ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
Revision: 1.6
Committed: Thu Jul 16 15:32:34 2009 UTC (14 years, 10 months ago) by dl
Branch: MAIN
Changes since 1.5: +164 -67 lines
Log Message:
Async mode, drainTasks

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package jsr166y;
8     import java.util.*;
9     import java.util.concurrent.*;
10     import java.util.concurrent.locks.*;
11     import java.util.concurrent.atomic.*;
12     import sun.misc.Unsafe;
13     import java.lang.reflect.*;
14    
15     /**
16 dl 1.2 * An {@link ExecutorService} for running {@link ForkJoinTask}s. A
17     * ForkJoinPool provides the entry point for submissions from
18     * non-ForkJoinTasks, as well as management and monitoring operations.
19     * Normally a single ForkJoinPool is used for a large number of
20     * submitted tasks. Otherwise, use would not usually outweigh the
21     * construction and bookkeeping overhead of creating a large set of
22     * threads.
23 dl 1.1 *
24 dl 1.2 * <p>ForkJoinPools differ from other kinds of Executors mainly in
25     * that they provide <em>work-stealing</em>: all threads in the pool
26 dl 1.1 * attempt to find and execute subtasks created by other active tasks
27     * (eventually blocking if none exist). This makes them efficient when
28 dl 1.2 * most tasks spawn other subtasks (as do most ForkJoinTasks), as well
29     * as the mixed execution of some plain Runnable- or Callable- based
30 dl 1.6 * activities along with ForkJoinTasks. When setting
31     * <tt>setAsyncMode</tt>, a ForkJoinPools may also be appropriate for
32     * use with fine-grained tasks that are never joined. Otherwise, other
33 dl 1.2 * ExecutorService implementations are typically more appropriate
34     * choices.
35 dl 1.1 *
36     * <p>A ForkJoinPool may be constructed with a given parallelism level
37     * (target pool size), which it attempts to maintain by dynamically
38 dl 1.2 * adding, suspending, or resuming threads, even if some tasks are
39     * waiting to join others. However, no such adjustments are performed
40     * in the face of blocked IO or other unmanaged synchronization. The
41     * nested <code>ManagedBlocker</code> interface enables extension of
42     * the kinds of synchronization accommodated. The target parallelism
43     * level may also be changed dynamically (<code>setParallelism</code>)
44 dl 1.6 * and thread construction can be limited using methods
45 dl 1.2 * <code>setMaximumPoolSize</code> and/or
46     * <code>setMaintainsParallelism</code>.
47 dl 1.1 *
48     * <p>In addition to execution and lifecycle control methods, this
49     * class provides status check methods (for example
50 dl 1.2 * <code>getStealCount</code>) that are intended to aid in developing,
51 dl 1.1 * tuning, and monitoring fork/join applications. Also, method
52 dl 1.2 * <code>toString</code> returns indications of pool state in a
53     * convenient form for informal monitoring.
54 dl 1.1 *
55     * <p><b>Implementation notes</b>: This implementation restricts the
56 dl 1.2 * maximum number of running threads to 32767. Attempts to create
57     * pools with greater than the maximum result in
58     * IllegalArgumentExceptions.
59 dl 1.1 */
60 dl 1.2 public class ForkJoinPool extends AbstractExecutorService {
61 dl 1.1
62     /*
63     * See the extended comments interspersed below for design,
64     * rationale, and walkthroughs.
65     */
66    
67     /** Mask for packing and unpacking shorts */
68     private static final int shortMask = 0xffff;
69    
70     /** Max pool size -- must be a power of two minus 1 */
71     private static final int MAX_THREADS = 0x7FFF;
72    
73     /**
74     * Factory for creating new ForkJoinWorkerThreads. A
75     * ForkJoinWorkerThreadFactory must be defined and used for
76     * ForkJoinWorkerThread subclasses that extend base functionality
77     * or initialize threads with different contexts.
78     */
79     public static interface ForkJoinWorkerThreadFactory {
80     /**
81     * Returns a new worker thread operating in the given pool.
82     *
83     * @param pool the pool this thread works in
84     * @throws NullPointerException if pool is null;
85     */
86     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
87     }
88    
89     /**
90     * Default ForkJoinWorkerThreadFactory implementation, creates a
91     * new ForkJoinWorkerThread.
92     */
93 dl 1.2 static class DefaultForkJoinWorkerThreadFactory
94 dl 1.1 implements ForkJoinWorkerThreadFactory {
95     public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
96     try {
97     return new ForkJoinWorkerThread(pool);
98     } catch (OutOfMemoryError oom) {
99     return null;
100     }
101     }
102     }
103    
104     /**
105 dl 1.2 * Creates a new ForkJoinWorkerThread. This factory is used unless
106     * overridden in ForkJoinPool constructors.
107 dl 1.1 */
108 dl 1.2 public static final ForkJoinWorkerThreadFactory
109 dl 1.1 defaultForkJoinWorkerThreadFactory =
110     new DefaultForkJoinWorkerThreadFactory();
111    
112     /**
113     * Permission required for callers of methods that may start or
114     * kill threads.
115     */
116     private static final RuntimePermission modifyThreadPermission =
117     new RuntimePermission("modifyThread");
118    
119     /**
120     * If there is a security manager, makes sure caller has
121     * permission to modify threads.
122     */
123     private static void checkPermission() {
124     SecurityManager security = System.getSecurityManager();
125     if (security != null)
126     security.checkPermission(modifyThreadPermission);
127     }
128    
129     /**
130     * Generator for assigning sequence numbers as pool names.
131     */
132     private static final AtomicInteger poolNumberGenerator =
133     new AtomicInteger();
134    
135     /**
136 dl 1.6 * Array holding all worker threads in the pool. Initialized upon
137     * first use. Array size must be a power of two. Updates and
138     * replacements are protected by workerLock, but it is always kept
139     * in a consistent enough state to be randomly accessed without
140     * locking by workers performing work-stealing.
141 dl 1.1 */
142     volatile ForkJoinWorkerThread[] workers;
143    
144     /**
145     * Lock protecting access to workers.
146     */
147     private final ReentrantLock workerLock;
148    
149     /**
150     * Condition for awaitTermination.
151     */
152     private final Condition termination;
153    
154     /**
155     * The uncaught exception handler used when any worker
156     * abrupty terminates
157     */
158     private Thread.UncaughtExceptionHandler ueh;
159    
160     /**
161     * Creation factory for worker threads.
162     */
163     private final ForkJoinWorkerThreadFactory factory;
164    
165     /**
166     * Head of stack of threads that were created to maintain
167     * parallelism when other threads blocked, but have since
168     * suspended when the parallelism level rose.
169     */
170     private volatile WaitQueueNode spareStack;
171    
172     /**
173     * Sum of per-thread steal counts, updated only when threads are
174     * idle or terminating.
175     */
176     private final AtomicLong stealCount;
177    
178     /**
179     * Queue for external submissions.
180     */
181     private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
182    
183     /**
184     * Head of Treiber stack for barrier sync. See below for explanation
185     */
186 dl 1.4 private volatile WaitQueueNode syncStack;
187 dl 1.1
188     /**
189     * The count for event barrier
190     */
191     private volatile long eventCount;
192    
193     /**
194     * Pool number, just for assigning useful names to worker threads
195     */
196     private final int poolNumber;
197    
198     /**
199     * The maximum allowed pool size
200     */
201     private volatile int maxPoolSize;
202    
203     /**
204     * The desired parallelism level, updated only under workerLock.
205     */
206     private volatile int parallelism;
207    
208     /**
209 dl 1.6 * True if use local fifo, not default lifo, for local polling
210     */
211     private volatile boolean locallyFifo;
212    
213     /**
214 dl 1.1 * Holds number of total (i.e., created and not yet terminated)
215     * and running (i.e., not blocked on joins or other managed sync)
216     * threads, packed into one int to ensure consistent snapshot when
217     * making decisions about creating and suspending spare
218     * threads. Updated only by CAS. Note: CASes in
219     * updateRunningCount and preJoin running active count is in low
220     * word, so need to be modified if this changes
221     */
222     private volatile int workerCounts;
223    
224     private static int totalCountOf(int s) { return s >>> 16; }
225     private static int runningCountOf(int s) { return s & shortMask; }
226     private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
227    
228     /**
229     * Add delta (which may be negative) to running count. This must
230     * be called before (with negative arg) and after (with positive)
231     * any managed synchronization (i.e., mainly, joins)
232     * @param delta the number to add
233     */
234     final void updateRunningCount(int delta) {
235     int s;
236     do;while (!casWorkerCounts(s = workerCounts, s + delta));
237     }
238    
239     /**
240     * Add delta (which may be negative) to both total and running
241     * count. This must be called upon creation and termination of
242     * worker threads.
