ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
Revision: 1.99
Committed: Wed Mar 23 11:27:43 2011 UTC (13 years, 1 month ago) by dl
Branch: MAIN
Changes since 1.98: +2 -1 lines
Log Message:
Tolerate timing slop

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.97 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.1 */
6    
7     package jsr166y;
8 jsr166 1.22
9     import java.util.ArrayList;
10     import java.util.Arrays;
11     import java.util.Collection;
12     import java.util.Collections;
13     import java.util.List;
14 dl 1.91 import java.util.Random;
15 dl 1.78 import java.util.concurrent.AbstractExecutorService;
16     import java.util.concurrent.Callable;
17     import java.util.concurrent.ExecutorService;
18     import java.util.concurrent.Future;
19     import java.util.concurrent.RejectedExecutionException;
20     import java.util.concurrent.RunnableFuture;
21     import java.util.concurrent.TimeUnit;
22     import java.util.concurrent.TimeoutException;
23     import java.util.concurrent.atomic.AtomicInteger;
24 jsr166 1.22 import java.util.concurrent.locks.LockSupport;
25     import java.util.concurrent.locks.ReentrantLock;
26 dl 1.91 import java.util.concurrent.locks.Condition;
27 dl 1.1
28     /**
29 jsr166 1.29 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
30 jsr166 1.39 * A {@code ForkJoinPool} provides the entry point for submissions
31 dl 1.57 * from non-{@code ForkJoinTask} clients, as well as management and
32 jsr166 1.48 * monitoring operations.
33 dl 1.1 *
34 dl 1.42 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
35     * ExecutorService} mainly by virtue of employing
36     * <em>work-stealing</em>: all threads in the pool attempt to find and
37     * execute subtasks created by other active tasks (eventually blocking
38     * waiting for work if none exist). This enables efficient processing
39     * when most tasks spawn other subtasks (as do most {@code
40 dl 1.57 * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
41     * constructors, {@code ForkJoinPool}s may also be appropriate for use
42     * with event-style tasks that are never joined.
43 dl 1.1 *
44 dl 1.42 * <p>A {@code ForkJoinPool} is constructed with a given target
45     * parallelism level; by default, equal to the number of available
46 dl 1.57 * processors. The pool attempts to maintain enough active (or
47     * available) threads by dynamically adding, suspending, or resuming
48     * internal worker threads, even if some tasks are stalled waiting to
49     * join others. However, no such adjustments are guaranteed in the
50     * face of blocked IO or other unmanaged synchronization. The nested
51     * {@link ManagedBlocker} interface enables extension of the kinds of
52     * synchronization accommodated.
53 dl 1.1 *
54     * <p>In addition to execution and lifecycle control methods, this
55     * class provides status check methods (for example
56 jsr166 1.29 * {@link #getStealCount}) that are intended to aid in developing,
57 dl 1.1 * tuning, and monitoring fork/join applications. Also, method
58 jsr166 1.29 * {@link #toString} returns indications of pool state in a
59 dl 1.2 * convenient form for informal monitoring.
60 dl 1.1 *
61 dl 1.57 * <p> As is the case with other ExecutorServices, there are three
62 dl 1.60 * main task execution methods summarized in the following
63 dl 1.57 * table. These are designed to be used by clients not already engaged
64     * in fork/join computations in the current pool. The main forms of
65     * these methods accept instances of {@code ForkJoinTask}, but
66     * overloaded forms also allow mixed execution of plain {@code
67     * Runnable}- or {@code Callable}- based activities as well. However,
68     * tasks that are already executing in a pool should normally
69     * <em>NOT</em> use these pool execution methods, but instead use the
70 dl 1.59 * within-computation forms listed in the table.
71 dl 1.57 *
72     * <table BORDER CELLPADDING=3 CELLSPACING=1>
73     * <tr>
74     * <td></td>
75     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
76     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
77     * </tr>
78     * <tr>
79 jsr166 1.67 * <td> <b>Arrange async execution</td>
80 dl 1.57 * <td> {@link #execute(ForkJoinTask)}</td>
81     * <td> {@link ForkJoinTask#fork}</td>
82     * </tr>
83     * <tr>
84     * <td> <b>Await and obtain result</td>
85     * <td> {@link #invoke(ForkJoinTask)}</td>
86     * <td> {@link ForkJoinTask#invoke}</td>
87     * </tr>
88     * <tr>
89     * <td> <b>Arrange exec and obtain Future</td>
90     * <td> {@link #submit(ForkJoinTask)}</td>
91     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
92     * </tr>
93     * </table>
94 dl 1.59 *
95 dl 1.42 * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
96     * used for all parallel task execution in a program or subsystem.
97     * Otherwise, use would not usually outweigh the construction and
98     * bookkeeping overhead of creating a large set of threads. For
99 jsr166 1.43 * example, a common pool could be used for the {@code SortTasks}
100 dl 1.42 * illustrated in {@link RecursiveAction}. Because {@code
101     * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
102 jsr166 1.43 * daemon} mode, there is typically no need to explicitly {@link
103 dl 1.42 * #shutdown} such a pool upon program exit.
104     *
105     * <pre>
106     * static final ForkJoinPool mainPool = new ForkJoinPool();
107     * ...
108     * public void sort(long[] array) {
109     * mainPool.invoke(new SortTask(array, 0, array.length));
110     * }
111     * </pre>
112     *
113 dl 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
114 dl 1.2 * maximum number of running threads to 32767. Attempts to create
115 jsr166 1.48 * pools with greater than the maximum number result in
116 jsr166 1.39 * {@code IllegalArgumentException}.
117 jsr166 1.16 *
118 jsr166 1.48 * <p>This implementation rejects submitted tasks (that is, by throwing
119 dl 1.58 * {@link RejectedExecutionException}) only when the pool is shut down
120 dl 1.62 * or internal resources have been exhausted.
121 jsr166 1.48 *
122 jsr166 1.16 * @since 1.7
123     * @author Doug Lea
124 dl 1.1 */
125 dl 1.2 public class ForkJoinPool extends AbstractExecutorService {
126 dl 1.1
127     /*
128 dl 1.53 * Implementation Overview
129     *
130     * This class provides the central bookkeeping and control for a
131     * set of worker threads: Submissions from non-FJ threads enter
132     * into a submission queue. Workers take these tasks and typically
133     * split them into subtasks that may be stolen by other workers.
134 dl 1.91 * Preference rules give first priority to processing tasks from
135     * their own queues (LIFO or FIFO, depending on mode), then to
136     * randomized FIFO steals of tasks in other worker queues, and
137     * lastly to new submissions.
138     *
139     * The main throughput advantages of work-stealing stem from
140     * decentralized control -- workers mostly take tasks from
141     * themselves or each other. We cannot negate this in the
142     * implementation of other management responsibilities. The main
143     * tactic for avoiding bottlenecks is packing nearly all
144     * essentially atomic control state into a single 64bit volatile
145     * variable ("ctl"). This variable is read on the order of 10-100
146     * times as often as it is modified (always via CAS). (There is
147     * some additional control state, for example variable "shutdown"
148     * for which we can cope with uncoordinated updates.) This
149     * streamlines synchronization and control at the expense of messy
150     * constructions needed to repack status bits upon updates.
151     * Updates tend not to contend with each other except during
152     * bursts while submitted tasks begin or end. In some cases when
153     * they do contend, threads can instead do something else
154 dl 1.95 * (usually, scan for tasks) until contention subsides.
155 dl 1.91 *
156     * To enable packing, we restrict maximum parallelism to (1<<15)-1
157     * (which is far in excess of normal operating range) to allow
158     * ids, counts, and their negations (used for thresholding) to fit
159     * into 16bit fields.
160     *
161     * Recording Workers. Workers are recorded in the "workers" array
162     * that is created upon pool construction and expanded if (rarely)
163     * necessary. This is an array as opposed to some other data
164     * structure to support index-based random steals by workers.
165     * Updates to the array recording new workers and unrecording
166     * terminated ones are protected from each other by a seqLock
167     * (scanGuard) but the array is otherwise concurrently readable,
168     * and accessed directly by workers. To simplify index-based
169     * operations, the array size is always a power of two, and all
170     * readers must tolerate null slots. To avoid flailing during
171     * start-up, the array is presized to hold twice #parallelism
172     * workers (which is unlikely to need further resizing during
173     * execution). But to avoid dealing with so many null slots,
174     * variable scanGuard includes a mask for the nearest power of two
175     * that contains all current workers. All worker thread creation
176     * is on-demand, triggered by task submissions, replacement of
177     * terminated workers, and/or compensation for blocked
178     * workers. However, all other support code is set up to work with
179     * other policies. To ensure that we do not hold on to worker
180     * references that would prevent GC, ALL accesses to workers are
181     * via indices into the workers array (which is one source of some
182     * of the messy code constructions here). In essence, the workers
183     * array serves as a weak reference mechanism. Thus for example
184     * the wait queue field of ctl stores worker indices, not worker
185     * references. Access to the workers in associated methods (for
186     * example signalWork) must both index-check and null-check the
187     * IDs. All such accesses ignore bad IDs by returning out early
188     * from what they are doing, since this can only be associated
189     * with termination, in which case it is OK to give up.
190     *
191     * All uses of the workers array, as well as queue arrays, check
192     * that the array is non-null (even if previously non-null). This
193     * allows nulling during termination, which is currently not
194     * necessary, but remains an option for resource-revocation-based
195     * shutdown schemes.
196     *
197     * Wait Queuing. Unlike HPC work-stealing frameworks, we cannot
198 dl 1.95 * let workers spin indefinitely scanning for tasks when none can
199     * be found immediately, and we cannot start/resume workers unless
200     * there appear to be tasks available. On the other hand, we must
201     * quickly prod them into action when new tasks are submitted or
202     * generated. We park/unpark workers after placing in an event
203     * wait queue when they cannot find work. This "queue" is actually
204     * a simple Treiber stack, headed by the "id" field of ctl, plus a
205     * 15bit counter value to both wake up waiters (by advancing their
206     * count) and avoid ABA effects. Successors are held in worker
207     * field "nextWait". Queuing deals with several intrinsic races,
208     * mainly that a task-producing thread can miss seeing (and
209     * signalling) another thread that gave up looking for work but
210     * has not yet entered the wait queue. We solve this by requiring
211     * a full sweep of all workers both before (in scan()) and after
212     * (in tryAwaitWork()) a newly waiting worker is added to the wait
213     * queue. During a rescan, the worker might release some other
214     * queued worker rather than itself, which has the same net
215     * effect. Because enqueued workers may actually be rescanning
216     * rather than waiting, we set and clear the "parked" field of
217     * ForkJoinWorkerThread to reduce unnecessary calls to unpark.
218     * (Use of the parked field requires a secondary recheck to avoid
219     * missed signals.)
220 dl 1.91 *
221     * Signalling. We create or wake up workers only when there
222     * appears to be at least one task they might be able to find and
223     * execute. When a submission is added or another worker adds a
224     * task to a queue that previously had two or fewer tasks, they
225     * signal waiting workers (or trigger creation of new ones if
226     * fewer than the given parallelism level -- see signalWork).
227     * These primary signals are buttressed by signals during rescans
228     * as well as those performed when a worker steals a task and
229     * notices that there are more tasks too; together these cover the
230     * signals needed in cases when more than two tasks are pushed
231     * but untaken.
