ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
Revision: 1.69
Committed: Wed Sep 1 20:12:39 2010 UTC (13 years, 8 months ago) by jsr166
Branch: MAIN
Changes since 1.68: +5 -5 lines
Log Message:
coding style

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package jsr166y;
8 jsr166 1.22
9 dl 1.1 import java.util.concurrent.*;
10 jsr166 1.22
11     import java.util.ArrayList;
12     import java.util.Arrays;
13     import java.util.Collection;
14     import java.util.Collections;
15     import java.util.List;
16     import java.util.concurrent.locks.LockSupport;
17     import java.util.concurrent.locks.ReentrantLock;
18     import java.util.concurrent.atomic.AtomicInteger;
19 dl 1.53 import java.util.concurrent.CountDownLatch;
20 dl 1.1
21     /**
22 jsr166 1.29 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
23 jsr166 1.39 * A {@code ForkJoinPool} provides the entry point for submissions
24 dl 1.57 * from non-{@code ForkJoinTask} clients, as well as management and
25 jsr166 1.48 * monitoring operations.
26 dl 1.1 *
27 dl 1.42 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
28     * ExecutorService} mainly by virtue of employing
29     * <em>work-stealing</em>: all threads in the pool attempt to find and
30     * execute subtasks created by other active tasks (eventually blocking
31     * waiting for work if none exist). This enables efficient processing
32     * when most tasks spawn other subtasks (as do most {@code
33 dl 1.57 * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
34     * constructors, {@code ForkJoinPool}s may also be appropriate for use
35     * with event-style tasks that are never joined.
36 dl 1.1 *
37 dl 1.42 * <p>A {@code ForkJoinPool} is constructed with a given target
38     * parallelism level; by default, equal to the number of available
39 dl 1.57 * processors. The pool attempts to maintain enough active (or
40     * available) threads by dynamically adding, suspending, or resuming
41     * internal worker threads, even if some tasks are stalled waiting to
42     * join others. However, no such adjustments are guaranteed in the
43     * face of blocked IO or other unmanaged synchronization. The nested
44     * {@link ManagedBlocker} interface enables extension of the kinds of
45     * synchronization accommodated.
46 dl 1.1 *
47     * <p>In addition to execution and lifecycle control methods, this
48     * class provides status check methods (for example
49 jsr166 1.29 * {@link #getStealCount}) that are intended to aid in developing,
50 dl 1.1 * tuning, and monitoring fork/join applications. Also, method
51 jsr166 1.29 * {@link #toString} returns indications of pool state in a
52 dl 1.2 * convenient form for informal monitoring.
53 dl 1.1 *
54 dl 1.57 * <p> As is the case with other ExecutorServices, there are three
55 dl 1.60 * main task execution methods summarized in the following
56 dl 1.57 * table. These are designed to be used by clients not already engaged
57     * in fork/join computations in the current pool. The main forms of
58     * these methods accept instances of {@code ForkJoinTask}, but
59     * overloaded forms also allow mixed execution of plain {@code
60     * Runnable}- or {@code Callable}- based activities as well. However,
61     * tasks that are already executing in a pool should normally
62     * <em>NOT</em> use these pool execution methods, but instead use the
63 dl 1.59 * within-computation forms listed in the table.
64 dl 1.57 *
65     * <table BORDER CELLPADDING=3 CELLSPACING=1>
66     * <tr>
67     * <td></td>
68     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
69     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
70     * </tr>
71     * <tr>
72 jsr166 1.67 * <td> <b>Arrange async execution</td>
73 dl 1.57 * <td> {@link #execute(ForkJoinTask)}</td>
74     * <td> {@link ForkJoinTask#fork}</td>
75     * </tr>
76     * <tr>
77     * <td> <b>Await and obtain result</td>
78     * <td> {@link #invoke(ForkJoinTask)}</td>
79     * <td> {@link ForkJoinTask#invoke}</td>
80     * </tr>
81     * <tr>
82     * <td> <b>Arrange exec and obtain Future</td>
83     * <td> {@link #submit(ForkJoinTask)}</td>
84     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
85     * </tr>
86     * </table>
87 dl 1.59 *
88 dl 1.42 * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
89     * used for all parallel task execution in a program or subsystem.
90     * Otherwise, use would not usually outweigh the construction and
91     * bookkeeping overhead of creating a large set of threads. For
92 jsr166 1.43 * example, a common pool could be used for the {@code SortTasks}
93 dl 1.42 * illustrated in {@link RecursiveAction}. Because {@code
94     * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
95 jsr166 1.43 * daemon} mode, there is typically no need to explicitly {@link
96 dl 1.42 * #shutdown} such a pool upon program exit.
97     *
98     * <pre>
99     * static final ForkJoinPool mainPool = new ForkJoinPool();
100     * ...
101     * public void sort(long[] array) {
102     * mainPool.invoke(new SortTask(array, 0, array.length));
103     * }
104     * </pre>
105     *
106 dl 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
107 dl 1.2 * maximum number of running threads to 32767. Attempts to create
108 jsr166 1.48 * pools with greater than the maximum number result in
109 jsr166 1.39 * {@code IllegalArgumentException}.
110 jsr166 1.16 *
111 jsr166 1.48 * <p>This implementation rejects submitted tasks (that is, by throwing
112 dl 1.58 * {@link RejectedExecutionException}) only when the pool is shut down
113 dl 1.62 * or internal resources have been exhausted.
114 jsr166 1.48 *
115 jsr166 1.16 * @since 1.7
116     * @author Doug Lea
117 dl 1.1 */
118 dl 1.2 public class ForkJoinPool extends AbstractExecutorService {
119 dl 1.1
120     /*
121 dl 1.53 * Implementation Overview
122     *
123     * This class provides the central bookkeeping and control for a
124     * set of worker threads: Submissions from non-FJ threads enter
125     * into a submission queue. Workers take these tasks and typically
126     * split them into subtasks that may be stolen by other workers.
127     * The main work-stealing mechanics implemented in class
128     * ForkJoinWorkerThread give first priority to processing tasks
129     * from their own queues (LIFO or FIFO, depending on mode), then
130     * to randomized FIFO steals of tasks in other worker queues, and
131     * lastly to new submissions. These mechanics do not consider
132     * affinities, loads, cache localities, etc, so rarely provide the
133     * best possible performance on a given machine, but portably
134     * provide good throughput by averaging over these factors.
135     * (Further, even if we did try to use such information, we do not
136     * usually have a basis for exploiting it. For example, some sets
137     * of tasks profit from cache affinities, but others are harmed by
138     * cache pollution effects.)
139     *
140 dl 1.58 * Beyond work-stealing support and essential bookkeeping, the
141 dl 1.60 * main responsibility of this framework is to take actions when
142     * one worker is waiting to join a task stolen (or always held by)
143 jsr166 1.67 * another. Because we are multiplexing many tasks on to a pool
144 dl 1.60 * of workers, we can't just let them block (as in Thread.join).
145     * We also cannot just reassign the joiner's run-time stack with
146     * another and replace it later, which would be a form of
147     * "continuation", that even if possible is not necessarily a good
148     * idea. Given that the creation costs of most threads on most
149     * systems mainly surrounds setting up runtime stacks, thread
150     * creation and switching is usually not much more expensive than
151     * stack creation and switching, and is more flexible). Instead we
152     * combine two tactics:
153 dl 1.58 *
154 dl 1.60 * Helping: Arranging for the joiner to execute some task that it
155 dl 1.58 * would be running if the steal had not occurred. Method
156     * ForkJoinWorkerThread.helpJoinTask tracks joining->stealing
157     * links to try to find such a task.
158     *
159 dl 1.61 * Compensating: Unless there are already enough live threads,
160 jsr166 1.68 * method helpMaintainParallelism() may create or
161 dl 1.61 * re-activate a spare thread to compensate for blocked
162     * joiners until they unblock.
163 dl 1.58 *
164 dl 1.66 * It is impossible to keep exactly the target (parallelism)
165     * number of threads running at any given time. Determining
166     * existence of conservatively safe helping targets, the
167     * availability of already-created spares, and the apparent need
168     * to create new spares are all racy and require heuristic
169     * guidance, so we rely on multiple retries of each. Compensation
170     * occurs in slow-motion. It is triggered only upon timeouts of
171     * Object.wait used for joins. This reduces poor decisions that
172     * would otherwise be made when threads are waiting for others
173     * that are stalled because of unrelated activities such as
174     * garbage collection.
175 dl 1.58 *
176 dl 1.61 * The ManagedBlocker extension API can't use helping so relies
177     * only on compensation in method awaitBlocker.
178 dl 1.58 *
179 dl 1.53 * The main throughput advantages of work-stealing stem from
180     * decentralized control -- workers mostly steal tasks from each
181     * other. We do not want to negate this by creating bottlenecks
182 dl 1.58 * implementing other management responsibilities. So we use a
183     * collection of techniques that avoid, reduce, or cope well with
184     * contention. These entail several instances of bit-packing into
185     * CASable fields to maintain only the minimally required
186     * atomicity. To enable such packing, we restrict maximum
187     * parallelism to (1<<15)-1 (enabling twice this (to accommodate
188     * unbalanced increments and decrements) to fit into a 16 bit
189     * field, which is far in excess of normal operating range. Even
190     * though updates to some of these bookkeeping fields do sometimes
191     * contend with each other, they don't normally cache-contend with
192     * updates to others enough to warrant memory padding or
193     * isolation. So they are all held as fields of ForkJoinPool
194     * objects. The main capabilities are as follows:
195 dl 1.53 *
196     * 1. Creating and removing workers. Workers are recorded in the
197     * "workers" array. This is an array as opposed to some other data
198     * structure to support index-based random steals by workers.
199     * Updates to the array recording new workers and unrecording
200     * terminated ones are protected from each other by a lock
201     * (workerLock) but the array is otherwise concurrently readable,
202     * and accessed directly by workers. To simplify index-based
203     * operations, the array size is always a power of two, and all
204 dl 1.56 * readers must tolerate null slots. Currently, all worker thread
205     * creation is on-demand, triggered by task submissions,
206     * replacement of terminated workers, and/or compensation for
207     * blocked workers. However, all other support code is set up to
208     * work with other policies.
