ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
Revision: 1.90
Committed: Mon Nov 29 20:58:06 2010 UTC (13 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.89: +1 -1 lines
Log Message:
consistent ternary operator style

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package jsr166y;
8 jsr166 1.22
9     import java.util.ArrayList;
10     import java.util.Arrays;
11     import java.util.Collection;
12     import java.util.Collections;
13     import java.util.List;
14 dl 1.78 import java.util.concurrent.AbstractExecutorService;
15     import java.util.concurrent.Callable;
16     import java.util.concurrent.ExecutorService;
17     import java.util.concurrent.Future;
18     import java.util.concurrent.RejectedExecutionException;
19     import java.util.concurrent.RunnableFuture;
20     import java.util.concurrent.TimeUnit;
21     import java.util.concurrent.TimeoutException;
22     import java.util.concurrent.atomic.AtomicInteger;
23 jsr166 1.22 import java.util.concurrent.locks.LockSupport;
24     import java.util.concurrent.locks.ReentrantLock;
25 dl 1.1
26     /**
27 jsr166 1.29 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
28 jsr166 1.39 * A {@code ForkJoinPool} provides the entry point for submissions
29 dl 1.57 * from non-{@code ForkJoinTask} clients, as well as management and
30 jsr166 1.48 * monitoring operations.
31 dl 1.1 *
32 dl 1.42 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
33     * ExecutorService} mainly by virtue of employing
34     * <em>work-stealing</em>: all threads in the pool attempt to find and
35     * execute subtasks created by other active tasks (eventually blocking
36     * waiting for work if none exist). This enables efficient processing
37     * when most tasks spawn other subtasks (as do most {@code
38 dl 1.57 * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
39     * constructors, {@code ForkJoinPool}s may also be appropriate for use
40     * with event-style tasks that are never joined.
41 dl 1.1 *
42 dl 1.42 * <p>A {@code ForkJoinPool} is constructed with a given target
43     * parallelism level; by default, equal to the number of available
44 dl 1.57 * processors. The pool attempts to maintain enough active (or
45     * available) threads by dynamically adding, suspending, or resuming
46     * internal worker threads, even if some tasks are stalled waiting to
47     * join others. However, no such adjustments are guaranteed in the
48     * face of blocked IO or other unmanaged synchronization. The nested
49     * {@link ManagedBlocker} interface enables extension of the kinds of
50     * synchronization accommodated.
51 dl 1.1 *
52     * <p>In addition to execution and lifecycle control methods, this
53     * class provides status check methods (for example
54 jsr166 1.29 * {@link #getStealCount}) that are intended to aid in developing,
55 dl 1.1 * tuning, and monitoring fork/join applications. Also, method
56 jsr166 1.29 * {@link #toString} returns indications of pool state in a
57 dl 1.2 * convenient form for informal monitoring.
58 dl 1.1 *
59 dl 1.57 * <p> As is the case with other ExecutorServices, there are three
60 dl 1.60 * main task execution methods summarized in the following
61 dl 1.57 * table. These are designed to be used by clients not already engaged
62     * in fork/join computations in the current pool. The main forms of
63     * these methods accept instances of {@code ForkJoinTask}, but
64     * overloaded forms also allow mixed execution of plain {@code
65     * Runnable}- or {@code Callable}- based activities as well. However,
66     * tasks that are already executing in a pool should normally
67     * <em>NOT</em> use these pool execution methods, but instead use the
68 dl 1.59 * within-computation forms listed in the table.
69 dl 1.57 *
70     * <table BORDER CELLPADDING=3 CELLSPACING=1>
71     * <tr>
72     * <td></td>
73     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
74     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
75     * </tr>
76     * <tr>
77 jsr166 1.67 * <td> <b>Arrange async execution</td>
78 dl 1.57 * <td> {@link #execute(ForkJoinTask)}</td>
79     * <td> {@link ForkJoinTask#fork}</td>
80     * </tr>
81     * <tr>
82     * <td> <b>Await and obtain result</td>
83     * <td> {@link #invoke(ForkJoinTask)}</td>
84     * <td> {@link ForkJoinTask#invoke}</td>
85     * </tr>
86     * <tr>
87     * <td> <b>Arrange exec and obtain Future</td>
88     * <td> {@link #submit(ForkJoinTask)}</td>
89     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
90     * </tr>
91     * </table>
92 dl 1.59 *
93 dl 1.42 * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
94     * used for all parallel task execution in a program or subsystem.
95     * Otherwise, use would not usually outweigh the construction and
96     * bookkeeping overhead of creating a large set of threads. For
97 jsr166 1.43 * example, a common pool could be used for the {@code SortTasks}
98 dl 1.42 * illustrated in {@link RecursiveAction}. Because {@code
99     * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
100 jsr166 1.43 * daemon} mode, there is typically no need to explicitly {@link
101 dl 1.42 * #shutdown} such a pool upon program exit.
102     *
103     * <pre>
104     * static final ForkJoinPool mainPool = new ForkJoinPool();
105     * ...
106     * public void sort(long[] array) {
107     * mainPool.invoke(new SortTask(array, 0, array.length));
108     * }
109     * </pre>
110     *
111 dl 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
112 dl 1.2 * maximum number of running threads to 32767. Attempts to create
113 jsr166 1.48 * pools with greater than the maximum number result in
114 jsr166 1.39 * {@code IllegalArgumentException}.
115 jsr166 1.16 *
116 jsr166 1.48 * <p>This implementation rejects submitted tasks (that is, by throwing
117 dl 1.58 * {@link RejectedExecutionException}) only when the pool is shut down
118 dl 1.62 * or internal resources have been exhausted.
119 jsr166 1.48 *
120 jsr166 1.16 * @since 1.7
121     * @author Doug Lea
122 dl 1.1 */
123 dl 1.2 public class ForkJoinPool extends AbstractExecutorService {
124 dl 1.1
125     /*
126 dl 1.53 * Implementation Overview
127     *
128     * This class provides the central bookkeeping and control for a
129     * set of worker threads: Submissions from non-FJ threads enter
130     * into a submission queue. Workers take these tasks and typically
131     * split them into subtasks that may be stolen by other workers.
132     * The main work-stealing mechanics implemented in class
133     * ForkJoinWorkerThread give first priority to processing tasks
134     * from their own queues (LIFO or FIFO, depending on mode), then
135     * to randomized FIFO steals of tasks in other worker queues, and
136     * lastly to new submissions. These mechanics do not consider
137     * affinities, loads, cache localities, etc, so rarely provide the
138     * best possible performance on a given machine, but portably
139     * provide good throughput by averaging over these factors.
140     * (Further, even if we did try to use such information, we do not
141     * usually have a basis for exploiting it. For example, some sets
142     * of tasks profit from cache affinities, but others are harmed by
143     * cache pollution effects.)
144     *
145 dl 1.58 * Beyond work-stealing support and essential bookkeeping, the
146 dl 1.60 * main responsibility of this framework is to take actions when
147     * one worker is waiting to join a task stolen (or always held by)
148 jsr166 1.67 * another. Because we are multiplexing many tasks on to a pool
149 dl 1.60 * of workers, we can't just let them block (as in Thread.join).
150     * We also cannot just reassign the joiner's run-time stack with
151     * another and replace it later, which would be a form of
152     * "continuation", that even if possible is not necessarily a good
153     * idea. Given that the creation costs of most threads on most
154     * systems mainly surrounds setting up runtime stacks, thread
155     * creation and switching is usually not much more expensive than
156     * stack creation and switching, and is more flexible). Instead we
157     * combine two tactics:
158 dl 1.58 *
159 dl 1.60 * Helping: Arranging for the joiner to execute some task that it
160 dl 1.58 * would be running if the steal had not occurred. Method
161     * ForkJoinWorkerThread.helpJoinTask tracks joining->stealing
162     * links to try to find such a task.
163     *
164 dl 1.61 * Compensating: Unless there are already enough live threads,
165 jsr166 1.68 * method helpMaintainParallelism() may create or
166 dl 1.61 * re-activate a spare thread to compensate for blocked
167     * joiners until they unblock.
168 dl 1.58 *
169 dl 1.66 * It is impossible to keep exactly the target (parallelism)
170     * number of threads running at any given time. Determining
171     * existence of conservatively safe helping targets, the
172     * availability of already-created spares, and the apparent need
173     * to create new spares are all racy and require heuristic
174     * guidance, so we rely on multiple retries of each. Compensation
175     * occurs in slow-motion. It is triggered only upon timeouts of
176     * Object.wait used for joins. This reduces poor decisions that
177     * would otherwise be made when threads are waiting for others
178     * that are stalled because of unrelated activities such as
179     * garbage collection.
180 dl 1.58 *
181 dl 1.61 * The ManagedBlocker extension API can't use helping so relies
182     * only on compensation in method awaitBlocker.
183 dl 1.58 *
184 dl 1.53 * The main throughput advantages of work-stealing stem from
185     * decentralized control -- workers mostly steal tasks from each
186     * other. We do not want to negate this by creating bottlenecks
187 dl 1.58 * implementing other management responsibilities. So we use a
188     * collection of techniques that avoid, reduce, or cope well with
189     * contention. These entail several instances of bit-packing into
190     * CASable fields to maintain only the minimally required
191     * atomicity. To enable such packing, we restrict maximum
192     * parallelism to (1<<15)-1 (enabling twice this (to accommodate
193     * unbalanced increments and decrements) to fit into a 16 bit
194     * field, which is far in excess of normal operating range. Even
195     * though updates to some of these bookkeeping fields do sometimes
196     * contend with each other, they don't normally cache-contend with
197     * updates to others enough to warrant memory padding or
198     * isolation. So they are all held as fields of ForkJoinPool
199     * objects. The main capabilities are as follows:
200 dl 1.53 *
201     * 1. Creating and removing workers. Workers are recorded in the
202     * "workers" array. This is an array as opposed to some other data
203     * structure to support index-based random steals by workers.
204     * Updates to the array recording new workers and unrecording
205     * terminated ones are protected from each other by a lock
206     * (workerLock) but the array is otherwise concurrently readable,
207     * and accessed directly by workers. To simplify index-based
208     * operations, the array size is always a power of two, and all
209 dl 1.56 * readers must tolerate null slots. Currently, all worker thread
210     * creation is on-demand, triggered by task submissions,
211     * replacement of terminated workers, and/or compensation for
212     * blocked workers. However, all other support code is set up to
213     * work with other policies.
214 dl 1.53 *
215 dl 1.61 * To ensure that we do not hold on to worker references that
216     * would prevent GC, ALL accesses to workers are via indices into
217     * the workers array (which is one source of some of the unusual
218     * code constructions here). In essence, the workers array serves
219     * as a WeakReference mechanism. Thus for example the event queue
220     * stores worker indices, not worker references. Access to the
221     * workers in associated methods (for example releaseEventWaiters)
222     * must both index-check and null-check the IDs. All such accesses
223     * ignore bad IDs by returning out early from what they are doing,
224     * since this can only be associated with shutdown, in which case
225     * it is OK to give up. On termination, we just clobber these
226     * data structures without trying to use them.
