ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
Revision: 1.60
Committed: Sat Jul 24 20:28:18 2010 UTC (13 years, 9 months ago) by dl
Branch: MAIN
Changes since 1.59: +156 -213 lines
Log Message:
Fix and simplify joinTask

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package jsr166y;
8 jsr166 1.22
9 dl 1.1 import java.util.concurrent.*;
10 jsr166 1.22
11     import java.util.ArrayList;
12     import java.util.Arrays;
13     import java.util.Collection;
14     import java.util.Collections;
15     import java.util.List;
16     import java.util.concurrent.locks.LockSupport;
17     import java.util.concurrent.locks.ReentrantLock;
18     import java.util.concurrent.atomic.AtomicInteger;
19 dl 1.53 import java.util.concurrent.CountDownLatch;
20 dl 1.1
21     /**
22 jsr166 1.29 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
23 jsr166 1.39 * A {@code ForkJoinPool} provides the entry point for submissions
24 dl 1.57 * from non-{@code ForkJoinTask} clients, as well as management and
25 jsr166 1.48 * monitoring operations.
26 dl 1.1 *
27 dl 1.42 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
28     * ExecutorService} mainly by virtue of employing
29     * <em>work-stealing</em>: all threads in the pool attempt to find and
30     * execute subtasks created by other active tasks (eventually blocking
31     * waiting for work if none exist). This enables efficient processing
32     * when most tasks spawn other subtasks (as do most {@code
33 dl 1.57 * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
34     * constructors, {@code ForkJoinPool}s may also be appropriate for use
35     * with event-style tasks that are never joined.
36 dl 1.1 *
37 dl 1.42 * <p>A {@code ForkJoinPool} is constructed with a given target
38     * parallelism level; by default, equal to the number of available
39 dl 1.57 * processors. The pool attempts to maintain enough active (or
40     * available) threads by dynamically adding, suspending, or resuming
41     * internal worker threads, even if some tasks are stalled waiting to
42     * join others. However, no such adjustments are guaranteed in the
43     * face of blocked IO or other unmanaged synchronization. The nested
44     * {@link ManagedBlocker} interface enables extension of the kinds of
45     * synchronization accommodated.
46 dl 1.1 *
47     * <p>In addition to execution and lifecycle control methods, this
48     * class provides status check methods (for example
49 jsr166 1.29 * {@link #getStealCount}) that are intended to aid in developing,
50 dl 1.1 * tuning, and monitoring fork/join applications. Also, method
51 jsr166 1.29 * {@link #toString} returns indications of pool state in a
52 dl 1.2 * convenient form for informal monitoring.
53 dl 1.1 *
54 dl 1.57 * <p> As is the case with other ExecutorServices, there are three
55 dl 1.60 * main task execution methods summarized in the following
56 dl 1.57 * table. These are designed to be used by clients not already engaged
57     * in fork/join computations in the current pool. The main forms of
58     * these methods accept instances of {@code ForkJoinTask}, but
59     * overloaded forms also allow mixed execution of plain {@code
60     * Runnable}- or {@code Callable}- based activities as well. However,
61     * tasks that are already executing in a pool should normally
62     * <em>NOT</em> use these pool execution methods, but instead use the
63 dl 1.59 * within-computation forms listed in the table.
64 dl 1.57 *
65     * <table BORDER CELLPADDING=3 CELLSPACING=1>
66     * <tr>
67     * <td></td>
68     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
69     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
70     * </tr>
71     * <tr>
72     * <td> <b>Arange async execution</td>
73     * <td> {@link #execute(ForkJoinTask)}</td>
74     * <td> {@link ForkJoinTask#fork}</td>
75     * </tr>
76     * <tr>
77     * <td> <b>Await and obtain result</td>
78     * <td> {@link #invoke(ForkJoinTask)}</td>
79     * <td> {@link ForkJoinTask#invoke}</td>
80     * </tr>
81     * <tr>
82     * <td> <b>Arrange exec and obtain Future</td>
83     * <td> {@link #submit(ForkJoinTask)}</td>
84     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
85     * </tr>
86     * </table>
87 dl 1.59 *
88 dl 1.42 * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
89     * used for all parallel task execution in a program or subsystem.
90     * Otherwise, use would not usually outweigh the construction and
91     * bookkeeping overhead of creating a large set of threads. For
92 jsr166 1.43 * example, a common pool could be used for the {@code SortTasks}
93 dl 1.42 * illustrated in {@link RecursiveAction}. Because {@code
94     * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
95 jsr166 1.43 * daemon} mode, there is typically no need to explicitly {@link
96 dl 1.42 * #shutdown} such a pool upon program exit.
97     *
98     * <pre>
99     * static final ForkJoinPool mainPool = new ForkJoinPool();
100     * ...
101     * public void sort(long[] array) {
102     * mainPool.invoke(new SortTask(array, 0, array.length));
103     * }
104     * </pre>
105     *
106 dl 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
107 dl 1.2 * maximum number of running threads to 32767. Attempts to create
108 jsr166 1.48 * pools with greater than the maximum number result in
109 jsr166 1.39 * {@code IllegalArgumentException}.
110 jsr166 1.16 *
111 jsr166 1.48 * <p>This implementation rejects submitted tasks (that is, by throwing
112 dl 1.58 * {@link RejectedExecutionException}) only when the pool is shut down
113     * or internal resources have been exhuasted.
114 jsr166 1.48 *
115 jsr166 1.16 * @since 1.7
116     * @author Doug Lea
117 dl 1.1 */
118 dl 1.2 public class ForkJoinPool extends AbstractExecutorService {
119 dl 1.1
120     /*
121 dl 1.53 * Implementation Overview
122     *
123     * This class provides the central bookkeeping and control for a
124     * set of worker threads: Submissions from non-FJ threads enter
125     * into a submission queue. Workers take these tasks and typically
126     * split them into subtasks that may be stolen by other workers.
127     * The main work-stealing mechanics implemented in class
128     * ForkJoinWorkerThread give first priority to processing tasks
129     * from their own queues (LIFO or FIFO, depending on mode), then
130     * to randomized FIFO steals of tasks in other worker queues, and
131     * lastly to new submissions. These mechanics do not consider
132     * affinities, loads, cache localities, etc, so rarely provide the
133     * best possible performance on a given machine, but portably
134     * provide good throughput by averaging over these factors.
135     * (Further, even if we did try to use such information, we do not
136     * usually have a basis for exploiting it. For example, some sets
137     * of tasks profit from cache affinities, but others are harmed by
138     * cache pollution effects.)
139     *
140 dl 1.58 * Beyond work-stealing support and essential bookkeeping, the
141 dl 1.60 * main responsibility of this framework is to take actions when
142     * one worker is waiting to join a task stolen (or always held by)
143     * another. Becauae we are multiplexing many tasks on to a pool
144     * of workers, we can't just let them block (as in Thread.join).
145     * We also cannot just reassign the joiner's run-time stack with
146     * another and replace it later, which would be a form of
147     * "continuation", that even if possible is not necessarily a good
148     * idea. Given that the creation costs of most threads on most
149     * systems mainly surrounds setting up runtime stacks, thread
150     * creation and switching is usually not much more expensive than
151     * stack creation and switching, and is more flexible). Instead we
152     * combine two tactics:
153 dl 1.58 *
154 dl 1.60 * Helping: Arranging for the joiner to execute some task that it
155 dl 1.58 * would be running if the steal had not occurred. Method
156     * ForkJoinWorkerThread.helpJoinTask tracks joining->stealing
157     * links to try to find such a task.
158     *
159 dl 1.60 * Compensating: Unless there are already enough live threads,
160     * creating or or re-activating a spare thread to compensate
161     * for the (blocked) joiner until it unblocks. Spares then
162     * suspend at their next opportunity or eventually die if
163     * unused for too long. See below and the internal
164     * documentation for tryAwaitJoin for more details about
165     * compensation rules.
166 dl 1.58 *
167     * Because the determining existence of conservatively safe
168     * helping targets, the availability of already-created spares,
169     * and the apparent need to create new spares are all racy and
170     * require heuristic guidance, joins (in
171     * ForkJoinWorkerThread.joinTask) interleave these options until
172     * successful. Creating a new spare always succeeds, but also
173     * increases application footprint, so we try to avoid it, within
174 dl 1.59 * reason.
175 dl 1.58 *
176 dl 1.60 * The ManagedBlocker extension API can't use helping so uses a
177     * special version of compensation in method awaitBlocker.
178 dl 1.58 *
179 dl 1.53 * The main throughput advantages of work-stealing stem from
180     * decentralized control -- workers mostly steal tasks from each
181     * other. We do not want to negate this by creating bottlenecks
182 dl 1.58 * implementing other management responsibilities. So we use a
183     * collection of techniques that avoid, reduce, or cope well with
184     * contention. These entail several instances of bit-packing into
185     * CASable fields to maintain only the minimally required
186     * atomicity. To enable such packing, we restrict maximum
187     * parallelism to (1<<15)-1 (enabling twice this (to accommodate
188     * unbalanced increments and decrements) to fit into a 16 bit
189     * field, which is far in excess of normal operating range. Even
190     * though updates to some of these bookkeeping fields do sometimes
191     * contend with each other, they don't normally cache-contend with
192     * updates to others enough to warrant memory padding or
193     * isolation. So they are all held as fields of ForkJoinPool
194     * objects. The main capabilities are as follows:
195 dl 1.53 *
196     * 1. Creating and removing workers. Workers are recorded in the
197     * "workers" array. This is an array as opposed to some other data
198     * structure to support index-based random steals by workers.
199     * Updates to the array recording new workers and unrecording
200     * terminated ones are protected from each other by a lock
201     * (workerLock) but the array is otherwise concurrently readable,
202     * and accessed directly by workers. To simplify index-based
203     * operations, the array size is always a power of two, and all
204 dl 1.56 * readers must tolerate null slots. Currently, all worker thread
205     * creation is on-demand, triggered by task submissions,
206     * replacement of terminated workers, and/or compensation for
207     * blocked workers. However, all other support code is set up to
208     * work with other policies.
