ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
Revision: 1.85
Committed: Sun Nov 21 13:55:04 2010 UTC (13 years, 6 months ago) by dl
Branch: MAIN
Changes since 1.84: +73 -55 lines
Log Message:
Remove implicit restriction on join

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package jsr166y;
8 jsr166 1.22
9     import java.util.ArrayList;
10     import java.util.Arrays;
11     import java.util.Collection;
12     import java.util.Collections;
13     import java.util.List;
14 dl 1.78 import java.util.concurrent.AbstractExecutorService;
15     import java.util.concurrent.Callable;
16     import java.util.concurrent.ExecutorService;
17     import java.util.concurrent.Future;
18     import java.util.concurrent.RejectedExecutionException;
19     import java.util.concurrent.RunnableFuture;
20     import java.util.concurrent.TimeUnit;
21     import java.util.concurrent.TimeoutException;
22     import java.util.concurrent.atomic.AtomicInteger;
23 jsr166 1.22 import java.util.concurrent.locks.LockSupport;
24     import java.util.concurrent.locks.ReentrantLock;
25 dl 1.1
26     /**
27 jsr166 1.29 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
28 jsr166 1.39 * A {@code ForkJoinPool} provides the entry point for submissions
29 dl 1.57 * from non-{@code ForkJoinTask} clients, as well as management and
30 jsr166 1.48 * monitoring operations.
31 dl 1.1 *
32 dl 1.42 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
33     * ExecutorService} mainly by virtue of employing
34     * <em>work-stealing</em>: all threads in the pool attempt to find and
35     * execute subtasks created by other active tasks (eventually blocking
36     * waiting for work if none exist). This enables efficient processing
37     * when most tasks spawn other subtasks (as do most {@code
38 dl 1.57 * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
39     * constructors, {@code ForkJoinPool}s may also be appropriate for use
40     * with event-style tasks that are never joined.
41 dl 1.1 *
42 dl 1.42 * <p>A {@code ForkJoinPool} is constructed with a given target
43     * parallelism level; by default, equal to the number of available
44 dl 1.57 * processors. The pool attempts to maintain enough active (or
45     * available) threads by dynamically adding, suspending, or resuming
46     * internal worker threads, even if some tasks are stalled waiting to
47     * join others. However, no such adjustments are guaranteed in the
48     * face of blocked IO or other unmanaged synchronization. The nested
49     * {@link ManagedBlocker} interface enables extension of the kinds of
50     * synchronization accommodated.
51 dl 1.1 *
52     * <p>In addition to execution and lifecycle control methods, this
53     * class provides status check methods (for example
54 jsr166 1.29 * {@link #getStealCount}) that are intended to aid in developing,
55 dl 1.1 * tuning, and monitoring fork/join applications. Also, method
56 jsr166 1.29 * {@link #toString} returns indications of pool state in a
57 dl 1.2 * convenient form for informal monitoring.
58 dl 1.1 *
59 dl 1.57 * <p> As is the case with other ExecutorServices, there are three
60 dl 1.60 * main task execution methods summarized in the following
61 dl 1.57 * table. These are designed to be used by clients not already engaged
62     * in fork/join computations in the current pool. The main forms of
63     * these methods accept instances of {@code ForkJoinTask}, but
64     * overloaded forms also allow mixed execution of plain {@code
65     * Runnable}- or {@code Callable}- based activities as well. However,
66     * tasks that are already executing in a pool should normally
67     * <em>NOT</em> use these pool execution methods, but instead use the
68 dl 1.59 * within-computation forms listed in the table.
69 dl 1.57 *
70     * <table BORDER CELLPADDING=3 CELLSPACING=1>
71     * <tr>
72     * <td></td>
73     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
74     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
75     * </tr>
76     * <tr>
77 jsr166 1.67 * <td> <b>Arrange async execution</td>
78 dl 1.57 * <td> {@link #execute(ForkJoinTask)}</td>
79     * <td> {@link ForkJoinTask#fork}</td>
80     * </tr>
81     * <tr>
82     * <td> <b>Await and obtain result</td>
83     * <td> {@link #invoke(ForkJoinTask)}</td>
84     * <td> {@link ForkJoinTask#invoke}</td>
85     * </tr>
86     * <tr>
87     * <td> <b>Arrange exec and obtain Future</td>
88     * <td> {@link #submit(ForkJoinTask)}</td>
89     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
90     * </tr>
91     * </table>
92 dl 1.59 *
93 dl 1.42 * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
94     * used for all parallel task execution in a program or subsystem.
95     * Otherwise, use would not usually outweigh the construction and
96     * bookkeeping overhead of creating a large set of threads. For
97 jsr166 1.43 * example, a common pool could be used for the {@code SortTasks}
98 dl 1.42 * illustrated in {@link RecursiveAction}. Because {@code
99     * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
100 jsr166 1.43 * daemon} mode, there is typically no need to explicitly {@link
101 dl 1.42 * #shutdown} such a pool upon program exit.
102     *
103     * <pre>
104     * static final ForkJoinPool mainPool = new ForkJoinPool();
105     * ...
106     * public void sort(long[] array) {
107     * mainPool.invoke(new SortTask(array, 0, array.length));
108     * }
109     * </pre>
110     *
111 dl 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
112 dl 1.2 * maximum number of running threads to 32767. Attempts to create
113 jsr166 1.48 * pools with greater than the maximum number result in
114 jsr166 1.39 * {@code IllegalArgumentException}.
115 jsr166 1.16 *
116 jsr166 1.48 * <p>This implementation rejects submitted tasks (that is, by throwing
117 dl 1.58 * {@link RejectedExecutionException}) only when the pool is shut down
118 dl 1.62 * or internal resources have been exhausted.
119 jsr166 1.48 *
120 jsr166 1.16 * @since 1.7
121     * @author Doug Lea
122 dl 1.1 */
123 dl 1.2 public class ForkJoinPool extends AbstractExecutorService {
124 dl 1.1
125     /*
126 dl 1.53 * Implementation Overview
127     *
128     * This class provides the central bookkeeping and control for a
129     * set of worker threads: Submissions from non-FJ threads enter
130     * into a submission queue. Workers take these tasks and typically
131     * split them into subtasks that may be stolen by other workers.
132     * The main work-stealing mechanics implemented in class
133     * ForkJoinWorkerThread give first priority to processing tasks
134     * from their own queues (LIFO or FIFO, depending on mode), then
135     * to randomized FIFO steals of tasks in other worker queues, and
136     * lastly to new submissions. These mechanics do not consider
137     * affinities, loads, cache localities, etc, so rarely provide the
138     * best possible performance on a given machine, but portably
139     * provide good throughput by averaging over these factors.
140     * (Further, even if we did try to use such information, we do not
141     * usually have a basis for exploiting it. For example, some sets
142     * of tasks profit from cache affinities, but others are harmed by
143     * cache pollution effects.)
144     *
145 dl 1.58 * Beyond work-stealing support and essential bookkeeping, the
146 dl 1.60 * main responsibility of this framework is to take actions when
147     * one worker is waiting to join a task stolen (or always held by)
148 jsr166 1.67 * another. Because we are multiplexing many tasks on to a pool
149 dl 1.60 * of workers, we can't just let them block (as in Thread.join).
150     * We also cannot just reassign the joiner's run-time stack with
151     * another and replace it later, which would be a form of
152     * "continuation", that even if possible is not necessarily a good
153     * idea. Given that the creation costs of most threads on most
154     * systems mainly surrounds setting up runtime stacks, thread
155     * creation and switching is usually not much more expensive than
156     * stack creation and switching, and is more flexible). Instead we
157     * combine two tactics:
158 dl 1.58 *
159 dl 1.60 * Helping: Arranging for the joiner to execute some task that it
160 dl 1.58 * would be running if the steal had not occurred. Method
161     * ForkJoinWorkerThread.helpJoinTask tracks joining->stealing
162     * links to try to find such a task.
163     *
164 dl 1.61 * Compensating: Unless there are already enough live threads,
165 jsr166 1.68 * method helpMaintainParallelism() may create or
166 dl 1.61 * re-activate a spare thread to compensate for blocked
167     * joiners until they unblock.
168 dl 1.58 *
169 dl 1.66 * It is impossible to keep exactly the target (parallelism)
170     * number of threads running at any given time. Determining
171     * existence of conservatively safe helping targets, the
172     * availability of already-created spares, and the apparent need
173     * to create new spares are all racy and require heuristic
174     * guidance, so we rely on multiple retries of each. Compensation
175     * occurs in slow-motion. It is triggered only upon timeouts of
176     * Object.wait used for joins. This reduces poor decisions that
177     * would otherwise be made when threads are waiting for others
178     * that are stalled because of unrelated activities such as
179     * garbage collection.
180 dl 1.58 *
181 dl 1.61 * The ManagedBlocker extension API can't use helping so relies
182     * only on compensation in method awaitBlocker.
183 dl 1.58 *
184 dl 1.53 * The main throughput advantages of work-stealing stem from
185     * decentralized control -- workers mostly steal tasks from each
186     * other. We do not want to negate this by creating bottlenecks
187 dl 1.58 * implementing other management responsibilities. So we use a
188     * collection of techniques that avoid, reduce, or cope well with
189     * contention. These entail several instances of bit-packing into
190     * CASable fields to maintain only the minimally required
191     * atomicity. To enable such packing, we restrict maximum
192     * parallelism to (1<<15)-1 (enabling twice this (to accommodate
193     * unbalanced increments and decrements) to fit into a 16 bit
194     * field, which is far in excess of normal operating range. Even
195     * though updates to some of these bookkeeping fields do sometimes
196     * contend with each other, they don't normally cache-contend with
197     * updates to others enough to warrant memory padding or
198     * isolation. So they are all held as fields of ForkJoinPool
199     * objects. The main capabilities are as follows:
200 dl 1.53 *
201     * 1. Creating and removing workers. Workers are recorded in the
202     * "workers" array. This is an array as opposed to some other data
203     * structure to support index-based random steals by workers.
204     * Updates to the array recording new workers and unrecording
205     * terminated ones are protected from each other by a lock
206     * (workerLock) but the array is otherwise concurrently readable,
207     * and accessed directly by workers. To simplify index-based
208     * operations, the array size is always a power of two, and all
209 dl 1.56 * readers must tolerate null slots. Currently, all worker thread
210     * creation is on-demand, triggered by task submissions,
211     * replacement of terminated workers, and/or compensation for
212     * blocked workers. However, all other support code is set up to
213     * work with other policies.