227     *
228 dl 1.53 * 2. Bookkeeping for dynamically adding and removing workers. We
229 dl 1.57 * aim to approximately maintain the given level of parallelism.
230     * When some workers are known to be blocked (on joins or via
231 dl 1.53 * ManagedBlocker), we may create or resume others to take their
232     * place until they unblock (see below). Implementing this
233     * requires counts of the number of "running" threads (i.e., those
234 jsr166 1.67 * that are neither blocked nor artificially suspended) as well as
235 dl 1.53 * the total number. These two values are packed into one field,
236     * "workerCounts" because we need accurate snapshots when deciding
237 dl 1.58 * to create, resume or suspend. Note however that the
238 jsr166 1.67 * correspondence of these counts to reality is not guaranteed. In
239 dl 1.58 * particular updates for unblocked threads may lag until they
240     * actually wake up.
241 dl 1.53 *
242     * 3. Maintaining global run state. The run state of the pool
243     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
244     * those in other Executor implementations, as well as a count of
245     * "active" workers -- those that are, or soon will be, or
246     * recently were executing tasks. The runLevel and active count
247     * are packed together in order to correctly trigger shutdown and
248     * termination. Without care, active counts can be subject to very
249     * high contention. We substantially reduce this contention by
250     * relaxing update rules. A worker must claim active status
251     * prospectively, by activating if it sees that a submitted or
252     * stealable task exists (it may find after activating that the
253     * task no longer exists). It stays active while processing this
254     * task (if it exists) and any other local subtasks it produces,
255     * until it cannot find any other tasks. It then tries
256     * inactivating (see method preStep), but upon update contention
257     * instead scans for more tasks, later retrying inactivation if it
258     * doesn't find any.
259     *
260     * 4. Managing idle workers waiting for tasks. We cannot let
261     * workers spin indefinitely scanning for tasks when none are
262     * available. On the other hand, we must quickly prod them into
263     * action when new tasks are submitted or generated. We
264     * park/unpark these idle workers using an event-count scheme.
265     * Field eventCount is incremented upon events that may enable
266     * workers that previously could not find a task to now find one:
267     * Submission of a new task to the pool, or another worker pushing
268     * a task onto a previously empty queue. (We also use this
269 dl 1.64 * mechanism for configuration and termination actions that
270     * require wakeups of idle workers). Each worker maintains its
271     * last known event count, and blocks when a scan for work did not
272     * find a task AND its lastEventCount matches the current
273     * eventCount. Waiting idle workers are recorded in a variant of
274     * Treiber stack headed by field eventWaiters which, when nonzero,
275     * encodes the thread index and count awaited for by the worker
276     * thread most recently calling eventSync. This thread in turn has
277     * a record (field nextEventWaiter) for the next waiting worker.
278     * In addition to allowing simpler decisions about need for
279     * wakeup, the event count bits in eventWaiters serve the role of
280     * tags to avoid ABA errors in Treiber stacks. Upon any wakeup,
281 dl 1.66 * released threads also try to release at most two others. The
282     * net effect is a tree-like diffusion of signals, where released
283     * threads (and possibly others) help with unparks. To further
284     * reduce contention effects a bit, failed CASes to increment
285     * field eventCount are tolerated without retries in signalWork.
286 dl 1.53 * Conceptually they are merged into the same event, which is OK
287     * when their only purpose is to enable workers to scan for work.
288     *
289 dl 1.66 * 5. Managing suspension of extra workers. When a worker notices
290     * (usually upon timeout of a wait()) that there are too few
291     * running threads, we may create a new thread to maintain
292     * parallelism level, or at least avoid starvation. Usually, extra
293     * threads are needed for only very short periods, yet join
294     * dependencies are such that we sometimes need them in
295     * bursts. Rather than create new threads each time this happens,
296     * we suspend no-longer-needed extra ones as "spares". For most
297     * purposes, we don't distinguish "extra" spare threads from
298     * normal "core" threads: On each call to preStep (the only point
299     * at which we can do this) a worker checks to see if there are
300     * now too many running workers, and if so, suspends itself.
301     * Method helpMaintainParallelism looks for suspended threads to
302     * resume before considering creating a new replacement. The
303     * spares themselves are encoded on another variant of a Treiber
304     * Stack, headed at field "spareWaiters". Note that the use of
305     * spares is intrinsically racy. One thread may become a spare at
306     * about the same time as another is needlessly being created. We
307     * counteract this and related slop in part by requiring resumed
308     * spares to immediately recheck (in preStep) to see whether they
309 jsr166 1.72 * should re-suspend.
310 dl 1.66 *
311     * 6. Killing off unneeded workers. A timeout mechanism is used to
312     * shed unused workers: The oldest (first) event queue waiter uses
313     * a timed rather than hard wait. When this wait times out without
314     * a normal wakeup, it tries to shutdown any one (for convenience
315     * the newest) other spare or event waiter via
316     * tryShutdownUnusedWorker. This eventually reduces the number of
317     * worker threads to a minimum of one after a long enough period
318     * without use.
319 dl 1.64 *
320     * 7. Deciding when to create new workers. The main dynamic
321 dl 1.61 * control in this class is deciding when to create extra threads
322     * in method helpMaintainParallelism. We would like to keep
323 jsr166 1.67 * exactly #parallelism threads running, which is an impossible
324 dl 1.61 * task. We always need to create one when the number of running
325     * threads would become zero and all workers are busy. Beyond
326 jsr166 1.68 * this, we must rely on heuristics that work well in the
327     * presence of transient phenomena such as GC stalls, dynamic
328 dl 1.61 * compilation, and wake-up lags. These transients are extremely
329     * common -- we are normally trying to fully saturate the CPUs on
330     * a machine, so almost any activity other than running tasks
331 dl 1.66 * impedes accuracy. Our main defense is to allow parallelism to
332     * lapse for a while during joins, and use a timeout to see if,
333     * after the resulting settling, there is still a need for
334     * additional workers. This also better copes with the fact that
335     * some of the methods in this class tend to never become compiled
336     * (but are interpreted), so some components of the entire set of
337     * controls might execute 100 times faster than others. And
338     * similarly for cases where the apparent lack of work is just due
339     * to GC stalls and other transient system activity.
340 dl 1.53 *
341     * Beware that there is a lot of representation-level coupling
342     * among classes ForkJoinPool, ForkJoinWorkerThread, and
343     * ForkJoinTask. For example, direct access to "workers" array by
344     * workers, and direct access to ForkJoinTask.status by both
345     * ForkJoinPool and ForkJoinWorkerThread. There is little point
346     * trying to reduce this, since any associated future changes in
347     * representations will need to be accompanied by algorithmic
348     * changes anyway.
349     *
350     * Style notes: There are lots of inline assignments (of form
351     * "while ((local = field) != 0)") which are usually the simplest
352 dl 1.61 * way to ensure the required read orderings (which are sometimes
353     * critical). Also several occurrences of the unusual "do {}
354 jsr166 1.69 * while (!cas...)" which is the simplest way to force an update of
355 dl 1.61 * a CAS'ed variable. There are also other coding oddities that
356     * help some methods perform reasonably even when interpreted (not
357     * compiled), at the expense of some messy constructions that
358     * reduce byte code counts.
359 dl 1.53 *
360     * The order of declarations in this file is: (1) statics (2)
361     * fields (along with constants used when unpacking some of them)
362     * (3) internal control methods (4) callbacks and other support
363     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
364     * methods (plus a few little helpers).
365 dl 1.1 */
366    
367     /**
368 jsr166 1.35 * Factory for creating new {@link ForkJoinWorkerThread}s.
369     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
370     * for {@code ForkJoinWorkerThread} subclasses that extend base
371     * functionality or initialize threads with different contexts.
372 dl 1.1 */
373     public static interface ForkJoinWorkerThreadFactory {
374     /**
375     * Returns a new worker thread operating in the given pool.
376     *
377     * @param pool the pool this thread works in
378 jsr166 1.48 * @throws NullPointerException if the pool is null
379 dl 1.1 */
380     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
381     }
382    
383     /**
384 jsr166 1.17 * Default ForkJoinWorkerThreadFactory implementation; creates a
385 dl 1.1 * new ForkJoinWorkerThread.
386     */
387 dl 1.57 static class DefaultForkJoinWorkerThreadFactory
388 dl 1.1 implements ForkJoinWorkerThreadFactory {
389     public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
390 dl 1.53 return new ForkJoinWorkerThread(pool);
391 dl 1.1 }
392     }
393    
394     /**
395 dl 1.2 * Creates a new ForkJoinWorkerThread. This factory is used unless
396     * overridden in ForkJoinPool constructors.
397 dl 1.1 */
398 dl 1.2 public static final ForkJoinWorkerThreadFactory
399 dl 1.1 defaultForkJoinWorkerThreadFactory =
400     new DefaultForkJoinWorkerThreadFactory();
401    
402     /**
403     * Permission required for callers of methods that may start or
404     * kill threads.
405     */
406     private static final RuntimePermission modifyThreadPermission =
407     new RuntimePermission("modifyThread");
408    
409     /**
410     * If there is a security manager, makes sure caller has
411     * permission to modify threads.
412     */
413     private static void checkPermission() {
414     SecurityManager security = System.getSecurityManager();
415     if (security != null)
416     security.checkPermission(modifyThreadPermission);
417     }
418    
419     /**
420     * Generator for assigning sequence numbers as pool names.
421     */
422     private static final AtomicInteger poolNumberGenerator =
423     new AtomicInteger();
424    
425     /**
426 dl 1.66 * The time to block in a join (see awaitJoin) before checking if
427     * a new worker should be (re)started to maintain parallelism
428 jsr166 1.67 * level. The value should be short enough to maintain global
429 dl 1.66 * responsiveness and progress but long enough to avoid
430     * counterproductive firings during GC stalls or unrelated system
431     * activity, and to not bog down systems with continual re-firings
432     * on GCs or legitimately long waits.
433     */
434     private static final long JOIN_TIMEOUT_MILLIS = 250L; // 4 per second
435    
436     /**
437 dl 1.64 * The wakeup interval (in nanoseconds) for the oldest worker
438 dl 1.77 * waiting for an event to invoke tryShutdownUnusedWorker to
439     * shrink the number of workers. The exact value does not matter
440     * too much. It must be short enough to release resources during
441     * sustained periods of idleness, but not so short that threads
442     * are continually re-created.