209 dl 1.53 *
210     * 2. Bookkeeping for dynamically adding and removing workers. We
211 dl 1.57 * aim to approximately maintain the given level of parallelism.
212     * When some workers are known to be blocked (on joins or via
213 dl 1.53 * ManagedBlocker), we may create or resume others to take their
214     * place until they unblock (see below). Implementing this
215     * requires counts of the number of "running" threads (i.e., those
216     * that are neither blocked nor artifically suspended) as well as
217     * the total number. These two values are packed into one field,
218     * "workerCounts" because we need accurate snapshots when deciding
219 dl 1.58 * to create, resume or suspend. Note however that the
220     * correspondance of these counts to reality is not guaranteed. In
221     * particular updates for unblocked threads may lag until they
222     * actually wake up.
223 dl 1.53 *
224     * 3. Maintaining global run state. The run state of the pool
225     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
226     * those in other Executor implementations, as well as a count of
227     * "active" workers -- those that are, or soon will be, or
228     * recently were executing tasks. The runLevel and active count
229     * are packed together in order to correctly trigger shutdown and
230     * termination. Without care, active counts can be subject to very
231     * high contention. We substantially reduce this contention by
232     * relaxing update rules. A worker must claim active status
233     * prospectively, by activating if it sees that a submitted or
234     * stealable task exists (it may find after activating that the
235     * task no longer exists). It stays active while processing this
236     * task (if it exists) and any other local subtasks it produces,
237     * until it cannot find any other tasks. It then tries
238     * inactivating (see method preStep), but upon update contention
239     * instead scans for more tasks, later retrying inactivation if it
240     * doesn't find any.
241     *
242     * 4. Managing idle workers waiting for tasks. We cannot let
243     * workers spin indefinitely scanning for tasks when none are
244     * available. On the other hand, we must quickly prod them into
245     * action when new tasks are submitted or generated. We
246     * park/unpark these idle workers using an event-count scheme.
247     * Field eventCount is incremented upon events that may enable
248     * workers that previously could not find a task to now find one:
249     * Submission of a new task to the pool, or another worker pushing
250     * a task onto a previously empty queue. (We also use this
251     * mechanism for termination and reconfiguration actions that
252     * require wakeups of idle workers). Each worker maintains its
253     * last known event count, and blocks when a scan for work did not
254     * find a task AND its lastEventCount matches the current
255     * eventCount. Waiting idle workers are recorded in a variant of
256     * Treiber stack headed by field eventWaiters which, when nonzero,
257     * encodes the thread index and count awaited for by the worker
258     * thread most recently calling eventSync. This thread in turn has
259     * a record (field nextEventWaiter) for the next waiting worker.
260     * In addition to allowing simpler decisions about need for
261     * wakeup, the event count bits in eventWaiters serve the role of
262     * tags to avoid ABA errors in Treiber stacks. To reduce delays
263     * in task diffusion, workers not otherwise occupied may invoke
264     * method releaseWaiters, that removes and signals (unparks)
265     * workers not waiting on current count. To minimize task
266     * production stalls associate with signalling, any worker pushing
267     * a task on an empty queue invokes the weaker method signalWork,
268     * that only releases idle workers until it detects interference
269     * by other threads trying to release, and lets them take
270     * over. The net effect is a tree-like diffusion of signals, where
271 dl 1.56 * released threads (and possibly others) help with unparks. To
272 dl 1.53 * further reduce contention effects a bit, failed CASes to
273     * increment field eventCount are tolerated without retries.
274     * Conceptually they are merged into the same event, which is OK
275     * when their only purpose is to enable workers to scan for work.
276     *
277     * 5. Managing suspension of extra workers. When a worker is about
278     * to block waiting for a join (or via ManagedBlockers), we may
279     * create a new thread to maintain parallelism level, or at least
280 dl 1.58 * avoid starvation. Usually, extra threads are needed for only
281     * very short periods, yet join dependencies are such that we
282     * sometimes need them in bursts. Rather than create new threads
283     * each time this happens, we suspend no-longer-needed extra ones
284     * as "spares". For most purposes, we don't distinguish "extra"
285     * spare threads from normal "core" threads: On each call to
286     * preStep (the only point at which we can do this) a worker
287 dl 1.53 * checks to see if there are now too many running workers, and if
288 dl 1.58 * so, suspends itself. Methods tryAwaitJoin and awaitBlocker
289     * look for suspended threads to resume before considering
290     * creating a new replacement. We don't need a special data
291     * structure to maintain spares; simply scanning the workers array
292     * looking for worker.isSuspended() is fine because the calling
293     * thread is otherwise not doing anything useful anyway; we are at
294     * least as happy if after locating a spare, the caller doesn't
295     * actually block because the join is ready before we try to
296     * adjust and compensate. Note that this is intrinsically racy.
297     * One thread may become a spare at about the same time as another
298     * is needlessly being created. We counteract this and related
299     * slop in part by requiring resumed spares to immediately recheck
300     * (in preStep) to see whether they they should re-suspend. The
301     * only effective difference between "extra" and "core" threads is
302     * that we allow the "extra" ones to time out and die if they are
303     * not resumed within a keep-alive interval of a few seconds. This
304     * is implemented mainly within ForkJoinWorkerThread, but requires
305 dl 1.53 * some coordination (isTrimmed() -- meaning killed while
306     * suspended) to correctly maintain pool counts.
307     *
308     * 6. Deciding when to create new workers. The main dynamic
309     * control in this class is deciding when to create extra threads,
310 dl 1.57 * in methods awaitJoin and awaitBlocker. We always need to create
311 dl 1.58 * one when the number of running threads would become zero and
312     * all workers are busy. However, this is not easy to detect
313     * reliably in the presence of transients so we use retries and
314     * allow slack (in tryAwaitJoin) to reduce false alarms. These
315     * effectively reduce churn at the price of systematically
316     * undershooting target parallelism when many threads are blocked.
317     * However, biasing toward undeshooting partially compensates for
318     * the above mechanics to suspend extra threads, that normally
319     * lead to overshoot because we can only suspend workers
320     * in-between top-level actions. It also better copes with the
321     * fact that some of the methods in this class tend to never
322     * become compiled (but are interpreted), so some components of
323     * the entire set of controls might execute many times faster than
324     * others. And similarly for cases where the apparent lack of work
325     * is just due to GC stalls and other transient system activity.
326 dl 1.53 *
327     * Beware that there is a lot of representation-level coupling
328     * among classes ForkJoinPool, ForkJoinWorkerThread, and
329     * ForkJoinTask. For example, direct access to "workers" array by
330     * workers, and direct access to ForkJoinTask.status by both
331     * ForkJoinPool and ForkJoinWorkerThread. There is little point
332     * trying to reduce this, since any associated future changes in
333     * representations will need to be accompanied by algorithmic
334     * changes anyway.
335     *
336     * Style notes: There are lots of inline assignments (of form
337     * "while ((local = field) != 0)") which are usually the simplest
338     * way to ensure read orderings. Also several occurrences of the
339     * unusual "do {} while(!cas...)" which is the simplest way to
340 dl 1.58 * force an update of a CAS'ed variable. There are also other
341     * coding oddities that help some methods perform reasonably even
342     * when interpreted (not compiled), at the expense of messiness.
343 dl 1.53 *
344     * The order of declarations in this file is: (1) statics (2)
345     * fields (along with constants used when unpacking some of them)
346     * (3) internal control methods (4) callbacks and other support
347     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
348     * methods (plus a few little helpers).
349 dl 1.1 */
350    
351     /**
352 jsr166 1.35 * Factory for creating new {@link ForkJoinWorkerThread}s.
353     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
354     * for {@code ForkJoinWorkerThread} subclasses that extend base
355     * functionality or initialize threads with different contexts.
356 dl 1.1 */
357     public static interface ForkJoinWorkerThreadFactory {
358     /**
359     * Returns a new worker thread operating in the given pool.
360     *
361     * @param pool the pool this thread works in
362 jsr166 1.48 * @throws NullPointerException if the pool is null
363 dl 1.1 */
364     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
365     }
366    
367     /**
368 jsr166 1.17 * Default ForkJoinWorkerThreadFactory implementation; creates a
369 dl 1.1 * new ForkJoinWorkerThread.
370     */
371 dl 1.57 static class DefaultForkJoinWorkerThreadFactory
372 dl 1.1 implements ForkJoinWorkerThreadFactory {
373     public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
374 dl 1.53 return new ForkJoinWorkerThread(pool);
375 dl 1.1 }
376     }
377    
378     /**
379 dl 1.2 * Creates a new ForkJoinWorkerThread. This factory is used unless
380     * overridden in ForkJoinPool constructors.
381 dl 1.1 */
382 dl 1.2 public static final ForkJoinWorkerThreadFactory
383 dl 1.1 defaultForkJoinWorkerThreadFactory =
384     new DefaultForkJoinWorkerThreadFactory();
385    
386     /**
387     * Permission required for callers of methods that may start or
388     * kill threads.
389     */
390     private static final RuntimePermission modifyThreadPermission =
391     new RuntimePermission("modifyThread");
392    
393     /**
394     * If there is a security manager, makes sure caller has
395     * permission to modify threads.
396     */
397     private static void checkPermission() {
398     SecurityManager security = System.getSecurityManager();
399     if (security != null)
400     security.checkPermission(modifyThreadPermission);
401     }
402    
403     /**
404     * Generator for assigning sequence numbers as pool names.
405     */
406     private static final AtomicInteger poolNumberGenerator =
407     new AtomicInteger();
408    
409     /**
410 dl 1.53 * Absolute bound for parallelism level. Twice this number must
411     * fit into a 16bit field to enable word-packing for some counts.
