ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
Revision: 1.91
Committed: Tue Feb 22 00:39:31 2011 UTC (13 years, 2 months ago) by dl
Branch: MAIN
Changes since 1.90: +1084 -932 lines
Log Message:
Sync with j.u.c

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package jsr166y;
8 jsr166 1.22
9     import java.util.ArrayList;
10     import java.util.Arrays;
11     import java.util.Collection;
12     import java.util.Collections;
13     import java.util.List;
14 dl 1.91 import java.util.Random;
15 dl 1.78 import java.util.concurrent.AbstractExecutorService;
16     import java.util.concurrent.Callable;
17     import java.util.concurrent.ExecutorService;
18     import java.util.concurrent.Future;
19     import java.util.concurrent.RejectedExecutionException;
20     import java.util.concurrent.RunnableFuture;
21     import java.util.concurrent.TimeUnit;
22     import java.util.concurrent.TimeoutException;
23     import java.util.concurrent.atomic.AtomicInteger;
24 jsr166 1.22 import java.util.concurrent.locks.LockSupport;
25     import java.util.concurrent.locks.ReentrantLock;
26 dl 1.91 import java.util.concurrent.locks.Condition;
27 dl 1.1
28     /**
29 jsr166 1.29 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
30 jsr166 1.39 * A {@code ForkJoinPool} provides the entry point for submissions
31 dl 1.57 * from non-{@code ForkJoinTask} clients, as well as management and
32 jsr166 1.48 * monitoring operations.
33 dl 1.1 *
34 dl 1.42 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
35     * ExecutorService} mainly by virtue of employing
36     * <em>work-stealing</em>: all threads in the pool attempt to find and
37     * execute subtasks created by other active tasks (eventually blocking
38     * waiting for work if none exist). This enables efficient processing
39     * when most tasks spawn other subtasks (as do most {@code
40 dl 1.57 * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
41     * constructors, {@code ForkJoinPool}s may also be appropriate for use
42     * with event-style tasks that are never joined.
43 dl 1.1 *
44 dl 1.42 * <p>A {@code ForkJoinPool} is constructed with a given target
45     * parallelism level; by default, equal to the number of available
46 dl 1.57 * processors. The pool attempts to maintain enough active (or
47     * available) threads by dynamically adding, suspending, or resuming
48     * internal worker threads, even if some tasks are stalled waiting to
49     * join others. However, no such adjustments are guaranteed in the
50     * face of blocked IO or other unmanaged synchronization. The nested
51     * {@link ManagedBlocker} interface enables extension of the kinds of
52     * synchronization accommodated.
53 dl 1.1 *
54     * <p>In addition to execution and lifecycle control methods, this
55     * class provides status check methods (for example
56 jsr166 1.29 * {@link #getStealCount}) that are intended to aid in developing,
57 dl 1.1 * tuning, and monitoring fork/join applications. Also, method
58 jsr166 1.29 * {@link #toString} returns indications of pool state in a
59 dl 1.2 * convenient form for informal monitoring.
60 dl 1.1 *
61 dl 1.57 * <p> As is the case with other ExecutorServices, there are three
62 dl 1.60 * main task execution methods summarized in the following
63 dl 1.57 * table. These are designed to be used by clients not already engaged
64     * in fork/join computations in the current pool. The main forms of
65     * these methods accept instances of {@code ForkJoinTask}, but
66     * overloaded forms also allow mixed execution of plain {@code
67     * Runnable}- or {@code Callable}- based activities as well. However,
68     * tasks that are already executing in a pool should normally
69     * <em>NOT</em> use these pool execution methods, but instead use the
70 dl 1.59 * within-computation forms listed in the table.
71 dl 1.57 *
72     * <table BORDER CELLPADDING=3 CELLSPACING=1>
73     * <tr>
74     * <td></td>
75     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
76     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
77     * </tr>
78     * <tr>
79 jsr166 1.67 * <td> <b>Arrange async execution</td>
80 dl 1.57 * <td> {@link #execute(ForkJoinTask)}</td>
81     * <td> {@link ForkJoinTask#fork}</td>
82     * </tr>
83     * <tr>
84     * <td> <b>Await and obtain result</td>
85     * <td> {@link #invoke(ForkJoinTask)}</td>
86     * <td> {@link ForkJoinTask#invoke}</td>
87     * </tr>
88     * <tr>
89     * <td> <b>Arrange exec and obtain Future</td>
90     * <td> {@link #submit(ForkJoinTask)}</td>
91     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
92     * </tr>
93     * </table>
94 dl 1.59 *
95 dl 1.42 * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
96     * used for all parallel task execution in a program or subsystem.
97     * Otherwise, use would not usually outweigh the construction and
98     * bookkeeping overhead of creating a large set of threads. For
99 jsr166 1.43 * example, a common pool could be used for the {@code SortTasks}
100 dl 1.42 * illustrated in {@link RecursiveAction}. Because {@code
101     * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
102 jsr166 1.43 * daemon} mode, there is typically no need to explicitly {@link
103 dl 1.42 * #shutdown} such a pool upon program exit.
104     *
105     * <pre>
106     * static final ForkJoinPool mainPool = new ForkJoinPool();
107     * ...
108     * public void sort(long[] array) {
109     * mainPool.invoke(new SortTask(array, 0, array.length));
110     * }
111     * </pre>
112     *
113 dl 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
114 dl 1.2 * maximum number of running threads to 32767. Attempts to create
115 jsr166 1.48 * pools with greater than the maximum number result in
116 jsr166 1.39 * {@code IllegalArgumentException}.
117 jsr166 1.16 *
118 jsr166 1.48 * <p>This implementation rejects submitted tasks (that is, by throwing
119 dl 1.58 * {@link RejectedExecutionException}) only when the pool is shut down
120 dl 1.62 * or internal resources have been exhausted.
121 jsr166 1.48 *
122 jsr166 1.16 * @since 1.7
123     * @author Doug Lea
124 dl 1.1 */
125 dl 1.2 public class ForkJoinPool extends AbstractExecutorService {
126 dl 1.1
127     /*
128 dl 1.53 * Implementation Overview
129     *
130     * This class provides the central bookkeeping and control for a
131     * set of worker threads: Submissions from non-FJ threads enter
132     * into a submission queue. Workers take these tasks and typically
133     * split them into subtasks that may be stolen by other workers.
134 dl 1.91 * Preference rules give first priority to processing tasks from
135     * their own queues (LIFO or FIFO, depending on mode), then to
136     * randomized FIFO steals of tasks in other worker queues, and
137     * lastly to new submissions.
138     *
139     * The main throughput advantages of work-stealing stem from
140     * decentralized control -- workers mostly take tasks from
141     * themselves or each other. We cannot negate this in the
142     * implementation of other management responsibilities. The main
143     * tactic for avoiding bottlenecks is packing nearly all
144     * essentially atomic control state into a single 64bit volatile
145     * variable ("ctl"). This variable is read on the order of 10-100
146     * times as often as it is modified (always via CAS). (There is
147     * some additional control state, for example variable "shutdown"
148     * for which we can cope with uncoordinated updates.) This
149     * streamlines synchronization and control at the expense of messy
150     * constructions needed to repack status bits upon updates.
151     * Updates tend not to contend with each other except during
152     * bursts while submitted tasks begin or end. In some cases when
153     * they do contend, threads can instead do something else
154     * (usually, scan for tesks) until contention subsides.
155     *
156     * To enable packing, we restrict maximum parallelism to (1<<15)-1
157     * (which is far in excess of normal operating range) to allow
158     * ids, counts, and their negations (used for thresholding) to fit
159     * into 16bit fields.
160     *
161     * Recording Workers. Workers are recorded in the "workers" array
162     * that is created upon pool construction and expanded if (rarely)
163     * necessary. This is an array as opposed to some other data
164     * structure to support index-based random steals by workers.
165     * Updates to the array recording new workers and unrecording
166     * terminated ones are protected from each other by a seqLock
167     * (scanGuard) but the array is otherwise concurrently readable,
168     * and accessed directly by workers. To simplify index-based
169     * operations, the array size is always a power of two, and all
170     * readers must tolerate null slots. To avoid flailing during
171     * start-up, the array is presized to hold twice #parallelism
172     * workers (which is unlikely to need further resizing during
173     * execution). But to avoid dealing with so many null slots,
174     * variable scanGuard includes a mask for the nearest power of two
175     * that contains all current workers. All worker thread creation
176     * is on-demand, triggered by task submissions, replacement of
177     * terminated workers, and/or compensation for blocked
178     * workers. However, all other support code is set up to work with
179     * other policies. To ensure that we do not hold on to worker
180     * references that would prevent GC, ALL accesses to workers are
181     * via indices into the workers array (which is one source of some
182     * of the messy code constructions here). In essence, the workers
183     * array serves as a weak reference mechanism. Thus for example
184     * the wait queue field of ctl stores worker indices, not worker
185     * references. Access to the workers in associated methods (for
186     * example signalWork) must both index-check and null-check the
187     * IDs. All such accesses ignore bad IDs by returning out early
188     * from what they are doing, since this can only be associated
189     * with termination, in which case it is OK to give up.
190     *
191     * All uses of the workers array, as well as queue arrays, check
192     * that the array is non-null (even if previously non-null). This
193     * allows nulling during termination, which is currently not
194     * necessary, but remains an option for resource-revocation-based
195     * shutdown schemes.
196     *
197     * Wait Queuing. Unlike HPC work-stealing frameworks, we cannot
198     * let workers spin indefinitely scanning for tasks when none are
199     * can be immediately found, and we cannot start/resume workers
200     * unless there appear to be tasks available. On the other hand,
201     * we must quickly prod them into action when new tasks are
202     * submitted or generated. We park/unpark workers after placing
203     * in an event wait queue when they cannot find work. This "queue"
204     * is actually a simple Treiber stack, headed by the "id" field of
205     * ctl, plus a 15bit counter value to both wake up waiters (by
206     * advancing their count) and avoid ABA effects. Successors are
207     * held in worker field "nextWait". Queuing deals with several
208     * intrinsic races, mainly that a task-producing thread can miss
209     * seeing (and signalling) another thread that gave up looking for
210     * work but has not yet entered the wait queue. We solve this by
211     * requiring a full sweep of all workers both before (in scan())
212     * and after (in awaitWork()) a newly waiting worker is added to
213     * the wait queue. During a rescan, the worker might release some
214     * other queued worker rather than itself, which has the same net
215     * effect.
216     *
217     * Signalling. We create or wake up workers only when there
218     * appears to be at least one task they might be able to find and
219     * execute. When a submission is added or another worker adds a
220     * task to a queue that previously had two or fewer tasks, they
221     * signal waiting workers (or trigger creation of new ones if
222     * fewer than the given parallelism level -- see signalWork).
223     * These primary signals are buttressed by signals during rescans
224     * as well as those performed when a worker steals a task and
225     * notices that there are more tasks too; together these cover the
226     * signals needed in cases when more than two tasks are pushed
227     * but untaken.
228     *
229     * Trimming workers. To release resources after periods of lack of
230     * use, a worker starting to wait when the pool is quiescent will
231     * time out and terminate if the pool has remained quiescent for
232     * SHRINK_RATE nanosecs.