443 dl 1.64 */
444     private static final long SHRINK_RATE_NANOS =
445 dl 1.66 30L * 1000L * 1000L * 1000L; // 2 per minute
446 dl 1.64
447     /**
448 dl 1.61 * Absolute bound for parallelism level. Twice this number plus
449     * one (i.e., 0xfff) must fit into a 16bit field to enable
450     * word-packing for some counts and indices.
451 dl 1.53 */
452 dl 1.61 private static final int MAX_WORKERS = 0x7fff;
453 dl 1.53
454     /**
455     * Array holding all worker threads in the pool. Array size must
456     * be a power of two. Updates and replacements are protected by
457     * workerLock, but the array is always kept in a consistent enough
458     * state to be randomly accessed without locking by workers
459     * performing work-stealing, as well as other traversal-based
460     * methods in this class. All readers must tolerate that some
461     * array slots may be null.
462 dl 1.1 */
463     volatile ForkJoinWorkerThread[] workers;
464    
465     /**
466 dl 1.53 * Queue for external submissions.
467 dl 1.1 */
468 dl 1.53 private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
469 dl 1.1
470     /**
471 dl 1.53 * Lock protecting updates to workers array.
472 dl 1.1 */
473 dl 1.53 private final ReentrantLock workerLock;
474 dl 1.1
475     /**
476 dl 1.53 * Latch released upon termination.
477 dl 1.1 */
478 dl 1.57 private final Phaser termination;
479 dl 1.1
480     /**
481     * Creation factory for worker threads.
482     */
483     private final ForkJoinWorkerThreadFactory factory;
484    
485     /**
486 dl 1.53 * Sum of per-thread steal counts, updated only when threads are
487     * idle or terminating.
488 dl 1.1 */
489 dl 1.53 private volatile long stealCount;
490 dl 1.1
491     /**
492 jsr166 1.67 * Encoded record of top of Treiber stack of threads waiting for
493 dl 1.53 * events. The top 32 bits contain the count being waited for. The
494 dl 1.61 * bottom 16 bits contains one plus the pool index of waiting
495     * worker thread. (Bits 16-31 are unused.)
496 dl 1.1 */
497 dl 1.53 private volatile long eventWaiters;
498    
499 dl 1.86 private static final int EVENT_COUNT_SHIFT = 32;
500     private static final int WAITER_ID_MASK = (1 << 16) - 1;
501 dl 1.1
502     /**
503 dl 1.53 * A counter for events that may wake up worker threads:
504     * - Submission of a new task to the pool
505     * - A worker pushing a task on an empty queue
506 dl 1.61 * - termination
507 dl 1.1 */
508 dl 1.53 private volatile int eventCount;
509    
510     /**
511 jsr166 1.67 * Encoded record of top of Treiber stack of spare threads waiting
512 dl 1.61 * for resumption. The top 16 bits contain an arbitrary count to
513     * avoid ABA effects. The bottom 16bits contains one plus the pool
514     * index of waiting worker thread.
515     */
516     private volatile int spareWaiters;
517    
518     private static final int SPARE_COUNT_SHIFT = 16;
519     private static final int SPARE_ID_MASK = (1 << 16) - 1;
520    
521     /**
522 dl 1.53 * Lifecycle control. The low word contains the number of workers
523     * that are (probably) executing tasks. This value is atomically
524     * incremented before a worker gets a task to run, and decremented
525 jsr166 1.79 * when a worker has no tasks and cannot find any. Bits 16-18
526 dl 1.53 * contain runLevel value. When all are zero, the pool is
527     * running. Level transitions are monotonic (running -> shutdown
528     * -> terminating -> terminated) so each transition adds a bit.
529     * These are bundled together to ensure consistent read for
530     * termination checks (i.e., that runLevel is at least SHUTDOWN
531     * and active threads is zero).
532 dl 1.64 *
533     * Notes: Most direct CASes are dependent on these bitfield
534     * positions. Also, this field is non-private to enable direct
535     * performance-sensitive CASes in ForkJoinWorkerThread.
536 dl 1.53 */
537 dl 1.64 volatile int runState;
538 dl 1.53
539     // Note: The order among run level values matters.
540     private static final int RUNLEVEL_SHIFT = 16;
541     private static final int SHUTDOWN = 1 << RUNLEVEL_SHIFT;
542     private static final int TERMINATING = 1 << (RUNLEVEL_SHIFT + 1);
543     private static final int TERMINATED = 1 << (RUNLEVEL_SHIFT + 2);
544     private static final int ACTIVE_COUNT_MASK = (1 << RUNLEVEL_SHIFT) - 1;
545 dl 1.1
546     /**
547 dl 1.53 * Holds number of total (i.e., created and not yet terminated)
548     * and running (i.e., not blocked on joins or other managed sync)
549     * threads, packed together to ensure consistent snapshot when
550     * making decisions about creating and suspending spare
551     * threads. Updated only by CAS. Note that adding a new worker
552     * requires incrementing both counts, since workers start off in
553 dl 1.60 * running state.
554 dl 1.53 */
555     private volatile int workerCounts;
556    
557     private static final int TOTAL_COUNT_SHIFT = 16;
558     private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
559     private static final int ONE_RUNNING = 1;
560     private static final int ONE_TOTAL = 1 << TOTAL_COUNT_SHIFT;
561    
562 dl 1.1 /**
563 dl 1.53 * The target parallelism level.
564 dl 1.57 * Accessed directly by ForkJoinWorkerThreads.
565 dl 1.1 */
566 dl 1.57 final int parallelism;
567 dl 1.1
568     /**
569 dl 1.53 * True if use local fifo, not default lifo, for local polling
570 dl 1.57 * Read by, and replicated by ForkJoinWorkerThreads
571 dl 1.1 */
572 dl 1.57 final boolean locallyFifo;
573 dl 1.1
574     /**
575 dl 1.57 * The uncaught exception handler used when any worker abruptly
576     * terminates.
577 dl 1.1 */
578 dl 1.57 private final Thread.UncaughtExceptionHandler ueh;
579 dl 1.6
580     /**
581 dl 1.53 * Pool number, just for assigning useful names to worker threads
582 dl 1.1 */
583 dl 1.53 private final int poolNumber;
584 dl 1.1
585 dl 1.64 // Utilities for CASing fields. Note that most of these
586     // are usually manually inlined by callers
587 dl 1.1
588     /**
589 dl 1.87 * Increments running count part of workerCounts.
590 dl 1.1 */
591 dl 1.57 final void incrementRunningCount() {
592     int c;
593 dl 1.53 do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
594 dl 1.59 c = workerCounts,
595 dl 1.57 c + ONE_RUNNING));
596 dl 1.1 }
597 dl 1.58
598 dl 1.1 /**
599 dl 1.87 * Tries to increment running count part of workerCounts.
600 dl 1.85 */
601     final boolean tryIncrementRunningCount() {
602     int c;
603     return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
604     c = workerCounts,
605     c + ONE_RUNNING);
606     }
607    
608     /**
609 dl 1.87 * Tries to decrement running count unless already zero.
610 dl 1.56 */
611     final boolean tryDecrementRunningCount() {
612     int wc = workerCounts;
613     if ((wc & RUNNING_COUNT_MASK) == 0)
614     return false;
615     return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
616     wc, wc - ONE_RUNNING);
617     }
618    
619     /**
620 dl 1.61 * Forces decrement of encoded workerCounts, awaiting nonzero if
621     * (rarely) necessary when other count updates lag.
622     *
623     * @param dr -- either zero or ONE_RUNNING
624 dl 1.77 * @param dt -- either zero or ONE_TOTAL
625 dl 1.58 */
626 dl 1.61 private void decrementWorkerCounts(int dr, int dt) {
627     for (;;) {
628     int wc = workerCounts;
629     if ((wc & RUNNING_COUNT_MASK) - dr < 0 ||
630 dl 1.64 (wc >>> TOTAL_COUNT_SHIFT) - dt < 0) {
631     if ((runState & TERMINATED) != 0)
632     return; // lagging termination on a backout
633 dl 1.61 Thread.yield();
634 dl 1.64 }
635 dl 1.61 if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
636     wc, wc - (dr + dt)))
637     return;
638     }
639     }
640    
641     /**
642 jsr166 1.16 * Tries decrementing active count; fails on contention.
643 dl 1.53 * Called when workers cannot find tasks to run.
644     */
645     final boolean tryDecrementActiveCount() {
646     int c;
647     return UNSAFE.compareAndSwapInt(this, runStateOffset,
648 dl 1.64 c = runState, c - 1);
649 dl 1.53 }
650    
651     /**
652     * Advances to at least the given level. Returns true if not
653     * already in at least the given level.
654     */
655     private boolean advanceRunLevel(int level) {
656     for (;;) {
657     int s = runState;
658     if ((s & level) != 0)
659     return false;
660     if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
661     return true;
662     }
663     }
664    
665     // workers array maintenance
666    
667     /**
668     * Records and returns a workers array index for new worker.
669     */
670     private int recordWorker(ForkJoinWorkerThread w) {
671     // Try using slot totalCount-1. If not available, scan and/or resize
672     int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
673     final ReentrantLock lock = this.workerLock;
674     lock.lock();
675     try {
676     ForkJoinWorkerThread[] ws = workers;
677 dl 1.61 int n = ws.length;
678     if (k < 0 || k >= n || ws[k] != null) {
679     for (k = 0; k < n && ws[k] != null; ++k)
680 dl 1.53 ;
681 dl 1.61 if (k == n)
682 dl 1.85 ws = workers = Arrays.copyOf(ws, n << 1);
683 dl 1.53 }
684     ws[k] = w;
685 dl 1.85 int c = eventCount; // advance event count to ensure visibility
686     UNSAFE.compareAndSwapInt(this, eventCountOffset, c, c+1);
687 dl 1.53 } finally {
688     lock.unlock();
689     }
690     return k;
691     }
692    
693     /**
694 jsr166 1.71 * Nulls out record of worker in workers array.
695 dl 1.53 */
696     private void forgetWorker(ForkJoinWorkerThread w) {
697     int idx = w.poolIndex;
698 jsr166 1.67 // Locking helps method recordWorker avoid unnecessary expansion
699 dl 1.53 final ReentrantLock lock = this.workerLock;
700     lock.lock();
701     try {
702     ForkJoinWorkerThread[] ws = workers;
703     if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
704     ws[idx] = null;
705     } finally {
706     lock.unlock();
707     }
708     }
709    
710     /**
711     * Final callback from terminating worker. Removes record of
712     * worker from array, and adjusts counts. If pool is shutting
713 jsr166 1.67 * down, tries to complete termination.
714 dl 1.53 *
715     * @param w the worker
716     */
717     final void workerTerminated(ForkJoinWorkerThread w) {
718     forgetWorker(w);
719 dl 1.83 decrementWorkerCounts(w.isTrimmed() ? 0 : ONE_RUNNING, ONE_TOTAL);
720 dl 1.61 while (w.stealCount != 0) // collect final count
721     tryAccumulateStealCount(w);
722     tryTerminate(false);
723 dl 1.53 }
724    
725     // Waiting for and signalling events
726    
727     /**
728     * Releases workers blocked on a count not equal to current count.