243     * @param delta the number to add
244     */
245     private void updateWorkerCount(int delta) {
246     int d = delta + (delta << 16); // add to both lo and hi parts
247     int s;
248     do;while (!casWorkerCounts(s = workerCounts, s + d));
249     }
250    
251     /**
252     * Lifecycle control. High word contains runState, low word
253     * contains the number of workers that are (probably) executing
254     * tasks. This value is atomically incremented before a worker
255     * gets a task to run, and decremented when worker has no tasks
256     * and cannot find any. These two fields are bundled together to
257     * support correct termination triggering. Note: activeCount
258     * CAS'es cheat by assuming active count is in low word, so need
259     * to be modified if this changes
260     */
261     private volatile int runControl;
262    
263     // RunState values. Order among values matters
264     private static final int RUNNING = 0;
265     private static final int SHUTDOWN = 1;
266     private static final int TERMINATING = 2;
267     private static final int TERMINATED = 3;
268    
269     private static int runStateOf(int c) { return c >>> 16; }
270     private static int activeCountOf(int c) { return c & shortMask; }
271     private static int runControlFor(int r, int a) { return (r << 16) + a; }
272    
273     /**
274 dl 1.4 * Try incrementing active count; fail on contention. Called by
275     * workers before/during executing tasks.
276     * @return true on success;
277 dl 1.1 */
278 dl 1.4 final boolean tryIncrementActiveCount() {
279     int c = runControl;
280     return casRunControl(c, c+1);
281 dl 1.1 }
282    
283     /**
284 dl 1.4 * Try decrementing active count; fail on contention.
285     * Possibly trigger termination on success
286 dl 1.1 * Called by workers when they can't find tasks.
287 dl 1.4 * @return true on success
288 dl 1.1 */
289 dl 1.4 final boolean tryDecrementActiveCount() {
290     int c = runControl;
291     int nextc = c - 1;
292     if (!casRunControl(c, nextc))
293     return false;
294 dl 1.1 if (canTerminateOnShutdown(nextc))
295     terminateOnShutdown();
296 dl 1.4 return true;
297 dl 1.1 }
298    
299     /**
300     * Return true if argument represents zero active count and
301     * nonzero runstate, which is the triggering condition for
302     * terminating on shutdown.
303     */
304     private static boolean canTerminateOnShutdown(int c) {
305     return ((c & -c) >>> 16) != 0; // i.e. least bit is nonzero runState bit
306     }
307    
308     /**
309     * Transition run state to at least the given state. Return true
310     * if not already at least given state.
311     */
312     private boolean transitionRunStateTo(int state) {
313     for (;;) {
314     int c = runControl;
315     if (runStateOf(c) >= state)
316     return false;
317     if (casRunControl(c, runControlFor(state, activeCountOf(c))))
318     return true;
319     }
320     }
321    
322     /**
323     * Controls whether to add spares to maintain parallelism
324     */
325     private volatile boolean maintainsParallelism;
326    
327     // Constructors
328    
329     /**
330     * Creates a ForkJoinPool with a pool size equal to the number of
331     * processors available on the system and using the default
332     * ForkJoinWorkerThreadFactory,
333     * @throws SecurityException if a security manager exists and
334     * the caller is not permitted to modify threads
335     * because it does not hold {@link
336 dl 1.2 * java.lang.RuntimePermission}<code>("modifyThread")</code>,
337 dl 1.1 */
338     public ForkJoinPool() {
339     this(Runtime.getRuntime().availableProcessors(),
340     defaultForkJoinWorkerThreadFactory);
341     }
342    
343     /**
344     * Creates a ForkJoinPool with the indicated parellelism level
345     * threads, and using the default ForkJoinWorkerThreadFactory,
346     * @param parallelism the number of worker threads
347     * @throws IllegalArgumentException if parallelism less than or
348     * equal to zero
349     * @throws SecurityException if a security manager exists and
350     * the caller is not permitted to modify threads
351     * because it does not hold {@link
352 dl 1.2 * java.lang.RuntimePermission}<code>("modifyThread")</code>,
353 dl 1.1 */
354     public ForkJoinPool(int parallelism) {
355     this(parallelism, defaultForkJoinWorkerThreadFactory);
356     }
357    
358     /**
359 dl 1.2 * Creates a ForkJoinPool with parallelism equal to the number of
360 dl 1.1 * processors available on the system and using the given
361     * ForkJoinWorkerThreadFactory,
362     * @param factory the factory for creating new threads
363     * @throws NullPointerException if factory is null
364     * @throws SecurityException if a security manager exists and
365     * the caller is not permitted to modify threads
366     * because it does not hold {@link
367 dl 1.2 * java.lang.RuntimePermission}<code>("modifyThread")</code>,
368 dl 1.1 */
369     public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
370     this(Runtime.getRuntime().availableProcessors(), factory);
371     }
372    
373     /**
374 dl 1.2 * Creates a ForkJoinPool with the given parallelism and factory.
375 dl 1.1 *
376     * @param parallelism the targeted number of worker threads
377     * @param factory the factory for creating new threads
378     * @throws IllegalArgumentException if parallelism less than or
379     * equal to zero, or greater than implementation limit.
380     * @throws NullPointerException if factory is null
381     * @throws SecurityException if a security manager exists and
382     * the caller is not permitted to modify threads
383     * because it does not hold {@link
384 dl 1.2 * java.lang.RuntimePermission}<code>("modifyThread")</code>,
385 dl 1.1 */
386     public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
387     if (parallelism <= 0 || parallelism > MAX_THREADS)
388     throw new IllegalArgumentException();
389     if (factory == null)
390     throw new NullPointerException();
391     checkPermission();
392     this.factory = factory;
393     this.parallelism = parallelism;
394     this.maxPoolSize = MAX_THREADS;
395     this.maintainsParallelism = true;
396     this.poolNumber = poolNumberGenerator.incrementAndGet();
397     this.workerLock = new ReentrantLock();
398     this.termination = workerLock.newCondition();
399     this.stealCount = new AtomicLong();
400     this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
401 dl 1.6 // worker array and workers are lazily constructed
402 dl 1.1 }
403    
404     /**
405     * Create new worker using factory.
406     * @param index the index to assign worker
407     * @return new worker, or null of factory failed
408     */
409     private ForkJoinWorkerThread createWorker(int index) {
410     Thread.UncaughtExceptionHandler h = ueh;
411     ForkJoinWorkerThread w = factory.newThread(this);
412     if (w != null) {
413     w.poolIndex = index;
414     w.setDaemon(true);
415 dl 1.6 w.setAsyncMode(locallyFifo);
416 dl 1.1 w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
417     if (h != null)
418     w.setUncaughtExceptionHandler(h);
419     }
420     return w;
421     }
422    
423     /**
424     * Return a good size for worker array given pool size.
425     * Currently requires size to be a power of two.
426     */
427     private static int arraySizeFor(int ps) {
428     return ps <= 1? 1 : (1 << (32 - Integer.numberOfLeadingZeros(ps-1)));
429     }
430    
431     /**
432 dl 1.6 * Create or resize array if necessary to hold newLength.