233     *
234     * Submissions. External submissions are maintained in an
235     * array-based queue that is structured identically to
236     * ForkJoinWorkerThread queues (which see) except for the use of
237     * submissionLock in method addSubmission. Unlike worker queues,
238     * multiple external threads can add new submissions.
239     *
240     * Compensation. Beyond work-stealing support and lifecycle
241     * control, the main responsibility of this framework is to take
242     * actions when one worker is waiting to join a task stolen (or
243     * always held by) another. Because we are multiplexing many
244     * tasks on to a pool of workers, we can't just let them block (as
245     * in Thread.join). We also cannot just reassign the joiner's
246     * run-time stack with another and replace it later, which would
247     * be a form of "continuation", that even if possible is not
248     * necessarily a good idea since we sometimes need both an
249     * unblocked task and its continuation to progress. Instead we
250 dl 1.60 * combine two tactics:
251 dl 1.58 *
252 dl 1.60 * Helping: Arranging for the joiner to execute some task that it
253 dl 1.58 * would be running if the steal had not occurred. Method
254 dl 1.91 * ForkJoinWorkerThread.joinTask tracks joining->stealing
255 dl 1.58 * links to try to find such a task.
256     *
257 dl 1.61 * Compensating: Unless there are already enough live threads,
258 dl 1.91 * method tryPreBlock() may create or re-activate a spare
259     * thread to compensate for blocked joiners until they
260     * unblock.
261     *
262     * The ManagedBlocker extension API can't use helping so relies
263     * only on compensation in method awaitBlocker.
264 dl 1.58 *
265 dl 1.91 * It is impossible to keep exactly the target parallelism number
266     * of threads running at any given time. Determining the
267 dl 1.66 * existence of conservatively safe helping targets, the
268     * availability of already-created spares, and the apparent need
269     * to create new spares are all racy and require heuristic
270 dl 1.91 * guidance, so we rely on multiple retries of each. Currently,
271     * in keeping with on-demand signalling policy, we compensate only
272     * if blocking would leave less than one active (non-waiting,
273     * non-blocked) worker. Additionally, to avoid some false alarms
274     * due to GC, lagging counters, system activity, etc, compensated
275     * blocking for joins is only attempted after a number of rechecks
276     * proportional to the current apparent deficit (where retries are
277     * interspersed with Thread.yield, for good citizenship). The
278     * variable blockedCount, incremented before blocking and
279     * decremented after, is sometimes needed to distinguish cases of
280     * waiting for work vs blocking on joins or other managed sync,
281     * but both the cases are equivalent for most pool control, so we
282     * can update non-atomically. (Additionally, contention on
283     * blockedCount alleviates some contention on ctl).
284     *
285     * Shutdown and Termination. A call to shutdownNow atomically sets
286     * the ctl stop bit and then (non-atomically) sets each workers
287     * "terminate" status, cancels all unprocessed tasks, and wakes up
288     * all waiting workers. Detecting whether termination should
289     * commence after a non-abrupt shutdown() call requires more work
290     * and bookkeeping. We need consensus about quiesence (i.e., that
291     * there is no more work) which is reflected in active counts so
292     * long as there are no current blockers, as well as possible
293     * re-evaluations during independent changes in blocking or
294     * quiescing workers.
295 dl 1.58 *
296 dl 1.91 * Style notes: There is a lot of representation-level coupling
297 dl 1.53 * among classes ForkJoinPool, ForkJoinWorkerThread, and
298 dl 1.91 * ForkJoinTask. Most fields of ForkJoinWorkerThread maintain
299     * data structures managed by ForkJoinPool, so are directly
300     * accessed. Conversely we allow access to "workers" array by
301 dl 1.53 * workers, and direct access to ForkJoinTask.status by both
302     * ForkJoinPool and ForkJoinWorkerThread. There is little point
303     * trying to reduce this, since any associated future changes in
304     * representations will need to be accompanied by algorithmic
305 dl 1.91 * changes anyway. All together, these low-level implementation
306     * choices produce as much as a factor of 4 performance
307     * improvement compared to naive implementations, and enable the
308     * processing of billions of tasks per second, at the expense of
309     * some ugliness.
310     *
311     * Methods signalWork() and scan() are the main bottlenecks so are
312     * especially heavily micro-optimized/mangled. There are lots of
313     * inline assignments (of form "while ((local = field) != 0)")
314     * which are usually the simplest way to ensure the required read
315     * orderings (which are sometimes critical). This leads to a
316     * "C"-like style of listing declarations of these locals at the
317     * heads of methods or blocks. There are several occurrences of
318     * the unusual "do {} while (!cas...)" which is the simplest way
319     * to force an update of a CAS'ed variable. There are also other
320     * coding oddities that help some methods perform reasonably even
321     * when interpreted (not compiled).
322     *
323     * The order of declarations in this file is: (1) declarations of
324     * statics (2) fields (along with constants used when unpacking
325     * some of them), listed in an order that tends to reduce
326     * contention among them a bit under most JVMs. (3) internal
327     * control methods (4) callbacks and other support for
328     * ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
329     * methods (plus a few little helpers). (6) static block
330     * initializing all statics in a minimally dependent order.
331 dl 1.1 */
332    
333     /**
334 jsr166 1.35 * Factory for creating new {@link ForkJoinWorkerThread}s.
335     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
336     * for {@code ForkJoinWorkerThread} subclasses that extend base
337     * functionality or initialize threads with different contexts.
338 dl 1.1 */
339     public static interface ForkJoinWorkerThreadFactory {
340     /**
341     * Returns a new worker thread operating in the given pool.
342     *
343     * @param pool the pool this thread works in
344 jsr166 1.48 * @throws NullPointerException if the pool is null
345 dl 1.1 */
346     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
347     }
348    
349     /**
350 jsr166 1.17 * Default ForkJoinWorkerThreadFactory implementation; creates a
351 dl 1.1 * new ForkJoinWorkerThread.
352     */
353 dl 1.57 static class DefaultForkJoinWorkerThreadFactory
354 dl 1.1 implements ForkJoinWorkerThreadFactory {
355     public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
356 dl 1.53 return new ForkJoinWorkerThread(pool);
357 dl 1.1 }
358     }
359    
360     /**
361 dl 1.2 * Creates a new ForkJoinWorkerThread. This factory is used unless
362     * overridden in ForkJoinPool constructors.
363 dl 1.1 */
364 dl 1.2 public static final ForkJoinWorkerThreadFactory
365 dl 1.91 defaultForkJoinWorkerThreadFactory;
366 dl 1.1
367     /**
368     * Permission required for callers of methods that may start or
369     * kill threads.
370     */
371 dl 1.91 private static final RuntimePermission modifyThreadPermission;
372 dl 1.1
373     /**
374     * If there is a security manager, makes sure caller has
375     * permission to modify threads.
376     */
377     private static void checkPermission() {
378     SecurityManager security = System.getSecurityManager();
379     if (security != null)
380     security.checkPermission(modifyThreadPermission);
381     }
382    
383     /**
384     * Generator for assigning sequence numbers as pool names.
385     */
386 dl 1.91 private static final AtomicInteger poolNumberGenerator;
387 dl 1.1
388     /**
389 dl 1.91 * Generator for initial random seeds for worker victim
390     * selection. This is used only to create initial seeds. Random
391     * steals use a cheaper xorshift generator per steal attempt. We
392     * don't expect much contention on seedGenerator, so just use a
393     * plain Random.
394 dl 1.66 */
395 dl 1.91 static final Random workerSeedGenerator;
396 dl 1.66
397     /**
398 dl 1.91 * Array holding all worker threads in the pool. Initialized upon
399     * construction. Array size must be a power of two. Updates and
400     * replacements are protected by scanGuard, but the array is
401     * always kept in a consistent enough state to be randomly
402     * accessed without locking by workers performing work-stealing,
403     * as well as other traversal-based methods in this class, so long
404     * as reads memory-acquire by first reading ctl. All readers must
405     * tolerate that some array slots may be null.
406 dl 1.64 */
407 dl 1.91 ForkJoinWorkerThread[] workers;
408 dl 1.64
409     /**
410 dl 1.91 * Initial size for submission queue array. Must be a power of
411     * two. In many applications, these always stay small so we use a
412     * small initial cap.
413 dl 1.53 */
414 dl 1.91 private static final int INITIAL_QUEUE_CAPACITY = 8;
415 dl 1.53
416     /**
417 dl 1.91 * Maximum size for submission queue array. Must be a power of two
418     * less than or equal to 1 << (31 - width of array entry) to
419     * ensure lack of index wraparound, but is capped at a lower
420     * value to help users trap runaway computations.
421 dl 1.1 */
422 dl 1.91 private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 24; // 16M
423 dl 1.1
424     /**
425 dl 1.91 * Array serving as submission queue. Initialized upon construction.
426 dl 1.1 */
427 dl 1.91 private ForkJoinTask<?>[] submissionQueue;
428 dl 1.1
429     /**
430 dl 1.91 * Lock protecting submissions array for addSubmission
431 dl 1.1 */
432 dl 1.91 private final ReentrantLock submissionLock;
433 dl 1.1
434     /**
435 dl 1.91 * Condition for awaitTermination, using submissionLock for
436     * convenience.
437 dl 1.1 */
438 dl 1.91 private final Condition termination;
439 dl 1.1
440     /**
441     * Creation factory for worker threads.
442     */
443     private final ForkJoinWorkerThreadFactory factory;
444    
445     /**
446 dl 1.91 * The uncaught exception handler used when any worker abruptly
447     * terminates.
448 dl 1.1 */
449 dl 1.91 final Thread.UncaughtExceptionHandler ueh;
450 dl 1.1
451     /**
452 dl 1.91 * Prefix for assigning names to worker threads
453 dl 1.1 */
454 dl 1.91 private final String workerNamePrefix;
455 dl 1.53
456 dl 1.91 /**
457     * Sum of per-thread steal counts, updated only when threads are
458     * idle or terminating.
459     */
460     private volatile long stealCount;
461 dl 1.1
462     /**
463 dl 1.91 * Main pool control -- a long packed with:
464     * AC: Number of active running workers minus target parallelism (16 bits)
465     * TC: Number of total workers minus target parallelism (16bits)
466     * ST: true if pool is terminating (1 bit)
467     * EC: the wait count of top waiting thread (15 bits)
468     * ID: ~poolIndex of top of Treiber stack of waiting threads (16 bits)
469     *
470     * When convenient, we can extract the upper 32 bits of counts and
471     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
472     * (int)ctl. The ec field is never accessed alone, but always
473     * together with id and st. The offsets of counts by the target
474     * parallelism and the positionings of fields makes it possible to
475     * perform the most common checks via sign tests of fields: When
476     * ac is negative, there are not enough active workers, when tc is
477     * negative, there are not enough total workers, when id is
478     * negative, there is at least one waiting worker, and when e is
479     * negative, the pool is terminating. To deal with these possibly
480     * negative fields, we use casts in and out of "short" and/or
481     * signed shifts to maintain signedness. Note: AC_SHIFT is
482     * redundantly declared in ForkJoinWorkerThread in order to
483     * integrate a surplus-threads check.
