ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
Revision: 1.64
Committed: Tue Aug 17 18:30:32 2010 UTC (13 years, 9 months ago) by dl
Branch: MAIN
Changes since 1.63: +307 -202 lines
Log Message:
Reduce resources during periods without use

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package jsr166y;
8 jsr166 1.22
9 dl 1.1 import java.util.concurrent.*;
10 jsr166 1.22
11     import java.util.ArrayList;
12     import java.util.Arrays;
13     import java.util.Collection;
14     import java.util.Collections;
15     import java.util.List;
16     import java.util.concurrent.locks.LockSupport;
17     import java.util.concurrent.locks.ReentrantLock;
18     import java.util.concurrent.atomic.AtomicInteger;
19 dl 1.53 import java.util.concurrent.CountDownLatch;
20 dl 1.1
21     /**
22 jsr166 1.29 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
23 jsr166 1.39 * A {@code ForkJoinPool} provides the entry point for submissions
24 dl 1.57 * from non-{@code ForkJoinTask} clients, as well as management and
25 jsr166 1.48 * monitoring operations.
26 dl 1.1 *
27 dl 1.42 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
28     * ExecutorService} mainly by virtue of employing
29     * <em>work-stealing</em>: all threads in the pool attempt to find and
30     * execute subtasks created by other active tasks (eventually blocking
31     * waiting for work if none exist). This enables efficient processing
32     * when most tasks spawn other subtasks (as do most {@code
33 dl 1.57 * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
34     * constructors, {@code ForkJoinPool}s may also be appropriate for use
35     * with event-style tasks that are never joined.
36 dl 1.1 *
37 dl 1.42 * <p>A {@code ForkJoinPool} is constructed with a given target
38     * parallelism level; by default, equal to the number of available
39 dl 1.57 * processors. The pool attempts to maintain enough active (or
40     * available) threads by dynamically adding, suspending, or resuming
41     * internal worker threads, even if some tasks are stalled waiting to
42     * join others. However, no such adjustments are guaranteed in the
43     * face of blocked IO or other unmanaged synchronization. The nested
44     * {@link ManagedBlocker} interface enables extension of the kinds of
45     * synchronization accommodated.
46 dl 1.1 *
47     * <p>In addition to execution and lifecycle control methods, this
48     * class provides status check methods (for example
49 jsr166 1.29 * {@link #getStealCount}) that are intended to aid in developing,
50 dl 1.1 * tuning, and monitoring fork/join applications. Also, method
51 jsr166 1.29 * {@link #toString} returns indications of pool state in a
52 dl 1.2 * convenient form for informal monitoring.
53 dl 1.1 *
54 dl 1.57 * <p> As is the case with other ExecutorServices, there are three
55 dl 1.60 * main task execution methods summarized in the following
56 dl 1.57 * table. These are designed to be used by clients not already engaged
57     * in fork/join computations in the current pool. The main forms of
58     * these methods accept instances of {@code ForkJoinTask}, but
59     * overloaded forms also allow mixed execution of plain {@code
60     * Runnable}- or {@code Callable}- based activities as well. However,
61     * tasks that are already executing in a pool should normally
62     * <em>NOT</em> use these pool execution methods, but instead use the
63 dl 1.59 * within-computation forms listed in the table.
64 dl 1.57 *
65     * <table BORDER CELLPADDING=3 CELLSPACING=1>
66     * <tr>
67     * <td></td>
68     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
69     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
70     * </tr>
71     * <tr>
72     * <td> <b>Arange async execution</td>
73     * <td> {@link #execute(ForkJoinTask)}</td>
74     * <td> {@link ForkJoinTask#fork}</td>
75     * </tr>
76     * <tr>
77     * <td> <b>Await and obtain result</td>
78     * <td> {@link #invoke(ForkJoinTask)}</td>
79     * <td> {@link ForkJoinTask#invoke}</td>
80     * </tr>
81     * <tr>
82     * <td> <b>Arrange exec and obtain Future</td>
83     * <td> {@link #submit(ForkJoinTask)}</td>
84     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
85     * </tr>
86     * </table>
87 dl 1.59 *
88 dl 1.42 * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
89     * used for all parallel task execution in a program or subsystem.
90     * Otherwise, use would not usually outweigh the construction and
91     * bookkeeping overhead of creating a large set of threads. For
92 jsr166 1.43 * example, a common pool could be used for the {@code SortTasks}
93 dl 1.42 * illustrated in {@link RecursiveAction}. Because {@code
94     * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
95 jsr166 1.43 * daemon} mode, there is typically no need to explicitly {@link
96 dl 1.42 * #shutdown} such a pool upon program exit.
97     *
98     * <pre>
99     * static final ForkJoinPool mainPool = new ForkJoinPool();
100     * ...
101     * public void sort(long[] array) {
102     * mainPool.invoke(new SortTask(array, 0, array.length));
103     * }
104     * </pre>
105     *
106 dl 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
107 dl 1.2 * maximum number of running threads to 32767. Attempts to create
108 jsr166 1.48 * pools with greater than the maximum number result in
109 jsr166 1.39 * {@code IllegalArgumentException}.
110 jsr166 1.16 *
111 jsr166 1.48 * <p>This implementation rejects submitted tasks (that is, by throwing
112 dl 1.58 * {@link RejectedExecutionException}) only when the pool is shut down
113 dl 1.62 * or internal resources have been exhausted.
114 jsr166 1.48 *
115 jsr166 1.16 * @since 1.7
116     * @author Doug Lea
117 dl 1.1 */
118 dl 1.2 public class ForkJoinPool extends AbstractExecutorService {
119 dl 1.1
120     /*
121 dl 1.53 * Implementation Overview
122     *
123     * This class provides the central bookkeeping and control for a
124     * set of worker threads: Submissions from non-FJ threads enter
125     * into a submission queue. Workers take these tasks and typically
126     * split them into subtasks that may be stolen by other workers.
127     * The main work-stealing mechanics implemented in class
128     * ForkJoinWorkerThread give first priority to processing tasks
129     * from their own queues (LIFO or FIFO, depending on mode), then
130     * to randomized FIFO steals of tasks in other worker queues, and
131     * lastly to new submissions. These mechanics do not consider
132     * affinities, loads, cache localities, etc, so rarely provide the
133     * best possible performance on a given machine, but portably
134     * provide good throughput by averaging over these factors.
135     * (Further, even if we did try to use such information, we do not
136     * usually have a basis for exploiting it. For example, some sets
137     * of tasks profit from cache affinities, but others are harmed by
138     * cache pollution effects.)
139     *
140 dl 1.58 * Beyond work-stealing support and essential bookkeeping, the
141 dl 1.60 * main responsibility of this framework is to take actions when
142     * one worker is waiting to join a task stolen (or always held by)
143     * another. Becauae we are multiplexing many tasks on to a pool
144     * of workers, we can't just let them block (as in Thread.join).
145     * We also cannot just reassign the joiner's run-time stack with
146     * another and replace it later, which would be a form of
147     * "continuation", that even if possible is not necessarily a good
148     * idea. Given that the creation costs of most threads on most
149     * systems mainly surrounds setting up runtime stacks, thread
150     * creation and switching is usually not much more expensive than
151     * stack creation and switching, and is more flexible). Instead we
152     * combine two tactics:
153 dl 1.58 *
154 dl 1.60 * Helping: Arranging for the joiner to execute some task that it
155 dl 1.58 * would be running if the steal had not occurred. Method
156     * ForkJoinWorkerThread.helpJoinTask tracks joining->stealing
157     * links to try to find such a task.
158     *
159 dl 1.61 * Compensating: Unless there are already enough live threads,
160     * method helpMaintainParallelism() may create or or
161     * re-activate a spare thread to compensate for blocked
162     * joiners until they unblock.
163 dl 1.58 *
164     * Because the determining existence of conservatively safe
165     * helping targets, the availability of already-created spares,
166     * and the apparent need to create new spares are all racy and
167 dl 1.61 * require heuristic guidance, we rely on multiple retries of
168     * each. Further, because it is impossible to keep exactly the
169     * target (parallelism) number of threads running at any given
170     * time, we allow compensation during joins to fail, and enlist
171     * all other threads to help out whenever they are not otherwise
172     * occupied (i.e., mainly in method preStep).
173 dl 1.58 *
174 dl 1.61 * The ManagedBlocker extension API can't use helping so relies
175     * only on compensation in method awaitBlocker.
176 dl 1.58 *
177 dl 1.53 * The main throughput advantages of work-stealing stem from
178     * decentralized control -- workers mostly steal tasks from each
179     * other. We do not want to negate this by creating bottlenecks
180 dl 1.58 * implementing other management responsibilities. So we use a
181     * collection of techniques that avoid, reduce, or cope well with
182     * contention. These entail several instances of bit-packing into
183     * CASable fields to maintain only the minimally required
184     * atomicity. To enable such packing, we restrict maximum
185     * parallelism to (1<<15)-1 (enabling twice this (to accommodate
186     * unbalanced increments and decrements) to fit into a 16 bit
187     * field, which is far in excess of normal operating range. Even
188     * though updates to some of these bookkeeping fields do sometimes
189     * contend with each other, they don't normally cache-contend with
190     * updates to others enough to warrant memory padding or
191     * isolation. So they are all held as fields of ForkJoinPool
192     * objects. The main capabilities are as follows:
193 dl 1.53 *
194     * 1. Creating and removing workers. Workers are recorded in the
195     * "workers" array. This is an array as opposed to some other data
196     * structure to support index-based random steals by workers.
197     * Updates to the array recording new workers and unrecording
198     * terminated ones are protected from each other by a lock
199     * (workerLock) but the array is otherwise concurrently readable,
200     * and accessed directly by workers. To simplify index-based
201     * operations, the array size is always a power of two, and all
202 dl 1.56 * readers must tolerate null slots. Currently, all worker thread
203     * creation is on-demand, triggered by task submissions,
204     * replacement of terminated workers, and/or compensation for
205     * blocked workers. However, all other support code is set up to
206     * work with other policies.
207 dl 1.53 *
208 dl 1.61 * To ensure that we do not hold on to worker references that
209     * would prevent GC, ALL accesses to workers are via indices into
210     * the workers array (which is one source of some of the unusual
211     * code constructions here). In essence, the workers array serves
212     * as a WeakReference mechanism. Thus for example the event queue
213     * stores worker indices, not worker references. Access to the
214     * workers in associated methods (for example releaseEventWaiters)
215     * must both index-check and null-check the IDs. All such accesses
216     * ignore bad IDs by returning out early from what they are doing,
217     * since this can only be associated with shutdown, in which case
218     * it is OK to give up. On termination, we just clobber these
219     * data structures without trying to use them.
