     do {} while (!U.compareAndSwapInt(this, INDEXSEED,
1334     s = indexSeed, s += SEED_INCREMENT) ||
1335     s == 0); // skip 0
1336     if (((ps = plock) & PL_LOCK) != 0 ||
1337     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1338     ps = acquirePlock();
1339     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1340 dl 1.111 try {
1341 dl 1.136 WorkQueue[] ws;
1342 dl 1.140 if (w != null && (ws = workQueues) != null) {
1343     w.seed = s;
1344     int n = ws.length, m = n - 1;
1345 dl 1.123 int r = (s << 1) | 1; // use odd-numbered indices
1346 dl 1.127 if (ws[r &= m] != null) { // collision
1347     int probes = 0; // step by approx half size
1348 dl 1.140 int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1349 dl 1.127 while (ws[r = (r + step) & m] != null) {
1350     if (++probes >= n) {
1351     workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1352     m = n - 1;
1353     probes = 0;
1354     }
1355     }
1356     }
1357 dl 1.123 w.eventCount = w.poolIndex = r; // establish before recording
1358 dl 1.140 ws[r] = w;
1359 dl 1.111 }
1360     } finally {
1361 dl 1.140 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1362     releasePlock(nps);
1363 dl 1.111 }
1364     }
1365 dl 1.58
1366 dl 1.1 /**
1367 dl 1.119 * Final callback from terminating worker, as well as upon failure
1368 dl 1.140 * to construct or start a worker. Removes record of worker from
1369     * array, and adjusts counts. If pool is shutting down, tries to
1370     * complete termination.
1371 dl 1.111 *
1372 dl 1.140 * @param wt the worker thread or null if construction failed
1373 dl 1.111 * @param ex the exception causing failure, or null if none
1374 dl 1.85 */
1375 dl 1.111 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1376     WorkQueue w = null;
1377     if (wt != null && (w = wt.workQueue) != null) {
1378 dl 1.140 int ps;
1379     collectStealCount(w);
1380     w.qlock = -1; // ensure set
1381     if (((ps = plock) & PL_LOCK) != 0 ||
1382     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1383     ps = acquirePlock();
1384     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1385 dl 1.136 try {
1386 dl 1.140 int idx = w.poolIndex;
1387 dl 1.111 WorkQueue[] ws = workQueues;
1388 dl 1.123 if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1389 dl 1.119 ws[idx] = null;
1390 dl 1.111 } finally {
1391 dl 1.140 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1392     releasePlock(nps);
1393 dl 1.111 }
1394     }
1395    
1396     long c; // adjust ctl counts
1397     do {} while (!U.compareAndSwapLong
1398     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1399     ((c - TC_UNIT) & TC_MASK) |
1400     (c & ~(AC_MASK|TC_MASK)))));
1401    
1402 dl 1.119 if (!tryTerminate(false, false) && w != null) {
1403 dl 1.111 w.cancelAll(); // cancel remaining tasks
1404     if (w.array != null) // suppress signal if never ran
1405 dl 1.140 signalWork(null, 1); // wake up or create replacement
1406 dl 1.119 if (ex == null) // help clean refs on way out
1407     ForkJoinTask.helpExpungeStaleExceptions();
1408 dl 1.111 }
1409    
1410     if (ex != null) // rethrow
1411 dl 1.139 ForkJoinTask.rethrow(ex);
1412 dl 1.111 }
1413 dl 1.91
1414 dl 1.140 /**
1415     * Collect worker steal count into total. Called on termination
1416     * and upon int overflow of local count. (There is a possible race
1417     * in the latter case vs any caller of getStealCount, which can
1418     * make its results less accurate than usual.)
1419     */
1420     final void collectStealCount(WorkQueue w) {
1421     if (w != null) {
1422     long sc;
1423     int ns = w.nsteals;
1424     w.nsteals = 0; // handle overflow
1425     long steals = (ns >= 0) ? ns : 1L + (long)(Integer.MAX_VALUE);
1426     do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1427     sc = stealCount, sc + steals));
1428     }
1429     }
1430    
1431 dl 1.119 // Submissions
1432    
1433     /**
1434     * Unless shutting down, adds the given task to a submission queue
1435     * at submitter's current queue index (modulo submission
1436 dl 1.140 * range). Only the most common path is directly handled in this
1437     * method. All others are relayed to fullExternalPush.
1438 dl 1.123 *
1439     * @param task the task. Caller must ensure non-null.
1440 dl 1.119 */
1441 dl 1.140 final void externalPush(ForkJoinTask<?> task) {
1442     WorkQueue[] ws; WorkQueue q; Submitter z; int m; ForkJoinTask<?>[] a;
1443     if ((z = submitters.get()) != null && plock > 0 &&
1444     (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1445     (q = ws[m & z.seed & SQMASK]) != null &&
1446     U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1447     int s = q.top, n;
1448     if ((a = q.array) != null && a.length > (n = s + 1 - q.base)) {
1449     U.putObject(a, (long)(((a.length - 1) & s) << ASHIFT) + ABASE,
1450     task);
1451     q.top = s + 1; // push on to deque
1452     q.qlock = 0;
1453     if (n <= 1)
1454     signalWork(q, 1);
1455 dl 1.123 return;
1456     }
1457 dl 1.140 q.qlock = 0;
1458 dl 1.116 }
1459 dl 1.140 fullExternalPush(task);
1460 dl 1.116 }
1461 dl 1.85
1462 dl 1.135 /**
1463 dl 1.140 * Full version of externalPush. This method is called, among
1464     * other times, upon the first submission of the first task to the
1465     * pool, so must perform secondary initialization: creating
1466     * workQueue array and setting plock to a valid value. It also
1467     * detects first submission by an external thread by looking up
1468     * its ThreadLocal, and creates a new shared queue if the one at
1469     * index if empty or contended. The lock bodies must be
1470     * exception-free (so no try/finally) so we optimistically
1471     * allocate new queues/arrays outside the locks and throw them
1472     * away if (very rarely) not needed. Note that the plock seq value
1473     * can eventually wrap around zero, but if so harmlessly fails to
1474     * reinitialize.
1475     */
1476     private void fullExternalPush(ForkJoinTask<?> task) {
1477     for (Submitter z = null;;) {
1478     WorkQueue[] ws; WorkQueue q; int ps, m, r, s;
1479     if ((ps = plock) < 0)
1480     throw new RejectedExecutionException();
1481     else if ((ws = workQueues) == null || (m = ws.length - 1) < 0) {
1482     int n = parallelism - 1; n |= n >>> 1; n |= n >>> 2;
1483     n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
1484     WorkQueue[] nws = new WorkQueue[(n + 1) << 1]; // power of two
1485     if ((ps & PL_LOCK) != 0 ||
1486     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1487     ps = acquirePlock();
1488     if ((ws = workQueues) == null)
1489     workQueues = nws;
1490     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1491     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1492     releasePlock(nps);
1493     }
1494     else if (z == null && (z = submitters.get()) == null) {
1495     if (U.compareAndSwapInt(this, INDEXSEED,
1496     s = indexSeed, s += SEED_INCREMENT) &&
1497     s != 0) // skip 0
1498     submitters.set(z = new Submitter(s));
1499 dl 1.139 }
1500 dl 1.140 else {
1501     int k = (r = z.seed) & m & SQMASK;
1502     if ((q = ws[k]) == null && (ps & PL_LOCK) == 0) {
1503     (q = new WorkQueue(this, null, SHARED_QUEUE)).poolIndex = k;
1504     if (((ps = plock) & PL_LOCK) != 0 ||
1505     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1506     ps = acquirePlock();
1507     WorkQueue w = null;
1508     if ((ws = workQueues) != null && k < ws.length &&
1509     (w = ws[k]) == null)
1510     ws[k] = q;
1511     else
1512     q = w;
1513     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1514     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1515     releasePlock(nps);
1516 dl 1.139 }
1517 dl 1.140 if (q != null && q.qlock == 0 && q.fullPush(task, false))
1518     return;
1519     r ^= r << 13; // same xorshift as WorkQueues
1520     r ^= r >>> 17;
1521     z.seed = r ^= r << 5; // move to a different index
1522 dl 1.139 }
1523     }
1524 dl 1.137 }
1525    
1526 dl 1.111 // Maintaining ctl counts
1527 dl 1.56
1528     /**
1529 jsr166 1.117 * Increments active count; mainly called upon return from blocking.
1530 dl 1.58 */
1531 dl 1.111 final void incrementActiveCount() {
1532 dl 1.91 long c;
1533 dl 1.111 do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1534 dl 1.61 }
1535    
1536     /**
1537 dl 1.140 * Tries to create (at most one) or activate (possibly several)
1538     * workers if too few are active. On contention failure, continues
1539     * until at least one worker is signalled or the given queue is
1540     * empty or all workers are active.
1541     *
1542     * @param q if non-null, the queue holding tasks to be signalled
1543     * @param signals the target number of signals.