214 dl 1.53 *
215 dl 1.61 * To ensure that we do not hold on to worker references that
216     * would prevent GC, ALL accesses to workers are via indices into
217     * the workers array (which is one source of some of the unusual
218     * code constructions here). In essence, the workers array serves
219     * as a WeakReference mechanism. Thus for example the event queue
220     * stores worker indices, not worker references. Access to the
221     * workers in associated methods (for example releaseEventWaiters)
222     * must both index-check and null-check the IDs. All such accesses
223     * ignore bad IDs by returning out early from what they are doing,
224     * since this can only be associated with shutdown, in which case
225     * it is OK to give up. On termination, we just clobber these
226     * data structures without trying to use them.
227     *
228 dl 1.53 * 2. Bookkeeping for dynamically adding and removing workers. We
229 dl 1.57 * aim to approximately maintain the given level of parallelism.
230     * When some workers are known to be blocked (on joins or via
231 dl 1.53 * ManagedBlocker), we may create or resume others to take their
232     * place until they unblock (see below). Implementing this
233     * requires counts of the number of "running" threads (i.e., those
234 jsr166 1.67 * that are neither blocked nor artificially suspended) as well as
235 dl 1.53 * the total number. These two values are packed into one field,
236     * "workerCounts" because we need accurate snapshots when deciding
237 dl 1.58 * to create, resume or suspend. Note however that the
238 jsr166 1.67 * correspondence of these counts to reality is not guaranteed. In
239 dl 1.58 * particular updates for unblocked threads may lag until they
240     * actually wake up.
241 dl 1.53 *
242     * 3. Maintaining global run state. The run state of the pool
243     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
244     * those in other Executor implementations, as well as a count of
245     * "active" workers -- those that are, or soon will be, or
246     * recently were executing tasks. The runLevel and active count
247     * are packed together in order to correctly trigger shutdown and
248     * termination. Without care, active counts can be subject to very
249     * high contention. We substantially reduce this contention by
250     * relaxing update rules. A worker must claim active status
251     * prospectively, by activating if it sees that a submitted or
252     * stealable task exists (it may find after activating that the
253     * task no longer exists). It stays active while processing this
254     * task (if it exists) and any other local subtasks it produces,
255     * until it cannot find any other tasks. It then tries
256     * inactivating (see method preStep), but upon update contention
257     * instead scans for more tasks, later retrying inactivation if it
258     * doesn't find any.
259     *
260     * 4. Managing idle workers waiting for tasks. We cannot let
261     * workers spin indefinitely scanning for tasks when none are
262     * available. On the other hand, we must quickly prod them into
263     * action when new tasks are submitted or generated. We
264     * park/unpark these idle workers using an event-count scheme.
265     * Field eventCount is incremented upon events that may enable
266     * workers that previously could not find a task to now find one:
267     * Submission of a new task to the pool, or another worker pushing
268     * a task onto a previously empty queue. (We also use this
269 dl 1.64 * mechanism for configuration and termination actions that
270     * require wakeups of idle workers). Each worker maintains its
271     * last known event count, and blocks when a scan for work did not
272     * find a task AND its lastEventCount matches the current
273     * eventCount. Waiting idle workers are recorded in a variant of
274     * Treiber stack headed by field eventWaiters which, when nonzero,
275     * encodes the thread index and count awaited for by the worker
276     * thread most recently calling eventSync. This thread in turn has
277     * a record (field nextEventWaiter) for the next waiting worker.
278     * In addition to allowing simpler decisions about need for
279     * wakeup, the event count bits in eventWaiters serve the role of
280     * tags to avoid ABA errors in Treiber stacks. Upon any wakeup,
281 dl 1.66 * released threads also try to release at most two others. The
282     * net effect is a tree-like diffusion of signals, where released
283     * threads (and possibly others) help with unparks. To further
284     * reduce contention effects a bit, failed CASes to increment
285     * field eventCount are tolerated without retries in signalWork.
286 dl 1.53 * Conceptually they are merged into the same event, which is OK
287     * when their only purpose is to enable workers to scan for work.
288     *
289 dl 1.66 * 5. Managing suspension of extra workers. When a worker notices
290     * (usually upon timeout of a wait()) that there are too few
291     * running threads, we may create a new thread to maintain
292     * parallelism level, or at least avoid starvation. Usually, extra
293     * threads are needed for only very short periods, yet join
294     * dependencies are such that we sometimes need them in
295     * bursts. Rather than create new threads each time this happens,
296     * we suspend no-longer-needed extra ones as "spares". For most
297     * purposes, we don't distinguish "extra" spare threads from
298     * normal "core" threads: On each call to preStep (the only point
299     * at which we can do this) a worker checks to see if there are
300     * now too many running workers, and if so, suspends itself.
301     * Method helpMaintainParallelism looks for suspended threads to
302     * resume before considering creating a new replacement. The
303     * spares themselves are encoded on another variant of a Treiber
304     * Stack, headed at field "spareWaiters". Note that the use of
305     * spares is intrinsically racy. One thread may become a spare at
306     * about the same time as another is needlessly being created. We
307     * counteract this and related slop in part by requiring resumed
308     * spares to immediately recheck (in preStep) to see whether they
309 jsr166 1.72 * should re-suspend.
310 dl 1.66 *
311     * 6. Killing off unneeded workers. A timeout mechanism is used to
312     * shed unused workers: The oldest (first) event queue waiter uses
313     * a timed rather than hard wait. When this wait times out without
314     * a normal wakeup, it tries to shutdown any one (for convenience
315     * the newest) other spare or event waiter via
316     * tryShutdownUnusedWorker. This eventually reduces the number of
317     * worker threads to a minimum of one after a long enough period
318     * without use.
319 dl 1.64 *
320     * 7. Deciding when to create new workers. The main dynamic
321 dl 1.61 * control in this class is deciding when to create extra threads
322     * in method helpMaintainParallelism. We would like to keep
323 jsr166 1.67 * exactly #parallelism threads running, which is an impossible
324 dl 1.61 * task. We always need to create one when the number of running
325     * threads would become zero and all workers are busy. Beyond
326 jsr166 1.68 * this, we must rely on heuristics that work well in the
327     * presence of transient phenomena such as GC stalls, dynamic
328 dl 1.61 * compilation, and wake-up lags. These transients are extremely
329     * common -- we are normally trying to fully saturate the CPUs on
330     * a machine, so almost any activity other than running tasks
331 dl 1.66 * impedes accuracy. Our main defense is to allow parallelism to
332     * lapse for a while during joins, and use a timeout to see if,
333     * after the resulting settling, there is still a need for
334     * additional workers. This also better copes with the fact that
335     * some of the methods in this class tend to never become compiled
336     * (but are interpreted), so some components of the entire set of
337     * controls might execute 100 times faster than others. And
338     * similarly for cases where the apparent lack of work is just due
339     * to GC stalls and other transient system activity.
340 dl 1.53 *
341     * Beware that there is a lot of representation-level coupling
342     * among classes ForkJoinPool, ForkJoinWorkerThread, and
343     * ForkJoinTask. For example, direct access to "workers" array by
344     * workers, and direct access to ForkJoinTask.status by both
345     * ForkJoinPool and ForkJoinWorkerThread. There is little point
346     * trying to reduce this, since any associated future changes in
347     * representations will need to be accompanied by algorithmic
348     * changes anyway.
349     *
350     * Style notes: There are lots of inline assignments (of form
351     * "while ((local = field) != 0)") which are usually the simplest
352 dl 1.61 * way to ensure the required read orderings (which are sometimes
353     * critical). Also several occurrences of the unusual "do {}
354 jsr166 1.69 * while (!cas...)" which is the simplest way to force an update of
355 dl 1.61 * a CAS'ed variable. There are also other coding oddities that
356     * help some methods perform reasonably even when interpreted (not
357     * compiled), at the expense of some messy constructions that
358     * reduce byte code counts.
359 dl 1.53 *
360     * The order of declarations in this file is: (1) statics (2)
361     * fields (along with constants used when unpacking some of them)
362     * (3) internal control methods (4) callbacks and other support
363     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
364     * methods (plus a few little helpers).
365 dl 1.1 */
366    
367     /**
368 jsr166 1.35 * Factory for creating new {@link ForkJoinWorkerThread}s.
369     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
370     * for {@code ForkJoinWorkerThread} subclasses that extend base
371     * functionality or initialize threads with different contexts.
372 dl 1.1 */
373     public static interface ForkJoinWorkerThreadFactory {
374     /**
375     * Returns a new worker thread operating in the given pool.
376     *
377     * @param pool the pool this thread works in
378 jsr166 1.48 * @throws NullPointerException if the pool is null
379 dl 1.1 */
380     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
381     }
382    
383     /**
384 jsr166 1.17 * Default ForkJoinWorkerThreadFactory implementation; creates a
385 dl 1.1 * new ForkJoinWorkerThread.
386     */
387 dl 1.57 static class DefaultForkJoinWorkerThreadFactory
388 dl 1.1 implements ForkJoinWorkerThreadFactory {
389     public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
390 dl 1.53 return new ForkJoinWorkerThread(pool);
391 dl 1.1 }
392     }
393    
394     /**
395 dl 1.2 * Creates a new ForkJoinWorkerThread. This factory is used unless
396     * overridden in ForkJoinPool constructors.
397 dl 1.1 */
398 dl 1.2 public static final ForkJoinWorkerThreadFactory
399 dl 1.1 defaultForkJoinWorkerThreadFactory =
400     new DefaultForkJoinWorkerThreadFactory();
401    
402     /**
403     * Permission required for callers of methods that may start or
404     * kill threads.
405     */
406     private static final RuntimePermission modifyThreadPermission =
407     new RuntimePermission("modifyThread");
408    
409     /**
410     * If there is a security manager, makes sure caller has
411     * permission to modify threads.
412     */
413     private static void checkPermission() {
414     SecurityManager security = System.getSecurityManager();
415     if (security != null)
416     security.checkPermission(modifyThreadPermission);
417     }
418    
419     /**
420     * Generator for assigning sequence numbers as pool names.
421     */
422     private static final AtomicInteger poolNumberGenerator =
423     new AtomicInteger();
424    
425     /**
426 dl 1.66 * The time to block in a join (see awaitJoin) before checking if
427     * a new worker should be (re)started to maintain parallelism
428 jsr166 1.67 * level. The value should be short enough to maintain global
429 dl 1.66 * responsiveness and progress but long enough to avoid
430     * counterproductive firings during GC stalls or unrelated system
431     * activity, and to not bog down systems with continual re-firings
432     * on GCs or legitimately long waits.
433     */
434     private static final long JOIN_TIMEOUT_MILLIS = 250L; // 4 per second
435    
436     /**
437 dl 1.64 * The wakeup interval (in nanoseconds) for the oldest worker
438 dl 1.77 * waiting for an event to invoke tryShutdownUnusedWorker to
439     * shrink the number of workers. The exact value does not matter
440     * too much. It must be short enough to release resources during
441     * sustained periods of idleness, but not so short that threads
442     * are continually re-created.
