ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
Revision: 1.63
Committed: Fri Aug 13 16:21:23 2010 UTC (13 years, 9 months ago) by dl
Branch: MAIN
Changes since 1.62: +0 -3 lines
Log Message:
Remove outdated javadoc sentence

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package jsr166y;
8 jsr166 1.22
9 dl 1.1 import java.util.concurrent.*;
10 jsr166 1.22
11     import java.util.ArrayList;
12     import java.util.Arrays;
13     import java.util.Collection;
14     import java.util.Collections;
15     import java.util.List;
16     import java.util.concurrent.locks.LockSupport;
17     import java.util.concurrent.locks.ReentrantLock;
18     import java.util.concurrent.atomic.AtomicInteger;
19 dl 1.53 import java.util.concurrent.CountDownLatch;
20 dl 1.1
21     /**
22 jsr166 1.29 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
23 jsr166 1.39 * A {@code ForkJoinPool} provides the entry point for submissions
24 dl 1.57 * from non-{@code ForkJoinTask} clients, as well as management and
25 jsr166 1.48 * monitoring operations.
26 dl 1.1 *
27 dl 1.42 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
28     * ExecutorService} mainly by virtue of employing
29     * <em>work-stealing</em>: all threads in the pool attempt to find and
30     * execute subtasks created by other active tasks (eventually blocking
31     * waiting for work if none exist). This enables efficient processing
32     * when most tasks spawn other subtasks (as do most {@code
33 dl 1.57 * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
34     * constructors, {@code ForkJoinPool}s may also be appropriate for use
35     * with event-style tasks that are never joined.
36 dl 1.1 *
37 dl 1.42 * <p>A {@code ForkJoinPool} is constructed with a given target
38     * parallelism level; by default, equal to the number of available
39 dl 1.57 * processors. The pool attempts to maintain enough active (or
40     * available) threads by dynamically adding, suspending, or resuming
41     * internal worker threads, even if some tasks are stalled waiting to
42     * join others. However, no such adjustments are guaranteed in the
43     * face of blocked IO or other unmanaged synchronization. The nested
44     * {@link ManagedBlocker} interface enables extension of the kinds of
45     * synchronization accommodated.
46 dl 1.1 *
47     * <p>In addition to execution and lifecycle control methods, this
48     * class provides status check methods (for example
49 jsr166 1.29 * {@link #getStealCount}) that are intended to aid in developing,
50 dl 1.1 * tuning, and monitoring fork/join applications. Also, method
51 jsr166 1.29 * {@link #toString} returns indications of pool state in a
52 dl 1.2 * convenient form for informal monitoring.
53 dl 1.1 *
54 dl 1.57 * <p> As is the case with other ExecutorServices, there are three
55 dl 1.60 * main task execution methods summarized in the following
56 dl 1.57 * table. These are designed to be used by clients not already engaged
57     * in fork/join computations in the current pool. The main forms of
58     * these methods accept instances of {@code ForkJoinTask}, but
59     * overloaded forms also allow mixed execution of plain {@code
60     * Runnable}- or {@code Callable}- based activities as well. However,
61     * tasks that are already executing in a pool should normally
62     * <em>NOT</em> use these pool execution methods, but instead use the
63 dl 1.59 * within-computation forms listed in the table.
64 dl 1.57 *
65     * <table BORDER CELLPADDING=3 CELLSPACING=1>
66     * <tr>
67     * <td></td>
68     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
69     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
70     * </tr>
71     * <tr>
72     * <td> <b>Arange async execution</td>
73     * <td> {@link #execute(ForkJoinTask)}</td>
74     * <td> {@link ForkJoinTask#fork}</td>
75     * </tr>
76     * <tr>
77     * <td> <b>Await and obtain result</td>
78     * <td> {@link #invoke(ForkJoinTask)}</td>
79     * <td> {@link ForkJoinTask#invoke}</td>
80     * </tr>
81     * <tr>
82     * <td> <b>Arrange exec and obtain Future</td>
83     * <td> {@link #submit(ForkJoinTask)}</td>
84     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
85     * </tr>
86     * </table>
87 dl 1.59 *
88 dl 1.42 * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
89     * used for all parallel task execution in a program or subsystem.
90     * Otherwise, use would not usually outweigh the construction and
91     * bookkeeping overhead of creating a large set of threads. For
92 jsr166 1.43 * example, a common pool could be used for the {@code SortTasks}
93 dl 1.42 * illustrated in {@link RecursiveAction}. Because {@code
94     * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
95 jsr166 1.43 * daemon} mode, there is typically no need to explicitly {@link
96 dl 1.42 * #shutdown} such a pool upon program exit.
97     *
98     * <pre>
99     * static final ForkJoinPool mainPool = new ForkJoinPool();
100     * ...
101     * public void sort(long[] array) {
102     * mainPool.invoke(new SortTask(array, 0, array.length));
103     * }
104     * </pre>
105     *
106 dl 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
107 dl 1.2 * maximum number of running threads to 32767. Attempts to create
108 jsr166 1.48 * pools with greater than the maximum number result in
109 jsr166 1.39 * {@code IllegalArgumentException}.
110 jsr166 1.16 *
111 jsr166 1.48 * <p>This implementation rejects submitted tasks (that is, by throwing
112 dl 1.58 * {@link RejectedExecutionException}) only when the pool is shut down
113 dl 1.62 * or internal resources have been exhausted.
114 jsr166 1.48 *
115 jsr166 1.16 * @since 1.7
116     * @author Doug Lea
117 dl 1.1 */
118 dl 1.2 public class ForkJoinPool extends AbstractExecutorService {
119 dl 1.1
120     /*
121 dl 1.53 * Implementation Overview
122     *
123     * This class provides the central bookkeeping and control for a
124     * set of worker threads: Submissions from non-FJ threads enter
125     * into a submission queue. Workers take these tasks and typically
126     * split them into subtasks that may be stolen by other workers.
127     * The main work-stealing mechanics implemented in class
128     * ForkJoinWorkerThread give first priority to processing tasks
129     * from their own queues (LIFO or FIFO, depending on mode), then
130     * to randomized FIFO steals of tasks in other worker queues, and
131     * lastly to new submissions. These mechanics do not consider
132     * affinities, loads, cache localities, etc, so rarely provide the
133     * best possible performance on a given machine, but portably
134     * provide good throughput by averaging over these factors.
135     * (Further, even if we did try to use such information, we do not
136     * usually have a basis for exploiting it. For example, some sets
137     * of tasks profit from cache affinities, but others are harmed by
138     * cache pollution effects.)
139     *
140 dl 1.58 * Beyond work-stealing support and essential bookkeeping, the
141 dl 1.60 * main responsibility of this framework is to take actions when
142     * one worker is waiting to join a task stolen (or always held by)
143     * another. Becauae we are multiplexing many tasks on to a pool
144     * of workers, we can't just let them block (as in Thread.join).
145     * We also cannot just reassign the joiner's run-time stack with
146     * another and replace it later, which would be a form of
147     * "continuation", that even if possible is not necessarily a good
148     * idea. Given that the creation costs of most threads on most
149     * systems mainly surrounds setting up runtime stacks, thread
150     * creation and switching is usually not much more expensive than
151     * stack creation and switching, and is more flexible). Instead we
152     * combine two tactics:
153 dl 1.58 *
154 dl 1.60 * Helping: Arranging for the joiner to execute some task that it
155 dl 1.58 * would be running if the steal had not occurred. Method
156     * ForkJoinWorkerThread.helpJoinTask tracks joining->stealing
157     * links to try to find such a task.
158     *
159 dl 1.61 * Compensating: Unless there are already enough live threads,
160     * method helpMaintainParallelism() may create or or
161     * re-activate a spare thread to compensate for blocked
162     * joiners until they unblock.
163 dl 1.58 *
164     * Because the determining existence of conservatively safe
165     * helping targets, the availability of already-created spares,
166     * and the apparent need to create new spares are all racy and
167 dl 1.61 * require heuristic guidance, we rely on multiple retries of
168     * each. Further, because it is impossible to keep exactly the
169     * target (parallelism) number of threads running at any given
170     * time, we allow compensation during joins to fail, and enlist
171     * all other threads to help out whenever they are not otherwise
172     * occupied (i.e., mainly in method preStep).
173 dl 1.58 *
174 dl 1.61 * The ManagedBlocker extension API can't use helping so relies
175     * only on compensation in method awaitBlocker.
176 dl 1.58 *
177 dl 1.53 * The main throughput advantages of work-stealing stem from
178     * decentralized control -- workers mostly steal tasks from each
179     * other. We do not want to negate this by creating bottlenecks
180 dl 1.58 * implementing other management responsibilities. So we use a
181     * collection of techniques that avoid, reduce, or cope well with
182     * contention. These entail several instances of bit-packing into
183     * CASable fields to maintain only the minimally required
184     * atomicity. To enable such packing, we restrict maximum
185     * parallelism to (1<<15)-1 (enabling twice this (to accommodate
186     * unbalanced increments and decrements) to fit into a 16 bit
187     * field, which is far in excess of normal operating range. Even
188     * though updates to some of these bookkeeping fields do sometimes
189     * contend with each other, they don't normally cache-contend with
190     * updates to others enough to warrant memory padding or
191     * isolation. So they are all held as fields of ForkJoinPool
192     * objects. The main capabilities are as follows:
193 dl 1.53 *
194     * 1. Creating and removing workers. Workers are recorded in the
195     * "workers" array. This is an array as opposed to some other data
196     * structure to support index-based random steals by workers.
197     * Updates to the array recording new workers and unrecording
198     * terminated ones are protected from each other by a lock
199     * (workerLock) but the array is otherwise concurrently readable,
200     * and accessed directly by workers. To simplify index-based
201     * operations, the array size is always a power of two, and all
202 dl 1.56 * readers must tolerate null slots. Currently, all worker thread
203     * creation is on-demand, triggered by task submissions,
204     * replacement of terminated workers, and/or compensation for
205     * blocked workers. However, all other support code is set up to
206     * work with other policies.