1544     */
1545     final void signalWork(WorkQueue q, int signals) {
1546     long c; int e, u, i; WorkQueue[] ws; WorkQueue w; Thread p;
1547     while ((u = (int)((c = ctl) >>> 32)) < 0) {
1548     if ((e = (int)c) > 0) {
1549     if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1550 dl 1.119 (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1551     long nc = (((long)(w.nextWait & E_MASK)) |
1552     ((long)(u + UAC_UNIT) << 32));
1553     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1554     w.eventCount = (e + E_SEQ) & E_MASK;
1555     if ((p = w.parker) != null)
1556 dl 1.140 U.unpark(p);
1557     if (--signals <= 0)
1558     break;
1559     }
1560     else
1561     signals = 1;
1562     if ((q != null && q.queueSize() == 0))
1563 dl 1.119 break;
1564     }
1565     else
1566 dl 1.91 break;
1567 dl 1.111 }
1568 dl 1.140 else if (e == 0 && (u & SHORT_SIGN) != 0) {
1569 dl 1.119 long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1570     ((u + UAC_UNIT) & UAC_MASK)) << 32;
1571     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1572 dl 1.140 ForkJoinWorkerThread wt = null;
1573     Throwable ex = null;
1574     boolean started = false;
1575     try {
1576     ForkJoinWorkerThreadFactory fac;
1577     if ((fac = factory) != null &&
1578     (wt = fac.newThread(this)) != null) {
1579     wt.start();
1580     started = true;
1581     }
1582     } catch (Throwable rex) {
1583     ex = rex;
1584     }
1585     if (!started)
1586     deregisterWorker(wt, ex); // adjust counts on failure
1587 dl 1.91 break;
1588     }
1589     }
1590 dl 1.111 else
1591 dl 1.91 break;
1592     }
1593 dl 1.53 }
1594    
1595 dl 1.123 // Scanning for tasks
1596    
1597 dl 1.53 /**
1598 dl 1.123 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1599 dl 1.53 */
1600 dl 1.123 final void runWorker(WorkQueue w) {
1601 dl 1.140 // initialize queue array in this thread
1602     w.array = new ForkJoinTask<?>[WorkQueue.INITIAL_QUEUE_CAPACITY];
1603     do { w.runTask(scan(w)); } while (w.qlock >= 0);
1604 dl 1.53 }
1605    
1606     /**
1607 dl 1.111 * Scans for and, if found, returns one task, else possibly
1608     * inactivates the worker. This method operates on single reads of
1609 dl 1.123 * volatile state and is designed to be re-invoked continuously,
1610     * in part because it returns upon detecting inconsistencies,
1611 dl 1.111 * contention, or state changes that indicate possible success on
1612     * re-invocation.
1613     *
1614 dl 1.123 * The scan searches for tasks across a random permutation of
1615     * queues (starting at a random index and stepping by a random
1616     * relative prime, checking each at least once). The scan
1617     * terminates upon either finding a non-empty queue, or completing
1618     * the sweep. If the worker is not inactivated, it takes and
1619 dl 1.140 * returns a task from this queue. Otherwise, if not activated, it
1620     * signals workers (that may include itself) and returns so caller
1621     * can retry. Also returns for trtry if the worker array may have
1622     * changed during an empty scan. On failure to find a task, we
1623 dl 1.123 * take one of the following actions, after which the caller will
1624     * retry calling this method unless terminated.
1625 dl 1.111 *
1626 dl 1.119 * * If pool is terminating, terminate the worker.
1627     *
1628 dl 1.111 * * If not already enqueued, try to inactivate and enqueue the
1629 dl 1.123 * worker on wait queue. Or, if inactivating has caused the pool
1630     * to be quiescent, relay to idleAwaitWork to check for
1631     * termination and possibly shrink pool.
1632     *
1633 dl 1.140 * * If already enqueued and none of the above apply, possibly
1634     * (with 1/2 probablility) park awaiting signal, else lingering to
1635     * help scan and signal.
1636 dl 1.111 *
1637     * @param w the worker (via its WorkQueue)
1638 jsr166 1.133 * @return a task or null if none found
1639 dl 1.111 */
1640     private final ForkJoinTask<?> scan(WorkQueue w) {
1641 dl 1.140 WorkQueue[] ws; WorkQueue q; // first update random seed
1642 dl 1.123 int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1643 dl 1.140 int ps = plock, m; // volatile read order matters
1644 dl 1.123 if ((ws = workQueues) != null && (m = ws.length - 1) > 0) {
1645 dl 1.140 int ec = w.eventCount; // ec is negative if inactive
1646     int step = (r >>> 16) | 1; // relatively prime
1647     for (int j = (m + 1) << 2; ; --j, r += step) {
1648     ForkJoinTask<?> t; ForkJoinTask<?>[] a; int b, n;
1649 dl 1.123 if ((q = ws[r & m]) != null && (b = q.base) - q.top < 0 &&
1650 dl 1.140 (a = q.array) != null) { // probably nonempty
1651 dl 1.123 int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1652     t = (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1653     if (q.base == b && ec >= 0 && t != null &&
1654     U.compareAndSwapObject(a, i, t, null)) {
1655 dl 1.140 if ((n = q.top - (q.base = b + 1)) > 0)
1656     signalWork(q, n);
1657     return t; // taken
1658     }
1659     if (j < m || (ec < 0 && (ec = w.eventCount) < 0)) {
1660     if ((n = q.queueSize() - 1) > 0)
1661     signalWork(q, n);
1662     break; // let caller retry after signal
1663 dl 1.123 }
1664 dl 1.140 }
1665     else if (j < 0) { // end of scan
1666     long c = ctl; int e;
1667     if (plock != ps) // incomplete sweep
1668     break;
1669     if ((e = (int)c) < 0) // pool is terminating
1670     w.qlock = -1;
1671     else if (ec >= 0) { // try to enqueue/inactivate
1672     long nc = ((long)ec |
1673     ((c - AC_UNIT) & (AC_MASK|TC_MASK)));
1674     w.nextWait = e;
1675     w.eventCount = ec | INT_SIGN; // mark as inactive
1676     if (ctl != c ||
1677     !U.compareAndSwapLong(this, CTL, c, nc))
1678     w.eventCount = ec; // unmark on CAS failure
1679     else if ((int)(c >> AC_SHIFT) == 1 - parallelism)
1680     idleAwaitWork(w, nc, c); // quiescent
1681     }
1682     else if (w.seed >= 0 && w.eventCount < 0) {
1683     Thread wt = Thread.currentThread();
1684     Thread.interrupted(); // clear status
1685     U.putObject(wt, PARKBLOCKER, this);
1686     w.parker = wt; // emulate LockSupport.park
1687     if (w.eventCount < 0) // recheck
1688     U.park(false, 0L);
1689     w.parker = null;
1690     U.putObject(wt, PARKBLOCKER, null);
1691 dl 1.123 }
1692 dl 1.93 break;
1693 dl 1.119 }
1694 dl 1.111 }
1695 dl 1.91 }
1696 dl 1.111 return null;
1697 dl 1.53 }
1698    
1699     /**
1700 dl 1.123 * If inactivating worker w has caused the pool to become
1701     * quiescent, checks for pool termination, and, so long as this is
1702 dl 1.135 * not the only worker, waits for event for up to a given
1703     * duration. On timeout, if ctl has not changed, terminates the
1704 dl 1.123 * worker, which will in turn wake up another worker to possibly
1705     * repeat this process.
1706 dl 1.91 *
1707 dl 1.111 * @param w the calling worker
1708 dl 1.123 * @param currentCtl the ctl value triggering possible quiescence
1709     * @param prevCtl the ctl value to restore if thread is terminated
1710 dl 1.53 */
1711 dl 1.123 private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1712 dl 1.140 if (w.eventCount < 0 &&
1713     (this == commonPool || !tryTerminate(false, false)) &&
1714     (int)prevCtl != 0) {
1715 dl 1.135 int dc = -(short)(currentCtl >>> TC_SHIFT);
1716     long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1717     long deadline = System.nanoTime() + parkTime - 100000L; // 1ms slop
1718 dl 1.123 Thread wt = Thread.currentThread();
1719     while (ctl == currentCtl) {
1720 dl 1.111 Thread.interrupted(); // timed variant of version in scan()
1721     U.putObject(wt, PARKBLOCKER, this);
1722     w.parker = wt;
1723 dl 1.123 if (ctl == currentCtl)
1724 dl 1.135 U.park(false, parkTime);
1725 dl 1.111 w.parker = null;
1726     U.putObject(wt, PARKBLOCKER, null);
1727 dl 1.123 if (ctl != currentCtl)
1728 dl 1.111 break;
1729 dl 1.135 if (deadline - System.nanoTime() <= 0L &&
1730 dl 1.123 U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1731     w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1732 dl 1.140 w.qlock = -1; // shrink
1733 dl 1.111 break;
1734     }
1735 dl 1.66 }
1736 dl 1.53 }
1737     }
1738    
1739     /**
1740 dl 1.140 * Scans through queues looking for work while joining a task;
1741     * if any are present, signals.
1742     *
1743     * @param task to return early if done
1744     * @param origin an index to start scan
1745     */
1746     final int helpSignal(ForkJoinTask<?> task, int origin) {
1747     WorkQueue[] ws; WorkQueue q; int m, n, s;
1748     if (task != null && (ws = workQueues) != null &&
1749     (m = ws.length - 1) >= 0) {
1750     for (int i = 0; i <= m; ++i) {
1751     if ((s = task.status) < 0)
1752     return s;
1753     if ((q = ws[(i + origin) & m]) != null &&
1754     (n = q.queueSize()) > 0) {
1755     signalWork(q, n);
1756     if ((int)(ctl >> AC_SHIFT) >= 0)
1757     break;
1758     }
1759     }
1760     }
1761     return 0;
1762     }
1763    
1764     /**
1765 dl 1.111 * Tries to locate and execute tasks for a stealer of the given
1766     * task, or in turn one of its stealers, Traces currentSteal ->
1767     * currentJoin links looking for a thread working on a descendant
1768     * of the given task and with a non-empty queue to steal back and
1769     * execute tasks from. The first call to this method upon a
1770     * waiting join will often entail scanning/search, (which is OK
1771     * because the joiner has nothing better to do), but this method
1772     * leaves hints in workers to speed up subsequent calls. The
1773     * implementation is very branchy to cope with potential
1774     * inconsistencies or loops encountering chains that are stale,
1775 dl 1.128 * unknown, or so long that they are likely cyclic.