209 dl 1.53 *
210 dl 1.61 * To ensure that we do not hold on to worker references that
211     * would prevent GC, ALL accesses to workers are via indices into
212     * the workers array (which is one source of some of the unusual
213     * code constructions here). In essence, the workers array serves
214     * as a WeakReference mechanism. Thus for example the event queue
215     * stores worker indices, not worker references. Access to the
216     * workers in associated methods (for example releaseEventWaiters)
217     * must both index-check and null-check the IDs. All such accesses
218     * ignore bad IDs by returning out early from what they are doing,
219     * since this can only be associated with shutdown, in which case
220     * it is OK to give up. On termination, we just clobber these
221     * data structures without trying to use them.
222     *
223 dl 1.53 * 2. Bookkeeping for dynamically adding and removing workers. We
224 dl 1.57 * aim to approximately maintain the given level of parallelism.
225     * When some workers are known to be blocked (on joins or via
226 dl 1.53 * ManagedBlocker), we may create or resume others to take their
227     * place until they unblock (see below). Implementing this
228     * requires counts of the number of "running" threads (i.e., those
229 jsr166 1.67 * that are neither blocked nor artificially suspended) as well as
230 dl 1.53 * the total number. These two values are packed into one field,
231     * "workerCounts" because we need accurate snapshots when deciding
232 dl 1.58 * to create, resume or suspend. Note however that the
233 jsr166 1.67 * correspondence of these counts to reality is not guaranteed. In
234 dl 1.58 * particular updates for unblocked threads may lag until they
235     * actually wake up.
236 dl 1.53 *
237     * 3. Maintaining global run state. The run state of the pool
238     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
239     * those in other Executor implementations, as well as a count of
240     * "active" workers -- those that are, or soon will be, or
241     * recently were executing tasks. The runLevel and active count
242     * are packed together in order to correctly trigger shutdown and
243     * termination. Without care, active counts can be subject to very
244     * high contention. We substantially reduce this contention by
245     * relaxing update rules. A worker must claim active status
246     * prospectively, by activating if it sees that a submitted or
247     * stealable task exists (it may find after activating that the
248     * task no longer exists). It stays active while processing this
249     * task (if it exists) and any other local subtasks it produces,
250     * until it cannot find any other tasks. It then tries
251     * inactivating (see method preStep), but upon update contention
252     * instead scans for more tasks, later retrying inactivation if it
253     * doesn't find any.
254     *
255     * 4. Managing idle workers waiting for tasks. We cannot let
256     * workers spin indefinitely scanning for tasks when none are
257     * available. On the other hand, we must quickly prod them into
258     * action when new tasks are submitted or generated. We
259     * park/unpark these idle workers using an event-count scheme.
260     * Field eventCount is incremented upon events that may enable
261     * workers that previously could not find a task to now find one:
262     * Submission of a new task to the pool, or another worker pushing
263     * a task onto a previously empty queue. (We also use this
264 dl 1.64 * mechanism for configuration and termination actions that
265     * require wakeups of idle workers). Each worker maintains its
266     * last known event count, and blocks when a scan for work did not
267     * find a task AND its lastEventCount matches the current
268     * eventCount. Waiting idle workers are recorded in a variant of
269     * Treiber stack headed by field eventWaiters which, when nonzero,
270     * encodes the thread index and count awaited for by the worker
271     * thread most recently calling eventSync. This thread in turn has
272     * a record (field nextEventWaiter) for the next waiting worker.
273     * In addition to allowing simpler decisions about need for
274     * wakeup, the event count bits in eventWaiters serve the role of
275     * tags to avoid ABA errors in Treiber stacks. Upon any wakeup,
276 dl 1.66 * released threads also try to release at most two others. The
277     * net effect is a tree-like diffusion of signals, where released
278     * threads (and possibly others) help with unparks. To further
279     * reduce contention effects a bit, failed CASes to increment
280     * field eventCount are tolerated without retries in signalWork.
281 dl 1.53 * Conceptually they are merged into the same event, which is OK
282     * when their only purpose is to enable workers to scan for work.
283     *
284 dl 1.66 * 5. Managing suspension of extra workers. When a worker notices
285     * (usually upon timeout of a wait()) that there are too few
286     * running threads, we may create a new thread to maintain
287     * parallelism level, or at least avoid starvation. Usually, extra
288     * threads are needed for only very short periods, yet join
289     * dependencies are such that we sometimes need them in
290     * bursts. Rather than create new threads each time this happens,
291     * we suspend no-longer-needed extra ones as "spares". For most
292     * purposes, we don't distinguish "extra" spare threads from
293     * normal "core" threads: On each call to preStep (the only point
294     * at which we can do this) a worker checks to see if there are
295     * now too many running workers, and if so, suspends itself.
296     * Method helpMaintainParallelism looks for suspended threads to
297     * resume before considering creating a new replacement. The
298     * spares themselves are encoded on another variant of a Treiber
299     * Stack, headed at field "spareWaiters". Note that the use of
300     * spares is intrinsically racy. One thread may become a spare at
301     * about the same time as another is needlessly being created. We
302     * counteract this and related slop in part by requiring resumed
303     * spares to immediately recheck (in preStep) to see whether they
304     * they should re-suspend.
305     *
306     * 6. Killing off unneeded workers. A timeout mechanism is used to
307     * shed unused workers: The oldest (first) event queue waiter uses
308     * a timed rather than hard wait. When this wait times out without
309     * a normal wakeup, it tries to shutdown any one (for convenience
310     * the newest) other spare or event waiter via
311     * tryShutdownUnusedWorker. This eventually reduces the number of
312     * worker threads to a minimum of one after a long enough period
313     * without use.
314 dl 1.64 *
315     * 7. Deciding when to create new workers. The main dynamic
316 dl 1.61 * control in this class is deciding when to create extra threads
317     * in method helpMaintainParallelism. We would like to keep
318 jsr166 1.67 * exactly #parallelism threads running, which is an impossible
319 dl 1.61 * task. We always need to create one when the number of running
320     * threads would become zero and all workers are busy. Beyond
321 jsr166 1.68 * this, we must rely on heuristics that work well in the
322     * presence of transient phenomena such as GC stalls, dynamic
323 dl 1.61 * compilation, and wake-up lags. These transients are extremely
324     * common -- we are normally trying to fully saturate the CPUs on
325     * a machine, so almost any activity other than running tasks
326 dl 1.66 * impedes accuracy. Our main defense is to allow parallelism to
327     * lapse for a while during joins, and use a timeout to see if,
328     * after the resulting settling, there is still a need for
329     * additional workers. This also better copes with the fact that
330     * some of the methods in this class tend to never become compiled
331     * (but are interpreted), so some components of the entire set of
332     * controls might execute 100 times faster than others. And
333     * similarly for cases where the apparent lack of work is just due
334     * to GC stalls and other transient system activity.
335 dl 1.53 *
336     * Beware that there is a lot of representation-level coupling
337     * among classes ForkJoinPool, ForkJoinWorkerThread, and
338     * ForkJoinTask. For example, direct access to "workers" array by
339     * workers, and direct access to ForkJoinTask.status by both
340     * ForkJoinPool and ForkJoinWorkerThread. There is little point
341     * trying to reduce this, since any associated future changes in
342     * representations will need to be accompanied by algorithmic
343     * changes anyway.
344     *
345     * Style notes: There are lots of inline assignments (of form
346     * "while ((local = field) != 0)") which are usually the simplest
347 dl 1.61 * way to ensure the required read orderings (which are sometimes
348     * critical). Also several occurrences of the unusual "do {}
349 jsr166 1.69 * while (!cas...)" which is the simplest way to force an update of
350 dl 1.61 * a CAS'ed variable. There are also other coding oddities that
351     * help some methods perform reasonably even when interpreted (not
352     * compiled), at the expense of some messy constructions that
353     * reduce byte code counts.
354 dl 1.53 *
355     * The order of declarations in this file is: (1) statics (2)
356     * fields (along with constants used when unpacking some of them)
357     * (3) internal control methods (4) callbacks and other support
358     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
359     * methods (plus a few little helpers).
360 dl 1.1 */
361    
362     /**
363 jsr166 1.35 * Factory for creating new {@link ForkJoinWorkerThread}s.
364     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
365     * for {@code ForkJoinWorkerThread} subclasses that extend base
366     * functionality or initialize threads with different contexts.
367 dl 1.1 */
368     public static interface ForkJoinWorkerThreadFactory {
369     /**
370     * Returns a new worker thread operating in the given pool.
371     *
372     * @param pool the pool this thread works in
373 jsr166 1.48 * @throws NullPointerException if the pool is null
374 dl 1.1 */
375     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
376     }
377    
378     /**
379 jsr166 1.17 * Default ForkJoinWorkerThreadFactory implementation; creates a
380 dl 1.1 * new ForkJoinWorkerThread.
381     */
382 dl 1.57 static class DefaultForkJoinWorkerThreadFactory
383 dl 1.1 implements ForkJoinWorkerThreadFactory {
384     public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
385 dl 1.53 return new ForkJoinWorkerThread(pool);
386 dl 1.1 }
387     }
388    
389     /**
390 dl 1.2 * Creates a new ForkJoinWorkerThread. This factory is used unless
391     * overridden in ForkJoinPool constructors.
392 dl 1.1 */
393 dl 1.2 public static final ForkJoinWorkerThreadFactory
394 dl 1.1 defaultForkJoinWorkerThreadFactory =
395     new DefaultForkJoinWorkerThreadFactory();
396    
397     /**
398     * Permission required for callers of methods that may start or
399     * kill threads.
400     */
401     private static final RuntimePermission modifyThreadPermission =
402     new RuntimePermission("modifyThread");
403    
404     /**
405     * If there is a security manager, makes sure caller has
406     * permission to modify threads.
407     */
408     private static void checkPermission() {
409     SecurityManager security = System.getSecurityManager();
410     if (security != null)
411     security.checkPermission(modifyThreadPermission);
412     }
413    
414     /**
415     * Generator for assigning sequence numbers as pool names.
416     */
417     private static final AtomicInteger poolNumberGenerator =
418     new AtomicInteger();
419    
420     /**
421 dl 1.66 * The time to block in a join (see awaitJoin) before checking if
422     * a new worker should be (re)started to maintain parallelism
423 jsr166 1.67 * level. The value should be short enough to maintain global
424 dl 1.66 * responsiveness and progress but long enough to avoid
425     * counterproductive firings during GC stalls or unrelated system
426     * activity, and to not bog down systems with continual re-firings
427     * on GCs or legitimately long waits.