412     */
413     private static final int MAX_THREADS = 0x7fff;
414    
415     /**
416     * Array holding all worker threads in the pool. Array size must
417     * be a power of two. Updates and replacements are protected by
418     * workerLock, but the array is always kept in a consistent enough
419     * state to be randomly accessed without locking by workers
420     * performing work-stealing, as well as other traversal-based
421     * methods in this class. All readers must tolerate that some
422     * array slots may be null.
423 dl 1.1 */
424     volatile ForkJoinWorkerThread[] workers;
425    
426     /**
427 dl 1.53 * Queue for external submissions.
428 dl 1.1 */
429 dl 1.53 private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
430 dl 1.1
431     /**
432 dl 1.53 * Lock protecting updates to workers array.
433 dl 1.1 */
434 dl 1.53 private final ReentrantLock workerLock;
435 dl 1.1
436     /**
437 dl 1.53 * Latch released upon termination.
438 dl 1.1 */
439 dl 1.57 private final Phaser termination;
440 dl 1.1
441     /**
442     * Creation factory for worker threads.
443     */
444     private final ForkJoinWorkerThreadFactory factory;
445    
446     /**
447 dl 1.53 * Sum of per-thread steal counts, updated only when threads are
448     * idle or terminating.
449 dl 1.1 */
450 dl 1.53 private volatile long stealCount;
451 dl 1.1
452     /**
453 dl 1.53 * Encoded record of top of treiber stack of threads waiting for
454     * events. The top 32 bits contain the count being waited for. The
455     * bottom word contains one plus the pool index of waiting worker
456     * thread.
457 dl 1.1 */
458 dl 1.53 private volatile long eventWaiters;
459    
460     private static final int EVENT_COUNT_SHIFT = 32;
461 dl 1.58 private static final long WAITER_ID_MASK = (1L << EVENT_COUNT_SHIFT)-1L;
462 dl 1.1
463     /**
464 dl 1.53 * A counter for events that may wake up worker threads:
465     * - Submission of a new task to the pool
466     * - A worker pushing a task on an empty queue
467     * - termination and reconfiguration
468 dl 1.1 */
469 dl 1.53 private volatile int eventCount;
470    
471     /**
472     * Lifecycle control. The low word contains the number of workers
473     * that are (probably) executing tasks. This value is atomically
474     * incremented before a worker gets a task to run, and decremented
475     * when worker has no tasks and cannot find any. Bits 16-18
476     * contain runLevel value. When all are zero, the pool is
477     * running. Level transitions are monotonic (running -> shutdown
478     * -> terminating -> terminated) so each transition adds a bit.
479     * These are bundled together to ensure consistent read for
480     * termination checks (i.e., that runLevel is at least SHUTDOWN
481     * and active threads is zero).
482     */
483     private volatile int runState;
484    
485     // Note: The order among run level values matters.
486     private static final int RUNLEVEL_SHIFT = 16;
487     private static final int SHUTDOWN = 1 << RUNLEVEL_SHIFT;
488     private static final int TERMINATING = 1 << (RUNLEVEL_SHIFT + 1);
489     private static final int TERMINATED = 1 << (RUNLEVEL_SHIFT + 2);
490     private static final int ACTIVE_COUNT_MASK = (1 << RUNLEVEL_SHIFT) - 1;
491     private static final int ONE_ACTIVE = 1; // active update delta
492 dl 1.1
493     /**
494 dl 1.53 * Holds number of total (i.e., created and not yet terminated)
495     * and running (i.e., not blocked on joins or other managed sync)
496     * threads, packed together to ensure consistent snapshot when
497     * making decisions about creating and suspending spare
498     * threads. Updated only by CAS. Note that adding a new worker
499     * requires incrementing both counts, since workers start off in
500 dl 1.60 * running state.
501 dl 1.53 */
502     private volatile int workerCounts;
503    
504     private static final int TOTAL_COUNT_SHIFT = 16;
505     private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
506     private static final int ONE_RUNNING = 1;
507     private static final int ONE_TOTAL = 1 << TOTAL_COUNT_SHIFT;
508    
509 dl 1.1 /**
510 dl 1.53 * The target parallelism level.
511 dl 1.57 * Accessed directly by ForkJoinWorkerThreads.
512 dl 1.1 */
513 dl 1.57 final int parallelism;
514 dl 1.1
515     /**
516 dl 1.53 * True if use local fifo, not default lifo, for local polling
517 dl 1.57 * Read by, and replicated by ForkJoinWorkerThreads
518 dl 1.1 */
519 dl 1.57 final boolean locallyFifo;
520 dl 1.1
521     /**
522 dl 1.57 * The uncaught exception handler used when any worker abruptly
523     * terminates.
524 dl 1.1 */
525 dl 1.57 private final Thread.UncaughtExceptionHandler ueh;
526 dl 1.6
527     /**
528 dl 1.53 * Pool number, just for assigning useful names to worker threads
529 dl 1.1 */
530 dl 1.53 private final int poolNumber;
531 dl 1.1
532 dl 1.58 // Utilities for CASing fields. Note that several of these
533     // are manually inlined by callers
534 dl 1.1
535     /**
536 dl 1.57 * Increments running count. Also used by ForkJoinTask.
537 dl 1.1 */
538 dl 1.57 final void incrementRunningCount() {
539     int c;
540 dl 1.53 do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
541 dl 1.59 c = workerCounts,
542 dl 1.57 c + ONE_RUNNING));
543 dl 1.1 }
544 dl 1.58
545 dl 1.1 /**
546 dl 1.57 * Tries to decrement running count unless already zero
547 dl 1.56 */
548     final boolean tryDecrementRunningCount() {
549     int wc = workerCounts;
550     if ((wc & RUNNING_COUNT_MASK) == 0)
551     return false;
552     return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
553     wc, wc - ONE_RUNNING);
554     }
555    
556     /**
557 dl 1.58 * Tries to increment running count
558     */
559     final boolean tryIncrementRunningCount() {
560     int wc;
561     return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
562     wc = workerCounts, wc + ONE_RUNNING);
563     }
564    
565     /**
566 jsr166 1.17 * Tries incrementing active count; fails on contention.
567 dl 1.53 * Called by workers before executing tasks.
568 jsr166 1.17 *
569 jsr166 1.16 * @return true on success
570 dl 1.1 */
571 dl 1.4 final boolean tryIncrementActiveCount() {
572 dl 1.53 int c;
573     return UNSAFE.compareAndSwapInt(this, runStateOffset,
574     c = runState, c + ONE_ACTIVE);
575 dl 1.1 }
576    
577     /**
578 jsr166 1.16 * Tries decrementing active count; fails on contention.
579 dl 1.53 * Called when workers cannot find tasks to run.
580     */
581     final boolean tryDecrementActiveCount() {
582     int c;
583     return UNSAFE.compareAndSwapInt(this, runStateOffset,
584     c = runState, c - ONE_ACTIVE);
585     }
586    
587     /**
588     * Advances to at least the given level. Returns true if not
589     * already in at least the given level.
590     */
591     private boolean advanceRunLevel(int level) {
592     for (;;) {
593     int s = runState;
594     if ((s & level) != 0)
595     return false;
596     if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
597     return true;
598     }
599     }
600    
601     // workers array maintenance
602    
603     /**
604     * Records and returns a workers array index for new worker.
605     */
606     private int recordWorker(ForkJoinWorkerThread w) {
607     // Try using slot totalCount-1. If not available, scan and/or resize
608     int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
609     final ReentrantLock lock = this.workerLock;
610     lock.lock();
611     try {
612     ForkJoinWorkerThread[] ws = workers;
613 dl 1.56 int nws = ws.length;
614     if (k < 0 || k >= nws || ws[k] != null) {
615     for (k = 0; k < nws && ws[k] != null; ++k)
616 dl 1.53 ;
617 dl 1.56 if (k == nws)
618     ws = Arrays.copyOf(ws, nws << 1);
619 dl 1.53 }
620     ws[k] = w;
621     workers = ws; // volatile array write ensures slot visibility
622     } finally {
623     lock.unlock();
624     }
625     return k;
626     }
627    
628     /**
629     * Nulls out record of worker in workers array
630     */
631     private void forgetWorker(ForkJoinWorkerThread w) {
632     int idx = w.poolIndex;
633     // Locking helps method recordWorker avoid unecessary expansion
634     final ReentrantLock lock = this.workerLock;
635     lock.lock();
636     try {
637     ForkJoinWorkerThread[] ws = workers;
638     if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
639     ws[idx] = null;
640     } finally {
641     lock.unlock();
642     }
643     }
644    
645     // adding and removing workers
646    
647     /**
648     * Tries to create and add new worker. Assumes that worker counts
649     * are already updated to accommodate the worker, so adjusts on
650     * failure.
651     *
652     * @return new worker or null if creation failed
653     */
654     private ForkJoinWorkerThread addWorker() {
655     ForkJoinWorkerThread w = null;
656     try {
657     w = factory.newThread(this);
658     } finally { // Adjust on either null or exceptional factory return
659 dl 1.60 if (w == null)
660 dl 1.53 onWorkerCreationFailure();
661     }
662 dl 1.60 if (w != null)
663     w.start(recordWorker(w), ueh);
664 dl 1.53 return w;
665     }
666    
667     /**
668     * Adjusts counts upon failure to create worker
669     */
670     private void onWorkerCreationFailure() {
671 dl 1.56 for (;;) {
672     int wc = workerCounts;
673 dl 1.60 int rc = wc & RUNNING_COUNT_MASK;
674     int tc = wc >>> TOTAL_COUNT_SHIFT;
675     if (rc == 0 || wc == 0)
676     Thread.yield(); // must wait for other counts to settle
677 dl 1.58 else if (UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
678     wc - (ONE_RUNNING|ONE_TOTAL)))
679 dl 1.56 break;
680     }
681 dl 1.53 tryTerminate(false); // in case of failure during shutdown
682     }
683    
684     /**
685 dl 1.60 * Creates enough total workers to establish target parallelism,
686     * giving up if terminating or addWorker fails
687 dl 1.53 */
688 dl 1.60 private void ensureEnoughTotalWorkers() {
689     int wc;
690     while (((wc = workerCounts) >>> TOTAL_COUNT_SHIFT) < parallelism &&
691     runState < TERMINATING) {
692     if ((UNSAFE.compareAndSwapInt(this, workerCountsOffset,
693     wc, wc + (ONE_RUNNING|ONE_TOTAL)) &&
694     addWorker() == null))
695 dl 1.53 break;
696     }
697     }
698    
699     /**
700     * Final callback from terminating worker. Removes record of
701     * worker from array, and adjusts counts. If pool is shutting
702     * down, tries to complete terminatation, else possibly replaces
703     * the worker.