232     *
233     * Trimming workers. To release resources after periods of lack of
234     * use, a worker starting to wait when the pool is quiescent will
235     * time out and terminate if the pool has remained quiescent for
236 dl 1.95 * SHRINK_RATE nanosecs. This will slowly propagate, eventually
237     * terminating all workers after long periods of non-use.
238 dl 1.91 *
239     * Submissions. External submissions are maintained in an
240     * array-based queue that is structured identically to
241 dl 1.95 * ForkJoinWorkerThread queues except for the use of
242     * submissionLock in method addSubmission. Unlike the case for
243     * worker queues, multiple external threads can add new
244     * submissions, so adding requires a lock.
245 dl 1.91 *
246     * Compensation. Beyond work-stealing support and lifecycle
247     * control, the main responsibility of this framework is to take
248     * actions when one worker is waiting to join a task stolen (or
249     * always held by) another. Because we are multiplexing many
250     * tasks on to a pool of workers, we can't just let them block (as
251     * in Thread.join). We also cannot just reassign the joiner's
252     * run-time stack with another and replace it later, which would
253     * be a form of "continuation", that even if possible is not
254     * necessarily a good idea since we sometimes need both an
255     * unblocked task and its continuation to progress. Instead we
256 dl 1.60 * combine two tactics:
257 dl 1.58 *
258 dl 1.60 * Helping: Arranging for the joiner to execute some task that it
259 dl 1.58 * would be running if the steal had not occurred. Method
260 dl 1.91 * ForkJoinWorkerThread.joinTask tracks joining->stealing
261 dl 1.58 * links to try to find such a task.
262     *
263 dl 1.61 * Compensating: Unless there are already enough live threads,
264 dl 1.91 * method tryPreBlock() may create or re-activate a spare
265     * thread to compensate for blocked joiners until they
266     * unblock.
267     *
268     * The ManagedBlocker extension API can't use helping so relies
269     * only on compensation in method awaitBlocker.
270 dl 1.58 *
271 dl 1.91 * It is impossible to keep exactly the target parallelism number
272     * of threads running at any given time. Determining the
273 dl 1.66 * existence of conservatively safe helping targets, the
274     * availability of already-created spares, and the apparent need
275     * to create new spares are all racy and require heuristic
276 dl 1.91 * guidance, so we rely on multiple retries of each. Currently,
277     * in keeping with on-demand signalling policy, we compensate only
278     * if blocking would leave less than one active (non-waiting,
279     * non-blocked) worker. Additionally, to avoid some false alarms
280     * due to GC, lagging counters, system activity, etc, compensated
281 dl 1.95 * blocking for joins is only attempted after rechecks stabilize
282     * (retries are interspersed with Thread.yield, for good
283     * citizenship). The variable blockedCount, incremented before
284     * blocking and decremented after, is sometimes needed to
285     * distinguish cases of waiting for work vs blocking on joins or
286     * other managed sync. Both cases are equivalent for most pool
287     * control, so we can update non-atomically. (Additionally,
288     * contention on blockedCount alleviates some contention on ctl).
289 dl 1.91 *
290     * Shutdown and Termination. A call to shutdownNow atomically sets
291     * the ctl stop bit and then (non-atomically) sets each workers
292     * "terminate" status, cancels all unprocessed tasks, and wakes up
293     * all waiting workers. Detecting whether termination should
294     * commence after a non-abrupt shutdown() call requires more work
295     * and bookkeeping. We need consensus about quiesence (i.e., that
296     * there is no more work) which is reflected in active counts so
297     * long as there are no current blockers, as well as possible
298     * re-evaluations during independent changes in blocking or
299     * quiescing workers.
300 dl 1.58 *
301 dl 1.91 * Style notes: There is a lot of representation-level coupling
302 dl 1.53 * among classes ForkJoinPool, ForkJoinWorkerThread, and
303 dl 1.91 * ForkJoinTask. Most fields of ForkJoinWorkerThread maintain
304     * data structures managed by ForkJoinPool, so are directly
305     * accessed. Conversely we allow access to "workers" array by
306 dl 1.53 * workers, and direct access to ForkJoinTask.status by both
307     * ForkJoinPool and ForkJoinWorkerThread. There is little point
308     * trying to reduce this, since any associated future changes in
309     * representations will need to be accompanied by algorithmic
310 dl 1.91 * changes anyway. All together, these low-level implementation
311     * choices produce as much as a factor of 4 performance
312     * improvement compared to naive implementations, and enable the
313     * processing of billions of tasks per second, at the expense of
314     * some ugliness.
315     *
316     * Methods signalWork() and scan() are the main bottlenecks so are
317     * especially heavily micro-optimized/mangled. There are lots of
318     * inline assignments (of form "while ((local = field) != 0)")
319     * which are usually the simplest way to ensure the required read
320     * orderings (which are sometimes critical). This leads to a
321     * "C"-like style of listing declarations of these locals at the
322     * heads of methods or blocks. There are several occurrences of
323     * the unusual "do {} while (!cas...)" which is the simplest way
324     * to force an update of a CAS'ed variable. There are also other
325     * coding oddities that help some methods perform reasonably even
326     * when interpreted (not compiled).
327     *
328     * The order of declarations in this file is: (1) declarations of
329     * statics (2) fields (along with constants used when unpacking
330     * some of them), listed in an order that tends to reduce
331     * contention among them a bit under most JVMs. (3) internal
332     * control methods (4) callbacks and other support for
333     * ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
334     * methods (plus a few little helpers). (6) static block
335     * initializing all statics in a minimally dependent order.
336 dl 1.1 */
337    
338     /**
339 jsr166 1.35 * Factory for creating new {@link ForkJoinWorkerThread}s.
340     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
341     * for {@code ForkJoinWorkerThread} subclasses that extend base
342     * functionality or initialize threads with different contexts.
343 dl 1.1 */
344     public static interface ForkJoinWorkerThreadFactory {
345     /**
346     * Returns a new worker thread operating in the given pool.
347     *
348     * @param pool the pool this thread works in
349 jsr166 1.48 * @throws NullPointerException if the pool is null
350 dl 1.1 */
351     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
352     }
353    
354     /**
355 jsr166 1.17 * Default ForkJoinWorkerThreadFactory implementation; creates a
356 dl 1.1 * new ForkJoinWorkerThread.
357     */
358 dl 1.57 static class DefaultForkJoinWorkerThreadFactory
359 dl 1.1 implements ForkJoinWorkerThreadFactory {
360     public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
361 dl 1.53 return new ForkJoinWorkerThread(pool);
362 dl 1.1 }
363     }
364    
365     /**
366 dl 1.2 * Creates a new ForkJoinWorkerThread. This factory is used unless
367     * overridden in ForkJoinPool constructors.
368 dl 1.1 */
369 dl 1.2 public static final ForkJoinWorkerThreadFactory
370 dl 1.91 defaultForkJoinWorkerThreadFactory;
371 dl 1.1
372     /**
373     * Permission required for callers of methods that may start or
374     * kill threads.
375     */
376 dl 1.91 private static final RuntimePermission modifyThreadPermission;
377 dl 1.1
378     /**
379     * If there is a security manager, makes sure caller has
380     * permission to modify threads.
381     */
382     private static void checkPermission() {
383     SecurityManager security = System.getSecurityManager();
384     if (security != null)
385     security.checkPermission(modifyThreadPermission);
386     }
387    
388     /**
389     * Generator for assigning sequence numbers as pool names.
390     */
391 dl 1.91 private static final AtomicInteger poolNumberGenerator;
392 dl 1.1
393     /**
394 dl 1.91 * Generator for initial random seeds for worker victim
395     * selection. This is used only to create initial seeds. Random
396     * steals use a cheaper xorshift generator per steal attempt. We
397     * don't expect much contention on seedGenerator, so just use a
398     * plain Random.
399 dl 1.66 */
400 dl 1.91 static final Random workerSeedGenerator;
401 dl 1.66
402     /**
403 dl 1.91 * Array holding all worker threads in the pool. Initialized upon
404     * construction. Array size must be a power of two. Updates and
405     * replacements are protected by scanGuard, but the array is
406     * always kept in a consistent enough state to be randomly
407     * accessed without locking by workers performing work-stealing,
408     * as well as other traversal-based methods in this class, so long
409     * as reads memory-acquire by first reading ctl. All readers must
410     * tolerate that some array slots may be null.
411 dl 1.64 */
412 dl 1.91 ForkJoinWorkerThread[] workers;
413 dl 1.64
414     /**
415 dl 1.91 * Initial size for submission queue array. Must be a power of
416     * two. In many applications, these always stay small so we use a
417     * small initial cap.
418 dl 1.53 */
419 dl 1.91 private static final int INITIAL_QUEUE_CAPACITY = 8;
420 dl 1.53
421     /**
422 dl 1.91 * Maximum size for submission queue array. Must be a power of two
423     * less than or equal to 1 << (31 - width of array entry) to
424     * ensure lack of index wraparound, but is capped at a lower
425     * value to help users trap runaway computations.
426 dl 1.1 */
427 dl 1.91 private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 24; // 16M
428 dl 1.1
429     /**
430 dl 1.91 * Array serving as submission queue. Initialized upon construction.
431 dl 1.1 */
432 dl 1.91 private ForkJoinTask<?>[] submissionQueue;
433 dl 1.1
434     /**
435 dl 1.91 * Lock protecting submissions array for addSubmission
436 dl 1.1 */
437 dl 1.91 private final ReentrantLock submissionLock;
438 dl 1.1
439     /**
440 dl 1.91 * Condition for awaitTermination, using submissionLock for
441     * convenience.
442 dl 1.1 */
443 dl 1.91 private final Condition termination;
444 dl 1.1
445     /**
446     * Creation factory for worker threads.
447     */
448     private final ForkJoinWorkerThreadFactory factory;
449    
450     /**
451 dl 1.91 * The uncaught exception handler used when any worker abruptly
452     * terminates.
453 dl 1.1 */
454 dl 1.91 final Thread.UncaughtExceptionHandler ueh;
455 dl 1.1
456     /**
457 dl 1.91 * Prefix for assigning names to worker threads
458 dl 1.1 */
459 dl 1.91 private final String workerNamePrefix;
460 dl 1.53
461 dl 1.91 /**
462     * Sum of per-thread steal counts, updated only when threads are
463     * idle or terminating.
464     */
465     private volatile long stealCount;
466 dl 1.1
467     /**
468 dl 1.91 * Main pool control -- a long packed with:
469     * AC: Number of active running workers minus target parallelism (16 bits)
470     * TC: Number of total workers minus target parallelism (16bits)
471     * ST: true if pool is terminating (1 bit)
472     * EC: the wait count of top waiting thread (15 bits)
473     * ID: ~poolIndex of top of Treiber stack of waiting threads (16 bits)
474     *
475     * When convenient, we can extract the upper 32 bits of counts and
476     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
477     * (int)ctl. The ec field is never accessed alone, but always
478     * together with id and st. The offsets of counts by the target
479     * parallelism and the positionings of fields makes it possible to
480     * perform the most common checks via sign tests of fields: When
481     * ac is negative, there are not enough active workers, when tc is
482     * negative, there are not enough total workers, when id is
483     * negative, there is at least one waiting worker, and when e is
484     * negative, the pool is terminating. To deal with these possibly
485     * negative fields, we use casts in and out of "short" and/or
486 dl 1.94 * signed shifts to maintain signedness.