428     */
429     private static final long JOIN_TIMEOUT_MILLIS = 250L; // 4 per second
430    
431     /**
432 dl 1.64 * The wakeup interval (in nanoseconds) for the oldest worker
433 dl 1.66 * worker waiting for an event invokes tryShutdownUnusedWorker to shrink
434 dl 1.64 * the number of workers. The exact value does not matter too
435     * much, but should be long enough to slowly release resources
436     * during long periods without use without disrupting normal use.
437     */
438     private static final long SHRINK_RATE_NANOS =
439 dl 1.66 30L * 1000L * 1000L * 1000L; // 2 per minute
440 dl 1.64
441     /**
442 dl 1.61 * Absolute bound for parallelism level. Twice this number plus
443     * one (i.e., 0xfff) must fit into a 16bit field to enable
444     * word-packing for some counts and indices.
445 dl 1.53 */
446 dl 1.61 private static final int MAX_WORKERS = 0x7fff;
447 dl 1.53
448     /**
449     * Array holding all worker threads in the pool. Array size must
450     * be a power of two. Updates and replacements are protected by
451     * workerLock, but the array is always kept in a consistent enough
452     * state to be randomly accessed without locking by workers
453     * performing work-stealing, as well as other traversal-based
454     * methods in this class. All readers must tolerate that some
455     * array slots may be null.
456 dl 1.1 */
457     volatile ForkJoinWorkerThread[] workers;
458    
459     /**
460 dl 1.53 * Queue for external submissions.
461 dl 1.1 */
462 dl 1.53 private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
463 dl 1.1
464     /**
465 dl 1.53 * Lock protecting updates to workers array.
466 dl 1.1 */
467 dl 1.53 private final ReentrantLock workerLock;
468 dl 1.1
469     /**
470 dl 1.53 * Latch released upon termination.
471 dl 1.1 */
472 dl 1.57 private final Phaser termination;
473 dl 1.1
474     /**
475     * Creation factory for worker threads.
476     */
477     private final ForkJoinWorkerThreadFactory factory;
478    
479     /**
480 dl 1.53 * Sum of per-thread steal counts, updated only when threads are
481     * idle or terminating.
482 dl 1.1 */
483 dl 1.53 private volatile long stealCount;
484 dl 1.1
485     /**
486 jsr166 1.67 * Encoded record of top of Treiber stack of threads waiting for
487 dl 1.53 * events. The top 32 bits contain the count being waited for. The
488 dl 1.61 * bottom 16 bits contains one plus the pool index of waiting
489     * worker thread. (Bits 16-31 are unused.)
490 dl 1.1 */
491 dl 1.53 private volatile long eventWaiters;
492    
493     private static final int EVENT_COUNT_SHIFT = 32;
494 dl 1.61 private static final long WAITER_ID_MASK = (1L << 16) - 1L;
495 dl 1.1
496     /**
497 dl 1.53 * A counter for events that may wake up worker threads:
498     * - Submission of a new task to the pool
499     * - A worker pushing a task on an empty queue
500 dl 1.61 * - termination
501 dl 1.1 */
502 dl 1.53 private volatile int eventCount;
503    
504     /**
505 jsr166 1.67 * Encoded record of top of Treiber stack of spare threads waiting
506 dl 1.61 * for resumption. The top 16 bits contain an arbitrary count to
507     * avoid ABA effects. The bottom 16bits contains one plus the pool
508     * index of waiting worker thread.
509     */
510     private volatile int spareWaiters;
511    
512     private static final int SPARE_COUNT_SHIFT = 16;
513     private static final int SPARE_ID_MASK = (1 << 16) - 1;
514    
515     /**
516 dl 1.53 * Lifecycle control. The low word contains the number of workers
517     * that are (probably) executing tasks. This value is atomically
518     * incremented before a worker gets a task to run, and decremented
519     * when worker has no tasks and cannot find any. Bits 16-18
520     * contain runLevel value. When all are zero, the pool is
521     * running. Level transitions are monotonic (running -> shutdown
522     * -> terminating -> terminated) so each transition adds a bit.
523     * These are bundled together to ensure consistent read for
524     * termination checks (i.e., that runLevel is at least SHUTDOWN
525     * and active threads is zero).
526 dl 1.64 *
527     * Notes: Most direct CASes are dependent on these bitfield
528     * positions. Also, this field is non-private to enable direct
529     * performance-sensitive CASes in ForkJoinWorkerThread.
530 dl 1.53 */
531 dl 1.64 volatile int runState;
532 dl 1.53
533     // Note: The order among run level values matters.
534     private static final int RUNLEVEL_SHIFT = 16;
535     private static final int SHUTDOWN = 1 << RUNLEVEL_SHIFT;
536     private static final int TERMINATING = 1 << (RUNLEVEL_SHIFT + 1);
537     private static final int TERMINATED = 1 << (RUNLEVEL_SHIFT + 2);
538     private static final int ACTIVE_COUNT_MASK = (1 << RUNLEVEL_SHIFT) - 1;
539 dl 1.1
540     /**
541 dl 1.53 * Holds number of total (i.e., created and not yet terminated)
542     * and running (i.e., not blocked on joins or other managed sync)
543     * threads, packed together to ensure consistent snapshot when
544     * making decisions about creating and suspending spare
545     * threads. Updated only by CAS. Note that adding a new worker
546     * requires incrementing both counts, since workers start off in
547 dl 1.60 * running state.
548 dl 1.53 */
549     private volatile int workerCounts;
550    
551     private static final int TOTAL_COUNT_SHIFT = 16;
552     private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
553     private static final int ONE_RUNNING = 1;
554     private static final int ONE_TOTAL = 1 << TOTAL_COUNT_SHIFT;
555    
556 dl 1.1 /**
557 dl 1.53 * The target parallelism level.
558 dl 1.57 * Accessed directly by ForkJoinWorkerThreads.
559 dl 1.1 */
560 dl 1.57 final int parallelism;
561 dl 1.1
562     /**
563 dl 1.53 * True if use local fifo, not default lifo, for local polling
564 dl 1.57 * Read by, and replicated by ForkJoinWorkerThreads
565 dl 1.1 */
566 dl 1.57 final boolean locallyFifo;
567 dl 1.1
568     /**
569 dl 1.57 * The uncaught exception handler used when any worker abruptly
570     * terminates.
571 dl 1.1 */
572 dl 1.57 private final Thread.UncaughtExceptionHandler ueh;
573 dl 1.6
574     /**
575 dl 1.53 * Pool number, just for assigning useful names to worker threads
576 dl 1.1 */
577 dl 1.53 private final int poolNumber;
578 dl 1.1
579 dl 1.64 // Utilities for CASing fields. Note that most of these
580     // are usually manually inlined by callers
581 dl 1.1
582     /**
583 dl 1.61 * Increments running count part of workerCounts
584 dl 1.1 */
585 dl 1.57 final void incrementRunningCount() {
586     int c;
587 dl 1.53 do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
588 dl 1.59 c = workerCounts,
589 dl 1.57 c + ONE_RUNNING));
590 dl 1.1 }
591 dl 1.58
592 dl 1.1 /**
593 dl 1.57 * Tries to decrement running count unless already zero
594 dl 1.56 */
595     final boolean tryDecrementRunningCount() {
596     int wc = workerCounts;
597     if ((wc & RUNNING_COUNT_MASK) == 0)
598     return false;
599     return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
600     wc, wc - ONE_RUNNING);
601     }
602    
603     /**
604 dl 1.61 * Forces decrement of encoded workerCounts, awaiting nonzero if
605     * (rarely) necessary when other count updates lag.
606     *
607     * @param dr -- either zero or ONE_RUNNING
608     * @param dt == either zero or ONE_TOTAL
609 dl 1.58 */
610 dl 1.61 private void decrementWorkerCounts(int dr, int dt) {
611     for (;;) {
612     int wc = workerCounts;
613     if ((wc & RUNNING_COUNT_MASK) - dr < 0 ||
614 dl 1.64 (wc >>> TOTAL_COUNT_SHIFT) - dt < 0) {
615     if ((runState & TERMINATED) != 0)
616     return; // lagging termination on a backout
617 dl 1.61 Thread.yield();
618 dl 1.64 }
619 dl 1.61 if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
620     wc, wc - (dr + dt)))
621     return;
622     }
623     }
624    
625     /**
626 jsr166 1.16 * Tries decrementing active count; fails on contention.
627 dl 1.53 * Called when workers cannot find tasks to run.
628     */
629     final boolean tryDecrementActiveCount() {
630     int c;
631     return UNSAFE.compareAndSwapInt(this, runStateOffset,
632 dl 1.64 c = runState, c - 1);
633 dl 1.53 }
634    
635     /**
636     * Advances to at least the given level. Returns true if not
637     * already in at least the given level.
638     */
639     private boolean advanceRunLevel(int level) {
640     for (;;) {
641     int s = runState;
642     if ((s & level) != 0)
643     return false;
644     if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
645     return true;
646     }
647     }
648    
649     // workers array maintenance
650    
651     /**
652     * Records and returns a workers array index for new worker.
653     */
654     private int recordWorker(ForkJoinWorkerThread w) {
655     // Try using slot totalCount-1. If not available, scan and/or resize
656     int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
657     final ReentrantLock lock = this.workerLock;
658     lock.lock();
659     try {
660     ForkJoinWorkerThread[] ws = workers;
661 dl 1.61 int n = ws.length;
662     if (k < 0 || k >= n || ws[k] != null) {
663     for (k = 0; k < n && ws[k] != null; ++k)
664 dl 1.53 ;
665 dl 1.61 if (k == n)
666     ws = Arrays.copyOf(ws, n << 1);
667 dl 1.53 }
668     ws[k] = w;
669     workers = ws; // volatile array write ensures slot visibility
670     } finally {
671     lock.unlock();
672     }
673     return k;
674     }
675    
676     /**
677     * Nulls out record of worker in workers array
678     */
679     private void forgetWorker(ForkJoinWorkerThread w) {
680     int idx = w.poolIndex;
681 jsr166 1.67 // Locking helps method recordWorker avoid unnecessary expansion
682 dl 1.53 final ReentrantLock lock = this.workerLock;
683     lock.lock();
684     try {
685     ForkJoinWorkerThread[] ws = workers;
686     if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
687     ws[idx] = null;
688     } finally {
689     lock.unlock();
690     }
691     }
692    
693     /**
694     * Final callback from terminating worker. Removes record of
695     * worker from array, and adjusts counts. If pool is shutting
696 jsr166 1.67 * down, tries to complete termination.