443 dl 1.64 */
444     private static final long SHRINK_RATE_NANOS =
445 dl 1.66 30L * 1000L * 1000L * 1000L; // 2 per minute
446 dl 1.64
447     /**
448 dl 1.61 * Absolute bound for parallelism level. Twice this number plus
449     * one (i.e., 0xfff) must fit into a 16bit field to enable
450     * word-packing for some counts and indices.
451 dl 1.53 */
452 dl 1.61 private static final int MAX_WORKERS = 0x7fff;
453 dl 1.53
454     /**
455     * Array holding all worker threads in the pool. Array size must
456     * be a power of two. Updates and replacements are protected by
457     * workerLock, but the array is always kept in a consistent enough
458     * state to be randomly accessed without locking by workers
459     * performing work-stealing, as well as other traversal-based
460     * methods in this class. All readers must tolerate that some
461     * array slots may be null.
462 dl 1.1 */
463     volatile ForkJoinWorkerThread[] workers;
464    
465     /**
466 dl 1.53 * Queue for external submissions.
467 dl 1.1 */
468 dl 1.53 private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
469 dl 1.1
470     /**
471 dl 1.53 * Lock protecting updates to workers array.
472 dl 1.1 */
473 dl 1.53 private final ReentrantLock workerLock;
474 dl 1.1
475     /**
476 dl 1.53 * Latch released upon termination.
477 dl 1.1 */
478 dl 1.57 private final Phaser termination;
479 dl 1.1
480     /**
481     * Creation factory for worker threads.
482     */
483     private final ForkJoinWorkerThreadFactory factory;
484    
485     /**
486 dl 1.53 * Sum of per-thread steal counts, updated only when threads are
487     * idle or terminating.
488 dl 1.1 */
489 dl 1.53 private volatile long stealCount;
490 dl 1.1
491     /**
492 jsr166 1.67 * Encoded record of top of Treiber stack of threads waiting for
493 dl 1.53 * events. The top 32 bits contain the count being waited for. The
494 dl 1.61 * bottom 16 bits contains one plus the pool index of waiting
495     * worker thread. (Bits 16-31 are unused.)
496 dl 1.1 */
497 dl 1.53 private volatile long eventWaiters;
498    
499     private static final int EVENT_COUNT_SHIFT = 32;
500 dl 1.61 private static final long WAITER_ID_MASK = (1L << 16) - 1L;
501 dl 1.1
502     /**
503 dl 1.53 * A counter for events that may wake up worker threads:
504     * - Submission of a new task to the pool
505     * - A worker pushing a task on an empty queue
506 dl 1.61 * - termination
507 dl 1.1 */
508 dl 1.53 private volatile int eventCount;
509    
510     /**
511 jsr166 1.67 * Encoded record of top of Treiber stack of spare threads waiting
512 dl 1.61 * for resumption. The top 16 bits contain an arbitrary count to
513     * avoid ABA effects. The bottom 16bits contains one plus the pool
514     * index of waiting worker thread.
515     */
516     private volatile int spareWaiters;
517    
518     private static final int SPARE_COUNT_SHIFT = 16;
519     private static final int SPARE_ID_MASK = (1 << 16) - 1;
520    
521     /**
522 dl 1.53 * Lifecycle control. The low word contains the number of workers
523     * that are (probably) executing tasks. This value is atomically
524     * incremented before a worker gets a task to run, and decremented
525 jsr166 1.79 * when a worker has no tasks and cannot find any. Bits 16-18
526 dl 1.53 * contain runLevel value. When all are zero, the pool is
527     * running. Level transitions are monotonic (running -> shutdown
528     * -> terminating -> terminated) so each transition adds a bit.
529     * These are bundled together to ensure consistent read for
530     * termination checks (i.e., that runLevel is at least SHUTDOWN
531     * and active threads is zero).
532 dl 1.64 *
533     * Notes: Most direct CASes are dependent on these bitfield
534     * positions. Also, this field is non-private to enable direct
535     * performance-sensitive CASes in ForkJoinWorkerThread.
536 dl 1.53 */
537 dl 1.64 volatile int runState;
538 dl 1.53
539     // Note: The order among run level values matters.
540     private static final int RUNLEVEL_SHIFT = 16;
541     private static final int SHUTDOWN = 1 << RUNLEVEL_SHIFT;
542     private static final int TERMINATING = 1 << (RUNLEVEL_SHIFT + 1);
543     private static final int TERMINATED = 1 << (RUNLEVEL_SHIFT + 2);
544     private static final int ACTIVE_COUNT_MASK = (1 << RUNLEVEL_SHIFT) - 1;
545 dl 1.1
546     /**
547 dl 1.53 * Holds number of total (i.e., created and not yet terminated)
548     * and running (i.e., not blocked on joins or other managed sync)
549     * threads, packed together to ensure consistent snapshot when
550     * making decisions about creating and suspending spare
551     * threads. Updated only by CAS. Note that adding a new worker
552     * requires incrementing both counts, since workers start off in
553 dl 1.60 * running state.
554 dl 1.53 */
555     private volatile int workerCounts;
556    
557     private static final int TOTAL_COUNT_SHIFT = 16;
558     private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
559     private static final int ONE_RUNNING = 1;
560     private static final int ONE_TOTAL = 1 << TOTAL_COUNT_SHIFT;
561    
562 dl 1.1 /**
563 dl 1.53 * The target parallelism level.
564 dl 1.57 * Accessed directly by ForkJoinWorkerThreads.
565 dl 1.1 */
566 dl 1.57 final int parallelism;
567 dl 1.1
568     /**
569 dl 1.53 * True if use local fifo, not default lifo, for local polling
570 dl 1.57 * Read by, and replicated by ForkJoinWorkerThreads
571 dl 1.1 */
572 dl 1.57 final boolean locallyFifo;
573 dl 1.1
574     /**
575 dl 1.57 * The uncaught exception handler used when any worker abruptly
576     * terminates.
577 dl 1.1 */
578 dl 1.57 private final Thread.UncaughtExceptionHandler ueh;
579 dl 1.6
580     /**
581 dl 1.53 * Pool number, just for assigning useful names to worker threads
582 dl 1.1 */
583 dl 1.53 private final int poolNumber;
584 dl 1.1
585 dl 1.64 // Utilities for CASing fields. Note that most of these
586     // are usually manually inlined by callers
587 dl 1.1
588     /**
589 dl 1.61 * Increments running count part of workerCounts
590 dl 1.1 */
591 dl 1.57 final void incrementRunningCount() {
592     int c;
593 dl 1.53 do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
594 dl 1.59 c = workerCounts,
595 dl 1.57 c + ONE_RUNNING));
596 dl 1.1 }
597 dl 1.58
598 dl 1.1 /**
599 dl 1.85 * Tries to increment running count part of workerCounts
600     */
601     final boolean tryIncrementRunningCount() {
602     int c;
603     return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
604     c = workerCounts,
605     c + ONE_RUNNING);
606     }
607    
608     /**
609 dl 1.57 * Tries to decrement running count unless already zero
610 dl 1.56 */
611     final boolean tryDecrementRunningCount() {
612     int wc = workerCounts;
613     if ((wc & RUNNING_COUNT_MASK) == 0)
614     return false;
615     return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
616     wc, wc - ONE_RUNNING);
617     }
618    
619     /**
620 dl 1.61 * Forces decrement of encoded workerCounts, awaiting nonzero if
621     * (rarely) necessary when other count updates lag.
622     *
623     * @param dr -- either zero or ONE_RUNNING
624 dl 1.77 * @param dt -- either zero or ONE_TOTAL
625 dl 1.58 */
626 dl 1.61 private void decrementWorkerCounts(int dr, int dt) {
627     for (;;) {
628     int wc = workerCounts;
629     if ((wc & RUNNING_COUNT_MASK) - dr < 0 ||
630 dl 1.64 (wc >>> TOTAL_COUNT_SHIFT) - dt < 0) {
631     if ((runState & TERMINATED) != 0)
632     return; // lagging termination on a backout
633 dl 1.61 Thread.yield();
634 dl 1.64 }
635 dl 1.61 if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
636     wc, wc - (dr + dt)))
637     return;
638     }
639     }
640    
641     /**
642 jsr166 1.16 * Tries decrementing active count; fails on contention.
643 dl 1.53 * Called when workers cannot find tasks to run.
644     */
645     final boolean tryDecrementActiveCount() {
646     int c;
647     return UNSAFE.compareAndSwapInt(this, runStateOffset,
648 dl 1.64 c = runState, c - 1);
649 dl 1.53 }
650    
651     /**
652     * Advances to at least the given level. Returns true if not
653     * already in at least the given level.
654     */
655     private boolean advanceRunLevel(int level) {
656     for (;;) {
657     int s = runState;
658     if ((s & level) != 0)
659     return false;
660     if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
661     return true;
662     }
663     }
664    
665     // workers array maintenance
666    
667     /**
668     * Records and returns a workers array index for new worker.
669     */
670     private int recordWorker(ForkJoinWorkerThread w) {
671     // Try using slot totalCount-1. If not available, scan and/or resize
672     int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
673     final ReentrantLock lock = this.workerLock;
674     lock.lock();
675     try {
676     ForkJoinWorkerThread[] ws = workers;
677 dl 1.61 int n = ws.length;
678     if (k < 0 || k >= n || ws[k] != null) {
679     for (k = 0; k < n && ws[k] != null; ++k)
680 dl 1.53 ;
681 dl 1.61 if (k == n)
682 dl 1.85 ws = workers = Arrays.copyOf(ws, n << 1);
683 dl 1.53 }
684     ws[k] = w;
685 dl 1.85 int c = eventCount; // advance event count to ensure visibility
686     UNSAFE.compareAndSwapInt(this, eventCountOffset, c, c+1);
687 dl 1.53 } finally {
688     lock.unlock();
689     }
690     return k;
691     }
692    
693     /**
694 jsr166 1.71 * Nulls out record of worker in workers array.
695 dl 1.53 */
696     private void forgetWorker(ForkJoinWorkerThread w) {
697     int idx = w.poolIndex;
698 jsr166 1.67 // Locking helps method recordWorker avoid unnecessary expansion
699 dl 1.53 final ReentrantLock lock = this.workerLock;
700     lock.lock();
701     try {
702     ForkJoinWorkerThread[] ws = workers;
703     if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
704     ws[idx] = null;
705     } finally {
706     lock.unlock();
707     }
708     }
709    
710     /**
711     * Final callback from terminating worker. Removes record of
712     * worker from array, and adjusts counts. If pool is shutting
713 jsr166 1.67 * down, tries to complete termination.