433     * Call only under exlusion or lock
434 dl 1.1 * @return the array
435     */
436     private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
437     ForkJoinWorkerThread[] ws = workers;
438     if (ws == null)
439     return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
440     else if (newLength > ws.length)
441     return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
442     else
443     return ws;
444     }
445    
446     /**
447     * Try to shrink workers into smaller array after one or more terminate
448     */
449     private void tryShrinkWorkerArray() {
450     ForkJoinWorkerThread[] ws = workers;
451 dl 1.6 if (ws != null) {
452     int len = ws.length;
453     int last = len - 1;
454     while (last >= 0 && ws[last] == null)
455     --last;
456     int newLength = arraySizeFor(last+1);
457     if (newLength < len)
458     workers = Arrays.copyOf(ws, newLength);
459     }
460 dl 1.1 }
461    
462     /**
463 dl 1.6 * Initialize workers if necessary
464 dl 1.1 */
465 dl 1.6 final void ensureWorkerInitialization() {
466     ForkJoinWorkerThread[] ws = workers;
467     if (ws == null) {
468     final ReentrantLock lock = this.workerLock;
469     lock.lock();
470     try {
471     ws = workers;
472     if (ws == null) {
473     int ps = parallelism;
474     ws = ensureWorkerArrayCapacity(ps);
475     for (int i = 0; i < ps; ++i) {
476     ForkJoinWorkerThread w = createWorker(i);
477     if (w != null) {
478     ws[i] = w;
479     w.start();
480     updateWorkerCount(1);
481     }
482     }
483 dl 1.1 }
484 dl 1.6 } finally {
485     lock.unlock();
486 dl 1.1 }
487     }
488     }
489    
490     /**
491     * Worker creation and startup for threads added via setParallelism.
492     */
493     private void createAndStartAddedWorkers() {
494     resumeAllSpares(); // Allow spares to convert to nonspare
495     int ps = parallelism;
496     ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
497     int len = ws.length;
498     // Sweep through slots, to keep lowest indices most populated
499     int k = 0;
500     while (k < len) {
501     if (ws[k] != null) {
502     ++k;
503     continue;
504     }
505     int s = workerCounts;
506     int tc = totalCountOf(s);
507     int rc = runningCountOf(s);
508     if (rc >= ps || tc >= ps)
509     break;
510     if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
511     ForkJoinWorkerThread w = createWorker(k);
512     if (w != null) {
513     ws[k++] = w;
514     w.start();
515     }
516     else {
517     updateWorkerCount(-1); // back out on failed creation
518     break;
519     }
520     }
521     }
522     }
523    
524     // Execution methods
525    
526     /**
527     * Common code for execute, invoke and submit
528     */
529     private <T> void doSubmit(ForkJoinTask<T> task) {
530     if (isShutdown())
531     throw new RejectedExecutionException();
532 dl 1.6 if (workers == null)
533     ensureWorkerInitialization();
534 dl 1.1 submissionQueue.offer(task);
535 dl 1.4 signalIdleWorkers();
536 dl 1.1 }
537    
538     /**
539     * Performs the given task; returning its result upon completion
540     * @param task the task
541     * @return the task's result
542     * @throws NullPointerException if task is null
543     * @throws RejectedExecutionException if pool is shut down
544     */
545     public <T> T invoke(ForkJoinTask<T> task) {
546     doSubmit(task);
547     return task.join();
548     }
549    
550     /**
551     * Arranges for (asynchronous) execution of the given task.
552     * @param task the task
553     * @throws NullPointerException if task is null
554     * @throws RejectedExecutionException if pool is shut down
555     */
556     public <T> void execute(ForkJoinTask<T> task) {
557     doSubmit(task);
558     }
559    
560     // AbstractExecutorService methods
561    
562     public void execute(Runnable task) {
563     doSubmit(new AdaptedRunnable<Void>(task, null));
564     }
565    
566     public <T> ForkJoinTask<T> submit(Callable<T> task) {
567     ForkJoinTask<T> job = new AdaptedCallable<T>(task);
568     doSubmit(job);
569     return job;
570     }
571    
572     public <T> ForkJoinTask<T> submit(Runnable task, T result) {
573     ForkJoinTask<T> job = new AdaptedRunnable<T>(task, result);
574     doSubmit(job);
575     return job;
576     }
577    
578     public ForkJoinTask<?> submit(Runnable task) {
579     ForkJoinTask<Void> job = new AdaptedRunnable<Void>(task, null);
580     doSubmit(job);
581     return job;
582     }
583    
584     /**
585     * Adaptor for Runnables. This implements RunnableFuture
586     * to be compliant with AbstractExecutorService constraints
587     */
588     static final class AdaptedRunnable<T> extends ForkJoinTask<T>
589     implements RunnableFuture<T> {
590     final Runnable runnable;
591     final T resultOnCompletion;
592     T result;
593     AdaptedRunnable(Runnable runnable, T result) {
594     if (runnable == null) throw new NullPointerException();
595     this.runnable = runnable;
596     this.resultOnCompletion = result;
597     }
598     public T getRawResult() { return result; }
599     public void setRawResult(T v) { result = v; }
600     public boolean exec() {
601     runnable.run();
602     result = resultOnCompletion;
603     return true;
604     }
605     public void run() { invoke(); }
606     }
607    
608     /**
609     * Adaptor for Callables
610     */
611     static final class AdaptedCallable<T> extends ForkJoinTask<T>
612     implements RunnableFuture<T> {
613     final Callable<T> callable;
614     T result;
615     AdaptedCallable(Callable<T> callable) {
616     if (callable == null) throw new NullPointerException();
617     this.callable = callable;
618     }
619     public T getRawResult() { return result; }
620     public void setRawResult(T v) { result = v; }
621     public boolean exec() {
622     try {
623     result = callable.call();
624     return true;
625     } catch (Error err) {
626     throw err;
627     } catch (RuntimeException rex) {
628     throw rex;
629     } catch (Exception ex) {
630     throw new RuntimeException(ex);
631     }
632     }
633     public void run() { invoke(); }
634     }
635    
636     public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
637     ArrayList<ForkJoinTask<T>> ts =
638     new ArrayList<ForkJoinTask<T>>(tasks.size());
639     for (Callable<T> c : tasks)
640     ts.add(new AdaptedCallable<T>(c));
641     invoke(new InvokeAll<T>(ts));
642     return (List<Future<T>>)(List)ts;
643     }
644    
645     static final class InvokeAll<T> extends RecursiveAction {
646     final ArrayList<ForkJoinTask<T>> tasks;
647     InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
648     public void compute() {
649     try { invokeAll(tasks); } catch(Exception ignore) {}
650     }
651     }
652    
653     // Configuration and status settings and queries
654    
655     /**
656     * Returns the factory used for constructing new workers
657     *
658     * @return the factory used for constructing new workers
659     */
660     public ForkJoinWorkerThreadFactory getFactory() {
661     return factory;
662     }
663    
664     /**
665 dl 1.2 * Returns the handler for internal worker threads that terminate
666     * due to unrecoverable errors encountered while executing tasks.
667     * @return the handler, or null if none
668     */
669     public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
670     Thread.UncaughtExceptionHandler h;
671     final ReentrantLock lock = this.workerLock;
672     lock.lock();
673     try {
674     h = ueh;
675     } finally {
676     lock.unlock();
677     }
678     return h;
679     }
680    
681     /**
682     * Sets the handler for internal worker threads that terminate due
683     * to unrecoverable errors encountered while executing tasks.
684     * Unless set, the current default or ThreadGroup handler is used
685     * as handler.
686     *
687     * @param h the new handler
688     * @return the old handler, or null if none
689     * @throws SecurityException if a security manager exists and
690     * the caller is not permitted to modify threads
691     * because it does not hold {@link
692     * java.lang.RuntimePermission}<code>("modifyThread")</code>,
693     */
694     public Thread.UncaughtExceptionHandler
695     setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
696     checkPermission();
697     Thread.UncaughtExceptionHandler old = null;
698     final ReentrantLock lock = this.workerLock;
699     lock.lock();
700     try {
701     old = ueh;
702     ueh = h;
703     ForkJoinWorkerThread[] ws = workers;
704 dl 1.6 if (ws != null) {
705     for (int i = 0; i < ws.length; ++i) {
706     ForkJoinWorkerThread w = ws[i];
707     if (w != null)
708     w.setUncaughtExceptionHandler(h);
709     }
710 dl 1.2 }
711     } finally {
712     lock.unlock();
713     }
714     return old;
715     }
716    
717    
718     /**
719 dl 1.1 * Sets the target paralleism level of this pool.
720     * @param parallelism the target parallelism
721     * @throws IllegalArgumentException if parallelism less than or
722     * equal to zero or greater than maximum size bounds.
