ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
Revision: 1.78
Committed: Tue Sep 7 14:52:24 2010 UTC (13 years, 8 months ago) by dl
Branch: MAIN
Changes since 1.77: +10 -2 lines
Log Message:
Make all imports explicit

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package jsr166y;
8 jsr166 1.22
9     import java.util.ArrayList;
10     import java.util.Arrays;
11     import java.util.Collection;
12     import java.util.Collections;
13     import java.util.List;
14 dl 1.78 import java.util.concurrent.AbstractExecutorService;
15     import java.util.concurrent.Callable;
16     import java.util.concurrent.CountDownLatch;
17     import java.util.concurrent.ExecutorService;
18     import java.util.concurrent.Future;
19     import java.util.concurrent.RejectedExecutionException;
20     import java.util.concurrent.RunnableFuture;
21     import java.util.concurrent.TimeUnit;
22     import java.util.concurrent.TimeoutException;
23     import java.util.concurrent.atomic.AtomicInteger;
24 jsr166 1.22 import java.util.concurrent.locks.LockSupport;
25     import java.util.concurrent.locks.ReentrantLock;
26 dl 1.1
27     /**
28 jsr166 1.29 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
29 jsr166 1.39 * A {@code ForkJoinPool} provides the entry point for submissions
30 dl 1.57 * from non-{@code ForkJoinTask} clients, as well as management and
31 jsr166 1.48 * monitoring operations.
32 dl 1.1 *
33 dl 1.42 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
34     * ExecutorService} mainly by virtue of employing
35     * <em>work-stealing</em>: all threads in the pool attempt to find and
36     * execute subtasks created by other active tasks (eventually blocking
37     * waiting for work if none exist). This enables efficient processing
38     * when most tasks spawn other subtasks (as do most {@code
39 dl 1.57 * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
40     * constructors, {@code ForkJoinPool}s may also be appropriate for use
41     * with event-style tasks that are never joined.
42 dl 1.1 *
43 dl 1.42 * <p>A {@code ForkJoinPool} is constructed with a given target
44     * parallelism level; by default, equal to the number of available
45 dl 1.57 * processors. The pool attempts to maintain enough active (or
46     * available) threads by dynamically adding, suspending, or resuming
47     * internal worker threads, even if some tasks are stalled waiting to
48     * join others. However, no such adjustments are guaranteed in the
49     * face of blocked IO or other unmanaged synchronization. The nested
50     * {@link ManagedBlocker} interface enables extension of the kinds of
51     * synchronization accommodated.
52 dl 1.1 *
53     * <p>In addition to execution and lifecycle control methods, this
54     * class provides status check methods (for example
55 jsr166 1.29 * {@link #getStealCount}) that are intended to aid in developing,
56 dl 1.1 * tuning, and monitoring fork/join applications. Also, method
57 jsr166 1.29 * {@link #toString} returns indications of pool state in a
58 dl 1.2 * convenient form for informal monitoring.
59 dl 1.1 *
60 dl 1.57 * <p> As is the case with other ExecutorServices, there are three
61 dl 1.60 * main task execution methods summarized in the following
62 dl 1.57 * table. These are designed to be used by clients not already engaged
63     * in fork/join computations in the current pool. The main forms of
64     * these methods accept instances of {@code ForkJoinTask}, but
65     * overloaded forms also allow mixed execution of plain {@code
66     * Runnable}- or {@code Callable}- based activities as well. However,
67     * tasks that are already executing in a pool should normally
68     * <em>NOT</em> use these pool execution methods, but instead use the
69 dl 1.59 * within-computation forms listed in the table.
70 dl 1.57 *
71     * <table BORDER CELLPADDING=3 CELLSPACING=1>
72     * <tr>
73     * <td></td>
74     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
75     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
76     * </tr>
77     * <tr>
78 jsr166 1.67 * <td> <b>Arrange async execution</td>
79 dl 1.57 * <td> {@link #execute(ForkJoinTask)}</td>
80     * <td> {@link ForkJoinTask#fork}</td>
81     * </tr>
82     * <tr>
83     * <td> <b>Await and obtain result</td>
84     * <td> {@link #invoke(ForkJoinTask)}</td>
85     * <td> {@link ForkJoinTask#invoke}</td>
86     * </tr>
87     * <tr>
88     * <td> <b>Arrange exec and obtain Future</td>
89     * <td> {@link #submit(ForkJoinTask)}</td>
90     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
91     * </tr>
92     * </table>
93 dl 1.59 *
94 dl 1.42 * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
95     * used for all parallel task execution in a program or subsystem.
96     * Otherwise, use would not usually outweigh the construction and
97     * bookkeeping overhead of creating a large set of threads. For
98 jsr166 1.43 * example, a common pool could be used for the {@code SortTasks}
99 dl 1.42 * illustrated in {@link RecursiveAction}. Because {@code
100     * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
101 jsr166 1.43 * daemon} mode, there is typically no need to explicitly {@link
102 dl 1.42 * #shutdown} such a pool upon program exit.
103     *
104     * <pre>
105     * static final ForkJoinPool mainPool = new ForkJoinPool();
106     * ...
107     * public void sort(long[] array) {
108     * mainPool.invoke(new SortTask(array, 0, array.length));
109     * }
110     * </pre>
111     *
112 dl 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
113 dl 1.2 * maximum number of running threads to 32767. Attempts to create
114 jsr166 1.48 * pools with greater than the maximum number result in
115 jsr166 1.39 * {@code IllegalArgumentException}.
116 jsr166 1.16 *
117 jsr166 1.48 * <p>This implementation rejects submitted tasks (that is, by throwing
118 dl 1.58 * {@link RejectedExecutionException}) only when the pool is shut down
119 dl 1.62 * or internal resources have been exhausted.
120 jsr166 1.48 *
121 jsr166 1.16 * @since 1.7
122     * @author Doug Lea
123 dl 1.1 */
124 dl 1.2 public class ForkJoinPool extends AbstractExecutorService {
125 dl 1.1
126     /*
127 dl 1.53 * Implementation Overview
128     *
129     * This class provides the central bookkeeping and control for a
130     * set of worker threads: Submissions from non-FJ threads enter
131     * into a submission queue. Workers take these tasks and typically
132     * split them into subtasks that may be stolen by other workers.
133     * The main work-stealing mechanics implemented in class
134     * ForkJoinWorkerThread give first priority to processing tasks
135     * from their own queues (LIFO or FIFO, depending on mode), then
136     * to randomized FIFO steals of tasks in other worker queues, and
137     * lastly to new submissions. These mechanics do not consider
138     * affinities, loads, cache localities, etc, so rarely provide the
139     * best possible performance on a given machine, but portably
140     * provide good throughput by averaging over these factors.
141     * (Further, even if we did try to use such information, we do not
142     * usually have a basis for exploiting it. For example, some sets
143     * of tasks profit from cache affinities, but others are harmed by
144     * cache pollution effects.)
145     *
146 dl 1.58 * Beyond work-stealing support and essential bookkeeping, the
147 dl 1.60 * main responsibility of this framework is to take actions when
148     * one worker is waiting to join a task stolen (or always held by)
149 jsr166 1.67 * another. Because we are multiplexing many tasks on to a pool
150 dl 1.60 * of workers, we can't just let them block (as in Thread.join).
151     * We also cannot just reassign the joiner's run-time stack with
152     * another and replace it later, which would be a form of
153     * "continuation", that even if possible is not necessarily a good
154     * idea. Given that the creation costs of most threads on most
155     * systems mainly surrounds setting up runtime stacks, thread
156     * creation and switching is usually not much more expensive than
157     * stack creation and switching, and is more flexible). Instead we
158     * combine two tactics:
159 dl 1.58 *
160 dl 1.60 * Helping: Arranging for the joiner to execute some task that it
161 dl 1.58 * would be running if the steal had not occurred. Method
162     * ForkJoinWorkerThread.helpJoinTask tracks joining->stealing
163     * links to try to find such a task.
164     *
165 dl 1.61 * Compensating: Unless there are already enough live threads,
166 jsr166 1.68 * method helpMaintainParallelism() may create or
167 dl 1.61 * re-activate a spare thread to compensate for blocked
168     * joiners until they unblock.
169 dl 1.58 *
170 dl 1.66 * It is impossible to keep exactly the target (parallelism)
171     * number of threads running at any given time. Determining
172     * existence of conservatively safe helping targets, the
173     * availability of already-created spares, and the apparent need
174     * to create new spares are all racy and require heuristic
175     * guidance, so we rely on multiple retries of each. Compensation
176     * occurs in slow-motion. It is triggered only upon timeouts of
177     * Object.wait used for joins. This reduces poor decisions that
178     * would otherwise be made when threads are waiting for others
179     * that are stalled because of unrelated activities such as
180     * garbage collection.
181 dl 1.58 *
182 dl 1.61 * The ManagedBlocker extension API can't use helping so relies
183     * only on compensation in method awaitBlocker.
184 dl 1.58 *
185 dl 1.53 * The main throughput advantages of work-stealing stem from
186     * decentralized control -- workers mostly steal tasks from each
187     * other. We do not want to negate this by creating bottlenecks
188 dl 1.58 * implementing other management responsibilities. So we use a
189     * collection of techniques that avoid, reduce, or cope well with
190     * contention. These entail several instances of bit-packing into
191     * CASable fields to maintain only the minimally required
192     * atomicity. To enable such packing, we restrict maximum
193     * parallelism to (1<<15)-1 (enabling twice this (to accommodate
194     * unbalanced increments and decrements) to fit into a 16 bit
195     * field, which is far in excess of normal operating range. Even
196     * though updates to some of these bookkeeping fields do sometimes
197     * contend with each other, they don't normally cache-contend with
198     * updates to others enough to warrant memory padding or
199     * isolation. So they are all held as fields of ForkJoinPool
200     * objects. The main capabilities are as follows:
201 dl 1.53 *
202     * 1. Creating and removing workers. Workers are recorded in the
203     * "workers" array. This is an array as opposed to some other data
204     * structure to support index-based random steals by workers.
205     * Updates to the array recording new workers and unrecording
206     * terminated ones are protected from each other by a lock
207     * (workerLock) but the array is otherwise concurrently readable,
208     * and accessed directly by workers. To simplify index-based
209     * operations, the array size is always a power of two, and all
210 dl 1.56 * readers must tolerate null slots. Currently, all worker thread
211     * creation is on-demand, triggered by task submissions,
212     * replacement of terminated workers, and/or compensation for
213     * blocked workers. However, all other support code is set up to
214     * work with other policies.