704     *
705     * @param w the worker
706     */
707     final void workerTerminated(ForkJoinWorkerThread w) {
708     if (w.active) { // force inactive
709     w.active = false;
710     do {} while (!tryDecrementActiveCount());
711     }
712     forgetWorker(w);
713    
714 dl 1.56 // Decrement total count, and if was running, running count
715     // Spin (waiting for other updates) if either would be negative
716     int nr = w.isTrimmed() ? 0 : ONE_RUNNING;
717     int unit = ONE_TOTAL + nr;
718     for (;;) {
719     int wc = workerCounts;
720     int rc = wc & RUNNING_COUNT_MASK;
721 dl 1.60 int tc = wc >>> TOTAL_COUNT_SHIFT;
722     if (rc - nr < 0 || tc == 0)
723 dl 1.56 Thread.yield(); // back off if waiting for other updates
724     else if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
725     wc, wc - unit))
726     break;
727     }
728 dl 1.53
729     accumulateStealCount(w); // collect final count
730     if (!tryTerminate(false))
731 dl 1.60 ensureEnoughTotalWorkers();
732 dl 1.53 }
733    
734     // Waiting for and signalling events
735    
736     /**
737     * Releases workers blocked on a count not equal to current count.
738 dl 1.58 * @return true if any released
739 dl 1.53 */
740 dl 1.57 private void releaseWaiters() {
741 dl 1.53 long top;
742 dl 1.58 while ((top = eventWaiters) != 0L) {
743 dl 1.53 ForkJoinWorkerThread[] ws = workers;
744 dl 1.58 int n = ws.length;
745     for (;;) {
746     int i = ((int)(top & WAITER_ID_MASK)) - 1;
747 dl 1.60 int e = (int)(top >>> EVENT_COUNT_SHIFT);
748     if (i < 0 || e == eventCount)
749 dl 1.58 return;
750     ForkJoinWorkerThread w;
751     if (i < n && (w = ws[i]) != null &&
752     UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
753     top, w.nextWaiter)) {
754     LockSupport.unpark(w);
755     top = eventWaiters;
756     }
757     else
758     break; // possibly stale; reread
759     }
760 dl 1.53 }
761     }
762    
763     /**
764 dl 1.57 * Ensures eventCount on exit is different (mod 2^32) than on
765     * entry and wakes up all waiters
766     */
767     private void signalEvent() {
768     int c;
769 dl 1.59 do {} while (!UNSAFE.compareAndSwapInt(this, eventCountOffset,
770 dl 1.57 c = eventCount, c+1));
771     releaseWaiters();
772     }
773    
774     /**
775 dl 1.53 * Advances eventCount and releases waiters until interference by
776     * other releasing threads is detected.
777     */
778     final void signalWork() {
779 dl 1.58 int c;
780     UNSAFE.compareAndSwapInt(this, eventCountOffset, c=eventCount, c+1);
781     long top;
782     while ((top = eventWaiters) != 0L) {
783     int ec = eventCount;
784     ForkJoinWorkerThread[] ws = workers;
785     int n = ws.length;
786 dl 1.53 for (;;) {
787 dl 1.58 int i = ((int)(top & WAITER_ID_MASK)) - 1;
788 dl 1.60 int e = (int)(top >>> EVENT_COUNT_SHIFT);
789     if (i < 0 || e == ec)
790 dl 1.53 return;
791 dl 1.58 ForkJoinWorkerThread w;
792     if (i < n && (w = ws[i]) != null &&
793     UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
794     top, top = w.nextWaiter)) {
795     LockSupport.unpark(w);
796     if (top != eventWaiters) // let someone else take over
797     return;
798     }
799     else
800     break; // possibly stale; reread
801 dl 1.53 }
802     }
803     }
804    
805     /**
806 dl 1.60 * Blockss worker until terminating or event count
807     * advances from last value held by worker
808 dl 1.53 *
809     * @param w the calling worker thread
810     */
811 dl 1.60 private void eventSync(ForkJoinWorkerThread w) {
812 dl 1.58 int wec = w.lastEventCount;
813 dl 1.60 long nextTop = (((long)wec << EVENT_COUNT_SHIFT) |
814     ((long)(w.poolIndex + 1)));
815     long top;
816     while ((runState < SHUTDOWN || !tryTerminate(false)) &&
817     (((int)(top = eventWaiters) & WAITER_ID_MASK) == 0 ||
818     (int)(top >>> EVENT_COUNT_SHIFT) == wec) &&
819     eventCount == wec) {
820     if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
821     w.nextWaiter = top, nextTop)) {
822     accumulateStealCount(w); // transfer steals while idle
823     Thread.interrupted(); // clear/ignore interrupt
824     while (eventCount == wec)
825     w.doPark();
826     break;
827 dl 1.53 }
828     }
829 dl 1.60 w.lastEventCount = eventCount;
830 dl 1.53 }
831    
832     /**
833     * Callback from workers invoked upon each top-level action (i.e.,
834     * stealing a task or taking a submission and running
835     * it). Performs one or both of the following:
836     *
837     * * If the worker cannot find work, updates its active status to
838     * inactive and updates activeCount unless there is contention, in
839     * which case it may try again (either in this or a subsequent
840     * call). Additionally, awaits the next task event and/or helps
841     * wake up other releasable waiters.
842 jsr166 1.17 *
843 dl 1.53 * * If there are too many running threads, suspends this worker
844     * (first forcing inactivation if necessary). If it is not
845     * resumed before a keepAlive elapses, the worker may be "trimmed"
846     * -- killed while suspended within suspendAsSpare. Otherwise,
847     * upon resume it rechecks to make sure that it is still needed.
848     *
849     * @param w the worker
850 dl 1.58 * @param retries the number of scans by caller failing to find work
851 dl 1.53 * find any (in which case it may block waiting for work).
852     */
853 dl 1.58 final void preStep(ForkJoinWorkerThread w, int retries) {
854 dl 1.53 boolean active = w.active;
855 dl 1.60 boolean inactivate = active && retries > 0;
856 dl 1.53 for (;;) {
857 dl 1.58 int rs, wc;
858     if (inactivate &&
859     UNSAFE.compareAndSwapInt(this, runStateOffset,
860     rs = runState, rs - ONE_ACTIVE))
861     inactivate = active = w.active = false;
862     if (((wc = workerCounts) & RUNNING_COUNT_MASK) <= parallelism) {
863 dl 1.60 if (retries > 0) {
864     if (retries > 1 && !active)
865     eventSync(w);
866     releaseWaiters();
867     }
868     break;
869 dl 1.53 }
870 dl 1.60 if (!(inactivate |= active) && // must inactivate to suspend
871 dl 1.53 UNSAFE.compareAndSwapInt(this, workerCountsOffset,
872     wc, wc - ONE_RUNNING) &&
873 dl 1.58 !w.suspendAsSpare()) // false if trimmed
874     break;
875 dl 1.53 }
876     }
877    
878     /**
879 dl 1.58 * Awaits join of the given task if enough threads, or can resume
880     * or create a spare. Fails (in which case the given task might
881     * not be done) upon contention or lack of decision about
882 dl 1.60 * blocking.
883 dl 1.58 *
884     * We allow blocking if:
885     *
886 dl 1.59 * 1. There would still be at least as many running threads as
887 dl 1.58 * parallelism level if this thread blocks.
888     *
889     * 2. A spare is resumed to replace this worker. We tolerate
890 dl 1.60 * races in the decision to replace when a spare is found.
891     * This may release too many, but if so, the superfluous ones
892     * will re-suspend via preStep().
893 dl 1.58 *
894 dl 1.60 * 3. After #spares repeated retries, there are fewer than #spare
895 dl 1.59 * threads not running. We allow this slack to avoid hysteresis
896     * and as a hedge against lag/uncertainty of running count
897 dl 1.58 * estimates when signalling or unblocking stalls.
898     *
899 dl 1.60 * 4. All existing workers are busy (as rechecked via #spares
900     * repeated retries by caller) and a new spare is created.
901 dl 1.59 *
902 dl 1.60 * If none of the above hold, we escape out by re-incrementing
903     * count and returning to caller, which can retry later.