729 dl 1.61 * Normally called after precheck that eventWaiters isn't zero to
730 dl 1.64 * avoid wasted array checks. Gives up upon a change in count or
731 dl 1.89 * upon releasing four workers, letting others take over.
732 dl 1.53 */
733 dl 1.64 private void releaseEventWaiters() {
734 dl 1.61 ForkJoinWorkerThread[] ws = workers;
735     int n = ws.length;
736 dl 1.64 long h = eventWaiters;
737     int ec = eventCount;
738 dl 1.89 int releases = 4;
739 dl 1.64 ForkJoinWorkerThread w; int id;
740 dl 1.86 while ((id = (((int)h) & WAITER_ID_MASK) - 1) >= 0 &&
741 dl 1.66 (int)(h >>> EVENT_COUNT_SHIFT) != ec &&
742     id < n && (w = ws[id]) != null) {
743     if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
744     h, w.nextWaiter)) {
745     LockSupport.unpark(w);
746 dl 1.89 if (--releases == 0)
747 dl 1.66 break;
748     }
749     if (eventCount != ec)
750 dl 1.61 break;
751 dl 1.66 h = eventWaiters;
752 dl 1.53 }
753     }
754    
755     /**
756 dl 1.61 * Tries to advance eventCount and releases waiters. Called only
757     * from workers.
758 dl 1.53 */
759     final void signalWork() {
760 dl 1.61 int c; // try to increment event count -- CAS failure OK
761     UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
762     if (eventWaiters != 0L)
763 dl 1.64 releaseEventWaiters();
764 dl 1.53 }
765    
766     /**
767 dl 1.64 * Adds the given worker to event queue and blocks until
768 dl 1.66 * terminating or event count advances from the given value
769 dl 1.53 *
770     * @param w the calling worker thread
771 dl 1.66 * @param ec the count
772 dl 1.53 */
773 dl 1.66 private void eventSync(ForkJoinWorkerThread w, int ec) {
774 dl 1.64 long nh = (((long)ec) << EVENT_COUNT_SHIFT) | ((long)(w.poolIndex+1));
775 dl 1.61 long h;
776 dl 1.60 while ((runState < SHUTDOWN || !tryTerminate(false)) &&
777 dl 1.86 (((int)(h = eventWaiters) & WAITER_ID_MASK) == 0 ||
778 dl 1.64 (int)(h >>> EVENT_COUNT_SHIFT) == ec) &&
779     eventCount == ec) {
780 dl 1.60 if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
781 dl 1.61 w.nextWaiter = h, nh)) {
782 dl 1.64 awaitEvent(w, ec);
783     break;
784     }
785     }
786     }
787    
788     /**
789     * Blocks the given worker (that has already been entered as an
790     * event waiter) until terminating or event count advances from
791     * the given value. The oldest (first) waiter uses a timed wait to
792     * occasionally one-by-one shrink the number of workers (to a
793 dl 1.66 * minimum of one) if the pool has not been used for extended
794 dl 1.64 * periods.
795     *
796     * @param w the calling worker thread
797     * @param ec the count
798     */
799     private void awaitEvent(ForkJoinWorkerThread w, int ec) {
800     while (eventCount == ec) {
801     if (tryAccumulateStealCount(w)) { // transfer while idle
802     boolean untimed = (w.nextWaiter != 0L ||
803     (workerCounts & RUNNING_COUNT_MASK) <= 1);
804 dl 1.83 long startTime = untimed ? 0 : System.nanoTime();
805 dl 1.64 Thread.interrupted(); // clear/ignore interrupt
806 dl 1.85 if (w.isTerminating() || eventCount != ec)
807 dl 1.80 break; // recheck after clear
808 dl 1.64 if (untimed)
809     LockSupport.park(w);
810     else {
811     LockSupport.parkNanos(w, SHRINK_RATE_NANOS);
812 dl 1.80 if (eventCount != ec || w.isTerminating())
813 dl 1.61 break;
814 dl 1.64 if (System.nanoTime() - startTime >= SHRINK_RATE_NANOS)
815 dl 1.66 tryShutdownUnusedWorker(ec);
816 dl 1.61 }
817 dl 1.53 }
818     }
819 dl 1.64 }
820    
821 dl 1.66 // Maintaining parallelism
822 dl 1.61
823     /**
824 jsr166 1.74 * Pushes worker onto the spare stack.
825 dl 1.61 */
826     final void pushSpare(ForkJoinWorkerThread w) {
827 dl 1.64 int ns = (++w.spareCount << SPARE_COUNT_SHIFT) | (w.poolIndex + 1);
828 dl 1.61 do {} while (!UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
829     w.nextSpare = spareWaiters,ns));
830     }
831    
832     /**
833 dl 1.66 * Tries (once) to resume a spare if the number of running
834     * threads is less than target.
835 dl 1.61 */
836 dl 1.66 private void tryResumeSpare() {
837 dl 1.61 int sw, id;
838 dl 1.66 ForkJoinWorkerThread[] ws = workers;
839     int n = ws.length;
840 dl 1.61 ForkJoinWorkerThread w;
841 dl 1.66 if ((sw = spareWaiters) != 0 &&
842     (id = (sw & SPARE_ID_MASK) - 1) >= 0 &&
843     id < n && (w = ws[id]) != null &&
844 dl 1.85 (runState >= TERMINATING ||
845     (workerCounts & RUNNING_COUNT_MASK) < parallelism) &&
846 dl 1.66 spareWaiters == sw &&
847 dl 1.61 UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
848 dl 1.64 sw, w.nextSpare)) {
849 dl 1.66 int c; // increment running count before resume
850 jsr166 1.69 do {} while (!UNSAFE.compareAndSwapInt
851     (this, workerCountsOffset,
852     c = workerCounts, c + ONE_RUNNING));
853 dl 1.66 if (w.tryUnsuspend())
854     LockSupport.unpark(w);
855     else // back out if w was shutdown
856     decrementWorkerCounts(ONE_RUNNING, 0);
857 dl 1.64 }
858     }
859    
860     /**
861 dl 1.66 * Tries to increase the number of running workers if below target
862     * parallelism: If a spare exists tries to resume it via
863     * tryResumeSpare. Otherwise, if not enough total workers or all
864 jsr166 1.67 * existing workers are busy, adds a new worker. In all cases also
865 dl 1.66 * helps wake up releasable workers waiting for work.
866 dl 1.64 */
867 dl 1.66 private void helpMaintainParallelism() {
868 dl 1.64 int pc = parallelism;
869 dl 1.66 int wc, rs, tc;
870     while (((wc = workerCounts) & RUNNING_COUNT_MASK) < pc &&
871     (rs = runState) < TERMINATING) {
872     if (spareWaiters != 0)
873     tryResumeSpare();
874     else if ((tc = wc >>> TOTAL_COUNT_SHIFT) >= MAX_WORKERS ||
875     (tc >= pc && (rs & ACTIVE_COUNT_MASK) != tc))
876     break; // enough total
877     else if (runState == rs && workerCounts == wc &&
878     UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
879     wc + (ONE_RUNNING|ONE_TOTAL))) {
880     ForkJoinWorkerThread w = null;
881 dl 1.80 Throwable fail = null;
882 dl 1.66 try {
883     w = factory.newThread(this);
884 dl 1.80 } catch (Throwable ex) {
885     fail = ex;
886 dl 1.66 }
887 dl 1.80 if (w == null) { // null or exceptional factory return
888     decrementWorkerCounts(ONE_RUNNING, ONE_TOTAL);
889     tryTerminate(false); // handle failure during shutdown
890     // If originating from an external caller,
891     // propagate exception, else ignore
892     if (fail != null && runState < TERMINATING &&
893 jsr166 1.81 !(Thread.currentThread() instanceof
894 dl 1.80 ForkJoinWorkerThread))
895     UNSAFE.throwException(fail);
896 dl 1.64 break;
897 dl 1.80 }
898 dl 1.66 w.start(recordWorker(w), ueh);
899 dl 1.85 if ((workerCounts >>> TOTAL_COUNT_SHIFT) >= pc)
900 dl 1.66 break; // add at most one unless total below target
901 dl 1.64 }
902     }
903 dl 1.66 if (eventWaiters != 0L)
904     releaseEventWaiters();
905 dl 1.64 }
906    
907     /**
908 dl 1.66 * Callback from the oldest waiter in awaitEvent waking up after a
909     * period of non-use. If all workers are idle, tries (once) to
910     * shutdown an event waiter or a spare, if one exists. Note that
911     * we don't need CAS or locks here because the method is called
912     * only from one thread occasionally waking (and even misfires are
913     * OK). Note that until the shutdown worker fully terminates,
914     * workerCounts will overestimate total count, which is tolerable.
915 dl 1.64 *
916 dl 1.66 * @param ec the event count waited on by caller (to abort
917     * attempt if count has since changed).
918 dl 1.64 */
919 dl 1.66 private void tryShutdownUnusedWorker(int ec) {
920     if (runState == 0 && eventCount == ec) { // only trigger if all idle
921     ForkJoinWorkerThread[] ws = workers;
922     int n = ws.length;
923     ForkJoinWorkerThread w = null;
924     boolean shutdown = false;
925     int sw;
926     long h;
927     if ((sw = spareWaiters) != 0) { // prefer killing spares
928     int id = (sw & SPARE_ID_MASK) - 1;
929     if (id >= 0 && id < n && (w = ws[id]) != null &&
930     UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
931     sw, w.nextSpare))
932     shutdown = true;
933     }
934     else if ((h = eventWaiters) != 0L) {
935     long nh;
936 dl 1.86 int id = (((int)h) & WAITER_ID_MASK) - 1;
937 dl 1.66 if (id >= 0 && id < n && (w = ws[id]) != null &&
938     (nh = w.nextWaiter) != 0L && // keep at least one worker
939     UNSAFE.compareAndSwapLong(this, eventWaitersOffset, h, nh))
940     shutdown = true;
941     }
942     if (w != null && shutdown) {
943     w.shutdown();
944     LockSupport.unpark(w);
945     }
946 dl 1.61 }
947 dl 1.66 releaseEventWaiters(); // in case of interference
948 dl 1.61 }
949    
950 dl 1.53 /**
951     * Callback from workers invoked upon each top-level action (i.e.,
952 dl 1.64 * stealing a task or taking a submission and running it).
953     * Performs one or more of the following:
954 dl 1.61 *
955 dl 1.66 * 1. If the worker is active and either did not run a task
956     * or there are too many workers, try to set its active status
957     * to inactive and update activeCount. On contention, we may
958     * try again in this or a subsequent call.
959     *
960     * 2. If not enough total workers, help create some.
