ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
Revision: 1.53
Committed: Mon Apr 5 15:52:26 2010 UTC (14 years, 1 month ago) by dl
Branch: MAIN
Changes since 1.52: +961 -989 lines
Log Message:
Major internal restructuring

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package jsr166y;
8 jsr166 1.22
9 dl 1.1 import java.util.concurrent.*;
10 jsr166 1.22
11     import java.util.ArrayList;
12     import java.util.Arrays;
13     import java.util.Collection;
14     import java.util.Collections;
15     import java.util.List;
16     import java.util.concurrent.locks.LockSupport;
17     import java.util.concurrent.locks.ReentrantLock;
18     import java.util.concurrent.atomic.AtomicInteger;
19 dl 1.53 import java.util.concurrent.CountDownLatch;
20 dl 1.1
21     /**
22 jsr166 1.29 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
23 jsr166 1.39 * A {@code ForkJoinPool} provides the entry point for submissions
24     * from non-{@code ForkJoinTask}s, as well as management and
25 jsr166 1.48 * monitoring operations.
26 dl 1.1 *
27 dl 1.42 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
28     * ExecutorService} mainly by virtue of employing
29     * <em>work-stealing</em>: all threads in the pool attempt to find and
30     * execute subtasks created by other active tasks (eventually blocking
31     * waiting for work if none exist). This enables efficient processing
32     * when most tasks spawn other subtasks (as do most {@code
33     * ForkJoinTask}s). A {@code ForkJoinPool} may also be used for mixed
34     * execution of some plain {@code Runnable}- or {@code Callable}-
35     * based activities along with {@code ForkJoinTask}s. When setting
36     * {@linkplain #setAsyncMode async mode}, a {@code ForkJoinPool} may
37     * also be appropriate for use with fine-grained tasks of any form
38     * that are never joined. Otherwise, other {@code ExecutorService}
39     * implementations are typically more appropriate choices.
40 dl 1.1 *
41 dl 1.42 * <p>A {@code ForkJoinPool} is constructed with a given target
42     * parallelism level; by default, equal to the number of available
43     * processors. Unless configured otherwise via {@link
44     * #setMaintainsParallelism}, the pool attempts to maintain this
45     * number of active (or available) threads by dynamically adding,
46     * suspending, or resuming internal worker threads, even if some tasks
47 dl 1.44 * are stalled waiting to join others. However, no such adjustments
48     * are performed in the face of blocked IO or other unmanaged
49 jsr166 1.39 * synchronization. The nested {@link ManagedBlocker} interface
50     * enables extension of the kinds of synchronization accommodated.
51     * The target parallelism level may also be changed dynamically
52 dl 1.42 * ({@link #setParallelism}). The total number of threads may be
53     * limited using method {@link #setMaximumPoolSize}, in which case it
54     * may become possible for the activities of a pool to stall due to
55 dl 1.53 * the lack of available threads to process new tasks. When the pool
56     * is executing tasks, these and other configuration setting methods
57     * may only gradually affect actual pool sizes. It is normally best
58     * practice to invoke these methods only when the pool is known to be
59     * quiescent.
60 dl 1.1 *
61     * <p>In addition to execution and lifecycle control methods, this
62     * class provides status check methods (for example
63 jsr166 1.29 * {@link #getStealCount}) that are intended to aid in developing,
64 dl 1.1 * tuning, and monitoring fork/join applications. Also, method
65 jsr166 1.29 * {@link #toString} returns indications of pool state in a
66 dl 1.2 * convenient form for informal monitoring.
67 dl 1.1 *
68 dl 1.42 * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
69     * used for all parallel task execution in a program or subsystem.
70     * Otherwise, use would not usually outweigh the construction and
71     * bookkeeping overhead of creating a large set of threads. For
72 jsr166 1.43 * example, a common pool could be used for the {@code SortTasks}
73 dl 1.42 * illustrated in {@link RecursiveAction}. Because {@code
74     * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
75 jsr166 1.43 * daemon} mode, there is typically no need to explicitly {@link
76 dl 1.42 * #shutdown} such a pool upon program exit.
77     *
78     * <pre>
79     * static final ForkJoinPool mainPool = new ForkJoinPool();
80     * ...
81     * public void sort(long[] array) {
82     * mainPool.invoke(new SortTask(array, 0, array.length));
83     * }
84     * </pre>
85     *
86 dl 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
87 dl 1.2 * maximum number of running threads to 32767. Attempts to create
88 jsr166 1.48 * pools with greater than the maximum number result in
89 jsr166 1.39 * {@code IllegalArgumentException}.
90 jsr166 1.16 *
91 jsr166 1.48 * <p>This implementation rejects submitted tasks (that is, by throwing
92     * {@link RejectedExecutionException}) only when the pool is shut down.
93     *
94 jsr166 1.16 * @since 1.7
95     * @author Doug Lea
96 dl 1.1 */
97 dl 1.2 public class ForkJoinPool extends AbstractExecutorService {
98 dl 1.1
99     /*
100 dl 1.53 * Implementation Overview
101     *
102     * This class provides the central bookkeeping and control for a
103     * set of worker threads: Submissions from non-FJ threads enter
104     * into a submission queue. Workers take these tasks and typically
105     * split them into subtasks that may be stolen by other workers.
106     * The main work-stealing mechanics implemented in class
107     * ForkJoinWorkerThread give first priority to processing tasks
108     * from their own queues (LIFO or FIFO, depending on mode), then
109     * to randomized FIFO steals of tasks in other worker queues, and
110     * lastly to new submissions. These mechanics do not consider
111     * affinities, loads, cache localities, etc, so rarely provide the
112     * best possible performance on a given machine, but portably
113     * provide good throughput by averaging over these factors.
114     * (Further, even if we did try to use such information, we do not
115     * usually have a basis for exploiting it. For example, some sets
116     * of tasks profit from cache affinities, but others are harmed by
117     * cache pollution effects.)
118     *
119     * The main throughput advantages of work-stealing stem from
120     * decentralized control -- workers mostly steal tasks from each
121     * other. We do not want to negate this by creating bottlenecks
122     * implementing the management responsibilities of this class. So
123     * we use a collection of techniques that avoid, reduce, or cope
124     * well with contention. These entail several instances of
125     * bit-packing into CASable fields to maintain only the minimally
126     * required atomicity. To enable such packing, we restrict maximum
127     * parallelism to (1<<15)-1 (enabling twice this to fit into a 16
128     * bit field), which is far in excess of normal operating range.
129     * Even though updates to some of these bookkeeping fields do
130     * sometimes contend with each other, they don't normally
131     * cache-contend with updates to others enough to warrant memory
132     * padding or isolation. So they are all held as fields of
133     * ForkJoinPool objects. The main capabilities are as follows:
134     *
135     * 1. Creating and removing workers. Workers are recorded in the
136     * "workers" array. This is an array as opposed to some other data
137     * structure to support index-based random steals by workers.
138     * Updates to the array recording new workers and unrecording
139     * terminated ones are protected from each other by a lock
140     * (workerLock) but the array is otherwise concurrently readable,
141     * and accessed directly by workers. To simplify index-based
142     * operations, the array size is always a power of two, and all
143     * readers must tolerate null slots. Currently, all but the first
144     * worker thread creation is on-demand, triggered by task
145     * submissions, replacement of terminated workers, and/or
146     * compensation for blocked workers. However, all other support
147     * code is set up to work with other policies.
148     *
149     * 2. Bookkeeping for dynamically adding and removing workers. We
150     * maintain a given level of parallelism (or, if
151     * maintainsParallelism is false, at least avoid starvation). When
152     * some workers are known to be blocked (on joins or via
153     * ManagedBlocker), we may create or resume others to take their
154     * place until they unblock (see below). Implementing this
155     * requires counts of the number of "running" threads (i.e., those
156     * that are neither blocked nor artifically suspended) as well as
157     * the total number. These two values are packed into one field,
158     * "workerCounts" because we need accurate snapshots when deciding
159     * to create, resume or suspend. To support these decisions,
160     * updates must be prospective (not retrospective). For example,
161     * the running count is decremented before blocking by a thread
162     * about to block, but incremented by the thread about to unblock
163     * it. (In a few cases, these prospective updates may need to be
164     * rolled back, for example when deciding to create a new worker
165     * but the thread factory fails or returns null. In these cases,
166     * we are no worse off wrt other decisions than we would be
167     * otherwise.) Updates to the workerCounts field sometimes
168     * transiently encounter a fair amount of contention when join
169     * dependencies are such that many threads block or unblock at
170     * about the same time. We alleviate this by sometimes bundling
171     * updates (for example blocking one thread on join and resuming a
172     * spare cancel each other out), and in most other cases
173     * performing an alternative action (like releasing waiters and
174     * finding spares; see below) as a more productive form of
175     * backoff.
176     *
177     * 3. Maintaining global run state. The run state of the pool
178     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
179     * those in other Executor implementations, as well as a count of
180     * "active" workers -- those that are, or soon will be, or
181     * recently were executing tasks. The runLevel and active count
182     * are packed together in order to correctly trigger shutdown and
183     * termination. Without care, active counts can be subject to very
184     * high contention. We substantially reduce this contention by
185     * relaxing update rules. A worker must claim active status
186     * prospectively, by activating if it sees that a submitted or
187     * stealable task exists (it may find after activating that the
188     * task no longer exists). It stays active while processing this
189     * task (if it exists) and any other local subtasks it produces,
190     * until it cannot find any other tasks. It then tries
191     * inactivating (see method preStep), but upon update contention
192     * instead scans for more tasks, later retrying inactivation if it
193     * doesn't find any.