904 dl 1.56 *
905     * @param joinMe the task to join
906 dl 1.60 * @param retries the number of calls to this method for this join
907 dl 1.53 */
908 dl 1.60 final void tryAwaitJoin(ForkJoinTask<?> joinMe, int retries) {
909 dl 1.58 int pc = parallelism;
910     boolean running = true; // false when running count decremented
911 dl 1.60 outer:while (joinMe.status >= 0) {
912 dl 1.58 int wc = workerCounts;
913     int rc = wc & RUNNING_COUNT_MASK;
914     int tc = wc >>> TOTAL_COUNT_SHIFT;
915     if (running) { // replace with spare or decrement count
916 dl 1.59 if (rc <= pc && tc > pc &&
917 dl 1.58 (retries > 0 || tc > (runState & ACTIVE_COUNT_MASK))) {
918 dl 1.60 ForkJoinWorkerThread[] ws = workers; // search for spare
919 dl 1.58 int nws = ws.length;
920 dl 1.60 for (int i = 0; i < nws; ++i) {
921 dl 1.58 ForkJoinWorkerThread w = ws[i];
922 dl 1.60 if (w != null && w.isSuspended()) {
923     if ((workerCounts & RUNNING_COUNT_MASK) > pc)
924     continue outer;
925 dl 1.58 if (joinMe.status < 0)
926 dl 1.60 break outer;
927     if (w.tryResumeSpare()) {
928     running = false;
929     break outer;
930 dl 1.58 }
931 dl 1.60 continue outer; // rescan on failure to resume
932 dl 1.58 }
933 dl 1.56 }
934     }
935 dl 1.60 if ((rc <= pc && (rc == 0 || --retries < 0)) || // no retry
936     joinMe.status < 0)
937 dl 1.57 break;
938 dl 1.60 if (workerCounts == wc &&
939     UNSAFE.compareAndSwapInt(this, workerCountsOffset,
940     wc, wc - ONE_RUNNING))
941     running = false;
942 dl 1.58 }
943     else { // allow blocking if enough threads
944 dl 1.60 int sc = tc - pc + 1; // = spares, plus the one to add
945     if (sc > 0 && rc > 0 && rc >= pc - sc && rc > pc - retries)
946     break;
947     if (--retries > sc && tc < MAX_THREADS &&
948     tc == (runState & ACTIVE_COUNT_MASK) &&
949     workerCounts == wc &&
950     UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
951     wc + (ONE_RUNNING|ONE_TOTAL))) {
952     addWorker();
953 dl 1.53 break;
954     }
955 dl 1.60 if (workerCounts == wc &&
956 dl 1.58 UNSAFE.compareAndSwapInt (this, workerCountsOffset,
957     wc, wc + ONE_RUNNING)) {
958 dl 1.60 running = true; // back out; allow retry
959     break;
960 dl 1.57 }
961 dl 1.53 }
962     }
963 dl 1.60 if (!running) { // can block
964     int c; // to inline incrementRunningCount
965     joinMe.internalAwaitDone();
966     do {} while (!UNSAFE.compareAndSwapInt
967     (this, workerCountsOffset,
968     c = workerCounts, c + ONE_RUNNING));
969     }
970 dl 1.53 }
971    
972     /**
973 dl 1.58 * Same idea as (and shares many code snippets with) tryAwaitJoin,
974     * but self-contained because there are no caller retries.
975     * TODO: Rework to use simpler API.
976 dl 1.53 */
977 dl 1.57 final void awaitBlocker(ManagedBlocker blocker)
978 dl 1.53 throws InterruptedException {
979 dl 1.56 int pc = parallelism;
980 dl 1.60 boolean running = true;
981 dl 1.58 int retries = 0;
982 dl 1.60 boolean done;
983     outer:while (!(done = blocker.isReleasable())) {
984 dl 1.56 int wc = workerCounts;
985     int rc = wc & RUNNING_COUNT_MASK;
986 dl 1.58 int tc = wc >>> TOTAL_COUNT_SHIFT;
987 dl 1.59 if (running) {
988 dl 1.60 if (rc <= pc && tc > pc &&
989 dl 1.58 (retries > 0 || tc > (runState & ACTIVE_COUNT_MASK))) {
990     ForkJoinWorkerThread[] ws = workers;
991     int nws = ws.length;
992 dl 1.59 for (int i = 0; i < nws; ++i) {
993 dl 1.58 ForkJoinWorkerThread w = ws[i];
994 dl 1.60 if (w != null && w.isSuspended()) {
995     if ((workerCounts & RUNNING_COUNT_MASK) > pc)
996     continue outer;
997 dl 1.58 if (done = blocker.isReleasable())
998 dl 1.60 break outer;
999     if (w.tryResumeSpare()) {
1000     running = false;
1001     break outer;
1002 dl 1.58 }
1003 dl 1.60 continue outer;
1004 dl 1.58 }
1005     }
1006 dl 1.60 if (done = blocker.isReleasable())
1007     break;
1008 dl 1.58 }
1009 dl 1.60 if (rc > 0 && workerCounts == wc &&
1010     UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1011     wc, wc - ONE_RUNNING)) {
1012     running = false;
1013     if (rc > pc)
1014 dl 1.58 break;
1015 dl 1.53 }
1016 dl 1.60 }
1017     else if (rc >= pc)
1018     break;
1019     else if (tc < MAX_THREADS &&
1020     tc == (runState & ACTIVE_COUNT_MASK) &&
1021     workerCounts == wc &&
1022     UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
1023     wc + (ONE_RUNNING|ONE_TOTAL))) {
1024     addWorker();
1025     break;
1026     }
1027     else if (workerCounts == wc &&
1028     UNSAFE.compareAndSwapInt (this, workerCountsOffset,
1029     wc, wc + ONE_RUNNING)) {
1030 dl 1.58 Thread.yield();
1031 dl 1.60 ++retries;
1032     running = true; // allow rescan
1033 dl 1.57 }
1034 dl 1.53 }
1035 dl 1.59
1036 dl 1.53 try {
1037     if (!done)
1038 dl 1.58 do {} while (!blocker.isReleasable() && !blocker.block());
1039 dl 1.53 } finally {
1040 dl 1.58 if (!running) {
1041     int c;
1042     do {} while (!UNSAFE.compareAndSwapInt
1043     (this, workerCountsOffset,
1044     c = workerCounts, c + ONE_RUNNING));
1045     }
1046 dl 1.53 }
1047 dl 1.59 }
1048 dl 1.54
1049     /**
1050 dl 1.53 * Possibly initiates and/or completes termination.
1051     *
1052     * @param now if true, unconditionally terminate, else only
1053     * if shutdown and empty queue and no active workers
1054     * @return true if now terminating or terminated
1055 dl 1.1 */
1056 dl 1.53 private boolean tryTerminate(boolean now) {
1057     if (now)
1058     advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
1059     else if (runState < SHUTDOWN ||
1060     !submissionQueue.isEmpty() ||
1061     (runState & ACTIVE_COUNT_MASK) != 0)
1062 dl 1.4 return false;
1063 dl 1.53
1064     if (advanceRunLevel(TERMINATING))
1065     startTerminating();
1066    
1067     // Finish now if all threads terminated; else in some subsequent call
1068     if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1069     advanceRunLevel(TERMINATED);
1070 dl 1.57 termination.arrive();
1071 dl 1.53 }
1072 dl 1.4 return true;
1073 dl 1.1 }
1074    
1075     /**
1076 dl 1.53 * Actions on transition to TERMINATING
1077     */
1078     private void startTerminating() {
1079 dl 1.56 for (int i = 0; i < 2; ++i) { // twice to mop up newly created workers
1080     cancelSubmissions();
1081     shutdownWorkers();
1082     cancelWorkerTasks();
1083 dl 1.57 signalEvent();
1084 dl 1.56 interruptWorkers();
1085     }
1086     }
1087    
1088     /**
1089     * Clear out and cancel submissions, ignoring exceptions
1090     */
1091     private void cancelSubmissions() {
1092 dl 1.53 ForkJoinTask<?> task;
1093     while ((task = submissionQueue.poll()) != null) {
1094     try {
1095     task.cancel(false);
1096     } catch (Throwable ignore) {
1097     }
1098     }
1099 dl 1.56 }
1100    
1101     /**
1102     * Sets all worker run states to at least shutdown,
1103     * also resuming suspended workers
1104     */
1105     private void shutdownWorkers() {
1106     ForkJoinWorkerThread[] ws = workers;
1107     int nws = ws.length;
1108     for (int i = 0; i < nws; ++i) {
1109     ForkJoinWorkerThread w = ws[i];
1110 dl 1.53 if (w != null)
1111 dl 1.56 w.shutdown();
1112 dl 1.53 }
1113 dl 1.56 }
1114    
1115     /**
1116     * Clears out and cancels all locally queued tasks
1117     */
1118     private void cancelWorkerTasks() {
1119     ForkJoinWorkerThread[] ws = workers;
1120     int nws = ws.length;
1121     for (int i = 0; i < nws; ++i) {
1122     ForkJoinWorkerThread w = ws[i];
1123 dl 1.53 if (w != null)
1124     w.cancelTasks();
1125     }
1126 dl 1.56 }
1127    
1128     /**
1129     * Unsticks all workers blocked on joins etc
1130     */
1131     private void interruptWorkers() {
1132     ForkJoinWorkerThread[] ws = workers;
1133     int nws = ws.length;
1134     for (int i = 0; i < nws; ++i) {
1135     ForkJoinWorkerThread w = ws[i];
1136 dl 1.53 if (w != null && !w.isTerminated()) {
1137     try {
1138     w.interrupt();
1139     } catch (SecurityException ignore) {
1140     }
1141     }
1142     }
1143     }
1144    
1145     // misc support for ForkJoinWorkerThread
1146    
1147     /**
1148     * Returns pool number
1149 dl 1.1 */
1150 dl 1.53 final int getPoolNumber() {
1151     return poolNumber;
1152 dl 1.1 }
1153    
1154     /**
1155 dl 1.53 * Accumulates steal count from a worker, clearing
1156     * the worker's value
1157 dl 1.1 */
1158 dl 1.53 final void accumulateStealCount(ForkJoinWorkerThread w) {
1159     int sc = w.stealCount;
1160     if (sc != 0) {
1161     long c;
1162     w.stealCount = 0;
1163     do {} while (!UNSAFE.compareAndSwapLong(this, stealCountOffset,
1164     c = stealCount, c + sc));
1165 dl 1.1 }
1166     }
1167    
1168     /**
1169 dl 1.53 * Returns the approximate (non-atomic) number of idle threads per
1170     * active thread.