207 dl 1.53 *
208 dl 1.61 * To ensure that we do not hold on to worker references that
209     * would prevent GC, ALL accesses to workers are via indices into
210     * the workers array (which is one source of some of the unusual
211     * code constructions here). In essence, the workers array serves
212     * as a WeakReference mechanism. Thus for example the event queue
213     * stores worker indices, not worker references. Access to the
214     * workers in associated methods (for example releaseEventWaiters)
215     * must both index-check and null-check the IDs. All such accesses
216     * ignore bad IDs by returning out early from what they are doing,
217     * since this can only be associated with shutdown, in which case
218     * it is OK to give up. On termination, we just clobber these
219     * data structures without trying to use them.
220     *
221 dl 1.53 * 2. Bookkeeping for dynamically adding and removing workers. We
222 dl 1.57 * aim to approximately maintain the given level of parallelism.
223     * When some workers are known to be blocked (on joins or via
224 dl 1.53 * ManagedBlocker), we may create or resume others to take their
225     * place until they unblock (see below). Implementing this
226     * requires counts of the number of "running" threads (i.e., those
227     * that are neither blocked nor artifically suspended) as well as
228     * the total number. These two values are packed into one field,
229     * "workerCounts" because we need accurate snapshots when deciding
230 dl 1.58 * to create, resume or suspend. Note however that the
231     * correspondance of these counts to reality is not guaranteed. In
232     * particular updates for unblocked threads may lag until they
233     * actually wake up.
234 dl 1.53 *
235     * 3. Maintaining global run state. The run state of the pool
236     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
237     * those in other Executor implementations, as well as a count of
238     * "active" workers -- those that are, or soon will be, or
239     * recently were executing tasks. The runLevel and active count
240     * are packed together in order to correctly trigger shutdown and
241     * termination. Without care, active counts can be subject to very
242     * high contention. We substantially reduce this contention by
243     * relaxing update rules. A worker must claim active status
244     * prospectively, by activating if it sees that a submitted or
245     * stealable task exists (it may find after activating that the
246     * task no longer exists). It stays active while processing this
247     * task (if it exists) and any other local subtasks it produces,
248     * until it cannot find any other tasks. It then tries
249     * inactivating (see method preStep), but upon update contention
250     * instead scans for more tasks, later retrying inactivation if it
251     * doesn't find any.
252     *
253     * 4. Managing idle workers waiting for tasks. We cannot let
254     * workers spin indefinitely scanning for tasks when none are
255     * available. On the other hand, we must quickly prod them into
256     * action when new tasks are submitted or generated. We
257     * park/unpark these idle workers using an event-count scheme.
258     * Field eventCount is incremented upon events that may enable
259     * workers that previously could not find a task to now find one:
260     * Submission of a new task to the pool, or another worker pushing
261     * a task onto a previously empty queue. (We also use this
262 dl 1.61 * mechanism for termination actions that require wakeups of idle
263     * workers). Each worker maintains its last known event count,
264     * and blocks when a scan for work did not find a task AND its
265     * lastEventCount matches the current eventCount. Waiting idle
266     * workers are recorded in a variant of Treiber stack headed by
267     * field eventWaiters which, when nonzero, encodes the thread
268     * index and count awaited for by the worker thread most recently
269     * calling eventSync. This thread in turn has a record (field
270     * nextEventWaiter) for the next waiting worker. In addition to
271     * allowing simpler decisions about need for wakeup, the event
272     * count bits in eventWaiters serve the role of tags to avoid ABA
273     * errors in Treiber stacks. To reduce delays in task diffusion,
274     * workers not otherwise occupied may invoke method
275     * releaseEventWaiters, that removes and signals (unparks) workers
276     * not waiting on current count. To reduce stalls, To minimize
277     * task production stalls associate with signalling, any worker
278     * pushing a task on an empty queue invokes the weaker method
279     * signalWork, that only releases idle workers until it detects
280     * interference by other threads trying to release, and lets them
281     * take over. The net effect is a tree-like diffusion of signals,
282     * where released threads (and possibly others) help with unparks.
283     * To further reduce contention effects a bit, failed CASes to
284 dl 1.53 * increment field eventCount are tolerated without retries.
285     * Conceptually they are merged into the same event, which is OK
286     * when their only purpose is to enable workers to scan for work.
287     *
288     * 5. Managing suspension of extra workers. When a worker is about
289     * to block waiting for a join (or via ManagedBlockers), we may
290     * create a new thread to maintain parallelism level, or at least
291 dl 1.58 * avoid starvation. Usually, extra threads are needed for only
292     * very short periods, yet join dependencies are such that we
293     * sometimes need them in bursts. Rather than create new threads
294     * each time this happens, we suspend no-longer-needed extra ones
295     * as "spares". For most purposes, we don't distinguish "extra"
296     * spare threads from normal "core" threads: On each call to
297     * preStep (the only point at which we can do this) a worker
298 dl 1.53 * checks to see if there are now too many running workers, and if
299 dl 1.61 * so, suspends itself. Method helpMaintainParallelism looks for
300     * suspended threads to resume before considering creating a new
301     * replacement. The spares themselves are encoded on another
302     * variant of a Treiber Stack, headed at field "spareWaiters".
303     * Note that the use of spares is intrinsically racy. One thread
304     * may become a spare at about the same time as another is
305     * needlessly being created. We counteract this and related slop
306     * in part by requiring resumed spares to immediately recheck (in
307     * preStep) to see whether they they should re-suspend. To avoid
308     * long-term build-up of spares, the oldest spare (see
309     * ForkJoinWorkerThread.suspendAsSpare) occasionally wakes up if
310     * not signalled and calls tryTrimSpare, which uses two different
311     * thresholds: Always killing if the number of spares is greater
312     * that 25% of total, and killing others only at a slower rate
313     * (UNUSED_SPARE_TRIM_RATE_NANOS).
314 dl 1.53 *
315     * 6. Deciding when to create new workers. The main dynamic
316 dl 1.61 * control in this class is deciding when to create extra threads
317     * in method helpMaintainParallelism. We would like to keep
318     * exactly #parallelism threads running, which is an impossble
319     * task. We always need to create one when the number of running
320     * threads would become zero and all workers are busy. Beyond
321     * this, we must rely on heuristics that work well in the the
322     * presence of transients phenomena such as GC stalls, dynamic
323     * compilation, and wake-up lags. These transients are extremely
324     * common -- we are normally trying to fully saturate the CPUs on
325     * a machine, so almost any activity other than running tasks
326     * impedes accuracy. Our main defense is to allow some slack in
327     * creation thresholds, using rules that reflect the fact that the
328     * more threads we have running, the more likely that we are
329     * underestimating the number running threads. The rules also
330     * better cope with the fact that some of the methods in this
331     * class tend to never become compiled (but are interpreted), so
332     * some components of the entire set of controls might execute 100
333     * times faster than others. And similarly for cases where the
334     * apparent lack of work is just due to GC stalls and other
335     * transient system activity.
336 dl 1.53 *
337     * Beware that there is a lot of representation-level coupling
338     * among classes ForkJoinPool, ForkJoinWorkerThread, and
339     * ForkJoinTask. For example, direct access to "workers" array by
340     * workers, and direct access to ForkJoinTask.status by both
341     * ForkJoinPool and ForkJoinWorkerThread. There is little point
342     * trying to reduce this, since any associated future changes in
343     * representations will need to be accompanied by algorithmic
344     * changes anyway.
345     *
346     * Style notes: There are lots of inline assignments (of form
347     * "while ((local = field) != 0)") which are usually the simplest
348 dl 1.61 * way to ensure the required read orderings (which are sometimes
349     * critical). Also several occurrences of the unusual "do {}
350     * while(!cas...)" which is the simplest way to force an update of
351     * a CAS'ed variable. There are also other coding oddities that
352     * help some methods perform reasonably even when interpreted (not
353     * compiled), at the expense of some messy constructions that
354     * reduce byte code counts.
355 dl 1.53 *
356     * The order of declarations in this file is: (1) statics (2)
357     * fields (along with constants used when unpacking some of them)
358     * (3) internal control methods (4) callbacks and other support
359     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
360     * methods (plus a few little helpers).
361 dl 1.1 */
362    
363     /**
364 jsr166 1.35 * Factory for creating new {@link ForkJoinWorkerThread}s.
365     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
366     * for {@code ForkJoinWorkerThread} subclasses that extend base
367     * functionality or initialize threads with different contexts.
368 dl 1.1 */
369     public static interface ForkJoinWorkerThreadFactory {
370     /**
371     * Returns a new worker thread operating in the given pool.
372     *
373     * @param pool the pool this thread works in
374 jsr166 1.48 * @throws NullPointerException if the pool is null
375 dl 1.1 */
376     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
377     }
378    
379     /**
380 jsr166 1.17 * Default ForkJoinWorkerThreadFactory implementation; creates a
381 dl 1.1 * new ForkJoinWorkerThread.
382     */
383 dl 1.57 static class DefaultForkJoinWorkerThreadFactory
384 dl 1.1 implements ForkJoinWorkerThreadFactory {
385     public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
386 dl 1.53 return new ForkJoinWorkerThread(pool);
387 dl 1.1 }
388     }
389    
390     /**
391 dl 1.2 * Creates a new ForkJoinWorkerThread. This factory is used unless
392     * overridden in ForkJoinPool constructors.
393 dl 1.1 */
394 dl 1.2 public static final ForkJoinWorkerThreadFactory
395 dl 1.1 defaultForkJoinWorkerThreadFactory =
396     new DefaultForkJoinWorkerThreadFactory();
397    
398     /**
399     * Permission required for callers of methods that may start or
400     * kill threads.