194     *
195     * 4. Managing idle workers waiting for tasks. We cannot let
196     * workers spin indefinitely scanning for tasks when none are
197     * available. On the other hand, we must quickly prod them into
198     * action when new tasks are submitted or generated. We
199     * park/unpark these idle workers using an event-count scheme.
200     * Field eventCount is incremented upon events that may enable
201     * workers that previously could not find a task to now find one:
202     * Submission of a new task to the pool, or another worker pushing
203     * a task onto a previously empty queue. (We also use this
204     * mechanism for termination and reconfiguration actions that
205     * require wakeups of idle workers). Each worker maintains its
206     * last known event count, and blocks when a scan for work did not
207     * find a task AND its lastEventCount matches the current
208     * eventCount. Waiting idle workers are recorded in a variant of
209     * Treiber stack headed by field eventWaiters which, when nonzero,
210     * encodes the thread index and count awaited for by the worker
211     * thread most recently calling eventSync. This thread in turn has
212     * a record (field nextEventWaiter) for the next waiting worker.
213     * In addition to allowing simpler decisions about need for
214     * wakeup, the event count bits in eventWaiters serve the role of
215     * tags to avoid ABA errors in Treiber stacks. To reduce delays
216     * in task diffusion, workers not otherwise occupied may invoke
217     * method releaseWaiters, that removes and signals (unparks)
218     * workers not waiting on current count. To minimize task
219     * production stalls associate with signalling, any worker pushing
220     * a task on an empty queue invokes the weaker method signalWork,
221     * that only releases idle workers until it detects interference
222     * by other threads trying to release, and lets them take
223     * over. The net effect is a tree-like diffusion of signals, where
224     * released threads and possibly others) help with unparks. To
225     * further reduce contention effects a bit, failed CASes to
226     * increment field eventCount are tolerated without retries.
227     * Conceptually they are merged into the same event, which is OK
228     * when their only purpose is to enable workers to scan for work.
229     *
230     * 5. Managing suspension of extra workers. When a worker is about
231     * to block waiting for a join (or via ManagedBlockers), we may
232     * create a new thread to maintain parallelism level, or at least
233     * avoid starvation (see below). Usually, extra threads are needed
234     * for only very short periods, yet join dependencies are such
235     * that we sometimes need them in bursts. Rather than create new
236     * threads each time this happens, we suspend no-longer-needed
237     * extra ones as "spares". For most purposes, we don't distinguish
238     * "extra" spare threads from normal "core" threads: On each call
239     * to preStep (the only point at which we can do this) a worker
240     * checks to see if there are now too many running workers, and if
241     * so, suspends itself. Methods preJoin and doBlock look for
242     * suspended threads to resume before considering creating a new
243     * replacement. We don't need a special data structure to maintain
244     * spares; simply scanning the workers array looking for
245     * worker.isSuspended() is fine because the calling thread is
246     * otherwise not doing anything useful anyway; we are at least as
247     * happy if after locating a spare, the caller doesn't actually
248     * block because the join is ready before we try to adjust and
249     * compensate. Note that this is intrinsically racy. One thread
250     * may become a spare at about the same time as another is
251     * needlessly being created. We counteract this and related slop
252     * in part by requiring resumed spares to immediately recheck (in
253     * preStep) to see whether they they should re-suspend. The only
254     * effective difference between "extra" and "core" threads is that
255     * we allow the "extra" ones to time out and die if they are not
256     * resumed within a keep-alive interval of a few seconds. This is
257     * implemented mainly within ForkJoinWorkerThread, but requires
258     * some coordination (isTrimmed() -- meaning killed while
259     * suspended) to correctly maintain pool counts.
260     *
261     * 6. Deciding when to create new workers. The main dynamic
262     * control in this class is deciding when to create extra threads,
263     * in methods preJoin and doBlock. We always need to create one
264     * when the number of running threads becomes zero. But because
265     * blocked joins are typically dependent, we don't necessarily
266     * need or want one-to-one replacement. Using a one-to-one
267     * compensation rule often leads to enough useless overhead
268     * creating, suspending, resuming, and/or killing threads to
269     * signficantly degrade throughput. We use a rule reflecting the
270     * idea that, the more spare threads you already have, the more
271     * evidence you need to create another one; where "evidence" is
272     * expressed as the current deficit -- target minus running
273     * threads. To reduce flickering and drift around target values,
274     * the relation is quadratic: adding a spare if (dc*dc)>=(sc*pc)
275     * (where dc is deficit, sc is number of spare threads and pc is
276     * target parallelism.) This effectively reduces churn at the
277     * price of systematically undershooting target parallelism when
278     * many threads are blocked. However, biasing toward undeshooting
279     * partially compensates for the above mechanics to suspend extra
280     * threads, that normally lead to overshoot because we can only
281     * suspend workers in-between top-level actions. It also better
282     * copes with the fact that some of the methods in this class tend
283     * to never become compiled (but are interpreted), so some
284     * components of the entire set of controls might execute many
285     * times faster than others. And similarly for cases where the
286     * apparent lack of work is just due to GC stalls and other
287     * transient system activity.
288     *
289     * 7. Maintaining other configuration parameters and monitoring
290     * statistics. Updates to fields controlling parallelism level,
291     * max size, etc can only meaningfully take effect for individual
292     * threads upon their next top-level actions; i.e., between
293     * stealing/running tasks/submission, which are separated by calls
294     * to preStep. Memory ordering for these (assumed infrequent)
295     * reconfiguration calls is ensured by using reads and writes to
296     * volatile field workerCounts (that must be read in preStep anyway)
297     * as "fences" -- user-level reads are preceded by reads of
298     * workCounts, and writes are followed by no-op CAS to
299     * workerCounts. The values reported by other management and
300     * monitoring methods are either computed on demand, or are kept
301     * in fields that are only updated when threads are otherwise
302     * idle.
303     *
304     * Beware that there is a lot of representation-level coupling
305     * among classes ForkJoinPool, ForkJoinWorkerThread, and
306     * ForkJoinTask. For example, direct access to "workers" array by
307     * workers, and direct access to ForkJoinTask.status by both
308     * ForkJoinPool and ForkJoinWorkerThread. There is little point
309     * trying to reduce this, since any associated future changes in
310     * representations will need to be accompanied by algorithmic
311     * changes anyway.
312     *
313     * Style notes: There are lots of inline assignments (of form
314     * "while ((local = field) != 0)") which are usually the simplest
315     * way to ensure read orderings. Also several occurrences of the
316     * unusual "do {} while(!cas...)" which is the simplest way to
317     * force an update of a CAS'ed variable. There are also a few
318     * other coding oddities that help some methods perform reasonably
319     * even when interpreted (not compiled).
320     *
321     * The order of declarations in this file is: (1) statics (2)
322     * fields (along with constants used when unpacking some of them)
323     * (3) internal control methods (4) callbacks and other support
324     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
325     * methods (plus a few little helpers).
326 dl 1.1 */
327    
328     /**
329 jsr166 1.35 * Factory for creating new {@link ForkJoinWorkerThread}s.
330     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
331     * for {@code ForkJoinWorkerThread} subclasses that extend base
332     * functionality or initialize threads with different contexts.
333 dl 1.1 */
334     public static interface ForkJoinWorkerThreadFactory {
335     /**
336     * Returns a new worker thread operating in the given pool.
337     *
338     * @param pool the pool this thread works in
339 jsr166 1.48 * @throws NullPointerException if the pool is null
340 dl 1.1 */
341     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
342     }
343    
344     /**
345 jsr166 1.17 * Default ForkJoinWorkerThreadFactory implementation; creates a
346 dl 1.1 * new ForkJoinWorkerThread.
347     */
348 dl 1.2 static class DefaultForkJoinWorkerThreadFactory
349 dl 1.1 implements ForkJoinWorkerThreadFactory {
350     public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
351 dl 1.53 return new ForkJoinWorkerThread(pool);
352 dl 1.1 }
353     }
354    
355     /**
356 dl 1.2 * Creates a new ForkJoinWorkerThread. This factory is used unless
357     * overridden in ForkJoinPool constructors.
358 dl 1.1 */
359 dl 1.2 public static final ForkJoinWorkerThreadFactory
360 dl 1.1 defaultForkJoinWorkerThreadFactory =
361     new DefaultForkJoinWorkerThreadFactory();
362    
363     /**
364     * Permission required for callers of methods that may start or
365     * kill threads.
366     */
367     private static final RuntimePermission modifyThreadPermission =
368     new RuntimePermission("modifyThread");
369    
370     /**
371     * If there is a security manager, makes sure caller has
372     * permission to modify threads.
373     */
374     private static void checkPermission() {
375     SecurityManager security = System.getSecurityManager();
376     if (security != null)
377     security.checkPermission(modifyThreadPermission);
378     }
379    
380     /**
381     * Generator for assigning sequence numbers as pool names.
382     */
383     private static final AtomicInteger poolNumberGenerator =
384     new AtomicInteger();
385    
386     /**
387 dl 1.53 * Absolute bound for parallelism level. Twice this number must
388     * fit into a 16bit field to enable word-packing for some counts.
389     */
390     private static final int MAX_THREADS = 0x7fff;
391    
392     /**
393     * Array holding all worker threads in the pool. Array size must
394     * be a power of two. Updates and replacements are protected by
395     * workerLock, but the array is always kept in a consistent enough
396     * state to be randomly accessed without locking by workers
397     * performing work-stealing, as well as other traversal-based
398     * methods in this class. All readers must tolerate that some
399     * array slots may be null.
400 dl 1.1 */
401     volatile ForkJoinWorkerThread[] workers;
402    
403     /**
404 dl 1.53 * Queue for external submissions.
405 dl 1.1 */
406 dl 1.53 private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
407 dl 1.1
408     /**
409 dl 1.53 * Lock protecting updates to workers array.