487 dl 1.91 */
488     volatile long ctl;
489    
490     // bit positions/shifts for fields
491     private static final int AC_SHIFT = 48;
492     private static final int TC_SHIFT = 32;
493     private static final int ST_SHIFT = 31;
494     private static final int EC_SHIFT = 16;
495    
496     // bounds
497     private static final int MAX_ID = 0x7fff; // max poolIndex
498     private static final int SMASK = 0xffff; // mask short bits
499     private static final int SHORT_SIGN = 1 << 15;
500     private static final int INT_SIGN = 1 << 31;
501    
502     // masks
503     private static final long STOP_BIT = 0x0001L << ST_SHIFT;
504     private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
505     private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
506    
507     // units for incrementing and decrementing
508     private static final long TC_UNIT = 1L << TC_SHIFT;
509     private static final long AC_UNIT = 1L << AC_SHIFT;
510    
511     // masks and units for dealing with u = (int)(ctl >>> 32)
512     private static final int UAC_SHIFT = AC_SHIFT - 32;
513     private static final int UTC_SHIFT = TC_SHIFT - 32;
514     private static final int UAC_MASK = SMASK << UAC_SHIFT;
515     private static final int UTC_MASK = SMASK << UTC_SHIFT;
516     private static final int UAC_UNIT = 1 << UAC_SHIFT;
517     private static final int UTC_UNIT = 1 << UTC_SHIFT;
518    
519     // masks and units for dealing with e = (int)ctl
520     private static final int E_MASK = 0x7fffffff; // no STOP_BIT
521     private static final int EC_UNIT = 1 << EC_SHIFT;
522 dl 1.53
523     /**
524 dl 1.91 * The target parallelism level.
525 dl 1.61 */
526 dl 1.91 final int parallelism;
527 dl 1.61
528     /**
529 dl 1.91 * Index (mod submission queue length) of next element to take
530 dl 1.95 * from submission queue. Usage is identical to that for
531     * per-worker queues -- see ForkJoinWorkerThread internal
532     * documentation.
533 dl 1.53 */
534 dl 1.91 volatile int queueBase;
535 dl 1.1
536     /**
537 dl 1.91 * Index (mod submission queue length) of next element to add
538 dl 1.95 * in submission queue. Usage is identical to that for
539     * per-worker queues -- see ForkJoinWorkerThread internal
540     * documentation.
541 dl 1.53 */
542 dl 1.91 int queueTop;
543 dl 1.53
544 dl 1.1 /**
545 dl 1.91 * True when shutdown() has been called.
546 dl 1.1 */
547 dl 1.91 volatile boolean shutdown;
548 dl 1.1
549     /**
550 dl 1.53 * True if use local fifo, not default lifo, for local polling
551 dl 1.57 * Read by, and replicated by ForkJoinWorkerThreads
552 dl 1.1 */
553 dl 1.57 final boolean locallyFifo;
554 dl 1.1
555     /**
556 dl 1.91 * The number of threads in ForkJoinWorkerThreads.helpQuiescePool.
557     * When non-zero, suppresses automatic shutdown when active
558     * counts become zero.
559 dl 1.1 */
560 dl 1.91 volatile int quiescerCount;
561 dl 1.6
562     /**
563 dl 1.91 * The number of threads blocked in join.
564 dl 1.1 */
565 dl 1.91 volatile int blockedCount;
566 dl 1.1
567 dl 1.91 /**
568     * Counter for worker Thread names (unrelated to their poolIndex)
569     */
570     private volatile int nextWorkerNumber;
571 dl 1.1
572     /**
573 dl 1.91 * The index for the next created worker. Accessed under scanGuard.
574 dl 1.1 */
575 dl 1.91 private int nextWorkerIndex;
576 dl 1.58
577 dl 1.1 /**
578 dl 1.95 * SeqLock and index masking for updates to workers array. Locked
579     * when SG_UNIT is set. Unlocking clears bit by adding
580 dl 1.91 * SG_UNIT. Staleness of read-only operations can be checked by
581     * comparing scanGuard to value before the reads. The low 16 bits
582     * (i.e, anding with SMASK) hold (the smallest power of two
583     * covering all worker indices, minus one, and is used to avoid
584     * dealing with large numbers of null slots when the workers array
585     * is overallocated.
586 dl 1.85 */
587 dl 1.91 volatile int scanGuard;
588    
589     private static final int SG_UNIT = 1 << 16;
590 dl 1.85
591     /**
592 dl 1.91 * The wakeup interval (in nanoseconds) for a worker waiting for a
593     * task when the pool is quiescent to instead try to shrink the
594     * number of workers. The exact value does not matter too
595     * much. It must be short enough to release resources during
596     * sustained periods of idleness, but not so short that threads
597     * are continually re-created.
598 dl 1.56 */
599 dl 1.91 private static final long SHRINK_RATE =
600     4L * 1000L * 1000L * 1000L; // 4 seconds
601 dl 1.56
602     /**
603 dl 1.91 * Top-level loop for worker threads: On each step: if the
604     * previous step swept through all queues and found no tasks, or
605     * there are excess threads, then possibly blocks. Otherwise,
606     * scans for and, if found, executes a task. Returns when pool
607     * and/or worker terminate.
608 dl 1.61 *
609 dl 1.91 * @param w the worker
610 dl 1.58 */
611 dl 1.91 final void work(ForkJoinWorkerThread w) {
612     boolean swept = false; // true on empty scans
613     long c;
614     while (!w.terminate && (int)(c = ctl) >= 0) {
615     int a; // active count
616     if (!swept && (a = (int)(c >> AC_SHIFT)) <= 0)
617     swept = scan(w, a);
618     else if (tryAwaitWork(w, c))
619     swept = false;
620 dl 1.61 }
621     }
622    
623 dl 1.91 // Signalling
624    
625 dl 1.61 /**
626 dl 1.91 * Wakes up or creates a worker.
627 dl 1.53 */
628 dl 1.91 final void signalWork() {
629     /*
630     * The while condition is true if: (there is are too few total
631     * workers OR there is at least one waiter) AND (there are too
632     * few active workers OR the pool is terminating). The value
633     * of e distinguishes the remaining cases: zero (no waiters)
634     * for create, negative if terminating (in which case do
635     * nothing), else release a waiter. The secondary checks for
636     * release (non-null array etc) can fail if the pool begins
637     * terminating after the test, and don't impose any added cost
638     * because JVMs must perform null and bounds checks anyway.
639     */
640     long c; int e, u;
641     while ((((e = (int)(c = ctl)) | (u = (int)(c >>> 32))) &
642     (INT_SIGN|SHORT_SIGN)) == (INT_SIGN|SHORT_SIGN) && e >= 0) {
643     if (e > 0) { // release a waiting worker
644     int i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
645     if ((ws = workers) == null ||
646     (i = ~e & SMASK) >= ws.length ||
647     (w = ws[i]) == null)
648     break;
649     long nc = (((long)(w.nextWait & E_MASK)) |
650     ((long)(u + UAC_UNIT) << 32));
651     if (w.eventCount == e &&
652     UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
653     w.eventCount = (e + EC_UNIT) & E_MASK;
654     if (w.parked)
655     UNSAFE.unpark(w);
656     break;
657     }
658     }
659     else if (UNSAFE.compareAndSwapLong
660     (this, ctlOffset, c,
661     (long)(((u + UTC_UNIT) & UTC_MASK) |
662     ((u + UAC_UNIT) & UAC_MASK)) << 32)) {
663     addWorker();
664     break;
665     }
666     }
667 dl 1.53 }
668    
669     /**
670 dl 1.91 * Variant of signalWork to help release waiters on rescans.
671     * Tries once to release a waiter if active count < 0.
672     *
673     * @return false if failed due to contention, else true
674 dl 1.53 */
675 dl 1.91 private boolean tryReleaseWaiter() {
676     long c; int e, i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
677     if ((e = (int)(c = ctl)) > 0 &&
678     (int)(c >> AC_SHIFT) < 0 &&
679     (ws = workers) != null &&
680     (i = ~e & SMASK) < ws.length &&
681     (w = ws[i]) != null) {
682     long nc = ((long)(w.nextWait & E_MASK) |
683     ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
684     if (w.eventCount != e ||
685     !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
686 dl 1.53 return false;
687 dl 1.91 w.eventCount = (e + EC_UNIT) & E_MASK;
688     if (w.parked)
689     UNSAFE.unpark(w);
690 dl 1.53 }
691 dl 1.91 return true;
692 dl 1.53 }
693    
694 dl 1.91 // Scanning for tasks
695 dl 1.53
696     /**
697 dl 1.91 * Scans for and, if found, executes one task. Scans start at a
698     * random index of workers array, and randomly select the first
699     * (2*#workers)-1 probes, and then, if all empty, resort to 2
700     * circular sweeps, which is necessary to check quiescence. and
701     * taking a submission only if no stealable tasks were found. The
702     * steal code inside the loop is a specialized form of
703     * ForkJoinWorkerThread.deqTask, followed bookkeeping to support
704     * helpJoinTask and signal propagation. The code for submission
705     * queues is almost identical. On each steal, the worker completes
706     * not only the task, but also all local tasks that this task may
707     * have generated. On detecting staleness or contention when
708     * trying to take a task, this method returns without finishing
709     * sweep, which allows global state rechecks before retry.
710     *
711     * @param w the worker
712     * @param a the number of active workers
713     * @return true if swept all queues without finding a task
714 dl 1.53 */
715 dl 1.91 private boolean scan(ForkJoinWorkerThread w, int a) {
716     int g = scanGuard; // mask 0 avoids useless scans if only one active
717 dl 1.96 int m = (parallelism == 1 - a && blockedCount == 0) ? 0 : g & SMASK;
718 dl 1.91 ForkJoinWorkerThread[] ws = workers;
719     if (ws == null || ws.length <= m) // staleness check
720     return false;
721     for (int r = w.seed, k = r, j = -(m + m); j <= m + m; ++j) {
722     ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
723     ForkJoinWorkerThread v = ws[k & m];
724     if (v != null && (b = v.queueBase) != v.queueTop &&
725     (q = v.queue) != null && (i = (q.length - 1) & b) >= 0) {
726     long u = (i << ASHIFT) + ABASE;
727     if ((t = q[i]) != null && v.queueBase == b &&
728     UNSAFE.compareAndSwapObject(q, u, t, null)) {
729     int d = (v.queueBase = b + 1) - v.queueTop;
730     v.stealHint = w.poolIndex;
731     if (d != 0)
732     signalWork(); // propagate if nonempty
733     w.execTask(t);
734     }
735     r ^= r << 13; r ^= r >>> 17; w.seed = r ^ (r << 5);
736     return false; // store next seed
737     }
738     else if (j < 0) { // xorshift
739     r ^= r << 13; r ^= r >>> 17; k = r ^= r << 5;
740     }
741     else
742     ++k;
743     }
744     if (scanGuard != g) // staleness check
745     return false;
746     else { // try to take submission
747     ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
748     if ((b = queueBase) != queueTop &&
749     (q = submissionQueue) != null &&
750     (i = (q.length - 1) & b) >= 0) {
751     long u = (i << ASHIFT) + ABASE;
752     if ((t = q[i]) != null && queueBase == b &&
753     UNSAFE.compareAndSwapObject(q, u, t, null)) {
754     queueBase = b + 1;
755     w.execTask(t);
756     }
757     return false;
758     }
759     return true; // all queues empty
760 dl 1.53 }
761     }
762    
763     /**
764 dl 1.93 * Tries to enqueue worker w in wait queue and await change in
765     * worker's eventCount. If the pool is quiescent, possibly
766     * terminates worker upon exit. Otherwise, before blocking,
767     * rescans queues to avoid missed signals. Upon finding work,
768     * releases at least one worker (which may be the current
769     * worker). Rescans restart upon detected staleness or failure to
770 dl 1.95 * release due to contention. Note the unusual conventions about
771     * Thread.interrupt here and elsewhere: Because interrupts are
772     * used solely to alert threads to check termination, which is
773     * checked here anyway, we clear status (using Thread.interrupted)
774     * before any call to park, so that park does not immediately
775     * return due to status being set via some other unrelated call to
776     * interrupt in user code.