723     * @throws SecurityException if a security manager exists and
724     * the caller is not permitted to modify threads
725     * because it does not hold {@link
726 dl 1.2 * java.lang.RuntimePermission}<code>("modifyThread")</code>,
727 dl 1.1 */
728     public void setParallelism(int parallelism) {
729     checkPermission();
730     if (parallelism <= 0 || parallelism > maxPoolSize)
731     throw new IllegalArgumentException();
732     final ReentrantLock lock = this.workerLock;
733     lock.lock();
734     try {
735     if (!isTerminating()) {
736     int p = this.parallelism;
737     this.parallelism = parallelism;
738     if (parallelism > p)
739     createAndStartAddedWorkers();
740     else
741     trimSpares();
742     }
743     } finally {
744     lock.unlock();
745     }
746 dl 1.4 signalIdleWorkers();
747 dl 1.1 }
748    
749     /**
750     * Returns the targeted number of worker threads in this pool.
751     *
752     * @return the targeted number of worker threads in this pool
753     */
754     public int getParallelism() {
755     return parallelism;
756     }
757    
758     /**
759     * Returns the number of worker threads that have started but not
760     * yet terminated. This result returned by this method may differ
761 dl 1.2 * from <code>getParallelism</code> when threads are created to
762 dl 1.1 * maintain parallelism when others are cooperatively blocked.
763     *
764     * @return the number of worker threads
765     */
766     public int getPoolSize() {
767     return totalCountOf(workerCounts);
768     }
769    
770     /**
771     * Returns the maximum number of threads allowed to exist in the
772     * pool, even if there are insufficient unblocked running threads.
773     * @return the maximum
774     */
775     public int getMaximumPoolSize() {
776     return maxPoolSize;
777     }
778    
779     /**
780     * Sets the maximum number of threads allowed to exist in the
781     * pool, even if there are insufficient unblocked running threads.
782     * Setting this value has no effect on current pool size. It
783     * controls construction of new threads.
784     * @throws IllegalArgumentException if negative or greater then
785     * internal implementation limit.
786     */
787     public void setMaximumPoolSize(int newMax) {
788     if (newMax < 0 || newMax > MAX_THREADS)
789     throw new IllegalArgumentException();
790     maxPoolSize = newMax;
791     }
792    
793    
794     /**
795     * Returns true if this pool dynamically maintains its target
796     * parallelism level. If false, new threads are added only to
797     * avoid possible starvation.
798     * This setting is by default true;
799     * @return true if maintains parallelism
800     */
801     public boolean getMaintainsParallelism() {
802     return maintainsParallelism;
803     }
804    
805     /**
806     * Sets whether this pool dynamically maintains its target
807     * parallelism level. If false, new threads are added only to
808     * avoid possible starvation.
809     * @param enable true to maintains parallelism
810     */
811     public void setMaintainsParallelism(boolean enable) {
812     maintainsParallelism = enable;
813     }
814    
815     /**
816 dl 1.6 * Establishes local first-in-first-out scheduling mode for forked
817     * tasks that are never joined. This mode may be more appropriate
818     * than default locally stack-based mode in applications in which
819     * worker threads only process asynchronous tasks. This method is
820     * designed to be invoked only when pool is quiescent, and
821     * typically only before any tasks are submitted. The effects of
822     * invocations at ather times may be unpredictable.
823     *
824     * @param async if true, use locally FIFO scheduling
825     * @return the previous mode.
826     */
827     public boolean setAsyncMode(boolean async) {
828     boolean oldMode = locallyFifo;
829     locallyFifo = async;
830     ForkJoinWorkerThread[] ws = workers;
831     if (ws != null) {
832     for (int i = 0; i < ws.length; ++i) {
833     ForkJoinWorkerThread t = ws[i];
834     if (t != null)
835     t.setAsyncMode(async);
836     }
837     }
838     return oldMode;
839     }
840    
841     /**
842     * Returns true if this pool uses local first-in-first-out
843     * scheduling mode for forked tasks that are never joined.
844     *
845     * @return true if this pool uses async mode.
846     */
847     public boolean getAsyncMode() {
848     return locallyFifo;
849     }
850    
851     /**
852 dl 1.2 * Returns an estimate of the number of worker threads that are
853     * not blocked waiting to join tasks or for other managed
854 dl 1.1 * synchronization.
855     *
856     * @return the number of worker threads
857     */
858     public int getRunningThreadCount() {
859     return runningCountOf(workerCounts);
860     }
861    
862     /**
863 dl 1.2 * Returns an estimate of the number of threads that are currently
864 dl 1.1 * stealing or executing tasks. This method may overestimate the
865     * number of active threads.
866     * @return the number of active threads.
867     */
868     public int getActiveThreadCount() {
869     return activeCountOf(runControl);
870     }
871    
872     /**
873 dl 1.2 * Returns an estimate of the number of threads that are currently
874 dl 1.1 * idle waiting for tasks. This method may underestimate the
875     * number of idle threads.
876     * @return the number of idle threads.
877     */
878     final int getIdleThreadCount() {
879     int c = runningCountOf(workerCounts) - activeCountOf(runControl);
880     return (c <= 0)? 0 : c;
881     }
882    
883     /**
884     * Returns true if all worker threads are currently idle. An idle
885     * worker is one that cannot obtain a task to execute because none
886     * are available to steal from other threads, and there are no
887     * pending submissions to the pool. This method is conservative:
888     * It might not return true immediately upon idleness of all
889     * threads, but will eventually become true if threads remain
890     * inactive.
891     * @return true if all threads are currently idle
892     */
893     public boolean isQuiescent() {
894     return activeCountOf(runControl) == 0;
895     }
896    
897     /**
898     * Returns an estimate of the total number of tasks stolen from
899     * one thread's work queue by another. The reported value
900     * underestimates the actual total number of steals when the pool
901     * is not quiescent. This value may be useful for monitoring and
902     * tuning fork/join programs: In general, steal counts should be
903     * high enough to keep threads busy, but low enough to avoid
904     * overhead and contention across threads.
905     * @return the number of steals.
906     */
907     public long getStealCount() {
908     return stealCount.get();
909     }
910    
911     /**
912     * Accumulate steal count from a worker. Call only
913     * when worker known to be idle.
914     */
915     private void updateStealCount(ForkJoinWorkerThread w) {
916     int sc = w.getAndClearStealCount();
917     if (sc != 0)
918     stealCount.addAndGet(sc);
919     }
920    
921     /**
922 dl 1.2 * Returns an estimate of the total number of tasks currently held
923     * in queues by worker threads (but not including tasks submitted
924     * to the pool that have not begun executing). This value is only
925     * an approximation, obtained by iterating across all threads in
926     * the pool. This method may be useful for tuning task
927     * granularities.
928 dl 1.1 * @return the number of queued tasks.
929     */
930     public long getQueuedTaskCount() {
931     long count = 0;
932     ForkJoinWorkerThread[] ws = workers;
933 dl 1.6 if (ws != null) {
934     for (int i = 0; i < ws.length; ++i) {
935     ForkJoinWorkerThread t = ws[i];
936     if (t != null)
937     count += t.getQueueSize();
938     }
939 dl 1.1 }
940     return count;
941     }
942    
943     /**
944 dl 1.2 * Returns an estimate of the number tasks submitted to this pool
945 dl 1.1 * that have not yet begun executing. This method takes time
946     * proportional to the number of submissions.
947     * @return the number of queued submissions.
948     */
949     public int getQueuedSubmissionCount() {
950     return submissionQueue.size();
951     }
952    
953     /**
954     * Returns true if there are any tasks submitted to this pool
955     * that have not yet begun executing.
956 dl 1.2 * @return <code>true</code> if there are any queued submissions.
957 dl 1.1 */
958     public boolean hasQueuedSubmissions() {
959     return !submissionQueue.isEmpty();
960     }
961    
962     /**
963     * Removes and returns the next unexecuted submission if one is
964     * available. This method may be useful in extensions to this
965     * class that re-assign work in systems with multiple pools.