220     *
221 dl 1.53 * 2. Bookkeeping for dynamically adding and removing workers. We
222 dl 1.57 * aim to approximately maintain the given level of parallelism.
223     * When some workers are known to be blocked (on joins or via
224 dl 1.53 * ManagedBlocker), we may create or resume others to take their
225     * place until they unblock (see below). Implementing this
226     * requires counts of the number of "running" threads (i.e., those
227     * that are neither blocked nor artifically suspended) as well as
228     * the total number. These two values are packed into one field,
229     * "workerCounts" because we need accurate snapshots when deciding
230 dl 1.58 * to create, resume or suspend. Note however that the
231     * correspondance of these counts to reality is not guaranteed. In
232     * particular updates for unblocked threads may lag until they
233     * actually wake up.
234 dl 1.53 *
235     * 3. Maintaining global run state. The run state of the pool
236     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
237     * those in other Executor implementations, as well as a count of
238     * "active" workers -- those that are, or soon will be, or
239     * recently were executing tasks. The runLevel and active count
240     * are packed together in order to correctly trigger shutdown and
241     * termination. Without care, active counts can be subject to very
242     * high contention. We substantially reduce this contention by
243     * relaxing update rules. A worker must claim active status
244     * prospectively, by activating if it sees that a submitted or
245     * stealable task exists (it may find after activating that the
246     * task no longer exists). It stays active while processing this
247     * task (if it exists) and any other local subtasks it produces,
248     * until it cannot find any other tasks. It then tries
249     * inactivating (see method preStep), but upon update contention
250     * instead scans for more tasks, later retrying inactivation if it
251     * doesn't find any.
252     *
253     * 4. Managing idle workers waiting for tasks. We cannot let
254     * workers spin indefinitely scanning for tasks when none are
255     * available. On the other hand, we must quickly prod them into
256     * action when new tasks are submitted or generated. We
257     * park/unpark these idle workers using an event-count scheme.
258     * Field eventCount is incremented upon events that may enable
259     * workers that previously could not find a task to now find one:
260     * Submission of a new task to the pool, or another worker pushing
261     * a task onto a previously empty queue. (We also use this
262 dl 1.64 * mechanism for configuration and termination actions that
263     * require wakeups of idle workers). Each worker maintains its
264     * last known event count, and blocks when a scan for work did not
265     * find a task AND its lastEventCount matches the current
266     * eventCount. Waiting idle workers are recorded in a variant of
267     * Treiber stack headed by field eventWaiters which, when nonzero,
268     * encodes the thread index and count awaited for by the worker
269     * thread most recently calling eventSync. This thread in turn has
270     * a record (field nextEventWaiter) for the next waiting worker.
271     * In addition to allowing simpler decisions about need for
272     * wakeup, the event count bits in eventWaiters serve the role of
273     * tags to avoid ABA errors in Treiber stacks. Upon any wakeup,
274     * released threads also try to release others (but give up upon
275     * contention to reduce useless flailing). The net effect is a
276     * tree-like diffusion of signals, where released threads (and
277     * possibly others) help with unparks. To further reduce
278     * contention effects a bit, failed CASes to increment field
279     * eventCount are tolerated without retries in signalWork.
280 dl 1.53 * Conceptually they are merged into the same event, which is OK
281     * when their only purpose is to enable workers to scan for work.
282     *
283     * 5. Managing suspension of extra workers. When a worker is about
284     * to block waiting for a join (or via ManagedBlockers), we may
285     * create a new thread to maintain parallelism level, or at least
286 dl 1.58 * avoid starvation. Usually, extra threads are needed for only
287     * very short periods, yet join dependencies are such that we
288     * sometimes need them in bursts. Rather than create new threads
289     * each time this happens, we suspend no-longer-needed extra ones
290     * as "spares". For most purposes, we don't distinguish "extra"
291     * spare threads from normal "core" threads: On each call to
292     * preStep (the only point at which we can do this) a worker
293 dl 1.53 * checks to see if there are now too many running workers, and if
294 dl 1.61 * so, suspends itself. Method helpMaintainParallelism looks for
295     * suspended threads to resume before considering creating a new
296     * replacement. The spares themselves are encoded on another
297     * variant of a Treiber Stack, headed at field "spareWaiters".
298     * Note that the use of spares is intrinsically racy. One thread
299     * may become a spare at about the same time as another is
300     * needlessly being created. We counteract this and related slop
301     * in part by requiring resumed spares to immediately recheck (in
302 dl 1.64 * preStep) to see whether they they should re-suspend.
303 dl 1.53 *
304 dl 1.64 * 6. Killing off unneeded workers. The Spare and Event queues use
305     * similar mechanisms to shed unused workers: The oldest (first)
306     * waiter uses a timed rather than hard wait. When this wait times
307     * out without a normal wakeup, it tries to shutdown any one (for
308     * convenience the newest) other waiter via tryShutdownSpare or
309     * tryShutdownWaiter, respectively. The wakeup rates for spares
310     * are much shorter than for waiters. Together, they will
311     * eventually reduce the number of worker threads to a minimum of
312     * one after a long enough period without use.
313     *
314     * 7. Deciding when to create new workers. The main dynamic
315 dl 1.61 * control in this class is deciding when to create extra threads
316     * in method helpMaintainParallelism. We would like to keep
317     * exactly #parallelism threads running, which is an impossble
318     * task. We always need to create one when the number of running
319     * threads would become zero and all workers are busy. Beyond
320     * this, we must rely on heuristics that work well in the the
321     * presence of transients phenomena such as GC stalls, dynamic
322     * compilation, and wake-up lags. These transients are extremely
323     * common -- we are normally trying to fully saturate the CPUs on
324     * a machine, so almost any activity other than running tasks
325     * impedes accuracy. Our main defense is to allow some slack in
326     * creation thresholds, using rules that reflect the fact that the
327     * more threads we have running, the more likely that we are
328 dl 1.64 * underestimating the number running threads. (We also include
329     * some heuristic use of Thread.yield when all workers appear to
330     * be busy, to improve likelihood of counts settling.) The rules
331     * also better cope with the fact that some of the methods in this
332 dl 1.61 * class tend to never become compiled (but are interpreted), so
333     * some components of the entire set of controls might execute 100
334     * times faster than others. And similarly for cases where the
335     * apparent lack of work is just due to GC stalls and other
336     * transient system activity.
337 dl 1.53 *
338     * Beware that there is a lot of representation-level coupling
339     * among classes ForkJoinPool, ForkJoinWorkerThread, and
340     * ForkJoinTask. For example, direct access to "workers" array by
341     * workers, and direct access to ForkJoinTask.status by both
342     * ForkJoinPool and ForkJoinWorkerThread. There is little point
343     * trying to reduce this, since any associated future changes in
344     * representations will need to be accompanied by algorithmic
345     * changes anyway.
346     *
347     * Style notes: There are lots of inline assignments (of form
348     * "while ((local = field) != 0)") which are usually the simplest
349 dl 1.61 * way to ensure the required read orderings (which are sometimes
350     * critical). Also several occurrences of the unusual "do {}
351     * while(!cas...)" which is the simplest way to force an update of
352     * a CAS'ed variable. There are also other coding oddities that
353     * help some methods perform reasonably even when interpreted (not
354     * compiled), at the expense of some messy constructions that
355     * reduce byte code counts.
356 dl 1.53 *
357     * The order of declarations in this file is: (1) statics (2)
358     * fields (along with constants used when unpacking some of them)
359     * (3) internal control methods (4) callbacks and other support
360     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
361     * methods (plus a few little helpers).
362 dl 1.1 */
363    
364     /**
365 jsr166 1.35 * Factory for creating new {@link ForkJoinWorkerThread}s.
366     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
367     * for {@code ForkJoinWorkerThread} subclasses that extend base
368     * functionality or initialize threads with different contexts.
369 dl 1.1 */
370     public static interface ForkJoinWorkerThreadFactory {
371     /**
372     * Returns a new worker thread operating in the given pool.
373     *
374     * @param pool the pool this thread works in
375 jsr166 1.48 * @throws NullPointerException if the pool is null
376 dl 1.1 */
377     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
378     }
379    
380     /**
381 jsr166 1.17 * Default ForkJoinWorkerThreadFactory implementation; creates a
382 dl 1.1 * new ForkJoinWorkerThread.
383     */
384 dl 1.57 static class DefaultForkJoinWorkerThreadFactory
385 dl 1.1 implements ForkJoinWorkerThreadFactory {
386     public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
387 dl 1.53 return new ForkJoinWorkerThread(pool);
388 dl 1.1 }
389     }
390    
391     /**
392 dl 1.2 * Creates a new ForkJoinWorkerThread. This factory is used unless
393     * overridden in ForkJoinPool constructors.
394 dl 1.1 */
395 dl 1.2 public static final ForkJoinWorkerThreadFactory
396 dl 1.1 defaultForkJoinWorkerThreadFactory =
397     new DefaultForkJoinWorkerThreadFactory();
398    
399     /**
400     * Permission required for callers of methods that may start or
401     * kill threads.
402     */
403     private static final RuntimePermission modifyThreadPermission =
404     new RuntimePermission("modifyThread");
405    
406     /**
407     * If there is a security manager, makes sure caller has
408     * permission to modify threads.
409     */
410     private static void checkPermission() {
411     SecurityManager security = System.getSecurityManager();
412     if (security != null)
413     security.checkPermission(modifyThreadPermission);
414     }
415    
416     /**
417     * Generator for assigning sequence numbers as pool names.
418     */
419     private static final AtomicInteger poolNumberGenerator =
420     new AtomicInteger();
421    
422     /**
423 dl 1.64 * The wakeup interval (in nanoseconds) for the oldest worker
424     * worker waiting for an event invokes tryShutdownWaiter to shrink
425     * the number of workers. The exact value does not matter too
426     * much, but should be long enough to slowly release resources
427     * during long periods without use without disrupting normal use.
428     */
429     private static final long SHRINK_RATE_NANOS =
430     60L * 1000L * 1000L * 1000L; // one minute
431    
432     /**
433 dl 1.61 * Absolute bound for parallelism level. Twice this number plus
434     * one (i.e., 0xfff) must fit into a 16bit field to enable
435     * word-packing for some counts and indices.