697 dl 1.53 *
698     * @param w the worker
699     */
700     final void workerTerminated(ForkJoinWorkerThread w) {
701     forgetWorker(w);
702 dl 1.61 decrementWorkerCounts(w.isTrimmed()? 0 : ONE_RUNNING, ONE_TOTAL);
703     while (w.stealCount != 0) // collect final count
704     tryAccumulateStealCount(w);
705     tryTerminate(false);
706 dl 1.53 }
707    
708     // Waiting for and signalling events
709    
710     /**
711     * Releases workers blocked on a count not equal to current count.
712 dl 1.61 * Normally called after precheck that eventWaiters isn't zero to
713 dl 1.64 * avoid wasted array checks. Gives up upon a change in count or
714 dl 1.66 * upon releasing two workers, letting others take over.
715 dl 1.53 */
716 dl 1.64 private void releaseEventWaiters() {
717 dl 1.61 ForkJoinWorkerThread[] ws = workers;
718     int n = ws.length;
719 dl 1.64 long h = eventWaiters;
720     int ec = eventCount;
721 dl 1.66 boolean releasedOne = false;
722 dl 1.64 ForkJoinWorkerThread w; int id;
723 dl 1.66 while ((id = ((int)(h & WAITER_ID_MASK)) - 1) >= 0 &&
724     (int)(h >>> EVENT_COUNT_SHIFT) != ec &&
725     id < n && (w = ws[id]) != null) {
726     if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
727     h, w.nextWaiter)) {
728     LockSupport.unpark(w);
729     if (releasedOne) // exit on second release
730     break;
731     releasedOne = true;
732     }
733     if (eventCount != ec)
734 dl 1.61 break;
735 dl 1.66 h = eventWaiters;
736 dl 1.53 }
737     }
738    
739     /**
740 dl 1.61 * Tries to advance eventCount and releases waiters. Called only
741     * from workers.
742 dl 1.53 */
743     final void signalWork() {
744 dl 1.61 int c; // try to increment event count -- CAS failure OK
745     UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
746     if (eventWaiters != 0L)
747 dl 1.64 releaseEventWaiters();
748 dl 1.53 }
749    
750     /**
751 dl 1.64 * Adds the given worker to event queue and blocks until
752 dl 1.66 * terminating or event count advances from the given value
753 dl 1.53 *
754     * @param w the calling worker thread
755 dl 1.66 * @param ec the count
756 dl 1.53 */
757 dl 1.66 private void eventSync(ForkJoinWorkerThread w, int ec) {
758 dl 1.64 long nh = (((long)ec) << EVENT_COUNT_SHIFT) | ((long)(w.poolIndex+1));
759 dl 1.61 long h;
760 dl 1.60 while ((runState < SHUTDOWN || !tryTerminate(false)) &&
761 dl 1.64 (((int)((h = eventWaiters) & WAITER_ID_MASK)) == 0 ||
762     (int)(h >>> EVENT_COUNT_SHIFT) == ec) &&
763     eventCount == ec) {
764 dl 1.60 if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
765 dl 1.61 w.nextWaiter = h, nh)) {
766 dl 1.64 awaitEvent(w, ec);
767     break;
768     }
769     }
770     }
771    
772     /**
773     * Blocks the given worker (that has already been entered as an
774     * event waiter) until terminating or event count advances from
775     * the given value. The oldest (first) waiter uses a timed wait to
776     * occasionally one-by-one shrink the number of workers (to a
777 dl 1.66 * minimum of one) if the pool has not been used for extended
778 dl 1.64 * periods.
779     *
780     * @param w the calling worker thread
781     * @param ec the count
782     */
783     private void awaitEvent(ForkJoinWorkerThread w, int ec) {
784     while (eventCount == ec) {
785     if (tryAccumulateStealCount(w)) { // transfer while idle
786     boolean untimed = (w.nextWaiter != 0L ||
787     (workerCounts & RUNNING_COUNT_MASK) <= 1);
788     long startTime = untimed? 0 : System.nanoTime();
789     Thread.interrupted(); // clear/ignore interrupt
790 dl 1.66 if (eventCount != ec || w.runState != 0 ||
791 dl 1.64 runState >= TERMINATING) // recheck after clear
792     break;
793     if (untimed)
794     LockSupport.park(w);
795     else {
796     LockSupport.parkNanos(w, SHRINK_RATE_NANOS);
797 dl 1.66 if (eventCount != ec || w.runState != 0 ||
798 dl 1.64 runState >= TERMINATING)
799 dl 1.61 break;
800 dl 1.64 if (System.nanoTime() - startTime >= SHRINK_RATE_NANOS)
801 dl 1.66 tryShutdownUnusedWorker(ec);
802 dl 1.61 }
803 dl 1.53 }
804     }
805 dl 1.64 }
806    
807 dl 1.66 // Maintaining parallelism
808 dl 1.61
809     /**
810     * Pushes worker onto the spare stack
811     */
812     final void pushSpare(ForkJoinWorkerThread w) {
813 dl 1.64 int ns = (++w.spareCount << SPARE_COUNT_SHIFT) | (w.poolIndex + 1);
814 dl 1.61 do {} while (!UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
815     w.nextSpare = spareWaiters,ns));
816     }
817    
818     /**
819 dl 1.66 * Tries (once) to resume a spare if the number of running
820     * threads is less than target.
821 dl 1.61 */
822 dl 1.66 private void tryResumeSpare() {
823 dl 1.61 int sw, id;
824 dl 1.66 ForkJoinWorkerThread[] ws = workers;
825     int n = ws.length;
826 dl 1.61 ForkJoinWorkerThread w;
827 dl 1.66 if ((sw = spareWaiters) != 0 &&
828     (id = (sw & SPARE_ID_MASK) - 1) >= 0 &&
829     id < n && (w = ws[id]) != null &&
830     (workerCounts & RUNNING_COUNT_MASK) < parallelism &&
831     spareWaiters == sw &&
832 dl 1.61 UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
833 dl 1.64 sw, w.nextSpare)) {
834 dl 1.66 int c; // increment running count before resume
835 jsr166 1.69 do {} while (!UNSAFE.compareAndSwapInt
836     (this, workerCountsOffset,
837     c = workerCounts, c + ONE_RUNNING));
838 dl 1.66 if (w.tryUnsuspend())
839     LockSupport.unpark(w);
840     else // back out if w was shutdown
841     decrementWorkerCounts(ONE_RUNNING, 0);
842 dl 1.64 }
843     }
844    
845     /**
846 dl 1.66 * Tries to increase the number of running workers if below target
847     * parallelism: If a spare exists tries to resume it via
848     * tryResumeSpare. Otherwise, if not enough total workers or all
849 jsr166 1.67 * existing workers are busy, adds a new worker. In all cases also
850 dl 1.66 * helps wake up releasable workers waiting for work.
851 dl 1.64 */
852 dl 1.66 private void helpMaintainParallelism() {
853 dl 1.64 int pc = parallelism;
854 dl 1.66 int wc, rs, tc;
855     while (((wc = workerCounts) & RUNNING_COUNT_MASK) < pc &&
856     (rs = runState) < TERMINATING) {
857     if (spareWaiters != 0)
858     tryResumeSpare();
859     else if ((tc = wc >>> TOTAL_COUNT_SHIFT) >= MAX_WORKERS ||
860     (tc >= pc && (rs & ACTIVE_COUNT_MASK) != tc))
861     break; // enough total
862     else if (runState == rs && workerCounts == wc &&
863     UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
864     wc + (ONE_RUNNING|ONE_TOTAL))) {
865     ForkJoinWorkerThread w = null;
866     try {
867     w = factory.newThread(this);
868     } finally { // adjust on null or exceptional factory return
869     if (w == null) {
870     decrementWorkerCounts(ONE_RUNNING, ONE_TOTAL);
871     tryTerminate(false); // handle failure during shutdown
872     }
873     }
874     if (w == null)
875 dl 1.64 break;
876 dl 1.66 w.start(recordWorker(w), ueh);
877     if ((workerCounts >>> TOTAL_COUNT_SHIFT) >= pc) {
878     int c; // advance event count
879     UNSAFE.compareAndSwapInt(this, eventCountOffset,
880     c = eventCount, c+1);
881     break; // add at most one unless total below target
882     }
883 dl 1.64 }
884     }
885 dl 1.66 if (eventWaiters != 0L)
886     releaseEventWaiters();
887 dl 1.64 }
888    
889     /**
890 dl 1.66 * Callback from the oldest waiter in awaitEvent waking up after a
891     * period of non-use. If all workers are idle, tries (once) to
892     * shutdown an event waiter or a spare, if one exists. Note that
893     * we don't need CAS or locks here because the method is called
894     * only from one thread occasionally waking (and even misfires are
895     * OK). Note that until the shutdown worker fully terminates,
896     * workerCounts will overestimate total count, which is tolerable.
897 dl 1.64 *
898 dl 1.66 * @param ec the event count waited on by caller (to abort
899     * attempt if count has since changed).