401     */
402     private static final RuntimePermission modifyThreadPermission =
403     new RuntimePermission("modifyThread");
404    
405     /**
406     * If there is a security manager, makes sure caller has
407     * permission to modify threads.
408     */
409     private static void checkPermission() {
410     SecurityManager security = System.getSecurityManager();
411     if (security != null)
412     security.checkPermission(modifyThreadPermission);
413     }
414    
415     /**
416     * Generator for assigning sequence numbers as pool names.
417     */
418     private static final AtomicInteger poolNumberGenerator =
419     new AtomicInteger();
420    
421     /**
422 dl 1.61 * Absolute bound for parallelism level. Twice this number plus
423     * one (i.e., 0xfff) must fit into a 16bit field to enable
424     * word-packing for some counts and indices.
425 dl 1.53 */
426 dl 1.61 private static final int MAX_WORKERS = 0x7fff;
427 dl 1.53
428     /**
429     * Array holding all worker threads in the pool. Array size must
430     * be a power of two. Updates and replacements are protected by
431     * workerLock, but the array is always kept in a consistent enough
432     * state to be randomly accessed without locking by workers
433     * performing work-stealing, as well as other traversal-based
434     * methods in this class. All readers must tolerate that some
435     * array slots may be null.
436 dl 1.1 */
437     volatile ForkJoinWorkerThread[] workers;
438    
439     /**
440 dl 1.53 * Queue for external submissions.
441 dl 1.1 */
442 dl 1.53 private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
443 dl 1.1
444     /**
445 dl 1.53 * Lock protecting updates to workers array.
446 dl 1.1 */
447 dl 1.53 private final ReentrantLock workerLock;
448 dl 1.1
449     /**
450 dl 1.53 * Latch released upon termination.
451 dl 1.1 */
452 dl 1.57 private final Phaser termination;
453 dl 1.1
454     /**
455     * Creation factory for worker threads.
456     */
457     private final ForkJoinWorkerThreadFactory factory;
458    
459     /**
460 dl 1.53 * Sum of per-thread steal counts, updated only when threads are
461     * idle or terminating.
462 dl 1.1 */
463 dl 1.53 private volatile long stealCount;
464 dl 1.1
465     /**
466 dl 1.61 * The last nanoTime that a spare thread was trimmed
467     */
468     private volatile long trimTime;
469    
470     /**
471     * The rate at which to trim unused spares
472     */
473     static final long UNUSED_SPARE_TRIM_RATE_NANOS =
474     1000L * 1000L * 1000L; // 1 sec
475    
476     /**
477 dl 1.53 * Encoded record of top of treiber stack of threads waiting for
478     * events. The top 32 bits contain the count being waited for. The
479 dl 1.61 * bottom 16 bits contains one plus the pool index of waiting
480     * worker thread. (Bits 16-31 are unused.)
481 dl 1.1 */
482 dl 1.53 private volatile long eventWaiters;
483    
484     private static final int EVENT_COUNT_SHIFT = 32;
485 dl 1.61 private static final long WAITER_ID_MASK = (1L << 16) - 1L;
486 dl 1.1
487     /**
488 dl 1.53 * A counter for events that may wake up worker threads:
489     * - Submission of a new task to the pool
490     * - A worker pushing a task on an empty queue
491 dl 1.61 * - termination
492 dl 1.1 */
493 dl 1.53 private volatile int eventCount;
494    
495     /**
496 dl 1.61 * Encoded record of top of treiber stack of spare threads waiting
497     * for resumption. The top 16 bits contain an arbitrary count to
498     * avoid ABA effects. The bottom 16bits contains one plus the pool
499     * index of waiting worker thread.
500     */
501     private volatile int spareWaiters;
502    
503     private static final int SPARE_COUNT_SHIFT = 16;
504     private static final int SPARE_ID_MASK = (1 << 16) - 1;
505    
506     /**
507 dl 1.53 * Lifecycle control. The low word contains the number of workers
508     * that are (probably) executing tasks. This value is atomically
509     * incremented before a worker gets a task to run, and decremented
510     * when worker has no tasks and cannot find any. Bits 16-18
511     * contain runLevel value. When all are zero, the pool is
512     * running. Level transitions are monotonic (running -> shutdown
513     * -> terminating -> terminated) so each transition adds a bit.
514     * These are bundled together to ensure consistent read for
515     * termination checks (i.e., that runLevel is at least SHUTDOWN
516     * and active threads is zero).
517     */
518     private volatile int runState;
519    
520     // Note: The order among run level values matters.
521     private static final int RUNLEVEL_SHIFT = 16;
522     private static final int SHUTDOWN = 1 << RUNLEVEL_SHIFT;
523     private static final int TERMINATING = 1 << (RUNLEVEL_SHIFT + 1);
524     private static final int TERMINATED = 1 << (RUNLEVEL_SHIFT + 2);
525     private static final int ACTIVE_COUNT_MASK = (1 << RUNLEVEL_SHIFT) - 1;
526     private static final int ONE_ACTIVE = 1; // active update delta
527 dl 1.1
528     /**
529 dl 1.53 * Holds number of total (i.e., created and not yet terminated)
530     * and running (i.e., not blocked on joins or other managed sync)
531     * threads, packed together to ensure consistent snapshot when
532     * making decisions about creating and suspending spare
533     * threads. Updated only by CAS. Note that adding a new worker
534     * requires incrementing both counts, since workers start off in
535 dl 1.60 * running state.
536 dl 1.53 */
537     private volatile int workerCounts;
538    
539     private static final int TOTAL_COUNT_SHIFT = 16;
540     private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
541     private static final int ONE_RUNNING = 1;
542     private static final int ONE_TOTAL = 1 << TOTAL_COUNT_SHIFT;
543    
544 dl 1.1 /**
545 dl 1.53 * The target parallelism level.
546 dl 1.57 * Accessed directly by ForkJoinWorkerThreads.
547 dl 1.1 */
548 dl 1.57 final int parallelism;
549 dl 1.1
550     /**
551 dl 1.53 * True if use local fifo, not default lifo, for local polling
552 dl 1.57 * Read by, and replicated by ForkJoinWorkerThreads
553 dl 1.1 */
554 dl 1.57 final boolean locallyFifo;
555 dl 1.1
556     /**
557 dl 1.57 * The uncaught exception handler used when any worker abruptly
558     * terminates.
559 dl 1.1 */
560 dl 1.57 private final Thread.UncaughtExceptionHandler ueh;
561 dl 1.6
562     /**
563 dl 1.53 * Pool number, just for assigning useful names to worker threads
564 dl 1.1 */
565 dl 1.53 private final int poolNumber;
566 dl 1.1
567 dl 1.61
568 dl 1.58 // Utilities for CASing fields. Note that several of these
569     // are manually inlined by callers
570 dl 1.1
571     /**
572 dl 1.61 * Increments running count part of workerCounts
573 dl 1.1 */
574 dl 1.57 final void incrementRunningCount() {
575     int c;
576 dl 1.53 do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
577 dl 1.59 c = workerCounts,
578 dl 1.57 c + ONE_RUNNING));
579 dl 1.1 }
580 dl 1.58
581 dl 1.1 /**
582 dl 1.57 * Tries to decrement running count unless already zero
583 dl 1.56 */
584     final boolean tryDecrementRunningCount() {
585     int wc = workerCounts;
586     if ((wc & RUNNING_COUNT_MASK) == 0)
587     return false;
588     return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
589     wc, wc - ONE_RUNNING);
590     }
591    
592     /**
593 dl 1.61 * Forces decrement of encoded workerCounts, awaiting nonzero if
594     * (rarely) necessary when other count updates lag.
595     *
596     * @param dr -- either zero or ONE_RUNNING
597     * @param dt == either zero or ONE_TOTAL
598 dl 1.58 */
599 dl 1.61 private void decrementWorkerCounts(int dr, int dt) {
600     for (;;) {
601     int wc = workerCounts;
602     if (wc == 0 && (runState & TERMINATED) != 0)
603     return; // lagging termination on a backout
604     if ((wc & RUNNING_COUNT_MASK) - dr < 0 ||
605     (wc >>> TOTAL_COUNT_SHIFT) - dt < 0)
606     Thread.yield();
607     if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
608     wc, wc - (dr + dt)))
609     return;
610     }
611     }
612    
613     /**
614     * Increments event count
615     */
616     private void advanceEventCount() {
617     int c;
618     do {} while(!UNSAFE.compareAndSwapInt(this, eventCountOffset,
619     c = eventCount, c+1));
620 dl 1.58 }
621    
622     /**
623 jsr166 1.17 * Tries incrementing active count; fails on contention.
624 dl 1.53 * Called by workers before executing tasks.
625 jsr166 1.17 *
626 jsr166 1.16 * @return true on success
627 dl 1.1 */
628 dl 1.4 final boolean tryIncrementActiveCount() {
629 dl 1.53 int c;
630     return UNSAFE.compareAndSwapInt(this, runStateOffset,
631     c = runState, c + ONE_ACTIVE);
632 dl 1.1 }
633    
634     /**
635 jsr166 1.16 * Tries decrementing active count; fails on contention.
636 dl 1.53 * Called when workers cannot find tasks to run.
637     */
638     final boolean tryDecrementActiveCount() {
639     int c;
640     return UNSAFE.compareAndSwapInt(this, runStateOffset,
641     c = runState, c - ONE_ACTIVE);
642     }
643    
644     /**
645     * Advances to at least the given level. Returns true if not
646     * already in at least the given level.
647     */
648     private boolean advanceRunLevel(int level) {
649     for (;;) {
650     int s = runState;
651     if ((s & level) != 0)
652     return false;
653     if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
654     return true;
655     }
656     }
657    
658     // workers array maintenance
659    
660     /**
661     * Records and returns a workers array index for new worker.