436 dl 1.53 */
437 dl 1.61 private static final int MAX_WORKERS = 0x7fff;
438 dl 1.53
439     /**
440     * Array holding all worker threads in the pool. Array size must
441     * be a power of two. Updates and replacements are protected by
442     * workerLock, but the array is always kept in a consistent enough
443     * state to be randomly accessed without locking by workers
444     * performing work-stealing, as well as other traversal-based
445     * methods in this class. All readers must tolerate that some
446     * array slots may be null.
447 dl 1.1 */
448     volatile ForkJoinWorkerThread[] workers;
449    
450     /**
451 dl 1.53 * Queue for external submissions.
452 dl 1.1 */
453 dl 1.53 private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
454 dl 1.1
455     /**
456 dl 1.53 * Lock protecting updates to workers array.
457 dl 1.1 */
458 dl 1.53 private final ReentrantLock workerLock;
459 dl 1.1
460     /**
461 dl 1.53 * Latch released upon termination.
462 dl 1.1 */
463 dl 1.57 private final Phaser termination;
464 dl 1.1
465     /**
466     * Creation factory for worker threads.
467     */
468     private final ForkJoinWorkerThreadFactory factory;
469    
470     /**
471 dl 1.53 * Sum of per-thread steal counts, updated only when threads are
472     * idle or terminating.
473 dl 1.1 */
474 dl 1.53 private volatile long stealCount;
475 dl 1.1
476     /**
477 dl 1.53 * Encoded record of top of treiber stack of threads waiting for
478     * events. The top 32 bits contain the count being waited for. The
479 dl 1.61 * bottom 16 bits contains one plus the pool index of waiting
480     * worker thread. (Bits 16-31 are unused.)
481 dl 1.1 */
482 dl 1.53 private volatile long eventWaiters;
483    
484     private static final int EVENT_COUNT_SHIFT = 32;
485 dl 1.61 private static final long WAITER_ID_MASK = (1L << 16) - 1L;
486 dl 1.1
487     /**
488 dl 1.53 * A counter for events that may wake up worker threads:
489     * - Submission of a new task to the pool
490     * - A worker pushing a task on an empty queue
491 dl 1.61 * - termination
492 dl 1.1 */
493 dl 1.53 private volatile int eventCount;
494    
495     /**
496 dl 1.61 * Encoded record of top of treiber stack of spare threads waiting
497     * for resumption. The top 16 bits contain an arbitrary count to
498     * avoid ABA effects. The bottom 16bits contains one plus the pool
499     * index of waiting worker thread.
500     */
501     private volatile int spareWaiters;
502    
503     private static final int SPARE_COUNT_SHIFT = 16;
504     private static final int SPARE_ID_MASK = (1 << 16) - 1;
505    
506     /**
507 dl 1.53 * Lifecycle control. The low word contains the number of workers
508     * that are (probably) executing tasks. This value is atomically
509     * incremented before a worker gets a task to run, and decremented
510     * when worker has no tasks and cannot find any. Bits 16-18
511     * contain runLevel value. When all are zero, the pool is
512     * running. Level transitions are monotonic (running -> shutdown
513     * -> terminating -> terminated) so each transition adds a bit.
514     * These are bundled together to ensure consistent read for
515     * termination checks (i.e., that runLevel is at least SHUTDOWN
516     * and active threads is zero).
517 dl 1.64 *
518     * Notes: Most direct CASes are dependent on these bitfield
519     * positions. Also, this field is non-private to enable direct
520     * performance-sensitive CASes in ForkJoinWorkerThread.
521 dl 1.53 */
522 dl 1.64 volatile int runState;
523 dl 1.53
524     // Note: The order among run level values matters.
525     private static final int RUNLEVEL_SHIFT = 16;
526     private static final int SHUTDOWN = 1 << RUNLEVEL_SHIFT;
527     private static final int TERMINATING = 1 << (RUNLEVEL_SHIFT + 1);
528     private static final int TERMINATED = 1 << (RUNLEVEL_SHIFT + 2);
529     private static final int ACTIVE_COUNT_MASK = (1 << RUNLEVEL_SHIFT) - 1;
530 dl 1.1
531     /**
532 dl 1.53 * Holds number of total (i.e., created and not yet terminated)
533     * and running (i.e., not blocked on joins or other managed sync)
534     * threads, packed together to ensure consistent snapshot when
535     * making decisions about creating and suspending spare
536     * threads. Updated only by CAS. Note that adding a new worker
537     * requires incrementing both counts, since workers start off in
538 dl 1.60 * running state.
539 dl 1.53 */
540     private volatile int workerCounts;
541    
542     private static final int TOTAL_COUNT_SHIFT = 16;
543     private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
544     private static final int ONE_RUNNING = 1;
545     private static final int ONE_TOTAL = 1 << TOTAL_COUNT_SHIFT;
546    
547 dl 1.1 /**
548 dl 1.53 * The target parallelism level.
549 dl 1.57 * Accessed directly by ForkJoinWorkerThreads.
550 dl 1.1 */
551 dl 1.57 final int parallelism;
552 dl 1.1
553     /**
554 dl 1.53 * True if use local fifo, not default lifo, for local polling
555 dl 1.57 * Read by, and replicated by ForkJoinWorkerThreads
556 dl 1.1 */
557 dl 1.57 final boolean locallyFifo;
558 dl 1.1
559     /**
560 dl 1.57 * The uncaught exception handler used when any worker abruptly
561     * terminates.
562 dl 1.1 */
563 dl 1.57 private final Thread.UncaughtExceptionHandler ueh;
564 dl 1.6
565     /**
566 dl 1.53 * Pool number, just for assigning useful names to worker threads
567 dl 1.1 */
568 dl 1.53 private final int poolNumber;
569 dl 1.1
570 dl 1.61
571 dl 1.64 // Utilities for CASing fields. Note that most of these
572     // are usually manually inlined by callers
573 dl 1.1
574     /**
575 dl 1.61 * Increments running count part of workerCounts
576 dl 1.1 */
577 dl 1.57 final void incrementRunningCount() {
578     int c;
579 dl 1.53 do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
580 dl 1.59 c = workerCounts,
581 dl 1.57 c + ONE_RUNNING));
582 dl 1.1 }
583 dl 1.58
584 dl 1.1 /**
585 dl 1.57 * Tries to decrement running count unless already zero
586 dl 1.56 */
587     final boolean tryDecrementRunningCount() {
588     int wc = workerCounts;
589     if ((wc & RUNNING_COUNT_MASK) == 0)
590     return false;
591     return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
592     wc, wc - ONE_RUNNING);
593     }
594    
595     /**
596 dl 1.61 * Forces decrement of encoded workerCounts, awaiting nonzero if
597     * (rarely) necessary when other count updates lag.
598     *
599     * @param dr -- either zero or ONE_RUNNING
600     * @param dt == either zero or ONE_TOTAL
601 dl 1.58 */
602 dl 1.61 private void decrementWorkerCounts(int dr, int dt) {
603     for (;;) {
604     int wc = workerCounts;
605     if ((wc & RUNNING_COUNT_MASK) - dr < 0 ||
606 dl 1.64 (wc >>> TOTAL_COUNT_SHIFT) - dt < 0) {
607     if ((runState & TERMINATED) != 0)
608     return; // lagging termination on a backout
609 dl 1.61 Thread.yield();
610 dl 1.64 }
611 dl 1.61 if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
612     wc, wc - (dr + dt)))
613     return;
614     }
615     }
616    
617     /**
618     * Increments event count
619     */
620     private void advanceEventCount() {
621     int c;
622     do {} while(!UNSAFE.compareAndSwapInt(this, eventCountOffset,
623     c = eventCount, c+1));
624 dl 1.58 }
625    
626     /**
627 jsr166 1.17 * Tries incrementing active count; fails on contention.
628 dl 1.53 * Called by workers before executing tasks.
629 jsr166 1.17 *
630 jsr166 1.16 * @return true on success
631 dl 1.1 */
632 dl 1.4 final boolean tryIncrementActiveCount() {
633 dl 1.53 int c;
634     return UNSAFE.compareAndSwapInt(this, runStateOffset,
635 dl 1.64 c = runState, c + 1);
636 dl 1.1 }
637    
638     /**
639 jsr166 1.16 * Tries decrementing active count; fails on contention.
640 dl 1.53 * Called when workers cannot find tasks to run.
641     */
642     final boolean tryDecrementActiveCount() {
643     int c;
644     return UNSAFE.compareAndSwapInt(this, runStateOffset,
645 dl 1.64 c = runState, c - 1);
646 dl 1.53 }
647    
648     /**
649     * Advances to at least the given level. Returns true if not
650     * already in at least the given level.
651     */
652     private boolean advanceRunLevel(int level) {
653     for (;;) {
654     int s = runState;
655     if ((s & level) != 0)
656     return false;
657     if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
658     return true;
659     }
660     }
661    
662     // workers array maintenance
663    
664     /**
665     * Records and returns a workers array index for new worker.
666     */
667     private int recordWorker(ForkJoinWorkerThread w) {
668     // Try using slot totalCount-1. If not available, scan and/or resize
669     int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
670     final ReentrantLock lock = this.workerLock;
671     lock.lock();
672     try {
673     ForkJoinWorkerThread[] ws = workers;
674 dl 1.61 int n = ws.length;
675     if (k < 0 || k >= n || ws[k] != null) {
676     for (k = 0; k < n && ws[k] != null; ++k)
677 dl 1.53 ;
678 dl 1.61 if (k == n)
679     ws = Arrays.copyOf(ws, n << 1);
680 dl 1.53 }
681     ws[k] = w;
682     workers = ws; // volatile array write ensures slot visibility
683     } finally {
684     lock.unlock();
685     }
686     return k;
687     }
688    
689     /**
690     * Nulls out record of worker in workers array
691     */
692     private void forgetWorker(ForkJoinWorkerThread w) {
693     int idx = w.poolIndex;
694     // Locking helps method recordWorker avoid unecessary expansion
695     final ReentrantLock lock = this.workerLock;
696     lock.lock();
697     try {
698     ForkJoinWorkerThread[] ws = workers;
699     if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
700     ws[idx] = null;
701     } finally {
702     lock.unlock();
703     }
704     }
705    
706     // adding and removing workers
707    
708     /**
709     * Tries to create and add new worker. Assumes that worker counts
710     * are already updated to accommodate the worker, so adjusts on
711     * failure.