966     * @return the next submission, or null if none
967     */
968     protected ForkJoinTask<?> pollSubmission() {
969     return submissionQueue.poll();
970     }
971    
972     /**
973 dl 1.6 * Removes all available unexecuted submitted and forked tasks
974     * from scheduling queues and adds them to the given collection,
975     * without altering their execution status. These may include
976     * artifically generated or wrapped tasks. This method id designed
977     * to be invoked only when the pool is known to be
978     * quiescent. Invocations at other times may not remove all
979     * tasks. A failure encountered while attempting to add elements
980     * to collection <tt>c</tt> may result in elements being in
981     * neither, either or both collections when the associated
982     * exception is thrown. The behavior of this operation is
983     * undefined if the specified collection is modified while the
984     * operation is in progress.
985     * @param c the collection to transfer elements into
986     * @return the number of elements transferred
987     */
988     protected int drainTasksTo(Collection<ForkJoinTask<?>> c) {
989     int n = submissionQueue.drainTo(c);
990     ForkJoinWorkerThread[] ws = workers;
991     if (ws != null) {
992     for (int i = 0; i < ws.length; ++i) {
993     ForkJoinWorkerThread w = ws[i];
994     if (w != null)
995     n += w.drainTasksTo(c);
996     }
997     }
998     return n;
999     }
1000    
1001     /**
1002 dl 1.1 * Returns a string identifying this pool, as well as its state,
1003     * including indications of run state, parallelism level, and
1004     * worker and task counts.
1005     *
1006     * @return a string identifying this pool, as well as its state
1007     */
1008     public String toString() {
1009     int ps = parallelism;
1010     int wc = workerCounts;
1011     int rc = runControl;
1012     long st = getStealCount();
1013     long qt = getQueuedTaskCount();
1014     long qs = getQueuedSubmissionCount();
1015     return super.toString() +
1016     "[" + runStateToString(runStateOf(rc)) +
1017     ", parallelism = " + ps +
1018     ", size = " + totalCountOf(wc) +
1019     ", active = " + activeCountOf(rc) +
1020     ", running = " + runningCountOf(wc) +
1021     ", steals = " + st +
1022     ", tasks = " + qt +
1023     ", submissions = " + qs +
1024     "]";
1025     }
1026    
1027     private static String runStateToString(int rs) {
1028     switch(rs) {
1029     case RUNNING: return "Running";
1030     case SHUTDOWN: return "Shutting down";
1031     case TERMINATING: return "Terminating";
1032     case TERMINATED: return "Terminated";
1033     default: throw new Error("Unknown run state");
1034     }
1035     }
1036    
1037     // lifecycle control
1038    
1039     /**
1040     * Initiates an orderly shutdown in which previously submitted
1041     * tasks are executed, but no new tasks will be accepted.
1042     * Invocation has no additional effect if already shut down.
1043     * Tasks that are in the process of being submitted concurrently
1044     * during the course of this method may or may not be rejected.
1045     * @throws SecurityException if a security manager exists and
1046     * the caller is not permitted to modify threads
1047     * because it does not hold {@link
1048 dl 1.2 * java.lang.RuntimePermission}<code>("modifyThread")</code>,
1049 dl 1.1 */
1050     public void shutdown() {
1051     checkPermission();
1052     transitionRunStateTo(SHUTDOWN);
1053     if (canTerminateOnShutdown(runControl))
1054     terminateOnShutdown();
1055     }
1056    
1057     /**
1058     * Attempts to stop all actively executing tasks, and cancels all
1059     * waiting tasks. Tasks that are in the process of being
1060     * submitted or executed concurrently during the course of this
1061     * method may or may not be rejected. Unlike some other executors,
1062 dl 1.6 * this method cancels rather than collects non-executed tasks
1063     * upon termination, so always returns an empty list. However, you
1064     * can use method <code>drainTasksTo</code> before invoking this
1065     * method to transfer unexecuted tasks to another collection.
1066 dl 1.1 * @return an empty list
1067     * @throws SecurityException if a security manager exists and
1068     * the caller is not permitted to modify threads
1069     * because it does not hold {@link
1070 dl 1.2 * java.lang.RuntimePermission}<code>("modifyThread")</code>,
1071 dl 1.1 */
1072     public List<Runnable> shutdownNow() {
1073     checkPermission();
1074     terminate();
1075     return Collections.emptyList();
1076     }
1077    
1078     /**
1079 dl 1.2 * Returns <code>true</code> if all tasks have completed following shut down.
1080 dl 1.1 *
1081 dl 1.2 * @return <code>true</code> if all tasks have completed following shut down
1082 dl 1.1 */
1083     public boolean isTerminated() {
1084     return runStateOf(runControl) == TERMINATED;
1085     }
1086    
1087     /**
1088 dl 1.2 * Returns <code>true</code> if the process of termination has
1089 dl 1.1 * commenced but possibly not yet completed.
1090     *
1091 dl 1.2 * @return <code>true</code> if terminating
1092 dl 1.1 */
1093     public boolean isTerminating() {
1094     return runStateOf(runControl) >= TERMINATING;
1095     }
1096    
1097     /**
1098 dl 1.2 * Returns <code>true</code> if this pool has been shut down.
1099 dl 1.1 *
1100 dl 1.2 * @return <code>true</code> if this pool has been shut down
1101 dl 1.1 */
1102     public boolean isShutdown() {
1103     return runStateOf(runControl) >= SHUTDOWN;
1104     }
1105    
1106     /**
1107     * Blocks until all tasks have completed execution after a shutdown
1108     * request, or the timeout occurs, or the current thread is
1109     * interrupted, whichever happens first.
1110     *
1111     * @param timeout the maximum time to wait
1112     * @param unit the time unit of the timeout argument
1113 dl 1.2 * @return <code>true</code> if this executor terminated and
1114     * <code>false</code> if the timeout elapsed before termination
1115 dl 1.1 * @throws InterruptedException if interrupted while waiting
1116     */
1117     public boolean awaitTermination(long timeout, TimeUnit unit)
1118     throws InterruptedException {
1119     long nanos = unit.toNanos(timeout);
1120     final ReentrantLock lock = this.workerLock;
1121     lock.lock();
1122     try {
1123     for (;;) {
1124     if (isTerminated())
1125     return true;
1126     if (nanos <= 0)
1127     return false;
1128     nanos = termination.awaitNanos(nanos);
1129     }
1130     } finally {
1131     lock.unlock();
1132     }
1133     }
1134    
1135     // Shutdown and termination support
1136    
1137     /**
1138     * Callback from terminating worker. Null out the corresponding
1139     * workers slot, and if terminating, try to terminate, else try to
1140     * shrink workers array.
1141     * @param w the worker
1142     */
1143     final void workerTerminated(ForkJoinWorkerThread w) {
1144     updateStealCount(w);
1145     updateWorkerCount(-1);
1146     final ReentrantLock lock = this.workerLock;
1147     lock.lock();
1148     try {
1149     ForkJoinWorkerThread[] ws = workers;
1150 dl 1.6 if (ws != null) {
1151     int idx = w.poolIndex;
1152     if (idx >= 0 && idx < ws.length && ws[idx] == w)
1153     ws[idx] = null;
1154     if (totalCountOf(workerCounts) == 0) {
1155     terminate(); // no-op if already terminating
1156     transitionRunStateTo(TERMINATED);
1157     termination.signalAll();
1158     }
1159     else if (!isTerminating()) {
1160     tryShrinkWorkerArray();
1161     tryResumeSpare(true); // allow replacement
1162     }
1163 dl 1.1 }
1164     } finally {
1165     lock.unlock();
1166     }
1167 dl 1.4 signalIdleWorkers();
1168 dl 1.1 }
1169    
1170     /**
1171     * Initiate termination.
1172     */
1173     private void terminate() {
1174     if (transitionRunStateTo(TERMINATING)) {
1175     stopAllWorkers();
1176     resumeAllSpares();
1177 dl 1.4 signalIdleWorkers();
1178 dl 1.1 cancelQueuedSubmissions();
1179     cancelQueuedWorkerTasks();
1180     interruptUnterminatedWorkers();
1181 dl 1.4 signalIdleWorkers(); // resignal after interrupt
1182 dl 1.1 }
1183     }
1184    
1185     /**
1186     * Possibly terminate when on shutdown state
1187     */
1188     private void terminateOnShutdown() {
1189     if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1190     terminate();
1191     }
1192    
1193     /**
1194     * Clear out and cancel submissions
1195     */
1196     private void cancelQueuedSubmissions() {
1197     ForkJoinTask<?> task;
1198     while ((task = pollSubmission()) != null)
1199     task.cancel(false);
1200     }
1201    
1202     /**
1203     * Clean out worker queues.