410 dl 1.1 */
411 dl 1.53 private final ReentrantLock workerLock;
412 dl 1.1
413     /**
414 dl 1.53 * Latch released upon termination.
415 dl 1.1 */
416 dl 1.53 private final CountDownLatch terminationLatch;
417 dl 1.1
418     /**
419     * Creation factory for worker threads.
420     */
421     private final ForkJoinWorkerThreadFactory factory;
422    
423     /**
424 dl 1.53 * Sum of per-thread steal counts, updated only when threads are
425     * idle or terminating.
426 dl 1.1 */
427 dl 1.53 private volatile long stealCount;
428 dl 1.1
429     /**
430 dl 1.53 * Encoded record of top of treiber stack of threads waiting for
431     * events. The top 32 bits contain the count being waited for. The
432     * bottom word contains one plus the pool index of waiting worker
433     * thread.
434 dl 1.1 */
435 dl 1.53 private volatile long eventWaiters;
436    
437     private static final int EVENT_COUNT_SHIFT = 32;
438     private static final long WAITER_INDEX_MASK = (1L << EVENT_COUNT_SHIFT)-1L;
439 dl 1.1
440     /**
441 dl 1.53 * A counter for events that may wake up worker threads:
442     * - Submission of a new task to the pool
443     * - A worker pushing a task on an empty queue
444     * - termination and reconfiguration
445 dl 1.1 */
446 dl 1.53 private volatile int eventCount;
447    
448     /**
449     * Lifecycle control. The low word contains the number of workers
450     * that are (probably) executing tasks. This value is atomically
451     * incremented before a worker gets a task to run, and decremented
452     * when worker has no tasks and cannot find any. Bits 16-18
453     * contain runLevel value. When all are zero, the pool is
454     * running. Level transitions are monotonic (running -> shutdown
455     * -> terminating -> terminated) so each transition adds a bit.
456     * These are bundled together to ensure consistent read for
457     * termination checks (i.e., that runLevel is at least SHUTDOWN
458     * and active threads is zero).
459     */
460     private volatile int runState;
461    
462     // Note: The order among run level values matters.
463     private static final int RUNLEVEL_SHIFT = 16;
464     private static final int SHUTDOWN = 1 << RUNLEVEL_SHIFT;
465     private static final int TERMINATING = 1 << (RUNLEVEL_SHIFT + 1);
466     private static final int TERMINATED = 1 << (RUNLEVEL_SHIFT + 2);
467     private static final int ACTIVE_COUNT_MASK = (1 << RUNLEVEL_SHIFT) - 1;
468     private static final int ONE_ACTIVE = 1; // active update delta
469 dl 1.1
470     /**
471 dl 1.53 * Holds number of total (i.e., created and not yet terminated)
472     * and running (i.e., not blocked on joins or other managed sync)
473     * threads, packed together to ensure consistent snapshot when
474     * making decisions about creating and suspending spare
475     * threads. Updated only by CAS. Note that adding a new worker
476     * requires incrementing both counts, since workers start off in
477     * running state. This field is also used for memory-fencing
478     * configuration parameters.
479     */
480     private volatile int workerCounts;
481    
482     private static final int TOTAL_COUNT_SHIFT = 16;
483     private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
484     private static final int ONE_RUNNING = 1;
485     private static final int ONE_TOTAL = 1 << TOTAL_COUNT_SHIFT;
486    
487     /*
488     * Fields parallelism. maxPoolSize, locallyFifo,
489     * maintainsParallelism, and ueh are non-volatile, but external
490     * reads/writes use workerCount fences to ensure visability.
491 dl 1.1 */
492    
493     /**
494 dl 1.53 * The target parallelism level.
495 dl 1.1 */
496 dl 1.53 private int parallelism;
497 dl 1.1
498     /**
499 dl 1.53 * The maximum allowed pool size.
500 dl 1.1 */
501 dl 1.53 private int maxPoolSize;
502 dl 1.1
503     /**
504 dl 1.53 * True if use local fifo, not default lifo, for local polling
505     * Replicated by ForkJoinWorkerThreads
506 dl 1.1 */
507 dl 1.53 private boolean locallyFifo;
508 dl 1.1
509     /**
510 dl 1.53 * Controls whether to add spares to maintain parallelism
511 dl 1.1 */
512 dl 1.53 private boolean maintainsParallelism;
513 dl 1.1
514     /**
515 dl 1.53 * The uncaught exception handler used when any worker
516     * abruptly terminates
517 dl 1.6 */
518 dl 1.53 private Thread.UncaughtExceptionHandler ueh;
519 dl 1.6
520     /**
521 dl 1.53 * Pool number, just for assigning useful names to worker threads
522 dl 1.1 */
523 dl 1.53 private final int poolNumber;
524 dl 1.1
525 dl 1.53 // utilities for updating fields
526 dl 1.1
527     /**
528 dl 1.53 * Adds delta to running count. Used mainly by ForkJoinTask.
529 jsr166 1.17 *
530 dl 1.1 * @param delta the number to add
531     */
532     final void updateRunningCount(int delta) {
533 dl 1.53 int wc;
534     do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
535     wc = workerCounts,
536     wc + delta));
537 dl 1.1 }
538    
539     /**
540 dl 1.53 * Write fence for user modifications of pool parameters
541     * (parallelism. etc). Note that it doesn't matter if CAS fails.
542 dl 1.1 */
543 dl 1.53 private void workerCountWriteFence() {
544     int wc;
545     UNSAFE.compareAndSwapInt(this, workerCountsOffset,
546     wc = workerCounts, wc);
547 dl 1.1 }
548    
549     /**
550 dl 1.53 * Read fence for external reads of pool parameters
551     * (parallelism. maxPoolSize, etc).
552     */
553     private void workerCountReadFence() {
554     int ignore = workerCounts;
555     }
556 dl 1.1
557     /**
558 jsr166 1.17 * Tries incrementing active count; fails on contention.
559 dl 1.53 * Called by workers before executing tasks.
560 jsr166 1.17 *
561 jsr166 1.16 * @return true on success
562 dl 1.1 */
563 dl 1.4 final boolean tryIncrementActiveCount() {
564 dl 1.53 int c;
565     return UNSAFE.compareAndSwapInt(this, runStateOffset,
566     c = runState, c + ONE_ACTIVE);
567 dl 1.1 }
568    
569     /**
570 jsr166 1.16 * Tries decrementing active count; fails on contention.
571 dl 1.53 * Called when workers cannot find tasks to run.
572     */
573     final boolean tryDecrementActiveCount() {
574     int c;
575     return UNSAFE.compareAndSwapInt(this, runStateOffset,
576     c = runState, c - ONE_ACTIVE);
577     }
578    
579     /**
580     * Advances to at least the given level. Returns true if not
581     * already in at least the given level.
582     */
583     private boolean advanceRunLevel(int level) {
584     for (;;) {
585     int s = runState;
586     if ((s & level) != 0)
587     return false;
588     if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
589     return true;
590     }
591     }
592    
593     // workers array maintenance
594    
595     /**
596     * Records and returns a workers array index for new worker.
597     */
598     private int recordWorker(ForkJoinWorkerThread w) {
599     // Try using slot totalCount-1. If not available, scan and/or resize
600     int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
601     final ReentrantLock lock = this.workerLock;
602     lock.lock();
603     try {
604     ForkJoinWorkerThread[] ws = workers;
605     int len = ws.length;
606     if (k < 0 || k >= len || ws[k] != null) {
607     for (k = 0; k < len && ws[k] != null; ++k)
608     ;
609     if (k == len)
610     ws = Arrays.copyOf(ws, len << 1);
611     }
612     ws[k] = w;
613     workers = ws; // volatile array write ensures slot visibility
614     } finally {
615     lock.unlock();
616     }
617     return k;
618     }
619    
620     /**
621     * Nulls out record of worker in workers array
622     */
623     private void forgetWorker(ForkJoinWorkerThread w) {
624     int idx = w.poolIndex;
625     // Locking helps method recordWorker avoid unecessary expansion
626     final ReentrantLock lock = this.workerLock;
627     lock.lock();
628     try {
629     ForkJoinWorkerThread[] ws = workers;
630     if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
631     ws[idx] = null;
632     } finally {
633     lock.unlock();
634     }
635     }
636    
637     // adding and removing workers
638    
639     /**
640     * Tries to create and add new worker. Assumes that worker counts
641     * are already updated to accommodate the worker, so adjusts on
642     * failure.
643     *
644     * @return new worker or null if creation failed
645     */
646     private ForkJoinWorkerThread addWorker() {
647     ForkJoinWorkerThread w = null;
648     try {
649     w = factory.newThread(this);
650     } finally { // Adjust on either null or exceptional factory return
651     if (w == null) {
652     onWorkerCreationFailure();
653     return null;
654     }
655     }
656     w.start(recordWorker(w), locallyFifo, ueh);
657     return w;
658     }
659    
660     /**
661     * Adjusts counts upon failure to create worker
662     */
663     private void onWorkerCreationFailure() {
664     int c;
665     do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
666     c = workerCounts,
667     c - (ONE_RUNNING|ONE_TOTAL)));
668     tryTerminate(false); // in case of failure during shutdown
669     }
670    
671     /**
672     * Create enough total workers to establish target parallelism,
673     * giving up if terminating or addWorker fails
674     */
675     private void ensureEnoughTotalWorkers() {
676     int wc;
677     while (runState < TERMINATING &&
678     ((wc = workerCounts) >>> TOTAL_COUNT_SHIFT) < parallelism) {
679     if ((UNSAFE.compareAndSwapInt(this, workerCountsOffset,
680     wc, wc + (ONE_RUNNING|ONE_TOTAL)) &&
681     addWorker() == null))
682     break;
683     }
684     }
685    
686     /**
687     * Final callback from terminating worker. Removes record of
688     * worker from array, and adjusts counts. If pool is shutting
689     * down, tries to complete terminatation, else possibly replaces
690     * the worker.