215 dl 1.53 *
216 dl 1.61 * To ensure that we do not hold on to worker references that
217     * would prevent GC, ALL accesses to workers are via indices into
218     * the workers array (which is one source of some of the unusual
219     * code constructions here). In essence, the workers array serves
220     * as a WeakReference mechanism. Thus for example the event queue
221     * stores worker indices, not worker references. Access to the
222     * workers in associated methods (for example releaseEventWaiters)
223     * must both index-check and null-check the IDs. All such accesses
224     * ignore bad IDs by returning out early from what they are doing,
225     * since this can only be associated with shutdown, in which case
226     * it is OK to give up. On termination, we just clobber these
227     * data structures without trying to use them.
228     *
229 dl 1.53 * 2. Bookkeeping for dynamically adding and removing workers. We
230 dl 1.57 * aim to approximately maintain the given level of parallelism.
231     * When some workers are known to be blocked (on joins or via
232 dl 1.53 * ManagedBlocker), we may create or resume others to take their
233     * place until they unblock (see below). Implementing this
234     * requires counts of the number of "running" threads (i.e., those
235 jsr166 1.67 * that are neither blocked nor artificially suspended) as well as
236 dl 1.53 * the total number. These two values are packed into one field,
237     * "workerCounts" because we need accurate snapshots when deciding
238 dl 1.58 * to create, resume or suspend. Note however that the
239 jsr166 1.67 * correspondence of these counts to reality is not guaranteed. In
240 dl 1.58 * particular updates for unblocked threads may lag until they
241     * actually wake up.
242 dl 1.53 *
243     * 3. Maintaining global run state. The run state of the pool
244     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
245     * those in other Executor implementations, as well as a count of
246     * "active" workers -- those that are, or soon will be, or
247     * recently were executing tasks. The runLevel and active count
248     * are packed together in order to correctly trigger shutdown and
249     * termination. Without care, active counts can be subject to very
250     * high contention. We substantially reduce this contention by
251     * relaxing update rules. A worker must claim active status
252     * prospectively, by activating if it sees that a submitted or
253     * stealable task exists (it may find after activating that the
254     * task no longer exists). It stays active while processing this
255     * task (if it exists) and any other local subtasks it produces,
256     * until it cannot find any other tasks. It then tries
257     * inactivating (see method preStep), but upon update contention
258     * instead scans for more tasks, later retrying inactivation if it
259     * doesn't find any.
260     *
261     * 4. Managing idle workers waiting for tasks. We cannot let
262     * workers spin indefinitely scanning for tasks when none are
263     * available. On the other hand, we must quickly prod them into
264     * action when new tasks are submitted or generated. We
265     * park/unpark these idle workers using an event-count scheme.
266     * Field eventCount is incremented upon events that may enable
267     * workers that previously could not find a task to now find one:
268     * Submission of a new task to the pool, or another worker pushing
269     * a task onto a previously empty queue. (We also use this
270 dl 1.64 * mechanism for configuration and termination actions that
271     * require wakeups of idle workers). Each worker maintains its
272     * last known event count, and blocks when a scan for work did not
273     * find a task AND its lastEventCount matches the current
274     * eventCount. Waiting idle workers are recorded in a variant of
275     * Treiber stack headed by field eventWaiters which, when nonzero,
276     * encodes the thread index and count awaited for by the worker
277     * thread most recently calling eventSync. This thread in turn has
278     * a record (field nextEventWaiter) for the next waiting worker.
279     * In addition to allowing simpler decisions about need for
280     * wakeup, the event count bits in eventWaiters serve the role of
281     * tags to avoid ABA errors in Treiber stacks. Upon any wakeup,
282 dl 1.66 * released threads also try to release at most two others. The
283     * net effect is a tree-like diffusion of signals, where released
284     * threads (and possibly others) help with unparks. To further
285     * reduce contention effects a bit, failed CASes to increment
286     * field eventCount are tolerated without retries in signalWork.
287 dl 1.53 * Conceptually they are merged into the same event, which is OK
288     * when their only purpose is to enable workers to scan for work.
289     *
290 dl 1.66 * 5. Managing suspension of extra workers. When a worker notices
291     * (usually upon timeout of a wait()) that there are too few
292     * running threads, we may create a new thread to maintain
293     * parallelism level, or at least avoid starvation. Usually, extra
294     * threads are needed for only very short periods, yet join
295     * dependencies are such that we sometimes need them in
296     * bursts. Rather than create new threads each time this happens,
297     * we suspend no-longer-needed extra ones as "spares". For most
298     * purposes, we don't distinguish "extra" spare threads from
299     * normal "core" threads: On each call to preStep (the only point
300     * at which we can do this) a worker checks to see if there are
301     * now too many running workers, and if so, suspends itself.
302     * Method helpMaintainParallelism looks for suspended threads to
303     * resume before considering creating a new replacement. The
304     * spares themselves are encoded on another variant of a Treiber
305     * Stack, headed at field "spareWaiters". Note that the use of
306     * spares is intrinsically racy. One thread may become a spare at
307     * about the same time as another is needlessly being created. We
308     * counteract this and related slop in part by requiring resumed
309     * spares to immediately recheck (in preStep) to see whether they
310 jsr166 1.72 * should re-suspend.
311 dl 1.66 *
312     * 6. Killing off unneeded workers. A timeout mechanism is used to
313     * shed unused workers: The oldest (first) event queue waiter uses
314     * a timed rather than hard wait. When this wait times out without
315     * a normal wakeup, it tries to shutdown any one (for convenience
316     * the newest) other spare or event waiter via
317     * tryShutdownUnusedWorker. This eventually reduces the number of
318     * worker threads to a minimum of one after a long enough period
319     * without use.
320 dl 1.64 *
321     * 7. Deciding when to create new workers. The main dynamic
322 dl 1.61 * control in this class is deciding when to create extra threads
323     * in method helpMaintainParallelism. We would like to keep
324 jsr166 1.67 * exactly #parallelism threads running, which is an impossible
325 dl 1.61 * task. We always need to create one when the number of running
326     * threads would become zero and all workers are busy. Beyond
327 jsr166 1.68 * this, we must rely on heuristics that work well in the
328     * presence of transient phenomena such as GC stalls, dynamic
329 dl 1.61 * compilation, and wake-up lags. These transients are extremely
330     * common -- we are normally trying to fully saturate the CPUs on
331     * a machine, so almost any activity other than running tasks
332 dl 1.66 * impedes accuracy. Our main defense is to allow parallelism to
333     * lapse for a while during joins, and use a timeout to see if,
334     * after the resulting settling, there is still a need for
335     * additional workers. This also better copes with the fact that
336     * some of the methods in this class tend to never become compiled
337     * (but are interpreted), so some components of the entire set of
338     * controls might execute 100 times faster than others. And
339     * similarly for cases where the apparent lack of work is just due
340     * to GC stalls and other transient system activity.
341 dl 1.53 *
342     * Beware that there is a lot of representation-level coupling
343     * among classes ForkJoinPool, ForkJoinWorkerThread, and
344     * ForkJoinTask. For example, direct access to "workers" array by
345     * workers, and direct access to ForkJoinTask.status by both
346     * ForkJoinPool and ForkJoinWorkerThread. There is little point
347     * trying to reduce this, since any associated future changes in
348     * representations will need to be accompanied by algorithmic
349     * changes anyway.
350     *
351     * Style notes: There are lots of inline assignments (of form
352     * "while ((local = field) != 0)") which are usually the simplest
353 dl 1.61 * way to ensure the required read orderings (which are sometimes
354     * critical). Also several occurrences of the unusual "do {}
355 jsr166 1.69 * while (!cas...)" which is the simplest way to force an update of
356 dl 1.61 * a CAS'ed variable. There are also other coding oddities that
357     * help some methods perform reasonably even when interpreted (not
358     * compiled), at the expense of some messy constructions that
359     * reduce byte code counts.
360 dl 1.53 *
361     * The order of declarations in this file is: (1) statics (2)
362     * fields (along with constants used when unpacking some of them)
363     * (3) internal control methods (4) callbacks and other support
364     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
365     * methods (plus a few little helpers).
366 dl 1.1 */
367    
368     /**
369 jsr166 1.35 * Factory for creating new {@link ForkJoinWorkerThread}s.
370     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
371     * for {@code ForkJoinWorkerThread} subclasses that extend base
372     * functionality or initialize threads with different contexts.
373 dl 1.1 */
374     public static interface ForkJoinWorkerThreadFactory {
375     /**
376     * Returns a new worker thread operating in the given pool.
377     *
378     * @param pool the pool this thread works in
379 jsr166 1.48 * @throws NullPointerException if the pool is null
380 dl 1.1 */
381     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
382     }
383    
384     /**
385 jsr166 1.17 * Default ForkJoinWorkerThreadFactory implementation; creates a
386 dl 1.1 * new ForkJoinWorkerThread.
387     */
388 dl 1.57 static class DefaultForkJoinWorkerThreadFactory
389 dl 1.1 implements ForkJoinWorkerThreadFactory {
390     public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
391 dl 1.53 return new ForkJoinWorkerThread(pool);
392 dl 1.1 }
393     }
394    
395     /**
396 dl 1.2 * Creates a new ForkJoinWorkerThread. This factory is used unless
397     * overridden in ForkJoinPool constructors.
398 dl 1.1 */
399 dl 1.2 public static final ForkJoinWorkerThreadFactory
400 dl 1.1 defaultForkJoinWorkerThreadFactory =
401     new DefaultForkJoinWorkerThreadFactory();
402    
403     /**
404     * Permission required for callers of methods that may start or
405     * kill threads.
406     */
407     private static final RuntimePermission modifyThreadPermission =
408     new RuntimePermission("modifyThread");
409    
410     /**
411     * If there is a security manager, makes sure caller has
412     * permission to modify threads.
413     */
414     private static void checkPermission() {
415     SecurityManager security = System.getSecurityManager();
416     if (security != null)
417     security.checkPermission(modifyThreadPermission);
418     }
419    
420     /**
421     * Generator for assigning sequence numbers as pool names.