900 dl 1.64 */
901 dl 1.66 private void tryShutdownUnusedWorker(int ec) {
902     if (runState == 0 && eventCount == ec) { // only trigger if all idle
903     ForkJoinWorkerThread[] ws = workers;
904     int n = ws.length;
905     ForkJoinWorkerThread w = null;
906     boolean shutdown = false;
907     int sw;
908     long h;
909     if ((sw = spareWaiters) != 0) { // prefer killing spares
910     int id = (sw & SPARE_ID_MASK) - 1;
911     if (id >= 0 && id < n && (w = ws[id]) != null &&
912     UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
913     sw, w.nextSpare))
914     shutdown = true;
915     }
916     else if ((h = eventWaiters) != 0L) {
917     long nh;
918     int id = ((int)(h & WAITER_ID_MASK)) - 1;
919     if (id >= 0 && id < n && (w = ws[id]) != null &&
920     (nh = w.nextWaiter) != 0L && // keep at least one worker
921     UNSAFE.compareAndSwapLong(this, eventWaitersOffset, h, nh))
922     shutdown = true;
923     }
924     if (w != null && shutdown) {
925     w.shutdown();
926     LockSupport.unpark(w);
927     }
928 dl 1.61 }
929 dl 1.66 releaseEventWaiters(); // in case of interference
930 dl 1.61 }
931    
932 dl 1.53 /**
933     * Callback from workers invoked upon each top-level action (i.e.,
934 dl 1.64 * stealing a task or taking a submission and running it).
935     * Performs one or more of the following:
936 dl 1.61 *
937 dl 1.66 * 1. If the worker is active and either did not run a task
938     * or there are too many workers, try to set its active status
939     * to inactive and update activeCount. On contention, we may
940     * try again in this or a subsequent call.
941     *
942     * 2. If not enough total workers, help create some.
943     *
944     * 3. If there are too many running workers, suspend this worker
945     * (first forcing inactive if necessary). If it is not needed,
946     * it may be shutdown while suspended (via
947     * tryShutdownUnusedWorker). Otherwise, upon resume it
948     * rechecks running thread count and need for event sync.
949     *
950     * 4. If worker did not run a task, await the next task event via
951     * eventSync if necessary (first forcing inactivation), upon
952     * which the worker may be shutdown via
953     * tryShutdownUnusedWorker. Otherwise, help release any
954     * existing event waiters that are now releasable,
955 dl 1.53 *
956     * @param w the worker
957 dl 1.66 * @param ran true if worker ran a task since last call to this method
958 dl 1.53 */
959 dl 1.66 final void preStep(ForkJoinWorkerThread w, boolean ran) {
960     int wec = w.lastEventCount;
961 dl 1.53 boolean active = w.active;
962 dl 1.66 boolean inactivate = false;
963 dl 1.61 int pc = parallelism;
964 dl 1.66 int rs;
965     while (w.runState == 0 && (rs = runState) < TERMINATING) {
966     if ((inactivate || (active && (rs & ACTIVE_COUNT_MASK) >= pc)) &&
967     UNSAFE.compareAndSwapInt(this, runStateOffset, rs, rs - 1))
968     inactivate = active = w.active = false;
969     int wc = workerCounts;
970     if ((wc & RUNNING_COUNT_MASK) > pc) {
971     if (!(inactivate |= active) && // must inactivate to suspend
972 dl 1.64 workerCounts == wc && // try to suspend as spare
973 dl 1.61 UNSAFE.compareAndSwapInt(this, workerCountsOffset,
974 dl 1.66 wc, wc - ONE_RUNNING))
975 dl 1.64 w.suspendAsSpare();
976 dl 1.61 }
977 dl 1.66 else if ((wc >>> TOTAL_COUNT_SHIFT) < pc)
978     helpMaintainParallelism(); // not enough workers
979     else if (!ran) {
980     long h = eventWaiters;
981     int ec = eventCount;
982     if (h != 0L && (int)(h >>> EVENT_COUNT_SHIFT) != ec)
983     releaseEventWaiters(); // release others before waiting
984     else if (ec != wec) {
985     w.lastEventCount = ec; // no need to wait
986     break;
987 dl 1.64 }
988 jsr166 1.68 else if (!(inactivate |= active))
989 dl 1.66 eventSync(w, wec); // must inactivate before sync
990 dl 1.53 }
991 dl 1.66 else
992     break;
993 dl 1.53 }
994     }
995    
996     /**
997 dl 1.61 * Helps and/or blocks awaiting join of the given task.
998 dl 1.66 * See above for explanation.
999 dl 1.56 *
1000     * @param joinMe the task to join
1001 dl 1.66 * @param worker the current worker thread
1002 dl 1.53 */
1003 dl 1.61 final void awaitJoin(ForkJoinTask<?> joinMe, ForkJoinWorkerThread worker) {
1004 dl 1.66 int retries = 2 + (parallelism >> 2); // #helpJoins before blocking
1005 dl 1.61 while (joinMe.status >= 0) {
1006 dl 1.66 int wc;
1007 dl 1.61 worker.helpJoinTask(joinMe);
1008     if (joinMe.status < 0)
1009     break;
1010 dl 1.66 else if (retries > 0)
1011     --retries;
1012     else if (((wc = workerCounts) & RUNNING_COUNT_MASK) != 0 &&
1013     UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1014     wc, wc - ONE_RUNNING)) {
1015     int stat, c; long h;
1016     while ((stat = joinMe.status) >= 0 &&
1017     (h = eventWaiters) != 0L && // help release others
1018     (int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1019     releaseEventWaiters();
1020     if (stat >= 0 &&
1021     ((workerCounts & RUNNING_COUNT_MASK) == 0 ||
1022     (stat =
1023     joinMe.internalAwaitDone(JOIN_TIMEOUT_MILLIS)) >= 0))
1024     helpMaintainParallelism(); // timeout or no running workers
1025 dl 1.61 do {} while (!UNSAFE.compareAndSwapInt
1026     (this, workerCountsOffset,
1027     c = workerCounts, c + ONE_RUNNING));
1028 dl 1.66 if (stat < 0)
1029     break; // else restart
1030 dl 1.53 }
1031     }
1032     }
1033    
1034     /**
1035 dl 1.66 * Same idea as awaitJoin, but no helping, retries, or timeouts.
1036 dl 1.53 */
1037 dl 1.57 final void awaitBlocker(ManagedBlocker blocker)
1038 dl 1.53 throws InterruptedException {
1039 dl 1.61 while (!blocker.isReleasable()) {
1040 dl 1.66 int wc = workerCounts;
1041     if ((wc & RUNNING_COUNT_MASK) != 0 &&
1042     UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1043     wc, wc - ONE_RUNNING)) {
1044 dl 1.61 try {
1045 dl 1.66 while (!blocker.isReleasable()) {
1046     long h = eventWaiters;
1047     if (h != 0L &&
1048     (int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1049     releaseEventWaiters();
1050     else if ((workerCounts & RUNNING_COUNT_MASK) == 0 &&
1051     runState < TERMINATING)
1052     helpMaintainParallelism();
1053     else if (blocker.block())
1054     break;
1055     }
1056 dl 1.61 } finally {
1057     int c;
1058     do {} while (!UNSAFE.compareAndSwapInt
1059     (this, workerCountsOffset,
1060     c = workerCounts, c + ONE_RUNNING));
1061 dl 1.58 }
1062 dl 1.60 break;
1063     }
1064 dl 1.53 }
1065 dl 1.59 }
1066 dl 1.54
1067     /**
1068 dl 1.53 * Possibly initiates and/or completes termination.
1069     *
1070     * @param now if true, unconditionally terminate, else only
1071     * if shutdown and empty queue and no active workers
1072     * @return true if now terminating or terminated
1073 dl 1.1 */
1074 dl 1.53 private boolean tryTerminate(boolean now) {
1075     if (now)
1076     advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
1077     else if (runState < SHUTDOWN ||
1078     !submissionQueue.isEmpty() ||
1079     (runState & ACTIVE_COUNT_MASK) != 0)
1080 dl 1.4 return false;
1081 dl 1.53
1082     if (advanceRunLevel(TERMINATING))
1083     startTerminating();
1084    
1085     // Finish now if all threads terminated; else in some subsequent call
1086     if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1087     advanceRunLevel(TERMINATED);
1088 dl 1.57 termination.arrive();
1089 dl 1.53 }
1090 dl 1.4 return true;
1091 dl 1.1 }
1092    
1093     /**
1094 dl 1.53 * Actions on transition to TERMINATING
1095 dl 1.61 *
1096     * Runs up to four passes through workers: (0) shutting down each
1097 dl 1.64 * (without waking up if parked) to quickly spread notifications
1098     * without unnecessary bouncing around event queues etc (1) wake
1099     * up and help cancel tasks (2) interrupt (3) mop up races with
1100     * interrupted workers
1101 dl 1.53 */
1102     private void startTerminating() {
1103 dl 1.61 cancelSubmissions();
1104     for (int passes = 0; passes < 4 && workerCounts != 0; ++passes) {
1105 dl 1.66 int c; // advance event count
1106     UNSAFE.compareAndSwapInt(this, eventCountOffset,
1107     c = eventCount, c+1);
1108 dl 1.61 eventWaiters = 0L; // clobber lists
1109     spareWaiters = 0;
1110     ForkJoinWorkerThread[] ws = workers;
1111     int n = ws.length;
1112     for (int i = 0; i < n; ++i) {
1113     ForkJoinWorkerThread w = ws[i];
1114     if (w != null) {
1115 dl 1.64 w.shutdown();
1116 dl 1.61 if (passes > 0 && !w.isTerminated()) {
1117     w.cancelTasks();
1118     LockSupport.unpark(w);
1119     if (passes > 1) {
1120     try {
1121     w.interrupt();
1122     } catch (SecurityException ignore) {
1123     }
1124     }
1125     }
1126     }
1127     }
1128 dl 1.56 }
1129     }
1130    
1131     /**
1132     * Clear out and cancel submissions, ignoring exceptions
1133     */
1134     private void cancelSubmissions() {
1135 dl 1.53 ForkJoinTask<?> task;
1136     while ((task = submissionQueue.poll()) != null) {
1137     try {
1138     task.cancel(false);
1139     } catch (Throwable ignore) {
1140     }
1141     }
1142 dl 1.56 }
1143    
1144 dl 1.53 // misc support for ForkJoinWorkerThread
1145    
1146     /**
1147     * Returns pool number
1148 dl 1.1 */
1149 dl 1.53 final int getPoolNumber() {
1150     return poolNumber;
1151 dl 1.1 }
1152    
1153     /**
1154 dl 1.61 * Tries to accumulates steal count from a worker, clearing
1155     * the worker's value.