484     */
485     volatile long ctl;
486    
487     // bit positions/shifts for fields
488     private static final int AC_SHIFT = 48;
489     private static final int TC_SHIFT = 32;
490     private static final int ST_SHIFT = 31;
491     private static final int EC_SHIFT = 16;
492    
493     // bounds
494     private static final int MAX_ID = 0x7fff; // max poolIndex
495     private static final int SMASK = 0xffff; // mask short bits
496     private static final int SHORT_SIGN = 1 << 15;
497     private static final int INT_SIGN = 1 << 31;
498    
499     // masks
500     private static final long STOP_BIT = 0x0001L << ST_SHIFT;
501     private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
502     private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
503    
504     // units for incrementing and decrementing
505     private static final long TC_UNIT = 1L << TC_SHIFT;
506     private static final long AC_UNIT = 1L << AC_SHIFT;
507    
508     // masks and units for dealing with u = (int)(ctl >>> 32)
509     private static final int UAC_SHIFT = AC_SHIFT - 32;
510     private static final int UTC_SHIFT = TC_SHIFT - 32;
511     private static final int UAC_MASK = SMASK << UAC_SHIFT;
512     private static final int UTC_MASK = SMASK << UTC_SHIFT;
513     private static final int UAC_UNIT = 1 << UAC_SHIFT;
514     private static final int UTC_UNIT = 1 << UTC_SHIFT;
515    
516     // masks and units for dealing with e = (int)ctl
517     private static final int E_MASK = 0x7fffffff; // no STOP_BIT
518     private static final int EC_UNIT = 1 << EC_SHIFT;
519 dl 1.53
520     /**
521 dl 1.91 * The target parallelism level.
522 dl 1.61 */
523 dl 1.91 final int parallelism;
524 dl 1.61
525     /**
526 dl 1.91 * Index (mod submission queue length) of next element to take
527     * from submission queue.
528 dl 1.53 */
529 dl 1.91 volatile int queueBase;
530 dl 1.1
531     /**
532 dl 1.91 * Index (mod submission queue length) of next element to add
533     * in submission queue.
534 dl 1.53 */
535 dl 1.91 int queueTop;
536 dl 1.53
537 dl 1.1 /**
538 dl 1.91 * True when shutdown() has been called.
539 dl 1.1 */
540 dl 1.91 volatile boolean shutdown;
541 dl 1.1
542     /**
543 dl 1.53 * True if use local fifo, not default lifo, for local polling
544 dl 1.57 * Read by, and replicated by ForkJoinWorkerThreads
545 dl 1.1 */
546 dl 1.57 final boolean locallyFifo;
547 dl 1.1
548     /**
549 dl 1.91 * The number of threads in ForkJoinWorkerThreads.helpQuiescePool.
550     * When non-zero, suppresses automatic shutdown when active
551     * counts become zero.
552 dl 1.1 */
553 dl 1.91 volatile int quiescerCount;
554 dl 1.6
555     /**
556 dl 1.91 * The number of threads blocked in join.
557 dl 1.1 */
558 dl 1.91 volatile int blockedCount;
559 dl 1.1
560 dl 1.91 /**
561     * Counter for worker Thread names (unrelated to their poolIndex)
562     */
563     private volatile int nextWorkerNumber;
564 dl 1.1
565     /**
566 dl 1.91 * The index for the next created worker. Accessed under scanGuard.
567 dl 1.1 */
568 dl 1.91 private int nextWorkerIndex;
569 dl 1.58
570 dl 1.1 /**
571 dl 1.91 * SeqLock and index masking for for updates to workers array.
572     * Locked when SG_UNIT is set. Unlocking clears bit by adding
573     * SG_UNIT. Staleness of read-only operations can be checked by
574     * comparing scanGuard to value before the reads. The low 16 bits
575     * (i.e, anding with SMASK) hold (the smallest power of two
576     * covering all worker indices, minus one, and is used to avoid
577     * dealing with large numbers of null slots when the workers array
578     * is overallocated.
579 dl 1.85 */
580 dl 1.91 volatile int scanGuard;
581    
582     private static final int SG_UNIT = 1 << 16;
583 dl 1.85
584     /**
585 dl 1.91 * The wakeup interval (in nanoseconds) for a worker waiting for a
586     * task when the pool is quiescent to instead try to shrink the
587     * number of workers. The exact value does not matter too
588     * much. It must be short enough to release resources during
589     * sustained periods of idleness, but not so short that threads
590     * are continually re-created.
591 dl 1.56 */
592 dl 1.91 private static final long SHRINK_RATE =
593     4L * 1000L * 1000L * 1000L; // 4 seconds
594 dl 1.56
595     /**
596 dl 1.91 * Top-level loop for worker threads: On each step: if the
597     * previous step swept through all queues and found no tasks, or
598     * there are excess threads, then possibly blocks. Otherwise,
599     * scans for and, if found, executes a task. Returns when pool
600     * and/or worker terminate.
601 dl 1.61 *
602 dl 1.91 * @param w the worker
603 dl 1.58 */
604 dl 1.91 final void work(ForkJoinWorkerThread w) {
605     boolean swept = false; // true on empty scans
606     long c;
607     while (!w.terminate && (int)(c = ctl) >= 0) {
608     int a; // active count
609     if (!swept && (a = (int)(c >> AC_SHIFT)) <= 0)
610     swept = scan(w, a);
611     else if (tryAwaitWork(w, c))
612     swept = false;
613 dl 1.61 }
614     }
615    
616 dl 1.91 // Signalling
617    
618 dl 1.61 /**
619 dl 1.91 * Wakes up or creates a worker.
620 dl 1.53 */
621 dl 1.91 final void signalWork() {
622     /*
623     * The while condition is true if: (there is are too few total
624     * workers OR there is at least one waiter) AND (there are too
625     * few active workers OR the pool is terminating). The value
626     * of e distinguishes the remaining cases: zero (no waiters)
627     * for create, negative if terminating (in which case do
628     * nothing), else release a waiter. The secondary checks for
629     * release (non-null array etc) can fail if the pool begins
630     * terminating after the test, and don't impose any added cost
631     * because JVMs must perform null and bounds checks anyway.
632     */
633     long c; int e, u;
634     while ((((e = (int)(c = ctl)) | (u = (int)(c >>> 32))) &
635     (INT_SIGN|SHORT_SIGN)) == (INT_SIGN|SHORT_SIGN) && e >= 0) {
636     if (e > 0) { // release a waiting worker
637     int i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
638     if ((ws = workers) == null ||
639     (i = ~e & SMASK) >= ws.length ||
640     (w = ws[i]) == null)
641     break;
642     long nc = (((long)(w.nextWait & E_MASK)) |
643     ((long)(u + UAC_UNIT) << 32));
644     if (w.eventCount == e &&
645     UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
646     w.eventCount = (e + EC_UNIT) & E_MASK;
647     if (w.parked)
648     UNSAFE.unpark(w);
649     break;
650     }
651     }
652     else if (UNSAFE.compareAndSwapLong
653     (this, ctlOffset, c,
654     (long)(((u + UTC_UNIT) & UTC_MASK) |
655     ((u + UAC_UNIT) & UAC_MASK)) << 32)) {
656     addWorker();
657     break;
658     }
659     }
660 dl 1.53 }
661    
662     /**
663 dl 1.91 * Variant of signalWork to help release waiters on rescans.
664     * Tries once to release a waiter if active count < 0.
665     *
666     * @return false if failed due to contention, else true
667 dl 1.53 */
668 dl 1.91 private boolean tryReleaseWaiter() {
669     long c; int e, i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
670     if ((e = (int)(c = ctl)) > 0 &&
671     (int)(c >> AC_SHIFT) < 0 &&
672     (ws = workers) != null &&
673     (i = ~e & SMASK) < ws.length &&
674     (w = ws[i]) != null) {
675     long nc = ((long)(w.nextWait & E_MASK) |
676     ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
677     if (w.eventCount != e ||
678     !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
679 dl 1.53 return false;
680 dl 1.91 w.eventCount = (e + EC_UNIT) & E_MASK;
681     if (w.parked)
682     UNSAFE.unpark(w);
683 dl 1.53 }
684 dl 1.91 return true;
685 dl 1.53 }
686    
687 dl 1.91 // Scanning for tasks
688 dl 1.53
689     /**
690 dl 1.91 * Scans for and, if found, executes one task. Scans start at a
691     * random index of workers array, and randomly select the first
692     * (2*#workers)-1 probes, and then, if all empty, resort to 2
693     * circular sweeps, which is necessary to check quiescence. and
694     * taking a submission only if no stealable tasks were found. The
695     * steal code inside the loop is a specialized form of
696     * ForkJoinWorkerThread.deqTask, followed bookkeeping to support
697     * helpJoinTask and signal propagation. The code for submission
698     * queues is almost identical. On each steal, the worker completes
699     * not only the task, but also all local tasks that this task may
700     * have generated. On detecting staleness or contention when
701     * trying to take a task, this method returns without finishing
702     * sweep, which allows global state rechecks before retry.
703     *
704     * @param w the worker
705     * @param a the number of active workers
706     * @return true if swept all queues without finding a task
707 dl 1.53 */
708 dl 1.91 private boolean scan(ForkJoinWorkerThread w, int a) {
709     int g = scanGuard; // mask 0 avoids useless scans if only one active
710     int m = parallelism == 1 - a? 0 : g & SMASK;
711     ForkJoinWorkerThread[] ws = workers;
712     if (ws == null || ws.length <= m) // staleness check
713     return false;
714     for (int r = w.seed, k = r, j = -(m + m); j <= m + m; ++j) {
715     ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
716     ForkJoinWorkerThread v = ws[k & m];
717     if (v != null && (b = v.queueBase) != v.queueTop &&
718     (q = v.queue) != null && (i = (q.length - 1) & b) >= 0) {
719     long u = (i << ASHIFT) + ABASE;
720     if ((t = q[i]) != null && v.queueBase == b &&
721     UNSAFE.compareAndSwapObject(q, u, t, null)) {
722     int d = (v.queueBase = b + 1) - v.queueTop;
723     v.stealHint = w.poolIndex;
724     if (d != 0)
725     signalWork(); // propagate if nonempty
726     w.execTask(t);
727     }
728     r ^= r << 13; r ^= r >>> 17; w.seed = r ^ (r << 5);
729     return false; // store next seed
730     }
731     else if (j < 0) { // xorshift
732     r ^= r << 13; r ^= r >>> 17; k = r ^= r << 5;
733     }
734     else
735     ++k;
736     }
737     if (scanGuard != g) // staleness check
738     return false;
739     else { // try to take submission
740     ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
741     if ((b = queueBase) != queueTop &&
742     (q = submissionQueue) != null &&
743     (i = (q.length - 1) & b) >= 0) {
744     long u = (i << ASHIFT) + ABASE;
745     if ((t = q[i]) != null && queueBase == b &&
746     UNSAFE.compareAndSwapObject(q, u, t, null)) {
747     queueBase = b + 1;
748     w.execTask(t);
749     }
750     return false;
751     }
752     return true; // all queues empty
753 dl 1.53 }
754     }
755    
756     /**
757 dl 1.91 * Tries to enqueue worker in wait queue and await change in
758     * worker's eventCount. Before blocking, rescans queues to avoid
759     * missed signals. If the pool is quiescent, possibly terminates
760     * worker upon exit.