1171     */
1172     final int idlePerActive() {
1173 dl 1.58 int pc = parallelism; // use parallelism, not rc
1174 dl 1.53 int ac = runState; // no mask -- artifically boosts during shutdown
1175     // Use exact results for small values, saturate past 4
1176     return pc <= ac? 0 : pc >>> 1 <= ac? 1 : pc >>> 2 <= ac? 3 : pc >>> 3;
1177     }
1178    
1179     // Public and protected methods
1180 dl 1.1
1181     // Constructors
1182    
1183     /**
1184 dl 1.42 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1185 dl 1.57 * java.lang.Runtime#availableProcessors}, using the {@linkplain
1186     * #defaultForkJoinWorkerThreadFactory default thread factory},
1187     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1188 jsr166 1.17 *
1189 dl 1.1 * @throws SecurityException if a security manager exists and
1190     * the caller is not permitted to modify threads
1191     * because it does not hold {@link
1192 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1193 dl 1.1 */
1194     public ForkJoinPool() {
1195     this(Runtime.getRuntime().availableProcessors(),
1196 dl 1.57 defaultForkJoinWorkerThreadFactory, null, false);
1197 dl 1.1 }
1198    
1199     /**
1200 dl 1.42 * Creates a {@code ForkJoinPool} with the indicated parallelism
1201 dl 1.57 * level, the {@linkplain
1202     * #defaultForkJoinWorkerThreadFactory default thread factory},
1203     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1204 jsr166 1.17 *
1205 dl 1.42 * @param parallelism the parallelism level
1206 dl 1.1 * @throws IllegalArgumentException if parallelism less than or
1207 jsr166 1.47 * equal to zero, or greater than implementation limit
1208 dl 1.1 * @throws SecurityException if a security manager exists and
1209     * the caller is not permitted to modify threads
1210     * because it does not hold {@link
1211 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1212 dl 1.1 */
1213     public ForkJoinPool(int parallelism) {
1214 dl 1.57 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1215 dl 1.1 }
1216    
1217     /**
1218 dl 1.57 * Creates a {@code ForkJoinPool} with the given parameters.
1219 jsr166 1.17 *
1220 dl 1.57 * @param parallelism the parallelism level. For default value,
1221     * use {@link java.lang.Runtime#availableProcessors}.
1222     * @param factory the factory for creating new threads. For default value,
1223     * use {@link #defaultForkJoinWorkerThreadFactory}.
1224 dl 1.59 * @param handler the handler for internal worker threads that
1225     * terminate due to unrecoverable errors encountered while executing
1226 dl 1.57 * tasks. For default value, use <code>null</code>.
1227 dl 1.59 * @param asyncMode if true,
1228 dl 1.57 * establishes local first-in-first-out scheduling mode for forked
1229     * tasks that are never joined. This mode may be more appropriate
1230     * than default locally stack-based mode in applications in which
1231     * worker threads only process event-style asynchronous tasks.
1232     * For default value, use <code>false</code>.
1233 dl 1.1 * @throws IllegalArgumentException if parallelism less than or
1234 jsr166 1.47 * equal to zero, or greater than implementation limit
1235 jsr166 1.48 * @throws NullPointerException if the factory is null
1236 dl 1.1 * @throws SecurityException if a security manager exists and
1237     * the caller is not permitted to modify threads
1238     * because it does not hold {@link
1239 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1240 dl 1.1 */
1241 dl 1.59 public ForkJoinPool(int parallelism,
1242 dl 1.57 ForkJoinWorkerThreadFactory factory,
1243     Thread.UncaughtExceptionHandler handler,
1244     boolean asyncMode) {
1245 dl 1.53 checkPermission();
1246     if (factory == null)
1247     throw new NullPointerException();
1248 dl 1.1 if (parallelism <= 0 || parallelism > MAX_THREADS)
1249     throw new IllegalArgumentException();
1250 dl 1.53 this.parallelism = parallelism;
1251 dl 1.1 this.factory = factory;
1252 dl 1.57 this.ueh = handler;
1253     this.locallyFifo = asyncMode;
1254     int arraySize = initialArraySizeFor(parallelism);
1255 dl 1.53 this.workers = new ForkJoinWorkerThread[arraySize];
1256     this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
1257 dl 1.1 this.workerLock = new ReentrantLock();
1258 dl 1.57 this.termination = new Phaser(1);
1259     this.poolNumber = poolNumberGenerator.incrementAndGet();
1260 dl 1.1 }
1261    
1262     /**
1263 dl 1.53 * Returns initial power of two size for workers array.
1264     * @param pc the initial parallelism level
1265     */
1266     private static int initialArraySizeFor(int pc) {
1267     // See Hackers Delight, sec 3.2. We know MAX_THREADS < (1 >>> 16)
1268     int size = pc < MAX_THREADS ? pc + 1 : MAX_THREADS;
1269     size |= size >>> 1;
1270     size |= size >>> 2;
1271     size |= size >>> 4;
1272     size |= size >>> 8;
1273     return size + 1;
1274 dl 1.1 }
1275    
1276     // Execution methods
1277    
1278     /**
1279     * Common code for execute, invoke and submit
1280     */
1281     private <T> void doSubmit(ForkJoinTask<T> task) {
1282 dl 1.23 if (task == null)
1283     throw new NullPointerException();
1284 dl 1.53 if (runState >= SHUTDOWN)
1285 dl 1.1 throw new RejectedExecutionException();
1286 dl 1.58 submissionQueue.offer(task);
1287     signalEvent();
1288 dl 1.60 ensureEnoughTotalWorkers();
1289 dl 1.1 }
1290    
1291     /**
1292 jsr166 1.17 * Performs the given task, returning its result upon completion.
1293 dl 1.57 * If the caller is already engaged in a fork/join computation in
1294 dl 1.59 * the current pool, this method is equivalent in effect to
1295 dl 1.57 * {@link ForkJoinTask#invoke}.
1296 jsr166 1.17 *
1297 dl 1.1 * @param task the task
1298     * @return the task's result
1299 jsr166 1.48 * @throws NullPointerException if the task is null
1300     * @throws RejectedExecutionException if the task cannot be
1301     * scheduled for execution
1302 dl 1.1 */
1303     public <T> T invoke(ForkJoinTask<T> task) {
1304     doSubmit(task);
1305     return task.join();
1306     }
1307    
1308     /**
1309     * Arranges for (asynchronous) execution of the given task.
1310 dl 1.57 * If the caller is already engaged in a fork/join computation in
1311 dl 1.59 * the current pool, this method is equivalent in effect to
1312 dl 1.57 * {@link ForkJoinTask#fork}.
1313 jsr166 1.17 *
1314 dl 1.1 * @param task the task
1315 jsr166 1.48 * @throws NullPointerException if the task is null
1316     * @throws RejectedExecutionException if the task cannot be
1317     * scheduled for execution
1318 dl 1.1 */
1319 dl 1.37 public void execute(ForkJoinTask<?> task) {
1320 dl 1.1 doSubmit(task);
1321     }
1322    
1323     // AbstractExecutorService methods
1324    
1325 jsr166 1.48 /**
1326     * @throws NullPointerException if the task is null
1327     * @throws RejectedExecutionException if the task cannot be
1328     * scheduled for execution
1329     */
1330 dl 1.1 public void execute(Runnable task) {
1331 dl 1.23 ForkJoinTask<?> job;
1332 jsr166 1.26 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1333     job = (ForkJoinTask<?>) task;
1334 dl 1.23 else
1335 dl 1.33 job = ForkJoinTask.adapt(task, null);
1336 dl 1.23 doSubmit(job);
1337 dl 1.1 }
1338    
1339 jsr166 1.48 /**
1340 dl 1.57 * Submits a ForkJoinTask for execution.
1341     * If the caller is already engaged in a fork/join computation in
1342 dl 1.59 * the current pool, this method is equivalent in effect to
1343 dl 1.57 * {@link ForkJoinTask#fork}.
1344     *
1345     * @param task the task to submit
1346     * @return the task
1347     * @throws NullPointerException if the task is null
1348     * @throws RejectedExecutionException if the task cannot be
1349     * scheduled for execution
1350     */
1351     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1352     doSubmit(task);
1353     return task;
1354     }
1355    
1356     /**
1357 jsr166 1.48 * @throws NullPointerException if the task is null
1358     * @throws RejectedExecutionException if the task cannot be
1359     * scheduled for execution
1360     */
1361 dl 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
1362 dl 1.33 ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1363 dl 1.1 doSubmit(job);
1364     return job;
1365     }
1366    
1367 jsr166 1.48 /**
1368     * @throws NullPointerException if the task is null
1369     * @throws RejectedExecutionException if the task cannot be
1370     * scheduled for execution
1371     */
1372 dl 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
1373 dl 1.33 ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1374 dl 1.1 doSubmit(job);
1375     return job;
1376     }
1377    
1378 jsr166 1.48 /**
1379     * @throws NullPointerException if the task is null
1380     * @throws RejectedExecutionException if the task cannot be
1381     * scheduled for execution
1382     */
1383 dl 1.1 public ForkJoinTask<?> submit(Runnable task) {
1384 dl 1.23 ForkJoinTask<?> job;
1385 jsr166 1.26 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1386     job = (ForkJoinTask<?>) task;
1387 dl 1.23 else
1388 dl 1.33 job = ForkJoinTask.adapt(task, null);
1389 dl 1.1 doSubmit(job);
1390     return job;
1391     }
1392    
1393     /**
1394 jsr166 1.48 * @throws NullPointerException {@inheritDoc}
1395     * @throws RejectedExecutionException {@inheritDoc}
1396     */
1397 dl 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
1398 jsr166 1.20 ArrayList<ForkJoinTask<T>> forkJoinTasks =
1399 dl 1.1 new ArrayList<ForkJoinTask<T>>(tasks.size());
1400 jsr166 1.20 for (Callable<T> task : tasks)
1401 dl 1.33 forkJoinTasks.add(ForkJoinTask.adapt(task));
1402 jsr166 1.20 invoke(new InvokeAll<T>(forkJoinTasks));
1403    
1404     @SuppressWarnings({"unchecked", "rawtypes"})
1405 dl 1.54 List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1406 jsr166 1.20 return futures;
1407 dl 1.1 }
1408    
1409     static final class InvokeAll<T> extends RecursiveAction {
1410     final ArrayList<ForkJoinTask<T>> tasks;
1411     InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
1412     public void compute() {
1413 jsr166 1.17 try { invokeAll(tasks); }
1414     catch (Exception ignore) {}
1415 dl 1.1 }
1416 jsr166 1.18 private static final long serialVersionUID = -7914297376763021607L;
1417 dl 1.1 }
1418    
1419     /**
1420 jsr166 1.17 * Returns the factory used for constructing new workers.