712 dl 1.64 *
713     * @return the worker, or null on failure
714 dl 1.53 */
715 dl 1.64 private ForkJoinWorkerThread addWorker() {
716 dl 1.53 ForkJoinWorkerThread w = null;
717     try {
718     w = factory.newThread(this);
719     } finally { // Adjust on either null or exceptional factory return
720 dl 1.61 if (w == null) {
721     decrementWorkerCounts(ONE_RUNNING, ONE_TOTAL);
722     tryTerminate(false); // in case of failure during shutdown
723     }
724 dl 1.53 }
725 dl 1.64 if (w != null) {
726 dl 1.60 w.start(recordWorker(w), ueh);
727 dl 1.64 advanceEventCount();
728     }
729     return w;
730 dl 1.53 }
731    
732     /**
733     * Final callback from terminating worker. Removes record of
734     * worker from array, and adjusts counts. If pool is shutting
735 dl 1.61 * down, tries to complete terminatation.
736 dl 1.53 *
737     * @param w the worker
738     */
739     final void workerTerminated(ForkJoinWorkerThread w) {
740     forgetWorker(w);
741 dl 1.61 decrementWorkerCounts(w.isTrimmed()? 0 : ONE_RUNNING, ONE_TOTAL);
742     while (w.stealCount != 0) // collect final count
743     tryAccumulateStealCount(w);
744     tryTerminate(false);
745 dl 1.53 }
746    
747     // Waiting for and signalling events
748    
749     /**
750     * Releases workers blocked on a count not equal to current count.
751 dl 1.61 * Normally called after precheck that eventWaiters isn't zero to
752 dl 1.64 * avoid wasted array checks. Gives up upon a change in count or
753     * contention, letting other workers take over.
754 dl 1.53 */
755 dl 1.64 private void releaseEventWaiters() {
756 dl 1.61 ForkJoinWorkerThread[] ws = workers;
757     int n = ws.length;
758 dl 1.64 long h = eventWaiters;
759     int ec = eventCount;
760     ForkJoinWorkerThread w; int id;
761     while ((int)(h >>> EVENT_COUNT_SHIFT) != ec &&
762     (id = ((int)(h & WAITER_ID_MASK)) - 1) >= 0 &&
763     id < n && (w = ws[id]) != null &&
764     UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
765     h, h = w.nextWaiter)) {
766     LockSupport.unpark(w);
767     if (eventWaiters != h || eventCount != ec)
768 dl 1.61 break;
769 dl 1.53 }
770     }
771    
772     /**
773 dl 1.61 * Tries to advance eventCount and releases waiters. Called only
774     * from workers.
775 dl 1.53 */
776     final void signalWork() {
777 dl 1.61 int c; // try to increment event count -- CAS failure OK
778     UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
779     if (eventWaiters != 0L)
780 dl 1.64 releaseEventWaiters();
781 dl 1.53 }
782    
783     /**
784 dl 1.64 * Adds the given worker to event queue and blocks until
785     * terminating or event count advances from the workers
786     * lastEventCount value
787 dl 1.53 *
788     * @param w the calling worker thread
789     */
790 dl 1.60 private void eventSync(ForkJoinWorkerThread w) {
791 dl 1.64 int ec = w.lastEventCount;
792     long nh = (((long)ec) << EVENT_COUNT_SHIFT) | ((long)(w.poolIndex+1));
793 dl 1.61 long h;
794 dl 1.60 while ((runState < SHUTDOWN || !tryTerminate(false)) &&
795 dl 1.64 (((int)((h = eventWaiters) & WAITER_ID_MASK)) == 0 ||
796     (int)(h >>> EVENT_COUNT_SHIFT) == ec) &&
797     eventCount == ec) {
798 dl 1.60 if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
799 dl 1.61 w.nextWaiter = h, nh)) {
800 dl 1.64 awaitEvent(w, ec);
801     break;
802     }
803     }
804     }
805    
806     /**
807     * Blocks the given worker (that has already been entered as an
808     * event waiter) until terminating or event count advances from
809     * the given value. The oldest (first) waiter uses a timed wait to
810     * occasionally one-by-one shrink the number of workers (to a
811     * minumum of one) if the pool has not been used for extended
812     * periods.
813     *
814     * @param w the calling worker thread
815     * @param ec the count
816     */
817     private void awaitEvent(ForkJoinWorkerThread w, int ec) {
818     while (eventCount == ec) {
819     if (tryAccumulateStealCount(w)) { // transfer while idle
820     boolean untimed = (w.nextWaiter != 0L ||
821     (workerCounts & RUNNING_COUNT_MASK) <= 1);
822     long startTime = untimed? 0 : System.nanoTime();
823     Thread.interrupted(); // clear/ignore interrupt
824     if (eventCount != ec || !w.isRunning() ||
825     runState >= TERMINATING) // recheck after clear
826     break;
827     if (untimed)
828     LockSupport.park(w);
829     else {
830     LockSupport.parkNanos(w, SHRINK_RATE_NANOS);
831     if (eventCount != ec || !w.isRunning() ||
832     runState >= TERMINATING)
833 dl 1.61 break;
834 dl 1.64 if (System.nanoTime() - startTime >= SHRINK_RATE_NANOS)
835     tryShutdownWaiter(ec);
836 dl 1.61 }
837 dl 1.53 }
838     }
839 dl 1.64 }
840    
841     /**
842     * Callback from the oldest waiter in awaitEvent waking up after a
843     * period of non-use. Tries (once) to shutdown an event waiter (or
844     * a spare, if one exists). Note that we don't need CAS or locks
845     * here because the method is called only from one thread
846     * occasionally waking (and even misfires are OK). Note that
847     * until the shutdown worker fully terminates, workerCounts
848     * will overestimate total count, which is tolerable.
849     *
850     * @param ec the event count waited on by caller (to abort
851     * attempt if count has since changed).
852     */
853     private void tryShutdownWaiter(int ec) {
854     if (spareWaiters != 0) { // prefer killing spares
855     tryShutdownSpare();
856     return;
857     }
858     ForkJoinWorkerThread[] ws = workers;
859     int n = ws.length;
860     long h = eventWaiters;
861     ForkJoinWorkerThread w; int id; long nh;
862     if (runState == 0 &&
863     submissionQueue.isEmpty() &&
864     eventCount == ec &&
865     (id = ((int)(h & WAITER_ID_MASK)) - 1) >= 0 &&
866     id < n && (w = ws[id]) != null &&
867     (nh = w.nextWaiter) != 0L && // keep at least one worker
868     UNSAFE.compareAndSwapLong(this, eventWaitersOffset, h, nh)) {
869     w.shutdown();
870     LockSupport.unpark(w);
871     }
872     releaseEventWaiters();
873 dl 1.53 }
874    
875 dl 1.61 // Maintaining spares
876    
877     /**
878     * Pushes worker onto the spare stack
879     */
880     final void pushSpare(ForkJoinWorkerThread w) {
881 dl 1.64 int ns = (++w.spareCount << SPARE_COUNT_SHIFT) | (w.poolIndex + 1);
882 dl 1.61 do {} while (!UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
883     w.nextSpare = spareWaiters,ns));
884     }
885    
886     /**
887 dl 1.64 * Callback from oldest spare occasionally waking up. Tries
888     * (once) to shutdown a spare. Same idea as tryShutdownWaiter.
889 dl 1.61 */
890 dl 1.64 final void tryShutdownSpare() {
891 dl 1.61 int sw, id;
892     ForkJoinWorkerThread w;
893     ForkJoinWorkerThread[] ws;
894     if ((id = ((sw = spareWaiters) & SPARE_ID_MASK) - 1) >= 0 &&
895     id < (ws = workers).length && (w = ws[id]) != null &&
896 dl 1.64 (workerCounts & RUNNING_COUNT_MASK) >= parallelism &&
897 dl 1.61 UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
898 dl 1.64 sw, w.nextSpare)) {
899     w.shutdown();
900 dl 1.61 LockSupport.unpark(w);
901 dl 1.64 advanceEventCount();
902     }
903     }
904    
905     /**
906     * Tries (once) to resume a spare if worker counts match
907     * the given count.
908     *
909     * @param wc workerCounts value on invocation of this method
910     */
911     private void tryResumeSpare(int wc) {
912     ForkJoinWorkerThread[] ws = workers;
913     int n = ws.length;
914     int sw, id, rs; ForkJoinWorkerThread w;
915     if ((id = ((sw = spareWaiters) & SPARE_ID_MASK) - 1) >= 0 &&
916     id < n && (w = ws[id]) != null &&
917     (rs = runState) < TERMINATING &&
918     eventWaiters == 0L && workerCounts == wc) {
919     // In case all workers busy, heuristically back off to let settle
920     Thread.yield();
921     if (eventWaiters == 0L && runState == rs && // recheck
922     workerCounts == wc && spareWaiters == sw &&
923     UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
924     sw, w.nextSpare)) {
925     int c; // increment running count before resume
926     do {} while(!UNSAFE.compareAndSwapInt
927     (this, workerCountsOffset,
928     c = workerCounts, c + ONE_RUNNING));
929     if (w.tryUnsuspend())
930     LockSupport.unpark(w);
931     else // back out if w was shutdown
932     decrementWorkerCounts(ONE_RUNNING, 0);
933 dl 1.61 }
934     }
935     }
936    
937 dl 1.64 // adding workers on demand
938    
939 dl 1.61 /**
940 dl 1.64 * Adds one or more workers if needed to establish target parallelism.
941     * Retries upon contention.
942     */
943     private void addWorkerIfBelowTarget() {
944     int pc = parallelism;
945     int wc;
946     while (((wc = workerCounts) >>> TOTAL_COUNT_SHIFT) < pc &&
947     runState < TERMINATING) {
948     if (UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
949     wc + (ONE_RUNNING|ONE_TOTAL))) {
950     if (addWorker() == null)
951     break;
952     }
953     }
954     }
955    
956     /**
957     * Tries (once) to add a new worker if all existing workers are
958     * busy, and there are either no running workers or the deficit is
959     * at least twice the surplus.