691     *
692     * @param w the worker
693     */
694     final void workerTerminated(ForkJoinWorkerThread w) {
695     if (w.active) { // force inactive
696     w.active = false;
697     do {} while (!tryDecrementActiveCount());
698     }
699     forgetWorker(w);
700    
701     // decrement total count, and if was running, running count
702     int unit = w.isTrimmed()? ONE_TOTAL : (ONE_RUNNING|ONE_TOTAL);
703     int wc;
704     do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
705     wc = workerCounts, wc - unit));
706    
707     accumulateStealCount(w); // collect final count
708     if (!tryTerminate(false))
709     ensureEnoughTotalWorkers();
710     }
711    
712     // Waiting for and signalling events
713    
714     /**
715     * Ensures eventCount on exit is different (mod 2^32) than on
716     * entry. CAS failures are OK -- any change in count suffices.
717     */
718     private void advanceEventCount() {
719     int c;
720     UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
721     }
722    
723     /**
724     * Releases workers blocked on a count not equal to current count.
725     */
726     final void releaseWaiters() {
727     long top;
728     int id;
729     while ((id = (int)((top = eventWaiters) & WAITER_INDEX_MASK)) > 0 &&
730     (int)(top >>> EVENT_COUNT_SHIFT) != eventCount) {
731     ForkJoinWorkerThread[] ws = workers;
732     ForkJoinWorkerThread w;
733     if (ws.length >= id && (w = ws[id - 1]) != null &&
734     UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
735     top, w.nextWaiter))
736     LockSupport.unpark(w);
737     }
738     }
739    
740     /**
741     * Advances eventCount and releases waiters until interference by
742     * other releasing threads is detected.
743     */
744     final void signalWork() {
745     int ec;
746     UNSAFE.compareAndSwapInt(this, eventCountOffset, ec=eventCount, ec+1);
747     outer:for (;;) {
748     long top = eventWaiters;
749     ec = eventCount;
750     for (;;) {
751     ForkJoinWorkerThread[] ws; ForkJoinWorkerThread w;
752     int id = (int)(top & WAITER_INDEX_MASK);
753     if (id <= 0 || (int)(top >>> EVENT_COUNT_SHIFT) == ec)
754     return;
755     if ((ws = workers).length < id || (w = ws[id - 1]) == null ||
756     !UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
757     top, top = w.nextWaiter))
758     continue outer; // possibly stale; reread
759     LockSupport.unpark(w);
760     if (top != eventWaiters) // let someone else take over
761     return;
762     }
763     }
764     }
765    
766     /**
767     * If worker is inactive, blocks until terminating or event count
768     * advances from last value held by worker; in any case helps
769     * release others.
770     *
771     * @param w the calling worker thread
772     */
773     private void eventSync(ForkJoinWorkerThread w) {
774     if (!w.active) {
775     int prev = w.lastEventCount;
776     long nextTop = (((long)prev << EVENT_COUNT_SHIFT) |
777     ((long)(w.poolIndex + 1)));
778     long top;
779     while ((runState < SHUTDOWN || !tryTerminate(false)) &&
780     (((int)(top = eventWaiters) & WAITER_INDEX_MASK) == 0 ||
781     (int)(top >>> EVENT_COUNT_SHIFT) == prev) &&
782     eventCount == prev) {
783     if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
784     w.nextWaiter = top, nextTop)) {
785     accumulateStealCount(w); // transfer steals while idle
786     Thread.interrupted(); // clear/ignore interrupt
787     while (eventCount == prev)
788     w.doPark();
789     break;
790     }
791     }
792     w.lastEventCount = eventCount;
793     }
794     releaseWaiters();
795     }
796    
797     /**
798     * Callback from workers invoked upon each top-level action (i.e.,
799     * stealing a task or taking a submission and running
800     * it). Performs one or both of the following:
801     *
802     * * If the worker cannot find work, updates its active status to
803     * inactive and updates activeCount unless there is contention, in
804     * which case it may try again (either in this or a subsequent
805     * call). Additionally, awaits the next task event and/or helps
806     * wake up other releasable waiters.
807 jsr166 1.17 *
808 dl 1.53 * * If there are too many running threads, suspends this worker
809     * (first forcing inactivation if necessary). If it is not
810     * resumed before a keepAlive elapses, the worker may be "trimmed"
811     * -- killed while suspended within suspendAsSpare. Otherwise,
812     * upon resume it rechecks to make sure that it is still needed.
813     *
814     * @param w the worker
815     * @param worked false if the worker scanned for work but didn't
816     * find any (in which case it may block waiting for work).
817     */
818     final void preStep(ForkJoinWorkerThread w, boolean worked) {
819     boolean active = w.active;
820     boolean inactivate = !worked & active;
821     for (;;) {
822     if (inactivate) {
823     int c = runState;
824     if (UNSAFE.compareAndSwapInt(this, runStateOffset,
825     c, c - ONE_ACTIVE))
826     inactivate = active = w.active = false;
827     }
828     int wc = workerCounts;
829     if ((wc & RUNNING_COUNT_MASK) <= parallelism) {
830     if (!worked)
831     eventSync(w);
832     return;
833     }
834     if (!(inactivate |= active) && // must inactivate to suspend
835     UNSAFE.compareAndSwapInt(this, workerCountsOffset,
836     wc, wc - ONE_RUNNING) &&
837     !w.suspendAsSpare()) // false if trimmed
838     return;
839     }
840     }
841    
842     /**
843     * Adjusts counts and creates or resumes compensating threads for
844     * a worker about to block on task joinMe, returning early if
845     * joinMe becomes ready. First tries resuming an existing spare
846     * (which usually also avoids any count adjustment), but must then
847     * decrement running count to determine whether a new thread is
848     * needed. See above for fuller explanation.
849     */
850     final void preJoin(ForkJoinTask<?> joinMe) {
851     boolean dec = false; // true when running count decremented
852     for (;;) {
853     releaseWaiters(); // help other threads progress
854    
855     if (joinMe.status < 0) // surround spare search with done checks
856     return;
857     ForkJoinWorkerThread spare = null;
858     for (ForkJoinWorkerThread w : workers) {
859     if (w != null && w.isSuspended()) {
860     spare = w;
861     break;
862     }
863     }
864     if (joinMe.status < 0)
865     return;
866    
867     if (spare != null && spare.tryUnsuspend()) {
868     if (dec || joinMe.requestSignal() < 0) {
869     int c;
870     do {} while (!UNSAFE.compareAndSwapInt(this,
871     workerCountsOffset,
872     c = workerCounts,
873     c + ONE_RUNNING));
874     } // else no net count change
875     LockSupport.unpark(spare);
876     return;
877     }
878    
879     int wc = workerCounts; // decrement running count
880     if (!dec && (wc & RUNNING_COUNT_MASK) != 0 &&
881     (dec = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
882     wc, wc -= ONE_RUNNING)) &&
883     joinMe.requestSignal() < 0) { // cannot block
884     int c; // back out
885     do {} while (!UNSAFE.compareAndSwapInt(this,
886     workerCountsOffset,
887     c = workerCounts,
888     c + ONE_RUNNING));
889     return;
890     }
891    
892     if (dec) {
893     int tc = wc >>> TOTAL_COUNT_SHIFT;
894     int pc = parallelism;
895     int dc = pc - (wc & RUNNING_COUNT_MASK); // deficit count
896     if ((dc < pc && (dc <= 0 || (dc * dc < (tc - pc) * pc) ||
897     !maintainsParallelism)) ||
898     tc >= maxPoolSize) // cannot add
899     return;
900     if (spare == null &&
901     UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
902     wc + (ONE_RUNNING|ONE_TOTAL))) {
903     addWorker();
904     return;
905     }
906     }
907     }
908     }
909    
910     /**
911     * Same idea as preJoin but with too many differing details to
912     * integrate: There are no task-based signal counts, and only one
913     * way to do the actual blocking. So for simplicity it is directly
914     * incorporated into this method.
915     */
916     final void doBlock(ManagedBlocker blocker, boolean maintainPar)
917     throws InterruptedException {
918     maintainPar &= maintainsParallelism; // override
919     boolean dec = false;
920     boolean done = false;
921     for (;;) {
922     releaseWaiters();
923     if (done = blocker.isReleasable())
924     break;
925     ForkJoinWorkerThread spare = null;
926     for (ForkJoinWorkerThread w : workers) {
927     if (w != null && w.isSuspended()) {
928     spare = w;
929     break;
930     }
931     }
932     if (done = blocker.isReleasable())
933     break;
934     if (spare != null && spare.tryUnsuspend()) {
935     if (dec) {
936     int c;
937     do {} while (!UNSAFE.compareAndSwapInt(this,
938     workerCountsOffset,
939     c = workerCounts,
940     c + ONE_RUNNING));
941     }
942     LockSupport.unpark(spare);
943     break;
944     }
945     int wc = workerCounts;
946     if (!dec && (wc & RUNNING_COUNT_MASK) != 0)
947     dec = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
948     wc, wc -= ONE_RUNNING);
949     if (dec) {
950     int tc = wc >>> TOTAL_COUNT_SHIFT;
951     int pc = parallelism;
952     int dc = pc - (wc & RUNNING_COUNT_MASK);
953     if ((dc < pc && (dc <= 0 || (dc * dc < (tc - pc) * pc) ||
954     !maintainPar)) ||
955     tc >= maxPoolSize)
956     break;
957     if (spare == null &&
958     UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
959     wc + (ONE_RUNNING|ONE_TOTAL))){
960     addWorker();
961     break;
962     }
963     }
964     }
965    
966     try {
967     if (!done)
968     do {} while (!blocker.isReleasable() && !blocker.block());
969     } finally {
970     if (dec) {
971     int c;
972     do {} while (!UNSAFE.compareAndSwapInt(this,
973     workerCountsOffset,
974     c = workerCounts,
975     c + ONE_RUNNING));
976     }
977     }
978     }
979    
980     /**
981     * Possibly initiates and/or completes termination.