662     */
663     private int recordWorker(ForkJoinWorkerThread w) {
664     // Try using slot totalCount-1. If not available, scan and/or resize
665     int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
666     final ReentrantLock lock = this.workerLock;
667     lock.lock();
668     try {
669     ForkJoinWorkerThread[] ws = workers;
670 dl 1.61 int n = ws.length;
671     if (k < 0 || k >= n || ws[k] != null) {
672     for (k = 0; k < n && ws[k] != null; ++k)
673 dl 1.53 ;
674 dl 1.61 if (k == n)
675     ws = Arrays.copyOf(ws, n << 1);
676 dl 1.53 }
677     ws[k] = w;
678     workers = ws; // volatile array write ensures slot visibility
679     } finally {
680     lock.unlock();
681     }
682     return k;
683     }
684    
685     /**
686     * Nulls out record of worker in workers array
687     */
688     private void forgetWorker(ForkJoinWorkerThread w) {
689     int idx = w.poolIndex;
690     // Locking helps method recordWorker avoid unecessary expansion
691     final ReentrantLock lock = this.workerLock;
692     lock.lock();
693     try {
694     ForkJoinWorkerThread[] ws = workers;
695     if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
696     ws[idx] = null;
697     } finally {
698     lock.unlock();
699     }
700     }
701    
702     // adding and removing workers
703    
704     /**
705     * Tries to create and add new worker. Assumes that worker counts
706     * are already updated to accommodate the worker, so adjusts on
707     * failure.
708     */
709 dl 1.61 private void addWorker() {
710 dl 1.53 ForkJoinWorkerThread w = null;
711     try {
712     w = factory.newThread(this);
713     } finally { // Adjust on either null or exceptional factory return
714 dl 1.61 if (w == null) {
715     decrementWorkerCounts(ONE_RUNNING, ONE_TOTAL);
716     tryTerminate(false); // in case of failure during shutdown
717     }
718 dl 1.53 }
719 dl 1.60 if (w != null)
720     w.start(recordWorker(w), ueh);
721 dl 1.53 }
722    
723     /**
724     * Final callback from terminating worker. Removes record of
725     * worker from array, and adjusts counts. If pool is shutting
726 dl 1.61 * down, tries to complete terminatation.
727 dl 1.53 *
728     * @param w the worker
729     */
730     final void workerTerminated(ForkJoinWorkerThread w) {
731     forgetWorker(w);
732 dl 1.61 decrementWorkerCounts(w.isTrimmed()? 0 : ONE_RUNNING, ONE_TOTAL);
733     while (w.stealCount != 0) // collect final count
734     tryAccumulateStealCount(w);
735     tryTerminate(false);
736 dl 1.53 }
737    
738     // Waiting for and signalling events
739    
740     /**
741     * Releases workers blocked on a count not equal to current count.
742 dl 1.61 * Normally called after precheck that eventWaiters isn't zero to
743     * avoid wasted array checks.
744     *
745     * @param signalling true if caller is a signalling worker so can
746     * exit upon (conservatively) detected contention by other threads
747     * who will continue to release
748 dl 1.53 */
749 dl 1.61 private void releaseEventWaiters(boolean signalling) {
750     ForkJoinWorkerThread[] ws = workers;
751     int n = ws.length;
752     long h; // head of stack
753     ForkJoinWorkerThread w; int id, ec;
754     while ((id = ((int)((h = eventWaiters) & WAITER_ID_MASK)) - 1) >= 0 &&
755     (int)(h >>> EVENT_COUNT_SHIFT) != (ec = eventCount) &&
756     id < n && (w = ws[id]) != null) {
757     if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
758     h, h = w.nextWaiter))
759     LockSupport.unpark(w);
760     if (signalling && (eventCount != ec || eventWaiters != h))
761     break;
762 dl 1.53 }
763     }
764    
765     /**
766 dl 1.61 * Tries to advance eventCount and releases waiters. Called only
767     * from workers.
768 dl 1.53 */
769     final void signalWork() {
770 dl 1.61 int c; // try to increment event count -- CAS failure OK
771     UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
772     if (eventWaiters != 0L)
773     releaseEventWaiters(true);
774 dl 1.53 }
775    
776     /**
777 dl 1.61 * Blocks worker until terminating or event count
778 dl 1.60 * advances from last value held by worker
779 dl 1.53 *
780     * @param w the calling worker thread
781     */
782 dl 1.60 private void eventSync(ForkJoinWorkerThread w) {
783 dl 1.58 int wec = w.lastEventCount;
784 dl 1.61 long nh = (((long)wec) << EVENT_COUNT_SHIFT) | ((long)(w.poolIndex+1));
785     long h;
786 dl 1.60 while ((runState < SHUTDOWN || !tryTerminate(false)) &&
787 dl 1.61 ((h = eventWaiters) == 0L ||
788     (int)(h >>> EVENT_COUNT_SHIFT) == wec) &&
789 dl 1.60 eventCount == wec) {
790     if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
791 dl 1.61 w.nextWaiter = h, nh)) {
792     while (runState < TERMINATING && eventCount == wec) {
793     if (!tryAccumulateStealCount(w)) // transfer while idle
794     continue;
795     Thread.interrupted(); // clear/ignore interrupt
796     if (eventCount != wec)
797     break;
798     LockSupport.park(w);
799     }
800 dl 1.60 break;
801 dl 1.53 }
802     }
803 dl 1.60 w.lastEventCount = eventCount;
804 dl 1.53 }
805    
806 dl 1.61 // Maintaining spares
807    
808     /**
809     * Pushes worker onto the spare stack
810     */
811     final void pushSpare(ForkJoinWorkerThread w) {
812     int ns = (++w.spareCount << SPARE_COUNT_SHIFT) | (w.poolIndex+1);
813     do {} while (!UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
814     w.nextSpare = spareWaiters,ns));
815     }
816    
817     /**
818     * Tries (once) to resume a spare if running count is less than
819     * target parallelism. Fails on contention or stale workers.
820     */
821     private void tryResumeSpare() {
822     int sw, id;
823     ForkJoinWorkerThread w;
824     ForkJoinWorkerThread[] ws;
825     if ((id = ((sw = spareWaiters) & SPARE_ID_MASK) - 1) >= 0 &&
826     id < (ws = workers).length && (w = ws[id]) != null &&
827     (workerCounts & RUNNING_COUNT_MASK) < parallelism &&
828     eventWaiters == 0L &&
829     spareWaiters == sw &&
830     UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
831     sw, w.nextSpare) &&
832     w.tryUnsuspend()) {
833     int c; // try increment; if contended, finish after unpark
834     boolean inc = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
835     c = workerCounts,
836     c + ONE_RUNNING);
837     LockSupport.unpark(w);
838     if (!inc) {
839     do {} while(!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
840     c = workerCounts,
841     c + ONE_RUNNING));
842     }
843     }
844     }
845    
846     /**
847     * Callback from oldest spare occasionally waking up. Tries
848     * (once) to shutdown a spare if more than 25% spare overage, or
849     * if UNUSED_SPARE_TRIM_RATE_NANOS have elapsed and there are at
850     * least #parallelism running threads. Note that we don't need CAS
851     * or locks here because the method is called only from the oldest
852     * suspended spare occasionally waking (and even misfires are OK).
853     *
854     * @param now the wake up nanoTime of caller
855     */
856     final void tryTrimSpare(long now) {
857     long lastTrim = trimTime;
858     trimTime = now;
859     helpMaintainParallelism(); // first, help wake up any needed spares
860     int sw, id;
861     ForkJoinWorkerThread w;
862     ForkJoinWorkerThread[] ws;
863     int pc = parallelism;
864     int wc = workerCounts;
865     if ((wc & RUNNING_COUNT_MASK) >= pc &&
866     (((wc >>> TOTAL_COUNT_SHIFT) - pc) > (pc >>> 2) + 1 ||// approx 25%
867     now - lastTrim >= UNUSED_SPARE_TRIM_RATE_NANOS) &&
868     (id = ((sw = spareWaiters) & SPARE_ID_MASK) - 1) >= 0 &&
869     id < (ws = workers).length && (w = ws[id]) != null &&
870     UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
871     sw, w.nextSpare))
872     w.shutdown(false);
873     }
874    
875     /**
876     * Does at most one of:
877     *
878     * 1. Help wake up existing workers waiting for work via
879     * releaseEventWaiters. (If any exist, then it probably doesn't
880     * matter right now if under target parallelism level.)
881     *
882     * 2. If below parallelism level and a spare exists, try (once)
883     * to resume it via tryResumeSpare.
884     *
885     * 3. If neither of the above, tries (once) to add a new
886     * worker if either there are not enough total, or if all
887     * existing workers are busy, there are either no running
888     * workers or the deficit is at least twice the surplus.
889     */
890     private void helpMaintainParallelism() {
891     // uglified to work better when not compiled
892     int pc, wc, rc, tc, rs; long h;
893     if ((h = eventWaiters) != 0L) {
894     if ((int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
895     releaseEventWaiters(false); // avoid useless call
896     }
897     else if ((pc = parallelism) >
898     (rc = ((wc = workerCounts) & RUNNING_COUNT_MASK))) {
899     if (spareWaiters != 0)
900     tryResumeSpare();
901     else if ((rs = runState) < TERMINATING &&
902     ((tc = wc >>> TOTAL_COUNT_SHIFT) < pc ||
903     (tc == (rs & ACTIVE_COUNT_MASK) && // all busy
904     (rc == 0 || // must add
905     rc < pc - ((tc - pc) << 1)) && // within slack
906     tc < MAX_WORKERS && runState == rs)) && // recheck busy
907     workerCounts == wc &&
908     UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
909     wc + (ONE_RUNNING|ONE_TOTAL)))
910     addWorker();
911     }
912     }
913    
914 dl 1.53 /**
915     * Callback from workers invoked upon each top-level action (i.e.,
916     * stealing a task or taking a submission and running
917 dl 1.61 * it). Performs one or more of the following:
918     *
919     * 1. If the worker cannot find work (misses > 0), updates its
920     * active status to inactive and updates activeCount unless
921     * this is the first miss and there is contention, in which
922     * case it may try again (either in this or a subsequent
923     * call).