714 dl 1.53 *
715     * @param w the worker
716     */
717     final void workerTerminated(ForkJoinWorkerThread w) {
718     forgetWorker(w);
719 dl 1.83 decrementWorkerCounts(w.isTrimmed() ? 0 : ONE_RUNNING, ONE_TOTAL);
720 dl 1.61 while (w.stealCount != 0) // collect final count
721     tryAccumulateStealCount(w);
722     tryTerminate(false);
723 dl 1.53 }
724    
725     // Waiting for and signalling events
726    
727     /**
728     * Releases workers blocked on a count not equal to current count.
729 dl 1.61 * Normally called after precheck that eventWaiters isn't zero to
730 dl 1.64 * avoid wasted array checks. Gives up upon a change in count or
731 dl 1.66 * upon releasing two workers, letting others take over.
732 dl 1.53 */
733 dl 1.64 private void releaseEventWaiters() {
734 dl 1.61 ForkJoinWorkerThread[] ws = workers;
735     int n = ws.length;
736 dl 1.64 long h = eventWaiters;
737     int ec = eventCount;
738 dl 1.66 boolean releasedOne = false;
739 dl 1.64 ForkJoinWorkerThread w; int id;
740 dl 1.66 while ((id = ((int)(h & WAITER_ID_MASK)) - 1) >= 0 &&
741     (int)(h >>> EVENT_COUNT_SHIFT) != ec &&
742     id < n && (w = ws[id]) != null) {
743     if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
744     h, w.nextWaiter)) {
745     LockSupport.unpark(w);
746     if (releasedOne) // exit on second release
747     break;
748     releasedOne = true;
749     }
750     if (eventCount != ec)
751 dl 1.61 break;
752 dl 1.66 h = eventWaiters;
753 dl 1.53 }
754     }
755    
756     /**
757 dl 1.61 * Tries to advance eventCount and releases waiters. Called only
758     * from workers.
759 dl 1.53 */
760     final void signalWork() {
761 dl 1.61 int c; // try to increment event count -- CAS failure OK
762     UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
763     if (eventWaiters != 0L)
764 dl 1.64 releaseEventWaiters();
765 dl 1.53 }
766    
767     /**
768 dl 1.64 * Adds the given worker to event queue and blocks until
769 dl 1.66 * terminating or event count advances from the given value
770 dl 1.53 *
771     * @param w the calling worker thread
772 dl 1.66 * @param ec the count
773 dl 1.53 */
774 dl 1.66 private void eventSync(ForkJoinWorkerThread w, int ec) {
775 dl 1.64 long nh = (((long)ec) << EVENT_COUNT_SHIFT) | ((long)(w.poolIndex+1));
776 dl 1.61 long h;
777 dl 1.60 while ((runState < SHUTDOWN || !tryTerminate(false)) &&
778 dl 1.64 (((int)((h = eventWaiters) & WAITER_ID_MASK)) == 0 ||
779     (int)(h >>> EVENT_COUNT_SHIFT) == ec) &&
780     eventCount == ec) {
781 dl 1.60 if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
782 dl 1.61 w.nextWaiter = h, nh)) {
783 dl 1.64 awaitEvent(w, ec);
784     break;
785     }
786     }
787     }
788    
789     /**
790     * Blocks the given worker (that has already been entered as an
791     * event waiter) until terminating or event count advances from
792     * the given value. The oldest (first) waiter uses a timed wait to
793     * occasionally one-by-one shrink the number of workers (to a
794 dl 1.66 * minimum of one) if the pool has not been used for extended
795 dl 1.64 * periods.
796     *
797     * @param w the calling worker thread
798     * @param ec the count
799     */
800     private void awaitEvent(ForkJoinWorkerThread w, int ec) {
801     while (eventCount == ec) {
802     if (tryAccumulateStealCount(w)) { // transfer while idle
803     boolean untimed = (w.nextWaiter != 0L ||
804     (workerCounts & RUNNING_COUNT_MASK) <= 1);
805 dl 1.83 long startTime = untimed ? 0 : System.nanoTime();
806 dl 1.64 Thread.interrupted(); // clear/ignore interrupt
807 dl 1.85 if (w.isTerminating() || eventCount != ec)
808 dl 1.80 break; // recheck after clear
809 dl 1.64 if (untimed)
810     LockSupport.park(w);
811     else {
812     LockSupport.parkNanos(w, SHRINK_RATE_NANOS);
813 dl 1.80 if (eventCount != ec || w.isTerminating())
814 dl 1.61 break;
815 dl 1.64 if (System.nanoTime() - startTime >= SHRINK_RATE_NANOS)
816 dl 1.66 tryShutdownUnusedWorker(ec);
817 dl 1.61 }
818 dl 1.53 }
819     }
820 dl 1.64 }
821    
822 dl 1.66 // Maintaining parallelism
823 dl 1.61
824     /**
825 jsr166 1.74 * Pushes worker onto the spare stack.
826 dl 1.61 */
827     final void pushSpare(ForkJoinWorkerThread w) {
828 dl 1.64 int ns = (++w.spareCount << SPARE_COUNT_SHIFT) | (w.poolIndex + 1);
829 dl 1.61 do {} while (!UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
830     w.nextSpare = spareWaiters,ns));
831     }
832    
833     /**
834 dl 1.66 * Tries (once) to resume a spare if the number of running
835     * threads is less than target.
836 dl 1.61 */
837 dl 1.66 private void tryResumeSpare() {
838 dl 1.61 int sw, id;
839 dl 1.66 ForkJoinWorkerThread[] ws = workers;
840     int n = ws.length;
841 dl 1.61 ForkJoinWorkerThread w;
842 dl 1.66 if ((sw = spareWaiters) != 0 &&
843     (id = (sw & SPARE_ID_MASK) - 1) >= 0 &&
844     id < n && (w = ws[id]) != null &&
845 dl 1.85 (runState >= TERMINATING ||
846     (workerCounts & RUNNING_COUNT_MASK) < parallelism) &&
847 dl 1.66 spareWaiters == sw &&
848 dl 1.61 UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
849 dl 1.64 sw, w.nextSpare)) {
850 dl 1.66 int c; // increment running count before resume
851 jsr166 1.69 do {} while (!UNSAFE.compareAndSwapInt
852     (this, workerCountsOffset,
853     c = workerCounts, c + ONE_RUNNING));
854 dl 1.66 if (w.tryUnsuspend())
855     LockSupport.unpark(w);
856     else // back out if w was shutdown
857     decrementWorkerCounts(ONE_RUNNING, 0);
858 dl 1.64 }
859     }
860    
861     /**
862 dl 1.66 * Tries to increase the number of running workers if below target
863     * parallelism: If a spare exists tries to resume it via
864     * tryResumeSpare. Otherwise, if not enough total workers or all
865 jsr166 1.67 * existing workers are busy, adds a new worker. In all cases also
866 dl 1.66 * helps wake up releasable workers waiting for work.
867 dl 1.64 */
868 dl 1.66 private void helpMaintainParallelism() {
869 dl 1.64 int pc = parallelism;
870 dl 1.66 int wc, rs, tc;
871     while (((wc = workerCounts) & RUNNING_COUNT_MASK) < pc &&
872     (rs = runState) < TERMINATING) {
873     if (spareWaiters != 0)
874     tryResumeSpare();
875     else if ((tc = wc >>> TOTAL_COUNT_SHIFT) >= MAX_WORKERS ||
876     (tc >= pc && (rs & ACTIVE_COUNT_MASK) != tc))
877     break; // enough total
878     else if (runState == rs && workerCounts == wc &&
879     UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
880     wc + (ONE_RUNNING|ONE_TOTAL))) {
881     ForkJoinWorkerThread w = null;
882 dl 1.80 Throwable fail = null;
883 dl 1.66 try {
884     w = factory.newThread(this);
885 dl 1.80 } catch (Throwable ex) {
886     fail = ex;
887 dl 1.66 }
888 dl 1.80 if (w == null) { // null or exceptional factory return
889     decrementWorkerCounts(ONE_RUNNING, ONE_TOTAL);
890     tryTerminate(false); // handle failure during shutdown
891     // If originating from an external caller,
892     // propagate exception, else ignore
893     if (fail != null && runState < TERMINATING &&
894 jsr166 1.81 !(Thread.currentThread() instanceof
895 dl 1.80 ForkJoinWorkerThread))
896     UNSAFE.throwException(fail);
897 dl 1.64 break;
898 dl 1.80 }
899 dl 1.66 w.start(recordWorker(w), ueh);
900 dl 1.85 if ((workerCounts >>> TOTAL_COUNT_SHIFT) >= pc)
901 dl 1.66 break; // add at most one unless total below target
902 dl 1.64 }
903     }
904 dl 1.66 if (eventWaiters != 0L)
905     releaseEventWaiters();
906 dl 1.64 }
907    
908     /**
909 dl 1.66 * Callback from the oldest waiter in awaitEvent waking up after a
910     * period of non-use. If all workers are idle, tries (once) to
911     * shutdown an event waiter or a spare, if one exists. Note that
912     * we don't need CAS or locks here because the method is called
913     * only from one thread occasionally waking (and even misfires are
914     * OK). Note that until the shutdown worker fully terminates,
915     * workerCounts will overestimate total count, which is tolerable.
916 dl 1.64 *
917 dl 1.66 * @param ec the event count waited on by caller (to abort
918     * attempt if count has since changed).
919 dl 1.64 */
920 dl 1.66 private void tryShutdownUnusedWorker(int ec) {
921     if (runState == 0 && eventCount == ec) { // only trigger if all idle
922     ForkJoinWorkerThread[] ws = workers;
923     int n = ws.length;
924     ForkJoinWorkerThread w = null;
925     boolean shutdown = false;
926     int sw;
927     long h;
928     if ((sw = spareWaiters) != 0) { // prefer killing spares
929     int id = (sw & SPARE_ID_MASK) - 1;
930     if (id >= 0 && id < n && (w = ws[id]) != null &&
931     UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
932     sw, w.nextSpare))
933     shutdown = true;
934     }
935     else if ((h = eventWaiters) != 0L) {
936     long nh;
937     int id = ((int)(h & WAITER_ID_MASK)) - 1;
938     if (id >= 0 && id < n && (w = ws[id]) != null &&
939     (nh = w.nextWaiter) != 0L && // keep at least one worker
940     UNSAFE.compareAndSwapLong(this, eventWaitersOffset, h, nh))
941     shutdown = true;
942     }
943     if (w != null && shutdown) {
944     w.shutdown();
945     LockSupport.unpark(w);
946     }
947 dl 1.61 }
948 dl 1.66 releaseEventWaiters(); // in case of interference
949 dl 1.61 }
950    
951 dl 1.53 /**
952     * Callback from workers invoked upon each top-level action (i.e.,
953 dl 1.64 * stealing a task or taking a submission and running it).
954     * Performs one or more of the following:
955 dl 1.61 *
956 dl 1.66 * 1. If the worker is active and either did not run a task
957     * or there are too many workers, try to set its active status
958     * to inactive and update activeCount. On contention, we may
959     * try again in this or a subsequent call.