982     *
983     * @param now if true, unconditionally terminate, else only
984     * if shutdown and empty queue and no active workers
985     * @return true if now terminating or terminated
986 dl 1.1 */
987 dl 1.53 private boolean tryTerminate(boolean now) {
988     if (now)
989     advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
990     else if (runState < SHUTDOWN ||
991     !submissionQueue.isEmpty() ||
992     (runState & ACTIVE_COUNT_MASK) != 0)
993 dl 1.4 return false;
994 dl 1.53
995     if (advanceRunLevel(TERMINATING))
996     startTerminating();
997    
998     // Finish now if all threads terminated; else in some subsequent call
999     if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1000     advanceRunLevel(TERMINATED);
1001     terminationLatch.countDown();
1002     }
1003 dl 1.4 return true;
1004 dl 1.1 }
1005    
1006     /**
1007 dl 1.53 * Actions on transition to TERMINATING
1008     */
1009     private void startTerminating() {
1010     // Clear out and cancel submissions, ignoring exceptions
1011     ForkJoinTask<?> task;
1012     while ((task = submissionQueue.poll()) != null) {
1013     try {
1014     task.cancel(false);
1015     } catch (Throwable ignore) {
1016     }
1017     }
1018     // Propagate run level
1019     for (ForkJoinWorkerThread w : workers) {
1020     if (w != null)
1021     w.shutdown(); // also resumes suspended workers
1022     }
1023     // Ensure no straggling local tasks
1024     for (ForkJoinWorkerThread w : workers) {
1025     if (w != null)
1026     w.cancelTasks();
1027     }
1028     // Wake up idle workers
1029     advanceEventCount();
1030     releaseWaiters();
1031     // Unstick pending joins
1032     for (ForkJoinWorkerThread w : workers) {
1033     if (w != null && !w.isTerminated()) {
1034     try {
1035     w.interrupt();
1036     } catch (SecurityException ignore) {
1037     }
1038     }
1039     }
1040     }
1041    
1042     // misc support for ForkJoinWorkerThread
1043    
1044     /**
1045     * Returns pool number
1046 dl 1.1 */
1047 dl 1.53 final int getPoolNumber() {
1048     return poolNumber;
1049 dl 1.1 }
1050    
1051     /**
1052 dl 1.53 * Accumulates steal count from a worker, clearing
1053     * the worker's value
1054 dl 1.1 */
1055 dl 1.53 final void accumulateStealCount(ForkJoinWorkerThread w) {
1056     int sc = w.stealCount;
1057     if (sc != 0) {
1058     long c;
1059     w.stealCount = 0;
1060     do {} while (!UNSAFE.compareAndSwapLong(this, stealCountOffset,
1061     c = stealCount, c + sc));
1062 dl 1.1 }
1063     }
1064    
1065     /**
1066 dl 1.53 * Returns the approximate (non-atomic) number of idle threads per
1067     * active thread.
1068     */
1069     final int idlePerActive() {
1070     int ac = runState; // no mask -- artifically boosts during shutdown
1071     int pc = parallelism; // use targeted parallelism, not rc
1072     // Use exact results for small values, saturate past 4
1073     return pc <= ac? 0 : pc >>> 1 <= ac? 1 : pc >>> 2 <= ac? 3 : pc >>> 3;
1074     }
1075    
1076     /**
1077     * Returns the approximate (non-atomic) difference between running
1078     * and active counts.
1079 dl 1.1 */
1080 dl 1.53 final int inactiveCount() {
1081     return (workerCounts & RUNNING_COUNT_MASK) -
1082     (runState & ACTIVE_COUNT_MASK);
1083     }
1084    
1085     // Public and protected methods
1086 dl 1.1
1087     // Constructors
1088    
1089     /**
1090 dl 1.42 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1091     * java.lang.Runtime#availableProcessors}, and using the {@linkplain
1092     * #defaultForkJoinWorkerThreadFactory default thread factory}.
1093 jsr166 1.17 *
1094 dl 1.1 * @throws SecurityException if a security manager exists and
1095     * the caller is not permitted to modify threads
1096     * because it does not hold {@link
1097 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1098 dl 1.1 */
1099     public ForkJoinPool() {
1100     this(Runtime.getRuntime().availableProcessors(),
1101     defaultForkJoinWorkerThreadFactory);
1102     }
1103    
1104     /**
1105 dl 1.42 * Creates a {@code ForkJoinPool} with the indicated parallelism
1106     * level and using the {@linkplain
1107     * #defaultForkJoinWorkerThreadFactory default thread factory}.
1108 jsr166 1.17 *
1109 dl 1.42 * @param parallelism the parallelism level
1110 dl 1.1 * @throws IllegalArgumentException if parallelism less than or
1111 jsr166 1.47 * equal to zero, or greater than implementation limit
1112 dl 1.1 * @throws SecurityException if a security manager exists and
1113     * the caller is not permitted to modify threads
1114     * because it does not hold {@link
1115 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1116 dl 1.1 */
1117     public ForkJoinPool(int parallelism) {
1118     this(parallelism, defaultForkJoinWorkerThreadFactory);
1119     }
1120    
1121     /**
1122 dl 1.42 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1123     * java.lang.Runtime#availableProcessors}, and using the given
1124     * thread factory.
1125 jsr166 1.17 *
1126 dl 1.1 * @param factory the factory for creating new threads
1127 jsr166 1.48 * @throws NullPointerException if the factory is null
1128 dl 1.1 * @throws SecurityException if a security manager exists and
1129     * the caller is not permitted to modify threads
1130     * because it does not hold {@link
1131 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1132 dl 1.1 */
1133     public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
1134     this(Runtime.getRuntime().availableProcessors(), factory);
1135     }
1136    
1137     /**
1138 jsr166 1.41 * Creates a {@code ForkJoinPool} with the given parallelism and
1139     * thread factory.
1140 dl 1.1 *
1141 dl 1.42 * @param parallelism the parallelism level
1142 dl 1.1 * @param factory the factory for creating new threads
1143     * @throws IllegalArgumentException if parallelism less than or
1144 jsr166 1.47 * equal to zero, or greater than implementation limit
1145 jsr166 1.48 * @throws NullPointerException if the factory is null
1146 dl 1.1 * @throws SecurityException if a security manager exists and
1147     * the caller is not permitted to modify threads
1148     * because it does not hold {@link
1149 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1150 dl 1.1 */
1151     public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
1152 dl 1.53 checkPermission();
1153     if (factory == null)
1154     throw new NullPointerException();
1155 dl 1.1 if (parallelism <= 0 || parallelism > MAX_THREADS)
1156     throw new IllegalArgumentException();
1157 dl 1.53 this.poolNumber = poolNumberGenerator.incrementAndGet();
1158     int arraySize = initialArraySizeFor(parallelism);
1159     this.parallelism = parallelism;
1160 dl 1.1 this.factory = factory;
1161     this.maxPoolSize = MAX_THREADS;
1162     this.maintainsParallelism = true;
1163 dl 1.53 this.workers = new ForkJoinWorkerThread[arraySize];
1164     this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
1165 dl 1.1 this.workerLock = new ReentrantLock();
1166 dl 1.53 this.terminationLatch = new CountDownLatch(1);
1167     // Start first worker; remaining workers added upon first submission
1168     workerCounts = ONE_RUNNING | ONE_TOTAL;
1169     addWorker();
1170 dl 1.1 }
1171    
1172     /**
1173 dl 1.53 * Returns initial power of two size for workers array.
1174     * @param pc the initial parallelism level
1175     */
1176     private static int initialArraySizeFor(int pc) {
1177     // See Hackers Delight, sec 3.2. We know MAX_THREADS < (1 >>> 16)
1178     int size = pc < MAX_THREADS ? pc + 1 : MAX_THREADS;
1179     size |= size >>> 1;
1180     size |= size >>> 2;
1181     size |= size >>> 4;
1182     size |= size >>> 8;
1183     return size + 1;
1184 dl 1.1 }
1185    
1186     // Execution methods
1187    
1188     /**
1189     * Common code for execute, invoke and submit
1190     */
1191     private <T> void doSubmit(ForkJoinTask<T> task) {
1192 dl 1.23 if (task == null)
1193     throw new NullPointerException();
1194 dl 1.53 if (runState >= SHUTDOWN)
1195 dl 1.1 throw new RejectedExecutionException();
1196     submissionQueue.offer(task);
1197 dl 1.53 advanceEventCount();
1198     releaseWaiters();
1199     if ((workerCounts >>> TOTAL_COUNT_SHIFT) < parallelism)
1200     ensureEnoughTotalWorkers();
1201 dl 1.1 }
1202    
1203     /**
1204 jsr166 1.17 * Performs the given task, returning its result upon completion.
1205     *
1206 dl 1.1 * @param task the task
1207     * @return the task's result
1208 jsr166 1.48 * @throws NullPointerException if the task is null
1209     * @throws RejectedExecutionException if the task cannot be
1210     * scheduled for execution
1211 dl 1.1 */
1212     public <T> T invoke(ForkJoinTask<T> task) {
1213     doSubmit(task);
1214     return task.join();
1215     }
1216    
1217     /**
1218     * Arranges for (asynchronous) execution of the given task.