422     */
423     private static final AtomicInteger poolNumberGenerator =
424     new AtomicInteger();
425    
426     /**
427 dl 1.66 * The time to block in a join (see awaitJoin) before checking if
428     * a new worker should be (re)started to maintain parallelism
429 jsr166 1.67 * level. The value should be short enough to maintain global
430 dl 1.66 * responsiveness and progress but long enough to avoid
431     * counterproductive firings during GC stalls or unrelated system
432     * activity, and to not bog down systems with continual re-firings
433     * on GCs or legitimately long waits.
434     */
435     private static final long JOIN_TIMEOUT_MILLIS = 250L; // 4 per second
436    
437     /**
438 dl 1.64 * The wakeup interval (in nanoseconds) for the oldest worker
439 dl 1.77 * waiting for an event to invoke tryShutdownUnusedWorker to
440     * shrink the number of workers. The exact value does not matter
441     * too much. It must be short enough to release resources during
442     * sustained periods of idleness, but not so short that threads
443     * are continually re-created.
444 dl 1.64 */
445     private static final long SHRINK_RATE_NANOS =
446 dl 1.66 30L * 1000L * 1000L * 1000L; // 2 per minute
447 dl 1.64
448     /**
449 dl 1.61 * Absolute bound for parallelism level. Twice this number plus
450     * one (i.e., 0xfff) must fit into a 16bit field to enable
451     * word-packing for some counts and indices.
452 dl 1.53 */
453 dl 1.61 private static final int MAX_WORKERS = 0x7fff;
454 dl 1.53
455     /**
456     * Array holding all worker threads in the pool. Array size must
457     * be a power of two. Updates and replacements are protected by
458     * workerLock, but the array is always kept in a consistent enough
459     * state to be randomly accessed without locking by workers
460     * performing work-stealing, as well as other traversal-based
461     * methods in this class. All readers must tolerate that some
462     * array slots may be null.
463 dl 1.1 */
464     volatile ForkJoinWorkerThread[] workers;
465    
466     /**
467 dl 1.53 * Queue for external submissions.
468 dl 1.1 */
469 dl 1.53 private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
470 dl 1.1
471     /**
472 dl 1.53 * Lock protecting updates to workers array.
473 dl 1.1 */
474 dl 1.53 private final ReentrantLock workerLock;
475 dl 1.1
476     /**
477 dl 1.53 * Latch released upon termination.
478 dl 1.1 */
479 dl 1.57 private final Phaser termination;
480 dl 1.1
481     /**
482     * Creation factory for worker threads.
483     */
484     private final ForkJoinWorkerThreadFactory factory;
485    
486     /**
487 dl 1.53 * Sum of per-thread steal counts, updated only when threads are
488     * idle or terminating.
489 dl 1.1 */
490 dl 1.53 private volatile long stealCount;
491 dl 1.1
492     /**
493 jsr166 1.67 * Encoded record of top of Treiber stack of threads waiting for
494 dl 1.53 * events. The top 32 bits contain the count being waited for. The
495 dl 1.61 * bottom 16 bits contains one plus the pool index of waiting
496     * worker thread. (Bits 16-31 are unused.)
497 dl 1.1 */
498 dl 1.53 private volatile long eventWaiters;
499    
500     private static final int EVENT_COUNT_SHIFT = 32;
501 dl 1.61 private static final long WAITER_ID_MASK = (1L << 16) - 1L;
502 dl 1.1
503     /**
504 dl 1.53 * A counter for events that may wake up worker threads:
505     * - Submission of a new task to the pool
506     * - A worker pushing a task on an empty queue
507 dl 1.61 * - termination
508 dl 1.1 */
509 dl 1.53 private volatile int eventCount;
510    
511     /**
512 jsr166 1.67 * Encoded record of top of Treiber stack of spare threads waiting
513 dl 1.61 * for resumption. The top 16 bits contain an arbitrary count to
514     * avoid ABA effects. The bottom 16bits contains one plus the pool
515     * index of waiting worker thread.
516     */
517     private volatile int spareWaiters;
518    
519     private static final int SPARE_COUNT_SHIFT = 16;
520     private static final int SPARE_ID_MASK = (1 << 16) - 1;
521    
522     /**
523 dl 1.53 * Lifecycle control. The low word contains the number of workers
524     * that are (probably) executing tasks. This value is atomically
525     * incremented before a worker gets a task to run, and decremented
526     * when worker has no tasks and cannot find any. Bits 16-18
527     * contain runLevel value. When all are zero, the pool is
528     * running. Level transitions are monotonic (running -> shutdown
529     * -> terminating -> terminated) so each transition adds a bit.
530     * These are bundled together to ensure consistent read for
531     * termination checks (i.e., that runLevel is at least SHUTDOWN
532     * and active threads is zero).
533 dl 1.64 *
534     * Notes: Most direct CASes are dependent on these bitfield
535     * positions. Also, this field is non-private to enable direct
536     * performance-sensitive CASes in ForkJoinWorkerThread.
537 dl 1.53 */
538 dl 1.64 volatile int runState;
539 dl 1.53
540     // Note: The order among run level values matters.
541     private static final int RUNLEVEL_SHIFT = 16;
542     private static final int SHUTDOWN = 1 << RUNLEVEL_SHIFT;
543     private static final int TERMINATING = 1 << (RUNLEVEL_SHIFT + 1);
544     private static final int TERMINATED = 1 << (RUNLEVEL_SHIFT + 2);
545     private static final int ACTIVE_COUNT_MASK = (1 << RUNLEVEL_SHIFT) - 1;
546 dl 1.1
547     /**
548 dl 1.53 * Holds number of total (i.e., created and not yet terminated)
549     * and running (i.e., not blocked on joins or other managed sync)
550     * threads, packed together to ensure consistent snapshot when
551     * making decisions about creating and suspending spare
552     * threads. Updated only by CAS. Note that adding a new worker
553     * requires incrementing both counts, since workers start off in
554 dl 1.60 * running state.
555 dl 1.53 */
556     private volatile int workerCounts;
557    
558     private static final int TOTAL_COUNT_SHIFT = 16;
559     private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
560     private static final int ONE_RUNNING = 1;
561     private static final int ONE_TOTAL = 1 << TOTAL_COUNT_SHIFT;
562    
563 dl 1.1 /**
564 dl 1.53 * The target parallelism level.
565 dl 1.57 * Accessed directly by ForkJoinWorkerThreads.
566 dl 1.1 */
567 dl 1.57 final int parallelism;
568 dl 1.1
569     /**
570 dl 1.53 * True if use local fifo, not default lifo, for local polling
571 dl 1.57 * Read by, and replicated by ForkJoinWorkerThreads
572 dl 1.1 */
573 dl 1.57 final boolean locallyFifo;
574 dl 1.1
575     /**
576 dl 1.57 * The uncaught exception handler used when any worker abruptly
577     * terminates.
578 dl 1.1 */
579 dl 1.57 private final Thread.UncaughtExceptionHandler ueh;
580 dl 1.6
581     /**
582 dl 1.53 * Pool number, just for assigning useful names to worker threads
583 dl 1.1 */
584 dl 1.53 private final int poolNumber;
585 dl 1.1
586 dl 1.64 // Utilities for CASing fields. Note that most of these
587     // are usually manually inlined by callers
588 dl 1.1
589     /**
590 dl 1.61 * Increments running count part of workerCounts
591 dl 1.1 */
592 dl 1.57 final void incrementRunningCount() {
593     int c;
594 dl 1.53 do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
595 dl 1.59 c = workerCounts,
596 dl 1.57 c + ONE_RUNNING));
597 dl 1.1 }
598 dl 1.58
599 dl 1.1 /**
600 dl 1.57 * Tries to decrement running count unless already zero
601 dl 1.56 */
602     final boolean tryDecrementRunningCount() {
603     int wc = workerCounts;
604     if ((wc & RUNNING_COUNT_MASK) == 0)
605     return false;
606     return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
607     wc, wc - ONE_RUNNING);
608     }
609    
610     /**
611 dl 1.61 * Forces decrement of encoded workerCounts, awaiting nonzero if
612     * (rarely) necessary when other count updates lag.
613     *
614     * @param dr -- either zero or ONE_RUNNING
615 dl 1.77 * @param dt -- either zero or ONE_TOTAL
616 dl 1.58 */
617 dl 1.61 private void decrementWorkerCounts(int dr, int dt) {
618     for (;;) {
619     int wc = workerCounts;
620     if ((wc & RUNNING_COUNT_MASK) - dr < 0 ||
621 dl 1.64 (wc >>> TOTAL_COUNT_SHIFT) - dt < 0) {
622     if ((runState & TERMINATED) != 0)
623     return; // lagging termination on a backout
624 dl 1.61 Thread.yield();
625 dl 1.64 }
626 dl 1.61 if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
627     wc, wc - (dr + dt)))
628     return;
629     }
630     }
631    
632     /**
633 jsr166 1.16 * Tries decrementing active count; fails on contention.
634 dl 1.53 * Called when workers cannot find tasks to run.
635     */
636     final boolean tryDecrementActiveCount() {
637     int c;
638     return UNSAFE.compareAndSwapInt(this, runStateOffset,
639 dl 1.64 c = runState, c - 1);
640 dl 1.53 }
641    
642     /**
643     * Advances to at least the given level. Returns true if not
644     * already in at least the given level.
645     */
646     private boolean advanceRunLevel(int level) {
647     for (;;) {
648     int s = runState;
649     if ((s & level) != 0)
650     return false;
651     if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
652     return true;
653     }
654     }
655    
656     // workers array maintenance
657    
658     /**
659     * Records and returns a workers array index for new worker.
660     */
661     private int recordWorker(ForkJoinWorkerThread w) {
662     // Try using slot totalCount-1. If not available, scan and/or resize
663     int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
664     final ReentrantLock lock = this.workerLock;
665     lock.lock();
666     try {
667     ForkJoinWorkerThread[] ws = workers;
668 dl 1.61 int n = ws.length;
669     if (k < 0 || k >= n || ws[k] != null) {
670     for (k = 0; k < n && ws[k] != null; ++k)
671 dl 1.53 ;
672 dl 1.61 if (k == n)
673     ws = Arrays.copyOf(ws, n << 1);
674 dl 1.53 }
675     ws[k] = w;
676     workers = ws; // volatile array write ensures slot visibility
677     } finally {
678     lock.unlock();
679     }
680     return k;
681     }
682    
683     /**
684 jsr166 1.71 * Nulls out record of worker in workers array.