960     *
961     * 2. If not enough total workers, help create some.
962     *
963     * 3. If there are too many running workers, suspend this worker
964     * (first forcing inactive if necessary). If it is not needed,
965     * it may be shutdown while suspended (via
966     * tryShutdownUnusedWorker). Otherwise, upon resume it
967     * rechecks running thread count and need for event sync.
968     *
969     * 4. If worker did not run a task, await the next task event via
970     * eventSync if necessary (first forcing inactivation), upon
971     * which the worker may be shutdown via
972     * tryShutdownUnusedWorker. Otherwise, help release any
973     * existing event waiters that are now releasable,
974 dl 1.53 *
975     * @param w the worker
976 dl 1.66 * @param ran true if worker ran a task since last call to this method
977 dl 1.53 */
978 dl 1.66 final void preStep(ForkJoinWorkerThread w, boolean ran) {
979     int wec = w.lastEventCount;
980 dl 1.53 boolean active = w.active;
981 dl 1.66 boolean inactivate = false;
982 dl 1.61 int pc = parallelism;
983 dl 1.80 while (w.runState == 0) {
984     int rs = runState;
985 dl 1.85 if (rs >= TERMINATING) { // propagate shutdown
986 dl 1.80 w.shutdown();
987     break;
988     }
989 dl 1.66 if ((inactivate || (active && (rs & ACTIVE_COUNT_MASK) >= pc)) &&
990 dl 1.85 UNSAFE.compareAndSwapInt(this, runStateOffset, rs, --rs)) {
991 dl 1.66 inactivate = active = w.active = false;
992 dl 1.85 if (rs == SHUTDOWN) { // all inactive and shut down
993     tryTerminate(false);
994     continue;
995     }
996     }
997     int wc = workerCounts; // try to suspend as spare
998 dl 1.66 if ((wc & RUNNING_COUNT_MASK) > pc) {
999     if (!(inactivate |= active) && // must inactivate to suspend
1000 dl 1.85 workerCounts == wc &&
1001 dl 1.61 UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1002 dl 1.66 wc, wc - ONE_RUNNING))
1003 dl 1.64 w.suspendAsSpare();
1004 dl 1.61 }
1005 dl 1.66 else if ((wc >>> TOTAL_COUNT_SHIFT) < pc)
1006     helpMaintainParallelism(); // not enough workers
1007 dl 1.85 else if (ran)
1008     break;
1009     else {
1010 dl 1.66 long h = eventWaiters;
1011     int ec = eventCount;
1012     if (h != 0L && (int)(h >>> EVENT_COUNT_SHIFT) != ec)
1013     releaseEventWaiters(); // release others before waiting
1014     else if (ec != wec) {
1015     w.lastEventCount = ec; // no need to wait
1016     break;
1017 dl 1.64 }
1018 jsr166 1.68 else if (!(inactivate |= active))
1019 dl 1.66 eventSync(w, wec); // must inactivate before sync
1020 dl 1.53 }
1021     }
1022     }
1023    
1024     /**
1025 dl 1.61 * Helps and/or blocks awaiting join of the given task.
1026 dl 1.66 * See above for explanation.
1027 dl 1.56 *
1028     * @param joinMe the task to join
1029 dl 1.66 * @param worker the current worker thread
1030 dl 1.83 * @param timed true if wait should time out
1031     * @param nanos timeout value if timed
1032 dl 1.53 */
1033 dl 1.83 final void awaitJoin(ForkJoinTask<?> joinMe, ForkJoinWorkerThread worker,
1034     boolean timed, long nanos) {
1035     long startTime = timed? System.nanoTime() : 0L;
1036 dl 1.66 int retries = 2 + (parallelism >> 2); // #helpJoins before blocking
1037 dl 1.85 boolean running = true; // false when count decremented
1038 dl 1.61 while (joinMe.status >= 0) {
1039 dl 1.82 if (runState >= TERMINATING) {
1040     joinMe.cancelIgnoringExceptions();
1041     break;
1042     }
1043 dl 1.85 running = worker.helpJoinTask(joinMe, running);
1044 dl 1.61 if (joinMe.status < 0)
1045     break;
1046 dl 1.85 if (retries > 0) {
1047 dl 1.66 --retries;
1048 dl 1.85 continue;
1049     }
1050     int wc = workerCounts;
1051     if ((wc & RUNNING_COUNT_MASK) != 0) {
1052     if (running) {
1053     if (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1054     wc, wc - ONE_RUNNING))
1055     continue;
1056     running = false;
1057     }
1058     long h = eventWaiters;
1059     if (h != 0L && (int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1060 dl 1.66 releaseEventWaiters();
1061 dl 1.85 if (joinMe.status < 0)
1062     break;
1063     if ((workerCounts & RUNNING_COUNT_MASK) != 0) {
1064     long ms; int ns;
1065     if (!timed) {
1066     ms = JOIN_TIMEOUT_MILLIS;
1067     ns = 0;
1068     }
1069     else { // at most JOIN_TIMEOUT_MILLIS per wait
1070     long nt = nanos - (System.nanoTime() - startTime);
1071     if (nt <= 0L)
1072     break;
1073     ms = nt / 1000000;
1074     if (ms > JOIN_TIMEOUT_MILLIS) {
1075 dl 1.83 ms = JOIN_TIMEOUT_MILLIS;
1076     ns = 0;
1077     }
1078 dl 1.85 else
1079     ns = (int) (nt % 1000000);
1080 dl 1.83 }
1081 dl 1.85 if (joinMe.internalAwaitDone(ms, ns) < 0)
1082     break;
1083 dl 1.83 }
1084 dl 1.53 }
1085 dl 1.85 helpMaintainParallelism();
1086     }
1087     if (!running) {
1088     int c;
1089     do {} while (!UNSAFE.compareAndSwapInt
1090     (this, workerCountsOffset,
1091     c = workerCounts, c + ONE_RUNNING));
1092 dl 1.53 }
1093     }
1094    
1095     /**
1096 dl 1.66 * Same idea as awaitJoin, but no helping, retries, or timeouts.
1097 dl 1.53 */
1098 dl 1.57 final void awaitBlocker(ManagedBlocker blocker)
1099 dl 1.53 throws InterruptedException {
1100 dl 1.61 while (!blocker.isReleasable()) {
1101 dl 1.66 int wc = workerCounts;
1102 dl 1.85 if ((wc & RUNNING_COUNT_MASK) == 0)
1103     helpMaintainParallelism();
1104     else if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1105     wc, wc - ONE_RUNNING)) {
1106 dl 1.61 try {
1107 dl 1.66 while (!blocker.isReleasable()) {
1108     long h = eventWaiters;
1109     if (h != 0L &&
1110     (int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1111     releaseEventWaiters();
1112     else if ((workerCounts & RUNNING_COUNT_MASK) == 0 &&
1113     runState < TERMINATING)
1114     helpMaintainParallelism();
1115     else if (blocker.block())
1116     break;
1117     }
1118 dl 1.61 } finally {
1119     int c;
1120     do {} while (!UNSAFE.compareAndSwapInt
1121     (this, workerCountsOffset,
1122     c = workerCounts, c + ONE_RUNNING));
1123 dl 1.58 }
1124 dl 1.60 break;
1125     }
1126 dl 1.53 }
1127 dl 1.59 }
1128 dl 1.54
1129     /**
1130 dl 1.53 * Possibly initiates and/or completes termination.
1131     *
1132     * @param now if true, unconditionally terminate, else only
1133     * if shutdown and empty queue and no active workers
1134     * @return true if now terminating or terminated
1135 dl 1.1 */
1136 dl 1.53 private boolean tryTerminate(boolean now) {
1137     if (now)
1138     advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
1139     else if (runState < SHUTDOWN ||
1140     !submissionQueue.isEmpty() ||
1141     (runState & ACTIVE_COUNT_MASK) != 0)
1142 dl 1.4 return false;
1143 dl 1.53
1144     if (advanceRunLevel(TERMINATING))
1145     startTerminating();
1146    
1147     // Finish now if all threads terminated; else in some subsequent call
1148     if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1149     advanceRunLevel(TERMINATED);
1150 dl 1.84 termination.forceTermination();
1151 dl 1.53 }
1152 dl 1.4 return true;
1153 dl 1.1 }
1154    
1155     /**
1156 dl 1.53 * Actions on transition to TERMINATING
1157 dl 1.61 *
1158     * Runs up to four passes through workers: (0) shutting down each
1159 dl 1.64 * (without waking up if parked) to quickly spread notifications
1160     * without unnecessary bouncing around event queues etc (1) wake
1161     * up and help cancel tasks (2) interrupt (3) mop up races with
1162     * interrupted workers
1163 dl 1.53 */
1164     private void startTerminating() {
1165 dl 1.61 cancelSubmissions();
1166     for (int passes = 0; passes < 4 && workerCounts != 0; ++passes) {
1167 dl 1.66 int c; // advance event count
1168     UNSAFE.compareAndSwapInt(this, eventCountOffset,
1169     c = eventCount, c+1);
1170 dl 1.61 eventWaiters = 0L; // clobber lists
1171     spareWaiters = 0;
1172 jsr166 1.71 for (ForkJoinWorkerThread w : workers) {
1173 dl 1.61 if (w != null) {
1174 dl 1.64 w.shutdown();
1175 dl 1.61 if (passes > 0 && !w.isTerminated()) {
1176     w.cancelTasks();
1177     LockSupport.unpark(w);
1178 dl 1.80 if (passes > 1 && !w.isInterrupted()) {
1179 dl 1.61 try {
1180     w.interrupt();
1181     } catch (SecurityException ignore) {
1182     }
1183     }
1184     }
1185     }
1186     }
1187 dl 1.56 }
1188     }
1189    
1190     /**
1191 jsr166 1.72 * Clears out and cancels submissions, ignoring exceptions.
1192 dl 1.56 */
1193     private void cancelSubmissions() {
1194 dl 1.53 ForkJoinTask<?> task;
1195     while ((task = submissionQueue.poll()) != null) {
1196     try {
1197     task.cancel(false);
1198     } catch (Throwable ignore) {
1199     }
1200     }
1201 dl 1.56 }
1202    
1203 dl 1.53 // misc support for ForkJoinWorkerThread
1204    
1205     /**
1206 jsr166 1.72 * Returns pool number.
1207 dl 1.1 */
1208 dl 1.53 final int getPoolNumber() {
1209     return poolNumber;
1210 dl 1.1 }
1211    
1212     /**
1213 jsr166 1.72 * Tries to accumulate steal count from a worker, clearing
1214     * the worker's value if successful.