777 dl 1.91 *
778     * @param w the calling worker
779     * @param c the ctl value on entry
780     * @return true if waited or another thread was released upon enq
781 dl 1.53 */
782 dl 1.91 private boolean tryAwaitWork(ForkJoinWorkerThread w, long c) {
783     int v = w.eventCount;
784 dl 1.93 w.nextWait = (int)c; // w's successor record
785 dl 1.91 long nc = (long)(v & E_MASK) | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
786     if (ctl != c || !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
787 dl 1.93 long d = ctl; // return true if lost to a deq, to force scan
788 dl 1.91 return (int)d != (int)c && ((d - c) & AC_MASK) >= 0L;
789     }
790 dl 1.93 for (int sc = w.stealCount; sc != 0;) { // accumulate stealCount
791     long s = stealCount;
792     if (UNSAFE.compareAndSwapLong(this, stealCountOffset, s, s + sc))
793     sc = w.stealCount = 0;
794     else if (w.eventCount != v)
795     return true; // update next time
796     }
797     if (parallelism + (int)(nc >> AC_SHIFT) == 0 &&
798 dl 1.92 blockedCount == 0 && quiescerCount == 0)
799 dl 1.93 idleAwaitWork(w, nc, c, v); // quiescent
800     for (boolean rescanned = false;;) {
801 dl 1.91 if (w.eventCount != v)
802     return true;
803 dl 1.93 if (!rescanned) {
804 dl 1.91 int g = scanGuard, m = g & SMASK;
805     ForkJoinWorkerThread[] ws = workers;
806     if (ws != null && m < ws.length) {
807     rescanned = true;
808     for (int i = 0; i <= m; ++i) {
809     ForkJoinWorkerThread u = ws[i];
810     if (u != null) {
811     if (u.queueBase != u.queueTop &&
812     !tryReleaseWaiter())
813     rescanned = false; // contended
814     if (w.eventCount != v)
815     return true;
816     }
817     }
818     }
819     if (scanGuard != g || // stale
820     (queueBase != queueTop && !tryReleaseWaiter()))
821     rescanned = false;
822     if (!rescanned)
823     Thread.yield(); // reduce contention
824     else
825     Thread.interrupted(); // clear before park
826     }
827     else {
828     w.parked = true; // must recheck
829     if (w.eventCount != v) {
830     w.parked = false;
831     return true;
832     }
833     LockSupport.park(this);
834     rescanned = w.parked = false;
835     }
836 dl 1.53 }
837     }
838    
839     /**
840 dl 1.93 * If inactivating worker w has caused pool to become
841     * quiescent, check for pool termination, and wait for event
842     * for up to SHRINK_RATE nanosecs (rescans are unnecessary in
843     * this case because quiescence reflects consensus about lack
844     * of work). On timeout, if ctl has not changed, terminate the
845     * worker. Upon its termination (see deregisterWorker), it may
846     * wake up another worker to possibly repeat this process.
847 dl 1.91 *
848     * @param w the calling worker
849 dl 1.93 * @param currentCtl the ctl value after enqueuing w
850     * @param prevCtl the ctl value if w terminated
851     * @param v the eventCount w awaits change
852     */
853     private void idleAwaitWork(ForkJoinWorkerThread w, long currentCtl,
854     long prevCtl, int v) {
855     if (w.eventCount == v) {
856     if (shutdown)
857     tryTerminate(false);
858     ForkJoinTask.helpExpungeStaleExceptions(); // help clean weak refs
859     while (ctl == currentCtl) {
860     long startTime = System.nanoTime();
861 dl 1.91 w.parked = true;
862 dl 1.93 if (w.eventCount == v) // must recheck
863 dl 1.91 LockSupport.parkNanos(this, SHRINK_RATE);
864     w.parked = false;
865 dl 1.93 if (w.eventCount != v)
866     break;
867 dl 1.99 else if (System.nanoTime() - startTime <
868     SHRINK_RATE - (SHRINK_RATE / 10)) // timing slop
869 dl 1.93 Thread.interrupted(); // spurious wakeup
870     else if (UNSAFE.compareAndSwapLong(this, ctlOffset,
871     currentCtl, prevCtl)) {
872     w.terminate = true; // restore previous
873     w.eventCount = ((int)currentCtl + EC_UNIT) & E_MASK;
874     break;
875 dl 1.91 }
876     }
877     }
878 dl 1.53 }
879    
880 dl 1.91 // Submissions
881 dl 1.53
882     /**
883 dl 1.91 * Enqueues the given task in the submissionQueue. Same idea as
884     * ForkJoinWorkerThread.pushTask except for use of submissionLock.
885     *
886     * @param t the task
887 dl 1.53 */
888 dl 1.91 private void addSubmission(ForkJoinTask<?> t) {
889     final ReentrantLock lock = this.submissionLock;
890     lock.lock();
891     try {
892     ForkJoinTask<?>[] q; int s, m;
893     if ((q = submissionQueue) != null) { // ignore if queue removed
894     long u = (((s = queueTop) & (m = q.length-1)) << ASHIFT)+ABASE;
895     UNSAFE.putOrderedObject(q, u, t);
896     queueTop = s + 1;
897     if (s - queueBase == m)
898     growSubmissionQueue();
899 dl 1.66 }
900 dl 1.91 } finally {
901     lock.unlock();
902 dl 1.53 }
903 dl 1.91 signalWork();
904 dl 1.53 }
905    
906 dl 1.91 // (pollSubmission is defined below with exported methods)
907    
908 dl 1.53 /**
909 dl 1.91 * Creates or doubles submissionQueue array.
910 dl 1.95 * Basically identical to ForkJoinWorkerThread version.
911 dl 1.53 */
912 dl 1.91 private void growSubmissionQueue() {
913     ForkJoinTask<?>[] oldQ = submissionQueue;
914     int size = oldQ != null ? oldQ.length << 1 : INITIAL_QUEUE_CAPACITY;
915     if (size > MAXIMUM_QUEUE_CAPACITY)
916     throw new RejectedExecutionException("Queue capacity exceeded");
917     if (size < INITIAL_QUEUE_CAPACITY)
918     size = INITIAL_QUEUE_CAPACITY;
919     ForkJoinTask<?>[] q = submissionQueue = new ForkJoinTask<?>[size];
920     int mask = size - 1;
921     int top = queueTop;
922     int oldMask;
923     if (oldQ != null && (oldMask = oldQ.length - 1) >= 0) {
924     for (int b = queueBase; b != top; ++b) {
925     long u = ((b & oldMask) << ASHIFT) + ABASE;
926     Object x = UNSAFE.getObjectVolatile(oldQ, u);
927     if (x != null && UNSAFE.compareAndSwapObject(oldQ, u, x, null))
928     UNSAFE.putObjectVolatile
929     (q, ((b & mask) << ASHIFT) + ABASE, x);
930 dl 1.64 }
931     }
932     }
933    
934 dl 1.91 // Blocking support
935    
936 dl 1.64 /**
937 dl 1.91 * Tries to increment blockedCount, decrement active count
938     * (sometimes implicitly) and possibly release or create a
939     * compensating worker in preparation for blocking. Fails
940     * on contention or termination.
941     *
942     * @return true if the caller can block, else should recheck and retry
943     */
944     private boolean tryPreBlock() {
945     int b = blockedCount;
946     if (UNSAFE.compareAndSwapInt(this, blockedCountOffset, b, b + 1)) {
947     int pc = parallelism;
948     do {
949     ForkJoinWorkerThread[] ws; ForkJoinWorkerThread w;
950     int e, ac, tc, rc, i;
951     long c = ctl;
952     int u = (int)(c >>> 32);
953     if ((e = (int)c) < 0) {
954     // skip -- terminating
955     }
956     else if ((ac = (u >> UAC_SHIFT)) <= 0 && e != 0 &&
957     (ws = workers) != null &&
958     (i = ~e & SMASK) < ws.length &&
959     (w = ws[i]) != null) {
960     long nc = ((long)(w.nextWait & E_MASK) |
961     (c & (AC_MASK|TC_MASK)));
962     if (w.eventCount == e &&
963     UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
964     w.eventCount = (e + EC_UNIT) & E_MASK;
965     if (w.parked)
966     UNSAFE.unpark(w);
967     return true; // release an idle worker
968     }
969     }
970     else if ((tc = (short)(u >>> UTC_SHIFT)) >= 0 && ac + pc > 1) {
971     long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
972     if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
973     return true; // no compensation needed
974     }
975     else if (tc + pc < MAX_ID) {
976     long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
977     if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
978     addWorker();
979     return true; // create a replacement
980     }
981 dl 1.61 }
982 dl 1.91 // try to back out on any failure and let caller retry
983     } while (!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
984     b = blockedCount, b - 1));
985 dl 1.53 }
986 dl 1.91 return false;
987 dl 1.64 }
988    
989 dl 1.91 /**
990     * Decrements blockedCount and increments active count
991     */
992     private void postBlock() {
993     long c;
994     do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset, // no mask
995     c = ctl, c + AC_UNIT));
996     int b;
997     do {} while(!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
998     b = blockedCount, b - 1));
999     }
1000 dl 1.61
1001     /**
1002 dl 1.91 * Possibly blocks waiting for the given task to complete, or
1003     * cancels the task if terminating. Fails to wait if contended.
1004     *
1005     * @param joinMe the task
1006 dl 1.61 */
1007 dl 1.91 final void tryAwaitJoin(ForkJoinTask<?> joinMe) {
1008     int s;
1009     Thread.interrupted(); // clear interrupts before checking termination
1010     if (joinMe.status >= 0) {
1011     if (tryPreBlock()) {
1012     joinMe.tryAwaitDone(0L);
1013     postBlock();
1014     }
1015 dl 1.95 else if ((ctl & STOP_BIT) != 0L)
1016 dl 1.91 joinMe.cancelIgnoringExceptions();
1017     }
1018 dl 1.61 }
1019    
1020     /**
1021 dl 1.91 * Possibly blocks the given worker waiting for joinMe to
1022     * complete or timeout
1023     *
1024     * @param joinMe the task
1025     * @param millis the wait time for underlying Object.wait
1026 dl 1.61 */
1027 dl 1.91 final void timedAwaitJoin(ForkJoinTask<?> joinMe, long nanos) {
1028     while (joinMe.status >= 0) {
1029     Thread.interrupted();
1030     if ((ctl & STOP_BIT) != 0L) {
1031     joinMe.cancelIgnoringExceptions();
1032     break;
1033     }
1034     if (tryPreBlock()) {
1035     long last = System.nanoTime();
1036     while (joinMe.status >= 0) {
1037     long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
1038     if (millis <= 0)
1039     break;
1040     joinMe.tryAwaitDone(millis);
1041     if (joinMe.status < 0)
1042     break;
1043     if ((ctl & STOP_BIT) != 0L) {
1044     joinMe.cancelIgnoringExceptions();
1045     break;
1046     }
1047     long now = System.nanoTime();
1048     nanos -= now - last;
1049     last = now;
1050     }
1051     postBlock();
1052     break;
1053     }
1054 dl 1.64 }
1055     }
1056    
1057     /**
1058 dl 1.91 * If necessary, compensates for blocker, and blocks
1059 dl 1.64 */
1060 dl 1.91 private void awaitBlocker(ManagedBlocker blocker)
1061     throws InterruptedException {
1062     while (!blocker.isReleasable()) {
1063     if (tryPreBlock()) {
1064 dl 1.66 try {
1065 dl 1.91 do {} while (!blocker.isReleasable() && !blocker.block());
1066     } finally {
1067     postBlock();
1068 dl 1.66 }
1069 dl 1.91 break;
1070 dl 1.64 }
1071     }
1072     }
1073    
1074 dl 1.91 // Creating, registering and deregistring workers
1075    
1076 dl 1.64 /**
1077 dl 1.91 * Tries to create and start a worker; minimally rolls back counts
1078     * on failure.