1156     *
1157     * @return true if worker steal count now zero
1158 dl 1.1 */
1159 dl 1.61 final boolean tryAccumulateStealCount(ForkJoinWorkerThread w) {
1160 dl 1.53 int sc = w.stealCount;
1161 dl 1.61 long c = stealCount;
1162     // CAS even if zero, for fence effects
1163     if (UNSAFE.compareAndSwapLong(this, stealCountOffset, c, c + sc)) {
1164     if (sc != 0)
1165     w.stealCount = 0;
1166     return true;
1167 dl 1.1 }
1168 dl 1.61 return sc == 0;
1169 dl 1.1 }
1170    
1171     /**
1172 dl 1.53 * Returns the approximate (non-atomic) number of idle threads per
1173     * active thread.
1174     */
1175     final int idlePerActive() {
1176 dl 1.58 int pc = parallelism; // use parallelism, not rc
1177 jsr166 1.67 int ac = runState; // no mask -- artificially boosts during shutdown
1178 dl 1.53 // Use exact results for small values, saturate past 4
1179     return pc <= ac? 0 : pc >>> 1 <= ac? 1 : pc >>> 2 <= ac? 3 : pc >>> 3;
1180     }
1181    
1182     // Public and protected methods
1183 dl 1.1
1184     // Constructors
1185    
1186     /**
1187 dl 1.42 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1188 dl 1.57 * java.lang.Runtime#availableProcessors}, using the {@linkplain
1189     * #defaultForkJoinWorkerThreadFactory default thread factory},
1190     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1191 jsr166 1.17 *
1192 dl 1.1 * @throws SecurityException if a security manager exists and
1193     * the caller is not permitted to modify threads
1194     * because it does not hold {@link
1195 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1196 dl 1.1 */
1197     public ForkJoinPool() {
1198     this(Runtime.getRuntime().availableProcessors(),
1199 dl 1.57 defaultForkJoinWorkerThreadFactory, null, false);
1200 dl 1.1 }
1201    
1202     /**
1203 dl 1.42 * Creates a {@code ForkJoinPool} with the indicated parallelism
1204 dl 1.57 * level, the {@linkplain
1205     * #defaultForkJoinWorkerThreadFactory default thread factory},
1206     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1207 jsr166 1.17 *
1208 dl 1.42 * @param parallelism the parallelism level
1209 dl 1.1 * @throws IllegalArgumentException if parallelism less than or
1210 jsr166 1.47 * equal to zero, or greater than implementation limit
1211 dl 1.1 * @throws SecurityException if a security manager exists and
1212     * the caller is not permitted to modify threads
1213     * because it does not hold {@link
1214 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1215 dl 1.1 */
1216     public ForkJoinPool(int parallelism) {
1217 dl 1.57 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1218 dl 1.1 }
1219    
1220     /**
1221 dl 1.57 * Creates a {@code ForkJoinPool} with the given parameters.
1222 jsr166 1.17 *
1223 dl 1.57 * @param parallelism the parallelism level. For default value,
1224     * use {@link java.lang.Runtime#availableProcessors}.
1225     * @param factory the factory for creating new threads. For default value,
1226     * use {@link #defaultForkJoinWorkerThreadFactory}.
1227 dl 1.59 * @param handler the handler for internal worker threads that
1228     * terminate due to unrecoverable errors encountered while executing
1229 dl 1.57 * tasks. For default value, use <code>null</code>.
1230 dl 1.59 * @param asyncMode if true,
1231 dl 1.57 * establishes local first-in-first-out scheduling mode for forked
1232     * tasks that are never joined. This mode may be more appropriate
1233     * than default locally stack-based mode in applications in which
1234     * worker threads only process event-style asynchronous tasks.
1235     * For default value, use <code>false</code>.
1236 dl 1.1 * @throws IllegalArgumentException if parallelism less than or
1237 jsr166 1.47 * equal to zero, or greater than implementation limit
1238 jsr166 1.48 * @throws NullPointerException if the factory is null
1239 dl 1.1 * @throws SecurityException if a security manager exists and
1240     * the caller is not permitted to modify threads
1241     * because it does not hold {@link
1242 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1243 dl 1.1 */
1244 dl 1.59 public ForkJoinPool(int parallelism,
1245 dl 1.57 ForkJoinWorkerThreadFactory factory,
1246     Thread.UncaughtExceptionHandler handler,
1247     boolean asyncMode) {
1248 dl 1.53 checkPermission();
1249     if (factory == null)
1250     throw new NullPointerException();
1251 dl 1.61 if (parallelism <= 0 || parallelism > MAX_WORKERS)
1252 dl 1.1 throw new IllegalArgumentException();
1253 dl 1.53 this.parallelism = parallelism;
1254 dl 1.1 this.factory = factory;
1255 dl 1.57 this.ueh = handler;
1256     this.locallyFifo = asyncMode;
1257     int arraySize = initialArraySizeFor(parallelism);
1258 dl 1.53 this.workers = new ForkJoinWorkerThread[arraySize];
1259     this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
1260 dl 1.1 this.workerLock = new ReentrantLock();
1261 dl 1.57 this.termination = new Phaser(1);
1262     this.poolNumber = poolNumberGenerator.incrementAndGet();
1263 dl 1.1 }
1264    
1265     /**
1266 dl 1.53 * Returns initial power of two size for workers array.
1267     * @param pc the initial parallelism level
1268     */
1269     private static int initialArraySizeFor(int pc) {
1270 dl 1.66 // If possible, initially allocate enough space for one spare
1271     int size = pc < MAX_WORKERS ? pc + 1 : MAX_WORKERS;
1272 dl 1.61 // See Hackers Delight, sec 3.2. We know MAX_WORKERS < (1 >>> 16)
1273 dl 1.53 size |= size >>> 1;
1274     size |= size >>> 2;
1275     size |= size >>> 4;
1276     size |= size >>> 8;
1277     return size + 1;
1278 dl 1.1 }
1279    
1280     // Execution methods
1281    
1282     /**
1283     * Common code for execute, invoke and submit
1284     */
1285     private <T> void doSubmit(ForkJoinTask<T> task) {
1286 dl 1.23 if (task == null)
1287     throw new NullPointerException();
1288 dl 1.53 if (runState >= SHUTDOWN)
1289 dl 1.1 throw new RejectedExecutionException();
1290 dl 1.58 submissionQueue.offer(task);
1291 dl 1.66 int c; // try to increment event count -- CAS failure OK
1292     UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
1293     helpMaintainParallelism(); // create, start, or resume some workers
1294 dl 1.1 }
1295    
1296     /**
1297 jsr166 1.17 * Performs the given task, returning its result upon completion.
1298     *
1299 dl 1.1 * @param task the task
1300     * @return the task's result
1301 jsr166 1.48 * @throws NullPointerException if the task is null
1302     * @throws RejectedExecutionException if the task cannot be
1303     * scheduled for execution
1304 dl 1.1 */
1305     public <T> T invoke(ForkJoinTask<T> task) {
1306     doSubmit(task);
1307     return task.join();
1308     }
1309    
1310     /**
1311     * Arranges for (asynchronous) execution of the given task.
1312 jsr166 1.17 *
1313 dl 1.1 * @param task the task
1314 jsr166 1.48 * @throws NullPointerException if the task is null
1315     * @throws RejectedExecutionException if the task cannot be
1316     * scheduled for execution
1317 dl 1.1 */
1318 dl 1.37 public void execute(ForkJoinTask<?> task) {
1319 dl 1.1 doSubmit(task);
1320     }
1321    
1322     // AbstractExecutorService methods
1323    
1324 jsr166 1.48 /**
1325     * @throws NullPointerException if the task is null
1326     * @throws RejectedExecutionException if the task cannot be
1327     * scheduled for execution
1328     */
1329 dl 1.1 public void execute(Runnable task) {
1330 dl 1.23 ForkJoinTask<?> job;
1331 jsr166 1.26 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1332     job = (ForkJoinTask<?>) task;
1333 dl 1.23 else
1334 dl 1.33 job = ForkJoinTask.adapt(task, null);
1335 dl 1.23 doSubmit(job);
1336 dl 1.1 }
1337    
1338 jsr166 1.48 /**
1339 dl 1.57 * Submits a ForkJoinTask for execution.
1340     *
1341     * @param task the task to submit
1342     * @return the task
1343     * @throws NullPointerException if the task is null
1344     * @throws RejectedExecutionException if the task cannot be
1345     * scheduled for execution
1346     */
1347     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1348     doSubmit(task);
1349     return task;
1350     }
1351    
1352     /**
1353 jsr166 1.48 * @throws NullPointerException if the task is null
1354     * @throws RejectedExecutionException if the task cannot be
1355     * scheduled for execution
1356     */
1357 dl 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
1358 dl 1.33 ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1359 dl 1.1 doSubmit(job);
1360     return job;
1361     }
1362    
1363 jsr166 1.48 /**
1364     * @throws NullPointerException if the task is null
1365     * @throws RejectedExecutionException if the task cannot be
1366     * scheduled for execution
1367     */
1368 dl 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
1369 dl 1.33 ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1370 dl 1.1 doSubmit(job);
1371     return job;
1372     }
1373    
1374 jsr166 1.48 /**
1375     * @throws NullPointerException if the task is null
1376     * @throws RejectedExecutionException if the task cannot be
1377     * scheduled for execution
1378     */
1379 dl 1.1 public ForkJoinTask<?> submit(Runnable task) {
1380 dl 1.23 ForkJoinTask<?> job;
1381 jsr166 1.26 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1382     job = (ForkJoinTask<?>) task;
1383 dl 1.23 else
1384 dl 1.33 job = ForkJoinTask.adapt(task, null);
1385 dl 1.1 doSubmit(job);
1386     return job;
1387     }
1388    
1389     /**
1390 jsr166 1.48 * @throws NullPointerException {@inheritDoc}
1391     * @throws RejectedExecutionException {@inheritDoc}
1392     */
1393 dl 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
1394 jsr166 1.20 ArrayList<ForkJoinTask<T>> forkJoinTasks =
1395 dl 1.1 new ArrayList<ForkJoinTask<T>>(tasks.size());
1396 jsr166 1.20 for (Callable<T> task : tasks)
1397 dl 1.33 forkJoinTasks.add(ForkJoinTask.adapt(task));
1398 jsr166 1.20 invoke(new InvokeAll<T>(forkJoinTasks));
1399    
1400     @SuppressWarnings({"unchecked", "rawtypes"})
1401 dl 1.54 List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1402 jsr166 1.20 return futures;
1403 dl 1.1 }
1404    
1405     static final class InvokeAll<T> extends RecursiveAction {
1406     final ArrayList<ForkJoinTask<T>> tasks;
1407     InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
1408     public void compute() {
1409 jsr166 1.17 try { invokeAll(tasks); }
1410     catch (Exception ignore) {}
1411 dl 1.1 }
1412 jsr166 1.18 private static final long serialVersionUID = -7914297376763021607L;
1413 dl 1.1 }
1414    
1415     /**
1416 jsr166 1.17 * Returns the factory used for constructing new workers.