1204     */
1205     private void cancelQueuedWorkerTasks() {
1206     final ReentrantLock lock = this.workerLock;
1207     lock.lock();
1208     try {
1209     ForkJoinWorkerThread[] ws = workers;
1210 dl 1.6 if (ws != null) {
1211     for (int i = 0; i < ws.length; ++i) {
1212     ForkJoinWorkerThread t = ws[i];
1213     if (t != null)
1214     t.cancelTasks();
1215     }
1216 dl 1.1 }
1217     } finally {
1218     lock.unlock();
1219     }
1220     }
1221    
1222     /**
1223     * Set each worker's status to terminating. Requires lock to avoid
1224     * conflicts with add/remove
1225     */
1226     private void stopAllWorkers() {
1227     final ReentrantLock lock = this.workerLock;
1228     lock.lock();
1229     try {
1230     ForkJoinWorkerThread[] ws = workers;
1231 dl 1.6 if (ws != null) {
1232     for (int i = 0; i < ws.length; ++i) {
1233     ForkJoinWorkerThread t = ws[i];
1234     if (t != null)
1235     t.shutdownNow();
1236     }
1237 dl 1.1 }
1238     } finally {
1239     lock.unlock();
1240     }
1241     }
1242    
1243     /**
1244     * Interrupt all unterminated workers. This is not required for
1245     * sake of internal control, but may help unstick user code during
1246     * shutdown.
1247     */
1248     private void interruptUnterminatedWorkers() {
1249     final ReentrantLock lock = this.workerLock;
1250     lock.lock();
1251     try {
1252     ForkJoinWorkerThread[] ws = workers;
1253 dl 1.6 if (ws != null) {
1254     for (int i = 0; i < ws.length; ++i) {
1255     ForkJoinWorkerThread t = ws[i];
1256     if (t != null && !t.isTerminated()) {
1257     try {
1258     t.interrupt();
1259     } catch (SecurityException ignore) {
1260     }
1261 dl 1.1 }
1262     }
1263     }
1264     } finally {
1265     lock.unlock();
1266     }
1267     }
1268    
1269    
1270     /*
1271 dl 1.4 * Nodes for event barrier to manage idle threads. Queue nodes
1272     * are basic Treiber stack nodes, also used for spare stack.
1273 dl 1.1 *
1274     * The event barrier has an event count and a wait queue (actually
1275     * a Treiber stack). Workers are enabled to look for work when
1276 dl 1.4 * the eventCount is incremented. If they fail to find work, they
1277     * may wait for next count. Upon release, threads help others wake
1278     * up.
1279     *
1280     * Synchronization events occur only in enough contexts to
1281     * maintain overall liveness:
1282 dl 1.1 *
1283     * - Submission of a new task to the pool
1284 dl 1.4 * - Resizes or other changes to the workers array
1285 dl 1.1 * - pool termination
1286     * - A worker pushing a task on an empty queue
1287     *
1288 dl 1.4 * The case of pushing a task occurs often enough, and is heavy
1289     * enough compared to simple stack pushes, to require special
1290     * handling: Method signalWork returns without advancing count if
1291     * the queue appears to be empty. This would ordinarily result in
1292     * races causing some queued waiters not to be woken up. To avoid
1293     * this, the first worker enqueued in method sync (see
1294     * syncIsReleasable) rescans for tasks after being enqueued, and
1295     * helps signal if any are found. This works well because the
1296     * worker has nothing better to do, and so might as well help
1297     * alleviate the overhead and contention on the threads actually
1298     * doing work. Also, since event counts increments on task
1299     * availability exist to maintain liveness (rather than to force
1300     * refreshes etc), it is OK for callers to exit early if
1301     * contending with another signaller.
1302 dl 1.1 */
1303     static final class WaitQueueNode {
1304     WaitQueueNode next; // only written before enqueued
1305     volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1306     final long count; // unused for spare stack
1307 dl 1.4
1308     WaitQueueNode(long c, ForkJoinWorkerThread w) {
1309 dl 1.1 count = c;
1310     thread = w;
1311     }
1312 dl 1.4
1313     /**
1314     * Wake up waiter, returning false if known to already
1315     */
1316     boolean signal() {
1317 dl 1.1 ForkJoinWorkerThread t = thread;
1318 dl 1.4 if (t == null)
1319     return false;
1320 dl 1.1 thread = null;
1321 dl 1.4 LockSupport.unpark(t);
1322     return true;
1323     }
1324    
1325     /**
1326     * Await release on sync
1327     */
1328     void awaitSyncRelease(ForkJoinPool p) {
1329     while (thread != null && !p.syncIsReleasable(this))
1330     LockSupport.park(this);
1331     }
1332    
1333     /**
1334     * Await resumption as spare
1335     */
1336     void awaitSpareRelease() {
1337     while (thread != null) {
1338     if (!Thread.interrupted())
1339     LockSupport.park(this);
1340 dl 1.1 }
1341     }
1342     }
1343    
1344     /**
1345 dl 1.4 * Ensures that no thread is waiting for count to advance from the
1346     * current value of eventCount read on entry to this method, by
1347     * releasing waiting threads if necessary.
1348     * @return the count
1349 dl 1.1 */
1350 dl 1.4 final long ensureSync() {
1351     long c = eventCount;
1352     WaitQueueNode q;
1353     while ((q = syncStack) != null && q.count < c) {
1354     if (casBarrierStack(q, null)) {
1355 dl 1.1 do {
1356 dl 1.4 q.signal();
1357 dl 1.1 } while ((q = q.next) != null);
1358     break;
1359     }
1360     }
1361     return c;
1362     }
1363    
1364     /**
1365 dl 1.4 * Increments event count and releases waiting threads.
1366 dl 1.1 */
1367 dl 1.4 private void signalIdleWorkers() {
1368 dl 1.1 long c;
1369     do;while (!casEventCount(c = eventCount, c+1));
1370 dl 1.4 ensureSync();
1371 dl 1.1 }
1372    
1373     /**
1374 dl 1.4 * Signal threads waiting to poll a task. Because method sync
1375     * rechecks availability, it is OK to only proceed if queue
1376     * appears to be non-empty, and OK to skip under contention to
1377     * increment count (since some other thread succeeded).
1378 dl 1.1 */
1379 dl 1.4 final void signalWork() {
1380 dl 1.1 long c;
1381 dl 1.4 WaitQueueNode q;
1382     if (syncStack != null &&
1383     casEventCount(c = eventCount, c+1) &&
1384     (((q = syncStack) != null && q.count <= c) &&
1385     (!casBarrierStack(q, q.next) || !q.signal())))
1386     ensureSync();
1387 dl 1.1 }
1388    
1389     /**
1390 dl 1.4 * Waits until event count advances from last value held by
1391     * caller, or if excess threads, caller is resumed as spare, or
1392     * caller or pool is terminating. Updates caller's event on exit.
1393 dl 1.1 * @param w the calling worker thread
1394     */
1395 dl 1.4 final void sync(ForkJoinWorkerThread w) {
1396     updateStealCount(w); // Transfer w's count while it is idle
1397 dl 1.1
1398 dl 1.4 while (!w.isShutdown() && !isTerminating() && !suspendIfSpare(w)) {
1399     long prev = w.lastEventCount;
1400 dl 1.1 WaitQueueNode node = null;
1401 dl 1.4 WaitQueueNode h;
1402 jsr166 1.5 while (eventCount == prev &&
1403 dl 1.4 ((h = syncStack) == null || h.count == prev)) {
1404     if (node == null)
1405     node = new WaitQueueNode(prev, w);
1406     if (casBarrierStack(node.next = h, node)) {
1407     node.awaitSyncRelease(this);
1408 dl 1.1 break;
1409     }
1410     }
1411 dl 1.4 long ec = ensureSync();
1412     if (ec != prev) {
1413     w.lastEventCount = ec;
1414     break;
1415     }
1416     }
1417     }
1418    
1419     /**
1420     * Returns true if worker waiting on sync can proceed:
1421     * - on signal (thread == null)
1422     * - on event count advance (winning race to notify vs signaller)
1423     * - on Interrupt
1424 jsr166 1.5 * - if the first queued node, we find work available
1425     * If node was not signalled and event count not advanced on exit,
1426 dl 1.4 * then we also help advance event count.