924     *
925     * 2. If there are at least 2 misses, awaits the next task event
926     * via eventSync
927     *
928     * 3. If there are too many running threads, suspends this worker
929     * (first forcing inactivation if necessary). If it is not
930     * needed, it may be killed while suspended via
931     * tryTrimSpare. Otherwise, upon resume it rechecks to make
932     * sure that it is still needed.
933 dl 1.53 *
934 dl 1.61 * 4. Helps release and/or reactivate other workers via
935     * helpMaintainParallelism
936 dl 1.53 *
937     * @param w the worker
938 dl 1.61 * @param misses the number of scans by caller failing to find work
939     * (saturating at 2 just to avoid wraparound)
940 dl 1.53 */
941 dl 1.61 final void preStep(ForkJoinWorkerThread w, int misses) {
942 dl 1.53 boolean active = w.active;
943 dl 1.61 int pc = parallelism;
944 dl 1.53 for (;;) {
945 dl 1.61 int wc = workerCounts;
946     int rc = wc & RUNNING_COUNT_MASK;
947     if (active && (misses > 0 || rc > pc)) {
948     int rs; // try inactivate
949     if (UNSAFE.compareAndSwapInt(this, runStateOffset,
950     rs = runState, rs - ONE_ACTIVE))
951     active = w.active = false;
952     else if (misses > 1 || rc > pc ||
953     (rs & ACTIVE_COUNT_MASK) >= pc)
954     continue; // force inactivate
955     }
956     if (misses > 1) {
957     misses = 0; // don't re-sync
958     eventSync(w); // continue loop to recheck rc
959     }
960     else if (rc > pc) {
961     if (workerCounts == wc && // try to suspend as spare
962     UNSAFE.compareAndSwapInt(this, workerCountsOffset,
963     wc, wc - ONE_RUNNING) &&
964     !w.suspendAsSpare()) // false if killed
965     break;
966     }
967     else {
968     if (rc < pc || eventWaiters != 0L)
969     helpMaintainParallelism();
970 dl 1.60 break;
971 dl 1.53 }
972     }
973     }
974    
975     /**
976 dl 1.61 * Helps and/or blocks awaiting join of the given task.
977     * Alternates between helpJoinTask() and helpMaintainParallelism()
978     * as many times as there is a deficit in running count (or longer
979     * if running count would become zero), then blocks if task still
980     * not done.
981 dl 1.56 *
982     * @param joinMe the task to join
983 dl 1.53 */
984 dl 1.61 final void awaitJoin(ForkJoinTask<?> joinMe, ForkJoinWorkerThread worker) {
985     int threshold = parallelism; // descend blocking thresholds
986     while (joinMe.status >= 0) {
987     boolean block; int wc;
988     worker.helpJoinTask(joinMe);
989     if (joinMe.status < 0)
990     break;
991     if (((wc = workerCounts) & RUNNING_COUNT_MASK) <= threshold) {
992     if (threshold > 0)
993     --threshold;
994     else
995     advanceEventCount(); // force release
996     block = false;
997 dl 1.58 }
998 dl 1.61 else
999     block = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1000     wc, wc - ONE_RUNNING);
1001     helpMaintainParallelism();
1002     if (block) {
1003     int c;
1004     joinMe.internalAwaitDone();
1005     do {} while (!UNSAFE.compareAndSwapInt
1006     (this, workerCountsOffset,
1007     c = workerCounts, c + ONE_RUNNING));
1008     break;
1009 dl 1.53 }
1010     }
1011     }
1012    
1013     /**
1014 dl 1.61 * Same idea as awaitJoin, but no helping
1015 dl 1.53 */
1016 dl 1.57 final void awaitBlocker(ManagedBlocker blocker)
1017 dl 1.53 throws InterruptedException {
1018 dl 1.61 int threshold = parallelism;
1019     while (!blocker.isReleasable()) {
1020     boolean block; int wc;
1021     if (((wc = workerCounts) & RUNNING_COUNT_MASK) <= threshold) {
1022     if (threshold > 0)
1023     --threshold;
1024     else
1025     advanceEventCount();
1026     block = false;
1027     }
1028     else
1029     block = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1030     wc, wc - ONE_RUNNING);
1031     helpMaintainParallelism();
1032     if (block) {
1033     try {
1034     do {} while (!blocker.isReleasable() && !blocker.block());
1035     } finally {
1036     int c;
1037     do {} while (!UNSAFE.compareAndSwapInt
1038     (this, workerCountsOffset,
1039     c = workerCounts, c + ONE_RUNNING));
1040 dl 1.58 }
1041 dl 1.60 break;
1042     }
1043 dl 1.53 }
1044 dl 1.59 }
1045 dl 1.54
1046     /**
1047 dl 1.53 * Possibly initiates and/or completes termination.
1048     *
1049     * @param now if true, unconditionally terminate, else only
1050     * if shutdown and empty queue and no active workers
1051     * @return true if now terminating or terminated
1052 dl 1.1 */
1053 dl 1.53 private boolean tryTerminate(boolean now) {
1054     if (now)
1055     advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
1056     else if (runState < SHUTDOWN ||
1057     !submissionQueue.isEmpty() ||
1058     (runState & ACTIVE_COUNT_MASK) != 0)
1059 dl 1.4 return false;
1060 dl 1.53
1061     if (advanceRunLevel(TERMINATING))
1062     startTerminating();
1063    
1064     // Finish now if all threads terminated; else in some subsequent call
1065     if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1066     advanceRunLevel(TERMINATED);
1067 dl 1.57 termination.arrive();
1068 dl 1.53 }
1069 dl 1.4 return true;
1070 dl 1.1 }
1071    
1072     /**
1073 dl 1.53 * Actions on transition to TERMINATING
1074 dl 1.61 *
1075     * Runs up to four passes through workers: (0) shutting down each
1076     * quietly (without waking up if parked) to quickly spread
1077     * notifications without unnecessary bouncing around event queues
1078     * etc (1) wake up and help cancel tasks (2) interrupt (3) mop up
1079     * races with interrupted workers
1080 dl 1.53 */
1081     private void startTerminating() {
1082 dl 1.61 cancelSubmissions();
1083     for (int passes = 0; passes < 4 && workerCounts != 0; ++passes) {
1084     advanceEventCount();
1085     eventWaiters = 0L; // clobber lists
1086     spareWaiters = 0;
1087     ForkJoinWorkerThread[] ws = workers;
1088     int n = ws.length;
1089     for (int i = 0; i < n; ++i) {
1090     ForkJoinWorkerThread w = ws[i];
1091     if (w != null) {
1092     w.shutdown(true);
1093     if (passes > 0 && !w.isTerminated()) {
1094     w.cancelTasks();
1095     LockSupport.unpark(w);
1096     if (passes > 1) {
1097     try {
1098     w.interrupt();
1099     } catch (SecurityException ignore) {
1100     }
1101     }
1102     }
1103     }
1104     }
1105 dl 1.56 }
1106     }
1107    
1108     /**
1109     * Clear out and cancel submissions, ignoring exceptions
1110     */
1111     private void cancelSubmissions() {
1112 dl 1.53 ForkJoinTask<?> task;
1113     while ((task = submissionQueue.poll()) != null) {
1114     try {
1115     task.cancel(false);
1116     } catch (Throwable ignore) {
1117     }
1118     }
1119 dl 1.56 }
1120    
1121 dl 1.53 // misc support for ForkJoinWorkerThread
1122    
1123     /**
1124     * Returns pool number
1125 dl 1.1 */
1126 dl 1.53 final int getPoolNumber() {
1127     return poolNumber;
1128 dl 1.1 }
1129    
1130     /**
1131 dl 1.61 * Tries to accumulates steal count from a worker, clearing
1132     * the worker's value.
1133     *
1134     * @return true if worker steal count now zero
1135 dl 1.1 */
1136 dl 1.61 final boolean tryAccumulateStealCount(ForkJoinWorkerThread w) {
1137 dl 1.53 int sc = w.stealCount;
1138 dl 1.61 long c = stealCount;
1139     // CAS even if zero, for fence effects
1140     if (UNSAFE.compareAndSwapLong(this, stealCountOffset, c, c + sc)) {
1141     if (sc != 0)
1142     w.stealCount = 0;
1143     return true;
1144 dl 1.1 }
1145 dl 1.61 return sc == 0;
1146 dl 1.1 }
1147    
1148     /**
1149 dl 1.53 * Returns the approximate (non-atomic) number of idle threads per
1150     * active thread.