960     *
961     * @param wc workerCounts value on invocation of this method
962     */
963     private void tryAddWorkerIfBusy(int wc) {
964     int tc, rc, rs;
965 dl 1.61 int pc = parallelism;
966 dl 1.64 if ((tc = wc >>> TOTAL_COUNT_SHIFT) < MAX_WORKERS &&
967     ((rc = wc & RUNNING_COUNT_MASK) == 0 ||
968     rc < pc - ((tc - pc) << 1)) &&
969     (rs = runState) < TERMINATING &&
970     (rs & ACTIVE_COUNT_MASK) == tc) {
971     // Since all workers busy, heuristically back off to let settle
972     Thread.yield();
973     if (eventWaiters == 0L && spareWaiters == 0 && // recheck
974     runState == rs && workerCounts == wc &&
975     UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
976     wc + (ONE_RUNNING|ONE_TOTAL)))
977     addWorker();
978     }
979 dl 1.61 }
980    
981     /**
982     * Does at most one of:
983     *
984     * 1. Help wake up existing workers waiting for work via
985 dl 1.64 * releaseEventWaiters. (If any exist, then it doesn't
986 dl 1.61 * matter right now if under target parallelism level.)
987     *
988 dl 1.64 * 2. If a spare exists, try (once) to resume it via tryResumeSpare.
989 dl 1.61 *
990 dl 1.64 * 3. If there are not enough total workers, add some
991     * via addWorkerIfBelowTarget;
992     *
993     * 4. Try (once) to add a new worker if all existing workers
994     * are busy, via tryAddWorkerIfBusy
995 dl 1.61 */
996     private void helpMaintainParallelism() {
997 dl 1.64 long h; int pc, wc;
998     if (((int)((h = eventWaiters) & WAITER_ID_MASK)) != 0) {
999 dl 1.61 if ((int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1000 dl 1.64 releaseEventWaiters(); // avoid useless call
1001 dl 1.61 }
1002     else if ((pc = parallelism) >
1003 dl 1.64 ((wc = workerCounts) & RUNNING_COUNT_MASK)) {
1004 dl 1.61 if (spareWaiters != 0)
1005 dl 1.64 tryResumeSpare(wc);
1006     else if ((wc >>> TOTAL_COUNT_SHIFT) < pc)
1007     addWorkerIfBelowTarget();
1008     else
1009     tryAddWorkerIfBusy(wc);
1010 dl 1.61 }
1011     }
1012    
1013 dl 1.53 /**
1014     * Callback from workers invoked upon each top-level action (i.e.,
1015 dl 1.64 * stealing a task or taking a submission and running it).
1016     * Performs one or more of the following:
1017 dl 1.61 *
1018 dl 1.64 * 1. If the worker is active, try to set its active status to
1019     * inactive and update activeCount. On contention, we may try
1020     * again on this or subsequent call.
1021 dl 1.61 *
1022 dl 1.64 * 2. Release any existing event waiters that are now relesable
1023 dl 1.61 *
1024 dl 1.64 * 3. If there are too many running threads, suspend this worker
1025     * (first forcing inactive if necessary). If it is not
1026 dl 1.61 * needed, it may be killed while suspended via
1027 dl 1.64 * tryShutdownSpare. Otherwise, upon resume it rechecks to make
1028 dl 1.61 * sure that it is still needed.
1029 dl 1.53 *
1030 dl 1.64 * 4. If more than 1 miss, await the next task event via
1031     * eventSync (first forcing inactivation if necessary), upon
1032     * which worker may also be killed, via tryShutdownWaiter.
1033     *
1034     * 5. Help reactivate other workers via helpMaintainParallelism
1035 dl 1.53 *
1036     * @param w the worker
1037 dl 1.61 * @param misses the number of scans by caller failing to find work
1038 dl 1.64 * (saturating at 2 to avoid wraparound)
1039 dl 1.53 */
1040 dl 1.61 final void preStep(ForkJoinWorkerThread w, int misses) {
1041 dl 1.53 boolean active = w.active;
1042 dl 1.61 int pc = parallelism;
1043 dl 1.53 for (;;) {
1044 dl 1.64 int rs, wc, rc, ec; long h;
1045     if (active && UNSAFE.compareAndSwapInt(this, runStateOffset,
1046     rs = runState, rs - 1))
1047     active = w.active = false;
1048     if (((int)((h = eventWaiters) & WAITER_ID_MASK)) != 0 &&
1049     (int)(h >>> EVENT_COUNT_SHIFT) != eventCount) {
1050     releaseEventWaiters();
1051     if (misses > 1)
1052     continue; // clear before sync below
1053 dl 1.61 }
1054 dl 1.64 if ((rc = ((wc = workerCounts) & RUNNING_COUNT_MASK)) > pc) {
1055     if (!active && // must inactivate to suspend
1056     workerCounts == wc && // try to suspend as spare
1057 dl 1.61 UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1058 dl 1.64 wc, wc - ONE_RUNNING)) {
1059     w.suspendAsSpare();
1060     if (!w.isRunning())
1061     break; // was killed while spare
1062     }
1063     continue;
1064 dl 1.61 }
1065 dl 1.64 if (misses > 0) {
1066     if ((ec = eventCount) == w.lastEventCount && misses > 1) {
1067     if (!active) { // must inactivate to sync
1068     eventSync(w);
1069     if (w.isRunning())
1070     misses = 1; // don't re-sync
1071     else
1072     break; // was killed while waiting
1073     }
1074     continue;
1075     }
1076     w.lastEventCount = ec;
1077 dl 1.53 }
1078 dl 1.64 if (rc < pc)
1079     helpMaintainParallelism();
1080     break;
1081 dl 1.53 }
1082     }
1083    
1084     /**
1085 dl 1.61 * Helps and/or blocks awaiting join of the given task.
1086     * Alternates between helpJoinTask() and helpMaintainParallelism()
1087     * as many times as there is a deficit in running count (or longer
1088     * if running count would become zero), then blocks if task still
1089     * not done.
1090 dl 1.56 *
1091     * @param joinMe the task to join
1092 dl 1.53 */
1093 dl 1.61 final void awaitJoin(ForkJoinTask<?> joinMe, ForkJoinWorkerThread worker) {
1094     int threshold = parallelism; // descend blocking thresholds
1095     while (joinMe.status >= 0) {
1096     boolean block; int wc;
1097     worker.helpJoinTask(joinMe);
1098     if (joinMe.status < 0)
1099     break;
1100     if (((wc = workerCounts) & RUNNING_COUNT_MASK) <= threshold) {
1101     if (threshold > 0)
1102     --threshold;
1103     else
1104     advanceEventCount(); // force release
1105     block = false;
1106 dl 1.58 }
1107 dl 1.61 else
1108     block = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1109     wc, wc - ONE_RUNNING);
1110     helpMaintainParallelism();
1111     if (block) {
1112     int c;
1113     joinMe.internalAwaitDone();
1114     do {} while (!UNSAFE.compareAndSwapInt
1115     (this, workerCountsOffset,
1116     c = workerCounts, c + ONE_RUNNING));
1117     break;
1118 dl 1.53 }
1119     }
1120     }
1121    
1122     /**
1123 dl 1.61 * Same idea as awaitJoin, but no helping
1124 dl 1.53 */
1125 dl 1.57 final void awaitBlocker(ManagedBlocker blocker)
1126 dl 1.53 throws InterruptedException {
1127 dl 1.61 int threshold = parallelism;
1128     while (!blocker.isReleasable()) {
1129     boolean block; int wc;
1130     if (((wc = workerCounts) & RUNNING_COUNT_MASK) <= threshold) {
1131     if (threshold > 0)
1132     --threshold;
1133     else
1134     advanceEventCount();
1135     block = false;
1136     }
1137     else
1138     block = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1139     wc, wc - ONE_RUNNING);
1140     helpMaintainParallelism();
1141     if (block) {
1142     try {
1143     do {} while (!blocker.isReleasable() && !blocker.block());
1144     } finally {
1145     int c;
1146     do {} while (!UNSAFE.compareAndSwapInt
1147     (this, workerCountsOffset,
1148     c = workerCounts, c + ONE_RUNNING));
1149 dl 1.58 }
1150 dl 1.60 break;
1151     }
1152 dl 1.53 }
1153 dl 1.59 }
1154 dl 1.54
1155     /**
1156 dl 1.53 * Possibly initiates and/or completes termination.
1157     *
1158     * @param now if true, unconditionally terminate, else only
1159     * if shutdown and empty queue and no active workers
1160     * @return true if now terminating or terminated
1161 dl 1.1 */
1162 dl 1.53 private boolean tryTerminate(boolean now) {
1163     if (now)
1164     advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
1165     else if (runState < SHUTDOWN ||
1166     !submissionQueue.isEmpty() ||
1167     (runState & ACTIVE_COUNT_MASK) != 0)
1168 dl 1.4 return false;
1169 dl 1.53
1170     if (advanceRunLevel(TERMINATING))
1171     startTerminating();
1172    
1173     // Finish now if all threads terminated; else in some subsequent call
1174     if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1175     advanceRunLevel(TERMINATED);
1176 dl 1.57 termination.arrive();
1177 dl 1.53 }
1178 dl 1.4 return true;
1179 dl 1.1 }
1180    
1181     /**
1182 dl 1.53 * Actions on transition to TERMINATING
1183 dl 1.61 *
1184     * Runs up to four passes through workers: (0) shutting down each
1185 dl 1.64 * (without waking up if parked) to quickly spread notifications
1186     * without unnecessary bouncing around event queues etc (1) wake
1187     * up and help cancel tasks (2) interrupt (3) mop up races with
1188     * interrupted workers
1189 dl 1.53 */
1190     private void startTerminating() {
1191 dl 1.61 cancelSubmissions();
1192     for (int passes = 0; passes < 4 && workerCounts != 0; ++passes) {
1193     advanceEventCount();
1194     eventWaiters = 0L; // clobber lists
1195     spareWaiters = 0;
1196     ForkJoinWorkerThread[] ws = workers;
1197     int n = ws.length;
1198     for (int i = 0; i < n; ++i) {
1199     ForkJoinWorkerThread w = ws[i];
1200     if (w != null) {
1201 dl 1.64 w.shutdown();
1202 dl 1.61 if (passes > 0 && !w.isTerminated()) {
1203     w.cancelTasks();
1204     LockSupport.unpark(w);
1205     if (passes > 1) {
1206     try {
1207     w.interrupt();
1208     } catch (SecurityException ignore) {
1209     }
1210     }
1211     }
1212     }
1213     }
1214 dl 1.56 }
1215     }
1216    
1217     /**
1218     * Clear out and cancel submissions, ignoring exceptions
1219     */
1220     private void cancelSubmissions() {
1221 dl 1.53 ForkJoinTask<?> task;
1222     while ((task = submissionQueue.poll()) != null) {
1223     try {
1224     task.cancel(false);
1225     } catch (Throwable ignore) {
1226     }
1227     }
1228 dl 1.56 }
1229    
1230 dl 1.53 // misc support for ForkJoinWorkerThread
1231    
1232     /**
1233     * Returns pool number
1234 dl 1.1 */
1235 dl 1.53 final int getPoolNumber() {
1236     return poolNumber;
1237 dl 1.1 }
1238    
1239     /**
1240 dl 1.61 * Tries to accumulates steal count from a worker, clearing
1241     * the worker's value.