1219 jsr166 1.17 *
1220 dl 1.1 * @param task the task
1221 jsr166 1.48 * @throws NullPointerException if the task is null
1222     * @throws RejectedExecutionException if the task cannot be
1223     * scheduled for execution
1224 dl 1.1 */
1225 dl 1.37 public void execute(ForkJoinTask<?> task) {
1226 dl 1.1 doSubmit(task);
1227     }
1228    
1229     // AbstractExecutorService methods
1230    
1231 jsr166 1.48 /**
1232     * @throws NullPointerException if the task is null
1233     * @throws RejectedExecutionException if the task cannot be
1234     * scheduled for execution
1235     */
1236 dl 1.1 public void execute(Runnable task) {
1237 dl 1.23 ForkJoinTask<?> job;
1238 jsr166 1.26 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1239     job = (ForkJoinTask<?>) task;
1240 dl 1.23 else
1241 dl 1.33 job = ForkJoinTask.adapt(task, null);
1242 dl 1.23 doSubmit(job);
1243 dl 1.1 }
1244    
1245 jsr166 1.48 /**
1246     * @throws NullPointerException if the task is null
1247     * @throws RejectedExecutionException if the task cannot be
1248     * scheduled for execution
1249     */
1250 dl 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
1251 dl 1.33 ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1252 dl 1.1 doSubmit(job);
1253     return job;
1254     }
1255    
1256 jsr166 1.48 /**
1257     * @throws NullPointerException if the task is null
1258     * @throws RejectedExecutionException if the task cannot be
1259     * scheduled for execution
1260     */
1261 dl 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
1262 dl 1.33 ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1263 dl 1.1 doSubmit(job);
1264     return job;
1265     }
1266    
1267 jsr166 1.48 /**
1268     * @throws NullPointerException if the task is null
1269     * @throws RejectedExecutionException if the task cannot be
1270     * scheduled for execution
1271     */
1272 dl 1.1 public ForkJoinTask<?> submit(Runnable task) {
1273 dl 1.23 ForkJoinTask<?> job;
1274 jsr166 1.26 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1275     job = (ForkJoinTask<?>) task;
1276 dl 1.23 else
1277 dl 1.33 job = ForkJoinTask.adapt(task, null);
1278 dl 1.1 doSubmit(job);
1279     return job;
1280     }
1281    
1282     /**
1283 dl 1.23 * Submits a ForkJoinTask for execution.
1284     *
1285     * @param task the task to submit
1286     * @return the task
1287 jsr166 1.48 * @throws NullPointerException if the task is null
1288 dl 1.23 * @throws RejectedExecutionException if the task cannot be
1289     * scheduled for execution
1290     */
1291     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1292     doSubmit(task);
1293     return task;
1294     }
1295    
1296 jsr166 1.48 /**
1297     * @throws NullPointerException {@inheritDoc}
1298     * @throws RejectedExecutionException {@inheritDoc}
1299     */
1300 dl 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
1301 jsr166 1.20 ArrayList<ForkJoinTask<T>> forkJoinTasks =
1302 dl 1.1 new ArrayList<ForkJoinTask<T>>(tasks.size());
1303 jsr166 1.20 for (Callable<T> task : tasks)
1304 dl 1.33 forkJoinTasks.add(ForkJoinTask.adapt(task));
1305 jsr166 1.20 invoke(new InvokeAll<T>(forkJoinTasks));
1306    
1307     @SuppressWarnings({"unchecked", "rawtypes"})
1308     List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1309     return futures;
1310 dl 1.1 }
1311    
1312     static final class InvokeAll<T> extends RecursiveAction {
1313     final ArrayList<ForkJoinTask<T>> tasks;
1314     InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
1315     public void compute() {
1316 jsr166 1.17 try { invokeAll(tasks); }
1317     catch (Exception ignore) {}
1318 dl 1.1 }
1319 jsr166 1.18 private static final long serialVersionUID = -7914297376763021607L;
1320 dl 1.1 }
1321    
1322     /**
1323 jsr166 1.17 * Returns the factory used for constructing new workers.
1324 dl 1.1 *
1325     * @return the factory used for constructing new workers
1326     */
1327     public ForkJoinWorkerThreadFactory getFactory() {
1328     return factory;
1329     }
1330    
1331     /**
1332 dl 1.2 * Returns the handler for internal worker threads that terminate
1333     * due to unrecoverable errors encountered while executing tasks.
1334 jsr166 1.17 *
1335 jsr166 1.28 * @return the handler, or {@code null} if none
1336 dl 1.2 */
1337     public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1338 dl 1.53 workerCountReadFence();
1339     return ueh;
1340 dl 1.2 }
1341    
1342     /**
1343     * Sets the handler for internal worker threads that terminate due
1344     * to unrecoverable errors encountered while executing tasks.
1345     * Unless set, the current default or ThreadGroup handler is used
1346     * as handler.
1347     *
1348     * @param h the new handler
1349 jsr166 1.28 * @return the old handler, or {@code null} if none
1350 dl 1.2 * @throws SecurityException if a security manager exists and
1351     * the caller is not permitted to modify threads
1352     * because it does not hold {@link
1353 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1354 dl 1.2 */
1355     public Thread.UncaughtExceptionHandler
1356     setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
1357     checkPermission();
1358 dl 1.53 workerCountReadFence();
1359     Thread.UncaughtExceptionHandler old = ueh;
1360     if (h != old) {
1361 dl 1.2 ueh = h;
1362 dl 1.53 workerCountWriteFence();
1363     for (ForkJoinWorkerThread w : workers) {
1364     if (w != null)
1365     w.setUncaughtExceptionHandler(h);
1366 dl 1.2 }
1367     }
1368     return old;
1369     }
1370    
1371     /**
1372 jsr166 1.16 * Sets the target parallelism level of this pool.
1373 jsr166 1.17 *
1374 dl 1.1 * @param parallelism the target parallelism
1375     * @throws IllegalArgumentException if parallelism less than or
1376 jsr166 1.16 * equal to zero or greater than maximum size bounds
1377 dl 1.1 * @throws SecurityException if a security manager exists and
1378     * the caller is not permitted to modify threads
1379     * because it does not hold {@link
1380 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1381 dl 1.1 */
1382     public void setParallelism(int parallelism) {
1383     checkPermission();
1384     if (parallelism <= 0 || parallelism > maxPoolSize)
1385     throw new IllegalArgumentException();
1386 dl 1.53 workerCountReadFence();
1387     int pc = this.parallelism;
1388     if (pc != parallelism) {
1389     this.parallelism = parallelism;
1390     workerCountWriteFence();
1391     // Release spares. If too many, some will die after re-suspend
1392     for (ForkJoinWorkerThread w : workers) {
1393     if (w != null && w.tryUnsuspend()) {
1394     updateRunningCount(1);
1395     LockSupport.unpark(w);
1396 dl 1.50 }
1397 dl 1.1 }
1398 dl 1.53 ensureEnoughTotalWorkers();
1399     advanceEventCount();
1400     releaseWaiters(); // force config recheck by existing workers
1401 dl 1.1 }
1402     }
1403    
1404     /**
1405 dl 1.42 * Returns the targeted parallelism level of this pool.
1406 dl 1.1 *
1407 dl 1.42 * @return the targeted parallelism level of this pool
1408 dl 1.1 */
1409     public int getParallelism() {
1410 dl 1.53 // workerCountReadFence(); // inlined below
1411     int ignore = workerCounts;
1412 dl 1.1 return parallelism;
1413     }
1414    
1415     /**
1416     * Returns the number of worker threads that have started but not
1417     * yet terminated. This result returned by this method may differ
1418 jsr166 1.29 * from {@link #getParallelism} when threads are created to
1419 dl 1.1 * maintain parallelism when others are cooperatively blocked.
1420     *
1421     * @return the number of worker threads
1422     */
1423     public int getPoolSize() {
1424 dl 1.53 return workerCounts >>> TOTAL_COUNT_SHIFT;
1425 dl 1.1 }
1426    
1427     /**
1428     * Returns the maximum number of threads allowed to exist in the
1429 dl 1.45 * pool. Unless set using {@link #setMaximumPoolSize}, the
1430 dl 1.42 * maximum is an implementation-defined value designed only to
1431     * prevent runaway growth.
1432 jsr166 1.17 *
1433 dl 1.1 * @return the maximum
1434     */
1435     public int getMaximumPoolSize() {
1436 dl 1.53 workerCountReadFence();
1437 dl 1.1 return maxPoolSize;
1438     }
1439    
1440     /**
1441     * Sets the maximum number of threads allowed to exist in the
1442 dl 1.45 * pool. The given value should normally be greater than or equal
1443     * to the {@link #getParallelism parallelism} level. Setting this
1444     * value has no effect on current pool size. It controls
1445     * construction of new threads.
1446 jsr166 1.17 *
1447 jsr166 1.36 * @throws IllegalArgumentException if negative or greater than
1448 jsr166 1.16 * internal implementation limit
1449 dl 1.1 */
1450     public void setMaximumPoolSize(int newMax) {
1451     if (newMax < 0 || newMax > MAX_THREADS)
1452     throw new IllegalArgumentException();
1453     maxPoolSize = newMax;
1454 dl 1.53 workerCountWriteFence();
1455 dl 1.1 }
1456    
1457     /**
1458 jsr166 1.28 * Returns {@code true} if this pool dynamically maintains its
1459     * target parallelism level. If false, new threads are added only
1460     * to avoid possible starvation. This setting is by default true.
1461 jsr166 1.17 *
1462 jsr166 1.28 * @return {@code true} if maintains parallelism
1463 dl 1.1 */
1464     public boolean getMaintainsParallelism() {
1465 dl 1.53 workerCountReadFence();
1466 dl 1.1 return maintainsParallelism;
1467     }
1468    
1469     /**
1470     * Sets whether this pool dynamically maintains its target
1471     * parallelism level. If false, new threads are added only to
1472     * avoid possible starvation.