761     *
762     * @param w the calling worker
763     * @param c the ctl value on entry
764     * @return true if waited or another thread was released upon enq
765 dl 1.53 */
766 dl 1.91 private boolean tryAwaitWork(ForkJoinWorkerThread w, long c) {
767     int v = w.eventCount;
768     w.nextWait = (int)c; // w's successor record
769     long nc = (long)(v & E_MASK) | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
770     if (ctl != c || !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
771     long d = ctl; // return true if lost to a deq, to force rescan
772     return (int)d != (int)c && ((d - c) & AC_MASK) >= 0L;
773     }
774     boolean rescanned = false;
775     for (int sc;;) {
776     if (w.eventCount != v)
777     return true;
778     if ((sc = w.stealCount) != 0) {
779     long s = stealCount; // accumulate stealCount
780     if (UNSAFE.compareAndSwapLong(this, stealCountOffset, s, s+sc))
781     w.stealCount = 0;
782     }
783     else if (!rescanned) {
784     int g = scanGuard, m = g & SMASK;
785     ForkJoinWorkerThread[] ws = workers;
786     if (ws != null && m < ws.length) {
787     rescanned = true;
788     for (int i = 0; i <= m; ++i) {
789     ForkJoinWorkerThread u = ws[i];
790     if (u != null) {
791     if (u.queueBase != u.queueTop &&
792     !tryReleaseWaiter())
793     rescanned = false; // contended
794     if (w.eventCount != v)
795     return true;
796     }
797     }
798     }
799     if (scanGuard != g || // stale
800     (queueBase != queueTop && !tryReleaseWaiter()))
801     rescanned = false;
802     if (!rescanned)
803     Thread.yield(); // reduce contention
804     else
805     Thread.interrupted(); // clear before park
806     }
807     else if (parallelism + (int)(ctl >> AC_SHIFT) == 0 &&
808     blockedCount == 0 && quiescerCount == 0)
809     idleAwaitWork(w, v); // quiescent -- maybe shrink
810     else {
811     w.parked = true; // must recheck
812     if (w.eventCount != v) {
813     w.parked = false;
814     return true;
815     }
816     LockSupport.park(this);
817     rescanned = w.parked = false;
818     }
819 dl 1.53 }
820     }
821    
822     /**
823 dl 1.91 * If pool is quiescent, checks for termination, and waits for
824     * event signal for up to SHRINK_RATE nanosecs. On timeout, if ctl
825     * has not changed, terminates the worker. Upon its termination
826     * (see deregisterWorker), it may wake up another worker to
827     * possibly repeat this process.
828     *
829     * @param w the calling worker
830     * @param v the eventCount w must wait until changed
831     */
832     private void idleAwaitWork(ForkJoinWorkerThread w, int v) {
833     ForkJoinTask.helpExpungeStaleExceptions(); // help clean weak refs
834     if (shutdown)
835     tryTerminate(false);
836     long c = ctl;
837     long nc = (((c & (AC_MASK|TC_MASK)) + AC_UNIT) |
838     (long)(w.nextWait & E_MASK)); // ctl value to release w
839     if (w.eventCount == v &&
840     parallelism + (int)(c >> AC_SHIFT) == 0 &&
841     blockedCount == 0 && quiescerCount == 0) {
842     long startTime = System.nanoTime();
843     Thread.interrupted();
844     if (w.eventCount == v) {
845     w.parked = true;
846     if (w.eventCount == v)
847     LockSupport.parkNanos(this, SHRINK_RATE);
848     w.parked = false;
849     if (w.eventCount == v && ctl == c &&
850     System.nanoTime() - startTime >= SHRINK_RATE &&
851     UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
852     w.terminate = true;
853     w.eventCount = ((int)c + EC_UNIT) & E_MASK;
854     }
855     }
856     }
857 dl 1.53 }
858    
859 dl 1.91 // Submissions
860 dl 1.53
861     /**
862 dl 1.91 * Enqueues the given task in the submissionQueue. Same idea as
863     * ForkJoinWorkerThread.pushTask except for use of submissionLock.
864     *
865     * @param t the task
866 dl 1.53 */
867 dl 1.91 private void addSubmission(ForkJoinTask<?> t) {
868     final ReentrantLock lock = this.submissionLock;
869     lock.lock();
870     try {
871     ForkJoinTask<?>[] q; int s, m;
872     if ((q = submissionQueue) != null) { // ignore if queue removed
873     long u = (((s = queueTop) & (m = q.length-1)) << ASHIFT)+ABASE;
874     UNSAFE.putOrderedObject(q, u, t);
875     queueTop = s + 1;
876     if (s - queueBase == m)
877     growSubmissionQueue();
878 dl 1.66 }
879 dl 1.91 } finally {
880     lock.unlock();
881 dl 1.53 }
882 dl 1.91 signalWork();
883 dl 1.53 }
884    
885 dl 1.91 // (pollSubmission is defined below with exported methods)
886    
887 dl 1.53 /**
888 dl 1.91 * Creates or doubles submissionQueue array.
889     * Basically identical to ForkJoinWorkerThread version
890 dl 1.53 */
891 dl 1.91 private void growSubmissionQueue() {
892     ForkJoinTask<?>[] oldQ = submissionQueue;
893     int size = oldQ != null ? oldQ.length << 1 : INITIAL_QUEUE_CAPACITY;
894     if (size > MAXIMUM_QUEUE_CAPACITY)
895     throw new RejectedExecutionException("Queue capacity exceeded");
896     if (size < INITIAL_QUEUE_CAPACITY)
897     size = INITIAL_QUEUE_CAPACITY;
898     ForkJoinTask<?>[] q = submissionQueue = new ForkJoinTask<?>[size];
899     int mask = size - 1;
900     int top = queueTop;
901     int oldMask;
902     if (oldQ != null && (oldMask = oldQ.length - 1) >= 0) {
903     for (int b = queueBase; b != top; ++b) {
904     long u = ((b & oldMask) << ASHIFT) + ABASE;
905     Object x = UNSAFE.getObjectVolatile(oldQ, u);
906     if (x != null && UNSAFE.compareAndSwapObject(oldQ, u, x, null))
907     UNSAFE.putObjectVolatile
908     (q, ((b & mask) << ASHIFT) + ABASE, x);
909 dl 1.64 }
910     }
911     }
912    
913 dl 1.91 // Blocking support
914    
915 dl 1.64 /**
916 dl 1.91 * Tries to increment blockedCount, decrement active count
917     * (sometimes implicitly) and possibly release or create a
918     * compensating worker in preparation for blocking. Fails
919     * on contention or termination.
920     *
921     * @return true if the caller can block, else should recheck and retry
922     */
923     private boolean tryPreBlock() {
924     int b = blockedCount;
925     if (UNSAFE.compareAndSwapInt(this, blockedCountOffset, b, b + 1)) {
926     int pc = parallelism;
927     do {
928     ForkJoinWorkerThread[] ws; ForkJoinWorkerThread w;
929     int e, ac, tc, rc, i;
930     long c = ctl;
931     int u = (int)(c >>> 32);
932     if ((e = (int)c) < 0) {
933     // skip -- terminating
934     }
935     else if ((ac = (u >> UAC_SHIFT)) <= 0 && e != 0 &&
936     (ws = workers) != null &&
937     (i = ~e & SMASK) < ws.length &&
938     (w = ws[i]) != null) {
939     long nc = ((long)(w.nextWait & E_MASK) |
940     (c & (AC_MASK|TC_MASK)));
941     if (w.eventCount == e &&
942     UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
943     w.eventCount = (e + EC_UNIT) & E_MASK;
944     if (w.parked)
945     UNSAFE.unpark(w);
946     return true; // release an idle worker
947     }
948     }
949     else if ((tc = (short)(u >>> UTC_SHIFT)) >= 0 && ac + pc > 1) {
950     long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
951     if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
952     return true; // no compensation needed
953     }
954     else if (tc + pc < MAX_ID) {
955     long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
956     if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
957     addWorker();
958     return true; // create a replacement
959     }
960 dl 1.61 }
961 dl 1.91 // try to back out on any failure and let caller retry
962     } while (!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
963     b = blockedCount, b - 1));
964 dl 1.53 }
965 dl 1.91 return false;
966 dl 1.64 }
967    
968 dl 1.91 /**
969     * Decrements blockedCount and increments active count
970     */
971     private void postBlock() {
972     long c;
973     do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset, // no mask
974     c = ctl, c + AC_UNIT));
975     int b;
976     do {} while(!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
977     b = blockedCount, b - 1));
978     }
979 dl 1.61
980     /**
981 dl 1.91 * Possibly blocks waiting for the given task to complete, or
982     * cancels the task if terminating. Fails to wait if contended.
983     *
984     * @param joinMe the task
985 dl 1.61 */
986 dl 1.91 final void tryAwaitJoin(ForkJoinTask<?> joinMe) {
987     int s;
988     Thread.interrupted(); // clear interrupts before checking termination
989     if (joinMe.status >= 0) {
990     if (tryPreBlock()) {
991     joinMe.tryAwaitDone(0L);
992     postBlock();
993     }
994     if ((ctl & STOP_BIT) != 0L)
995     joinMe.cancelIgnoringExceptions();
996     }
997 dl 1.61 }
998    
999     /**
1000 dl 1.91 * Possibly blocks the given worker waiting for joinMe to
1001     * complete or timeout
1002     *
1003     * @param joinMe the task
1004     * @param millis the wait time for underlying Object.wait
1005 dl 1.61 */
1006 dl 1.91 final void timedAwaitJoin(ForkJoinTask<?> joinMe, long nanos) {
1007     while (joinMe.status >= 0) {
1008     Thread.interrupted();
1009     if ((ctl & STOP_BIT) != 0L) {
1010     joinMe.cancelIgnoringExceptions();
1011     break;
1012     }
1013     if (tryPreBlock()) {
1014     long last = System.nanoTime();
1015     while (joinMe.status >= 0) {
1016     long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
1017     if (millis <= 0)
1018     break;
1019     joinMe.tryAwaitDone(millis);
1020     if (joinMe.status < 0)
1021     break;
1022     if ((ctl & STOP_BIT) != 0L) {
1023     joinMe.cancelIgnoringExceptions();
1024     break;
1025     }
1026     long now = System.nanoTime();
1027     nanos -= now - last;
1028     last = now;
1029     }
1030     postBlock();
1031     break;
1032     }
1033 dl 1.64 }
1034     }
1035    
1036     /**
1037 dl 1.91 * If necessary, compensates for blocker, and blocks
1038 dl 1.64 */
1039 dl 1.91 private void awaitBlocker(ManagedBlocker blocker)
1040     throws InterruptedException {
1041     while (!blocker.isReleasable()) {
1042     if (tryPreBlock()) {
1043 dl 1.66 try {
1044 dl 1.91 do {} while (!blocker.isReleasable() && !blocker.block());
1045     } finally {
1046     postBlock();
1047 dl 1.66 }
1048 dl 1.91 break;
1049 dl 1.64 }
1050     }
1051     }
1052    
1053 dl 1.91 // Creating, registering and deregistring workers
1054    
1055 dl 1.64 /**
1056 dl 1.91 * Tries to create and start a worker; minimally rolls back counts
1057     * on failure.