1427     * @return true if node can be released
1428     */
1429     final boolean syncIsReleasable(WaitQueueNode node) {
1430     long prev = node.count;
1431     if (!Thread.interrupted() && node.thread != null &&
1432     (node.next != null ||
1433     !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1434     eventCount == prev)
1435     return false;
1436     if (node.thread != null) {
1437     node.thread = null;
1438 dl 1.1 long ec = eventCount;
1439 dl 1.4 if (prev <= ec) // help signal
1440     casEventCount(ec, ec+1);
1441 dl 1.1 }
1442 dl 1.4 return true;
1443     }
1444    
1445     /**
1446     * Returns true if a new sync event occurred since last call to
1447     * sync or this method, if so, updating caller's count.
1448     */
1449     final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1450     long lc = w.lastEventCount;
1451     long ec = ensureSync();
1452     if (ec == lc)
1453     return false;
1454     w.lastEventCount = ec;
1455     return true;
1456 dl 1.1 }
1457    
1458     // Parallelism maintenance
1459    
1460     /**
1461     * Decrement running count; if too low, add spare.
1462     *
1463     * Conceptually, all we need to do here is add or resume a
1464     * spare thread when one is about to block (and remove or
1465     * suspend it later when unblocked -- see suspendIfSpare).
1466     * However, implementing this idea requires coping with
1467     * several problems: We have imperfect information about the
1468     * states of threads. Some count updates can and usually do
1469     * lag run state changes, despite arrangements to keep them
1470     * accurate (for example, when possible, updating counts
1471     * before signalling or resuming), especially when running on
1472     * dynamic JVMs that don't optimize the infrequent paths that
1473     * update counts. Generating too many threads can make these
1474     * problems become worse, because excess threads are more
1475     * likely to be context-switched with others, slowing them all
1476     * down, especially if there is no work available, so all are
1477     * busy scanning or idling. Also, excess spare threads can
1478     * only be suspended or removed when they are idle, not
1479     * immediately when they aren't needed. So adding threads will
1480     * raise parallelism level for longer than necessary. Also,
1481     * FJ applications often enounter highly transient peaks when
1482     * many threads are blocked joining, but for less time than it
1483     * takes to create or resume spares.
1484     *
1485     * @param joinMe if non-null, return early if done
1486     * @param maintainParallelism if true, try to stay within
1487     * target counts, else create only to avoid starvation
1488     * @return true if joinMe known to be done
1489     */
1490     final boolean preJoin(ForkJoinTask<?> joinMe, boolean maintainParallelism) {
1491     maintainParallelism &= maintainsParallelism; // overrride
1492     boolean dec = false; // true when running count decremented
1493     while (spareStack == null || !tryResumeSpare(dec)) {
1494     int counts = workerCounts;
1495     if (dec || (dec = casWorkerCounts(counts, --counts))) { // CAS cheat
1496     if (!needSpare(counts, maintainParallelism))
1497     break;
1498     if (joinMe.status < 0)
1499     return true;
1500     if (tryAddSpare(counts))
1501     break;
1502     }
1503     }
1504     return false;
1505     }
1506    
1507     /**
1508     * Same idea as preJoin
1509     */
1510     final boolean preBlock(ManagedBlocker blocker, boolean maintainParallelism){
1511     maintainParallelism &= maintainsParallelism;
1512     boolean dec = false;
1513     while (spareStack == null || !tryResumeSpare(dec)) {
1514     int counts = workerCounts;
1515     if (dec || (dec = casWorkerCounts(counts, --counts))) {
1516     if (!needSpare(counts, maintainParallelism))
1517     break;
1518     if (blocker.isReleasable())
1519     return true;
1520     if (tryAddSpare(counts))
1521     break;
1522     }
1523     }
1524     return false;
1525     }
1526    
1527     /**
1528     * Returns true if a spare thread appears to be needed. If
1529     * maintaining parallelism, returns true when the deficit in
1530     * running threads is more than the surplus of total threads, and
1531     * there is apparently some work to do. This self-limiting rule
1532     * means that the more threads that have already been added, the
1533     * less parallelism we will tolerate before adding another.
1534     * @param counts current worker counts
1535     * @param maintainParallelism try to maintain parallelism
1536     */
1537     private boolean needSpare(int counts, boolean maintainParallelism) {
1538     int ps = parallelism;
1539     int rc = runningCountOf(counts);
1540     int tc = totalCountOf(counts);
1541     int runningDeficit = ps - rc;
1542     int totalSurplus = tc - ps;
1543     return (tc < maxPoolSize &&
1544     (rc == 0 || totalSurplus < 0 ||
1545     (maintainParallelism &&
1546 jsr166 1.5 runningDeficit > totalSurplus &&
1547 dl 1.4 ForkJoinWorkerThread.hasQueuedTasks(workers))));
1548 dl 1.1 }
1549 jsr166 1.5
1550 dl 1.1 /**
1551     * Add a spare worker if lock available and no more than the
1552     * expected numbers of threads exist
1553     * @return true if successful
1554     */
1555     private boolean tryAddSpare(int expectedCounts) {
1556     final ReentrantLock lock = this.workerLock;
1557     int expectedRunning = runningCountOf(expectedCounts);
1558     int expectedTotal = totalCountOf(expectedCounts);
1559     boolean success = false;
1560     boolean locked = false;
1561     // confirm counts while locking; CAS after obtaining lock
1562     try {
1563     for (;;) {
1564     int s = workerCounts;
1565     int tc = totalCountOf(s);
1566     int rc = runningCountOf(s);
1567     if (rc > expectedRunning || tc > expectedTotal)
1568     break;
1569     if (!locked && !(locked = lock.tryLock()))
1570     break;
1571     if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1572     createAndStartSpare(tc);
1573     success = true;
1574     break;
1575     }
1576     }
1577     } finally {
1578     if (locked)
1579     lock.unlock();
1580     }
1581     return success;
1582     }
1583    
1584     /**
1585     * Add the kth spare worker. On entry, pool coounts are already
1586     * adjusted to reflect addition.
1587     */
1588     private void createAndStartSpare(int k) {
1589     ForkJoinWorkerThread w = null;
1590     ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1591     int len = ws.length;
1592     // Probably, we can place at slot k. If not, find empty slot
1593     if (k < len && ws[k] != null) {
1594     for (k = 0; k < len && ws[k] != null; ++k)
1595     ;
1596     }
1597 dl 1.3 if (k < len && !isTerminating() && (w = createWorker(k)) != null) {
1598 dl 1.1 ws[k] = w;
1599     w.start();
1600     }
1601     else
1602     updateWorkerCount(-1); // adjust on failure
1603 dl 1.4 signalIdleWorkers();
1604 dl 1.1 }
1605    
1606     /**
1607     * Suspend calling thread w if there are excess threads. Called
1608     * only from sync. Spares are enqueued in a Treiber stack
1609     * using the same WaitQueueNodes as barriers. They are resumed
1610     * mainly in preJoin, but are also woken on pool events that
1611     * require all threads to check run state.
1612     * @param w the caller
1613     */
1614     private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1615     WaitQueueNode node = null;
1616     int s;
1617     while (parallelism < runningCountOf(s = workerCounts)) {
1618     if (node == null)
1619 dl 1.4 node = new WaitQueueNode(0, w);
1620 dl 1.1 if (casWorkerCounts(s, s-1)) { // representation-dependent
1621     // push onto stack
1622     do;while (!casSpareStack(node.next = spareStack, node));
1623     // block until released by resumeSpare
1624 dl 1.4 node.awaitSpareRelease();
1625 dl 1.1 return true;
1626     }
1627     }
1628     return false;
1629     }
1630    
1631     /**
1632     * Try to pop and resume a spare thread.