1242     *
1243     * @return true if worker steal count now zero
1244 dl 1.1 */
1245 dl 1.61 final boolean tryAccumulateStealCount(ForkJoinWorkerThread w) {
1246 dl 1.53 int sc = w.stealCount;
1247 dl 1.61 long c = stealCount;
1248     // CAS even if zero, for fence effects
1249     if (UNSAFE.compareAndSwapLong(this, stealCountOffset, c, c + sc)) {
1250     if (sc != 0)
1251     w.stealCount = 0;
1252     return true;
1253 dl 1.1 }
1254 dl 1.61 return sc == 0;
1255 dl 1.1 }
1256    
1257     /**
1258 dl 1.53 * Returns the approximate (non-atomic) number of idle threads per
1259     * active thread.
1260     */
1261     final int idlePerActive() {
1262 dl 1.58 int pc = parallelism; // use parallelism, not rc
1263 dl 1.53 int ac = runState; // no mask -- artifically boosts during shutdown
1264     // Use exact results for small values, saturate past 4
1265     return pc <= ac? 0 : pc >>> 1 <= ac? 1 : pc >>> 2 <= ac? 3 : pc >>> 3;
1266     }
1267    
1268     // Public and protected methods
1269 dl 1.1
1270     // Constructors
1271    
1272     /**
1273 dl 1.42 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1274 dl 1.57 * java.lang.Runtime#availableProcessors}, using the {@linkplain
1275     * #defaultForkJoinWorkerThreadFactory default thread factory},
1276     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1277 jsr166 1.17 *
1278 dl 1.1 * @throws SecurityException if a security manager exists and
1279     * the caller is not permitted to modify threads
1280     * because it does not hold {@link
1281 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1282 dl 1.1 */
1283     public ForkJoinPool() {
1284     this(Runtime.getRuntime().availableProcessors(),
1285 dl 1.57 defaultForkJoinWorkerThreadFactory, null, false);
1286 dl 1.1 }
1287    
1288     /**
1289 dl 1.42 * Creates a {@code ForkJoinPool} with the indicated parallelism
1290 dl 1.57 * level, the {@linkplain
1291     * #defaultForkJoinWorkerThreadFactory default thread factory},
1292     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1293 jsr166 1.17 *
1294 dl 1.42 * @param parallelism the parallelism level
1295 dl 1.1 * @throws IllegalArgumentException if parallelism less than or
1296 jsr166 1.47 * equal to zero, or greater than implementation limit
1297 dl 1.1 * @throws SecurityException if a security manager exists and
1298     * the caller is not permitted to modify threads
1299     * because it does not hold {@link
1300 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1301 dl 1.1 */
1302     public ForkJoinPool(int parallelism) {
1303 dl 1.57 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1304 dl 1.1 }
1305    
1306     /**
1307 dl 1.57 * Creates a {@code ForkJoinPool} with the given parameters.
1308 jsr166 1.17 *
1309 dl 1.57 * @param parallelism the parallelism level. For default value,
1310     * use {@link java.lang.Runtime#availableProcessors}.
1311     * @param factory the factory for creating new threads. For default value,
1312     * use {@link #defaultForkJoinWorkerThreadFactory}.
1313 dl 1.59 * @param handler the handler for internal worker threads that
1314     * terminate due to unrecoverable errors encountered while executing
1315 dl 1.57 * tasks. For default value, use <code>null</code>.
1316 dl 1.59 * @param asyncMode if true,
1317 dl 1.57 * establishes local first-in-first-out scheduling mode for forked
1318     * tasks that are never joined. This mode may be more appropriate
1319     * than default locally stack-based mode in applications in which
1320     * worker threads only process event-style asynchronous tasks.
1321     * For default value, use <code>false</code>.
1322 dl 1.1 * @throws IllegalArgumentException if parallelism less than or
1323 jsr166 1.47 * equal to zero, or greater than implementation limit
1324 jsr166 1.48 * @throws NullPointerException if the factory is null
1325 dl 1.1 * @throws SecurityException if a security manager exists and
1326     * the caller is not permitted to modify threads
1327     * because it does not hold {@link
1328 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1329 dl 1.1 */
1330 dl 1.59 public ForkJoinPool(int parallelism,
1331 dl 1.57 ForkJoinWorkerThreadFactory factory,
1332     Thread.UncaughtExceptionHandler handler,
1333     boolean asyncMode) {
1334 dl 1.53 checkPermission();
1335     if (factory == null)
1336     throw new NullPointerException();
1337 dl 1.61 if (parallelism <= 0 || parallelism > MAX_WORKERS)
1338 dl 1.1 throw new IllegalArgumentException();
1339 dl 1.53 this.parallelism = parallelism;
1340 dl 1.1 this.factory = factory;
1341 dl 1.57 this.ueh = handler;
1342     this.locallyFifo = asyncMode;
1343     int arraySize = initialArraySizeFor(parallelism);
1344 dl 1.53 this.workers = new ForkJoinWorkerThread[arraySize];
1345     this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
1346 dl 1.1 this.workerLock = new ReentrantLock();
1347 dl 1.57 this.termination = new Phaser(1);
1348     this.poolNumber = poolNumberGenerator.incrementAndGet();
1349 dl 1.1 }
1350    
1351     /**
1352 dl 1.53 * Returns initial power of two size for workers array.
1353     * @param pc the initial parallelism level
1354     */
1355     private static int initialArraySizeFor(int pc) {
1356 dl 1.61 // See Hackers Delight, sec 3.2. We know MAX_WORKERS < (1 >>> 16)
1357     int size = pc < MAX_WORKERS ? pc + 1 : MAX_WORKERS;
1358 dl 1.53 size |= size >>> 1;
1359     size |= size >>> 2;
1360     size |= size >>> 4;
1361     size |= size >>> 8;
1362     return size + 1;
1363 dl 1.1 }
1364    
1365     // Execution methods
1366    
1367     /**
1368     * Common code for execute, invoke and submit
1369     */
1370     private <T> void doSubmit(ForkJoinTask<T> task) {
1371 dl 1.23 if (task == null)
1372     throw new NullPointerException();
1373 dl 1.53 if (runState >= SHUTDOWN)
1374 dl 1.1 throw new RejectedExecutionException();
1375 dl 1.58 submissionQueue.offer(task);
1376 dl 1.61 advanceEventCount();
1377 dl 1.64 if (eventWaiters != 0L)
1378     releaseEventWaiters();
1379     if ((workerCounts >>> TOTAL_COUNT_SHIFT) < parallelism)
1380     addWorkerIfBelowTarget();
1381 dl 1.1 }
1382    
1383     /**
1384 jsr166 1.17 * Performs the given task, returning its result upon completion.
1385     *
1386 dl 1.1 * @param task the task
1387     * @return the task's result
1388 jsr166 1.48 * @throws NullPointerException if the task is null
1389     * @throws RejectedExecutionException if the task cannot be
1390     * scheduled for execution
1391 dl 1.1 */
1392     public <T> T invoke(ForkJoinTask<T> task) {
1393     doSubmit(task);
1394     return task.join();
1395     }
1396    
1397     /**
1398     * Arranges for (asynchronous) execution of the given task.
1399 jsr166 1.17 *
1400 dl 1.1 * @param task the task
1401 jsr166 1.48 * @throws NullPointerException if the task is null
1402     * @throws RejectedExecutionException if the task cannot be
1403     * scheduled for execution
1404 dl 1.1 */
1405 dl 1.37 public void execute(ForkJoinTask<?> task) {
1406 dl 1.1 doSubmit(task);
1407     }
1408    
1409     // AbstractExecutorService methods
1410    
1411 jsr166 1.48 /**
1412     * @throws NullPointerException if the task is null
1413     * @throws RejectedExecutionException if the task cannot be
1414     * scheduled for execution
1415     */
1416 dl 1.1 public void execute(Runnable task) {
1417 dl 1.23 ForkJoinTask<?> job;
1418 jsr166 1.26 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1419     job = (ForkJoinTask<?>) task;
1420 dl 1.23 else
1421 dl 1.33 job = ForkJoinTask.adapt(task, null);
1422 dl 1.23 doSubmit(job);
1423 dl 1.1 }
1424    
1425 jsr166 1.48 /**
1426 dl 1.57 * Submits a ForkJoinTask for execution.
1427     *
1428     * @param task the task to submit
1429     * @return the task
1430     * @throws NullPointerException if the task is null
1431     * @throws RejectedExecutionException if the task cannot be
1432     * scheduled for execution
1433     */
1434     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1435     doSubmit(task);
1436     return task;
1437     }
1438    
1439     /**
1440 jsr166 1.48 * @throws NullPointerException if the task is null
1441     * @throws RejectedExecutionException if the task cannot be
1442     * scheduled for execution
1443     */
1444 dl 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
1445 dl 1.33 ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1446 dl 1.1 doSubmit(job);
1447     return job;
1448     }
1449    
1450 jsr166 1.48 /**
1451     * @throws NullPointerException if the task is null
1452     * @throws RejectedExecutionException if the task cannot be
1453     * scheduled for execution
1454     */
1455 dl 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
1456 dl 1.33 ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1457 dl 1.1 doSubmit(job);
1458     return job;
1459     }
1460    
1461 jsr166 1.48 /**
1462     * @throws NullPointerException if the task is null
1463     * @throws RejectedExecutionException if the task cannot be
1464     * scheduled for execution
1465     */
1466 dl 1.1 public ForkJoinTask<?> submit(Runnable task) {
1467 dl 1.23 ForkJoinTask<?> job;
1468 jsr166 1.26 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1469     job = (ForkJoinTask<?>) task;
1470 dl 1.23 else
1471 dl 1.33 job = ForkJoinTask.adapt(task, null);
1472 dl 1.1 doSubmit(job);
1473     return job;
1474     }
1475    
1476     /**
1477 jsr166 1.48 * @throws NullPointerException {@inheritDoc}
1478     * @throws RejectedExecutionException {@inheritDoc}
1479     */
1480 dl 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
1481 jsr166 1.20 ArrayList<ForkJoinTask<T>> forkJoinTasks =
1482 dl 1.1 new ArrayList<ForkJoinTask<T>>(tasks.size());
1483 jsr166 1.20 for (Callable<T> task : tasks)
1484 dl 1.33 forkJoinTasks.add(ForkJoinTask.adapt(task));
1485 jsr166 1.20 invoke(new InvokeAll<T>(forkJoinTasks));
1486    
1487     @SuppressWarnings({"unchecked", "rawtypes"})
1488 dl 1.54 List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1489 jsr166 1.20 return futures;
1490 dl 1.1 }
1491    
1492     static final class InvokeAll<T> extends RecursiveAction {
1493     final ArrayList<ForkJoinTask<T>> tasks;
1494     InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
1495     public void compute() {
1496 jsr166 1.17 try { invokeAll(tasks); }
1497     catch (Exception ignore) {}
1498 dl 1.1 }
1499 jsr166 1.18 private static final long serialVersionUID = -7914297376763021607L;
1500 dl 1.1 }
1501    
1502     /**
1503 jsr166 1.17 * Returns the factory used for constructing new workers.