1079 dl 1.64 */
1080 dl 1.91 private void addWorker() {
1081     Throwable ex = null;
1082     ForkJoinWorkerThread t = null;
1083     try {
1084     t = factory.newThread(this);
1085     } catch (Throwable e) {
1086     ex = e;
1087     }
1088     if (t == null) { // null or exceptional factory return
1089     long c; // adjust counts
1090     do {} while (!UNSAFE.compareAndSwapLong
1091     (this, ctlOffset, c = ctl,
1092     (((c - AC_UNIT) & AC_MASK) |
1093     ((c - TC_UNIT) & TC_MASK) |
1094     (c & ~(AC_MASK|TC_MASK)))));
1095     // Propagate exception if originating from an external caller
1096     if (!tryTerminate(false) && ex != null &&
1097     !(Thread.currentThread() instanceof ForkJoinWorkerThread))
1098     UNSAFE.throwException(ex);
1099     }
1100     else
1101     t.start();
1102 dl 1.61 }
1103    
1104 dl 1.53 /**
1105 dl 1.91 * Callback from ForkJoinWorkerThread constructor to assign a
1106     * public name
1107 dl 1.53 */
1108 dl 1.91 final String nextWorkerName() {
1109     for (int n;;) {
1110     if (UNSAFE.compareAndSwapInt(this, nextWorkerNumberOffset,
1111     n = nextWorkerNumber, ++n))
1112     return workerNamePrefix + n;
1113 dl 1.53 }
1114     }
1115    
1116     /**
1117 dl 1.91 * Callback from ForkJoinWorkerThread constructor to
1118     * determine its poolIndex and record in workers array.
1119 dl 1.56 *
1120 dl 1.91 * @param w the worker
1121     * @return the worker's pool index
1122 dl 1.53 */
1123 dl 1.91 final int registerWorker(ForkJoinWorkerThread w) {
1124     /*
1125     * In the typical case, a new worker acquires the lock, uses
1126     * next available index and returns quickly. Since we should
1127     * not block callers (ultimately from signalWork or
1128     * tryPreBlock) waiting for the lock needed to do this, we
1129     * instead help release other workers while waiting for the
1130     * lock.
1131     */
1132     for (int g;;) {
1133     ForkJoinWorkerThread[] ws;
1134     if (((g = scanGuard) & SG_UNIT) == 0 &&
1135     UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1136     g, g | SG_UNIT)) {
1137     int k = nextWorkerIndex;
1138     try {
1139     if ((ws = workers) != null) { // ignore on shutdown
1140     int n = ws.length;
1141     if (k < 0 || k >= n || ws[k] != null) {
1142     for (k = 0; k < n && ws[k] != null; ++k)
1143     ;
1144     if (k == n)
1145     ws = workers = Arrays.copyOf(ws, n << 1);
1146     }
1147     ws[k] = w;
1148     nextWorkerIndex = k + 1;
1149     int m = g & SMASK;
1150 dl 1.98 g = k > m? ((m << 1) + 1) & SMASK : g + (SG_UNIT<<1);
1151 dl 1.91 }
1152     } finally {
1153     scanGuard = g;
1154     }
1155     return k;
1156 dl 1.82 }
1157 dl 1.91 else if ((ws = workers) != null) { // help release others
1158     for (ForkJoinWorkerThread u : ws) {
1159     if (u != null && u.queueBase != u.queueTop) {
1160     if (tryReleaseWaiter())
1161 dl 1.85 break;
1162 dl 1.83 }
1163     }
1164 dl 1.53 }
1165     }
1166     }
1167    
1168     /**
1169 dl 1.91 * Final callback from terminating worker. Removes record of
1170     * worker from array, and adjusts counts. If pool is shutting
1171     * down, tries to complete termination.
1172     *
1173     * @param w the worker
1174 dl 1.53 */
1175 dl 1.91 final void deregisterWorker(ForkJoinWorkerThread w, Throwable ex) {
1176     int idx = w.poolIndex;
1177     int sc = w.stealCount;
1178     int steps = 0;
1179     // Remove from array, adjust worker counts and collect steal count.
1180     // We can intermix failed removes or adjusts with steal updates
1181     do {
1182     long s, c;
1183     int g;
1184     if (steps == 0 && ((g = scanGuard) & SG_UNIT) == 0 &&
1185     UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1186     g, g |= SG_UNIT)) {
1187     ForkJoinWorkerThread[] ws = workers;
1188     if (ws != null && idx >= 0 &&
1189     idx < ws.length && ws[idx] == w)
1190     ws[idx] = null; // verify
1191     nextWorkerIndex = idx;
1192     scanGuard = g + SG_UNIT;
1193     steps = 1;
1194 dl 1.60 }
1195 dl 1.91 if (steps == 1 &&
1196     UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1197     (((c - AC_UNIT) & AC_MASK) |
1198     ((c - TC_UNIT) & TC_MASK) |
1199     (c & ~(AC_MASK|TC_MASK)))))
1200     steps = 2;
1201     if (sc != 0 &&
1202     UNSAFE.compareAndSwapLong(this, stealCountOffset,
1203     s = stealCount, s + sc))
1204     sc = 0;
1205     } while (steps != 2 || sc != 0);
1206     if (!tryTerminate(false)) {
1207     if (ex != null) // possibly replace if died abnormally
1208     signalWork();
1209     else
1210     tryReleaseWaiter();
1211 dl 1.53 }
1212 dl 1.59 }
1213 dl 1.54
1214 dl 1.91 // Shutdown and termination
1215    
1216 dl 1.54 /**
1217 dl 1.53 * Possibly initiates and/or completes termination.
1218     *
1219     * @param now if true, unconditionally terminate, else only
1220     * if shutdown and empty queue and no active workers
1221     * @return true if now terminating or terminated
1222 dl 1.1 */
1223 dl 1.53 private boolean tryTerminate(boolean now) {
1224 dl 1.91 long c;
1225     while (((c = ctl) & STOP_BIT) == 0) {
1226     if (!now) {
1227     if ((int)(c >> AC_SHIFT) != -parallelism)
1228     return false;
1229     if (!shutdown || blockedCount != 0 || quiescerCount != 0 ||
1230 dl 1.95 queueBase != queueTop) {
1231 dl 1.91 if (ctl == c) // staleness check
1232     return false;
1233     continue;
1234     }
1235     }
1236     if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, c | STOP_BIT))
1237     startTerminating();
1238     }
1239 dl 1.95 if ((short)(c >>> TC_SHIFT) == -parallelism) { // signal when 0 workers
1240     final ReentrantLock lock = this.submissionLock;
1241     lock.lock();
1242     try {
1243     termination.signalAll();
1244     } finally {
1245     lock.unlock();
1246     }
1247 dl 1.53 }
1248 dl 1.4 return true;
1249 dl 1.1 }
1250    
1251     /**
1252 dl 1.91 * Runs up to three passes through workers: (0) Setting
1253 dl 1.95 * termination status for each worker, followed by wakeups up to
1254     * queued workers; (1) helping cancel tasks; (2) interrupting
1255 dl 1.91 * lagging threads (likely in external tasks, but possibly also
1256     * blocked in joins). Each pass repeats previous steps because of
1257     * potential lagging thread creation.
1258 dl 1.53 */
1259     private void startTerminating() {
1260 dl 1.61 cancelSubmissions();
1261 dl 1.91 for (int pass = 0; pass < 3; ++pass) {
1262     ForkJoinWorkerThread[] ws = workers;
1263     if (ws != null) {
1264     for (ForkJoinWorkerThread w : ws) {
1265     if (w != null) {
1266     w.terminate = true;
1267     if (pass > 0) {
1268     w.cancelTasks();
1269     if (pass > 1 && !w.isInterrupted()) {
1270     try {
1271     w.interrupt();
1272     } catch (SecurityException ignore) {
1273     }
1274 dl 1.61 }
1275     }
1276     }
1277     }
1278 dl 1.91 terminateWaiters();
1279 dl 1.61 }
1280 dl 1.56 }
1281     }
1282    
1283     /**
1284 dl 1.91 * Polls and cancels all submissions. Called only during termination.
1285 dl 1.56 */
1286     private void cancelSubmissions() {
1287 dl 1.91 while (queueBase != queueTop) {
1288     ForkJoinTask<?> task = pollSubmission();
1289     if (task != null) {
1290     try {
1291     task.cancel(false);
1292     } catch (Throwable ignore) {
1293     }
1294     }
1295     }
1296     }
1297    
1298     /**
1299     * Tries to set the termination status of waiting workers, and
1300 dl 1.95 * then wakes them up (after which they will terminate).
1301 dl 1.91 */
1302     private void terminateWaiters() {
1303     ForkJoinWorkerThread[] ws = workers;
1304     if (ws != null) {
1305     ForkJoinWorkerThread w; long c; int i, e;
1306     int n = ws.length;
1307     while ((i = ~(e = (int)(c = ctl)) & SMASK) < n &&
1308     (w = ws[i]) != null && w.eventCount == (e & E_MASK)) {
1309     if (UNSAFE.compareAndSwapLong(this, ctlOffset, c,
1310     (long)(w.nextWait & E_MASK) |
1311     ((c + AC_UNIT) & AC_MASK) |
1312     (c & (TC_MASK|STOP_BIT)))) {
1313     w.terminate = true;
1314     w.eventCount = e + EC_UNIT;
1315     if (w.parked)
1316     UNSAFE.unpark(w);
1317     }
1318 dl 1.53 }
1319     }
1320 dl 1.56 }
1321    
1322 dl 1.91 // misc ForkJoinWorkerThread support
1323 dl 1.53
1324     /**
1325 dl 1.91 * Increment or decrement quiescerCount. Needed only to prevent
1326     * triggering shutdown if a worker is transiently inactive while
1327     * checking quiescence.
1328     *
1329     * @param delta 1 for increment, -1 for decrement
1330 dl 1.1 */
1331 dl 1.91 final void addQuiescerCount(int delta) {
1332     int c;
1333     do {} while(!UNSAFE.compareAndSwapInt(this, quiescerCountOffset,
1334     c = quiescerCount, c + delta));
1335 dl 1.1 }
1336    
1337     /**
1338 dl 1.91 * Directly increment or decrement active count without
1339     * queuing. This method is used to transiently assert inactivation
1340     * while checking quiescence.