1151     */
1152     final int idlePerActive() {
1153 dl 1.58 int pc = parallelism; // use parallelism, not rc
1154 dl 1.53 int ac = runState; // no mask -- artifically boosts during shutdown
1155     // Use exact results for small values, saturate past 4
1156     return pc <= ac? 0 : pc >>> 1 <= ac? 1 : pc >>> 2 <= ac? 3 : pc >>> 3;
1157     }
1158    
1159     // Public and protected methods
1160 dl 1.1
1161     // Constructors
1162    
1163     /**
1164 dl 1.42 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1165 dl 1.57 * java.lang.Runtime#availableProcessors}, using the {@linkplain
1166     * #defaultForkJoinWorkerThreadFactory default thread factory},
1167     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1168 jsr166 1.17 *
1169 dl 1.1 * @throws SecurityException if a security manager exists and
1170     * the caller is not permitted to modify threads
1171     * because it does not hold {@link
1172 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1173 dl 1.1 */
1174     public ForkJoinPool() {
1175     this(Runtime.getRuntime().availableProcessors(),
1176 dl 1.57 defaultForkJoinWorkerThreadFactory, null, false);
1177 dl 1.1 }
1178    
1179     /**
1180 dl 1.42 * Creates a {@code ForkJoinPool} with the indicated parallelism
1181 dl 1.57 * level, the {@linkplain
1182     * #defaultForkJoinWorkerThreadFactory default thread factory},
1183     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1184 jsr166 1.17 *
1185 dl 1.42 * @param parallelism the parallelism level
1186 dl 1.1 * @throws IllegalArgumentException if parallelism less than or
1187 jsr166 1.47 * equal to zero, or greater than implementation limit
1188 dl 1.1 * @throws SecurityException if a security manager exists and
1189     * the caller is not permitted to modify threads
1190     * because it does not hold {@link
1191 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1192 dl 1.1 */
1193     public ForkJoinPool(int parallelism) {
1194 dl 1.57 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1195 dl 1.1 }
1196    
1197     /**
1198 dl 1.57 * Creates a {@code ForkJoinPool} with the given parameters.
1199 jsr166 1.17 *
1200 dl 1.57 * @param parallelism the parallelism level. For default value,
1201     * use {@link java.lang.Runtime#availableProcessors}.
1202     * @param factory the factory for creating new threads. For default value,
1203     * use {@link #defaultForkJoinWorkerThreadFactory}.
1204 dl 1.59 * @param handler the handler for internal worker threads that
1205     * terminate due to unrecoverable errors encountered while executing
1206 dl 1.57 * tasks. For default value, use <code>null</code>.
1207 dl 1.59 * @param asyncMode if true,
1208 dl 1.57 * establishes local first-in-first-out scheduling mode for forked
1209     * tasks that are never joined. This mode may be more appropriate
1210     * than default locally stack-based mode in applications in which
1211     * worker threads only process event-style asynchronous tasks.
1212     * For default value, use <code>false</code>.
1213 dl 1.1 * @throws IllegalArgumentException if parallelism less than or
1214 jsr166 1.47 * equal to zero, or greater than implementation limit
1215 jsr166 1.48 * @throws NullPointerException if the factory is null
1216 dl 1.1 * @throws SecurityException if a security manager exists and
1217     * the caller is not permitted to modify threads
1218     * because it does not hold {@link
1219 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1220 dl 1.1 */
1221 dl 1.59 public ForkJoinPool(int parallelism,
1222 dl 1.57 ForkJoinWorkerThreadFactory factory,
1223     Thread.UncaughtExceptionHandler handler,
1224     boolean asyncMode) {
1225 dl 1.53 checkPermission();
1226     if (factory == null)
1227     throw new NullPointerException();
1228 dl 1.61 if (parallelism <= 0 || parallelism > MAX_WORKERS)
1229 dl 1.1 throw new IllegalArgumentException();
1230 dl 1.53 this.parallelism = parallelism;
1231 dl 1.1 this.factory = factory;
1232 dl 1.57 this.ueh = handler;
1233     this.locallyFifo = asyncMode;
1234     int arraySize = initialArraySizeFor(parallelism);
1235 dl 1.53 this.workers = new ForkJoinWorkerThread[arraySize];
1236     this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
1237 dl 1.1 this.workerLock = new ReentrantLock();
1238 dl 1.57 this.termination = new Phaser(1);
1239     this.poolNumber = poolNumberGenerator.incrementAndGet();
1240 dl 1.61 this.trimTime = System.nanoTime();
1241 dl 1.1 }
1242    
1243     /**
1244 dl 1.53 * Returns initial power of two size for workers array.
1245     * @param pc the initial parallelism level
1246     */
1247     private static int initialArraySizeFor(int pc) {
1248 dl 1.61 // See Hackers Delight, sec 3.2. We know MAX_WORKERS < (1 >>> 16)
1249     int size = pc < MAX_WORKERS ? pc + 1 : MAX_WORKERS;
1250 dl 1.53 size |= size >>> 1;
1251     size |= size >>> 2;
1252     size |= size >>> 4;
1253     size |= size >>> 8;
1254     return size + 1;
1255 dl 1.1 }
1256    
1257     // Execution methods
1258    
1259     /**
1260     * Common code for execute, invoke and submit
1261     */
1262     private <T> void doSubmit(ForkJoinTask<T> task) {
1263 dl 1.23 if (task == null)
1264     throw new NullPointerException();
1265 dl 1.53 if (runState >= SHUTDOWN)
1266 dl 1.1 throw new RejectedExecutionException();
1267 dl 1.58 submissionQueue.offer(task);
1268 dl 1.61 advanceEventCount();
1269     helpMaintainParallelism(); // start or wake up workers
1270 dl 1.1 }
1271    
1272     /**
1273 jsr166 1.17 * Performs the given task, returning its result upon completion.
1274     *
1275 dl 1.1 * @param task the task
1276     * @return the task's result
1277 jsr166 1.48 * @throws NullPointerException if the task is null
1278     * @throws RejectedExecutionException if the task cannot be
1279     * scheduled for execution
1280 dl 1.1 */
1281     public <T> T invoke(ForkJoinTask<T> task) {
1282     doSubmit(task);
1283     return task.join();
1284     }
1285    
1286     /**
1287     * Arranges for (asynchronous) execution of the given task.
1288 dl 1.57 * If the caller is already engaged in a fork/join computation in
1289 dl 1.59 * the current pool, this method is equivalent in effect to
1290 dl 1.57 * {@link ForkJoinTask#fork}.
1291 jsr166 1.17 *
1292 dl 1.1 * @param task the task
1293 jsr166 1.48 * @throws NullPointerException if the task is null
1294     * @throws RejectedExecutionException if the task cannot be
1295     * scheduled for execution
1296 dl 1.1 */
1297 dl 1.37 public void execute(ForkJoinTask<?> task) {
1298 dl 1.1 doSubmit(task);
1299     }
1300    
1301     // AbstractExecutorService methods
1302    
1303 jsr166 1.48 /**
1304     * @throws NullPointerException if the task is null
1305     * @throws RejectedExecutionException if the task cannot be
1306     * scheduled for execution
1307     */
1308 dl 1.1 public void execute(Runnable task) {
1309 dl 1.23 ForkJoinTask<?> job;
1310 jsr166 1.26 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1311     job = (ForkJoinTask<?>) task;
1312 dl 1.23 else
1313 dl 1.33 job = ForkJoinTask.adapt(task, null);
1314 dl 1.23 doSubmit(job);
1315 dl 1.1 }
1316    
1317 jsr166 1.48 /**
1318 dl 1.57 * Submits a ForkJoinTask for execution.
1319     * If the caller is already engaged in a fork/join computation in
1320 dl 1.59 * the current pool, this method is equivalent in effect to
1321 dl 1.57 * {@link ForkJoinTask#fork}.
1322     *
1323     * @param task the task to submit
1324     * @return the task
1325     * @throws NullPointerException if the task is null
1326     * @throws RejectedExecutionException if the task cannot be
1327     * scheduled for execution
1328     */
1329     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1330     doSubmit(task);
1331     return task;
1332     }
1333    
1334     /**
1335 jsr166 1.48 * @throws NullPointerException if the task is null
1336     * @throws RejectedExecutionException if the task cannot be
1337     * scheduled for execution
1338     */
1339 dl 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
1340 dl 1.33 ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1341 dl 1.1 doSubmit(job);
1342     return job;
1343     }
1344    
1345 jsr166 1.48 /**
1346     * @throws NullPointerException if the task is null
1347     * @throws RejectedExecutionException if the task cannot be
1348     * scheduled for execution
1349     */
1350 dl 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
1351 dl 1.33 ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1352 dl 1.1 doSubmit(job);
1353     return job;
1354     }
1355    
1356 jsr166 1.48 /**
1357     * @throws NullPointerException if the task is null
1358     * @throws RejectedExecutionException if the task cannot be
1359     * scheduled for execution
1360     */
1361 dl 1.1 public ForkJoinTask<?> submit(Runnable task) {
1362 dl 1.23 ForkJoinTask<?> job;
1363 jsr166 1.26 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1364     job = (ForkJoinTask<?>) task;
1365 dl 1.23 else
1366 dl 1.33 job = ForkJoinTask.adapt(task, null);
1367 dl 1.1 doSubmit(job);
1368     return job;
1369     }
1370    
1371     /**
1372 jsr166 1.48 * @throws NullPointerException {@inheritDoc}
1373     * @throws RejectedExecutionException {@inheritDoc}
1374     */
1375 dl 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
1376 jsr166 1.20 ArrayList<ForkJoinTask<T>> forkJoinTasks =
1377 dl 1.1 new ArrayList<ForkJoinTask<T>>(tasks.size());
1378 jsr166 1.20 for (Callable<T> task : tasks)
1379 dl 1.33 forkJoinTasks.add(ForkJoinTask.adapt(task));
1380 jsr166 1.20 invoke(new InvokeAll<T>(forkJoinTasks));
1381    
1382     @SuppressWarnings({"unchecked", "rawtypes"})
1383 dl 1.54 List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1384 jsr166 1.20 return futures;
1385 dl 1.1 }
1386    
1387     static final class InvokeAll<T> extends RecursiveAction {
1388     final ArrayList<ForkJoinTask<T>> tasks;
1389     InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
1390     public void compute() {
1391 jsr166 1.17 try { invokeAll(tasks); }
1392     catch (Exception ignore) {}
1393 dl 1.1 }
1394 jsr166 1.18 private static final long serialVersionUID = -7914297376763021607L;
1395 dl 1.1 }
1396    
1397     /**
1398 jsr166 1.17 * Returns the factory used for constructing new workers.