1058 dl 1.64 */
1059 dl 1.91 private void addWorker() {
1060     Throwable ex = null;
1061     ForkJoinWorkerThread t = null;
1062     try {
1063     t = factory.newThread(this);
1064     } catch (Throwable e) {
1065     ex = e;
1066     }
1067     if (t == null) { // null or exceptional factory return
1068     long c; // adjust counts
1069     do {} while (!UNSAFE.compareAndSwapLong
1070     (this, ctlOffset, c = ctl,
1071     (((c - AC_UNIT) & AC_MASK) |
1072     ((c - TC_UNIT) & TC_MASK) |
1073     (c & ~(AC_MASK|TC_MASK)))));
1074     // Propagate exception if originating from an external caller
1075     if (!tryTerminate(false) && ex != null &&
1076     !(Thread.currentThread() instanceof ForkJoinWorkerThread))
1077     UNSAFE.throwException(ex);
1078     }
1079     else
1080     t.start();
1081 dl 1.61 }
1082    
1083 dl 1.53 /**
1084 dl 1.91 * Callback from ForkJoinWorkerThread constructor to assign a
1085     * public name
1086 dl 1.53 */
1087 dl 1.91 final String nextWorkerName() {
1088     for (int n;;) {
1089     if (UNSAFE.compareAndSwapInt(this, nextWorkerNumberOffset,
1090     n = nextWorkerNumber, ++n))
1091     return workerNamePrefix + n;
1092 dl 1.53 }
1093     }
1094    
1095     /**
1096 dl 1.91 * Callback from ForkJoinWorkerThread constructor to
1097     * determine its poolIndex and record in workers array.
1098 dl 1.56 *
1099 dl 1.91 * @param w the worker
1100     * @return the worker's pool index
1101 dl 1.53 */
1102 dl 1.91 final int registerWorker(ForkJoinWorkerThread w) {
1103     /*
1104     * In the typical case, a new worker acquires the lock, uses
1105     * next available index and returns quickly. Since we should
1106     * not block callers (ultimately from signalWork or
1107     * tryPreBlock) waiting for the lock needed to do this, we
1108     * instead help release other workers while waiting for the
1109     * lock.
1110     */
1111     for (int g;;) {
1112     ForkJoinWorkerThread[] ws;
1113     if (((g = scanGuard) & SG_UNIT) == 0 &&
1114     UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1115     g, g | SG_UNIT)) {
1116     int k = nextWorkerIndex;
1117     try {
1118     if ((ws = workers) != null) { // ignore on shutdown
1119     int n = ws.length;
1120     if (k < 0 || k >= n || ws[k] != null) {
1121     for (k = 0; k < n && ws[k] != null; ++k)
1122     ;
1123     if (k == n)
1124     ws = workers = Arrays.copyOf(ws, n << 1);
1125     }
1126     ws[k] = w;
1127     nextWorkerIndex = k + 1;
1128     int m = g & SMASK;
1129     g = k >= m? ((m << 1) + 1) & SMASK : g + (SG_UNIT<<1);
1130     }
1131     } finally {
1132     scanGuard = g;
1133     }
1134     return k;
1135 dl 1.82 }
1136 dl 1.91 else if ((ws = workers) != null) { // help release others
1137     for (ForkJoinWorkerThread u : ws) {
1138     if (u != null && u.queueBase != u.queueTop) {
1139     if (tryReleaseWaiter())
1140 dl 1.85 break;
1141 dl 1.83 }
1142     }
1143 dl 1.53 }
1144     }
1145     }
1146    
1147     /**
1148 dl 1.91 * Final callback from terminating worker. Removes record of
1149     * worker from array, and adjusts counts. If pool is shutting
1150     * down, tries to complete termination.
1151     *
1152     * @param w the worker
1153 dl 1.53 */
1154 dl 1.91 final void deregisterWorker(ForkJoinWorkerThread w, Throwable ex) {
1155     int idx = w.poolIndex;
1156     int sc = w.stealCount;
1157     int steps = 0;
1158     // Remove from array, adjust worker counts and collect steal count.
1159     // We can intermix failed removes or adjusts with steal updates
1160     do {
1161     long s, c;
1162     int g;
1163     if (steps == 0 && ((g = scanGuard) & SG_UNIT) == 0 &&
1164     UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1165     g, g |= SG_UNIT)) {
1166     ForkJoinWorkerThread[] ws = workers;
1167     if (ws != null && idx >= 0 &&
1168     idx < ws.length && ws[idx] == w)
1169     ws[idx] = null; // verify
1170     nextWorkerIndex = idx;
1171     scanGuard = g + SG_UNIT;
1172     steps = 1;
1173 dl 1.60 }
1174 dl 1.91 if (steps == 1 &&
1175     UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1176     (((c - AC_UNIT) & AC_MASK) |
1177     ((c - TC_UNIT) & TC_MASK) |
1178     (c & ~(AC_MASK|TC_MASK)))))
1179     steps = 2;
1180     if (sc != 0 &&
1181     UNSAFE.compareAndSwapLong(this, stealCountOffset,
1182     s = stealCount, s + sc))
1183     sc = 0;
1184     } while (steps != 2 || sc != 0);
1185     if (!tryTerminate(false)) {
1186     if (ex != null) // possibly replace if died abnormally
1187     signalWork();
1188     else
1189     tryReleaseWaiter();
1190 dl 1.53 }
1191 dl 1.59 }
1192 dl 1.54
1193 dl 1.91 // Shutdown and termination
1194    
1195 dl 1.54 /**
1196 dl 1.53 * Possibly initiates and/or completes termination.
1197     *
1198     * @param now if true, unconditionally terminate, else only
1199     * if shutdown and empty queue and no active workers
1200     * @return true if now terminating or terminated
1201 dl 1.1 */
1202 dl 1.53 private boolean tryTerminate(boolean now) {
1203 dl 1.91 long c;
1204     while (((c = ctl) & STOP_BIT) == 0) {
1205     if (!now) {
1206     if ((int)(c >> AC_SHIFT) != -parallelism)
1207     return false;
1208     if (!shutdown || blockedCount != 0 || quiescerCount != 0 ||
1209     queueTop - queueBase > 0) {
1210     if (ctl == c) // staleness check
1211     return false;
1212     continue;
1213     }
1214     }
1215     if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, c | STOP_BIT))
1216     startTerminating();
1217     }
1218     if ((short)(c >>> TC_SHIFT) == -parallelism) {
1219     submissionLock.lock();
1220     termination.signalAll();
1221     submissionLock.unlock();
1222 dl 1.53 }
1223 dl 1.4 return true;
1224 dl 1.1 }
1225    
1226     /**
1227 dl 1.91 * Runs up to three passes through workers: (0) Setting
1228     * termination status for each worker, followed by wakeups up
1229     * queued workers (1) helping cancel tasks (2) interrupting
1230     * lagging threads (likely in external tasks, but possibly also
1231     * blocked in joins). Each pass repeats previous steps because of
1232     * potential lagging thread creation.
1233 dl 1.53 */
1234     private void startTerminating() {
1235 dl 1.61 cancelSubmissions();
1236 dl 1.91 for (int pass = 0; pass < 3; ++pass) {
1237     ForkJoinWorkerThread[] ws = workers;
1238     if (ws != null) {
1239     for (ForkJoinWorkerThread w : ws) {
1240     if (w != null) {
1241     w.terminate = true;
1242     if (pass > 0) {
1243     w.cancelTasks();
1244     if (pass > 1 && !w.isInterrupted()) {
1245     try {
1246     w.interrupt();
1247     } catch (SecurityException ignore) {
1248     }
1249 dl 1.61 }
1250     }
1251     }
1252     }
1253 dl 1.91 terminateWaiters();
1254 dl 1.61 }
1255 dl 1.56 }
1256     }
1257    
1258     /**
1259 dl 1.91 * Polls and cancels all submissions. Called only during termination.
1260 dl 1.56 */
1261     private void cancelSubmissions() {
1262 dl 1.91 while (queueBase != queueTop) {
1263     ForkJoinTask<?> task = pollSubmission();
1264     if (task != null) {
1265     try {
1266     task.cancel(false);
1267     } catch (Throwable ignore) {
1268     }
1269     }
1270     }
1271     }
1272    
1273     /**
1274     * Tries to set the termination status of waiting workers, and
1275     * then wake them up (after which they will terminate).
1276     */
1277     private void terminateWaiters() {
1278     ForkJoinWorkerThread[] ws = workers;
1279     if (ws != null) {
1280     ForkJoinWorkerThread w; long c; int i, e;
1281     int n = ws.length;
1282     while ((i = ~(e = (int)(c = ctl)) & SMASK) < n &&
1283     (w = ws[i]) != null && w.eventCount == (e & E_MASK)) {
1284     if (UNSAFE.compareAndSwapLong(this, ctlOffset, c,
1285     (long)(w.nextWait & E_MASK) |
1286     ((c + AC_UNIT) & AC_MASK) |
1287     (c & (TC_MASK|STOP_BIT)))) {
1288     w.terminate = true;
1289     w.eventCount = e + EC_UNIT;
1290     if (w.parked)
1291     UNSAFE.unpark(w);
1292     }
1293 dl 1.53 }
1294     }
1295 dl 1.56 }
1296    
1297 dl 1.91 // misc ForkJoinWorkerThread support
1298 dl 1.53
1299     /**
1300 dl 1.91 * Increment or decrement quiescerCount. Needed only to prevent
1301     * triggering shutdown if a worker is transiently inactive while
1302     * checking quiescence.
1303     *
1304     * @param delta 1 for increment, -1 for decrement
1305 dl 1.1 */
1306 dl 1.91 final void addQuiescerCount(int delta) {
1307     int c;
1308     do {} while(!UNSAFE.compareAndSwapInt(this, quiescerCountOffset,
1309     c = quiescerCount, c + delta));
1310 dl 1.1 }
1311    
1312     /**
1313 dl 1.91 * Directly increment or decrement active count without
1314     * queuing. This method is used to transiently assert inactivation
1315     * while checking quiescence.
1316 dl 1.61 *
1317 dl 1.91 * @param delta 1 for increment, -1 for decrement
1318 dl 1.1 */
1319 dl 1.91 final void addActiveCount(int delta) {
1320     long d = delta < 0 ? -AC_UNIT : AC_UNIT;
1321     long c;
1322     do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1323     ((c + d) & AC_MASK) |
1324     (c & ~AC_MASK)));
1325 dl 1.1 }
1326    
1327     /**
1328 dl 1.53 * Returns the approximate (non-atomic) number of idle threads per
1329     * active thread.