1776 dl 1.111 *
1777     * @param joiner the joining worker
1778     * @param task the task to join
1779 dl 1.128 * @return 0 if no progress can be made, negative if task
1780     * known complete, else positive
1781 dl 1.111 */
1782 dl 1.128 private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1783     int stat = 0, steps = 0; // bound to avoid cycles
1784     if (joiner != null && task != null) { // hoist null checks
1785     restart: for (;;) {
1786     ForkJoinTask<?> subtask = task; // current target
1787     for (WorkQueue j = joiner, v;;) { // v is stealer of subtask
1788     WorkQueue[] ws; int m, s, h;
1789     if ((s = task.status) < 0) {
1790     stat = s;
1791     break restart;
1792     }
1793     if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1794     break restart; // shutting down
1795     if ((v = ws[h = (j.stealHint | 1) & m]) == null ||
1796     v.currentSteal != subtask) {
1797     for (int origin = h;;) { // find stealer
1798     if (((h = (h + 2) & m) & 15) == 1 &&
1799     (subtask.status < 0 || j.currentJoin != subtask))
1800     continue restart; // occasional staleness check
1801     if ((v = ws[h]) != null &&
1802     v.currentSteal == subtask) {
1803     j.stealHint = h; // save hint
1804     break;
1805     }
1806     if (h == origin)
1807     break restart; // cannot find stealer
1808 dl 1.111 }
1809     }
1810 dl 1.128 for (;;) { // help stealer or descend to its stealer
1811     ForkJoinTask[] a; int b;
1812     if (subtask.status < 0) // surround probes with
1813     continue restart; // consistency checks
1814     if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1815     int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1816     ForkJoinTask<?> t =
1817     (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1818     if (subtask.status < 0 || j.currentJoin != subtask ||
1819     v.currentSteal != subtask)
1820     continue restart; // stale
1821     stat = 1; // apparent progress
1822     if (t != null && v.base == b &&
1823     U.compareAndSwapObject(a, i, t, null)) {
1824     v.base = b + 1; // help stealer
1825     joiner.runSubtask(t);
1826     }
1827     else if (v.base == b && ++steps == MAX_HELP)
1828     break restart; // v apparently stalled
1829     }
1830     else { // empty -- try to descend
1831     ForkJoinTask<?> next = v.currentJoin;
1832     if (subtask.status < 0 || j.currentJoin != subtask ||
1833     v.currentSteal != subtask)
1834     continue restart; // stale
1835     else if (next == null || ++steps == MAX_HELP)
1836     break restart; // dead-end or maybe cyclic
1837     else {
1838     subtask = next;
1839     j = v;
1840     break;
1841     }
1842 dl 1.111 }
1843 dl 1.91 }
1844 dl 1.61 }
1845 dl 1.111 }
1846 dl 1.53 }
1847 dl 1.128 return stat;
1848 dl 1.64 }
1849    
1850 dl 1.91 /**
1851 dl 1.140 * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1852     * and run tasks within the target's computation
1853     *
1854     * @param task the task to join
1855     * @param mode if shared, exit upon completing any task
1856     * if all workers are active
1857 dl 1.91 *
1858 dl 1.61 */
1859 dl 1.140 private int helpComplete(ForkJoinTask<?> task, int mode) {
1860     WorkQueue[] ws; WorkQueue q; int m, n, s;
1861     if (task != null && (ws = workQueues) != null &&
1862     (m = ws.length - 1) >= 0) {
1863     for (int j = 1, origin = j;;) {
1864     if ((s = task.status) < 0)
1865     return s;
1866     if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
1867     origin = j;
1868     if (mode == SHARED_QUEUE && (int)(ctl >> AC_SHIFT) >= 0)
1869     break;
1870     }
1871     else if ((j = (j + 2) & m) == origin)
1872 dl 1.111 break;
1873 dl 1.91 }
1874     }
1875 dl 1.140 return 0;
1876 dl 1.61 }
1877    
1878     /**
1879 dl 1.123 * Tries to decrement active count (sometimes implicitly) and
1880     * possibly release or create a compensating worker in preparation
1881     * for blocking. Fails on contention or termination. Otherwise,
1882 dl 1.140 * adds a new thread if no idle workers are available and pool
1883     * may become starved.
1884 dl 1.123 */
1885 dl 1.140 final boolean tryCompensate() {
1886     int pc = parallelism, e, u, i, tc; long c;
1887     WorkQueue[] ws; WorkQueue w; Thread p;
1888     if ((e = (int)(c = ctl)) >= 0 && (ws = workQueues) != null) {
1889     if (e != 0 && (i = e & SMASK) < ws.length &&
1890     (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1891     long nc = ((long)(w.nextWait & E_MASK) |
1892     (c & (AC_MASK|TC_MASK)));
1893     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1894     w.eventCount = (e + E_SEQ) & E_MASK;
1895     if ((p = w.parker) != null)
1896     U.unpark(p);
1897     return true; // replace with idle worker
1898 dl 1.123 }
1899     }
1900 dl 1.140 else if ((short)((u = (int)(c >>> 32)) >>> UTC_SHIFT) >= 0 &&
1901     (u >> UAC_SHIFT) + pc > 1) {
1902     long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1903     if (U.compareAndSwapLong(this, CTL, c, nc))
1904     return true; // no compensation
1905     }
1906     else if ((tc = u + pc) < MAX_CAP) {
1907     long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1908     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1909     Throwable ex = null;
1910     ForkJoinWorkerThread wt = null;
1911     try {
1912     ForkJoinWorkerThreadFactory fac;
1913     if ((fac = factory) != null &&
1914     (wt = fac.newThread(this)) != null) {
1915     wt.start();
1916 dl 1.123 return true;
1917     }
1918 dl 1.140 } catch (Throwable rex) {
1919     ex = rex;
1920 dl 1.123 }
1921 dl 1.140 deregisterWorker(wt, ex); // adjust counts etc
1922 dl 1.123 }
1923     }
1924     }
1925     return false;
1926     }
1927    
1928     /**
1929 jsr166 1.126 * Helps and/or blocks until the given task is done.
1930 dl 1.123 *
1931     * @param joiner the joining worker
1932     * @param task the task
1933     * @return task status on exit
1934     */
1935     final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1936 dl 1.140 int s = 0;
1937     if (joiner != null && task != null && (s = task.status) >= 0) {
1938 dl 1.128 ForkJoinTask<?> prevJoin = joiner.currentJoin;
1939 dl 1.127 joiner.currentJoin = task;
1940 dl 1.140 do {} while ((s = task.status) >= 0 &&
1941     joiner.queueSize() > 0 &&
1942     joiner.tryRemoveAndExec(task)); // process local tasks
1943     if (s >= 0 && (s = task.status) >= 0 &&
1944     (s = helpSignal(task, joiner.poolIndex)) >= 0 &&
1945     (task instanceof CountedCompleter))
1946     s = helpComplete(task, LIFO_QUEUE);
1947     while (s >= 0 && (s = task.status) >= 0) {
1948     if ((joiner.queueSize() > 0 || // try helping
1949     (s = tryHelpStealer(joiner, task)) == 0) &&
1950     (s = task.status) >= 0 && tryCompensate()) {
1951     if (task.trySetSignal() && (s = task.status) >= 0) {
1952     synchronized (task) {
1953     if (task.status >= 0) {
1954     try { // see ForkJoinTask
1955     task.wait(); // for explanation
1956     } catch (InterruptedException ie) {
1957 dl 1.123 }
1958     }
1959 dl 1.140 else
1960     task.notifyAll();
1961 dl 1.123 }
1962     }
1963 dl 1.140 long c; // re-activate
1964     do {} while (!U.compareAndSwapLong
1965     (this, CTL, c = ctl, c + AC_UNIT));
1966 dl 1.123 }
1967     }
1968 dl 1.140 joiner.currentJoin = prevJoin;
1969 dl 1.123 }
1970 dl 1.127 return s;
1971 dl 1.123 }
1972    
1973     /**
1974     * Stripped-down variant of awaitJoin used by timed joins. Tries
1975     * to help join only while there is continuous progress. (Caller
1976     * will then enter a timed wait.)
1977     *
1978     * @param joiner the joining worker
1979     * @param task the task
1980     */
1981 dl 1.140 final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
1982 dl 1.123 int s;
1983 dl 1.140 if (joiner != null && task != null && (s = task.status) >= 0) {
1984     ForkJoinTask<?> prevJoin = joiner.currentJoin;
1985     joiner.currentJoin = task;
1986     do {} while ((s = task.status) >= 0 &&
1987     joiner.queueSize() > 0 &&
1988     joiner.tryRemoveAndExec(task));
1989     if (s >= 0 && (s = task.status) >= 0 &&
1990     (s = helpSignal(task, joiner.poolIndex)) >= 0 &&
1991     (task instanceof CountedCompleter))
1992     s = helpComplete(task, LIFO_QUEUE);
1993     if (s >= 0 && joiner.queueSize() == 0) {
1994     do {} while (task.status >= 0 &&
1995     tryHelpStealer(joiner, task) > 0);
1996     }
1997     joiner.currentJoin = prevJoin;
1998     }
1999 dl 1.123 }
2000    
2001     /**
2002     * Returns a (probably) non-empty steal queue, if one is found
2003     * during a random, then cyclic scan, else null. This method must
2004     * be retried by caller if, by the time it tries to use the queue,
2005     * it is empty.
2006 dl 1.140 * @param r a (random) seed for scanning
2007 dl 1.111 */
2008 dl 1.140 private WorkQueue findNonEmptyStealQueue(int r) {
2009 dl 1.123 int step = (r >>> 16) | 1;
2010 dl 1.111 for (WorkQueue[] ws;;) {
2011 dl 1.140 int ps = plock, m;
2012 dl 1.123 if ((ws = workQueues) == null || (m = ws.length - 1) < 1)
2013 dl 1.111 return null;
2014 dl 1.123 for (int j = (m + 1) << 2; ; r += step) {
2015     WorkQueue q = ws[((r << 1) | 1) & m];
2016 dl 1.140 if (q != null && q.queueSize() > 0)
2017 dl 1.123 return q;
2018     else if (--j < 0) {
2019 dl 1.140 if (plock == ps)
2020 dl 1.111 return null;
2021 dl 1.123 break;
2022 dl 1.91 }
2023     }
2024 dl 1.64 }
2025     }
2026    
2027     /**
2028 dl 1.111 * Runs tasks until {@code isQuiescent()}. We piggyback on
2029     * active count ctl maintenance, but rather than blocking
2030     * when tasks cannot be found, we rescan until all others cannot
2031     * find tasks either.