1341 dl 1.61 *
1342 dl 1.91 * @param delta 1 for increment, -1 for decrement
1343 dl 1.1 */
1344 dl 1.91 final void addActiveCount(int delta) {
1345     long d = delta < 0 ? -AC_UNIT : AC_UNIT;
1346     long c;
1347     do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1348     ((c + d) & AC_MASK) |
1349     (c & ~AC_MASK)));
1350 dl 1.1 }
1351    
1352     /**
1353 dl 1.53 * Returns the approximate (non-atomic) number of idle threads per
1354     * active thread.
1355     */
1356     final int idlePerActive() {
1357 dl 1.91 // Approximate at powers of two for small values, saturate past 4
1358     int p = parallelism;
1359     int a = p + (int)(ctl >> AC_SHIFT);
1360     return (a > (p >>>= 1) ? 0 :
1361     a > (p >>>= 1) ? 1 :
1362     a > (p >>>= 1) ? 2 :
1363     a > (p >>>= 1) ? 4 :
1364     8);
1365 dl 1.53 }
1366    
1367 dl 1.91 // Exported methods
1368 dl 1.1
1369     // Constructors
1370    
1371     /**
1372 dl 1.42 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1373 dl 1.57 * java.lang.Runtime#availableProcessors}, using the {@linkplain
1374     * #defaultForkJoinWorkerThreadFactory default thread factory},
1375     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1376 jsr166 1.17 *
1377 dl 1.1 * @throws SecurityException if a security manager exists and
1378     * the caller is not permitted to modify threads
1379     * because it does not hold {@link
1380 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1381 dl 1.1 */
1382     public ForkJoinPool() {
1383     this(Runtime.getRuntime().availableProcessors(),
1384 dl 1.57 defaultForkJoinWorkerThreadFactory, null, false);
1385 dl 1.1 }
1386    
1387     /**
1388 dl 1.42 * Creates a {@code ForkJoinPool} with the indicated parallelism
1389 dl 1.57 * level, the {@linkplain
1390     * #defaultForkJoinWorkerThreadFactory default thread factory},
1391     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1392 jsr166 1.17 *
1393 dl 1.42 * @param parallelism the parallelism level
1394 dl 1.1 * @throws IllegalArgumentException if parallelism less than or
1395 jsr166 1.47 * equal to zero, or greater than implementation limit
1396 dl 1.1 * @throws SecurityException if a security manager exists and
1397     * the caller is not permitted to modify threads
1398     * because it does not hold {@link
1399 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1400 dl 1.1 */
1401     public ForkJoinPool(int parallelism) {
1402 dl 1.57 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1403 dl 1.1 }
1404    
1405     /**
1406 dl 1.57 * Creates a {@code ForkJoinPool} with the given parameters.
1407 jsr166 1.17 *
1408 dl 1.57 * @param parallelism the parallelism level. For default value,
1409     * use {@link java.lang.Runtime#availableProcessors}.
1410     * @param factory the factory for creating new threads. For default value,
1411     * use {@link #defaultForkJoinWorkerThreadFactory}.
1412 dl 1.59 * @param handler the handler for internal worker threads that
1413     * terminate due to unrecoverable errors encountered while executing
1414 jsr166 1.73 * tasks. For default value, use {@code null}.
1415 dl 1.59 * @param asyncMode if true,
1416 dl 1.57 * establishes local first-in-first-out scheduling mode for forked
1417     * tasks that are never joined. This mode may be more appropriate
1418     * than default locally stack-based mode in applications in which
1419     * worker threads only process event-style asynchronous tasks.
1420 jsr166 1.73 * For default value, use {@code false}.
1421 dl 1.1 * @throws IllegalArgumentException if parallelism less than or
1422 jsr166 1.47 * equal to zero, or greater than implementation limit
1423 jsr166 1.48 * @throws NullPointerException if the factory is null
1424 dl 1.1 * @throws SecurityException if a security manager exists and
1425     * the caller is not permitted to modify threads
1426     * because it does not hold {@link
1427 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1428 dl 1.1 */
1429 dl 1.59 public ForkJoinPool(int parallelism,
1430 dl 1.57 ForkJoinWorkerThreadFactory factory,
1431     Thread.UncaughtExceptionHandler handler,
1432     boolean asyncMode) {
1433 dl 1.53 checkPermission();
1434     if (factory == null)
1435     throw new NullPointerException();
1436 dl 1.91 if (parallelism <= 0 || parallelism > MAX_ID)
1437 dl 1.1 throw new IllegalArgumentException();
1438 dl 1.53 this.parallelism = parallelism;
1439 dl 1.1 this.factory = factory;
1440 dl 1.57 this.ueh = handler;
1441     this.locallyFifo = asyncMode;
1442 dl 1.91 long np = (long)(-parallelism); // offset ctl counts
1443     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
1444     this.submissionQueue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
1445     // initialize workers array with room for 2*parallelism if possible
1446     int n = parallelism << 1;
1447     if (n >= MAX_ID)
1448     n = MAX_ID;
1449     else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
1450     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8;
1451     }
1452     workers = new ForkJoinWorkerThread[n + 1];
1453     this.submissionLock = new ReentrantLock();
1454     this.termination = submissionLock.newCondition();
1455     StringBuilder sb = new StringBuilder("ForkJoinPool-");
1456     sb.append(poolNumberGenerator.incrementAndGet());
1457     sb.append("-worker-");
1458     this.workerNamePrefix = sb.toString();
1459 dl 1.1 }
1460    
1461     // Execution methods
1462    
1463     /**
1464 jsr166 1.17 * Performs the given task, returning its result upon completion.
1465 dl 1.91 * If the computation encounters an unchecked Exception or Error,
1466     * it is rethrown as the outcome of this invocation. Rethrown
1467     * exceptions behave in the same way as regular exceptions, but,
1468     * when possible, contain stack traces (as displayed for example
1469     * using {@code ex.printStackTrace()}) of both the current thread
1470     * as well as the thread actually encountering the exception;
1471     * minimally only the latter.
1472 jsr166 1.17 *
1473 dl 1.1 * @param task the task
1474     * @return the task's result
1475 jsr166 1.48 * @throws NullPointerException if the task is null
1476     * @throws RejectedExecutionException if the task cannot be
1477     * scheduled for execution
1478 dl 1.1 */
1479     public <T> T invoke(ForkJoinTask<T> task) {
1480 dl 1.91 Thread t = Thread.currentThread();
1481 dl 1.82 if (task == null)
1482     throw new NullPointerException();
1483 dl 1.91 if (shutdown)
1484 dl 1.82 throw new RejectedExecutionException();
1485     if ((t instanceof ForkJoinWorkerThread) &&
1486     ((ForkJoinWorkerThread)t).pool == this)
1487     return task.invoke(); // bypass submit if in same pool
1488     else {
1489 dl 1.91 addSubmission(task);
1490 dl 1.82 return task.join();
1491     }
1492     }
1493    
1494     /**
1495     * Unless terminating, forks task if within an ongoing FJ
1496     * computation in the current pool, else submits as external task.
1497     */
1498     private <T> void forkOrSubmit(ForkJoinTask<T> task) {
1499 dl 1.91 ForkJoinWorkerThread w;
1500     Thread t = Thread.currentThread();
1501     if (shutdown)
1502 dl 1.82 throw new RejectedExecutionException();
1503     if ((t instanceof ForkJoinWorkerThread) &&
1504 dl 1.91 (w = (ForkJoinWorkerThread)t).pool == this)
1505     w.pushTask(task);
1506 dl 1.82 else
1507 dl 1.91 addSubmission(task);
1508 dl 1.1 }
1509    
1510     /**
1511     * Arranges for (asynchronous) execution of the given task.
1512 jsr166 1.17 *
1513 dl 1.1 * @param task the task
1514 jsr166 1.48 * @throws NullPointerException if the task is null
1515     * @throws RejectedExecutionException if the task cannot be
1516     * scheduled for execution
1517 dl 1.1 */
1518 dl 1.37 public void execute(ForkJoinTask<?> task) {
1519 dl 1.82 if (task == null)
1520     throw new NullPointerException();
1521     forkOrSubmit(task);
1522 dl 1.1 }
1523    
1524     // AbstractExecutorService methods
1525    
1526 jsr166 1.48 /**
1527     * @throws NullPointerException if the task is null
1528     * @throws RejectedExecutionException if the task cannot be
1529     * scheduled for execution
1530     */
1531 dl 1.1 public void execute(Runnable task) {
1532 dl 1.82 if (task == null)
1533     throw new NullPointerException();
1534 dl 1.23 ForkJoinTask<?> job;
1535 jsr166 1.26 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1536     job = (ForkJoinTask<?>) task;
1537 dl 1.23 else
1538 dl 1.33 job = ForkJoinTask.adapt(task, null);
1539 dl 1.82 forkOrSubmit(job);
1540 dl 1.1 }
1541    
1542 jsr166 1.48 /**
1543 dl 1.57 * Submits a ForkJoinTask for execution.
1544     *
1545     * @param task the task to submit
1546     * @return the task
1547     * @throws NullPointerException if the task is null
1548     * @throws RejectedExecutionException if the task cannot be
1549     * scheduled for execution
1550     */
1551     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1552 dl 1.82 if (task == null)
1553     throw new NullPointerException();
1554     forkOrSubmit(task);
1555 dl 1.57 return task;
1556     }
1557    
1558     /**
1559 jsr166 1.48 * @throws NullPointerException if the task is null
1560     * @throws RejectedExecutionException if the task cannot be
1561     * scheduled for execution
1562     */
1563 dl 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
1564 dl 1.82 if (task == null)
1565     throw new NullPointerException();
1566 dl 1.33 ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1567 dl 1.82 forkOrSubmit(job);
1568 dl 1.1 return job;
1569     }
1570    
1571 jsr166 1.48 /**
1572     * @throws NullPointerException if the task is null
1573     * @throws RejectedExecutionException if the task cannot be
1574     * scheduled for execution
1575     */
1576 dl 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
1577 dl 1.82 if (task == null)
1578     throw new NullPointerException();
1579 dl 1.33 ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1580 dl 1.82 forkOrSubmit(job);
1581 dl 1.1 return job;
1582     }
1583    
1584 jsr166 1.48 /**
1585     * @throws NullPointerException if the task is null
1586     * @throws RejectedExecutionException if the task cannot be
1587     * scheduled for execution
1588     */
1589 dl 1.1 public ForkJoinTask<?> submit(Runnable task) {
1590 dl 1.82 if (task == null)
1591     throw new NullPointerException();
1592 dl 1.23 ForkJoinTask<?> job;
1593 jsr166 1.26 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1594     job = (ForkJoinTask<?>) task;
1595 dl 1.23 else
1596 dl 1.33 job = ForkJoinTask.adapt(task, null);
1597 dl 1.82 forkOrSubmit(job);
1598 dl 1.1 return job;
1599     }
1600    
1601     /**
1602 jsr166 1.48 * @throws NullPointerException {@inheritDoc}
1603     * @throws RejectedExecutionException {@inheritDoc}
1604     */
1605 dl 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
1606 jsr166 1.20 ArrayList<ForkJoinTask<T>> forkJoinTasks =
1607 dl 1.1 new ArrayList<ForkJoinTask<T>>(tasks.size());
1608 jsr166 1.20 for (Callable<T> task : tasks)
1609 dl 1.33 forkJoinTasks.add(ForkJoinTask.adapt(task));
1610 jsr166 1.20 invoke(new InvokeAll<T>(forkJoinTasks));
1611    
1612     @SuppressWarnings({"unchecked", "rawtypes"})
1613 dl 1.54 List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1614 jsr166 1.20 return futures;
1615 dl 1.1 }
1616    
1617     static final class InvokeAll<T> extends RecursiveAction {
1618     final ArrayList<ForkJoinTask<T>> tasks;
1619     InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
1620     public void compute() {
1621 jsr166 1.17 try { invokeAll(tasks); }
1622     catch (Exception ignore) {}
1623 dl 1.1 }
1624 jsr166 1.18 private static final long serialVersionUID = -7914297376763021607L;
1625 dl 1.1 }
1626    
1627     /**
1628 jsr166 1.17 * Returns the factory used for constructing new workers.