1215 dl 1.61 *
1216     * @return true if worker steal count now zero
1217 dl 1.1 */
1218 dl 1.61 final boolean tryAccumulateStealCount(ForkJoinWorkerThread w) {
1219 dl 1.53 int sc = w.stealCount;
1220 dl 1.61 long c = stealCount;
1221     // CAS even if zero, for fence effects
1222     if (UNSAFE.compareAndSwapLong(this, stealCountOffset, c, c + sc)) {
1223     if (sc != 0)
1224     w.stealCount = 0;
1225     return true;
1226 dl 1.1 }
1227 dl 1.61 return sc == 0;
1228 dl 1.1 }
1229    
1230     /**
1231 dl 1.53 * Returns the approximate (non-atomic) number of idle threads per
1232     * active thread.
1233     */
1234     final int idlePerActive() {
1235 dl 1.58 int pc = parallelism; // use parallelism, not rc
1236 jsr166 1.67 int ac = runState; // no mask -- artificially boosts during shutdown
1237 dl 1.53 // Use exact results for small values, saturate past 4
1238 jsr166 1.72 return ((pc <= ac) ? 0 :
1239     (pc >>> 1 <= ac) ? 1 :
1240     (pc >>> 2 <= ac) ? 3 :
1241     pc >>> 3);
1242 dl 1.53 }
1243    
1244     // Public and protected methods
1245 dl 1.1
1246     // Constructors
1247    
1248     /**
1249 dl 1.42 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1250 dl 1.57 * java.lang.Runtime#availableProcessors}, using the {@linkplain
1251     * #defaultForkJoinWorkerThreadFactory default thread factory},
1252     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1253 jsr166 1.17 *
1254 dl 1.1 * @throws SecurityException if a security manager exists and
1255     * the caller is not permitted to modify threads
1256     * because it does not hold {@link
1257 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1258 dl 1.1 */
1259     public ForkJoinPool() {
1260     this(Runtime.getRuntime().availableProcessors(),
1261 dl 1.57 defaultForkJoinWorkerThreadFactory, null, false);
1262 dl 1.1 }
1263    
1264     /**
1265 dl 1.42 * Creates a {@code ForkJoinPool} with the indicated parallelism
1266 dl 1.57 * level, the {@linkplain
1267     * #defaultForkJoinWorkerThreadFactory default thread factory},
1268     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1269 jsr166 1.17 *
1270 dl 1.42 * @param parallelism the parallelism level
1271 dl 1.1 * @throws IllegalArgumentException if parallelism less than or
1272 jsr166 1.47 * equal to zero, or greater than implementation limit
1273 dl 1.1 * @throws SecurityException if a security manager exists and
1274     * the caller is not permitted to modify threads
1275     * because it does not hold {@link
1276 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1277 dl 1.1 */
1278     public ForkJoinPool(int parallelism) {
1279 dl 1.57 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1280 dl 1.1 }
1281    
1282     /**
1283 dl 1.57 * Creates a {@code ForkJoinPool} with the given parameters.
1284 jsr166 1.17 *
1285 dl 1.57 * @param parallelism the parallelism level. For default value,
1286     * use {@link java.lang.Runtime#availableProcessors}.
1287     * @param factory the factory for creating new threads. For default value,
1288     * use {@link #defaultForkJoinWorkerThreadFactory}.
1289 dl 1.59 * @param handler the handler for internal worker threads that
1290     * terminate due to unrecoverable errors encountered while executing
1291 jsr166 1.73 * tasks. For default value, use {@code null}.
1292 dl 1.59 * @param asyncMode if true,
1293 dl 1.57 * establishes local first-in-first-out scheduling mode for forked
1294     * tasks that are never joined. This mode may be more appropriate
1295     * than default locally stack-based mode in applications in which
1296     * worker threads only process event-style asynchronous tasks.
1297 jsr166 1.73 * For default value, use {@code false}.
1298 dl 1.1 * @throws IllegalArgumentException if parallelism less than or
1299 jsr166 1.47 * equal to zero, or greater than implementation limit
1300 jsr166 1.48 * @throws NullPointerException if the factory is null
1301 dl 1.1 * @throws SecurityException if a security manager exists and
1302     * the caller is not permitted to modify threads
1303     * because it does not hold {@link
1304 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1305 dl 1.1 */
1306 dl 1.59 public ForkJoinPool(int parallelism,
1307 dl 1.57 ForkJoinWorkerThreadFactory factory,
1308     Thread.UncaughtExceptionHandler handler,
1309     boolean asyncMode) {
1310 dl 1.53 checkPermission();
1311     if (factory == null)
1312     throw new NullPointerException();
1313 dl 1.61 if (parallelism <= 0 || parallelism > MAX_WORKERS)
1314 dl 1.1 throw new IllegalArgumentException();
1315 dl 1.53 this.parallelism = parallelism;
1316 dl 1.1 this.factory = factory;
1317 dl 1.57 this.ueh = handler;
1318     this.locallyFifo = asyncMode;
1319     int arraySize = initialArraySizeFor(parallelism);
1320 dl 1.53 this.workers = new ForkJoinWorkerThread[arraySize];
1321     this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
1322 dl 1.1 this.workerLock = new ReentrantLock();
1323 dl 1.57 this.termination = new Phaser(1);
1324     this.poolNumber = poolNumberGenerator.incrementAndGet();
1325 dl 1.1 }
1326    
1327     /**
1328 dl 1.53 * Returns initial power of two size for workers array.
1329     * @param pc the initial parallelism level
1330     */
1331     private static int initialArraySizeFor(int pc) {
1332 dl 1.66 // If possible, initially allocate enough space for one spare
1333     int size = pc < MAX_WORKERS ? pc + 1 : MAX_WORKERS;
1334 dl 1.61 // See Hackers Delight, sec 3.2. We know MAX_WORKERS < (1 >>> 16)
1335 dl 1.53 size |= size >>> 1;
1336     size |= size >>> 2;
1337     size |= size >>> 4;
1338     size |= size >>> 8;
1339     return size + 1;
1340 dl 1.1 }
1341    
1342     // Execution methods
1343    
1344     /**
1345 dl 1.82 * Submits task and creates, starts, or resumes some workers if necessary
1346 dl 1.1 */
1347     private <T> void doSubmit(ForkJoinTask<T> task) {
1348 dl 1.58 submissionQueue.offer(task);
1349 dl 1.66 int c; // try to increment event count -- CAS failure OK
1350     UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
1351 dl 1.82 helpMaintainParallelism();
1352 dl 1.1 }
1353    
1354     /**
1355 jsr166 1.17 * Performs the given task, returning its result upon completion.
1356     *
1357 dl 1.1 * @param task the task
1358     * @return the task's result
1359 jsr166 1.48 * @throws NullPointerException if the task is null
1360     * @throws RejectedExecutionException if the task cannot be
1361     * scheduled for execution
1362 dl 1.1 */
1363     public <T> T invoke(ForkJoinTask<T> task) {
1364 dl 1.82 if (task == null)
1365     throw new NullPointerException();
1366     if (runState >= SHUTDOWN)
1367     throw new RejectedExecutionException();
1368     Thread t = Thread.currentThread();
1369     if ((t instanceof ForkJoinWorkerThread) &&
1370     ((ForkJoinWorkerThread)t).pool == this)
1371     return task.invoke(); // bypass submit if in same pool
1372     else {
1373     doSubmit(task);
1374     return task.join();
1375     }
1376     }
1377    
1378     /**
1379     * Unless terminating, forks task if within an ongoing FJ
1380     * computation in the current pool, else submits as external task.
1381     */
1382     private <T> void forkOrSubmit(ForkJoinTask<T> task) {
1383     if (runState >= SHUTDOWN)
1384     throw new RejectedExecutionException();
1385     Thread t = Thread.currentThread();
1386     if ((t instanceof ForkJoinWorkerThread) &&
1387     ((ForkJoinWorkerThread)t).pool == this)
1388     task.fork();
1389     else
1390     doSubmit(task);
1391 dl 1.1 }
1392    
1393     /**
1394     * Arranges for (asynchronous) execution of the given task.
1395 jsr166 1.17 *
1396 dl 1.1 * @param task the task
1397 jsr166 1.48 * @throws NullPointerException if the task is null
1398     * @throws RejectedExecutionException if the task cannot be
1399     * scheduled for execution
1400 dl 1.1 */
1401 dl 1.37 public void execute(ForkJoinTask<?> task) {
1402 dl 1.82 if (task == null)
1403     throw new NullPointerException();
1404     forkOrSubmit(task);
1405 dl 1.1 }
1406    
1407     // AbstractExecutorService methods
1408    
1409 jsr166 1.48 /**
1410     * @throws NullPointerException if the task is null
1411     * @throws RejectedExecutionException if the task cannot be
1412     * scheduled for execution
1413     */
1414 dl 1.1 public void execute(Runnable task) {
1415 dl 1.82 if (task == null)
1416     throw new NullPointerException();
1417 dl 1.23 ForkJoinTask<?> job;
1418 jsr166 1.26 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1419     job = (ForkJoinTask<?>) task;
1420 dl 1.23 else
1421 dl 1.33 job = ForkJoinTask.adapt(task, null);
1422 dl 1.82 forkOrSubmit(job);
1423 dl 1.1 }
1424    
1425 jsr166 1.48 /**
1426 dl 1.57 * Submits a ForkJoinTask for execution.