1417 dl 1.1 *
1418     * @return the factory used for constructing new workers
1419     */
1420     public ForkJoinWorkerThreadFactory getFactory() {
1421     return factory;
1422     }
1423    
1424     /**
1425 dl 1.2 * Returns the handler for internal worker threads that terminate
1426     * due to unrecoverable errors encountered while executing tasks.
1427 jsr166 1.17 *
1428 jsr166 1.28 * @return the handler, or {@code null} if none
1429 dl 1.2 */
1430     public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1431 dl 1.53 return ueh;
1432 dl 1.2 }
1433    
1434     /**
1435 dl 1.42 * Returns the targeted parallelism level of this pool.
1436 dl 1.1 *
1437 dl 1.42 * @return the targeted parallelism level of this pool
1438 dl 1.1 */
1439     public int getParallelism() {
1440     return parallelism;
1441     }
1442    
1443     /**
1444     * Returns the number of worker threads that have started but not
1445     * yet terminated. This result returned by this method may differ
1446 jsr166 1.29 * from {@link #getParallelism} when threads are created to
1447 dl 1.1 * maintain parallelism when others are cooperatively blocked.
1448     *
1449     * @return the number of worker threads
1450     */
1451     public int getPoolSize() {
1452 dl 1.53 return workerCounts >>> TOTAL_COUNT_SHIFT;
1453 dl 1.1 }
1454    
1455     /**
1456 jsr166 1.28 * Returns {@code true} if this pool uses local first-in-first-out
1457 jsr166 1.16 * scheduling mode for forked tasks that are never joined.
1458 dl 1.6 *
1459 jsr166 1.28 * @return {@code true} if this pool uses async mode
1460 dl 1.6 */
1461     public boolean getAsyncMode() {
1462     return locallyFifo;
1463     }
1464    
1465     /**
1466 dl 1.2 * Returns an estimate of the number of worker threads that are
1467     * not blocked waiting to join tasks or for other managed
1468 dl 1.53 * synchronization. This method may overestimate the
1469     * number of running threads.
1470 dl 1.1 *
1471     * @return the number of worker threads
1472     */
1473     public int getRunningThreadCount() {
1474 dl 1.53 return workerCounts & RUNNING_COUNT_MASK;
1475 dl 1.1 }
1476    
1477     /**
1478 dl 1.2 * Returns an estimate of the number of threads that are currently
1479 dl 1.1 * stealing or executing tasks. This method may overestimate the
1480     * number of active threads.
1481 jsr166 1.17 *
1482 jsr166 1.16 * @return the number of active threads
1483 dl 1.1 */
1484     public int getActiveThreadCount() {
1485 dl 1.53 return runState & ACTIVE_COUNT_MASK;
1486 dl 1.1 }
1487    
1488     /**
1489 jsr166 1.28 * Returns {@code true} if all worker threads are currently idle.
1490     * An idle worker is one that cannot obtain a task to execute
1491     * because none are available to steal from other threads, and
1492     * there are no pending submissions to the pool. This method is
1493     * conservative; it might not return {@code true} immediately upon
1494     * idleness of all threads, but will eventually become true if
1495     * threads remain inactive.
1496 jsr166 1.17 *
1497 jsr166 1.28 * @return {@code true} if all threads are currently idle
1498 dl 1.1 */
1499     public boolean isQuiescent() {
1500 dl 1.53 return (runState & ACTIVE_COUNT_MASK) == 0;
1501 dl 1.1 }
1502    
1503     /**
1504     * Returns an estimate of the total number of tasks stolen from
1505     * one thread's work queue by another. The reported value
1506     * underestimates the actual total number of steals when the pool
1507     * is not quiescent. This value may be useful for monitoring and
1508 jsr166 1.17 * tuning fork/join programs: in general, steal counts should be
1509 dl 1.1 * high enough to keep threads busy, but low enough to avoid
1510     * overhead and contention across threads.
1511 jsr166 1.17 *
1512 jsr166 1.16 * @return the number of steals
1513 dl 1.1 */
1514     public long getStealCount() {
1515 dl 1.53 return stealCount;
1516 dl 1.1 }
1517    
1518     /**
1519 dl 1.2 * Returns an estimate of the total number of tasks currently held
1520     * in queues by worker threads (but not including tasks submitted
1521     * to the pool that have not begun executing). This value is only
1522     * an approximation, obtained by iterating across all threads in
1523     * the pool. This method may be useful for tuning task
1524     * granularities.
1525 jsr166 1.17 *
1526 jsr166 1.16 * @return the number of queued tasks
1527 dl 1.1 */
1528     public long getQueuedTaskCount() {
1529     long count = 0;
1530 dl 1.56 ForkJoinWorkerThread[] ws = workers;
1531 dl 1.61 int n = ws.length;
1532     for (int i = 0; i < n; ++i) {
1533 dl 1.56 ForkJoinWorkerThread w = ws[i];
1534 dl 1.53 if (w != null)
1535     count += w.getQueueSize();
1536 dl 1.1 }
1537     return count;
1538     }
1539    
1540     /**
1541 jsr166 1.40 * Returns an estimate of the number of tasks submitted to this
1542     * pool that have not yet begun executing. This method takes time
1543 dl 1.1 * proportional to the number of submissions.
1544 jsr166 1.17 *
1545 jsr166 1.16 * @return the number of queued submissions
1546 dl 1.1 */
1547     public int getQueuedSubmissionCount() {
1548     return submissionQueue.size();
1549     }
1550    
1551     /**
1552 jsr166 1.28 * Returns {@code true} if there are any tasks submitted to this
1553     * pool that have not yet begun executing.
1554 jsr166 1.17 *
1555 jsr166 1.16 * @return {@code true} if there are any queued submissions
1556 dl 1.1 */
1557     public boolean hasQueuedSubmissions() {
1558     return !submissionQueue.isEmpty();
1559     }
1560    
1561     /**
1562     * Removes and returns the next unexecuted submission if one is
1563     * available. This method may be useful in extensions to this
1564     * class that re-assign work in systems with multiple pools.
1565 jsr166 1.17 *
1566 jsr166 1.28 * @return the next submission, or {@code null} if none
1567 dl 1.1 */
1568     protected ForkJoinTask<?> pollSubmission() {
1569     return submissionQueue.poll();
1570     }
1571    
1572     /**
1573 dl 1.6 * Removes all available unexecuted submitted and forked tasks
1574     * from scheduling queues and adds them to the given collection,
1575     * without altering their execution status. These may include
1576 jsr166 1.41 * artificially generated or wrapped tasks. This method is
1577     * designed to be invoked only when the pool is known to be
1578 dl 1.6 * quiescent. Invocations at other times may not remove all
1579     * tasks. A failure encountered while attempting to add elements
1580 jsr166 1.16 * to collection {@code c} may result in elements being in
1581 dl 1.6 * neither, either or both collections when the associated
1582     * exception is thrown. The behavior of this operation is
1583     * undefined if the specified collection is modified while the
1584     * operation is in progress.
1585 jsr166 1.17 *
1586 dl 1.6 * @param c the collection to transfer elements into
1587     * @return the number of elements transferred
1588     */
1589 dl 1.30 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1590 dl 1.61 int count = submissionQueue.drainTo(c);
1591 dl 1.57 ForkJoinWorkerThread[] ws = workers;
1592 dl 1.61 int n = ws.length;
1593     for (int i = 0; i < n; ++i) {
1594 dl 1.57 ForkJoinWorkerThread w = ws[i];
1595     if (w != null)
1596 dl 1.61 count += w.drainTasksTo(c);
1597 dl 1.57 }
1598     return count;
1599     }
1600    
1601     /**
1602 dl 1.1 * Returns a string identifying this pool, as well as its state,
1603     * including indications of run state, parallelism level, and
1604     * worker and task counts.
1605     *
1606     * @return a string identifying this pool, as well as its state
1607     */
1608     public String toString() {
1609     long st = getStealCount();
1610     long qt = getQueuedTaskCount();
1611     long qs = getQueuedSubmissionCount();
1612 dl 1.53 int wc = workerCounts;
1613     int tc = wc >>> TOTAL_COUNT_SHIFT;
1614     int rc = wc & RUNNING_COUNT_MASK;
1615     int pc = parallelism;
1616     int rs = runState;
1617     int ac = rs & ACTIVE_COUNT_MASK;
1618 dl 1.1 return super.toString() +
1619 dl 1.53 "[" + runLevelToString(rs) +
1620     ", parallelism = " + pc +
1621     ", size = " + tc +
1622     ", active = " + ac +
1623     ", running = " + rc +
1624 dl 1.1 ", steals = " + st +
1625     ", tasks = " + qt +
1626     ", submissions = " + qs +
1627     "]";
1628     }
1629    
1630 dl 1.53 private static String runLevelToString(int s) {
1631     return ((s & TERMINATED) != 0 ? "Terminated" :
1632     ((s & TERMINATING) != 0 ? "Terminating" :
1633     ((s & SHUTDOWN) != 0 ? "Shutting down" :
1634     "Running")));
1635 dl 1.1 }
1636    
1637     /**
1638     * Initiates an orderly shutdown in which previously submitted
1639     * tasks are executed, but no new tasks will be accepted.
1640     * Invocation has no additional effect if already shut down.
1641     * Tasks that are in the process of being submitted concurrently
1642     * during the course of this method may or may not be rejected.