2032     */
2033     final void helpQuiescePool(WorkQueue w) {
2034     for (boolean active = true;;) {
2035 dl 1.127 ForkJoinTask<?> localTask; // exhaust local queue
2036     while ((localTask = w.nextLocalTask()) != null)
2037     localTask.doExec();
2038 dl 1.140 // Similar to loop in scan(), but ignoring submissions
2039     WorkQueue q = findNonEmptyStealQueue(w.nextSeed());
2040 dl 1.111 if (q != null) {
2041 dl 1.123 ForkJoinTask<?> t; int b;
2042 dl 1.111 if (!active) { // re-establish active count
2043     long c;
2044     active = true;
2045     do {} while (!U.compareAndSwapLong
2046     (this, CTL, c = ctl, c + AC_UNIT));
2047     }
2048 dl 1.123 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2049 dl 1.111 w.runSubtask(t);
2050     }
2051     else {
2052     long c;
2053     if (active) { // decrement active count without queuing
2054     active = false;
2055     do {} while (!U.compareAndSwapLong
2056     (this, CTL, c = ctl, c -= AC_UNIT));
2057     }
2058     else
2059     c = ctl; // re-increment on exit
2060     if ((int)(c >> AC_SHIFT) + parallelism == 0) {
2061     do {} while (!U.compareAndSwapLong
2062     (this, CTL, c = ctl, c + AC_UNIT));
2063     break;
2064 dl 1.66 }
2065 dl 1.64 }
2066     }
2067     }
2068    
2069     /**
2070 jsr166 1.117 * Gets and removes a local or stolen task for the given worker.
2071 dl 1.111 *
2072     * @return a task, if available
2073 dl 1.64 */
2074 dl 1.111 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2075     for (ForkJoinTask<?> t;;) {
2076 dl 1.123 WorkQueue q; int b;
2077 dl 1.111 if ((t = w.nextLocalTask()) != null)
2078     return t;
2079 dl 1.140 if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2080 dl 1.111 return null;
2081 dl 1.123 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2082 dl 1.111 return t;
2083 dl 1.91 }
2084 dl 1.61 }
2085    
2086 dl 1.53 /**
2087 dl 1.140 * Returns a cheap heuristic guide for task partitioning when
2088     * programmers, frameworks, tools, or languages have little or no
2089     * idea about task granularity. In essence by offering this
2090     * method, we ask users only about tradeoffs in overhead vs
2091     * expected throughput and its variance, rather than how finely to
2092     * partition tasks.
2093     *
2094     * In a steady state strict (tree-structured) computation, each
2095     * thread makes available for stealing enough tasks for other
2096     * threads to remain active. Inductively, if all threads play by
2097     * the same rules, each thread should make available only a
2098     * constant number of tasks.
2099     *
2100     * The minimum useful constant is just 1. But using a value of 1
2101     * would require immediate replenishment upon each steal to
2102     * maintain enough tasks, which is infeasible. Further,
2103     * partitionings/granularities of offered tasks should minimize
2104     * steal rates, which in general means that threads nearer the top
2105     * of computation tree should generate more than those nearer the
2106     * bottom. In perfect steady state, each thread is at
2107     * approximately the same level of computation tree. However,
2108     * producing extra tasks amortizes the uncertainty of progress and
2109     * diffusion assumptions.
2110     *
2111     * So, users will want to use values larger, but not much larger
2112     * than 1 to both smooth over transient shortages and hedge
2113     * against uneven progress; as traded off against the cost of
2114     * extra task overhead. We leave the user to pick a threshold
2115     * value to compare with the results of this call to guide
2116     * decisions, but recommend values such as 3.
2117     *
2118     * When all threads are active, it is on average OK to estimate
2119     * surplus strictly locally. In steady-state, if one thread is
2120     * maintaining say 2 surplus tasks, then so are others. So we can
2121     * just use estimated queue length. However, this strategy alone
2122     * leads to serious mis-estimates in some non-steady-state
2123     * conditions (ramp-up, ramp-down, other stalls). We can detect
2124     * many of these by further considering the number of "idle"
2125     * threads, that are known to have zero queued tasks, so
2126     * compensate by a factor of (#idle/#active) threads.
2127     *
2128     * Note: The approximation of #busy workers as #active workers is
2129     * not very good under current signalling scheme, and should be
2130     * improved.
2131     */
2132     static int getSurplusQueuedTaskCount() {
2133     Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2134     if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2135     int b = (q = (wt = (ForkJoinWorkerThread)t).workQueue).base;
2136     int p = (pool = wt.pool).parallelism;
2137     int a = (int)(pool.ctl >> AC_SHIFT) + p;
2138     return q.top - b - (a > (p >>>= 1) ? 0 :
2139     a > (p >>>= 1) ? 1 :
2140     a > (p >>>= 1) ? 2 :
2141     a > (p >>>= 1) ? 4 :
2142     8);
2143     }
2144     return 0;
2145 dl 1.135 }
2146    
2147 dl 1.119 // Termination
2148 dl 1.53
2149     /**
2150 dl 1.119 * Possibly initiates and/or completes termination. The caller
2151     * triggering termination runs three passes through workQueues:
2152     * (0) Setting termination status, followed by wakeups of queued
2153     * workers; (1) cancelling all tasks; (2) interrupting lagging
2154     * threads (likely in external tasks, but possibly also blocked in
2155     * joins). Each pass repeats previous steps because of potential
2156     * lagging thread creation.
2157 dl 1.53 *
2158     * @param now if true, unconditionally terminate, else only
2159 dl 1.111 * if no work and no active workers
2160 jsr166 1.120 * @param enable if true, enable shutdown when next possible
2161 dl 1.53 * @return true if now terminating or terminated
2162 dl 1.1 */
2163 dl 1.119 private boolean tryTerminate(boolean now, boolean enable) {
2164 dl 1.140 if (this == commonPool) // cannot shut down
2165     return false;
2166 dl 1.111 for (long c;;) {
2167     if (((c = ctl) & STOP_BIT) != 0) { // already terminating
2168     if ((short)(c >>> TC_SHIFT) == -parallelism) {
2169 jsr166 1.138 synchronized (this) {
2170 dl 1.136 notifyAll(); // signal when 0 workers
2171     }
2172 dl 1.111 }
2173     return true;
2174     }
2175 dl 1.140 if (plock >= 0) { // not yet enabled
2176     int ps;
2177 dl 1.119 if (!enable)
2178     return false;
2179 dl 1.140 if (((ps = plock) & PL_LOCK) != 0 ||
2180     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2181     ps = acquirePlock();
2182     int nps = SHUTDOWN;
2183     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2184     releasePlock(nps);
2185 dl 1.119 }
2186     if (!now) { // check if idle & no tasks
2187     if ((int)(c >> AC_SHIFT) != -parallelism ||
2188 dl 1.111 hasQueuedSubmissions())
2189 dl 1.91 return false;
2190 dl 1.111 // Check for unqueued inactive workers. One pass suffices.
2191     WorkQueue[] ws = workQueues; WorkQueue w;
2192     if (ws != null) {
2193 dl 1.119 for (int i = 1; i < ws.length; i += 2) {
2194 dl 1.111 if ((w = ws[i]) != null && w.eventCount >= 0)
2195     return false;
2196     }
2197 dl 1.91 }
2198     }
2199 dl 1.119 if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2200     for (int pass = 0; pass < 3; ++pass) {
2201     WorkQueue[] ws = workQueues;
2202     if (ws != null) {
2203     WorkQueue w;
2204     int n = ws.length;
2205     for (int i = 0; i < n; ++i) {
2206     if ((w = ws[i]) != null) {
2207 dl 1.140 w.qlock = -1;
2208 dl 1.119 if (pass > 0) {
2209     w.cancelAll();
2210     if (pass > 1)
2211     w.interruptOwner();
2212 dl 1.91 }
2213 dl 1.61 }
2214     }
2215 dl 1.119 // Wake up workers parked on event queue
2216     int i, e; long cc; Thread p;
2217     while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2218     (i = e & SMASK) < n &&
2219     (w = ws[i]) != null) {
2220     long nc = ((long)(w.nextWait & E_MASK) |
2221     ((cc + AC_UNIT) & AC_MASK) |
2222     (cc & (TC_MASK|STOP_BIT)));
2223     if (w.eventCount == (e | INT_SIGN) &&
2224     U.compareAndSwapLong(this, CTL, cc, nc)) {
2225     w.eventCount = (e + E_SEQ) & E_MASK;
2226 dl 1.140 w.qlock = -1;
2227 dl 1.119 if ((p = w.parker) != null)
2228     U.unpark(p);
2229     }
2230     }
2231 dl 1.111 }
2232 dl 1.91 }
2233 dl 1.53 }
2234     }
2235 dl 1.56 }
2236    
2237 dl 1.140 // external operations on common pool
2238    
2239     /**
2240     * Returns common pool queue for a thread that has submitted at
2241     * least one task.
2242     */
2243     static WorkQueue commonSubmitterQueue() {
2244     ForkJoinPool p; WorkQueue[] ws; int m; Submitter z;
2245     return ((z = submitters.get()) != null &&
2246     (p = commonPool) != null &&
2247     (ws = p.workQueues) != null &&
2248     (m = ws.length - 1) >= 0) ?
2249     ws[m & z.seed & SQMASK] : null;
2250     }
2251    
2252     /**
2253     * Tries to pop the given task from submitter's queue in common pool.
2254     */
2255     static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2256     ForkJoinPool p; WorkQueue[] ws; WorkQueue q; Submitter z;
2257     ForkJoinTask<?>[] a; int m, s; long j;
2258     if ((z = submitters.get()) != null &&
2259     (p = commonPool) != null &&
2260     (ws = p.workQueues) != null &&
2261     (m = ws.length - 1) >= 0 &&
2262     (q = ws[m & z.seed & SQMASK]) != null &&
2263     (s = q.top) != q.base &&
2264     (a = q.array) != null &&
2265     U.getObjectVolatile
2266     (a, j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE) == t &&
2267     U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2268     if (q.array == a && q.top == s && // recheck
2269     U.compareAndSwapObject(a, j, t, null)) {
2270     q.top = s - 1;
2271     q.qlock = 0;
2272     return true;
2273     }
2274     q.qlock = 0;
2275     }
2276     return false;
2277     }
2278    
2279     /**
2280     * Tries to pop and run local tasks within the same computation
2281     * as the given root. On failure, tries to help complete from
2282     * other queues via helpComplete.