961     *
962     * 3. If there are too many running workers, suspend this worker
963     * (first forcing inactive if necessary). If it is not needed,
964     * it may be shutdown while suspended (via
965     * tryShutdownUnusedWorker). Otherwise, upon resume it
966     * rechecks running thread count and need for event sync.
967     *
968     * 4. If worker did not run a task, await the next task event via
969     * eventSync if necessary (first forcing inactivation), upon
970     * which the worker may be shutdown via
971     * tryShutdownUnusedWorker. Otherwise, help release any
972     * existing event waiters that are now releasable,
973 dl 1.53 *
974     * @param w the worker
975 dl 1.66 * @param ran true if worker ran a task since last call to this method
976 dl 1.53 */
977 dl 1.66 final void preStep(ForkJoinWorkerThread w, boolean ran) {
978     int wec = w.lastEventCount;
979 dl 1.53 boolean active = w.active;
980 dl 1.66 boolean inactivate = false;
981 dl 1.61 int pc = parallelism;
982 dl 1.80 while (w.runState == 0) {
983     int rs = runState;
984 dl 1.85 if (rs >= TERMINATING) { // propagate shutdown
985 dl 1.80 w.shutdown();
986     break;
987     }
988 dl 1.66 if ((inactivate || (active && (rs & ACTIVE_COUNT_MASK) >= pc)) &&
989 dl 1.85 UNSAFE.compareAndSwapInt(this, runStateOffset, rs, --rs)) {
990 dl 1.66 inactivate = active = w.active = false;
991 dl 1.85 if (rs == SHUTDOWN) { // all inactive and shut down
992     tryTerminate(false);
993     continue;
994     }
995     }
996     int wc = workerCounts; // try to suspend as spare
997 dl 1.66 if ((wc & RUNNING_COUNT_MASK) > pc) {
998     if (!(inactivate |= active) && // must inactivate to suspend
999 dl 1.85 workerCounts == wc &&
1000 dl 1.61 UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1001 dl 1.66 wc, wc - ONE_RUNNING))
1002 dl 1.64 w.suspendAsSpare();
1003 dl 1.61 }
1004 dl 1.66 else if ((wc >>> TOTAL_COUNT_SHIFT) < pc)
1005     helpMaintainParallelism(); // not enough workers
1006 dl 1.85 else if (ran)
1007     break;
1008     else {
1009 dl 1.66 long h = eventWaiters;
1010     int ec = eventCount;
1011     if (h != 0L && (int)(h >>> EVENT_COUNT_SHIFT) != ec)
1012     releaseEventWaiters(); // release others before waiting
1013     else if (ec != wec) {
1014     w.lastEventCount = ec; // no need to wait
1015     break;
1016 dl 1.64 }
1017 jsr166 1.68 else if (!(inactivate |= active))
1018 dl 1.66 eventSync(w, wec); // must inactivate before sync
1019 dl 1.53 }
1020     }
1021     }
1022    
1023     /**
1024 dl 1.61 * Helps and/or blocks awaiting join of the given task.
1025 dl 1.66 * See above for explanation.
1026 dl 1.56 *
1027     * @param joinMe the task to join
1028 dl 1.66 * @param worker the current worker thread
1029 dl 1.83 * @param timed true if wait should time out
1030     * @param nanos timeout value if timed
1031 dl 1.53 */
1032 dl 1.83 final void awaitJoin(ForkJoinTask<?> joinMe, ForkJoinWorkerThread worker,
1033     boolean timed, long nanos) {
1034 jsr166 1.90 long startTime = timed ? System.nanoTime() : 0L;
1035 dl 1.66 int retries = 2 + (parallelism >> 2); // #helpJoins before blocking
1036 dl 1.85 boolean running = true; // false when count decremented
1037 dl 1.61 while (joinMe.status >= 0) {
1038 dl 1.82 if (runState >= TERMINATING) {
1039     joinMe.cancelIgnoringExceptions();
1040     break;
1041     }
1042 dl 1.85 running = worker.helpJoinTask(joinMe, running);
1043 dl 1.61 if (joinMe.status < 0)
1044     break;
1045 dl 1.85 if (retries > 0) {
1046 dl 1.66 --retries;
1047 dl 1.85 continue;
1048     }
1049     int wc = workerCounts;
1050     if ((wc & RUNNING_COUNT_MASK) != 0) {
1051     if (running) {
1052     if (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1053     wc, wc - ONE_RUNNING))
1054     continue;
1055     running = false;
1056     }
1057     long h = eventWaiters;
1058     if (h != 0L && (int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1059 dl 1.66 releaseEventWaiters();
1060 dl 1.85 if ((workerCounts & RUNNING_COUNT_MASK) != 0) {
1061     long ms; int ns;
1062     if (!timed) {
1063     ms = JOIN_TIMEOUT_MILLIS;
1064     ns = 0;
1065     }
1066     else { // at most JOIN_TIMEOUT_MILLIS per wait
1067     long nt = nanos - (System.nanoTime() - startTime);
1068     if (nt <= 0L)
1069     break;
1070     ms = nt / 1000000;
1071     if (ms > JOIN_TIMEOUT_MILLIS) {
1072 dl 1.83 ms = JOIN_TIMEOUT_MILLIS;
1073     ns = 0;
1074     }
1075 dl 1.85 else
1076     ns = (int) (nt % 1000000);
1077 dl 1.83 }
1078 dl 1.87 joinMe.internalAwaitDone(ms, ns);
1079 dl 1.83 }
1080 dl 1.87 if (joinMe.status < 0)
1081     break;
1082 dl 1.53 }
1083 dl 1.85 helpMaintainParallelism();
1084     }
1085     if (!running) {
1086     int c;
1087     do {} while (!UNSAFE.compareAndSwapInt
1088     (this, workerCountsOffset,
1089     c = workerCounts, c + ONE_RUNNING));
1090 dl 1.53 }
1091     }
1092    
1093     /**
1094 dl 1.66 * Same idea as awaitJoin, but no helping, retries, or timeouts.
1095 dl 1.53 */
1096 dl 1.57 final void awaitBlocker(ManagedBlocker blocker)
1097 dl 1.53 throws InterruptedException {
1098 dl 1.61 while (!blocker.isReleasable()) {
1099 dl 1.66 int wc = workerCounts;
1100 dl 1.85 if ((wc & RUNNING_COUNT_MASK) == 0)
1101     helpMaintainParallelism();
1102     else if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1103     wc, wc - ONE_RUNNING)) {
1104 dl 1.61 try {
1105 dl 1.66 while (!blocker.isReleasable()) {
1106     long h = eventWaiters;
1107     if (h != 0L &&
1108     (int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1109     releaseEventWaiters();
1110     else if ((workerCounts & RUNNING_COUNT_MASK) == 0 &&
1111     runState < TERMINATING)
1112     helpMaintainParallelism();
1113     else if (blocker.block())
1114     break;
1115     }
1116 dl 1.61 } finally {
1117     int c;
1118     do {} while (!UNSAFE.compareAndSwapInt
1119     (this, workerCountsOffset,
1120     c = workerCounts, c + ONE_RUNNING));
1121 dl 1.58 }
1122 dl 1.60 break;
1123     }
1124 dl 1.53 }
1125 dl 1.59 }
1126 dl 1.54
1127     /**
1128 dl 1.53 * Possibly initiates and/or completes termination.
1129     *
1130     * @param now if true, unconditionally terminate, else only
1131     * if shutdown and empty queue and no active workers
1132     * @return true if now terminating or terminated
1133 dl 1.1 */
1134 dl 1.53 private boolean tryTerminate(boolean now) {
1135     if (now)
1136     advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
1137     else if (runState < SHUTDOWN ||
1138     !submissionQueue.isEmpty() ||
1139     (runState & ACTIVE_COUNT_MASK) != 0)
1140 dl 1.4 return false;
1141 dl 1.53
1142     if (advanceRunLevel(TERMINATING))
1143     startTerminating();
1144    
1145     // Finish now if all threads terminated; else in some subsequent call
1146     if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1147     advanceRunLevel(TERMINATED);
1148 dl 1.84 termination.forceTermination();
1149 dl 1.53 }
1150 dl 1.4 return true;
1151 dl 1.1 }
1152    
1153     /**
1154 dl 1.53 * Actions on transition to TERMINATING
1155 dl 1.61 *
1156     * Runs up to four passes through workers: (0) shutting down each
1157 dl 1.64 * (without waking up if parked) to quickly spread notifications
1158     * without unnecessary bouncing around event queues etc (1) wake
1159     * up and help cancel tasks (2) interrupt (3) mop up races with
1160     * interrupted workers
1161 dl 1.53 */
1162     private void startTerminating() {
1163 dl 1.61 cancelSubmissions();
1164     for (int passes = 0; passes < 4 && workerCounts != 0; ++passes) {
1165 dl 1.66 int c; // advance event count
1166     UNSAFE.compareAndSwapInt(this, eventCountOffset,
1167     c = eventCount, c+1);
1168 dl 1.61 eventWaiters = 0L; // clobber lists
1169     spareWaiters = 0;
1170 jsr166 1.71 for (ForkJoinWorkerThread w : workers) {
1171 dl 1.61 if (w != null) {
1172 dl 1.64 w.shutdown();
1173 dl 1.61 if (passes > 0 && !w.isTerminated()) {
1174     w.cancelTasks();
1175     LockSupport.unpark(w);
1176 dl 1.80 if (passes > 1 && !w.isInterrupted()) {
1177 dl 1.61 try {
1178     w.interrupt();
1179     } catch (SecurityException ignore) {
1180     }
1181     }
1182     }
1183     }
1184     }
1185 dl 1.56 }
1186     }
1187    
1188     /**
1189 jsr166 1.72 * Clears out and cancels submissions, ignoring exceptions.
1190 dl 1.56 */
1191     private void cancelSubmissions() {
1192 dl 1.53 ForkJoinTask<?> task;
1193     while ((task = submissionQueue.poll()) != null) {
1194     try {
1195     task.cancel(false);
1196     } catch (Throwable ignore) {
1197     }
1198     }
1199 dl 1.56 }
1200    
1201 dl 1.53 // misc support for ForkJoinWorkerThread
1202    
1203     /**
1204 jsr166 1.72 * Returns pool number.
1205 dl 1.1 */
1206 dl 1.53 final int getPoolNumber() {
1207     return poolNumber;
1208 dl 1.1 }
1209    
1210     /**
1211 jsr166 1.72 * Tries to accumulate steal count from a worker, clearing
1212     * the worker's value if successful.