1330     */
1331     final int idlePerActive() {
1332 dl 1.91 // Approximate at powers of two for small values, saturate past 4
1333     int p = parallelism;
1334     int a = p + (int)(ctl >> AC_SHIFT);
1335     return (a > (p >>>= 1) ? 0 :
1336     a > (p >>>= 1) ? 1 :
1337     a > (p >>>= 1) ? 2 :
1338     a > (p >>>= 1) ? 4 :
1339     8);
1340 dl 1.53 }
1341    
1342 dl 1.91 // Exported methods
1343 dl 1.1
1344     // Constructors
1345    
1346     /**
1347 dl 1.42 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1348 dl 1.57 * java.lang.Runtime#availableProcessors}, using the {@linkplain
1349     * #defaultForkJoinWorkerThreadFactory default thread factory},
1350     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1351 jsr166 1.17 *
1352 dl 1.1 * @throws SecurityException if a security manager exists and
1353     * the caller is not permitted to modify threads
1354     * because it does not hold {@link
1355 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1356 dl 1.1 */
1357     public ForkJoinPool() {
1358     this(Runtime.getRuntime().availableProcessors(),
1359 dl 1.57 defaultForkJoinWorkerThreadFactory, null, false);
1360 dl 1.1 }
1361    
1362     /**
1363 dl 1.42 * Creates a {@code ForkJoinPool} with the indicated parallelism
1364 dl 1.57 * level, the {@linkplain
1365     * #defaultForkJoinWorkerThreadFactory default thread factory},
1366     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1367 jsr166 1.17 *
1368 dl 1.42 * @param parallelism the parallelism level
1369 dl 1.1 * @throws IllegalArgumentException if parallelism less than or
1370 jsr166 1.47 * equal to zero, or greater than implementation limit
1371 dl 1.1 * @throws SecurityException if a security manager exists and
1372     * the caller is not permitted to modify threads
1373     * because it does not hold {@link
1374 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1375 dl 1.1 */
1376     public ForkJoinPool(int parallelism) {
1377 dl 1.57 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1378 dl 1.1 }
1379    
1380     /**
1381 dl 1.57 * Creates a {@code ForkJoinPool} with the given parameters.
1382 jsr166 1.17 *
1383 dl 1.57 * @param parallelism the parallelism level. For default value,
1384     * use {@link java.lang.Runtime#availableProcessors}.
1385     * @param factory the factory for creating new threads. For default value,
1386     * use {@link #defaultForkJoinWorkerThreadFactory}.
1387 dl 1.59 * @param handler the handler for internal worker threads that
1388     * terminate due to unrecoverable errors encountered while executing
1389 jsr166 1.73 * tasks. For default value, use {@code null}.
1390 dl 1.59 * @param asyncMode if true,
1391 dl 1.57 * establishes local first-in-first-out scheduling mode for forked
1392     * tasks that are never joined. This mode may be more appropriate
1393     * than default locally stack-based mode in applications in which
1394     * worker threads only process event-style asynchronous tasks.
1395 jsr166 1.73 * For default value, use {@code false}.
1396 dl 1.1 * @throws IllegalArgumentException if parallelism less than or
1397 jsr166 1.47 * equal to zero, or greater than implementation limit
1398 jsr166 1.48 * @throws NullPointerException if the factory is null
1399 dl 1.1 * @throws SecurityException if a security manager exists and
1400     * the caller is not permitted to modify threads
1401     * because it does not hold {@link
1402 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1403 dl 1.1 */
1404 dl 1.59 public ForkJoinPool(int parallelism,
1405 dl 1.57 ForkJoinWorkerThreadFactory factory,
1406     Thread.UncaughtExceptionHandler handler,
1407     boolean asyncMode) {
1408 dl 1.53 checkPermission();
1409     if (factory == null)
1410     throw new NullPointerException();
1411 dl 1.91 if (parallelism <= 0 || parallelism > MAX_ID)
1412 dl 1.1 throw new IllegalArgumentException();
1413 dl 1.53 this.parallelism = parallelism;
1414 dl 1.1 this.factory = factory;
1415 dl 1.57 this.ueh = handler;
1416     this.locallyFifo = asyncMode;
1417 dl 1.91 long np = (long)(-parallelism); // offset ctl counts
1418     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
1419     this.submissionQueue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
1420     // initialize workers array with room for 2*parallelism if possible
1421     int n = parallelism << 1;
1422     if (n >= MAX_ID)
1423     n = MAX_ID;
1424     else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
1425     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8;
1426     }
1427     workers = new ForkJoinWorkerThread[n + 1];
1428     this.submissionLock = new ReentrantLock();
1429     this.termination = submissionLock.newCondition();
1430     StringBuilder sb = new StringBuilder("ForkJoinPool-");
1431     sb.append(poolNumberGenerator.incrementAndGet());
1432     sb.append("-worker-");
1433     this.workerNamePrefix = sb.toString();
1434 dl 1.1 }
1435    
1436     // Execution methods
1437    
1438     /**
1439 jsr166 1.17 * Performs the given task, returning its result upon completion.
1440 dl 1.91 * If the computation encounters an unchecked Exception or Error,
1441     * it is rethrown as the outcome of this invocation. Rethrown
1442     * exceptions behave in the same way as regular exceptions, but,
1443     * when possible, contain stack traces (as displayed for example
1444     * using {@code ex.printStackTrace()}) of both the current thread
1445     * as well as the thread actually encountering the exception;
1446     * minimally only the latter.
1447 jsr166 1.17 *
1448 dl 1.1 * @param task the task
1449     * @return the task's result
1450 jsr166 1.48 * @throws NullPointerException if the task is null
1451     * @throws RejectedExecutionException if the task cannot be
1452     * scheduled for execution
1453 dl 1.1 */
1454     public <T> T invoke(ForkJoinTask<T> task) {
1455 dl 1.91 Thread t = Thread.currentThread();
1456 dl 1.82 if (task == null)
1457     throw new NullPointerException();
1458 dl 1.91 if (shutdown)
1459 dl 1.82 throw new RejectedExecutionException();
1460     if ((t instanceof ForkJoinWorkerThread) &&
1461     ((ForkJoinWorkerThread)t).pool == this)
1462     return task.invoke(); // bypass submit if in same pool
1463     else {
1464 dl 1.91 addSubmission(task);
1465 dl 1.82 return task.join();
1466     }
1467     }
1468    
1469     /**
1470     * Unless terminating, forks task if within an ongoing FJ
1471     * computation in the current pool, else submits as external task.
1472     */
1473     private <T> void forkOrSubmit(ForkJoinTask<T> task) {
1474 dl 1.91 ForkJoinWorkerThread w;
1475     Thread t = Thread.currentThread();
1476     if (shutdown)
1477 dl 1.82 throw new RejectedExecutionException();
1478     if ((t instanceof ForkJoinWorkerThread) &&
1479 dl 1.91 (w = (ForkJoinWorkerThread)t).pool == this)
1480     w.pushTask(task);
1481 dl 1.82 else
1482 dl 1.91 addSubmission(task);
1483 dl 1.1 }
1484    
1485     /**
1486     * Arranges for (asynchronous) execution of the given task.
1487 jsr166 1.17 *
1488 dl 1.1 * @param task the task
1489 jsr166 1.48 * @throws NullPointerException if the task is null
1490     * @throws RejectedExecutionException if the task cannot be
1491     * scheduled for execution
1492 dl 1.1 */
1493 dl 1.37 public void execute(ForkJoinTask<?> task) {
1494 dl 1.82 if (task == null)
1495     throw new NullPointerException();
1496     forkOrSubmit(task);
1497 dl 1.1 }
1498    
1499     // AbstractExecutorService methods
1500    
1501 jsr166 1.48 /**
1502     * @throws NullPointerException if the task is null
1503     * @throws RejectedExecutionException if the task cannot be
1504     * scheduled for execution
1505     */
1506 dl 1.1 public void execute(Runnable task) {
1507 dl 1.82 if (task == null)
1508     throw new NullPointerException();
1509 dl 1.23 ForkJoinTask<?> job;
1510 jsr166 1.26 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1511     job = (ForkJoinTask<?>) task;
1512 dl 1.23 else
1513 dl 1.33 job = ForkJoinTask.adapt(task, null);
1514 dl 1.82 forkOrSubmit(job);
1515 dl 1.1 }
1516    
1517 jsr166 1.48 /**
1518 dl 1.57 * Submits a ForkJoinTask for execution.
1519     *
1520     * @param task the task to submit
1521     * @return the task
1522     * @throws NullPointerException if the task is null
1523     * @throws RejectedExecutionException if the task cannot be
1524     * scheduled for execution
1525     */
1526     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1527 dl 1.82 if (task == null)
1528     throw new NullPointerException();
1529     forkOrSubmit(task);
1530 dl 1.57 return task;
1531     }
1532    
1533     /**
1534 jsr166 1.48 * @throws NullPointerException if the task is null
1535     * @throws RejectedExecutionException if the task cannot be
1536     * scheduled for execution
1537     */
1538 dl 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
1539 dl 1.82 if (task == null)
1540     throw new NullPointerException();
1541 dl 1.33 ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1542 dl 1.82 forkOrSubmit(job);
1543 dl 1.1 return job;
1544     }
1545    
1546 jsr166 1.48 /**
1547     * @throws NullPointerException if the task is null
1548     * @throws RejectedExecutionException if the task cannot be
1549     * scheduled for execution
1550     */
1551 dl 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
1552 dl 1.82 if (task == null)
1553     throw new NullPointerException();
1554 dl 1.33 ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1555 dl 1.82 forkOrSubmit(job);
1556 dl 1.1 return job;
1557     }
1558    
1559 jsr166 1.48 /**
1560     * @throws NullPointerException if the task is null
1561     * @throws RejectedExecutionException if the task cannot be
1562     * scheduled for execution
1563     */
1564 dl 1.1 public ForkJoinTask<?> submit(Runnable task) {
1565 dl 1.82 if (task == null)
1566     throw new NullPointerException();
1567 dl 1.23 ForkJoinTask<?> job;
1568 jsr166 1.26 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1569     job = (ForkJoinTask<?>) task;
1570 dl 1.23 else
1571 dl 1.33 job = ForkJoinTask.adapt(task, null);
1572 dl 1.82 forkOrSubmit(job);
1573 dl 1.1 return job;
1574     }
1575    
1576     /**
1577 jsr166 1.48 * @throws NullPointerException {@inheritDoc}
1578     * @throws RejectedExecutionException {@inheritDoc}
1579     */
1580 dl 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
1581 jsr166 1.20 ArrayList<ForkJoinTask<T>> forkJoinTasks =
1582 dl 1.1 new ArrayList<ForkJoinTask<T>>(tasks.size());
1583 jsr166 1.20 for (Callable<T> task : tasks)
1584 dl 1.33 forkJoinTasks.add(ForkJoinTask.adapt(task));
1585 jsr166 1.20 invoke(new InvokeAll<T>(forkJoinTasks));
1586    
1587     @SuppressWarnings({"unchecked", "rawtypes"})
1588 dl 1.54 List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1589 jsr166 1.20 return futures;
1590 dl 1.1 }
1591    
1592     static final class InvokeAll<T> extends RecursiveAction {
1593     final ArrayList<ForkJoinTask<T>> tasks;
1594     InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
1595     public void compute() {
1596 jsr166 1.17 try { invokeAll(tasks); }
1597     catch (Exception ignore) {}
1598 dl 1.1 }
1599 jsr166 1.18 private static final long serialVersionUID = -7914297376763021607L;
1600 dl 1.1 }
1601    
1602     /**
1603 jsr166 1.17 * Returns the factory used for constructing new workers.