1427     *
1428     * @param task the task to submit
1429     * @return the task
1430     * @throws NullPointerException if the task is null
1431     * @throws RejectedExecutionException if the task cannot be
1432     * scheduled for execution
1433     */
1434     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1435 dl 1.82 if (task == null)
1436     throw new NullPointerException();
1437     forkOrSubmit(task);
1438 dl 1.57 return task;
1439     }
1440    
1441     /**
1442 jsr166 1.48 * @throws NullPointerException if the task is null
1443     * @throws RejectedExecutionException if the task cannot be
1444     * scheduled for execution
1445     */
1446 dl 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
1447 dl 1.82 if (task == null)
1448     throw new NullPointerException();
1449 dl 1.33 ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1450 dl 1.82 forkOrSubmit(job);
1451 dl 1.1 return job;
1452     }
1453    
1454 jsr166 1.48 /**
1455     * @throws NullPointerException if the task is null
1456     * @throws RejectedExecutionException if the task cannot be
1457     * scheduled for execution
1458     */
1459 dl 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
1460 dl 1.82 if (task == null)
1461     throw new NullPointerException();
1462 dl 1.33 ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1463 dl 1.82 forkOrSubmit(job);
1464 dl 1.1 return job;
1465     }
1466    
1467 jsr166 1.48 /**
1468     * @throws NullPointerException if the task is null
1469     * @throws RejectedExecutionException if the task cannot be
1470     * scheduled for execution
1471     */
1472 dl 1.1 public ForkJoinTask<?> submit(Runnable task) {
1473 dl 1.82 if (task == null)
1474     throw new NullPointerException();
1475 dl 1.23 ForkJoinTask<?> job;
1476 jsr166 1.26 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1477     job = (ForkJoinTask<?>) task;
1478 dl 1.23 else
1479 dl 1.33 job = ForkJoinTask.adapt(task, null);
1480 dl 1.82 forkOrSubmit(job);
1481 dl 1.1 return job;
1482     }
1483    
1484     /**
1485 jsr166 1.48 * @throws NullPointerException {@inheritDoc}
1486     * @throws RejectedExecutionException {@inheritDoc}
1487     */
1488 dl 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
1489 jsr166 1.20 ArrayList<ForkJoinTask<T>> forkJoinTasks =
1490 dl 1.1 new ArrayList<ForkJoinTask<T>>(tasks.size());
1491 jsr166 1.20 for (Callable<T> task : tasks)
1492 dl 1.33 forkJoinTasks.add(ForkJoinTask.adapt(task));
1493 jsr166 1.20 invoke(new InvokeAll<T>(forkJoinTasks));
1494    
1495     @SuppressWarnings({"unchecked", "rawtypes"})
1496 dl 1.54 List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1497 jsr166 1.20 return futures;
1498 dl 1.1 }
1499    
1500     static final class InvokeAll<T> extends RecursiveAction {
1501     final ArrayList<ForkJoinTask<T>> tasks;
1502     InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
1503     public void compute() {
1504 jsr166 1.17 try { invokeAll(tasks); }
1505     catch (Exception ignore) {}
1506 dl 1.1 }
1507 jsr166 1.18 private static final long serialVersionUID = -7914297376763021607L;
1508 dl 1.1 }
1509    
1510     /**
1511 jsr166 1.17 * Returns the factory used for constructing new workers.
1512 dl 1.1 *
1513     * @return the factory used for constructing new workers
1514     */
1515     public ForkJoinWorkerThreadFactory getFactory() {
1516     return factory;
1517     }
1518    
1519     /**
1520 dl 1.2 * Returns the handler for internal worker threads that terminate
1521     * due to unrecoverable errors encountered while executing tasks.
1522 jsr166 1.17 *
1523 jsr166 1.28 * @return the handler, or {@code null} if none
1524 dl 1.2 */
1525     public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1526 dl 1.53 return ueh;
1527 dl 1.2 }
1528    
1529     /**
1530 dl 1.42 * Returns the targeted parallelism level of this pool.
1531 dl 1.1 *
1532 dl 1.42 * @return the targeted parallelism level of this pool
1533 dl 1.1 */
1534     public int getParallelism() {
1535     return parallelism;
1536     }
1537    
1538     /**
1539     * Returns the number of worker threads that have started but not
1540 jsr166 1.76 * yet terminated. The result returned by this method may differ
1541 jsr166 1.29 * from {@link #getParallelism} when threads are created to
1542 dl 1.1 * maintain parallelism when others are cooperatively blocked.
1543     *
1544     * @return the number of worker threads
1545     */
1546     public int getPoolSize() {
1547 dl 1.53 return workerCounts >>> TOTAL_COUNT_SHIFT;
1548 dl 1.1 }
1549    
1550     /**
1551 jsr166 1.28 * Returns {@code true} if this pool uses local first-in-first-out
1552 jsr166 1.16 * scheduling mode for forked tasks that are never joined.
1553 dl 1.6 *
1554 jsr166 1.28 * @return {@code true} if this pool uses async mode
1555 dl 1.6 */
1556     public boolean getAsyncMode() {
1557     return locallyFifo;
1558     }
1559    
1560     /**
1561 dl 1.2 * Returns an estimate of the number of worker threads that are
1562     * not blocked waiting to join tasks or for other managed
1563 dl 1.53 * synchronization. This method may overestimate the
1564     * number of running threads.
1565 dl 1.1 *
1566     * @return the number of worker threads
1567     */
1568     public int getRunningThreadCount() {
1569 dl 1.53 return workerCounts & RUNNING_COUNT_MASK;
1570 dl 1.1 }
1571    
1572     /**
1573 dl 1.2 * Returns an estimate of the number of threads that are currently
1574 dl 1.1 * stealing or executing tasks. This method may overestimate the
1575     * number of active threads.
1576 jsr166 1.17 *
1577 jsr166 1.16 * @return the number of active threads
1578 dl 1.1 */
1579     public int getActiveThreadCount() {
1580 dl 1.53 return runState & ACTIVE_COUNT_MASK;
1581 dl 1.1 }
1582    
1583     /**
1584 jsr166 1.28 * Returns {@code true} if all worker threads are currently idle.
1585     * An idle worker is one that cannot obtain a task to execute
1586     * because none are available to steal from other threads, and
1587     * there are no pending submissions to the pool. This method is
1588     * conservative; it might not return {@code true} immediately upon
1589     * idleness of all threads, but will eventually become true if
1590     * threads remain inactive.
1591 jsr166 1.17 *
1592 jsr166 1.28 * @return {@code true} if all threads are currently idle
1593 dl 1.1 */
1594     public boolean isQuiescent() {
1595 dl 1.53 return (runState & ACTIVE_COUNT_MASK) == 0;
1596 dl 1.1 }
1597    
1598     /**
1599     * Returns an estimate of the total number of tasks stolen from
1600     * one thread's work queue by another. The reported value
1601     * underestimates the actual total number of steals when the pool
1602     * is not quiescent. This value may be useful for monitoring and
1603 jsr166 1.17 * tuning fork/join programs: in general, steal counts should be
1604 dl 1.1 * high enough to keep threads busy, but low enough to avoid
1605     * overhead and contention across threads.
1606 jsr166 1.17 *
1607 jsr166 1.16 * @return the number of steals
1608 dl 1.1 */
1609     public long getStealCount() {
1610 dl 1.53 return stealCount;
1611 dl 1.1 }
1612    
1613     /**
1614 dl 1.2 * Returns an estimate of the total number of tasks currently held
1615     * in queues by worker threads (but not including tasks submitted
1616     * to the pool that have not begun executing). This value is only
1617     * an approximation, obtained by iterating across all threads in
1618     * the pool. This method may be useful for tuning task
1619     * granularities.
1620 jsr166 1.17 *
1621 jsr166 1.16 * @return the number of queued tasks
1622 dl 1.1 */
1623     public long getQueuedTaskCount() {
1624     long count = 0;
1625 jsr166 1.71 for (ForkJoinWorkerThread w : workers)
1626 dl 1.53 if (w != null)
1627     count += w.getQueueSize();
1628 dl 1.1 return count;
1629     }
1630    
1631     /**
1632 jsr166 1.40 * Returns an estimate of the number of tasks submitted to this
1633     * pool that have not yet begun executing. This method takes time
1634 dl 1.1 * proportional to the number of submissions.
1635 jsr166 1.17 *
1636 jsr166 1.16 * @return the number of queued submissions
1637 dl 1.1 */
1638     public int getQueuedSubmissionCount() {
1639     return submissionQueue.size();
1640     }
1641    
1642     /**
1643 jsr166 1.28 * Returns {@code true} if there are any tasks submitted to this
1644     * pool that have not yet begun executing.
1645 jsr166 1.17 *
1646 jsr166 1.16 * @return {@code true} if there are any queued submissions
1647 dl 1.1 */
1648     public boolean hasQueuedSubmissions() {
1649     return !submissionQueue.isEmpty();
1650     }
1651    
1652     /**
1653     * Removes and returns the next unexecuted submission if one is
1654     * available. This method may be useful in extensions to this
1655     * class that re-assign work in systems with multiple pools.
1656 jsr166 1.17 *
1657 jsr166 1.28 * @return the next submission, or {@code null} if none
1658 dl 1.1 */
1659     protected ForkJoinTask<?> pollSubmission() {
1660     return submissionQueue.poll();
1661     }
1662    
1663     /**
1664 dl 1.6 * Removes all available unexecuted submitted and forked tasks
1665     * from scheduling queues and adds them to the given collection,
1666     * without altering their execution status. These may include
1667 jsr166 1.41 * artificially generated or wrapped tasks. This method is
1668     * designed to be invoked only when the pool is known to be
1669 dl 1.6 * quiescent. Invocations at other times may not remove all
1670     * tasks. A failure encountered while attempting to add elements
1671 jsr166 1.16 * to collection {@code c} may result in elements being in
1672 dl 1.6 * neither, either or both collections when the associated
1673     * exception is thrown. The behavior of this operation is
1674     * undefined if the specified collection is modified while the
1675     * operation is in progress.
1676 jsr166 1.17 *
1677 dl 1.6 * @param c the collection to transfer elements into
1678     * @return the number of elements transferred
1679     */
1680 dl 1.30 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1681 dl 1.61 int count = submissionQueue.drainTo(c);
1682 jsr166 1.71 for (ForkJoinWorkerThread w : workers)
1683 dl 1.57 if (w != null)
1684 dl 1.61 count += w.drainTasksTo(c);
1685 dl 1.57 return count;
1686     }
1687    
1688     /**
1689 dl 1.1 * Returns a string identifying this pool, as well as its state,
1690     * including indications of run state, parallelism level, and
1691     * worker and task counts.
1692     *
1693     * @return a string identifying this pool, as well as its state
1694     */
1695     public String toString() {
1696     long st = getStealCount();
1697     long qt = getQueuedTaskCount();
1698     long qs = getQueuedSubmissionCount();
1699 dl 1.53 int wc = workerCounts;
1700     int tc = wc >>> TOTAL_COUNT_SHIFT;
1701     int rc = wc & RUNNING_COUNT_MASK;
1702     int pc = parallelism;
1703     int rs = runState;
1704     int ac = rs & ACTIVE_COUNT_MASK;
1705 dl 1.1 return super.toString() +
1706 dl 1.53 "[" + runLevelToString(rs) +
1707     ", parallelism = " + pc +
1708     ", size = " + tc +
1709     ", active = " + ac +
1710     ", running = " + rc +
1711 dl 1.1 ", steals = " + st +
1712     ", tasks = " + qt +
1713     ", submissions = " + qs +
1714     "]";
1715     }
1716    
1717 dl 1.53 private static String runLevelToString(int s) {
1718     return ((s & TERMINATED) != 0 ? "Terminated" :
1719     ((s & TERMINATING) != 0 ? "Terminating" :
1720     ((s & SHUTDOWN) != 0 ? "Shutting down" :
1721     "Running")));
1722 dl 1.1 }
1723    
1724     /**
1725     * Initiates an orderly shutdown in which previously submitted
1726     * tasks are executed, but no new tasks will be accepted.
1727     * Invocation has no additional effect if already shut down.
1728     * Tasks that are in the process of being submitted concurrently
1729     * during the course of this method may or may not be rejected.