1213 dl 1.61 *
1214     * @return true if worker steal count now zero
1215 dl 1.1 */
1216 dl 1.61 final boolean tryAccumulateStealCount(ForkJoinWorkerThread w) {
1217 dl 1.53 int sc = w.stealCount;
1218 dl 1.61 long c = stealCount;
1219     // CAS even if zero, for fence effects
1220     if (UNSAFE.compareAndSwapLong(this, stealCountOffset, c, c + sc)) {
1221     if (sc != 0)
1222     w.stealCount = 0;
1223     return true;
1224 dl 1.1 }
1225 dl 1.61 return sc == 0;
1226 dl 1.1 }
1227    
1228     /**
1229 dl 1.53 * Returns the approximate (non-atomic) number of idle threads per
1230     * active thread.
1231     */
1232     final int idlePerActive() {
1233 dl 1.58 int pc = parallelism; // use parallelism, not rc
1234 jsr166 1.67 int ac = runState; // no mask -- artificially boosts during shutdown
1235 dl 1.53 // Use exact results for small values, saturate past 4
1236 jsr166 1.72 return ((pc <= ac) ? 0 :
1237     (pc >>> 1 <= ac) ? 1 :
1238     (pc >>> 2 <= ac) ? 3 :
1239     pc >>> 3);
1240 dl 1.53 }
1241    
1242     // Public and protected methods
1243 dl 1.1
1244     // Constructors
1245    
1246     /**
1247 dl 1.42 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1248 dl 1.57 * java.lang.Runtime#availableProcessors}, using the {@linkplain
1249     * #defaultForkJoinWorkerThreadFactory default thread factory},
1250     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1251 jsr166 1.17 *
1252 dl 1.1 * @throws SecurityException if a security manager exists and
1253     * the caller is not permitted to modify threads
1254     * because it does not hold {@link
1255 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1256 dl 1.1 */
1257     public ForkJoinPool() {
1258     this(Runtime.getRuntime().availableProcessors(),
1259 dl 1.57 defaultForkJoinWorkerThreadFactory, null, false);
1260 dl 1.1 }
1261    
1262     /**
1263 dl 1.42 * Creates a {@code ForkJoinPool} with the indicated parallelism
1264 dl 1.57 * level, the {@linkplain
1265     * #defaultForkJoinWorkerThreadFactory default thread factory},
1266     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1267 jsr166 1.17 *
1268 dl 1.42 * @param parallelism the parallelism level
1269 dl 1.1 * @throws IllegalArgumentException if parallelism less than or
1270 jsr166 1.47 * equal to zero, or greater than implementation limit
1271 dl 1.1 * @throws SecurityException if a security manager exists and
1272     * the caller is not permitted to modify threads
1273     * because it does not hold {@link
1274 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1275 dl 1.1 */
1276     public ForkJoinPool(int parallelism) {
1277 dl 1.57 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1278 dl 1.1 }
1279    
1280     /**
1281 dl 1.57 * Creates a {@code ForkJoinPool} with the given parameters.
1282 jsr166 1.17 *
1283 dl 1.57 * @param parallelism the parallelism level. For default value,
1284     * use {@link java.lang.Runtime#availableProcessors}.
1285     * @param factory the factory for creating new threads. For default value,
1286     * use {@link #defaultForkJoinWorkerThreadFactory}.
1287 dl 1.59 * @param handler the handler for internal worker threads that
1288     * terminate due to unrecoverable errors encountered while executing
1289 jsr166 1.73 * tasks. For default value, use {@code null}.
1290 dl 1.59 * @param asyncMode if true,
1291 dl 1.57 * establishes local first-in-first-out scheduling mode for forked
1292     * tasks that are never joined. This mode may be more appropriate
1293     * than default locally stack-based mode in applications in which
1294     * worker threads only process event-style asynchronous tasks.
1295 jsr166 1.73 * For default value, use {@code false}.
1296 dl 1.1 * @throws IllegalArgumentException if parallelism less than or
1297 jsr166 1.47 * equal to zero, or greater than implementation limit
1298 jsr166 1.48 * @throws NullPointerException if the factory is null
1299 dl 1.1 * @throws SecurityException if a security manager exists and
1300     * the caller is not permitted to modify threads
1301     * because it does not hold {@link
1302 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1303 dl 1.1 */
1304 dl 1.59 public ForkJoinPool(int parallelism,
1305 dl 1.57 ForkJoinWorkerThreadFactory factory,
1306     Thread.UncaughtExceptionHandler handler,
1307     boolean asyncMode) {
1308 dl 1.53 checkPermission();
1309     if (factory == null)
1310     throw new NullPointerException();
1311 dl 1.61 if (parallelism <= 0 || parallelism > MAX_WORKERS)
1312 dl 1.1 throw new IllegalArgumentException();
1313 dl 1.53 this.parallelism = parallelism;
1314 dl 1.1 this.factory = factory;
1315 dl 1.57 this.ueh = handler;
1316     this.locallyFifo = asyncMode;
1317     int arraySize = initialArraySizeFor(parallelism);
1318 dl 1.53 this.workers = new ForkJoinWorkerThread[arraySize];
1319     this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
1320 dl 1.1 this.workerLock = new ReentrantLock();
1321 dl 1.57 this.termination = new Phaser(1);
1322     this.poolNumber = poolNumberGenerator.incrementAndGet();
1323 dl 1.1 }
1324    
1325     /**
1326 dl 1.53 * Returns initial power of two size for workers array.
1327     * @param pc the initial parallelism level
1328     */
1329     private static int initialArraySizeFor(int pc) {
1330 dl 1.66 // If possible, initially allocate enough space for one spare
1331     int size = pc < MAX_WORKERS ? pc + 1 : MAX_WORKERS;
1332 dl 1.61 // See Hackers Delight, sec 3.2. We know MAX_WORKERS < (1 >>> 16)
1333 dl 1.53 size |= size >>> 1;
1334     size |= size >>> 2;
1335     size |= size >>> 4;
1336     size |= size >>> 8;
1337     return size + 1;
1338 dl 1.1 }
1339    
1340     // Execution methods
1341    
1342     /**
1343 dl 1.82 * Submits task and creates, starts, or resumes some workers if necessary
1344 dl 1.1 */
1345     private <T> void doSubmit(ForkJoinTask<T> task) {
1346 dl 1.58 submissionQueue.offer(task);
1347 dl 1.66 int c; // try to increment event count -- CAS failure OK
1348     UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
1349 dl 1.82 helpMaintainParallelism();
1350 dl 1.1 }
1351    
1352     /**
1353 jsr166 1.17 * Performs the given task, returning its result upon completion.
1354     *
1355 dl 1.1 * @param task the task
1356     * @return the task's result
1357 jsr166 1.48 * @throws NullPointerException if the task is null
1358     * @throws RejectedExecutionException if the task cannot be
1359     * scheduled for execution
1360 dl 1.1 */
1361     public <T> T invoke(ForkJoinTask<T> task) {
1362 dl 1.82 if (task == null)
1363     throw new NullPointerException();
1364     if (runState >= SHUTDOWN)
1365     throw new RejectedExecutionException();
1366     Thread t = Thread.currentThread();
1367     if ((t instanceof ForkJoinWorkerThread) &&
1368     ((ForkJoinWorkerThread)t).pool == this)
1369     return task.invoke(); // bypass submit if in same pool
1370     else {
1371     doSubmit(task);
1372     return task.join();
1373     }
1374     }
1375    
1376     /**
1377     * Unless terminating, forks task if within an ongoing FJ
1378     * computation in the current pool, else submits as external task.
1379     */
1380     private <T> void forkOrSubmit(ForkJoinTask<T> task) {
1381     if (runState >= SHUTDOWN)
1382     throw new RejectedExecutionException();
1383     Thread t = Thread.currentThread();
1384     if ((t instanceof ForkJoinWorkerThread) &&
1385     ((ForkJoinWorkerThread)t).pool == this)
1386     task.fork();
1387     else
1388     doSubmit(task);
1389 dl 1.1 }
1390    
1391     /**
1392     * Arranges for (asynchronous) execution of the given task.
1393 jsr166 1.17 *
1394 dl 1.1 * @param task the task
1395 jsr166 1.48 * @throws NullPointerException if the task is null
1396     * @throws RejectedExecutionException if the task cannot be
1397     * scheduled for execution
1398 dl 1.1 */
1399 dl 1.37 public void execute(ForkJoinTask<?> task) {
1400 dl 1.82 if (task == null)
1401     throw new NullPointerException();
1402     forkOrSubmit(task);
1403 dl 1.1 }
1404    
1405     // AbstractExecutorService methods
1406    
1407 jsr166 1.48 /**
1408     * @throws NullPointerException if the task is null
1409     * @throws RejectedExecutionException if the task cannot be
1410     * scheduled for execution
1411     */
1412 dl 1.1 public void execute(Runnable task) {
1413 dl 1.82 if (task == null)
1414     throw new NullPointerException();
1415 dl 1.23 ForkJoinTask<?> job;
1416 jsr166 1.26 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1417     job = (ForkJoinTask<?>) task;
1418 dl 1.23 else
1419 dl 1.33 job = ForkJoinTask.adapt(task, null);
1420 dl 1.82 forkOrSubmit(job);
1421 dl 1.1 }
1422    
1423 jsr166 1.48 /**
1424 dl 1.57 * Submits a ForkJoinTask for execution.
1425     *
1426     * @param task the task to submit
1427     * @return the task
1428     * @throws NullPointerException if the task is null
1429     * @throws RejectedExecutionException if the task cannot be
1430     * scheduled for execution
1431     */
1432     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1433 dl 1.82 if (task == null)
1434     throw new NullPointerException();
1435     forkOrSubmit(task);
1436 dl 1.57 return task;
1437     }
1438    
1439     /**
1440 jsr166 1.48 * @throws NullPointerException if the task is null
1441     * @throws RejectedExecutionException if the task cannot be
1442     * scheduled for execution
1443     */
1444 dl 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
1445 dl 1.82 if (task == null)
1446     throw new NullPointerException();
1447 dl 1.33 ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1448 dl 1.82 forkOrSubmit(job);
1449 dl 1.1 return job;
1450     }
1451    
1452 jsr166 1.48 /**
1453     * @throws NullPointerException if the task is null
1454     * @throws RejectedExecutionException if the task cannot be
1455     * scheduled for execution
1456     */
1457 dl 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
1458 dl 1.82 if (task == null)
1459     throw new NullPointerException();
1460 dl 1.33 ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1461 dl 1.82 forkOrSubmit(job);
1462 dl 1.1 return job;
1463     }
1464    
1465 jsr166 1.48 /**
1466     * @throws NullPointerException if the task is null
1467     * @throws RejectedExecutionException if the task cannot be
1468     * scheduled for execution
1469     */
1470 dl 1.1 public ForkJoinTask<?> submit(Runnable task) {
1471 dl 1.82 if (task == null)
1472     throw new NullPointerException();
1473 dl 1.23 ForkJoinTask<?> job;
1474 jsr166 1.26 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1475     job = (ForkJoinTask<?>) task;
1476 dl 1.23 else
1477 dl 1.33 job = ForkJoinTask.adapt(task, null);
1478 dl 1.82 forkOrSubmit(job);
1479 dl 1.1 return job;
1480     }
1481    
1482     /**
1483 jsr166 1.48 * @throws NullPointerException {@inheritDoc}
1484     * @throws RejectedExecutionException {@inheritDoc}
1485     */
1486 dl 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
1487 jsr166 1.20 ArrayList<ForkJoinTask<T>> forkJoinTasks =
1488 dl 1.1 new ArrayList<ForkJoinTask<T>>(tasks.size());
1489 jsr166 1.20 for (Callable<T> task : tasks)
1490 dl 1.33 forkJoinTasks.add(ForkJoinTask.adapt(task));
1491 jsr166 1.20 invoke(new InvokeAll<T>(forkJoinTasks));
1492    
1493     @SuppressWarnings({"unchecked", "rawtypes"})
1494 dl 1.54 List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1495 jsr166 1.20 return futures;
1496 dl 1.1 }
1497    
1498     static final class InvokeAll<T> extends RecursiveAction {
1499     final ArrayList<ForkJoinTask<T>> tasks;
1500     InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
1501     public void compute() {
1502 jsr166 1.17 try { invokeAll(tasks); }
1503     catch (Exception ignore) {}
1504 dl 1.1 }
1505 jsr166 1.18 private static final long serialVersionUID = -7914297376763021607L;
1506 dl 1.1 }
1507    
1508     /**
1509 jsr166 1.17 * Returns the factory used for constructing new workers.