2283     */
2284     private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2285     ForkJoinTask<?>[] a; int m;
2286     if (q != null && (a = q.array) != null && (m = (a.length - 1)) >= 0 &&
2287     root != null && root.status >= 0) {
2288     for (;;) {
2289     int s; Object o; CountedCompleter<?> task = null;
2290     if ((s = q.top) - q.base > 0) {
2291     long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2292     if ((o = U.getObject(a, j)) != null &&
2293     (o instanceof CountedCompleter)) {
2294     CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2295     do {
2296     if (r == root) {
2297     if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2298     if (q.array == a && q.top == s &&
2299     U.compareAndSwapObject(a, j, t, null)) {
2300     q.top = s - 1;
2301     task = t;
2302     }
2303     q.qlock = 0;
2304     }
2305     break;
2306     }
2307 jsr166 1.141 } while ((r = r.completer) != null);
2308 dl 1.140 }
2309     }
2310     if (task != null)
2311     task.doExec();
2312     if (root.status < 0 || (int)(ctl >> AC_SHIFT) >= 0)
2313     break;
2314     if (task == null) {
2315     if (helpSignal(root, q.poolIndex) >= 0)
2316     helpComplete(root, SHARED_QUEUE);
2317     break;
2318     }
2319     }
2320     }
2321     }
2322    
2323     /**
2324     * Tries to help execute or signal availability of the given task
2325     * from submitter's queue in common pool.
2326     */
2327     static void externalHelpJoin(ForkJoinTask<?> t) {
2328     // Some hard-to-avoid overlap with tryExternalUnpush
2329     ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w; Submitter z;
2330     ForkJoinTask<?>[] a; int m, s, n; long j;
2331     if (t != null && t.status >= 0 &&
2332     (z = submitters.get()) != null &&
2333     (p = commonPool) != null &&
2334     (ws = p.workQueues) != null &&
2335     (m = ws.length - 1) >= 0 &&
2336     (q = ws[m & z.seed & SQMASK]) != null &&
2337     (a = q.array) != null) {
2338     if ((s = q.top) != q.base &&
2339     U.getObjectVolatile
2340     (a, j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE) == t &&
2341     U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2342     if (q.array == a && q.top == s &&
2343     U.compareAndSwapObject(a, j, t, null)) {
2344     q.top = s - 1;
2345     q.qlock = 0;
2346     t.doExec();
2347     }
2348     else
2349     q.qlock = 0;
2350     }
2351     if (t.status >= 0) {
2352     if (t instanceof CountedCompleter)
2353     p.externalHelpComplete(q, t);
2354     else
2355     p.helpSignal(t, q.poolIndex);
2356     }
2357     }
2358     }
2359    
2360     /**
2361     * Restricted version of helpQuiescePool for external callers
2362     */
2363     static void externalHelpQuiescePool() {
2364     ForkJoinPool p; ForkJoinTask<?> t; WorkQueue q; int b;
2365     int r = ThreadLocalRandom.current().nextInt();
2366     if ((p = commonPool) != null &&
2367     (q = p.findNonEmptyStealQueue(r)) != null &&
2368     (b = q.base) - q.top < 0 &&
2369     (t = q.pollAt(b)) != null)
2370     t.doExec();
2371     }
2372    
2373 dl 1.91 // Exported methods
2374 dl 1.1
2375     // Constructors
2376    
2377     /**
2378 dl 1.42 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2379 dl 1.57 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2380     * #defaultForkJoinWorkerThreadFactory default thread factory},
2381     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2382 jsr166 1.17 *
2383 dl 1.1 * @throws SecurityException if a security manager exists and
2384     * the caller is not permitted to modify threads
2385     * because it does not hold {@link
2386 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
2387 dl 1.1 */
2388     public ForkJoinPool() {
2389     this(Runtime.getRuntime().availableProcessors(),
2390 dl 1.57 defaultForkJoinWorkerThreadFactory, null, false);
2391 dl 1.1 }
2392    
2393     /**
2394 dl 1.42 * Creates a {@code ForkJoinPool} with the indicated parallelism
2395 dl 1.57 * level, the {@linkplain
2396     * #defaultForkJoinWorkerThreadFactory default thread factory},
2397     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2398 jsr166 1.17 *
2399 dl 1.42 * @param parallelism the parallelism level
2400 dl 1.1 * @throws IllegalArgumentException if parallelism less than or
2401 jsr166 1.47 * equal to zero, or greater than implementation limit
2402 dl 1.1 * @throws SecurityException if a security manager exists and
2403     * the caller is not permitted to modify threads
2404     * because it does not hold {@link
2405 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
2406 dl 1.1 */
2407     public ForkJoinPool(int parallelism) {
2408 dl 1.57 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2409 dl 1.1 }
2410    
2411     /**
2412 dl 1.57 * Creates a {@code ForkJoinPool} with the given parameters.
2413 jsr166 1.17 *
2414 dl 1.57 * @param parallelism the parallelism level. For default value,
2415     * use {@link java.lang.Runtime#availableProcessors}.
2416     * @param factory the factory for creating new threads. For default value,
2417     * use {@link #defaultForkJoinWorkerThreadFactory}.
2418 dl 1.59 * @param handler the handler for internal worker threads that
2419     * terminate due to unrecoverable errors encountered while executing
2420 jsr166 1.73 * tasks. For default value, use {@code null}.
2421 dl 1.59 * @param asyncMode if true,
2422 dl 1.57 * establishes local first-in-first-out scheduling mode for forked
2423     * tasks that are never joined. This mode may be more appropriate
2424     * than default locally stack-based mode in applications in which
2425     * worker threads only process event-style asynchronous tasks.
2426 jsr166 1.73 * For default value, use {@code false}.
2427 dl 1.1 * @throws IllegalArgumentException if parallelism less than or
2428 jsr166 1.47 * equal to zero, or greater than implementation limit
2429 jsr166 1.48 * @throws NullPointerException if the factory is null
2430 dl 1.1 * @throws SecurityException if a security manager exists and
2431     * the caller is not permitted to modify threads
2432     * because it does not hold {@link
2433 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
2434 dl 1.1 */
2435 dl 1.59 public ForkJoinPool(int parallelism,
2436 dl 1.57 ForkJoinWorkerThreadFactory factory,
2437     Thread.UncaughtExceptionHandler handler,
2438     boolean asyncMode) {
2439 dl 1.53 checkPermission();
2440     if (factory == null)
2441     throw new NullPointerException();
2442 dl 1.123 if (parallelism <= 0 || parallelism > MAX_CAP)
2443 dl 1.1 throw new IllegalArgumentException();
2444 dl 1.53 this.parallelism = parallelism;
2445 dl 1.1 this.factory = factory;
2446 dl 1.57 this.ueh = handler;
2447 dl 1.111 this.localMode = asyncMode ? FIFO_QUEUE : LIFO_QUEUE;
2448 dl 1.91 long np = (long)(-parallelism); // offset ctl counts
2449     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2450 dl 1.140 int pn = nextPoolId();
2451 dl 1.91 StringBuilder sb = new StringBuilder("ForkJoinPool-");
2452 dl 1.123 sb.append(Integer.toString(pn));
2453 dl 1.91 sb.append("-worker-");
2454     this.workerNamePrefix = sb.toString();
2455 dl 1.1 }
2456    
2457 dl 1.135 /**
2458 dl 1.136 * Constructor for common pool, suitable only for static initialization.
2459     * Basically the same as above, but uses smallest possible initial footprint.
2460     */
2461 dl 1.140 ForkJoinPool(int parallelism, long ctl,
2462 dl 1.136 ForkJoinWorkerThreadFactory factory,
2463     Thread.UncaughtExceptionHandler handler) {
2464 dl 1.140 this.parallelism = parallelism;
2465     this.ctl = ctl;
2466 dl 1.136 this.factory = factory;
2467     this.ueh = handler;
2468     this.localMode = LIFO_QUEUE;
2469     this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2470     }
2471    
2472     /**
2473     * Returns the common pool instance.
2474 dl 1.135 *
2475     * @return the common pool instance
2476     */
2477     public static ForkJoinPool commonPool() {
2478 dl 1.140 return commonPool; // cannot be null (if so, a static init error)
2479 dl 1.135 }
2480    
2481 dl 1.1 // Execution methods
2482    
2483     /**
2484 jsr166 1.17 * Performs the given task, returning its result upon completion.
2485 dl 1.91 * If the computation encounters an unchecked Exception or Error,
2486     * it is rethrown as the outcome of this invocation. Rethrown
2487     * exceptions behave in the same way as regular exceptions, but,
2488     * when possible, contain stack traces (as displayed for example
2489     * using {@code ex.printStackTrace()}) of both the current thread
2490     * as well as the thread actually encountering the exception;
2491     * minimally only the latter.
2492 jsr166 1.17 *
2493 dl 1.1 * @param task the task
2494     * @return the task's result
2495 jsr166 1.48 * @throws NullPointerException if the task is null
2496     * @throws RejectedExecutionException if the task cannot be
2497     * scheduled for execution
2498 dl 1.1 */
2499     public <T> T invoke(ForkJoinTask<T> task) {
2500 dl 1.123 if (task == null)
2501     throw new NullPointerException();
2502 dl 1.140 externalPush(task);
2503 dl 1.111 return task.join();
2504 dl 1.1 }
2505    
2506     /**
2507     * Arranges for (asynchronous) execution of the given task.
2508 jsr166 1.17 *
2509 dl 1.1 * @param task the task
2510 jsr166 1.48 * @throws NullPointerException if the task is null
2511     * @throws RejectedExecutionException if the task cannot be
2512     * scheduled for execution
2513 dl 1.1 */
2514 dl 1.37 public void execute(ForkJoinTask<?> task) {
2515 dl 1.123 if (task == null)
2516     throw new NullPointerException();
2517 dl 1.140 externalPush(task);
2518 dl 1.1 }
2519    
2520     // AbstractExecutorService methods
2521    
2522 jsr166 1.48 /**
2523     * @throws NullPointerException if the task is null
2524     * @throws RejectedExecutionException if the task cannot be
2525     * scheduled for execution
2526     */
2527 dl 1.1 public void execute(Runnable task) {
2528 dl 1.82 if (task == null)
2529     throw new NullPointerException();
2530 dl 1.23 ForkJoinTask<?> job;
2531 jsr166 1.26 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2532     job = (ForkJoinTask<?>) task;
2533 dl 1.23 else
2534 dl 1.123 job = new ForkJoinTask.AdaptedRunnableAction(task);
2535 dl 1.140 externalPush(job);
2536 dl 1.1 }
2537    
2538 jsr166 1.48 /**
2539 dl 1.57 * Submits a ForkJoinTask for execution.