1473 jsr166 1.17 *
1474 jsr166 1.28 * @param enable {@code true} to maintain parallelism
1475 dl 1.1 */
1476     public void setMaintainsParallelism(boolean enable) {
1477     maintainsParallelism = enable;
1478 dl 1.53 workerCountWriteFence();
1479 dl 1.1 }
1480    
1481     /**
1482 dl 1.6 * Establishes local first-in-first-out scheduling mode for forked
1483     * tasks that are never joined. This mode may be more appropriate
1484     * than default locally stack-based mode in applications in which
1485     * worker threads only process asynchronous tasks. This method is
1486 jsr166 1.29 * designed to be invoked only when the pool is quiescent, and
1487 dl 1.6 * typically only before any tasks are submitted. The effects of
1488 jsr166 1.16 * invocations at other times may be unpredictable.
1489 dl 1.6 *
1490 jsr166 1.29 * @param async if {@code true}, use locally FIFO scheduling
1491 jsr166 1.16 * @return the previous mode
1492 jsr166 1.29 * @see #getAsyncMode
1493 dl 1.6 */
1494     public boolean setAsyncMode(boolean async) {
1495 dl 1.53 workerCountReadFence();
1496 dl 1.6 boolean oldMode = locallyFifo;
1497 dl 1.53 if (oldMode != async) {
1498     locallyFifo = async;
1499     workerCountWriteFence();
1500     for (ForkJoinWorkerThread w : workers) {
1501     if (w != null)
1502     w.setAsyncMode(async);
1503 dl 1.6 }
1504     }
1505     return oldMode;
1506     }
1507    
1508     /**
1509 jsr166 1.28 * Returns {@code true} if this pool uses local first-in-first-out
1510 jsr166 1.16 * scheduling mode for forked tasks that are never joined.
1511 dl 1.6 *
1512 jsr166 1.28 * @return {@code true} if this pool uses async mode
1513 jsr166 1.29 * @see #setAsyncMode
1514 dl 1.6 */
1515     public boolean getAsyncMode() {
1516 dl 1.53 workerCountReadFence();
1517 dl 1.6 return locallyFifo;
1518     }
1519    
1520     /**
1521 dl 1.2 * Returns an estimate of the number of worker threads that are
1522     * not blocked waiting to join tasks or for other managed
1523 dl 1.53 * synchronization. This method may overestimate the
1524     * number of running threads.
1525 dl 1.1 *
1526     * @return the number of worker threads
1527     */
1528     public int getRunningThreadCount() {
1529 dl 1.53 return workerCounts & RUNNING_COUNT_MASK;
1530 dl 1.1 }
1531    
1532     /**
1533 dl 1.2 * Returns an estimate of the number of threads that are currently
1534 dl 1.1 * stealing or executing tasks. This method may overestimate the
1535     * number of active threads.
1536 jsr166 1.17 *
1537 jsr166 1.16 * @return the number of active threads
1538 dl 1.1 */
1539     public int getActiveThreadCount() {
1540 dl 1.53 return runState & ACTIVE_COUNT_MASK;
1541 dl 1.1 }
1542    
1543     /**
1544 jsr166 1.28 * Returns {@code true} if all worker threads are currently idle.
1545     * An idle worker is one that cannot obtain a task to execute
1546     * because none are available to steal from other threads, and
1547     * there are no pending submissions to the pool. This method is
1548     * conservative; it might not return {@code true} immediately upon
1549     * idleness of all threads, but will eventually become true if
1550     * threads remain inactive.
1551 jsr166 1.17 *
1552 jsr166 1.28 * @return {@code true} if all threads are currently idle
1553 dl 1.1 */
1554     public boolean isQuiescent() {
1555 dl 1.53 return (runState & ACTIVE_COUNT_MASK) == 0;
1556 dl 1.1 }
1557    
1558     /**
1559     * Returns an estimate of the total number of tasks stolen from
1560     * one thread's work queue by another. The reported value
1561     * underestimates the actual total number of steals when the pool
1562     * is not quiescent. This value may be useful for monitoring and
1563 jsr166 1.17 * tuning fork/join programs: in general, steal counts should be
1564 dl 1.1 * high enough to keep threads busy, but low enough to avoid
1565     * overhead and contention across threads.
1566 jsr166 1.17 *
1567 jsr166 1.16 * @return the number of steals
1568 dl 1.1 */
1569     public long getStealCount() {
1570 dl 1.53 return stealCount;
1571 dl 1.1 }
1572    
1573     /**
1574 dl 1.2 * Returns an estimate of the total number of tasks currently held
1575     * in queues by worker threads (but not including tasks submitted
1576     * to the pool that have not begun executing). This value is only
1577     * an approximation, obtained by iterating across all threads in
1578     * the pool. This method may be useful for tuning task
1579     * granularities.
1580 jsr166 1.17 *
1581 jsr166 1.16 * @return the number of queued tasks
1582 dl 1.1 */
1583     public long getQueuedTaskCount() {
1584     long count = 0;
1585 dl 1.53 for (ForkJoinWorkerThread w : workers) {
1586     if (w != null)
1587     count += w.getQueueSize();
1588 dl 1.1 }
1589     return count;
1590     }
1591    
1592     /**
1593 jsr166 1.40 * Returns an estimate of the number of tasks submitted to this
1594     * pool that have not yet begun executing. This method takes time
1595 dl 1.1 * proportional to the number of submissions.
1596 jsr166 1.17 *
1597 jsr166 1.16 * @return the number of queued submissions
1598 dl 1.1 */
1599     public int getQueuedSubmissionCount() {
1600     return submissionQueue.size();
1601     }
1602    
1603     /**
1604 jsr166 1.28 * Returns {@code true} if there are any tasks submitted to this
1605     * pool that have not yet begun executing.
1606 jsr166 1.17 *
1607 jsr166 1.16 * @return {@code true} if there are any queued submissions
1608 dl 1.1 */
1609     public boolean hasQueuedSubmissions() {
1610     return !submissionQueue.isEmpty();
1611     }
1612    
1613     /**
1614     * Removes and returns the next unexecuted submission if one is
1615     * available. This method may be useful in extensions to this
1616     * class that re-assign work in systems with multiple pools.
1617 jsr166 1.17 *
1618 jsr166 1.28 * @return the next submission, or {@code null} if none
1619 dl 1.1 */
1620     protected ForkJoinTask<?> pollSubmission() {
1621     return submissionQueue.poll();
1622     }
1623    
1624     /**
1625 dl 1.6 * Removes all available unexecuted submitted and forked tasks
1626     * from scheduling queues and adds them to the given collection,
1627     * without altering their execution status. These may include
1628 jsr166 1.41 * artificially generated or wrapped tasks. This method is
1629     * designed to be invoked only when the pool is known to be
1630 dl 1.6 * quiescent. Invocations at other times may not remove all
1631     * tasks. A failure encountered while attempting to add elements
1632 jsr166 1.16 * to collection {@code c} may result in elements being in
1633 dl 1.6 * neither, either or both collections when the associated
1634     * exception is thrown. The behavior of this operation is
1635     * undefined if the specified collection is modified while the
1636     * operation is in progress.
1637 jsr166 1.17 *
1638 dl 1.6 * @param c the collection to transfer elements into
1639     * @return the number of elements transferred
1640     */
1641 dl 1.30 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1642 dl 1.6 int n = submissionQueue.drainTo(c);
1643 dl 1.53 for (ForkJoinWorkerThread w : workers) {
1644     if (w != null)
1645     n += w.drainTasksTo(c);
1646 dl 1.6 }
1647     return n;
1648     }
1649    
1650     /**
1651 dl 1.1 * Returns a string identifying this pool, as well as its state,
1652     * including indications of run state, parallelism level, and
1653     * worker and task counts.
1654     *
1655     * @return a string identifying this pool, as well as its state
1656     */
1657     public String toString() {
1658     long st = getStealCount();
1659     long qt = getQueuedTaskCount();
1660     long qs = getQueuedSubmissionCount();
1661 dl 1.53 int wc = workerCounts;
1662     int tc = wc >>> TOTAL_COUNT_SHIFT;
1663     int rc = wc & RUNNING_COUNT_MASK;
1664     int pc = parallelism;
1665     int rs = runState;
1666     int ac = rs & ACTIVE_COUNT_MASK;
1667 dl 1.1 return super.toString() +
1668 dl 1.53 "[" + runLevelToString(rs) +
1669     ", parallelism = " + pc +
1670     ", size = " + tc +
1671     ", active = " + ac +
1672     ", running = " + rc +
1673 dl 1.1 ", steals = " + st +
1674     ", tasks = " + qt +
1675     ", submissions = " + qs +
1676     "]";
1677     }
1678    
1679 dl 1.53 private static String runLevelToString(int s) {
1680     return ((s & TERMINATED) != 0 ? "Terminated" :
1681     ((s & TERMINATING) != 0 ? "Terminating" :
1682     ((s & SHUTDOWN) != 0 ? "Shutting down" :
1683     "Running")));
1684 dl 1.1 }
1685    
1686     /**
1687     * Initiates an orderly shutdown in which previously submitted
1688     * tasks are executed, but no new tasks will be accepted.
1689     * Invocation has no additional effect if already shut down.
1690     * Tasks that are in the process of being submitted concurrently
1691     * during the course of this method may or may not be rejected.