1643 jsr166 1.17 *
1644 dl 1.1 * @throws SecurityException if a security manager exists and
1645     * the caller is not permitted to modify threads
1646     * because it does not hold {@link
1647 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1648 dl 1.1 */
1649     public void shutdown() {
1650     checkPermission();
1651 dl 1.53 advanceRunLevel(SHUTDOWN);
1652     tryTerminate(false);
1653 dl 1.1 }
1654    
1655     /**
1656 dl 1.42 * Attempts to cancel and/or stop all tasks, and reject all
1657     * subsequently submitted tasks. Tasks that are in the process of
1658     * being submitted or executed concurrently during the course of
1659     * this method may or may not be rejected. This method cancels
1660     * both existing and unexecuted tasks, in order to permit
1661     * termination in the presence of task dependencies. So the method
1662     * always returns an empty list (unlike the case for some other
1663     * Executors).
1664 jsr166 1.17 *
1665 dl 1.1 * @return an empty list
1666     * @throws SecurityException if a security manager exists and
1667     * the caller is not permitted to modify threads
1668     * because it does not hold {@link
1669 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1670 dl 1.1 */
1671     public List<Runnable> shutdownNow() {
1672     checkPermission();
1673 dl 1.53 tryTerminate(true);
1674 dl 1.1 return Collections.emptyList();
1675     }
1676    
1677     /**
1678 jsr166 1.16 * Returns {@code true} if all tasks have completed following shut down.
1679 dl 1.1 *
1680 jsr166 1.16 * @return {@code true} if all tasks have completed following shut down
1681 dl 1.1 */
1682     public boolean isTerminated() {
1683 dl 1.53 return runState >= TERMINATED;
1684 dl 1.1 }
1685    
1686     /**
1687 jsr166 1.16 * Returns {@code true} if the process of termination has
1688 dl 1.42 * commenced but not yet completed. This method may be useful for
1689     * debugging. A return of {@code true} reported a sufficient
1690     * period after shutdown may indicate that submitted tasks have
1691     * ignored or suppressed interruption, causing this executor not
1692     * to properly terminate.
1693 dl 1.1 *
1694 dl 1.42 * @return {@code true} if terminating but not yet terminated
1695 dl 1.1 */
1696     public boolean isTerminating() {
1697 dl 1.53 return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
1698 dl 1.1 }
1699    
1700     /**
1701 jsr166 1.16 * Returns {@code true} if this pool has been shut down.
1702 dl 1.1 *
1703 jsr166 1.16 * @return {@code true} if this pool has been shut down
1704 dl 1.1 */
1705     public boolean isShutdown() {
1706 dl 1.53 return runState >= SHUTDOWN;
1707 dl 1.42 }
1708    
1709     /**
1710 dl 1.1 * Blocks until all tasks have completed execution after a shutdown
1711     * request, or the timeout occurs, or the current thread is
1712     * interrupted, whichever happens first.
1713     *
1714     * @param timeout the maximum time to wait
1715     * @param unit the time unit of the timeout argument
1716 jsr166 1.16 * @return {@code true} if this executor terminated and
1717     * {@code false} if the timeout elapsed before termination
1718 dl 1.1 * @throws InterruptedException if interrupted while waiting
1719     */
1720     public boolean awaitTermination(long timeout, TimeUnit unit)
1721     throws InterruptedException {
1722 dl 1.57 try {
1723     return termination.awaitAdvanceInterruptibly(0, timeout, unit) > 0;
1724 jsr166 1.69 } catch (TimeoutException ex) {
1725 dl 1.57 return false;
1726     }
1727 dl 1.1 }
1728    
1729     /**
1730     * Interface for extending managed parallelism for tasks running
1731 jsr166 1.35 * in {@link ForkJoinPool}s.
1732     *
1733 dl 1.61 * <p>A {@code ManagedBlocker} provides two methods. Method
1734     * {@code isReleasable} must return {@code true} if blocking is
1735     * not necessary. Method {@code block} blocks the current thread
1736     * if necessary (perhaps internally invoking {@code isReleasable}
1737     * before actually blocking). The unusual methods in this API
1738     * accommodate synchronizers that may, but don't usually, block
1739     * for long periods. Similarly, they allow more efficient internal
1740     * handling of cases in which additional workers may be, but
1741     * usually are not, needed to ensure sufficient parallelism.
1742     * Toward this end, implementations of method {@code isReleasable}
1743     * must be amenable to repeated invocation.
1744 jsr166 1.17 *
1745 dl 1.1 * <p>For example, here is a ManagedBlocker based on a
1746     * ReentrantLock:
1747 jsr166 1.17 * <pre> {@code
1748     * class ManagedLocker implements ManagedBlocker {
1749     * final ReentrantLock lock;
1750     * boolean hasLock = false;
1751     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1752     * public boolean block() {
1753     * if (!hasLock)
1754     * lock.lock();
1755     * return true;
1756     * }
1757     * public boolean isReleasable() {
1758     * return hasLock || (hasLock = lock.tryLock());
1759 dl 1.1 * }
1760 jsr166 1.17 * }}</pre>
1761 dl 1.61 *
1762     * <p>Here is a class that possibly blocks waiting for an
1763     * item on a given queue:
1764     * <pre> {@code
1765     * class QueueTaker<E> implements ManagedBlocker {
1766     * final BlockingQueue<E> queue;
1767     * volatile E item = null;
1768     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
1769     * public boolean block() throws InterruptedException {
1770     * if (item == null)
1771 dl 1.65 * item = queue.take();
1772 dl 1.61 * return true;
1773     * }
1774     * public boolean isReleasable() {
1775 dl 1.65 * return item != null || (item = queue.poll()) != null;
1776 dl 1.61 * }
1777     * public E getItem() { // call after pool.managedBlock completes
1778     * return item;
1779     * }
1780     * }}</pre>
1781 dl 1.1 */
1782     public static interface ManagedBlocker {
1783     /**
1784     * Possibly blocks the current thread, for example waiting for
1785     * a lock or condition.
1786 jsr166 1.17 *
1787 jsr166 1.28 * @return {@code true} if no additional blocking is necessary
1788     * (i.e., if isReleasable would return true)
1789 dl 1.1 * @throws InterruptedException if interrupted while waiting
1790 jsr166 1.17 * (the method is not required to do so, but is allowed to)
1791 dl 1.1 */
1792     boolean block() throws InterruptedException;
1793    
1794     /**
1795 jsr166 1.28 * Returns {@code true} if blocking is unnecessary.
1796 dl 1.1 */
1797     boolean isReleasable();
1798     }
1799    
1800     /**
1801     * Blocks in accord with the given blocker. If the current thread
1802 jsr166 1.38 * is a {@link ForkJoinWorkerThread}, this method possibly
1803     * arranges for a spare thread to be activated if necessary to
1804 dl 1.57 * ensure sufficient parallelism while the current thread is blocked.
1805 jsr166 1.38 *
1806     * <p>If the caller is not a {@link ForkJoinTask}, this method is
1807     * behaviorally equivalent to
1808 jsr166 1.17 * <pre> {@code
1809     * while (!blocker.isReleasable())
1810     * if (blocker.block())
1811     * return;
1812     * }</pre>
1813 jsr166 1.38 *
1814     * If the caller is a {@code ForkJoinTask}, then the pool may
1815     * first be expanded to ensure parallelism, and later adjusted.
1816 dl 1.1 *
1817     * @param blocker the blocker
1818 jsr166 1.16 * @throws InterruptedException if blocker.block did so
1819 dl 1.1 */
1820 dl 1.57 public static void managedBlock(ManagedBlocker blocker)
1821 dl 1.1 throws InterruptedException {
1822     Thread t = Thread.currentThread();
1823 dl 1.61 if (t instanceof ForkJoinWorkerThread) {
1824     ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
1825     w.pool.awaitBlocker(blocker);
1826     }
1827 dl 1.57 else {
1828     do {} while (!blocker.isReleasable() && !blocker.block());
1829     }
1830 dl 1.1 }
1831    
1832 dl 1.33 // AbstractExecutorService overrides. These rely on undocumented
1833     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
1834     // implement RunnableFuture.
1835 dl 1.2
1836     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
1837 jsr166 1.34 return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
1838 dl 1.2 }
1839    
1840     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
1841 jsr166 1.34 return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
1842 dl 1.2 }
1843    
1844 jsr166 1.27 // Unsafe mechanics
1845 dl 1.1
1846 jsr166 1.21 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1847 dl 1.53 private static final long workerCountsOffset =
1848     objectFieldOffset("workerCounts", ForkJoinPool.class);
1849     private static final long runStateOffset =
1850     objectFieldOffset("runState", ForkJoinPool.class);
1851 jsr166 1.25 private static final long eventCountOffset =
1852 jsr166 1.27 objectFieldOffset("eventCount", ForkJoinPool.class);
1853 dl 1.53 private static final long eventWaitersOffset =
1854     objectFieldOffset("eventWaiters",ForkJoinPool.class);
1855     private static final long stealCountOffset =
1856     objectFieldOffset("stealCount",ForkJoinPool.class);
1857 dl 1.61 private static final long spareWaitersOffset =
1858     objectFieldOffset("spareWaiters",ForkJoinPool.class);
1859 dl 1.53
1860 jsr166 1.27 private static long objectFieldOffset(String field, Class<?> klazz) {
1861     try {
1862     return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1863     } catch (NoSuchFieldException e) {
1864     // Convert Exception to corresponding Error
1865     NoSuchFieldError error = new NoSuchFieldError(field);
1866     error.initCause(e);
1867     throw error;
1868     }
1869     }
1870    
1871     /**
1872     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1873     * Replace with a simple call to Unsafe.getUnsafe when integrating
1874     * into a jdk.
1875     *
1876     * @return a sun.misc.Unsafe
1877     */
1878     private static sun.misc.Unsafe getUnsafe() {
1879     try {
1880     return sun.misc.Unsafe.getUnsafe();
1881     } catch (SecurityException se) {
1882     try {
1883     return java.security.AccessController.doPrivileged
1884     (new java.security
1885     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1886     public sun.misc.Unsafe run() throws Exception {
1887     java.lang.reflect.Field f = sun.misc
1888     .Unsafe.class.getDeclaredField("theUnsafe");
1889     f.setAccessible(true);
1890     return (sun.misc.Unsafe) f.get(null);
1891     }});
1892     } catch (java.security.PrivilegedActionException e) {
1893     throw new RuntimeException("Could not initialize intrinsics",
1894     e.getCause());
1895     }
1896     }
1897     }
1898 dl 1.1 }