2540     *
2541     * @param task the task to submit
2542     * @return the task
2543     * @throws NullPointerException if the task is null
2544     * @throws RejectedExecutionException if the task cannot be
2545     * scheduled for execution
2546     */
2547     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2548 dl 1.123 if (task == null)
2549     throw new NullPointerException();
2550 dl 1.140 externalPush(task);
2551 dl 1.57 return task;
2552     }
2553    
2554     /**
2555 jsr166 1.48 * @throws NullPointerException if the task is null
2556     * @throws RejectedExecutionException if the task cannot be
2557     * scheduled for execution
2558     */
2559 dl 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2560 dl 1.123 ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2561 dl 1.140 externalPush(job);
2562 dl 1.1 return job;
2563     }
2564    
2565 jsr166 1.48 /**
2566     * @throws NullPointerException if the task is null
2567     * @throws RejectedExecutionException if the task cannot be
2568     * scheduled for execution
2569     */
2570 dl 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2571 dl 1.123 ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2572 dl 1.140 externalPush(job);
2573 dl 1.1 return job;
2574     }
2575    
2576 jsr166 1.48 /**
2577     * @throws NullPointerException if the task is null
2578     * @throws RejectedExecutionException if the task cannot be
2579     * scheduled for execution
2580     */
2581 dl 1.1 public ForkJoinTask<?> submit(Runnable task) {
2582 dl 1.82 if (task == null)
2583     throw new NullPointerException();
2584 dl 1.23 ForkJoinTask<?> job;
2585 jsr166 1.26 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2586     job = (ForkJoinTask<?>) task;
2587 dl 1.23 else
2588 dl 1.123 job = new ForkJoinTask.AdaptedRunnableAction(task);
2589 dl 1.140 externalPush(job);
2590 dl 1.1 return job;
2591     }
2592    
2593     /**
2594 jsr166 1.48 * @throws NullPointerException {@inheritDoc}
2595     * @throws RejectedExecutionException {@inheritDoc}
2596     */
2597 dl 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2598 dl 1.119 // In previous versions of this class, this method constructed
2599     // a task to run ForkJoinTask.invokeAll, but now external
2600     // invocation of multiple tasks is at least as efficient.
2601     List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2602     // Workaround needed because method wasn't declared with
2603     // wildcards in return type but should have been.
2604 jsr166 1.20 @SuppressWarnings({"unchecked", "rawtypes"})
2605 dl 1.119 List<Future<T>> futures = (List<Future<T>>) (List) fs;
2606 dl 1.1
2607 dl 1.119 boolean done = false;
2608     try {
2609     for (Callable<T> t : tasks) {
2610 dl 1.123 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2611 dl 1.140 externalPush(f);
2612 dl 1.119 fs.add(f);
2613     }
2614     for (ForkJoinTask<T> f : fs)
2615     f.quietlyJoin();
2616     done = true;
2617     return futures;
2618     } finally {
2619     if (!done)
2620     for (ForkJoinTask<T> f : fs)
2621     f.cancel(false);
2622 dl 1.1 }
2623     }
2624    
2625     /**
2626 jsr166 1.17 * Returns the factory used for constructing new workers.
2627 dl 1.1 *
2628     * @return the factory used for constructing new workers
2629     */
2630     public ForkJoinWorkerThreadFactory getFactory() {
2631     return factory;
2632     }
2633    
2634     /**
2635 dl 1.2 * Returns the handler for internal worker threads that terminate
2636     * due to unrecoverable errors encountered while executing tasks.
2637 jsr166 1.17 *
2638 jsr166 1.28 * @return the handler, or {@code null} if none
2639 dl 1.2 */
2640     public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
2641 dl 1.53 return ueh;
2642 dl 1.2 }
2643    
2644     /**
2645 dl 1.42 * Returns the targeted parallelism level of this pool.
2646 dl 1.1 *
2647 dl 1.42 * @return the targeted parallelism level of this pool
2648 dl 1.1 */
2649     public int getParallelism() {
2650     return parallelism;
2651     }
2652    
2653     /**
2654 dl 1.135 * Returns the targeted parallelism level of the common pool.
2655     *
2656     * @return the targeted parallelism level of the common pool
2657     */
2658     public static int getCommonPoolParallelism() {
2659     return commonPoolParallelism;
2660     }
2661    
2662     /**
2663 dl 1.1 * Returns the number of worker threads that have started but not
2664 jsr166 1.76 * yet terminated. The result returned by this method may differ
2665 jsr166 1.29 * from {@link #getParallelism} when threads are created to
2666 dl 1.1 * maintain parallelism when others are cooperatively blocked.
2667     *
2668     * @return the number of worker threads
2669     */
2670     public int getPoolSize() {
2671 dl 1.91 return parallelism + (short)(ctl >>> TC_SHIFT);
2672 dl 1.1 }
2673    
2674     /**
2675 jsr166 1.28 * Returns {@code true} if this pool uses local first-in-first-out
2676 jsr166 1.16 * scheduling mode for forked tasks that are never joined.
2677 dl 1.6 *
2678 jsr166 1.28 * @return {@code true} if this pool uses async mode
2679 dl 1.6 */
2680     public boolean getAsyncMode() {
2681 dl 1.111 return localMode != 0;
2682 dl 1.6 }
2683    
2684     /**
2685 dl 1.2 * Returns an estimate of the number of worker threads that are
2686     * not blocked waiting to join tasks or for other managed
2687 dl 1.53 * synchronization. This method may overestimate the
2688     * number of running threads.
2689 dl 1.1 *
2690     * @return the number of worker threads
2691     */
2692     public int getRunningThreadCount() {
2693 dl 1.111 int rc = 0;
2694     WorkQueue[] ws; WorkQueue w;
2695     if ((ws = workQueues) != null) {
2696 dl 1.119 for (int i = 1; i < ws.length; i += 2) {
2697     if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2698 dl 1.111 ++rc;
2699     }
2700     }
2701     return rc;
2702 dl 1.1 }
2703    
2704     /**
2705 dl 1.2 * Returns an estimate of the number of threads that are currently
2706 dl 1.1 * stealing or executing tasks. This method may overestimate the
2707     * number of active threads.
2708 jsr166 1.17 *
2709 jsr166 1.16 * @return the number of active threads
2710 dl 1.1 */
2711     public int getActiveThreadCount() {
2712 dl 1.111 int r = parallelism + (int)(ctl >> AC_SHIFT);
2713 jsr166 1.102 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2714 dl 1.1 }
2715    
2716     /**
2717 jsr166 1.28 * Returns {@code true} if all worker threads are currently idle.
2718     * An idle worker is one that cannot obtain a task to execute
2719     * because none are available to steal from other threads, and
2720     * there are no pending submissions to the pool. This method is
2721     * conservative; it might not return {@code true} immediately upon
2722     * idleness of all threads, but will eventually become true if
2723     * threads remain inactive.
2724 jsr166 1.17 *
2725 jsr166 1.28 * @return {@code true} if all threads are currently idle
2726 dl 1.1 */
2727     public boolean isQuiescent() {
2728 dl 1.111 return (int)(ctl >> AC_SHIFT) + parallelism == 0;
2729 dl 1.1 }
2730    
2731     /**
2732     * Returns an estimate of the total number of tasks stolen from
2733     * one thread's work queue by another. The reported value
2734     * underestimates the actual total number of steals when the pool
2735     * is not quiescent. This value may be useful for monitoring and
2736 jsr166 1.17 * tuning fork/join programs: in general, steal counts should be
2737 dl 1.1 * high enough to keep threads busy, but low enough to avoid
2738     * overhead and contention across threads.
2739 jsr166 1.17 *
2740 jsr166 1.16 * @return the number of steals
2741 dl 1.1 */
2742     public long getStealCount() {
2743 dl 1.136 long count = stealCount;
2744 dl 1.111 WorkQueue[] ws; WorkQueue w;
2745     if ((ws = workQueues) != null) {
2746 dl 1.119 for (int i = 1; i < ws.length; i += 2) {
2747 dl 1.111 if ((w = ws[i]) != null)
2748 dl 1.140 count += w.nsteals;
2749 dl 1.111 }
2750     }
2751     return count;
2752 dl 1.1 }
2753    
2754     /**
2755 dl 1.2 * Returns an estimate of the total number of tasks currently held
2756     * in queues by worker threads (but not including tasks submitted
2757     * to the pool that have not begun executing). This value is only
2758     * an approximation, obtained by iterating across all threads in
2759     * the pool. This method may be useful for tuning task
2760     * granularities.
2761 jsr166 1.17 *
2762 jsr166 1.16 * @return the number of queued tasks
2763 dl 1.1 */
2764     public long getQueuedTaskCount() {
2765     long count = 0;
2766 dl 1.111 WorkQueue[] ws; WorkQueue w;
2767     if ((ws = workQueues) != null) {
2768 dl 1.119 for (int i = 1; i < ws.length; i += 2) {
2769 dl 1.111 if ((w = ws[i]) != null)
2770     count += w.queueSize();
2771     }
2772 dl 1.91 }
2773 dl 1.1 return count;
2774     }
2775    
2776     /**
2777 jsr166 1.40 * Returns an estimate of the number of tasks submitted to this
2778 dl 1.94 * pool that have not yet begun executing. This method may take
2779 dl 1.91 * time proportional to the number of submissions.
2780 jsr166 1.17 *
2781 jsr166 1.16 * @return the number of queued submissions
2782 dl 1.1 */
2783     public int getQueuedSubmissionCount() {
2784 dl 1.111 int count = 0;
2785     WorkQueue[] ws; WorkQueue w;
2786     if ((ws = workQueues) != null) {
2787 dl 1.119 for (int i = 0; i < ws.length; i += 2) {
2788 dl 1.111 if ((w = ws[i]) != null)
2789     count += w.queueSize();
2790     }
2791     }
2792     return count;
2793 dl 1.1 }
2794    
2795     /**
2796 jsr166 1.28 * Returns {@code true} if there are any tasks submitted to this
2797     * pool that have not yet begun executing.