685 dl 1.53 */
686     private void forgetWorker(ForkJoinWorkerThread w) {
687     int idx = w.poolIndex;
688 jsr166 1.67 // Locking helps method recordWorker avoid unnecessary expansion
689 dl 1.53 final ReentrantLock lock = this.workerLock;
690     lock.lock();
691     try {
692     ForkJoinWorkerThread[] ws = workers;
693     if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
694     ws[idx] = null;
695     } finally {
696     lock.unlock();
697     }
698     }
699    
700     /**
701     * Final callback from terminating worker. Removes record of
702     * worker from array, and adjusts counts. If pool is shutting
703 jsr166 1.67 * down, tries to complete termination.
704 dl 1.53 *
705     * @param w the worker
706     */
707     final void workerTerminated(ForkJoinWorkerThread w) {
708     forgetWorker(w);
709 dl 1.61 decrementWorkerCounts(w.isTrimmed()? 0 : ONE_RUNNING, ONE_TOTAL);
710     while (w.stealCount != 0) // collect final count
711     tryAccumulateStealCount(w);
712     tryTerminate(false);
713 dl 1.53 }
714    
715     // Waiting for and signalling events
716    
717     /**
718     * Releases workers blocked on a count not equal to current count.
719 dl 1.61 * Normally called after precheck that eventWaiters isn't zero to
720 dl 1.64 * avoid wasted array checks. Gives up upon a change in count or
721 dl 1.66 * upon releasing two workers, letting others take over.
722 dl 1.53 */
723 dl 1.64 private void releaseEventWaiters() {
724 dl 1.61 ForkJoinWorkerThread[] ws = workers;
725     int n = ws.length;
726 dl 1.64 long h = eventWaiters;
727     int ec = eventCount;
728 dl 1.66 boolean releasedOne = false;
729 dl 1.64 ForkJoinWorkerThread w; int id;
730 dl 1.66 while ((id = ((int)(h & WAITER_ID_MASK)) - 1) >= 0 &&
731     (int)(h >>> EVENT_COUNT_SHIFT) != ec &&
732     id < n && (w = ws[id]) != null) {
733     if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
734     h, w.nextWaiter)) {
735     LockSupport.unpark(w);
736     if (releasedOne) // exit on second release
737     break;
738     releasedOne = true;
739     }
740     if (eventCount != ec)
741 dl 1.61 break;
742 dl 1.66 h = eventWaiters;
743 dl 1.53 }
744     }
745    
746     /**
747 dl 1.61 * Tries to advance eventCount and releases waiters. Called only
748     * from workers.
749 dl 1.53 */
750     final void signalWork() {
751 dl 1.61 int c; // try to increment event count -- CAS failure OK
752     UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
753     if (eventWaiters != 0L)
754 dl 1.64 releaseEventWaiters();
755 dl 1.53 }
756    
757     /**
758 dl 1.64 * Adds the given worker to event queue and blocks until
759 dl 1.66 * terminating or event count advances from the given value
760 dl 1.53 *
761     * @param w the calling worker thread
762 dl 1.66 * @param ec the count
763 dl 1.53 */
764 dl 1.66 private void eventSync(ForkJoinWorkerThread w, int ec) {
765 dl 1.64 long nh = (((long)ec) << EVENT_COUNT_SHIFT) | ((long)(w.poolIndex+1));
766 dl 1.61 long h;
767 dl 1.60 while ((runState < SHUTDOWN || !tryTerminate(false)) &&
768 dl 1.64 (((int)((h = eventWaiters) & WAITER_ID_MASK)) == 0 ||
769     (int)(h >>> EVENT_COUNT_SHIFT) == ec) &&
770     eventCount == ec) {
771 dl 1.60 if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
772 dl 1.61 w.nextWaiter = h, nh)) {
773 dl 1.64 awaitEvent(w, ec);
774     break;
775     }
776     }
777     }
778    
779     /**
780     * Blocks the given worker (that has already been entered as an
781     * event waiter) until terminating or event count advances from
782     * the given value. The oldest (first) waiter uses a timed wait to
783     * occasionally one-by-one shrink the number of workers (to a
784 dl 1.66 * minimum of one) if the pool has not been used for extended
785 dl 1.64 * periods.
786     *
787     * @param w the calling worker thread
788     * @param ec the count
789     */
790     private void awaitEvent(ForkJoinWorkerThread w, int ec) {
791     while (eventCount == ec) {
792     if (tryAccumulateStealCount(w)) { // transfer while idle
793     boolean untimed = (w.nextWaiter != 0L ||
794     (workerCounts & RUNNING_COUNT_MASK) <= 1);
795     long startTime = untimed? 0 : System.nanoTime();
796     Thread.interrupted(); // clear/ignore interrupt
797 dl 1.66 if (eventCount != ec || w.runState != 0 ||
798 dl 1.64 runState >= TERMINATING) // recheck after clear
799     break;
800     if (untimed)
801     LockSupport.park(w);
802     else {
803     LockSupport.parkNanos(w, SHRINK_RATE_NANOS);
804 dl 1.66 if (eventCount != ec || w.runState != 0 ||
805 dl 1.64 runState >= TERMINATING)
806 dl 1.61 break;
807 dl 1.64 if (System.nanoTime() - startTime >= SHRINK_RATE_NANOS)
808 dl 1.66 tryShutdownUnusedWorker(ec);
809 dl 1.61 }
810 dl 1.53 }
811     }
812 dl 1.64 }
813    
814 dl 1.66 // Maintaining parallelism
815 dl 1.61
816     /**
817 jsr166 1.74 * Pushes worker onto the spare stack.
818 dl 1.61 */
819     final void pushSpare(ForkJoinWorkerThread w) {
820 dl 1.64 int ns = (++w.spareCount << SPARE_COUNT_SHIFT) | (w.poolIndex + 1);
821 dl 1.61 do {} while (!UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
822     w.nextSpare = spareWaiters,ns));
823     }
824    
825     /**
826 dl 1.66 * Tries (once) to resume a spare if the number of running
827     * threads is less than target.
828 dl 1.61 */
829 dl 1.66 private void tryResumeSpare() {
830 dl 1.61 int sw, id;
831 dl 1.66 ForkJoinWorkerThread[] ws = workers;
832     int n = ws.length;
833 dl 1.61 ForkJoinWorkerThread w;
834 dl 1.66 if ((sw = spareWaiters) != 0 &&
835     (id = (sw & SPARE_ID_MASK) - 1) >= 0 &&
836     id < n && (w = ws[id]) != null &&
837     (workerCounts & RUNNING_COUNT_MASK) < parallelism &&
838     spareWaiters == sw &&
839 dl 1.61 UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
840 dl 1.64 sw, w.nextSpare)) {
841 dl 1.66 int c; // increment running count before resume
842 jsr166 1.69 do {} while (!UNSAFE.compareAndSwapInt
843     (this, workerCountsOffset,
844     c = workerCounts, c + ONE_RUNNING));
845 dl 1.66 if (w.tryUnsuspend())
846     LockSupport.unpark(w);
847     else // back out if w was shutdown
848     decrementWorkerCounts(ONE_RUNNING, 0);
849 dl 1.64 }
850     }
851    
852     /**
853 dl 1.66 * Tries to increase the number of running workers if below target
854     * parallelism: If a spare exists tries to resume it via
855     * tryResumeSpare. Otherwise, if not enough total workers or all
856 jsr166 1.67 * existing workers are busy, adds a new worker. In all cases also
857 dl 1.66 * helps wake up releasable workers waiting for work.
858 dl 1.64 */
859 dl 1.66 private void helpMaintainParallelism() {
860 dl 1.64 int pc = parallelism;
861 dl 1.66 int wc, rs, tc;
862     while (((wc = workerCounts) & RUNNING_COUNT_MASK) < pc &&
863     (rs = runState) < TERMINATING) {
864     if (spareWaiters != 0)
865     tryResumeSpare();
866     else if ((tc = wc >>> TOTAL_COUNT_SHIFT) >= MAX_WORKERS ||
867     (tc >= pc && (rs & ACTIVE_COUNT_MASK) != tc))
868     break; // enough total
869     else if (runState == rs && workerCounts == wc &&
870     UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
871     wc + (ONE_RUNNING|ONE_TOTAL))) {
872     ForkJoinWorkerThread w = null;
873     try {
874     w = factory.newThread(this);
875     } finally { // adjust on null or exceptional factory return
876     if (w == null) {
877     decrementWorkerCounts(ONE_RUNNING, ONE_TOTAL);
878     tryTerminate(false); // handle failure during shutdown
879     }
880     }
881     if (w == null)
882 dl 1.64 break;
883 dl 1.66 w.start(recordWorker(w), ueh);
884     if ((workerCounts >>> TOTAL_COUNT_SHIFT) >= pc) {
885     int c; // advance event count
886     UNSAFE.compareAndSwapInt(this, eventCountOffset,
887     c = eventCount, c+1);
888     break; // add at most one unless total below target
889     }
890 dl 1.64 }
891     }
892 dl 1.66 if (eventWaiters != 0L)
893     releaseEventWaiters();
894 dl 1.64 }
895    
896     /**
897 dl 1.66 * Callback from the oldest waiter in awaitEvent waking up after a
898     * period of non-use. If all workers are idle, tries (once) to
899     * shutdown an event waiter or a spare, if one exists. Note that
900     * we don't need CAS or locks here because the method is called
901     * only from one thread occasionally waking (and even misfires are
902     * OK). Note that until the shutdown worker fully terminates,
903     * workerCounts will overestimate total count, which is tolerable.
904 dl 1.64 *
905 dl 1.66 * @param ec the event count waited on by caller (to abort
906     * attempt if count has since changed).