1510 dl 1.1 *
1511     * @return the factory used for constructing new workers
1512     */
1513     public ForkJoinWorkerThreadFactory getFactory() {
1514     return factory;
1515     }
1516    
1517     /**
1518 dl 1.2 * Returns the handler for internal worker threads that terminate
1519     * due to unrecoverable errors encountered while executing tasks.
1520 jsr166 1.17 *
1521 jsr166 1.28 * @return the handler, or {@code null} if none
1522 dl 1.2 */
1523     public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1524 dl 1.53 return ueh;
1525 dl 1.2 }
1526    
1527     /**
1528 dl 1.42 * Returns the targeted parallelism level of this pool.
1529 dl 1.1 *
1530 dl 1.42 * @return the targeted parallelism level of this pool
1531 dl 1.1 */
1532     public int getParallelism() {
1533     return parallelism;
1534     }
1535    
1536     /**
1537     * Returns the number of worker threads that have started but not
1538 jsr166 1.76 * yet terminated. The result returned by this method may differ
1539 jsr166 1.29 * from {@link #getParallelism} when threads are created to
1540 dl 1.1 * maintain parallelism when others are cooperatively blocked.
1541     *
1542     * @return the number of worker threads
1543     */
1544     public int getPoolSize() {
1545 dl 1.53 return workerCounts >>> TOTAL_COUNT_SHIFT;
1546 dl 1.1 }
1547    
1548     /**
1549 jsr166 1.28 * Returns {@code true} if this pool uses local first-in-first-out
1550 jsr166 1.16 * scheduling mode for forked tasks that are never joined.
1551 dl 1.6 *
1552 jsr166 1.28 * @return {@code true} if this pool uses async mode
1553 dl 1.6 */
1554     public boolean getAsyncMode() {
1555     return locallyFifo;
1556     }
1557    
1558     /**
1559 dl 1.2 * Returns an estimate of the number of worker threads that are
1560     * not blocked waiting to join tasks or for other managed
1561 dl 1.53 * synchronization. This method may overestimate the
1562     * number of running threads.
1563 dl 1.1 *
1564     * @return the number of worker threads
1565     */
1566     public int getRunningThreadCount() {
1567 dl 1.53 return workerCounts & RUNNING_COUNT_MASK;
1568 dl 1.1 }
1569    
1570     /**
1571 dl 1.2 * Returns an estimate of the number of threads that are currently
1572 dl 1.1 * stealing or executing tasks. This method may overestimate the
1573     * number of active threads.
1574 jsr166 1.17 *
1575 jsr166 1.16 * @return the number of active threads
1576 dl 1.1 */
1577     public int getActiveThreadCount() {
1578 dl 1.53 return runState & ACTIVE_COUNT_MASK;
1579 dl 1.1 }
1580    
1581     /**
1582 jsr166 1.28 * Returns {@code true} if all worker threads are currently idle.
1583     * An idle worker is one that cannot obtain a task to execute
1584     * because none are available to steal from other threads, and
1585     * there are no pending submissions to the pool. This method is
1586     * conservative; it might not return {@code true} immediately upon
1587     * idleness of all threads, but will eventually become true if
1588     * threads remain inactive.
1589 jsr166 1.17 *
1590 jsr166 1.28 * @return {@code true} if all threads are currently idle
1591 dl 1.1 */
1592     public boolean isQuiescent() {
1593 dl 1.53 return (runState & ACTIVE_COUNT_MASK) == 0;
1594 dl 1.1 }
1595    
1596     /**
1597     * Returns an estimate of the total number of tasks stolen from
1598     * one thread's work queue by another. The reported value
1599     * underestimates the actual total number of steals when the pool
1600     * is not quiescent. This value may be useful for monitoring and
1601 jsr166 1.17 * tuning fork/join programs: in general, steal counts should be
1602 dl 1.1 * high enough to keep threads busy, but low enough to avoid
1603     * overhead and contention across threads.
1604 jsr166 1.17 *
1605 jsr166 1.16 * @return the number of steals
1606 dl 1.1 */
1607     public long getStealCount() {
1608 dl 1.53 return stealCount;
1609 dl 1.1 }
1610    
1611     /**
1612 dl 1.2 * Returns an estimate of the total number of tasks currently held
1613     * in queues by worker threads (but not including tasks submitted
1614     * to the pool that have not begun executing). This value is only
1615     * an approximation, obtained by iterating across all threads in
1616     * the pool. This method may be useful for tuning task
1617     * granularities.
1618 jsr166 1.17 *
1619 jsr166 1.16 * @return the number of queued tasks
1620 dl 1.1 */
1621     public long getQueuedTaskCount() {
1622     long count = 0;
1623 jsr166 1.71 for (ForkJoinWorkerThread w : workers)
1624 dl 1.53 if (w != null)
1625     count += w.getQueueSize();
1626 dl 1.1 return count;
1627     }
1628    
1629     /**
1630 jsr166 1.40 * Returns an estimate of the number of tasks submitted to this
1631     * pool that have not yet begun executing. This method takes time
1632 dl 1.1 * proportional to the number of submissions.
1633 jsr166 1.17 *
1634 jsr166 1.16 * @return the number of queued submissions
1635 dl 1.1 */
1636     public int getQueuedSubmissionCount() {
1637     return submissionQueue.size();
1638     }
1639    
1640     /**
1641 jsr166 1.28 * Returns {@code true} if there are any tasks submitted to this
1642     * pool that have not yet begun executing.
1643 jsr166 1.17 *
1644 jsr166 1.16 * @return {@code true} if there are any queued submissions
1645 dl 1.1 */
1646     public boolean hasQueuedSubmissions() {
1647     return !submissionQueue.isEmpty();
1648     }
1649    
1650     /**
1651     * Removes and returns the next unexecuted submission if one is
1652     * available. This method may be useful in extensions to this
1653     * class that re-assign work in systems with multiple pools.
1654 jsr166 1.17 *
1655 jsr166 1.28 * @return the next submission, or {@code null} if none
1656 dl 1.1 */
1657     protected ForkJoinTask<?> pollSubmission() {
1658     return submissionQueue.poll();
1659     }
1660    
1661     /**
1662 dl 1.6 * Removes all available unexecuted submitted and forked tasks
1663     * from scheduling queues and adds them to the given collection,
1664     * without altering their execution status. These may include
1665 jsr166 1.41 * artificially generated or wrapped tasks. This method is
1666     * designed to be invoked only when the pool is known to be
1667 dl 1.6 * quiescent. Invocations at other times may not remove all
1668     * tasks. A failure encountered while attempting to add elements
1669 jsr166 1.16 * to collection {@code c} may result in elements being in
1670 dl 1.6 * neither, either or both collections when the associated
1671     * exception is thrown. The behavior of this operation is
1672     * undefined if the specified collection is modified while the
1673     * operation is in progress.
1674 jsr166 1.17 *
1675 dl 1.6 * @param c the collection to transfer elements into
1676     * @return the number of elements transferred
1677     */
1678 dl 1.30 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1679 dl 1.61 int count = submissionQueue.drainTo(c);
1680 jsr166 1.71 for (ForkJoinWorkerThread w : workers)
1681 dl 1.57 if (w != null)
1682 dl 1.61 count += w.drainTasksTo(c);
1683 dl 1.57 return count;
1684     }
1685    
1686     /**
1687 dl 1.1 * Returns a string identifying this pool, as well as its state,
1688     * including indications of run state, parallelism level, and
1689     * worker and task counts.
1690     *
1691     * @return a string identifying this pool, as well as its state
1692     */
1693     public String toString() {
1694     long st = getStealCount();
1695     long qt = getQueuedTaskCount();
1696     long qs = getQueuedSubmissionCount();
1697 dl 1.53 int wc = workerCounts;
1698     int tc = wc >>> TOTAL_COUNT_SHIFT;
1699     int rc = wc & RUNNING_COUNT_MASK;
1700     int pc = parallelism;
1701     int rs = runState;
1702     int ac = rs & ACTIVE_COUNT_MASK;
1703 dl 1.1 return super.toString() +
1704 dl 1.53 "[" + runLevelToString(rs) +
1705     ", parallelism = " + pc +
1706     ", size = " + tc +
1707     ", active = " + ac +
1708     ", running = " + rc +
1709 dl 1.1 ", steals = " + st +
1710     ", tasks = " + qt +
1711     ", submissions = " + qs +
1712     "]";
1713     }
1714    
1715 dl 1.53 private static String runLevelToString(int s) {
1716     return ((s & TERMINATED) != 0 ? "Terminated" :
1717     ((s & TERMINATING) != 0 ? "Terminating" :
1718     ((s & SHUTDOWN) != 0 ? "Shutting down" :
1719     "Running")));
1720 dl 1.1 }
1721    
1722     /**
1723     * Initiates an orderly shutdown in which previously submitted
1724     * tasks are executed, but no new tasks will be accepted.
1725     * Invocation has no additional effect if already shut down.
1726     * Tasks that are in the process of being submitted concurrently
1727     * during the course of this method may or may not be rejected.