2798 jsr166 1.17 *
2799 jsr166 1.16 * @return {@code true} if there are any queued submissions
2800 dl 1.1 */
2801     public boolean hasQueuedSubmissions() {
2802 dl 1.111 WorkQueue[] ws; WorkQueue w;
2803     if ((ws = workQueues) != null) {
2804 dl 1.119 for (int i = 0; i < ws.length; i += 2) {
2805 dl 1.140 if ((w = ws[i]) != null && w.queueSize() != 0)
2806 dl 1.111 return true;
2807     }
2808     }
2809     return false;
2810 dl 1.1 }
2811    
2812     /**
2813     * Removes and returns the next unexecuted submission if one is
2814     * available. This method may be useful in extensions to this
2815     * class that re-assign work in systems with multiple pools.
2816 jsr166 1.17 *
2817 jsr166 1.28 * @return the next submission, or {@code null} if none
2818 dl 1.1 */
2819     protected ForkJoinTask<?> pollSubmission() {
2820 dl 1.111 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2821     if ((ws = workQueues) != null) {
2822 dl 1.119 for (int i = 0; i < ws.length; i += 2) {
2823 dl 1.111 if ((w = ws[i]) != null && (t = w.poll()) != null)
2824     return t;
2825 dl 1.91 }
2826     }
2827     return null;
2828 dl 1.1 }
2829    
2830     /**
2831 dl 1.6 * Removes all available unexecuted submitted and forked tasks
2832     * from scheduling queues and adds them to the given collection,
2833     * without altering their execution status. These may include
2834 jsr166 1.41 * artificially generated or wrapped tasks. This method is
2835     * designed to be invoked only when the pool is known to be
2836 dl 1.6 * quiescent. Invocations at other times may not remove all
2837     * tasks. A failure encountered while attempting to add elements
2838 jsr166 1.16 * to collection {@code c} may result in elements being in
2839 dl 1.6 * neither, either or both collections when the associated
2840     * exception is thrown. The behavior of this operation is
2841     * undefined if the specified collection is modified while the
2842     * operation is in progress.
2843 jsr166 1.17 *
2844 dl 1.6 * @param c the collection to transfer elements into
2845     * @return the number of elements transferred
2846     */
2847 dl 1.30 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2848 dl 1.91 int count = 0;
2849 dl 1.111 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2850     if ((ws = workQueues) != null) {
2851 dl 1.119 for (int i = 0; i < ws.length; ++i) {
2852 dl 1.111 if ((w = ws[i]) != null) {
2853     while ((t = w.poll()) != null) {
2854     c.add(t);
2855     ++count;
2856     }
2857     }
2858 dl 1.91 }
2859     }
2860 dl 1.57 return count;
2861     }
2862    
2863     /**
2864 dl 1.1 * Returns a string identifying this pool, as well as its state,
2865     * including indications of run state, parallelism level, and
2866     * worker and task counts.
2867     *
2868     * @return a string identifying this pool, as well as its state
2869     */
2870     public String toString() {
2871 dl 1.119 // Use a single pass through workQueues to collect counts
2872     long qt = 0L, qs = 0L; int rc = 0;
2873 dl 1.136 long st = stealCount;
2874 dl 1.119 long c = ctl;
2875     WorkQueue[] ws; WorkQueue w;
2876     if ((ws = workQueues) != null) {
2877     for (int i = 0; i < ws.length; ++i) {
2878     if ((w = ws[i]) != null) {
2879     int size = w.queueSize();
2880     if ((i & 1) == 0)
2881     qs += size;
2882     else {
2883     qt += size;
2884 dl 1.140 st += w.nsteals;
2885 dl 1.119 if (w.isApparentlyUnblocked())
2886     ++rc;
2887     }
2888     }
2889     }
2890     }
2891 dl 1.53 int pc = parallelism;
2892 dl 1.91 int tc = pc + (short)(c >>> TC_SHIFT);
2893 dl 1.111 int ac = pc + (int)(c >> AC_SHIFT);
2894     if (ac < 0) // ignore transient negative
2895     ac = 0;
2896 dl 1.91 String level;
2897     if ((c & STOP_BIT) != 0)
2898 jsr166 1.102 level = (tc == 0) ? "Terminated" : "Terminating";
2899 dl 1.91 else
2900 dl 1.140 level = plock < 0 ? "Shutting down" : "Running";
2901 dl 1.1 return super.toString() +
2902 dl 1.91 "[" + level +
2903 dl 1.53 ", parallelism = " + pc +
2904     ", size = " + tc +
2905     ", active = " + ac +
2906     ", running = " + rc +
2907 dl 1.1 ", steals = " + st +
2908     ", tasks = " + qt +
2909     ", submissions = " + qs +
2910     "]";
2911     }
2912    
2913     /**
2914 dl 1.135 * Possibly initiates an orderly shutdown in which previously
2915     * submitted tasks are executed, but no new tasks will be
2916     * accepted. Invocation has no effect on execution state if this
2917     * is the {@link #commonPool}, and no additional effect if
2918     * already shut down. Tasks that are in the process of being
2919     * submitted concurrently during the course of this method may or
2920     * may not be rejected.
2921 jsr166 1.17 *
2922 dl 1.1 * @throws SecurityException if a security manager exists and
2923     * the caller is not permitted to modify threads
2924     * because it does not hold {@link
2925 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
2926 dl 1.1 */
2927     public void shutdown() {
2928     checkPermission();
2929 dl 1.140 tryTerminate(false, true);
2930 dl 1.1 }
2931    
2932     /**
2933 dl 1.135 * Possibly attempts to cancel and/or stop all tasks, and reject
2934     * all subsequently submitted tasks. Invocation has no effect on
2935     * execution state if this is the {@link #commonPool}, and no
2936     * additional effect if already shut down. Otherwise, tasks that
2937     * are in the process of being submitted or executed concurrently
2938     * during the course of this method may or may not be
2939     * rejected. This method cancels both existing and unexecuted
2940     * tasks, in order to permit termination in the presence of task
2941     * dependencies. So the method always returns an empty list
2942     * (unlike the case for some other Executors).
2943 jsr166 1.17 *
2944 dl 1.1 * @return an empty list
2945     * @throws SecurityException if a security manager exists and
2946     * the caller is not permitted to modify threads
2947     * because it does not hold {@link
2948 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
2949 dl 1.1 */
2950     public List<Runnable> shutdownNow() {
2951     checkPermission();
2952 dl 1.140 tryTerminate(true, true);
2953 dl 1.1 return Collections.emptyList();
2954     }
2955    
2956     /**
2957 jsr166 1.16 * Returns {@code true} if all tasks have completed following shut down.
2958 dl 1.1 *
2959 jsr166 1.16 * @return {@code true} if all tasks have completed following shut down
2960 dl 1.1 */
2961     public boolean isTerminated() {
2962 dl 1.91 long c = ctl;
2963     return ((c & STOP_BIT) != 0L &&
2964     (short)(c >>> TC_SHIFT) == -parallelism);
2965 dl 1.1 }
2966    
2967     /**
2968 jsr166 1.16 * Returns {@code true} if the process of termination has
2969 dl 1.42 * commenced but not yet completed. This method may be useful for
2970     * debugging. A return of {@code true} reported a sufficient
2971     * period after shutdown may indicate that submitted tasks have
2972 dl 1.88 * ignored or suppressed interruption, or are waiting for IO,
2973     * causing this executor not to properly terminate. (See the
2974     * advisory notes for class {@link ForkJoinTask} stating that
2975     * tasks should not normally entail blocking operations. But if
2976     * they do, they must abort them on interrupt.)
2977 dl 1.1 *
2978 dl 1.42 * @return {@code true} if terminating but not yet terminated
2979 dl 1.1 */
2980     public boolean isTerminating() {
2981 dl 1.91 long c = ctl;
2982     return ((c & STOP_BIT) != 0L &&
2983     (short)(c >>> TC_SHIFT) != -parallelism);
2984 dl 1.1 }
2985    
2986     /**
2987 jsr166 1.16 * Returns {@code true} if this pool has been shut down.
2988 dl 1.1 *
2989 jsr166 1.16 * @return {@code true} if this pool has been shut down
2990 dl 1.1 */
2991     public boolean isShutdown() {
2992 dl 1.140 return plock < 0;
2993 dl 1.42 }
2994    
2995     /**
2996 dl 1.140 * Blocks until all tasks have completed execution after a
2997     * shutdown request, or the timeout occurs, or the current thread
2998     * is interrupted, whichever happens first. Note that the {@link
2999     * #commonPool()} never terminates until program shutdown so
3000     * this method will always time out.
3001 dl 1.1 *
3002     * @param timeout the maximum time to wait
3003     * @param unit the time unit of the timeout argument
3004 jsr166 1.16 * @return {@code true} if this executor terminated and
3005     * {@code false} if the timeout elapsed before termination
3006 dl 1.1 * @throws InterruptedException if interrupted while waiting
3007     */
3008     public boolean awaitTermination(long timeout, TimeUnit unit)
3009     throws InterruptedException {
3010 dl 1.91 long nanos = unit.toNanos(timeout);
3011 dl 1.136 if (isTerminated())
3012     return true;
3013     long startTime = System.nanoTime();
3014     boolean terminated = false;
3015 jsr166 1.138 synchronized (this) {
3016 dl 1.136 for (long waitTime = nanos, millis = 0L;;) {
3017     if (terminated = isTerminated() ||
3018     waitTime <= 0L ||
3019     (millis = unit.toMillis(waitTime)) <= 0L)
3020     break;
3021     wait(millis);
3022     waitTime = nanos - (System.nanoTime() - startTime);
3023 dl 1.91 }
3024 dl 1.57 }
3025 dl 1.136 return terminated;
3026 dl 1.1 }
3027    
3028     /**
3029     * Interface for extending managed parallelism for tasks running
3030 jsr166 1.35 * in {@link ForkJoinPool}s.