1633     * @param updateCount if true, increment running count on success
1634     * @return true if successful
1635     */
1636     private boolean tryResumeSpare(boolean updateCount) {
1637     WaitQueueNode q;
1638     while ((q = spareStack) != null) {
1639     if (casSpareStack(q, q.next)) {
1640     if (updateCount)
1641     updateRunningCount(1);
1642     q.signal();
1643     return true;
1644     }
1645     }
1646     return false;
1647     }
1648    
1649     /**
1650 dl 1.4 * Pop and resume all spare threads. Same idea as ensureSync.
1651 dl 1.1 * @return true if any spares released
1652     */
1653     private boolean resumeAllSpares() {
1654     WaitQueueNode q;
1655     while ( (q = spareStack) != null) {
1656     if (casSpareStack(q, null)) {
1657     do {
1658     updateRunningCount(1);
1659     q.signal();
1660     } while ((q = q.next) != null);
1661     return true;
1662     }
1663     }
1664     return false;
1665     }
1666    
1667     /**
1668     * Pop and shutdown excessive spare threads. Call only while
1669     * holding lock. This is not guaranteed to eliminate all excess
1670     * threads, only those suspended as spares, which are the ones
1671     * unlikely to be needed in the future.
1672     */
1673     private void trimSpares() {
1674     int surplus = totalCountOf(workerCounts) - parallelism;
1675     WaitQueueNode q;
1676     while (surplus > 0 && (q = spareStack) != null) {
1677     if (casSpareStack(q, null)) {
1678     do {
1679     updateRunningCount(1);
1680     ForkJoinWorkerThread w = q.thread;
1681     if (w != null && surplus > 0 &&
1682     runningCountOf(workerCounts) > 0 && w.shutdown())
1683     --surplus;
1684     q.signal();
1685     } while ((q = q.next) != null);
1686     }
1687     }
1688     }
1689    
1690     /**
1691     * Interface for extending managed parallelism for tasks running
1692     * in ForkJoinPools. A ManagedBlocker provides two methods.
1693 dl 1.2 * Method <code>isReleasable</code> must return true if blocking is not
1694     * necessary. Method <code>block</code> blocks the current thread
1695 dl 1.1 * if necessary (perhaps internally invoking isReleasable before
1696     * actually blocking.).
1697     * <p>For example, here is a ManagedBlocker based on a
1698     * ReentrantLock:
1699     * <pre>
1700     * class ManagedLocker implements ManagedBlocker {
1701     * final ReentrantLock lock;
1702     * boolean hasLock = false;
1703     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1704     * public boolean block() {
1705     * if (!hasLock)
1706     * lock.lock();
1707     * return true;
1708     * }
1709     * public boolean isReleasable() {
1710     * return hasLock || (hasLock = lock.tryLock());
1711     * }
1712     * }
1713     * </pre>
1714     */
1715     public static interface ManagedBlocker {
1716     /**
1717     * Possibly blocks the current thread, for example waiting for
1718     * a lock or condition.
1719     * @return true if no additional blocking is necessary (i.e.,
1720     * if isReleasable would return true).
1721     * @throws InterruptedException if interrupted while waiting
1722     * (the method is not required to do so, but is allowe to).
1723     */
1724     boolean block() throws InterruptedException;
1725    
1726     /**
1727     * Returns true if blocking is unnecessary.
1728     */
1729     boolean isReleasable();
1730     }
1731    
1732     /**
1733     * Blocks in accord with the given blocker. If the current thread
1734     * is a ForkJoinWorkerThread, this method possibly arranges for a
1735     * spare thread to be activated if necessary to ensure parallelism
1736     * while the current thread is blocked. If
1737 dl 1.2 * <code>maintainParallelism</code> is true and the pool supports
1738     * it ({@link #getMaintainsParallelism}), this method attempts to
1739 dl 1.1 * maintain the pool's nominal parallelism. Otherwise if activates
1740     * a thread only if necessary to avoid complete starvation. This
1741     * option may be preferable when blockages use timeouts, or are
1742     * almost always brief.
1743     *
1744     * <p> If the caller is not a ForkJoinTask, this method is behaviorally
1745     * equivalent to
1746     * <pre>
1747     * while (!blocker.isReleasable())
1748     * if (blocker.block())
1749     * return;
1750     * </pre>
1751     * If the caller is a ForkJoinTask, then the pool may first
1752     * be expanded to ensure parallelism, and later adjusted.
1753     *
1754     * @param blocker the blocker
1755     * @param maintainParallelism if true and supported by this pool,
1756     * attempt to maintain the pool's nominal parallelism; otherwise
1757     * activate a thread only if necessary to avoid complete
1758     * starvation.
1759     * @throws InterruptedException if blocker.block did so.
1760     */
1761     public static void managedBlock(ManagedBlocker blocker,
1762     boolean maintainParallelism)
1763     throws InterruptedException {
1764     Thread t = Thread.currentThread();
1765     ForkJoinPool pool = (t instanceof ForkJoinWorkerThread?
1766     ((ForkJoinWorkerThread)t).pool : null);
1767     if (!blocker.isReleasable()) {
1768     try {
1769     if (pool == null ||
1770     !pool.preBlock(blocker, maintainParallelism))
1771     awaitBlocker(blocker);
1772     } finally {
1773     if (pool != null)
1774     pool.updateRunningCount(1);
1775     }
1776     }
1777     }
1778    
1779     private static void awaitBlocker(ManagedBlocker blocker)
1780     throws InterruptedException {
1781     do;while (!blocker.isReleasable() && !blocker.block());
1782     }
1783    
1784 dl 1.2 // AbstractExecutorService overrides
1785    
1786     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
1787     return new AdaptedRunnable(runnable, value);
1788     }
1789    
1790     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
1791     return new AdaptedCallable(callable);
1792     }
1793    
1794 dl 1.1
1795     // Temporary Unsafe mechanics for preliminary release
1796 jsr166 1.5 private static Unsafe getUnsafe() throws Throwable {
1797     try {
1798     return Unsafe.getUnsafe();
1799     } catch (SecurityException se) {
1800     try {
1801     return java.security.AccessController.doPrivileged
1802     (new java.security.PrivilegedExceptionAction<Unsafe>() {
1803     public Unsafe run() throws Exception {
1804     return getUnsafePrivileged();
1805     }});
1806     } catch (java.security.PrivilegedActionException e) {
1807     throw e.getCause();
1808     }
1809     }
1810     }
1811    
1812     private static Unsafe getUnsafePrivileged()
1813     throws NoSuchFieldException, IllegalAccessException {
1814     Field f = Unsafe.class.getDeclaredField("theUnsafe");
1815     f.setAccessible(true);
1816     return (Unsafe) f.get(null);
1817     }
1818    
1819     private static long fieldOffset(String fieldName)
1820     throws NoSuchFieldException {
1821     return _unsafe.objectFieldOffset
1822     (ForkJoinPool.class.getDeclaredField(fieldName));
1823     }
1824 dl 1.1
1825     static final Unsafe _unsafe;
1826     static final long eventCountOffset;
1827     static final long workerCountsOffset;
1828     static final long runControlOffset;
1829 dl 1.4 static final long syncStackOffset;
1830 dl 1.1 static final long spareStackOffset;
1831    
1832     static {
1833     try {
1834 jsr166 1.5 _unsafe = getUnsafe();
1835     eventCountOffset = fieldOffset("eventCount");
1836     workerCountsOffset = fieldOffset("workerCounts");
1837     runControlOffset = fieldOffset("runControl");
1838     syncStackOffset = fieldOffset("syncStack");
1839     spareStackOffset = fieldOffset("spareStack");
1840     } catch (Throwable e) {
1841 dl 1.1 throw new RuntimeException("Could not initialize intrinsics", e);
1842     }
1843     }
1844    
1845     private boolean casEventCount(long cmp, long val) {
1846     return _unsafe.compareAndSwapLong(this, eventCountOffset, cmp, val);
1847     }
1848     private boolean casWorkerCounts(int cmp, int val) {
1849     return _unsafe.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1850     }
1851     private boolean casRunControl(int cmp, int val) {
1852     return _unsafe.compareAndSwapInt(this, runControlOffset, cmp, val);
1853     }
1854     private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1855     return _unsafe.compareAndSwapObject(this, spareStackOffset, cmp, val);
1856     }
1857     private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1858 dl 1.4 return _unsafe.compareAndSwapObject(this, syncStackOffset, cmp, val);
1859 dl 1.1 }
1860     }