1629 dl 1.1 *
1630     * @return the factory used for constructing new workers
1631     */
1632     public ForkJoinWorkerThreadFactory getFactory() {
1633     return factory;
1634     }
1635    
1636     /**
1637 dl 1.2 * Returns the handler for internal worker threads that terminate
1638     * due to unrecoverable errors encountered while executing tasks.
1639 jsr166 1.17 *
1640 jsr166 1.28 * @return the handler, or {@code null} if none
1641 dl 1.2 */
1642     public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1643 dl 1.53 return ueh;
1644 dl 1.2 }
1645    
1646     /**
1647 dl 1.42 * Returns the targeted parallelism level of this pool.
1648 dl 1.1 *
1649 dl 1.42 * @return the targeted parallelism level of this pool
1650 dl 1.1 */
1651     public int getParallelism() {
1652     return parallelism;
1653     }
1654    
1655     /**
1656     * Returns the number of worker threads that have started but not
1657 jsr166 1.76 * yet terminated. The result returned by this method may differ
1658 jsr166 1.29 * from {@link #getParallelism} when threads are created to
1659 dl 1.1 * maintain parallelism when others are cooperatively blocked.
1660     *
1661     * @return the number of worker threads
1662     */
1663     public int getPoolSize() {
1664 dl 1.91 return parallelism + (short)(ctl >>> TC_SHIFT);
1665 dl 1.1 }
1666    
1667     /**
1668 jsr166 1.28 * Returns {@code true} if this pool uses local first-in-first-out
1669 jsr166 1.16 * scheduling mode for forked tasks that are never joined.
1670 dl 1.6 *
1671 jsr166 1.28 * @return {@code true} if this pool uses async mode
1672 dl 1.6 */
1673     public boolean getAsyncMode() {
1674     return locallyFifo;
1675     }
1676    
1677     /**
1678 dl 1.2 * Returns an estimate of the number of worker threads that are
1679     * not blocked waiting to join tasks or for other managed
1680 dl 1.53 * synchronization. This method may overestimate the
1681     * number of running threads.
1682 dl 1.1 *
1683     * @return the number of worker threads
1684     */
1685     public int getRunningThreadCount() {
1686 dl 1.91 int r = parallelism + (int)(ctl >> AC_SHIFT);
1687     return r <= 0? 0 : r; // suppress momentarily negative values
1688 dl 1.1 }
1689    
1690     /**
1691 dl 1.2 * Returns an estimate of the number of threads that are currently
1692 dl 1.1 * stealing or executing tasks. This method may overestimate the
1693     * number of active threads.
1694 jsr166 1.17 *
1695 jsr166 1.16 * @return the number of active threads
1696 dl 1.1 */
1697     public int getActiveThreadCount() {
1698 dl 1.91 int r = parallelism + (int)(ctl >> AC_SHIFT) + blockedCount;
1699     return r <= 0? 0 : r; // suppress momentarily negative values
1700 dl 1.1 }
1701    
1702     /**
1703 jsr166 1.28 * Returns {@code true} if all worker threads are currently idle.
1704     * An idle worker is one that cannot obtain a task to execute
1705     * because none are available to steal from other threads, and
1706     * there are no pending submissions to the pool. This method is
1707     * conservative; it might not return {@code true} immediately upon
1708     * idleness of all threads, but will eventually become true if
1709     * threads remain inactive.
1710 jsr166 1.17 *
1711 jsr166 1.28 * @return {@code true} if all threads are currently idle
1712 dl 1.1 */
1713     public boolean isQuiescent() {
1714 dl 1.91 return parallelism + (int)(ctl >> AC_SHIFT) + blockedCount == 0;
1715 dl 1.1 }
1716    
1717     /**
1718     * Returns an estimate of the total number of tasks stolen from
1719     * one thread's work queue by another. The reported value
1720     * underestimates the actual total number of steals when the pool
1721     * is not quiescent. This value may be useful for monitoring and
1722 jsr166 1.17 * tuning fork/join programs: in general, steal counts should be
1723 dl 1.1 * high enough to keep threads busy, but low enough to avoid
1724     * overhead and contention across threads.
1725 jsr166 1.17 *
1726 jsr166 1.16 * @return the number of steals
1727 dl 1.1 */
1728     public long getStealCount() {
1729 dl 1.53 return stealCount;
1730 dl 1.1 }
1731    
1732     /**
1733 dl 1.2 * Returns an estimate of the total number of tasks currently held
1734     * in queues by worker threads (but not including tasks submitted
1735     * to the pool that have not begun executing). This value is only
1736     * an approximation, obtained by iterating across all threads in
1737     * the pool. This method may be useful for tuning task
1738     * granularities.
1739 jsr166 1.17 *
1740 jsr166 1.16 * @return the number of queued tasks
1741 dl 1.1 */
1742     public long getQueuedTaskCount() {
1743     long count = 0;
1744 dl 1.91 ForkJoinWorkerThread[] ws;
1745     if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1746     (ws = workers) != null) {
1747     for (ForkJoinWorkerThread w : ws)
1748     if (w != null)
1749     count -= w.queueBase - w.queueTop; // must read base first
1750     }
1751 dl 1.1 return count;
1752     }
1753    
1754     /**
1755 jsr166 1.40 * Returns an estimate of the number of tasks submitted to this
1756 dl 1.94 * pool that have not yet begun executing. This method may take
1757 dl 1.91 * time proportional to the number of submissions.
1758 jsr166 1.17 *
1759 jsr166 1.16 * @return the number of queued submissions
1760 dl 1.1 */
1761     public int getQueuedSubmissionCount() {
1762 dl 1.91 return -queueBase + queueTop;
1763 dl 1.1 }
1764    
1765     /**
1766 jsr166 1.28 * Returns {@code true} if there are any tasks submitted to this
1767     * pool that have not yet begun executing.
1768 jsr166 1.17 *
1769 jsr166 1.16 * @return {@code true} if there are any queued submissions
1770 dl 1.1 */
1771     public boolean hasQueuedSubmissions() {
1772 dl 1.91 return queueBase != queueTop;
1773 dl 1.1 }
1774    
1775     /**
1776     * Removes and returns the next unexecuted submission if one is
1777     * available. This method may be useful in extensions to this
1778     * class that re-assign work in systems with multiple pools.
1779 jsr166 1.17 *
1780 jsr166 1.28 * @return the next submission, or {@code null} if none
1781 dl 1.1 */
1782     protected ForkJoinTask<?> pollSubmission() {
1783 dl 1.91 ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
1784     while ((b = queueBase) != queueTop &&
1785     (q = submissionQueue) != null &&
1786     (i = (q.length - 1) & b) >= 0) {
1787     long u = (i << ASHIFT) + ABASE;
1788     if ((t = q[i]) != null &&
1789     queueBase == b &&
1790     UNSAFE.compareAndSwapObject(q, u, t, null)) {
1791     queueBase = b + 1;
1792     return t;
1793     }
1794     }
1795     return null;
1796 dl 1.1 }
1797    
1798     /**
1799 dl 1.6 * Removes all available unexecuted submitted and forked tasks
1800     * from scheduling queues and adds them to the given collection,
1801     * without altering their execution status. These may include
1802 jsr166 1.41 * artificially generated or wrapped tasks. This method is
1803     * designed to be invoked only when the pool is known to be
1804 dl 1.6 * quiescent. Invocations at other times may not remove all
1805     * tasks. A failure encountered while attempting to add elements
1806 jsr166 1.16 * to collection {@code c} may result in elements being in
1807 dl 1.6 * neither, either or both collections when the associated
1808     * exception is thrown. The behavior of this operation is
1809     * undefined if the specified collection is modified while the
1810     * operation is in progress.
1811 jsr166 1.17 *
1812 dl 1.6 * @param c the collection to transfer elements into
1813     * @return the number of elements transferred
1814     */
1815 dl 1.30 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1816 dl 1.91 int count = 0;
1817     while (queueBase != queueTop) {
1818     ForkJoinTask<?> t = pollSubmission();
1819     if (t != null) {
1820     c.add(t);
1821     ++count;
1822     }
1823     }
1824     ForkJoinWorkerThread[] ws;
1825     if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1826     (ws = workers) != null) {
1827     for (ForkJoinWorkerThread w : ws)
1828     if (w != null)
1829     count += w.drainTasksTo(c);
1830     }
1831 dl 1.57 return count;
1832     }
1833    
1834     /**
1835 dl 1.1 * Returns a string identifying this pool, as well as its state,
1836     * including indications of run state, parallelism level, and
1837     * worker and task counts.
1838     *
1839     * @return a string identifying this pool, as well as its state
1840     */
1841     public String toString() {
1842     long st = getStealCount();
1843     long qt = getQueuedTaskCount();
1844     long qs = getQueuedSubmissionCount();
1845 dl 1.53 int pc = parallelism;
1846 dl 1.91 long c = ctl;
1847     int tc = pc + (short)(c >>> TC_SHIFT);
1848     int rc = pc + (int)(c >> AC_SHIFT);
1849     if (rc < 0) // ignore transient negative
1850     rc = 0;
1851     int ac = rc + blockedCount;
1852     String level;
1853     if ((c & STOP_BIT) != 0)
1854     level = (tc == 0)? "Terminated" : "Terminating";
1855     else
1856     level = shutdown? "Shutting down" : "Running";
1857 dl 1.1 return super.toString() +
1858 dl 1.91 "[" + level +
1859 dl 1.53 ", parallelism = " + pc +
1860     ", size = " + tc +
1861     ", active = " + ac +
1862     ", running = " + rc +
1863 dl 1.1 ", steals = " + st +
1864     ", tasks = " + qt +
1865     ", submissions = " + qs +
1866     "]";
1867     }
1868    
1869     /**
1870     * Initiates an orderly shutdown in which previously submitted
1871     * tasks are executed, but no new tasks will be accepted.
1872     * Invocation has no additional effect if already shut down.
1873     * Tasks that are in the process of being submitted concurrently
1874     * during the course of this method may or may not be rejected.
1875 jsr166 1.17 *
1876 dl 1.1 * @throws SecurityException if a security manager exists and
1877     * the caller is not permitted to modify threads
1878     * because it does not hold {@link
1879 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1880 dl 1.1 */
1881     public void shutdown() {
1882     checkPermission();
1883 dl 1.91 shutdown = true;
1884 dl 1.53 tryTerminate(false);
1885 dl 1.1 }
1886    
1887     /**
1888 dl 1.42 * Attempts to cancel and/or stop all tasks, and reject all
1889     * subsequently submitted tasks. Tasks that are in the process of
1890     * being submitted or executed concurrently during the course of
1891     * this method may or may not be rejected. This method cancels
1892     * both existing and unexecuted tasks, in order to permit
1893     * termination in the presence of task dependencies. So the method
1894     * always returns an empty list (unlike the case for some other
1895     * Executors).