1504 dl 1.1 *
1505     * @return the factory used for constructing new workers
1506     */
1507     public ForkJoinWorkerThreadFactory getFactory() {
1508     return factory;
1509     }
1510    
1511     /**
1512 dl 1.2 * Returns the handler for internal worker threads that terminate
1513     * due to unrecoverable errors encountered while executing tasks.
1514 jsr166 1.17 *
1515 jsr166 1.28 * @return the handler, or {@code null} if none
1516 dl 1.2 */
1517     public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1518 dl 1.53 return ueh;
1519 dl 1.2 }
1520    
1521     /**
1522 dl 1.42 * Returns the targeted parallelism level of this pool.
1523 dl 1.1 *
1524 dl 1.42 * @return the targeted parallelism level of this pool
1525 dl 1.1 */
1526     public int getParallelism() {
1527     return parallelism;
1528     }
1529    
1530     /**
1531     * Returns the number of worker threads that have started but not
1532     * yet terminated. This result returned by this method may differ
1533 jsr166 1.29 * from {@link #getParallelism} when threads are created to
1534 dl 1.1 * maintain parallelism when others are cooperatively blocked.
1535     *
1536     * @return the number of worker threads
1537     */
1538     public int getPoolSize() {
1539 dl 1.53 return workerCounts >>> TOTAL_COUNT_SHIFT;
1540 dl 1.1 }
1541    
1542     /**
1543 jsr166 1.28 * Returns {@code true} if this pool uses local first-in-first-out
1544 jsr166 1.16 * scheduling mode for forked tasks that are never joined.
1545 dl 1.6 *
1546 jsr166 1.28 * @return {@code true} if this pool uses async mode
1547 dl 1.6 */
1548     public boolean getAsyncMode() {
1549     return locallyFifo;
1550     }
1551    
1552     /**
1553 dl 1.2 * Returns an estimate of the number of worker threads that are
1554     * not blocked waiting to join tasks or for other managed
1555 dl 1.53 * synchronization. This method may overestimate the
1556     * number of running threads.
1557 dl 1.1 *
1558     * @return the number of worker threads
1559     */
1560     public int getRunningThreadCount() {
1561 dl 1.53 return workerCounts & RUNNING_COUNT_MASK;
1562 dl 1.1 }
1563    
1564     /**
1565 dl 1.2 * Returns an estimate of the number of threads that are currently
1566 dl 1.1 * stealing or executing tasks. This method may overestimate the
1567     * number of active threads.
1568 jsr166 1.17 *
1569 jsr166 1.16 * @return the number of active threads
1570 dl 1.1 */
1571     public int getActiveThreadCount() {
1572 dl 1.53 return runState & ACTIVE_COUNT_MASK;
1573 dl 1.1 }
1574    
1575     /**
1576 jsr166 1.28 * Returns {@code true} if all worker threads are currently idle.
1577     * An idle worker is one that cannot obtain a task to execute
1578     * because none are available to steal from other threads, and
1579     * there are no pending submissions to the pool. This method is
1580     * conservative; it might not return {@code true} immediately upon
1581     * idleness of all threads, but will eventually become true if
1582     * threads remain inactive.
1583 jsr166 1.17 *
1584 jsr166 1.28 * @return {@code true} if all threads are currently idle
1585 dl 1.1 */
1586     public boolean isQuiescent() {
1587 dl 1.53 return (runState & ACTIVE_COUNT_MASK) == 0;
1588 dl 1.1 }
1589    
1590     /**
1591     * Returns an estimate of the total number of tasks stolen from
1592     * one thread's work queue by another. The reported value
1593     * underestimates the actual total number of steals when the pool
1594     * is not quiescent. This value may be useful for monitoring and
1595 jsr166 1.17 * tuning fork/join programs: in general, steal counts should be
1596 dl 1.1 * high enough to keep threads busy, but low enough to avoid
1597     * overhead and contention across threads.
1598 jsr166 1.17 *
1599 jsr166 1.16 * @return the number of steals
1600 dl 1.1 */
1601     public long getStealCount() {
1602 dl 1.53 return stealCount;
1603 dl 1.1 }
1604    
1605     /**
1606 dl 1.2 * Returns an estimate of the total number of tasks currently held
1607     * in queues by worker threads (but not including tasks submitted
1608     * to the pool that have not begun executing). This value is only
1609     * an approximation, obtained by iterating across all threads in
1610     * the pool. This method may be useful for tuning task
1611     * granularities.
1612 jsr166 1.17 *
1613 jsr166 1.16 * @return the number of queued tasks
1614 dl 1.1 */
1615     public long getQueuedTaskCount() {
1616     long count = 0;
1617 dl 1.56 ForkJoinWorkerThread[] ws = workers;
1618 dl 1.61 int n = ws.length;
1619     for (int i = 0; i < n; ++i) {
1620 dl 1.56 ForkJoinWorkerThread w = ws[i];
1621 dl 1.53 if (w != null)
1622     count += w.getQueueSize();
1623 dl 1.1 }
1624     return count;
1625     }
1626    
1627     /**
1628 jsr166 1.40 * Returns an estimate of the number of tasks submitted to this
1629     * pool that have not yet begun executing. This method takes time
1630 dl 1.1 * proportional to the number of submissions.
1631 jsr166 1.17 *
1632 jsr166 1.16 * @return the number of queued submissions
1633 dl 1.1 */
1634     public int getQueuedSubmissionCount() {
1635     return submissionQueue.size();
1636     }
1637    
1638     /**
1639 jsr166 1.28 * Returns {@code true} if there are any tasks submitted to this
1640     * pool that have not yet begun executing.
1641 jsr166 1.17 *
1642 jsr166 1.16 * @return {@code true} if there are any queued submissions
1643 dl 1.1 */
1644     public boolean hasQueuedSubmissions() {
1645     return !submissionQueue.isEmpty();
1646     }
1647    
1648     /**
1649     * Removes and returns the next unexecuted submission if one is
1650     * available. This method may be useful in extensions to this
1651     * class that re-assign work in systems with multiple pools.
1652 jsr166 1.17 *
1653 jsr166 1.28 * @return the next submission, or {@code null} if none
1654 dl 1.1 */
1655     protected ForkJoinTask<?> pollSubmission() {
1656     return submissionQueue.poll();
1657     }
1658    
1659     /**
1660 dl 1.6 * Removes all available unexecuted submitted and forked tasks
1661     * from scheduling queues and adds them to the given collection,
1662     * without altering their execution status. These may include
1663 jsr166 1.41 * artificially generated or wrapped tasks. This method is
1664     * designed to be invoked only when the pool is known to be
1665 dl 1.6 * quiescent. Invocations at other times may not remove all
1666     * tasks. A failure encountered while attempting to add elements
1667 jsr166 1.16 * to collection {@code c} may result in elements being in
1668 dl 1.6 * neither, either or both collections when the associated
1669     * exception is thrown. The behavior of this operation is
1670     * undefined if the specified collection is modified while the
1671     * operation is in progress.
1672 jsr166 1.17 *
1673 dl 1.6 * @param c the collection to transfer elements into
1674     * @return the number of elements transferred
1675     */
1676 dl 1.30 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1677 dl 1.61 int count = submissionQueue.drainTo(c);
1678 dl 1.57 ForkJoinWorkerThread[] ws = workers;
1679 dl 1.61 int n = ws.length;
1680     for (int i = 0; i < n; ++i) {
1681 dl 1.57 ForkJoinWorkerThread w = ws[i];
1682     if (w != null)
1683 dl 1.61 count += w.drainTasksTo(c);
1684 dl 1.57 }
1685     return count;
1686     }
1687    
1688     /**
1689 dl 1.1 * Returns a string identifying this pool, as well as its state,
1690     * including indications of run state, parallelism level, and
1691     * worker and task counts.
1692     *
1693     * @return a string identifying this pool, as well as its state
1694     */
1695     public String toString() {
1696     long st = getStealCount();
1697     long qt = getQueuedTaskCount();
1698     long qs = getQueuedSubmissionCount();
1699 dl 1.53 int wc = workerCounts;
1700     int tc = wc >>> TOTAL_COUNT_SHIFT;
1701     int rc = wc & RUNNING_COUNT_MASK;
1702     int pc = parallelism;
1703     int rs = runState;
1704     int ac = rs & ACTIVE_COUNT_MASK;
1705 dl 1.1 return super.toString() +
1706 dl 1.53 "[" + runLevelToString(rs) +
1707     ", parallelism = " + pc +
1708     ", size = " + tc +
1709     ", active = " + ac +
1710     ", running = " + rc +
1711 dl 1.1 ", steals = " + st +
1712     ", tasks = " + qt +
1713     ", submissions = " + qs +
1714     "]";
1715     }
1716    
1717 dl 1.53 private static String runLevelToString(int s) {
1718     return ((s & TERMINATED) != 0 ? "Terminated" :
1719     ((s & TERMINATING) != 0 ? "Terminating" :
1720     ((s & SHUTDOWN) != 0 ? "Shutting down" :
1721     "Running")));
1722 dl 1.1 }
1723    
1724     /**
1725     * Initiates an orderly shutdown in which previously submitted
1726     * tasks are executed, but no new tasks will be accepted.
1727     * Invocation has no additional effect if already shut down.
1728     * Tasks that are in the process of being submitted concurrently
1729     * during the course of this method may or may not be rejected.