907 dl 1.64 */
908 dl 1.66 private void tryShutdownUnusedWorker(int ec) {
909     if (runState == 0 && eventCount == ec) { // only trigger if all idle
910     ForkJoinWorkerThread[] ws = workers;
911     int n = ws.length;
912     ForkJoinWorkerThread w = null;
913     boolean shutdown = false;
914     int sw;
915     long h;
916     if ((sw = spareWaiters) != 0) { // prefer killing spares
917     int id = (sw & SPARE_ID_MASK) - 1;
918     if (id >= 0 && id < n && (w = ws[id]) != null &&
919     UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
920     sw, w.nextSpare))
921     shutdown = true;
922     }
923     else if ((h = eventWaiters) != 0L) {
924     long nh;
925     int id = ((int)(h & WAITER_ID_MASK)) - 1;
926     if (id >= 0 && id < n && (w = ws[id]) != null &&
927     (nh = w.nextWaiter) != 0L && // keep at least one worker
928     UNSAFE.compareAndSwapLong(this, eventWaitersOffset, h, nh))
929     shutdown = true;
930     }
931     if (w != null && shutdown) {
932     w.shutdown();
933     LockSupport.unpark(w);
934     }
935 dl 1.61 }
936 dl 1.66 releaseEventWaiters(); // in case of interference
937 dl 1.61 }
938    
939 dl 1.53 /**
940     * Callback from workers invoked upon each top-level action (i.e.,
941 dl 1.64 * stealing a task or taking a submission and running it).
942     * Performs one or more of the following:
943 dl 1.61 *
944 dl 1.66 * 1. If the worker is active and either did not run a task
945     * or there are too many workers, try to set its active status
946     * to inactive and update activeCount. On contention, we may
947     * try again in this or a subsequent call.
948     *
949     * 2. If not enough total workers, help create some.
950     *
951     * 3. If there are too many running workers, suspend this worker
952     * (first forcing inactive if necessary). If it is not needed,
953     * it may be shutdown while suspended (via
954     * tryShutdownUnusedWorker). Otherwise, upon resume it
955     * rechecks running thread count and need for event sync.
956     *
957     * 4. If worker did not run a task, await the next task event via
958     * eventSync if necessary (first forcing inactivation), upon
959     * which the worker may be shutdown via
960     * tryShutdownUnusedWorker. Otherwise, help release any
961     * existing event waiters that are now releasable,
962 dl 1.53 *
963     * @param w the worker
964 dl 1.66 * @param ran true if worker ran a task since last call to this method
965 dl 1.53 */
966 dl 1.66 final void preStep(ForkJoinWorkerThread w, boolean ran) {
967     int wec = w.lastEventCount;
968 dl 1.53 boolean active = w.active;
969 dl 1.66 boolean inactivate = false;
970 dl 1.61 int pc = parallelism;
971 dl 1.66 int rs;
972     while (w.runState == 0 && (rs = runState) < TERMINATING) {
973     if ((inactivate || (active && (rs & ACTIVE_COUNT_MASK) >= pc)) &&
974     UNSAFE.compareAndSwapInt(this, runStateOffset, rs, rs - 1))
975     inactivate = active = w.active = false;
976     int wc = workerCounts;
977     if ((wc & RUNNING_COUNT_MASK) > pc) {
978     if (!(inactivate |= active) && // must inactivate to suspend
979 dl 1.64 workerCounts == wc && // try to suspend as spare
980 dl 1.61 UNSAFE.compareAndSwapInt(this, workerCountsOffset,
981 dl 1.66 wc, wc - ONE_RUNNING))
982 dl 1.64 w.suspendAsSpare();
983 dl 1.61 }
984 dl 1.66 else if ((wc >>> TOTAL_COUNT_SHIFT) < pc)
985     helpMaintainParallelism(); // not enough workers
986     else if (!ran) {
987     long h = eventWaiters;
988     int ec = eventCount;
989     if (h != 0L && (int)(h >>> EVENT_COUNT_SHIFT) != ec)
990     releaseEventWaiters(); // release others before waiting
991     else if (ec != wec) {
992     w.lastEventCount = ec; // no need to wait
993     break;
994 dl 1.64 }
995 jsr166 1.68 else if (!(inactivate |= active))
996 dl 1.66 eventSync(w, wec); // must inactivate before sync
997 dl 1.53 }
998 dl 1.66 else
999     break;
1000 dl 1.53 }
1001     }
1002    
1003     /**
1004 dl 1.61 * Helps and/or blocks awaiting join of the given task.
1005 dl 1.66 * See above for explanation.
1006 dl 1.56 *
1007     * @param joinMe the task to join
1008 dl 1.66 * @param worker the current worker thread
1009 dl 1.53 */
1010 dl 1.61 final void awaitJoin(ForkJoinTask<?> joinMe, ForkJoinWorkerThread worker) {
1011 dl 1.66 int retries = 2 + (parallelism >> 2); // #helpJoins before blocking
1012 dl 1.61 while (joinMe.status >= 0) {
1013 dl 1.66 int wc;
1014 dl 1.61 worker.helpJoinTask(joinMe);
1015     if (joinMe.status < 0)
1016     break;
1017 dl 1.66 else if (retries > 0)
1018     --retries;
1019     else if (((wc = workerCounts) & RUNNING_COUNT_MASK) != 0 &&
1020     UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1021     wc, wc - ONE_RUNNING)) {
1022     int stat, c; long h;
1023     while ((stat = joinMe.status) >= 0 &&
1024     (h = eventWaiters) != 0L && // help release others
1025     (int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1026     releaseEventWaiters();
1027     if (stat >= 0 &&
1028     ((workerCounts & RUNNING_COUNT_MASK) == 0 ||
1029     (stat =
1030     joinMe.internalAwaitDone(JOIN_TIMEOUT_MILLIS)) >= 0))
1031     helpMaintainParallelism(); // timeout or no running workers
1032 dl 1.61 do {} while (!UNSAFE.compareAndSwapInt
1033     (this, workerCountsOffset,
1034     c = workerCounts, c + ONE_RUNNING));
1035 dl 1.66 if (stat < 0)
1036     break; // else restart
1037 dl 1.53 }
1038     }
1039     }
1040    
1041     /**
1042 dl 1.66 * Same idea as awaitJoin, but no helping, retries, or timeouts.
1043 dl 1.53 */
1044 dl 1.57 final void awaitBlocker(ManagedBlocker blocker)
1045 dl 1.53 throws InterruptedException {
1046 dl 1.61 while (!blocker.isReleasable()) {
1047 dl 1.66 int wc = workerCounts;
1048     if ((wc & RUNNING_COUNT_MASK) != 0 &&
1049     UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1050     wc, wc - ONE_RUNNING)) {
1051 dl 1.61 try {
1052 dl 1.66 while (!blocker.isReleasable()) {
1053     long h = eventWaiters;
1054     if (h != 0L &&
1055     (int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1056     releaseEventWaiters();
1057     else if ((workerCounts & RUNNING_COUNT_MASK) == 0 &&
1058     runState < TERMINATING)
1059     helpMaintainParallelism();
1060     else if (blocker.block())
1061     break;
1062     }
1063 dl 1.61 } finally {
1064     int c;
1065     do {} while (!UNSAFE.compareAndSwapInt
1066     (this, workerCountsOffset,
1067     c = workerCounts, c + ONE_RUNNING));
1068 dl 1.58 }
1069 dl 1.60 break;
1070     }
1071 dl 1.53 }
1072 dl 1.59 }
1073 dl 1.54
1074     /**
1075 dl 1.53 * Possibly initiates and/or completes termination.
1076     *
1077     * @param now if true, unconditionally terminate, else only
1078     * if shutdown and empty queue and no active workers
1079     * @return true if now terminating or terminated
1080 dl 1.1 */
1081 dl 1.53 private boolean tryTerminate(boolean now) {
1082     if (now)
1083     advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
1084     else if (runState < SHUTDOWN ||
1085     !submissionQueue.isEmpty() ||
1086     (runState & ACTIVE_COUNT_MASK) != 0)
1087 dl 1.4 return false;
1088 dl 1.53
1089     if (advanceRunLevel(TERMINATING))
1090     startTerminating();
1091    
1092     // Finish now if all threads terminated; else in some subsequent call
1093     if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1094     advanceRunLevel(TERMINATED);
1095 dl 1.57 termination.arrive();
1096 dl 1.53 }
1097 dl 1.4 return true;
1098 dl 1.1 }
1099    
1100     /**
1101 dl 1.53 * Actions on transition to TERMINATING
1102 dl 1.61 *
1103     * Runs up to four passes through workers: (0) shutting down each
1104 dl 1.64 * (without waking up if parked) to quickly spread notifications
1105     * without unnecessary bouncing around event queues etc (1) wake
1106     * up and help cancel tasks (2) interrupt (3) mop up races with
1107     * interrupted workers
1108 dl 1.53 */
1109     private void startTerminating() {
1110 dl 1.61 cancelSubmissions();
1111     for (int passes = 0; passes < 4 && workerCounts != 0; ++passes) {
1112 dl 1.66 int c; // advance event count
1113     UNSAFE.compareAndSwapInt(this, eventCountOffset,
1114     c = eventCount, c+1);
1115 dl 1.61 eventWaiters = 0L; // clobber lists
1116     spareWaiters = 0;
1117 jsr166 1.71 for (ForkJoinWorkerThread w : workers) {
1118 dl 1.61 if (w != null) {
1119 dl 1.64 w.shutdown();
1120 dl 1.61 if (passes > 0 && !w.isTerminated()) {
1121     w.cancelTasks();
1122     LockSupport.unpark(w);
1123     if (passes > 1) {
1124     try {
1125     w.interrupt();
1126     } catch (SecurityException ignore) {
1127     }
1128     }
1129     }
1130     }
1131     }
1132 dl 1.56 }
1133     }
1134    
1135     /**
1136 jsr166 1.72 * Clears out and cancels submissions, ignoring exceptions.
1137 dl 1.56 */
1138     private void cancelSubmissions() {
1139 dl 1.53 ForkJoinTask<?> task;
1140     while ((task = submissionQueue.poll()) != null) {
1141     try {
1142     task.cancel(false);
1143     } catch (Throwable ignore) {
1144     }
1145     }
1146 dl 1.56 }
1147    
1148 dl 1.53 // misc support for ForkJoinWorkerThread
1149    
1150     /**
1151 jsr166 1.72 * Returns pool number.
1152 dl 1.1 */
1153 dl 1.53 final int getPoolNumber() {
1154     return poolNumber;
1155 dl 1.1 }
1156    
1157     /**
1158 jsr166 1.72 * Tries to accumulate steal count from a worker, clearing
1159     * the worker's value if successful.