1692 jsr166 1.17 *
1693 dl 1.1 * @throws SecurityException if a security manager exists and
1694     * the caller is not permitted to modify threads
1695     * because it does not hold {@link
1696 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1697 dl 1.1 */
1698     public void shutdown() {
1699     checkPermission();
1700 dl 1.53 advanceRunLevel(SHUTDOWN);
1701     tryTerminate(false);
1702 dl 1.1 }
1703    
1704     /**
1705 dl 1.42 * Attempts to cancel and/or stop all tasks, and reject all
1706     * subsequently submitted tasks. Tasks that are in the process of
1707     * being submitted or executed concurrently during the course of
1708     * this method may or may not be rejected. This method cancels
1709     * both existing and unexecuted tasks, in order to permit
1710     * termination in the presence of task dependencies. So the method
1711     * always returns an empty list (unlike the case for some other
1712     * Executors).
1713 jsr166 1.17 *
1714 dl 1.1 * @return an empty list
1715     * @throws SecurityException if a security manager exists and
1716     * the caller is not permitted to modify threads
1717     * because it does not hold {@link
1718 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1719 dl 1.1 */
1720     public List<Runnable> shutdownNow() {
1721     checkPermission();
1722 dl 1.53 tryTerminate(true);
1723 dl 1.1 return Collections.emptyList();
1724     }
1725    
1726     /**
1727 jsr166 1.16 * Returns {@code true} if all tasks have completed following shut down.
1728 dl 1.1 *
1729 jsr166 1.16 * @return {@code true} if all tasks have completed following shut down
1730 dl 1.1 */
1731     public boolean isTerminated() {
1732 dl 1.53 return runState >= TERMINATED;
1733 dl 1.1 }
1734    
1735     /**
1736 jsr166 1.16 * Returns {@code true} if the process of termination has
1737 dl 1.42 * commenced but not yet completed. This method may be useful for
1738     * debugging. A return of {@code true} reported a sufficient
1739     * period after shutdown may indicate that submitted tasks have
1740     * ignored or suppressed interruption, causing this executor not
1741     * to properly terminate.
1742 dl 1.1 *
1743 dl 1.42 * @return {@code true} if terminating but not yet terminated
1744 dl 1.1 */
1745     public boolean isTerminating() {
1746 dl 1.53 return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
1747 dl 1.1 }
1748    
1749     /**
1750 jsr166 1.16 * Returns {@code true} if this pool has been shut down.
1751 dl 1.1 *
1752 jsr166 1.16 * @return {@code true} if this pool has been shut down
1753 dl 1.1 */
1754     public boolean isShutdown() {
1755 dl 1.53 return runState >= SHUTDOWN;
1756 dl 1.42 }
1757    
1758     /**
1759 dl 1.1 * Blocks until all tasks have completed execution after a shutdown
1760     * request, or the timeout occurs, or the current thread is
1761     * interrupted, whichever happens first.
1762     *
1763     * @param timeout the maximum time to wait
1764     * @param unit the time unit of the timeout argument
1765 jsr166 1.16 * @return {@code true} if this executor terminated and
1766     * {@code false} if the timeout elapsed before termination
1767 dl 1.1 * @throws InterruptedException if interrupted while waiting
1768     */
1769     public boolean awaitTermination(long timeout, TimeUnit unit)
1770     throws InterruptedException {
1771 dl 1.53 return terminationLatch.await(timeout, unit);
1772 dl 1.1 }
1773    
1774     /**
1775     * Interface for extending managed parallelism for tasks running
1776 jsr166 1.35 * in {@link ForkJoinPool}s.
1777     *
1778     * <p>A {@code ManagedBlocker} provides two methods.
1779 jsr166 1.28 * Method {@code isReleasable} must return {@code true} if
1780     * blocking is not necessary. Method {@code block} blocks the
1781     * current thread if necessary (perhaps internally invoking
1782 jsr166 1.40 * {@code isReleasable} before actually blocking).
1783 jsr166 1.17 *
1784 dl 1.1 * <p>For example, here is a ManagedBlocker based on a
1785     * ReentrantLock:
1786 jsr166 1.17 * <pre> {@code
1787     * class ManagedLocker implements ManagedBlocker {
1788     * final ReentrantLock lock;
1789     * boolean hasLock = false;
1790     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1791     * public boolean block() {
1792     * if (!hasLock)
1793     * lock.lock();
1794     * return true;
1795     * }
1796     * public boolean isReleasable() {
1797     * return hasLock || (hasLock = lock.tryLock());
1798 dl 1.1 * }
1799 jsr166 1.17 * }}</pre>
1800 dl 1.1 */
1801     public static interface ManagedBlocker {
1802     /**
1803     * Possibly blocks the current thread, for example waiting for
1804     * a lock or condition.
1805 jsr166 1.17 *
1806 jsr166 1.28 * @return {@code true} if no additional blocking is necessary
1807     * (i.e., if isReleasable would return true)
1808 dl 1.1 * @throws InterruptedException if interrupted while waiting
1809 jsr166 1.17 * (the method is not required to do so, but is allowed to)
1810 dl 1.1 */
1811     boolean block() throws InterruptedException;
1812    
1813     /**
1814 jsr166 1.28 * Returns {@code true} if blocking is unnecessary.
1815 dl 1.1 */
1816     boolean isReleasable();
1817     }
1818    
1819     /**
1820     * Blocks in accord with the given blocker. If the current thread
1821 jsr166 1.38 * is a {@link ForkJoinWorkerThread}, this method possibly
1822     * arranges for a spare thread to be activated if necessary to
1823     * ensure parallelism while the current thread is blocked.
1824 dl 1.1 *
1825 jsr166 1.38 * <p>If {@code maintainParallelism} is {@code true} and the pool
1826     * supports it ({@link #getMaintainsParallelism}), this method
1827     * attempts to maintain the pool's nominal parallelism. Otherwise
1828     * it activates a thread only if necessary to avoid complete
1829     * starvation. This option may be preferable when blockages use
1830     * timeouts, or are almost always brief.
1831     *
1832     * <p>If the caller is not a {@link ForkJoinTask}, this method is
1833     * behaviorally equivalent to
1834 jsr166 1.17 * <pre> {@code
1835     * while (!blocker.isReleasable())
1836     * if (blocker.block())
1837     * return;
1838     * }</pre>
1839 jsr166 1.38 *
1840     * If the caller is a {@code ForkJoinTask}, then the pool may
1841     * first be expanded to ensure parallelism, and later adjusted.
1842 dl 1.1 *
1843     * @param blocker the blocker
1844 jsr166 1.28 * @param maintainParallelism if {@code true} and supported by
1845     * this pool, attempt to maintain the pool's nominal parallelism;
1846     * otherwise activate a thread only if necessary to avoid
1847     * complete starvation.
1848 jsr166 1.16 * @throws InterruptedException if blocker.block did so
1849 dl 1.1 */
1850     public static void managedBlock(ManagedBlocker blocker,
1851     boolean maintainParallelism)
1852     throws InterruptedException {
1853     Thread t = Thread.currentThread();
1854 dl 1.53 if (t instanceof ForkJoinWorkerThread)
1855     ((ForkJoinWorkerThread) t).pool.
1856     doBlock(blocker, maintainParallelism);
1857     else
1858     awaitBlocker(blocker);
1859 dl 1.1 }
1860    
1861 dl 1.53 /**
1862     * Performs Non-FJ blocking
1863     */
1864 dl 1.1 private static void awaitBlocker(ManagedBlocker blocker)
1865     throws InterruptedException {
1866 jsr166 1.17 do {} while (!blocker.isReleasable() && !blocker.block());
1867 dl 1.1 }
1868    
1869 dl 1.33 // AbstractExecutorService overrides. These rely on undocumented
1870     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
1871     // implement RunnableFuture.
1872 dl 1.2
1873     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
1874 jsr166 1.34 return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
1875 dl 1.2 }
1876    
1877     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
1878 jsr166 1.34 return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
1879 dl 1.2 }
1880    
1881 jsr166 1.27 // Unsafe mechanics
1882 dl 1.1
1883 jsr166 1.21 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1884 dl 1.53 private static final long workerCountsOffset =
1885     objectFieldOffset("workerCounts", ForkJoinPool.class);
1886     private static final long runStateOffset =
1887     objectFieldOffset("runState", ForkJoinPool.class);
1888 jsr166 1.25 private static final long eventCountOffset =
1889 jsr166 1.27 objectFieldOffset("eventCount", ForkJoinPool.class);
1890 dl 1.53 private static final long eventWaitersOffset =
1891     objectFieldOffset("eventWaiters",ForkJoinPool.class);
1892     private static final long stealCountOffset =
1893     objectFieldOffset("stealCount",ForkJoinPool.class);
1894    
1895 jsr166 1.27
1896     private static long objectFieldOffset(String field, Class<?> klazz) {
1897     try {
1898     return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1899     } catch (NoSuchFieldException e) {
1900     // Convert Exception to corresponding Error
1901     NoSuchFieldError error = new NoSuchFieldError(field);
1902     error.initCause(e);
1903     throw error;
1904     }
1905     }
1906    
1907     /**
1908     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1909     * Replace with a simple call to Unsafe.getUnsafe when integrating
1910     * into a jdk.
1911     *
1912     * @return a sun.misc.Unsafe
1913     */
1914     private static sun.misc.Unsafe getUnsafe() {
1915     try {
1916     return sun.misc.Unsafe.getUnsafe();
1917     } catch (SecurityException se) {
1918     try {
1919     return java.security.AccessController.doPrivileged
1920     (new java.security
1921     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1922     public sun.misc.Unsafe run() throws Exception {
1923     java.lang.reflect.Field f = sun.misc
1924     .Unsafe.class.getDeclaredField("theUnsafe");
1925     f.setAccessible(true);
1926     return (sun.misc.Unsafe) f.get(null);
1927     }});
1928     } catch (java.security.PrivilegedActionException e) {
1929     throw new RuntimeException("Could not initialize intrinsics",
1930     e.getCause());
1931     }
1932     }
1933     }
1934 dl 1.1 }