1728 jsr166 1.17 *
1729 dl 1.1 * @throws SecurityException if a security manager exists and
1730     * the caller is not permitted to modify threads
1731     * because it does not hold {@link
1732 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1733 dl 1.1 */
1734     public void shutdown() {
1735     checkPermission();
1736 dl 1.53 advanceRunLevel(SHUTDOWN);
1737     tryTerminate(false);
1738 dl 1.1 }
1739    
1740     /**
1741 dl 1.42 * Attempts to cancel and/or stop all tasks, and reject all
1742     * subsequently submitted tasks. Tasks that are in the process of
1743     * being submitted or executed concurrently during the course of
1744     * this method may or may not be rejected. This method cancels
1745     * both existing and unexecuted tasks, in order to permit
1746     * termination in the presence of task dependencies. So the method
1747     * always returns an empty list (unlike the case for some other
1748     * Executors).
1749 jsr166 1.17 *
1750 dl 1.1 * @return an empty list
1751     * @throws SecurityException if a security manager exists and
1752     * the caller is not permitted to modify threads
1753     * because it does not hold {@link
1754 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1755 dl 1.1 */
1756     public List<Runnable> shutdownNow() {
1757     checkPermission();
1758 dl 1.53 tryTerminate(true);
1759 dl 1.1 return Collections.emptyList();
1760     }
1761    
1762     /**
1763 jsr166 1.16 * Returns {@code true} if all tasks have completed following shut down.
1764 dl 1.1 *
1765 jsr166 1.16 * @return {@code true} if all tasks have completed following shut down
1766 dl 1.1 */
1767     public boolean isTerminated() {
1768 dl 1.53 return runState >= TERMINATED;
1769 dl 1.1 }
1770    
1771     /**
1772 jsr166 1.16 * Returns {@code true} if the process of termination has
1773 dl 1.42 * commenced but not yet completed. This method may be useful for
1774     * debugging. A return of {@code true} reported a sufficient
1775     * period after shutdown may indicate that submitted tasks have
1776 dl 1.88 * ignored or suppressed interruption, or are waiting for IO,
1777     * causing this executor not to properly terminate. (See the
1778     * advisory notes for class {@link ForkJoinTask} stating that
1779     * tasks should not normally entail blocking operations. But if
1780     * they do, they must abort them on interrupt.)
1781 dl 1.1 *
1782 dl 1.42 * @return {@code true} if terminating but not yet terminated
1783 dl 1.1 */
1784     public boolean isTerminating() {
1785 dl 1.53 return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
1786 dl 1.1 }
1787    
1788     /**
1789 dl 1.80 * Returns true if terminating or terminated. Used by ForkJoinWorkerThread.
1790     */
1791     final boolean isAtLeastTerminating() {
1792     return runState >= TERMINATING;
1793     }
1794 jsr166 1.81
1795 dl 1.80 /**
1796 jsr166 1.16 * Returns {@code true} if this pool has been shut down.
1797 dl 1.1 *
1798 jsr166 1.16 * @return {@code true} if this pool has been shut down
1799 dl 1.1 */
1800     public boolean isShutdown() {
1801 dl 1.53 return runState >= SHUTDOWN;
1802 dl 1.42 }
1803    
1804     /**
1805 dl 1.1 * Blocks until all tasks have completed execution after a shutdown
1806     * request, or the timeout occurs, or the current thread is
1807     * interrupted, whichever happens first.
1808     *
1809     * @param timeout the maximum time to wait
1810     * @param unit the time unit of the timeout argument
1811 jsr166 1.16 * @return {@code true} if this executor terminated and
1812     * {@code false} if the timeout elapsed before termination
1813 dl 1.1 * @throws InterruptedException if interrupted while waiting
1814     */
1815     public boolean awaitTermination(long timeout, TimeUnit unit)
1816     throws InterruptedException {
1817 dl 1.57 try {
1818 dl 1.84 termination.awaitAdvanceInterruptibly(0, timeout, unit);
1819 jsr166 1.69 } catch (TimeoutException ex) {
1820 dl 1.57 return false;
1821     }
1822 dl 1.84 return true;
1823 dl 1.1 }
1824    
1825     /**
1826     * Interface for extending managed parallelism for tasks running
1827 jsr166 1.35 * in {@link ForkJoinPool}s.
1828     *
1829 dl 1.61 * <p>A {@code ManagedBlocker} provides two methods. Method
1830     * {@code isReleasable} must return {@code true} if blocking is
1831     * not necessary. Method {@code block} blocks the current thread
1832     * if necessary (perhaps internally invoking {@code isReleasable}
1833     * before actually blocking). The unusual methods in this API
1834     * accommodate synchronizers that may, but don't usually, block
1835     * for long periods. Similarly, they allow more efficient internal
1836     * handling of cases in which additional workers may be, but
1837     * usually are not, needed to ensure sufficient parallelism.
1838     * Toward this end, implementations of method {@code isReleasable}
1839     * must be amenable to repeated invocation.
1840 jsr166 1.17 *
1841 dl 1.1 * <p>For example, here is a ManagedBlocker based on a
1842     * ReentrantLock:
1843 jsr166 1.17 * <pre> {@code
1844     * class ManagedLocker implements ManagedBlocker {
1845     * final ReentrantLock lock;
1846     * boolean hasLock = false;
1847     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1848     * public boolean block() {
1849     * if (!hasLock)
1850     * lock.lock();
1851     * return true;
1852     * }
1853     * public boolean isReleasable() {
1854     * return hasLock || (hasLock = lock.tryLock());
1855 dl 1.1 * }
1856 jsr166 1.17 * }}</pre>
1857 dl 1.61 *
1858     * <p>Here is a class that possibly blocks waiting for an
1859     * item on a given queue:
1860     * <pre> {@code
1861     * class QueueTaker<E> implements ManagedBlocker {
1862     * final BlockingQueue<E> queue;
1863     * volatile E item = null;
1864     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
1865     * public boolean block() throws InterruptedException {
1866     * if (item == null)
1867 dl 1.65 * item = queue.take();
1868 dl 1.61 * return true;
1869     * }
1870     * public boolean isReleasable() {
1871 dl 1.65 * return item != null || (item = queue.poll()) != null;
1872 dl 1.61 * }
1873     * public E getItem() { // call after pool.managedBlock completes
1874     * return item;
1875     * }
1876     * }}</pre>
1877 dl 1.1 */
1878     public static interface ManagedBlocker {
1879     /**
1880     * Possibly blocks the current thread, for example waiting for
1881     * a lock or condition.
1882 jsr166 1.17 *
1883 jsr166 1.28 * @return {@code true} if no additional blocking is necessary
1884     * (i.e., if isReleasable would return true)
1885 dl 1.1 * @throws InterruptedException if interrupted while waiting
1886 jsr166 1.17 * (the method is not required to do so, but is allowed to)
1887 dl 1.1 */
1888     boolean block() throws InterruptedException;
1889    
1890     /**
1891 jsr166 1.28 * Returns {@code true} if blocking is unnecessary.
1892 dl 1.1 */
1893     boolean isReleasable();
1894     }
1895    
1896     /**
1897     * Blocks in accord with the given blocker. If the current thread
1898 jsr166 1.38 * is a {@link ForkJoinWorkerThread}, this method possibly
1899     * arranges for a spare thread to be activated if necessary to
1900 dl 1.57 * ensure sufficient parallelism while the current thread is blocked.
1901 jsr166 1.38 *
1902     * <p>If the caller is not a {@link ForkJoinTask}, this method is
1903     * behaviorally equivalent to
1904 jsr166 1.17 * <pre> {@code
1905     * while (!blocker.isReleasable())
1906     * if (blocker.block())
1907     * return;
1908     * }</pre>
1909 jsr166 1.38 *
1910     * If the caller is a {@code ForkJoinTask}, then the pool may
1911     * first be expanded to ensure parallelism, and later adjusted.
1912 dl 1.1 *
1913     * @param blocker the blocker
1914 jsr166 1.16 * @throws InterruptedException if blocker.block did so
1915 dl 1.1 */
1916 dl 1.57 public static void managedBlock(ManagedBlocker blocker)
1917 dl 1.1 throws InterruptedException {
1918     Thread t = Thread.currentThread();
1919 dl 1.61 if (t instanceof ForkJoinWorkerThread) {
1920     ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
1921     w.pool.awaitBlocker(blocker);
1922     }
1923 dl 1.57 else {
1924     do {} while (!blocker.isReleasable() && !blocker.block());
1925     }
1926 dl 1.1 }
1927    
1928 dl 1.33 // AbstractExecutorService overrides. These rely on undocumented
1929     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
1930     // implement RunnableFuture.
1931 dl 1.2
1932     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
1933 jsr166 1.34 return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
1934 dl 1.2 }
1935    
1936     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
1937 jsr166 1.34 return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
1938 dl 1.2 }
1939    
1940 jsr166 1.27 // Unsafe mechanics
1941 dl 1.1
1942 jsr166 1.21 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1943 dl 1.53 private static final long workerCountsOffset =
1944     objectFieldOffset("workerCounts", ForkJoinPool.class);
1945     private static final long runStateOffset =
1946     objectFieldOffset("runState", ForkJoinPool.class);
1947 jsr166 1.25 private static final long eventCountOffset =
1948 jsr166 1.27 objectFieldOffset("eventCount", ForkJoinPool.class);
1949 dl 1.53 private static final long eventWaitersOffset =
1950 jsr166 1.75 objectFieldOffset("eventWaiters", ForkJoinPool.class);
1951 dl 1.53 private static final long stealCountOffset =
1952 jsr166 1.75 objectFieldOffset("stealCount", ForkJoinPool.class);
1953 dl 1.61 private static final long spareWaitersOffset =
1954 jsr166 1.75 objectFieldOffset("spareWaiters", ForkJoinPool.class);
1955 dl 1.53
1956 jsr166 1.27 private static long objectFieldOffset(String field, Class<?> klazz) {
1957     try {
1958     return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1959     } catch (NoSuchFieldException e) {
1960     // Convert Exception to corresponding Error
1961     NoSuchFieldError error = new NoSuchFieldError(field);
1962     error.initCause(e);
1963     throw error;
1964     }
1965     }
1966    
1967     /**
1968     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1969     * Replace with a simple call to Unsafe.getUnsafe when integrating
1970     * into a jdk.
1971     *
1972     * @return a sun.misc.Unsafe
1973     */
1974     private static sun.misc.Unsafe getUnsafe() {
1975     try {
1976     return sun.misc.Unsafe.getUnsafe();
1977     } catch (SecurityException se) {
1978     try {
1979     return java.security.AccessController.doPrivileged
1980     (new java.security
1981     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1982     public sun.misc.Unsafe run() throws Exception {
1983     java.lang.reflect.Field f = sun.misc
1984     .Unsafe.class.getDeclaredField("theUnsafe");
1985     f.setAccessible(true);
1986     return (sun.misc.Unsafe) f.get(null);
1987     }});
1988     } catch (java.security.PrivilegedActionException e) {
1989     throw new RuntimeException("Could not initialize intrinsics",
1990     e.getCause());
1991     }
1992     }
1993     }
1994 dl 1.1 }