1160 dl 1.61 *
1161     * @return true if worker steal count now zero
1162 dl 1.1 */
1163 dl 1.61 final boolean tryAccumulateStealCount(ForkJoinWorkerThread w) {
1164 dl 1.53 int sc = w.stealCount;
1165 dl 1.61 long c = stealCount;
1166     // CAS even if zero, for fence effects
1167     if (UNSAFE.compareAndSwapLong(this, stealCountOffset, c, c + sc)) {
1168     if (sc != 0)
1169     w.stealCount = 0;
1170     return true;
1171 dl 1.1 }
1172 dl 1.61 return sc == 0;
1173 dl 1.1 }
1174    
1175     /**
1176 dl 1.53 * Returns the approximate (non-atomic) number of idle threads per
1177     * active thread.
1178     */
1179     final int idlePerActive() {
1180 dl 1.58 int pc = parallelism; // use parallelism, not rc
1181 jsr166 1.67 int ac = runState; // no mask -- artificially boosts during shutdown
1182 dl 1.53 // Use exact results for small values, saturate past 4
1183 jsr166 1.72 return ((pc <= ac) ? 0 :
1184     (pc >>> 1 <= ac) ? 1 :
1185     (pc >>> 2 <= ac) ? 3 :
1186     pc >>> 3);
1187 dl 1.53 }
1188    
1189     // Public and protected methods
1190 dl 1.1
1191     // Constructors
1192    
1193     /**
1194 dl 1.42 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1195 dl 1.57 * java.lang.Runtime#availableProcessors}, using the {@linkplain
1196     * #defaultForkJoinWorkerThreadFactory default thread factory},
1197     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1198 jsr166 1.17 *
1199 dl 1.1 * @throws SecurityException if a security manager exists and
1200     * the caller is not permitted to modify threads
1201     * because it does not hold {@link
1202 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1203 dl 1.1 */
1204     public ForkJoinPool() {
1205     this(Runtime.getRuntime().availableProcessors(),
1206 dl 1.57 defaultForkJoinWorkerThreadFactory, null, false);
1207 dl 1.1 }
1208    
1209     /**
1210 dl 1.42 * Creates a {@code ForkJoinPool} with the indicated parallelism
1211 dl 1.57 * level, the {@linkplain
1212     * #defaultForkJoinWorkerThreadFactory default thread factory},
1213     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1214 jsr166 1.17 *
1215 dl 1.42 * @param parallelism the parallelism level
1216 dl 1.1 * @throws IllegalArgumentException if parallelism less than or
1217 jsr166 1.47 * equal to zero, or greater than implementation limit
1218 dl 1.1 * @throws SecurityException if a security manager exists and
1219     * the caller is not permitted to modify threads
1220     * because it does not hold {@link
1221 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1222 dl 1.1 */
1223     public ForkJoinPool(int parallelism) {
1224 dl 1.57 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1225 dl 1.1 }
1226    
1227     /**
1228 dl 1.57 * Creates a {@code ForkJoinPool} with the given parameters.
1229 jsr166 1.17 *
1230 dl 1.57 * @param parallelism the parallelism level. For default value,
1231     * use {@link java.lang.Runtime#availableProcessors}.
1232     * @param factory the factory for creating new threads. For default value,
1233     * use {@link #defaultForkJoinWorkerThreadFactory}.
1234 dl 1.59 * @param handler the handler for internal worker threads that
1235     * terminate due to unrecoverable errors encountered while executing
1236 jsr166 1.73 * tasks. For default value, use {@code null}.
1237 dl 1.59 * @param asyncMode if true,
1238 dl 1.57 * establishes local first-in-first-out scheduling mode for forked
1239     * tasks that are never joined. This mode may be more appropriate
1240     * than default locally stack-based mode in applications in which
1241     * worker threads only process event-style asynchronous tasks.
1242 jsr166 1.73 * For default value, use {@code false}.
1243 dl 1.1 * @throws IllegalArgumentException if parallelism less than or
1244 jsr166 1.47 * equal to zero, or greater than implementation limit
1245 jsr166 1.48 * @throws NullPointerException if the factory is null
1246 dl 1.1 * @throws SecurityException if a security manager exists and
1247     * the caller is not permitted to modify threads
1248     * because it does not hold {@link
1249 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1250 dl 1.1 */
1251 dl 1.59 public ForkJoinPool(int parallelism,
1252 dl 1.57 ForkJoinWorkerThreadFactory factory,
1253     Thread.UncaughtExceptionHandler handler,
1254     boolean asyncMode) {
1255 dl 1.53 checkPermission();
1256     if (factory == null)
1257     throw new NullPointerException();
1258 dl 1.61 if (parallelism <= 0 || parallelism > MAX_WORKERS)
1259 dl 1.1 throw new IllegalArgumentException();
1260 dl 1.53 this.parallelism = parallelism;
1261 dl 1.1 this.factory = factory;
1262 dl 1.57 this.ueh = handler;
1263     this.locallyFifo = asyncMode;
1264     int arraySize = initialArraySizeFor(parallelism);
1265 dl 1.53 this.workers = new ForkJoinWorkerThread[arraySize];
1266     this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
1267 dl 1.1 this.workerLock = new ReentrantLock();
1268 dl 1.57 this.termination = new Phaser(1);
1269     this.poolNumber = poolNumberGenerator.incrementAndGet();
1270 dl 1.1 }
1271    
1272     /**
1273 dl 1.53 * Returns initial power of two size for workers array.
1274     * @param pc the initial parallelism level
1275     */
1276     private static int initialArraySizeFor(int pc) {
1277 dl 1.66 // If possible, initially allocate enough space for one spare
1278     int size = pc < MAX_WORKERS ? pc + 1 : MAX_WORKERS;
1279 dl 1.61 // See Hackers Delight, sec 3.2. We know MAX_WORKERS < (1 >>> 16)
1280 dl 1.53 size |= size >>> 1;
1281     size |= size >>> 2;
1282     size |= size >>> 4;
1283     size |= size >>> 8;
1284     return size + 1;
1285 dl 1.1 }
1286    
1287     // Execution methods
1288    
1289     /**
1290     * Common code for execute, invoke and submit
1291     */
1292     private <T> void doSubmit(ForkJoinTask<T> task) {
1293 dl 1.23 if (task == null)
1294     throw new NullPointerException();
1295 dl 1.53 if (runState >= SHUTDOWN)
1296 dl 1.1 throw new RejectedExecutionException();
1297 dl 1.58 submissionQueue.offer(task);
1298 dl 1.66 int c; // try to increment event count -- CAS failure OK
1299     UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
1300     helpMaintainParallelism(); // create, start, or resume some workers
1301 dl 1.1 }
1302    
1303     /**
1304 jsr166 1.17 * Performs the given task, returning its result upon completion.
1305     *
1306 dl 1.1 * @param task the task
1307     * @return the task's result
1308 jsr166 1.48 * @throws NullPointerException if the task is null
1309     * @throws RejectedExecutionException if the task cannot be
1310     * scheduled for execution
1311 dl 1.1 */
1312     public <T> T invoke(ForkJoinTask<T> task) {
1313     doSubmit(task);
1314     return task.join();
1315     }
1316    
1317     /**
1318     * Arranges for (asynchronous) execution of the given task.
1319 jsr166 1.17 *
1320 dl 1.1 * @param task the task
1321 jsr166 1.48 * @throws NullPointerException if the task is null
1322     * @throws RejectedExecutionException if the task cannot be
1323     * scheduled for execution
1324 dl 1.1 */
1325 dl 1.37 public void execute(ForkJoinTask<?> task) {
1326 dl 1.1 doSubmit(task);
1327     }
1328    
1329     // AbstractExecutorService methods
1330    
1331 jsr166 1.48 /**
1332     * @throws NullPointerException if the task is null
1333     * @throws RejectedExecutionException if the task cannot be
1334     * scheduled for execution
1335     */
1336 dl 1.1 public void execute(Runnable task) {
1337 dl 1.23 ForkJoinTask<?> job;
1338 jsr166 1.26 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1339     job = (ForkJoinTask<?>) task;
1340 dl 1.23 else
1341 dl 1.33 job = ForkJoinTask.adapt(task, null);
1342 dl 1.23 doSubmit(job);
1343 dl 1.1 }
1344    
1345 jsr166 1.48 /**
1346 dl 1.57 * Submits a ForkJoinTask for execution.
1347     *
1348     * @param task the task to submit
1349     * @return the task
1350     * @throws NullPointerException if the task is null
1351     * @throws RejectedExecutionException if the task cannot be
1352     * scheduled for execution
1353     */
1354     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1355     doSubmit(task);
1356     return task;
1357     }
1358    
1359     /**
1360 jsr166 1.48 * @throws NullPointerException if the task is null
1361     * @throws RejectedExecutionException if the task cannot be
1362     * scheduled for execution
1363     */
1364 dl 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
1365 dl 1.33 ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1366 dl 1.1 doSubmit(job);
1367     return job;
1368     }
1369    
1370 jsr166 1.48 /**
1371     * @throws NullPointerException if the task is null
1372     * @throws RejectedExecutionException if the task cannot be
1373     * scheduled for execution
1374     */
1375 dl 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
1376 dl 1.33 ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1377 dl 1.1 doSubmit(job);
1378     return job;
1379     }
1380    
1381 jsr166 1.48 /**
1382     * @throws NullPointerException if the task is null
1383     * @throws RejectedExecutionException if the task cannot be
1384     * scheduled for execution
1385     */
1386 dl 1.1 public ForkJoinTask<?> submit(Runnable task) {
1387 dl 1.23 ForkJoinTask<?> job;
1388 jsr166 1.26 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1389     job = (ForkJoinTask<?>) task;
1390 dl 1.23 else
1391 dl 1.33 job = ForkJoinTask.adapt(task, null);
1392 dl 1.1 doSubmit(job);
1393     return job;
1394     }
1395    
1396     /**
1397 jsr166 1.48 * @throws NullPointerException {@inheritDoc}
1398     * @throws RejectedExecutionException {@inheritDoc}
1399     */
1400 dl 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
1401 jsr166 1.20 ArrayList<ForkJoinTask<T>> forkJoinTasks =
1402 dl 1.1 new ArrayList<ForkJoinTask<T>>(tasks.size());
1403 jsr166 1.20 for (Callable<T> task : tasks)
1404 dl 1.33 forkJoinTasks.add(ForkJoinTask.adapt(task));
1405 jsr166 1.20 invoke(new InvokeAll<T>(forkJoinTasks));
1406    
1407     @SuppressWarnings({"unchecked", "rawtypes"})
1408 dl 1.54 List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1409 jsr166 1.20 return futures;
1410 dl 1.1 }
1411    
1412     static final class InvokeAll<T> extends RecursiveAction {
1413     final ArrayList<ForkJoinTask<T>> tasks;
1414     InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
1415     public void compute() {
1416 jsr166 1.17 try { invokeAll(tasks); }
1417     catch (Exception ignore) {}
1418 dl 1.1 }
1419 jsr166 1.18 private static final long serialVersionUID = -7914297376763021607L;
1420 dl 1.1 }
1421    
1422     /**
1423 jsr166 1.17 * Returns the factory used for constructing new workers.