1896 jsr166 1.17 *
1897 dl 1.1 * @return an empty list
1898     * @throws SecurityException if a security manager exists and
1899     * the caller is not permitted to modify threads
1900     * because it does not hold {@link
1901 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
1902 dl 1.1 */
1903     public List<Runnable> shutdownNow() {
1904     checkPermission();
1905 dl 1.91 shutdown = true;
1906 dl 1.53 tryTerminate(true);
1907 dl 1.1 return Collections.emptyList();
1908     }
1909    
1910     /**
1911 jsr166 1.16 * Returns {@code true} if all tasks have completed following shut down.
1912 dl 1.1 *
1913 jsr166 1.16 * @return {@code true} if all tasks have completed following shut down
1914 dl 1.1 */
1915     public boolean isTerminated() {
1916 dl 1.91 long c = ctl;
1917     return ((c & STOP_BIT) != 0L &&
1918     (short)(c >>> TC_SHIFT) == -parallelism);
1919 dl 1.1 }
1920    
1921     /**
1922 jsr166 1.16 * Returns {@code true} if the process of termination has
1923 dl 1.42 * commenced but not yet completed. This method may be useful for
1924     * debugging. A return of {@code true} reported a sufficient
1925     * period after shutdown may indicate that submitted tasks have
1926 dl 1.88 * ignored or suppressed interruption, or are waiting for IO,
1927     * causing this executor not to properly terminate. (See the
1928     * advisory notes for class {@link ForkJoinTask} stating that
1929     * tasks should not normally entail blocking operations. But if
1930     * they do, they must abort them on interrupt.)
1931 dl 1.1 *
1932 dl 1.42 * @return {@code true} if terminating but not yet terminated
1933 dl 1.1 */
1934     public boolean isTerminating() {
1935 dl 1.91 long c = ctl;
1936     return ((c & STOP_BIT) != 0L &&
1937     (short)(c >>> TC_SHIFT) != -parallelism);
1938 dl 1.1 }
1939    
1940     /**
1941 dl 1.80 * Returns true if terminating or terminated. Used by ForkJoinWorkerThread.
1942     */
1943     final boolean isAtLeastTerminating() {
1944 dl 1.91 return (ctl & STOP_BIT) != 0L;
1945 dl 1.80 }
1946 jsr166 1.81
1947 dl 1.80 /**
1948 jsr166 1.16 * Returns {@code true} if this pool has been shut down.
1949 dl 1.1 *
1950 jsr166 1.16 * @return {@code true} if this pool has been shut down
1951 dl 1.1 */
1952     public boolean isShutdown() {
1953 dl 1.91 return shutdown;
1954 dl 1.42 }
1955    
1956     /**
1957 dl 1.1 * Blocks until all tasks have completed execution after a shutdown
1958     * request, or the timeout occurs, or the current thread is
1959     * interrupted, whichever happens first.
1960     *
1961     * @param timeout the maximum time to wait
1962     * @param unit the time unit of the timeout argument
1963 jsr166 1.16 * @return {@code true} if this executor terminated and
1964     * {@code false} if the timeout elapsed before termination
1965 dl 1.1 * @throws InterruptedException if interrupted while waiting
1966     */
1967     public boolean awaitTermination(long timeout, TimeUnit unit)
1968     throws InterruptedException {
1969 dl 1.91 long nanos = unit.toNanos(timeout);
1970     final ReentrantLock lock = this.submissionLock;
1971     lock.lock();
1972 dl 1.57 try {
1973 dl 1.91 for (;;) {
1974     if (isTerminated())
1975     return true;
1976     if (nanos <= 0)
1977     return false;
1978     nanos = termination.awaitNanos(nanos);
1979     }
1980     } finally {
1981     lock.unlock();
1982 dl 1.57 }
1983 dl 1.1 }
1984    
1985     /**
1986     * Interface for extending managed parallelism for tasks running
1987 jsr166 1.35 * in {@link ForkJoinPool}s.
1988     *
1989 dl 1.61 * <p>A {@code ManagedBlocker} provides two methods. Method
1990     * {@code isReleasable} must return {@code true} if blocking is
1991     * not necessary. Method {@code block} blocks the current thread
1992     * if necessary (perhaps internally invoking {@code isReleasable}
1993 dl 1.93 * before actually blocking). These actions are performed by any
1994     * thread invoking {@link ForkJoinPool#managedBlock}. The
1995     * unusual methods in this API accommodate synchronizers that may,
1996     * but don't usually, block for long periods. Similarly, they
1997     * allow more efficient internal handling of cases in which
1998     * additional workers may be, but usually are not, needed to
1999     * ensure sufficient parallelism. Toward this end,
2000     * implementations of method {@code isReleasable} must be amenable
2001     * to repeated invocation.
2002 jsr166 1.17 *
2003 dl 1.1 * <p>For example, here is a ManagedBlocker based on a
2004     * ReentrantLock:
2005 jsr166 1.17 * <pre> {@code
2006     * class ManagedLocker implements ManagedBlocker {
2007     * final ReentrantLock lock;
2008     * boolean hasLock = false;
2009     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
2010     * public boolean block() {
2011     * if (!hasLock)
2012     * lock.lock();
2013     * return true;
2014     * }
2015     * public boolean isReleasable() {
2016     * return hasLock || (hasLock = lock.tryLock());
2017 dl 1.1 * }
2018 jsr166 1.17 * }}</pre>
2019 dl 1.61 *
2020     * <p>Here is a class that possibly blocks waiting for an
2021     * item on a given queue:
2022     * <pre> {@code
2023     * class QueueTaker<E> implements ManagedBlocker {
2024     * final BlockingQueue<E> queue;
2025     * volatile E item = null;
2026     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
2027     * public boolean block() throws InterruptedException {
2028     * if (item == null)
2029 dl 1.65 * item = queue.take();
2030 dl 1.61 * return true;
2031     * }
2032     * public boolean isReleasable() {
2033 dl 1.65 * return item != null || (item = queue.poll()) != null;
2034 dl 1.61 * }
2035     * public E getItem() { // call after pool.managedBlock completes
2036     * return item;
2037     * }
2038     * }}</pre>
2039 dl 1.1 */
2040     public static interface ManagedBlocker {
2041     /**
2042     * Possibly blocks the current thread, for example waiting for
2043     * a lock or condition.
2044 jsr166 1.17 *
2045 jsr166 1.28 * @return {@code true} if no additional blocking is necessary
2046     * (i.e., if isReleasable would return true)
2047 dl 1.1 * @throws InterruptedException if interrupted while waiting
2048 jsr166 1.17 * (the method is not required to do so, but is allowed to)
2049 dl 1.1 */
2050     boolean block() throws InterruptedException;
2051    
2052     /**
2053 jsr166 1.28 * Returns {@code true} if blocking is unnecessary.
2054 dl 1.1 */
2055     boolean isReleasable();
2056     }
2057    
2058     /**
2059     * Blocks in accord with the given blocker. If the current thread
2060 jsr166 1.38 * is a {@link ForkJoinWorkerThread}, this method possibly
2061     * arranges for a spare thread to be activated if necessary to
2062 dl 1.57 * ensure sufficient parallelism while the current thread is blocked.
2063 jsr166 1.38 *
2064     * <p>If the caller is not a {@link ForkJoinTask}, this method is
2065     * behaviorally equivalent to
2066 jsr166 1.17 * <pre> {@code
2067     * while (!blocker.isReleasable())
2068     * if (blocker.block())
2069     * return;
2070     * }</pre>
2071 jsr166 1.38 *
2072     * If the caller is a {@code ForkJoinTask}, then the pool may
2073     * first be expanded to ensure parallelism, and later adjusted.
2074 dl 1.1 *
2075     * @param blocker the blocker
2076 jsr166 1.16 * @throws InterruptedException if blocker.block did so
2077 dl 1.1 */
2078 dl 1.57 public static void managedBlock(ManagedBlocker blocker)
2079 dl 1.1 throws InterruptedException {
2080     Thread t = Thread.currentThread();
2081 dl 1.61 if (t instanceof ForkJoinWorkerThread) {
2082     ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
2083     w.pool.awaitBlocker(blocker);
2084     }
2085 dl 1.57 else {
2086     do {} while (!blocker.isReleasable() && !blocker.block());
2087     }
2088 dl 1.1 }
2089    
2090 dl 1.33 // AbstractExecutorService overrides. These rely on undocumented
2091     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
2092     // implement RunnableFuture.
2093 dl 1.2
2094     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
2095 jsr166 1.34 return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
2096 dl 1.2 }
2097    
2098     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
2099 jsr166 1.34 return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
2100 dl 1.2 }
2101    
2102 jsr166 1.27 // Unsafe mechanics
2103 dl 1.91 private static final sun.misc.Unsafe UNSAFE;
2104     private static final long ctlOffset;
2105     private static final long stealCountOffset;
2106     private static final long blockedCountOffset;
2107     private static final long quiescerCountOffset;
2108     private static final long scanGuardOffset;
2109     private static final long nextWorkerNumberOffset;
2110     private static final long ABASE;
2111     private static final int ASHIFT;
2112    
2113     static {
2114     poolNumberGenerator = new AtomicInteger();
2115     workerSeedGenerator = new Random();
2116     modifyThreadPermission = new RuntimePermission("modifyThread");
2117     defaultForkJoinWorkerThreadFactory =
2118     new DefaultForkJoinWorkerThreadFactory();
2119     int s;
2120 jsr166 1.27 try {
2121 dl 1.91 UNSAFE = getUnsafe();
2122     Class k = ForkJoinPool.class;
2123     ctlOffset = UNSAFE.objectFieldOffset
2124     (k.getDeclaredField("ctl"));
2125     stealCountOffset = UNSAFE.objectFieldOffset
2126     (k.getDeclaredField("stealCount"));
2127     blockedCountOffset = UNSAFE.objectFieldOffset
2128     (k.getDeclaredField("blockedCount"));
2129     quiescerCountOffset = UNSAFE.objectFieldOffset
2130     (k.getDeclaredField("quiescerCount"));
2131     scanGuardOffset = UNSAFE.objectFieldOffset
2132     (k.getDeclaredField("scanGuard"));
2133     nextWorkerNumberOffset = UNSAFE.objectFieldOffset
2134     (k.getDeclaredField("nextWorkerNumber"));
2135     Class a = ForkJoinTask[].class;
2136     ABASE = UNSAFE.arrayBaseOffset(a);
2137     s = UNSAFE.arrayIndexScale(a);
2138     } catch (Exception e) {
2139     throw new Error(e);
2140     }
2141     if ((s & (s-1)) != 0)
2142     throw new Error("data type scale not a power of two");
2143     ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
2144 jsr166 1.27 }
2145    
2146     /**
2147     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
2148     * Replace with a simple call to Unsafe.getUnsafe when integrating
2149     * into a jdk.
2150     *
2151     * @return a sun.misc.Unsafe
2152     */
2153     private static sun.misc.Unsafe getUnsafe() {
2154     try {
2155     return sun.misc.Unsafe.getUnsafe();
2156     } catch (SecurityException se) {
2157     try {
2158     return java.security.AccessController.doPrivileged
2159     (new java.security
2160     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
2161     public sun.misc.Unsafe run() throws Exception {
2162     java.lang.reflect.Field f = sun.misc
2163     .Unsafe.class.getDeclaredField("theUnsafe");
2164     f.setAccessible(true);
2165     return (sun.misc.Unsafe) f.get(null);
2166     }});
2167     } catch (java.security.PrivilegedActionException e) {
2168     throw new RuntimeException("Could not initialize intrinsics",
2169     e.getCause());
2170     }
2171     }
2172     }
2173 dl 1.1 }