1399 dl 1.1 *
1400     * @return the factory used for constructing new workers
1401     */
1402     public ForkJoinWorkerThreadFactory getFactory() {
1403     return factory;
1404     }
1405    
1406     /**
1407 dl 1.2 * Returns the handler for internal worker threads that terminate
1408     * due to unrecoverable errors encountered while executing tasks.
1409 jsr166 1.17 *
1410 jsr166 1.28 * @return the handler, or {@code null} if none
1411 dl 1.2 */
1412     public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1413 dl 1.53 return ueh;
1414 dl 1.2 }
1415    
1416     /**
1417 dl 1.42 * Returns the targeted parallelism level of this pool.
1418 dl 1.1 *
1419 dl 1.42 * @return the targeted parallelism level of this pool
1420 dl 1.1 */
1421     public int getParallelism() {
1422     return parallelism;
1423     }
1424    
1425     /**
1426     * Returns the number of worker threads that have started but not
1427     * yet terminated. This result returned by this method may differ
1428 jsr166 1.29 * from {@link #getParallelism} when threads are created to
1429 dl 1.1 * maintain parallelism when others are cooperatively blocked.
1430     *
1431     * @return the number of worker threads
1432     */
1433     public int getPoolSize() {
1434 dl 1.53 return workerCounts >>> TOTAL_COUNT_SHIFT;
1435 dl 1.1 }
1436    
1437     /**
1438 jsr166 1.28 * Returns {@code true} if this pool uses local first-in-first-out
1439 jsr166 1.16 * scheduling mode for forked tasks that are never joined.
1440 dl 1.6 *
1441 jsr166 1.28 * @return {@code true} if this pool uses async mode
1442 dl 1.6 */
1443     public boolean getAsyncMode() {
1444     return locallyFifo;
1445     }
1446    
1447     /**
1448 dl 1.2 * Returns an estimate of the number of worker threads that are
1449     * not blocked waiting to join tasks or for other managed
1450 dl 1.53 * synchronization. This method may overestimate the
1451     * number of running threads.
1452 dl 1.1 *
1453     * @return the number of worker threads
1454     */
1455     public int getRunningThreadCount() {
1456 dl 1.53 return workerCounts & RUNNING_COUNT_MASK;
1457 dl 1.1 }
1458    
1459     /**
1460 dl 1.2 * Returns an estimate of the number of threads that are currently
1461 dl 1.1 * stealing or executing tasks. This method may overestimate the
1462     * number of active threads.
1463 jsr166 1.17 *
1464 jsr166 1.16 * @return the number of active threads
1465 dl 1.1 */
1466     public int getActiveThreadCount() {
1467 dl 1.53 return runState & ACTIVE_COUNT_MASK;
1468 dl 1.1 }
1469    
1470     /**
1471 jsr166 1.28 * Returns {@code true} if all worker threads are currently idle.
1472     * An idle worker is one that cannot obtain a task to execute
1473     * because none are available to steal from other threads, and
1474     * there are no pending submissions to the pool. This method is
1475     * conservative; it might not return {@code true} immediately upon
1476     * idleness of all threads, but will eventually become true if
1477     * threads remain inactive.
1478 jsr166 1.17 *
1479 jsr166 1.28 * @return {@code true} if all threads are currently idle
1480 dl 1.1 */
1481     public boolean isQuiescent() {
1482 dl 1.53 return (runState & ACTIVE_COUNT_MASK) == 0;
1483 dl 1.1 }
1484    
1485     /**
1486     * Returns an estimate of the total number of tasks stolen from
1487     * one thread's work queue by another. The reported value
1488     * underestimates the actual total number of steals when the pool
1489     * is not quiescent. This value may be useful for monitoring and
1490 jsr166 1.17 * tuning fork/join programs: in general, steal counts should be
1491 dl 1.1 * high enough to keep threads busy, but low enough to avoid
1492     * overhead and contention across threads.
1493 jsr166 1.17 *
1494 jsr166 1.16 * @return the number of steals
1495 dl 1.1 */
1496     public long getStealCount() {
1497 dl 1.53 return stealCount;
1498 dl 1.1 }
1499    
1500     /**
1501 dl 1.2 * Returns an estimate of the total number of tasks currently held
1502     * in queues by worker threads (but not including tasks submitted
1503     * to the pool that have not begun executing). This value is only
1504     * an approximation, obtained by iterating across all threads in
1505     * the pool. This method may be useful for tuning task
1506     * granularities.
1507 jsr166 1.17 *
1508 jsr166 1.16 * @return the number of queued tasks
1509 dl 1.1 */
1510     public long getQueuedTaskCount() {
1511     long count = 0;
1512 dl 1.56 ForkJoinWorkerThread[] ws = workers;
1513 dl 1.61 int n = ws.length;
1514     for (int i = 0; i < n; ++i) {
1515 dl 1.56 ForkJoinWorkerThread w = ws[i];
1516 dl 1.53 if (w != null)
1517     count += w.getQueueSize();
1518 dl 1.1 }
1519     return count;
1520     }
1521    
1522     /**
1523 jsr166 1.40 * Returns an estimate of the number of tasks submitted to this
1524     * pool that have not yet begun executing. This method takes time
1525 dl 1.1 * proportional to the number of submissions.
1526 jsr166 1.17 *
1527 jsr166 1.16 * @return the number of queued submissions
1528 dl 1.1 */
1529     public int getQueuedSubmissionCount() {
1530     return submissionQueue.size();
1531     }
1532    
1533     /**
1534 jsr166 1.28 * Returns {@code true} if there are any tasks submitted to this
1535     * pool that have not yet begun executing.
1536 jsr166 1.17 *
1537 jsr166 1.16 * @return {@code true} if there are any queued submissions
1538 dl 1.1 */
1539     public boolean hasQueuedSubmissions() {
1540     return !submissionQueue.isEmpty();
1541     }
1542    
1543     /**
1544     * Removes and returns the next unexecuted submission if one is
1545     * available. This method may be useful in extensions to this
1546     * class that re-assign work in systems with multiple pools.
1547 jsr166 1.17 *
1548 jsr166 1.28 * @return the next submission, or {@code null} if none
1549 dl 1.1 */
1550     protected ForkJoinTask<?> pollSubmission() {
1551     return submissionQueue.poll();
1552     }
1553    
1554     /**
1555 dl 1.6 * Removes all available unexecuted submitted and forked tasks
1556     * from scheduling queues and adds them to the given collection,
1557     * without altering their execution status. These may include
1558 jsr166 1.41 * artificially generated or wrapped tasks. This method is
1559     * designed to be invoked only when the pool is known to be
1560 dl 1.6 * quiescent. Invocations at other times may not remove all
1561     * tasks. A failure encountered while attempting to add elements
1562 jsr166 1.16 * to collection {@code c} may result in elements being in
1563 dl 1.6 * neither, either or both collections when the associated
1564     * exception is thrown. The behavior of this operation is
1565     * undefined if the specified collection is modified while the
1566     * operation is in progress.
1567 jsr166 1.17 *
1568 dl 1.6 * @param c the collection to transfer elements into
1569     * @return the number of elements transferred
1570     */
1571 dl 1.30 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1572 dl 1.61 int count = submissionQueue.drainTo(c);
1573 dl 1.57 ForkJoinWorkerThread[] ws = workers;
1574 dl 1.61 int n = ws.length;
1575     for (int i = 0; i < n; ++i) {
1576 dl 1.57 ForkJoinWorkerThread w = ws[i];
1577     if (w != null)
1578 dl 1.61 count += w.drainTasksTo(c);
1579 dl 1.57 }
1580     return count;
1581     }
1582    
1583     /**
1584 dl 1.1 * Returns a string identifying this pool, as well as its state,
1585     * including indications of run state, parallelism level, and
1586     * worker and task counts.
1587     *
1588     * @return a string identifying this pool, as well as its state
1589     */
1590     public String toString() {
1591     long st = getStealCount();
1592     long qt = getQueuedTaskCount();
1593     long qs = getQueuedSubmissionCount();
1594 dl 1.53 int wc = workerCounts;
1595     int tc = wc >>> TOTAL_COUNT_SHIFT;
1596     int rc = wc & RUNNING_COUNT_MASK;
1597     int pc = parallelism;
1598     int rs = runState;
1599     int ac = rs & ACTIVE_COUNT_MASK;
1600 dl 1.1 return super.toString() +
1601 dl 1.53 "[" + runLevelToString(rs) +
1602     ", parallelism = " + pc +
1603     ", size = " + tc +
1604     ", active = " + ac +
1605     ", running = " + rc +
1606 dl 1.1 ", steals = " + st +
1607     ", tasks = " + qt +
1608     ", submissions = " + qs +
1609     "]";
1610     }
1611    
1612 dl 1.53 private static String runLevelToString(int s) {
1613     return ((s & TERMINATED) != 0 ? "Terminated" :
1614     ((s & TERMINATING) != 0 ? "Terminating" :
1615     ((s & SHUTDOWN) != 0 ? "Shutting down" :
1616     "Running")));
1617 dl 1.1 }
1618    
1619     /**
1620     * Initiates an orderly shutdown in which previously submitted
1621     * tasks are executed, but no new tasks will be accepted.
1622     * Invocation has no additional effect if already shut down.
1623     * Tasks that are in the process of being submitted concurrently
1624     * during the course of this method may or may not be rejected.
1625 jsr166 1.17 *
1626 dl 1.1 * @throws SecurityException if a security manager exists and
1627     * the caller is not permitted to modify threads
1628     * because it does not hold {@link
1629 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1630 dl 1.1 */
1631     public void shutdown() {
1632     checkPermission();
1633 dl 1.53 advanceRunLevel(SHUTDOWN);
1634     tryTerminate(false);
1635 dl 1.1 }
1636    
1637     /**
1638 dl 1.42 * Attempts to cancel and/or stop all tasks, and reject all
1639     * subsequently submitted tasks. Tasks that are in the process of
1640     * being submitted or executed concurrently during the course of
1641     * this method may or may not be rejected. This method cancels
1642     * both existing and unexecuted tasks, in order to permit
1643     * termination in the presence of task dependencies. So the method
1644     * always returns an empty list (unlike the case for some other
1645     * Executors).