1424 dl 1.1 *
1425     * @return the factory used for constructing new workers
1426     */
1427     public ForkJoinWorkerThreadFactory getFactory() {
1428     return factory;
1429     }
1430    
1431     /**
1432 dl 1.2 * Returns the handler for internal worker threads that terminate
1433     * due to unrecoverable errors encountered while executing tasks.
1434 jsr166 1.17 *
1435 jsr166 1.28 * @return the handler, or {@code null} if none
1436 dl 1.2 */
1437     public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1438 dl 1.53 return ueh;
1439 dl 1.2 }
1440    
1441     /**
1442 dl 1.42 * Returns the targeted parallelism level of this pool.
1443 dl 1.1 *
1444 dl 1.42 * @return the targeted parallelism level of this pool
1445 dl 1.1 */
1446     public int getParallelism() {
1447     return parallelism;
1448     }
1449    
1450     /**
1451     * Returns the number of worker threads that have started but not
1452 jsr166 1.76 * yet terminated. The result returned by this method may differ
1453 jsr166 1.29 * from {@link #getParallelism} when threads are created to
1454 dl 1.1 * maintain parallelism when others are cooperatively blocked.
1455     *
1456     * @return the number of worker threads
1457     */
1458     public int getPoolSize() {
1459 dl 1.53 return workerCounts >>> TOTAL_COUNT_SHIFT;
1460 dl 1.1 }
1461    
1462     /**
1463 jsr166 1.28 * Returns {@code true} if this pool uses local first-in-first-out
1464 jsr166 1.16 * scheduling mode for forked tasks that are never joined.
1465 dl 1.6 *
1466 jsr166 1.28 * @return {@code true} if this pool uses async mode
1467 dl 1.6 */
1468     public boolean getAsyncMode() {
1469     return locallyFifo;
1470     }
1471    
1472     /**
1473 dl 1.2 * Returns an estimate of the number of worker threads that are
1474     * not blocked waiting to join tasks or for other managed
1475 dl 1.53 * synchronization. This method may overestimate the
1476     * number of running threads.
1477 dl 1.1 *
1478     * @return the number of worker threads
1479     */
1480     public int getRunningThreadCount() {
1481 dl 1.53 return workerCounts & RUNNING_COUNT_MASK;
1482 dl 1.1 }
1483    
1484     /**
1485 dl 1.2 * Returns an estimate of the number of threads that are currently
1486 dl 1.1 * stealing or executing tasks. This method may overestimate the
1487     * number of active threads.
1488 jsr166 1.17 *
1489 jsr166 1.16 * @return the number of active threads
1490 dl 1.1 */
1491     public int getActiveThreadCount() {
1492 dl 1.53 return runState & ACTIVE_COUNT_MASK;
1493 dl 1.1 }
1494    
1495     /**
1496 jsr166 1.28 * Returns {@code true} if all worker threads are currently idle.
1497     * An idle worker is one that cannot obtain a task to execute
1498     * because none are available to steal from other threads, and
1499     * there are no pending submissions to the pool. This method is
1500     * conservative; it might not return {@code true} immediately upon
1501     * idleness of all threads, but will eventually become true if
1502     * threads remain inactive.
1503 jsr166 1.17 *
1504 jsr166 1.28 * @return {@code true} if all threads are currently idle
1505 dl 1.1 */
1506     public boolean isQuiescent() {
1507 dl 1.53 return (runState & ACTIVE_COUNT_MASK) == 0;
1508 dl 1.1 }
1509    
1510     /**
1511     * Returns an estimate of the total number of tasks stolen from
1512     * one thread's work queue by another. The reported value
1513     * underestimates the actual total number of steals when the pool
1514     * is not quiescent. This value may be useful for monitoring and
1515 jsr166 1.17 * tuning fork/join programs: in general, steal counts should be
1516 dl 1.1 * high enough to keep threads busy, but low enough to avoid
1517     * overhead and contention across threads.
1518 jsr166 1.17 *
1519 jsr166 1.16 * @return the number of steals
1520 dl 1.1 */
1521     public long getStealCount() {
1522 dl 1.53 return stealCount;
1523 dl 1.1 }
1524    
1525     /**
1526 dl 1.2 * Returns an estimate of the total number of tasks currently held
1527     * in queues by worker threads (but not including tasks submitted
1528     * to the pool that have not begun executing). This value is only
1529     * an approximation, obtained by iterating across all threads in
1530     * the pool. This method may be useful for tuning task
1531     * granularities.
1532 jsr166 1.17 *
1533 jsr166 1.16 * @return the number of queued tasks
1534 dl 1.1 */
1535     public long getQueuedTaskCount() {
1536     long count = 0;
1537 jsr166 1.71 for (ForkJoinWorkerThread w : workers)
1538 dl 1.53 if (w != null)
1539     count += w.getQueueSize();
1540 dl 1.1 return count;
1541     }
1542    
1543     /**
1544 jsr166 1.40 * Returns an estimate of the number of tasks submitted to this
1545     * pool that have not yet begun executing. This method takes time
1546 dl 1.1 * proportional to the number of submissions.
1547 jsr166 1.17 *
1548 jsr166 1.16 * @return the number of queued submissions
1549 dl 1.1 */
1550     public int getQueuedSubmissionCount() {
1551     return submissionQueue.size();
1552     }
1553    
1554     /**
1555 jsr166 1.28 * Returns {@code true} if there are any tasks submitted to this
1556     * pool that have not yet begun executing.
1557 jsr166 1.17 *
1558 jsr166 1.16 * @return {@code true} if there are any queued submissions
1559 dl 1.1 */
1560     public boolean hasQueuedSubmissions() {
1561     return !submissionQueue.isEmpty();
1562     }
1563    
1564     /**
1565     * Removes and returns the next unexecuted submission if one is
1566     * available. This method may be useful in extensions to this
1567     * class that re-assign work in systems with multiple pools.
1568 jsr166 1.17 *
1569 jsr166 1.28 * @return the next submission, or {@code null} if none
1570 dl 1.1 */
1571     protected ForkJoinTask<?> pollSubmission() {
1572     return submissionQueue.poll();
1573     }
1574    
1575     /**
1576 dl 1.6 * Removes all available unexecuted submitted and forked tasks
1577     * from scheduling queues and adds them to the given collection,
1578     * without altering their execution status. These may include
1579 jsr166 1.41 * artificially generated or wrapped tasks. This method is
1580     * designed to be invoked only when the pool is known to be
1581 dl 1.6 * quiescent. Invocations at other times may not remove all
1582     * tasks. A failure encountered while attempting to add elements
1583 jsr166 1.16 * to collection {@code c} may result in elements being in
1584 dl 1.6 * neither, either or both collections when the associated
1585     * exception is thrown. The behavior of this operation is
1586     * undefined if the specified collection is modified while the
1587     * operation is in progress.
1588 jsr166 1.17 *
1589 dl 1.6 * @param c the collection to transfer elements into
1590     * @return the number of elements transferred
1591     */
1592 dl 1.30 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1593 dl 1.61 int count = submissionQueue.drainTo(c);
1594 jsr166 1.71 for (ForkJoinWorkerThread w : workers)
1595 dl 1.57 if (w != null)
1596 dl 1.61 count += w.drainTasksTo(c);
1597 dl 1.57 return count;
1598     }
1599    
1600     /**
1601 dl 1.1 * Returns a string identifying this pool, as well as its state,
1602     * including indications of run state, parallelism level, and
1603     * worker and task counts.
1604     *
1605     * @return a string identifying this pool, as well as its state
1606     */
1607     public String toString() {
1608     long st = getStealCount();
1609     long qt = getQueuedTaskCount();
1610     long qs = getQueuedSubmissionCount();
1611 dl 1.53 int wc = workerCounts;
1612     int tc = wc >>> TOTAL_COUNT_SHIFT;
1613     int rc = wc & RUNNING_COUNT_MASK;
1614     int pc = parallelism;
1615     int rs = runState;
1616     int ac = rs & ACTIVE_COUNT_MASK;
1617 dl 1.1 return super.toString() +
1618 dl 1.53 "[" + runLevelToString(rs) +
1619     ", parallelism = " + pc +
1620     ", size = " + tc +
1621     ", active = " + ac +
1622     ", running = " + rc +
1623 dl 1.1 ", steals = " + st +
1624     ", tasks = " + qt +
1625     ", submissions = " + qs +
1626     "]";
1627     }
1628    
1629 dl 1.53 private static String runLevelToString(int s) {
1630     return ((s & TERMINATED) != 0 ? "Terminated" :
1631     ((s & TERMINATING) != 0 ? "Terminating" :
1632     ((s & SHUTDOWN) != 0 ? "Shutting down" :
1633     "Running")));
1634 dl 1.1 }
1635    
1636     /**
1637     * Initiates an orderly shutdown in which previously submitted
1638     * tasks are executed, but no new tasks will be accepted.
1639     * Invocation has no additional effect if already shut down.
1640     * Tasks that are in the process of being submitted concurrently
1641     * during the course of this method may or may not be rejected.