1730 jsr166 1.17 *
1731 dl 1.1 * @throws SecurityException if a security manager exists and
1732     * the caller is not permitted to modify threads
1733     * because it does not hold {@link
1734 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1735 dl 1.1 */
1736     public void shutdown() {
1737     checkPermission();
1738 dl 1.53 advanceRunLevel(SHUTDOWN);
1739     tryTerminate(false);
1740 dl 1.1 }
1741    
1742     /**
1743 dl 1.42 * Attempts to cancel and/or stop all tasks, and reject all
1744     * subsequently submitted tasks. Tasks that are in the process of
1745     * being submitted or executed concurrently during the course of
1746     * this method may or may not be rejected. This method cancels
1747     * both existing and unexecuted tasks, in order to permit
1748     * termination in the presence of task dependencies. So the method
1749     * always returns an empty list (unlike the case for some other
1750     * Executors).
1751 jsr166 1.17 *
1752 dl 1.1 * @return an empty list
1753     * @throws SecurityException if a security manager exists and
1754     * the caller is not permitted to modify threads
1755     * because it does not hold {@link
1756 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1757 dl 1.1 */
1758     public List<Runnable> shutdownNow() {
1759     checkPermission();
1760 dl 1.53 tryTerminate(true);
1761 dl 1.1 return Collections.emptyList();
1762     }
1763    
1764     /**
1765 jsr166 1.16 * Returns {@code true} if all tasks have completed following shut down.
1766 dl 1.1 *
1767 jsr166 1.16 * @return {@code true} if all tasks have completed following shut down
1768 dl 1.1 */
1769     public boolean isTerminated() {
1770 dl 1.53 return runState >= TERMINATED;
1771 dl 1.1 }
1772    
1773     /**
1774 jsr166 1.16 * Returns {@code true} if the process of termination has
1775 dl 1.42 * commenced but not yet completed. This method may be useful for
1776     * debugging. A return of {@code true} reported a sufficient
1777     * period after shutdown may indicate that submitted tasks have
1778     * ignored or suppressed interruption, causing this executor not
1779     * to properly terminate.
1780 dl 1.1 *
1781 dl 1.42 * @return {@code true} if terminating but not yet terminated
1782 dl 1.1 */
1783     public boolean isTerminating() {
1784 dl 1.53 return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
1785 dl 1.1 }
1786    
1787     /**
1788 dl 1.80 * Returns true if terminating or terminated. Used by ForkJoinWorkerThread.
1789     */
1790     final boolean isAtLeastTerminating() {
1791     return runState >= TERMINATING;
1792     }
1793 jsr166 1.81
1794 dl 1.80 /**
1795 jsr166 1.16 * Returns {@code true} if this pool has been shut down.
1796 dl 1.1 *
1797 jsr166 1.16 * @return {@code true} if this pool has been shut down
1798 dl 1.1 */
1799     public boolean isShutdown() {
1800 dl 1.53 return runState >= SHUTDOWN;
1801 dl 1.42 }
1802    
1803     /**
1804 dl 1.1 * Blocks until all tasks have completed execution after a shutdown
1805     * request, or the timeout occurs, or the current thread is
1806     * interrupted, whichever happens first.
1807     *
1808     * @param timeout the maximum time to wait
1809     * @param unit the time unit of the timeout argument
1810 jsr166 1.16 * @return {@code true} if this executor terminated and
1811     * {@code false} if the timeout elapsed before termination
1812 dl 1.1 * @throws InterruptedException if interrupted while waiting
1813     */
1814     public boolean awaitTermination(long timeout, TimeUnit unit)
1815     throws InterruptedException {
1816 dl 1.57 try {
1817 dl 1.84 termination.awaitAdvanceInterruptibly(0, timeout, unit);
1818 jsr166 1.69 } catch (TimeoutException ex) {
1819 dl 1.57 return false;
1820     }
1821 dl 1.84 return true;
1822 dl 1.1 }
1823    
1824     /**
1825     * Interface for extending managed parallelism for tasks running
1826 jsr166 1.35 * in {@link ForkJoinPool}s.
1827     *
1828 dl 1.61 * <p>A {@code ManagedBlocker} provides two methods. Method
1829     * {@code isReleasable} must return {@code true} if blocking is
1830     * not necessary. Method {@code block} blocks the current thread
1831     * if necessary (perhaps internally invoking {@code isReleasable}
1832     * before actually blocking). The unusual methods in this API
1833     * accommodate synchronizers that may, but don't usually, block
1834     * for long periods. Similarly, they allow more efficient internal
1835     * handling of cases in which additional workers may be, but
1836     * usually are not, needed to ensure sufficient parallelism.
1837     * Toward this end, implementations of method {@code isReleasable}
1838     * must be amenable to repeated invocation.
1839 jsr166 1.17 *
1840 dl 1.1 * <p>For example, here is a ManagedBlocker based on a
1841     * ReentrantLock:
1842 jsr166 1.17 * <pre> {@code
1843     * class ManagedLocker implements ManagedBlocker {
1844     * final ReentrantLock lock;
1845     * boolean hasLock = false;
1846     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1847     * public boolean block() {
1848     * if (!hasLock)
1849     * lock.lock();
1850     * return true;
1851     * }
1852     * public boolean isReleasable() {
1853     * return hasLock || (hasLock = lock.tryLock());
1854 dl 1.1 * }
1855 jsr166 1.17 * }}</pre>
1856 dl 1.61 *
1857     * <p>Here is a class that possibly blocks waiting for an
1858     * item on a given queue:
1859     * <pre> {@code
1860     * class QueueTaker<E> implements ManagedBlocker {
1861     * final BlockingQueue<E> queue;
1862     * volatile E item = null;
1863     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
1864     * public boolean block() throws InterruptedException {
1865     * if (item == null)
1866 dl 1.65 * item = queue.take();
1867 dl 1.61 * return true;
1868     * }
1869     * public boolean isReleasable() {
1870 dl 1.65 * return item != null || (item = queue.poll()) != null;
1871 dl 1.61 * }
1872     * public E getItem() { // call after pool.managedBlock completes
1873     * return item;
1874     * }
1875     * }}</pre>
1876 dl 1.1 */
1877     public static interface ManagedBlocker {
1878     /**
1879     * Possibly blocks the current thread, for example waiting for
1880     * a lock or condition.
1881 jsr166 1.17 *
1882 jsr166 1.28 * @return {@code true} if no additional blocking is necessary
1883     * (i.e., if isReleasable would return true)
1884 dl 1.1 * @throws InterruptedException if interrupted while waiting
1885 jsr166 1.17 * (the method is not required to do so, but is allowed to)
1886 dl 1.1 */
1887     boolean block() throws InterruptedException;
1888    
1889     /**
1890 jsr166 1.28 * Returns {@code true} if blocking is unnecessary.
1891 dl 1.1 */
1892     boolean isReleasable();
1893     }
1894    
1895     /**
1896     * Blocks in accord with the given blocker. If the current thread
1897 jsr166 1.38 * is a {@link ForkJoinWorkerThread}, this method possibly
1898     * arranges for a spare thread to be activated if necessary to
1899 dl 1.57 * ensure sufficient parallelism while the current thread is blocked.
1900 jsr166 1.38 *
1901     * <p>If the caller is not a {@link ForkJoinTask}, this method is
1902     * behaviorally equivalent to
1903 jsr166 1.17 * <pre> {@code
1904     * while (!blocker.isReleasable())
1905     * if (blocker.block())
1906     * return;
1907     * }</pre>
1908 jsr166 1.38 *
1909     * If the caller is a {@code ForkJoinTask}, then the pool may
1910     * first be expanded to ensure parallelism, and later adjusted.
1911 dl 1.1 *
1912     * @param blocker the blocker
1913 jsr166 1.16 * @throws InterruptedException if blocker.block did so
1914 dl 1.1 */
1915 dl 1.57 public static void managedBlock(ManagedBlocker blocker)
1916 dl 1.1 throws InterruptedException {
1917     Thread t = Thread.currentThread();
1918 dl 1.61 if (t instanceof ForkJoinWorkerThread) {
1919     ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
1920     w.pool.awaitBlocker(blocker);
1921     }
1922 dl 1.57 else {
1923     do {} while (!blocker.isReleasable() && !blocker.block());
1924     }
1925 dl 1.1 }
1926    
1927 dl 1.33 // AbstractExecutorService overrides. These rely on undocumented
1928     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
1929     // implement RunnableFuture.
1930 dl 1.2
1931     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
1932 jsr166 1.34 return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
1933 dl 1.2 }
1934    
1935     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
1936 jsr166 1.34 return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
1937 dl 1.2 }
1938    
1939 jsr166 1.27 // Unsafe mechanics
1940 dl 1.1
1941 jsr166 1.21 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1942 dl 1.53 private static final long workerCountsOffset =
1943     objectFieldOffset("workerCounts", ForkJoinPool.class);
1944     private static final long runStateOffset =
1945     objectFieldOffset("runState", ForkJoinPool.class);
1946 jsr166 1.25 private static final long eventCountOffset =
1947 jsr166 1.27 objectFieldOffset("eventCount", ForkJoinPool.class);
1948 dl 1.53 private static final long eventWaitersOffset =
1949 jsr166 1.75 objectFieldOffset("eventWaiters", ForkJoinPool.class);
1950 dl 1.53 private static final long stealCountOffset =
1951 jsr166 1.75 objectFieldOffset("stealCount", ForkJoinPool.class);
1952 dl 1.61 private static final long spareWaitersOffset =
1953 jsr166 1.75 objectFieldOffset("spareWaiters", ForkJoinPool.class);
1954 dl 1.53
1955 jsr166 1.27 private static long objectFieldOffset(String field, Class<?> klazz) {
1956     try {
1957     return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1958     } catch (NoSuchFieldException e) {
1959     // Convert Exception to corresponding Error
1960     NoSuchFieldError error = new NoSuchFieldError(field);
1961     error.initCause(e);
1962     throw error;
1963     }
1964     }
1965    
1966     /**
1967     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1968     * Replace with a simple call to Unsafe.getUnsafe when integrating
1969     * into a jdk.
1970     *
1971     * @return a sun.misc.Unsafe
1972     */
1973     private static sun.misc.Unsafe getUnsafe() {
1974     try {
1975     return sun.misc.Unsafe.getUnsafe();
1976     } catch (SecurityException se) {
1977     try {
1978     return java.security.AccessController.doPrivileged
1979     (new java.security
1980     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1981     public sun.misc.Unsafe run() throws Exception {
1982     java.lang.reflect.Field f = sun.misc
1983     .Unsafe.class.getDeclaredField("theUnsafe");
1984     f.setAccessible(true);
1985     return (sun.misc.Unsafe) f.get(null);
1986     }});
1987     } catch (java.security.PrivilegedActionException e) {
1988     throw new RuntimeException("Could not initialize intrinsics",
1989     e.getCause());
1990     }
1991     }
1992     }
1993 dl 1.1 }