1421 dl 1.1 *
1422     * @return the factory used for constructing new workers
1423     */
1424     public ForkJoinWorkerThreadFactory getFactory() {
1425     return factory;
1426     }
1427    
1428     /**
1429 dl 1.2 * Returns the handler for internal worker threads that terminate
1430     * due to unrecoverable errors encountered while executing tasks.
1431 jsr166 1.17 *
1432 jsr166 1.28 * @return the handler, or {@code null} if none
1433 dl 1.2 */
1434     public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1435 dl 1.53 return ueh;
1436 dl 1.2 }
1437    
1438     /**
1439 dl 1.42 * Returns the targeted parallelism level of this pool.
1440 dl 1.1 *
1441 dl 1.42 * @return the targeted parallelism level of this pool
1442 dl 1.1 */
1443     public int getParallelism() {
1444     return parallelism;
1445     }
1446    
1447     /**
1448     * Returns the number of worker threads that have started but not
1449     * yet terminated. This result returned by this method may differ
1450 jsr166 1.29 * from {@link #getParallelism} when threads are created to
1451 dl 1.1 * maintain parallelism when others are cooperatively blocked.
1452     *
1453     * @return the number of worker threads
1454     */
1455     public int getPoolSize() {
1456 dl 1.53 return workerCounts >>> TOTAL_COUNT_SHIFT;
1457 dl 1.1 }
1458    
1459     /**
1460 jsr166 1.28 * Returns {@code true} if this pool uses local first-in-first-out
1461 jsr166 1.16 * scheduling mode for forked tasks that are never joined.
1462 dl 1.6 *
1463 jsr166 1.28 * @return {@code true} if this pool uses async mode
1464 dl 1.6 */
1465     public boolean getAsyncMode() {
1466     return locallyFifo;
1467     }
1468    
1469     /**
1470 dl 1.2 * Returns an estimate of the number of worker threads that are
1471     * not blocked waiting to join tasks or for other managed
1472 dl 1.53 * synchronization. This method may overestimate the
1473     * number of running threads.
1474 dl 1.1 *
1475     * @return the number of worker threads
1476     */
1477     public int getRunningThreadCount() {
1478 dl 1.53 return workerCounts & RUNNING_COUNT_MASK;
1479 dl 1.1 }
1480    
1481     /**
1482 dl 1.2 * Returns an estimate of the number of threads that are currently
1483 dl 1.1 * stealing or executing tasks. This method may overestimate the
1484     * number of active threads.
1485 jsr166 1.17 *
1486 jsr166 1.16 * @return the number of active threads
1487 dl 1.1 */
1488     public int getActiveThreadCount() {
1489 dl 1.53 return runState & ACTIVE_COUNT_MASK;
1490 dl 1.1 }
1491    
1492     /**
1493 jsr166 1.28 * Returns {@code true} if all worker threads are currently idle.
1494     * An idle worker is one that cannot obtain a task to execute
1495     * because none are available to steal from other threads, and
1496     * there are no pending submissions to the pool. This method is
1497     * conservative; it might not return {@code true} immediately upon
1498     * idleness of all threads, but will eventually become true if
1499     * threads remain inactive.
1500 jsr166 1.17 *
1501 jsr166 1.28 * @return {@code true} if all threads are currently idle
1502 dl 1.1 */
1503     public boolean isQuiescent() {
1504 dl 1.53 return (runState & ACTIVE_COUNT_MASK) == 0;
1505 dl 1.1 }
1506    
1507     /**
1508     * Returns an estimate of the total number of tasks stolen from
1509     * one thread's work queue by another. The reported value
1510     * underestimates the actual total number of steals when the pool
1511     * is not quiescent. This value may be useful for monitoring and
1512 jsr166 1.17 * tuning fork/join programs: in general, steal counts should be
1513 dl 1.1 * high enough to keep threads busy, but low enough to avoid
1514     * overhead and contention across threads.
1515 jsr166 1.17 *
1516 jsr166 1.16 * @return the number of steals
1517 dl 1.1 */
1518     public long getStealCount() {
1519 dl 1.53 return stealCount;
1520 dl 1.1 }
1521    
1522     /**
1523 dl 1.2 * Returns an estimate of the total number of tasks currently held
1524     * in queues by worker threads (but not including tasks submitted
1525     * to the pool that have not begun executing). This value is only
1526     * an approximation, obtained by iterating across all threads in
1527     * the pool. This method may be useful for tuning task
1528     * granularities.
1529 jsr166 1.17 *
1530 jsr166 1.16 * @return the number of queued tasks
1531 dl 1.1 */
1532     public long getQueuedTaskCount() {
1533     long count = 0;
1534 dl 1.56 ForkJoinWorkerThread[] ws = workers;
1535     int nws = ws.length;
1536     for (int i = 0; i < nws; ++i) {
1537     ForkJoinWorkerThread w = ws[i];
1538 dl 1.53 if (w != null)
1539     count += w.getQueueSize();
1540 dl 1.1 }
1541     return count;
1542     }
1543    
1544     /**
1545 jsr166 1.40 * Returns an estimate of the number of tasks submitted to this
1546     * pool that have not yet begun executing. This method takes time
1547 dl 1.1 * proportional to the number of submissions.
1548 jsr166 1.17 *
1549 jsr166 1.16 * @return the number of queued submissions
1550 dl 1.1 */
1551     public int getQueuedSubmissionCount() {
1552     return submissionQueue.size();
1553     }
1554    
1555     /**
1556 jsr166 1.28 * Returns {@code true} if there are any tasks submitted to this
1557     * pool that have not yet begun executing.
1558 jsr166 1.17 *
1559 jsr166 1.16 * @return {@code true} if there are any queued submissions
1560 dl 1.1 */
1561     public boolean hasQueuedSubmissions() {
1562     return !submissionQueue.isEmpty();
1563     }
1564    
1565     /**
1566     * Removes and returns the next unexecuted submission if one is
1567     * available. This method may be useful in extensions to this
1568     * class that re-assign work in systems with multiple pools.
1569 jsr166 1.17 *
1570 jsr166 1.28 * @return the next submission, or {@code null} if none
1571 dl 1.1 */
1572     protected ForkJoinTask<?> pollSubmission() {
1573     return submissionQueue.poll();
1574     }
1575    
1576     /**
1577 dl 1.6 * Removes all available unexecuted submitted and forked tasks
1578     * from scheduling queues and adds them to the given collection,
1579     * without altering their execution status. These may include
1580 jsr166 1.41 * artificially generated or wrapped tasks. This method is
1581     * designed to be invoked only when the pool is known to be
1582 dl 1.6 * quiescent. Invocations at other times may not remove all
1583     * tasks. A failure encountered while attempting to add elements
1584 jsr166 1.16 * to collection {@code c} may result in elements being in
1585 dl 1.6 * neither, either or both collections when the associated
1586     * exception is thrown. The behavior of this operation is
1587     * undefined if the specified collection is modified while the
1588     * operation is in progress.
1589 jsr166 1.17 *
1590 dl 1.6 * @param c the collection to transfer elements into
1591     * @return the number of elements transferred
1592     */
1593 dl 1.30 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1594 dl 1.6 int n = submissionQueue.drainTo(c);
1595 dl 1.56 ForkJoinWorkerThread[] ws = workers;
1596     int nws = ws.length;
1597     for (int i = 0; i < nws; ++i) {
1598     ForkJoinWorkerThread w = ws[i];
1599 dl 1.53 if (w != null)
1600     n += w.drainTasksTo(c);
1601 dl 1.6 }
1602     return n;
1603     }
1604    
1605     /**
1606 dl 1.57 * Returns count of total parks by existing workers.
1607     * Used during development only since not meaningful to users.
1608     */
1609     private int collectParkCount() {
1610     int count = 0;
1611     ForkJoinWorkerThread[] ws = workers;
1612     int nws = ws.length;
1613     for (int i = 0; i < nws; ++i) {
1614     ForkJoinWorkerThread w = ws[i];
1615     if (w != null)
1616     count += w.parkCount;
1617     }
1618     return count;
1619     }
1620    
1621     /**
1622 dl 1.1 * Returns a string identifying this pool, as well as its state,
1623     * including indications of run state, parallelism level, and
1624     * worker and task counts.
1625     *
1626     * @return a string identifying this pool, as well as its state
1627     */
1628     public String toString() {
1629     long st = getStealCount();
1630     long qt = getQueuedTaskCount();
1631     long qs = getQueuedSubmissionCount();
1632 dl 1.53 int wc = workerCounts;
1633     int tc = wc >>> TOTAL_COUNT_SHIFT;
1634     int rc = wc & RUNNING_COUNT_MASK;
1635     int pc = parallelism;
1636     int rs = runState;
1637     int ac = rs & ACTIVE_COUNT_MASK;
1638 dl 1.57 // int pk = collectParkCount();
1639 dl 1.1 return super.toString() +
1640 dl 1.53 "[" + runLevelToString(rs) +
1641     ", parallelism = " + pc +
1642     ", size = " + tc +
1643     ", active = " + ac +
1644     ", running = " + rc +
1645 dl 1.1 ", steals = " + st +
1646     ", tasks = " + qt +
1647     ", submissions = " + qs +
1648 dl 1.57 // ", parks = " + pk +
1649 dl 1.1 "]";
1650     }
1651    
1652 dl 1.53 private static String runLevelToString(int s) {
1653     return ((s & TERMINATED) != 0 ? "Terminated" :
1654     ((s & TERMINATING) != 0 ? "Terminating" :
1655     ((s & SHUTDOWN) != 0 ? "Shutting down" :
1656     "Running")));
1657 dl 1.1 }
1658    
1659     /**
1660     * Initiates an orderly shutdown in which previously submitted
1661     * tasks are executed, but no new tasks will be accepted.