1730 jsr166 1.17 *
1731 dl 1.1 * @throws SecurityException if a security manager exists and
1732     * the caller is not permitted to modify threads
1733     * because it does not hold {@link
1734 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1735 dl 1.1 */
1736     public void shutdown() {
1737     checkPermission();
1738 dl 1.53 advanceRunLevel(SHUTDOWN);
1739     tryTerminate(false);
1740 dl 1.1 }
1741    
1742     /**
1743 dl 1.42 * Attempts to cancel and/or stop all tasks, and reject all
1744     * subsequently submitted tasks. Tasks that are in the process of
1745     * being submitted or executed concurrently during the course of
1746     * this method may or may not be rejected. This method cancels
1747     * both existing and unexecuted tasks, in order to permit
1748     * termination in the presence of task dependencies. So the method
1749     * always returns an empty list (unlike the case for some other
1750     * Executors).
1751 jsr166 1.17 *
1752 dl 1.1 * @return an empty list
1753     * @throws SecurityException if a security manager exists and
1754     * the caller is not permitted to modify threads
1755     * because it does not hold {@link
1756 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1757 dl 1.1 */
1758     public List<Runnable> shutdownNow() {
1759     checkPermission();
1760 dl 1.53 tryTerminate(true);
1761 dl 1.1 return Collections.emptyList();
1762     }
1763    
1764     /**
1765 jsr166 1.16 * Returns {@code true} if all tasks have completed following shut down.
1766 dl 1.1 *
1767 jsr166 1.16 * @return {@code true} if all tasks have completed following shut down
1768 dl 1.1 */
1769     public boolean isTerminated() {
1770 dl 1.53 return runState >= TERMINATED;
1771 dl 1.1 }
1772    
1773     /**
1774 jsr166 1.16 * Returns {@code true} if the process of termination has
1775 dl 1.42 * commenced but not yet completed. This method may be useful for
1776     * debugging. A return of {@code true} reported a sufficient
1777     * period after shutdown may indicate that submitted tasks have
1778     * ignored or suppressed interruption, causing this executor not
1779     * to properly terminate.
1780 dl 1.1 *
1781 dl 1.42 * @return {@code true} if terminating but not yet terminated
1782 dl 1.1 */
1783     public boolean isTerminating() {
1784 dl 1.53 return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
1785 dl 1.1 }
1786    
1787     /**
1788 jsr166 1.16 * Returns {@code true} if this pool has been shut down.
1789 dl 1.1 *
1790 jsr166 1.16 * @return {@code true} if this pool has been shut down
1791 dl 1.1 */
1792     public boolean isShutdown() {
1793 dl 1.53 return runState >= SHUTDOWN;
1794 dl 1.42 }
1795    
1796     /**
1797 dl 1.1 * Blocks until all tasks have completed execution after a shutdown
1798     * request, or the timeout occurs, or the current thread is
1799     * interrupted, whichever happens first.
1800     *
1801     * @param timeout the maximum time to wait
1802     * @param unit the time unit of the timeout argument
1803 jsr166 1.16 * @return {@code true} if this executor terminated and
1804     * {@code false} if the timeout elapsed before termination
1805 dl 1.1 * @throws InterruptedException if interrupted while waiting
1806     */
1807     public boolean awaitTermination(long timeout, TimeUnit unit)
1808     throws InterruptedException {
1809 dl 1.57 try {
1810     return termination.awaitAdvanceInterruptibly(0, timeout, unit) > 0;
1811     } catch(TimeoutException ex) {
1812     return false;
1813     }
1814 dl 1.1 }
1815    
1816     /**
1817     * Interface for extending managed parallelism for tasks running
1818 jsr166 1.35 * in {@link ForkJoinPool}s.
1819     *
1820 dl 1.61 * <p>A {@code ManagedBlocker} provides two methods. Method
1821     * {@code isReleasable} must return {@code true} if blocking is
1822     * not necessary. Method {@code block} blocks the current thread
1823     * if necessary (perhaps internally invoking {@code isReleasable}
1824     * before actually blocking). The unusual methods in this API
1825     * accommodate synchronizers that may, but don't usually, block
1826     * for long periods. Similarly, they allow more efficient internal
1827     * handling of cases in which additional workers may be, but
1828     * usually are not, needed to ensure sufficient parallelism.
1829     * Toward this end, implementations of method {@code isReleasable}
1830     * must be amenable to repeated invocation.
1831 jsr166 1.17 *
1832 dl 1.1 * <p>For example, here is a ManagedBlocker based on a
1833     * ReentrantLock:
1834 jsr166 1.17 * <pre> {@code
1835     * class ManagedLocker implements ManagedBlocker {
1836     * final ReentrantLock lock;
1837     * boolean hasLock = false;
1838     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1839     * public boolean block() {
1840     * if (!hasLock)
1841     * lock.lock();
1842     * return true;
1843     * }
1844     * public boolean isReleasable() {
1845     * return hasLock || (hasLock = lock.tryLock());
1846 dl 1.1 * }
1847 jsr166 1.17 * }}</pre>
1848 dl 1.61 *
1849     * <p>Here is a class that possibly blocks waiting for an
1850     * item on a given queue:
1851     * <pre> {@code
1852     * class QueueTaker<E> implements ManagedBlocker {
1853     * final BlockingQueue<E> queue;
1854     * volatile E item = null;
1855     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
1856     * public boolean block() throws InterruptedException {
1857     * if (item == null)
1858     * item = queue.take
1859     * return true;
1860     * }
1861     * public boolean isReleasable() {
1862     * return item != null || (item = queue.poll) != null;
1863     * }
1864     * public E getItem() { // call after pool.managedBlock completes
1865     * return item;
1866     * }
1867     * }}</pre>
1868 dl 1.1 */
1869     public static interface ManagedBlocker {
1870     /**
1871     * Possibly blocks the current thread, for example waiting for
1872     * a lock or condition.
1873 jsr166 1.17 *
1874 jsr166 1.28 * @return {@code true} if no additional blocking is necessary
1875     * (i.e., if isReleasable would return true)
1876 dl 1.1 * @throws InterruptedException if interrupted while waiting
1877 jsr166 1.17 * (the method is not required to do so, but is allowed to)
1878 dl 1.1 */
1879     boolean block() throws InterruptedException;
1880    
1881     /**
1882 jsr166 1.28 * Returns {@code true} if blocking is unnecessary.
1883 dl 1.1 */
1884     boolean isReleasable();
1885     }
1886    
1887     /**
1888     * Blocks in accord with the given blocker. If the current thread
1889 jsr166 1.38 * is a {@link ForkJoinWorkerThread}, this method possibly
1890     * arranges for a spare thread to be activated if necessary to
1891 dl 1.57 * ensure sufficient parallelism while the current thread is blocked.
1892 jsr166 1.38 *
1893     * <p>If the caller is not a {@link ForkJoinTask}, this method is
1894     * behaviorally equivalent to
1895 jsr166 1.17 * <pre> {@code
1896     * while (!blocker.isReleasable())
1897     * if (blocker.block())
1898     * return;
1899     * }</pre>
1900 jsr166 1.38 *
1901     * If the caller is a {@code ForkJoinTask}, then the pool may
1902     * first be expanded to ensure parallelism, and later adjusted.
1903 dl 1.1 *
1904     * @param blocker the blocker
1905 jsr166 1.16 * @throws InterruptedException if blocker.block did so
1906 dl 1.1 */
1907 dl 1.57 public static void managedBlock(ManagedBlocker blocker)
1908 dl 1.1 throws InterruptedException {
1909     Thread t = Thread.currentThread();
1910 dl 1.61 if (t instanceof ForkJoinWorkerThread) {
1911     ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
1912     w.pool.awaitBlocker(blocker);
1913     }
1914 dl 1.57 else {
1915     do {} while (!blocker.isReleasable() && !blocker.block());
1916     }
1917 dl 1.1 }
1918    
1919 dl 1.33 // AbstractExecutorService overrides. These rely on undocumented
1920     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
1921     // implement RunnableFuture.
1922 dl 1.2
1923     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
1924 jsr166 1.34 return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
1925 dl 1.2 }
1926    
1927     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
1928 jsr166 1.34 return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
1929 dl 1.2 }
1930    
1931 jsr166 1.27 // Unsafe mechanics
1932 dl 1.1
1933 jsr166 1.21 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1934 dl 1.53 private static final long workerCountsOffset =
1935     objectFieldOffset("workerCounts", ForkJoinPool.class);
1936     private static final long runStateOffset =
1937     objectFieldOffset("runState", ForkJoinPool.class);
1938 jsr166 1.25 private static final long eventCountOffset =
1939 jsr166 1.27 objectFieldOffset("eventCount", ForkJoinPool.class);
1940 dl 1.53 private static final long eventWaitersOffset =
1941     objectFieldOffset("eventWaiters",ForkJoinPool.class);
1942     private static final long stealCountOffset =
1943     objectFieldOffset("stealCount",ForkJoinPool.class);
1944 dl 1.61 private static final long spareWaitersOffset =
1945     objectFieldOffset("spareWaiters",ForkJoinPool.class);
1946 dl 1.53
1947 jsr166 1.27 private static long objectFieldOffset(String field, Class<?> klazz) {
1948     try {
1949     return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1950     } catch (NoSuchFieldException e) {
1951     // Convert Exception to corresponding Error
1952     NoSuchFieldError error = new NoSuchFieldError(field);
1953     error.initCause(e);
1954     throw error;
1955     }
1956     }
1957    
1958     /**
1959     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1960     * Replace with a simple call to Unsafe.getUnsafe when integrating
1961     * into a jdk.
1962     *
1963     * @return a sun.misc.Unsafe
1964     */
1965     private static sun.misc.Unsafe getUnsafe() {
1966     try {
1967     return sun.misc.Unsafe.getUnsafe();
1968     } catch (SecurityException se) {
1969     try {
1970     return java.security.AccessController.doPrivileged
1971     (new java.security
1972     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1973     public sun.misc.Unsafe run() throws Exception {
1974     java.lang.reflect.Field f = sun.misc
1975     .Unsafe.class.getDeclaredField("theUnsafe");
1976     f.setAccessible(true);
1977     return (sun.misc.Unsafe) f.get(null);
1978     }});
1979     } catch (java.security.PrivilegedActionException e) {
1980     throw new RuntimeException("Could not initialize intrinsics",
1981     e.getCause());
1982     }
1983     }
1984     }
1985 dl 1.1 }