1604 dl 1.1 *
1605     * @return the factory used for constructing new workers
1606     */
1607     public ForkJoinWorkerThreadFactory getFactory() {
1608     return factory;
1609     }
1610    
1611     /**
1612 dl 1.2 * Returns the handler for internal worker threads that terminate
1613     * due to unrecoverable errors encountered while executing tasks.
1614 jsr166 1.17 *
1615 jsr166 1.28 * @return the handler, or {@code null} if none
1616 dl 1.2 */
1617     public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1618 dl 1.53 return ueh;
1619 dl 1.2 }
1620    
1621     /**
1622 dl 1.42 * Returns the targeted parallelism level of this pool.
1623 dl 1.1 *
1624 dl 1.42 * @return the targeted parallelism level of this pool
1625 dl 1.1 */
1626     public int getParallelism() {
1627     return parallelism;
1628     }
1629    
1630     /**
1631     * Returns the number of worker threads that have started but not
1632 jsr166 1.76 * yet terminated. The result returned by this method may differ
1633 jsr166 1.29 * from {@link #getParallelism} when threads are created to
1634 dl 1.1 * maintain parallelism when others are cooperatively blocked.
1635     *
1636     * @return the number of worker threads
1637     */
1638     public int getPoolSize() {
1639 dl 1.91 return parallelism + (short)(ctl >>> TC_SHIFT);
1640 dl 1.1 }
1641    
1642     /**
1643 jsr166 1.28 * Returns {@code true} if this pool uses local first-in-first-out
1644 jsr166 1.16 * scheduling mode for forked tasks that are never joined.
1645 dl 1.6 *
1646 jsr166 1.28 * @return {@code true} if this pool uses async mode
1647 dl 1.6 */
1648     public boolean getAsyncMode() {
1649     return locallyFifo;
1650     }
1651    
1652     /**
1653 dl 1.2 * Returns an estimate of the number of worker threads that are
1654     * not blocked waiting to join tasks or for other managed
1655 dl 1.53 * synchronization. This method may overestimate the
1656     * number of running threads.
1657 dl 1.1 *
1658     * @return the number of worker threads
1659     */
1660     public int getRunningThreadCount() {
1661 dl 1.91 int r = parallelism + (int)(ctl >> AC_SHIFT);
1662     return r <= 0? 0 : r; // suppress momentarily negative values
1663 dl 1.1 }
1664    
1665     /**
1666 dl 1.2 * Returns an estimate of the number of threads that are currently
1667 dl 1.1 * stealing or executing tasks. This method may overestimate the
1668     * number of active threads.
1669 jsr166 1.17 *
1670 jsr166 1.16 * @return the number of active threads
1671 dl 1.1 */
1672     public int getActiveThreadCount() {
1673 dl 1.91 int r = parallelism + (int)(ctl >> AC_SHIFT) + blockedCount;
1674     return r <= 0? 0 : r; // suppress momentarily negative values
1675 dl 1.1 }
1676    
1677     /**
1678 jsr166 1.28 * Returns {@code true} if all worker threads are currently idle.
1679     * An idle worker is one that cannot obtain a task to execute
1680     * because none are available to steal from other threads, and
1681     * there are no pending submissions to the pool. This method is
1682     * conservative; it might not return {@code true} immediately upon
1683     * idleness of all threads, but will eventually become true if
1684     * threads remain inactive.
1685 jsr166 1.17 *
1686 jsr166 1.28 * @return {@code true} if all threads are currently idle
1687 dl 1.1 */
1688     public boolean isQuiescent() {
1689 dl 1.91 return parallelism + (int)(ctl >> AC_SHIFT) + blockedCount == 0;
1690 dl 1.1 }
1691    
1692     /**
1693     * Returns an estimate of the total number of tasks stolen from
1694     * one thread's work queue by another. The reported value
1695     * underestimates the actual total number of steals when the pool
1696     * is not quiescent. This value may be useful for monitoring and
1697 jsr166 1.17 * tuning fork/join programs: in general, steal counts should be
1698 dl 1.1 * high enough to keep threads busy, but low enough to avoid
1699     * overhead and contention across threads.
1700 jsr166 1.17 *
1701 jsr166 1.16 * @return the number of steals
1702 dl 1.1 */
1703     public long getStealCount() {
1704 dl 1.53 return stealCount;
1705 dl 1.1 }
1706    
1707     /**
1708 dl 1.2 * Returns an estimate of the total number of tasks currently held
1709     * in queues by worker threads (but not including tasks submitted
1710     * to the pool that have not begun executing). This value is only
1711     * an approximation, obtained by iterating across all threads in
1712     * the pool. This method may be useful for tuning task
1713     * granularities.
1714 jsr166 1.17 *
1715 jsr166 1.16 * @return the number of queued tasks
1716 dl 1.1 */
1717     public long getQueuedTaskCount() {
1718     long count = 0;
1719 dl 1.91 ForkJoinWorkerThread[] ws;
1720     if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1721     (ws = workers) != null) {
1722     for (ForkJoinWorkerThread w : ws)
1723     if (w != null)
1724     count -= w.queueBase - w.queueTop; // must read base first
1725     }
1726 dl 1.1 return count;
1727     }
1728    
1729     /**
1730 jsr166 1.40 * Returns an estimate of the number of tasks submitted to this
1731 dl 1.91 * pool that have not yet begun executing. This meThod may take
1732     * time proportional to the number of submissions.
1733 jsr166 1.17 *
1734 jsr166 1.16 * @return the number of queued submissions
1735 dl 1.1 */
1736     public int getQueuedSubmissionCount() {
1737 dl 1.91 return -queueBase + queueTop;
1738 dl 1.1 }
1739    
1740     /**
1741 jsr166 1.28 * Returns {@code true} if there are any tasks submitted to this
1742     * pool that have not yet begun executing.
1743 jsr166 1.17 *
1744 jsr166 1.16 * @return {@code true} if there are any queued submissions
1745 dl 1.1 */
1746     public boolean hasQueuedSubmissions() {
1747 dl 1.91 return queueBase != queueTop;
1748 dl 1.1 }
1749    
1750     /**
1751     * Removes and returns the next unexecuted submission if one is
1752     * available. This method may be useful in extensions to this
1753     * class that re-assign work in systems with multiple pools.
1754 jsr166 1.17 *
1755 jsr166 1.28 * @return the next submission, or {@code null} if none
1756 dl 1.1 */
1757     protected ForkJoinTask<?> pollSubmission() {
1758 dl 1.91 ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
1759     while ((b = queueBase) != queueTop &&
1760     (q = submissionQueue) != null &&
1761     (i = (q.length - 1) & b) >= 0) {
1762     long u = (i << ASHIFT) + ABASE;
1763     if ((t = q[i]) != null &&
1764     queueBase == b &&
1765     UNSAFE.compareAndSwapObject(q, u, t, null)) {
1766     queueBase = b + 1;
1767     return t;
1768     }
1769     }
1770     return null;
1771 dl 1.1 }
1772    
1773     /**
1774 dl 1.6 * Removes all available unexecuted submitted and forked tasks
1775     * from scheduling queues and adds them to the given collection,
1776     * without altering their execution status. These may include
1777 jsr166 1.41 * artificially generated or wrapped tasks. This method is
1778     * designed to be invoked only when the pool is known to be
1779 dl 1.6 * quiescent. Invocations at other times may not remove all
1780     * tasks. A failure encountered while attempting to add elements
1781 jsr166 1.16 * to collection {@code c} may result in elements being in
1782 dl 1.6 * neither, either or both collections when the associated
1783     * exception is thrown. The behavior of this operation is
1784     * undefined if the specified collection is modified while the
1785     * operation is in progress.
1786 jsr166 1.17 *
1787 dl 1.6 * @param c the collection to transfer elements into
1788     * @return the number of elements transferred
1789     */
1790 dl 1.30 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1791 dl 1.91 int count = 0;
1792     while (queueBase != queueTop) {
1793     ForkJoinTask<?> t = pollSubmission();
1794     if (t != null) {
1795     c.add(t);
1796     ++count;
1797     }
1798     }
1799     ForkJoinWorkerThread[] ws;
1800     if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1801     (ws = workers) != null) {
1802     for (ForkJoinWorkerThread w : ws)
1803     if (w != null)
1804     count += w.drainTasksTo(c);
1805     }
1806 dl 1.57 return count;
1807     }
1808    
1809     /**
1810 dl 1.1 * Returns a string identifying this pool, as well as its state,
1811     * including indications of run state, parallelism level, and
1812     * worker and task counts.
1813     *
1814     * @return a string identifying this pool, as well as its state
1815     */
1816     public String toString() {
1817     long st = getStealCount();
1818     long qt = getQueuedTaskCount();
1819     long qs = getQueuedSubmissionCount();
1820 dl 1.53 int pc = parallelism;
1821 dl 1.91 long c = ctl;
1822     int tc = pc + (short)(c >>> TC_SHIFT);
1823     int rc = pc + (int)(c >> AC_SHIFT);
1824     if (rc < 0) // ignore transient negative
1825     rc = 0;
1826     int ac = rc + blockedCount;
1827     String level;
1828     if ((c & STOP_BIT) != 0)
1829     level = (tc == 0)? "Terminated" : "Terminating";
1830     else
1831     level = shutdown? "Shutting down" : "Running";
1832 dl 1.1 return super.toString() +
1833 dl 1.91 "[" + level +
1834 dl 1.53 ", parallelism = " + pc +
1835     ", size = " + tc +
1836     ", active = " + ac +
1837     ", running = " + rc +
1838 dl 1.1 ", steals = " + st +
1839     ", tasks = " + qt +
1840     ", submissions = " + qs +
1841     "]";
1842     }
1843    
1844     /**
1845     * Initiates an orderly shutdown in which previously submitted
1846     * tasks are executed, but no new tasks will be accepted.
1847     * Invocation has no additional effect if already shut down.
1848     * Tasks that are in the process of being submitted concurrently
1849     * during the course of this method may or may not be rejected.
1850 jsr166 1.17 *
1851 dl 1.1 * @throws SecurityException if a security manager exists and
1852     * the caller is not permitted to modify threads
1853     * because it does not hold {@link
1854 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1855 dl 1.1 */
1856     public void shutdown() {
1857     checkPermission();
1858 dl 1.91 shutdown = true;
1859 dl 1.53 tryTerminate(false);
1860 dl 1.1 }
1861    
1862     /**
1863 dl 1.42 * Attempts to cancel and/or stop all tasks, and reject all
1864     * subsequently submitted tasks. Tasks that are in the process of
1865     * being submitted or executed concurrently during the course of
1866     * this method may or may not be rejected. This method cancels
1867     * both existing and unexecuted tasks, in order to permit
1868     * termination in the presence of task dependencies. So the method
1869     * always returns an empty list (unlike the case for some other
1870     * Executors).
1871 jsr166 1.17 *
1872 dl 1.1 * @return an empty list
1873     * @throws SecurityException if a security manager exists and
1874     * the caller is not permitted to modify threads
1875     * because it does not hold {@link
1876 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1877 dl 1.1 */
1878     public List<Runnable> shutdownNow() {
1879     checkPermission();
1880 dl 1.91 shutdown = true;
1881 dl 1.53 tryTerminate(true);
1882 dl 1.1 return Collections.emptyList();
1883     }
1884    
1885     /**
1886 jsr166 1.16 * Returns {@code true} if all tasks have completed following shut down.