3031     *
3032 dl 1.61 * <p>A {@code ManagedBlocker} provides two methods. Method
3033     * {@code isReleasable} must return {@code true} if blocking is
3034     * not necessary. Method {@code block} blocks the current thread
3035     * if necessary (perhaps internally invoking {@code isReleasable}
3036 dl 1.93 * before actually blocking). These actions are performed by any
3037     * thread invoking {@link ForkJoinPool#managedBlock}. The
3038     * unusual methods in this API accommodate synchronizers that may,
3039     * but don't usually, block for long periods. Similarly, they
3040     * allow more efficient internal handling of cases in which
3041     * additional workers may be, but usually are not, needed to
3042     * ensure sufficient parallelism. Toward this end,
3043     * implementations of method {@code isReleasable} must be amenable
3044     * to repeated invocation.
3045 jsr166 1.17 *
3046 dl 1.1 * <p>For example, here is a ManagedBlocker based on a
3047     * ReentrantLock:
3048 jsr166 1.17 * <pre> {@code
3049     * class ManagedLocker implements ManagedBlocker {
3050     * final ReentrantLock lock;
3051     * boolean hasLock = false;
3052     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3053     * public boolean block() {
3054     * if (!hasLock)
3055     * lock.lock();
3056     * return true;
3057     * }
3058     * public boolean isReleasable() {
3059     * return hasLock || (hasLock = lock.tryLock());
3060 dl 1.1 * }
3061 jsr166 1.17 * }}</pre>
3062 dl 1.61 *
3063     * <p>Here is a class that possibly blocks waiting for an
3064     * item on a given queue:
3065     * <pre> {@code
3066     * class QueueTaker<E> implements ManagedBlocker {
3067     * final BlockingQueue<E> queue;
3068     * volatile E item = null;
3069     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3070     * public boolean block() throws InterruptedException {
3071     * if (item == null)
3072 dl 1.65 * item = queue.take();
3073 dl 1.61 * return true;
3074     * }
3075     * public boolean isReleasable() {
3076 dl 1.65 * return item != null || (item = queue.poll()) != null;
3077 dl 1.61 * }
3078     * public E getItem() { // call after pool.managedBlock completes
3079     * return item;
3080     * }
3081     * }}</pre>
3082 dl 1.1 */
3083     public static interface ManagedBlocker {
3084     /**
3085     * Possibly blocks the current thread, for example waiting for
3086     * a lock or condition.
3087 jsr166 1.17 *
3088 jsr166 1.28 * @return {@code true} if no additional blocking is necessary
3089     * (i.e., if isReleasable would return true)
3090 dl 1.1 * @throws InterruptedException if interrupted while waiting
3091 jsr166 1.17 * (the method is not required to do so, but is allowed to)
3092 dl 1.1 */
3093     boolean block() throws InterruptedException;
3094    
3095     /**
3096 jsr166 1.28 * Returns {@code true} if blocking is unnecessary.
3097 dl 1.1 */
3098     boolean isReleasable();
3099     }
3100    
3101     /**
3102     * Blocks in accord with the given blocker. If the current thread
3103 jsr166 1.38 * is a {@link ForkJoinWorkerThread}, this method possibly
3104     * arranges for a spare thread to be activated if necessary to
3105 dl 1.57 * ensure sufficient parallelism while the current thread is blocked.
3106 jsr166 1.38 *
3107     * <p>If the caller is not a {@link ForkJoinTask}, this method is
3108     * behaviorally equivalent to
3109 jsr166 1.115 * <pre> {@code
3110 jsr166 1.17 * while (!blocker.isReleasable())
3111     * if (blocker.block())
3112     * return;
3113     * }</pre>
3114 jsr166 1.38 *
3115     * If the caller is a {@code ForkJoinTask}, then the pool may
3116     * first be expanded to ensure parallelism, and later adjusted.
3117 dl 1.1 *
3118     * @param blocker the blocker
3119 jsr166 1.16 * @throws InterruptedException if blocker.block did so
3120 dl 1.1 */
3121 dl 1.57 public static void managedBlock(ManagedBlocker blocker)
3122 dl 1.1 throws InterruptedException {
3123     Thread t = Thread.currentThread();
3124 dl 1.140 if (t instanceof ForkJoinWorkerThread) {
3125     ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3126     while (!blocker.isReleasable()) { // variant of helpSignal
3127     WorkQueue[] ws; WorkQueue q; int m, n;
3128     if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) {
3129     for (int i = 0; i <= m; ++i) {
3130     if (blocker.isReleasable())
3131     return;
3132     if ((q = ws[i]) != null && (n = q.queueSize()) > 0) {
3133     p.signalWork(q, n);
3134     if ((int)(p.ctl >> AC_SHIFT) >= 0)
3135     break;
3136     }
3137     }
3138     }
3139     if (p.tryCompensate()) {
3140     try {
3141     do {} while (!blocker.isReleasable() &&
3142     !blocker.block());
3143     } finally {
3144 dl 1.111 p.incrementActiveCount();
3145 dl 1.140 }
3146     break;
3147 dl 1.111 }
3148     }
3149 dl 1.57 }
3150 dl 1.140 else {
3151     do {} while (!blocker.isReleasable() &&
3152     !blocker.block());
3153     }
3154 dl 1.1 }
3155    
3156 dl 1.33 // AbstractExecutorService overrides. These rely on undocumented
3157     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3158     // implement RunnableFuture.
3159 dl 1.2
3160     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3161 dl 1.123 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3162 dl 1.2 }
3163    
3164     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3165 dl 1.123 return new ForkJoinTask.AdaptedCallable<T>(callable);
3166 dl 1.2 }
3167    
3168 jsr166 1.27 // Unsafe mechanics
3169 dl 1.111 private static final sun.misc.Unsafe U;
3170     private static final long CTL;
3171     private static final long PARKBLOCKER;
3172 dl 1.123 private static final int ABASE;
3173     private static final int ASHIFT;
3174 dl 1.136 private static final long STEALCOUNT;
3175 dl 1.140 private static final long PLOCK;
3176     private static final long INDEXSEED;
3177     private static final long QLOCK;
3178 dl 1.91
3179     static {
3180 dl 1.140 // Establish common pool parameters
3181     // TBD: limit or report ignored exceptions?
3182    
3183     int par = 0;
3184     ForkJoinWorkerThreadFactory fac = null;
3185     Thread.UncaughtExceptionHandler handler = null;
3186     try {
3187     String pp = System.getProperty(propPrefix + "parallelism");
3188     String hp = System.getProperty(propPrefix + "exceptionHandler");
3189     String fp = System.getProperty(propPrefix + "threadFactory");
3190     if (fp != null)
3191     fac = ((ForkJoinWorkerThreadFactory)ClassLoader.
3192     getSystemClassLoader().loadClass(fp).newInstance());
3193     if (hp != null)
3194     handler = ((Thread.UncaughtExceptionHandler)ClassLoader.
3195     getSystemClassLoader().loadClass(hp).newInstance());
3196     if (pp != null)
3197     par = Integer.parseInt(pp);
3198 jsr166 1.141 } catch (Exception ignore) {
3199 dl 1.140 }
3200    
3201     int s; // initialize field offsets for CAS etc
3202 jsr166 1.27 try {
3203 dl 1.111 U = getUnsafe();
3204 jsr166 1.103 Class<?> k = ForkJoinPool.class;
3205 dl 1.111 CTL = U.objectFieldOffset
3206 dl 1.91 (k.getDeclaredField("ctl"));
3207 dl 1.136 STEALCOUNT = U.objectFieldOffset
3208     (k.getDeclaredField("stealCount"));
3209 dl 1.140 PLOCK = U.objectFieldOffset
3210     (k.getDeclaredField("plock"));
3211     INDEXSEED = U.objectFieldOffset
3212     (k.getDeclaredField("indexSeed"));
3213 dl 1.119 Class<?> tk = Thread.class;
3214 dl 1.111 PARKBLOCKER = U.objectFieldOffset
3215     (tk.getDeclaredField("parkBlocker"));
3216 dl 1.140 Class<?> wk = WorkQueue.class;
3217     QLOCK = U.objectFieldOffset
3218     (wk.getDeclaredField("qlock"));
3219     Class<?> ak = ForkJoinTask[].class;
3220 dl 1.123 ABASE = U.arrayBaseOffset(ak);
3221     s = U.arrayIndexScale(ak);
3222 dl 1.136 ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3223 dl 1.91 } catch (Exception e) {
3224     throw new Error(e);
3225     }
3226 dl 1.123 if ((s & (s-1)) != 0)
3227     throw new Error("data type scale not a power of two");
3228 dl 1.140
3229     /*
3230     * For extra caution, computations to set up pool state are
3231     * here; the constructor just assigns these values to fields.
3232     */
3233     ForkJoinWorkerThreadFactory defaultFac =
3234     defaultForkJoinWorkerThreadFactory =
3235     new DefaultForkJoinWorkerThreadFactory();
3236     if (fac == null)
3237     fac = defaultFac;
3238     if (par <= 0)
3239     par = Runtime.getRuntime().availableProcessors();
3240     if (par > MAX_CAP)
3241     par = MAX_CAP;
3242     long np = (long)(-par); // precompute initial ctl value
3243     long ct = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
3244    
3245     commonPoolParallelism = par;
3246     commonPool = new ForkJoinPool(par, ct, fac, handler);
3247     modifyThreadPermission = new RuntimePermission("modifyThread");
3248     submitters = new ThreadLocal<Submitter>();
3249 jsr166 1.27 }
3250    
3251     /**
3252     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
3253     * Replace with a simple call to Unsafe.getUnsafe when integrating
3254     * into a jdk.
3255     *
3256     * @return a sun.misc.Unsafe
3257     */
3258     private static sun.misc.Unsafe getUnsafe() {
3259     try {
3260     return sun.misc.Unsafe.getUnsafe();
3261     } catch (SecurityException se) {
3262     try {
3263     return java.security.AccessController.doPrivileged
3264     (new java.security
3265     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
3266     public sun.misc.Unsafe run() throws Exception {
3267     java.lang.reflect.Field f = sun.misc
3268     .Unsafe.class.getDeclaredField("theUnsafe");
3269     f.setAccessible(true);
3270     return (sun.misc.Unsafe) f.get(null);
3271     }});
3272     } catch (java.security.PrivilegedActionException e) {
3273     throw new RuntimeException("Could not initialize intrinsics",
3274     e.getCause());
3275     }
3276     }
3277     }
3278 dl 1.112
3279 dl 1.1 }