1642 jsr166 1.17 *
1643 dl 1.1 * @throws SecurityException if a security manager exists and
1644     * the caller is not permitted to modify threads
1645     * because it does not hold {@link
1646 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1647 dl 1.1 */
1648     public void shutdown() {
1649     checkPermission();
1650 dl 1.53 advanceRunLevel(SHUTDOWN);
1651     tryTerminate(false);
1652 dl 1.1 }
1653    
1654     /**
1655 dl 1.42 * Attempts to cancel and/or stop all tasks, and reject all
1656     * subsequently submitted tasks. Tasks that are in the process of
1657     * being submitted or executed concurrently during the course of
1658     * this method may or may not be rejected. This method cancels
1659     * both existing and unexecuted tasks, in order to permit
1660     * termination in the presence of task dependencies. So the method
1661     * always returns an empty list (unlike the case for some other
1662     * Executors).
1663 jsr166 1.17 *
1664 dl 1.1 * @return an empty list
1665     * @throws SecurityException if a security manager exists and
1666     * the caller is not permitted to modify threads
1667     * because it does not hold {@link
1668 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1669 dl 1.1 */
1670     public List<Runnable> shutdownNow() {
1671     checkPermission();
1672 dl 1.53 tryTerminate(true);
1673 dl 1.1 return Collections.emptyList();
1674     }
1675    
1676     /**
1677 jsr166 1.16 * Returns {@code true} if all tasks have completed following shut down.
1678 dl 1.1 *
1679 jsr166 1.16 * @return {@code true} if all tasks have completed following shut down
1680 dl 1.1 */
1681     public boolean isTerminated() {
1682 dl 1.53 return runState >= TERMINATED;
1683 dl 1.1 }
1684    
1685     /**
1686 jsr166 1.16 * Returns {@code true} if the process of termination has
1687 dl 1.42 * commenced but not yet completed. This method may be useful for
1688     * debugging. A return of {@code true} reported a sufficient
1689     * period after shutdown may indicate that submitted tasks have
1690     * ignored or suppressed interruption, causing this executor not
1691     * to properly terminate.
1692 dl 1.1 *
1693 dl 1.42 * @return {@code true} if terminating but not yet terminated
1694 dl 1.1 */
1695     public boolean isTerminating() {
1696 dl 1.53 return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
1697 dl 1.1 }
1698    
1699     /**
1700 jsr166 1.16 * Returns {@code true} if this pool has been shut down.
1701 dl 1.1 *
1702 jsr166 1.16 * @return {@code true} if this pool has been shut down
1703 dl 1.1 */
1704     public boolean isShutdown() {
1705 dl 1.53 return runState >= SHUTDOWN;
1706 dl 1.42 }
1707    
1708     /**
1709 dl 1.1 * Blocks until all tasks have completed execution after a shutdown
1710     * request, or the timeout occurs, or the current thread is
1711     * interrupted, whichever happens first.
1712     *
1713     * @param timeout the maximum time to wait
1714     * @param unit the time unit of the timeout argument
1715 jsr166 1.16 * @return {@code true} if this executor terminated and
1716     * {@code false} if the timeout elapsed before termination
1717 dl 1.1 * @throws InterruptedException if interrupted while waiting
1718     */
1719     public boolean awaitTermination(long timeout, TimeUnit unit)
1720     throws InterruptedException {
1721 dl 1.57 try {
1722     return termination.awaitAdvanceInterruptibly(0, timeout, unit) > 0;
1723 jsr166 1.69 } catch (TimeoutException ex) {
1724 dl 1.57 return false;
1725     }
1726 dl 1.1 }
1727    
1728     /**
1729     * Interface for extending managed parallelism for tasks running
1730 jsr166 1.35 * in {@link ForkJoinPool}s.
1731     *
1732 dl 1.61 * <p>A {@code ManagedBlocker} provides two methods. Method
1733     * {@code isReleasable} must return {@code true} if blocking is
1734     * not necessary. Method {@code block} blocks the current thread
1735     * if necessary (perhaps internally invoking {@code isReleasable}
1736     * before actually blocking). The unusual methods in this API
1737     * accommodate synchronizers that may, but don't usually, block
1738     * for long periods. Similarly, they allow more efficient internal
1739     * handling of cases in which additional workers may be, but
1740     * usually are not, needed to ensure sufficient parallelism.
1741     * Toward this end, implementations of method {@code isReleasable}
1742     * must be amenable to repeated invocation.
1743 jsr166 1.17 *
1744 dl 1.1 * <p>For example, here is a ManagedBlocker based on a
1745     * ReentrantLock:
1746 jsr166 1.17 * <pre> {@code
1747     * class ManagedLocker implements ManagedBlocker {
1748     * final ReentrantLock lock;
1749     * boolean hasLock = false;
1750     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1751     * public boolean block() {
1752     * if (!hasLock)
1753     * lock.lock();
1754     * return true;
1755     * }
1756     * public boolean isReleasable() {
1757     * return hasLock || (hasLock = lock.tryLock());
1758 dl 1.1 * }
1759 jsr166 1.17 * }}</pre>
1760 dl 1.61 *
1761     * <p>Here is a class that possibly blocks waiting for an
1762     * item on a given queue:
1763     * <pre> {@code
1764     * class QueueTaker<E> implements ManagedBlocker {
1765     * final BlockingQueue<E> queue;
1766     * volatile E item = null;
1767     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
1768     * public boolean block() throws InterruptedException {
1769     * if (item == null)
1770 dl 1.65 * item = queue.take();
1771 dl 1.61 * return true;
1772     * }
1773     * public boolean isReleasable() {
1774 dl 1.65 * return item != null || (item = queue.poll()) != null;
1775 dl 1.61 * }
1776     * public E getItem() { // call after pool.managedBlock completes
1777     * return item;
1778     * }
1779     * }}</pre>
1780 dl 1.1 */
1781     public static interface ManagedBlocker {
1782     /**
1783     * Possibly blocks the current thread, for example waiting for
1784     * a lock or condition.
1785 jsr166 1.17 *
1786 jsr166 1.28 * @return {@code true} if no additional blocking is necessary
1787     * (i.e., if isReleasable would return true)
1788 dl 1.1 * @throws InterruptedException if interrupted while waiting
1789 jsr166 1.17 * (the method is not required to do so, but is allowed to)
1790 dl 1.1 */
1791     boolean block() throws InterruptedException;
1792    
1793     /**
1794 jsr166 1.28 * Returns {@code true} if blocking is unnecessary.
1795 dl 1.1 */
1796     boolean isReleasable();
1797     }
1798    
1799     /**
1800     * Blocks in accord with the given blocker. If the current thread
1801 jsr166 1.38 * is a {@link ForkJoinWorkerThread}, this method possibly
1802     * arranges for a spare thread to be activated if necessary to
1803 dl 1.57 * ensure sufficient parallelism while the current thread is blocked.
1804 jsr166 1.38 *
1805     * <p>If the caller is not a {@link ForkJoinTask}, this method is
1806     * behaviorally equivalent to
1807 jsr166 1.17 * <pre> {@code
1808     * while (!blocker.isReleasable())
1809     * if (blocker.block())
1810     * return;
1811     * }</pre>
1812 jsr166 1.38 *
1813     * If the caller is a {@code ForkJoinTask}, then the pool may
1814     * first be expanded to ensure parallelism, and later adjusted.
1815 dl 1.1 *
1816     * @param blocker the blocker
1817 jsr166 1.16 * @throws InterruptedException if blocker.block did so
1818 dl 1.1 */
1819 dl 1.57 public static void managedBlock(ManagedBlocker blocker)
1820 dl 1.1 throws InterruptedException {
1821     Thread t = Thread.currentThread();
1822 dl 1.61 if (t instanceof ForkJoinWorkerThread) {
1823     ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
1824     w.pool.awaitBlocker(blocker);
1825     }
1826 dl 1.57 else {
1827     do {} while (!blocker.isReleasable() && !blocker.block());
1828     }
1829 dl 1.1 }
1830    
1831 dl 1.33 // AbstractExecutorService overrides. These rely on undocumented
1832     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
1833     // implement RunnableFuture.
1834 dl 1.2
1835     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
1836 jsr166 1.34 return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
1837 dl 1.2 }
1838    
1839     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
1840 jsr166 1.34 return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
1841 dl 1.2 }
1842    
1843 jsr166 1.27 // Unsafe mechanics
1844 dl 1.1
1845 jsr166 1.21 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1846 dl 1.53 private static final long workerCountsOffset =
1847     objectFieldOffset("workerCounts", ForkJoinPool.class);
1848     private static final long runStateOffset =
1849     objectFieldOffset("runState", ForkJoinPool.class);
1850 jsr166 1.25 private static final long eventCountOffset =
1851 jsr166 1.27 objectFieldOffset("eventCount", ForkJoinPool.class);
1852 dl 1.53 private static final long eventWaitersOffset =
1853 jsr166 1.75 objectFieldOffset("eventWaiters", ForkJoinPool.class);
1854 dl 1.53 private static final long stealCountOffset =
1855 jsr166 1.75 objectFieldOffset("stealCount", ForkJoinPool.class);
1856 dl 1.61 private static final long spareWaitersOffset =
1857 jsr166 1.75 objectFieldOffset("spareWaiters", ForkJoinPool.class);
1858 dl 1.53
1859 jsr166 1.27 private static long objectFieldOffset(String field, Class<?> klazz) {
1860     try {
1861     return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1862     } catch (NoSuchFieldException e) {
1863     // Convert Exception to corresponding Error
1864     NoSuchFieldError error = new NoSuchFieldError(field);
1865     error.initCause(e);
1866     throw error;
1867     }
1868     }
1869    
1870     /**
1871     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1872     * Replace with a simple call to Unsafe.getUnsafe when integrating
1873     * into a jdk.
1874     *
1875     * @return a sun.misc.Unsafe
1876     */
1877     private static sun.misc.Unsafe getUnsafe() {
1878     try {
1879     return sun.misc.Unsafe.getUnsafe();
1880     } catch (SecurityException se) {
1881     try {
1882     return java.security.AccessController.doPrivileged
1883     (new java.security
1884     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1885     public sun.misc.Unsafe run() throws Exception {
1886     java.lang.reflect.Field f = sun.misc
1887     .Unsafe.class.getDeclaredField("theUnsafe");
1888     f.setAccessible(true);
1889     return (sun.misc.Unsafe) f.get(null);
1890     }});
1891     } catch (java.security.PrivilegedActionException e) {
1892     throw new RuntimeException("Could not initialize intrinsics",
1893     e.getCause());
1894     }
1895     }
1896     }
1897 dl 1.1 }