1646 jsr166 1.17 *
1647 dl 1.1 * @return an empty list
1648     * @throws SecurityException if a security manager exists and
1649     * the caller is not permitted to modify threads
1650     * because it does not hold {@link
1651 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1652 dl 1.1 */
1653     public List<Runnable> shutdownNow() {
1654     checkPermission();
1655 dl 1.53 tryTerminate(true);
1656 dl 1.1 return Collections.emptyList();
1657     }
1658    
1659     /**
1660 jsr166 1.16 * Returns {@code true} if all tasks have completed following shut down.
1661 dl 1.1 *
1662 jsr166 1.16 * @return {@code true} if all tasks have completed following shut down
1663 dl 1.1 */
1664     public boolean isTerminated() {
1665 dl 1.53 return runState >= TERMINATED;
1666 dl 1.1 }
1667    
1668     /**
1669 jsr166 1.16 * Returns {@code true} if the process of termination has
1670 dl 1.42 * commenced but not yet completed. This method may be useful for
1671     * debugging. A return of {@code true} reported a sufficient
1672     * period after shutdown may indicate that submitted tasks have
1673     * ignored or suppressed interruption, causing this executor not
1674     * to properly terminate.
1675 dl 1.1 *
1676 dl 1.42 * @return {@code true} if terminating but not yet terminated
1677 dl 1.1 */
1678     public boolean isTerminating() {
1679 dl 1.53 return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
1680 dl 1.1 }
1681    
1682     /**
1683 jsr166 1.16 * Returns {@code true} if this pool has been shut down.
1684 dl 1.1 *
1685 jsr166 1.16 * @return {@code true} if this pool has been shut down
1686 dl 1.1 */
1687     public boolean isShutdown() {
1688 dl 1.53 return runState >= SHUTDOWN;
1689 dl 1.42 }
1690    
1691     /**
1692 dl 1.1 * Blocks until all tasks have completed execution after a shutdown
1693     * request, or the timeout occurs, or the current thread is
1694     * interrupted, whichever happens first.
1695     *
1696     * @param timeout the maximum time to wait
1697     * @param unit the time unit of the timeout argument
1698 jsr166 1.16 * @return {@code true} if this executor terminated and
1699     * {@code false} if the timeout elapsed before termination
1700 dl 1.1 * @throws InterruptedException if interrupted while waiting
1701     */
1702     public boolean awaitTermination(long timeout, TimeUnit unit)
1703     throws InterruptedException {
1704 dl 1.57 try {
1705     return termination.awaitAdvanceInterruptibly(0, timeout, unit) > 0;
1706     } catch(TimeoutException ex) {
1707     return false;
1708     }
1709 dl 1.1 }
1710    
1711     /**
1712     * Interface for extending managed parallelism for tasks running
1713 jsr166 1.35 * in {@link ForkJoinPool}s.
1714     *
1715 dl 1.61 * <p>A {@code ManagedBlocker} provides two methods. Method
1716     * {@code isReleasable} must return {@code true} if blocking is
1717     * not necessary. Method {@code block} blocks the current thread
1718     * if necessary (perhaps internally invoking {@code isReleasable}
1719     * before actually blocking). The unusual methods in this API
1720     * accommodate synchronizers that may, but don't usually, block
1721     * for long periods. Similarly, they allow more efficient internal
1722     * handling of cases in which additional workers may be, but
1723     * usually are not, needed to ensure sufficient parallelism.
1724     * Toward this end, implementations of method {@code isReleasable}
1725     * must be amenable to repeated invocation.
1726 jsr166 1.17 *
1727 dl 1.1 * <p>For example, here is a ManagedBlocker based on a
1728     * ReentrantLock:
1729 jsr166 1.17 * <pre> {@code
1730     * class ManagedLocker implements ManagedBlocker {
1731     * final ReentrantLock lock;
1732     * boolean hasLock = false;
1733     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1734     * public boolean block() {
1735     * if (!hasLock)
1736     * lock.lock();
1737     * return true;
1738     * }
1739     * public boolean isReleasable() {
1740     * return hasLock || (hasLock = lock.tryLock());
1741 dl 1.1 * }
1742 jsr166 1.17 * }}</pre>
1743 dl 1.61 *
1744     * <p>Here is a class that possibly blocks waiting for an
1745     * item on a given queue:
1746     * <pre> {@code
1747     * class QueueTaker<E> implements ManagedBlocker {
1748     * final BlockingQueue<E> queue;
1749     * volatile E item = null;
1750     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
1751     * public boolean block() throws InterruptedException {
1752     * if (item == null)
1753     * item = queue.take
1754     * return true;
1755     * }
1756     * public boolean isReleasable() {
1757     * return item != null || (item = queue.poll) != null;
1758     * }
1759     * public E getItem() { // call after pool.managedBlock completes
1760     * return item;
1761     * }
1762     * }}</pre>
1763 dl 1.1 */
1764     public static interface ManagedBlocker {
1765     /**
1766     * Possibly blocks the current thread, for example waiting for
1767     * a lock or condition.
1768 jsr166 1.17 *
1769 jsr166 1.28 * @return {@code true} if no additional blocking is necessary
1770     * (i.e., if isReleasable would return true)
1771 dl 1.1 * @throws InterruptedException if interrupted while waiting
1772 jsr166 1.17 * (the method is not required to do so, but is allowed to)
1773 dl 1.1 */
1774     boolean block() throws InterruptedException;
1775    
1776     /**
1777 jsr166 1.28 * Returns {@code true} if blocking is unnecessary.
1778 dl 1.1 */
1779     boolean isReleasable();
1780     }
1781    
1782     /**
1783     * Blocks in accord with the given blocker. If the current thread
1784 jsr166 1.38 * is a {@link ForkJoinWorkerThread}, this method possibly
1785     * arranges for a spare thread to be activated if necessary to
1786 dl 1.57 * ensure sufficient parallelism while the current thread is blocked.
1787 jsr166 1.38 *
1788     * <p>If the caller is not a {@link ForkJoinTask}, this method is
1789     * behaviorally equivalent to
1790 jsr166 1.17 * <pre> {@code
1791     * while (!blocker.isReleasable())
1792     * if (blocker.block())
1793     * return;
1794     * }</pre>
1795 jsr166 1.38 *
1796     * If the caller is a {@code ForkJoinTask}, then the pool may
1797     * first be expanded to ensure parallelism, and later adjusted.
1798 dl 1.1 *
1799     * @param blocker the blocker
1800 jsr166 1.16 * @throws InterruptedException if blocker.block did so
1801 dl 1.1 */
1802 dl 1.57 public static void managedBlock(ManagedBlocker blocker)
1803 dl 1.1 throws InterruptedException {
1804     Thread t = Thread.currentThread();
1805 dl 1.61 if (t instanceof ForkJoinWorkerThread) {
1806     ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
1807     w.pool.awaitBlocker(blocker);
1808     }
1809 dl 1.57 else {
1810     do {} while (!blocker.isReleasable() && !blocker.block());
1811     }
1812 dl 1.1 }
1813    
1814 dl 1.33 // AbstractExecutorService overrides. These rely on undocumented
1815     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
1816     // implement RunnableFuture.
1817 dl 1.2
1818     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
1819 jsr166 1.34 return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
1820 dl 1.2 }
1821    
1822     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
1823 jsr166 1.34 return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
1824 dl 1.2 }
1825    
1826 jsr166 1.27 // Unsafe mechanics
1827 dl 1.1
1828 jsr166 1.21 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1829 dl 1.53 private static final long workerCountsOffset =
1830     objectFieldOffset("workerCounts", ForkJoinPool.class);
1831     private static final long runStateOffset =
1832     objectFieldOffset("runState", ForkJoinPool.class);
1833 jsr166 1.25 private static final long eventCountOffset =
1834 jsr166 1.27 objectFieldOffset("eventCount", ForkJoinPool.class);
1835 dl 1.53 private static final long eventWaitersOffset =
1836     objectFieldOffset("eventWaiters",ForkJoinPool.class);
1837     private static final long stealCountOffset =
1838     objectFieldOffset("stealCount",ForkJoinPool.class);
1839 dl 1.61 private static final long spareWaitersOffset =
1840     objectFieldOffset("spareWaiters",ForkJoinPool.class);
1841 dl 1.53
1842 jsr166 1.27 private static long objectFieldOffset(String field, Class<?> klazz) {
1843     try {
1844     return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1845     } catch (NoSuchFieldException e) {
1846     // Convert Exception to corresponding Error
1847     NoSuchFieldError error = new NoSuchFieldError(field);
1848     error.initCause(e);
1849     throw error;
1850     }
1851     }
1852    
1853     /**
1854     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1855     * Replace with a simple call to Unsafe.getUnsafe when integrating
1856     * into a jdk.
1857     *
1858     * @return a sun.misc.Unsafe
1859     */
1860     private static sun.misc.Unsafe getUnsafe() {
1861     try {
1862     return sun.misc.Unsafe.getUnsafe();
1863     } catch (SecurityException se) {
1864     try {
1865     return java.security.AccessController.doPrivileged
1866     (new java.security
1867     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1868     public sun.misc.Unsafe run() throws Exception {
1869     java.lang.reflect.Field f = sun.misc
1870     .Unsafe.class.getDeclaredField("theUnsafe");
1871     f.setAccessible(true);
1872     return (sun.misc.Unsafe) f.get(null);
1873     }});
1874     } catch (java.security.PrivilegedActionException e) {
1875     throw new RuntimeException("Could not initialize intrinsics",
1876     e.getCause());
1877     }
1878     }
1879     }
1880 dl 1.1 }