1887 dl 1.1 *
1888 jsr166 1.16 * @return {@code true} if all tasks have completed following shut down
1889 dl 1.1 */
1890     public boolean isTerminated() {
1891 dl 1.91 long c = ctl;
1892     return ((c & STOP_BIT) != 0L &&
1893     (short)(c >>> TC_SHIFT) == -parallelism);
1894 dl 1.1 }
1895    
1896     /**
1897 jsr166 1.16 * Returns {@code true} if the process of termination has
1898 dl 1.42 * commenced but not yet completed. This method may be useful for
1899     * debugging. A return of {@code true} reported a sufficient
1900     * period after shutdown may indicate that submitted tasks have
1901 dl 1.88 * ignored or suppressed interruption, or are waiting for IO,
1902     * causing this executor not to properly terminate. (See the
1903     * advisory notes for class {@link ForkJoinTask} stating that
1904     * tasks should not normally entail blocking operations. But if
1905     * they do, they must abort them on interrupt.)
1906 dl 1.1 *
1907 dl 1.42 * @return {@code true} if terminating but not yet terminated
1908 dl 1.1 */
1909     public boolean isTerminating() {
1910 dl 1.91 long c = ctl;
1911     return ((c & STOP_BIT) != 0L &&
1912     (short)(c >>> TC_SHIFT) != -parallelism);
1913 dl 1.1 }
1914    
1915     /**
1916 dl 1.80 * Returns true if terminating or terminated. Used by ForkJoinWorkerThread.
1917     */
1918     final boolean isAtLeastTerminating() {
1919 dl 1.91 return (ctl & STOP_BIT) != 0L;
1920 dl 1.80 }
1921 jsr166 1.81
1922 dl 1.80 /**
1923 jsr166 1.16 * Returns {@code true} if this pool has been shut down.
1924 dl 1.1 *
1925 jsr166 1.16 * @return {@code true} if this pool has been shut down
1926 dl 1.1 */
1927     public boolean isShutdown() {
1928 dl 1.91 return shutdown;
1929 dl 1.42 }
1930    
1931     /**
1932 dl 1.1 * Blocks until all tasks have completed execution after a shutdown
1933     * request, or the timeout occurs, or the current thread is
1934     * interrupted, whichever happens first.
1935     *
1936     * @param timeout the maximum time to wait
1937     * @param unit the time unit of the timeout argument
1938 jsr166 1.16 * @return {@code true} if this executor terminated and
1939     * {@code false} if the timeout elapsed before termination
1940 dl 1.1 * @throws InterruptedException if interrupted while waiting
1941     */
1942     public boolean awaitTermination(long timeout, TimeUnit unit)
1943     throws InterruptedException {
1944 dl 1.91 long nanos = unit.toNanos(timeout);
1945     final ReentrantLock lock = this.submissionLock;
1946     lock.lock();
1947 dl 1.57 try {
1948 dl 1.91 for (;;) {
1949     if (isTerminated())
1950     return true;
1951     if (nanos <= 0)
1952     return false;
1953     nanos = termination.awaitNanos(nanos);
1954     }
1955     } finally {
1956     lock.unlock();
1957 dl 1.57 }
1958 dl 1.1 }
1959    
1960     /**
1961     * Interface for extending managed parallelism for tasks running
1962 jsr166 1.35 * in {@link ForkJoinPool}s.
1963     *
1964 dl 1.61 * <p>A {@code ManagedBlocker} provides two methods. Method
1965     * {@code isReleasable} must return {@code true} if blocking is
1966     * not necessary. Method {@code block} blocks the current thread
1967     * if necessary (perhaps internally invoking {@code isReleasable}
1968     * before actually blocking). The unusual methods in this API
1969     * accommodate synchronizers that may, but don't usually, block
1970     * for long periods. Similarly, they allow more efficient internal
1971     * handling of cases in which additional workers may be, but
1972     * usually are not, needed to ensure sufficient parallelism.
1973     * Toward this end, implementations of method {@code isReleasable}
1974     * must be amenable to repeated invocation.
1975 jsr166 1.17 *
1976 dl 1.1 * <p>For example, here is a ManagedBlocker based on a
1977     * ReentrantLock:
1978 jsr166 1.17 * <pre> {@code
1979     * class ManagedLocker implements ManagedBlocker {
1980     * final ReentrantLock lock;
1981     * boolean hasLock = false;
1982     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1983     * public boolean block() {
1984     * if (!hasLock)
1985     * lock.lock();
1986     * return true;
1987     * }
1988     * public boolean isReleasable() {
1989     * return hasLock || (hasLock = lock.tryLock());
1990 dl 1.1 * }
1991 jsr166 1.17 * }}</pre>
1992 dl 1.61 *
1993     * <p>Here is a class that possibly blocks waiting for an
1994     * item on a given queue:
1995     * <pre> {@code
1996     * class QueueTaker<E> implements ManagedBlocker {
1997     * final BlockingQueue<E> queue;
1998     * volatile E item = null;
1999     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
2000     * public boolean block() throws InterruptedException {
2001     * if (item == null)
2002 dl 1.65 * item = queue.take();
2003 dl 1.61 * return true;
2004     * }
2005     * public boolean isReleasable() {
2006 dl 1.65 * return item != null || (item = queue.poll()) != null;
2007 dl 1.61 * }
2008     * public E getItem() { // call after pool.managedBlock completes
2009     * return item;
2010     * }
2011     * }}</pre>
2012 dl 1.1 */
2013     public static interface ManagedBlocker {
2014     /**
2015     * Possibly blocks the current thread, for example waiting for
2016     * a lock or condition.
2017 jsr166 1.17 *
2018 jsr166 1.28 * @return {@code true} if no additional blocking is necessary
2019     * (i.e., if isReleasable would return true)
2020 dl 1.1 * @throws InterruptedException if interrupted while waiting
2021 jsr166 1.17 * (the method is not required to do so, but is allowed to)
2022 dl 1.1 */
2023     boolean block() throws InterruptedException;
2024    
2025     /**
2026 jsr166 1.28 * Returns {@code true} if blocking is unnecessary.
2027 dl 1.1 */
2028     boolean isReleasable();
2029     }
2030    
2031     /**
2032     * Blocks in accord with the given blocker. If the current thread
2033 jsr166 1.38 * is a {@link ForkJoinWorkerThread}, this method possibly
2034     * arranges for a spare thread to be activated if necessary to
2035 dl 1.57 * ensure sufficient parallelism while the current thread is blocked.
2036 jsr166 1.38 *
2037     * <p>If the caller is not a {@link ForkJoinTask}, this method is
2038     * behaviorally equivalent to
2039 jsr166 1.17 * <pre> {@code
2040     * while (!blocker.isReleasable())
2041     * if (blocker.block())
2042     * return;
2043     * }</pre>
2044 jsr166 1.38 *
2045     * If the caller is a {@code ForkJoinTask}, then the pool may
2046     * first be expanded to ensure parallelism, and later adjusted.
2047 dl 1.1 *
2048     * @param blocker the blocker
2049 jsr166 1.16 * @throws InterruptedException if blocker.block did so
2050 dl 1.1 */
2051 dl 1.57 public static void managedBlock(ManagedBlocker blocker)
2052 dl 1.1 throws InterruptedException {
2053     Thread t = Thread.currentThread();
2054 dl 1.61 if (t instanceof ForkJoinWorkerThread) {
2055     ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
2056     w.pool.awaitBlocker(blocker);
2057     }
2058 dl 1.57 else {
2059     do {} while (!blocker.isReleasable() && !blocker.block());
2060     }
2061 dl 1.1 }
2062    
2063 dl 1.33 // AbstractExecutorService overrides. These rely on undocumented
2064     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
2065     // implement RunnableFuture.
2066 dl 1.2
2067     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
2068 jsr166 1.34 return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
2069 dl 1.2 }
2070    
2071     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
2072 jsr166 1.34 return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
2073 dl 1.2 }
2074    
2075 jsr166 1.27 // Unsafe mechanics
2076 dl 1.91 private static final sun.misc.Unsafe UNSAFE;
2077     private static final long ctlOffset;
2078     private static final long stealCountOffset;
2079     private static final long blockedCountOffset;
2080     private static final long quiescerCountOffset;
2081     private static final long scanGuardOffset;
2082     private static final long nextWorkerNumberOffset;
2083     private static final long ABASE;
2084     private static final int ASHIFT;
2085    
2086     static {
2087     poolNumberGenerator = new AtomicInteger();
2088     workerSeedGenerator = new Random();
2089     modifyThreadPermission = new RuntimePermission("modifyThread");
2090     defaultForkJoinWorkerThreadFactory =
2091     new DefaultForkJoinWorkerThreadFactory();
2092     int s;
2093 jsr166 1.27 try {
2094 dl 1.91 UNSAFE = getUnsafe();
2095     Class k = ForkJoinPool.class;
2096     ctlOffset = UNSAFE.objectFieldOffset
2097     (k.getDeclaredField("ctl"));
2098     stealCountOffset = UNSAFE.objectFieldOffset
2099     (k.getDeclaredField("stealCount"));
2100     blockedCountOffset = UNSAFE.objectFieldOffset
2101     (k.getDeclaredField("blockedCount"));
2102     quiescerCountOffset = UNSAFE.objectFieldOffset
2103     (k.getDeclaredField("quiescerCount"));
2104     scanGuardOffset = UNSAFE.objectFieldOffset
2105     (k.getDeclaredField("scanGuard"));
2106     nextWorkerNumberOffset = UNSAFE.objectFieldOffset
2107     (k.getDeclaredField("nextWorkerNumber"));
2108     Class a = ForkJoinTask[].class;
2109     ABASE = UNSAFE.arrayBaseOffset(a);
2110     s = UNSAFE.arrayIndexScale(a);
2111     } catch (Exception e) {
2112     throw new Error(e);
2113     }
2114     if ((s & (s-1)) != 0)
2115     throw new Error("data type scale not a power of two");
2116     ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
2117 jsr166 1.27 }
2118    
2119     /**
2120     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
2121     * Replace with a simple call to Unsafe.getUnsafe when integrating
2122     * into a jdk.
2123     *
2124     * @return a sun.misc.Unsafe
2125     */
2126     private static sun.misc.Unsafe getUnsafe() {
2127     try {
2128     return sun.misc.Unsafe.getUnsafe();
2129     } catch (SecurityException se) {
2130     try {
2131     return java.security.AccessController.doPrivileged
2132     (new java.security
2133     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
2134     public sun.misc.Unsafe run() throws Exception {
2135     java.lang.reflect.Field f = sun.misc
2136     .Unsafe.class.getDeclaredField("theUnsafe");
2137     f.setAccessible(true);
2138     return (sun.misc.Unsafe) f.get(null);
2139     }});
2140     } catch (java.security.PrivilegedActionException e) {
2141     throw new RuntimeException("Could not initialize intrinsics",
2142     e.getCause());
2143     }
2144     }
2145     }
2146 dl 1.1 }