1662     * Invocation has no additional effect if already shut down.
1663     * Tasks that are in the process of being submitted concurrently
1664     * during the course of this method may or may not be rejected.
1665 jsr166 1.17 *
1666 dl 1.1 * @throws SecurityException if a security manager exists and
1667     * the caller is not permitted to modify threads
1668     * because it does not hold {@link
1669 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1670 dl 1.1 */
1671     public void shutdown() {
1672     checkPermission();
1673 dl 1.53 advanceRunLevel(SHUTDOWN);
1674     tryTerminate(false);
1675 dl 1.1 }
1676    
1677     /**
1678 dl 1.42 * Attempts to cancel and/or stop all tasks, and reject all
1679     * subsequently submitted tasks. Tasks that are in the process of
1680     * being submitted or executed concurrently during the course of
1681     * this method may or may not be rejected. This method cancels
1682     * both existing and unexecuted tasks, in order to permit
1683     * termination in the presence of task dependencies. So the method
1684     * always returns an empty list (unlike the case for some other
1685     * Executors).
1686 jsr166 1.17 *
1687 dl 1.1 * @return an empty list
1688     * @throws SecurityException if a security manager exists and
1689     * the caller is not permitted to modify threads
1690     * because it does not hold {@link
1691 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1692 dl 1.1 */
1693     public List<Runnable> shutdownNow() {
1694     checkPermission();
1695 dl 1.53 tryTerminate(true);
1696 dl 1.1 return Collections.emptyList();
1697     }
1698    
1699     /**
1700 jsr166 1.16 * Returns {@code true} if all tasks have completed following shut down.
1701 dl 1.1 *
1702 jsr166 1.16 * @return {@code true} if all tasks have completed following shut down
1703 dl 1.1 */
1704     public boolean isTerminated() {
1705 dl 1.53 return runState >= TERMINATED;
1706 dl 1.1 }
1707    
1708     /**
1709 jsr166 1.16 * Returns {@code true} if the process of termination has
1710 dl 1.42 * commenced but not yet completed. This method may be useful for
1711     * debugging. A return of {@code true} reported a sufficient
1712     * period after shutdown may indicate that submitted tasks have
1713     * ignored or suppressed interruption, causing this executor not
1714     * to properly terminate.
1715 dl 1.1 *
1716 dl 1.42 * @return {@code true} if terminating but not yet terminated
1717 dl 1.1 */
1718     public boolean isTerminating() {
1719 dl 1.53 return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
1720 dl 1.1 }
1721    
1722     /**
1723 jsr166 1.16 * Returns {@code true} if this pool has been shut down.
1724 dl 1.1 *
1725 jsr166 1.16 * @return {@code true} if this pool has been shut down
1726 dl 1.1 */
1727     public boolean isShutdown() {
1728 dl 1.53 return runState >= SHUTDOWN;
1729 dl 1.42 }
1730    
1731     /**
1732 dl 1.1 * Blocks until all tasks have completed execution after a shutdown
1733     * request, or the timeout occurs, or the current thread is
1734     * interrupted, whichever happens first.
1735     *
1736     * @param timeout the maximum time to wait
1737     * @param unit the time unit of the timeout argument
1738 jsr166 1.16 * @return {@code true} if this executor terminated and
1739     * {@code false} if the timeout elapsed before termination
1740 dl 1.1 * @throws InterruptedException if interrupted while waiting
1741     */
1742     public boolean awaitTermination(long timeout, TimeUnit unit)
1743     throws InterruptedException {
1744 dl 1.57 try {
1745     return termination.awaitAdvanceInterruptibly(0, timeout, unit) > 0;
1746     } catch(TimeoutException ex) {
1747     return false;
1748     }
1749 dl 1.1 }
1750    
1751     /**
1752     * Interface for extending managed parallelism for tasks running
1753 jsr166 1.35 * in {@link ForkJoinPool}s.
1754     *
1755     * <p>A {@code ManagedBlocker} provides two methods.
1756 jsr166 1.28 * Method {@code isReleasable} must return {@code true} if
1757     * blocking is not necessary. Method {@code block} blocks the
1758     * current thread if necessary (perhaps internally invoking
1759 jsr166 1.40 * {@code isReleasable} before actually blocking).
1760 jsr166 1.17 *
1761 dl 1.1 * <p>For example, here is a ManagedBlocker based on a
1762     * ReentrantLock:
1763 jsr166 1.17 * <pre> {@code
1764     * class ManagedLocker implements ManagedBlocker {
1765     * final ReentrantLock lock;
1766     * boolean hasLock = false;
1767     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1768     * public boolean block() {
1769     * if (!hasLock)
1770     * lock.lock();
1771     * return true;
1772     * }
1773     * public boolean isReleasable() {
1774     * return hasLock || (hasLock = lock.tryLock());
1775 dl 1.1 * }
1776 jsr166 1.17 * }}</pre>
1777 dl 1.1 */
1778     public static interface ManagedBlocker {
1779     /**
1780     * Possibly blocks the current thread, for example waiting for
1781     * a lock or condition.
1782 jsr166 1.17 *
1783 jsr166 1.28 * @return {@code true} if no additional blocking is necessary
1784     * (i.e., if isReleasable would return true)
1785 dl 1.1 * @throws InterruptedException if interrupted while waiting
1786 jsr166 1.17 * (the method is not required to do so, but is allowed to)
1787 dl 1.1 */
1788     boolean block() throws InterruptedException;
1789    
1790     /**
1791 jsr166 1.28 * Returns {@code true} if blocking is unnecessary.
1792 dl 1.1 */
1793     boolean isReleasable();
1794     }
1795    
1796     /**
1797     * Blocks in accord with the given blocker. If the current thread
1798 jsr166 1.38 * is a {@link ForkJoinWorkerThread}, this method possibly
1799     * arranges for a spare thread to be activated if necessary to
1800 dl 1.57 * ensure sufficient parallelism while the current thread is blocked.
1801 jsr166 1.38 *
1802     * <p>If the caller is not a {@link ForkJoinTask}, this method is
1803     * behaviorally equivalent to
1804 jsr166 1.17 * <pre> {@code
1805     * while (!blocker.isReleasable())
1806     * if (blocker.block())
1807     * return;
1808     * }</pre>
1809 jsr166 1.38 *
1810     * If the caller is a {@code ForkJoinTask}, then the pool may
1811     * first be expanded to ensure parallelism, and later adjusted.
1812 dl 1.1 *
1813     * @param blocker the blocker
1814 jsr166 1.16 * @throws InterruptedException if blocker.block did so
1815 dl 1.1 */
1816 dl 1.57 public static void managedBlock(ManagedBlocker blocker)
1817 dl 1.1 throws InterruptedException {
1818     Thread t = Thread.currentThread();
1819 dl 1.53 if (t instanceof ForkJoinWorkerThread)
1820 dl 1.57 ((ForkJoinWorkerThread) t).pool.awaitBlocker(blocker);
1821     else {
1822     do {} while (!blocker.isReleasable() && !blocker.block());
1823     }
1824 dl 1.1 }
1825    
1826 dl 1.33 // AbstractExecutorService overrides. These rely on undocumented
1827     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
1828     // implement RunnableFuture.
1829 dl 1.2
1830     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
1831 jsr166 1.34 return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
1832 dl 1.2 }
1833    
1834     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
1835 jsr166 1.34 return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
1836 dl 1.2 }
1837    
1838 jsr166 1.27 // Unsafe mechanics
1839 dl 1.1
1840 jsr166 1.21 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1841 dl 1.53 private static final long workerCountsOffset =
1842     objectFieldOffset("workerCounts", ForkJoinPool.class);
1843     private static final long runStateOffset =
1844     objectFieldOffset("runState", ForkJoinPool.class);
1845 jsr166 1.25 private static final long eventCountOffset =
1846 jsr166 1.27 objectFieldOffset("eventCount", ForkJoinPool.class);
1847 dl 1.53 private static final long eventWaitersOffset =
1848     objectFieldOffset("eventWaiters",ForkJoinPool.class);
1849     private static final long stealCountOffset =
1850     objectFieldOffset("stealCount",ForkJoinPool.class);
1851    
1852 jsr166 1.27 private static long objectFieldOffset(String field, Class<?> klazz) {
1853     try {
1854     return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1855     } catch (NoSuchFieldException e) {
1856     // Convert Exception to corresponding Error
1857     NoSuchFieldError error = new NoSuchFieldError(field);
1858     error.initCause(e);
1859     throw error;
1860     }
1861     }
1862    
1863     /**
1864     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1865     * Replace with a simple call to Unsafe.getUnsafe when integrating
1866     * into a jdk.
1867     *
1868     * @return a sun.misc.Unsafe
1869     */
1870     private static sun.misc.Unsafe getUnsafe() {
1871     try {
1872     return sun.misc.Unsafe.getUnsafe();
1873     } catch (SecurityException se) {
1874     try {
1875     return java.security.AccessController.doPrivileged
1876     (new java.security
1877     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1878     public sun.misc.Unsafe run() throws Exception {
1879     java.lang.reflect.Field f = sun.misc
1880     .Unsafe.class.getDeclaredField("theUnsafe");
1881     f.setAccessible(true);
1882     return (sun.misc.Unsafe) f.get(null);
1883     }});
1884     } catch (java.security.PrivilegedActionException e) {
1885     throw new RuntimeException("Could not initialize intrinsics",
1886     e.getCause());
1887     }
1888     }
1889     }
1890 dl 1.1 }